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Preface

The first edition of this book was published in 2008 and has been adopted by numerous
universities around the globe for undergraduate microelectronics education. Following is
a detailed description of each chapter with my teaching and learning recommendations.

Coverage of Chapters The material in each chapter can be decomposed into three
categories: (1) essential concepts that the instructor should cover in the lecture, (2) essential
skills that the students must develop but cannot be covered in the lecture due to the limited
time, and (3) topics that prove useful but may be skipped according to the instructor’s
preference.1 Summarized below are overviews of the chapters showing which topics should
be covered in the classroom.

Chapter 1: Introduction to Microelectronics The objective of this chapter is to pro-
vide the “big picture” and make the students comfortable with analog and digital signals.
I spend about 30 to 45 minutes on Sections 1.1 and 1.2, leaving the remainder of the chapter
(Basic Concepts) for the teaching assistants to cover in a special evening session in the
first week.

Chapter 2: Basic Semiconductor Physics Providing the basics of semiconductor de-
vice physics, this chapter deliberately proceeds at a slow pace, examining concepts from
different angles and allowing the students to digest the material as they read on. A terse
language would shorten the chapter but require that the students reread the material
multiple times in their attempt to decipher the prose.

It is important to note, however, that the instructor’s pace in the classroom need not
be as slow as that of the chapter. The students are expected to read the details and the
examples on their own so as to strengthen their grasp of the material. The principal point
in this chapter is that we must study the physics of devices so as to construct circuit models
for them. In a quarter system, I cover the following concepts in the lecture: electrons
and holes; doping; drift and diffusion; pn junction in equilibrium and under forward and
reverse bias.

Chapter 3: Diode Models and Circuits This chapter serves four purposes: (1) make the
students comfortable with the pn junction as a nonlinear device; (2) introduce the concept
of linearizing a nonlinear model to simplify the analysis; (3) cover basic circuits with which
any electrical engineer must be familiar, e.g., rectifiers and limiters; and (4) develop the
skills necessary to analyze heavily-nonlinear circuits, e.g., where it is difficult to predict
which diode turns on at what input voltage. Of these, the first three are essential and
should be covered in the lecture, whereas the last depends on the instructor’s preference.
(I cover it in my lectures.) In the interest of time, I skip a number of sections in a quarter
system, e.g., voltage doublers and level shifters.

Chapter 4: Physics of Bipolar Transistors Beginning with the use of a voltage-
controlled current source in an amplifier, this chapter introduces the bipolar transistor

1Such topics are identified in the book by a footnote.
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as an extension of pn junctions and derives its small-signal model. As with Chapter 2, the
pace is relatively slow, but the lectures need not be. I cover structure and operation of
the bipolar transistor, a very simplified derivation of the exponential characteristic, and
transistor models, mentioning only briefly that saturation is undesirable. Since the T-model
of limited use in analysis and carries little intuition (especially for MOS devices), I have
excluded it in this book.

Chapter 5: Bipolar Amplifiers This is the longest chapter in the book, building the
foundation necessary for all subsequent work in electronics. Following a bottom-up
approach, this chapter establishes critical concepts such as input and output impedances,
biasing, and small-signal analysis.

While writing the book, I contemplated decomposing Chapter 5 into two chapters,
one on the above concepts and another on bipolar amplifier topologies, so that the lat-
ter could be skipped by instructors who prefer to continue with MOS circuits instead.
However, teaching the general concepts does require the use of transistors, making such
a decomposition difficult.

Chapter 5 proceeds slowly, reinforcing, step-by-step, the concept of synthesis and
exploring circuit topologies with the aid of “What if?” examples. As with Chapters 2 and
4, the instructor can move at a faster pace and leave much of the text for the students to
read on their own. In a quarter system, I cover all of the chapter, frequently emphasizing
the concepts illustrated in Figure 5.7 (the impedance seen looking into the base, emit-
ter, or collector). With about two (perhaps two and half) weeks allotted to this chapter,
the lectures must be precisely designed to ensure the main concepts are imparted in the
classroom.

Chapter 6: Physics of MOS Devices This chapter parallels Chapter 4, introducing the
MOSFET as a voltage-controlled current source and deriving its characteristics. Given
the limited time that we generally face in covering topics, I have included only a brief
discussion of the body effect and velocity saturation and neglected these phenomena for
the remainder of the book. I cover all of this chapter in our first course.

Chapter 7: CMOS Amplifiers Drawing extensively upon the foundation established in
Chapter 5, this chapter deals with MOS amplifiers but at a faster pace. I cover all of this
chapter in our first course.

Chapter 8: Operational Amplifier as a Black Box Dealing with op-amp-based cir-
cuits, this chapter is written such that it can be taught in almost any order with respect to
other chapters. My own preference is to cover this chapter after amplifier topologies have
been studied, so that the students have some bare understanding of the internal circuitry of
op amps and its gain limitations. Teaching this chapter near the end of the first course also
places op amps closer to differential amplifiers (Chapter 10), thus allowing the students to
appreciate the relevance of each. I cover all of this chapter in our first course.

Chapter 9: Cascodes and Current Mirrors This chapter serves as an important step
toward integrated circuit design. The study of cascodes and current mirrors here also
provides the necessary background for constructing differential pairs with active loads
or cascodes in Chapter 10. From this chapter on, bipolar and MOS circuits are covered
together and various similarities and contrasts between them are pointed out. In our second
microelectronics course, I cover all of the topics in this chapter in approximately two
weeks.
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Chapter 10: Differential Amplifiers This chapter deals with large-signal and small-
signal behavior of differential amplifiers. The students may wonder why we did not study
the large-signal behavior of various amplifiers in Chapters 5 and 7; so I explain that the
differential pair is a versatile circuit and is utilized in both regimes. I cover all of this chapter
in our second course.

Chapter 11: Frequency Response Beginning with a review of basic concepts such
as Bode’s rules, this chapter introduces the high-frequency model of transistors and ana-
lyzes the frequency response of basic amplifiers. I cover all of this chapter in our second
course.

Chapter 12: Feedback and Stability Most instructors agree the students find feed-
back to be the most difficult topic in undergraduate microelectronics. For this reason,
I have made great effort to create a step-by-step procedure for analyzing feedback cir-
cuits, especially where input and output loading effects must be taken into account. As with
Chapters 2 and 5, this chapter proceeds at a deliberately slow pace, allowing the students to
become comfortable with each concept and appreciate the points taught by each example.
I cover all of this chapter in our second course.

Chapter 13: Oscillators This new chapter deals with both discrete and integrated oscil-
lators. These circuits are both important in real-life applications and helpful in enhancing
the feedback concepts taught previously. This chapter can be comfortably covered in a
semester system.

Chapter 14: Output Stages and Power Amplifiers This chapter studies circuits that
deliver higher power levels than those considered in previous chapters. Topologies such
as push-pull stages and their limitations are analyzed. This chapter can be covered in a
semester system.

Chapter 15: Analog Filters This chapter provides a basic understanding of passive and
active filters, preparing the student for more advanced texts on the subject. This chapter
can also be comfortably covered in a semester system.

Chapter 16: Digital CMOS Circuits This chapter is written for microelectronics
courses that include an introduction to digital circuits as a preparation for subsequent
courses on the subject. Given the time constraints in quarter and semester systems, I have
excluded TTL and ECL circuits here.

Chapter 17: CMOS Amplifiers This chapter is written for courses that cover CMOS
circuits before bipolar circuits. As explained earlier, this chapter follows MOS device
physics and, in essence, is similar to Chapter 5 but deals with MOS counterparts.

Problem Sets In addition to numerous examples, each chapter offers a relatively large
problem set at the end. For each concept covered in the chapter, I begin with simple,
confidence-building problems and gradually raise the level of difficulty. Except for the
device physics chapters, all chapters also provide a set of design problems that encourage
students to work “in reverse” and select the bias and/or component values to satisfy certain
requirements.
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SPICE Some basic circuit theory courses may provide exposure to SPICE, but it is in the
first microelectronics course that the students can appreciate the importance of simulation
tools. Appendix A of this book introduces SPICE and teaches circuit simulation with the
aid of numerous examples. The objective is to master only a subset of SPICE commands
that allow simulation of most circuits at this level. Due to the limited lecture time, I ask
the teaching assistants to cover SPICE in a special evening session around the middle of
the quarter—just before I begin to assign SPICE problems.

Most chapters contain SPICE problems, but I prefer to introduce SPICE only in the
second half of the first course (toward the end of Chapter 5). This is for two reasons:
(1) the students must first develop their basic understanding and analytical skills, i.e., the
homeworks must exercise the fundamental concepts; and (2) the students appreciate the
utility of SPICE much better if the circuit contains a relatively large number of devices
(e.g., 5-10).

Homeworks and Exams In a quarter system, I assign four homeworks before the
midterm and four after. Mostly based on the problem sets in the book, the homeworks
contain moderate to difficult problems, thereby requiring that the students first go over
the easier problems in the book on their own.

The exam questions are typically “twisted” versions of the problems in the book. To
encourage the students to solve all of the problems at the end of each chapter, I tell them
that one of the problems in the book is given in the exam verbatim. The exams are open-
book, but I suggest to the students to summarize the important equations on one sheet of
paper.

Behzad Razavi



Acknowledgments

This book has taken four years to write and benefited from contributions of many indi-
viduals. I wish to thank the following for their input at various stages of this book’s devel-
opment: David Allstot (University of Washington), Joel Berlinghieri, Sr. (The Citadel),
Bernhard Boser (University of California, Berkeley), Charles Bray (University of
Memphis), Marc Cahay (University of Cincinnati), Norman Cox (University of Missouri,
Rolla), James Daley (University of Rhode Island), Tranjan Farid (University of North
Carolina at Charlotte), Paul Furth (New Mexico State University), Roman Genov (Uni-
versity of Toronto), Maysam Ghovanloo (North Carolina State University), Gennady
Gildenblat (Pennsylvania State University), Ashok Goel (Michigan Technological Univer-
sity), Michael Gouzman (SUNY, Stony Brook), Michael Green (University of California,
Irvine), Sotoudeh Hamedi-Hagh (San Jose State University), Reid Harrison (University
of Utah), Payam Heydari (University of California, Irvine), Feng Hua (Clarkson Univer-
sity), Marian Kazmierchuk (Wright State University), Roger King (University of Toledo),
Edward Kolesar (Texas Christian University), Ying-Cheng Lai (Arizona State Univer-
sity), Daniel Lau (University of Kentucky, Lexington), Stanislaw Legowski (University of
Wyoming), Philip Lopresti (University of Pennsylvania), Mani Mina (Iowa State Univer-
sity), James Morris (Portland State University), Khalil Najafi (University of Michigan),
Homer Nazeran (University of Texas, El Paso), Tamara Papalias (San Jose State Univer-
sity), Matthew Radmanesh (California State University, Northridge), Angela Rasmussen
(University of Utah), Sal R. Riggio, Jr. (Pennsylvania State University), Ali Sheikholeslami
(University of Toronto), Kalpathy B. Sundaram (University of Central Florida), Yannis
Tsividis (Columbia University), Thomas Wu (University of Central Florida), Darrin Young
(Case Western Reserve University).

I am grateful to Naresh Shanbhag (University of Illinois, Urbana-Champaign) for
test driving a draft of the book in a course and providing valuable feedback. The fol-
lowing UCLA students diligently prepared the solutions manual: Lawrence Au, Hamid
Hatamkhani, Alireza Mehrnia, Alireza Razzaghi, William Wai-Kwok Tang, and Ning
Wang. Ning Wang also produced the Powerpoint slides for the entire book. Eudean Sun
(University of California, Berkeley) and John Tyler (Texas A&M University) served as
accuracy checkers. I would like to thank them for their hard work.

I thank my publisher, Catherine Shultz, for her dedication and exuberance. Lucille
Buonocore, Carmen Hernandez, Dana Kellogg, Madelyn Lesure, Christopher Ruel,
Kenneth Santor, Lauren Sapira, Daniel Sayre, Gladys Soto, and Carolyn Weisman of
Wiley and Bill Zobrist (formerly with Wiley) also deserve my gratitude. In addition, I wish
to thank Jessica Knecht and Joyce Poh for their hard work on the second edition.

My wife, Angelina, typed the entire book and kept her humor as this project dragged
on. My deepest thanks go to her.

Behzad Razavi

ix





Contents

1 INTRODUCTION TO
MICROELECTRONICS 1

1.1 Electronics versus
Microelectronics 1

1.2 Examples of Electronic
Systems 2

1.2.1 Cellular Telephone 2

1.2.2 Digital Camera 5

1.2.3 Analog Versus Digital 7

2 BASIC PHYSICS OF
SEMICONDUCTORS 9

2.1 Semiconductor Materials and
Their Properties 10

2.1.1 Charge Carriers in

Solids 10

2.1.2 Modification of Carrier

Densities 13

2.1.3 Transport of Carriers 15

2.2 pn Junction 23

2.2.1 pn Junction in Equilibrium 24

2.2.2 pn Junction Under Reverse

Bias 29

2.2.3 pn Junction Under Forward

Bias 33

2.2.4 I/V Characteristics 36

2.3 Reverse Breakdown 41

2.3.1 Zener Breakdown 42

2.3.2 Avalanche Breakdown 42

Problems 43

Spice Problems 45

3 DIODE MODELS AND
CIRCUITS 46

3.1 Ideal Diode 46

3.1.1 Initial Thoughts 46

3.1.2 Ideal Diode 48

3.1.3 Application Examples 52

3.2 pn Junction as a Diode 57

3.3 Additional Examples 59

3.4 Large-Signal and Small-Signal
Operation 64

3.5 Applications of Diodes 73

3.5.1 Half-Wave and Full-Wave

Rectifiers 73

3.5.2 Voltage Regulation 86

3.5.3 Limiting Circuits 88

3.5.4 Voltage Doublers 92

3.5.5 Diodes as Level Shifters and

Switches 96

Problems 99

Spice Problems 106

4 PHYSICS OF BIPOLAR
TRANSISTORS 107

4.1 General Considerations 107

4.2 Structure of Bipolar
Transistor 109

4.3 Operation of Bipolar Transistor in
Active Mode 110

4.3.1 Collector Current 113

4.3.2 Base and Emitter

Currents 116

4.4 Bipolar Transistor Models and
Characteristics 118

4.4.1 Large-Signal Model 118

4.4.2 I/V Characteristics 120

4.4.3 Concept of Transconductance

122

4.4.4 Small-Signal Model 124

4.4.5 Early Effect 129

4.5 Operation of Bipolar Transistor
in Saturation Mode 135

4.6 The PNP Transistor 138

4.6.1 Structure and Operation 139

4.6.2 Large-Signal Model 139

4.6.3 Small-Signal Model 142

Problems 145

Spice Problems 151

xi



xii Contents

5 BIPOLAR AMPLIFIERS 153

5.1 General Considerations 153

5.1.1 Input and Output

Impedances 154

5.1.2 Biasing 158

5.1.3 DC and Small-Signal

Analysis 158

5.2 Operating Point Analysis and
Design 160

5.2.1 Simple Biasing 162

5.2.2 Resistive Divider Biasing 164

5.2.3 Biasing with Emitter

Degeneration 167

5.2.4 Self-Biased Stage 171

5.2.5 Biasing of PNP
Transistors 174

5.3 Bipolar Amplifier Topologies 178

5.3.1 Common-Emitter

Topology 179

5.3.2 Common-Base

Topology 205

5.3.3 Emitter Follower 222

Problems 230

Spice Problems 242

6 PHYSICS OF MOS
TRANSISTORS 244

6.1 Structure of MOSFET 244

6.2 Operation of MOSFET 247

6.2.1 Qualitative Analysis 247

6.2.2 Derivation of I-V

Characteristics 253

6.2.3 Channel-Length

Modulation 262

6.2.4 MOS Transconductance 264

6.2.5 Velocity Saturation 266

6.2.6 Other Second-Order

Effects 266

6.3 MOS Device Models 267

6.3.1 Large-Signal Model 267

6.3.2 Small-Signal Model 269

6.4 PMOS Transistor 270

6.5 CMOS Technology 273

6.6 Comparison of Bipolar and MOS
Devices 273

Problems 274

Spice Problems 280

7 CMOS AMPLIFIERS 281

7.1 General Considerations 281

7.1.1 MOS Amplifier

Topologies 281

7.1.2 Biasing 281

7.1.3 Realization of Current

Sources 285

7.2 Common-Source Stage 286

7.2.1 CS Core 286

7.2.2 CS Stage with Current-Source

Load 289

7.2.3 CS Stage with

Diode-Connected Load 290

7.2.4 CS Stage with Degeneration

292

7.2.5 CS Core with Biasing 295

7.3 Common-Gate Stage 297

7.3.1 CG Stage with Biasing 302

7.4 Source Follower 303

7.4.1 Source Follower Core 304

7.4.2 Source Follower with

Biasing 306

Problems 308

Spice Problems 319

8 OPERATIONAL AMPLIFIER
AS A BLACK BOX 321

8.1 General Considerations 322

8.2 Op-Amp-Based Circuits 324

8.2.1 Noninverting Amplifier 324

8.2.2 Inverting Amplifier 326

8.2.3 Integrator and

Differentiator 329

8.2.4 Voltage Adder 335

8.3 Nonlinear Functions 336

8.3.1 Precision Rectifier 336

8.3.2 Logarithmic Amplifier 338

8.3.3 Square-Root Amplifier 339

8.4 Op Amp Nonidealities 339

8.4.1 DC Offsets 339

8.4.2 Input Bias Current 342

8.4.3 Speed Limitations 346



Contents xiii

8.4.4 Finite Input and Output

Impedances 350

8.5 Design Examples 351

Problems 353

Spice Problems 358

9 CASCODE STAGES AND
CURRENT MIRRORS 359

9.1 Cascode Stage 359

9.1.1 Cascode as a Current

Source 359

9.1.2 Cascode as an Amplifier 366

9.2 Current Mirrors 375

9.2.1 Initial Thoughts 375

9.2.2 Bipolar Current

Mirror 376

9.2.3 MOS Current

Mirror 385

Problems 388

Spice Problems 397

10 DIFFERENTIAL
AMPLIFIERS 399

10.1 General Considerations 399

10.1.1 Initial Thoughts 399

10.1.2 Differential Signals 401

10.1.3 Differential Pair 404

10.2 Bipolar Differential Pair 404

10.2.1 Qualitative Analysis 404

10.2.2 Large-Signal Analysis 410

10.2.3 Small-Signal

Analysis 414

10.3 MOS Differential Pair 420

10.3.1 Qualitative Analysis 421

10.3.2 Large-Signal Analysis 425

10.3.3 Small-Signal Analysis 429

10.4 Cascode Differential
Amplifiers 433

10.5 Common-Mode Rejection 437

10.6 Differential Pair with Active
Load 441

10.6.1 Qualitative Analysis 442

10.6.2 Quantitative Analysis 444

Problems 449

Spice Problems 459

11 FREQUENCY RESPONSE
460

11.1 Fundamental Concepts 460

11.1.1 General Considerations 460

11.1.2 Relationship Between

Transfer Function and

Frequency Response 463

11.1.3 Bode’s Rules 466

11.1.4 Association of Poles with

Nodes 467

11.1.5 Miller’s Theorem 469

11.1.6 General Frequency

Response 472

11.2 High-Frequency Models of
Transistors 475

11.2.1 High-Frequency Model of

Bipolar Transistor 475

11.2.2 High-Frequency Model of

MOSFET 476

11.2.3 Transit Frequency 478

11.3 Analysis Procedure 480

11.4 Frequency Response of CE and
CS Stages 480

11.4.1 Low-Frequency

Response 480

11.4.2 High-Frequency

Response 481

11.4.3 Use of Miller’s Theorem 482

11.4.4 Direct Analysis 484

11.4.5 Input Impedance 487

11.5 Frequency Response of CB and
CG Stages 488

11.5.1 Low-Frequency

Response 488

11.5.2 High-Frequency Response

489

11.6 Frequency Response of
Followers 491

11.6.1 Input and Output

Impedances 495

11.7 Frequency Response of Cascode
Stage 498

11.7.1 Input and Output

Impedances 502

11.8 Frequency Response of
Differential Pairs 503



xiv Contents

11.8.1 Common-Mode Frequency

Response 504

Problems 506

Spice Problems 512

12 FEEDBACK 513

12.1 General Considerations 513

12.1.1 Loop Gain 516

12.2 Properties of Negative
Feedback 518

12.2.1 Gain Desensitization 518

12.2.2 Bandwidth Extension 519

12.2.3 Modification of I/O

Impedances 521

12.2.4 Linearity Improvement

525

12.3 Types of Amplifiers 526

12.3.1 Simple Amplifier Models

526

12.3.2 Examples of Amplifier

Types 527

12.4 Sense and Return Techniques 529

12.5 Polarity of Feedback 532

12.6 Feedback Topologies 534

12.6.1 Voltage-Voltage

Feedback 534

12.6.2 Voltage-Current

Feedback 539

12.6.3 Current-Voltage

Feedback 542

12.6.4 Current-Current

Feedback 547

12.7 Effect of Nonideal I/O
Impedances 550

12.7.1 Inclusion of I/O

Effects 551

12.8 Stability in Feedback
Systems 563

12.8.1 Review of Bode’s Rules 563

12.8.2 Problem of Instability 565

12.8.3 Stability Condition 568

12.8.4 Phase Margin 571

12.8.5 Frequency Compensation

573

12.8.6 Miller Compensation 576

Problems 577

Spice Problems 587

13 OSCILLATORS 588

13.1 General Considerations 588

13.2 Ring Oscillators 591

13.3 LC Oscillators 595

13.3.1 Parallel LC Tanks 595

13.3.2 Cross-Coupled

Oscillator 599

13.3.3 Colpitts Oscillator 601

13.4 Phase Shift Oscillator 604

13.5 Wien-Bridge Oscillator 607

13.6 Crystal Oscillators 608

13.6.1 Crystal Model 608

13.6.2 Negative-Resistance

Circuit 610

13.6.3 Crystal Oscillator

Implementation 611

Problems 614

Spice Problems 617

14 OUTPUT STAGES AND
POWER AMPLIFIERS 619

14.1 General Considerations 619

14.2 Emitter Follower as Power
Amplifier 620

14.3 Push-Pull Stage 623

14.4 Improved Push-Pull Stage 626

14.4.1 Reduction of Crossover

Distortion 626

14.4.2 Addition of CE Stage 629

14.5 Large-Signal Considerations 633

14.5.1 Biasing Issues 633

14.5.2 Omission of PNP Power

Transistor 634

14.5.3 High-Fidelity Design 637

14.6 Short-Circuit Protection 638

14.7 Heat Dissipation 638

14.7.1 Emitter Follower Power

Rating 639

14.7.2 Push-Pull Stage Power

Rating 640

14.7.3 Thermal Runaway 641

14.8 Efficiency 643



Contents xv

14.8.1 Efficiency of Emitter

Follower 643

14.8.2 Efficiency of Push-Pull

Stage 644

14.9 Power Amplifier Classes 645

Problems 646

Spice Problems 650

15 ANALOG FILTERS 651

15.1 General Considerations 651

15.1.1 Filter Characteristics 652

15.1.2 Classification of Filters 653

15.1.3 Filter Transfer Function 656

15.1.4 Problem of Sensitivity 660

15.2 First-Order Filters 661

15.3 Second-Order Filters 664

15.3.1 Special Cases 664

15.3.2 RLC Realizations 668

15.4 Active Filters 673

15.4.1 Sallen and Key Filter 673

15.4.2 Integrator-Based

Biquads 679

15.4.3 Biquads Using Simulated

Inductors 682

15.5 Approximation of Filter
Response 687

15.5.1 Butterworth Response 688

15.5.2 Chebyshev Response 692

Problems 697

Spice Problems 701

16 DIGITAL CMOS
CIRCUITS 702

16.1 General Considerations 702

16.1.1 Static Characterization of

Gates 703

16.1.2 Dynamic Characterization of

Gates 710

16.1.3 Power-Speed Trade-Off 713

16.2 CMOS Inverter 714

16.2.1 Initial Thoughts 715

16.2.2 Voltage Transfer

Characteristic 717

16.2.3 Dynamic Characteristics 723

16.2.4 Power Dissipation 728

16.3 CMOS NOR and NAND
Gates 731

16.3.1 NOR Gate 732

16.3.2 NAND Gate 735

Problems 736

Spice Problems 740

17 CMOS AMPLIFIERS 742

17.1 General Considerations 742

17.1.1 Input and Output

Impedances 743

17.1.2 Biasing 747

17.1.3 DC and Small-Signal

Analysis 748

17.2 Operating Point Analysis and
Design 749

17.2.1 Simple Biasing 751

17.2.2 Biasing with Source

Degeneration 753

17.2.3 Self-Biased Stage 756

17.2.4 Biasing of PMOS

Transistors 757

17.2.5 Realization of Current

Sources 758

17.3 CMOS Amplifier Topologies 759

17.4 Common-Source Topology 760

17.4.1 CS Stage with

Current-Source Load 765

17.4.2 CS Stage with

Diode-Connected Load 766

17.4.3 CS Stage with Source

Degeneration 767

17.4.4 Common-Gate Topology

779

17.4.5 Source Follower 790

Problems 796

Spice Problems 806

Appendix A INTRODUCTION
TO SPICE 809

Index 829





Chapter 1
Introduction to Microelectronics

Over the past five decades, microelectronics has revolutionized our lives. While beyond
the realm of possibility a few decades ago, cellphones, digital cameras, laptop computers,
and many other electronic products have now become an integral part of our daily affairs.

Learning microelectronics can be fun. As we learn how each device operates, how
devices comprise circuits that perform interesting and useful functions, and how circuits
form sophisticated systems, we begin to see the beauty of microelectronics and appreciate
the reasons for its explosive growth.

This chapter gives an overview of microelectronics so as to provide a context for the
material presented in this book. We introduce examples of microelectronic systems and
identify important circuit “functions” that they employ. We also provide a review of basic
circuit theory to refresh the reader’s memory.

1.1 ELECTRONICS VERSUS MICROELECTRONICS

The general area of electronics began about a century ago and proved instrumental in
the radio and radar communications used during the two world wars. Early systems in-
corporated “vacuum tubes,” amplifying devices that operated with the flow of electrons
between plates in a vacuum chamber. However, the finite lifetime and the large size of
vacuum tubes motivated researchers to seek an electronic device with better properties.

The first transistor was invented in the 1940s and rapidly displaced vacuum tubes. It
exhibited a very long (in principle, infinite) lifetime and occupied a much smaller volume
(e.g., less than 1 cm3 in packaged form) than vacuum tubes did.

But it was not until 1960s that the field of microelectronics, i.e., the science of integrat-
ing many transistors on one chip, began. Early “integrated circuits” (ICs) contained only
a handful of devices, but advances in the technology soon made it possible to dramatically
increase the complexity of “microchips.”

Example

1.1
Today’s microprocessors contain about 100 million transistors in a chip area of approx-
imately 3 cm × 3 cm. (The chip is a few hundred microns thick.) Suppose integrated
circuits were not invented and we attempted to build a processor using 100 million
“discrete” transistors. If each device occupies a volume of 3 mm × 3 mm × 3 mm, de-
termine the minimum volume for the processor. What other issues would arise in such
an implementation?

1



2 Chapter 1 Introduction to Microelectronics

Solution The minimum volume is given by 27 mm3 × 108, i.e., a cube 1.4 m on each side! Of
course, the wires connecting the transistors would increase the volume substantially.

In addition to occupying a large volume, this discrete processor would be extremely
slow; the signals would need to travel on wires as long as 1.4 m! Furthermore, if each
discrete transistor costs 1 cent and weighs 1 g, each processor unit would be priced at
one million dollars and weigh 100 tons!

Exercise How much power would such a system consume if each transistor dissipates 10 μW?

This book deals mostly with microelectronics while providing sufficient foundation for
general (perhaps discrete) electronic systems as well.

1.2 EXAMPLES OF ELECTRONIC SYSTEMS

At this point, we introduce two examples of microelectronic systems and identify some of
the important building blocks that we should study in basic electronics.

1.2.1 Cellular Telephone

Cellular telephones were developed in the 1980s and rapidly became popular in the 1990s.
Today’s cellphones contain a great deal of sophisticated analog and digital electronics that
lie well beyond the scope of this book. But our objective here is to see how the concepts
described in this book prove relevant to the operation of a cellphone.

Suppose you are speaking with a friend on your cellphone. Your voice is converted to
an electric signal by a microphone and, after some processing, transmitted by the antenna.
The signal produced by your antenna is picked up by your friend’s receiver and, after some
processing, applied to the speaker [Fig. 1.1(a)]. What goes on in these black boxes? Why
are they needed?

Microphone

?

Speaker

Transmitter (TX)

(a) (b)

Receiver (RX)

?

Figure 1.1 (a) Simplified view of a cellphone, (b) further simplification of transmit and receive

paths.

Let us attempt to omit the black boxes and construct the simple system shown in
Fig. 1.1(b). How well does this system work? We make two observations. First, our voice
contains frequencies from 20 Hz to 20 kHz (called the “voice band”). Second, for an an-
tenna to operate efficiently, i.e., to convert most of the electrical signal to electromagnetic
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radiation, its dimension must be a significant fraction (e.g., 25%) of the wavelength. Unfor-
tunately, a frequency range of 20 Hz to 20 kHz translates to a wavelength1 of 1.5 × 107 m
to 1.5 × 104 m, requiring gigantic antennas for each cellphone. Conversely, to obtain a rea-
sonable antenna length, e.g., 5 cm, the wavelength must be around 20 cm and the frequency
around 1.5 GHz.

How do we “convert” the voice band to a gigahertz center frequency? One possible
approach is to multiply the voice signal, x(t), by a sinusoid, A cos(2π fct) [Fig. 1.2(a)]. Since
multiplication in the time domain corresponds to convolution in the frequency domain,
and since the spectrum of the sinusoid consists of two impulses at ±fc, the voice spectrum
is simply shifted (translated) to ±fc [Fig. 1.2(b)]. Thus, if fc = 1 GHz, the output occupies
a bandwidth of 40 kHz centered at 1 GHz. This operation is an example of “amplitude
modulation.”2

t tt
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Spectrum
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Figure 1.2 (a) Multiplication of a voice signal by a sinusoid, (b) equivalent operation in the

frequency domain.

We therefore postulate that the black box in the transmitter of Fig. 1.1(a) contains
a multiplier,3 as depicted in Fig. 1.3(a). But two other issues arise. First, the cellphone
must deliver a relatively large voltage swing (e.g., 20 Vpp) to the antenna so that the
radiated power can reach across distances of several kilometers, thereby requiring a “power
amplifier” between the multiplier and the antenna. Second, the sinusoid, A cos 2π fct, must
be produced by an “oscillator.” We thus arrive at the transmitter architecture shown in
Fig. 1.3(b).

1Recall that the wavelength is equal to the (light) velocity divided by the frequency.
2Cellphones in fact use other types of modulation to translate the voice band to higher frequencies.
3Also called a “mixer” in high-frequency electronics.
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(a) (b)

Power
Amplifier

A  π f C tcos( 2 ) Oscillator

Figure 1.3 (a) Simple transmitter, (b) more complete transmitter.

Let us now turn our attention to the receive path of the cellphone, beginning with the
simple realization illustrated in Fig. 1.1(b). Unfortunately, this topology fails to operate
with the principle of modulation: if the signal received by the antenna resides around a
gigahertz center frequency, the audio speaker cannot produce meaningful information. In
other words, a means of translating the spectrum back to zero center frequency is necessary.
For example, as depicted in Fig. 1.4(a), multiplication by a sinusoid, A cos(2π fct), translates
the spectrum to left and right by fc, restoring the original voice band. The newly-generated
components at ±2fc can be removed by a low-pass filter. We thus arrive at the receiver
topology shown in Fig. 1.4(b).

ff C0 +f C–

Spectrum of Cosine

ff C0f C

Output Spectrum

(a)

ff C0 +f C
– +2–2

(b)

Oscillator

Low-Pass
Filter

Oscillator

Low-Pass
Filter

Amplifier
Low-Noise

Amplifier

(c)

Received  Spectrum

Figure 1.4 (a) Translation of modulated signal to zero center frequency, (b) simple receiver,

(b) more complete receiver.

Our receiver design is still incomplete. The signal received by the antenna can be as
low as a few tens of microvolts whereas the speaker may require swings of several tens
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or hundreds of millivolts. That is, the receiver must provide a great deal of amplification
(“gain”) between the antenna and the speaker. Furthermore, since multipliers typically
suffer from a high “noise” and hence corrupt the received signal, a “low-noise amplifier”
must precede the multiplier. The overall architecture is depicted in Fig. 1.4(c).

Today’s cellphones are much more sophisticated than the topologies developed above.
For example, the voice signal in the transmitter and the receiver is applied to a digital signal
processor (DSP) to improve the quality and efficiency of the communication. Nonetheless,
our study reveals some of the fundamental building blocks of cellphones, e.g., amplifiers,
oscillators, and filters, with the last two also utilizing amplification. We therefore devote a
great deal of effort to the analysis and design of amplifiers.

Having seen the necessity of amplifiers, oscillators, and multipliers in both trans-
mit and receive paths of a cellphone, the reader may wonder if “this is old stuff” and
rather trivial compared to the state of the art. Interestingly, these building blocks still re-
main among the most challenging circuits in communication systems. This is because the
design entails critical trade-offs between speed (gigahertz center frequencies), noise, power
dissipation (i.e., battery lifetime), weight, cost (i.e., price of a cellphone), and many
other parameters. In the competitive world of cellphone manufacturing, a given design is
never “good enough” and the engineers are forced to further push the above trade-offs in
each new generation of the product.

1.2.2 Digital Camera

Another consumer product that, by virtue of “going electronic,” has dramatically changed
our habits and routines is the digital camera. With traditional cameras, we received no
immediate feedback on the quality of the picture that was taken, we were very careful in
selecting and shooting scenes to avoid wasting frames, we needed to carry bulky rolls of
film, and we would obtain the final result only in printed form. With digital cameras, on
the other hand, we have resolved these issues and enjoy many other features that only
electronic processing can provide, e.g., transmission of pictures through cellphones or
ability to retouch or alter pictures by computers. In this section, we study the operation of
the digital camera.

The “front end” of the camera must convert light to electricity, a task performed by an
array (matrix) of “pixels.”4 Each pixel consists of an electronic device (a “photodiode”) that
produces a current proportional to the intensity of the light that it receives. As illustrated
in Fig. 1.5(a), this current flows through a capacitance, CL, for a certain period of time,
thereby developing a proportional voltage across it. Each pixel thus provides a voltage
proportional to the “local” light density.

Now consider a camera with, say, 6.25 million pixels arranged in a 2500 × 2500 array
[Fig. 1.5(b)]. How is the output voltage of each pixel sensed and processed? If each pixel
contains its own electronic circuitry, the overall array occupies a very large area, raising the
cost and the power dissipation considerably. We must therefore “time-share” the signal
processing circuits among pixels. To this end, we follow the circuit of Fig. 1.5(a) with a
simple, compact amplifier and a switch (within the pixel) [Fig. 1.5(c)]. Now, we connect
a wire to the outputs of all 2500 pixels in a “column,” turn on only one switch at a time,
and apply the corresponding voltage to the “signal processing” block outside the column.

4The term “pixel” is an abbreviation of “picture cell.”
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Figure 1.5 (a) Operation of a photodiode, (b) array of pixels in a digital camera, (c) one column of

the array.

The overall array consists of 2500 of such columns, with each column employing a dedicated
signal processing block.

Example

1.2
A digital camera is focused on a chess board. Sketch the voltage produced by one column
as a function of time.

Solution The pixels in each column receive light only from the white squares [Fig. 1.6(a)]. Thus,
the column voltage alternates between a maximum for such pixels and zero for those
receiving no light. The resulting waveform is shown in Fig. 1.6(b).

Vcolumn

(c)(a) (b)

t

Vcolumn

Figure 1.6 (a) Chess board captured by a digital camera, (b) voltage waveform of one column.

Exercise Plot the voltage if the first and second squares in each row have the same color.
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What does each signal processing block do? Since the voltage produced by each pixel
is an analog signal and can assume all values within a range, we must first “digitize” it
by means of an “analog-to-digital converter” (ADC). A 6.25 megapixel array must thus
incorporate 2500 ADCs. Since ADCs are relatively complex circuits, we may time-share
one ADC between every two columns (Fig. 1.7), but requiring that the ADC operate twice
as fast (why?). In the extreme case, we may employ a single, very fast ADC for all 2500
columns. In practice, the optimum choice lies between these two extremes.

ADC

Figure 1.7 Sharing one ADC between two columns of a pixel array.

Once in the digital domain, the “video” signal collected by the camera can be ma-
nipulated extensively. For example, to “zoom in,” the digital signal processor (DSP) sim-
ply considers only a section of the array, discarding the information from the remaining
pixels. Also, to reduce the required memory size, the processor “compresses” the video
signal.

The digital camera exemplifies the extensive use of both analog and digital microelec-
tronics. The analog functions include amplification, switching operations, and analog-to-
digital conversion, and the digital functions consist of subsequent signal processing and
storage.

1.2.3 Analog Versus Digital

Amplifiers and ADCs are examples of analog functions, circuits that must process each
point on a waveform (e.g., a voice signal) with great care to avoid effects such as noise
and “distortion.” By contrast, digital circuits deal with binary levels (ONEs and ZEROs)
and, evidently, contain no analog functions. The reader may then say, “I have no intention
of working for a cellphone or camera manufacturer and, therefore, need not learn about
analog circuits.” In fact, with digital communications, digital signal processors, and every
other function becoming digital, is there any future for analog design?

Well, some of the assumptions in the above statements are incorrect. First, not every
function can be realized digitally. The architectures of Figs. 1.3 and 1.4 must employ low-
noise and low-power amplifiers, oscillators, and multipliers regardless of whether the actual
communication is in analog or digital form. For example, a 20-μV signal (analog or digital)



8 Chapter 1 Introduction to Microelectronics

received by the antenna cannot be directly applied to a digital gate. Similarly, the video
signal collectively captured by the pixels in a digital camera must be processed with low
noise and distortion before it appears in the digital domain.

Second, digital circuits require analog expertise as the speed increases. Figure 1.8
exemplifies this point by illustrating two binary data waveforms, one at 100 Mb/s and
another at 1 Gb/s. The finite risetime and falltime of the latter raises many issues in the
operation of gates, flipflops, and other digital circuits, necessitating great attention to each
point on the waveform.

t

t

( )x t1

( )x t2

10 ns

1 ns

Figure 1.8 Data waveforms at 100 Mb/s and 1 Gb/s.



Chapter 2
Basic Physics of Semiconductors

Microelectronic circuits are based on complex semiconductor structures that have been

under active research for the past six decades. While this book deals with the analysis and

design of circuits, we should emphasize at the outset that a good understanding of devices
is essential to our work. The situation is similar to many other engineering problems, e.g.,

one cannot design a high-performance automobile without a detailed knowledge of the

engine and its limitations.

Nonetheless, we do face a dilemma. Our treatment of device physics must contain

enough depth to provide adequate understanding, but must also be sufficiently brief to

allow quick entry into circuits. This chapter accomplishes this task.

Our ultimate objective in this chapter is to study a fundamentally important and

versatile device called the “diode.” However, just as we need to eat our broccoli before

having dessert, we must develop a basic understanding of “semiconductor” materials and

their current conduction mechanisms before attacking diodes.

In this chapter, we begin with the concept of semiconductors and study the movement

of charge (i.e., the flow of current) in them. Next, we deal with the “pn junction,” which also

serves as diode, and formulate its behavior. Our ultimate goal is to represent the device

by a circuit model (consisting of resistors, voltage or current sources, capacitors, etc.), so

that a circuit using such a device can be analyzed easily. The outline is shown below.

➤

Semiconductors

• Charge Carriers

• Doping

• Transport of Carriers

PN Junction

• Structure

• Reverse and Forward

Bias Conditions

• I/V Characteristics

• Circuit Models

It is important to note that the task of developing accurate models proves critical for
all microelectronic devices. The electronics industry continues to place greater demands

9



10 Chapter 2 Basic Physics of Semiconductors

on circuits, calling for aggressive designs that push semiconductor devices to their limits.
Thus, a good understanding of the internal operation of devices is necessary.1

2.1 SEMICONDUCTOR MATERIALS AND THEIR PROPERTIES

Since this section introduces a multitude of concepts, it is useful to bear a general outline
in mind:

Charge Carriers

in Solids

Crystal Structure

Bandgap Energy

Holes

Modification of

Carrier Densities

Intrinsic Semiconductors

Extrinsic Semiconductors

Doping

Transport  of

Carriers

Diffusion

Drift

Figure 2.1 Outline of this section.

This outline represents a logical thought process: (a) we identify charge carriers in
solids and formulate their role in current flow; (b) we examine means of modifying the
density of charge carriers to create desired current flow properties; (c) we determine cur-
rent flow mechanisms. These steps naturally lead to the computation of the current/voltage
(I/V) characteristics of actual diodes in the next section.

2.1.1 Charge Carriers in Solids

Recall from basic chemistry that the electrons in an atom orbit the nucleus in different
“shells.” The atom’s chemical activity is determined by the electrons in the outermost shell,
called “valence” electrons, and how complete this shell is. For example, neon exhibits
a complete outermost shell (with eight electrons) and hence no tendency for chemical
reactions. On the other hand, sodium has only one valence electron, ready to relinquish
it, and chloride has seven valence electrons, eager to receive one more. Both elements are
therefore highly reactive.

The above principles suggest that atoms having approximately four valence electrons
fall somewhere between inert gases and highly volatile elements, possibly displaying inter-
esting chemical and physical properties. Shown in Fig. 2.2 is a section of the periodic table
containing a number of elements with three to five valence electrons. As the most popular
material in microelectronics, silicon merits a detailed analysis.2

Covalent Bonds A silicon atom residing in isolation contains four valence electrons
[Fig. 2.3(a)], requiring another four to complete its outermost shell. If processed properly,
the silicon material can form a “crystal” wherein each atom is surrounded by exactly four
others [Fig. 2.3(b)]. As a result, each atom shares one valence electron with its neighbors,
thereby completing its own shell and those of the neighbors. The “bond” thus formed
between atoms is called a “covalent bond” to emphasize the sharing of valence electrons.

The uniform crystal depicted in Fig. 2.3(b) plays a crucial role in semiconductor devices.
But, does it carry current in response to a voltage? At temperatures near absolute zero,
the valence electrons are confined to their respective covalent bonds, refusing to move

1As design managers often say, “If you do not push the devices and circuits to their limit but your
competitor does, then you lose to your competitor.”
2Silicon is obtained from sand after a great deal of processing.
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III IV V
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Figure 2.2 Section of the periodic table.

freely. In other words, the silicon crystal behaves as an insulator for T → 0K. However, at
higher temperatures, electrons gain thermal energy, occasionally breaking away from the
bonds and acting as free charge carriers [Fig. 2.3(c)] until they fall into another incomplete
bond. We will hereafter use the term “electrons” to refer to free electrons.

Si Si

Si

Si

Si
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Si

Si

Covalent
Bond

Si
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Si

Si

Si

Si

Si

e

Free
Electron

(c)(a) (b)

Figure 2.3 (a) Silicon atom, (b) covalent bonds between atoms, (c) free electron released by

thermal energy.

Holes When freed from a covalent bond, an electron leaves a “void” behind because the
bond is now incomplete. Called a “hole,” such a void can readily absorb a free electron if
one becomes available. Thus, we say an “electron-hole pair” is generated when an electron
is freed, and an “electron-hole recombination” occurs when an electron “falls” into a hole.

Why do we bother with the concept of the hole? After all, it is the free electron that
actually moves in the crystal. To appreciate the usefulness of holes, consider the time
evolution illustrated in Fig. 2.4. Suppose covalent bond number 1 contains a hole after
losing an electron some time before t = t1. At t = t2, an electron breaks away from bond

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

1

2

Si

Si

Si

Si

Si

Si

Si

3

t = t1 t = t2 t = t3

Hole

Figure 2.4 Movement of electron through crystal.
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number 2 and recombines with the hole in bond number 1. Similarly, at t = t3, an electron
leaves bond number 3 and falls into the hole in bond number 2. Looking at the three
“snapshots,” we can say one electron has traveled from right to left, or, alternatively, one
hole has moved from left to right. This view of current flow by holes proves extremely
useful in the analysis of semiconductor devices.

Bandgap Energy We must now answer two important questions. First, does any thermal
energy create free electrons (and holes) in silicon? No, in fact, a minimum energy is
required to dislodge an electron from a covalent bond. Called the “bandgap energy”
and denoted by Eg , this minimum is a fundamental property of the material. For silicon,
Eg = 1.12 eV.3

The second question relates to the conductivity of the material and is as follows. How
many free electrons are created at a given temperature? From our observations thus far, we
postulate that the number of electrons depends on both Eg and T: a greater Eg translates
to fewer electrons, but a higher T yields more electrons. To simplify future derivations, we
consider the density (or concentration) of electrons, i.e., the number of electrons per unit
volume, ni , and write for silicon:

ni = 5.2 × 1015T3/2 exp
−Eg

2kT
electrons/cm3 (2.1)

where k = 1.38 × 10−23 J/K is called the Boltzmann constant. The derivation can be found
in books on semiconductor physics, e.g., [1]. As expected, materials having a larger Eg

exhibit a smaller ni . Also, as T → 0, so do T3/2 and exp[−Eg/(2kT)], thereby bringing ni

toward zero.
The exponential dependence of ni upon Eg reveals the effect of the bandgap energy on

the conductivity of the material. Insulators display a high Eg ; for example, Eg = 2.5 eV for
diamond. Conductors, on the other hand, have a small bandgap. Finally, semiconductors
exhibit a moderate Eg , typically ranging from 1 eV to 1.5 eV.

Example

2.1
Determine the density of electrons in silicon at T = 300 K (room temperature) and
T = 600 K.

Solution Since Eg = 1.12 eV = 1.792 × 10−19 J, we have

ni (T = 300 K) = 1.08 × 1010 electrons/cm3 (2.2)

ni (T = 600 K) = 1.54 × 1015 electrons/cm3. (2.3)

Since for each free electron, a hole is left behind, the density of holes is also given by
(2.2) and (2.3).

Exercise Repeat the above exercise for a material having a bandgap of 1.5 eV.

The ni values obtained in the above example may appear quite high, but, noting that
silicon has 5 × 1022 atoms/cm3, we recognize that only one in 5 × 1012 atoms benefit from a
free electron at room temperature. In other words, silicon still seems a very poor conductor.
But, do not despair! We next introduce a means of making silicon more useful.

3The unit eV (electron volt) represents the energy necessary to move one electron across a potential
difference of 1 V. Note that 1 eV = 1.6 × 10−19 J.
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2.1.2 Modification of Carrier Densities

Intrinsic and Extrinsic Semiconductors The “pure” type of silicon studied thus far
is an example of “intrinsic semiconductors,” suffering from a very high resistance. Fortu-
nately, it is possible to modify the resistivity of silicon by replacing some of the atoms in the
crystal with atoms of another material. In an intrinsic semiconductor, the electron density,
n( = ni ), is equal to the hole density, p. Thus,

np = n2
i . (2.4)

We return to this equation later.
Recall from Fig. 2.2 that phosphorus (P) contains five valence electrons. What hap-

pens if some P atoms are introduced in a silicon crystal? As illustrated in Fig. 2.5, each P
atom shares four electrons with the neighboring silicon atoms, leaving the fifth electron
“unattached.” This electron is free to move, serving as a charge carrier. Thus, if N phos-
phorus atoms are uniformly introduced in each cubic centimeter of a silicon crystal, then
the density of free electrons rises by the same amount.

Si

Si

Si

Si

Si

Si

P e

Figure 2.5 Loosely-attached electon with phosphorus doping.

The controlled addition of an “impurity” such as phosphorus to an intrinsic semicon-
ductor is called “doping,” and phosphorus itself a “dopant.” Providing many more free
electrons than in the intrinsic state, the doped silicon crystal is now called “extrinsic,” more
specifically, an “n-type” semiconductor to emphasize the abundance of free electrons.

As remarked earlier, the electron and hole densities in an intrinsic semiconductor are
equal. But, how about these densities in a doped material? It can be proved that even in
this case,

np = n2
i , (2.5)

where n and p respectively denote the electron and hole densities in the extrinsic semicon-
ductor. The quantity ni represents the densities in the intrinsic semiconductor (hence the
subscript i) and is therefore independent of the doping level [e.g., Eq. (2.1) for silicon].

Example

2.2
The above result seems quite strange. How can np remain constant while we add more
donor atoms and increase n?

Solution Equation (2.5) reveals that p must fall below its intrinsic level as more n-type dopants
are added to the crystal. This occurs because many of the new electrons donated by the
dopant “recombine” with the holes that were created in the intrinsic material.

Exercise Why can we not say that n + p should remain constant?
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Example

2.3
A piece of crystalline silicon is doped uniformly with phosphorus atoms. The doping
density is 1016 atoms/cm3. Determine the electron and hole densities in this material at
the room temperature.

Solution The addition of 1016 P atoms introduces the same number of free electrons per cubic
centimeter. Since this electron density exceeds that calculated in Example 2.1 by six
orders of magnitude, we can assume

n = 1016 electrons/cm3. (2.6)

It follows from (2.2) and (2.5) that

p = n2
i

n
(2.7)

= 1.17 × 104 holes/cm3. (2.8)

Note that the hole density has dropped below the intrinsic level by six orders of magni-
tude. Thus, if a voltage is applied across this piece of silicon, the resulting current consists
predominantly of electrons.

Exercise At what doping level does the hole density drop by three orders of magnitude?

This example justifies the reason for calling electrons the “majority carriers” and
holes the “minority carriers” in an n-type semiconductor. We may naturally wonder if it is
possible to construct a “p-type” semiconductor, thereby exchanging the roles of electrons
and holes.

Indeed, if we can dope silicon with an atom that provides an insufficient number of
electrons, then we may obtain many incomplete covalent bonds. For example, the table
in Fig. 2.2 suggests that a boron (B) atom—with three valence electrons—can form only
three complete covalent bonds in a silicon crystal (Fig. 2.6). As a result, the fourth bond
contains a hole, ready to absorb a free electron. In other words, N boron atoms contribute
N boron holes to the conduction of current in silicon. The structure in Fig. 2.6 therefore
exemplifies a p-type semiconductor, providing holes as majority carriers. The boron atom
is called an “acceptor” dopant.

Si

Si

Si

Si

Si

Si

B

Figure 2.6 Available hole with boron doping.

Let us formulate our results thus far. If an intrinsic semiconductor is doped with a
density of ND (� ni ) donor atoms per cubic centimeter, then the mobile charge densities
are given by

Majority Carriers: n ≈ ND (2.9)

Minority Carriers: p ≈ n2
i

ND
. (2.10)
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Similarly, for a density of NA (� ni ) acceptor atoms per cubic centimeter:

Majority Carriers: p ≈ NA (2.11)

Minority Carriers: n ≈ n2
i

NA
. (2.12)

Since typical doping densities fall in the range of 1015 to 1018 atoms/cm3, the above ex-
pressions are quite accurate.

Example

2.4
Is it possible to use other elements of Fig. 2.2 as semiconductors and dopants?

Solution Yes, for example, some early diodes and transistors were based on germanium (Ge)
rather than silicon. Also, arsenic (As) is another common dopant.

Exercise Can carbon be used for this purpose?

Figure 2.7 summarizes the concepts introduced in this section, illustrating the types of
charge carriers and their densities in semiconductors.

Covalent
Bond

Si

Si

Si
Electron
Valence

Intrinsic Semiconductor

Extrinsic Semiconductor

Silicon Crystal

ND Donors/cm3

Silicon Crystal

N 3
A Acceptors/cm

Free
Majority Carrier

Si

Si

Si

Si

Si

Si

P e

n–Type
Dopant
(Donor)

Si

Si

Si

Si

Si

Si

B

Free
Majority Carrier

Dopant
p–Type

(Acceptor)

Figure 2.7 Summary of charge carriers in silicon.

2.1.3 Transport of Carriers

Having studied charge carriers and the concept of doping, we are ready to examine
the movement of charge in semiconductors, i.e., the mechanisms leading to the flow
of current.
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Drift We know from basic physics and Ohm’s law that a material can conduct current
in response to a potential difference and hence an electric field.4 The field accelerates the
charge carriers in the material, forcing some to flow from one end to the other. Movement
of charge carriers due to an electric field is called “drift.”5

E

Figure 2.8 Drift in a semiconductor.

Semiconductors behave in a similar manner. As shown in Fig. 2.8, the charge carriers
are accelerated by the field and accidentally collide with the atoms in the crystal, eventually
reaching the other end and flowing into the battery. The acceleration due to the field and
the collision with the crystal counteract, leading to a constant velocity for the carriers.6 We
expect the velocity, v, to be proportional to the electric field strength, E:

v ∝ E, (2.13)

and hence

v = μE, (2.14)

whereμ is called the “mobility” and usually expressed in cm2/(V · s). For example in silicon,
the mobility of electrons, μn = 1350 cm2/(V · s), and that of holes, μp = 480 cm2/(V · s).
Of course, since electrons move in a direction opposite to the electric field, we must express
the velocity vector as

→
ve = −μn

→
E. (2.15)

For holes, on the other hand,

→
vh = μp

→
E. (2.16)

4Recall that the potential (voltage) difference, V, is equal to the negative integral of the electric field, E,
with respect to distance: Vab = − ∫ a

b Edx.
5The convention for direction of current assumes flow of positive charge from a positive voltage to a
negative voltage. Thus, if electrons flow from point A to point B, the current is considered to have a
direction from B to A.
6This phenomenon is analogous to the “terminal velocity” that a sky diver with a parachute (hopefully,
open) experiences.
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Example

2.5
A uniform piece of n-type of silicon that is 1 μm long senses a voltage of 1 V. Determine
the velocity of the electrons.

Solution Since the material is uniform, we have E = V/L, where L is the length. Thus,
E = 10,000 V/cm and hence v = μnE = 1.35 × 107 cm/s. In other words, electrons take
(1 μm)/(1.35 × 107 cm/s) = 7.4 ps to cross the 1-μm length.

Exercise What happens if the mobility is halved?

L

W h

xx1

t = t1 t = t

V1

1+ 1 s

meters
v

xx1

V1

Figure 2.9 Current flow in terms of charge density.

With the velocity of carriers known, how is the current calculated? We first note that an
electron carries a negative charge equal to q = 1.6 × 10−19 C. Equivalently, a hole carries
a positive charge of the same value. Now suppose a voltage V1 is applied across a uniform
semiconductor bar having a free electron density of n (Fig. 2.9). Assuming the electrons
move with a velocity of v m/s, considering a cross section of the bar at x = x1 and taking
two “snapshots” at t = t1 and t = t1 + 1 second, we note that the total charge in v meters
passes the cross section in 1 second. In other words, the current is equal to the total charge
enclosed in v meters of the bar’s length. Since the bar has a width of W, we have:

I = −v · W · h · n · q, (2.17)

where v · W · h represents the volume, n · q denotes the charge density in coulombs, and
the negative sign accounts for the fact that electrons carry negative charge.

Let us now reduce Eq. (2.13) to a more convenient form. Since for electrons,v = −μnE,
and since W · h is the cross section area of the bar, we write

Jn = μnE · n · q, (2.18)

where Jn denotes the “current density,” i.e., the current passing through a unit cross section
area, and is expressed in A/cm2. We may loosely say, “the current is equal to the charge
velocity times the charge density,” with the understanding that “current” in fact refers to
current density, and negative or positive signs are taken into account properly.

In the presence of both electrons and holes, Eq. (2.18) is modified to

Jtot = μnE · n · q + μpE · p · q (2.19)

= q(μnn + μp p)E. (2.20)
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This equation gives the drift current density in response to an electric field E in a semicon-
ductor having uniform electron and hole densities.

Example

2.6
In an experiment, it is desired to obtain equal electron and hole drift currents. How
should the carrier densities be chosen?

Solution We must impose

μnn = μp p, (2.21)

and hence

n
p

= μp

μn
. (2.22)

We also recall that np = n2
i . Thus,

p =
√

μn

μp
ni (2.23)

n =
√

μp

μn
ni . (2.24)

For example, in silicon, μn/μp = 1350/480 = 2.81, yielding

p = 1.68ni (2.25)

n = 0.596ni . (2.26)

Since p and n are of the same order as ni , equal electron and hole drift currents can
occur for only a very lightly doped material. This confirms our earlier notion of majority
carriers in semiconductors having typical doping levels of 1015–1018 atoms/cm3.

Exercise How should the carrier densities be chosen so that the electron drift current is twice the
hole drift current?

Velocity Saturation* We have thus far assumed that the mobility of carriers in semicon-
ductors is independent of the electric field and the velocity rises linearly with E according
to v = μE. In reality, if the electric field approaches sufficiently high levels, v no longer
follows E linearly. This is because the carriers collide with the lattice so frequently and
the time between the collisions is so short that they cannot accelerate much. As a result,
v varies “sublinearly” at high electric fields, eventually reaching a saturated level, vsat

(Fig. 2.10). Called “velocity saturation,” this effect manifests itself in some modern tran-
sistors, limiting the performance of circuits.

In order to represent velocity saturation, we must modify v = μE accordingly. A
simple approach is to view the slope, μ, as a field-dependent parameter. The expression

∗This section can be skipped in a first reading.
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E

vsat

 µ  1

 µ  2

Velocity

Figure 2.10 Velocity saturation.

for μ must therefore gradually fall toward zero as E rises, but approach a constant value
for small E; i.e.,

μ = μ0

1 + bE
, (2.27)

where μ0 is the “low-field” mobility and b a proportionality factor. We may consider μ as
the “effective” mobility at an electric field E. Thus,

v = μ0

1 + bE
E. (2.28)

Since for E → ∞, v → vsat, we have

vsat = μ0

b
, (2.29)

and hence b = μ0/vsat. In other words,

v = μ0

1 + μ0E
vsat

E. (2.30)

Example

2.7
A uniform piece of semiconductor 0.2 μm long sustains a voltage of 1 V. If the low-field
mobility is equal to 1350 cm2/(V · s) and the saturation velocity of the carriers 107 cm/s,
determine the effective mobility. Also, calculate the maximum allowable voltage such
that the effective mobility is only 10% lower than μ0.

Solution We have

E = V
L

(2.31)

= 50 kV/cm. (2.32)

It follows that

μ = μ0

1 + μ0E
vsat

(2.33)

= μ0

7.75
(2.34)

= 174 cm2/(V · s). (2.35)
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If the mobility must remain within 10% of its low-field value, then

0.9μ0 = μ0

1 + μ0E
vsat

, (2.36)

and hence

E = 1

9

vsat

μ0

(2.37)

= 823 V/cm. (2.38)

A device of length 0.2 μm experiences such a field if it sustains a voltage of
(823 V/cm) × (0.2 × 10−4 cm) = 16.5 mV.

This example suggests that modern (submicron) devices incur substantial velocity
saturation because they operate with voltages much greater than 16.5 mV.

Exercise At what voltage does the mobility fall by 20%?

Diffusion In addition to drift, another mechanism can lead to current flow. Suppose
a drop of ink falls into a glass of water. Introducing a high local concentration of ink
molecules, the drop begins to “diffuse,” that is, the ink molecules tend to flow from a
region of high concentration to regions of low concentration. This mechanism is called
“diffusion.”

A similar phenomenon occurs if charge carriers are “dropped” (injected) into a semi-
conductor so as to create a nonuniform density. Even in the absence of an electric field, the
carriers move toward regions of low concentration, thereby carrying an electric current
so long as the nonuniformity is sustained. Diffusion is therefore distinctly different from
drift.

Injection 
of Carriers

Nonuniform Concentration

Semiconductor Material

Figure 2.11 Diffusion in a semiconductor.

Figure 2.11 conceptually illustrates the process of diffusion. A source on the left con-
tinues to inject charge carriers into the semiconductor, a nonuniform charge profile is
created along the x-axis, and the carriers continue to “roll down” the profile.

The reader may raise several questions at this point. What serves as the source of
carriers in Fig. 2.11? Where do the charge carriers go after they roll down to the end of
the profile at the far right? And, most importantly, why should we care?! Well, patience is
a virtue and we will answer these questions in the next section.
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Example

2.8
A source injects charge carriers into a semiconductor bar as shown in Fig. 2.12. Explain
how the current flows.

Injection 

x

of Carriers

0

Figure 2.12 Injection of carriers into a semiconductor.

Solution In this case, two symmetric profiles may develop in both positive and negative directions
along the x-axis, leading to current flow from the source toward the two ends of the bar.

Exercise Is KCL still satisfied at the point of injection?

Our qualitative study of diffusion suggests that the more nonuniform the concentra-
tion, the larger the current. More specifically, we can write:

I ∝ dn
dx

, (2.39)

where n denotes the carrier concentration at a given point along the x-axis. We call dn/dx
the concentration “gradient” with respect to x, assuming current flow only in the x direction.
If each carrier has a charge equal to q, and the semiconductor has a cross section area of
A, Eq. (2.39) can be written as

I ∝ Aq
dn
dx

. (2.40)

Thus,

I = AqDn
dn
dx

, (2.41)

where Dn is a proportionality factor called the “diffusion constant” and expressed in cm2/s.
For example, in intrinsic silicon, Dn = 34 cm2/s (for electrons), and Dp = 12 cm2/s (for
holes).

As with the convention used for the drift current, we normalize the diffusion current
to the cross section area, obtaining the current density as

Jn = qDn
dn
dx

. (2.42)

Similarly, a gradient in hole concentration yields:

Jp = −qDp
dp
dx

. (2.43)
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With both electron and hole concentration gradients present, the total current density is
given by

Jtot = q
(

Dn
dn
dx

− Dp
dp
dx

)
. (2.44)

Example

2.9
Consider the scenario depicted in Fig. 2.11 again. Suppose the electron concentration is
equal to N at x = 0 and falls linearly to zero at x = L (Fig. 2.13). Determine the diffusion
current.

x

N

0

Injection

L

Figure 2.13 Current resulting from a linear diffusion profile.

Solution We have

Jn = qDn
dn
dx

(2.45)

= −qDn · N
L

. (2.46)

The current is constant along the x-axis; i.e., all of the electrons entering the material at
x = 0 successfully reach the point at x = L. While obvious, this observation prepares us
for the next example.

Exercise Repeat the above example for holes.

Example

2.10
Repeat the above example but assume an exponential gradient (Fig. 2.14):

x

N

0

Injection

L

Figure 2.14 Current resulting from an exponential diffusion profile.

n(x) = N exp
−x
Ld

, (2.47)

where Ld is a constant.7

7The factor Ld is necessary to convert the exponent to a dimensionless quantity.
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Solution We have

Jn = qDn
dn
dx

(2.48)

= −qDnN
Ld

exp
−x
Ld

. (2.49)

Interestingly, the current is not constant along the x-axis. That is, some electrons vanish
while traveling from x = 0 to the right. What happens to these electrons? Does this
example violate the law of conservation of charge? These are important questions and
will be answered in the next section.

Exercise At what value of x does the current density drop to 1% of its maximum value?

Einstein Relation Our study of drift and diffusion has introduced a factor for each: μn

(or μp) and Dn (or Dp), respectively. It can be proved that μ and D are related as:

D
μ

= kT
q

. (2.50)

Called the “Einstein Relation,” this result is proved in semiconductor physics texts, e.g.,
[1]. Note that kT/q ≈ 26 mV at T = 300 K.

Figure 2.15 summarizes the charge transport mechanisms studied in this section.

E

Drift Current Diffusion Current

Jn =q  μ  n E

J =q  μ  p p

Jn =q nD
dn
dx

J = q D
dx

– p
dpE

p

n

p

Figure 2.15 Summary of drift and diffusion mechanisms.

2.2 pn JUNCTION

We begin our study of semiconductor devices with the pn junction for three reasons.
(1) The device finds application in many electronic systems, e.g., in adaptors that charge
the batteries of cellphones. (2) The pn junction is among the simplest semiconductor
devices, thus providing a good entry point into the study of the operation of such complex
structures as transistors. (3) The pn junction also serves as part of transistors. We also use
the term “diode” to refer to pn junctions.
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We have thus far seen that doping produces free electrons or holes in a semiconductor,
and an electric field or a concentration gradient leads to the movement of these charge
carriers. An interesting situation arises if we introduce n-type and p-type dopants into
two adjacent sections of a piece of semiconductor. Depicted in Fig. 2.16 and called a
“pn junction,” this structure plays a fundamental role in many semiconductor devices. The
p and n sides are called the “anode” and the “cathode,” respectively.

Si

Si

Si

Si

P e

Si

Si

Si

Si

B

n p

(a) (b)

AnodeCathode

Figure 2.16 pn junction.

In this section, we study the properties and I/V characteristics of pn junctions. The
following outline shows our thought process, indicating that our objective is to develop
circuit models that can be used in analysis and design.

pn Junction

in Equilibrium

Depletion Region

Built-in Potential

pn Junction

Under Reverse Bias

Junction Capacitance

pn Junction

Under Forward Bias

I/V Characteristics

Figure 2.17 Outline of concepts to be studied.

2.2.1 pn Junction in Equilibrium

Let us first study the pn junction with no external connections, i.e., the terminals are
open and no voltage is applied across the device. We say the junction is in “equilibrium.”
While seemingly of no practical value, this condition provides insights that prove useful in
understanding the operation under nonequilibrium as well.

We begin by examining the interface between the n and p sections, recognizing that
one side contains a large excess of holes and the other, a large excess of electrons. The
sharp concentration gradient for both electrons and holes across the junction leads to two
large diffusion currents: electrons flow from the n side to the p side, and holes flow in the
opposite direction. Since we must deal with both electron and hole concentrations on each
side of the junction, we introduce the notations shown in Fig. 2.18.
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n p

nn

np

pp

np

Majority

Minority

Majority

Minority

nn
np

pp
np

Carriers

Carriers Carriers

Carriers

: Concentration of electrons on n side
: Concentration of holes on n side
: Concentration of holes on p side
: Concentration of electrons on p side

Figure 2.18

Example

2.11
A pn junction employs the following doping levels: NA = 1016 cm−3 and ND =
5 × 1015 cm−3. Determine the hole and electron concentrations on the two sides.

Solution From Eqs. (2.11) and (2.12), we express the concentrations of holes and electrons on the
p side respectively as:

pp ≈ NA (2.51)

= 1016 cm−3 (2.52)

np ≈ n2
i

NA
(2.53)

= (1.08 × 1010 cm−3)
2

1016 cm−3
(2.54)

≈ 1.1 × 104 cm−3. (2.55)

Similarly, the concentrations on the n side are given by

nn ≈ ND (2.56)

= 5 × 1015 cm−3 (2.57)

pn ≈ n2
i

ND
(2.58)

= (1.08 × 1010 cm−3)
2

5 × 1015 cm−3
(2.59)

= 2.3 × 104 cm−3. (2.60)

Note that the majority carrier concentration on each side is many orders of magnitude
higher than the minority carrier concentration on either side.

Exercise Repeat the above example if ND drops by a factor of four.
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The diffusion currents transport a great deal of charge from each side to the other,
but they must eventually decay to zero. This is because if the terminals are left open
(equilibrium condition), the device cannot carry a net current indefinitely.

We must now answer an important question: what stops the diffusion currents? We
may postulate that the currents stop after enough free carriers have moved across the
junction so as to equalize the concentrations on the two sides. However, another ef-
fect dominates the situation and stops the diffusion currents well before this point is
reached.

To understand this effect, we recognize that for every electron that departs from the
n side, a positive ion is left behind, i.e., the junction evolves with time as conceptually
shown in Fig. 2.19. In this illustration, the junction is suddenly formed at t = 0, and the
diffusion currents continue to expose more ions as time progresses. Consequently, the im-
mediate vicinity of the junction is depleted of free carriers and hence called the “depletion
region.”
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Figure 2.19 Evolution of charge concentrations in a pn junction.

Now recall from basic physics that a particle or object carrying a net (nonzero) charge
creates an electric field around it. Thus, with the formation of the depletion region, an
electric field emerges as shown in Fig. 2.20.8 Interestingly, the field tends to force pos-
itive charge flow from left to right whereas the concentration gradients necessitate the
flow of holes from right to left (and electrons from left to right). We therefore surmise
that the junction reaches equilibrium once the electric field is strong enough to com-
pletely stop the diffusion currents. Alternatively, we can say, in equilibrium, the drift
currents resulting from the electric field exactly cancel the diffusion currents due to the
gradients.
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Figure 2.20 Electric field in a pn junction.

8The direction of the electric field is determined by placing a small positive test charge in the region and
watching how it moves: away from positive charge and toward negative charge.
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Example

2.12
In the junction shown in Fig. 2.21, the depletion region has a width of b on the n side
and a on the p side. Sketch the electric field as a function of x.
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Figure 2.21 Electric field profile in a pn junction.

Solution Beginning at x < −b, we note that the absence of net charge yields E = 0. At x > −b,
each positive donor ion contributes to the electric field, i.e., the magnitude of E rises as
x approaches zero. As we pass x = 0, the negative acceptor atoms begin to contribute
negatively to the field, i.e., E falls. At x = a, the negative and positive charge exactly
cancel each other and E = 0.

Exercise Noting that potential voltage is negative integral of electric field with respect to distance,
plot the potential as a function of x.

From our observation regarding the drift and diffusion currents under equilibrium,
we may be tempted to write:

|Idrift,p + Idrift,n| = |Idiff,p + Idiff,n|, (2.61)

where the subscripts p and n refer to holes and electrons, respectively, and each current term
contains the proper polarity. This condition, however, allows an unrealistic phenomenon:
if the number of the electrons flowing from the n side to the p side is equal to that of the
holes going from the p side to the n side, then each side of this equation is zero while
electrons continue to accumulate on the p side and holes on the n side. We must therefore
impose the equilibrium condition on each carrier:

|Idrift,p| = |Idiff,p| (2.62)

|Idrift,n| = |Idiff,n|. (2.63)

Built-in Potential The existence of an electric field within the depletion region suggests
that the junction may exhibit a “built-in potential.” In fact, using (2.62) or (2.63), we
can compute this potential. Since the electric field E = −dV/dx, and since (2.62) can be
written as

qμppE = qDp
dp
dx

, (2.64)
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we have

−μp p
dV
dx

= Dp
dp
dx

. (2.65)

Dividing both sides by p and taking the integral, we obtain

−μp

∫ x2

x1

dV = Dp

∫ pp

pn

dp
p

, (2.66)

where pn and pp are the hole concentrations at x1 and x2, respectively (Fig. 2.22). Thus,

V(x2) − V(x1) = −Dp

μp
ln

pp

pn
. (2.67)

n p

nn

np

pp

np

xxx 1 2

Figure 2.22 Carrier profiles in a pn junction.

The right side represents the voltage difference developed across the depletion region and
will be denoted by V0. Also, from Einstein’s relation, Eq. (2.50), we can replace Dp/μp

with kT/q:

|V0| = kT
q

ln
pp

pn
. (2.68)

Exercise Writing Eq. (2.64) for electron drift and diffusion currents, and carrying out the integration,
derive an equation for V0 in terms of nn and np.

Finally, using (2.11) and (2.10) for pp and pn yields

V0 = kT
q

ln
NAND

n2
i

. (2.69)

Expressing the built-in potential in terms of junction parameters, this equation plays a
central role in many semiconductor devices.

Example

2.13
A silicon pn junction employs NA = 2 × 1016 cm−3 and ND = 4 × 1016 cm−3. Determine
the built-in potential at room temperature (T = 300 K).

Solution Recall from Example 2.1 that ni (T = 300 K) = 1.08 × 1010 cm−3. Thus,

V0 ≈ (26 mV) ln
(2 × 1016) × (4 × 1016)

(1.08 × 1010)
2

(2.70)

≈ 768 mV. (2.71)

Exercise By what factor should ND be changed to lower V0 by 20 mV?



2.2 pn Junction 29

Example

2.14
Equation (2.69) reveals that V0 is a weak function of the doping levels. How much does
V0 change if NA or ND is increased by one order of magnitude?

Solution We can write

�V0 = VT ln
10NA · ND

n2
i

− VT ln
NA · ND

n2
i

(2.72)

= VT ln 10 (2.73)

≈ 60 mV (at T = 300 K). (2.74)

Exercise How much does V0 change if NA or ND is increased by a factor of three?

An interesting question may arise at this point. The junction carries no net current
(because its terminals remain open), but it sustains a voltage. How is that possible? We
observe that the built-in potential is developed to oppose the flow of diffusion currents
(and is, in fact, sometimes called the “potential barrier”). This phenomenon is in contrast
to the behavior of a uniform conducting material, which exhibits no tendency for diffusion
and hence no need to create a built-in voltage.

2.2.2 pn Junction Under Reverse Bias

Having analyzed the pn junction in equilibrium, we can now study its behavior under
more interesting and useful conditions. Let us begin by applying an external voltage
across the device as shown in Fig. 2.23, where the voltage source makes the n side
more positive than the p side. We say the junction is under “reverse bias” to empha-
size the connection of the positive voltage to the n terminal. Used as a noun or a verb,
the term “bias” indicates operation under some “desirable” conditions. We will study the
concept of biasing extensively in this and following chapters.
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Figure 2.23 pn junction under reverse bias.
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Figure 2.24 Reduction of junction capacitance with reverse bias.

We wish to reexamine the results obtained in equilibrium for the case of reverse bias.
Let us first determine whether the external voltage enhances the built-in electric field or
opposes it. Since under equilibrium, E

→
is directed from the n side to the p side, VR enhances

the field. But, a higher electric field can be sustained only if a larger amount of fixed charge
is provided, requiring that more acceptor and donor ions be exposed and, therefore, the
depletion region be widened.

What happens to the diffusion and drift currents? Since the external voltage has
strengthened the field, the barrier rises even higher than that in equilibrium, thus pro-
hibiting the flow of current. In other words, the junction carries a negligible current under
reverse bias.9

With no current conduction, a reverse-biased pn junction does not seem particularly
useful. However, an important observation will prove otherwise. We note that in Fig. 2.23,
as VB increases, more positive charge appears on the n side and more negative charge on
the p side. Thus, the device operates as a capacitor [Fig. 2.24(a)]. In essence, we can view
the conductive n and p sections as the two plates of the capacitor. We also assume the
charge in the depletion region equivalently resides on each plate.

The reader may still not find the device interesting. After all, since any two parallel
plates can form a capacitor, the use of a pn junction for this purpose is not justified. But,
reverse-biased pn junctions exhibit a unique property that becomes useful in circuit design.
Returning to Fig. 2.23, we recognize that, as VR increases, so does the width of the depletion
region. That is, the conceptual diagram of Fig. 2.24(a) can be drawn as in Fig. 2.24(b) for
increasing values of VR, revealing that the capacitance of the structure decreases as the two
plates move away from each other. The junction therefore displays a voltage-dependent
capacitance.

It can be proved that the capacitance of the junction per unit area is equal to

Cj = Cj0√
1 − VR

V0

, (2.75)

9As explained in Section 2.2.3, the current is not exactly zero.
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whereCj0 denotes the capacitance corresponding to zero bias (VR = 0) and V0 is the built-
in potential [Eq. (2.69)]. (This equation assumes VR is negative for reverse bias.) The value
of Cj0 is in turn given by

Cj0 =
√

εsiq
2

NAND

NA + ND

1

V0

, (2.76)

where εsi represents the dielectric constant of silicon and is equal to 11.7 ×
8.85 × 10−14 F/cm.10 Plotted in Fig. 2.25, Cj indeed decreases as VR increases.

VR0

C j

Figure 2.25 Junction capacitance under reverse bias.

Example

2.15
A pn junction is doped with NA = 2 × 1016 cm−3 and ND = 9 × 1015 cm−3. Determine
the capacitance of the device with (a) VR = 0 and VR = 1 V.

Solution We first obtain the built-in potential:

V0 = VT ln
NAND

n2
i

(2.77)

= 0.73 V. (2.78)

Thus, for VR = 0 and q = 1.6 × 10−19 C, we have

Cj0 =
√

εsiq
2

NAND

NA + ND
· 1

V0

(2.79)

= 2.65 × 10−8 F/cm2. (2.80)

In microelectronics, we deal with very small devices and may rewrite this result as

Cj0 = 0.265 fF/μm2, (2.81)

10The dielectric constant of materials is usually written in the form εr ε0, where εr is the “relative”
dielectric constant and a dimensionless factor (e.g., 11.7), and ε0 the dielectric constant of vacuum
(8.85 × 10−14 F/cm).
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where 1 fF (femtofarad) = 10−15 F. For VR = 1 V,

Cj = Cj0√
1 + VR

V0

(2.82)

= 0.172 fF/μm2. (2.83)

Exercise Repeat the above example if the donor concentration on the N side is doubled. Compare
the results in the two cases.

The variation of the capacitance with the applied voltage makes the device a “non-
linear” capacitor because it does not satisfy Q = CV. Nonetheless, as demonstrated
by the following example, a voltage-dependent capacitor leads to interesting circuit
topologies.

Example

2.16
A cellphone incorporates a 2-GHz oscillator whose frequency is defined by the resonance
frequency of an LC tank (Fig. 2.26). If the tank capacitance is realized as the pn junction
of Example 2.15, calculate the change in the oscillation frequency while the reverse
voltage goes from 0 to 2 V. Assume the circuit operates at 2 GHz at a reverse voltage of
0 V, and the junction area is 2000 μm2.

LC

Oscillator

VR

Figure 2.26 Variable capacitor used to tune an oscillator.

Solution Recall from basic circuit theory that the tank “resonates” if the impedances of the induc-

tor and the capacitor are equal and opposite: jLωres = −( jCωres)
−1

. Thus, the resonance
frequency is equal to

fres = 1

2π

1√
LC

. (2.84)

At VR = 0, Cj = 0.265 fF/μm2, yielding a total device capacitance of

Cj,tot(VR = 0) = (0.265 fF/μm2) × (2000 μm2) (2.85)

= 530 fF. (2.86)

Setting fres to 2 GHz, we obtain

L = 11.9 nH. (2.87)
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If VR goes to 2 V,

C j,tot(VR = 2 V) = Cj0√
1 + 2

0.73

× 2000 μm2 (2.88)

= 274 fF. (2.89)

Using this value along with L = 11.9 nH in Eq. (2.84), we have

fres(VR = 2 V) = 2.79 GHz. (2.90)

An oscillator whose frequency can be varied by an external voltage (VR in this case) is
called a “voltage-controlled oscillator” and used extensively in cellphones, microproces-
sors, personal computers, etc.

Exercise Some wireless systems operate at 5.2 GHz. Repeat the above example for this frequency,
assuming the junction area is still 2000 μm2 but the inductor value is scaled to reach
5.2 GHz.

In summary, a reverse-biased pn junction carries a negligible current but exhibits a
voltage-dependent capacitance. Note that we have tacitly developed a circuit model for
the device under this condition: a simple capacitance whose value is given by Eq. (2.75).

Another interesting application of reverse-biased diodes is in digital cameras (Chap-
ter 1). If light of sufficient energy is applied to a pn junction, electrons are dislodged from
their covalent bonds and hence electron-hole pairs are created. With a reverse bias, the
electrons are attracted to the positive battery terminal and the holes to the negative battery
terminal. As a result, a current flows through the diode that is proportional to the light
intensity. We say the pn junction operates as a “photodiode.”

2.2.3 pn Junction Under Forward Bias

Our objective in this section is to show that the pn junction carries a current if the p side
is raised to a more positive voltage than the n side (Fig. 2.27). This condition is called
“forward bias.” We also wish to compute the resulting current in terms of the applied
voltage and the junction parameters, ultimately arriving at a circuit model.
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Figure 2.27 pn junction under forward bias.
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From our study of the device in equilibrium and reverse bias, we note that the poten-
tial barrier developed in the depletion region determines the device’s desire to conduct.
In forward bias, the external voltage, VF , tends to create a field directed from the p side
toward the n side—opposite to the built-in field that was developed to stop the diffusion
currents. We therefore surmise that VF in fact lowers the potential barrier by weakening
the field, thus allowing greater diffusion currents.

To derive the I/V characteristic in forward bias, we begin with Eq. (2.68) for the built-in
voltage and rewrite it as

pn,e = pp,e

exp
V0

VT

, (2.91)

where the subscript e emphasizes equilibrium conditions [Fig. 2.28(a)] and VT = kT/q is
called the “thermal voltage” (≈26 mV at T = 300 K). In forward bias, the potential barrier
is lowered by an amount equal to the applied voltage:

pn, f = pp, f

exp
V0 − VF

VT

. (2.92)

where the subscript f denotes forward bias. Since the exponential denominator drops
considerably, we expect pn, f to be much higher than pn,e (it can be proved that
pp, f ≈ pp,e ≈ NA). In other words, the minority carrier concentration on the p side rises
rapidly with the forward bias voltage while the majority carrier concentration remains
relatively constant. This statement applies to the n side as well.

VF

n p

n

p

p

n

n p

n p
n,e

n,e

p,e

p,e

n,f

pn,f

p,f

(a) (b)

pn,e

np,f

np,f

Figure 2.28 Carrier profiles (a) in equilibrium and (b) under forward bias.

Figure 2.28(b) illustrates the results of our analysis thus far. As the junction goes from
equilibrium to forward bias, np and pn increase dramatically, leading to a proportional
change in the diffusion currents.11 We can express the change in the hole concentration on
the n side as:

�pn = pn, f − pn,e (2.93)

= pp, f

exp
V0 − VF

VT

− pp,e

exp
V0

VT

(2.94)

≈ NA

exp
V0

VT

(
exp

VF

VT
− 1

)
. (2.95)

11The width of the depletion region actually decreases in forward bias, but we neglect this effect here.
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Similarly, for the electron concentration on the p side:

�np ≈ ND

exp
V0

VT

(
exp

VF

VT
− 1

)
. (2.96)

Note that Eq. (2.69) indicates that exp(V0/VT) = NAND/n2
i .

The increase in the minority carrier concentration suggests that the diffusion currents
must rise by a proportional amount above their equilibrium value, i.e.,

Itot ∝ NA

exp
V0

VT

(
exp

VF

VT
− 1

)
+ ND

exp
V0

VT

(
exp

VF

VT
− 1

)
. (2.97)

Indeed, it can be proved that [1]

Itot = IS

(
exp

VF

VT
− 1

)
, (2.98)

where IS is called the “reverse saturation current” and given by

IS = Aqn2
i

(
Dn

NALn
+ Dp

NDLp

)
. (2.99)

In this equation, A is the cross section area of the device, and Ln and Lp are electron and
hole “diffusion lengths,” respectively. Diffusion lengths are typically in the range of tens
of micrometers. Note that the first and second terms in the parentheses correspond to the
flow of electrons and holes, respectively.

Example

2.17
Determine IS for the junction of Example 2.13 at T = 300K if A = 100 μm2, Ln = 20 μm,
and Lp = 30 μm.

Solution Using q = 1.6 ×10−19 C, ni = 1.08 ×1010 electrons/cm3 [Eq. (2.2)], Dn = 34 cm2/s,
and Dp = 12 cm2/s, we have

IS = 1.77 × 10−17 A. (2.100)

Since IS is extremely small, the exponential term in Eq. (2.98) must assume very large
values so as to yield a useful amount (e.g., 1 mA) for Itot.

Exercise What junction area is necessary to raise IS to 10−15 A?

An interesting question that arises here is: are the minority carrier concentrations
constant along the x-axis? Depicted in Fig. 2.29(a), such a scenario would suggest that
electrons continue to flow from the n side to the p side, but exhibit no tendency to go beyond
x = x2 because of the lack of a gradient. A similar situation exists for holes, implying that
the charge carriers do not flow deep into the p and n sides and hence no net current
results! Thus, the minority carrier concentrations must vary as shown in Fig. 2.29(b) so
that diffusion can occur.

This observation reminds us of Example 2.10 and the question raised in conjunction
with it: if the minority carrier concentration falls with x, what happens to the carriers and
how can the current remain constant along the x-axis? Interestingly, as the electrons enter
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Figure 2.29 (a) Constant and (b) variable majority carrier profiles outside the depletion region.

the p side and roll down the gradient, they gradually recombine with the holes, which
are abundant in this region. Similarly, the holes entering the n side recombine with the
electrons. Thus, in the immediate vicinity of the depletion region, the current consists of
mostly minority carriers, but towards the far contacts, it is primarily comprised of majority
carriers (Fig. 2.30). At each point along the x-axis, the two components add up to Itot.
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Figure 2.30 Minority and majority carrier currents.

2.2.4 I/V Characteristics

Let us summarize our thoughts thus far. In forward bias, the external voltage opposes the
built-in potential, raising the diffusion currents substantially. In reverse bias, on the other
hand, the applied voltage enhances the field, prohibiting current flow. We hereafter write
the junction equation as:

ID = IS

(
exp

VD

VT
− 1

)
, (2.101)

where ID and VD denote the diode current and voltage, respectively. As expected, VD = 0
yields ID = 0. (Why is this expected?) As VD becomes positive and exceeds several
VT , the exponential term grows rapidly and ID ≈ IS exp(VD/VT). We hereafter assume
exp(VD/VT) � 1 in the forward bias region.
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Figure 2.31 I/V characteristic of a pn junction.

It can be proved that Eq. (2.101) also holds in reverse bias, i.e., for negative VD. If
VD < 0 and |VD| reaches several VT , then exp(VD/VT) 	 1 and

ID ≈ −IS . (2.102)

Figure 2.31 plots the overall I/V characteristic of the junction, revealing why IS is called
the “reverse saturation current.” Example 2.17 indicates that IS is typically very small. We
therefore view the current under reverse bias as “leakage.” Note that IS and hence the
junction current are proportional to the device cross section area [Eq. (2.99)]. For example,
two identical devices placed in parallel (Fig. 2.32) behave as a single junction with twice
the IS .

n p

n p

A

A

VF

n p

VF

A2

Figure 2.32 Equivalence of parallel devices to a larger device.

Example

2.18
Each junction in Fig. 2.32 employs the doping levels described in Example 2.13. Deter-
mine the forward bias current of the composite device for VD = 300 mV and 800 mV at
T = 300 K.

Solution From Example 2.17, IS = 1.77 × 10−17 A for each junction. Thus, the total current is
equal to

ID,tot (VD = 300 mV) = 2IS

(
exp

VD

VT
− 1

)
(2.103)

= 3.63 pA. (2.104)
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Similarly, for VD = 800 mV:

ID,tot(VD = 800 mV) = 82 μA. (2.105)

Exercise How many of these diodes must be placed in parallel to obtain a current of 100 μA with
a voltage of 750 mV?

Example

2.19
A diode operates in the forward bias region with a typical current level [i.e.,
ID ≈ IS exp(VD/VT)]. Suppose we wish to increase the current by a factor of 10. How
much change in VD is required?

Solution Let us first express the diode voltage as a function of its current:

VD = VT ln
ID

IS
. (2.106)

We define I1 = 10ID and seek the corresponding voltage, VD1:

VD1 = VT ln
10ID

IS
(2.107)

= VT ln
ID

IS
+ VT ln 10 (2.108)

= VD + VT ln 10. (2.109)

Thus, the diode voltage must rise by VT ln 10 ≈ 60 mV (at T = 300 K) to accommodate a
tenfold increase in the current. We say the device exhibits a 60-mV/decade characteristic,
meaning VD changes by 60 mV for a decade (tenfold) change in ID. More generally, an
n-fold change in ID translates to a change of VT ln n in VD.

Exercise By what factor does the current change if the voltages changes by 120 mV?

Example

2.20
The cross section area of a diode operating in the forward bias region is increased by a
factor of 10. (a) Determine the change in ID if VD is maintained constant. (b) Determine
the change in VD if ID is maintained constant. Assume ID ≈ IS exp(VD/VT).

Solution (a) Since IS ∝ A, the new current is given by

ID1 = 10IS exp
VD

VT
(2.110)

= 10ID. (2.111)



2.2 pn Junction 39

(b) From the above example,

VD1 = VT ln
ID

10IS
(2.112)

= VT ln
ID

IS
− VT ln 10. (2.113)

Thus, a tenfold increase in the device area lowers the voltage by 60 mV if ID remains
constant.

Exercise A diode in forward bias with ID ≈ IS exp(VD/VT) undergoes two simultaneous changes:
the current is raised by a factor of m and the area is increased by a factor of n. Determine
the change in the device voltage.

Constant-Voltage Model The exponential I/V characteristic of the diode results in
nonlinear equations, making the analysis of circuits quite difficult. Fortunately, the above
examples imply that the diode voltage is a relatively weak function of the device current and
cross section area. With typical current levels and areas, VD falls in the range of 700–800 mV.
For this reason, we often approximate the forward bias voltage by a constant value of
800 mV (like an ideal battery), considering the device fully off if VD < 800 mV. The resulting
characteristic is illustrated in Fig. 2.33(a) with the turn-on voltage denoted by VD,on. Note
that the current goes to infinity as VD tends to exceed VD,on because we assume the forward-
biased diode operates as an ideal voltage source. Neglecting the leakage current in reverse
bias, we derive the circuit model shown in Fig. 2.33(b). We say the junction operates as an
open circuit if VD < VD,on and as a constant voltage source if we attempt to increase VD

beyond VD,on. While not essential, the voltage source placed in series with the switch in
the off condition helps simplify the analysis of circuits: we can say that in the transition
from off to on, only the switch turns on and the battery always resides in series with the
switch.

A number of questions may cross the reader’s mind at this point. First, why do we
subject the diode to such a seemingly inaccurate approximation? Second, if we indeed
intend to use this simple approximation, why did we study the physics of semiconductors
and pn junctions in such detail?

The developments in this chapter are representative of our treatment of all semicon-
ductor devices: we carefully analyze the structure and physics of the device to understand
its operation; we construct a “physics-based” circuit model; and we seek to approximate
the resulting model, thus arriving at progressively simpler representations. Device models

VD

I D

VD,on

(a) (b)

VD,on

Forward Bias

Reverse Bias

VD,on

Figure 2.33 Constant-voltage diode model.
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having different levels of complexity (and, inevitably, different levels of accuracy) prove
essential to the analysis and design of circuits. Simple models allow a quick, intuitive un-
derstanding of the operation of a complex circuit, while more accurate models reveal the
true performance.

Example

2.21
Consider the circuit of Fig. 2.34. Calculate IX for VX = 3 V and VX = 1 V using
(a) an exponential model with IS = 10−16 A and (b) a constant-voltage model with
VD,on = 800 mV.

V
R1

1D VD

= 1 kΩ
X

I X

Figure 2.34 Simple circuit using a diode.

Solution (a) Noting that ID = IX , we have

VX = IXR1 + VD (2.114)

VD = VT ln
IX

IS
. (2.115)

This equation must be solved by iteration: we guess a value for VD, compute
the corresponding IX from IXR1 = VX − VD, determine the new value of VD from
VD = VT ln (IX/IS) and iterate. Let us guess VD = 750 mV and hence

IX = VX − VD

R1

(2.116)

= 3 V − 0.75 V

1 k�
(2.117)

= 2.25 mA. (2.118)

Thus,

VD = VT ln
IX

IS
(2.119)

= 799 mV. (2.120)

With this new value of VD, we can obtain a more accurate value for IX :

IX = 3 V − 0.799 V

1 k�
(2.121)

= 2.201 mA. (2.122)
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We note that the value of IX rapidly converges. Following the same procedure for
VX = 1 V, we have

IX = 1 V − 0.75 V

1 k�
(2.123)

= 0.25 mA, (2.124)

which yields VD = 0.742 V and hence IX = 0.258 mA. (b) A constant-voltage model
readily gives

IX = 2.2 mA for VX = 3 V (2.125)

IX = 0.2 mA for VX = 1 V. (2.126)

The value of IX incurs some error, but it is obtained with much less computational effort
than that in part (a).

Exercise Repeat the above example if the cross section area of the diode is increased by a factor
of 10.

2.3 REVERSE BREAKDOWN∗

Recall from Fig. 2.31 that the pn junction carries only a small, relatively constant current
in reverse bias. However, as the reverse voltage across the device increases, eventually
“breakdown” occurs and a sudden, enormous current is observed. Figure 2.35 plots the
device I/V characteristic, displaying this effect.

VD

I D

VBD

Breakdown

Figure 2.35 Reverse breakdown characteristic.

The breakdown resulting from a high voltage (and hence a high electric field) can occur
in any material. A common example is lightning, in which case the electric field in the air
reaches such a high level as to ionize the oxygen molecules, thus lowering the resistance
of the air and creating a tremendous current.

∗This section can be skipped in a first reading.
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The breakdown phenomenon in pn junctions occurs by one of two possible mecha-
nisms: “Zener effect” and “avalanche effect.”

2.3.1 Zener Breakdown

The depletion region in a pn junction contains atoms that have lost an electron or a hole
and, therefore, provide no loosely-connected carriers. However, a high electric field in this
region may impart enough energy to the remaining covalent electrons to tear them from
their bonds [Fig. 2.36(a)]. Once freed, the electrons are accelerated by the field and swept to
the n side of the junction. This effect occurs at a field strength of about 106 V/cm (1 V/μm).

Si
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n pE
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Si

Si
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e
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n pE
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e
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e
e

(a) (b)

Figure 2.36 (a) Release of electrons due to high electric field, (b) avalanche effect.

In order to create such high fields with reasonable voltages, a narrow depletion region
is required, which from Eq. (2.76) translates to high doping levels on both sides of the
junction (why?). Called the “Zener effect,” this type of breakdown appears for reverse
bias voltages on the order of 3-8 V.

2.3.2 Avalanche Breakdown

Junctions with moderate or low doping levels (<1015 cm3) generally exhibit no Zener
breakdown. But, as the reverse bias voltage across such devices increases, an avalanche
effect takes place. Even though the leakage current is very small, each carrier entering the
depletion region experiences a very high electric field and hence a large acceleration, thus
gaining enough energy to break the electrons from their covalent bonds. Called “impact
ionization,” this phenomenon can lead to avalanche: each electron freed by the impact may
itself speed up so much in the field as to collide with another atom with sufficient energy,
thereby freeing one more covalent-bond electron. Now, these two electrons may again ac-
quire energy and cause more ionizing collisions, rapidly raising the number of free carriers.

An interesting contrast between Zener and avalanche phenomena is that they display
opposite temperature coefficients (TCs): VBD has a negative TC for Zener effect and
positive TC for avalanche effect. The two TCs cancel each other for VBD ≈ 3.5 V. For this
reason, Zener diodes with 3.5-V rating find application in some voltage regulators.

The Zener and avalanche breakdown effects do not damage the diodes if the resulting
current remains below a certain limit given by the doping levels and the geometry of the
junction. Both the breakdown voltage and the maximum allowable reverse current are
specified by diode manufacturers.
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P R O B L E M S

2.1. The intrinsic carrier concentration of
germanium (GE) is expressed as

ni = 1.66 × 1015T3/2 exp
−Eg
2kT

cm−3, (2.127)

where Eg = 0.66 eV.
(a) Calculate ni at 300 K and 600 K and

compare the results with those
obtained in Example 2.1 for Si.

(b) Determine the electron and hole con-
centrations if Ge is doped with P at a
density of 5 × 1016 cm−3.

2.2. The electrons in a piece of n-type semicon-
ductor take 10 ps to cross from one end
to another end when a potential of 1 V is
applied across it. Find the length of the
semiconductor bar.

2.3. A current of 0.05 μA flows through an
n-type silicon bar of length 0.2 μm and cross
section area of 0.01μm × 0.01μm when a
voltage of 1 V is applied across it. Find the
doping level at room temperature.

2.4. Repeat Problem 2.3 for Ge. Assume μn =
3900 cm2/(V · s) andμp = 1900 cm2/(V · s).

2.5. Figure 2.37 shows a p-type bar of sili-
con that is subjected to electron injection
from the left and hole injection from the
right. Determine the total current flowing
through the device if the cross section area
is equal to 1 μm × 1 μm.

x0

Electrons
Holes

µm2

5 x 10
16

2 x 10
16

Figure 2.37

2.6. In Example 2.9, compute the total number
of electrons “stored” in the material from
x = 0 to x = L. Assume the cross section
area of the bar is equal to a.

2.7. Repeat Problem 2.6 for Example 2.10 but
for x = 0 to x = ∞. Compare the results
for linear and exponential profiles.

2.8. Repeat* Problem 2.7 if the electron and hole
profiles are “sharp” exponentials, i.e., they
fall to negligible values at x = 2 μm and
x = 0, respectively (Fig. 2.38).

x0

Electrons
Holes

µm2

5 x 10
16

2 x 10
16

Figure 2.38

2.9. A Si semiconductor cube with side equal
to 1 μm is doped with 4 × 10−17 cm−3

phosphorous impurities. Calculate the drift
current when a voltage of 5 V is applied
across it.

2.10. One side of pn junction is doped with
pentavalent impurities which gives a net
doping of 5 × 1018 cm−3. Find the doping
concentration to be added to the other side
to get a built-in potential of 0.6 V at room
temperature.

2.11. The built-in potential of an equally doped
pn junction is 0.65 V at room temper-
ature. When the doping level in n-side
is doubled, keeping the doping of the
p-side unchanged, calculate the new built-
in potential and the doping level in P and
N region.

2.12. A silicon pn junction diode having
ND = 1015 cm−3 and NA = 1017 cm−3 gives
a total depletion capacitance of 0.41 pF/m2.
Determine the voltage applied across the
diode.

2.13. An oscillator application requires a vari-
able capacitance with the characteristic
shown in Fig. 2.39. Determine NA and ND.
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VR0

C j

–0.5–1.5

(fF/µm2 )

(V)

2.2

1.3

Figure 2.39

2.14. Two identical pn junction diodes are con-
nected in series. Calculate the current flow-
ing through each diode when a forward bias
of 1 V is applied across the series combina-
tion. Assume the reverse saturation current
is 1.44 × 10−17 A for each diode.

2.15. Figure 2.40 shows two diodes with reverse
saturation currents of IS1 and IS2 placed in
parallel.
(a) Prove that the parallel combination

operates as an exponential device.

(b) If the total current is Itot, determine the
current carried by each diode.

1D D2

I tot

VB

Figure 2.40

2.16. Consider a pn junction in forward bias. Ini-
tially a current of 1 mA flows through it, and
the current increases by 10 times when the
forward voltage is increased by 1.5 times.
Determine the initial bias applied and
reverse saturation current.

2.17. Figure 2.41 shows two diodes with reverse
saturation currents of IS1 and IS2 placed in
series. Calculate IB, VD1, and VD2 in terms
of VB, IS1, and IS2.

1D 1D

VD2I B
VD1

VB

Figure 2.41

2.18. Consider the circuit shown in Fig. 2.42,
where IS = 2 × 10−15 A. Calculate VD1 and
IX for VX = 0.5 V, 0.8 V, 1 V, and 1.2 V. Note
that VD1 changes little for VX ≥ 0.8 V.

VX
1D

 ΩR1 2 k

I X

Figure 2.42

2.19. For what value of VX in Fig. 2.42, does R1

sustain a voltage equal to VX/2? Assume
IS = 2 × 10−16 A.

2.20. We have received the circuit shown in
Fig. 2.43 and wish to determine R1 and
IS . We note that VX = 1 V → IX = 0.2 mA
and VX = 2 V → IX = 0.5 mA. Calculate
R1 and IS .

VX
1D

I X

R1

Figure 2.43

2.21. Figure* 2.44 depicts a parallel resistor-diode
combination. If IS = 3 × 10−16 A, calculate
VD1 for IX = 1 mA, 2 mA, and 4 mA.

1D ΩR1 1 kI X

Figure 2.44

2.22. In the circuit of Fig. 2.44, we wish D1 to
carry a current of 0.5 mA for IX = 1.3 mA.
Determine the required IS .

2.23. We have* received the circuit shown in
Fig. 2.45 and wish to determine R1

and IS . Measurements indicate that IX =
1 mA → VX = 1.2 V and IX = 2 mA →
VX = 1.8 V. Calculate R1 and IS .

1DR1
I X VX

Figure 2.45
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2.24. In the** circuit of Fig. 2.46, determine the
value of R1 such that this resistor carries
0.5 mA. Assume IS = 5 × 10−16 A for each
diode.

1D
R1I X D2

1 mA

Figure 2.46

2.25. The** circuit illustrated in Fig. 2.47
employs two identical diodes with
IS = 5 × 10−16 A. Calculate the voltage
across R1 for IX = 2 mA.

1D
 ΩR1

I X
D2

2 k

Figure 2.47

S P I C E P R O B L E M S

In the following problems, assume IS =
5 × 10−16 A.

2.1. For the circuit shown in Fig. 2.48, plot Vout

as a function of Iin. Assume Iin varies from
0 to 2 mA.

1DI Voutin

Figure 2.48

2.2. Repeat Problem 2.1 for the circuit depicted
in Fig. 2.49, where R1 = 1 k�. At what

value of Iin are the currents flowing through
D1 and R1 equal?

1DI in R1 Vout

Figure 2.49

2.3. Using SPICE, determine the value of R1

in Fig. 2.49 such that D1 carries 1 mA if
Iin = 2 mA.

REFERENCE

1. B. Streetman and S. Banerjee, Solid-State Electronic Device, fifth edition,
Prentice-Hall, 1999.



Chapter 3
Diode Models and Circuits

Having studied the physics of diodes in Chapter 2, we now rise to the next level of

abstraction and deal with diodes as circuit elements, ultimately arriving at interesting

and real-life applications. This chapter also prepares us for understanding transistors as

circuit elements in subsequent chapters. We proceed as follows:

➤

Diodes as Circuit

Elements

• Ideal Diode

• Circuit Characteristics

• Actual Diode

Applications

• Regulators

• Rectifiers

• Limiting and Clamping

Circuits

3.1 IDEAL DIODE

3.1.1 Initial Thoughts

In order to appreciate the need for diodes, let us briefly study the design of a cellphone
charger. The charger converts the line ac voltage at 110 V1 and 60 Hz2 to a dc voltage
of 3.5 V. As shown in Fig. 3.1(a), this is accomplished by first stepping down the ac volt-
age by means of a transformer to about 4 V and subsequently converting the ac voltage
to a dc quantity.3 The same principle applies to adaptors that power other electronic
devices.

How does the black box in Fig. 3.1(a) perform this conversion? As depicted in
Fig. 3.1(b), the output of the transformer exhibits a zero dc content because the nega-
tive and positive half cycles enclose equal areas, leading to a zero average. Now suppose
this waveform is applied to a mysterious device that passes the positive half cycles but

1This value refers to the root-mean-square (rms) voltage. The peak value is therefore equal to 110
√

2.
2The line ac voltage in most countries is at 220 V and 50 Hz.
3The actual operation of adaptors is somewhat different.

46
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t

110 2 Block
Box

outV

t

3.5 V

V
t

2

60 Hz

4

V1

V1

t t

24

V1

?

60 Hz

Equal 
Positive and Negative

Areas

Positive Areas

(a)

(b)

line

Figure 3.1 (a) Charger circuit, (b) elimination of negative half cycles.

blocks the negative ones. The result displays a positive average and some ac components,
which can be removed by a low-pass filter (Section 3.5.1).

The waveform conversion in Fig. 3.1(b) points to the need for a device that discrimi-
nates between positive and negative voltages, passing only one and blocking the other. A
simple resistor cannot serve in this role because it is linear. That is, Ohm’s law, V = IR,
implies that if the voltage across a resistor goes from positive to negative, so does the
current through it. We must therefore seek a device that behaves as a short for positive
voltages and as an open for negative voltages.

Figure 3.2 summarizes the result of our thought process thus far. The myste-
rious device generates an output equal to the input for positive half cycles and
equal to zero for negative half cycles. Note that the device is nonlinear because it does not
satisfy y = αx; if x → −x, y →/ −y.

t

t

( )x t

( )ty

Figure 3.2 Conceptual operation of a diode.
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3.1.2 Ideal Diode

The mysterious device mentioned above is called an “ideal diode.” Shown in Fig. 3.3(a), the
diode is a two-terminal device, with the triangular head denoting the allowable direction
of current flow and the vertical bar representing the blocking behavior for currents in the
opposite direction. The corresponding terminals are called the “anode” and the “cathode,”
respectively.

D1

Anode Cathode
I X

Forward Bias Reverse Bias

Hinge

Valve

Forward Bias Reverse Bias

(c)

(a) (b)

Stopper

Pipe

Figure 3.3 (a) Diode symbol, (b) equivalent circuit, (c) water pipe analogy.

Forward and Reverse Bias To serve as the mysterious device in the charger example
of Fig. 3.3(a), the diode must turn “on” if Vanode > Vcathode and “off” if Vanode <Vcathode

[Fig. 3.3(b)]. Defining Vanode − Vcathode = VD, we say the diode is “forward-biased” if VD

tends to exceed zero and “reverse-biased” if VD < 0.4

A water pipe analogy proves useful here. Consider the pipe shown in Fig. 3.3(c), where
a valve (a plate) is hinged on the top and faces a stopper on the bottom. If water pressure
is applied from the left, the valve rises, allowing a current. On the other hand, if water
pressure is applied from the right, the stopper keeps the valve shut.

Example

3.1
As with other two-terminal devices, diodes can be placed in series (or in parallel).
Determine which one of the configurations in Fig. 3.4 can conduct current.

D1 D2
A C

B

D1 D2
A C

B

D1 D2
A

B

(c)(a) (b)

Figure 3.4 Series combinations of diodes.

4In our drawings, we sometimes place more positive nodes higher to provide a visual picture of the
circuit’s operation. The diodes in Fig. 3.3(b) are drawn according to this convention.
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Solution In Fig. 3.4(a), the anodes of D1 and D2 point to the same direction, allowing the flow of
current from A to B to C but not in the reverse direction. In Fig. 3.4(b), D1 stops current
flow from B to A, and D2, from B to C. Thus, no current can flow in either direction.
By the same token, the topology of Fig. 3.4(c) behaves as an open for any voltage. Of
course, none of these circuits appears particularly useful at this point, but they help us
become comfortable with diodes.

Exercise Determine all possible series combinations of three diodes and study their conduction
properties.

I/V Characteristics In studying electronic devices, it is often helpful to accompany
equations with graphical visualizations. A common type of plot is that of the current/voltage
(I/V) characteristic, i.e., the current that flows through the device as a function of the voltage
across it.

Since an ideal diode behaves as a short or an open, we first construct the I/V charac-
teristics for two special cases of Ohm’s law:

R = 0 ⇒ I = V
R

= ∞ (3.1)

R = ∞ ⇒ I = V
R

= 0. (3.2)

The results are illustrated in Fig. 3.5(a). For an ideal diode, we combine the positive-voltage
region of the first with the negative-voltage region of the second, arriving at the ID/VD

characteristic in Fig. 3.5(b). Here, VD = Vanode − Vcathode, and ID is defined as the current
flowing into the anode and out of the cathode.

VD

I D

V

I

(a)

V

I

R = 0
R = Reverse

Bias Bias
Forward

(b)

Figure 3.5 I/V characteristics of (a) zero and infinite resistors, (b) ideal diode.

Example

3.2
We said that an ideal diode turns on for positive anode-cathode voltages. But the char-
acteristic in Fig. 3.5(b) does not appear to show any ID values for VD > 0. How do we
interpret this plot?

Solution This characteristic indicates that as VD exceeds zero by a very small amount, then the
diode turns on and conducts infinite current if the circuit surrounding the diode can
provide such a current. Thus, in circuits containing only finite currents, a forward-biased
ideal diode sustains a zero voltage—similar to a short circuit.

Exercise How is the characteristic modified if we place a 1-� resistor in series with the diode?
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Example

3.3
Plot the I/V characteristic for the “antiparallel” diodes shown in Fig. 3.6(a).

1D D2VA

I A

VA

I A

(a) (b)

Figure 3.6 (a) Antiparallel diodes, (b) resulting I/V characteristic.

Solution If VA > 0, D1 is on and D2 is off, yielding IA = ∞. If VA < 0, D1 is off, but D2 is on,
again leading to IA = ∞. The result is illustrated in Fig. 3.6(b). The antiparallel combi-
nation therefore acts as a short for all voltages. Seemingly a useless circuit, this topology
becomes much more interesting with actual diodes (Section 3.5.3).

Exercise Repeat the above example if a 1-V battery is placed in series with the parallel combination
of the diodes.

Example

3.4

Plot the I/V characteristic for the diode-resistor combination of Fig. 3.7(a).

V

I A

A
1D

R1

1D

R1

I A

R1
1D

R1
R1

I A

VA

I A

R1

1
V

I A

A R1

(c)(a) (b)

(d)
(e)

1D

Figure 3.7 (a) Diode-resistor series combination, (b) equivalent circuit under forward bias,

(c) equivalent circuit under reverse bias, (d) I/V characteristic, (e) equivalent circuit if D1 is on.
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Solution We surmise that, if VA > 0, the diode is on [Fig. 3.7(b)] and IA = VA/R1 because VD1 = 0
for an ideal diode. On the other hand, if VA < 0, D1 is probably off [Fig. 3.7(c)] and
ID = 0. Figure 3.7(d) plots the resulting I/V characteristic.

The above observations are based on guesswork. Let us study the circuit more
rigorously. We begin with VA < 0, postulating that the diode is off. To confirm the validity
of this guess, let us assume D1 is on and see if we reach a conflicting result. If D1 is on,
the circuit is reduced to that in Fig. 3.7(e), and if VA is negative, so is IA; i.e., the actual
current flows from right to left. But this implies that D1 carries a current from its cathode
to its anode, violating the definition of the diode. Thus, for VA < 0, D1 remains off and
IA = 0.

As VA rises above zero, it tends to forward bias the diode. Does D1 turn on for
any VA > 0 or does R1 shift the turn-on point? We again invoke proof by contradiction.
Suppose for some VA > 0, D1 is still off, behaving as an open circuit and yielding IA = 0.
The voltage drop across R1 is therefore equal to zero, suggesting that VD1 = VA and
hence ID1 = ∞ and contradicting the original assumption. In other words, D1 turns on
for any VA > 0.

Exercise Repeat the above analysis if the terminals of the diode are swapped.

The above example leads to two important points. First, the series combination
of D1 and R1 acts as an open for negative voltages and as a resistor of value R1 for
positive voltages. Second, in the analysis of circuits, we can assume an arbitrary state
(on or off) for each diode and proceed with the computation of voltages and cur-
rents; if the assumptions are incorrect, the final result contradicts the original assump-
tions. Of course, it is helpful to first examine the circuit carefully and make an intuitive
guess.

Example

3.5
Why are we interested in I/V characteristics rather than V/I characteristics?

Solution In the analysis of circuits, we often prefer to consider the voltage to be the “cause”
and the current, the “effect.” This is because in typical circuits, voltage polarities can
be predicted more readily and intuitively than current polarities. Also, devices such as
transistors fundamentally produce current in response to voltage.

Exercise Plot the V/I characteristic of an ideal diode.

Example

3.6
In the circuit of Fig. 3.8, each input can assume a value of either zero or +3 V. Determine
the response observed at the output.

Solution If VA = +3 V, and VB = 0, then we surmise that D1 is forward-biased and D2, reverse-
biased. Thus, Vout = VA = +3 V. If uncertain, we can assume both D1 and D2 are
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forward-biased, immediately facing a conflict: D1 enforces a voltage of +3 V at the output
whereas D2 shorts Vout to VB = 0. This assumption is therefore incorrect.

D1

D2

V

RL

outV

VA

B

Figure 3.8 OR gate realized by diodes.

The symmetry of the circuit with respect to VA and VB suggests that
Vout = VB = +3 V if VA = 0 and VB = +3 V. The circuit operates as a logical OR gate
and was in fact used in early digital computers.

Exercise Construct a three-input OR gate.

Example

3.7
Is an ideal diode on or off if VD = 0?

Solution An ideal diode experiencing a zero voltage must carry a zero current (why?). However,
this does not mean it acts as an open circuit. After all, a piece of wire experiencing a
zero voltage behaves similarly. Thus, the state of an ideal diode with VD = 0 is somewhat
arbitrary and ambiguous. In practice, we consider slightly positive or negative voltages
to determine the response of a diode circuit.

Exercise Repeat the above example if a 1-� resistor is placed in series with the diode.

Input/Output Characteristics Electronic circuits process an input and generate a cor-
responding output. It is therefore instructive to construct the input/output characteris-
tics of a circuit by varying the input across an allowable range and plotting the resulting
output.

As an example, consider the circuit depicted in Fig. 3.9(a), where the output is
defined as the voltage across D1. If Vin < 0, D1 is reverse biased, reducing the cir-
cuit to that in Fig. 3.9(b). Since no current flows through R1, we have Vout = Vin. If
Vin > 0, then D1 is forward biased, shorting the output and forcing Vout = 0 [Fig. 3.9(c)].
Figure 3.9(d) illustrates the overall input/output characteristic.

3.1.3 Application Examples

Recall from Fig. 3.2 that we arrived at the concept of the ideal diode as a means of converting
x(t) to y(t). Let us now design a circuit that performs this function. We may naturally
construct the circuit as shown in Fig. 3.10(a). Unfortunately, however, the cathode of the
diode is “floating,” the output current is always equal to zero, and the state of the diode
is ambiguous. We therefore modify the circuit as depicted in Fig. 3.10(b) and analyze
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1DV

V

(a) (b)
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outVin V
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outVin

Vin < 0
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R1

outVin

Vin > 0

(c)

outV

in

1

(d)

Figure 3.9 (a) Resistor-diode circuit, (b) equivalent circuit for negative input, (c) equivalent circuit

for positive input, (d) input/output characteristic.
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V
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Rectified
Half Cycles
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Figure 3.10 (a) A diode operating as a rectifier, (b) complete rectifier, (c) input and output

waveforms, (d) input/output characteristic.
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its response to a sinusoidal input [Fig. 3.10(c)]. Since R1 has a tendency to maintain the
cathode of D1 near zero, as Vin rises, D1 is forward biased, shorting the output to the input.
This state holds for the positive half cycle. When Vin falls below zero, D1 turns off and R1

ensures that Vout = 0 because IDR1 = 0.5 The circuit of Fig. 3.10(b) is called a “rectifier.”
It is instructive to plot the input/output characteristic of the circuit as well. Noting

that if Vin < 0, D1 is off and Vout = 0, and if Vin > 0, D1 is on and Vout = Vin, we obtain the
behavior shown in Fig. 3.10(d). The rectifier is a nonlinear circuit because if Vin → −Vin

then Vout →/ −Vout.

Example

3.8
Is it a coincidence that the characteristics in Figs. 3.7(d) and 3.10(d) look similar?

Solution No, we recognize that the output voltage in Fig. 3.10(b) is simply equal to IAR1 in
Fig. 3.7(a). Thus, the two plots differ by only a scaling factor equal to R1.

Exercise Construct the characteristic if the terminals of D1 are swapped.

We now determine the time average (dc value) of the output waveform in Fig. 3.10(c)
to arrive at another interesting application. Suppose Vin = Vp sin ωt , where ω = 2π/T
denotes the frequency in radians per second and T the period. Then, in the first cycle after
t = 0, we have

Vout = Vp sin ωt for 0 ≤ t ≤ T
2

(3.3)

= 0 for
T
2

≤ t ≤ T. (3.4)

To compute the average, we obtain the area under Vout and normalize the result to the
period:

Vout,avg = 1

T

∫ T

0

Vout(t) dt (3.5)

= 1

T

∫ T/2

0

Vp sin ωt dt (3.6)

= 1

T
· Vp

ω
[−cos ωt]T/2

0 (3.7)

= Vp

π
. (3.8)

Thus, the average is proportional to Vp, an expected result because a larger input amplitude
yields a greater area under the rectified half cycles.

The above observation reveals that the average value of a rectified output can serve
as a measure of the “strength” (amplitude) of the input. That is, a rectifier can operate as a
“signal strength indicator.” For example, since cellphones receive varying levels of signal
depending on the user’s location and environment, they require an indicator to determine
how much the signal must be amplified.

5Note that without R1, the output voltage is not defined because a floating node can assume any potential.
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Example

3.9
A cellphone receives a 1.8-GHz signal with a peak amplitude ranging from 2 μV to
10 mV. If the signal is applied to a rectifier, what is the corresponding range of the
output average?

Solution The rectified output exhibits an average value ranging from 2 μV/(π) = 0.637 μV to
10 mV/(π) = 3.18 mV.

Exercise Do the above results change if a 1-� resistor is placed in series with the diode?

In our effort toward understanding the role of diodes, we examine another circuit that
will eventually (in Section 3.5.3) lead to some important applications. First, consider the
topology in Fig. 3.11(a), where a 1-V battery is placed in series with an ideal diode. How
does this circuit behave? If V1 < 0, the cathode voltage is higher than the anode voltage,
placing D1 in reverse bias. Even if V1 is slightly greater than zero, e.g., equal to 0.9 V, the
anode is not positive enough to forward bias D1. Thus, V1 must approach +1 V for D1

V
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V

I

(a)

1

1
VB

1

1

1 V
+1 V
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outVin
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t
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outV

V 1D
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outV
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Vp 

t
Vp 

+ 1 V V

outV
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1

+1 V

+1 V

(c)

(b)

Figure 3.11 (a) Diode-battery circuit, (b) resistor-diode circuit, (c) addition of series battery to (b).
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to turn on. Shown in Fig. 3.11(a), the I/V characteristic of the diode-battery combination
resembles that of a diode, but shifted to the right by 1 V.

Now, let us examine the circuit in Fig. 3.11(b). Here, for Vin < 0, D1 remains off, yielding
Vout = Vin. For Vin > 0, D1 acts a short, and Vout = 0. The circuit therefore does not allow
the output to exceed zero, as illustrated in the output waveform and the input/output char-
acteristic. But suppose we seek a circuit that must not allow the output to exceed +1 V
(rather than zero). How should the circuit of Fig. 3.11(b) be modified? In this case, D1

must turn on only when Vout approaches +1 V, implying that a 1-V battery must be in-
serted in series with the diode. Depicted in Fig. 3.11(c), the modification indeed guarantees
Vout ≤ +1 V for any input level. We say the circuit “clips” or “limits” at +1 V. “Limiters”
prove useful in many applications and are described in Section 3.5.3.

Example

3.10
Sketch the time average of Vout in Fig. 3.11(c) for a sinusoidal input as the battery voltage,
VB, varies from −∞ to +∞.

Solution If VB is very negative, D1 is always on because Vin ≥ −Vp. In this case, the output
average is equal to VB [Fig. 3.12(a)]. For −Vp <VB < 0, D1 turns off at some point in
the negative half cycle and remains off in the positive half cycle, yielding an average
greater than −Vp but less than VB. For VB = 0, the average reaches −Vp/(π). Finally, for
VB ≥ Vp, no limiting occurs and the average is equal to zero. Figure 3.12(b) sketches this
behavior.
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π
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Figure 3.12

Exercise Repeat the above example if the terminals of the diode are swapped.
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Example

3.11
Is the circuit of Fig. 3.11(b) a rectifier?

Solution Yes, indeed. The circuit passes only negative cycles to the output, producing a negative
average.

Exercise How should the circuit of Fig. 3.11(b) be modified to pass only positive cycles to the output?

3.2 pn JUNCTION AS A DIODE

The operation of the ideal diode is somewhat reminiscent of the current conduction in
pn junctions. In fact, the forward and reverse bias conditions depicted in Fig. 3.3(b) are
quite similar to those studied for pn junctions in Chapter 2. Figures 3.13(a) and (b) plot
the I/V characteristics of the ideal diode and the pn junction, respectively. The latter can
serve as an approximation of the former by providing “unilateral” current conduction.
Shown in Fig. 3.13 is the constant-voltage model developed in Chapter 2, providing a
simple approximation of the exponential function and also resembling the characteristic
plotted in Fig. 3.11(a).

V

I D

D V

I j

j

V

I D

D

(c)

(a) (b)

VD,on

VD,on

VD,on

Figure 3.13 Diode characteristics: (a) ideal model, (b) exponential model, (c) constant-

voltage model.

Given a circuit topology, how do we choose one of the above models for the diodes?
We may utilize the ideal model so as to develop a quick, rough understanding of the
circuit’s operation. Upon performing this exercise, we may discover that this idealization
is inadequate and hence employ the constant-voltage model. This model suffices in most
cases, but we may need to resort to the exponential model for some circuits. The following
examples illustrate these points.

It is important to bear in mind two peinciples: (1) if a diode is at the edge of turning
on or off, then ID ≈ 0 and VD ≈ VD,on; (2) if a diode is on ID must flow from anode to
cathode.
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Example

3.12
Plot the input/output characteristic of the circuit shown in Fig. 3.14(a) using (a) the ideal
model and (b) the constant-voltage model.

VD,on

1D

R1
inV out

R2

V

V

outV

in

R

1

+R
R2

R1
inV out

R2

V

V

outV

in

R

1

+R
R2

VD,on

VD,on

2 1

2 1

(c)

(a) (b)

(d)

Figure 3.14 (a) Diode circuit, (b) input/output characteristic with ideal diode model,

(c) input/output characteristic with constant-voltage diode model.

Solution (a) We begin with Vin = −∞, recognizing that D1 is reverse biased. In fact, for Vin < 0,
the diode remains off and no current flows through the circuit. Thus, the voltage drop
across R1 is zero and Vout = Vin.

As Vin exceeds zero, D1 turns on, operating as a short and reducing the circuit to a
voltage divider. That is,

Vout = R2

R1 + R2

Vin for Vin > 0. (3.9)

Figure 3.14(b) plots the overall characteristic, revealing a slope equal to unity for Vin < 0
and R2/(R2 + R1) for Vin > 0. In other words, the circuit operates as a voltage divider
once the diode turns on and loads the output node with R2.

(b) In this case, D1 is reverse biased for Vin < VD,on, yielding Vout = Vin. As Vin

exceeds VD,on, D1 turns on, operating as a constant voltage source with a value VD,on [as
illustrated in Fig. 3.13(c)]. Reducing the circuit to that in Fig. 3.14(c), we apply Kirchoff’s
current law to the output node:

Vin − Vout

R1

= Vout − VD,on

R2

. (3.10)

It follows that

Vout =
R2

R1

Vin + VD,on

1 + R2

R1

. (3.11)
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As expected, Vout = VD,on if Vin = VD,on. Figure 3.14(d) plots the resulting characteristic,
displaying the same shape as that in Fig. 3.14(b) but with a shift in the break point.

Exercise In the above example, plot the current through R1 as a function of Vin.

It is important to remember that a diode about to turn on or off carries no current but
sustains a voltage equal to VD,on.

3.3 ADDITIONAL EXAMPLES*

Example

3.13
In the circuit of Fig. 3.15, D1 and D2 have different cross section areas but are otherwise
identical. Determine the current flowing through each diode.

1D

1

D21

in

Figure 3.15 Diode circuit.

Solution In this case, we must resort to the exponential equation because the ideal and constant-
voltage models do not include the device area. We have

Iin = ID1 + ID2. (3.12)

We also equate the voltages across D1 and D2:

VT ln
ID1

IS1

= VT ln
ID2

IS2

; (3.13)

that is,
ID1

IS1

= ID2

IS2

. (3.14)

Solving (3.13) and (3.15) together yields

ID1 = Iin

1 + IS2

IS1

(3.15)

ID2 = Iin

1 + IS1

IS2

. (3.16)

As expected, ID1 = ID2 = Iin/2 if IS1 = IS2.

Exercise For the circuit of Fig. 3.15, calculate VD is terms of Iin, IS1, and IS2.

∗This section can be skipped in a first reading.
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Example

3.14
Using the constant-voltage model, plot the input/output characteristics of the circuit
depicted in Fig. 3.16(a). Note that a diode about to turn on carries zero current but
sustains VD,on.

1D

R1

inV out

R2

V

V

outV

in

R +R
R2

VD,on

VD,on

2 1

R1

inV

R2

outV

R
R

2

11 +( )

(a) (b)

(c)

Figure 3.16 (a) Diode circuit, (b) equivalent circuit when D1 is off, (c) input/output

characteristic.

Solution In this case, the voltage across the diode happens to be equal to the output voltage. We
note that if Vin = −∞, D1 is reverse biased and the circuit reduces to that in Fig. 3.16(b).
Consequently,

vout = R2

R1 + R2

Vin. (3.17)

At what point does D1 turn on? The diode voltage must reach VD,on, requiring an input
voltage given by:

R2

R1 + R2

Vin = VD,on, (3.18)

and hence

Vin =
(

1 + R1

R2

)
VD,on. (3.19)

The reader may question the validity of this result: if the diode is indeed on, it draws
current and the diode voltage is no longer equal to [R2/(R1 + R2)]Vin. So why did we
express the diode voltage as such in Eq. (3.18)? To determine the break point, we assume
Vin gradually increases so that it places the diode at the edge of the turn-on, e.g., it creates
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Vout ≈ 799 mV. The diode therefore still draws no current, but the voltage across it and
hence the input voltage are almost sufficient to turn it on.

For Vin > (1 + R1/R2)VD,on, D1 remains forward-biased, yielding Vout = VD,on.
Figure 3.16(c) plots the overall characteristic.

Exercise Repeat the above example but assume the terminals of D1 are swapped, i.e., the anode is
tied to ground and the cathode the output node.

Exercise For the above example, plot the current through R1 as a function of Vin.

Example

3.15
Plot the input/output characteristic for the circuit shown in Fig. 3.17(a). Assume a
constant-voltage model for the diode.

inV

R

V

outV

in

R +R
R

VD,on

R
inV
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outV

R
R
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11 +( )
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R2
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outV
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1 2

1

(c)

(a) (b)

(d)

Figure 3.17 (a) Diode circuit, (b) illustration for very negative inputs, (c) equivalent circuit when

D1 is off, (d) input/output characteristic.

Solution We begin with Vin = −∞, and redraw the circuit as depicted in Fig. 3.17(b), placing the
more negative voltages on the bottom and the more positive voltages on the top. This
diagram suggests that the diode operates in forward bias, establishing a voltage at node
X equal to Vin + VD,on. Note that in this regime, VX is independent of R2 because D1 acts
as a battery. Thus, so long as D1 is on, we have

Vout = Vin + VD,on. (3.20)
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We also compute the current flowing through R2 and R1:

IR2 = VD,on

R2

(3.21)

IR1 = 0 − VX

R1

(3.22)

= −(Vin + VD,on)

R1

. (3.23)

Thus, as Vin increases from −∞, IR2 remains constant but |IR1| decreases; i.e., at some
point IR2 = IR1.

At what point does D1 turn off? Interestingly, in this case it is simpler to seek
the condition that results in a zero current through the diode rather than insufficient
voltage across it. The observation that at some point, IR2 = IR1 proves useful here as this
condition also implies that D1 carries no current (KCL at node X). In other words, D1

turns off if Vin is chosen to yield IR2 = IR1. From (3.21) and (3.23),

VD,on

R2

= −Vin + VD,on

R1

(3.24)

and hence

Vin = −
(

1 + R1

R2

)
VD,on. (3.25)

As Vin exceeds this value, the circuit reduces to that shown in Fig. 3.17(c) and

Vout = R1

R1 + R2

Vin. (3.26)

The overall characteristic is shown in Fig. 3.17(d).
The reader may find it interesting to recognize that the circuits of Figs. 3.16(a) and

3.17(a) are identical: in the former, the output is sensed across the diode whereas in the
latter it is sensed across the series resistor.

Exercise Repeat the above example if the terminals of the diode are swapped.

As mentioned in Example 3.4, in more complex circuits, it may be difficult to correctly
predict the region of operation of each diode by inspection. In such cases, we may simply
make a guess, proceed with the analysis, and eventually determine if the final result agrees
or conflicts with the original guess. Of course, we still apply intuition to minimize the
guesswork. The following example illustrates this approach.

Example

3.16
Plot the input/output characteristic of the circuit shown in Fig. 3.18(a) using the constant-
voltage diode model.

Solution We begin with Vin = −∞, predicting intuitively that D1 is on. We also (blindly) assume
that D2 is on, thus reducing the circuit to that in Fig. 3.18(b). The path through VD,on and
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Figure 3.18 (a) Diode circuit, (b) possible equivalent circuit for very negative inputs,

(c) simplified circuit, (d) equivalent circuit, (e) equivalent circuit for Vin = −VD,on,

(f) section of input/output characteristic, (g) equivalent circuit, (f) complete input/

output characteristic.

VB creates a difference of VD,on + VB between Vin and Vout, i.e., Vout = Vin − (VD,on + VB).
This voltage difference also appears across the branch consisting of R1 and VD,on,
yielding

R1IR1 + VD,on = −(VB + VD,on), (3.27)

and hence

IR1 = −VB − 2VD,on

R1

. (3.28)

That is, IR1 is independent of Vin. We must now analyze these results to deter-
mine whether they agree with our assumptions regarding the state of D1 and D2.
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Consider the current flowing through R2:

IR2 = −Vout

R2

(3.29)

= −Vin − (VD,on − VB)

R2

, (3.30)

which approaches +∞ for Vin = −∞. The large value of IR2 and the constant value of
IR1 indicate that the branch consisting of VB and D2 carries a large current with the
direction shown. That is, D2 must conduct current from its cathode to its anode, which
is not possible.

In summary, we have observed that the forward bias assumption for D2 translates
to a current in a prohibited direction. Thus, D2 operates in reverse bias for Vin = −∞.
Redrawing the circuit as in Fig. 3.18(c) and noting that VX = Vin + VD,on, we have

Vout = (Vin + VD,on)
R2

R1 + R2

. (3.31)

We now raise Vin and determine the first break point, i.e., the point at which D1 turns
off or D2 turns on. Which one occurs first? Let us assume D1 turns off first and obtain
the corresponding value of Vin. Since D2 is assumed off, we draw the circuit as shown
in Fig. 3.18(d). Assuming that D1 is still slightly on, we recognize that at Vin ≈ −VD,on,
VX = Vin + VD,on approaches zero, yielding a zero current through R1, R2, and hence
D1. The diode therefore turns off at Vin = −VD,on.

We must now verify the assumption that D2 remains off. Since at this break point,
VX = Vout = 0, the voltage at node Y is equal to +VB whereas the cathode of D2 is at
−VD,on [Fig. 3.18(e)]. In other words, D2 is indeed off. Fig. 3.18(f) plots the input/output
characteristic to the extent computed thus far, revealing that Vout = 0 after the first break
point because the current flowing through R1 and R2 is equal to zero.

At what point does D2 turn on? The input voltage must exceed VY by VD,on. Before
D2 turns on, Vout = 0, and VY = VB; i.e., Vin must reach VB + VD,on, after which the circuit
is configured as shown in Fig. 3.18(g). Consequently,

Vout = Vin − VD,on − VB. (3.32)

Figure 3.18(h) plots the overall result, summarizing the regions of operation.

Exercise In the above example, assume D2 turns on before D1 turns off and show that the results
conflict with the assumption.

3.4 LARGE-SIGNAL AND SMALL-SIGNAL OPERATION

Our treatment of diodes thus far has allowed arbitrarily large voltage and current changes,
thereby requiring a “general” model such as the exponential I/V characteristic. We call
this regime “large-signal operation” and the exponential characteristic the “large-signal
model” to emphasize that the model can accommodate arbitrary signal levels. However,
as seen in previous examples, this model often complicates the analysis, making it diffi-
cult to develop an intuitive understanding of the circuit’s operation. Furthermore, as the
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number of nonlinear devices in the circuit increases, “manual” analysis eventually becomes
impractical.

The ideal and constant-voltage diode models resolve the issues to some extent, but the
sharp nonlinearity at the turn-on point still proves problematic. The following example
illustrates the general difficulty.

Example

3.17
Having lost his 2.4-V cellphone charger, an electrical engineering student tries several
stores but does not find adaptors with outputs less than 3 V. He then decides to put his
knowledge of electronics to work and constructs the circuit shown in Fig. 3.19, where
three identical diodes in forward bias produce a total voltage of Vout = 3VD ≈ 2.4 V and
resistor R1 sustains the remaining 600 mV. Neglect the current drawn by the cellphone.6

(a) Determine the reverse saturation current, IS1 so that Vout = 2.4 V. (b) Compute Vout

if the adaptor voltage is in fact 3.1 V.

R1

Adaptor

CellphoneoutV

600 mV = 100 Ω

Vad = 3 V

I X

Figure 3.19 Adaptor feeding a cellphone.

Solution (a) With Vout = 2.4 V, the current flowing through R1 is equal to

IX = Vad − Vout

R1

(3.33)

= 6 mA. (3.34)

We note that each diode carries IX and hence

IX = IS exp
VD

VT
. (3.35)

It follows that

6 mA = IS exp
800 mV

26 mV
(3.36)

and

IS = 2.602 × 10−16 A. (3.37)

(b) If Vad increases to 3.1 V, we expect that Vout increases only slightly. To understand
why, first suppose Vout remains constant and equal to 2.4 V. Then, the additional 0.1 V
must drop across R1, raising IX to 7 mA. Since the voltage across each diode has a

6Made for the sake of simplicity here, this assumption may not be valid.
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logarithmic dependence upon the current, the change from 6 mA to 7 mA indeed yields
a small change in Vout.

7

To examine the circuit quantitatively, we begin with IX = 7 mA and iterate:

Vout = 3VD (3.38)

= 3VT ln
IX

IS
(3.39)

= 2.412 V. (3.40)

This value of Vout gives a new value for IX :

IX = Vad − Vout

R1

(3.41)

= 6.88 mA, (3.42)

which translates to a new Vout:

Vout = 3VD (3.43)

= 2.411 V. (3.44)

Noting the very small difference between (3.40) and (3.44), we conclude that
Vout = 2.411 V with good accuracy. The constant-voltage diode model would not be
useful in this case.

Exercise Repeat the above example if an output voltage of 2.35 is desired.

The situation6 described above is an example of small “perturbations” in circuits. The
change in Vad from 3 V to 3.1 V results in a small change in the circuit’s voltages and currents,
motivating us to seek a simpler analysis method that can replace the nonlinear equations
and the inevitable iterative procedure. Of course, since the above example does not present
an overwhelmingly difficult problem, the reader may wonder if a simpler approach is really
necessary. But, as seen in subsequent chapters, circuits containing complex devices such
as transistors may indeed become impossible to analyze if the nonlinear equations are
retained.

These thoughts lead us to the extremely important concept of “small-signal opera-
tion,” whereby the circuit experiences only small changes in voltages and currents and can
therefore be simplified through the use of “small-signal models” for nonlinear devices.
The simplicity arises because such models are linear, allowing standard circuit analysis and
obviating the need for iteration. The definition of “small” will become clear later.

To develop our understanding of small-signal operation, let us consider diode D1 in
Fig. 3.20(a), which sustains a voltage VD1 and carries a current ID1 [point A in Fig. 3.20(b)].
Now suppose a perturbation in the circuit changes the diode voltage by a small amount

67Recall from Eq. (2.109) that a tenfold change in a diode’s current translates to a 60-mV change in its
voltage.
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Figure 3.20 (a) General circuit containing a diode, (b) operating point of D1, (c) change in ID as a

result of change in VD.

�VD [point B in Fig. 3.20(c)]. How do we predict the change in the diode current, �ID?
We can begin with the nonlinear characteristic:

ID2 = IS exp
VD1 + �V

VT
(3.45)

= IS exp
VD1

VT
exp

�V
VT

. (3.46)

If �V � VT , then exp(�V/VT) ≈ 1 + �V/VT and

ID2 = IS exp
VD1

VT
+ �V

VT
IS exp

VD1

VT
(3.47)

= ID1 + �V
VT

ID1. (3.48)

That is,

�ID = �V
VT

ID1. (3.49)

The key observation here is that �ID is a linear function of �V, with a proportionality
factor equal to ID1/VT . (Note that larger values of ID1 lead to a greater �ID for a given
�VD. The significance of this trend becomes clear later.)

The above result should not come as a surprise: if the change in VD is small, the
section of the characteristic in Fig. 3.20(c) between points A and B can be approximated
by a straight line (Fig. 3.21), with a slope equal to the local slope of the characteristic.
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I D
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VD1 VD2
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BI D2
A

B

ΔVD

Δ DII D1

I D2

Figure 3.21 Approximation of characteristic by a straight line.
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In other words,

�ID

�VD
= dID

dVD

∣∣∣∣
VD=VD1

(3.50)

= IS

VT
exp

VD1

VT
(3.51)

= ID1

VT
, (3.52)

which yields the same result as that in Eq. (3.49).8

Let us summarize our results thus far. If the voltage across a diode changes by a
small amount (much less than VT), then the change in the current is given by Eq. (3.49).
Equivalently, for small-signal analysis, we can assume the operation is at a point such as
A in Fig. 3.21 and, due to a small perturbation, it moves on a straight line to point B with
a slope equal to the local slope of the characteristic (i.e., dID/dVD calculated at VD = VD1

or ID = ID1). Point A is called the “bias” point, the “quiescent” point, or the “operating”
point.

Example

3.18
A diode is biased at a current of 1 mA. (a) Determine the current change if VD changes
by 1 mV. (b) Determine the voltage change if ID changes by 10%.

Solution (a) We have

�ID = ID

VT
�VD (3.53)

= 38.4 μA. (3.54)

(b) Using the same equation yields

�VD = VT

ID
�ID (3.55)

=
(

26 mV

1 mA

)
× (0.1 mA) (3.56)

= 2.6 mV. (3.57)

Exercise In response to a current change of 1 mA, a diode exhibits a voltage change of 3 mV.
Calculate the bias current of the diode.

Equation (3.58) in the above example reveals an interesting aspect of small-signal
operation: as far as (small) changes in the diode current and voltage are concerned, the

8This is also to be expected. Writing Eq. (3.45) to obtain the change in ID for a small change in VD is in
fact equivalent to taking the derivative.
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device behaves as a linear resistor. In analogy with Ohm’s Law, we define the “small-signal
resistance” of the diode as:

rd = VT

ID
. (3.58)

This quantity is also called the “incremental” resistance to emphasize its validity for small
changes. In the above example, rd = 26 �.

Figure 3.22(a) summarizes the results of our derivations for a forward-biased diode.
For bias calculations, the diode is replaced with an ideal voltage source of value VD,on, and
for small changes, with a resistance equal to rd. For example, the circuit of Fig. 3.22(b)
is transformed to that in Fig. 3.22(c) if only small changes in V1 and Vout are of interest.
Note that v1 and vout in Fig. 3.22(c) represent changes in voltage and are called small-
signal quantities. In general, we denote small-signal voltages and currents by lower-case
letters.

VD,on r d

Bias
Model Model

Small-Signal

1DV

R1

outV1

R1

out1 r

(c)(a) (b)

dv v

Figure 3.22 Summary of diode models for bias and signal calculations, (b) circuit example,

(c) small-signal model.

Example

3.19
A sinusoidal signal having a peak amplitude of Vp and a dc value of V0 can be expressed
as V(t) = V0 + Vp cos ωt . If this signal is applied across a diode and Vp � VT , determine
the resulting diode current.

Solution The signal waveform is illustrated in Fig. 3.23(a). As shown in Fig. 3.23(b), we rotate
this diagram by 90◦ so that its vertical axis is aligned with the voltage axis of the diode
characteristic. With a signal swing much less than VT , we can view V0 and the correspond-
ing current, I0, as the bias point of the diode and Vp as a small perturbation. It follows
that

I0 = IS exp
V0

VT
, (3.59)

and

rd = VT

I0

. (3.60)
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Figure 3.23 (a) Sinusoidal input along with a dc level, (b) response of a diode to the sinusoid.

Thus, the peak current is simply equal to

Ip = Vp/rd (3.61)

= I0

VT
Vp, (3.62)

yielding

ID(t) = I0 + Ip cos ωt (3.63)

= IS exp
V0

VT
+ I0

VT
Vp cos ωt. (3.64)

Exercise The diode in the above example produces a peak current of 0.1 mA in response to
V0 = 800 mV and Vp = 1.5 mV. Calculate IS .

The above example demonstrates the utility of small-signal analysis. If Vp were large,
we would need to solve the following equation:

ID(t) = IS exp
V0 + Vp cos ωt

VT
, (3.65)

a task much more difficult than the above linear calculations.9

9The function exp(a sin bt) can be approximated by a Taylor expansion or Bessel functions.
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Example

3.20
In the derivation leading to Eq. (3.49), we assumed a small change in VD and obtained
the resulting change in ID. Beginning with VD = VT ln(ID/Is), investigate the reverse
case, i.e., ID changes by a small amount and we wish to compute the change in VD.

Solution Denoting the change in VD by �VD, we have

VD1 + �VD = VT ln
ID1 + �ID

IS
(3.66)

= VT ln

[
ID1

IS

(
1 + �ID

ID1

)]
(3.67)

= VT ln
ID1

IS
+ VT ln

(
1 + �ID

ID1

)
. (3.68)

For small-signal operation, we assume �ID � ID1 and note that ln(1 + ε) ≈ ε if ε � 1.
Thus,

�VD = VT · �ID

ID1

, (3.69)

which is the same as Eq. (3.49). Figure 3.24 illustrates the two cases, distinguishing
between the cause and the effect.

1D
VDΔ

VDΔ
r d

= VDΔ I
VT

1DDΔ I
VDΔ VDΔ

= DΔ
I

VTD1 I
D1(a) (b)

DΔ I

DΔ I = = DΔI r d

Figure 3.24 Change in diode current (voltage) due to a change in voltage (current).

Exercise Repeat the above example by taking the derivative of the diode voltage equation with
respect to ID.

With our understanding of small-signal operation, we now revisit Example 3.17.

Example

3.21
Repeat part (b) of Example 3.17 with the aid of a small-signal model for the diodes.

Solution Since each diode carries ID1 = 6 mA with an adaptor voltage of 3 V and VD1 = 800 mV,
we can construct the small-signal model shown in Fig. 3.25, where vad = 100 mV and
rd = (26 mV)/(6 mA) = 4.33 �. (As mentioned earlier, the voltages shown in this model
denote small changes.) We can thus write:

vout = 3rd

R1 + 3rd
vad (3.70)

= 11.5 mV. (3.71)
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Figure 3.25 Small-signal model of adaptor.

That is, a 100-mV change in Vad yields an 11.5-mV change in Vout. In Example 3.17, solu-
tion of nonlinear diode equations predicted an 11-mV change in Vout. The small-signal
analysis therefore offers reasonable accuracy while requiring much less computational
effort.

Exercise Repeat Examples (3.17) and (3.21) if the value of R1 in Fig. 3.19 is changed to
200 �.

Considering the power of today’s computer software tools, the reader may wonder
if the small-signal model is really necessary. Indeed, we utilize sophisticated simulation
tools in the design of integrated circuits today, but the intuition gained by hand analy-
sis of a circuit proves invaluable in understanding fundamental limitations and various
trade-offs that eventually lead to a compromise in the design. A good circuit designer
analyzes and understands the circuit before giving it to the computer for a more accu-
rate analysis. A bad circuit designer, on the other hand, allows the computer to think for
him/her.

Example

3.22
In Examples 3.17 and 3.21, the current drawn by the cellphone is neglected. Now suppose,
as shown in Fig. 3.26, the load pulls a current of 0.5 mA10 and determine Vout.

R1

CellphoneV

= 100 Ω

Vad
 0.5 mA

~6 mA

out

Figure 3.26 Adaptor feeding a cellphone.

10A cellphone in reality draws a much higher current.
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Solution Since the current flowing through the diodes decreases by 0.5 mA and since this change
is much less than the bias current (6 mA), we write the change in the output voltage as:

�Vout = �ID · (3rd) (3.72)

= 0.5 mA(3 × 4.33 �) (3.73)

= 6.5 mV. (3.74)

Exercise Repeat the above example if R1 is reduced to 80 �.

In summary, the analysis of circuits containing diodes (and other nonlinear devices
such as transistors) proceeds in three steps: (1) determine—perhaps with the aid of the
constant-voltage model—the initial values of voltages and currents (before an input change
is applied); (2) develop the small-signal model for each diode (i.e., calculate rd); (3) replace
each diode with its small-signal model and compute the effect of the input change.

3.5 APPLICATIONS OF DIODES

The remainder of this chapter deals with circuit applications of diodes. A brief outline is
shown below.

Half-Wave and
Full-Wave rectifiers

Limiting
Circuits

Voltage
Doublers

Level Shifters
and Switches

Figure 3.27 Applications of diodes.

3.5.1 Half-Wave and Full-Wave Rectifiers

Half-Wave Rectifier Let us return to the rectifier circuit of Fig. 3.10(b) and study it
more closely. In particular, we no longer assume D1 is ideal, but use a constant-voltage
model. As illustrated in Fig. 3.28, Vout remains equal to zero until Vin exceeds VD,on, at
which point D1 turns on and Vout = Vin − VD,on. For Vin <VD,on, D1 is off11 and Vout = 0.
Thus, the circuit still operates as a rectifier but produces a slightly lower dc level.

V outVin

D1

R1 t

inV

VD,on

VD,on

Vout

Figure 3.28 Simple rectifier.

11If Vin < 0, D1 carries a small leakage current, but the effect is negligible.
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Example

3.23
Prove that the circuit shown in Fig. 3.29(a) is also a rectifier.

V outVin

D1

R1 t

inV

Vout

(a) (b)

Figure 3.29 Rectification of positive cycles.

Solution In this case, D1 remains on for negative values of Vin, specifically, for Vin ≤ −VD,on. As
Vin exceeds −VD,on, D1 turns off, allowing R2 to maintain Vout = 0. Depicted in Fig. 3.29,
the resulting output reveals that this circuit is also a rectifier, but it blocks the positive
cycles.

Exercise Plot the output if D1 is an ideal diode.

Called a “half-wave rectifier,” the circuit of Fig. 3.28 does not produce a useful output.
Unlike a battery, the rectifier generates an output that varies considerably with time and
cannot supply power to electronic devices. We must therefore attempt to create a constant
output.

Fortunately, a simple modification solves the problem. As depicted in Fig. 3.30(a), the
resistor is replaced with a capacitor. The operation of this circuit is quite different from that
of the above rectifier. Assuming a constant-voltage model for D1 in forward bias, we begin
with a zero initial condition acrossC1 and study the behavior of the circuit [Fig. 3.30(b)]. As
Vin rises from zero, D1 is off until Vin > VD,on, at which point D1 begins to act as a battery
and Vout = Vin − VD,on. Thus, Vout reaches a peak value of Vp − VD,on. What happens as Vin

V outVin

D1

t

inV

VD,on

C1

Vout

t 1 t 2 t 3 t 4 t 5

Maximum
Reverse
Voltage

(a) (b)

Vp V– D,on

Vp

Figure 3.30 (a) Diode-capacitor circuit, (b) input and output waveforms.
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passes its peak value? At t = t1, we have Vin = Vp and Vout = Vp − VD,on. As Vin begins to
fall, Vout must remain constant. This is because if Vout were to fall, then C1 would need to
be discharged by a current flowing from its top plate through the cathode of D1, which is
impossible.12 The diode therefore turns off after t1. At t = t2, Vin = Vp − VD,on = Vout, i.e.,
the diode sustains a zero voltage difference. At t > t2, Vin<Vout and the diode experiences
a negative voltage.

Continuing our analysis, we note that at t = t3, Vin = −Vp, applying a maximum reverse
bias of Vout − Vin = 2Vp − VD,on across the diode. For this reason, diodes used in rectifiers
must withstand a reverse voltage of approximately 2Vp with no breakdown.

Does Vout change after t = t1? Let us consider t = t4 as a potentially inter-
esting point. Here, Vin just exceeds Vout but still cannot turn D1 on. At t = t5,
Vin = Vp = Vout + VD,on, and D1 is on, but Vout exhibits no tendency to change because
the situation is identical to that at t = t1. In other words, Vout remains equal to Vp − VD,on

indefinitely.

Example

3.24
Assuming an ideal diode model, (a) Repeat the above analysis. (b) Plot the voltage
across D1, VD1, as a function of time.

Solution (a) With a zero initial condition acrossC1, D1 turns on as Vin exceeds zero and Vout = Vin.
After t = t1, Vin falls below Vout, turning D1 off. Figure 3.31(a) shows the input and output
waveforms.

t

inV

Vout

t 1

t

V

t 1

D1

–2 Vp

(a)

(b)

Figure 3.31 (a) Input and output waveforms of the circuit in Fig. 3.30 with an ideal diode,

(b) voltage across the diode.

12The water pipe analogy in Fig. 3.3(c) proves useful here.
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(b) The voltage across the diode is VD1 = Vin − Vout. Using the plots in Fig. 3.31(a), we
readily arrive at the waveform in Fig. 3.31(b). Interestingly, VD1 is similar to Vin but with
the average value shifted from zero to −Vp. We will exploit this result in the design of
voltage doublers (Section 3.5.4).

Exercise Repeat the above example if the terminals of the diode are swapped.

The circuit of Fig. 3.30(a) achieves the properties required of an “ac-dc converter,”
generating a constant output equal to the peak value of the input sinusoid.13 But how is
the value of C1 chosen? To answer this question, we consider a more realistic application
where this circuit must provide a current to a load.

Example

3.25
A laptop computer consumes an average power of 25 W with a supply voltage of 3.3 V.
Determine the average current drawn from the batteries or the adaptor.

Solution Since P = V · I, we have I ≈ 7.58 A. If the laptop is modeled by a resistor, RL, then
RL = V/I = 0.436 �.

Exercise What power dissipation does a 1-� load represent for such a supply voltage?

As suggested by the above example, the load can be represented by a simple resistor
in some cases [Fig. 3.32(a)]. We must therefore repeat our analysis with RL present. From
the waveforms in Fig. 3.32(b), we recognize that Vout behaves as before until t = t1, still
exhibiting a value of Vin − VD,on = Vp − VD,on if the diode voltage is assumed relatively
constant. However, as Vin begins to fall after t = t1, so does Vout because RL provides a
discharge path forC1. Of course, since changes in Vout are undesirable,C1 must be so large
that the current drawn by RL does not reduce Vout significantly. With such a choice of C1,
Vout falls slowly and D1 remains reverse biased.

V outVin

D1

t

inV

C1

Vout

t 1 t
t

(a) (b)

Vp

RL
2

3

Vp – VD,on
RV

Figure 3.32 (a) Rectifier driving a resistive load, (b) input and output waveforms.

13This circuit is also called a “peak detector.”
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The output voltage continues to decrease while Vin goes through a negative excur-
sion and returns to positive values. At some point, t = t2, Vin and Vout become equal
and slightly later, at t = t3, Vin exceeds Vout by VD,on, thereby turning D1 on and forcing
Vout = Vin − VD,on. Hereafter, the circuit behaves as in the first cycle. The resulting variation
in Vout is called the “ripple.” Also, C1 is called the “smoothing” or “filter” capacitor.

Example

3.26
Sketch the output waveform of Fig. 3.32 asC1 varies from very large values to very small
values.

Solution If C1 is very large, the current drawn by RL when D1 is off creates only a small change
in Vout. Conversely, ifC1 is very small, the circuit approaches that in Fig. 3.28, exhibiting
large variations in Vout. Figure 3.33 illustrates several cases.

t

inV

Vout

C1Large

C1Small

C Very Small 1

Figure 3.33 Output waveform of rectifier for different values of smoothing capacitor.

Exercise Repeat the above example for different values of RL with C1 constant.

Ripple Amplitude* In typical applications, the (peak-to-peak) amplitude of the ripple,
VR, in Fig. 3.32(b) must remain below 5 to 10% of the input peak voltage. If the maximum
current drawn by the load is known, the value of C1 is chosen large enough to yield
an acceptable ripple. To this end, we must compute VR analytically (Fig. 3.34). Since
Vout = Vp − VD,on at t = t1, the discharge of C1 through RL can be expressed as:

Vout(t) = (Vp − VD,on) exp
−t

RLC1

0 ≤ t ≤ t3, (3.75)

where we have chosen t1 = 0 for simplicity. To ensure a small ripple, RLC1 must be much
greater than t3 − t1; thus, noting that exp(−ε) ≈ 1 − ε for ε � 1,

Vout(t) ≈ (Vp − VD,on)

(
1 − t

RLC1

)
(3.76)

≈ (Vp − VD,on) − Vp − VD,on

RL
· t

C1

. (3.77)

∗This section can be skipped in a first reading.
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V outVin

D1

t

inV

C1

Vout

t 1 t
t

(a) (b)

Vp

RL
2

3t 4

Vp – VD,on
RV

Figure 3.34 Ripple at output of a rectifier.

The first term on the right-hand side represents the initial condition across C1 and the
second term, a falling ramp—as if a constant current equal to (Vp − VD,on)/RL discharges
C1.14 This result should not come as a surprise because the nearly constant voltage across
RL results in a relatively constant current equal to (Vp − VD,on)/RL.

The peak-to-peak amplitude of the ripple is equal to the amount of discharge at
t = t3. Since t4 − t3 is equal to the input period, Tin, we write t3 − t1 = Tin − �T, where
�T(= t4 − t3) denotes the time during which D1 is on. Thus,

VR = Vp − VD,on

RL

Tin − �T
C1

. (3.78)

Recognizing that if C1 discharges by a small amount, then the diode turns on for only a
brief period, we can assume �T � Tin and hence

VR ≈ Vp − VD,on

RL
· Tin

C1

(3.79)

≈ Vp − VD,on

RLC1 fin
, (3.80)

where fin = T−1
in .

Example

3.27
A transformer converts the 110-V, 60-Hz line voltage to a peak-to-peak swing of
9 V. A half-wave rectifier follows the transformer to supply the power to the laptop
computer of Example 3.25. Determine the minimum value of the filter capacitor that
maintains the ripple below 0.1 V. Assume VD,on = 0.8 V.

Solution We have Vp = 4.5 V, RL = 0.436 �, and Tin = 16.7 ms. Thus,

C1 = Vp − VD,on

VR
· Tin

RL
(3.81)

= 1.417 F. (3.82)

14Recall that I = CdV/dt and hence dV = (I/C)dt.
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This is a very large value. The designer must trade the ripple amplitude with the size,
weight, and cost of the capacitor. In fact, limitations on size, weight, and cost of the
adaptor may dictate a much greater ripple, e.g., 0.5 V, thereby demanding that the circuit
following the rectifier tolerate such a large, periodic variation.

Exercise Repeat the above example for 220-V, 50-Hz line voltage, assuming the transformer still
produces a peak-to-peak swing of 9 V. Which mains frequency gives a more desirable
choice of C1?

In many cases, the current drawn by the load is known. Repeating the above analysis
with the load represented by a constant current source or simply viewing (Vp − VD,on)/RL

in Eq. (3.80) as the load current, IL, we can write

VR = IL

C1 fin
. (3.83)

Diode Peak Current∗ We noted in Fig. 3.30(b) that the diode must exhibit a re-
verse breakdown voltage of at least 2 Vp. Another important parameter of the diode
is the maximum forward bias current that it must tolerate. For a given junction doping
profile and geometry, if the current exceeds a certain limit, the power dissipated in the
diode (= VDID) may raise the junction temperature so much as to damage the device.

Vin

D1

C1 RL V

t

inV Vout Vp

out

Vp– VR

t 1

Figure 3.35 Rectifier circuit for calculation of ID.

We recognize from Fig. 3.35, that the diode current in forward bias consists of two compo-
nents: (1) the transient current drawn byC1,C1dVout/dt, and (2) the current supplied to RL,
approximately equal to (Vp − VD,on)/RL. The peak diode current therefore occurs when
the first component reaches a maximum, i.e., at the point D1 turns on because the slope of
the output waveform is maximum. Assuming VD,on � Vp for simplicity, we note that the
point at which D1 turns on is given by Vin(t1) = Vp − VR. Thus, for Vin(t) = Vp sin ωint ,

Vp sin ωint1 = Vp − VR, (3.84)

and hence

sin ωint1 = 1 − VR

Vp
. (3.85)

∗This section can be skipped in a first reading.
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With VD,on neglected, we also have Vout(t) ≈ Vin(t), obtaining the diode current as

ID1(t) = C1

dVout

dt
+ Vp

RL
(3.86)

= C1ωinVp cos ωint + Vp

RL
. (3.87)

This current reaches a peak at t = t1:

Ip = C1ωinVp cos ωint1 + Vp

RL
, (3.88)

which, from (3.85), reduces to

Ip = C1ωinVp

√
1 −

(
1 − VR

Vp

)2

+ Vp

RL
(3.89)

= C1ωinVp

√
2VR

Vp
− V2

R

V2
p

+ Vp

RL
. (3.90)

Since VR � Vp, we neglect the second term under the square root:

Ip ≈ C1ωinVp

√
2VR

Vp
+ Vp

RL
(3.91)

≈ Vp

RL

(
RLC1ωin

√
2VR

Vp
+ 1

)
. (3.92)

Example

3.28
Determine the peak diode current in Example 3.27 assuming VD,on ≈ 0 andC1 = 1.417 F.

Solution We have Vp = 4.5 V, RL = 0.436 �, ωin = 2π(60 Hz), and VR = 0.1 V. Thus,

Ip = 517 A. (3.93)

This value is extremely large. Note that the current drawn by C1 is much greater than
that flowing through RL.

Exercise Repeat the above example if C1 = 1000 μF.

Full-Wave Rectifier The half-wave rectifier studied above blocks the negative half cycles
of the input, allowing the filter capacitor to be discharged by the load for almost the entire
period. The circuit therefore suffers from a large ripple in the presence of a heavy load (a
high current).

It is possible to reduce the ripple voltage by a factor of two through a simple
modification. Illustrated in Fig. 3.36(a), the idea is to pass both positive and negative
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t

t

( )x t

( )ty

V

outV

in

t

outV

t

(a) (b)

Figure 3.36 (a) Input and output waveforms and (b) input/output characteristic of a full-wave

rectifier.

half cycles to the output, but with the negative half cycles inverted (i.e., multiplied
by −1). We first implement a circuit that performs this function [called a “full-wave
rectifier” (FWR)] and next prove that it indeed exhibits a smaller ripple. We begin
with the assumption that the diodes are ideal to simplify the task of circuit syn-
thesis. Figure 3.36(b) depicts the desired input/output characteristic of the full-wave
rectifier.

Consider the two half-wave rectifiers shown in Fig. 3.37(a), where one blocks negative
half cycles and the other, positive half cycles. Can we combine these circuits to realize
a full-wave rectifier? We may attempt the circuit in Fig. 3.37(b), but, unfortunately, the
output contains both positive and negative half cycles, i.e., no rectification is performed
because the negative half cycles are not inverted. Thus, the problem is reduced to that
illustrated in Fig. 3.37(c): we must first design a half-wave rectifier that inverts. Shown in
Fig. 3.37(d) is such a topology, which can also be redrawn as in Fig. 3.37(e) for simplicity.
Note the polarity of Vout in the two diagrams. Here, if Vin < 0, both D2 and D1 are on and
Vout = −Vin. Conversely, if Vin > 0, both diodes are off, yielding a zero current through
RL and hence Vout = 0. In analogy with this circuit, we also compose that in Fig. 3.37(f),
which simply blocks the negative input half cycles; i.e., Vout = 0 for Vin <0 and Vout = Vin

for Vin > 0.
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RL?
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Figure 3.37 (a) Rectification of each half cycle, (b) no rectification, (c) rectification and inversion,

(d) realization of (c), (e) path for negative half cycles, (f) path for positive half cycles.
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Figure 3.38 (a) Full-wave rectifier, (b) simplified diagram, (c) current path for negative input,

(d) current path for positive input.

With the foregoing developments, we can now combine the topologies of Figs. 3.37(d)
and (f) to form a full-wave rectifier. Depicted in Fig. 3.38(a), the resulting circuit passes
the negative half cycles through D1 and D2 with a sign reversal [as in Fig. 3.37(d)] and
the positive half cycles through D3 and D4 with no sign reversal [as in Fig. 3.37(f)]. This
configuration is usually drawn as in Fig. 3.38(b)and called a “bridge rectifier.”

Let us summarize our thoughts with the aid of the circuit shown in Fig. 3.38(b). If
Vin <0, D2 and D1 are on and D3 and D4 are off, reducing the circuit to that shown in
Fig. 3.38(c) and yielding Vout = −Vin. On the other hand, if Vin > 0, the bridge is simplified
as shown in Fig. 3.38(d), and Vout = Vin.

How do these results change if the diodes are not ideal? Figures 3.38(c) and (d)
reveal that the circuit introduces two forward-biased diodes in series with RL, yielding
Vout = −Vin − 2VD,on for Vin < 0. By contrast, the half-wave rectifier in Fig. 3.28 produces
Vout = Vin − VD,on. The drop of 2VD,on may pose difficulty if Vp is relatively small and the
output voltage must be close to Vp.

Example

3.29
Assuming a constant-voltage model for the diodes, plot the input/output characteristic
of a full-wave rectifier.

Solution The output remains equal to zero for |Vin|< 2VD,on and “tracks” the input for
|Vin| > VD,on with a slope of unity. Figure 3.39 plots the result.

Exercise What is the slope of the characteristic for |Vin| > 2VD,on?

We now redraw the bridge once more and add the smoothing capacitor to arrive at
the complete design [Fig. 3.40(a)]. Since the capacitor discharge occurs for about half of
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Figure 3.39 Input/output characteristic of full-wave rectifier with nonideal diodes.

the input cycle, the ripple is approximately equal to half of that in Eq. (3.80):

VR ≈ 1

2
· Vp − 2VD,on

RLC1 fin
, (3.94)

where the numerator reflects the drop of 2VD,on due to the bridge.
In addition to a lower ripple, the full-wave rectifier offers another important advantage:

the maximum reverse bias voltage across each diode is approximately equal to Vp rather
than 2Vp. As illustrated in Fig. 3.40(b), when Vin is near Vp and D3 is on, the voltage across
D2, VAB, is simply equal to VD,on + Vout = Vp − VD,on. A similar argument applies to the
other diodes.
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Figure 3.40 (a) Ripple in full-wave rectifier, (b) equivalent circuit.
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Another point of contrast between half-wave and full-wave rectifiers is that the former
has a common terminal between the input and output ports (node G in Fig. 3.28),whereas
the latter does not. In Problem 3.40, we study the effect of shorting the input and out-
put grounds of a full-wave rectifier and conclude that it disrupts the operation of the
circuit.

Example

3.30
Plot the currents carried by each diode in a bridge rectifier as a function of
time for a sinusoidal input. Assume no smoothing capacitor is connected to the
output.

Solution From Figs. 3.38(c) and (d), we have Vout = −Vin + 2VD,on for Vin< −2VD,on and
Vout = Vin − 2VD,on for Vin > +2VD,on. In each half cycle, two of the diodes carry a cur-
rent equal to Vout/RL and the other two remain off. Thus, the diode currents appear as
shown in Fig. 3.41.
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t

I I

VVp D,on2

R

 =D3 D4

–

–

L

L

Figure 3.41 Currents carried by diodes in a full-wave rectifier.

Exercise Sketch the power consumed in each diode as a function of time.

The results of our study are summarized in Fig. 3.42. While using two more diodes, full-
wave rectifiers exhibit a lower ripple and require only half the diode breakdown voltage,
well justifying their use in adaptors and chargers.15

15The four diodes are typically manufactured in a single package having four terminals.
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Figure 3.42 Summary of rectifier circuits.

Example

3.31
Design a full-wave rectifier to deliver an average power of 2 W to a cellphone with a
voltage of 3.6 V and a ripple of 0.2 V.

Solution We begin with the required input swing. Since the output voltage is approximately equal
to Vp − 2VD,on, we have

Vin,p = 3.6 V + 2VD,on (3.95)

≈ 5.2 V. (3.96)

Thus, the transformer preceding the rectifier must step the line voltage (110 Vrms or
220 Vrms) down to a peak value of 5.2 V.

Next, we determine the minimum value of the smoothing capacitor that ensures
VR ≤ 0.2 V. Rewriting Eq. (3.83) for a full-wave rectifier gives

VR = IL

2C1 fin
(3.97)

= 2 W

3.6 V
· 1

2C1 fin
. (3.98)

For VR = 0.2 V and fin = 60 Hz,

C1 = 23,000 μF. (3.99)

The diodes must withstand a reverse bias voltage of 5.2 V.

Exercise If cost and size limitations impose a maximum value of 1000 μF on the smoothing capacitor,
what is the maximum allowable power drain in the above example?
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Example

3.32
A radio frequency signal received and amplified by a cellphone exhibits a peak swing of
10 mV. We wish to generate a dc voltage representing the signal amplitude [Eq. (3.8)].
Is it possible to use the half-wave or full-wave rectifiers studied above?

Solution No, it is not. Owing to its small amplitude, the signal cannot turn actual diodes on and off,
resulting in a zero output. For such signal levels, “precision rectification” is necessary, a
subject studied in Chapter 8.

Exercise What if a constant voltage of 0.8 V is added to the desired signal?

3.5.2 Voltage Regulation∗

The adaptor circuit studied above generally proves inadequate. Due to the significant
variation of the line voltage, the peak amplitude produced by the transformer and hence the
dc output vary considerably, possibly exceeding the maximum level that can be tolerated by
the load (e.g., a cellphone). Furthermore, the ripple may become seriously objectionable in
many applications. For example, if the adaptor supplies power to a stereo, the 120-Hz ripple
can be heard from the speakers. Moreover, the finite output impedance of the transformer
leads to changes in Vout if the current drawn by the load varies. For these reasons, the
circuit of Fig. 3.40(a) is often followed by a “voltage regulator” so as to provide a constant
output.

We have already encountered a voltage regulator without calling it such: the circuit
studied in Example 3.17 provides a voltage of 2.4 V, incurring only an 11-mV change in
the output for a 100-mV variation in the input. We may therefore arrive at the circuit
shown in Fig. 3.43 as a more versatile adaptor having a nominal output of 3VD,on ≈ 2.4 V.
Unfortunately, as studied in Example 3.22, the output voltage varies with the load
current.

Load

Diode
Bridge

Vin

R1

C1

Figure 3.43 Voltage regulator block diagram.

Figure 3.44(a) shows another regulator circuit employing a Zener diode. Operating
in the reverse breakdown region, D1 exhibits a small-signal resistance, rD, in the range of
1 to 10 �, thus providing a relatively constant output despite input variations if rD � R1.

∗This section can be skipped in a first reading.
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Figure 3.44 (a) Regulator using a Zener diode, (b) small-signal equivalent of (a).

This can be seen from the small-signal model of Fig. 3.44(b):

vout = rD

rD + R1

vin. (3.100)

For example, if rD = 5 � and R1 = 1 k�, then changes in Vin are attenuated by approx-
imately a factor of 200 as they appear in Vout. The Zener regulator nonetheless has the
same drawback as the circuit of Fig. 3.43, namely, poor stability if the load current varies
significantly.

Our brief study of regulators thus far reveals two important aspects of their design: the
stability of the output with respect to input variations, and the stability of the output with
respect to load current variations. The former is quantified by “line regulation,” defined
as �Vout/�Vin, and the latter by “load regulation,” defined as �Vout/�IL.

Example

3.33
In the circuit of Fig. 3.45(a), Vin has a nominal value of 5 V, R1 = 100 �, and D2 has a
reverse breakdown of 2.7 V and a small-signal resistance of 5 �. Assuming VD,on ≈ 0.8 V
for D1, determine the line and load regulation of the circuit.
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v v v

v

i

Figure 3.45 Circuit using two diodes, (b) small-signal equivalent, (c) load regulation.

Solution We first determine the bias current of D1 and hence its small-signal resistance:

ID1 = Vin − VD,on − VD2

R1

(3.101)

= 15 mA. (3.102)



88 Chapter 3 Diode Models and Circuits

Thus,

rD1 = VT

ID1

(3.103)

= 1.73 �. (3.104)

From the small-signal model of Fig. 3.44(b), we compute the line regulation as

vout

vin
= rD1 + rD2

rD1 + rD2 + R1

(3.105)

= 0.063. (3.106)

For load regulation, we assume the input is constant and study the effect of load current
variations. Using the small-signal circuit shown in Fig. 3.45(c) (where vin = 0 to represent
a constant input), we have

vout

(rD1 + rD2)||R1

= −iL. (3.107)

That is, ∣∣∣∣vout

iL

∣∣∣∣ = (rD1 + rD2)||R1 (3.108)

= 6.31 �. (3.109)

This value indicates that a 1-mA change in the load current results in a 6.31-mV change
in the output voltage.

Exercise Repeat the above example for R1 = 50 � and compare the results.

Figure 3.46 summarizes the results of our study in this section.

D1

C1 Load
Load

Vin

Vin
Load

Vin

Figure 3.46 Summary of regulators.

3.5.3 Limiting Circuits

Consider the signal received by a cellphone as the user comes closer to a base station
(Fig. 3.47). As the distance decreases from kilometers to hundreds of meters, the signal
level may become large enough to “saturate” the circuits as it travels through the receiver
chain. It is therefore desirable to “limit” the signal amplitude at a suitable point in the
receiver.
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Figure 3.47 Signals received (a) far from or (b) near a base station.

How should a limiting circuit behave? For small input levels, the circuit must simply
pass the input to the output, e.g., Vout = Vin, and as the input level exceeds a “threshold”
or “limit,” the output must remain constant. This behavior must hold for both positive
and negative inputs, translating to the input/output characteristic shown in Fig. 3.48(a). As
illustrated in Fig. 3.48(b), a signal applied to the input emerges at the output with its peak
values “clipped” at ±VL.

We now implement a circuit that exhibits the above behavior. The nonlinear input/
output characteristic suggests that one or more diodes must turn on or off as Vin approaches
±VL. In fact, we have already seen simple examples in Figs. 3.11(b)and (c), where the
positive half cycles of the input are clipped at 0 V and +1 V, respectively. We reexamine
the former assuming a more realistic diode, e.g., the constant-voltage model. As illustrated
in Fig. 3.49(a), Vout is equal to Vin for Vin <VD,on and equal to VD,on thereafter.

To serve as a more general limiting circuit, the above topology must satisfy two other
conditions. First, the limiting level, VL, must be an arbitrary voltage and not necessarily
equal to VD,on. Inspired by the circuit of Fig. 3.11 (c), we postulate that a constant voltage
source in series with D1 shifts the limiting point, accomplishing this objective. Depicted in
Fig. 3.49(b), the resulting circuit limits at VL = VB1 + VD,on. Note that VB1 can be positive
or negative to shift VL to higher or lower values, respectively.

Second, the negative values of Vin must also experience limiting. Beginning with the
circuit of Fig. 3.49(a), we recognize that if the anode and cathode of D1 are swapped,
then the circuit limits at Vin = −VD,on [Fig. 3.50(a)]. Thus, as shown in Fig. 3.50(b), two
“antiparallel” diodes can create a characteristic that limits at ±VD,on. Finally, inserting
constant voltage sources in series with the diodes shifts the limiting points to arbitrary
levels (Fig. 3.51).
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Figure 3.48 (a) Input/output characteristic of a limiting circuit, (b) response to a sinusoid.
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Figure 3.49 (a) Simple limiter, (b) limiter with level shift.
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Figure 3.50 (a) Negative-cycle limiter, (b) limiter for both half cycles.
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Figure 3.51 General limiter and its characteristic.

Example

3.34
A signal must be limited at ±100 mV. Assuming VD,on = 800 mV, design the required
limiting circuit.

Solution Figure 3.52(a) illustrates how the voltage sources must shift the break points. Since the
positive limiting point must shift to the left, the voltage source in series with D1 must
be negative and equal to 700 mV. Similarly, the source in series with D2 must be positive
and equal to 700 mV. Figure 3.52(b) shows the result.

1DV

R1

in
D2

outV

outV

VinVD,on

VD,on+

–

+

+100 mV

100 mV

700 mV

(a) (b)

Figure 3.52 (a) Example of a limiting circuit, (b) input/output characteristic.

Exercise Repeat the above example if the positive values of the signal must be limited at +200 mV
and the negative values at −1.1 V.

Before concluding this section, we make two observations. First, the circuits stud-
ied above actually display a nonzero slope in the limiting region (Fig. 3.53). This is
because, as Vin increases, so does the current through the diode that is forward biased and
hence the diode voltage.16 Nonetheless, the 60-mV/decade rule expressed by Eq. (2.109)
implies that this effect is typically negligible. Second, we have thus far assumed Vout = Vin

for −VL < Vin < +VL, but it is possible to realize a non-unity slope in the region:
Vout = αVin.

16Recall that VD = VT ln(ID/IS).
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outV

Vin

Figure 3.53 Effect of nonideal diodes on limiting characteristic.

3.5.4 Voltage Doublers∗

Electronic systems typically employ a “global” supply voltage, e.g., 3 V, requiring
that the discrete and integrated circuits operate with such a value. However, the de-
sign of some circuits in the system is greatly simplified if they run from a higher
supply voltage, e.g., 6 V. “Voltage doublers” may serve this purpose.17

Before studying doublers, it is helpful to review some basic properties of capacitors.
First, to charge one plate of a capacitor to +Q , the other plate must be charged to −Q .
Thus, in the circuit of Fig. 3.54(a), the voltage across C1 cannot change even if Vin changes
because the right plate of C1 cannot receive or release charge (Q = CV). Since VC1 re-
mains constant, an input change �Vin appears directly at the output. This is an important
observation.

Vin
C1

VC1

outV
VΔ in Vin

C1
outV

VΔ in
C2

(a) (b)

Figure 3.54 (a) Voltage change at one plate of a capacitor, (b) voltage division.

Second, a capacitive voltage divider such as that in Fig. 3.54(b) operates as follows.
If Vin becomes more positive, the left plate of C1 receives positive charge from Vin, thus
requiring that the right plate absorb negative charge of the same magnitude from the
top plate of C2. Having lost negative charge, the top plate of C2 equivalently holds more
positive charge, and hence the bottom plate absorbs negative charge from ground. Note
that all four plates receive or release equal amounts of charge because C1 and C2 are in
series. To determine the change in Vout, �Vout, resulting from �Vin, we write the change
in the charge on C2 as �Q2 = C2 · �Vout, which also holds for C1: �Q2 = �Q1. Thus, the
voltage change across C1 is equal to C2 · �Vout/C1. Adding these two voltage changes and
equating the result to �Vin, we have

�Vin = C2

C1

�Vout + �Vout. (3.110)

∗This section can be skipped in a first reading.
17Voltage doublers are an example of “dc-dc converters.”
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That is,

�Vout = C1

C1 +C2

�Vin. (3.111)

This result is similar to the voltage division expression for resistive dividers, except that
C1 (rather than C2) appears in the numerator. Interestingly, the circuit of Fig. 3.54(a) is a
special case of the capacitive divider with C2 = 0 and hence �Vout = �Vin.

As our first step toward realizing a voltage doubler, recall the result illustrated in
Fig. 3.31: the voltage across the diode in the peak detector exhibits an average value
of −Vp and, more importantly, a peak value of −2Vp (with respect to zero). For further
investigation, we redraw the circuit as shown in Fig. 3.55, where the diode and the capacitors
are exchanged and the voltage across D1 is labeled Vout. While Vout in this circuit behaves
exactly the same as VD1 in Fig. 3.30(a), we derive the output waveform from a different
perspective so as to gain more insight.

Vin
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(a) (b)

1D
t
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Vp

t

t 1
0

Vout

–

Vp2
inV

inV

Vp–

–

Figure 3.55 (a) Capacitor-diode circuit and (b) its waveforms.

Assuming an ideal diode and a zero initial condition across C1, we note that as Vin

exceeds zero, the input tends to place positive charge on the left plate of C1 and hence
draw negative charge from D1. Consequently, D1 turns on, forcing Vout = 0.18 As the input
rises toward Vp, the voltage acrossC1 remains equal to Vin because its right plate is “pinned”
at zero by D1. After t = t1, Vin begins to fall and tends to discharge C1, i.e., draw positive
charge from the left plate and hence from D1. The diode therefore turns off, reducing the
circuit to that in Fig. 3.54(a). From this time, the output simply tracks the changes in the
input whileC1 sustains a constant voltage equal to Vp. In particular, as Vin varies from +Vp

to −Vp, the output goes from zero to −2Vp, and the cycle repeats indefinitely. The output
waveform is thus identical to that obtained in Fig. 3.31(b).

18If we assume D1 does not turn on, then the circuit resembles that in Fig. 3.54(a), requiring that Vout rise
and D1 turn on.
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Example

3.35
Plot the output waveform of the circuit shown in Fig. 3.56 if the initial condition across
C1 is zero.
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inV

Vout

inV

t 2

Vp

t 4

+2

(a) (b)

Figure 3.56 Capacitor-diode circuit and (b) its waveforms.

Solution As Vin rises from zero, attempting to place positive charge on the left plate of C1 and
hence draw negative charge from D1, the diode turns off. As a result,C1 directly transfers
the input change to the output for the entire positive half cycle. After t = t1, the input
tends to push negative charge into C1, turning D1 on and forcing Vout = 0. Thus, the
voltage across C1 remains equal to Vin until t = t2, at which point the direction of the
current through C1 and D1 must change, turning D1 off. Now, C1 carries a voltage equal
to Vp and transfers the input change to the output; i.e., the output tracks the input but
with a level shift of +Vp, reaching a peak value of +2Vp.

Exercise Repeat the above example if the right plate of C1 is 1 V more positive than its left plate at
t = 0.

We have thus far developed circuits that generate a periodic output with a peak
value of −2Vp or +2Vp for an input sinusoid varying between −Vp and +Vp. We sur-
mise that if these circuits are followed by a peak detector [e.g., Fig. 3.30(a)], then a
constant output equal to −2Vp or +2Vp may be produced. Figure 3.57 exemplifies this
concept, combining the circuit of Fig. 3.56 with the peak detector of Fig. 3.30(a). Of
course, since the peak detector “loads” the first stage when D2 turns on, we must still
analyze this circuit carefully and determine whether it indeed operates as a voltage
doubler.
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Figure 3.57 Voltage doubler circuit and its waveforms.

We assume ideal diodes, zero initial conditions across C1 and C2, and C1 = C2. In this
case, the analysis is simplified if we begin with a negative cycle. As Vin falls below zero, D1

turns on, pinning node X to zero.19 Thus, for t < t1, D2 remains off and Vout = 0. At t = t1,
the voltage across C1 reaches −Vp. For t > t1, the input begins to rise and tends to deposit
positive charge on the left plate of C1, turning D1 off and yielding the circuit shown in
Fig. 3.57.

How does D2 behave in this regime? Since Vin is now rising, we postulate that VX also
tends to increase (from zero), turning D2 on. (If D2 remains off, then C1 simply transfers
the change in Vin to node X, raising VX and hence turning D2 on.) As a result, the circuit
reduces to a simple capacitive divider that follows Eq. (3.111):

�Vout = 1

2
�Vin, (3.112)

because C1 = C2. In other words, VX and Vout begin from zero, remain equal, and vary
sinusoidally but with an amplitude equal to Vp/2. Thus, from t1 to t2, a change of 2Vp in Vin

appears as a change equal to Vp in VX and Vout. Note at t = t2, the voltage acrossC1 is zero
because both Vin and Vout are equal to +Vp.

What happens after t = t2? Since Vin begins to fall and tends to draw charge from
C1, D2 turns off, maintaining Vout at +Vp. The reader may wonder if something is wrong

19As always, the reader is encouraged to assume otherwise (i.e., D1 remains off) and arrive at a
conflicting result.
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here; our objective was to generate an output equal to 2Vp rather than Vp. But again,
patience is a virtue and we must continue the transient analysis. For t > t2, both D1

and D2 are off, and each capacitor holds a constant voltage. Since the voltage across
C1 is zero, VX = Vin, falling to zero at t = t3. At this point, D1 turns on again, allow-
ing C1 to charge to −Vp at t = t4. As Vin begins to rise again, D1 turns off and D2 re-
mains off because VX = 0 and Vout = +Vp. Now, with the right plate of C1 floating, VX

tracks the change at the input, reaching +Vp as Vin goes from −Vp to 0. Thus, D2 turns
on at t = t5, forming a capacitive divider again. After this time, the output change is
equal to half of the input change, i.e., Vout increases from +Vp to +Vp + Vp/2 as Vin goes
from 0 to +Vp. The output has now reached 3Vp/2.

As is evident from the foregoing analysis, the output continues to rise by Vp, Vp/2,
Vp/4, etc., in each input cycle, approaching a final value of

Vout = Vp

(
1 + 1

2
+ 1

4
+ · · ·

)
(3.113)

= Vp

1 − 1

2

(3.114)

= 2Vp. (3.115)

The reader is encouraged to continue the analysis for a few more cycles and verify this
trend.

Example

3.36
Sketch the current through D1 in the doubler circuit as function of time.

Solution Using the diagram in Fig. 3.58(a), noting that D1 and C1 carry equal currents when
D1 is forward biased, and writing the current as ID1 = −C1dVin/dt, we construct
the plot shown in Fig. 3.58(b).20 For 0 < t < t1, D1 conducts and the peak cur-
rent corresponds to the maximum slope of Vin, i.e., immediately after t = 0. From
t = t1 to t = t3, the diode remains off, repeating the same behavior in subsequent
cycles.

Exercise Plot the current through D2 in the above example as a function of time.

3.5.5 Diodes as Level Shifters and Switches∗

In the design of electronic circuits, we may need to shift the average level of a signal up or
down because the subsequent stage (e.g., an amplifier) may not operate properly with the
present dc level.

20As usual, ID1 denotes the current flowing from the anode to the cathode.
∗This section can be skipped in a first reading.
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Figure 3.58 Diode current in a voltage doubler.

Sustaining a relatively constant voltage in forward bias, a diode can be viewed as
a battery and hence a device capable of shifting the signal level. In our first attempt,
we consider the circuit shown in Fig. 3.59(a) as a candidate for shifting the level down
by VD,on. However, the diode current remains unknown and dependent on the next
stage. To alleviate this issue we modify the circuit as depicted in Fig. 3.59(b), where
I1 draws a constant current, establishing VD,on across D1.21 If the current pulled by the
next stage is negligible (or at least constant), Vout is simply lower than Vin by a constant
amount, VD,on.

D1

V outVin I 1

outV

Vin

1D VD,on

t

Vin

outV

VD,on

(a) (b)

Figure 3.59 (a) Use of a diode for level shift, (b) practical implementation.

21The diode is drawn vertically to emphasize that Vout is lower than Vin.
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Example

3.37
Design a circuit that shifts up the dc level of a signal by 2VD,on.

Solution To shift the level up, we apply the input to the cathode. Also, to obtain a shift of 2VD,on,
we place two diodes in series. Figure 3.60 shows the result.
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Figure 3.60 Positive voltage shift by two diodes.

Exercise What happens if I1 is extremely small?

The level shift circuit of Fig. 3.59(b) can be transformed to an electronic switch. For
example, many applications employ the topology shown in Fig. 3.61(a) to “sample” Vin

across C1 and “freeze” the value when S1 turns off. Let us replace S1 with the level shift
circuit and allow I1 to be turned on and off [Fig. 3.61(b)]. If I1 is on, Vout tracks Vin except
for a level shift equal to VD,on. When I1 turns off, so does D1, evidently disconnecting C1

from the input and freezing the voltage across C1.
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Figure 3.61 (a) Switched-capacitor circuit, (b) realization of (a) using a diode as a switch,

(c) problem of diode conduction, (d) more complete circuit, (e) equivalent circuit when I1

and I2 are off.
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We used the term “evidently” in the last sentence because the circuit’s true behavior
somewhat differs from the above description. The assumption that D1 turns off holds only
ifC1 draws no current from D1, i.e., only if Vin − Vout remains less than VD,on. Now consider
the case illustrated in Fig. 3.61(c), where I1 turns off at t = t1, allowing C1 to store a value
equal to Vin1 − VD,on. As the input waveform completes a negative excursion and exceeds
Vin1 at t = t2, the diode is forward-biased again, charging C1 with the input (in a manner
similar to a peak detector). That is, even though I1 is off, D1 turns on for part of the cycle.

To resolve this issue, the circuit is modified as shown in Fig. 3.61(d), where D2 is inserted
between D1 andC1, and I2 provides a bias current for D2. With both I1 and I2 on, the diodes
operate in forward bias, VX = Vin − VD1, and Vout = VX + VD2 = Vin if VD1 = VD2. Thus,
Vout tracks Vin with no level shift. When I1 and I2 turn off, the circuit reduces to that in
Fig. 3.61(e), where the back-to-back diodes fail to conduct for any value of Vin − Vout,
thereby isolating C1 from the input. In other words, the two diodes and the two current
sources form an electronic switch.

Example

3.38
Recall from Chapter 2 that diodes exhibit a junction capacitance in reverse bias. Study
the effect of this capacitance on the operation of the above circuit.

Solution Figure 3.62 shows the equivalent circuit for the case where the diodes are off, sug-
gesting that the conduction of the input through the junction capacitances disturbs
the output. Specifically, invoking the capacitive divider of Fig. 3.54(b) and assuming

Vin outV

C1
C j1 C j2

Figure 3.62 Feedthrough in the diode switch.

Cj1 = Cj2 = Cj , we have

�Vout = Cj/2

Cj/2 +C1

�Vin. (3.116)

To ensure this “feedthrough” is small, C1 must be sufficiently large.

Exercise Calculate the change in the voltage at the left plate ofC j1 (with respect to ground) in terms
of �Vin.

P R O B L E M S

In the following problems, assume VD,on =
800 mV for the constant-voltage diode
model.

3.1. For the circuit shown in Fig 3.63, plot the
I/V characteristics.

VX

1DI X

R2

R1 2D

Ideal Ideal

Figure 3.63
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3.2. If the input in Fig. 3.63 is expressed as
VX = V0 sin ωt , plot the current through
the circuit as a function of time.

3.3. Plot IX as a function of VX for the circuit
shown in Fig. 3.64.
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1DI X

R 2

R 1

Ideal

V B

Figure 3.64

3.4. For the circuit shown in Fig. 3.65 plot IX

as a function of VX for two different cases:
VB = +1 V and VB = −1 V.
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R 1

Ideal

V B

Figure 3.65

3.5. If the input in Fig. 3.65 is expressed as
VX = V0 sin ωt , plot IX as a function of time
for VB = 3 V.

3.6. Plot the IX as a function of VX for the circuit
shown in Fig. 3.66. Assume VB > 0.
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Figure 3.66

3.7. For the circuit shown in Fig. 3.67, plot IX as
a function of VX . Assume VB > 0.
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Figure 3.67

3.8. For the circuit shown in Fig. 3.68, plot IX

and IR1 as a function of VX .
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Figure 3.68

3.9. Plot input/output characteristics for the
Fig. 3.69 using an ideal model for the diode.
Assume VX = V0 sin ωt and VB = 3 V.

VX
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R1

R2

= 3 VIdeal

Ideal

Vout

Figure 3.69

3.10. If* the input is given by Vin = V0 cos ωt ,
plot the output of each circuit in
Fig. 3.70 as a function of time. Assume an
ideal diode model.

3.11. Plot** the input/output characteristics of the
circuits shown in Fig. 3.70 using an ideal
model for the diodes.

3.12. Repeat** Problem 3.11 with a constant-
voltage diode model.

3.13. Assuming** a constant-voltage diode model,
plot Vout as a function of Iin for the circuits
shown in Fig. 3.71.
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3.14. In the** circuits of Fig. 3.71, plot the current
flowing through R1 as a function of Vin.
Assume a constant-voltage diode model.

3.15. Plot** the Vout as a function of VX in the cir-
cuit of Fig. 3.72. Assume VX = V0 sin ωt and
a constant-voltage diode model.

VoutR
VB

Vx

Figure 3.72

3.16. Plot* the current flowing through R1 in the
circuit of Fig. 3.72 as a function of VX .
Assume a constant-voltage diode model.

3.17. Plot* Vout as a function of VX for the cir-
cuit shown in Fig. 3.72. Assume a constant-
voltage diode model.

3.18. For the circuits shown in Fig. 3.73, plot Vout

as a function of Iin assuming a constant-
voltage model for the diodes.

3.19. Plot the input/output characteristics of the
circuits illustrated in Fig. 3.74 assuming a
constant-voltage diode model.

3.20. Plot the current flowing through R1 and D1

as a function of VX for the circuit shown
in Fig 3.74(b) assuming a constant-voltage
diode model.

3.21. Plot the input/output characteristic of the
circuits illustrated in Fig. 3.75 assuming a
constant-voltage model.
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3.22. Plot** the currents flowing through R1 and
D1 as a function of Vin for the circuits of
Fig. 3.75. Assume a constant-voltage diode
model.

3.23. Plot** the input/output characteristic of the
circuits illustrated in Fig. 3.76 assuming a
constant-voltage model and VB = 2 V.

3.24. Plot** the input/output characteristic of the
circuits illustrated in Fig. 3.77 assuming a
constant-voltage model.

3.25. Plot** the currents flowing through R1 and
D1 as a function of Vin for the circuits of
Fig. 3.77. Assume constant-voltage diode
model.
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1D
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Figure 3.79

3.26. Beginning* with VD,on ≈ 800 mV for each
diode, determine the change in Vout if Vin

changes from +2.4 V to +2.5 V for the cir-
cuits shown in Fig. 3.78.

3.27. Beginning* with VD,on ≈ 800 mV for each
diode, calculate the change in Vout if Iin

changes from 3 mA to 3.1 mA in the circuits
of Fig. 3.79.

3.28. Assuming VX = V0 sin ωt , plot the output
waveform of the circuit shown in Fig. 3.80
using a constant-voltage diode model.

R

VoutVx

D1

D2

D3

D4

Figure 3.80

3.29. Assuming VX = V0 sin ωt , plot the wave-
forms VC and V0 for the circuit shown in
Fig. 3.81. Assume V0 = 5 V and VB = 3 V.

C
VoutVx

D1

Vc

VB

Figure 3.81

3.30. Suppose the rectifier of Fig. 3.32 drives a
100-� load with a peak voltage of 3.5 V. For a
1000-μF smoothing capacitor, calculate the
ripple amplitude if the frequency is 60 Hz.

3.31. A 5 V charger using a half-wave rectifier is
used to charge a battery, with a smoothing
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capacitor of 100 μF with a maximum ripple
of 500 mV. Compute the charging current,
for a frequency of 60 Hz.

3.32. While* constructing a full-wave rectifier, a
student mistakenly has swapped the termi-
nals of D3 as depicted in Fig. 3.82. Explain
what happens.

D1

D2 D

D

3

4

RL

Vin

Vout

Figure 3.82

3.33. Plot the voltage across each diode in
Fig. 3.38(b) as a function of time if
Vin = V0 cos ωt . Assume a constant-voltage
diode model and VD > VD,on.

3.34. A full-wave rectifier is driven by a sinusoidal
input Vin = V0 cos ωt , where V0 = 3 V and
ω = 2π(60 Hz). Assuming VD,on = 800 mV,
determine the ripple amplitude with a
1000-μF smoothing capacitor and a load
resistance of 30 �.

3.35. Suppose the negative terminals of Vin and
Vout in Fig. 3.38(b) are shorted together.
Plot the input-output characteristic assum-
ing an ideal diode model and explaining why
the circuit does not operate as a full-wave
rectifier.

3.36. Suppose in Fig. 3.43, the diodes carry a
current of 5 mA and the load, a current
of 20 mA. If the load current increases to
21 mA, what is the change in the total volt-
age across the three diodes? Assume R1 is
much greater than 3rd.

3.37. In this problem, we estimate the ripple seen
by the load in Fig. 3.43 so as to appreciate the
regulation provided by the diodes. For sim-
plicity, neglect the load. Also, fin = 60 Hz,
C1 = 100 μF, R1 = 1000 �, and the peak
voltage produced by the transformer is
equal to 5 V.

(a) Assuming R1 carries a relatively con-
stant current and VD,on ≈ 800 mV, esti-
mate the ripple amplitude across C1.

(b) Using the small-signal model of the
diodes, determine the ripple amplitude
across the load.

3.38. Design the limiting circuit of Fig. 3.51 for
a negative threshold of −1.9 V and a posi-
tive threshold of +2.2 V. Assume the input
peak voltage is equal to 5 V, the maximum
allowable current through each diode is
2 mA, and VD,on ≈ 800 mV.

3.39. In the* limiting circuit of Fig. 3.51, plot
the currents flowing through D1 and D2

as a function of time if the input is given
by V0 cos ωt and V0 > VD,on + VB1 and
−V0 > −VD,on − VB2.

3.40. We wish to design a circuit that exhibits
the input/output characteristic shown in
Fig. 3.83. Using 1-k� resistors, ideal diodes,
and other components, construct the circuit.

outV

Vin
+ 2 V

 –2 V

0.5

0.5+ 2 V

 –2 V

Figure 3.83

3.41. “Wave-shaping”* applications require the
input/output characteristic illustrated in
Fig. 3.84. Using ideal diodes and other com-
ponents, construct a circuit that provides
such a characteristic. (The value of resistors
is not unique.)

outV

Vin
+ 2 V

0.5

0.5+ 2 V

+ 4 V

–4 V –2 V

–2 V

Figure 3.84
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S P I C E P R O B L E M S

In the following problems, assume IS = 5×
10−16 A.

3.1. The half-wave rectifier of Fig. 3.85 must
deliver a current of 5 mA to R1 for a peak
input level of 2 V.
(a) Using hand calculations, determine the

required value of R1.

(b) Verify the result by SPICE.

Vin

outV
1D

R1

Figure 3.85

3.2. In the circuit of Fig. 3.86, R1 = 500 �

and R2 = 1 k�. Use SPICE to con-
struct the input/output characteristic for
−2 V<Vin < +2 V. Also, plot the current
flowing through R1 as a function of Vin.

outV

R1

D

1D

R22Vin

Figure 3.86

3.3. The rectifier shown in Fig. 3.87 is driven by
a 60-Hz sinusoid input with a peak ampli-
tude of 5 V. Using the transient analysis in
SPICE,
(a) Determine the peak-to-peak ripple at

the output.

(b) Determine the peak current flowing
through D1.

(c) Compute the heaviest load (smallest
RL) that the circuit can drive while
maintaining a ripple less than 200 mVpp.

Vin

outV
1D

1  μ  Ω100F

Figure 3.87



Chapter 4
Physics of Bipolar Transistors

The bipolar transistor was invented in 1945 by Shockley, Brattain, and Bardeen at Bell

Laboratories, subsequently replacing vacuum tubes in electronic systems and paving the

way for integrated circuits.

In this chapter, we analyze the structure and operation of bipolar transistors, preparing

ourselves for the study of circuits employing such devices. Following the same thought

process as in Chapter 2 for pn junctions, we aim to understand the physics of the transistor,

derive equations that represent its I/V characteristics, and develop an equivalent model

that can be used in circuit analysis and design. The outline below illustrates the sequence

of concepts introduced in this chapter.

� � � �

Voltage-Controlled 

Device as 

Amplifying 

Element

Structure of

Bipolar

Transistor

Operation of

Bipolar

Transistor

Large-Signal

Model

Small-Signal

Model

4.1 GENERAL CONSIDERATIONS

In its simplest form, the bipolar transistor can be viewed as a voltage-dependent current
source. We first show how such a current source can form an amplifier and hence why
bipolar devices are useful and interesting.

Consider the voltage-dependent current source depicted in Fig. 4.1(a), where I1

is proportional to V1: I1 = KV1. Note that K has a dimension of resistance−1. For
example, with K = 0.001 �−1, an input voltage of 1 V yields an output current of
1 mA. Let us now construct the circuit shown in Fig. 4.1(b), where a voltage source Vin

controls I1 and the output current flows through a load resistor RL, producing Vout. Our
objective is to demonstrate that this circuit can operate as an amplifier, i.e., Vout is an
amplified replica of Vin. Since V1 = Vin and Vout = −RLI1, we have

Vout = −KRLVin. (4.1)

107
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V1 I 1 1KV V1 I 1 1KV RL outVVin

t

Vin
Vp

t

Vout

VpRLK

(a) (b)

Figure 4.1 (a) Voltage-dependent current source, (b) simple amplifier.

Interestingly, if KRL > 1, then the circuit amplifies the input. The negative sign indicates
that the output is an “inverted” replica of the input circuit [Fig. 4.1(b)]. The amplification
factor or “voltage gain” of the circuit, AV , is defined as

AV = Vout

Vin
(4.2)

= −KRL, (4.3)

and depends on both the characteristics of the controlled current source and the load
resistor. Note that K signifies how strongly V1 controls I1, thus directly affecting the gain.

Example

4.1
Consider the circuit shown in Fig. 4.2, where the voltage-controlled current source
exhibits an “internal” resistance of rin. Determine the voltage gain of the circuit.

V1 I 1 1KV RL outVVin r in

Figure 4.2 Voltage-dependent current source with an internal resistance rin.

Solution Since V1 is equal to Vin regardless of the value of rin, the voltage gain remains unchanged.
This point proves useful in our analyses later.

Exercise Repeat the above example if rin = ∞.

The foregoing study reveals that a voltage-controlled current source can indeed pro-
vide signal amplification. Bipolar transistors are an example of such current sources and
can ideally be modeled as shown in Fig. 4.3.Note that the device contains three terminals
and its output current is an exponential function of V1. We will see in Section 4.4.4 that
under certain conditions, this model can be approximated by that in Fig. 4.1(a).
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V1 I S exp 1

VT

1

2

3
V

Figure 4.3 Exponential voltage-dependent current source.

As three-terminal devices, bipolar transistors make the analysis of circuits more dif-
ficult. Having dealt with two-terminal components such as resistors, capacitors, inductors,
and diodes in elementary circuit analysis and the previous chapters of this book, we are
accustomed to a one-to-one correspondence between the current through and the voltage
across each device. With three-terminal elements, on the other hand, one may consider the
current and voltage between every two terminals, arriving at a complex set of equations.
Fortunately, as we develop our understanding of the transistor’s operation, we discard
some of these current and voltage combinations as irrelevant, thus obtaining a relatively
simple model.

4.2 STRUCTURE OF BIPOLAR TRANSISTOR

The bipolar transistor consists of three doped regions forming a sandwich. Shown in Fig.
4.4(a) is an example comprising of a p layer sandwiched between two n regions and called
an “npn” transistor. The three terminals are called the “base,” the “emitter,” and the “col-
lector.” As explained later, the emitter “emits” charge carriers and the collector “collects”
them while the base controls the number of carriers that make this journey. The circuit
symbol for the npn transistor is shown in Fig. 4.4(b). We denote the terminal voltages by
VE, VB, and VC , and the voltage differences by VBE, VCB, and VCE. The transistor is labeled
Q1 here.

n

p

n

Base

Collector

Emitter

Base

Collector

Emitter

(B)

(C)

(E)

V

VBE

VCEQ1

(a) (b)

CB

Figure 4.4 (a) Structure and (b) circuit symbol of bipolar transistor.

We readily note from Fig. 4.4(a) that the device contains two pn junction diodes:
one between the base and the emitter and another between the base and the collector.
For example, if the base is more positive than the emitter, VBE > 0, then this junction is
forward-biased. While this simple diagram may suggest that the device is symmetric with
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respect to the emitter and the collector, in reality, the dimensions and doping levels of
these two regions are quite different. In other words, E and C cannot be interchanged. We
will also see that proper operation requires a thin base region, e.g., about 100 Å in modern
integrated bipolar transistors.

As mentioned in the previous section, the possible combinations of voltages and cur-
rents for a three-terminal device can prove overwhelming. For the device in Fig. 4.4(a),
VBE, VBC, and VCE can assume positive or negative values, leading to 23 possibilities for
the terminal voltages of the transistor. Fortunately, only one of these eight combinations
finds practical value and comes into our focus here.

Before continuing with the bipolar transistor, it is instructive to study an interesting
effect in pn junctions. Consider the reverse-biased junction depicted in Fig. 4.5(a) and recall
from Chapter 2 that the depletion region sustains a strong electric field. Now suppose an
electron is somehow “injected” from outside into the right side of the depletion region.
What happens to this electron? Serving as a minority carrier on the p side, the electron
experiences the electric field and is rapidly swept away into the n side. The ability of
a reverse-biased pn junction to efficiently “collect” externally-injected electrons proves
essential to the operation of the bipolar transistor.

V

n p

+ + +
++++

+ + +
++++

+ + +
++++

+ + +
++++

– – –
––––
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– – –
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+

E

e

Electron injected

R

Figure 4.5 Injection of electrons into depletion region.

4.3 OPERATION OF BIPOLAR TRANSISTOR IN ACTIVE MODE

In this section, we analyze the operation of the transistor, aiming to prove that, under
certain conditions, it indeed acts as a voltage-controlled current source. More specifically,
we intend to show that (a) the current flow from the emitter to the collector can be viewed
as a current source tied between these two terminals, and (b) this current is controlled by
the voltage difference between the base and the emitter, VBE.

We begin our study with the assumption that the base-emitter junction is forward-
biased (VBE > 0) and the base-collector junction is reverse-biased (VBC < 0). Under these
conditions, we say the device is biased in the “forward active region” or simply in the
“active mode.” For example, with the emitter connected to ground, the base voltage is
set to about 0.8 V and the collector voltage to a higher value, e.g., 1 V [Fig. 4.6(a)]. The
base-collector junction therefore experiences a reverse bias of 0.2 V.

Let us now consider the operation of the transistor in the active mode. We may be
tempted to simplify the example of Fig. 4.6(a) to the equivalent circuit shown in Fig. 4.6(b).
After all, it appears that the bipolar transistor simply consists of two diodes sharing their
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VBE = +0.8 V

VCE = +1 V

1DVBE = +0.8 V

VCE = +1 V

D2

I 2

I 1

(a) (b)

Figure 4.6 (a) Bipolar transistor with base and collector bias voltages, (b) simplistic view of bipolar

transistor.

anodes at the base terminal. This view implies that D1 carries a current and D2 does not; i.e.,
we should anticipate current flow from the base to the emitter but no current through the
collector terminal. Were this true, the transistor would not operate as a voltage-controlled
current source and would prove of little value.

To understand why the transistor cannot be modeled as merely two back-to-back
diodes, we must examine the flow of charge inside the device, bearing in mind that the
base region is very thin. Since the base-emitter junction is forward-biased, electrons flow
from the emitter to the base and holes from the base to the emitter. For proper transistor
operation, the former current component must be much greater than the latter, requiring
that the emitter doping level be much greater than that of the base (Chapter 2). Thus,
we denote the emitter region with n+, where the superscript emphasizes the high dop-
ing level. Figure 4.7(a) summarizes our observations thus far, indicating that the emitter
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Figure 4.7 (a) Flow of electrons and holes through base-emitter junction, (b) electrons

approaching collector junction, (c) electrons passing through collector junction.
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injects a large number of electrons into the base while receiving a small number of holes
from it.

What happens to electrons as they enter the base? Since the base region is thin, most of
the electrons reach the edge of the collector-base depletion region, beginning to experience
the built-in electric field. Consequently, as illustrated in Fig. 4.5, the electrons are swept
into the collector region (as in Fig. 4.5) and absorbed by the positive battery terminal.
Figures 4.7(b) and (c) illustrate this effect in “slow motion.” We therefore observe that
the reverse-biased collector-base junction carries a current because minority carriers are
“injected” into its depletion region.

Let us summarize our thoughts. In the active mode, an npn bipolar transistor carries
a large number of electrons from the emitter, through the base, to the collector while
drawing a small current of holes through the base terminal. We must now answer several
questions. First, how do electrons travel through the base: by drift or diffusion? Second,
how does the resulting current depend on the terminal voltages? Third, how large is the
base current?

Operating as a moderate conductor, the base region sustains but a small electric field,
i.e., it allows most of the field to drop across the base-emitter depletion layer. Thus, as
explained for pn junctions in Chapter 2, the drift current in the base is negligible,1 leav-
ing diffusion as the principal mechanism for the flow of electrons injected by the emit-
ter. In fact, two observations directly lead to the necessity of diffusion: (1) redrawing
the diagram of Fig. 2.29 for the emitter-base junction [Fig. 4.8(a)], we recognize that the
density of electrons at x = x1 is very high; (2) since any electron arriving at x = x2 in
Fig. 4.8(b) is swept away, the density of electrons falls to zero at this point. As a result,
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Figure 4.8 (a) Hole and electron profiles at base-emitter junction, (b) zero electron density near

collector, (c) electron profile in base.

1This assumption simplifies the analysis here but may not hold in the general case.
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the electron density in the base assumes the profile depicted in Fig. 4.8(c), providing a
gradient for the diffusion of electrons.

4.3.1 Collector Current

We now address the second question raised previously and compute the current flow-
ing from the collector to the emitter.2 As a forward-biased diode, the base-emitter
junction exhibits a high concentration of electrons at x = x1 in Fig. 4.8(c) given by
Eq. (2.96):

�n(x1) = NE

exp
V0

VT

(
exp

VBE

VT
− 1

)
(4.4)

= NB

n2
i

(
exp

VBE

VT
− 1

)
. (4.5)

Here, NE and NB denote the doping levels in the emitter and the base, respectively, and
we have utilized the relationship exp(V0/VT) = NENB/n2

i . In this chapter, we assume
VT = 26 mV. Applying the law of diffusion [Eq. (2.42)], we determine the flow of electrons
into the collector as

Jn = qDn
dn
dx

(4.6)

= qDn · 0 − �n(x1)

WB
, (4.7)

where WB is the width of the base region. Multipling this quantity by the emitter cross
section area, AE, substituting for �n(x1) from Eq. (4.5), and changing the sign to obtain
the conventional current, we obtain

IC = AEqDnn2
i

NBWB

(
exp

VBE

VT
− 1

)
. (4.8)

In analogy with the diode current equation and assuming exp(VBE/VT) � 1, we write

IC = IS exp
VBE

VT
, (4.9)

where

IS = AEqDnn2
i

NBWB
. (4.10)

Equation (4.9) implies that the bipolar transistor indeed operates as a voltage-
controlled current source, proving a good candidate for amplification. We may alternatively
say the transistor performs “voltage-to-current conversion.”

2In an npn transistor, electrons go from the emitter to the collector. Thus, the conventional direction of
the current is from the collector to the emitter.
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Example

4.2
Determine the current IX in Fig. 4.9(a) if Q1 and Q2 are identical and operate in the
active mode and V1 = V2.

V1

I C1

V

I C2

QQ1 2 V

I X

V1

I C1 I C2

QQ1 2 V

I X

V1

Q

I X

eq

A2 E

E

B

C

A E A E

B

C

E
A2 E

(a)

(b)

2

3

3 V3

Figure 4.9 (a) Two identical transistors drawing current from VC , (b) equivalence to a single

transistor having twice the area.

Solution Since IX = IC1 + IC2, we have

IX ≈ 2
AEqDnn2

i

NBWB
exp

V1

VT
. (4.11)

This result can also be viewed as the collector current of a single transistor having an
emitter area of 2AE. In fact, redrawing the circuit as shown in Fig. 4.9(b) and noting that
Q1 and Q2 experience identical voltages at their respective terminals, we say the two
transistors are “in parallel,” operating as a single transistor with twice the emitter area
of each.

Exercise Repeat the above example if Q1 has an emitter area of AE and Q2 an emitter area
of 8AE.
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Example

4.3
In the circuit of Fig. 4.9 (a), Q1 and Q2 are identical and operate in the active mode.
Determine V1 − V2 such that IC1 = 10IC2.

Solution From Eq. (4.9), we have

IC1

IC2

=
IS exp

V1

VT

IS exp
V2

VT

, (4.12)

and hence

exp
V1 − V2

VT
= 10. (4.13)

That is,
V1 − V2 = VT ln 10 (4.14)

≈ 60 mV at T = 300 K. (4.15)

Identical to Eq. (2.109), this result is, of course, expected because the exponential de-
pendence of IC upon VBE indicates a behavior similar to that of diodes. We therefore
consider the base-emitter voltage of the transistor relatively constant and approximately
equal to 0.8 V for typical collector current levels.

Exercise Repeat the above example if Q1 and Q2 have different emitter areas, i.e., AE1 = nAE2.

Example

4.4
Typical discrete bipolar transistors have a large area, e.g., 500 μm × 500 μm, whereas
modern integrated devices may have an area as small as 0.5 μm × 0.2 μm. Assuming
other device parameters are identical, determine the difference between the base-emitter
voltage of two such transistors for equal collector currents.

Solution From Eq. (4.9), we have VBE = VT ln(IC /IS) and hence

VBEint − VBEdis = VT ln
IS1

IS2

, (4.16)

where VBEint = VT ln(IC2/IS2) and VBEdis = VT ln(IC1/IS1) denote the base-emitter volt-
ages of the integrated and discrete devices, respectively. Since IS ∝ AE,

VBEint − VBEdis = VT ln
AE2

AE1

. (4.17)

For this example, AE2/AE1 = 2.5 × 106, yielding

VBEint − VBEdis = 383 mV. (4.18)

In practice, however, VBEint − VBEdis falls in the range of 100 to 150 mV because of differ-
ences in the base width and other parameters. The key point here is that VBE = 800 mV
is a reasonable approximation for integrated transistors and should be lowered to about
700 mV for discrete devices.

Exercise Repeat the above comparison for a very small integrated device with an emitter area of
0.15 μm × 0.15 μ.
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Since many applications deal with voltage quantities, the collector current generated
by a bipolar transistor typically flows through a resistor to produce a voltage.

Example

4.5
Determine the output voltage in Fig. 4.10 if IS = 5 × 10−16 A.

Q1

RL

I C

 Ω
3 V

750 mV

1 k

outV

Figure 4.10 Simple stage with biasing.

Solution Using Eq. (4.9), we write IC = 1.69 mA. This current flows through RL, generating a
voltage drop of 1 k� × 1.69 mA = 1.69 V. Since VCE = 3 V − IC RL, we obtain

Vout = 1.31 V. (4.19)

Exercise What happens if the load resistor is halved?

Equation (4.9) reveals an interesting property of the bipolar transistor: the collector
current does not depend on the collector voltage (so long as the device remains in the
active mode). Thus, for a fixed base-emitter voltage, the device draws a constant current,
acting as a current source [Fig. 4.11(a)]. Plotted in Fig. 4.11(b) is the current as a function of
the collector-emitter voltage, exhibiting a constant value for VCE > V1.3 Constant current
sources find application in many electronic circuits and we will see numerous examples
of their usage in this book. In Section 4.5, we study the behavior of the transistor for
VCE < VBE.

V1

Q1

VCE

Forward Active
Region

V1

I S exp 1

VT

V

I C

(a) (b)

Figure 4.11 (a) Bipolar transistor as a current source, (b) I/V characteristic.

4.3.2 Base and Emitter Currents

Having determined the collector current, we now turn our attention to the base and emitter
currents and their dependence on the terminal voltages. Since the bipolar transistor must
satisfy Kirchoff’s current law, calculation of the base current readily yields the emitter
current as well.

3Recall that VCE > V1 is necessary to ensure the collector-base junction remains reverse biased.
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Figure 4.12 Base current resulting from holes (a) crossing to emitter and (b) recombining with

electrons.

In the npn transistor of Fig. 4.12 (a), the base current, IB, results from the flow of holes.
Recall from Eq. (2.99) that the hole and electron currents in a forward-biased pn junction
bear a constant ratio given by the doping levels and other parameters. Thus, the number of
holes entering from the base to the emitter is a constant fraction of the number of electrons
traveling from the emitter to the base. As an example, for every 200 electrons injected by
the emitter, one hole must be supplied by the base.

In practice, the base current contains an additional component of holes. As the elec-
trons injected by the emitter travel through the base, some may “recombine” with the
holes [Fig. 4.12 (b)]; inessence, some electrons and holes are “wasted” as a result of recom-
bination. For example, on the average, out of every 200 electrons injected by the emitter,
one recombines with a hole.

In summary, the base current must supply holes for both reverse injection into the emit-
ter and recombination with the electrons traveling toward the collector. We can therefore
view IB as a constant fraction of IE or a constant fraction of IC . It is common to write

IC = βIB, (4.20)

where β is called the “current gain” of the transistor because it shows how much the base
current is “amplified.” Depending on the device structure, the β of npn transistors typically
ranges from 50 to 200.

In order to determine the emitter current, we apply the KCL to the transistor with the
current directions depicted in Fig. 4.12 (a):

IE = IC + IB (4.21)

= IC

(
1 + 1

β

)
. (4.22)

We can summarize our findings as follows:

IC = IS exp
VBE

VT
(4.23)

IB = 1

β
IS exp

VBE

VT
(4.24)

IE = β + 1

β
IS exp

VBE

VT
. (4.25)



118 Chapter 4 Physics of Bipolar Transistors

It is sometimes useful to write IC = [β/(β + 1)]IE and denote β/(β + 1) by α. For β = 100,
α = 0.99, suggesting that α ≈ 1 and IC ≈ IE are reasonable approximations. In this book,
we assume that the collector and emitter currents are approximately equal.

Example

4.6
A bipolar transistor having IS = 5 × 10−16 A is biased in the forward active region with
VBE = 750 mV. If the current gain varies from 50 to 200 due to manufacturing variations,
calculate the minimum and maximum terminal currents of the device.

Solution For a given VBE, the collector current remains independent of β:

IC = IS exp
VBE

VT
(4.26)

= 1.685 mA. (4.27)

The base current varies from IC /200 to IC /50:

8.43 μA < IB < 33.7 μA. (4.28)

On the other hand, the emitter current experiences only a small variation because
(β + 1)/β is near unity for large β:

1.005IC < IE < 1.02IC (4.29)

1.693 mA < IE < 1.719 mA. (4.30)

Exercise Repeat the above example if the area of the transistor is doubled.

4.4 BIPOLAR TRANSISTOR MODELS AND CHARACTERISTICS

4.4.1 Large-Signal Model

With our understanding of the transistor operation in the forward active region and the
derivation of Eqs. (4.23)–(4.25), we can now construct a model that proves useful in the
analysis and design of circuits—in a manner similar to the developments in Chapter 2 for
the pn junction.

Since the base-emitter junction is forward-biased in the active mode, we can place a
diode between the base and emitter terminals. Moreover, since the current drawn from
the collector and flowing into the emitter depends on only the base-emitter voltage, we
add a voltage-controlled current source between the collector and the emitter, arriving at
the model shown in Fig. 4.13. As illustrated in Fig. 4.11, this current remains independent
of the collector-emitter voltage.

I S exp
VT

VBE

B

E

C

I S exp
VT

V

 β

VBE

BE

Figure 4.13 Large-signal model of bipolar transistor in active region.
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But how do we ensure that the current flowing through the diode is equal to 1/β

times the collector current? Equation (4.24) suggests that the base current is equal to that
of a diode having a reverse saturation current of IS/β. Thus, the base-emitter junction
is modeled by a diode whose cross section area is 1/β times that of the actual emitter
area.

With the interdependencies of currents and voltages in a bipolar transistor, the reader
may wonder about the cause and effect relationships. We view the chain of dependen-
cies as VBE → IC → IB → IE; i.e., the base-emitter voltage generates a collector current,
which requires a proportional base current, and the sum of the two flows through the
emitter.

Example

4.7
Consider the circuit shown in Fig. 4.14 (a), where IS,Q1 = 5 × 10−17 A and VBE =
800 mV. Assume β = 100. (a) Determine the transistor terminal currents and voltages
and verify that the device indeed operates in the active mode. (b) Determine the maxi-
mum value of RC that permits operation in the active mode.

Q1

R

I C VCC
X

VBE

2 V

RC

 Ω

(Ω)

VX

500

1041500

2.0

1.424

0.800

(V)

(a) (b)

C

Figure 4.14 (a) Simple stage with biasing, (b) variation of collector voltage as a function of

collector resistance.

Solution (a) Using Eq. (4.23)–(4.25), we have

IC = 1.153 mA (4.31)

IB = 11.53 μA (4.32)

IE = 1.165 mA. (4.33)

The base and emitter voltages are equal to +800 mV and zero, respectively. We must
now calculate the collector voltage, VX . Writing a KVL from the 2-V power supply and
across RC and Q1, we obtain

VCC = RC IC + VX . (4.34)

That is,

VX = 1.424 V. (4.35)

Since the collector voltage is more positive than the base voltage, this junction is reverse-
biased and the transistor operates in the active mode.

(b) What happens to the circuit as RC increases? Since the voltage drop across
the resistor, RC IC , increases while VCC is constant, the voltage at node X drops.
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The device approaches the “edge” of the forward active region if the base-collector
voltage falls to zero, i.e., as VX → +800 mV. Rewriting Eq. (4.33) yields:

RC = VCC − VX

IC
, (4.36)

which, for VX = +800 mV, reduces to

RC = 1041 �. (4.37)

Figure 4.14(b) plots VX as a function of RC .
This example implies that there exists a maximum allowable value of the collector

resistance, RC , in the circuit of Fig. 4.14(a). As we will see in Chapter 5, this limits the
voltage gain that the circuit can provide.

Exercise In the above example, what is the minimum allowable value of VCC for transistor operation
in the active mode? Assume RC = 500 �.

The reader may wonder why the equivalent circuit of Fig. 4.13 is called the “large-signal
model.” After all, the above example apparently contains no signals! This terminology
emphasizes that the model can be used for arbitrarily large voltage and current changes
in the transistor (so long as the device operates in the active mode). For example, if the
base-emitter voltage varies from 800 mV to 300 mV, and hence the collector current by
many orders of magnitude,4 the model still applies. This is in contrast to the small-signal
model, studied in Section 4.4.4.

4.4.2 I/V Characteristics

The large-signal model naturally leads to the I/V characteristics of the transistor.
With three terminal currents and voltages, we may envision plotting different cur-
rents as a function of the potential difference between every two terminals—an elab-
orate task. However, as explained below, only a few of such characteristics prove
useful.

The first characteristic to study is, of course, the exponential relationship inher-
ent in the device. Figure 4.15(a) plots IC versus VBE with the assumption that the col-
lector voltage is constant and no lower than the base voltage. As shown in Fig. 4.11,
IC is independent of VCE; thus, different values of VCE do not alter the character-
istic.

Next, we examine IC for a given VBE but with VCE varying. Illustrated in Fig. 4.15(b),
the characteristic is a horizontal line because IC is constant if the device remains in the
active mode (VCE > VBE). On the other hand, if different values are chosen for VBE, the
characteristic moves up or down.

The two plots of Fig. 4.15 constitute the principal characteristics of interest in most
analysis and design tasks. Equations (4.24) and (4.25) suggest that the base and emitter
currents follow the same behavior.

4A 500-mV change in VBE leads to 500 mV/60 mV = 8.3 decades of change in IC .
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Figure 4.15 Collector current as a function of (a) base-emitter voltage and (b) collector-

emitter voltage.

Example

4.8
For a bipolar transistor, IS = 5 × 10−17 A and β = 100. Construct the IC -VBE, IC -VCE,
IB-VBE, and IB-VCE characteristics.

Solution We determine a few points along the IC -VBE characteristics, e.g.,

VBE1 = 700 mV ⇒ IC1 = 24.6 μA (4.38)

VBE2 = 750 mV ⇒ IC2 = 169 μA (4.39)

VBE3 = 800 mV ⇒ IC3 = 1.153 mA. (4.40)

The characteristic is depicted in Fig. 4.16 (a).
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Figure 4.16 (a) Collector current as a function of VBE, (b) collector current as a function of VCE,

(c) base current as a function of VBE, (d) base current as a function of VCE.
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Using the values obtained above, we can also plot the IC -VCE characteristic as shown
in Fig. 4.16(b), concluding that the transistor operates as a constant current source of,
e.g., 169 μA if its base-emitter voltage is held at 750 mV. We also remark that, for equal
increments in VBE, IC jumps by increasingly greater steps: 24.6 μA to 169 μA to 1.153 mA.
We return to this property in Section 4.4.3.

For IB characteristics, we simply divide the IC values by 100 [Figs. 4.16(c) and (d)].

Exercise What change in VBE doubles the base current?

The reader may wonder what exactly we learn from the I/V characteristics. After
all, compared to Eqs. (4.23)–(4.25), the plots impart no additional information. How-
ever, as we will see throughout this book, the visualization of equations by means of
such plots greatly enhances our understanding of the devices and the circuits employing
them.

4.4.3 Concept of Transconductance

Our study thus far shows that the bipolar transistor acts as a voltage-dependent cur-
rent source (when operating in the forward active region). An important question
that arises here is, how is the performance of such a device quantified? In other words,
what is the measure of the “goodness” of a voltage-dependent current source?

The example depicted in Fig. 4.1 suggests that the device becomes “stronger” as K
increases because a given input voltage yields a larger output current. We must therefore
concentrate on the voltage-to-current conversion property of the transistor, particularly
as it relates to amplification of signals. More specifically, we ask, if a signal changes the
base-emitter voltage of a transistor by a small amount (Fig. 4.17), how much change is
produced in the collector current? Denoting the change in IC by �IC , we recognize that the
“strength” of the device can be represented by �IC /�VBE. For example, if a base-emitter
voltage change of 1 mV results in a �IC of 0.1 mA in one transistor and 0.5 mA in another,
we can view the latter as a better voltage-dependent current source or “voltage-to-current
converter.”

The ratio �IC /�VBE approaches dIC /dVBE for very small changes and, in the limit, is
called the “transconductance,” gm:∗

gm = dIC

dVBE
. (4.41)

Q1 VCE

I C

VΔ BE

Figure 4.17 Test circuit for measurement of gm.

∗Note that VCE is constant here.
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Note that this definition applies to any device that approximates a voltage-dependent
current source (e.g., another type of transistor described in Chapter 6). For a bipolar
transistor, Eq. (4.9) gives

gm = d
dVBE

(
IS exp

VBE

VT

)
(4.42)

= 1

VT
IS exp

VBE

VT
(4.43)

= IC
VT

. (4.44)

The close resemblance between this result and the small-signal resistance of diodes
[Eq. (3.58)] is no coincidence and will become clearer in the next chapter.

Equation (4.44) reveals that, as IC increases, the transistor becomes a better amplifying
device by producing larger collector current excursions in response to a given signal level
applied between the base and the emitter. The transconductance may be expressed in �−1

or “siemens,” S. For example, if IC = 1 mA, then with VT = 26 mV, we have

gm = 0.0385 �−1 (4.45)

= 0.0385 S (4.46)

= 38.5 mS. (4.47)

However, as we will see throughout this book, it is often helpful to view gm as the inverse
of a resistance; e.g., for IC = 1 mA, we may write

gm = 1

26 �
. (4.48)

The concept of transconductance can be visualized with the aid of the transistor I/V char-
acteristics. As shown in Fig. 4.18, gm = dIC /dVBE simply represents the slope of IC -VBE

characteristic at a given collector current, IC0, and the corresponding base-emitter voltage,
VBE0. In other words, if VBE experiences a small perturbation ±�V around VBE0, then the
collector current displays a change of ±gm �V around IC0, where gm = IC0/VT . Thus, the

V

I C

BE
VBE0

VΔgm

VΔ

I C0

Figure 4.18 Illustration of transconductance.
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value of IC0 must be chosen according to the required gm and, ultimately, the required gain.
We say the transistor is “biased” at a collector current of IC0, meaning the device carries a
bias (or “quiescent”) current of IC0 in the absence of signals.5

Example

4.9
Consider the circuit shown in Fig. 4.19(a). What happens to the transconductance of Q1

if the area of the device is increased by a factor of n?

V
Q1

I C0

BE0 V

I C0

BE0

I C0 I C0

VCE VCE

I C0n

(a) (b)

Figure 4.19 (a) One transistor and (b) n transistors providing transconductance.

Solution Since IS ∝ AE, IS is multiplied by the same factor. Thus, IC = IS exp(VBE/VT) also rises
by a factor of n because VBE is constant. As a result, the transconductance increases
by a factor of n. From another perspective, if n identical transistors, each carrying a
collector current of IC0, are placed in parallel, then the composite device exhibits a
transconductance equal to n times that of each [Fig. 4.19(b)]. On the other hand, if the
total collector current remains unchanged, then so does the transconductance.

Exercise Repeat the above example if VBE0 is reduced by VT ln n.

It is also possible to study the transconductance in the context of the IC -VCE charac-
teristics of the transistor with VBE as a parameter. Illustrated in Fig. 4.20 for two different
bias currents IC1 and IC2, the plots reveal that a change of �V in VBE results in a greater
change in IC for operation around IC2 than around IC1 because gm2 > gm1.

The derivation of gm in Eqs. (4.42)–(4.44) suggests that the transconductance is fun-
damentally a function of the collector current rather than the base current. For example, if
IC remains constant but β varies, then gm does not change but IB does. For this reason, the
collector bias current plays a central role in the analysis and design, with the base current
viewed as secondary, often undesirable effect.

As shown in Fig. 4.10,the current produced by the transistor may flow through a
resistor to generate a proportional voltage. We exploit this concept in Chapter 5 to design
amplifiers.

4.4.4 Small-Signal Model

Electronic circuits, e.g., amplifiers, may incorporate a large number of transistors, thus
posing great difficulties in the analysis and design. Recall from Chapter 3 that diodes can

5Unless otherwise stated, we use the term “bias current” to refer to the collector bias current.
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Figure 4.20 Transconductance for different collector bias currents.

be reduced to linear devices through the use of the small-signal model. A similar benefit
accrues if a small-signal model can be developed for transistors.

The derivation of the small-signal model from the large-signal counterpart is rela-
tively straightforward. We perturb the voltage difference between every two terminals
(while the third terminal remains at a constant potential), determine the changes in the
currents flowing through all terminals, and represent the results by proper circuit ele-
ments such as controlled current sources or resistors. Figure 4.21 depicts two conceptual
examples where VBE or VCE is changed by �V and the changes in IC , IB, and IE are
examined.

Q1 VCE

VΔ

I BΔ

IΔ C

IΔ E VBE

Q1

VΔI BΔ

IΔ C

IΔ E

(a)
(b)

Figure 4.21 Excitation of bipolar transistor with small changes in (a) base-emitter and

(b) collector-emitter voltage.

Let us begin with a change in VBE while the collector voltage is constant (Fig. 4.22).We
know from the definition of transconductance that

�IC = gm �VBE, (4.49)

concluding that a voltage-controlled current source must be connected between the col-
lector and the emitter with a value equal to gm �V. For simplicity, we denote �VBE by vπ

and the change in the collector current by gmvπ .
The change in VBE creates another change as well:

�IB = �IC
β

(4.50)

= gm

β
�VBE. (4.51)
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Figure 4.22 Development of small-signal model.

That is, if the base-emitter voltage changes by �VBE, the current flowing between these
two terminals changes by (gm/β)�VBE. Since the voltage and current correspond to the
same two terminals, they can be related by Ohm’s Law, i.e., by a resistor placed between
the base and emitter having a value:

rπ = �VBE

�IB
(4.52)

= β

gm
. (4.53)

Thus, the forward-biased diode between the base and the emitter is modeled by a
small-signal resistance equal to β/gm. This result is expected because the diode carries
a bias current equal to IC /β and, from Eq. (3.58), exhibits a small-signal resistance of
VT/(IC /β) = β(VT/IC ) = β/gm.

We now turn our attention to the collector and apply a voltage change with respect to
the emitter (Fig. 4.23). As illustrated in Fig. 4.11, for a constant VBE, the collector voltage
has no effect on IC or IB because IC = IS exp(VBE/VT) and IB = IC /β. Since �VCE leads to
no change in any of the terminal currents, the model developed in Fig. 4.22 need not be
altered.

How about a change in the collector-base voltage? As studied in Problem 4.15, such a
change also results in a zero change in the terminal currents.

VBE

Q1

IΔ C

VΔ CE I S exp
VT

VBE

VBE
VBE VΔ CE

Figure 4.23 Response of bipolar transistor to small change in VCE.
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The simple small-signal model developed in Fig. 4.22 serves as a powerful, versatile
tool in the analysis and design of bipolar circuits. We should remark that both parameters
of the model, gm and rπ , depend on the bias current of the device. With a high collector
bias current, a greater gm is obtained, but the impedance between the base and emit-
ter falls to lower values. Studied in Chapter 5, this trade-off proves undesirable in some
cases.

Example

4.10
Consider the circuit shown in Fig. 4.24(a), where v1 represents the signal generated by a
microphone, IS = 3 × 10−16 A, β = 100, andQ1 operates in the active mode. (a) If v1 = 0,
determine the small-signal parameters of Q1. (b) If the microphone generates a 1-mV
signal, how much change is observed in the collector and base currents?

Q1 V

I C

CC= 1.8 V

v 1

800 mV

g
m πv  πv πrv 1

i B i C

(a) (b)

Figure 4.24 (a) Transistor with bias and small-signal excitation, (b) small-signal equivalent

circuit.

Solution (a) Writing IC = IS exp(VBE/VT), we obtain a collector bias current of 6.92 mA for
VBE = 800 mV. Thus,

gm = IC
VT

(4.54)

= 1

3.75 �
, (4.55)

and

rπ = β

gm
(4.56)

= 375 �. (4.57)

(b) Drawing the small-signal equivalent of the circuit as shown in Fig. 4.24(b) and
recognizing that vπ = v1, we obtain the change in the collector current as:

�IC = gmv1 (4.58)

= 1 mV

3.75 �
(4.59)

= 0.267 mA. (4.60)



128 Chapter 4 Physics of Bipolar Transistors

The equivalent circuit also predicts the change in the base current as

�IB = v1

rπ

(4.61)

= 1 mV

375 �
(4.62)

= 2.67 μA, (4.63)

which is, of course, equal to �IC /β.

Exercise Repeat the above example if IS is halved.

The above example is not a useful circuit. The microphone signal produces a change
in IC , but the result flows through the 1.8-V battery. In other words, the circuit generates
no output. On the other hand, if the collector current flows through a resistor, a useful
output is provided.

Example

4.11
The circuit of Fig. 4.24 (a) is modified as shown in Fig. 4.25, where resistor RC converts
the collector current to a voltage. (a) Verify that the transistor operates in the active
mode. (b) Determine the output signal level if the microphone produces a 1-mV signal.

Q1

VCC= 1.8 V

v 1

800 mV

R  Ω

outV

C 100

Figure 4.25 Simple stage with bias and small-signal excitation.

Solution (a) The collector bias current of 6.92 mA flows through RC , leading to a potential drop
of IC RC = 692 mV. The collector voltage, which is equal to Vout, is thus given by:

Vout = VCC − RC IC (4.64)

= 1.108 V. (4.65)

Since the collector voltage (with respect to ground) is more positive than the base voltage,
the device operates in the active mode.

(b) As seen in the previous example, a 1-mV microphone signal leads to a
0.267-mA change in IC . Upon flowing through RC , this change yields a change of
0.267 mA × 100 � = 26.7 mV in Vout. The circuit therefore amplifies the input by a factor
of 26.7.

Exercise What value of RC results in a zero collector-base voltage?
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The foregoing example demonstrates the amplification capability of the transistor.
We will study and quantify the behavior of this and other amplifier topologies in the next
chapter.

Small-Signal Model of Supply Voltage We have seen that the use of the small-signal
model of diodes and transistors can simplify the analysis considerably. In such an analysis,
other components in the circuit must also be represented by a small-signal model. In
particular, we must determine how the supply voltage, VCC, behaves with respect to small
changes in the currents and voltages of the circuit.

The key principle here is that the supply voltage (ideally) remains constant even though
various voltages and currents within the circuit may change with time. Since the supply
does not change and since the small-signal model of the circuit entails only changes in the
quantities, we observe that VCC must be replaced with a zero voltage to signify the zero
change. Thus, we simply “ground” the supply voltage in small-signal analysis. Similarly, any
other constant voltage in the circuit is replaced with a ground connection. To emphasize
that such grounding holds for only signals, we sometimes say a node is an “ac ground.”

4.4.5 Early Effect

Our treatment of the bipolar transistor has thus far concentrated on the fundamental
principles, ignoring second-order effects in the device and their representation in the large-
signal and small-signal models. However, some circuits require attention to such effects if
meaningful results are to be obtained. The following example illustrates this point.

Example

4.12
Considering the circuit of Example 4.11, suppose we raise RC to 200 � and VCC to 3.6 V.
Verify that the device operates in the active mode and compute the voltage gain.

Solution The voltage drop across RC now increases to 6.92 mA × 200 � = 1.384 V, leading to a
collector voltage of 3.6 V − 1.384 V = 2.216 V and guaranteeing operation in the active
mode. Note that if VCC is not doubled, then Vout = 1.8 V − 1.384 V = 0.416 V and the
transistor is not in the forward active region.

Recall from part (b) of the above example that the change in the output voltage
is equal to the change in the collector current multiplied by RC . Since RC is doubled,
the voltage gain must also double, reaching a value of 53.4. This result is also obtained
with the aid of the small-signal model. Illustrated in Fig. 4.26, the equivalent circuit

yields vout = −gmvπRC = −gmv1RC and hence vout/v1 = −gmRC . With gm = (3.75 �)
−1

and RC = 200 �, we have vout/v1 = −53.4.

g
m πv  πv πrv 1

R  ΩC

outv

200

Figure 4.26 Small-signal equivalent circuit of the stage shown in Fig. 4.25.

Exercise What happens if RC = 250 �?
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This example points to an important trend: if RC increases, so does the voltage gain of
the circuit. Does this mean that, if RC → ∞, then the gain also grows indefinitely? Does
another mechanism in the circuit, perhaps in the transistor, limit the maximum gain that
can be achieved? Indeed, the “Early effect” translates to a nonideality in the device that
can limit the gain of amplifiers.

To understand this effect, we return to the internal operation of the transistor and
reexamine the claim shown in Fig. 4.11that “the collector current does not depend on the
collector voltage.” Consider the device shown in Fig. 4.27(a), where the collector voltage
is somewhat higher than the base voltage and the reverse bias across the junction creates
a certain depletion region width. Now suppose VCE is raised to VCE2 [Fig. 4.27(b)], thus
increasing the reverse bias and widening the depletion region in the collector and base
areas. Since the base charge profile must still fall to zero at the edge of depletion region,
x′

2, the slope of the profile increases. Equivalently, the effective base width, WB, in Eq. (4.8)
decreases, thereby increasing the collector current. Discovered by Early, this phenomenon
poses interesting problems in amplifier design (Chapter 5).

n

p

n

VBE

V

+

x

x2

x1

e

CE1

VBE

x

x1

e

VCE2

x2
'

(a) (b)

n

p

n +

Figure 4.27 (a) Bipolar device with base and collector bias voltages, (b) effect of higher collector

voltage.

How is the Early effect represented in the transistor model? We must first modify
Eq. (4.9) to include this effect. It can be proved that the rise in the collector current with
VCE can be approximately expressed by a multiplicative factor:

IC = AEqDnn2
i

NEWB

(
exp

VBE

VT
− 1

)(
1 + VCE

VA

)
, (4.66)

≈
(

IS exp
VBE

VT

)(
1 + VCE

VA

)
. (4.67)

where WB is assumed constant and the second factor, 1 + VCE/VA, models the Early effect.
The quantity VA is called the “Early voltage.”

It is instructive to examine the I/V characteristics of Fig. 4.15 in the presence of
the Early effect. For a constant VCE, the dependence of IC upon VBE remains exponential
but with a somewhat greater slope [Fig. 4.28(a)]. On the other hand, for a constant VBE,
the IC − VCE characteristic displays a nonzero slope [Fig. 4.28(b)]. In fact, differentiation
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VCE

I S exp
VT

I C

(a) (b)

V

I C

BE

VBE1

Early Effect
Without

Early Effect
Without

With
Early Effect With

Early Effect

Figure 4.28 Collector current as a function of (a) VBE and (b) VCE with and without

Early effect.

of Eq. (4.67) with respect to VCE yields

δIC
δVCE

= IS

(
exp

VBE

VT

)(
1

VA

)
(4.68)

≈ IC
VA

, (4.69)

where it is assumed VCE � VA and hence IC ≈ IS exp(VBE/VT). This is a reasonable
approximation in most cases.

The variation of IC with VCE in Fig. 4.28(b) reveals that the transistor in fact does
not operate as an ideal current source, requiring modification of the perspective shown in
Fig. 4.11(a). The transistor can still be viewed as a two-terminal device but with a current
that varies to some extent with VCE (Fig. 4.29).

V1

Q1 I S exp 1

VT

V V

AV
1+(  )( )X

X X

Figure 4.29 Realistic model of bipolar transistor as a current source.

Example

4.13
A bipolar transistor carries a collector current of 1 mA with VCE = 2 V. Determine the
required base-emitter voltage if VA = ∞ or VA = 20 V. Assume IS = 2 × 10−16 A.

Solution With VA = ∞, we have from Eq. (4.67)

VBE = VT ln
IC
IS

(4.70)

= 760.3 mV. (4.71)
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If VA = 20 V, we rewrite Eq. (4.67) as

VBE = VT ln

⎛
⎜⎜⎝ IC

IS

1

1 + VCE

VA

⎞
⎟⎟⎠ (4.72)

= 757.8 mV. (4.73)

In fact, for VCE � VA, we have (1 + VCE/VA)
−1 ≈ 1 − VCE/VA

VBE ≈ VT ln
IC
IS

+ VT ln

(
1 − VCE

VA

)
(4.74)

≈ VT ln
IC
IS

− VT
VCE

VA
, (4.75)

where it is assumed ln(1 − ε) ≈ −ε for ε � 1.

Exercise Repeat the above example if two such transistors are placed in parallel.

Large-Signal and Small-Signal Models The presence of Early effect alters the tran-
sistor models developed in Sections 4.4.1 and 4.4.4. The large-signal model of Fig. 4.13
must now be modified to that in Fig. 4.30, where

IC =
(

IS exp
VBE

VT

)(
1 + VCE

VA

)
(4.76)

IB = 1

β

(
IS exp

VBE

VT

)
(4.77)

IE = IC + IB. (4.78)

Note that IB is independent of VCE and still given by the base-emitter voltage.

VBE

B

E

C

I E

I B I C

I S exp 1

VT

V V

AV
1+(  )( )CE

Figure 4.30 Large-signal model of bipolar transistor including Early effect.
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For the small-signal model, we note that the controlled current source remains un-
changed and gm is expressed as

gm = dIC

dVBE
(4.79)

= 1

VT

(
IS exp

VBE

VT

)(
1 + VCE

VA

)
(4.80)

= IC
VT

. (4.81)

Similarly,

rπ = β

gm
(4.82)

= β
VT

IC
. (4.83)

Considering that the collector current does vary with VCE, let us now apply a voltage
change at the collector and measure the resulting current change [Fig. 4.31(a)]:

IC + �IC =
(

IS exp
VBE

VT

)(
1 + VCE + �VCE

VA

)
. (4.84)

It follows that

�IC =
(

IS exp
VBE

VT

)
�VCE

VA
, (4.85)

which is consistent with Eq. (4.69). Since the voltage and current change correspond to
the same two terminals, they satisfy Ohm’s Law, yielding an equivalent resistor:

rO = �VCE

�IC
(4.86)

= VA

IS exp
VBE

VT

(4.87)

≈ VA

IC
. (4.88)

Depicted in Fig. 4.31(b), the small-signal model contains only one extra element, rO, to
represent the Early effect. Called the “output resistance,” rO plays a critical role in high-
gain amplifiers (Chapter 5). Note that both rπ and rO are inversely proportionally to the
bias current, IC .
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VBE

Q1

IΔ C
VΔ g
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 πv  πv πr r O
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(a) (b)

Figure 4.31 (a) Small change in VCE and (b) small-signal model including Early effect.

Example

4.14
A transistor is biased at a collector current of 1 mA. Determine the small-signal model
if β = 100 and VA = 15 V.

Solution We have

gm = IC
VT

(4.89)

= 1

26 �
, (4.90)

and

rπ = β

gm
(4.91)

= 2600 �. (4.92)

Also,

rO = VA

IC
(4.93)

= 15 k�. (4.94)

Exercise What early voltage is required if the output resistance must reach 25 k�?

In the next chapter, we return to Example 4.12 and determine the gain of the amplifier
in the presence of the Early effect. We will conclude that the gain is eventually limited by
the transistor output resistance, rO. Figure 4.32 summarizes the concepts studied in this
section.

An important notion that has emerged from our study of the transistor is the concept
of biasing. We must create proper dc voltages and currents at the device terminals to
accomplish two goals: (1) guarantee operation in the active mode (VBE > 0, VCE ≥ 0);
e.g., the load resistance tied to the collector faces an upper limit for a given supply voltage
(Example 4.7); (2) establish a collector current that yields the required values for the small-
signal parameters gm, rO, and rπ . The analysis of amplifiers in the next chapter exercises
these ideas extensively.

Finally, we should remark that the small-signal model of Fig. 4.31(b) does not reflect
the high-frequency limitations of the transistor. For example, the base-emitter and base-
collector junctions exhibit a depletion-region capacitance that impacts the speed. These
properties are studied in Chapter 11.
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Figure 4.32 Summary of concepts studied thus far.

4.5 OPERATION OF BIPOLAR TRANSISTOR
IN SATURATION MODE

As mentioned in the previous section, it is desirable to operate bipolar devices in the
forward active region, where they act as voltage-controlled current sources. In this section,
we study the behavior of the device outside this region and the resulting difficulties.

Let us set VBE to a typical value, e.g., 750 mV, and vary the collector voltage
from a high level to a low level [Fig. 4.33(a)]. As VCE approaches VBE, and VBC

goes from a negative value toward zero, the base-collector junction experiences less
reverse bias. For VCE = VBE, the junction sustains a zero voltage difference, but its
depletion region still absorbs most of the electrons injected by the emitter into the
base. But what happens if VCE < VBE, i.e., VBC > 0 and the B-C junction is forward
biased? We say the transistor enters the “saturation region.” Suppose VCE = 550 mV
and hence VBC = +200 mV. We know from Chapter 2 that a typical diode sustaining
200 mV of forward bias carries an extremely small current.1 Thus, even in this case the

1About nine orders of magnitude less than one sustaining 750 mV: (750 mV − 200 mV)/
(60 mV/dec) ≈ 9.2.
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Figure 4.33 (a) Bipolar transistor with forward-biased base-collector junction,

(b) flow of holes to collector.

transistor continues to operate as in the active mode, and we say the device is in “soft
saturation.”

If the collector voltage drops further, the B-C junction experiences greater forward
bias, carrying a significant current [Fig. 4.33(b)]. Consequently, a large number of holes
must be supplied to the base terminal—as if β is reduced. In other words, heavy saturation
leads to a sharp rise in the base current and hence a rapid fall in β.

Example

4.15
A bipolar transistor is biased with VBE = 750 mV and has a nominal β of 100. How much
B-C forward bias can the device tolerate if β must not degrade by more than 10%? For
simplicity, assume base-collector and base-emitter junctions have identical structures
and doping levels.

Solution If the base-collector junction is forward-biased so much that it carries a current equal to
one-tenth of the nominal base current, IB, then the β degrades by 10%. Since IB = IC /100,
the B-C junction must carry no more than IC /1000. We therefore ask, what B-C voltage
results in a current of IC /1000 if VBE = 750 mV gives a collector current of IC ? Assuming
identical B-E and B-C junctions, we have

VBE − VBC = VT ln
IC
IS

− VT ln
IC /1000

IS
(4.95)

= VT ln 1000 (4.96)

≈ 180 mV. (4.97)

That is, VBC = 570 mV.

Exercise Repeat the above example if VBE = 800 mV.

It is instructive to study the transistor large-signal model and I-V characteristics in
the saturation region. We construct the model as shown in Fig. 4.34(a), including the
base-collector diode. Note that the net collector current decreases as the device enters
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Figure 4.34 (a) Model of bipolar transistor including saturation effects, (b) case of open collector

terminal.

saturation because part of the controlled current IS1 exp(VBE/VT) is provided by the B-C
diode and need not flow from the collector terminal. In fact, as illustrated in Fig. 4.34(b),
if the collector is left open, then DBC is forward-biased so much that its current becomes
equal to the controlled current.

The above observations lead to the IC -VCE characteristics depicted in Fig. 4.35, where
IC begins to fall for VCE less than V1, about a few hundred millivolts. The term “saturation”
is used because increasing the base current in this region of operation leads to little change
in the collector current.

VCE

I C

V1

Saturation

Forward
Active Region

Figure 4.35 Transistor I/V characteristics in different regions of operation.

In addition to a drop in β, the speed of bipolar transistors also degrades in saturation
(Chapter 11). Thus, electronic circuits rarely allow operation of bipolar devices in this
mode. As a rule of thumb, we permit soft saturation with VBC < 400 mV because the
current in the B-C junction is negligible, provided that various tolerances in the component
values do not drive the device into deep saturation.

It is important to recognize that the transistor simply draws a current from any com-
ponent tied to its collector, e.g., a resistor. Thus, it is the external component that defines
the collector voltage and hence the region of operation.
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Example

4.16
For the circuit of Fig. 4.36, determine the relationship between RC and VCC that guaran-
tees operation in soft saturation or active region.

Q1

R

I C

C

VBE

VCC

VCC

RC

VBE  400 mV

Acceptable
Region

(a) (b)

Figure 4.36 (a) Simple stage, (b) acceptable range of VCC and RC .

Solution In soft saturation, the collector current is still equal to IS exp(VBE/VT). The collector
voltage must not fall below the base voltage by more than 400 mV:

VCC − RC IC ≥ VBE − 400 mV. (4.98)

Thus,

VCC ≥ IC RC + (VBE − 400 mV). (4.99)

For a given value of RC , VCC must be sufficiently large so that VCC − IC RC still maintains
a reasonable collector voltage.

Exercise Determine the maximum tolerable value of RC .

In the deep saturation region, the collector-emitter voltage approaches a con-
stant value called VCE,sat (about 200 mV). Under this condition, the transistor bears
no resemblance to a controlled current source and can be modeled as shown in
Fig. 4.37.(The battery tied between C and E indicates that VCE is relatively constant in deep
saturation.)

800 mV 200 mV

B

E

C

Figure 4.37 Transistor model in deep saturation.

4.6 THE PNP TRANSISTOR

We have thus far studied the structure and properties of the npn transistor, i.e., with the
emitter and collector made of n-type materials and the base made of a p-type material.
We may naturally wonder if the dopant polarities can be inverted in the three regions,
forming a “pnp” device. More importantly, we may wonder why such a device would be
useful.
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4.6.1 Structure and Operation

Figure 4.38(a) shows the structure of a pnp transistor, emphasizing that the emitter is heav-
ily doped. As with the npn counterpart, operation in the active region requires forward-
biasing the base-emitter junction and reverse-biasing the collector junction. Thus, VBE < 0
and VBC > 0. Under this condition, majority carriers in the emitter (holes) are injected
into the base and swept away into the collector. Also, a linear profile of holes is formed
in the base region to allow diffusion. A small number of base majority carriers (electrons)
are injected into the emitter or recombined with the holes in the base region, thus creating
the base current. Figure 4.38(b) illustrates the flow of the carriers. All of the operation
principles and equations described for npn transistors apply to pnp devices as well.
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+
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+
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Figure 4.38 (a) Structure of pnp transistor, (b) current flow in pnp transistor, (c) proper biasing,

(d) more intuitive view of (c).

Figure 4.38(c) depicts the symbol of the pnp transistor along with constant voltage
sources that bias the device in the active region. In contrast to the biasing of the npn
transistor in Fig. 4.6, here the base and collector voltages are lower than the emitter voltage.
Following our convention of placing more positive nodes on the top of the page, we redraw
the circuit as in Fig. 4.38(d) to emphasize VEB > 0 and VBC > 0 and to illustrate the actual
direction of current flow into each terminal.

4.6.2 Large-Signal Model

The current and voltage polarities in npn and pnp transistors can be confusing. We address
this issue by making the following observations. (1) The (conventional) current always flows
from a positive supply (i.e., top of the page) toward a lower potential (i.e., bottom of the
page). Figure 4.39(a) shows two branches employing npn and pnp transistors, illustrating
that the (conventional) current flows from collector to emitter in npn devices and from
emitter to collector in pnp counterparts. Since the base current must be included in the
emitter current, we note that IB1 and IC1 add up to IE1, whereas IE2 “loses” IB2 before
emerging as IC2. (2) The distinction between active and saturation regions is based on the
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Figure 4.39 (a) Voltage and current polarities in npn and pnp transistors, (b) illustration of active

and saturation regions.

B-C junction bias. The different cases are summarized in Fig. 4.39(b), where the relative
position of the base and collector nodes signifies their potential difference. We note that
an npn transistor is in the active mode if the collector (voltage) is not lower than the base
(voltage). For the pnp device, on the other hand, the collector must not be higher than the
base. (3) The npn current equations (4.23)–(4.25) must be modified as follows for the pnp
device:

IC = IS exp
VEB

VT
(4.100)

IB = IS

β
exp

VEB

VT
(4.101)

IE = β + 1

β
IS exp

VEB

VT
, (4.102)

where the current directions are defined in Fig. 4.40. The only difference between
the npn and pnp equations relates to the base-emitter voltage that appears in the

I S exp
VT

V

B

E

I S exp
VT

V

 β
VEB

C

EB

I E

I CI B

EB

Figure 4.40 Large-signal model of pnp transistor.
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exponent, an expected result because VBE < 0 for pnp devices and must be changed to
VEB to create a large exponential term. Also, the Early effect can be included as

IC =
(

IS exp
VEB

VT

)(
1 + VEC

VA

)
. (4.103)

Example

4.17
In the circuit shown in Fig. 4.41, determine the terminal currents of Q1 and verify oper-
ation in the forward active region. Assume IS = 2 × 10−16 A and β = 50, but VA = ∞.

Q1 VCC

R  ΩC 200
1.2 V

2 V
X

Figure 4.41 Simple stage using a pnp transistor.

Solution We have VEB = 2 V − 1.2 V = 0.8 V and hence

IC = IS exp
VEB

VT
(4.104)

= 4.61 mA. (4.105)

It follows that

IB = 92.2 μA (4.106)

IE = 4.70 mA. (4.107)

We must now compute the collector voltage and hence the bias across the B-C junction.
Since RC carries IC ,

VX = RC IC (4.108)

= 0.922 V, (4.109)

which is lower than the base voltage. Invoking the illustration in Fig. 4.39(b), we conclude
that Q1 operates in the active mode and the use of equations (4.100)–(4.102) is justified.

Exercise What is the maximum value of RC if the transistor must remain in soft saturation?

We should mention that some books assume all of the transistor terminal currents
flow into the device, thus requiring that the right-hand side of Eqs. (4.100) and (4.101) be
multiplied by a negative sign. We nonetheless continue with our notation as it reflects the
actual direction of currents and proves more efficient in the analysis of circuits containing
many npn and pnp transistors.
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Example

4.18
In the circuit of Fig. 4.42,Vin represents a signal generated by a microphone. Determine
Vout for Vin = 0 and Vin = +5 mV if IS = 1.5 × 10−16 A.

Q1

VCC

R  ΩC

Vin

outV
I C

3001.7 V

2.5 V

Figure 4.42 PNP stage with bias and small-signal voltages.

Solution For Vin = 0, VEB = +800 mV and we have

IC |Vin=0 = IS exp
VEB

VT
(4.110)

= 3.46 mA, (4.111)

and hence

Vout = 1.038 V. (4.112)

If Vin increases to +5 mV, VEB = +795 mV and

IC |Vin=+5 mV = 2.85 mA, (4.113)

yielding

Vout = 0.856 V. (4.114)

Note that as the base voltage rises, the collector voltage falls, a behavior similar to that
of the npn counterparts in Fig. 4.25. Since a 5-mV change in Vin gives a 182-mV change
in Vout, the voltage gain is equal to 36.4. These results are more readily obtained through
the use of the small-signal model.

Exercise Determine Vout if Vin = −5 mV.

4.6.3 Small-Signal Model

Since the small-signal model represents changes in the voltages and currents, we expect
npn and pnp transistors to have similar models. Depicted in Fig. 4.43(a), the small-signal
model of the pnp transistor is indeed identical to that of the npn device. Following the
convention in Fig. 4.38(d), we sometimes draw the model as shown in Fig. 4.43(b).

The reader may notice that the terminal currents in the small-signal model bear an
opposite direction with respect to those in the large-signal model of Fig. 4.40.

The small-signal model of pnp transistors may cause confusion, especially if drawn as
in Fig. 4.43(b). In analogy with npn transistors, one may automatically assume that the
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Figure 4.43 (a) Small-signal model of pnp transistor, (b) more intuitive view of (a).

“top” terminal is the collector and hence the model in Fig. 4.43(b) is not identical to that
in Fig. 4.31(b). We caution the reader about this confusion. A few examples prove helpful
here.

Example

4.19
If the collector and base of a bipolar transistor are tied together, a two-terminal de-
vice results. Determine the small-signal impedance of the devices shown in Fig. 4.44(a).
Assume VA = ∞.

(a) (b)

Q1

Q2
g

m πv  πv πrv

Xi

X

Figure 4.44

Solution We replace the bipolar transistorQ1 with its small-signal model and apply a small-signal
voltage across the device [Fig. 4.44(b)]. Noting that rpi carries a current equal to vX/rπ ,
we write a KCL at the input node:

vX

rπ

+ gmvπ = iX . (4.115)

Since gmrπ = β � 1, we have

vX

iX
= 1

gm + r−1
π

(4.116)

≈ 1

gm
(4.117)

= VT

IC
. (4.118)

Interestingly, with a bias current of IC , the device exhibits an impedance similar to that
of a diode carrying the same bias current. We call this structure a “diode-connected
transistor.” The same results apply to the pnp configuration in Fig. 4.44(a).

Exercise What is the impedance of a diode-connected device operating at a current of 1 mA?
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Example

4.20
Draw the small-signal equivalent circuits for the topologies shown in Figs. 4.45(a)–(c)
and compare the results.
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Figure 4.45 (a) Simple stage using an npn transistor, (b) simple stage using a pnp transistor,

(c) another pnp stage, (d) small-signal equivalent of (a), (e) small-signal equivalent of (b),

(f) small-signal equivalent of (f).

Solution As illustrated in Figs. 4.45(d)–(f), we replace each transistor with its small-signal model
and ground the supply voltage. It is seen that all three topologies reduce to the same
equivalent circuit because VCC is grounded in the small-signal representation.

Exercise Repeat the preceding example if a resistor is placed between the collector and base of
each transistor.
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Example

4.21
Draw the small-signal equivalent circuit for the amplifier shown in Fig. 4.46(a).

Q
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O1m1 11 πr 1

(a) (b)

Figure 4.46 (a) Stage using npn and pnp devices, (b) small-signal equivalent of (a).

Solution Figure 4.46(b) depicts the equivalent circuit. Note that rO1, RC1, and rπ2 appear in parallel.
Such observations simplify the analysis (Chapter 5).

Exercise Show that the circuit depicted in Fig. 4.47 has the same small-signal model as the above
amplifier.

Q1

R

VCC

inv

C1

Q2

RD

outv

Figure 4.47 Stage using two npn devices.

P R O B L E M S

In the following problems, unless otherwise
stated, assume the bipolar transistors operate
in the active mode.

4.1. Suppose the voltage-dependent current
source of Fig. 4.1(a) is constructed with
K = 20 mA/V. What value of load resis-
tance in Fig. 4.1(b) is necessary to achieve a
voltage gain of 15?

4.2. A resistance of RS is placed in series with the
input voltage source in Fig. 4.2. Determine
Vout/Vin.

4.3. Due to some fabrication errors, the cross-
sectional area of emitter has doubled. How
does the collector current change?

4.4. In the circuit of Fig. 4.48, IS1 = IS2 =
5 × 10−5 A.

(a) Calculate the value of IX if VB = 0.7 V.

(b) Find the value of IS to get IY = 3.5 mA.

V

Q1

I X

Q

I

Q2 3

Y

B

Figure 4.48

4.5. In the circuit of Fig 4.49, it is required that
the collector current of Q2 is to be twice
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that of Q1 if VBE1 − VBE2 = 0 . Determine
the ratio of base widths of two transistors, if
other device parameters are identical.

V

Q1

I C1

BE1 V

Q

I

BE2

C2

2

Figure 4.49

4.6. Consider the circuit of Fig. 4.50.
(a) If VB = 0.6 V and I = 3.5 mA, deter-

mine IS1 and IS2 such that IS1 = 2IS2.

(b) Find the value of RC which places the
transistors at the edge of the active
mode.

V

Q 1

I X

Q 2

B

VCC
R C = 3 V 

Figure 4.50

4.7. Consider the circuit of Fig. 4.51. Calculate
VX if IS = 6 × 10−15 A.

Q 1 VCC = 2 V 

1 kΩ

1 kΩ
X1.5 V

Figure 4.51

4.8. In the circuit of Fig 4.52 determine the
value of RC and the voltage at VB, if IS =
5 × 10−16 A.

Q 1

VCC

R C

VB

1 kΩ 
= 2 V 

Figure 4.52

4.9. Consider the circuit of Fig 4.53. Calculate
the value of VCC that places Q1 at the edge
of the active region. Assume IS = 5 × 10−16

A.

Q 1

VCC = 2 V 

VB = 0.75 V 

500 ΩR C

Figure 4.53

4.10. An integrated circuit requires two cur-
rent sources: I1 = 1 mA and I2 = 1.5 mA.
Assuming that only integer multiples of a unit
bipolar transistor having IS = 3 × 10−16 A
can be placed in parallel, and only a single
voltage source, VB, is available (Fig. 4.54),
construct the required circuit with minimum
number of unit transistors.

V

I

B

1 I 2

Unit
Transistor

Figure 4.54

4.11. Consider the circuit of Fig 4.55,
assuming β = 100 and IS = 6 × 10−16 A.
If RB = 10 k�, determine VB such that
IC = 1 mA.

V

Q 1

I
R1

B R E

C

1 kΩ 

Figure 4.55

4.12. In the circuit of Fig 4.55, if VB = 2 V and
RB = 10 k�, calculate the collector current.
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4.13. In the circuit depicted in Fig 4.56,
if IS1 = 2IS2 = 5 × 10−16 A, β1 = β2 = 100
and R1 = 10 k�, compute VB such that
IX = 1 mA and IY = 2 mA.

V

Q 1

I
R 1

B

Q

I

2

X Y

Figure 4.56

4.14. In the circuit of Fig 4.56, if IS1 = 3 × 10−16 A
and IS2 = 5 × 10−16 A, β1 = β2 = 100
and R1 = 5 k�, VB = 800 mV, calculate IX

and IY .

4.15. The base-emitter junction of a transistor is
driven by a constant voltage. Suppose a volt-
age source is applied between the base and
collector. If the device operates in the for-
ward active region, what changes will take
place in IB and IC?

4.16. In a bipolar device VBE changes by ±10 mV.
Calculate the change in gm, if the device is
biased at IC = 2 mA.

4.17. A transistor gives a transconductance
of 1/13 � with base-emitter voltage of
800 mV. Calculate the value of IS of the
transistor.

4.18. Determine the operating point and
the small-signal model of Q1 for each
of the circuits shown in Fig. 4.57.
Assume IS = 8 × 10−16 A, β = 100, and
VA = ∞.

4.19. Determine the operating point and the
small-signal model of Q1 for each of

the circuits shown in Fig. 4.58. Assume
IS = 8 × 10−16 A, β = 100, and VA = ∞.

Q1

VCC

 Ω

= 2 V

1 k

μ10 A

Q1

VCC

 Ω

= 2 V

1 k

Q1

VCC= 2 V

1 mA Q1

1 mA
VCC= 2 V

(c) (d)

(a) (b)

Figure 4.58

4.20. A fictitious bipolar transistor exhibits an
IC -VBE characteristic given by

IC = IS exp
VBE

nVT
, (4.119)

where n is a constant coefficient. Construct
the small-signal model of the device if IC is
still equal to βIB.

4.21. A* fictitious bipolar transistor exhibits the
following relationship between its base and
collector currents:

IC = aI2
B, (4.120)

where a is a constant coefficient. Construct
the small-signal model of the device if IC is
still equal to IS exp(VBE/VT).

4.22. The collector voltage of a bipolar transistor
varies from 1 V to 4 V while the base-emitter
voltage remains constant. What Early volt-
age is necessary to ensure that the collector
current changes by less than 2%?

Q1

VCC

RC

0.8 V

 Ω

Q1

VCC

RC  Ω1 k

μ10 A

Q1

VCC

RC  Ω
= 2.5  V

1 k
= 2.5 V= 2.5 V

(a) (b) (c)

50

Figure 4.57
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4.23. In the circuit of Fig 4.59, IS = 6 × 10−15 A.
Determine the value of collector current
and VX for (a) VA = ∞ and (b) VA = 4 V.

Q 1

VCC

RC
= 2.5 V 

1 kΩ

X

VB = 0.8 V

Figure 4.59

4.24. In the circuit of Fig. 4.60, VCC changes from
2.5 to 3 V. Assuming IS = 1 × 10−17 A and
VA = 5 V, determine the change in the col-
lector current of Q1.

Q1

VCC

RC

0.8 V

 Ω2 k

Figure 4.60

4.25. In the circuit of Fig. 4.61, n identi-
cal transistors are placed in parallel. If
IS = 5 × 10−16 A and VA = 8 V for each
device, construct the small-signal model of
the equivalent transistor.

VB= 0.8 V

Figure 4.61

4.26. A bipolar current source is to be designed
for a specific output current. If VA = 2 V
and output resistance is greater than 10 k�,
find the output current.

4.27. Consider* the circuit shown in Fig. 4.62,
where I1 is a 1-mA ideal current source and
IS = 3 × 10−17 A.

Q1

VCC= 2 V

VB

I 1

Figure 4.62

(a) Assuming VA = ∞, determine VB such
that IC = 1 mA.

(b) If VA = 5 V, determine VB such that
IC = 1 mA for a collector-emitter volt-
age of 1.5 V.

4.28. Consider the circuit shown in Fig. 4.63,
where IS = 6 × 10−16 A and VA = ∞.
(a) Determine VB such that Q1 operates at

the edge of the active region.

(b) If we allow soft saturation, e.g., a
collector-base forward bias of 200 mV,
by how much can VB increase?

Q1

VCC

RC  Ω2 k

VB

= 2.5 V

Figure 4.63

4.29. For the circuit depicted in Fig. 4.64, cal-
culate the value of collector-base bias, if
IS = 7 × 10−16A and VA = ∞.

Q 1

VCC

R C 1 kΩ 

Figure 4.64

4.30. Consider the circuit shown in Fig. 4.65,
where IS = 5 × 10−16 A and VA = ∞. If VB

is chosen to forward-bias the base-collector
junction by 200 mV, what is the collector
current?
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Q1 VCC

 Ω1 k

= 2.5 V

VB

Figure 4.65

4.31. Assume* IS = 2 × 10−17 A, VA = ∞, and
β = 100 in Fig. 4.66. What is the maximum
value of RC if the collector-base must expe-
rience a forward bias of less than 200 mV?

Q1

VCC

 Ω RC
= 2.5 V

100 k RB

Figure 4.66

4.32. In the circuit of Fig. 4.67, β = 100 and
VA = ∞. Calculate the value of IS such
that the base-collector junction is forward-
biased by 200 mV.

Q1

VCC

RC  Ω
= 2.5 V

R  Ωp 1 k

9 k

Figure 4.67

4.33. If IS1 = 3 IS2 = 6 × 10−16 A, calculate the
value of VB in Fig. 4.68, required for get-
ting IX = 10 mA.

Q 1
VCC 2 V 

Q 2

0.82 V 

I X

VB

Figure 4.68

4.34. In the circuit of Fig. 4.69, calculate the value
of IC, if β = 100 and IS = 6 × 10−16 A.

Q 1
VCC

I
R B

C

1.5 V 

23 kΩ

Figure 4.69

4.35. Determine the collector current of Q1 in
Fig. 4.70 if IS = 2 × 10−17 A and β = 100.

Q1
VCC 2 V

1.7 V I

R

 Ω50 k

B

C

Figure 4.70

4.36. Determine the value of IS in Fig. 4.71 such
that Q1 operates at the edge of the active
mode.

Q1 VCC

R  ΩC

2 V

2 k
VB= 1.2 V

Figure 4.71

4.37. What is the value of β that places Q1 at
the edge of the active mode in Fig. 4.72?
Assume IS = 8 × 10−16 A.

Q1
VCC

R

 Ω

B 1.5 V

100 k

 Ω1 k

Figure 4.72

4.38. Calculate the collector current of Q1 in
Fig 4.73, if IS = 3 × 10−17 A.

Q 1

VCC

1 kΩ 

2.5 V 

1.8 V

Figure 4.73

4.39. Determine* the operating point and the
small-signal model of Q1 for each of
the circuits shown in Fig. 4.74. Assume
IS = 3 × 10−17 A, β = 100, and VA = ∞.
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Q1
VCC

 Ω1 k

1.7 V 2.5 V

Q1
VCC

 Ω

2.5 V

500

μ A20

Q1
VCC

 Ω

2.5 V

2 k

(c)(a) (b)

Figure 4.74

4.40. In the circuit of Fig. 4.75, IS = 5 × 10−17 A.
Calculate VX for (a) VA = ∞, and (b)
VA = 6 V.

Q1
VCC

 Ω

1.7 V 2.5 V

500

X

Figure 4.75

4.41. Determine* the operating point and the
small-signal model of Q1 for each of
the circuits shown in Fig. 4.76. Assume
IS = 3 × 10−17 A, β = 100, and VA = ∞.

μ A

(a)

Q1

VCC
 Ω

2.5 V
2 k

2

(b)

Q1

VCC
 Ω

2.5 V
5 k

(c)

Q1

VCC 2.5 V0.5 mA

Figure 4.76

4.42. A pnp current source must provide an out-
put current of 5 mA with an Early voltage
of 2 V. What is the output impedance?

4.43. Suppose* VA = 5 V in the circuit of Fig. 4.77.

Q1
VCC

 Ω

1.7 V 2.5 VX

3 k

Figure 4.77

(a) What value of IS places Q1 at the edge
of the active mode?

(b) How does the result in (a) change if
VA = ∞?

4.44. Consider* the circuit depicted in Fig. 4.78,
where IS = 6 × 10−16 A, VA = 5 V, and
I1 = 2 mA.

Q1
VCC 2.5 VX

I 1

VB

Figure 4.78

(a) What value of VB yields VX = 1 V?

(b) If VB changes from the value found in
(a) by 0.1 mV, what is the change in VX?

(c) Construct the small-signal model of the
transistor.

4.45. In the circuit in Fig 4.79, β = 100, and
VA = ∞.
(a) Determine the value of collector-base

forward bias if IS = 5 × 10−16 A and
VBE of 0.8 V.

(b) Calculate the transconductance of the
device.
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Q 1
VCCR B

4 kΩ 

2.5 V 

360 kΩ 

Figure 4.79

4.46. Determine** the region of operation of Q1

in each of the circuits shown in Fig. 4.80.

Assume IS = 5 × 10−16 A, β = 100,
VA = ∞.

4.47. Consider the circuit of Fig 4.81 where
IS1 = IS2 = 5 × 10−16A, IC2 = 0.5 mA, β1 =
100, β2 = 50, VA = ∞ , and RC = 500 �. If
Vin = 1.45 V, what is the value of VBE1 and
VBE2?

4.48. Repeat** Problem 4.47 for the circuit illus-
trated in Fig. 4.82.

Q1
VCC

R

RC

E

Q1
VCC

R

RC

ERB

Q1
VCC

 Ω

 Ω1 k

2.5 V 2.5 V

2.5 V

Q1
VCC

R

RC

E

2.5 V Q1

VCC 2.5 V0.5 mA

 Ω500

(c)

(d)

(a) (b)

(e)

300

Figure 4.80

Q 1 VCC = 2.5 V 
inV

Q 2

outV

RC

Figure 4.81

Q1

VCC= 2.5 V

inV Q

RC

outV

2

Figure 4.82

S P I C E P R O B L E M S

In the following problems, assume IS,npn =
5 × 10−16 A, βnpn = 100, VA,npn = 5 V, IS,pnp =
8 × 10−16 A, βpnp = 50, VA,pnp = 3.5 V.

4.1. Plot the input/output characteristic of the cir-
cuit shown in Fig. 4.83 for 0 < Vin < 2.5 V.
What value of Vin places the transistor at the
edge of saturation?
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Q1

VCC

RC  Ω
= 2.5 V

1 k

VB= 0.9 V

inV

outV

Figure 4.83

4.2. Repeat Problem 4.1 for the stage depicted
in Fig. 4.84. At what value of Vin does Q1

carry a collector current of 1 mA?

Q1

VCC

 Ω1 k

inV

outV

= 2.5 V

Figure 4.84

4.3. Plot IC1 and IC2 as a function of
Vin for the circuits shown in Fig. 4.85
for0 < Vin < 1.8 V. Explain the dramatic
difference between the two.

Q1

VCC= 2.5 V

inV

I C1 Q

VCC= 2.5 V

inV

I

Q

2

3

C2

(a) (b)

Figure 4.85



Chapter 5
Bipolar Amplifiers

With the physics and operation of bipolar transistors described in Chapter 4, we

now deal with amplifier circuits employing such devices. While the field of microelec-

tronics involves much more than amplifiers, our study of cellphones and digital cameras

in Chapter 1 indicates the extremely wide usage of amplification, motivating us to master

the analysis and design of such building blocks. This chapter proceeds as follows.

➤ ➤

General Concepts

• Input and Output

Impedances

• Biasing

• DC and Small–Signal

Analysis

Operating Point Analysis

• Simple Biasing

• Emitter Degeneration

• Self-Biasing

• Biasing of PNP Devices

Amplifier Topologies

• Common–Emitter

Stage

• Common–Base Stage

• Emitter Follower

Building the foundation for the remainder of this book, this chapter is quite long. Most

of the concepts introduced here are invoked again in Chapter 7 (MOS amplifiers). The

reader is therefore encouraged to take frequent breaks and absorb the material in small

doses.

5.1 GENERAL CONSIDERATIONS

Recall from Chapter 4 that a voltage-controlled current source along with a load resistor
can form an amplifier. In general, an amplifier produces an output (voltage or current) that
is a magnified version of the input (voltage or current). Since most electronic circuits both
sense and produce voltage quantities,1 our discussion primarily centers around “voltage
amplifiers” and the concept of “voltage gain,” vout/vin.

What other aspects of an amplifier’s performance are important? Three parameters
that readily come to mind are (1) power dissipation (e.g., because it determines the bat-
tery lifetime in a cellphone or a digital camera); (2) speed (e.g., some amplifiers in a cell-
phone or analog-to-digital converters in a digital camera must operate at high frequencies);

1Exceptions are described in Chapter 12.
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154 Chapter 5 Bipolar Amplifiers

(3) noise (e.g., the front-end amplifier in a cellphone or a digital camera processes small
signals and must introduce negligible noise of its own).

5.1.1 Input and Output Impedances

In addition to the above parameters, the input and output (I/O) impedances of an ampli-
fier play a critical role in its capability to interface with preceding and following stages.
To understand this concept, let us first determine the I/O impedances of an ideal
voltage amplifier. At the input, the circuit must operate as a voltmeter, i.e., sense a voltage
without disturbing (loading) the preceding stage. The ideal input impedance is therefore
infinite. At the output, the circuit must behave as a voltage source, i.e., deliver a cons-
tant signal level to any load impedance. Thus, the ideal output impedance is equal to
zero.

In reality, the I/O impedances of a voltage amplifier may considerably depart from the
ideal values, requiring attention to the interface with other stages. The following example
illustrates the issue.

Example

5.1
An amplifier with a voltage gain of 10 senses a signal generated by a microphone and
applies the amplified output to a speaker [Fig. 5.1(a)]. Assume the microphone can be
modeled with a voltage source having a 10-mV peak-to-peak signal and a series resistance
of 200 �. Also assume the speaker can be represented by an 8-� resistor.

Microphone Amplifier Speaker

A v = 10

v m

 Ω200

R m
10 mV  Ω8

R in
v m

 Ω200

R m
1v

v

Ramp

amp  Ω8RL outv

(c)

(a)

(b)

Figure 5.1 (a) Simple audio system, (b) signal loss due to amplifier input impedance,

(c) signal loss due to amplifier output impedance.
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(a) Determine the signal level sensed by the amplifier if the circuit has an input
impedance of 2 k� or 500 �.

(b) Determine the signal level delivered to the speaker if the circuit has an output
impedance of 10 � or 2 �.

Solution (a) Figure 5.1(b) shows the interface between the microphone and the amplifier. The
voltage sensed by the amplifier is therefore given by

v1 = Rin

Rin + Rm
vm. (5.1)

For Rin = 2 k�,

v1 = 0.91vm, (5.2)

only 9% less than the microphone signal level. On the other hand, for Rin =
500 �,

v1 = 0.71vm, (5.3)

i.e., nearly 30% loss. It is therefore desirable to maximize the input impedance in this
case.

(b) Drawing the interface between the amplifier and the speaker as in Fig. 5.1(c),
we have

vout = RL

RL + Ramp
vamp. (5.4)

For Ramp = 10 �,

vout = 0.44vamp, (5.5)

a substantial attenuation. For Ramp = 2 �,

vout = 0.8vamp. (5.6)

Thus, the output impedance of the amplifier must be minimized.

Exercise If the signal delivered to the speaker is equal to 0.2vm, find the ratio of Rm and RL.

The importance of I/O impedances encourages us to carefully prescribe the method
of measuring them. As with the impedance of two-terminal devices such as resistors and
capacitors, the input (output) impedance is measured between the input (output) nodes of
the circuit while all independent sources in the circuit are set to zero.2 Illustrated in Fig. 5.2,
the method involves applying a voltage source to the two nodes (also called “ports”)
of interest, measuring the resulting current, and defining vX/ iX as the impedance. Also
shown are arrows to denote “looking into” the input or output port and the corresponding
impedance.

The reader may wonder why the output port in Fig. 5.2(a) is left open whereas the
input port in Fig. 5.2(b) is shorted. Since a voltage amplifier is driven by a voltage source
during normal operation, and since all independent sources must be set to zero, the input

2Recall that a zero voltage source is replaced by a short and a zero current source by an open.
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v x

Xi

Input
Port

Rin

Port
Output

Short Xv

R

Xi

(a) (b)

out

Figure 5.2 Measurement of (a) input and (b) output impedances.

port in Fig. 5.2(b) must be shorted to represent a zero voltage source. That is, the procedure
for calculating the output impedance is identical to that used for obtaining the Thevenin
impedance of a circuit (Chapter 1). In Fig. 5.2(a), on the other hand, the output remains
open because it is not connected to any external sources.

Determining the transfer of signals from one stage to the next, the I/O impedances
are usually regarded as small-signal quantities—with the tacit assumption that the sig-
nal levels are indeed small. For example, the input impedance is obtained by apply-
ing a small change in the input voltage and measuring the resulting change in the in-
put current. The small-signal models of semiconductor devices therefore prove crucial
here.

Example

5.2
Assuming that the transistor operates in the forward active region, determine the input
impedance of the circuit shown in Fig. 5.3(a).

g
m πv  πv πrv

RC

Q1

R

VCC

C Xi

inv r OX

(a) (b)

Figure 5.3 (a) Simple amplifier stage, (b) small-signal model.

Solution Constructing the small-signal equivalent circuit depicted in Fig. 5.3(b), we note that the
input impedance is simply given by

vx

ix
= rπ . (5.7)

Since rπ = β/gm = βVT/IC , we conclude that a higher β or lower IC yield a higher input
impedance.

Exercise What happens if RC is doubled?
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in

Short

(a) (b)

R Rout

Figure 5.4 Concept of impedance seen at a node.

To simplify the notations and diagrams, we often refer to the impedance seen at a node
rather than between two nodes (i.e., at a port). As illustrated in Fig. 5.4, such a convention
simply assumes that the other node is the ground, i.e., the test voltage source is applied
between the node of interest and ground.

Example

5.3
Calculate the impedance seen looking into the collector of Q1 in Fig. 5.5(a).

g
m πv  πv πr

Q1inv r O

(a) (b)

Rout Rout

Figure 5.5 (a) Impedance seen at collector, (b) small-signal model.

Solution Setting the input voltage to zero and using the small-signal model in Fig. 5.5(b), we note
that vπ = 0, gmvπ = 0, and hence Rout = rO.

Exercise What happens if a resistance of value R1 is placed in series with the base?

Example

5.4
Calculate the impedance seen at the emitter ofQ1 in Fig. 5.6(a). Neglect the Early effect
for simplicity.

g
m πv  πv πr

Q1inv

Rout

VCC

Xv

Xi
 πv

 πr

(a) (b)

Figure 5.6 (a) Impedance seen at emitter, (b) small-signal model.
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Solution Setting the input voltage to zero and replacing VCC with ac ground, we arrive at the
small-signal circuit shown in Fig. 5.6(b). Interestingly, vπ = −vX and

gmvπ + vπ

rπ

= −iX . (5.8)

That is,

vX

iX
= 1

gm + 1

rπ

. (5.9)

Since rπ = β/gm � 1/gm, we have Rout ≈ 1/gm.

Exercise What happens if a resistance of value R1 is placed in series with the collector?

The above three examples provide three important rules that will be used throughout
this book (Fig. 5.7): Looking into the base, we see rπ if the emitter is (ac) grounded.
Looking into the collector, we see rO if the emitter is (ac) grounded. Looking into the
emitter, we see 1/gm if the base is (ac) grounded and the Early effect is neglected. It is
imperative that the reader master these rules and be able to apply them in more complex
circuits.3

 πr ac acac

r O

g m

1

VA =

ac

Figure 5.7 Summary of impedances seen at terminals of a transistor.

5.1.2 Biasing

Recall from Chapter 4 that a bipolar transistor operates as an amplifying device if it is bi-
ased in the active mode; that is, in the absence of signals, the environment surrounding the
device must ensure that the base-emitter and base-collector junctions are forward- and
reverse-biased, respectively. Moreover, as explained in Section 4.4, amplification prop-
erties of the transistor such as gm, rπ , and rO depend on the quiescent (bias) collector
current. Thus, the surrounding circuitry must also set (define) the device bias currents
properly.

5.1.3 DC and Small-Signal Analysis

The foregoing observations lead to a procedure for the analysis of amplifiers (and many
other circuits). First, we compute the operating (quiescent) conditions (terminal voltages
and currents) of each transistor in the absence of signals. Called the “dc analysis” or “bias

3While beyond the scope of this book, it can be shown that the impedance seen at the emitter is
approximately equal to 1/gm only if the collector is tied to a relatively low impedance.
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t

VBE Bias (dc)
Value

t

Bias (dc)
Value

I C

Figure 5.8 Bias and signal levels for a bipolar transistor.

analysis,” this step determines both the region of operation (active or saturation) and the
small-signal parameters of each device. Second, we perform “small-signal analysis,” i.e.,
study the response of the circuit to small signals and compute quantities such as the voltage
gain and I/O impedances. As an example, Fig. 5.8 illustrates the bias and signal components
of a voltage and a current.

It is important to bear in mind that small-signal analysis deals with only (small) changes
in voltages and currents in a circuit around their quiescent values. Thus, as mentioned in
Section 4.4.4, all constant sources, i.e., voltage and current sources that do not vary with
time, must be set to zero for small-signal analysis. For example, the supply voltage is
constant and, while establishing proper bias points, plays no role in the response to small
signals. We therefore ground all constant voltage sources4 and open all constant current
sources while constructing the small-signal equivalent circuit. From another point of view,
the two steps described above follow the superposition principle: first, we determine the
effect of constant voltages and currents while signal sources are set to zero, and second,
we analyze the response to signal sources while constant sources are set to zero. Figure 5.9
summarizes these concepts.

RC1

I

VBE

VCB

VCC

DC Analysis Small-Signal Analysis

Short

Open

C1 I C2
inv outv

Figure 5.9 Steps in a general circuit analysis.

We should remark that the design of amplifiers follows a similar procedure. First, the
circuitry around the transistor is designed to establish proper bias conditions and hence
the necessary small-signal parameters. Second, the small-signal behavior of the circuit is
studied to verify the required performance. Some iteration between the two steps may
often be necessary so as to converge toward the desired behavior.

How do we differentiate between small-signal and large-signal operations? In other
words, under what conditions can we represent the devices with their small-signal models?

4We say all constant voltage sources are replaced by an “ac ground.”
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If the signal perturbs the bias point of the device only negligibly, we say the circuit operates
in the small-signal regime. In Fig. 5.8, for example, the change in IC due to the signal must
remain small. This criterion is justified because the amplifying properties of the transistor
such as gm and rπ are considered constant in small-signal analysis even though they in fact
vary as the signal perturbs IC . That is, a linear representation of the transistor holds only
if the small-signal parameters themselves vary negligibly. The definition of “negligibly”
depends somewhat on the circuit and the application, but as a rule of thumb, we consider
10% variation in the collector current as the upper bound for small-signal operation.

In drawing circuit diagrams hereafter, we will employ some simplified notations and
symbols. Illustrated in Fig. 5.10 is an example where the battery serving as the supply
voltage is replaced with a horizontal bar labeled VCC.5 Also, the input voltage source is
simplified to one node called Vin, with the understanding that the other node is ground.

Q1

R

VCC

C

in

Q1

RC VCC

in

out

out

V
V

V
V

Figure 5.10 Notation for supply voltage.

In this chapter, we begin with the DC analysis and design of bipolar stages, developing
skills to determine or create bias conditions. This phase of our study requires no knowledge
of signals and hence the input and output ports of the circuit. Next, we introduce various
amplifier topologies and examine their small-signal behavior.

5.2 OPERATING POINT ANALYSIS AND DESIGN

It is instructive to begin our treatment of operating points with an example.

Example

5.5
A student familiar with bipolar devices constructs the circuit shown in Fig. 5.11 and
attempts to amplify the signal produced by a microphone. If IS = 6 × 10−16 A and the
peak value of the microphone signal is 20 mV, determine the peak value of the output
signal.

Q1

R

VCC

C

in

 Ω1 k

outV

V

Figure 5.11 Amplifier driven directly by a microphone.

5The subscript CC indicates supply voltage feeding the collector.
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Solution Unfortunately, the student has forgotten to bias the transistor. (The microphone does
not produce a dc output.) If Vin (= VBE) reaches 20 mV, then

�IC = IS exp
�VBE

VT
(5.10)

= 1.29 × 10−15 A. (5.11)

This change in the collector current yields a change in the output voltage equal to

RC �IC = 1.29 × 10−12 V. (5.12)

The circuit generates virtually no output because the bias current (in the absence of the
microphone signal) is zero and so is the transconductance.

Exercise Repeat the above example if a constant voltage of 0.65 V is placed in series with the
microphone.

As mentioned in Section 5.1.2, biasing seeks to fulfill two objectives: ensure operation
in the forward active region, and set the collector current to the value required in the
application. Let us return to the above example for a moment.

Example

5.6
Having realized the bias problem, the student in Example 5.5 modifies the circuit as
shown in Fig. 5.12, connecting the base to VCC to allow dc biasing for the base-emitter
junction. Explain why the student needs to learn more about biasing.

Q1

R

VCC

C  Ω1 k

outV

= 2.5 V

Figure 5.12 Amplifier with base tied to VCC.

Solution The fundamental issue here is that the signal generated by the microphone is shorted to
VCC. Acting as an ideal voltage source, VCC maintains the base voltage at a constant value,
prohibiting any change introduced by the microphone. Since VBE remains constant, so
does Vout, leading to no amplification.

Another important issue relates to the value of VBE: with VBE = VCC = 2.5 V, enor-
mous currents flow into the transistor.

Exercise Does the circuit operate better if a resistor is placed in series with the emitter of Q1?
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Q1

VCC

R

I C

Y

RB

I B

X

C

Figure 5.13 Use of base resistance for base current path.

5.2.1 Simple Biasing

Now consider the topology shown in Fig. 5.13, where the base is tied to VCC through
a relatively large resistor, RB, so as to forward-bias the base-emitter junction. Our
objective is to determine the terminal voltages and currents of Q1 and obtain the
conditions that ensure biasing in the active mode. How do we analyze this circuit?
One can replace Q1 with its large-signal model and apply KVL and KCL, but the
resulting nonlinear equation(s) yield little intuition. Instead, we recall that the base-
emitter voltage in most cases falls in the range of 700 to 800 mV and can be
considered relatively constant. Since the voltage drop across RB is equal to RBIB,
we have

RBIB + VBE = VCC (5.13)

and hence

IB = VCC − VBE

RB
. (5.14)

With the base current known, we write

IC = β
VCC − VBE

RB
, (5.15)

note that the voltage drop across RC is equal to RC IC , and hence obtain VCE as

VCE = VCC − RC IC (5.16)

= VCC − β
VCC − VBE

RB
RC . (5.17)

Calculation of VCE is necessary as it reveals whether the device operates in the active mode
or not. For example, to avoid saturation completely, we require the collector voltage to
remain above the base voltage:

VCC − β
VCC − VBE

RB
RC > VBE. (5.18)

The circuit parameters can therefore be chosen so as to guarantee this condition.
In summary, using the sequence IB → IC → VCE, we have computed the important

terminal currents and voltages of Q1. While not particularly interesting here, the emitter
current is simply equal to IC + IB.

The reader may wonder about the error in the above calculations due to the assumption
of a constant VBE in the range of 700 to 800 mV. An example clarifies this issue.
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Example

5.7
For the circuit shown in Fig. 5.14, determine the collector bias current. As-
sume β = 100 and IS = 10−17 A. Verify that Q1 operates in the forward active
region.

Solution

Q1

VCC

I C

Y

I B

X

= 2.5 V

 ΩRC 1 kRB Ω100 k

Figure 5.14 Simple biased stage.

Since IS is relatively small, we surmise that the base-emitter voltage required to carry
typical current level is relatively large. Thus, we use VBE = 800 mV as an initial guess
and write Eq. (5.14) as

IB = VCC − VBE

RB
(5.19)

≈ 17 μA. (5.20)

It follows that

IC = 1.7 mA. (5.21)

With this result for IC , we calculate a new value for VBE:

VBE = VT ln
IC

IS
(5.22)

= 852 mV, (5.23)

and iterate to obtain more accurate results. That is,

IB = VCC − VBE

RB
(5.24)

= 16.5 μA (5.25)

and hence

IC = 1.65 mA. (5.26)

Since the values given by (5.21) and (5.26) are quite close, we consider IC =
1.65 mA accurate enough and iterate no more.

Writing (5.16), we have

VCE = VCC − RC IC (5.27)

= 0.85 V, (5.28)

a value nearly equal to VBE. The transistor therefore operates near the edge of active
and saturation modes.

Exercise What value of RB provides a reverse bias of 200 mV across the base-collector junction?
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The biasing scheme of Fig. 5.13 merits a few remarks. First, the effect of VBE “un-
certainty” becomes more pronounced at low values of VCC because VCC − VBE deter-
mines the base current. Thus, in low-voltage design—an increasingly common paradigm in
modern electronic systems—the bias is more sensitive to VBE variations among transistors
or with temperature. Second, we recognize from Eq. (5.15) that IC heavily depends on β,
a parameter that may change considerably. In the above example, if β increases from 100
to 120, then IC rises to 1.98 mA and VCE falls to 0.52, driving the transistor toward heavy
saturation. For these reasons, the topology of Fig. 5.13 is rarely used in practice.

5.2.2 Resistive Divider Biasing

In order to suppress the dependence of IC upon β, we return to the fundamental rela-
tionship IC = IS exp(VBE/VT) and postulate that IC must be set by applying a well-defined
VBE. Figure 5.15 depicts an example, where R1 and R2 act as a voltage divider, providing a
base-emitter voltage equal to

VX = R2

R1 + R2

VCC, (5.29)

if the base current is negligible. Thus,

IC = IS exp

(
R2

R1 + R2

· VCC

VT

)
, (5.30)

a quantity independent of β. Nonetheless, the design must ensure that the base current
remains negligible.

Q1

VCC

R

I C

Y

R

X

C1

R2

Figure 5.15 Use of resistive divider to define VBE.

Example

5.8
Determine the collector current of Q1 in Fig. 5.16 if IS = 10−17 A and β = 100. Verify
that the base current is negligible and the transistor operates in the active mode.

Q1

VCC

I C

Y

X

= 2.5 V

 ΩRCR Ω 5 k17 k

R Ω 2

1

8 k

Figure 5.16 Example of biased stage.
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Solution Neglecting the base current of Q1, we have

VX = R2

R1 + R2

VCC (5.31)

= 800 mV. (5.32)

It follows that

IC = IS exp
VBE

VT
(5.33)

= 231 μA (5.34)

and

IB = 2.31 μA. (5.35)

Is the base current negligible? With which quantity should this value be compared?
Provided by the resistive divider, IB must be negligible with respect to the current flowing
through R1 and R2:

IB
?� VCC

R1 + R2

. (5.36)

This condition indeed holds in this example because VCC/(R1 + R2) =
100 μA ≈ 43IB.

We also note that

VCE = 1.345 V, (5.37)

and hence Q1 operates in the active region.

Exercise What is the maximum value of RC if Q1 must remain in soft saturation?

The analysis approach taken in the above example assumes a negligible base current,
requiring verification at the end. But what if the end result indicates that IB is not negligible?
We now analyze the circuit without this assumption. Let us replace the voltage divider
with a Thevenin equivalent (Fig. 5.17), noting that VThev is equal to the open-circuit output
voltage (VX when the amplifier is disconnected):

VThev = R2

R1 + R2

VCC. (5.38)

Moreover, RThev is given by the output resistance of the network if VCC is set to zero:

RThev = R1||R2. (5.39)

The simplified circuit yields:

VX = VThev − IBRThev (5.40)

and

IC = IS exp
VThev − IBRThev

VT
. (5.41)

This result along with IC = βIB forms the system of equations leading to the values of
IC and IB. As in the previous examples, iterations prove useful here, but the exponential
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R
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R

X
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VCC

R

I C
X
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VThev

I B

R1

R2

R1

R2
VCC VThev

Figure 5.17 Use of Thevenin equivalent to calculate bias.

dependence in Eq. (5.41) gives rise to wide fluctuations in the intermediate solutions. For
this reason, we rewrite Eq. (5.41) as

IB =
(

VThev − VT ln
IC

IS

)
· 1

RThev
, (5.42)

and begin with a guess for VBE = VT ln(IC /IS). The iteration then follows the sequence
VBE → IB → IC → VBE → · · ·.

Example

5.9
Calculate the collector current of Q1 in Fig. 5.18(a). Assume β = 100 and IS =
10−17 A.

Solution Constructing the equivalent circuit shown in Fig. 5.18(b), we note that

VThev = R2

R1 + R2

VCC (5.43)

= 800 mV (5.44)

and

RThev = R1||R2 (5.45)

= 54.4 k�. (5.46)

Q1

VCC

I C

Y

X

= 2.5 V

 ΩRCR Ω 5 k

R Ω 2

1170 k

80 k

Q1

VCC

R

I C
X

C

RThev

VThev

I BI B

Figure 5.18 (a) Stage with resistive divider bias, (b) stage with Thevenin equivalent for the

resistive divider and VCC.
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We begin the iteration with an initial guess VBE = 750 mV (because we know that
the voltage drop across RThev makes VBE less than VThev), thereby arriving at the base
current:

IB = VThev − VBE

RThev
(5.47)

= 0.919 μA. (5.48)

Thus, IC = βIB = 91.9 μA and

VBE = VT ln
IC

IS
(5.49)

= 776 mV. (5.50)

It follows that IB = 0.441 μA and hence IC = 44.1 μA, still a large fluctuation
with respect to the first value from above. Continuing the iteration, we ob-
tain VBE = 757 mV, IB = 0.79 μA and IC = 79.0 μA. After many iterations, VBE ≈
766 mV and IC = 63 μA.

Exercise How much can R2 be increased if Q1 must remain in soft saturation?

While proper choice of R1 and R2 in the topology of Fig. 5.15 makes the bias relatively
insensitive to β, the exponential dependence of IC upon the voltage generated by the
resistive divider still leads to substantial bias variations. For example, if R2 is 1% higher than
its nominal value, so is VX , thus multiplying the collector current by exp(0.01VBE/VT) ≈ 1.36
(for VBE = 800 mV). In other words, a 1% error in one resistor value introduces a 36%
error in the collector current. The circuit is therefore still of little practical value.

5.2.3 Biasing with Emitter Degeneration

A biasing configuration that alleviates the problem of sensitivity to β and VBE is shown
in Fig. 5.19. Here, resistor RE appears in series with the emitter, thereby lowering the
sensitivity to VBE. From an intuitive viewpoint, this occurs because RE exhibits a linear
(rather than exponential) I-V relationship. Thus, an error in VX due to inaccuracies in R1,
R2, or VCC is partly “absorbed” by RE, introducing a smaller error in VBE and hence IC .
Called “emitter degeneration,” the addition of RE in series with the emitter alters many
attributes of the circuit, as described later in this chapter.

Q1

VCC

R

I C

Y

R

X

C1

R2

R

I E

E

P

Figure 5.19 Addition of degeneration resistor to stabilize bias point.
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To understand the above property, let us determine the bias currents of the transis-
tor. Neglecting the base current, we have VX = VCCR2/(R1 + R2). Also, VP = VX − VBE,
yielding

IE = VP

RE
(5.51)

= 1

RE

(
VCC

R2

R1 + R2

− VBE

)
(5.52)

≈ IC , (5.53)

if β � 1. How can this result be made less sensitive to VX or VBE variations? If the voltage
drop across RE, i.e., the difference between VCCR2/(R1 + R2) and VBE, is large enough to
absorb and swamp such variations, then IE and IC remain relatively constant. An example
illustrates this point.

Example

5.10
Calculate the bias currents in the circuit of Fig. 5.20 and verify that Q1 operates in
the forward active region. Assume β = 100 and IS = 5 × 10−17 A. How much does the
collector current change if R2 is 1% higher than its nominal value?

Q1

VCC

Y

X

= 2.5 V

 ΩRCR Ω

R Ω 2

116 k

9 k

1 k

 ΩRE 100

P

Figure 5.20 Example of biased stage.

Solution We neglect the base current and write

VX = VCC
R2

R1 + R2

(5.54)

= 900 mV. (5.55)

Using VBE = 800 mV as an initial guess, we have

VP = VX − VBE (5.56)

= 100 mV, (5.57)

and hence

IE ≈ IC ≈ 1 mA. (5.58)
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With this result, we must reexamine the assumption of VBE = 800 mV. Since

VBE = VT ln
IC

IS
(5.59)

= 796 mV, (5.60)

we conclude that the initial guess is reasonable. Furthermore, Eq. (5.57) suggests that a
4-mV error in VBE leads to a 4% error in VP and hence IE, indicating a good
approximation.

Let us now determine if Q1 operates in the active mode. The collector voltage is
given by

VY = VCC − IC RC (5.61)

= 1.5 V. (5.62)

With the base voltage at 0.9 V, the device is indeed in the active region.
Is the assumption of negligible base current valid? With IC ≈ 1 mA, IB ≈

10 μA whereas the current flowing through R1 and R2 is equal to 100 μA. The as-
sumption is therefore reasonable. For greater accuracy, an iterative procedure similar to
that in Example 5.9 can be followed.

If R2 is 1.6% higher than its nominal value, then Eq. (5.54) indicates that VX rises to
approximately 909 mV. We may assume that the 9-mV change directly appears across
RE, raising the emitter current by 9 mV/100 � = 90 μA. From Eq. (5.56), we note that
this assumption is equivalent to considering VBE constant, which is reasonable because
the emitter and collector currents have changed by only 9%.

Exercise What value of R2 places Q1 at the edge of saturation?

The bias topology of Fig. 5.19 is used extensively in discrete circuits and occasionally
in integrated circuits. Illustrated in Fig. 5.21, two rules are typically followed: (1) I1 � IB

to lower sensitivity to β, and (2) VRE must be large enough (100 mV to several hundred
millivolts) to suppress the effect of uncertainties in VX and VBE.

Q1

VCC

R

I C

Y

R

X

C1

R2

I B

I 1

I 1 >>I B

Small Enough to
Avoid Saturation

RE VRE VX>> Variations in and VBE

Figure 5.21 Summary of robust bias conditions.

Design Procedure It is possible to prescribe a design procedure for the bias topology
of Fig. 5.21 that serves most applications: (1) decide on a collector bias current that yields
proper small-signal parameters such as gm and rπ ; (2) based on the expected variations of
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R1, R2, and VBE, choose a value for VRE ≈ IC RE, e.g., 200 mV; (3) calculate VX = VBE + IC RE

with VBE = VT ln(IC /IS); (4) choose R1 and R2 so as to provide the necessary value of VX

and establish I1 � IB. Determined by small-signal gain requirements, the value of RC is
bounded by a maximum that places Q1 at the edge of saturation. The following example
illustrates these concepts.

Example

5.11
Design the circuit of Fig. 5.21 so as to provide a transconductance of 1/(52 �) for Q1.
Assume VCC = 2.5 V, β = 100, and IS = 5 × 10−17 A. What is the maximum tolerable
value of RC ?

Solution A gm of (52 �)
−1

translates to a collector current of 0.5 mA and a VBE of
778 mV. Assuming REIC = 200 mV, we obtain RE = 400 �. To establish VX =
VBE + REIC = 978 mV, we must have

R2

R1 + R2

VCC = VBE + REIC , (5.63)

where the base current is neglected. For the base current IB = 5 μA to be negligible,

VCC

R1 + R2

� IB, (5.64)

e.g., by a factor of 10. Thus, R1 + R2 = 50 k�, which in conjunction with Eq. (5.63) yields

R1 = 30.45 k� (5.65)

R2 = 19.55 k�. (5.66)

How large can RC be? Since the collector voltage is equal to VCC − RC IC , we pose the
following constraint to ensure active mode operation:

VCC − RC IC >VX ; (5.67)

that is,

RC IC < 1.522 V. (5.68)

Consequently,

RC < 3.044 k�. (5.69)

If RC exceeds this value, the collector voltage falls below the base voltage. As men-
tioned in Chapter 4, the transistor can tolerate soft saturation, i.e., up to about 400 mV
of base-collector forward bias. Thus, in low-voltage applications, we may allow
VY ≈ VX − 400 mV and hence a greater value for RC .

Exercise Repeat the above example if the power budget is only 1 mW and the transconductance of
Q1 is not given.



5.2 Operating Point Analysis and Design 171

The two rules depicted in Fig. 5.21 to lower sensitivities do impose some trade-offs.
Specifically, an overly conservative design faces the following issues: (1) if we wish I1 to
be much much greater than IB, then R1 + R2 and hence R1 and R2 are quite small, leading
to a low input impedance; (2) if we choose a very large VRE, then VX ( = VBE + VRE) must
be high, thereby limiting the minimum value of the collector voltage to avoid saturation.
Let us return to the above example and study these issues.

Example

5.12
Repeat Example 5.11 but assuming VRE = 500 mV and I1 ≥ 100IB.

Solution The collector current and base-emitter voltage remain unchanged. The value of RE is
now given by 500 mV/0.5 mA = 1 k�. Also, VX = VBE + REIC = 1.278 V and Eq. (5.63)
still holds. We rewrite Eq. (5.64) as

VCC

R1 + R2

≥ 100IB, (5.70)

obtaining R1 + R2 = 5 k�. It follows that

R1 = 1.45 k� (5.71)

R2 = 3.55 k�. (5.72)

Since the base voltage has risen to 1.278 V, the collector voltage must exceed this value
to avoid saturation, leading to

RC <
VCC − VX

IC
(5.73)

< 1.044 k�. (5.74)

As seen in Section 5.3.1, the reduction in RC translates to a lower voltage gain. Also,
the much smaller values of R1 and R2 here than in Example 5.11 introduce a low input
impedance, loading the preceding stage. We compute the exact input impedance of this
circuit in Section 5.3.1.

Exercise Repeat the above example if VRE is limited to 100 mV.

5.2.4 Self-Biased Stage

Another biasing scheme commonly used in discrete and integrated circuits is shown in
Fig. 5.22. Called “self-biased” because the base current and voltage are provided from the
collector, this stage exhibits many interesting and useful attributes.

Let us begin the analysis of the circuit with the observation that the base voltage
is always lower than the collector voltage: VX = VY − IBRB. A result of self-biasing, this
important property guarantees that Q1 operates in the active mode regardless of device
and circuit parameters. For example, if RC increases indefinitely, Q1 remains in the active
region, a critical advantage over the circuit of Fig. 5.21.
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Figure 5.22 Self-biased stage.

We now determine the collector bias current by assuming IB � IC ; i.e., RC carries a
current equal to IC , thereby yielding

VY = VCC − RC IC . (5.75)

Also,

VY = RBIB + VBE (5.76)

= RBIC

β
+ VBE. (5.77)

Equating the right-hand sides of Eqs. (5.75) and (5.77) gives

IC = VCC − VBE

RC + RB

β

. (5.78)

As usual, we begin with an initial guess for VBE, compute IC , and utilize VBE =
VT ln(IC /IS) to improve the accuracy of our calculations.

Example

5.13
Determine the collector current and voltage ofQ1 in Fig. 5.22 if RC = 1 k�, RB = 10 k�,
VCC = 2.5 V, IS = 5 × 10−17 A, and β = 100. Repeat the calculations for RC = 2 k�.

Solution Assuming VBE = 0.8 V, we have from Eq. (5.78):

IC = 1.545 mA, (5.79)

and hence VBE = VT ln(IC /IS) = 807.6 mV, concluding that the initial guess for VBE and
the value of IC given by it are reasonably accurate. We also note that RBIB = 154.5 mV
and VY = RBIB + VBE ≈ 0.955 V.

If RC = 2 k�, then with VBE = 0.8 V, Eq. (5.78) gives

IC = 0.810 mA. (5.80)

To check the validity of the initial guess, we write VBE = VT ln(IC /IS) = 791 mV. Com-
pared with VCC − VBE in the numerator of Eq. (5.78), the 9-mV error is negligible and
the value of IC in Eq. (5.80) is acceptable. Since RBIB = 81 mV, VY ≈ 0.881 V.

Exercise What happens if the base resistance is doubled?

Equation (5.78) and the preceding example suggest two important guidelines for the
design of the self-biased stage: (1) VCC − VBE must be much greater than the uncertainties
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in the value of VBE; (2) RC must be much greater than RB/β to lower sensitivity to β. In
fact, if RC � RB/β, then

IC ≈ VCC − VBE

RC
, (5.81)

and VY = VCC − IC RC ≈ VBE. This result serves as a quick estimate of the transistor bias
conditions.

Design Procedure Equation (5.78) together with the condition RC � RB/β

provides the basic expressions for the design of the circuit. With the required value
of IC known from small-signal considerations, we choose RC = 10RB/β and rewrite
Eq. (5.78) as

IC = VCC − VBE

1.1RC
, (5.82)

where VBE = VT ln(IC /IS). That is,

RC = VCC − VBE

1.1IC
(5.83)

RB = βRC

10
. (5.84)

The choice of RB also depends on small-signal requirements and may deviate from this
value, but it must remain substantially lower than βRC .

Example

5.14
Design the self-biased stage of Fig. 5.22 for gm = 1/(13 �) and VCC = 1.8 V. Assume
IS = 5 × 10−16 A and β = 100.

Solution Since gm = IC /VT = 1/(13 �), we have IC = 2 mA, VBE = 754 mV, and

RC ≈ VCC − VBE

1.1IC
(5.85)

≈ 475 �. (5.86)

Also,

RB = βRC

10
(5.87)

= 4.75 k�. (5.88)

Note that RBIB = 95 mV, yielding a collector voltage of 754 mV + 95 mV =
849 mV.

Exercise Repeat the above design with a supply voltage of 2.5 V.
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Figure 5.23 Summary of biasing techniques.

Figure 5.23 summarizes the biasing principles studied in this section.

5.2.5 Biasing of PNP Transistors

The dc bias topologies studied thus far incorporate npn transistors. Circuits using pnp
devices follow the same analysis and design procedures while requiring attention to voltage
and current polarities. We illustrate these points with the aid of some examples.

Example

5.15
Calculate the collector and voltage of Q1 in the circuit of Fig. 5.24 and determine the
maximum allowable value of RC for operation in the active mode.

R

I C

YRB

I B

X

C

Q1

VCCVEB

Figure 5.24 Simple biasing of pnp stage.

Solution The topology is the same as that in Fig. 5.13 and we have

IBRB + VEB = VCC. (5.89)

That is,

IB = VCC − VEB

RB
(5.90)

and

IC = β
VCC − VEB

RB
. (5.91)

The circuit suffers from sensitivity to β.



5.2 Operating Point Analysis and Design 175

If RC is increased, VY rises, thus approaching VX (= VCC − VEB) and bringing Q1 closer
to saturation. The transistor enters saturation at VY = VX , i.e.,

IC RC,max = VCC − VEB (5.92)

and hence

RC,max = VCC − VEB

IC
(5.93)

= RB

β
. (5.94)

From another perspective, since VX = IBRB and VY = IC RC , we have IBRB =
IC RC,max as the condition for edge of saturation, obtaining RB = βRC,max.

Exercise For a given RC , what value of RB places the device at the edge of saturation?

Example

5.16
Determine the collector current and voltage of Q1 in the circuit of Fig. 5.25(a).

R

I C

YR
X

C

Q1

VCC

1

R2

I BI 1
VEB RThev

VThev

R

I C

Y
X

C

Q1

VCC

I B
VEB

(a) (b)

Figure 5.25 (a) PNP stage with resistive divider biasing, (b) Thevenin equivalent of divider

and VCC.

Solution As a general case, we assume IB is significant and construct the Thevenin equivalent of
the voltage divider as depicted in Fig. 5.25(b):

VThev = R1

R1 + R2

VCC (5.95)

RThev = R1||R2. (5.96)

Adding the voltage drop across RThev and VEB to VThev yields

VThev + IBRThev + VEB = VCC; (5.97)

that is,

IB = VCC − VThev − VEB

RThev
(5.98)

=
R2

R1 + R2

VCC − VEB

RThev
. (5.99)
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It follows that

IC = β

R2

R1 + R2

VCC − VEB

RThev
. (5.100)

As in Example 5.9, some iteration between IC and VEB may be necessary.
Equation (5.100) indicates that if IB is significant, then the transistor bias heavily

depends on β. On the other hand, if IB � I1, we equate the voltage drop across R2 to
VEB, thereby obtaining the collector current:

R2

R1 + R2

VCC = VEB (5.101)

IC = IS exp

(
R2

R1 + R2

VCC

VT

)
. (5.102)

Note that this result is identical to Eq. (5.30).

Exercise What is the maximum value of RC if Q1 must remain in soft saturation?

Example

5.17
Assuming a negligible base current, calculate the collector current and voltage of Q1 in
the circuit of Fig. 5.26. What is the maximum allowable value of RC for Q1 to operate in
the forward active region?

R

I C

YR
X

C

Q1

VCC

1

R2

I B

I 1 VEB

RE VRE

Figure 5.26 PNP stage with degeneration resistor.

Solution With IB � I1, we have VX = VCCR1/(R1 + R2). Adding to VX the emitter-base voltage
and the drop across RE, we obtain

VX + VEB + REIE = VCC (5.103)

and hence

IE = 1

RE

(
R2

R1 + R2

VCC − VEB

)
. (5.104)

Using IC ≈ IE, we can compute a new value for VEB and iterate if necessary. Also, with
IB = IC /β, we can verify the assumption IB � I1.
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In arriving at Eq. (5.104), we have written a KVL from VCC to ground, Eq. (5.103).
But a more straightforward approach is to recognize that the voltage drop across R2 is
equal to VEB + IERE, i.e.,

VCC
R2

R1 + R2

= VEB + IERE, (5.105)

which yields the same result as in Eq. (5.104).
The maximum allowable value of RC is obtained by equating the base and collector

voltages:

VCC
R1

R1 + R2

= RC,maxIC (5.106)

≈ RC,max

RE

(
R2

R1 + R2

VCC − VEB

)
. (5.107)

It follows that

RC,max = REVCC
R1

R1 + R2

· 1

R2

R1 + R2

VCC − VEB

. (5.108)

Exercise Repeat the above example if R2 = ∞.

Example

5.18
Determine the collector current and voltage of Q1 in the self-biased circuit of
Fig. 5.27.

R

Y

X

C

Q1

VCCVEB

R B

I C

I B

Figure 5.27 Self-biased pnp stage.

Solution We must write a KVL from VCC through the emitter-base junction of Q1, RB, and RC

to ground. Since β � 1 and hence IC � IB, RC carries a current approximately equal to
IC , creating VY = RC IC . Moreover, VX = RBIB + VY = RBIB + RC IC , yielding

VCC = VEB + VX (5.109)

= VEB + RBIB + IC RC (5.110)

= VEB +
(

RB

β
+ RC

)
IC . (5.111)
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Thus,

IC = VCC − VEB

RB

β
+ RC

, (5.112)

a result similar to Eq. (5.78). As usual, we begin with a guess for VEB, compute IC , and
determine a new value for VEB, etc. Note that, since the base is higher than the collector
voltage, Q1 always remains in the active mode.

Exercise How far is Q1 from saturation?

5.3 BIPOLAR AMPLIFIER TOPOLOGIES

Following our detailed study of biasing, we can now delve into different amplifier topologies
and examine their small-signal properties.6

Since the bipolar transistor contains three terminals, we may surmise that three pos-
sibilities exist for applying the input signal to the device, as conceptually illustrated in
Figs. 5.28(a)–(c). Similarly, the output signal can be sensed from any of the terminals (with
respect to ground) [Figs. 5.28(d)–(f)], leading to nine possible combinations of input and
output networks and hence nine amplifier topologies.

inv
v in

in

out

out

(c)(a) (b)

(d) (e) (f)

v

outv

v

v

Figure 5.28 Possible input and output connections to a bipolar transistor.

However, as seen in Chapter 4, bipolar transistors operating in the active mode respond
to base-emitter voltage variations by varying their collector current. This property rules
out the input connection shown in Fig. 5.28(c) because here Vin does not affect the base
or emitter voltages. Also, the topology in Fig. 5.28(f) proves of no value as Vout is not a
function of the collector current. The number of possibilities therefore falls to four. But
we note that the input and output connections in Figs. 5.28(b) and (e) remain incompatible
because Vout would be sensed at the input node (the emitter) and the circuit would provide
no function.

6While beyond the scope of this book, the large-signal behavior of amplifiers also becomes important in
many applications.
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The foregoing observations reveal three possible amplifier topologies. We study each
carefully, seeking to compute its gain and input and output impedances. In all cases,
the bipolar transistors operate in the active mode. The reader is encouraged to review
Examples (5.2)–(5.4) and the three resulting rules illustrated in Fig. 5.7 before proceeding
further.

5.3.1 Common-Emitter Topology

Our initial thoughts in Section 4.1 pointed to the circuit of Fig. 4.1(b) and hence the topol-
ogy of Fig. 4.25 as an amplifier. If the input signal is applied to the base [Fig. 5.28(a)] and
the output signal is sensed at the collector [Fig. 5.28(d)], the circuit is called a “common-
emitter” (CE) stage (Fig. 5.29). We have encountered and analyzed this circuit in different
contexts without giving it a name. The term “common-emitter” is used because the emitter
terminal is grounded and hence appears in common to the input and output ports. Never-
theless, we identify the stage based on the input and output connections (to the base and
from the collector, respectively) so as to avoid confusion in more complex topologies.

Q1

VCC

RC

outV

Vin

Input Applied
to Base

Output Sensed
at Collector

Figure 5.29 Common-emitter stage.

We deal with the CE amplifier in two phases: (a) analysis of the CE core to understand
its fundamental properties, and (b) analysis of the CE stage including the bias circuitry as
a more realistic case.

Analysis of CE Core Recall from the definition of transconductance in Section 4.4.3
that a small increment of �V applied to the base of Q1 in Fig. 5.29 increases the collector
current by gm�V and hence the voltage drop across RC by gm�VRC . In order to examine
the amplifying properties of the CE stage, we construct the small-signal equivalent of the
circuit, shown in Fig. 5.30. As explained in Chapter 4, the supply voltage node, VCC, acts
as an ac ground because its value remains constant with time. We neglect the Early effect
for now.

g
m πv  πv πr

inv

R
outv

outv C

RC

–

Figure 5.30 Small-signal model of CE stage.



180 Chapter 5 Bipolar Amplifiers

Let us first compute the small-signal voltage gain Av = vout/vin. Beginning from the
output port and writing a KCL at the collector node, we have

−vout

RC
= gmvπ , (5.113)

and vπ = vin. It follows that

Av = −gmRC . (5.114)

Equation (5.114) embodies two interesting and important properties of the CE stage.
First, the small-signal gain is negative because raising the base voltage and hence the
collector current in Fig. 5.29 lowers Vout. Second, Av is proportional to gm (i.e., the collector
bias current) and the collector resistor, RC .

Interestingly, the voltage gain of the stage is limited by the supply voltage. A higher
collector bias current or a larger RC demands a greater voltage drop across RC , but this
drop cannot exceed VCC. In fact, denoting the dc drop across RC with VRC and writing
gm = IC /VT , we express Eq. (5.113) as

|Av| = IC RC

VT
(5.115)

= VRC

VT
. (5.116)

Since VRC < VCC,

|Av| <
VCC

VT
. (5.117)

Furthermore, the transistor itself requires a minimum collector-emitter voltage of about
VBE to remain in the active region, lowering the limit to

|Av| <
VCC − VBE

VT
. (5.118)

Example

5.19
Design a CE core with VCC = 1.8 V and a power budget, P, of 1 mW while achieving
maximum voltage gain.

Solution Since P = IC · VCC = 1 mW, we have IC = 0.556 mA. The value of RC that places Q1 at
the edge of saturation is given by

VCC − RC IC = VBE, (5.119)

which, along with VBE ≈ 800 mV, yields

RC ≤ VCC − VBE

IC
(5.120)

≤ 1.8 k�. (5.121)
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The voltage gain is therefore equal to

Av = −gmRC (5.122)

= −38.5. (5.123)

Under this condition, an input signal drives the transistor into saturation. As illustrated
in Fig. 5.31(a), a 2-mVpp input results in a 77-mVpp output, forward-biasing the base-
collector junction for half of each cycle. Nevertheless, so long as Q1 remains in soft
saturation (VBC > 400 mV), the circuit amplifies properly.

A more aggressive design may allow Q1 to operate in soft saturation, e.g.,
VCE ≈ 400 mV and hence

RC ≤ VCC − 400 mV

IC
(5.124)

≤ 2.52 k�. (5.125)

In this case, the maximum voltage gain is given by

Av = −53.9. (5.126)

Of course, the circuit can now tolerate only very small voltage swings at the output. For
example, a 2-mVpp input signal gives rise to a 107.8-mVpp output, driving Q1 into heavy
saturation [Fig. 5.31(b)]. We say the circuit suffers from a trade-off between voltage gain
and voltage “headroom.”

Q1

VCC

RC

t

2 mVpp

800 mV

t

pp

800 mV

77 mV

Q1

VCC

RC

t

2 mVpp

800 mV

t

pp107.8 mV

400 mV

(a)

(b)

Figure 5.31 CE stage (a) with some signal levels, (b) in saturation.

Exercise Repeat the above example if VCC = 2.5 V and compare the results.
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g
m πv  πv πr RCv

Xi

X
g

m πv  πv πr RC
Xv

Xi

(a) (b)

Figure 5.32 (a) Input and (b) output impedance calculation of CE stage.

Let us now calculate the I/O impedances of the CE stage. Using the equivalent circuit
depicted in Fig. 5.32(a), we write

Rin = vX

iX
(5.127)

= rπ . (5.128)

Thus, the input impedance is simply equal to β/gm = βVT/IC and decreases as the collector
bias increases.

The output impedance is obtained from Fig. 5.32(b), where the input voltage source
is set to zero (replaced with a short). Since vπ = 0, the dependent current source also
vanishes, leaving RC as the only component seen by vX . In other words,

Rout = vX

iX
(5.129)

= RC . (5.130)

The output impedance therefore trades with the voltage gain, −gmRC .
Figure 5.33 summarizes the trade-offs in the performance of the CE topology along

with the parameters that create such trade-offs. For example, for a given value of output
impedance, RC is fixed and the voltage gain can be increased by increasing IC , thereby
lowering both the voltage headroom and the input impedance.

Voltage
Gain

Voltage
Headroom
(Swings)

Output
ImpedanceImpedance

Input

g
m RC

g m

 β RC

Figure 5.33 CE stage trade-offs.
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Example

5.20
A CE stage must achieve an input impedance of Rin and an output impedance of Rout.
What is the voltage gain of the circuit?

Solution Since Rin = rπ = β/gm and Rout = RC , we have

Av = −gmRC (5.131)

= −β
Rout

Rin
. (5.132)

Interestingly, if the I/O impedances are specified, then the voltage gain is automatically
set. We will develop other circuits in this book that avoid this “coupling” of design
specifications.

Exercise What happens to this result if the supply voltage is halved?

Inclusion of Early Effect Equation (5.114) suggests that the voltage gain of the CE
stage can be increased indefinitely if RC → ∞ while gm remains constant. Mentioned in
Section 4.4.5, this trend appears valid if VCC is also raised to ensure the transistor remains
in the active mode. From an intuitive point of view, a given change in the input voltage
and hence the collector current gives rise to an increasingly larger output swing as RC

increases.
In reality, however, the Early effect limits the voltage gain even if RC approaches

infinity. Since achieving a high gain proves critical in circuits such as operational amplifiers,
we must reexamine the above derivations in the presence of the Early effect.

Figure 5.34 depicts the small-signal equivalent circuit of the CE stage including the
transistor output resistance. Note that rO appears in parallel with RC , allowing us to rewrite
Eq. (5.114) as

Av = −gm(RC ||rO). (5.133)

We also recognize that the input impedance remains equal to rπ whereas the output
impedance falls to

Rout = RC ||rO. (5.134)

g
m πv  πv πr

inv

R
outv

Cr O

Figure 5.34 CE stage including Early effect.
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Example

5.21
The circuit of Fig. 5.29 is biased with a collector current of 1 mA and RC = 1 k�. If
β = 100 and VA = 10 V, determine the small-signal voltage gain and the I/O impedances.

Solution We have

gm = IC

VT
(5.135)

= (26 �)
−1

(5.136)

and

rO = VA

IC
(5.137)

= 10 k�. (5.138)

Thus,

Av = −gm(RC ||rO) (5.139)

≈ 35. (5.140)

(As a comparison, if VA = ∞, then Av ≈ 38.) For the I/O impedances, we write

Rin = rπ (5.141)

= β

gm
(5.142)

= 2.6 k� (5.143)

and

Rout = RC ||rO (5.144)

= 0.91 k�. (5.145)

Exercise Calculate the gain if VA = 5 V.

Let us determine the gain of a CE stage as RC → ∞. Equation (5.132) gives

Av = −gmrO. (5.146)

Called the “intrinsic gain” of the transistor to emphasize that no external device loads the
circuit, gmrO represents the maximum voltage gain provided by a single transistor, playing
a fundamental role in high-gain amplifiers.

We now substitute gm = IC /VT and rO = VA/IC in Eq. (5.133), thereby arriving at

|Av| = VA

VT
. (5.147)
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Interestingly, the intrinsic gain of a bipolar transistor is independent of the bias cur-
rent. In modern integrated bipolar transistors, VA falls in the vicinity of 5 V, yielding
a gain of nearly 200.7 In this book, we assume gmrO � 1 (and hence rO � 1/gm) for
all transistors.

Another parameter of the CE stage that may prove relevant in some applications is
the “current gain,” defined as

AI = iout

iin
, (5.148)

where iout denotes the current delivered to the load and iin the current flowing to the input.
We rarely deal with this parameter for voltage amplifiers, but note that AI = β for the
stage shown in Fig. 5.29 because the entire collector current is delivered to RC .

CE Stage With Emitter Degeneration In many applications, the CE core of Fig. 5.29
is modified as shown in Fig. 5.35(a), where a resistor RE appears in series with the emitter.
Called “emitter degeneration,” this technique improves the “linearity” of the circuit and
provides many other interesting properties that are studied in more advanced courses.

Q1

VCC

RC

outV

in Q1

VCC

RC

outV

V VΔ

RE RE

(a) (b)

Figure 5.35 (a) CE stage with degeneration, (b) effect of input voltage change.

As with the CE core, we intend to determine the voltage gain and I/O impedances
of the circuit, assuming Q1 is biased properly. Before delving into a detailed analysis, it is
instructive to make some qualitative observations. Suppose the input signal raises the base
voltage by �V [Fig. 5.35(b)]. If RE were zero, then the base-emitter voltage would also
increase by �V, producing a collector current change of gm �V. But with RE 	= 0, some
fraction of �V appears across RE, thus leaving a voltage change across the BE junction
that is less than �V. Consequently, the collector current change is also less than gm �V.
We therefore expect that the voltage gain of the degenerated stage is lower than that of
the CE core with no degeneration. While undesirable, the reduction in gain is incurred to
improve other aspects of the performance.

How about the input impedance? Since the collector current change is less than gm �V,
the base current also changes by less than gm �V/β, yielding an input impedance greater
than β/gm = rπ . Thus, emitter degeneration increases the input impedance of the CE stage,
a desirable property. A common mistake is to conclude that Rin = rπ + RE, but as explained
below, Rin = rπ + (β + 1)RE.

7But other second-order effects limit the actual gain to about 50.
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g
m πv  πv πr R

outv

C

RE

inv

Figure 5.36 Small-signal model of CE stage with emitter degeneration.

We now quantify the foregoing observations by analyzing the small-signal behavior of
the circuit. Depicted in Fig. 5.36 is the small-signal equivalent circuit, where VCC is replaced
with an ac ground and the Early effect is neglected. Note that vπ appears across rπ and not
from the base to ground. To determine vout/vin, we first write a KCL at the output node,

gmvπ = −vout

RC
, (5.149)

obtaining

vπ = − vout

gmRC
. (5.150)

We also recognize that two currents flow through RE: one originating from rπ equal to
vπ/rπ and another equal to gmvπ . Thus, the voltage drop across RE is given by

vRE =
(

vπ

rπ

+ gmvπ

)
RE. (5.151)

Since the voltage drop across rπ and RE must add up to vin, we have

vin = vπ + vRE (5.152)

= vπ +
(

vπ

rπ

+ gmvπ

)
RE (5.153)

= vπ

[
1 +

(
1

rπ

+ gm

)
RE

]
. (5.154)

Substituting for vπ from Eq. (5.150) and rearranging the terms, we arrive at

vout

vin
= − gmRC

1 +
(

1

rπ

+ gm

)
RE

. (5.155)

As predicted earlier, the magnitude of the voltage gain is lower than gmRC for RE 	= 0.
With β � 1, we can assume gm � 1/rπ and hence

Av = − gmRC

1 + gmRE
. (5.156)

Thus, the gain falls by a factor of 1 + gmRE.
To arrive at an interesting interpretation of Eq. (5.156), we divide the numerator and

denominator by gm,

Av = − RC

1

gm
+ RE

. (5.157)
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It is helpful to memorize this result as “the gain of the degenerated CE stage is equal to
the total load resistance seen at the collector (to ground) divided by 1/gm plus the total
resistance placed in series with the emitter.” (In verbal descriptions, we often ignore the
negative sign in the gain, with the understanding that it must be included.) This and similar
interpretations throughout this book greatly simplify the analysis of amplifiers—often
obviating the need for drawing small-signal circuits.

Example

5.22
Determine the voltage gain of the stage shown in Fig. 5.37(a).

Q1

VCC

RC

out

in

RE

(a)

r π 2

Q2

VCC

v

v

Q1

VCC

RC

out

in

RE r π 2

v

v

(b)

Figure 5.37 (a) CE stage example, (b) simplified circuit.

Solution We identify the circuit as a CE stage because the input is applied to the base of Q1 and
the output is sensed at its collector. This transistor is degenerated by two devices: RE and
the base-emitter junction of Q2. The latter exhibits an impedance of rπ2 (as illustrated
in Fig. 5.7), leading to the simplified model depicted in Fig. 5.37(b). The total resistance
placed in series with the emitter is therefore equal to RE||rπ2, yielding

Av = − RC

1

gm1

+ RE||rπ2

. (5.158)

Without the above observations, we would need to draw the small-signal model of both
Q1 and Q2 and solve a system of several equations.

Exercise Repeat the above example if a resistor is placed in series with the emitter of Q2.

Example

5.23
Calculate the voltage gain of the circuit in Fig. 5.38(a).

Solution The topology is a CE stage degenerated by RE, but the load resistance between
the collector of Q1 and ac ground consists of RC and the base-emitter junction of
Q2. Modeling the latter by rπ2, we reduce the circuit to that shown in Fig. 5.38(b),
where the total load resistance seen at the collector of Q1 is equal to RC ||rπ2. The
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voltage gain is thus given by

Av = − RC ||rπ2

1

gm1

+ RE

. (5.159)

Q1

VCC

RC

out

in

RE

(a)

Q2

VCC

v

v

Q1

VCC

RC

out

in

RE

r π 2v

v

(b)

Figure 5.38 (a) CE stage example, (b) simplified circuit.

Exercise Repeat the above example if a resistor is placed in series with the emitter of Q2.

To compute the input impedance of the degenerated CE stage, we redraw the small-
signal model as in Fig. 5.39(a) and calculate vX/ iX . Since vπ = rπ iX , the current flowing
through RE is equal to iX + gmrπ iX = (1 + β)iX , creating a voltage drop of RE(1 + β)iX .
Summing vπ and vRE and equating the result to vX , we have

vX = rπ iX + RE(1 + β)iX , (5.160)

and hence

Rin = vX

iX
(5.161)

= rπ + (β + 1)RE. (5.162)

As predicted by our qualitative reasoning, emitter degeneration increases the input
impedance [Fig. 5.39(b)].

Why is Rin not simply equal to rπ + RE? This would hold only if rπ and RE were exactly
in series, i.e., if the two carried equal currents, but in the circuit of Fig. 5.39(a), the collector
current, gmvπ , also flows into node P.

g
m πv  πv πr R

outv

C

RE

v

Xi

X

v
RE

P

 πr

RE

v

Xi

X

inR

( β  + 1)

(a) (b)

Figure 5.39 (a) Input impedance of degenerated CE stage, (b) equivalent circuit.
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g
m πv  πv πr RC

RE
v

RE

P

Xv

Xi

Figure 5.40 Output impedance of degenerated stage.

Does the factor β + 1 bear any intuitive meaning? We observe that the flow of both
base and collector currents through RE results in a large voltage drop, (β + 1)iXRE, even
though the current drawn from vX is merely iX . In other words, the test voltage source, vX ,
supplies a current of only iX while producing a voltage drop of (β + 1)iXRE across RE—as
if iX flows through a resistor equal to (β + 1)RE.

The above observation is articulated as follows: any impedance tied between the emit-
ter and ground is multiplied by β + 1 when “seen from the base.” The expression “seen
from the base” means the impedance measured between the base and ground.

We also calculate the output impedance of the stage with the aid of the equivalent
shown in Fig. 5.40, where the input voltage is set to zero. Equation (5.153) applies to this
circuit as well:

vin = 0 = vπ +
(

vπ

rπ

+ gmvπ

)
RE, (5.163)

yielding vπ = 0 and hence gmvπ = 0. Thus, all of iX flows through RC , and

Rout = vX

iX
(5.164)

= RC , (5.165)

revealing that emitter degeneration does not alter the output impedance if the Early effect
is neglected.

Example

5.24
A CE stage is biased at a collector current of 1 mA. If the circuit provides a voltage gain
of 20 with no emitter degeneration and 10 with degeneration, determine RC , RE, and
the I/O impedances. Assume β = 100.

Solution For Av = 20 in the absence of degeneration, we require

gmRC = 20, (5.166)

which, together with gm = IC /VT = (26 �)
−1

, yields

RC = 520 �. (5.167)

Since degeneration lowers the gain by a factor of two,

1 + gmRE = 2, (5.168)
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i.e.,

RE = 1

gm
(5.169)

= 26 �. (5.170)

The input impedance is given by

Rin = rπ + (β + 1)RE (5.171)

= β

gm
+ (β + 1)RE (5.172)

≈ 2rπ (5.173)

because β � 1 and RE = 1/gm in this example. Thus, Rin = 5200 �. Finally,

Rout = RC (5.174)

= 520 �. (5.175)

Exercise What bias current would result in a gain of 5 with such emitter and collector resistor values?

Example

5.25
Compute the voltage gain and I/O impedances of the circuit depicted in Fig. 5.41. Assume
a very large value for C1.

Q1

VCC

RC

outV

inV

RE

CConstant
1

Figure 5.41 CE stage example.

Solution IfC1 is very large, it acts as a short circuit for the signal frequencies of interest. Also, the
constant current source is replaced with an open circuit in the small-signal equivalent
circuit. Thus, the stage reduces to that in Fig. 5.35(a) and Eqs. (5.157), (5.162), (5.165)
apply.

Exercise Repeat the above example if we tie another capacitor from the base to ground.

The degenerated CE stage can be analyzed from a different perspective to provide
more insight. Let us place the transistor and the emitter resistor in a black box having
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Q1

RE

in
g

m πv  πv πr

RE

in

i out

(a) (b)

v

vi out

Figure 5.42 (a) Degenerated bipolar transistor viewed as a black box, (b) small-signal equivalent.

still three terminals [Fig. 5.42(a)]. For small-signal operation, we can view the box as a
new transistor (or “active” device) and model its behavior by new values of transconduc-
tance and impedances. Denoted by Gm to avoid confusion with gm of Q1, the equivalent
transconductance is obtained from Fig. 5.42(b). Since Eq. (5.154) still holds, we have

iout = gmvπ (5.176)

= gm
vin

1 + (r−1
π + gm)RE

, (5.177)

and hence

Gm = iout

vin
(5.178)

≈ gm

1 + gmRE
. (5.179)

For example, the voltage gain of the stage with a load resistance of RD is given by −GmRD.
An interesting property of the degenerated CE stage is that its voltage gain be-

comes relatively independent of the transistor transconductance and hence bias current if
gmRE � 1. From Eq. (5.157), we note that Av → −RC /RE under this condition. This trend
in fact represents the “linearizing” effect of emitter degeneration.

As a more general case, we now consider a degenerated CE stage containing a
resistance in series with the base [Fig. 5.43(a)]. As seen below, RB only degrades the

Q1

VCC

RC

RE

(a)

RB A
inv

outv

 πr

RE( β  + 1)

RB A
inv

(b)

Figure 5.43 (a) CE stage with base resistance, (b) equivalent circuit.
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performance of the circuit, but often proves inevitable. For example, RB may represent
the output resistance of a microphone connected to the input of the amplifier.

To analyze the small-signal behavior of this stage, we can adopt one of two approaches:
(a) draw the small-signal model of the entire circuit and solve the resulting equations, or
(b) recognize that the signal at node A is simply an attenuated version of vin and write

vout

vin
= vA

vin
· vout

vA
. (5.180)

Here, vA/vin denotes the effect of voltage division between RB and the impedance seen at
the base of Q1, and vout/vA represents the voltage gain from the base of Q1 to the output,
as already obtained in Eqs. (5.155) and (5.157). We leave the former approach for Prob-
lem 5.37 and continue with the latter here.

Let us first compute vA/vin with the aid of Eq. (5.162) and the model depicted in
Fig. 5.39(b), as illustrated in Fig. 5.43(b). The resulting voltage divider yields

vA

vin
= rπ + (β + 1)RE

rπ + (β + 1)RE + RB
. (5.181)

Combining Eqs. (5.155) and (5.157), we arrive at the overall gain as

vout

vin
= rπ + (β + 1)RE

rπ + (β + 1)RE + RB
· −gmRC

1 +
(

1

rπ

+ gm

)
RE

(5.182)

= rπ + (β + 1)RE

rπ + (β + 1)RE + RB
· −gmrπRC

rπ + (1 + β)RE
(5.183)

= −βRC

rπ + (β + 1)RE + RB
. (5.184)

To obtain a more intuitive expression, we divide the numerator and the denominator
by β:

Av ≈ −RC

1

gm
+ RE + RB

β + 1

. (5.185)

Compared to Eq. (5.157), this result contains only one additional term in the denominator
equal to the base resistance divided by β + 1.

The above results reveal that resistances in series with the emitter and the base have
similar effects on the voltage gain, but RB is scaled down by β + 1. The significance of this
observation becomes clear later.

For the stage of Fig. 5.43(a), we can define two different input impedances, one seen
at the base of Q1 and another at the left terminal of RB (Fig. 5.44). The former is equal to

Rin1 = rπ + (β + 1)RE (5.186)

and the latter,

Rin2 = RB + rπ + (β + 1)RE. (5.187)
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Q1

VCC

RC

RB
outv

Rin1
RERin2

Figure 5.44 Input impedances seen at different nodes.

In practice, Rin1 proves more relevant and useful. We also note that the output impedance
of the circuit remains equal to

Rout = RC (5.188)

even with RB 	= 0.

Example

5.26
A microphone having an output resistance of 1 k� generates a peak signal level of
2 mV. Design a CE stage with a bias current of 1 mA that amplifies this signal to 40 mV.
Assume RE = 4/gm and β = 100.

Solution The following quantities are obtained: RB = 1 k�, gm = (26 �)
−1

, |Av| = 20, and
RE = 104 �. From Eq. (5.185),

RC = |Av|
(

1

gm
+ RE + RB

β + 1

)
(5.189)

≈ 2.8 k�. (5.190)

Exercise Repeat the above example if the microphone output resistance is doubled.

Example

5.27
Determine the voltage gain and I/O impedances of the circuit shown in Fig. 5.45(a).
Assume a very large value for C1 and neglect the Early effect.

Q1

VCC

RC

RB
inv

outv

I 1

R1

R2 C1

Q1

RC

RB
inv

outv

R1

R 2

(a) (b)

Figure 5.45 (a) CE stage example, (b) simplified circuit.
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Solution Replacing C1 with a short circuit, I1 with an open circuit, and VCC with ac ground, we
arrive at the simplified model in Fig. 5.45(b), where R1 and RC appear in parallel and R2

acts as an emitter degeneration resistor. Equations (5.185)–(5.188) are therefore written
respectively as

Av = −(RC ||R1)

1

gm
+ R2 + RB

β + 1

(5.191)

Rin = RB + rπ + (β + 1)R2 (5.192)

Rout = RC ||R1. (5.193)

Exercise What happens if a very large capacitor is tied from the emitter of Q1 to ground?

Effect of Transistor Output Resistance The analysis of the degenerated CE stage
has thus far neglected the Early effect. We nonetheless explore one aspect of the circuit,
namely, the output resistance, as it provides the foundation for many other topologies
studied later.

Our objective is to determine the output impedance seen looking into the collector
of a degenerated transistor [Fig. 5.46(a)]. Recall from Fig. 5.7 that Rout = rO if RE = 0.
Also, Rout = ∞ if VA = ∞ (why?). To include the Early effect, we draw the small-
signal equivalent circuit as in Fig. 5.46(b), grounding the input terminal. A common
mistake here is to write Rout = rO + RE. Since gmvπ flows from the output node into
P, resistors rO and RE are not in series. We readily note that RE and rπ appear in parallel,
and the current flowing through RE||rπ is equal to iX . Thus,

vπ = −iX(RE||rπ ), (5.194)

Q1inV

RE

(a)

Rout

g
m πv  πv πr

P

r O Xv

Xi

RE

Xi

(b)

Figure 5.46 (a) Output impedance of degenerated stage, (b) equivalent circuit.

where the negative sign arises because the positive side of vπ is at ground. We also recognize
that rO carries a current of iX − gmvπ and hence sustains a voltage of (iX − gmvπ )rO. Adding
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this voltage to that across RE (= −vπ ) and equating the result to vX , we obtain

vX = (iX − gmvπ )rO − vπ (5.195)

= [iX + gmiX(RE||rπ )]rO + iX(RE||rπ ). (5.196)

It follows that

Rout = [1 + gm(RE||rπ )]rO + RE||rπ (5.197)

= rO + (gmrO + 1)(RE||rπ ). (5.198)

Recall from Eq. (5.146) that the intrinsic gain of the transistor, gmrO � 1, and hence

Rout ≈ rO + gmrO(RE||rπ ) (5.199)

≈ rO[1 + gm(RE||rπ )]. (5.200)

Interestingly, emitter degeneration raises the output impedance from rO to the above value,
i.e., by a factor of 1 + gm(RE||rπ ).

The reader may wonder if the increase in the output resistance is desirable or unde-
sirable. The “boosting” of output resistance as a result of degeneration proves extremely
useful in circuit design, producing amplifiers with a higher gain as well as creating more
ideal current sources. These concepts are studied in Chapter 9.

It is instructive to examine Eq. (5.200) for two special cases RE � rπ and RE � rπ .
For RE � rπ , we have RE||rπ → rπ and

Rout ≈ rO(1 + gmrπ ) (5.201)

≈ βrO, (5.202)

because β � 1. Thus, the maximum resistance seen at the collector of a bipo-
lar transistor is equal to βrO—if the degeneration impedance becomes much larger
than rπ .

For RE � rπ , we have RE||rπ → RE and

Rout ≈ (1 + gmRE)rO. (5.203)

Thus, the output resistance is boosted by a factor of 1 + gmRE.
In the analysis of circuits, we sometimes draw the transistor output resistance explicitly

to emphasize its significance (Fig. 5.47). This representation, of course, assumes Q1 itself
does not contain another rO.

Q1

inV

RE

Rout

r O

Figure 5.47 Stage with explicit depiction of rO.
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Example

5.28
We wish to design a current source having a value of 1 mA and an output resistance of
20 k�. The available bipolar transistor exhibits β = 100 and VA = 10 V. Determine the
minimum required value of emitter degeneration resistance.

Solution Since rO = VA/IC = 10 k�, degeneration must raise the output resistance by a factor of
two. We postulate that the condition RE � rπ holds and write

1 + gmRE = 2. (5.204)

That is,

RE = 1

gm
(5.205)

= 26 �. (5.206)

Note that indeed rπ = β/gm � RE.

Exercise What is the output impedance if RE is doubled?

Example

5.29
Calculate the output resistance of the circuit shown in Fig. 5.48(a) if C1 is very large.

Q1

I 1

R1

R2 C1

Q1
R1

R 2

(a) (b)

Rout Rout

Q1

R 2

R

(c)

out1

Vb

Figure 5.48 (a) CE stage example, (b) simplified circuit, (c) resistance seen at the collector.

Solution Replacing Vb and C1 with an ac ground and I1 with an open circuit, we arrive at the
simplified model in Fig. 5.48(b). Since R1 appears in parallel with the resistance seen
looking into the collector of Q1, we ignore R1 for the moment, reducing the circuit to
that in Fig. 5.48(c). In analogy with Fig. 5.40, we rewrite Eq. (5.200) as

Rout1 = [1 + gm(R2||rπ )]rO. (5.207)

Returning to Fig. 5.48(b), we have

Rout = Rout1||R1 (5.208)

= {
[1 + gm(R2||rπ )]rO

}||R1. (5.209)

Exercise What is the output resistance if a very large capacitor is tied between the emitter of Q1

and ground?
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The procedure of progressively simplifying a circuit until it resembles a known
topology proves extremely critical in our work. Called “analysis by inspection,” this
method obviates the need for complex small-signal models and lengthy calculations.
The reader is encouraged to attempt the above example using the small-signal model
of the overall circuit to appreciate the efficiency and insight provided by our intuitive
approach.

Example

5.30
Determine the output resistance of the stage shown in Fig. 5.49(a).

Vb1

Vb2

Q1

Q2

Rout

Q1

Rout

r O2

(a) (b)

Figure 5.49 (a) CE stage example, (b) simplified circuit.

Solution Recall from Fig. 5.7 that the impedance seen at the collector is equal to rO if the base
and emitter are (ac) grounded. Thus, Q2 can be replaced with rO2 [Fig. 5.49(b)]. From
another perspective,Q2 is reduced to rO2 because its base-emitter voltage is fixed by Vb1,
yielding a zero gm2vπ2.

Now, rO2 plays the role of emitter degeneration resistance for Q1. In analogy with
Fig. 5.40(a), we rewrite Eq. (5.200) as

Rout = [1 + gm1(rO2||rπ1)]rO1. (5.210)

Called a “cascode” circuit, this topology is studied and utilized extensively in
Chapter 9.

Exercise Repeat the above example for a “stack” of three transistors.

CE Stage with Biasing Having learned the small-signal properties of the common-
emitter amplifier and its variants, we now study a more general case wherein the cir-
cuit contains a bias network as well. We begin with simple biasing schemes described in
Section 5.2 and progressively add complexity (and more robust performance) to the circuit.
Let us begin with an example.
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Example

5.31
A student familiar with the CE stage and basic biasing constructs the circuit shown in
Fig. 5.50 to amplify the signal produced by a microphone. Unfortunately, Q1 carries no
current, failing to amplify. Explain the cause of this problem.

Q1

VCC

X

= 2.5 V

 ΩRC 1 kRB Ω100 k

outV

Figure 5.50 Microphone amplifier.

Solution Many microphones exhibit a small low-frequency resistance (e.g., <100 �). If used in
this circuit, such a microphone creates a low resistance from the base of Q1 to ground,
forming a voltage divider with RB and providing a very low base voltage. For example,
a microphone resistance of 100 � yields

VX = 100 �

100 k� + 100 �
× 2.5 V (5.211)

≈ 2.5 mV. (5.212)

Thus, the microphone low-frequency resistance disrupts the bias of the amplifier.

Exercise Does the circuit operate better if RB is halved?

How should the circuit of Fig. 5.50 be fixed? Since only the signal generated by the
microphone is of interest, a series capacitor can be inserted as depicted in Fig. 5.51 so as to
isolate the dc biasing of the amplifier from the microphone. That is, the bias point ofQ1 re-
mains independent of the resistance of the microphone becauseC1 carries no bias current.
The value ofC1 is chosen so that it provides a relatively low impedance (almost a short cir-
cuit) for the frequencies of interest. We sayC1 is a “coupling” capacitor and the input of this
stage is “ac-coupled” or “capacitively coupled.” Many circuits employ capacitors to isolate
the bias conditions from “undesirable” effects. More examples clarify this point later.

Q1

VCC

X

= 2.5 V

 ΩRC 1 kRB Ω100 k

C1

outV

Figure 5.51 Capacitive coupling at the input of microphone amplifier.

The foregoing observation suggests that the methodology illustrated in Fig. 5.9 must
include an additional rule: replace all capacitors with an open circuit for dc analysis and a
short circuit for small-signal analysis.

Let us begin with the stage depicted in Fig. 5.52(a). For bias calculations, the
signal source is set to zero and C1 is opened, leading to Fig. 5.52(b). From Section 5.2.1,
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Q1

VCC

X

RCRB

C1

outVY

Q1

VCC

X

RCRB

Y
Q1

RB

RC

outv

inv

Q1

RB

RC

Rin1Rin2

Q1

RB

RC
Rout

(c)

(d)

(a) (b)

(e)

X

Figure 5.52 (a) Capacitive coupling at the input of a CE stage, (b) simplified stage for bias

calculation, (c) simplified stage for small-signal calculation, (d) simplified circuit for input

impedance calculation, (e) simplified circuit for output impedance calculation.

we have

IC = β
VCC − VBE

RB
, (5.213)

VY = VCC − βRC
VCC − VBE

RB
. (5.214)

To avoid saturation, VY ≥ VBE.
With the bias current known, the small-signal parameters gm, rπ , and rO can be calcu-

lated. We now turn our attention to small-signal analysis, considering the simplified circuit
of Fig. 5.52(c). Here, C1 is replaced with a short and VCC with ac ground, but Q1 is main-
tained as a symbol. We attempt to solve the circuit by inspection: if unsuccessful, we will
resort to using a small-signal model for Q1 and writing KVLs and KCLs.

The circuit of Fig. 5.52(c) resembles the CE core illustrated in Fig. 5.29, except for RB.
Interestingly, RB has no effect on the voltage at node X so long as vin remains an ideal
voltage source; i.e., vX = vin regardless of the value of RB. Since the voltage gain from the
base to the collector is given by vout/vX = −gmRC , we have

vout

vin
= −gmRC . (5.215)

If VA < ∞, then

vout

vin
= −gm(RC ||rO). (5.216)

However, the input impedance is affected by RB [Fig. 5.52(d)]. Recall from Fig. 5.7 that
the impedance seen looking into the base, Rin1, is equal to rπ if the emitter is grounded.
Here, RB simply appears in parallel with Rin1, yielding

Rin2 = rπ ||RB. (5.217)

Thus, the bias resistor lowers the input impedance. Nevertheless, this effect is usually
negligible.
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To determine the output impedance, we set the input source to zero [Fig. 5.52(e)].
Comparing this circuit with that in Fig. 5.32(b), we recognize that Rout remains unchanged:

Rout = RC ||rO. (5.218)

because both terminals of RB are shorted to ground.
In summary, the bias resistor, RB, negligibly impacts the performance of the stage

shown in Fig. 5.52(a).

Example

5.32
Having learned about ac coupling, the student in Example 5.31 modifies the design to
that shown in Fig. 5.53 and attempts to drive a speaker. Unfortunately, the circuit still
fails. Explain why.

Q1

VCC

X

= 2.5 V

 ΩRC 1 kRB Ω100 k

C1

Figure 5.53 Amplifier with direct connection of speaker.

Solution Typical speakers incorporate a solenoid (inductor) to actuate a membrane. The solenoid
exhibits a very low dc resistance, e.g., less than 1 �. Thus, the speaker in Fig. 5.53 shorts
the collector to ground, driving Q1 into deep saturation.

Exercise Does the circuit operate better if the speaker is tied between the output node and VCC?

Example

5.33
The student applies ac coupling to the output as well [Fig. 5.54(a)] and measures the
quiescent points to ensure proper biasing. The collector bias voltage is 1.5 V, indicating
that Q1 operates in the active region. However, the student still observes no gain in the
circuit. (a) If IS = 5 × 10−17 A and VA = ∞, compute the β of the transistor. (b) Explain
why the circuit provides no gain.

Q1

VCC

X

= 2.5 V

 ΩRC 1 kRB Ω100 k

C1

C2

Q1

RB
inv  Ω100 k

 Ω1 kRC  ΩRsp 8

outv

(a) (b)

Figure 5.54 (a) Amplifier with capacitive coupling at the input and output, (b) simplified

small-signal model.
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Solution (a) A collector voltage of 1.5 V translates to a voltage drop of 1 V across RC and hence
a collector current of 1 mA. Thus,

VBE = VT ln
IC

IS
(5.219)

= 796 mV. (5.220)

It follows that

IB = VCC − VBE

RB
(5.221)

= 17 μA, (5.222)

and β = IC /IB = 58.8.
(b) Speakers typically exhibit a low impedance in the audio frequency range,

e.g., 8 �. Drawing the ac equivalent as in Fig. 5.54(b), we note that the total resistance
seen at the collector node is equal to 1 k�||8 �, yielding a gain of

|Av| = gm(RC ||RS) = 0.31. (5.223)

Exercise Repeat the above example for RC = 500 �.

The design in Fig. 5.54(a) exemplifies an improper interface between an amplifier and a
load: the output impedance is so much higher than the load impedance that the connection
of the load to the amplifier drops the gain drastically.

How can we remedy the problem of loading here? Since the voltage gain is proportional
to gm, we can bias Q1 at a much higher current to raise the gain. Alternatively, we can
interpose a “buffer” stage between the CE amplifier and the speaker (Section 5.3.3).

Let us now consider the biasing scheme shown in Fig. 5.15 and repeated in Fig. 5.55(a).
To determine the bias conditions, we set the signal source to zero and open the capacitor(s).
Equations (5.38)–(5.41) can then be used. For small-signal analysis, the simplified circuit
in Fig. 5.55(b) reveals a resemblance to that in Fig. 5.52(b), except that both R1 and R2

Q1

VCC

RR C1

R2

C1
inv

Q1

R
RC

outv

inv 2R1

(a) (b)

Figure 5.55 (a) Biased stage with capacitive coupling, (b) simplified circuit.
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Q1

VCC

RR C1

R2

C1
inv

Q1

R
RC

outv

inv 2R1
RE

RE

(a) (b)

Figure 5.56 (a) Degenerated stage with capacitive coupling, (b) simplified circuit.

appear in parallel with the input. Thus, the voltage gain is still equal to −gm(RC ||rO) and
the input impedance is given by

Rin = rπ ||R1||R2. (5.224)

The output resistance is equal to RC ||rO.
We next study the more robust biasing scheme of Fig. 5.19, repeated in Fig. 5.56(a)

along with an input coupling capacitor. The bias point is determined by opening C1

and following Eqs. (5.52) and (5.53). With the collector current known, the small-
signal parameters of Q1 can be computed. We also construct the simplified ac circuit
shown in Fig. 5.56(b), noting that the voltage gain is not affected by R1 and R2 and
remains equal to

Av = −RC

1

gm
+ RE

, (5.225)

where Early effect is neglected. On the other hand, the input impedance is lowered to:

Rin = [rπ + (β + 1)RE]||R1||R2, (5.226)

whereas the output impedance remains equal to RC if VA = ∞.
As explained in Section 5.2.3, the use of emitter degeneration can effectively

stabilize the bias point despite variations in β and IS . However, as evident from
Eq. (5.225), degeneration also lowers the gain. Is it possible to apply degeneration
to biasing but not to the signal? Illustrated in Fig. 5.57 is such a topology, where C2

is large enough to act as a short circuit for signal frequencies of interest. We can

Q1

VCC

RR C1

R2

C1
inv

RE C2

Figure 5.57 Use of capacitor to eliminate degeneration.
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therefore write

Av = −gmRC (5.227)

and

Rin = rπ ||R1||R2 (5.228)

Rout = RC . (5.229)

Example

5.34
Design the stage of Fig. 5.57 to satisfy the following conditions: IC = 1 mA, voltage drop
across RE = 400 mV, voltage gain = 20 in the audio frequency range (20 Hz to 20 kHz),
input impedance > 2 k�. Assume β = 100, IS = 5 × 10−16, and VCC = 2.5 V.

Solution With IC = 1 mA ≈ IE, the value of RE is equal to 400 �. For the voltage gain to remain
unaffected by degeneration, the maximum impedance of C1 must be much smaller than
1/gm = 26 �.8 Occurring at 20 Hz, the maximum impedance must remain below roughly
0.1 × (1/gm) = 2.6 �:

1

C2ω
≤ 1

10
· 1

gm
for ω = 2π × 20 Hz. (5.230)

Thus,

C2 ≥ 30,607 μF. (5.231)

(This value is unrealistically large, requiring modification of the design.) We also have

|Av| = gmRC = 20, (5.232)

obtaining

RC = 520 �. (5.233)

Since the voltage across RE is equal to 400 mV and VBE = VT ln(IC /IS) = 736 mV, we
have VX = 1.14 V. Also, with a base current of 10 μA, the current flowing through R1

and R2 must exceed 100 μA to lower sensitivity to β:

VCC

R1 + R2

> 10IB (5.234)

and hence

R1 + R2 < 25 k�. (5.235)

Under this condition,

VX ≈ R2

R1 + R2

VCC = 1.14 V, (5.236)

yielding

R2 = 11.4 k� (5.237)

R1 = 13.6 k�. (5.238)

8A common mistake here is to make the impedance of C1 much less than RE.
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We must now check to verify that this choice of R1 and R2 satisfies the condition
Rin > 2 k�. That is,

Rin = rπ ||R1||R2 (5.239)

= 1.83 k�. (5.240)

Unfortunately, R1 and R2 lower the input impedance excessively. To remedy the problem,
we can allow a smaller current through R1 and R2 than 10IB, at the cost of creating more
sensitivity to β. For example, if this current is set to 5IB = 50 μA and we still neglect IB

in the calculation of VX ,

VCC

R1 + R2

> 5IB (5.241)

and

R1 + R2 < 50 k�. (5.242)

Consequently,

R2 = 22.8 k� (5.243)

R1 = 27.2 k�, (5.244)

giving

Rin = 2.15 k�. (5.245)

Exercise Redesign the above stage for a gain of 10 and compare the results.

We conclude our study of the CE stage with a brief look at the more general case
depicted in Fig. 5.58(a), where the input signal source exhibits a finite resistance and the
output is tied to a load RL. The biasing remains identical to that of Fig. 5.56(a), but RS

and RL lower the voltage gain vout/vin. The simplified ac circuit of Fig. 5.58(b) reveals
Vin is attenuated by the voltage division between RS and the impedance seen at node X,
R1||R2||[rπ + (β + 1)RE], i.e.,

vX

vin
= R1||R2||[rπ + (β + 1)RE]

R1||R2||[rπ + (β + 1)RE] + RS
. (5.246)

The voltage gain from vin to the output is given by

vout

vin
= vX

vin
· vout

vX
(5.247)

= − R1||R2||[rπ + (β + 1)RE]

R1||R2||[rπ + (β + 1)RE] + RS

RC ||RL

1

gm
+ RE

. (5.248)

As expected, lower values of R1 and R2 reduce the gain.
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Q1

VCC

RR C1

R2inv

Q1 RC

outv

RE

RE

(a)
(b)

RS C1

C2

RL

outv RL
R R1 2

inv

RS X

Q1 RC

outv

RE

(b)

RL
R R1 2

inv

RS X

Figure 5.58 (a) General CE stage, (b) simplified circuit, (c) Thevenin model of input network.

The above computation views the input network as a voltage divider. Alternatively,
we can utilize a Thevenin equivalent to include the effect of RS , R1, and R2 on the voltage
gain. Illustrated in Fig. 5.58(c), the idea is to replace vin, RS and R1||R2 with vThev and RThev:

vThev = R1||R2

R1||R2 + RS
vin (5.249)

RThev = RS||R1||R2. (5.250)

The resulting circuit resembles that in Fig. 5.43(a) and follows Eq. (5.185):

Av = − RC ||RL

1

gm
+ RE + RThev

β + 1

· R1||R2

R1||R2 + RS
, (5.251)

where the second fraction on the right accounts for the voltage attenuation given by
Eq. (5.249). The reader is encouraged to prove that Eqs. (5.248) and (5.251) are identical.

The two approaches described above exemplify analysis techniques used to solve
circuits and gain insight. Neither requires drawing the small-signal model of the transistor
because the reduced circuits can be “mapped” into known topologies.

Figure 5.59 summarizes the concepts studied in this section.

5.3.2 Common-Base Topology

Following our extensive study of the CE stage, we now turn our attention to the “common-
base” (CB) topology. Nearly all of the concepts described for the CE configuration apply
here as well. We therefore follow the same train of thought, but at a slightly faster pace.

Given the amplification capabilities of the CE stage, the reader may wonder why
we study other amplifier topologies. As we will see, other configurations provide differ-
ent circuit properties that are preferable to those of the CE stage in some applications.
The reader is encouraged to review Examples 5.2–5.4, their resulting rules illustrated in
Fig. 5.7, and the possible topologies in Fig. 5.28 before proceeding further.
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RC

g mAv = – RC

Gain

Headroom

Rin Rout

RC

g mAv = –

r O

RC( r O ) Av R, in

RE

Rout
RR C1

R2
RE C2

C1 Q1

R
RC

2R1

Figure 5.59 Summary of concepts studied thus far.

Figure 5.60 shows the CB stage. The input is applied to the emitter and the output is
sensed at the collector. Biased at a proper voltage, the base acts as ac ground and hence
as a node “common” to the input and output ports. As with the CE stage, we first study
the core and subsequently add the biasing elements.

Q 1

RC

VCC

outV

inv

Input Applied
to Emitter

Output Sensed
at Collector

Vb

Figure 5.60 Common-base stage.

Analysis of CB Core How does the CB stage of Fig. 5.61(a) respond to an input signal?9

If Vin goes up by a small amount �V, the base-emitter voltage of Q1 decreases by the
same amount because the base voltage is fixed. Consequently, the collector current falls
by gm �V, allowing Vout to rise by gm �VRC . We therefore surmise that the small-signal
voltage gain is equal to

Av = gmRC . (5.252)

Interestingly, this expression is identical to the gain of the CE topology. Unlike the CE
stage, however, this circuit exhibits a positive gain because an increase in Vin leads to an
increase in Vout.

Let us confirm these results with the aid of the small-signal equivalent depicted in
Fig. 5.61(b), where the Early effect is neglected. Beginning with the output node, we

9Note that the topologies of Figs. 5.60 and 5.61(a) are identical even though Q1 is drawn differently.
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RC

VCC

in

Vb

Q1

VΔ

g
m

VΔ RC
g

m πv  πv πr

inv

RC

outv

(a) (b)

V

outV

Figure 5.61 (a) Response of CB stage to small input change, (b) small-signal model.

equate the current flowing through RC to gmvπ :

−vout

RC
= gmvπ , (5.253)

obtaining vπ = −vout/(gmRC ). Considering the input node next, we recognize that
vπ = −vin. It follows that

vout

vin
= gmRC . (5.254)

As with the CE stage, the CB topology suffers from trade-offs among the gain, the
voltage headroom, and the I/O impedances. We first examine the circuit’s headroom limita-
tions. How should the base voltage, Vb, in Fig. 5.61(a) be chosen? Recall that the operation
in the active region requires VBE > 0 and VBC ≤ 0 (for npn devices). Thus, Vb must remain
higher than the input by about 800 mV, and the output must remain higher than or equal to
Vb. For example, if the dc level of the input is zero (Fig. 5.62), then the output must not fall
below approximately 800 mV, i.e., the voltage drop across RC cannot exceed VCC − VBE.
Similar to the CE stage limitation, this condition translates to

Av = IC

VT
· RC (5.255)

= VCC − VBE

VT
. (5.256)

RC

VCC

in

Vb

t
0

800 mV

~ 0 V
~800 mV

VCC V– BE

V

Figure 5.62 Voltage headroom in CB stage.
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Example

5.35
The voltage produced by an electronic thermometer is equal to 600 mV at room
temperature. Design a CB stage to sense the thermometer voltage and amplify the
change with maximum gain. Assume VCC = 1.8 V, IC = 0.2 mA, IS = 5 × 10−17 A,
and β = 100.

Solution Illustrated in Fig. 5.63(a), the circuit must operate properly with an input level of 600 mV.
Thus, Vb = VBE + 600 mV = VT ln(IC /IS) + 600 mV = 1.354 V. To avoid saturation, the
collector voltage must not fall below the base voltage, thereby allowing a maximum
voltage drop across RC equal to 1.8 V − 1.354 V = 0.446 V. Thus RC = 2.23 k�. We can
then write

Av = gmRC (5.257)

= IC RC

VT
(5.258)

= 17.2. (5.259)

The reader is encouraged to repeat the problem with IC = 0.4 mA to verify that the
maximum gain remains relatively independent of the bias current.10

Q 1

RC

VCC

outV

in 600 mV

Vb

Thermometer

Q 1

RC

VCC

outV

600 mV

R2

R1

I 1

I B

(a)
(b)

V inV

Figure 5.63 (a) CB stage sensing an input, (b) bias network for base.

We must now generate Vb. A simple approach is to employ a resistive divider
as depicted in Fig. 5.63(b). To lower sensitivity to β, we choose I1 ≈ 10IB ≈ 20 μA ≈
VCC/(R1 + R2). Thus, R1 + R2 = 90 k�. Also,

Vb ≈ R2

R1 + R2

VCC (5.260)

and hence
R2 = 67.7 k� (5.261)

R1 = 22.3 k�. (5.262)

Exercise Repeat the above example if the thermometer voltage is 300 mV.

10This example serves only as an illustration of the CB stage. A CE stage may prove more suited to
sensing a thermometer voltage.
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Let us now compute the I/O impedances of the CB topology so as to understand its ca-
pabilities in interfacing with preceding and following stages. The rules illustrated in Fig. 5.7
prove extremely useful here, obviating the need for small-signal equivalent circuits. Shown
in Fig. 5.64(a), the simplified ac circuit reveals that Rin is simply the impedance seen looking
into the emitter with the base at ac ground. From the rules in Fig. 5.7, we have

Rin = 1

gm
(5.263)

if VA = ∞. The input impedance of the CB stage is therefore relatively low, e.g.,
26 � for IC = 1 mA (in sharp contrast to the corresponding value for a CE stage, β/gm).

inR

Q 1

RC

VCC

(a) (b)

ac

Q 1

RC

VCC

Vb

X

X

VΔV

I

Figure 5.64 (a) Input impedance of CB stage, (b) response to a small change in input.

The input impedance of the CB stage can also be determined intuitively [Fig. 5.64(b)].
Suppose a voltage source VX tied to the emitter ofQ1 changes by a small amount �V. The
base-emitter voltage therefore changes by the same amount, leading to a change in the
collector current equal to gm�V. Since the collector current flows through the input source,
the current supplied by VX also changes by gm�V. Consequently, Rin = �VX/�IX = 1/gm.

Does an amplifier with a low input impedance find any practical use? Yes, indeed.
For example, many stand-alone high-frequency amplifiers are designed with an input re-
sistance of 50 � to provide “impedance matching” between modules in a cascade and the
transmission lines (traces on a printed-circuit board) connecting the modules (Fig. 5.65).11

The output impedance of the CB stage is computed with the aid of Fig. 5.66, where
the input voltage source is set to zero. We note that Rout = Rout1||RC , where Rout1 is the
impedance seen at the collector with the emitter grounded. From the rules of Fig. 5.7,
we have Rout1 = rO and hence

Rout = rO||RC (5.264)

or

Rout = RC if VA = ∞. (5.265)

11If the input impedance of each stage is not matched to the characteristic impedance of the preceding
transmission line, then “reflections” occur, corrupting the signal or at least creating dependence on the
length of the lines.
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50-Ω
Transmission

Line

 Ω

50-Ω
Transmission

Line

 Ω50 50

Figure 5.65 System using transmission lines.

Q 1

ac

r O

R
Rout1 R

C

out

Figure 5.66 Output impedance of CB stage.

Example

5.36
A common-base amplifier is designed for an input impedance of Rin and an output
impedance of Rout. Neglecting the Early effect, determine the voltage gain of the circuit.

Solution Since Rin = 1/gm and Rout = RC , we have

Av = Rout

Rin
. (5.266)

Exercise Compare this value with that obtained for the CE stage.

From Eqs. (5.256) and (5.266), we conclude that the CB stage exhibits a set of trade-offs
similar to those depicted in Fig. 5.33 for the CE amplifier.

It is instructive to study the behavior of the CB topology in the presence of a fi-
nite source resistance. Shown in Fig. 5.67, such a circuit suffers from signal attenuation
from the input to node X, thereby providing a smaller voltage gain. More specifically,
since the impedance seen looking into the emitter of Q1 (with the base grounded) is

Q 1

RC

VCC

out

in

RS

g m

1
v

v

X

in

RS

v
g m

1

X

Figure 5.67 CB stage with source resistance.
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equal to 1/gm (for VA = ∞), we have

vX =
1

gm

RS + 1

gm

vin (5.267)

= 1

1 + gmRS
vin. (5.268)

We also recall from Eq. (5.254) that the gain from the emitter to the output is given by

vout

vX
= gmRC . (5.269)

It follows that

vout

vin
= gmRC

1 + gmRS
(5.270)

= RC

1

gm
+ RS

, (5.271)

a result identical to that of the CE stage (except for a negative sign) if RS is viewed as an
emitter degeneration resistor.

Example

5.37
A common-base stage is designed to amplify an RF signal received by a 50-� antenna.
Determine the required bias current if the input impedance of the amplifier must “match”
the impedance of the antenna. What is the voltage gain if the CB stage also drives a 50-�
load? Assume VA = ∞.

Solution Figure 5.68 depicts the amplifier12 and the equivalent circuit with the antenna mod-
eled by a voltage source, vin, and a resistance, RS = 50 �. For impedance matching,

Q 1

RC

VCC

outv

Antenna

in

RS

v

VB Q 1

RC

VCC

outv

VB
Antenna

Figure 5.68 (a) CB stage sensing a signal received by an antenna, (b) equivalent circuit.

12The dots denote the need for biasing circuitry, as described later in this section.



212 Chapter 5 Bipolar Amplifiers

it is necessary that the input impedance of the CB core, 1/gm, be equal to RS , and hence

IC = gmVT (5.272)

= 0.52 mA. (5.273)

If RC itself is replaced by a 50-� load, then Eq. (5.271) reveals that

Av = RC

1

gm
+ RS

(5.274)

= 1

2
. (5.275)

The circuit is therefore not suited to driving a 50-� load directly.

Exercise What is the voltage gain if a 50-� resistor is also tied from the emitter of Q1 to ground?

Another interesting point of contrast between the CE and CB stages relates to their
current gains. The CB stage displays a current gain of unity because the current flow-
ing into the emitter simply emerges from the collector (if the base current is neglected).
On the other hand, as mentioned in Section 5.3.1, AI = β for the CE stage. In fact,
in the preceding example, iin = vin/(RS + 1/gm), which upon flowing through RC , yields
vout = RC vin/(RS + 1/gm). It is thus not surprising that the voltage gain does not exceed
0.5 if RC ≤ RS .

As with the CE stage, we may desire to analyze the CB topology in the general case:
with emitter degeneration, VA < ∞, and a resistance in series with the base [Fig. 5.69(a)].
Outlined in Problem 5.52, this analysis is somewhat beyond the scope of this book. Nev-
ertheless, it is instructive to consider a special case where RB = 0 but VA < ∞, and we
wish to compute the output impedance. As illustrated in Fig. 5.69(b), Rout is equal to RC in
parallel with the impedance seen looking into the collector, Rout1. But Rout1 is identical to
the output resistance of an emitter-degenerated common emitter stage, i.e., Fig. 5.46, and
hence given by Eq. (5.197):

Rout1 = [1 + gm(RE||rπ )]rO + (RE||rπ ). (5.276)

Q 1

RC

VCC

out

in

R

v

v

VB
R BE

r O
Q 1

RE

r O

Rout1

RC
Rout2

(a) (b)

Figure 5.69 (a) General CB stage, (b) output impedance seen at different nodes.
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Rout
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outv

Q1
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inv

outv

Vb

R E

Q1

VCC

RC

R E

Rout

(a) (b)

Figure 5.70 (a) CE stage and (b) CB stage simplified for output impedance calculation.

It follows that

Rout = RC ||{[1 + gm(RE||rπ )]rO + (RE||rπ )}. (5.277)

The reader may have recognized that the output impedance of the CB stage is equal to that
of the CE stage. Is this true in general? Recall that the output impedance is determined by
setting the input source to zero. In other words, when calculating Rout, we have no knowl-
edge of the input terminal of the circuit, as illustrated in Fig. 5.70 for CE and CB stages. It is
therefore no coincidence that the output impedances are identical if the same assumptions
are made for both circuits (e.g., identical values of VA and emitter degeneration).

Example

5.38
Old wisdom says “the output impedance of the CB stage is substantially higher than
that of the CE stage.” This claim is justified by the tests illustrated in Fig. 5.71. If a
constant current is injected into the base while the collector voltage is varied, IC exhibits
a slope equal to r−1

O [Fig. 5.71(a)]. On the other hand, if a constant current is drawn
from the emitter, IC displays much less dependence on the collector voltage. Explain
why these tests do not represent practical situations.

I B

V

VCC

1

I C

Q1

I C

V1

V1

I C

Q1

I C

V1

I E

VB

(a) (b)

g
m πv  πv πr r O

Open

Rout

g
m πv  πv πr r O

Rout

Open

(c) (d)

Figure 5.71 (a) Resistance seens at collector with emitter grounded, (b) resistance seen at

collector with an ideal current source in emitter, (c) small-signal model of (a), (d) small-

signal model of (b).
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Solution The principal issue in these tests relates to the use of current sources to drive each
stage. From a small-signal point of view, the two circuits reduce to those depicted in
Figs. 5.71(c) and (d), with current sources IB and IE replaced with open circuits because
they are constant. In Fig. 5.71(c), the current through rπ is zero, yielding gmvπ = 0 and
hence Rout = rO. On the other hand, Fig. 5.71(d) resembles an emitter-degenerated stage
(Fig. 5.46) with an infinite emitter resistance, exhibiting an output resistance of

Rout = [1 + gm(RE||rπ )]rO + (RE||rπ ) (5.278)

= (1 + gmrπ )rO + rπ (5.279)

≈ βrO + rπ , (5.280)

which is, of course, much greater than rO. In practice, however, each stage may be driven
by a voltage source having a finite impedance, making the above comparison irrelevant.

Exercise Repeat the above example if a resistor of value R1 is inserted in series with the emitter.

Another special case of the topology shown in Fig. 5.69(a) occurs if VA = ∞ but
RB > 0. Since this case does not reduce to any of the configurations studied earlier, we
employ the small-signal model shown in Fig. 5.72 to study its behavior. As usual, we write
gmvπ = −vout/RC and hence vπ = −vout/(gmRC ). The current flowing through rπ (and
RB) is then equal to vπ/rπ = −vout/(gmrπRC ) = −vout/(βRC ). Multiplying this current by
RB + rπ , we obtain the voltage at node P:

vP = −−vout

βRC
(RB + rπ ) (5.281)

= vout

βRC
(RB + rπ ). (5.282)

We also write a KCL at P:

vπ

rπ

+ gmvπ = vP − vin

RE
; (5.283)

g
m πv  πv πr

RB

inv
R E

R
outv

P

C

Figure 5.72 CB stage with base resistance.
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that is,

(
1

rπ

+ gm

) −vout

gmRC
=

vout

βRC
(RB + rπ ) − vin

RE
. (5.284)

It follows that

vout

vin
= βRC

(β + 1)RE + RB + rπ

. (5.285)

Dividing the numerator and denominator by β + 1, we have

vout

vin
≈ RC

RE + RB

β + 1
+ 1

gm

. (5.286)

As expected, the gain is positive. Furthermore, this expression is identical to that in Eq.
(5.185) for the CE stage. Figure 5.73 illustrates the results, revealing that, except for a
negative sign, the two stages exhibit equal gains. Note that RB degrades the gain and is not
added to the circuit deliberately. As explained later in this section, RB may arise from the
biasing network.

Q1

VCC

RC

outv

inv
RE

R
Q1

VCC

RC

outv

inv

RE

RBB

Figure 5.73 Comparison of CE and CB stages with base resistance.

Let us now determine the input impedance of the CB stage in the presence of a
resistance in series with the base, still assuming VA = ∞. From the small-signal equiv-
alent circuit shown in Fig. 5.74, we recognize that rπ and RB form a voltage divider,

g
m πv  πv πr

RB

v

R
outv

X
Xi

C

Figure 5.74 Input impedance of CB stage with base resistance.
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thereby producing13

vπ = − rπ

rπ + RB
vX . (5.287)

Moreover, KCL at the input node gives

vπ

rπ

+ gmvπ = −iX . (5.288)

Thus, (
1

rπ

+ gm

) −rπ

rπ + RB
vX = −iX (5.289)

and

vX

iX
= rπ + RB

β + 1
(5.290)

≈ 1

gm
+ RB

β + 1
. (5.291)

Note that Rin = 1/gm if RB = 0, an expected result from the rules illustrated in Fig. 5.7.
Interestingly, the base resistance is divided by β + 1 when “seen” from the emitter. This is
in contrast to the case of emitter degeneration, where the emitter resistance is multiplied
by β + 1 when seen from the base. Figure 5.75 summarizes the two cases. Note that these
results remain independent of RC if VA = ∞.

Q1

R
Q1

RE

B

g m

1 RB

β + 1
+

VA =

 πr β + 1) RE+ (

VA =

Figure 5.75 Impedance seen at the emitter or base of a transistor.

Example

5.39
Determine the impedance seen at the emitter of Q2 in Fig. 5.76(a) if the two transistors
are identical and VA = ∞.

Q1

R

Q

VCC
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outv

B

2

eqR RX

g
1 RB

β + 1
+

Q

VCC

RC

outv

2

RX

(a) (b)

m1

Figure 5.76 (a) Example of CB stage, (b) simplified circuit.

13Alternatively, the current through rπ + RB is equal to vX/(rπ + RB), yielding a voltage of
−rπvX/(rπ + RB) across rπ .



5.3 Bipolar Amplifier Topologies 217

Solution The circuit employs Q2 as a common-base device, but with its base tied to a finite series
resistance equal to that seen at the emitter ofQ1. Thus, we must first obtain the equivalent
resistance Req, which from Eq. (5.291) is simply equal to

Req = 1

gm1

+ RB

β + 1
. (5.292)

Reducing the circuit to that shown in Fig. 5.76(b), we have

RX = 1

gm2

+ Req

β + 1
(5.293)

= 1

gm2

+ 1

β + 1

(
1

gm1

+ RB

β + 1

)
. (5.294)

Exercise What happens if a resistor of value R1 is placed in series with the collector of Q1?

CB Stage with Biasing Having learned the small-signal properties of the CB core, we
now extend our analysis to the circuit including biasing. An example proves instructive at
this point.

Example

5.40

The student in Example 5.31 decides to incorporate ac coupling at the input of a CB
stage to ensure the bias is not affected by the signal source, drawing the design as shown
in Fig. 5.77. Explain why this circuit does not work.

Q 1

RC

VCC

out

C1
in

V

V

Vb

Figure 5.77 CB stage lacking bias current.

Solution Unfortunately, the design provides no dc path for the emitter current of Q1, forcing
a zero bias current and hence a zero transconductance. The situation is similar to the
CE counterpart in Example 5.5, where no base current can be supported.

Exercise In what region does Q1 operate if Vb = VCC?
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Example

5.41
Somewhat embarrassed, the student quickly connects the emitter to ground so that
VBE = Vb and a reasonable collector current can be established (Fig. 5.78). Explain why
“haste makes waste.”

Q 1

RC

VCC

out

C1
in

V

V

Vb

Figure 5.78 CB stage with emitter shorted to ground.

Solution As in Example 5.6, the student has shorted the signal to ac ground. That is, the emitter
voltage is equal to zero regardless of the value of vin, yielding vout = 0.

Exercise Does the circuit operate better if Vb is raised?

The above examples imply that the emitter can remain neither open nor shorted to
ground, thereby requiring some bias element. Shown in Fig. 5.79(a) is an example in which
RE provides a path for the bias current at the cost of lowering the input impedance. We
recognize that Rin now consists of two parallel components: (1) 1/gm, seen looking “up”
into the emitter (with the base at ac ground) and (2) RE, seen looking “down.” Thus,

Rin = 1

gm
||RE. (5.295)

As with the input biasing network in the CE stage (Fig. 5.58), the reduction in
Rin manifests itself if the source voltage exhibits a finite output resistance. Depicted
in Fig. 5.79(b), such a circuit attenuates the signal, lowering the overall voltage gain.
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Figure 5.79 (a) CB stage with biasing, (b) inclusion of source resistance.
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Following the analysis illustrated in Fig. 5.67, we can write

vX

vin
= Rin

Rin + RS
(5.296)

=
1

gm
||RE

1

gm
||RE + RS

(5.297)

= 1

1 + (1 + gmRE)RS
. (5.298)

Since vout/vX = gmRC ,

vout

vin
= 1

1 + (1 + gmRE)RS
· gmRC . (5.299)

As usual, we have preferred solution by inspection over drawing the small-signal
equivalent.

The reader may see a contradiction in our thoughts: on the one hand, we view the
low input impedance of the CB stage as a useful property; on the other hand, we consider
the reduction of the input impedance due to RE undesirable. To resolve this apparent
contradiction, we must distinguish between the two components 1/gm and RE, noting that
the latter shunts the input source current to ground, thus “wasting” the signal. As shown
in Fig. 5.80, iin splits two ways, with only i2 reaching RC and contributing to the output
signal. If RE decreases while 1/gm remains constant, then i2 also falls.14 Thus, reduction
of Rin due to RE is undesirable. By contrast, if 1/gm decreases while RE remains constant,
then i2 rises. For RE to affect the input impedance negligibly, we must have

RE � 1

gm
(5.300)

Q 1
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VCC

out

C1
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Vb
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R Sv

v

i in
i 2

i 1

Figure 5.80 Small-signal input current components in a CB stage.

and hence

IC RE � VT . (5.301)

That is, the dc voltage drop across RE muts be much greater than VT .

14In the extreme case, RE = 0 (Example 5.41) and i2 = 0.
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How is the base voltage, Vb, generated? We can employ a resistive divider similar to
that used in the CE stage. Shown in Fig. 5.81(a), such a topology must ensure I1 � IB to
minimize sensitivity to β, yielding

Vb ≈ R2

R1 + R2

VCC. (5.302)

However, recall from Eq. (5.286) that a resistance in series with the base reduces the voltage
gain of the CB stage. Substituting a Thevenin equivalent for R1 and R2 as depicted in
Fig. 5.81(b), we recognize that a resistance of RThev = R1||R2 now appears in series with
the base. For this reason, a “bypass capacitor” is often tied from the base to ground, acting
as a short circuit at frequencies of interest [Fig. 5.81(c)].

R1

R2

Q 1

RC

VCC

V

RE
C1

I 1

I B
Q 1

RC

VCC

RE

RThev

Thev

R1

R2

Q 1

RC

VCC

RE

CB

(c)(a) (b)

Vb

Figure 5.81 (a) CB stage with base bias network, (b) use of Thevenin equivalent, (c) effect of

bypass capacitor.

Example

5.42
Design a CB stage (Fig. 5.82) for a voltage gain of 10 and an input impedance of 50 �.
Assume IS = 5 × 10−16 A, VA = ∞, β = 100, and VCC = 2.5 V.

R1

R2

Q 1

RC

VCC

CB

Vb

RERE I C

C1

V

inV

out

Figure 5.82 Example of CB stage with biasing.

Solution We begin by selecting RE � 1/gm, e.g., RE = 500 �, to minimize the undesirable effect
of RE. Thus,

Rin ≈ 1

gm
= 50 � (5.303)

and hence

IC = 0.52 mA. (5.304)
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If the base is bypassed to ground

Av = gmRC , (5.305)

yielding

RC = 500 �. (5.306)

We now determine the base bias resistors. Since the voltage drop across RE is equal to
500 � × 0.52 mA = 260 mV and VBE = VT ln(IC /IS) = 899 mV, we have

Vb = IERE + VBE (5.307)

= 1.16 V. (5.308)

Selecting the current through R1 and R2 to be 10IB = 52 μA, we write

Vb ≈ R2

R1 + R2

VCC. (5.309)

VCC

R1 + R2

= 52 μA. (5.310)

It follows that

R1 = 25.8 k� (5.311)

R2 = 22.3 k�. (5.312)

The last step in the design is to compute the required values ofC1 andCB according to
the signal frequency. For example, if the amplifier is used at the receiver front end of a 900-
MHz cellphone, the impedances ofC1 andCB must be sufficiently small at this frequency.
Appearing in series with the emitter of Q1, C1 plays a role similar to RS in Fig. 5.67 and
Eq. (5.271). Thus, its impedance, |C1ω|−1, must remain much less than 1/gm = 50 �. In
high-performance applications such as cellphones, we may choose |C1ω|−1 = (1/gm)/20
to ensure negligible gain degradation. Consequently, for ω = 2π × (900 MHz):

C1 = 20gm

ω
(5.313)

= 71 pF. (5.314)

Since the impedance of CB appears in series with the base and plays a role similar to the
term RB/(β + 1) in Eq. (5.286), we require that

1

β + 1

∣∣∣∣ 1

CBω

∣∣∣∣ = 1

20

1

gm
(5.315)

and hence

CB = 0.7 pF. (5.316)

(A common mistake is to make the impedance of CB negligible with respect to R1||R2

rather than with respect to 1/gm.)

Exercise Design the above circuit for an input impedance of 100 �.
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5.3.3 Emitter Follower

Another important circuit topology is the emitter follower (also called the “common-
collector” stage). The reader is encouraged to review Examples 5.2–5.3, rules illustrated
in Fig. 5.7, and the possible topologies in Fig. 5.28 before proceeding further. For the
sake of brevity, we may also use the term “follower” to refer to emitter followers in this
chapter.

Shown in Fig. 5.83, the emitter follower senses the input at the base of the transistor
and produces the output at the emitter. The collector is tied to VCC and hence ac ground.
We first study the core and subsequently add the biasing elements.

Q1

VCC

inV

outVInput Applied
to Base

Output Sensed
at Emitter

RE

Figure 5.83 Emitter follower.

Emitter Follower Core How does the follower in Fig. 5.84(a) respond to a change in Vin?
If Vin rises by a small amount �Vin, the base-emitter voltage ofQ1 tends to increase, raising
the collector and emitter currents. The higher emitter current translates to a greater drop
across RE and hence a higher Vout. From another perspective, if we assume, for example,
Vout is constant, then VBE must rise and so must IE, requiring that Vout go up. Since Vout

changes in the same direction as Vin, we expect the voltage gain to be positive. Note that
Vout is always lower than Vin by an amount equal to VBE, and the circuit is said to provide
“level shift.”

Q1

VCC

inV

R
outV

E

Vin1

Vin1 + VΔ

V + VΔout1

Vout1

VBE1

VBE2

(a) (b)

in

out

Figure 5.84 (a) Emitter follower sensing an input change, (b) response of the circuit.

Another interesting and important observation here is that the change in Vout cannot
be larger than the change in Vin. Suppose Vin increases from Vin1 to Vin1 + �Vin and Vout

from Vout1 to Vout1 + �Vout [Fig. 5.84(b)]. If the output changes by a greater amount than
the input, �Vout > �Vin, then VBE2 must be less than VBE1. But this means the emitter
current also decreases and so does IERE = Vout, contradicting the assumption that Vout has
increased. Thus, �Vout < �Vin, implying that the follower exhibits a voltage gain less than
unity.15

15In an extreme case described in Example 5.43, the gain becomes equal to unity.
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R
out

E

g
m πv  πv πr

inv

v

Figure 5.85 Small-signal model of emitter follower.

The reader may wonder if an amplifier with a subunity gain has any practical value.
As explained later, the input and output impedances of the emitter follower make it a
particularly useful circuit for some applications.

Let us now derive the small-signal properties of the follower, first assuming VA = ∞.
Shown in Fig. 5.85, the equivalent circuit yields

vπ

rπ

+ gmvπ = vout

RE
(5.317)

and hence

vπ = rπ

β + 1
· vout

RE
. (5.318)

We also have

vin = vπ + vout. (5.319)

Substituting for vπ from (5.318), we obtain

vout

vin
= 1

1 + rπ

β + 1
· 1

RE

(5.320)

≈ RE

RE + 1

gm

. (5.321)

The voltage gain is therefore positive and less than unity.

Example

5.43
In integrated circuits, the follower is typically realized as shown in Fig. 5.86. Determine
the voltage gain if the current source is ideal and VA = ∞.

Q1

VCC

inV

I 1

outV

Figure 5.86 Follower with current source.
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Solution Since the emitter resistor is replaced with an ideal current source, the value of RE in
Eq. (5.321) must tend to infinity, yielding

Av = 1. (5.322)

This result can also be derived intuitively. A constant current source flowing throughQ1

requires that VBE = VT ln(IC /IS) remain constant. Writing Vout = Vin − VBE, we recognize
that Vout exactly follows Vin if VBE is constant.

Exercise Repeat the above example if a resistor of value R1 is placed in series with the collector.

Equation (5.321) suggests that the emitter follower acts as a voltage divider, a perspec-
tive that can be reinforced by an alternative analysis. Suppose, as shown in Fig. 5.87(a), we
wish to model vin and Q1 by a Thevenin equivalent. The Thevenin voltage is given by the
open-circuit output voltage produced by Q1 [Fig. 5.87(b)], as if Q1 operates with RE = ∞
(Example 5.43). Thus, vThev = vin. The Thevenin resistance is obtained by setting the input
to zero [Fig. 5.87(c)] and is equal to 1/gm. The circuit of Fig. 5.87(a) therefore reduces to
that shown in Fig. 5.87(d), confirming operation as a voltage divider.

Q1

VCC

R
out

E

(a)

inv v

Q1

VCC

inv outv = vin

Q1

VCC

RThev

R
out

E

v

RThev

v = vinThev

g m

1
=

(c) (d)

(b)

Figure 5.87 (a) Emitter follower stage, (b) Thevenin voltage, (c) Thevenin resistance,

(d) simplified circuit.

Example

5.44
Determine the voltage gain of a follower driven by a finite source impedance of RS

[Fig. 5.88(a)] if VA = ∞.

Solution We model vin, RS , andQ1 by a Thevenin equivalent. The reader can show that the open-
circuit voltage is equal to vin. Furthermore, the Thevenin resistance [Fig. 5.88(b)] is
given by Eq. (5.291) as RS/(β + 1) + 1/gm. Figure 5.88(c) depicts the equivalent circuit,
revealing that

vout

vin
= RE

RE + RS

β + 1
+ 1

gm

. (5.323)
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Q1

VCC

R
out

E

(a)

inv v

Q1

VCC

RThev

R
out

E

v

v = vinThev

g m

1

(b)

RS RS

+
RS

 β + 1

(c)

Figure 5.88 (a) Follower with source impedance, (b) Thevenin resistance seen at emitter,

(c) simplified circuit.

This result can also be obtained by solving the small-signal equivalent circuit of the
follower.

Exercise What happens if RE = ∞?

In order to appreciate the usefulness of emitter followers, let us compute their input and
output impedances. In the equivalent circuit of Fig. 5.89(a), we have iXrπ = vπ . Also, the
current iX and gmvπ flow through RE, producing a voltage drop equal to (iX + gmvπ )RE.
Adding the voltages across rπ and RE and equating the result to vX , we have

vX = vπ + (iX + gmvπ )RE (5.324)

= iXrπ + (iX + gmiXrπ )RE, (5.325)

and hence

vX

iX
= rπ + (1 + β)RE. (5.326)

This expression is identical to that in Eq. (5.162) derived for a degenerated CE stage.
This is, of course, no coincidence. Since the input impedance of the CE topology is in-
dependent of the collector resistor (for VA = ∞), its value remains unchanged if RC = 0,
which is the case for an emitter follower [Fig. 5.89(b)].

The key observation here is that the follower “transforms” the load resistor, RE, to a
much larger value, thereby serving as an efficient “buffer.” This concept can be illustrated
by an example.



226 Chapter 5 Bipolar Amplifiers

RE

g
m πv  πv πrv X

Xi

Q1

VCC

RC

REinR

0

Q1

VCC

REinR

(a) (b)

Figure 5.89 (a) Input impedance of emitter follower, (b) equivalence of CE and follower stages.

Example

5.45
A CE stage exhibits a voltage gain of 20 and an output resistance of 1 k�. Determine
the voltage gain of the CE amplifier if

(a) The stage drives an 8-� speaker directly.

(b) An emitter follower biased at a current of 5 mA is interposed between the CE stage
and the speaker. Assume β = 100, VA = ∞, and the follower is biased with an ideal
current source.

Solution (a) As depicted in Fig. 5.90(a), the equivalent resistance seen at the collector is now given
by the parallel combination of RC and the speaker impedance, Rsp, reducing the gain
from 20 to 20 × (RC ||8 �)/RC = 0.159. The voltage gain therefore degrades drastically.

Q1

VCC

RC

inv

 Ω1 k

C1 Q1

VCC

RC

inv

 Ω1 k

C1

Q

I 1

2

Rin1

(a) (b)

Rsp

Rsp

Figure 5.90 (a) CE stage and (b) two-stage circuit driving a speaker.

(b) From the arrangement in Fig. 5.90(b), we note that

Rin1 = rπ2 + (β + 1)Rsp (5.327)

= 1328 �. (5.328)

Thus, the voltage gain of the CE stage drops from 20 to 20 × (RC ||Rin1)/
RC = 11.4, a substantial improvement over case (a).

Exercise Repeat the above example if the emitter follower is biased at a current of 10 mA.

We now calculate the output impedance of the follower, assuming the circuit is driven
by a source impedance RS [Fig. 5.91(a)]. Interestingly, we need not resort to a small-signal
model here as Rout can be obtained by inspection. As illustrated in Fig. 5.91(b), the output
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Q1

VCC
RS

outR
RE

Q1

VCC
RS

RE

g m

1 +
RS

 β + 1

RE

(a) (b)

Figure 5.91 (a) Output impedance of a follower, (b) components of output resistance.

resistance can be viewed as the parallel combination of two components: one seen looking
“up” into the emitter and another looking “down” into RE. From Fig. 5.88, the former is
equal to RS/(β + 1) + 1/gm, and hence

Rout =
(

RS

β + 1
+ 1

gm

)
||RE. (5.329)

This result can also be derived from the Thevenin equivalent shown in Fig. 5.88(c) by
setting vin to zero.

Equation (5.329) reveals another important attribute of the follower: the circuit trans-
forms the source impedance, RS , to a much lower value, thereby providing higher “driving”
capability. We say the follower operates as a good “voltage buffer” because it displays a high
input impedance (like a voltmeter) and a low output impedance (like a voltage source).

Effect of Transistor Output Resistance Our analysis of the follower has thus far ne-
glected the Early effect. Fortunately, the results obtained above can be readily modified
to reflect this nonideality. Figure 5.92 illustrates a key point that facilitates the analy-
sis: in small-signal operation, rO appears in parallel with RE. We can therefore rewrite
Eqs. (5.323), (5.326) and (5.329) as

Av = RE||rO

RE||rO + RS

β + 1
+ 1

gm

(5.330)

Rin = rπ + (β + 1)(RE||rO) (5.331)

Rout =
(

RS

β + 1
+ 1

gm

)
||RE||rO. (5.332)

Q1

VCC

RS

RE

r O

inv
Q1

RS

RE r O

inv

Figure 5.92 Follower including transistor output resistance.
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Example

5.46
Determine the small-signal properties of an emitter follower using an ideal current
source (as in Example 5.43) but with a finite source impedance RS .

Solution Since RE = ∞, we have

Av = rO

rO + RS

β + 1
+ 1

gm

(5.333)

Rin = rπ + (β + 1)rO (5.334)

Rout =
(

RS

β + 1
+ 1

gm

)
||rO. (5.335)

Also, gmrO � 1, and hence

Av ≈ rO

rO + RS

β + 1

(5.336)

Rin ≈ (β + 1)rO. (5.337)

We note that Av approaches unity if RS � (β + 1)rO, a condition typically valid.

Exercise How are the results modified if RE < ∞?

The buffering capability of followers is sometimes attributed to their “current gain.”
Since a base current iB results in an emitter current of (β + 1)iB, we can say that for
a current iL delivered to the load, the follower draws only iL/(β + 1) from the source
voltage (Fig. 5.93). Thus, vX sees the load impedance multiplied by (β + 1).

Q1

VCC

v X

Load

i L

i L

 β + 1

Figure 5.93 Current amplification in a follower.

Emitter Follower with Biasing The biasing of emitter followers entails defining both
the base voltage and the collector (emitter) current. Figure 5.94(a) depicts an example
similar to the scheme illustrated in Fig. 5.19 for the CE stage. As usual, the current flowing
through R1 and R2 is chosen to be much greater than the base current.

Q1

VCC

R1

R2

C1
inv

RE

X

outV

Q1

VCC

R

C1
inv

RE

X

outV

B

(a) (b)

BI

Y

Figure 5.94 Biasing a follower by means of (a) resistive divider, (b) single base resistor.
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It is interesting to note that, unlike the CE topology, the emitter follower can op-
erate with a base voltage near VCC. This is because the collector is tied to VCC, allowing
the same voltage for the base without driving Q1 into saturation. For this reason, fol-
lowers are often biased as shown in Fig. 5.94(b), where RBIB is chosen much less than the
voltage drop across RE, thus lowering the sensitivity to β. The following example illustrates
this point.

Example

5.47
The follower of Fig. 5.94(b) employs RB = 10 k� and RE = 1 k�. Calculate the bias
current and voltages if IS = 5 × 10−16 A, β = 100, and VCC = 2.5 V. What happens if β

drops to 50?

Solution To determine the bias current, we follow the iterative procedure described in
Section 5.2.3. Writing a KVL through RB, the base-emitter junction, and RE gives

RBIC

β
+ VBE + REIC = VCC, (5.338)

which, with VBE ≈ 800 mV, leads to

IC = 1.545 mA. (5.339)

It follows that VBE = VT ln(IC /IS) = 748 mV. Using this value in Eq. (5.338), we have

IC = 1.593 mA, (5.340)

a value close to that in Eq. (5.339) and hence relatively accurate. Under this condition,
IBRB = 159 mV whereas REIC = 1.593 V.

Since IBRB � REIC , we expect that variation of β and hence IBRB negligibly affects
the voltage drop across RE and hence the emitter and collector currents. As a rough
estimate, for β = 50, IBRB is doubled (≈ 318 mV), reducing the drop across RE by
159 mV. That is, IE = (1.593 V − 0.159 V)/1 k� = 1.434 mA, implying that a twofold
change in β leads to a 10% change in the collector current. The reader is encouraged to
repeat the above iterations with β = 50 and determine the exact current.

Exercise If RB is doubled, is the circuit more or less sensitive to the variation in β?

As manifested by Eq. (5.338), the topologies of Fig. 5.94 suffer from supply-
dependent biasing. In integrated circuits, this issue is resolved by replacing the emitter
resistor with a constant current source (Fig. 5.95). Now, since IEE is constant, so are VBE

and RBIB. Thus, if VCC rises, so do VX and VY , but the bias current remains constant.

Q1

VCC

R

C1
inv

B

C2 RL

Figure 5.95 Capacitive coupling at input and output of a follower.
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P R O B L E M S

5.1. An antenna modeled as a Thevenin equiv-
alent having a voltage 15 cos 2π × 103 t and
output resistance of 50 �. Determine the
average power delivered to a load resistance
of 15 �.

5.2. Determine the small-signal input resistance
of the circuits shown in Fig. 5.96. Assume
all diodes are forward-biased. (Recall from
Chapter 3 that each diode behaves as a
linear resistance if the voltage and current
changes are small.)

1D

R1 D2

(c)(a) (b)

inR

1D

R1
inR

D2

1D

R1
inR

Figure 5.96

5.3. Compute the input resistance of the circuits
depicted in Fig. 5.97. Assume VA=∞.

5.4. Compute the output resistance of the cir-
cuits depicted in Fig. 5.98.

5.5. Determine the input impedance of the
circuits depicted in Fig. 5.99. Assume
VA = ∞.

Q1

Q
inR

2

VCC

R1

R1
inR

VCC

(c) (d)(a) (b)

Q1

VCC

Q2inR
R1

R2
Q1

VCC

R1

R2inR

Figure 5.97

VB

R1
outR

RE

RE

Rout

VB

RB

RE

Rout

(c)(a) (b)

Figure 5.98
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Q1

VCC

R1
inR

Q 1

VCC

Ideal

VBinR

R1

Q

VCC

VB

inR

R1

Q1

2

Q1

VCC

inR

Q2

Q1

VCC

inR

Q2

(c)

(d)

(a) (b)

(e)Figure 5.99

5.6. Compute the output impedance of the cir-
cuits shown in Fig. 5.100.

Q1

VCC

R
Q

VB

Q1

2

(a)

outR
C

Rout

(b)

Figure 5.100

5.7. Compute the bias point of the circuits
depicted in Fig. 5.101. Assume β = 100,
IS = 6 × 10−16 A, and VA = ∞.

5.8. Construct the small-signal equivalent of
each of the circuits in Problem 5.7.

5.9. Calculate* the bias point of the circuits
shown in Fig. 5.102. Assume β = 100,
IS = 5 × 10−16 A, and VA = ∞.

VCC= 2.5 V

Q1

 Ω  Ω500

Q1

 Ω Ω100 k 1 k

Q2

VCC= 2.5 V

Q1

 Ω Ω100 k 1 k

VCC= 2.5 V

0.5 V

(c)(a) (b)

100 k

Figure 5.101

VCC= 2.5 V

Q1

 Ω

Q1

 Ω

Q2

VCC= 2.5 V

Q1

 Ω Ω 1 k

VCC= 2.5 V

0.5 V

(c)(b)

 Ω3 k34 k

 Ω16 k  Ω16 k

 Ω9 k

 Ω13 k

12 k

(a)

500

Figure 5.102
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5.10. In the circuit of Fig. 5.103, β = 100,
VA = ∞.

(a) If the collector current of Q1 is equal to
1 mA, calculate the value of IS.

(b) If Q1 is biased at the edge of saturation,
calculate the value of IS.

VCC = 2.5 V 

1 kΩ

500 Ω30 kΩ

40 kΩ

Figure 5.103

5.11. Consider the circuit of Fig. 5.104, where
β = 100, IS = 5 × 10−15 A and VA = ∞.
Calculate the value of IC and VCE.

VCC = 2.5 V

1 kΩ

500 Ω18 kΩ

42 kΩ

Figure 5.104

5.12. For the circuit of Fig. 5.105 where β = 100,
IS = 5 × 10−15 A and VA = ∞, what is the
minimum value of RB that guarantees the
operation of Q1 in the active mode?

2.5 V

2 kΩ

1.5 V

RB

Figure 5.105

5.13. For the CE stage depicted in Fig. 5.106,
determine the gain, input, and output
impedance.

VCC = 2 V 

1 kΩ

16 kΩ

24 kΩ

Figure 5.106

5.14. The circuit of Fig. 5.107 is designed for
a collector current of 0.5 mA. Assume
β = 100, IS = 5 × 10−15 A and VA = ∞.
Determine the required value of RE.

VCC

RE

RC 3 kΩ

R2

R1

10 kΩ

20 kΩ

= 3 V

Figure 5.107

5.15. In the circuit of Fig. 5.108, determine
the value of R1 that guarantees opera-
tion of Q1 in the active mode. Assume
β = 100, IS = 10−16 A and VA = ∞.

VCC

Q1
R2

2 kΩ30 kΩ

= 2.5 V

Figure 5.108

5.16. In the circuit of Fig. 5.109, β1 = β2 = 100,
IS1 = IS2 = 4 × 10−15 A and VA = ∞.
Determine the operating point of the tran-
sistor and voltage gain.

Q1

Q2
R2

R1

VCC = 2.5 V

15 kΩ

10 kΩ 100 Ω

Figure 5.109
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5.17. Consider the circuit of Fig. 5.110, where
IS1 = 2IS2 = 3IS3 = 5 × 10−15A, β1 = β2 =
β3 = 100, and VA = ∞. Determine collec-
tor currents of Q1, Q2 and Q3.

Q1

VCC = 2.5 V

1 kΩ13 kΩ

12 kΩ

Q2

Q3

Figure 5.110

5.18. The circuit of Fig. 5.111 must be biased
with a collector current of 0.5 mA. Com-
pute the required value of RB if β = 100,
IS = 5 × 10−15 A and VA = ∞.

VCC

RB

1 kΩ

= 2.5 V

Figure 5.111

5.19. In the circuit of Fig. 5.112, if
β = 100, IS = 5 × 10−15 A, determine VX

and IC .

VCC = 2.5 V

300 Ω10 kΩ

Figure 5.112

5.20. Due to a manufacturing error, a parasitic
resistor, RP, has appeared in series with
the collector of Q1 in Fig. 5.113. What is
the minimum allowable value of RB if the
base-collector forward bias must not exceed
200 mV? Assume IS = 3 × 10−16 A, β =
100, and VA = ∞.

Q1

VCC

RB
 Ω1 k

 Ω500Rp

= 2.5 V

Figure 5.113

5.21. Consider the circuit shown in Fig. 5.114,
where IS = 6 × 10−16 A, β = 100, and
VA = ∞. Calculate the operating point
of Q1.

VCC= 2.5 V

Q1

 Ω

 Ω400

 Ω50020 k

Figure 5.114

5.22. In the circuit of Fig. 5.115, β = 100, IS =
5 × 10−15 A and of VA = ∞. Determine the
operating point of Q1.

VCC

VX

= 3 V

10 kΩ

500 Ω

1 kΩ

Figure 5.115

5.23. In the circuit of Fig. 5.116, IS1 = IS2 =
4 × 10−16A, β1 = β2 = 100 and VA = ∞.
Calculate VB such thatQ1 carries a collector
current of 1 mA.

V

Q1

VCC = 3 V

B

Q2

500 Ω

300 Ω

Figure 5.116
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5.24. Determine the bias point of circuit shown in
Fig. 5.117 given IS = 9 × 10−16A, β = 100
and VA = ∞.

200 Ω40 kΩ

1 kΩ
VCC = 3 V

Figure 5.117

5.25. Calculate the bias point of the circuits
shown in Fig. 5.118. Assume βnpn = 2βpnp =
100, IS = 9 × 10−16 A, and VA = ∞.

Q

Q1

2

VCC

 Ω

= 2.5 V

 Ω1 k

 Ω

18 k

32 k

(a) (b)

Q1

VCC = 2.5 V

 Ω Ω

 Ω

18 k

32 k

100

Figure 5.118

5.26. Calculate the value of RE in Fig. 5.119 such
that Q1 sustains a reverse bias of 300 mV
across its base-collector junction. Assume
β = 50, IS = 8 × 10−16 A, and VA = ∞.
What happens if the value of RE is halved?

Q1

VCC = 2.5 V

 Ω

 Ω

RE

5 k

10 k

 Ω10 k

Figure 5.119

5.27. We have chosen RB in Fig. 5.120 to place
Q1 at the edge of saturation. But the actual
value of this resistor can vary by ±5%.
Determine the forward- or reverse-
bias across the base-collector junction
at these two extremes. Assume β = 50,
IS = 8 × 10−16 A, and VA = ∞.

Q1

VCC = 2.5 V

 Ω

 Ω1 k

5 k

RB

Figure 5.120

5.28. If β = 100 and VA = ∞, what value of
IS yields a collector current of 1 mA in
Fig. 5.121?

VCC = 3 V

25 kΩ 1 kΩ

1 kΩ

Figure 5.121

5.29. The* topology depicted in Fig. 5.122(a) is
called a “VBE multiplier.” (The npn coun-
terpart has a similar topology.) Construct-
ing the circuit shown in Fig. 5.122(b),
determine the collector-emitter voltage of
Q1 if the base current is negligible. (The npn
counterpart can also be used.)

Q1

R1

R2

Q1

R1

R2

VCC

R3

(a) (b)

Figure 5.122

5.30. We wish to design the CE stage of Fig. 5.123
for a voltage gain of 20. What is the min-
imum allowable supply voltage if Q1 must
remain in the active mode? Assume VA = ∞
and VBE = 0.8 V.
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VCC

Q1

outV

inV

 Ω
= 2.5 V

50 k

Figure 5.123

5.31. The circuit of Fig. 5.124 must be designed
for maximum gain while maintaining Q1 in
the active mode. If VA = 10 V and VBE =
0.8 V, calculate the required bias current.

VCC

Q1inV

1 kΩ

500 Ω

= 3 V

Figure 5.124

5.32. Suppose the bipolar transistor in Fig. 5.125
exhibits the following hypothetical charac-
teristic:

IC = IS exp
VBE

2VT
, (5.341)

and no Early effect. Compute the voltage
gain for a bias current of 1 mA.

VCC

Q1

outV

inV

RC  Ω1 k

Figure 5.125

5.33. The CE stage of Fig. 5.126 employs an ideal
current source as the load. If the voltage
gain is equal to 50 and the output impedance
equal to 10 k�, determine the bias current
of the transistor.

VCC

Q1

outV

inV

Ideal

Figure 5.126

5.34. Determine** the voltage gain and I/O
impedances of the circuits shown in
Fig. 5.127. Assume VA = ∞. Transistor Q2

in Figs. 5.127(d) and (e) operates in soft
saturation.

Q1

outV

inV

Q

VCC

2

Q1

outV

inV

Q

VCC

2

R1

Q

Q1

2

VCC

RC

outV

inV

Q

Q1

2

VCC

RC

outV

inV

Q

Q1

2

VCC

RC

outV

inV

(c)(a) (b)

(d) (e)

Figure 5.127
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5.35. Calculate the voltage gain of the stage
shown in Fig. 5.128, if the voltage drop
across RC is 1 V, β = 100 and VA = ∞.

VCC

inV

RC

RE = 700 Ω

= 5 V

1 kΩ

Figure 5.128

5.36. Design the degenerated stage of Fig. 5.129
for a voltage gain of 5. Calculate the
bias currents and value of RE, if β = 100,
IS = 5 × 10−16 A and VA = ∞. Calculate
the input impedance of the circuit.

5.37. Construct the small-signal model of the CE
stage shown in Fig. 5.43(a) and calculate the
voltage gain. Assume VA = ∞.

5.38. Determine** the voltage gain and I/O
impedances of the circuits shown in
Fig. 5.130. Assume VA = ∞.

VCC

inV

= 2.5 V
1 kΩ

RE

Figure 5.129

5.39. Compute** the voltage gain the I/O
impedances of the circuits depicted in
Fig. 5.131. Assume VA = ∞.

5.40. Compare* the output impedances of the cir-
cuits illustrated in Fig. 5.132. Assumeβ � 1.

5.41. Calculate* the output impedance of the cir-
cuits shown in Fig. 5.133. Assume β � 1.

5.42. Calculate vout/vin for each of the circuits
depicted in Fig. 5.134. Assume
IS = 8 × 10−16 A, β = 100, and VA = ∞.
Also, assume the capacitors are very
large.

Q1

outV

inV

Q

VCC

2

R1

RE

VCC

Q1

outV

inV

RC

Q2

VCC

Q1

outV

inV

RC

Q 2

VCC

Q1

outV

RC

Q 2

R
inV

B

VCC

Q1

outV

RC

R
inV

B
Q 2

VB

(c)

(d)

(a)
(b)

(e)

Figure 5.130
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Q1

VCC

RC

Q

R

inV

outV

2

E

Q1

VCC

RC

Q

R

inV

outV

2

E

Q1

VCC

RC

Q

inV

outV

2

Q3

Q1

VCC

RC

R

inV

outV

E

Q

VCC

2

(c) (d)(a) (b)

Figure 5.131

Q

Q1

2

VCC

Rout

Q 2

VCC

Rout

Q 1

(a) (b)

Figure 5.132

Q1

Rout

Q1

VCC

Q2

Rout

(c)

Q2

(a)

Q1

I 1

Q 2

VCC

R

Rout

B

R1

(b)

Figure 5.133

VCC

Q1

 Ω Ω

= 2.5 V

C1

1 k

 Ω100

inV
outV

VCC

Q1

 Ω

= 2.5 V

C1

1 k

inV
outV

 Ω1 k

50 k

 Ω2 kC2

VCC

Q1

RC

 Ω

= 2.5 V

 Ω10 k

 Ω500

C2  Ω2 k

11 k

 Ω14 k

inV
 Ω1 k

C1

(c)(a) (b)

outV

100 k  Ω

Figure 5.134
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5.43. The common base stage of Fig. 5.135 biased
with a base current of 20 μA. Assume β =
100 and of VA = ∞. Calculate the voltage
gain and input/output impedances of the
circuit.

5.44. Determine the voltage gain of the cir-
cuits shown in Fig. 5.136. Assume VA = ∞,
IC = 2 mA and βnpn = 2βpnp = 100.

VCC

Vb

inV

500 ΩRC

Figure 5.135

(c)(a) (b)

Q1

VCC

Vb

inV

RC 1 kΩ
outVVCC

Vb
Vb

outV

inV

VCC

RE

RC 1 kΩ

= 1 kΩ

Figure 5.136

(c)(a) (b)

Q1

inR

VCC

Q2
R11 kΩ

VCC

inR

R1

R2

1 kΩ
10 kΩ

Vb

VCC

inR

R2

RE

R11 kΩ 10 kΩ

500 Ω

Figure 5.137

5.45. Compute the input impedance of the stages
shown in Fig. 5.137. Assume VA = ∞,
IC = 2 mA and β = 100.

5.46. Compute the input/output impedance and
voltage gain of the stages shown in
Fig. 5.138. Assume VA = ∞.

VCC

Vb

cR

inV
75 Ω

inR

1 kΩ

Figure 5.138

5.47. Consider CB stage depicted in Fig. 5.139,
where β = 100, IS = 8 × 10−16 A, VA = ∞
and CB is very large.
(a) Calculate the operating point of Q and

(b) calculate the voltage gain.

VCC

Vin

Vout

15 kΩ 1 kΩ

330 Ω12 kΩ

= 2.5 V

Figure 5.139



Problems 239

5.48. Calculate* the voltage gain and the I/O
impedances of the stage depicted in
Fig. 5.140 if VA = ∞ and CB is very large.

Q 1

VCC

inV

CB

R1

R2

ideal

Vout

Figure 5.140

5.49. Compute the voltage gain and I/O impe-
dances of the stage shown in Fig. 5.141
if VA = ∞ and CB is very large.

Q 1

VCC

inV

Q 2

CB

R1

R2

V out

Figure 5.141

5.50. Calculate the voltage gain of the circuit
shown in Fig. 5.142. Assume VA < ∞,

β = 100 and gm = (26 �)
−1

.

inV

Vout

RE

RC

RB
= 500 Ω

1 kΩ

10 kΩ

VCC = 2.5 V

Figure 5.142

5.51. The circuit of Fig. 5.143 provides two out-
puts. If IS1 = 3IS2, determine the relation
between Vout1/Vin and Vout2/Vin. Assume
VA = ∞.

Q1
Vb

inV

VCC

RC

Q

RC

VV out2out 1

2

Figure 5.143

5.52. Using** a small-signal model, determine the
voltage gain of a CB stage with emitter de-
generation, a base resistance, and VA < ∞.
Assume β � 1.

5.53. For RE = 600 � in Fig. 5.144, determine
the bias current of Q1 such that the gain is
equal to 0.9. Assume VA = ∞.

Q1

R1

R2 RE

VCC
10 kΩ

10 kΩ
outV

inV

Figure 5.144

5.54. The circuit of Fig. 5.144 must provide an
input impedance of greater than 10 k�

with a minimum gain of 0.9. Calculate
the required bias current and RE. Assume
β = 100 and VA = ∞.

5.55. A microphone having an output impedance
RS = 250 � drives an emitter follower as
shown in Fig. 5.145. Determine the bias
currents such that the output impedance
does not exceed 10 �. Assume β = 100 and
VA = ∞.

VCC

inV

= 2.5
RS

outR

12 kΩ

200 Ω

Figure 5.145
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Q1

VCC

outV

inV

Q2
Vb

Q1

VCC

outV

inV

Q2

Q1

VCC

outV

inV

Q

RE

1

VCC

outV

inV

Q
RS

Q1

VCC

inV

Q

RE

outV

(c)

(d)

(a) (b)

(e)

Q

2

2 2

Figure 5.146

5.56. Compute the voltage gain and I/O impe-
dances of the circuits shown in Fig. 5.146.
Assume VA = ∞.

5.57. Figure* 5.147 depicts a “Darlington pair,”
where Q1 plays a role somewhat similar
to an emitter follower driving Q2. Assume
VA = ∞ and the collectors of Q1 and Q2

are tied to VCC. Note that IE1(≈IC1) =
IB2 = IC2/β.
(a) If the emitter of Q2 is grounded, deter-

mine the impedance seen at the base
of Q1.

(b) If the base of Q1 is grounded, calculate
the impedance seen at the emitter ofQ2.

(c) Compute the current gain of the pair,
defined as (IC1 + IC2)/IB1.

Q1

Q2

Figure 5.147

5.58. Determine the voltage gain of the fol-
lower depicted in Fig. 5.148. Assume IS =
7 × 10−16 A, β = 100, and VA = 5 V. (But
for bias calculations, assume VA = ∞.) Also,
assume the capacitors are very large.

Q1

VCC

outV

= 2.5 V

C1

inV

 Ω10 k

 Ω1 k

C2

 Ω100

Figure 5.148

5.59. Assuming VA = ∞ determine the voltage
gain of the circuit shown in Fig. 5.149.

Q1

RS

RC

VCC

out

in
RE

R1 R2

V

V

Figure 5.149

5.60. Calculate the input and output impedances
of the circuit depicted in Fig. 5.150. Deter-
mine the voltage gain.
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RE

inV

VCC

outV

RC

Figure 5.150

5.61. Figure 5.151 shows a cascade of an emitter
follower and common base stage. Calculate
the input/output impedances of the circuit.

Assume VA = ∞, gm1 = gm2 = (26 �)
−1

and β = 100.

Q1

RE

inV

VCC

Q Vb2

= 2.5 V
RC = 1 kΩ

10 kΩ

Figure 5.151

Design Problems

In the following problems, unless otherwise
stated, assume β =100, IS =6×10−16A, and
VA = ∞.

5.62. Design the CE stage shown in Fig. 5.152 for
a voltage gain of 10, and input impedance of
greater than 5 k�, and an output impedance
of 1 k�. If the lowest signal frequency of
interest is 200 Hz, estimate the minimum
allowable value of CB.

VCC

Q1

outV

RCR

C
inV

= 2.5 V

B

B

Figure 5.152

5.63. We wish to design the CE stage of Fig.
5.153 for maximum voltage gain but with
an output impedance no greater than 500 �.
Allowing the transistor to experience at

most 400 mV of base-collector forward bias,
design the stage.

VCC

Q1

outV

RCR

inV

= 2.5 V

B

Figure 5.153

5.64. The CE stage of Fig. 5.153 must be designed
for minimum supply voltage but with a volt-
age gain of 15 and an output impedance
of 2 k�. If the transistor is allowed to sus-
tain a base-collector forward bias of 400 mV,
design the stage and calculate the required
supply voltage.

5.65. Design the degenerated CE stage of
Fig. 5.154 for a voltage gain of 5 and an
output impedance of 500 �. Assume RE sus-
tains a voltage drop of 300 mV and the
current flowing through R1 is approximately
10 times the base current.

VCC

Q1

R1

RE

R

= 2.5 V

outV

C

R
inV

2

Figure 5.154

5.66. The stage of Fig. 5.154 must be designed
for maximum voltage gain but an out-
put impedance of no greater than 1 k�.
Design the circuit, assuming that RE sus-
tains 200 mV, the current flowing through
R1 is approximately 10 times the base cur-
rent, and Q1 experiences a maximum base-
collector forward bias of 400 mV.

5.67. Design the common-base stage shown in
Fig. 5.155 for a voltage gain of 20 and an
input impedance of 50 �. Assume a volt-
age drop of 10VT = 260 mV across RE so
that this resistor does not affect the input
impedance significantly. Also, assume the
current flowing through R1 is approximately
10 times the base current, and the lowest
frequency of interest is 200 Hz.
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VCC

Q1

R1

RE

R

= 2.5 V

outV

C

R Vin

CB

2

Figure 5.155

5.68. The CB amplifier of Fig. 5.155 must achieve
a voltage gain of 8 with an output impedance
of 500 �. Design the circuit with the same
assumptions as those in Problem 5.67.

5.69. Design the emitter follower shown in
Fig. 5.156 for a voltage gain of 0.85 and
an input impedance of greater than 10 k�.
Assume RL = 200 �.

5.70. The follower shown in Fig. 5.157 must drive
a load resistance, RL = 50 �, with a volt-
age gain of 0.8. Design the circuit assum-
ing that the lowest frequency of interest

is 100 MHz. (Hint: Select the voltage drop
across RE to be much greater than VT so that
this resistor does not affect the voltage gain
significantly.)

Q1

VCC = 2.5 V

inV

R1

outV

RL

Figure 5.156

Q1

VCC

outV

= 2.5 V

C1

inV
C2

R1

RE RL

Figure 5.157

S P I C E P R O B L E M S

In the following problems, assume IS,npn =
5 × 10−16 A, βnpn = 100, VA,npn = 5 V, IS,pnp =
8 × 10−16 A, βpnp = 50, VA,pnp = 3.5 V.

5.1. The common-emitter shown in Fig. 5.158
must amplify signals in the range of 1 MHz
to 100 MHz.

VCC

Q1

 Ω Ω

= 2.5 V

C1

1 k

inV
outV

 ΩC2

100 k

P

500

Figure 5.158

(a) Using the .op command, determine the
bias conditions of Q1 and verify that it
operates in the active region.

(b) Running an ac analysis, choose the
value of C1 such that |VP/Vin| ≈ 0.99 at

1 MHz. This ensures that C1 acts as
a short circuit at all frequencies of
interest.

(c) Plot |Vout/Vin| as a function of frequency
for several values of C2, e.g., 1 μF, 1 nF,
and 1 pF. Determine the value of C2

such that the gain of the circuit at
10 MHz is only 2% below its maximum
(i.e., for C2 = 1 μF).

(d) With the proper value ofC2 found in (c),
determine the input impedance of the cir-
cuit at 10 MHz. (One approach is to insert
a resistor in series with Vin and adjust its
value until VP/Vin or Vout/Vin drops by a
factor of two.)

5.2. Predicting an output impedance of about
1 k� for the stage shown in Fig. 5.159, a
student constructs the circuit depicted in Fig.
5.159, where VX represents an ac source with
zero dc value. Unfortunately, VN/VX is far
from 0.5. Explain why.
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VCC

Q1

 Ω Ω

= 2.5 V

C1

1 k

 ΩC2

100 k

500

VX
 Ω1 k

I X
N

Figure 5.159

5.3. Consider the self-biased stage shown in
Fig. 5.160.
(a) Determine the bias conditions of Q1.

(b) Select the value of C1 such that it
operates as nearly a short circuit (e.g.,
|VP/Vin| ≈ 0.99) at 10 MHz.

(c) Compute the voltage gain of the circuit
at 10 MHz.

(d) Determine the input impedance of the
circuit at 10 MHz.

(e) Suppose the supply voltage is provided
by an aging battery. How much can VCC

fall while the gain of the circuit degrades
by only 5%?

VCC= 2.5 V

Q1

 Ω

C1

inV

 Ω1 k10 k

P

outV

Figure 5.160



Chapter 6
Physics of MOS Transistors

Today’s field of microelectronics is dominated by a type of device called the metal-

oxide-semiconductor field-effect transistor (MOSFET). Conceived in the 1930s but first

realized in the 1960s, MOSFETs (also called MOS devices) offer unique properties that

have led to the revolution of the semiconductor industry. This revolution has culminated in

microprocessors having 100 million transistors, memory chips containing billions of tran-

sistors, and sophisticated communication circuits providing tremendous signal processing

capability.

Our treatment of MOS devices and circuits follows the same procedure as that taken

in Chapters 2 and 3 for pn junctions. In this chapter, we analyze the structure and operation

of MOSFETs, seeking models that prove useful in circuit design. In Chapter 7, we utilize

the models to study MOS amplifier topologies. The outline below illustrates the sequence

of concepts covered in this chapter.

➤ ➤

Operation of MOSFETs

• MOS Structure

• Operation in Triode

Region

• Operation in Saturation

• I/V Characteristics

MOS Device Models

• Large–Signal Model

• Small–Signal Model

PMOS Devices

• Structure

• Models

6.1 STRUCTURE OF MOSFET

Recall from Chapter 5 that any voltage-controlled current source can provide signal am-
plification. MOSFETs also behave as such controlled sources but their characteristics are
different from those of bipolar transistors.

In order to arrive at the structure of the MOSFET, we begin with a simple geometry
consisting of a conductive (e.g., metal) plate, an insulator (“dielectric”), and a doped
piece of silicon. Illustrated in Fig. 6.1(a), such a structure operates as a capacitor because

244
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Conductive
Plate

Insulator

p-Type 
Silicon 

Channel
of Electrons

V1
V1

(c)(a) (b)

V2

Figure 6.1 (a) Hypothetical semiconductor device, (b) operation as a capacitor, (c) current flow as

a result of potential difference.

the p-type silicon is somewhat conductive, “mirroring” any charge deposited on the top
plate.

What happens if a potential difference is applied as shown in Fig. 6.1(b)? As positive
charge is placed on the top plate, it attracts negative charge, e.g., electrons, from the piece
of silicon. (Even though doped with acceptors, the p-type silicon does contain a small
number of electrons.) We therefore observe that a “channel” of free electrons may be
created at the interface between the insulator and the piece of silicon, potentially serving
as a good conductive path if the electron density is sufficiently high. The key point here is
that the density of electrons in the channel varies with V1, as evident fromQ = CV, where
C denotes the capacitance between the two plates.

The dependence of the electron density upon V1 leads to an interesting property: if,
as depicted in Fig. 6.1(c), we allow a current to flow from left to right through the silicon
material, V1 can control the current by adjusting the resistivity of the channel. (Note that
the current prefers to take the path of least resistance, thus flowing primarily through the
channel rather than through the entire body of silicon.) This will serve our objective of
building a voltage-controlled current source.

Equation Q = CV suggests that, to achieve a strong control of Q by V, the value of C
must be maximized, for example, by reducing the thickness of the dielectric layer separating
the two plates.1 The ability of silicon fabrication technology to produce extremely thin but
uniform dielectric layers (with thicknesses below 20 Å today) has proven essential to the
rapid advancement of microelectronic devices.

The foregoing thoughts lead to the MOSFET structure shown in Fig. 6.2(a) as a can-
didate for an amplifying device. Called the “gate” (G), the top conductive plate resides on
a thin dielectric (insulator) layer, which itself is deposited on the underlying p-type silicon
“substrate.” To allow current flow through the silicon material, two contacts are attached
to the substrate through two heavily-doped n-type regions because direct connection of
metal to the substrate would not produce a good “ohmic” contact.2 These two terminals
are called “source” (S) and “drain” (D) to indicate that the former can provide charge
carriers and the latter can absorb them. Figure 6.2(a) reveals that the device is symmetric
with respect to S and D; i.e., depending on the voltages applied to the device, either of these
two terminals can drain the charge carriers from the other. As explained in Section 6.2,
with n-type source/drain and p-type substrate, this transistor operates with electrons rather

1The capacitance between two plates is given by εA/t , where ε is the “dielectric constant” (also called
the “permitivity”), A is the area of each plate, and t is the dielectric thickness.
2Used to distinguish it from other types of contacts such as diodes, the term “ohmic” contact emphasizes
bi-directional current flow—as in a resistor.
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n+n+

p-Substrate

Gate
DrainSource

Conductive
Plate

Insulator

n+n+

p-Substrate

G

DS
G

DS

(a)

(b) (c)

Figure 6.2 (a) Structure of MOSFET, (b) side view, (c) circuit symbol.

than holes and is therefore called an n-type MOS (NMOS) device. (The p-type counterpart
is studied in Section 6.4.) We draw the device as shown in Fig. 6.2(b) for simplicity. Figure
6.2(c) depicts the circuit symbol for an NMOS transistor, wherein the arrow signifies the
source terminal.

Before delving into the operation of the MOSFET, let us consider the types of materials
used in the device. The gate plate must serve as a good conductor and was in fact realized by
metal (aluminum) in the early generations of MOS technology. However, it was discovered
that noncrystalline silicon (“polysilicon” or simply “poly”) with heavy doping (for low
resistivity) exhibits better fabrication and physical properties. Thus, today’s MOSFETs
employ polysilicon gates.

The dielectric layer sandwiched between the gate and the substrate plays a critical
role in the performance of transistors and is created by growing silicon dioxide (or simply
“oxide”) on top of the silicon area. The n+ regions are sometimes called source/drain
“diffusion,” referring to a fabrication method used in early days of microelectronics. We
should also remark that these regions in fact form diodes with the p-type substrate (Fig. 6.3).

n+n+

p-Substrate

Polysilicon
Oxide

S/D Diffusion

Oxide-Silicon
Interface

Length
90 nm

18 Atox =

Figure 6.3 Typical dimensions of today’s MOSFETs.
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As explained later, proper operation of the transistor requires that these junctions remain
reverse-biased. Thus, only the depletion region capacitance associated with the two diodes
must be taken into account. Figure 6.3 shows some of the device dimensions in today’s
state-of-the-art MOS technologies. The oxide thickness is denoted by tox.

6.2 OPERATION OF MOSFET

This section deals with a multitude of concepts related to MOSFETs. The outline is shown
in Fig. 6.4.

I/V Characteristics

Qualitative Analysis

Formation of Channel
MOSFET as Resistor
Channel Pinch-off

I/V Characteristics

Channel Charge Density
Drain Current
Triode and Saturation
Regions

Analog Properties

Transconductance
Channel–Length
Modulation

Other Properties

Body Effect
Subthreshold
Conduction
Velocity Saturation

Figure 6.4 Outline of concepts to be studied.

6.2.1 Qualitative Analysis

Our study of the simple structures shown in Figs. 6.1 and 6.2 suggests that the MOSFET
may conduct current between the source and drain if a channel of electrons is created by
making the gate voltage sufficiently positive. Moreover, we expect that the magnitude of
the current can be controlled by the gate voltage. Our analysis will indeed confirm these
conjectures while revealing other subtle effects in the device. Note that the gate terminal
draws no (low-frequency) current as it is insulated from the channel by the oxide.

Since the MOSFET contains three terminals,3 we may face many combinations of
terminal voltages and currents. Fortunately, with the (low-frequency) gate current being
zero, the only current of interest is that flowing between the source and the drain. We
must study the dependence of this current upon the gate voltage (e.g., for a constant drain
voltage) and upon the drain voltage (e.g., for a constant gate voltage). These concepts
become clearer below.

Let us first consider the arrangement shown in Fig. 6.5(a), where the source and drain
are grounded and the gate voltage is varied. This circuit does not appear particularly useful
but it gives us a great deal of insight. Recall from Fig. 6.1(b) that, as VG rises, the positive
charge on the gate must be mirrored by negative charge in the substrate. While we stated
in Section 6.1 that electrons are attracted to the interface, in reality, another phenomenon
precedes the formation of the channel. As VG increases from zero, the positive charge
on the gate repels the holes in the substrate, thereby exposing negative ions and creating
a depletion region [Fig. 6.5(b)].4 Note that the device still acts as a capacitor—positive
charge on the gate is mirrored by negative charge in the substrate—but no channel of
mobile charge is created yet. Thus, no current can flow from the source to the drain. We
say the MOSFET is off.

3The substrate acts as a fourth terminal, but we ignore that for now.
4Note that this depletion region contains only one immobile charge polarity, whereas the depletion
region in a pn junction consists of two areas of negative and positive ions on the two sides of the junction.
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n+n+

p-Substrate

VG

(a)

VG

n+n+

p-Substrate

VG

n+n+

p-Substrate

VG

Region
Depletion

Free Electrons

Negative Ions

(c)(b)

Figure 6.5 (a) MOSFET with gate voltage, (b) formation of depletion region,

(c) formation of channel.

Can the source-substrate and drain-substrate junctions carry current in this mode? To
avoid this effect, the substrate itself is also tied to zero, ensuring that these diodes are not
forward-biased. For simplicity, we do not show this connection in the diagrams.

What happens as VG increases? To mirror the charge on the gate, more negative ions
are exposed and the depletion region under the oxide becomes deeper. Does this mean the
transistor never turns on?! Fortunately, if VG becomes sufficiently positive, free electrons
are attracted to the oxide-silicon interface, forming a conductive channel [Fig. 6.5(c)]. We
say the MOSFET is on. The gate potential at which the channel begins to appear is called
the “threshold voltage,” VTH , and falls in the range of 300 mV to 500 mV. Note that the
electrons are readily provided by the n+ source and drain regions, and need not be supplied
by the substrate.

It is interesting to recognize that the gate terminal of the MOSFET draws no (low-
frequency) current. Resting on top of the oxide, the gate remains insulated from other
terminals and simply operates as a plate of a capacitor.

MOSFET as a Variable Resistor The conductive channel between S and D can be
viewed as a resistor. Furthermore, since the density of electrons in the channel must
increase as VG becomes more positive (why?), the value of this resistor changes with the
gate voltage. Conceptually illustrated in Fig. 6.6, such a voltage-dependent resistor proves
extremely useful in analog and digital circuits.

G

DS

Figure 6.6 MOSFET viewed as a voltage-dependent resistor.
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Example

6.1
In the vicinity of a wireless base station, the signal received by a cellphone may become
very strong, possibly “saturating” the circuits and prohibiting proper operation. Devise
a variable-gain circuit that lowers the signal level as the cellphone approaches the base
station.

Solution A MOSFET can form a voltage-controlled attenuator along with a resistor as shown in
Fig. 6.7.

Since

vout

vin
= R1

RM + R1

, (6.1)

the output signal becomes smaller as Vcont falls because the density of electrons in the
channel decreases and RM rises. MOSFETs are commonly utilized as voltage-dependent
resistors in “variable-gain amplifiers.”

RM R1

outin

Vcont

vv

Figure 6.7 Use of MOSFET to adjust signal levels.

Exercise What happens to RM if the channel length is doubled?

In the arrangement of Fig. 6.5(c), no current flows between S and D because the
two terminals are at the same potential. We now raise the drain voltage as shown in
Fig. 6.8(a) and examine the drain current (= source current). If VG < VTH , no channel
exists, the device is off, and ID = 0 regardless of the value of VD. On the other hand,
if VG > VTH , then ID > 0 [Fig. 6.8(b)]. In fact, the source-drain path may act as a simple
resistor, yielding the ID-VD characteristic shown in Fig. 6.8(c). The slope of the characteristic
is equal to 1/Ron, where Ron denotes the “on-resistance” of the transistor.5

Our brief treatment of the MOS I-V characteristics thus far points to two different
views of the operation: in Fig. 6.8(b), VG is varied while VD remains constant whereas in
Fig. 6.8(c), VD is varied while VG remains constant. Each view provides valuable insight
into the operation of the transistor.

How does the characteristic of Fig. 6.8(b) change if VG increases? The higher density
of electrons in the channel lowers the on-resistance, yielding a greater slope. Depicted
in Fig. 6.8(d), the resulting characteristics strengthen the notion of voltage-dependent
resistance.

5The term “on-resistance” always refers to that between the source and drain, as no resistance exists
between the gate and other terminals.
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Figure 6.8 (a) MOSFET with gate and drain voltages, (b) ID-VG characteristic,

(c) ID-VD characteristic, (d) ID-VD characteristics for various gate voltages.

Recall from Chapter 2 that charge flow in semiconductors occurs by diffusion or drift.
How about the transport mechanism in a MOSFET? Since the voltage source tied to
the drain creates an electric field along the channel, the current results from the drift of
charge.

The ID-VG and ID-VD characteristics shown in Figs. 6.8(b) and (c), respectively, play a
central role in our understanding of MOS devices. The following example reinforces the
concepts studied thus far.

Example

6.2
Sketch the ID-VG and ID-VD characteristics for (a) different channel lengths, and
(b) different oxide thicknesses.

Solution As the channel length increases, so does the on-resistance.6 Thus, for VG > VTH , the drain
current begins with lesser values as the channel length increases [Fig. 6.9(a)]. Similarly,
ID exhibits a smaller slope as a function of VD [Fig. 6.9(b)]. It is therefore desirable to
minimize the channel length so as to achieve large drain currents—an important trend
in the MOS technology development.

How does the oxide thickness, tox, affect the I-V characteristics? As tox increases, the
capacitance between the gate and the silicon substrate decreases. Thus, from Q = CV,
we note that a given voltage results in less charge on the gate and hence a lower electron
density in the channel. Consequently, the device suffers from a higher on-resistance,
producing less drain current for a given gate voltage [Fig. 6.9(c)] or drain voltage
[Fig. 6.9(d)]. For this reason, the semiconductor industry has continued to reduce the
gate oxide thickness.

6Recall that the resistance of a conductor is proportional to the length.
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Figure 6.9 (a) ID-VG characteristics for different channel lengths, (b) ID-VD characteristics for

different channel lengths, (c) ID-VG characteristics for different oxide thicknesses,

(d) ID-VD characteristics for different oxide thicknesses.

Exercise The current conduction in the channel is in the form of drift. If the mobility falls at high
temperatures, what can we say about the on-resistance as the temperature goes up?

While both the length and the oxide thickness affect the performance of
MOSFETs, only the former is under the circuit designer’s control, i.e., it can be spec-
ified in the “layout” of the transistor. The latter, on the other hand, is defined during
fabrication and remains constant for all transistors in a given generation of the technology.

Another MOS parameter controlled by circuit designers is the width of the transis-
tor, the dimension perpendicular to the length [Fig. 6.10(a)]. We therefore observe that

(a)

V

I D

G
VTH V

I D

D

(b)

W
W

(c)

n+n+

W

L

tox

S
G D

Figure 6.10 (a) Dimensions of a MOSFET (W and L are under circuit designer’s control),

(b) ID characteristics for different values of W, (c) equivalence to devices in parallel.
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“lateral” dimensions such as L and W can be chosen by circuit designers whereas “vertical”
dimensions such as tox cannot.

How does the gate width impact the I-V characteristics? As W increases, so does
the width of the channel, thus lowering the resistance between the source and the drain7

and yielding the trends depicted in Fig. 6.10(b). From another perspective, a wider device
can be viewed as two narrower transistors in parallel, producing a high drain current
[Fig. 6.10(c)]. We may then surmise that W must be maximized, but we must also note that
the total gate capacitance increases with W, possibly limiting the speed of the circuit. Thus,
the width of each device in the circuit must be chosen carefully.

Channel Pinch-Off Our qualitative study of the MOSFET thus far implies that the
device acts as a voltage-dependent resistor if the gate voltage exceeds VTH . In reality,
however, the transistor operates as a current source if the drain voltage is sufficiently
positive. To understand this effect, we make two observations: (1) to form a channel,
the potential difference between the gate and the oxide-silicon interface must exceed
VTH ; (2) if the drain voltage remains higher than the source voltage, then the voltage
at each point along the channel with respect to ground increases as we go from the
source towards the drain. Illustrated in Fig. 6.11(a), this effect arises from the gradual
voltage drop along the channel resistance. Since the gate voltage is constant (because
the gate is conductive but carries no current in any direction), and since the potential
at the oxide-silicon interface rises from the source to the drain, the potential difference
between the gate and the oxide-silicon interface decreases along the x-axis [Fig. 6.11(b)].
The density of electrons in the channel follows the same trend, falling to a minimum at
x = L.

L L

(a) (b)

n+n+

VG

V

I D

Potential
Difference

VG= VG< VG= − VD

x

D

x

(V x )

x

VG

Gate-Substrate
Potential Difference

V − VD G

Figure 6.11 (a) Channel potential variation, (b) gate-substrate voltage difference along the

channel.

7Recall that the resistance of a conductor is inversely proportional to the cross section area, which itself
is equal to the product of the width and thickness of the conductor.
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Figure 6.12 (a) Pinchoff, (b) variation of length with drain voltage, (c) detailed operation near

the drain.

From these observations, we conclude that, if the drain voltage is high enough to
produce VG − VD ≤ VTH , then the channel ceases to exist near the drain. We say the gate-
substrate potential difference is not sufficient at x = L to attract electrons and the channel
is “pinched off” [Fig. 6.12(a)].

What happens if VD rises even higher than VG − VTH? Since V(x) now goes from 0
at x = 0 to VD > VG − VTH at x = L, the voltage difference between the gate and the
substrate falls to VTH at some point L1 < L [Fig. 6.12(b)]. The device therefore contains
no channel between L1 and L. Does this mean the transistor cannot conduct current? No,
the device still conducts: as illustrated in Fig. 6.12(c), once the electrons reach the end of
the channel, they experience the high electric field in the depletion region surrounding the
drain junction and are rapidly swept to the drain terminal. Nonetheless, as shown in the
next section, the drain voltage no longer affects the current significantly, and the MOSFET
acts as a constant current source—similar to a bipolar transistor in the forward active
region. Note that the source-substrate and drain-substrate junctions carry no current.

6.2.2 Derivation of I-V Characteristics

With the foregoing qualitative study, we can now formulate the behavior of MOSFETs in
terms of their terminal voltages.

Channel Charge Density Our derivations require an expression for the channel charge
(i.e., free electrons) per unit length, also called the “charge density.” FromQ = CV, we note
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n+n+

W

Figure 6.13 Illustration of capacitance per unit length.

that if C is the gate capacitance per unit length and V the voltage difference between the
gate and the channel, then Q is the desired charge density. Denoting the gate capacitance
per unit area byCox (expressed in F/m2 or fF/μm2), we write C = WCox to account for the
width of the transistor (Fig. 6.13). Moreover, we have V = VGS − VTH because no mobile
charge exists for VGS < VTH . (Hereafter, we denote both the gate and drain voltages with
respect to the source.) It follows that

Q = WCox(VGS − VTH). (6.2)

Note that Q is expressed in coulomb/meter. Now recall from Fig. 6.11(a) that the channel
voltage varies along the length of the transistor, and the charge density falls as we go from
the source to the drain. Thus, Eq. (6.2) is valid only near the source terminal, where the
channel potential remains close to zero. As shown in Fig. 6.14, we denote the channel
potential at x by V(x) and write

Q(x) = WCox[VGS − V(x) − VTH], (6.3)

noting that V(x) goes from zero to VD if the channel is not pinched off.

n+n+

VG

VD

I D

L
x

0
dx

V (x )

Figure 6.14 Device illustration for calculation of drain current.

Drain Current What is the relationship between the mobile charge density and the
current? Consider a bar of semiconductor having a uniform charge density (per unit length)
equal to Q and carrying a current I (Fig. 6.15). Note from Chapter 2 that (1) I is given by
the total charge that passes through the cross section of the bar in one second, and (2) if
the carriers move with a velocity of v m/s, then the charge enclosed in v meters along the
bar passes through the cross section in one second. Since the charge enclosed in v meters
is equal to Q · v, we have

I = Q · v. (6.4)
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Figure 6.15 Relationship between charge velocity and current.

As explained in Chapter 2,

v = −μnE, (6.5)

= +μn
dV
dx

, (6.6)

where dV/dx denotes the derivative of the voltage at a given point. Combining Eqs. (6.3),
(6.4), and (6.6), we obtain

ID = WCox[VGS − V(x) − VTH]μn
dV(x)

dx
. (6.7)

Interestingly, since ID must remain constant along the channel (why?), V(x) and dV/dx
must vary such that the product of VGS − V(x) − VTH and dV/dx is independent of x.

While it is possible to solve the above differential equation to obtain V(x) in terms of
ID (and the reader is encouraged to do that), our immediate need is to find an expression
for ID in terms of the terminal voltages. To this end, we write

∫ x=L

x=0

ID dx =
∫ V(x)=VDS

V(x)=0

μnCoxW[VGS − V(x) − VTH] dV. (6.8)

That is,

ID = 1

2
μnCox

W
L

[
2(VGS − VTH)VDS − V2

DS

]
. (6.9)

We now examine this important equation from different perspectives to gain more insight.
First, the linear dependence of ID upon μn,Cox, and W/L is to be expected: a higher mobility
yields a greater current for a given drain-source voltage; a higher gate oxide capacitance
leads to a larger electron density in the channel for a given gate-source voltage; and a
larger W/L (called the device “aspect ratio”) is equivalent to placing more transistors
in parallel [Fig. 6.10(c)]. Second, for a constant VGS, ID varies parabolically with VDS

(Fig. 6.16), reaching a maximum of

ID,max = 1

2
μnCox

W
L

(VGS − VTH)
2

(6.10)

at VDS = VGS − VTH . It is common to write W/L as the ratio of two values e.g.,
5 μm/0.18 μm (rather than 27.8) to emphasize the choice of W and L. While only the
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Figure 6.16 Parabolic ID-VDS characteristic.

ratio appears in many MOS equations, the individual values of W and L also become crit-
ical in most cases. For example, if both W and L are doubled, the ratio remains unchanged
but the gate capacitance increases.

Example

6.3
Plot the ID-VDS characteristics for different values of VGS.

Solution As VGS increases, so do ID,max and VGS − VTH . Illustrated in Fig. 6.17, the characteristics

exhibit maxima that follow a parabolic shape themselves because ID,max ∝ (VGS − VTH)
2
.
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T
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V
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Figure 6.17 MOS characteristics for different gate-source voltages.

Exercise What happens to the above plots if tox is halved?

The nonlinear relationship between ID and VDS reveals that the transistor can-
not generally be modeled as a simple linear resistor. However, if VDS � 2(VGS − VTH),
Eq. (6.9) reduces to:

ID ≈ μnCox
W
L

(VGS − VTH)VDS, (6.11)
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Figure 6.18 Detailed characteristics for small VDS.

exhibiting a linear ID-VDS behavior for a given VGS. In fact, the equivalent on-resistance is
given by VDS/ID:

Ron = 1

μnCox
W
L

(VGS − VTH)

. (6.12)

From another perspective, at small VDS (near the origin), the parabolas in Fig. 6.17 can be
approximated by straight lines having different slopes (Fig. 6.18).

As predicted in Section 6.2.1, Eq. (6.12) suggests that the on-resistance can be con-
trolled by the gate-source voltage. In particular, for VGS = VTH , Ron = ∞, i.e., the device
can operate as an electronic switch.

Example

6.4
A cordless telephone incorporates a single antenna for reception and transmission.
Explain how the system must be configured.

Solution The system is designed so that the phone receives for half of the time and transmits for the
other half. Thus, the antenna is alternately connected to the receiver and the transmitter
in regular intervals, e.g., every 20 ms (Fig. 6.19). An electronic antenna switch is therefore
necessary here.8

Receiver

Transmitter

Receiver

Transmitter

Figure 6.19 Role of antenna switch in a cordless phone.

Exercise Some systems employ two antennas, each of which receives and transmits signals. How
many switches are needed?

8Some cellphones operate in the same manner.
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In most applications, it is desirable to achieve a low on-resistance for MOS switches.
The circuit designer must therefore maximize W/L and VGS. The following example illus-
trates this point.

Example

6.5
In the cordless phone of Example 6.4, the switch connecting the transmitter to the
antenna must negligibly attenuate the signal, e.g., by no more than 10%. If VDD = 1.8 V,
μnCox = 100 μA/V2, and VTH = 0.4 V, determine the minimum required aspect ratio of
the switch. Assume the antenna can be modeled as a 50-� resistor.

Solution As depicted in Fig. 6.20, we wish to ensure

Vout

Vin
≥ 0.9 (6.13)

Transmitter

Ron

R

Rant50 Ω
inVVout

on

Figure 6.20 Signal degradation due to on-resistance of antenna switch.

and hence

Ron ≤ 5.6 �. (6.14)

Setting VGS to the maximum value, VDD, we obtain from Eq. (6.12),

W
L

≥ 1276. (6.15)

(Since wide transistors introduce substantial capacitance in the signal path, this choice
of W/L may still attenuate high-frequency signals.)

Exercise What W/L is necessary if VDD drops to 1.2 V?

Triode and Saturation Regions Equation (6.9) expresses the drain current in terms of
the device terminal voltages, implying that the current begins to fall for VDS > VGS − VTH .
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Figure 6.21 Overall MOS characteristic.

We say the device operates in the “triode region” (also called the “linear region”) if
VDS < VGS − VTH (the rising section of the parabola). We also use the term “deep triode
region” for VDS � 2(VGS − VTH), where the transistor operates as a resistor.

In reality, the drain current reaches “saturation,” that is, becomes constant for
VDS > VGS − VTH (Fig. 6.21). To understand why, recall from Fig. 6.12 that the channel
experiences pinch-off if VDS = VGS − VTH . Thus, further increase in VDS simply shifts the
pinch-off point slightly toward the drain. Also, recall that Eqs. (6.7) and (6.8) are valid only
where channel charge exists. It follows that the integration in Eq. (6.8) must encompass
only the channel, i.e., from x = 0 to x = L1 in Fig. 6.12(b), and be modified to

∫ x=L1

x=0

ID dx =
∫ V(x)=VGS−VTH

V(x)=0

μnCoxW[VGS − V(x) − VTH] dV. (6.16)

Note that the upper limits correspond to the channel pinch-off point. In particular, the
integral on the right-hand side is evaluated up to VGS − VTH rather than VDS. Consequently,

ID = 1

2
μnCox

W
L1

(VGS − VTH)
2
, (6.17)

a result independent of VDS and identical to ID,max in Eq. (6.10) if we assume L1 ≈ L.
Called the “overdrive voltage,” the quantity VGS − VTH plays a key role in MOS circuits.
MOSFETs are sometimes called “square-law” devices to emphasize the relationship
between ID and the overdrive. For the sake of brevity, we hereafter denote L1

with L.
The I-V characteristic of Fig. 6.21 resembles that of bipolar devices, with the triode and

saturation regions in MOSFETs appearing similar to saturation and forward active regions
in bipolar transistors, respectively. It is unfortunate that the term “saturation” refers to
completely different regions in MOS and bipolar I-V characteristics.

We employ the conceptual illustration in Fig. 6.22 to determine the region of operation.
Note that the gate-drain potential difference suits this purpose and we need not compute
the gate-source and gate-drain voltages separately.

Exhibiting a “flat” current in the saturation region, a MOSFET can operate as a
current source having a value given by Eq. (6.17). Furthermore, the square-law dependence
of ID upon VGS − VTH suggests that the device can act as a voltage-controlled current
source.
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Figure 6.22 Illustration of triode and saturation regions based on the gate and drain voltages.

Example

6.6
Calculate the bias current of M1 in Fig. 6.23. Assume μnCox = 100 μA/V2 and VTH =
0.4 V. If the gate voltage increases by 10 mV, what is the change in the drain voltage?

R

I

 Ω

1 V
M 1

D

X
W
L

=
2

VDD

5 kD

= 1.8 V

0.18

Figure 6.23 Simple MOS circuit.

Solution It is unclear a priori in which region M1 operates. Let us assume M1 is saturated and
proceed. Since VGS = 1 V,

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(6.18)

= 200 μA. (6.19)

We must check our assumption by calculating the drain potential:

VX = VDD − RDID (6.20)

= 0.8 V. (6.21)

The drain voltage is lower than the gate voltage, but by less than VTH . The illustration
in Fig. 6.22 therefore indicates that M1 indeed operates in saturation.

If the gate voltage increases to 1.01 V, then

ID = 206.7 μA, (6.22)

lowering VX to

VX = 0.766 V. (6.23)

Fortunately, M1 is still saturated. The 34-mV change in VX reveals that the circuit can
amplify the input.

Exercise What choice of RD places the transistor at the edge of the triode region?



6.2 Operation of MOSFET 261

It is instructive to identify several points of contrast between bipolar and MOS devices.
(1) A bipolar transistor with VBE = VCE resides at the edge of the active region whereas a
MOSFET approaches the edge of saturation if its drain voltage falls below its gate voltage
by VTH . (2) Bipolar devices exhibit an exponential IC -VBE characteristic while MOSFETs
display a square-law dependence. That is, the former provide a greater transconductance
than the latter (for a given bias current). (3) In bipolar circuits, most transistors have the
same dimensions and hence the same IS , whereas in MOS circuits, the aspect ratio of
each device may be chosen differently to satisfy the design requirements. (4) The gate of
MOSFETs draws no bias current.9

Example

6.7
Determine the value of W/L in Fig. 6.23 that places M1 at the edge of saturation and
calculate the drain voltage change for a 1-mV change at the gate. Assume VTH = 0.4 V.

Solution With VGS = +1 V, the drain voltage must fall to VGS − VTH = 0.6 V for M1 to enter the
triode region. That is,

ID = VDD − VDS

RD
(6.24)

= 240 μA. (6.25)

Since ID scales linearly with W/L,

W
L

∣∣∣∣
max

= 240 μA

200 μA
· 2

0.18
(6.26)

= 2.4

0.18
. (6.27)

If VGS increases by 1 mV,

ID = 248.04 μA, (6.28)

changing VX by

�VX = �ID · RD (6.29)

= 4.02 mV. (6.30)

The voltage gain is thus equal to 4.02 in this case.

Exercise Repeat the above example if RD is doubled.

9New generations of MOSFETs suffer from gate “leakage” current, but we neglect this effect here.
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Example

6.8
Calculate the maximum allowable gate voltage in Fig. 6.24 if M1 must remain saturated.

R

I

 Ω

M 1

D

X
W
L

=
2

VDD

5 kD

= 1.8 V

0.18
VGS

Figure 6.24 Simple MOS circuit.

Solution At the edge of saturation, VGS − VTH = VDS = VDD − RDID. Substituting for ID from
Eq. (6.17) gives

VGS − VTH = VDD − RD

2
μnCox

W
L

(VGS − VTH)
2
, (6.31)

and hence

VGS − VTH =
−1 +

√
1 + 2RDVDDμnCox

W
L

RDμnCox
W
L

. (6.32)

Thus,

VGS =
−1 +

√
1 + 2RDVDDμnCox

W
L

RDμnCox
W
L

+ VTH . (6.33)

Exercise Calculate the value of VGS if μnCox = 100 μA/V2 and VTH = 0.4.

6.2.3 Channel-Length Modulation

In our study of the pinch-off effect, we observed that the point at which the channel
vanishes in fact moves toward the source as the drain voltage increases. In other words,
the value of L1 in Fig. 6.12(b) varies with VDS to some extent. Called “channel-length
modulation” and illustrated in Fig. 6.25, this phenomenon yields a larger drain current as
VDS increases because ID ∝ 1/L1 in Eq. (6.17). Similar to the Early effect in bipolar devices,

VDS

I D

−VTHVGS

−W
L

VTH(C µ  n ox (VGS
21

2

Figure 6.25 Variation of ID in saturation region.
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channel-length modulation results in a finite output impedance given by the inverse of the
ID-VDS slope in Fig. 6.25.

To account for channel-length modulation, we assume L is constant, but multiply the
right-hand side of Eq. (6.17) by a corrective term:

ID = 1

2
μnCox

W
L

(VGS − VTH)
2
(1 + λVDS), (6.34)

where λ is called the “channel-length modulation coefficient.” While only an approxima-
tion, this linear dependence of ID upon VDS still provides a great deal of insight into the
circuit design implications of channel-length modulation.

Unlike the Early effect in bipolar devices (Chapter 4), the amount of channel-length
modulation is under the circuit designer’s control. This is becauseλ is inversely proportional
to L: for a longer channel, the relative change in L (and hence in ID) for a given change
in VDS is smaller (Fig. 6.26).10 (By contrast, the base width of bipolar devices cannot be
adjusted by the circuit designer, yielding a constant Early voltage for all transistors in a
given technology.)

VDS

I D

VDS

I D

1L 2L

Figure 6.26 Channel-length modulation.

Example

6.9
A MOSFET carries a drain current of 1 mA with VDS = 0.5 V in saturation. Determine
the change in ID if VDS rises to 1 V and λ = 0.1 V−1. What is the device output impedance?

Solution We write

ID1 = 1

2
μnCox

W
L

(VGS − VTH)
2
(1 + λVDS1) (6.35)

ID2 = 1

2
μnCox

W
L

(VGS − VTH)
2
(1 + λVDS2) (6.36)

and hence

ID2 = ID1

1 + λVDS2

1 + λVDS1

. (6.37)

With ID1 = 1 mA, VDS1 = 0.5 V, VDS2 = 1 V, and λ = 0.1 V−1,

ID2 = 1.048 mA. (6.38)

10Since different MOSFETs in a circuit may be sized for different λ’s, we do not define a quantity similar
to the Early voltage here.
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The change in ID is therefore equal to 48 μA, yielding an output impedance of

rO = �VDS

�ID
(6.39)

= 10.42 k�. (6.40)

Exercise Does W affect the above results?

The above example reveals that channel-length modulation limits the output impe-
dance of MOS current sources. The same effect was observed for bipolar current sources
in Chapters 4 and 5.

Example

6.10
Assuming λ ∝ 1/L, calculate �ID and rO in Example 6.9 if both W and L are doubled.

Solution In Eqs. (6.35) and (6.36), W/L remains unchanged but λ drops to 0.05 V−1. Thus,

ID2 = ID1

1 + λVDS2

1 + λVDS1

(6.41)

= 1.024 mA. (6.42)

That is, �ID = 24 μA and

rO = 20.84 k�. (6.43)

Exercise What output impedance is achieved if W and L are quadrupled and ID is halved?

6.2.4 MOS Transconductance

As a voltage-controlled current source, a MOS transistor can be characterized by its
transconductance:

gm = ∂ID

∂VGS
. (6.44)

This quantity serves as a measure of the “strength” of the device: a higher value corresponds
to a greater change in the drain current for a given change in VGS. Using Eq. (6.17) for the
saturation region, we have

gm = μnCox
W
L

(VGS − VTH), (6.45)

concluding that (1) gm is linearly proportional to W/L for a given VGS − VTH , and (2) gm is
linearly proportional to VGS − VTH for a given W/L. Also, substituting for VGS − VTH from
Eq. (6.17), we obtain

gm =
√

2μnCox
W
L

ID. (6.46)
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TABLE 6.1 Various dependencies of gm.

W
L

Constant W
L

Variable W
L

Variable

VGS − VTH Variable VGS − VTH Constant VGS − VTH Constant

gm ∝ √
ID gm ∝ ID gm ∝

√
W
L

gm ∝ VGS − VTH gm ∝ W
L gm ∝ 1

VGS − VTH

That is, (1) gm is proportional to
√

W/L for a given ID, and (2) gm is proportional to
√

ID

for a given W/L. Moreover, dividing Eq. (6.45) by (6.17) gives

gm = 2ID

VGS − VTH
, (6.47)

revealing that (1) gm is linearly proportional to ID for a given VGS − VTH , and (2) gm

is inversely proportional to VGS − VTH for a given ID. Summarized in Table 6.1, these
dependencies prove critical in understanding performance trends of MOS devices and
have no counterpart in bipolar transistors.11 Among these three expressions for gm,
Eq. (6.46) is more frequently used because ID may be predetermined by power dissipation
requirements.

Example

6.11
For a MOSFET operating in saturation, how do gm and VGS − VTH change if both W/L
and ID are doubled?

Solution Equation (6.46) indicates that gm is also doubled. Moreover, Eq. (6.17) suggests that
the overdrive remains constant. These results can be understood intuitively if we view
the doubling of W/L and ID as shown in Fig. 6.27. Indeed, if VGS remains constant and
the width of the device is doubled, it is as if two transistors carrying equal currents are
placed in parallel, thereby doubling the transconductance. The reader can show that this
trend applies to any type of transistor.

V

V

DS

GS

VDS

VGS

Figure 6.27 Equivalence of a wide MOSFET to two in parallel.

Exercise How do gm and VGS − VTH change if only W and ID are doubled?

11There is some resemblance between the second column and the behavior of gm = IC /VT . If the bipolar
transistor width is increased while VBE remains constant, then both IC and gm increase linearly.
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6.2.5 Velocity Saturation∗

Recall from Section 2.1.3 that at high electric fields, carrier mobility degrades, eventually
leading to a constant velocity. Owing to their very short channels (e.g., 0.1 μm), modern
MOS devices experience velocity saturation even with drain-source voltages as low as
1 V. As a result, the I/V characteristics no longer follow the square-law behavior.

Let us examine the derivations in Section 6.2.2 under velocity saturation conditions.
Denoting the saturated velocity by vsat, we have

ID = vsat ·Q (6.48)

= vsat · WCox(VGS − VTH). (6.49)

Interestingly, ID now exhibits a linear dependence on VGS − VTH and no dependence on
L.12 We also recognize that

gm = ∂ID

∂VGS
(6.50)

= vsatWCox, (6.51)

a quantity independent of L and ID.

6.2.6 Other Second-Order Effects

Body Effect In our study of MOSFETs, we have assumed that both the source and the
substrate (also called the “bulk” or the “body”) are tied to ground. However, this condition
need not hold in all circuits. For example, if the source terminal rises to a positive voltage
while the substrate is at zero, then the source-substrate junction remains reverse-biased
and the device still operates properly.

Figure 6.28 illustrates this case. The source terminal is tied to a potential VS with respect
to ground while the substrate is grounded through a p+ contact.13 The dashed line added
to the transistor symbol indicates the substrate terminal. We denote the voltage difference
between the source and the substrate (the bulk) by VSB.

n+n+

p-Substrate

+p

VG

VG

VS

VD

VD

VS

Substrate

Contact

Figure 6.28 Body effect.

∗This section can be skipped in a first reading.
12Of course, if L is increased substantially, while VDS remains constant, then the device experiences less
velocity saturation and Eq. (6.49) is not accurate.
13The p+ island is necessary to achieve an “ohmic” contact with low resistance.
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An interesting phenomenon occurs as the source-substrate potential difference de-
parts from zero: the threshold voltage of the device changes. In particular, as the source
becomes more positive with respect to the substrate, VTH increases. Called “body effect,”
this phenomenon is formulated as

VTH = VTH0 + γ (
√

|2φF + VSB| −
√

|2φF |), (6.52)

where VTH0 denotes the threshold voltage with VSB = 0 (as studied earlier), and γ and
φF are technology-dependent parameters having typical values of 0.4

√
V and 0.4 V,

respectively.

Example

6.12
In the circuit of Fig. 6.28, assume VS = 0.5 V, VG = VD = 1.4 V, μnCox = 100 μA/V2,
W/L = 50, and VTH0 = 0.6 V. Determine the drain current if λ = 0.

Solution Since the source-body voltage, VSB = 0.5 V, Eq. (6.52) and the typical values for γ and
φF yield

VTH = 0.698 V. (6.53)

Also, with VG = VD, the device operates in saturation (why?) and hence

ID = 1

2
μnCox

W
L

(VG − VS − VTH)
2

(6.54)

= 102 μA. (6.55)

Exercise Sketch the drain current as a function of VS as VS goes from zero to 1 V.

Body effect manifests itself in some analog and digital circuits and is studied in more
advanced texts. We neglect body effect in this book.

Subthreshold Conduction The derivation of the MOS I-V characteristic has assumed
that the transistor abruptly turns on as VGS reaches VTH . In reality, formation of the channel
is a gradual effect, and the device conducts a small current even for VGS < VTH . Called
“subthreshold conduction,” this effect has become a critical issue in modern MOS devices
and is studied in more advanced texts.

6.3 MOS DEVICE MODELS

With our study of MOS I-V characteristics in the previous section, we now develop models
that can be used in circuit analysis and design.

6.3.1 Large-Signal Model

For arbitrary voltage and current levels, we must resort to Eqs. (6.9) and (6.34) to express
the device behavior:

ID = 1

2
μnCox

W
L

[
2(VGS − VTH)VDS − V2

DS

]
Triode Region (6.56)

ID = 1

2
μnCox

W
L

(VGS − VTH)
2
(1 + λVDS) Saturation Region (6.57)
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(b)

I D

I D

Figure 6.29 MOS models for (a) saturation region, (b) triode region, (c) deep triode region.

In the saturation region, the transistor acts as a voltage-controlled current source, lending
itself to the model shown in Fig. 6.29(a). Note that ID does depend on VDS and is therefore
not an ideal current source. For VDS < VGS − VTH , the model must reflect the triode region,
but it can still incorporate a voltage-controlled current source, as depicted in Fig. 6.29(b).
Finally, if VDS � 2(VGS − VTH), the transistor can be viewed as a voltage-controlled resistor
[Fig. 6.29(c)]. In all three cases, the gate remains an open circuit to represent the zero gate
current.

Example

6.13
Sketch the drain current of M1 in Fig. 6.30(a) versus V1 as V1 varies from zero to VDD.
Assume λ = 0.

M 1

VDD

V1

V

I D

1
–VTHVDD

(a) (b)

Figure 6.30 (a) Simple MOS circuit, (b) variation of ID with V1.

Solution Noting that the device operates in saturation (why?), we write

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(6.58)

= 1

2
μnCox

W
L

(VDD − V1 − VTH)
2
. (6.59)
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At V1 = 0, VGS = VDD and the device carries maximum current. As V1 rises, VGS falls
and so does ID. If V1 reaches VDD − VTH , VGS drops to VTH , turning the transistor off. The
drain current thus varies as illustrated in Fig. 6.30(b). Note that, owing to body effect,
VTH varies with V1 if the substrate is tied to ground.

Exercise Repeat the above example if the gate of M1 is tied to a voltage equal to 1.5 V and
VDD = 2 V.

6.3.2 Small-Signal Model

If the bias currents and voltages of a MOSFET are only slightly disturbed by signals, the
nonlinear, large-signal models can be reduced to linear, small-signal representations. The
development of the model proceeds in a manner similar to that in Chapter 4 for bipolar
devices. Of particular interest to us in this book is the small-signal model for the saturation
region.

Viewing the transistor as a voltage-controlled current source, we draw the basic model
as in Fig. 6.31(a), where iD = gmvGS and the gate remains open. To represent channel-length
modulation, i.e., variation of iD with vDS, we add a resistor as in Fig. 6.31(b):

rO =
(

∂ID

∂VDS

)−1

(6.60)

= 1

1

2
μnCox

W
L

(VGS − VTH)
2 · λ

. (6.61)

Since channel-length modulation is relatively small, the denominator of Eq. (6.61) can be
approximated as ID · λ, yielding

rO ≈ 1

λID
. (6.62)

G D

S

g
m

vv GS GS

G

S

g
m

vv GS GS r O

D

(a) (b)

Figure 6.31 (a) Small-signal model of MOSFET, (b) inclusion of channel-length modulation.
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Example

6.14
A MOSFET is biased at a drain current of 0.5 mA. If μnCox = 100 μA/V2, W/L = 10,
and λ = 0.1 V−1, calculate its small-signal parameters.

Solution We have

gm =
√

2μnCox
W
L

ID (6.63)

= 1

1 k�
. (6.64)

Also,

rO = 1

λID
(6.65)

= 20 k�. (6.66)

This means that the intrinsic gain, gmrO (Chapter 4), is equal to 20 for this choice of
device dimensions and bias current.

Exercise Repeat the above example if W/L is doubled.

6.4 PMOS TRANSISTOR

Having seen both npn and pnp bipolar transistors, the reader may wonder if a
p-type counterpart exists for MOSFETs. Indeed, as illustrated in Fig. 6.32(a), changing
the doping polarities of the substrate and the S/D areas results in a “PMOS” device.
The channel now consists of holes and is formed if the gate voltage is below the source
potential by one threshold voltage. That is, to turn the device on, VGS < VTH , where VTH

itself is negative. Following the conventions used for bipolar devices, we draw the PMOS
device as in Fig. 6.32(b), with the source terminal identified by the arrow and placed

++

-substrate

G

DS

n

p p G

D

S

I D

VTHP>
VTHP

VTHP<

(c)

(a) (b)

Triode

Region

Edge of 

Saturation

Saturation

Region

Figure 6.32 (a) Structure of PMOS device, (b) PMOS circuit symbol, (c) illustration of triode and

saturation regions based on gate and drain voltages.
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on top to emphasize its higher potential. The transistor operates in the triode region
if the drain voltage is near the source potential, approaching saturation as VD falls to
VG − VTH = VG + |VTH|. Figure 6.32(c) conceptually illustrates the gate-drain voltages
required for each region of operation. We say that if VDS of a PMOS (NMOS) device
is sufficiently negative (positive), then it is in saturation.

Example

6.15
In the circuit of Fig. 6.33, determine the region of operation of M1 as V1 goes from VDD

to zero. Assume VDD = 2.5 V and |VTH| = 0.5 V.

VDD

1

1 V

M 1

V

Figure 6.33 Simple PMOS circuit.

Solution For V1 = VDD, VGS = 0 and M1 is off. As V1 falls and approaches VDD − |VTH|, the gate-
source potential is negative enough to form a channel of holes, turning the device on. At
this point, VG = VDD − |VTH| = +2 V while VD = +1 V; i.e., M1 is saturated [Fig. 6.32(c)].
As V1 falls further, VGS becomes more negative and the transistor current rises. For
V1 = +1 V − |VTH| = 0.5 V, M1 is at the edge of the triode region. As V1 goes below
0.5 V, the transistor enters the triode region further.

The voltage and current polarities in PMOS devices can prove confusing. Using the
current direction shown in Fig. 6.32(b), we express ID in the saturation region as

ID,sat = −1

2
μpCox

W
L

(VGS − VTH)
2
(1 − λVDS), (6.67)

where λ is multiplied by a negative sign.14 In the triode region,

ID,tri = −1

2
μpCox

W
L

[
2(VGS − VTH)VDS − V2

DS

]
. (6.68)

Alternatively, both equations can be expressed in terms of absolute values:

|ID,sat| = 1

2
μpCox

W
L

(|VGS| − |VTH|)2
(1 + λ|VDS|) (6.69)

|ID,tri| = 1

2
μpCox

W
L

[
2(|VGS| − |VTH|)|VDS| − V2

DS

]
. (6.70)

The small-signal model of PMOS transistor is identical to that of NMOS devices
(Fig. 6.31). The following example illustrates this point.

14To make this equation more consistent with that of NMOS devices [Eq. (6.34)], we can define λ itself to

be negative and express ID as (1/2)μpCox(W/L)(VGS − VTH)
2
(1 + λVDS). But a negative λ carries little

physical meaning.
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Example

6.16
For the configurations shown in Fig. 6.34(a), determine the small-signal resistances RX

and RY . Assume λ �= 0.

M 1

RX VDD

R

M 2

Y

g vv r11v x

Xi

m1 O1

rg vv 11 m2 O2

v

i

M 2

(c)(a) (b)

Y

Y

Figure 6.34 (a) Diode-connected NMOS and PMOS devices, (b) small-signal model of (a), (c)

small-signal model of (b).

Solution For the NMOS version, the small-signal equivalent appears as depicted in Fig. 6.34(b),
yielding

RX = vX

iX
(6.71)

=
(

gm1vX + vX

rO1

)
1

iX
(6.72)

= 1

gm1

||rO1. (6.73)

For the PMOS version, we draw the equivalent as shown in Fig. 6.34(c) and write

RY = vY

iY
(6.74)

=
(

gm2vY + vY

rO1

)
1

iY
(6.75)

= 1

gm2

||rO2. (6.76)

In both cases, the small-signal resistance is equal to 1/gm if λ → 0.
In analogy with their bipolar counterparts [Fig. 4.44(a)], the structures shown in

Fig. 6.34(a) are called “diode-connected” devices and act as two-terminal components:
we will encounter many applications of diode-connected devices in Chapters 9 and 10.

Owing to the lower mobility of holes (Chapter 2), PMOS devices exhibit a poorer
performance than NMOS transistors. For example, Eq. (6.46) indicates that the transcon-
ductance of a PMOS device is lower for a given drain current. We therefore prefer to use
NMOS transistors wherever possible.
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6.5 CMOS TECHNOLOGY

Is it possible to build both NMOS and PMOS devices on the same wafer? Figures 6.2(a) and
6.32(a) reveal that the two require different types of substrate. Fortunately, a local n-type
substrate can be created in a p-type substrate, thereby accommodating PMOS transistors.
As illustrated in Fig. 6.35, an “n-well” encloses a PMOS device while the NMOS transistor
resides in the p-substrate.

G

DS B

+p +p +n

n-well

G

DSB

+ ++

-substratep

p n n

NMOS
Device Device

PMOS

Figure 6.35 CMOS technology.

Called “complementary MOS” (CMOS) technology, the above structure requires
more complex processing than simple NMOS or PMOS devices. In fact, the first few
generations of MOS technology contained only NMOS transistors,15 and the higher cost
of CMOS processes seemed prohibitive. However, many significant advantages of com-
plementary devices eventually made CMOS technology dominant and NMOS technology
obsolete.

6.6 COMPARISON OF BIPOLAR AND MOS DEVICES

Having studied the physics and operation of bipolar and MOS transistors, we can now
compare their properties. Table 6.2 shows some of the important aspects of each device.
Note that the exponential IC -VBE dependence of bipolar devices accords them a higher
transconductance for a given bias current.

TABLE 6.2 Comparison of bipolar and MOS transistors.

Bipolar Transistor MOSFET

Exponential Characteristic Quadratic Characteristic

Active: VCB > 0 Saturation: VDS > VGS − VTH (NMOS)

Saturation: VCB < 0 Triode: VDS < VGS − VTH (NMOS)

Finite Base Current Zero Gate Current

Early Effect Channel-Length Modulation

Diffusion Current Drift Current

— Voltage-Dependent Resistor

15The first Intel microprocessor, the 4004, was realized in NMOS technology.
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P R O B L E M S

In the following problems, unless otherwise
stated, assume μnCox = 200 μA/V2, μpCox =
100 μA/V2, and VTH = 0.4 V for NMOS
devices and −0.4 V for PMOS devices.

6.1. Two* identical MOSFETs are placed in
series as shown in Fig. 6.36. If both
devices operate as resistors, explain intu-
itively why this combination is equivalent to
a single transistor, Meq. What are the width
and length of Meq?

M 1 M 2

W
L

W
L

M eq

Figure 6.36

6.2. What should be the value of oxide capa-
citance required to store a charge of
25 fc in a NMOS device, if W = 5 μm,
VGS − VTH = 2 V? Assume VDS = 0 V.

6.3. Assuming ID is constant, solve Eq. (6.7) to
obtain an expression for V(x). Plot both
V(x) and dV/dx as a function of x for dif-
ferent values of W or VTH .

6.4. The* drain current of a MOSFET in the
triode region is expressed as

ID = μnCox
W
L

[
(VGS − VTH)VDS − 1

2
V2

DS

]
.

(6.77)

Suppose the values of μnCox and W/L are
unknown. Is it possible to determine these
quantities by applying different values of
VGS − VTH and VDS and measuring ID?

6.5. A MOSFET carries a drain current of
2 mA with VDS = 0.4 V in saturation.
Determine the change in VDS required to
double the drain current and λ = 0.1 V−1.
What is the device output impedance?

6.6. A NMOS device operating in the saturation
region with W/L = 10, carries a current of
5 mA. Calculate the transconductance of
the device.

6.7. For a MOS transistor biased in the triode
region, we can define an incremental drain-
source resistance as

rDS,tri =
(

∂ID

∂VDS

)−1

. (6.78)

Derive an expression for this quantity.

6.8. A NMOS transistor is designed to be used
as a resistor of resistance 500 � in certain
application, with W/L = 12. Find the over-
drive voltage needed.

6.9. It is possible to define an “intrinsic time
constant” for a MOSFET operating as a
resistor:

τ = RonCGS, (6.79)

whereCGS = WLCox. Obtain an expression
for τ and explain what the circuit designer
must do to minimize the time constant.

6.10. Calculate the value of drain current in the
circuit shown in Fig. 6.37, with W = 5 μm,
L = 0.5 μm and λ = 0.

RD

VDD

M1

= 3 V

20 kΩ

Figure 6.37

6.11. In the circuit shown in Fig. 6.37, what value
of R is required to get a current of 75 μA
with W = 5 μm, L = 0.5 μm and λ = 0?

6.12. For MOS devices with very short channel
lengths, the square-law behavior is not valid,
and we may instead write:

ID = WCox(VGS − VTH)vsat, (6.80)

where vsat is a relatively constant velocity.
Determine the transconductance of such a
device.
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6.13. Advanced MOS devices do not follow the
square-law behavior expressed by Eq. (6.17).
A somewhat better approximation is:

ID = 1

2
μnCox

W
L

(VGS − VTH)
α
, (6.81)

where α is less than 2. Determine the
transconductance of such a device.

6.14. Determine* the region of operation of M1 in
each of the circuits shown in Fig. 6.38.

6.15. Determine* the region of operation of M1 in
each of the circuits shown in Fig. 6.39.

M 1

1 V

M 1

1 V

M 1

1 V

0.7 V0.2 V

M 1

1 V

0.2 V 0.2 V

(d)(c)

(a) (b)

Figure 6.38

M 1
0.5 V

0.5 V

2 V M 1

0.5 V

2 V

1.5 V
M 1

0.5 V
1.5 V

0.5 V

M 1

0.5 V

M 1
1.5 V

M 1

0.5 V

0.5 V

1.5 V

0.5 V

M 1

0.5 V

M 1

1 V

M 1

0.5 V

0.5 V

(d)

(c)(a) (b)

(e) (f)

(g) (h) (i)

Figure 6.39

6.16. Two current sources realized by iden-
tical MOSFETs (Fig. 6.40) match to
within 1%, i.e., 0.99ID2 < ID1 < 1.01ID2. If
VDS1 = 0.5 V and VDS2 = 1 V, what is the
maximum tolerable value of λ?

M 1 M

I ID1 D2

VB

2

Figure 6.40
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6.17. Assume λ = 0, compute W/L of M1 in
Fig. 6.41 such that the device operates at
the edge of saturation.

R  Ω

1 V
M 1

VDD

D

= 1.8 V

1 k

Figure 6.41

6.18. In the Fig. 6.42, what is the current when
VGS = 2 VTH? Find the region in which the
device operates.

R

M 1

VDD

D

VB

= 1.8 V

500 Ω 

Figure 6.42

6.19. In the Fig. 6.43, compute the value of W/L
required to operate the transistor M1 in
saturation region.

M1

VDD

RD

W
L

= 1.8 V

= 500 Ω 

Figure 6.43

6.20. Compute the value of W/L for M1 in
Fig. 6.44 for a bias current of 0.5 mA.
Assume λ = 0.

M1

VDD = 1.8 V

600 Ω

Figure 6.44

6.21. Calculate the bias current of M1 in Fig. 6.45
if λ = 0.

M1

RD

VDD = 1.8 V

10
0.18

500 Ω

Figure 6.45

6.22. Sketch** IX as a function of VX for the circuits
shown in Fig. 6.46. Assume VX goes from
0 to VDD = 1.8 V. Also, λ = 0. Determine
at what value of VX the device changes its
region of operation.

6.23. Calculate the value of W/L required to get
a drain current of 1 mA in the circuit shown
in Fig. 6.47. Assume λ = 0.

6.24. In the circuit of Fig. 6.48 W/L = 10/0.18 and
λ = 0. What is the value of current flowing
through M1, assuming that the device oper-
ating at the edge of saturation?

M 1

X

I X

M 1

I X

V
1 V

X M 1 I X
VX

M 1

VDD = 1.8 V

(d)(c)(a) (b)

1 V V

I X

XV

Figure 6.46
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M1

RD

VDD

500 Ω 

= 1.8 V

Figure 6.47

R

M 1

VDD

D

= 1.8 V

1 kΩ

0.7 V

Figure 6.48

R  Ω

M 1

VDD

D

= 1.8 V

1 V

R  Ω

M 1

VDD

D

= 1.8 V

5 k

M 1

VDD = 1.8 V

1 mA

M 1

VDD = 1.8 V

 Ω2 k

M 1

VDD = 1.8 V

0.5 mA

(d)

(c)(a) (b)

(e)

100

Figure 6.49

6.25. A NMOS device operating in the deep
triode region with λ = 0 must provide a
resistance of 20 k�. Determine the required
value of W/L if VGS = 0.5 V.

6.26. Determine the transconductance of a
MOSFET operating in saturation, if
W/L = 10/0.18 and ID = 3 mA. If W/L
ratio is doubled, compute the new value of
transconductance keeping ID constant.

6.27. If λ = 0.1 V−1 and W/L = 20/0.18, con-
struct the small-signal model of each of the
circuits shown in Fig. 6.49.

6.28. Assuming a constant VDS , a graph of gmro

verses (VGS − VTH) of a NMOS gives a
slope of 50 V−1. Find the W/L ratio if
λ = 0.1 V−1 and ID = 0.5 mA.

6.29. A NMOS device has a current of 0.5 mA
with W/L = 5 and λ = 0.1 V−1. Calculate
the intrinsic gain gmro.

6.30. Construct the small-signal model of the
circuits depicted in Fig. 6.50. Assume

all transistors operate in saturation and
λ �= 0.

6.31. Determine* the region of operation of M1 in
each circuit shown in Fig. 6.51.

6.32. Determine* the region of operation of M1 in
each circuit shown in Fig. 6.52.

6.33. If λ = 0, what value of W/L places the
transistor M1 at the edge of saturation in
Fig. 6.53?

6.34. If W/L = 10/0.18 and λ = 0, determine
the operating point of M1 in each circuit
depicted in Fig. 6.54.

6.35. Sketch** IX as a function of VX for the circuits
shown in Fig. 6.55. Assume VX goes from
0 to VDD = 1.8 V. Also, λ = 0. Determine
at what value of VX the device changes its
region of operation.

6.36. Construct the small-signal model of each
circuit shown in Fig. 6.56 if all of the tran-
sistors operate in saturation and λ �= 0.
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6.37. For the circuit shown in Fig. 6.57, draw the
ac equivalent circuit assuming M1 and M2

VDD

–VDD

M1

M2

outVinV

Figure 6.57

operate in saturation and each has channel
length modulation coefficients λn and λp re-
spectively. Determine the small signal volt-
age gain of the circuit.
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S P I C E P R O B L E M S

In the following problems, use the MOS
models and source/drain dimensions given in
Appendix A. Assume the substrates of NMOS
and PMOS devices are tied to ground and VDD,
respectively.

6.1. For the circuit shown in Fig. 6.58, plot VX

as a function of IX for 0 < IX < 3 mA.
Explain the sharp change in VX as IX

exceeds a certain value.

M 1

I X
VX

2

0.180.9 V

Figure 6.58

6.2. Plot the input/output characteristic of the
stage shown in Fig. 6.59 for 0 < Vin < 1.8 V.
At what value of Vin does the slope (gain)
reach a maximum?

M 1

VDD = 1.8 V

 Ω500 

inV

outV

0.18

10

Figure 6.59

6.3. For the arrangements shown in Fig. 6.60,
plot ID as a function of VX as VX varies from 0
to 1.8 V. Can we say these two arrangements
are equivalent?

M 1

0.9 V

VX

I X

5
M 1

0.9 V

VX

I X

5

M
5

2

0.36

0.36

(a) (b)

0.36

Figure 6.60



Chapter 7
CMOS Amplifiers

Most CMOS amplifiers have identical bipolar counterparts and can therefore be analyzed

in the same fashion. Our study in this chapter parallels the developments in Chapter 5,

identifying both similarities and differences between CMOS and bipolar circuit topologies.

It is recommended that the reader review Chapter 5, specifically, Section 5.1. We assume

the reader is familiar with concepts such as I/O impedances, biasing, and dc and small-signal

analysis. The outline of the chapter is shown below.

➤

General Concepts

• Biasing of MOS Stages

• Realization of Current

Sources

MOS Amplifiers

• Common–Source Stage

• Common–Gate Stage

• Source Follower

7.1 GENERAL CONSIDERATIONS

7.1.1 MOS Amplifier Topologies

Recall from Section 5.3 that the nine possible circuit topologies using a bipolar transistor in
fact reduce to three useful configurations. The similarity of bipolar and MOS small-signal
models (i.e., a voltage-controlled current source) suggests that the same must hold for MOS
amplifiers. In other words, we expect three basic CMOS amplifiers: the “common-source”
(CS) stage, the “common-gate” (CG) stage, and the “source follower.”

7.1.2 Biasing

Depending on the application, MOS circuits may incorporate biasing techniques that are
quite different from those described in Chapter 5 for bipolar stages. Most of these tech-
niques are beyond the scope of this book and some methods are studied in Chapter 5.
Nonetheless, it is still instructive to apply some of the biasing concepts of Chapter 5 to
MOS stages.

281
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V

I
Y

X

R

DD

D

M 1

D

 Ω1 kRS

R1 Ω4 k

R2 Ω10 k

= 1.8 V

Figure 7.1 MOS stage with biasing.

Consider the circuit shown in Fig. 7.1, where the gate voltage is defined by R1 and
R2. We assume M1 operates in saturation. Also, in most bias calculations, we can neglect
channel-length modulation. Noting that the gate current is zero, we have

VX = R2

R1 + R2

VDD. (7.1)

Since VX = VGS + IDRS ,

R2

R1 + R2

VDD = VGS + IDRS . (7.2)

Also,

ID = 1

2
μnCox

W
L

(VGS − VTH)
2
. (7.3)

Equations (7.2) and (7.3) can be solved to obtain ID and VGS, either by iteration or by
finding ID from Eq. (7.2) and replacing for it in Eq. (7.3):(

R2

R1 + R2

VDD − VGS

)
1

RS
= 1

2
μnCox

W
L

(VGS − VTH)
2
. (7.4)

That is,

VGS = −(V1 − VTH) +
√

(V1 − VTH)
2 − V2

TH + 2R2

R1 + R2

V1VDD, (7.5)

= −(V1 − VTH) +
√

V2
1 + 2V1

(
R2VDD

R1 + R2

− VTH

)
, (7.6)

where

V1 = 1

μnCox
W
L

RS

. (7.7)

This value of VGS can then be substituted in Eq. (7.2) to obtain ID. Of course, VY must
exceed VX − VTH to ensure operation in the saturation region.

Example

7.1
Determine the bias current of M1 in Fig. 7.1 assuming VTH = 0.5 V, μnCox =
100 μA/V2, W/L = 5/0.18, and λ = 0. What is the maximum allowable value of RD

for M1 to remain in saturation?
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Solution We have

VX = R2

R1 + R2

VDD (7.8)

= 1.286 V. (7.9)

With an initial guess VGS = 1 V, the voltage drop across RS can be expressed as
VX − VGS = 286 mV, yielding a drain current of 286 μA. Substituting for ID in
Eq. (7.3) gives the new value of VGS as

VGS = VTH +
√√√√√ 2ID

μnCox
W
L

(7.10)

= 0.954 V. (7.11)

Consequently,

ID = VX − VGS

RS
(7.12)

= 332 μA, (7.13)

and hence

VGS = 0.989 V. (7.14)

This gives ID = 297 μA.
As seen from the iterations, the solutions converge more slowly than those en-

countered in Chapter 5 for bipolar circuits. This is due to the quadratic (rather than
exponential) ID-VGS dependence. We may therefore utilize the exact result in Eq. (7.6)
to avoid lengthy calculations. Since V1 = 0.36 V,

VGS = 0.974 V (7.15)

and

ID = VX − VGS

RS
(7.16)

= 312 μA. (7.17)

The maximum allowable value of RD is obtained if VY = VX − VTH = 0.786 V.
That is,

RD = VDD − VY

ID
(7.18)

= 3.25 k�. (7.19)

Exercise What is the value of R2 that places M1 at the edge of saturation?
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Example

7.2
In the circuit of Example 7.1, assume M1 is in saturation and RD = 2.5 k� and compute
(a) the maximum allowable value of W/L and (b) the minimum allowable value of RS

(with W/L = 5/0.18). Assume λ = 0.

Solution (a) As W/L becomes larger, M1 can carry a larger current for a given VGS. With
RD = 2.5 k� and VX = 1.286 V, the maximum allowable value of ID is given by

ID = VDD − VY

RD
(7.20)

= 406 μA. (7.21)

The voltage drop across RS is then equal to 406 mV, yielding VGS = 1.286 V−
0.406 V = 0.88 V. In other words, M1 must carry a current of 406 μA with VGS = 0.88 V:

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(7.22)

406 μA = (50 μA/V2)
W
L

(0.38 V)
2
; (7.23)

thus,

W
L

= 56.2. (7.24)

(b) With W/L = 5/0.18, the minimum allowable value of RS gives a drain current of
406 μA. Since

VGS = VTH +
√√√√√ 2ID

μnCox
W
L

(7.25)

= 1.041 V, (7.26)

the voltage drop across RS is equal to VX − VGS = 245 mV. It follows that

RS = VX − VGS

ID
(7.27)

= 604 �. (7.28)

Exercise Repeat the above example if VTH = 0.35 V.

The self-biasing technique of Fig. 5.22 can also be applied to MOS amplifiers. Depicted
in Fig. 7.2, the circuit can be analyzed by noting that M1 is in saturation (why?) and the
voltage drop across RG is zero. Thus,

IDRD + VGS + RSID = VDD. (7.29)

Finding VGS from this equation and substituting it in Eq. (7.3), we have

ID = 1

2
μnCox

W
L

[VDD − (RS + RD)ID − VTH]
2
, (7.30)
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V
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R

DD

D

M 1

D

RS

RG

Figure 7.2 Self-biased MOS stage.

where channel-length modulation is neglected. It follows that

(RS + RD)
2I2

D − 2

⎡
⎢⎣(VDD − VTH)(RS + RD) + 1

μnCox
W
L

⎤
⎥⎦ID + (VDD − VTH)

2 = 0.

(7.31)

Example

7.3
Calculate the drain current of M1 in Fig. 7.3 if μnCox = 100 μA/V2, VTH = 0.5 V, and
λ = 0. What value of RD is necessary to reduce ID by a factor of two?

1
=
0.18

 Ω1 k

 Ω20 k

5

 Ω200

D

= 1.8 V

W

R

LM

VDD

Figure 7.3 Example of self-biased MOS stage.

Solution Equation (7.31) gives

ID = 556 μA. (7.32)

To reduce ID to 278 μA, we solve Eq. (7.31) for RD:

RD = 2.867 k�. (7.33)

Exercise Repeat the above example if VDD drops to 1.2 V.

7.1.3 Realization of Current Sources

MOS transistors operating in saturation can act as current sources. As illustrated in
Fig. 7.4(a), an NMOS device serves as a current source with one terminal tied to ground,
i.e., it draws current from node X to ground. On the other hand, a PMOS transistor
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M 1

VDD

M 2

Vb

X X
Vb

Y

VDD

Y

(a) (b)

M 1

VDD

M
Vb

Vb 1

X

Y

(d)(c)

Figure 7.4 (a) NMOS device operating as a current source, (b) PMOS device operating as a

current source, (c) PMOS topology not operating as a current source, (d) NMOS topology not

operating as a current source.

[Fig. 7.4(b)] draws current from VDD to node Y. If λ = 0, these currents remain indepen-
dent of VX or VY (so long as the transistors are in saturation).

It is important to understand that only the drain terminal of a MOSFET can draw a dc
current and still present a high impedance. Specifically, NMOS or PMOS devices configured
as shown in Figs. 7.4(c) and (d) do not operate as current sources because variation of
VX or VY directly changes the gate-source voltage of each transistor, thus changing the
drain current considerably. From another perspective, the small-signal model of these
two structures is identical to that of the diode-connected devices in Fig. 6.34, revealing a
small-signal impedance of only 1/gm (if λ = 0) rather than infinity.

7.2 COMMON-SOURCE STAGE

7.2.1 CS Core

Shown in Fig. 7.5(a), the basic CS stage is similar to the common-emitter topology, with the
input applied to the gate and the output sensed at the drain. For small signals, M1 converts
the input voltage variations to proportional drain current changes, and RD transforms
the drain currents to the output voltage. If channel-length modulation is neglected, the
small-signal model in Fig. 7.5(b) yields vin = v1 and vout = −gmv1RD. That is,

vout

vin
= −gmRD, (7.34)

a result similar to that obtained for the common emitter stage in Chapter 5.

(a) (b)

R

M 1

VDD

D

I D
outV

inV

Input Applied 
to Gate

Output Sensed
at Drain

g
m

vv 1 1

inv

R
outv

D

Figure 7.5 (a) Common-source stage, (b) small-signal mode.
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The voltage gain of the CS stage is also limited by the supply voltage. Since gm =√
2μnCox(W/L)ID, we have

Av = −
√

2μnCox
W
L

IDRD, (7.35)

concluding that if ID or RD is increased, so is the voltage drop across RD ( = IDRD).1 For
M1 to remain in saturation,

VDD − RDID > VGS − VTH, (7.36)

that is,

RDID < VDD − (VGS − VTH). (7.37)

Example

7.4
Calculate the small-signal voltage gain of the CS stage shown in Fig. 7.6 if ID = 1 mA,
μnCox = 100 μA/V2, VTH = 0.5 V, and λ = 0. Verify that M1 operates in saturation.

R  Ω

M 1
W
L

=

VDD

D

0.18

1 k

10
inv

outv

= 1.8 V

Figure 7.6 Example of CS stage.

Solution We have

gm =
√

2μnCox
W
L

ID (7.38)

= 1

300 �
. (7.39)

Thus,

Av = −gmRD (7.40)

= 3.33. (7.41)

To check the operation region, we first determine the gate-source voltage:

VGS = VTH +
√√√√√ 2ID

μnCox
W
L

(7.42)

= 1.1 V. (7.43)

1It is possible to raise the gain to some extent by increasing W, but “subthreshold conduction” eventually
limits the transconductance. This concept is beyond the scope of this book.



288 Chapter 7 CMOS Amplifiers

The drain voltage is equal to VDD − RDID = 0.8 V. Since VGS − VTH = 0.6 V, the device
indeed operates in saturation and has a margin of 0.2 V with respect to the triode region.
For example, if RD is doubled with the intention of doubling Av , then M1 enters the
triode region and its transconductance drops.

Exercise What value of VTH places M1 at the edge of saturation?

Since the gate terminal of MOSFETs draws a zero current (at very low frequencies),
we say the CS amplifier provides a current gain of infinity. By contrast, the current gain of
a common-emitter stage is equal to β.

Let us now compute the I/O impedances of the CS amplifier. Since the gate current is
zero (at low frequencies),

Rin = ∞, (7.44)

a point of contrast to the CE stage (whose Rin is equal to rπ ). The high input impedance
of the CS topology plays a critical role in many analog circuits.

The similarity between the small-signal equivalents of CE and CS stages indicates that
the output impedance of the CS amplifier is simply equal to

Rout = RD. (7.45)

This is also seen from Fig. 7.7.

g
m

vv 1 1 Xv

Xi

RD

Figure 7.7 Output impedance of CS stage.

In practice, channel-length modulation may not be negligible, especially if RD

is large. The small-signal model of CS topology is therefore modified as shown in
Fig. 7.8, revealing that

Av = −gm(RD||rO) (7.46)

Rin = ∞ (7.47)

Rout = RD||rO. (7.48)

In other words, channel-length modulation and the Early effect impact the CS and CE
stages, respectively, in a similar manner.

g
m

vv r O1 1 Xv

Xi

RD

Figure 7.8 Effect of channel-length modulation on CS stage.
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Example

7.5
Assuming M1 operates in saturation, determine the voltage gain of the circuit depicted
in Fig. 7.9(a) and plot the result as a function of the transistor channel length while other
parameters remain constant.

M 1

VDD

inv
outv

L

A v

(a) (b)

Figure 7.9 (a) CS stage with ideal current source as a load, (b) gain as a function of device

channel length.

Solution The ideal current source presents an infinite small-signal resistance, allowing the use of
Eq. (7.46) with RD = ∞:

Av = −gmrO. (7.49)

This is the highest voltage gain that a single transistor can provide. Writing gm =√
2μnCox(W/L)ID and rO = (λID)

−1
, we have

|Av| =

√
2μnCox

W
L

λ
√

ID
. (7.50)

This result may imply that |Av| falls as L increases, but recall from Chapter 6 that λ ∝ L−1:

|Av| ∝
√

2μnCoxWL
ID

. (7.51)

Consequently, |Av| increases with L [Fig. 7.9(b)].

Exercise Repeat the above example if a resistor of value R1 is tied between the gate and drain of M1.

7.2.2 CS Stage With Current-Source Load

As seen in the above example, the trade-off between the voltage gain and the voltage
headroom can be relaxed by replacing the load resistor with a current source. The obser-
vations made in relation to Fig. 7.4(b) therefore suggest the use of a PMOS device as the
load of an NMOS CS amplifier [Fig. 7.10(a)].

Let us determine the small-signal gain and output impedance of the circuit.
Having a constant gate-source voltage, M2 simply behaves as a resistor equal to its output
impedance [Fig. 7.10(b)] because v1 = 0 and hence gm2v1 = 0. Thus, the drain node of M1

sees both rO1 and rO2 to ac ground. Equations (7.46) and (7.48) give

Av = −gm1(rO1||rO2) (7.52)

Rout = rO1||rO2. (7.53)
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Figure 7.10 (a) CS stage using a PMOS device as a current source, (b) small-signal model.

Example

7.6
Figure 7.11 shows a PMOS CS stage using an NMOS current source load. Compute the
voltage gain of the circuit.

VDD

Min

out

M 1
Vb

2
v

v

Figure 7.11 CS stage using an NMOS device as current source.

Solution Transistor M2 generates a small-signal current equal to gm2vin, which then flows through
rO1||rO2, producing vout = −gm2vin(rO1||rO2). Thus,

Av = −gm2(rO1||rO2). (7.54)

Exercise Calculate the gain if the circuit drives a loads resistance equal to RL.

7.2.3 CS Stage With Diode-Connected Load

In some applications, we may use a diode-connected MOSFET as the drain load. Illustrated
in Fig. 7.12(a), such a topology exhibits only a moderate gain due to the relatively low
impedance of the diode-connected device (Section 7.1.3). With λ = 0, M2 acts as a small-
signal resistance equal to 1/gm2, and Eq. (7.34) yields

Av = −gm1 · 1

gm2

(7.55)

= −
√

2μnCox(W/L)1ID√
2μnCox(W/L)2ID

(7.56)

= −
√

(W/L)1

(W/L)2

. (7.57)
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Figure 7.12 (a) MOS stage using a diode-connected load, (b) bipolar counterpart,

(c) simplified circuit of (a).

Interestingly, the gain is given by the dimensions of M1 and M2 and remains independent
of process parameters μn and Cox and the drain current, ID.

The reader may wonder why we did not consider a common-emitter stage with a diode-
connected load in Chapter 5. Shown in Fig. 7.12(b), such a circuit is not used because it
provides a voltage gain of only unity:

Av = −gm1 · 1

gm2

(7.58)

= − IC1

VT
· 1

IC2/VT
(7.59)

≈ −1. (7.60)

The contrast between Eqs. (7.57) and (7.60) arises from a fundamental difference between
MOS and bipolar devices: transconductance of the former depends on device dimensions
whereas that of the latter does not.

A more accurate expression for the gain of the stage in Fig. 7.12(a) must take channel-
length modulation into account. As depicted in Fig. 7.12(c), the resistance seen at the drain
is now equal to (1/gm2)||rO2||rO1, and hence

Av = −gm1

(
1

gm2

||rO2||rO1

)
. (7.61)

Similarly, the output resistance of the stage is given by

Rout = 1

gm2

||rO2||rO1. (7.62)

Example

7.7
Determine the voltage gain of the circuit shown in Fig. 7.13(a) if λ �= 0.

M 1

VDD

M 2inV

outV

Figure 7.13 CS stage with diode-connected PMOS device.
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Solution This stage is similar to that in Fig. 7.12(a), but with NMOS devices changed to PMOS
transistors: M1 serves as a common-source device and M2 as a diode-connected load.
Thus,

Av = −gm2

(
1

gm1

||rO1||rO2

)
. (7.63)

Exercise Repeat the above example if the gate of M1 is tied to a constant voltage equal to
0.5 V.

7.2.4 CS Stage With Degeneration

Recall from Chapter 5 that a resistor placed in series with the emitter of a bipolar transistor
alters characteristics such as gain, I/O impedances, and linearity. We expect similar results
for a degenerated CS amplifier.

V

R

DD

M 1

D

RS

outV

inV

g
m

vv 1 1

inv

R
outv

RS

D

(a) (b)

Figure 7.14 (a) CS stage with degeneration, (b) small-signal model.

Figure 7.14 depicts the stage along with its small-signal equivalent (if λ = 0). As with
the bipolar counterpart, the degeneration resistor sustains a fraction of the input voltage
change. From Fig. 7.14(b), we have

vin = v1 + gmv1RS (7.64)

and hence

v1 = vin

1 + gmRS
. (7.65)

Since gmv1 flows through RD, vout = −gmv1RD and

vout

vin
= − gmRD

1 + gmRS
(7.66)

= − RD

1

gm
+ RS

, (7.67)

a result identical to that expressed by Eq. (5.157) for the bipolar counterpart.
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Example

7.8
Compute the voltage gain of the circuit shown in Fig. 7.15(a) if λ = 0.

V
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DD

M 1

D

outV

inV

(a) (b)

M 2

R

M 1

D

out

inv

v

g
1

m2

Figure 7.15 (a) Example of CS stage with degeneration, (b) simplified circuit.

Solution Transistor M2 serves as a diode-connected device, presenting an impedance of 1/gm2

[Fig. 7.15(b)]. The gain is therefore given by Eq. (7.67) if RS is replaced with 1/gm2:

Av = − RD

1

gm1

+ 1

gm2

. (7.68)

Exercise What happens if λ �= 0 for M2?

In parallel with the developments in Chapter 5, we may study the effect of a resistor
appearing in series with the gate (Fig. 7.16). However, since the gate current is zero (at
low frequencies), RG sustains no voltage drop and does not affect the voltage gain or the
I/O impedances.

Effect of Transistor Output Impedance As with the bipolar counterparts, the inclusion
of the transistor output impedance complicates the analysis and is studied in Problem 7.32.
Nonetheless, the output impedance of the degenerated CS stage plays a critical role in
analog design and is worth studying here.

Figure 7.17 shows the small-signal equivalent of the circuit. Since RS carries a cur-
rent equal to iX (why?), we have v1 = −iXRS . Also, the current through rO is equal to

V

R

DD

M 1

D

RS

outV

inV
RG

Figure 7.16 CS stage with gate resistance.
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g
m

vv r O1 1

RS

Xv

Xi

Figure 7.17 Output impedance of CS stage with degeneration.

iX − gmv1 = iX − gm(− iXRS) = iX + gmiXRS . Adding the voltage drops across rO and RS

and equating the result to vX , we have

rO(iX + gmiXRS) + iXRS = vX , (7.69)

and hence

vX

iX
= rO(1 + gmRS) + RS (7.70)

= (1 + gmrO)RS + rO (7.71)

≈ gmrORS + rO. (7.72)

Alternatively, we observe that the model in Fig. 7.17 is similar to its bipolar counterpart in
Fig. 5.46(a) but with rπ = ∞. Letting rπ → ∞ in Eqs. (5.196) and (5.197) yields the same
results as above. As expected from our study of the bipolar degenerated stage, the MOS
version also exhibits a “boosted” output impedance.

Example

7.9
Compute the output resistance of the circuit in Fig. 7.18(a) if M1 and M2 are identical.

M 1

M 2

Rout

M 1

Rout

g
1

m2
r O2

r O1

(a) (b)

Vb

Figure 7.18 (a) Example of CS stage with degeneration, (b) simplified circuit.

Solution The diode-connected device M2 can be represented by a small-signal resistance
of (1/gm2)||rO2 ≈ 1/gm2. Transistor M1 is degenerated by this resistance, and from
Eq. (7.70):

Rout = rO1

(
1 + gm1

1

gm2

)
+ 1

gm2

(7.73)
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which, since gm1 = gm2 = gm, reduces to

Rout = 2rO1 + 1

gm
(7.74)

≈ 2rO1. (7.75)

Exercise Do the results remain unchanged if M2 is replaced with a diode-connected PMOS device?

Example

7.10
Determine the output resistance of the circuit in Fig. 7.19(a) and compare the result with
that in the above example. Assume M1 and M2 are in saturation.

M 1

M 2

Rout

M 1

Rout

r O2

r O1

(a) (b)

Vb1

Vb2

Figure 7.19 (a) Example of CS stage with degeneration, (b) simplified circuit.

Solution With its gate-source voltage fixed, transistor M2 operates as a current source, introducing
a resistance of rO2 from the source of M1 to ground [Fig. 7.19(b)].

Equation (7.71) can therefore be written as

Rout = (1 + gm1rO1)rO2 + rO1 (7.76)

≈ gm1rO1rO2 + rO1. (7.77)

Assuming gm1rO2 � 1 (which is valid in practice), we have

Rout ≈ gm1rO1rO2. (7.78)

We observe that this value is quite higher than that in Eq. (7.75).

Exercise Repeat the above example for the PMOS counterpart of the circuit.

7.2.5 CS Core With Biasing

The effect of the simple biasing network shown in Fig. 7.1 is similar to that analyzed for the
bipolar stage in Chapter 5. Depicted in Fig. 7.20(a) along with an input coupling capacitor
(assumed a short circuit), such a circuit no longer exhibits an infinite input impedance:

Rin = R1||R2. (7.79)
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R2

V
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DD
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D

RS

outV

inV
C1

R1

R2

V
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DD
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D

RS

outV

inV
C1RG

R1

R2

V

R

DD

M 1

D

RS

outV

C2

(c)(a) (b)

inV
C1RG

Rin

Figure 7.20 (a) CS stage with input coupling capacitor, (b) inclusion of gate resistance, (c) use of

bypass capacitor.

Thus, if the circuit is driven by a finite source impedance [Fig. 7.20(b)], the voltage gain
falls to

Av = R1||R2

RG + R1||R2

· −RD

1

gm
+ RS

, (7.80)

where λ is assumed to be zero.
As mentioned in Chapter 5, it is possible to utilize degeneration for bias point stability

but eliminate its effect on the small-signal performance by means of a bypass capacitor
[Fig. 7.20(c)]. Unlike the case of bipolar realization, this does not alter the input impedance
of the CS stage:

Rin = R1||R2, (7.81)

but raises the voltage gain:

Av = − R1||R2

RG + R1||R2

gmRD. (7.82)

Example

7.11
Design the CS stage of Fig. 7.20(c) for a voltage gain of 5, an input impedance of 50 k�,
and a power budget of 5 mW. Assume μnCox = 100 μA/V2, VTH = 0.5 V, λ = 0, and
VDD = 1.8 V. Also, assume a voltage drop of 400 mV across RS .

Solution The power budget along with VDD = 1.8 V implies a maximum supply current of
2.78 mA. As an initial guess, we allocate 2.7 mA to M1 and the remaining 80 μA to
R1 and R2. It follows that

RS = 148 �. (7.83)

As with typical design problems, the choice of gm and RD is somewhat flexible so
long as gmRD = 5. However, with ID known, we must ensure a reasonable value for VGS,
e.g., VGS = 1 V. This choice yields

gm = 2ID

VGS − VTH
(7.84)

= 1

92.6 �
, (7.85)
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and hence

RD = 463 �. (7.86)

Writing

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(7.87)

gives

W
L

= 216. (7.88)

With VGS = 1 V and a 400-mV drop across RS , the gate voltage reaches 1.4 V, requiring
that

R2

R1 + R2

VDD = 1.4 V, (7.89)

which, along with Rin = R1||R2 = 50 k�, yields

R1 = 64.3 k� (7.90)

R2 = 225 k�. (7.91)

We must now check to verify that M1 indeed operates in saturation. The drain
voltage is given by VDD − IDRD = 1.8 V − 1.25 V = 0.55 V. Since the gate voltage is
equal to 1.4 V, the gate-drain voltage difference exceeds VTH , driving M1 into the triode
region!

How did our design procedure lead to this result? For the given ID, we have cho-
sen an excessively large RD, i.e., an excessively small gm (because gmRD = 5), even
though VGS is reasonable. We must therefore increase gm so as to allow a lower value
for RD. For example, suppose we halve RD and double gm by increasing W/L by a factor
of four:

W
L

= 864 (7.92)

gm = 1

46.3 �
. (7.93)

The corresponding gate-source voltage is obtained from (7.84):

VGS = 250 mV, (7.94)

yielding a gate voltage of 650 mV.
Is M1 in saturation? The drain voltage is equal to VDD − RDID = 1.17 V, a value

higher than the gate voltage minus VTH . Thus, M1 operates in saturation.

Exercise Repeat the above example for a power budget of 3 mW and VDD = 1.2 V.

7.3 COMMON-GATE STAGE

Shown in Fig. 7.21, the CG topology resembles the common-base stage studied in
Chapter 5. Here, if the input rises by a small value, �V, then the gate-source voltage
of M1 decreases by the same amount, thereby lowering the drain current by gm�V and
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V

R

DD

D

outV

M 1 Vb

inV

Input Applied 
to Source

Output Sensed
at Drain

Figure 7.21 Common-gate stage.

raising Vout by gm�VRD. That is, the voltage gain is positive and equal to

Av = gmRD. (7.95)

The CG stage suffers from voltage headroom-gain trade-offs similar to those of the
CB topology. In particular, to achieve a high gain, a high ID or RD is necessary, but the
drain voltage, VDD − IDRD, must remain above Vb − VTH to ensure M1 is saturated.

Example

7.12
A microphone having a dc level of zero drives a CG stage biased at ID = 0.5 mA. If
W/L = 50, μnCox = 100 μA/V2, VTH = 0.5 V, and VDD = 1.8 V, determine the maxi-
mum allowable value of RD and hence the maximum voltage gain. Neglect channel-
length modulation.

Solution With W/L known, the gate-source voltage can be determined from

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(7.96)

as

VGS = 0.947 V. (7.97)

For M1 to remain in saturation,

VDD − IDRD > Vb − VTH (7.98)

and hence

RD < 2.71 k�. (7.99)

Also, the above value of W/L and ID yield gm = (447 �)
−1

and

Av ≤ 6.06. (7.100)

Figure 7.22 summarizes the allowable signal levels in this design. The gate voltage can
be generated using a resistive divider similar to that in Fig. 7.20(a).

Exercise If a gain of 10 is required, what value should be chosen for W/L?
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V

R

DD

D

outV

M 1

Vb
–VTHVb

inV0

= 0.947 V
= 0.447 V

Figure 7.22 Signal levels in CG stage.

We now compute the I/O impedances of the CG stage, expecting to obtain results
similar to those of the CB topology. Neglecting channel-length modulation for now, we
have from Fig. 7.23(a) v1 = −vX and

iX = −gmv1 (7.101)

= gmvX . (7.102)

That is,

Rin = 1

gm
, (7.103)

a relatively low value. Also, from Fig. 7.23(b), v1 = 0 and hence

Rout = RD, (7.104)

an expected result because the circuits of Figs. 7.23(b) and 7.7 are identical.
Let us study the behavior of the CG stage in the presence of a finite source

impedance (Fig. 7.24) but still with λ = 0. In a manner similar to that depicted in
Chapter 5 for the CB topology, we write

vX =
1

gm

1

gm
+ RS

vin (7.105)

= 1

1 + gmRS
vin. (7.106)

g
m

vv 1 1
RD

v
Xi

X

g
m

vv 1 1
RD

Xv

Xi

(a) (b)

Figure 7.23 (a) Input and (b) output impedances of CG stage.
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inv
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1

v X

Figure 7.24 Simplification of CG stage with signal source resistance.

Thus,

vout

vin
= vout

vX
· vX

vin
(7.107)

= gmRD

1 + gmRS
(7.108)

= RD

1

gm
+ RS

. (7.109)

The gain is therefore equal to that of the degenerated CS stage except for a negative sign.
In contrast to the common-source stage, the CG amplifier exhibits a current gain of

unity: the current provided by the input voltage source simply flows through the channel
and emerges from the drain node.

The analysis of the common-gate stage in the general case, i.e., including both channel-
length modulation and a finite source impedance, is beyond the scope of this book. How-
ever, we can make two observations. First, a resistance appearing in series with the gate
terminal [Fig. 7.25(a)] does not alter the gain or I/O impedances (at low frequencies)
because it sustains a zero potential drop—as if its value were zero. Second, the output
resistance of the CG stage in the general case [Fig. 7.25(b)] is identical to that of the
degenerated CS topology:

Rout = (1 + gmrO)RS + rO. (7.110)

V

R

DD

D

outV

M 1 Vb

inv

R G M 1

RS
r O

Rout

(a) (b)

Figure 7.25 (a) CG stage with gate resistance, (b) output resistance of CG stage.
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Example

7.13
For the circuit shown in Fig. 7.26(a), calculate the voltage gain if λ = 0 and the output
impedance if λ > 0.

V

R

DD

D

outV

M 1 Vb

in M 2

X

RS

inv
g
1

v X

m2

g
1

m1

M 1

RS
r

R

O1

out1

g
1

m2
r O2

(c)(a) (b)

RS

V

Figure 7.26 (a) Example of CG stage, (b) equivalent input network, (c) calculation of output

resistance.

Solution We first compute vX/vin with the aid of the equivalent circuit depicted in Fig. 7.26(b):

vX

vin
=

1

gm2

∣∣∣∣
∣∣∣∣ 1

gm1

1

gm2

∣∣∣∣
∣∣∣∣ 1

gm1

+ RS

(7.111)

= 1

1 + (gm1 + gm2)RS
. (7.112)

Noting that vout/vX = gm1RD, we have

vout

vin
= gm1RD

1 + (gm1 + gm2)RS
. (7.113)

To compute the output impedance, we first consider Rout1, as shown in Fig. 7.26(c),
which from Eq. (7.110) is equal to

Rout1 = (1 + gm1rO1)

(
1

gm2

||rO2||RS

)
+ rO1 (7.114)

≈ gm1rO1

(
1

gm2

||RS

)
+ rO1. (7.115)

The overall output impedance is then given by

Rout = Rout1||RD (7.116)

≈
[

gm1rO1

(
1

gm2

||RS

)
+ rO1

] ∣∣∣∣
∣∣∣∣RD. (7.117)

Exercise Calculate the output impedance if the gate of M2 is tied to a constant voltage.
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7.3.1 CG Stage With Biasing

Following our study of the CB biasing in Chapter 5, we surmise the CG amplifier can be
biased as shown in Fig. 7.27. Providing a path for the bias current to ground, resistor R3

lowers the input impedance—and hence the voltage gain—if the signal source exhibits a
finite output impedance, RS .

V

R

DD

D

outV

M 1

R2

R1

R3

C1

inV
R XS

Figure 7.27 CG stage with biasing.

Since the impedance seen to the right of node X is equal to R3||(1/gm), we have

vout

vin
= vX

vin
· vout

vX
(7.118)

= R3||(1/gm)

R3||(1/gm) + RS
· gmRD, (7.119)

where channel-length modulation is neglected. As mentioned earlier, the voltage divider
consisting of R1 and R2 does not affect the small-signal behavior of the circuit (at low
frequencies).

Example

7.14
Design the common-gate stage of Fig. 7.27 for the following parameters: vout/

vin = 5, RS = 0, R3 = 500 �, 1/gm = 50 �, power budget = 2 mW, VDD = 1.8 V. Assume
μnCox = 100 μA/V2, VTH = 0.5 V, and λ = 0.

Solution From the power budget, we obtain a total supply current of 1.11 mA. Allocating 10 μA
to the voltage divider, R1 and R2, we leave 1.1 mA for the drain current of M1. Thus, the
voltage drop across R3 is equal to 550 mV.

We must now compute two interrelated parameters: W/L and RD. A larger value of
W/L yields a greater gm, allowing a lower value of RD. As in Example 7.11, we choose an
initial value for VGS to arrive at a reasonable guess for W/L. For example, if VGS = 0.8 V,

then W/L = 244, and gm = 2ID/(VGS − VTH) = (136.4 �)
−1

, dictating RD = 682 � for
vout/vin = 5.

Let us determine whether M1 operates in saturation. The gate voltage is equal to
VGS plus the drop across R3, amounting to 1.35 V. On the other hand, the drain voltage is
given by VDD − IDRD = 1.05 V. Since the drain voltage exceeds VG − VTH , M1 is indeed
in saturation.
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The resistive divider consisting of R1 and R2 must establish a gate voltage equal to
1.35 V while drawing 10 μA:

VDD

R1 + R2

= 10 μA (7.120)

R2

R1 + R2

VDD = 1.35 V. (7.121)

It follows that R1 = 45 k� and R2 = 135 k�.

Exercise If W/L cannot exceed 100, what voltage gain can be achieved?

Example

7.15
Suppose in Example 7.14, we wish to minimize W/L (and hence transistor capacitances).
What is the minimum acceptable value of W/L?

Solution For a given ID, as W/L decreases, VGS − VTH increases. Thus, we must first compute the
maximum allowable VGS. We impose the condition for saturation as

VDD − IDRD > VGS + VR3 − VTH, (7.122)

where VR3 denotes the voltage drop across R3, and set gmRD to the required gain:

2ID

VGS − VTH
RD = Av. (7.123)

Eliminating RD from Eqs. (7.122) and (7.123) gives:

VDD − Av

2
(VGS − VTH) > VGS − VTH + VR3 (7.124)

and hence

VGS − VTH <
VDD − VR3

Av

2
+ 1

. (7.125)

In other words,

W/L >
2ID

μnCox

(
2

VDD − VR3

Av + 2

)2
. (7.126)

It follows that

W/L > 172.5. (7.127)

Exercise Repeat the above example for Av = 10.

7.4 SOURCE FOLLOWER

The MOS counterpart of the emitter follower is called the “source follower” (or the
“common-drain” stage) and shown in Fig. 7.28. The amplifier senses the input at the gate
and produces the output at the source, with the drain tied to VDD. The circuit’s behavior is
similar to that of the bipolar counterpart.
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Figure 7.28 Source follower.

7.4.1 Source Follower Core

If the gate voltage of M1 in Fig. 7.28 is raised by a small amount, �Vin, the gate-source
voltage tends to increase, thereby raising the source current and hence the output voltage.
Thus, Vout “follows” Vin. Since the dc level of Vout is lower than that of Vin by VGS, we say
the follower can serve as a “level shift” circuit. From our analysis of emitter followers in
Chapter 5, we expect this topology to exhibit a subunity gain, too.

Figure 7.29(a) depicts the small-signal equivalent of the source follower, including
channel-length modulation. Recognizing that rO appears in parallel with RL, we have

gmv1(rO||RL) = vout. (7.128)

Also,

vin = v1 + vout. (7.129)

It follows that

vout

vin
= gm(rO||RL)

1 + gm(rO||RL)
(7.130)

= rO||RL

1

gm
+ rO||RL

. (7.131)

The voltage gain is therefore positive and less than unity. It is desirable to maximize RL

(and rO).
As with emitter followers, we can view the above result as voltage division between

a resistance equal to 1/gm and another equal to rO||RL [Fig. 7.29(b)]. Note, however, that
a resistance placed in series with the gate does not affect Eq. (7.131) (at low frequencies)
because it sustains a zero drop.

g
m

vv r O1 1inv

RL

outv inv

outv

g m

1

RL r O

(a) (b)

Figure 7.29 (a) Small-signal equivalent of source follower, (b) simplified circuit.
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Example

7.16
A source follower is realized as shown in Fig. 7.30(a), where M2 serves as a current
source. Calculate the voltage gain of the circuit.

M 1

VDD

outV

inV

M 2
Vb

M 1
outV

inV r

r O2

O1

(a) (b)

Figure 7.30 (a) Follower with ideal current source, (b) simplified circuit.

Solution Since M2 simply presents an impedance of rO2 from the output node to ac ground
[Fig. 7.30(b)], we substitute RL = rO2 in Eq. (7.131):

Av = rO1||rO2

1

gm1

+ rO1||rO2

. (7.132)

If rO1||rO2 � 1/gm1, then Av ≈ 1.

Exercise Repeat the above example if a resistance of value RS is placed in series with the source of
M2.

Example

7.17
Design a source follower to drive a 50-� load with a voltage gain of 0.5 and a power
budget of 10 mW. Assume μnCox = 100 μA/V2, VTH = 0.5 V, λ = 0, and VDD = 1.8 V.

Solution With RL = 50 � and rO = ∞ in Fig. 7.28, we have

Av = RL

1

gm
+ RL

(7.133)

and hence

gm = 1

50 �
. (7.134)

The power budget and supply voltage yield a maximum supply current of 5.56 mA.

Using this value for ID in gm = √
2μnCox(W/L)ID gives

W/L = 360. (7.135)

Exercise What voltage gain can be achieved if the power budget is raised to 15 mW?
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Figure 7.31 Output resistance of source follower.

It is instructive to compute the output impedance of the source follower.2 As illus-
trated in Fig. 7.31, Rout consists of the resistance seen looking up into the source in par-
allel with that seen looking down into RL. With λ �= 0, the former is equal to (1/gm)||rO,
yielding

Rout = 1

gm
||rO||RL (7.136)

≈ 1

gm
||RL. (7.137)

In summary, the source follower exhibits a very high input impedance and a relatively
low output impedance, thereby providing buffering capability.

M 1

VDD

R

inV
C1

G

RS

C2

outV

Figure 7.32 Source follower with input and output coupling capacitors.

7.4.2 Source Follower With Biasing

The biasing of source followers is similar to that of emitter followers (Chapter 5).
Figure 7.32 depicts an example where RG establishes a dc voltage equal to VDD at the
gate of M1 (why?) and RS sets the drain bias current. Note that M1 operates in saturation
because the gate and drain voltages are equal. Also, the input impedance of the circuit has
dropped from infinity to RG.

Let us compute the bias current of the circuit. With a zero voltage drop across RG,
we have

VGS + IDRS = VDD. (7.138)

2The input impedance is infinite at low frequencies.
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Neglecting channel-length modulation, we write

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(7.139)

= 1

2
μnCox

W
L

(VDD − IDRS − VTH)
2
. (7.140)

The resulting quadratic equation can be solved to obtain ID.

Example

7.18
Design the source follower of Fig. 7.32 for a drain current of 1 mA and a voltage gain of
0.8. Assume μnCox = 100 μA/V2, VTH = 0.5 V, λ = 0, VDD = 1.8 V, and RG = 50 k�.

Solution The unknowns in this problem are VGS, W/L, and RS . The following three equations can
be formed:

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(7.141)

IDRS + VGS = VDD (7.142)

Av = RS

1

gm
+ RS

. (7.143)

If gm is written as 2ID/(VGS − VTH), then Eqs. (7.142) and (7.143) do not contain
W/L and can be solved to determine VGS and RS . With the aid of Eq. (7.142), we write
Eq. (7.143) as

Av = RS

VGS − VTH

2ID
+ RS

(7.144)

= 2IDRS

VGS − VTH + 2IDRS
(7.145)

= 2IDRS

VDD − VTH + IDRS
. (7.146)

Thus,

RS = VDD − VTH

ID

Av

2 − Av

(7.147)

= 867 �. (7.148)

and

VGS = VDD − IDRS (7.149)

= VDD − (VDD − VTH)
Av

2 − Av

(7.150)

= 0.933 V. (7.151)
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It follows from Eq. (7.141) that

W
L

= 107. (7.152)

Exercise What voltage gain can be achieved if W/L cannot exceed 50?

Equation (7.140) reveals that the bias current of the source follower varies with the
supply voltage. To avoid this effect, integrated circuits bias the follower by means of a
current source (Fig. 7.33).

M 1

VDD

R

inV
C1

G

C2

outV

M 1

VDD

R

inV
C1

G

C2

outV

M 2
Vb

Figure 7.33 Source follower with biasing.

P R O B L E M S

In the following problems, unless otherwise
stated, assume μnCox = 200 μA/V2, μpCox =
100 μA/V2, λ = 0, and VTH = 0.4 V for NMOS
devices and −0.4 V for PMOS devices.

7.1. For the circuit shown in Fig. 7.34, determine
the maximum value of R that will keep M1

in saturation. Assume λ = 0; W/L = 3 : 1.

V
R

DD
25 kΩ

= 1.8 V

Figure 7.34

7.2. We wish to design the circuit of Fig. 7.35 for
a drain current of 1 mA. If W/L = 20/0.18,
compute R1 and R2 such that the input
impedance is at least 20 k�.

M 1

VDD = 1.8 V

R1

R2

 Ω500

Figure 7.35

7.3. Consider the circuit shown in Fig. 7.36. Cal-
culate the maximum transconductance that
M1 can provide (without going into the tri-
ode region.)

 Ω

M 1

VDD

1 k Ω

= 1.8 V

10 k

 Ω100

Figure 7.36
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7.4. The circuit of Fig. 7.37 must be designed for
a voltage drop of 200 mV across RS .
(a) Calculate the minimum allowable value

of W/L if M1 must remain in saturation.

(b) What are the required values of R1 and
R2 if the input impedance must be at
least 30 k�?

M 1

VDD = 1.8 V

R1

R2

 Ω500

 Ω100RS

Figure 7.37

7.5. Consider the circuit depicted in Fig. 7.38,
where W/L = 20/0.18. Assuming the cur-
rent flowing through R2 is one-tenth of ID1,
calculate the values of R1 and R2 so that
ID1 = 0.5 mA.

M 1

VDD = 1.8 V

R1

R2

 Ω500

 ΩRS 200

Figure 7.38

7.6. The self-biased stage of Fig. 7.39 must be
designed for a drain current of 1 mA. If M1 is
to provide a transconductance of 1/(100 �),
calculate the required value of RD.

M 1

VDD = 1.8 V

RDRG

Figure 7.39

7.7. We wish to design the stage in Fig. 7.40 for a
drain current of 0.5 mA. If W/L = 50/0.18,
calculate the values of R1 and R2 such that
these resistors carry a current equal to one-
tenth of ID1.

M 1

VDD = 1.8 V

R  Ω2 k1

R2

Figure 7.40

7.8. Due* to a manufacturing error, a par-
asitic resistor, RP has appeared in the
circuit of Fig. 7.41. We know that cir-
cuit samples free from this error ex-
hibit VGS = VDS + 100 mV whereas defec-
tive samples exhibit VGS = VDS + 50 mV.
Determine the values of W/L and RP.

 Ω

M 1

VDD

 Ω

= 1.8 V

RP 2 k30 k

Figure 7.41

7.9. Due* to a manufacturing error, a parasitic
resistor, RP has appeared in the circuit of
Fig. 7.42. We know that circuit samples free
from this error exhibit VGS = VDS whereas
defective samples exhibit VGS = VDS + VTH .
Determine the values of W/L and RP if the
drain current is 1 mA without RP.

M 1

VDD = 1.8 V

 ΩRS 200

 Ω10 k  Ω1 k

RP

 Ω20 k

Figure 7.42
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7.10. In the circuit of Fig. 7.43, M1 and M2 have
lengths equal to 0.25 μm and λ = 0.1 V−1.
Determine W1 and W2 such that
IX = 2IY = 1 mA. Assume VDS1 = VDS2 =
VB = 0.8 V. What is the output resistance
of each current source?

M 1 M

I

VB

2

X IY

Figure 7.43

7.11. The current source shown in Fig. 7.44 are
to be designed for Ix = Iy = 0.6 mA. If

VB1 = 1.1 V, VB2 = 1.0 V, λ = 0.1V−1 and
L1 = L2 = 0.25 μm, calculate W1 and W2.
Calculate output resistances of these cur-
rent sources.

M1 M

I

V
2

X IY

B1 VB2

Figure 7.44

7.12. Consider the circuit shown in Fig. 7.45,
where (W/L)1 = 10/0.18 and (W/L)2 =
30/0.18. If λ = 0.1 V−1, calculate VB such
that VX = 0.9 V.

VDD

M 1

M 2

VB

X

= 1.8 V

Figure 7.45

7.13. Verify Fig. 7.46 for a current source. If
W/L = 8/0.2, λ = 0.1 V−1, VB1 = 0.25 V,
VX has dc level of 1.2 V. Calculate
impedance of source of M1.

M 1
VB1 VX

Figure 7.46

7.14. A* student mistakenly uses the circuit of
Fig. 7.47 as a current source. If W/L =
10/0.25, λ = 0.1 V−1, VB1 = 0.2 V, and VX

has a dc level of 1.2 V, calculate the
impedance seen at the source of M1.

M 1
VB1

VX

Figure 7.47

7.15. For the circuit shown in Fig. 7.48,
(W/L)1 = 4/0.15, (W/L)2 = 10/0.2, λ1 =
0.1 V−1 and λ2 = 0.12 V−1, determine the
inversion point Vin (=VB) for VX = 0.8 V.

VDD

M1

M2

VB VX

I X

= 1.8 V 

Figure 7.48

7.16. In the common-source stage of Fig. 7.49,
W/L = 30/0.18 and λ = 0.
(a) What gate voltage yields a drain current

of 0.5 mA? (Verify that M1 operates in
saturation.)

(b) With such a drain bias current, calculate
the voltage gain of the stage.

R  Ω

M 1

VDD

D

in

out

V

V

2 k

= 1.8 V

Figure 7.49

7.17. We wish to design the stage of Fig. 7.50
for a voltage gain of 5 with W/L ≤ 20/0.18.
Determine the required value of RD if the
power dissipation must not exceed 1 mW.
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M 1

VDD

in

out

V

V

= 1.8 V

RD

Figure 7.50

7.18. The CS stage of Fig. 7.51 must provide
a voltage gain of 10 with a bias cur-
rent of 0.5 mA. Assume λ1 = 0.1 V−1, and
λ2 = 0.15 V−1.
(a) Compute the required value of (W/L)1.

(b) If (W/L)2 = 20/0.18, calculate the re-
quired value of VB.

VDD

M 1

M 2

outV

inV

Vb

= 1.8 V

Figure 7.51

7.19. For the circuit shown in Fig. 7.52, calculate
Rout for given data.

ID = 1 mA(W/L)2 = 5/1 (W/L)1 = 10/1,

λ2 = 0.1 V−1, λ1 = 0.1V−1.

VDD

M1

M2

inV

Figure 7.52

7.20. The CS stage depicted in Fig. 7.53 must
achieve a voltage gain of 15 at a bias

VDD

M1

M2

outV

inV
ID

Figure 7.53

current of 0.5 mA. If λ1 = 0.15 V−1 and λ2 =
0.05 V−1, determine the required value of
(W/L)2.

7.21. Explain which one of the topologies shown
in Fig. 7.54 is preferred.

VDD

M 1

M 2

outV

inV

Vb

VDD

M 1

M 2

outV

inV

Vb

(a) (b)

Figure 7.54

7.22. For the circuit of Fig. 7.55, find voltage gain
(λ �= 0).

VDD

M1

M2

outV

inV
ID

Figure 7.55

7.23. The CS stage shown in Fig. 7.56 must
achieve a gain of 7. If (W/L)2 = 2/0.18,
compute required value of (W/L)1.

VDD

M1

M2

outV

inV

= 1.8 V 

Figure 7.56

7.24. If** λ �= 0, determine the voltage gain of the
stages shown in Fig. 7.57.

7.25. For the circuit shown in Fig.7.58, determine
the gate voltage at which M1 operates at the
edge of saturation.
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VDD

M 1

M 2

outV

inV

VDD

M 1

M

outV

inV

M 2
Vb 3

VDD

M 1

M 2

outV

inV

Vb

M 3

VDD

M 1

M 2

outV

inV

Vb M 3

VDD

M 1

M 2

outV

inV

Vb M 3

VDD

M 1

M 2

outV

inV

RD

(d)

(c)(a) (b)

(e) (f)

Figure 7.57

M1

VDD

in

out

V

V

DSV

RD

= 1.8 V

ID

Figure 7.58

7.26. For the circuit shown in Fig. 7.59, find the
value of RC, which should give gain of 5 with
a bias current of 0.5 mA. Assume a drop of
250 mV across RS and λ = 0.
(a) If RD = 2 k�, determine the required

value of (W/L).

(b) If (W/L) = 40/0.18, determine the value
of RD.

RS

VDD

out

inV

V

1M

RD

= 1.8 V 

Figure 7.59

7.27. Calculate** the voltage gain of the circuits de-
picted in Fig. 7.60. Assume λ = 0.

7.28. Determine* the output impedance of
each circuit shown in Fig. 7.61. Assume
λ �= 0.

7.29. The circuit in Fig. 7.62 has bias current of
0.8 mA. If RD = 1.5 k�, λ = 0.1 V−1 com-
pute required value of W/L for gate volt-
age of 1 V. What is voltage gain of
circuit?

7.30. For the circuit shown in Fig. 7.63, find output
voltage and gain.

7.31. For Fig. 7.64 circuit, I1 is ideal current
source, I1 = 1.5 mA, RD = 350 �, λ = 0, C,
is very large. Compute (W/L) value to
obtain gain of 7.

7.32. For a circuit in Fig. 7.65, for λ = 0,
I1 = 2 mA, what is the maximum value of
RD for M1 to be in saturation?

7.33. For the circuit shown in Fig. 7.66, find volt-
age transfer function. Determine value of
Vout/Vin. Assume ID = 400 μA, λ = 0, in
small-signal model take C gs = 0.5 PF and
C gd = 0.1 PF.

7.34. Identify the poles and zeros for Problem
7.33.
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VDD

M 1

M 2

outV

inV

VDD

M 1

M 2

outV

inV

RD

(a)

M 3

M 3

inV

RD

M M1 2

I

VDD

1

outV

Vb

M 1

VDD

in

out

V

V

RD

VbM 2

M 1

outV

inV

M 3

M

VDD

Vb 2

(d)

(c)(b)

(e)

Figure 7.60

M 1inV

VbM 2

Rout

inV M M1 2

I

VDD

1

Vb

Rout

M 1

M 2

inV

Vb

M 3

Rout

VDD

M 1

M 2inV

Vb M 3

Rout

(d)(c)

(a) (b)

Figure 7.61

M1

VDD = 1.8 V

RD
outV

inV

Figure 7.62

M1

RS

VB

RD

inV

outV

ID

ID

Figure 7.63

VDD = 1.8 V 

R1

R2

I 1 C1

inV

RD
outV

Figure 7.64
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M 1
VB

VDD = 1.8 V 

R1

R2

I 1 C1

inV

RD
outV

Figure 7.65

10/1

RS

VB

VDD

outV

= 1 kΩ

RD 10 kΩ

inV

ID

Figure 7.66

7.35. The CG stage depicted in Fig. 7.67 must pro-
vide an input impedance of 50 � and an out-
put impedance of 500 �. Assume λ = 0.
(a) What is the maximum allowable value

of ID?

(b) With the value obtained in (a), calculate
the required value of W/L.

(c) Compute the voltage gain.

V

R

DD

D

outV

M 1
inV

= 1.8 V

Figure 7.67

7.36. For the circuit shown in Fig. 7.68, find
the voltage gain. Assume RI = 1 k�,
RL = 20 k�, gm = 1 ms, C gs = 1 PF,
C gd = 1PF. Ignore rds.

= 20 kΩ

= 1 kΩRI

inV RL

outV

Figure 7.68

7.37. Determine* the voltage gain of each stage
depicted in Fig. 7.69. Assume λ = 0.

VDD

outV

M 1 Vb

inV
R S

M 2

VDD

outV

M 1 Vb

inV

M 2

RD

VDD

outV

M 1 Vb

inV
R S

M 2

R1

VDD

outV

M 1 Vb

inV

M 2MVb 3

RD outV

MM

inV

Vb 1

RD

I 1

VDD

2

(c)(a) (b)

(d) (e)

Figure 7.69
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7.38. For circuit shown in Fig. 7.70, calculate out-
put swing limits.

M 2

M1

GGIV

inV

outV

VDDVSGI

ID

Figure 7.70

7.39. Repeat Problem 7.38 for the circuit shown
in Fig. 7.71.

V

R
DD

outV

M Vb

inV

D2

X
RD1

M 1

2

Figure 7.71

7.40. Show that small-signal resistance of a gate-
drain connected DMOS device (Fig. 7.72)
behaves like a resistor of value 1/gm.

VDD

VX

R C

Figure 7.72

7.41. For the circuit shown in Fig. 7.73, CS stage
with degeneration (MOS connected load),
find R0 using equivalent circuit diagram.

Rout

M 1

M 2

Vb

Figure 7.73

7.42. For a source follower shown in Fig. 7.74,
with W/L = 360, RL = 50 � power budget
of 20 mW, find voltage gain (VDD = 2 V).

VDD

Vout

Vin

50 Ω =

W/L = 360/1

RL

I

Figure 7.74

7.43. Design a source follower shown in Fig.
7.75 with drain current 2 mA, voltage
gain 0.85. λ = 0, VDD = 1.8 V, R1 = 5 k�,
R2 = 220 k�.

VB

VDD = 1.8 V 

R 1

C 1
C2

RS

R2
outV

inV

Figure 7.75

7.44. In Fig. 7.75, what changes do you suggest to
make gate bias voltage max VDD = 1.8 V?
What are its effects and what will be the
design values?

7.45. Calculate voltage gain of circuit as shown in
Fig. 7.76.

BVMMVin 1

I 1

VDD
RD

2

outV

Figure 7.76

7.46. For the current in Fig. 7.77 determine re-
quired (W/L) ratio, given o/p impedance
less than 60 �, power budget of 3 mW, and
λ = 0.
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MVin

Vout

1

I 1

VDD = 1.8 V

Figure 7.77

7.47. For the circuit shown in Fig. 7.78, AV = 0.85,
power budget 2 mN determine required
(W/L) ratio. C is very large and λ = 0.

MVin 1

I 1

outV

VDD = 1.8 V 

C

50 Ω
RL

Figure 7.78

7.48. Determine* the voltage gain of the stages
shown in Fig. 7.79. Assume λ �= 0.

7.49. Calculate voltage gain of current shown
in Fig. 7.80. Given data RG = 40 k�,
ID = 5 mA,λ1 = λ2 = 0.001 V−1· (W/L)1 =
300/1.

Design Problems

In the following problems, unless otherwise
stated, assume λ = 0.

7.50. Design the CS stage shown in Fig. 7.81 for a
voltage gain of 5 and an output impedance
of 1 k�. Bias the transistor so that it oper-
ates 100 mV away from the triode region.
Assume the capacitors are very large and
RD = 10 k�.

7.51. The degenerated stage depicted in Fig.
7.82 must provide a voltage gain of 4
with a power budget of 2 mW while
the voltage drop across RS is equal to
200 mV. If the overdrive voltage of the
transistor must not exceed 300 mV and
R1 + R2 must consume less than than 5%
of the allocated power, design the circuit.
Make the same assumptions as those in
Problem 7.50.

M 1

VDD

outV

inV

M 2
Vb

RS

M 1

VDD

outV

inV

M 2
Vb

RS

M

M 1

VDD

outV

inV

2

M 1

VDD

outV

inV

M

R1

R2

M

M 1

VDD

outV

2

M

inV

3
Vb

M

outV

inV

MV

M 3
V

2

1

b1

b2

VDD

(d)

(c)(a) (b)

(e) (f)

2

Figure 7.79
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M 1

M 2

RG

VB

VDD = 1.8 V 

C 1
C2

outV

40 kΩ

Figure 7.80

M

VDD

R

inV
C1

G C2

outV

RD

1

= 1.8 V

Figure 7.81

M 1

VDD = 1.8 V

R1

R2

C1

inV

RD

outV

RS

Figure 7.82

7.52. The circuit shown in Fig. 7.83 must pro-
vide a voltage gain of 6, with CS serv-
ing as a low impedance at the frequencies
of interest. Assuming a power budget of
2 mW and an input impedance of 20 k�,
design the circuit such that M1 operates
200 mV away from the triode region.
Select the values of C1 and CS so that their
impedance is negligible at 1 MHz.

C

M 1

VDD = 1.8 V

R1
C1

inV

RD

outV

RS S

Figure 7.83

7.53. In the circuit of Fig. 7.84, M2 serves as a cur-
rent source. Design the stage for a voltage
gain of 20 and a power budget of 2 mW.
Assume λ = 0.1 V−1 for both transistors
and the maximum allowable level at the out-
put is 1.5 V (i.e., M2 must remain in satura-
tion if Vout ≤ 1.5 V).

VDD

M 1

M 2

outV

inV

Vb

= 1.8 V

Figure 7.84

7.54. Consider the circuit shown in Fig. 7.85,
where CB is very large and λn = 0.5λp =
0.1 V−1.

VDD

M 1

M 2

outV

inV

RG

CB

= 1.8 V

Figure 7.85

(a) Calculate the voltage gain.

(b) Design the circuit for a voltage gain
of 15 and a power budget of 3 mW.
Assume RG ≈ 10(rO1||rO2) and the dc
level of the output must be equal to
VDD/2.
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7.55. The CS stage of Fig. 7.86 incorporates a
degenerated PMOS current source. The
degeneration must raise the output
impedance of the current source to about
10rO1 such that the voltage gain remains
nearly equal to the intrinsic gain of M1.
Assume λ = 0.1 V−1 for both transistors
and a power budget of 2 mW.
(a) If VB = 1 V, determine the values of

(W/L)2 and RS so that the impedance
seen looking into the drain of M2 is
equal to 10rO1.

(b) Determine (W/L)1 to achieve a voltage
gain of 30.

VDD

M 1

M 2

outV

inV

Vb

RS

= 1.8 V

Figure 7.86

7.56. Assuming a power budget of 1 mW and an
overdrive of 200 mV for M1, design the cir-
cuit shown in Fig. 7.87 for a voltage gain
of 4.

VDD

M 1

M 2

outV

inV

= 1.8 V

Figure 7.87

7.57. Design the common-gate stage depicted in
Fig. 7.88 for an input impedance of 50 � and

V

R

DD

D

outV

M 1

inV

= 1.8 V

I 1

Figure 7.88

a voltage gain of 5. Assume a power budget
of 3 mW.

7.58. Design the circuit of Fig. 7.89 such that
M1 operates 100 mV away from the
triode region while providing a voltage
gain of 4. Assume a power budget of
2 mW.

V

R

DD

D

outV

M 1

inV

= 1.8 V

RS

Figure 7.89

7.59. Figure 7.90 shows a self-biased common-
gate stage, where RG ≈ 10RD andCG serves
as a low impedance so that the voltage gain
is still given by gmRD. Design the circuit for
a power budget of 5 mW and a voltage gain
of 5. Assume RS ≈ 10/gm so that the input
impedance remains approximately equal to
1/gm.

V

R

DD

D

M 1

in

V

= 1.8 V

RS

C

R

V

out

G

G

Figure 7.90

7.60. Design the CG stage shown in Fig. 7.91
such that it can accommodate an output

V

R

DD

D

M 1

in

V

= 1.8 V

RS

V

out
R2

R1

Figure 7.91
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swing of 500 mVpp, i.e., Vout can fall below
its bias value by 250 mV without driving
M1 into the triode region. Assume a voltage
gain of 4 and an input impedance of 50 �.
Select RS ≈ 10/gm and R1 + R2 = 20 k�.
(Hint: since M1 is biased 250 mV away
from the triode region, we have RSID+
VGS − VTH + 250 mV = VDD − IDRD.)

7.61. Design the source follower depicted in
Fig. 7.92 for a voltage gain of 0.8 and a power
budget of 2 mW. Assume the output dc level
is equal to VDD/2 and the input impedance
exceeds 10 k�.

M 1

VDD

RG

RS

outV

= 1.8 V

inV

Figure 7.92

7.62. Consider the source follower shown in Fig.
7.93. The circuit must provide a voltage
gain of 0.6 at 100 MHz. Design the circuit
such that the dc voltage at node X is equal
to VDD/2. Assume the input impedance
exceeds 20 k�.

M 1

VDD

RG

RS

outV

= 1.8 V

inV

X
C1

 Ω50 RL

Figure 7.93

S P I C E P R O B L E M S

In the following problems, use the MOS mod-
els and source/drain dimensions given in Ap-
pendix A. Assume the substrates of NMOS
and PMOS devices are tied to ground and VDD,
respectively.

7.1. In the circuit of Fig. 7.94, I1 is an ideal cur-
rent source equal to 1 mA.

M 1

VDD = 1.8 V

outV

I 1
 Ω10 k

 Ω1 k

C1

inV W
L

( (
1

Figure 7.94

(a) Using hand calculations, determine

(W/L)1 such that gm1 = (100 �)
−1

.

(b) Select C1 for an impedance of
≈ 100 � (�1 k�) at 50 MHz.

(c) Simulate the circuit and obtain the
voltage gain and output impedance at
50 MHz.

(d) What is the change in the gain if I1 varies
by ±20%?

7.2. The source follower of Fig. 7.95 employs a
bias current source, M2.

(a) What value of Vin places M2 at the edge
of saturation?

(b) What value of Vin places M1 at the edge
of saturation?

(c) Determine the voltage gain if Vin has a
dc value of 1.5 V.

(d) What is the change in the gain if Vb

changes by ±50 mV?



320 Chapter 7 CMOS Amplifiers

= 1.8 V
M 1

VDD

outV

inV

0.8 V

M 2

0.18

20

0.18

10

Figure 7.95

7.3. Figure 7.96 depicts a cascade of a source
follower and a common-gate stage.
Assume Vb = 1.2 V and (W/L)1 = (W/L)2 =
10 μm/0.18 μm.
(a) Determine the voltage gain if Vin has a

dc value of 1.2 V.

(b) Verify that the gain drops if the dc
value of Vin is higher or lower than
1.2 V.

(c) What dc value at the input reduces
the gain by 10% with respect to that
obtained in (a)?

inV M M1 2

VDD

Vb

1 mA

 Ω1 k

outV

Figure 7.96



Chapter 8
Operational Amplifier
as a Black Box

The term “operational amplifier” (op amp) was coined in the 1940s, well before the in-

vention of the transistor and the integrated circuit. Op amps realized by vacuum tubes1

served as the core of electronic “integrators,” “differentiators,” etc., thus forming systems

whose behavior followed a given differential equation. Called “analog computers,” such

circuits were used to study the stability of differential equations that arose in fields such

as control or power systems. Since each op amp implemented a mathematical operation
(e.g., integration), the term “operational amplifier” was born.

Op amps find wide application in today’s discrete and integrated electronics. In the

cellphone studied in Chapter 1, for example, integrated op amps serve as building blocks

in (active) filters. Similarly, the analog-to-digital converter(s) used in digital cameras often

employ op amps.

In this chapter, we study the operational amplifier as a black box, developing op-

amp-based circuits that perform interesting and useful functions. The outline is shown

below.

➤ ➤ ➤

General Concepts

• Op Amp

Properties

Linear Op Amp

Circuits

• Noninverting

Amplifier

• Inverting

Amplifier

• Integrator and

Differentiator

• Voltage Adder

Nonlinear Op Amp

Circuits

• Precision

Rectifier

• Logarithmic

Amplifier

• Square Root

Circuit

Op Amp

Nonidealities

• DC Offsets

• Input Bias

Currents

• Speed Limitations

• Finite Input and

Output

Impedances

1Vacuum tubes were amplifying devices consisting of a filament that released electrons, a plate that
collected them, and another that controlled the flow—somewhat similar to MOSFETs.
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V
V

in1

in2

outV in1

in2

A0
V

V

in1V( Vin2– )

outV

(a) (b)

Figure 8.1 (a) Op amp symbol, (b) equivalent circuit.

8.1 GENERAL CONSIDERATIONS

The operational amplifier can be abstracted as a black box having two inputs and one
output.2 Shown in Fig. 8.1(a), the op amp symbol distinguishes between the two inputs
by the plus and minus sign; Vin1 and Vin2 are called the “noninverting” and “inverting”
inputs, respectively. We view the op amp as a circuit that amplifies the difference between
the two inputs, arriving at the equivalent circuit depicted in Fig. 8.1(b). The voltage gain
is denoted by A0:

Vout = A0(Vin1 − Vin2). (8.1)

we call A0 the “open-loop” gain.
It is instructive to plot Vout as a function of one input while the other remains at zero.

With Vin2 = 0, we have Vout = A0Vin1, obtaining the behavior shown in Fig. 8.2(a). The
positive slope (gain) is consistent with the label “noninverting” given to Vin1. On the other
hand, if Vin1 = 0, Vout = −A0Vin2 [Fig. 8.2(b)], revealing a negative slope and hence an
“inverting” behavior.

The reader may wonder why the op amp has two inputs. After all, the amplifier stages
studied in Chapters 5 and 7 have only one input node (i.e., they sense the input voltage
with respect to ground). As seen throughout this chapter, the principal property of the op
amp, Vout = A0(Vin1 − Vin2), forms the foundation for many circuit topologies that would
be difficult to realize using an amplifier having Vout = AVin. Amplifier circuits having two
inputs are studied in Chapter 10.

outV

Vin1

outV

A0
outV

V

outV

A0in1

in2

V
V

(a) (b)

–

in2

Figure 8.2 Op amp characteristics from (a) noninverting and (b) inverting inputs to output.

How does the “ideal” op amp behave? Such an op amp would provide an infinite volt-
age gain, an infinite input impedance, a zero output impedance, and infinite speed. In fact,
the first-order analysis of an op-amp-based circuit typically begins with this idealization,
quickly revealing the basic function of the circuit. We can then consider the effect of the
op amp “nonidealities” on the performance.

2In modern integrated circuits, op amps typically have two outputs that vary by equal and opposite
amounts.
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The very high gain of the op amp leads to an important observation. Since realistic
circuits produce finite output swings, e.g., 2 V, the difference between Vin1 and Vin2 in Fig.
8.1(a) is always small:

Vin1 − Vin2 = Vout

A0

. (8.2)

In other words, the op amp, along with the circuitry around it, brings Vin1 and Vin2 close to
each other. Following the above idealization, we may say Vin1 = Vin2 if A0 = ∞.

A common mistake is to interpret Vin1 = Vin2 as if the two terminals Vin1 and Vin2 are
shorted together. It must be borne in mind that Vin1 − Vin2 becomes only infinitesimally
small as A0 → ∞ but cannot be assumed exactly equal to zero.

Example

8.1
The circuit shown in Fig. 8.3 is called a “unity-gain” buffer. Note that the output is tied
to the inverting input. Determine the output voltage if Vin1 = +1 V and A0 = 1000.

outV
Vin

A0 = 1000

+ 1 V

Figure 8.3 Unity-gain buffer.

Solution If the voltage gain of the op amp were infinite, the difference between the two inputs
would be zero and Vout = Vin; hence the term “unity-gain buffer.” For a finite gain, we
write

Vout = A0(Vin1 − Vin2) (8.3)

= A0(Vin − Vout ). (8.4)

That is,

Vout

Vin
= A0

1 + A0

. (8.5)

As expected, the gain approaches unity as A0 becomes large. In this example, A0 = 1000,
Vin = 1 V, and Vout = 0.999 V. Indeed, Vin1 − Vin2 is small compared to Vin and Vout .

Exercise What value of A0 is necessary so that the output voltage is equal to 0.9999?

Op amps are sometimes represented as shown in Fig. 8.4 to indicate explicitly the
supply voltages, VEE and VCC . For example, an op amp may operate between ground and
a positive supply, in which case VEE = 0.
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V
V

in1

in2

outV

V

VEE

CC

Figure 8.4 Op amp with supply rails.

8.2 OP-AMP-BASED CIRCUITS

In this section, we study a number of circuits that utilize op amps to process analog signals.
In each case, we first assume an ideal op amp to understand the underlying principles and
subsequently examine the effect of the finite gain on the performance.

8.2.1 Noninverting Amplifier

Recall from Chapters 5 and 7 that the voltage gain of amplifiers typically depends on
the load resistor and other parameters that may vary considerably with temperature or
process.3 As a result, the voltage gain itself may suffer from a variation of, say, ±20%.
However, in some applications (e.g., A/D converters), a much more precise gain (e.g.,
2.000) is required. Op-amp-based circuits can provide such precision.

Vin

A0 outV

V

V

in1

in2 R1

R2

Figure 8.5 Noninverting amplifier.

Illustrated in Fig. 8.5, the noninverting amplifier consists of an op amp and a voltage
divider that returns a fraction of the output voltage to the inverting input:

Vin2 = R2

R1 + R2

Vout . (8.6)

Since a high op amp gain translates to a small difference between Vin1 and Vin2, we have

Vin1 ≈ Vin2 (8.7)

≈ R2

R1 + R2

Vout ; (8.8)

and hence

Vout

Vin
≈ 1 + R1

R2

. (8.9)

3Variation with process means that circuits fabricated in different “batches” exhibit somewhat different
characteristics.
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Due to the positive gain, the circuit is called a “noninverting amplifier.” We call this result
the “closed-loop” gain of the circuit.

Interestingly, the voltage gain depends on only the ratio of the resistors; if R1 and R2

increase by 20%, R1/R2 remains constant. The idea of creating dependence on only the
ratio of quantities that have the same dimension plays a central role in circuit design.

Example

8.2
Study the noninverting amplifier for two extreme cases: R1/R2 = ∞ and R1/R2 = 0.

Solution If R1/R2 → ∞, e.g., if R2 approaches zero, we note that Vout/Vin → ∞. Of course, as
depicted in Fig. 8.6(a), this occurs because the circuit reduces to the op amp itself, with
no fraction of the output fed back to the input. Resistor R1 simply loads the output node,
with no effect on the gain if the op amp is ideal.

If R1/R2 → 0, e.g., if R2 approaches infinity, we have Vout/Vin → 1. Shown in
Fig. 8.6(b), this case in fact reduces to the unity-gain buffer of Fig. 8.3 because the
ideal op amp draws no current at its inputs, yielding a zero drop across R1 and hence
Vin2 = Vout .

Vin

outV

R1

R2

Vin

outV

R1

R2= 0 =

(a) (b)

Figure 8.6 Noninverting amplifier with (a) zero and (b) infinite value for R2.

Exercise Suppose the circuit is designed for a nominal gain of 2.00 but the R1 and R2 suffer from a
mismatch of 5% (i.e., R1 = (1 ± 0.05)R2). What is the actual voltage gain?

Let us now take into account the finite gain of the op amp. Based on the model shown
in Fig. 8.1(b), we write

(Vin1 − Vin2)A0 = Vout , (8.10)

and substitute for Vin2 from Eq. (8.6):

Vout

Vin
= A0

1 + R2

R1 + R2

A0

. (8.11)

As expected, this result reduces to Eq. (8.9) if A0R2/(R1 + R2) � 1. To avoid confusion
between the gain of the op amp, A0, and the gain of the overall amplifier, Vout/Vin, we call
the former the “open-loop” gain and the latter the “closed-loop” gain.
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Equation (8.11) indicates that the finite gain of the op amp creates a small error in
the value of Vout/Vin. If much greater than unity, the term A0R2/(R1 + R2) can be factored

from the denominator to permit the approximation (1 + ε)
−1 ≈ 1 − ε for ε� 1:

Vout

Vin
≈

(
1 + R1

R2

)[
1 −

(
1 + R1

R2

)
1

A0

]
. (8.12)

Called the “gain error,” the term (1 + R1/R2)/A0 must be minimized according to each
application’s requirements.

Example

8.3
A noninverting amplifier incorporates an op amp having a gain of 1000. Determine the
gain error if the circuit is to provide a nominal gain of (a) 5, or (b) 50.

Solution For a nominal gain of 5, we have 1 + R1/R2 = 5, obtaining a gain error of:(
1 + R1

R2

)
1

A0

= 0.5%. (8.13)

On the other hand, if 1 + R1/R2 = 50, then(
1 + R1

R2

)
1

A0

= 5%. (8.14)

In other words, a higher closed-loop gain inevitably suffers from less accuracy.

Exercise Repeat the above example if the op amp has a gain of 500.

With an ideal op amp, the noninverting amplifier exhibits an infinite input impedance
and a zero output impedance. For a nonideal op amp, the I/O impedances are derived in
Problem 8.5.

8.2.2 Inverting Amplifier

Depicted in Fig. 8.7(a), the “inverting amplifier” incorporates an op amp along with resis-
tors R1 and R2 while the noninverting input is grounded. Recall from Section 8.1 that if the
op amp gain is infinite, then a finite output swing translates to Vin1 − Vin2 → 0; i.e., node
X bears a zero potential even though it is not shorted to ground. For this reason, node X
is called a “virtual ground.” Under this condition, the entire input voltage appears across
R2, producing a current of Vin/R2, which must then flow through R1 if the op amp input
draws no current [Fig. 8.7(b)]. Since the left terminal of R1 remains at zero and the right
terminal at Vout ,

0 − Vout

R1

= Vin

R2

(8.15)

yielding

Vout

Vin
= −R1

R2

. (8.16)
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R2

R1

A

B

(a)
(b)
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Figure 8.7 (a) Inverting amplifier, (b) currents flowing in resistors, (c) analogy with a seesaw.

Due to the negative gain, the circuit is called the “inverting amplifier.” As with its nonin-
verting counterpart, the gain of this circuit is given by the ratio of the two resistors, thereby
experiencing only small variations with temperature and process.

It is important to understand the role of the virtual ground in this circuit. If the inverting
input of the op amp were not near zero potential, then neither Vin/R2 nor Vout/R1 would
accurately represent the currents flowing through R2 and R1, respectively. This behavior
is similar to a seesaw [Fig. 8.7(c)], where the point between the two arms is “pinned”
(e.g., does not move), allowing displacement of point A to be “amplified” (and “inverted”)
at point B.

The above development also reveals why the virtual ground cannot be shorted to the
actual ground. Such a short in Fig. 8.7(b) would force to ground all of the current flowing
through R2, yielding Vout = 0. It is interesting to note that the inverting amplifier can also
be drawn as shown in Fig. 8.8, displaying a similarity with the noninverting circuit but with
the input applied at a different point.

In contrast to the noninverting amplifier, the topology of Fig. 8.7(a) exhibits an
input impedance equal to R2—as can be seen from the input current, Vin/R2, in Fig.
8.7(b). That is, a lower R2 results in a greater gain but a smaller input impedance.
This trade-off sometimes makes this amplifier less attractive than its noninverting
counterpart.

R 1R2

outV

inV

Figure 8.8 Inverting amplifier.
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Let us now compute the closed-loop gain of the inverting amplifier with a finite op
amp gain. We note from Fig. 8.7(a) that the currents flowing through R2 and R1 are given
by (Vin − VX)/R2 and (VX − Vout )/R1, respectively. Moreover,

Vout = A0(Vin1 − Vin2) (8.17)

= −A0VX . (8.18)

Equating the currents through R2 and R1 and substituting −Vout/A0 for VX , we obtain

Vout

Vin
= − 1

1

A0

+ R2

R1

(
1

A0

+ 1

) (8.19)

= − 1

R2

R1

+ 1

A0

(
1 + R2

R1

) . (8.20)

Factoring R2/R1 from the denominator and assuming (1 + R1/R2)/A0 � 1, we have

Vout

Vin
≈ −R1

R2

[
1 − 1

A0

(
1 + R1

R2

)]
. (8.21)

As expected, a higher closed-loop gain (≈ −R1/R2) is accompanied with a greater gain
error. Note that the gain error expression is the same for noninverting and inverting
amplifiers.

Example

8.4
Design the inverting amplifier of Fig. 8.7(a) for a nominal gain of 4, a gain error of 0.1%,
and an input impedance of at least 10 k�.

Solution Since both the nominal gain and the gain error are given, we must first determine the
minimum op amp gain. We have

R1

R2

= 4 (8.22)

1

A0

(
1 + R1

R2

)
= 0.1%. (8.23)

Thus,

A0 = 5000. (8.24)

Since the input impedance is approximately equal to R2, we choose:

R2 = 10 k� (8.25)

R1 = 40 k�. (8.26)

Exercise Repeat the above example for a gain error of 1% and compare the results.

In the above example, we assumed the input impedance is approximately equal to
R2. How accurate is this assumption? With A0 = 5000, the virtual ground experiences a
voltage of −Vout/5000 ≈ −4Vin/5000, yielding an input current of (Vin + 4Vin/5000)/R1.
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inV
outV

Z 1

Z 2

Figure 8.9 Circuit with general impedances around the op amp.

That is, our assumption leads to an error of about 0.08%—an acceptable value in most
applications.

8.2.3 Integrator and Differentiator

Our study of the inverting topology in previous sections has assumed a resistive net-
work around the op amp. In general, it is possible to employ complex impedances instead
(Fig. 8.9). In analogy with Eq. (8.16), we can write

Vout

Vin
≈ −Z1

Z2

, (8.27)

where the gain of the op amp is assumed large. If Z1 or Z2 is a capacitor, two interesting
functions result.

Integrator Suppose in Fig. 8.9, Z1 is a capacitor and Z2 a resistor (Fig. 8.10). That is,

Z1 = (C1s)
−1

and Z2 = R1. With an ideal op amp, we have

Vout

Vin
= −

1

C1s
R1

(8.28)

= − 1

R1C1s
. (8.29)

Providing a pole at the origin,4 the circuit operates as an integrator (and a low-pass filter).
Figure 8.11 plots the magnitude of Vout/Vin as a function of frequency. This can also be
seen in the time domain. Equating the currents flowing through R1 and C1 gives

Vin

R1

= −C1

dVout

dt
(8.30)

and hence

Vout = − 1

R1C1

∫
Vin dt. (8.31)

inV
outV

C1

R1 X

Figure 8.10 Integrator.

4Pole frequencies are obtained by setting the denominator of the transfer function to zero.
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f

outV

Vin

Figure 8.11 Frequency response of integrator.

Equation (8.29) indicates that Vout/Vin approaches infinity as the input frequency
goes to zero. This is to be expected: the capacitor impedance becomes very large at low
frequencies, approaching an open circuit and reducing the circuit to the open-loop op amp.

As mentioned at the beginning of the chapter, integrators originally appeared in analog
computers to simulate differential equations. Today, electronic integrators find usage in
analog filters, control systems, and many other applications.

Example

8.5
Plot the output waveform of the circuit shown in Fig. 8.12(a). Assume a zero initial
condition across C1 and an ideal op amp.

outV

C1

R1 X
inV
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V1

Tb

0

V1

Tb

R

V1

1

0

R

V1

1

t

0

outV

inV

I C1

R

V1

1

Tb

C1
–

R

V1

C1
–

1

(a) (b)

0

Figure 8.12 (a) Integrator with pulse input, (b) input and output waveforms.

Solution When the input jumps from 0 to V1, a constant current equal to V1/R1 begins to flow
through the resistor and hence the capacitor, forcing the right plate voltage of C1 to fall
linearly with time while its left plate is pinned at zero [Fig. 8.12(b)]:

Vout = − 1

R1C1

∫
Vin dt (8.32)

= − V1

R1C1

t 0 < t < Tb. (8.33)

(Note that the output waveform becomes “sharper” as R1C1 decreases.) When Vin returns
to zero, so do the currents through R1 andC1. Thus, the voltage across the capacitor and
hence Vout remain equal to −V1Tb/(R1C1) (proportional to the area under the input
pulse) thereafter.

Exercise Repeat the previous example if V1 is negative.
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The previous example demonstrates the role of the virtual ground in the integrator.
The ideal integration expressed by Eq. (8.32) occurs because the left plate of C1 is pinned
at zero. To gain more insight, let us compare the integrator with a first-order RC filter in
terms of their step response. As illustrated in Fig. 8.13, the integrator forces a constant
current (equal to V1/R1) through the capacitor. On the other hand, the RC filter creates
a current equal to (Vin − Vout )/R1, which decreases as Vout rises, leading to an increasingly
slower voltage variation acrossC1. We may therefore consider the RC filter as a “passive”
approximation of the integrator. In fact, for a large R1C1 product, the exponential response
of Fig. 8.13(b) becomes slow enough to be approximated as a ramp.

outV

C1

R1 X
inV

0

V1

R

V1

1

C

R1

outVinV

1

R

V1

1

0

V1

–Vout

Figure 8.13 Comparison of integrator with and RC circuit.

We now examine the performance of the integrator for A0 < ∞. Denoting the poten-
tial of the virtual ground node in Fig. 8.10 with VX , we have

Vin − VX

R1

= VX − Vout

1

C1s

(8.34)

and

VX = Vout

−A0

. (8.35)

Thus,

Vout

Vin
= −1

1

A0

+
(

1 + 1

A0

)
R1C1s

, (8.36)

revealing that the gain at s = 0 is limited to A0 (rather than infinity) and the pole frequency
has moved from zero to

sp = −1

(A0 + 1)R1C1

. (8.37)

Such a circuit is sometimes called a “lossy” integrator to emphasize the nonideal gain and
pole position.

Example

8.6
Recall from basic circuit theory that the RC filter shown in Fig. 8.14 contains a pole at
−1/(RXCX). Determine RX and CX such that this circuit exhibits the same pole as that
of the above integrator.

C

R
outVinV

X

X

Figure 8.14 Simple low-pass filter.
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Solution From Eq. (8.37),

RXCX = (A0 + 1)R1C1. (8.38)

The choice of RX and CX is arbitrary so long as their product satisfies Eq. (8.38).
An interesting choice is

RX = R1 (8.39)

CX = (A0 + 1)C1. (8.40)

It is as if the op amp “boosts” the value of C1 by a factor of A0 + 1.

Exercise What value of RX is necessary if CX = C1?

Differentiator If in the general topology of Fig. 8.9, Z1 is a resistor and Z2 a capa-
citor (Fig. 8.15), we have

Vout

Vin
= − R1

1

C1s

(8.41)

= −R1C1s. (8.42)

inV
outV

C1

R1

X

Figure 8.15 Differentiator.

Exhibiting a zero at the origin, the circuit acts as a differentiator (and a high-pass filter).
Figure 8.16 plots the magnitude of Vout/Vin as a function of frequency. From a time-domain
perspective, we can equate the currents flowing through C1 and R1:

C1

dVin

dt
= −Vout

R1

, (8.43)

arriving at

Vout = −R1C1

dVin

dt
. (8.44)

f

outV

Vin

R C1 1

Figure 8.16 Frequency response of differentiator.
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Example

8.7
Plot the output waveform of the circuit shown in Fig. 8.17(a) assuming an ideal op amp.

outV
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X
inV

0

V1

Tb

0

V1

Tb

0

t

outV

inV

I C1

(a) (b)

I in
0

0

Figure 8.17 (a) Differentiator with pulse input, (b) input and output waveforms.

Solution At t = 0−, Vin = 0 and Vout = 0 (why?). When Vin jumps to V1, an impulse of current
flows through C1 because the op amp maintains VX constant:

Iin = C1

dVin

dt
(8.45)

= C1V1δ(t). (8.46)

The current flows through R1, generating an output given by

Vout = −IinR1 (8.47)

= −R1C1V1δ(t). (8.48)

Figure 8.17(b) depicts the result. At t = Tb, Vin returns to zero, again creating an
impulse of current in C1:

Iin = C1

dVin

dt
(8.49)

= C1V1δ(t). (8.50)

It follows that

Vout = −IinR1 (8.51)

= R1C1V1δ(t). (8.52)

We can therefore say that the circuit generates an impulse of current [±C1V1δ(t)] and
“amplifies” it by R1 to produce Vout . In reality, of course, the output exhibits neither an
infinite height (limited by the supply voltage) nor a zero width (limited by the op amp
nonidealities).

Exercise Plot the output if V1 is negative.

It is instructive to compare the operation of the differentiator with that of its “passive”
counterpart (Fig. 8.18). In the ideal differentiator, the virtual ground node permits the input
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Figure 8.18 Comparison of differentiator and RC circuit.

to change the voltage acrossC1 instantaneously. In the RC filter, on the other hand, node X
is not “pinned,” thereby following the input change at t = 0 and limiting the initial current
in the circuit to V1/R1. If the decay time constant, R1C1, is sufficiently small, the passive
circuit can be viewed as an approximation of the ideal differentiator.

Let us now study the differentiator with a finite op amp gain. Equating the capa-
citor and resistor currents in Fig. 8.15 gives

Vin − VX

1

C1s

= VX − Vout

R1

. (8.53)

Substituting −Vout/A0 for VX , we have

Vout

Vin
= −R1C1s

1 + 1

A0

+ R1C1s
A0

. (8.54)

In contrast to the ideal differentiator, the circuit contains a pole at

sp = −A0 + 1

R1C1

. (8.55)

Example

8.8
Determine the transfer function of the high-pass filter shown in Fig. 8.19 and choose RX

and CX such that the pole of this circuit coincides with Eq. (8.55).

C

R

inV outV
X

X

Figure 8.19 Simple high-pass filter.

Solution The capacitor and resistor operate as a voltage divider:

Vout

Vin
= RX

RX + 1

CXs

(8.56)

= RXCXs
RXCXs + 1

. (8.57)
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The circuit therefore exhibits a zero at the origin (s = 0) and a pole at −1/(RXCX). For
this pole to be equal to Eq. (8.55), we require

1

RXCX
= A0 + 1

R1C1

. (8.58)

One choice of RX and CX is

RX = R1

A0 + 1
(8.59)

CX = C1, (8.60)

Exercise What is the necessary value of CX if RX = R1?

An important drawback of differentiators stems from the amplification of high-
frequency noise. As suggested by Eq. (8.42) and Fig. 8.16, the increasingly larger gain
of the circuit at high frequencies tends to boost noise in the circuit.

The general topology of Fig. 8.9 and its integrator and differentiator descendants
operate as inverting circuits. The reader may wonder if it is possible to employ a configu-
ration similar to the noninverting amplifier of Fig. 8.5 to avoid the sign reversal. Shown in
Fig. 8.20, such a circuit provides the following transfer function:

Vout

Vin
= 1 + Z1

Z2

, (8.61)

if the op amp is ideal. Unfortunately, this function does not translate to ideal integration
or differentiation. For example, Z1 = R1 and Z2 = 1/(C2s) yield a nonideal differentiator
(why?).

8.2.4 Voltage Adder

The need for adding voltages arises in many applications. In audio recording, for example, a
number of microphones may convert the sounds of various musical instruments to voltages,
and these voltages must then be added to create the overall musical piece. This operation
is called “mixing” in the audio industry.5 For example, in “noise cancelling” headphones,
the environmental noise is applied to an inverting amplifier and subsequently added to
the signal so as to cancel itself.

Z 1

Vin

outV

Z 2

Figure 8.20 Op amp with general network.

5The term “mixing” bears a completely different meaning in the RF and wireless industry.
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Figure 8.21 Voltage adder.

Figure 8.21 depicts a voltage adder (“summer”) incorporating an op amp. With an ideal
op amp, VX = 0, and R1 and R2 carry currents proportional to V1 and V2, respectively. The
two currents add at the virtual ground node and flow through RF :

V1

R1

+ V2

R2

= −Vout

RF
. (8.62)

That is,

Vout = −RF

(
V1

R1

+ V2

R2

)
. (8.63)

For example, if R1 = R2 = R, then

Vout = −RF

R
(V1 + V2). (8.64)

This circuit can therefore add and amplify voltages. Extension to more than two voltages
is straightforward.

Equation (8.63) indicates that V1 and V2 can be added with different weightings:
RF/R1 and RF/R2, respectively. This property also proves useful in many applications. For
example, in audio recording it may be necessary to lower the “volume” of one musical
instrument for part of the piece, a task possible by varying R1 and R2.

8.3 NONLINEAR FUNCTIONS

It is possible to implement useful nonlinear functions through the use of op amps and
nonlinear devices such as transistors. The virtual ground property plays an essential role
here as well.

8.3.1 Precision Rectifier

The rectifier circuits described in Chapter 3 suffer from a “dead zone” due to the finite
voltage required to turn on the diodes. That is, if the input signal amplitude is less than
approximately 0.7 V, the diodes remain off and the output voltage remains at zero. This
drawback prohibits the use of the circuit in high-precision applications, e.g., if a small signal
received by a cellphone must be rectified to determine its amplitude.

It is possible to place a diode around an op amp to form a “precision rectifier,” i.e., a
circuit that rectifies even very small signals. Let us begin with a unity-gain buffer tied to a
resistive load [Fig. 8.22(a)]. We note that the high gain of the op amp ensures that node
X tracks Vin (for both positive and negative cycles). Now suppose we wish to hold X at
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Figure 8.22 (a) Simple op amp circuit, (b) precision rectifier, (c) circuit waveforms.

zero during negative cycles, i.e., “break” the connection between the output of the op amp
and its inverting input. This can be accomplished as depicted in Fig. 8.22(b), where D1 is
inserted in the feedback loop. Note that Vout is sensed at X rather than at the output of
the op amp.

To analyze the operation of this circuit, let us first assume that Vin = 0. In its attempt
to minimize the voltage difference between the noninverting and the inverting inputs, the
op amp raises VY to approximately VD1,on, turning D1 barely on but with little current
so that VX ≈ 0. Now if Vin becomes slightly positive, VY rises further so that the current
flowing through D1 and R1 yields Vout ≈ Vin. That is, even small positive levels at the input
appear at the output.

What happens if Vin becomes slightly negative? For Vout to assume a negative
value, D1 must carry a current from X to Y, which is not possible. Thus, D1 turns off
and the op amp produces a very large negative output (near the negative supply rail) be-
cause its noninverting input falls below its inverting input. Figure 8.22(c) plots the circuit’s
waveforms in response to an input sinusoid.

Example

8.9
Plot the waveforms in the circuit of Fig. 8.23(a) in response to an input sinusoid.
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–

Figure 8.23 (a) Inverting precision rectifier, (b) circuit waveforms.
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Solution For Vin = 0, the op amp creates VY ≈ −VD,on so that D1 is barely on, R1 carries little
current, and X is a virtual ground. As Vin becomes positive, thus raising the current
through R1, VY only slightly decreases to allow D1 to carry the higher current. That is,
VX ≈ 0 and VY ≈ −VD,on for positive input cycles.

For Vin < 0, D1 turns off (why?), leading to VX = Vin and driving VY to a very
positive value. Figure 8.23(b) shows the resulting waveforms.

Exercise Repeat the above example for a triangular input that goes from −2 V to +2 V.

The large swings at the output of the op amp in Figs. 8.22(b) and 8.23(a) lower the
speed of the circuit as the op amp must “recover” from a saturated value before it can turn
D1 on again. Additional techniques can resolve this issue (Problem 8.33).

8.3.2 Logarithmic Amplifier

Consider the circuit of Fig. 8.24, where a bipolar transistor is placed around the op
amp. With an ideal op amp, R1 carries a current equal to Vin/R1 and so does Q1.
Thus,

VBE = VT ln
Vin/R1

IS
. (8.65)

Also, Vout = −VBE and hence

Vout = −VT ln
Vin

R1IS
. (8.66)

The output is therefore proportional to the natural logarithm of Vin. As with previous linear
and nonlinear circuits, the virtual ground plays an essential role here as it guarantees the
current flowing through Q1 is xactly proportional to Vin.

Logarithmic amplifiers (“logamps”) prove useful in applications where the input signal
level may vary by a large factor. It may be desirable in such cases to amplify weak signals
and attenuate (“compress”) strong signals hence a logarithmic dependence.

The negative sign in Eq. (8.66) is to be expected: if Vin rises, so do the currents flowing
through R1 and Q1, requiring an increase in VBE. Since the base is at zero, the emitter
voltage must fall below zero to provide a greater collector current. Note that Q1 operates
in the active region because both the base and the collector remain at zero.

The reader may wonder what happens if Vin becomes negative. Equation (8.66) pre-
dicts that Vout is not defined. In the actual circuit, Q1 cannot carry a “negative” current,

R X

inV

1

outV

Q1

inV

R1

Figure 8.24 Logarithmic amplifier.
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Figure 8.25 Square-root circuit.

the loop around the op amp is broken, and Vout approaches the positive supply rail. It is
therefore necessary to ensure Vin remains positive.

8.3.3 Square-Root Amplifier

Recognizing that the logarithmic amplifier of Fig. 8.24 in fact implements the inverse
function of the exponential characteristic, we surmise that replacing the bipolar transistor
with a MOSFET leads to a “square-root” amplifier. Illustrated in Fig. 8.25, such a circuit
requires that M1 carry a current equal to Vin/R1:

Vin

R1

= 1

2
μnCox

W
L

(VGS − VTH)
2
. (8.67)

(Channel-length modulation is neglected here.) Since VGS = −Vout ,

Vout = −
√√√√√ 2Vin

μnCox
W
L

R1

− VTH . (8.68)

If Vin is near zero, then Vout remains at −VTH , placing M1 at the edge of conduction. As
Vin becomes more positive, Vout falls to allow M1 to carry a greater current. With its gate
and drain at zero, M1 operates in saturation.

8.4 OP AMP NONIDEALITIES

Our study in previous sections has dealt with a relatively idealized op amp model—except
for the finite gain—so as to establish insight. In practice, however, op amps suffer from
other imperfections that may affect the performance significantly. In this section, we deal
with such nonidealities.

8.4.1 DC Offsets

The op amp characteristics shown in Fig. 8.2 imply that Vout = 0 if Vin1 = Vin2. In reality, a
zero input difference may not give a zero output difference! Illustrated in Fig. 8.26(a), the
characteristic is “offset” to the right or to the left; i.e., for Vout = 0, the input difference
must be raised to a certain value, Vos , called the input “offset voltage.”

What causes offset? The internal circuit of the op amp experiences random asymme-
tries (“mismatches”) during fabrication and packaging. For example, as shown concep-
tually in Fig. 8.26(b), the bipolar transistors sensing the two inputs may display slightly
different base-emitter voltages. The same effect occurs for MOSFETs. We model the off-
set by a single voltage source placed in series with one of the inputs [Fig. 8.26(c)]. Since
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Figure 8.26 (a) Offset in an op amp, (b) mismatch between input devices,

(c) representation of offset.

offsets are random and hence can be positive or negative, Vos can appear at either input
with arbitrary polarity.

Why are DC offsets important? Let us reexamine some of the circuit topologies studied
in Section 8.2 in the presence of op amp offsets. Depicted in Fig. 8.27, the noninverting
amplifier now sees a total input of Vin + Vos , thereby generating

Vout =
(

1 + R1

R2

)
(Vin + Vos). (8.69)

In other words, the circuit amplifies the offset as well as the signal, thus incurring accuracy
limitations.6

outV

R1

R2

Vos

inV

Figure 8.27 Offset in noninverting amplifier.

Example

8.10
A truck weighing station employs an electronic pressure meter whose output is amplified
by the circuit of Fig. 8.27. If the pressure meter generates 20 mV for every 100 kg of load
and if the op amp offset is 2 mV, what is the accuracy of the weighing station?

Solution An offset of 2 mV corresponds to a load of 10 kg. We therefore say the station has an
error of ±10 kg in its measurements.

Exercise What offset voltage is required for an accuracy of ±1 kg?

DC offsets may also cause “saturation” in amplifiers. The following example illustrates
this point.

6The reader can show that placing Vos in series with the inverting input of the op amp yields the same
result.
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Example

8.11
An electrical engineering student constructs the circuit shown in Fig. 8.28 to amplify the
signal produced by a microphone. The targeted gain is 104 so that very low level sounds
(i.e., microvolt signals) can be detected. Explain what happens if op amp A1 exhibits an
offset of 2 mV.

 Ω10 k

 Ω100

X

 Ω10 k

 Ω100

outV

A1 A2

Figure 8.28 Two-stage amplifier.

Solution From Fig. 8.27, we recognize that the first stage amplifies the offset by a factor of 100,
generating a dc level of 200 mV at node X (if the microphone produces a zero dc output).
The second stage now amplifies VX by another factor of 100, thereby attempting to
generate Vout = 20 V. If A2 operates with a supply voltage of, say, 3 V, the output cannot
exceed this value, the second op amp drives its transistors into saturation (for bipolar
devices) or triode region (for MOSFETs), and its gain falls to a small value. We say the
second stage is saturated. (The problem of offset amplification in cascaded stages can
be resolved through ac coupling.)

Exercise Repeat the above example if the second stage has a voltage gain of 10.

DC offsets impact the inverting amplifier of Fig. 8.7(a) in a similar manner.
We now examine the effect of offset on the integrator of Fig. 8.10. Suppose the input

is set to zero and Vos is referred to the noninverting input [Fig. 8.29(a)]. What happens at
the output? Recall from Fig. 8.20 and Eq. (8.61) that the response to this “input” consists
of the input itself [the unity term in Eq. (8.61)] and the integral of the input [the second
term in Eq. (8.61)]. We can therefore express Vout in the time domain as

Vout = Vos + 1

R1C1

∫ t

0

Vos dt (8.70)

= Vos + Vos

R1C1

t, (8.71)

where the initial condition acrossC1 is assumed zero. In other words, the circuit integrates
the op amp offset, generating an output that tends to +∞ or −∞ depending on the sign of
Vos . Of course, as Vout approaches the positive or negative supply voltages, the transistors
in the op amp fail to provide gain and the output saturates [Fig. 8.29(b)].

The problem of offsets proves quite serious in integrators. Even in the presence of an
input signal, the circuit of Fig. 8.29(a) integrates the offset and reaches saturation. Figure
8.29(c) depicts a modification where resistor R2 is placed in parallel withC1. Now the effect
of Vos at the output is given by (8.9) because the circuits of Figs. 8.5 and 8.29(c) are similar
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Figure 8.29 (a) Offset in integrator, (b) output waveform, (c) addition of R2 to reduce effect of

offset, (d) determination of transfer function.

at low frequencies:

Vout = Vos

(
1 + R2

R1

)
. (8.72)

For example, if Vos = 2 mV and R2/R1 = 100, then Vout contains a dc error of
202 mV, but at least remains away from saturation.

How does R2 affect the integration function? Disregarding Vos , viewing the circuit as
shown in Fig. 8.29(d), and using (8.27), we have

Vout

Vin
= −R2

R1

1

R2C1s + 1
. (8.73)

Thus, the circuit now contains a pole at −1/(R2C1) rather than at the origin. If the input
signal frequencies of interest lie well above this value, then R2C1s � 1 and

Vout

Vin
= − 1

R1C1s
. (8.74)

That is, the integration function holds for input frequencies much higher than 1/(R2C1).
Thus, R2/R1 must be sufficiently small so as to minimize the amplified offset given by
Eq. (8.72) whereas R2C1 must be sufficiently large so as to negligibly impact the signal
frequencies of interest.

8.4.2 Input Bias Current

Op amps implemented in bipolar technology draw a base current from each input. While
relatively small (≈ 0.1–1 μA), the input bias currents may create inaccuracies in some
circuits. As shown in Fig. 8.30, each bias current is modeled by a current source tied
between the corresponding input and ground. Nominally, IB1 = IB2.
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Figure 8.30 Input bias currents.

Let us study the effect of the input currents on the noninverting amplifier. As depicted
in Fig. 8.31(a), IB1 has no effect on the circuit because it flows through a voltage source.
The current IB2, on the other hand, flows through R1 and R2, introducing an error. Using
superposition and setting Vin to zero, we arrive at the circuit in Fig. 8.31(b), which can
be transformed to that in Fig. 8.31(c) if IB2 and R2 are replaced with their Thevenin
equivalent. Interestingly, the circuit now resembles the inverting amplifier of Fig. 8.7(a),
thereby yielding

Vout = −R2IB2

(
−R1

R2

)
(8.75)

= R1IB2 (8.76)

if the op amp gain is infinite. This expression suggests that IB2 flows only through R1, an
expected result because the virtual ground at X in Fig. 8.31(b) forces a zero voltage across
R2 and hence a zero current through it.

I B2

I B1

outV
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R2I B2

I B1

outV
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X

outV

R1R2

(c)

(a) (b)

I B2 R2–

Figure 8.31 (a) Effect of input bias currents on noninverting amplifier, (b) simplified circuit,

(c) Thevenin equivalent.

The error due to the input bias current appears similar to the DC offset ef-
fects illustrated in Fig. 8.27, corrupting the output. However, unlike DC offsets, this
phenomenon is not random; for a given bias current in the bipolar transistors used in
the op amp, the base currents drawn from the inverting and noninverting inputs remain
approximately equal. We may therefore seek a method of canceling this error. For exam-
ple, we can insert a corrective voltage in series with the noninverting input so as to drive
Vout to zero (Fig. 8.32). Since Vcorr “sees” a noninverting amplifier, we have

Vout = Vcorr

(
1 + R1

R2

)
+ IB2R1. (8.77)
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Figure 8.32 Addition of voltage source to correct for input bias currents.

For Vout = 0,

Vcorr = −IB2(R1||R2). (8.78)

Example

8.12
A bipolar op amp employs a collector current of 1 mA in each of the input devices. If
β = 100 and the circuit of Fig. 8.32 incorporates R2 = 1 k�, R1 = 10 k�, determine the
output error and the required value of Vcorr .

Solution We have IB = 10 μA and hence

Vout = 0.1 mV. (8.79)

Thus, Vcorr is chosen as

Vcorr = −9.1 μV. (8.80)

Exercise Determine the correction voltage if β = 200.

Equation (8.78) implies that Vcorr depends on IB2 and hence the current gain of tran-
sistors. Since β varies with process and temperature, Vcorr cannot remain at a fixed value
and must “track” β. Fortunately, (8.78) also reveals that Vcorr can be obtained by passing a
base current through a resistor equal to R1||R2, leading to the topology shown in Fig. 8.33.
Here, if IB1 = IB2, then Vout = 0 for Vin = 0. The reader is encouraged to take the finite
gain of the op amp into account and prove that Vout is still near zero.

From the drawing in Fig. 8.31(b), we observe that the input bias currents have an
identical effect on the inverting amplifier. Thus, the correction technique shown in Fig.
8.33 applies to this circuit as well.

In reality, asymmetries in the op amp’s internal circuitry introduce a slight (random)
mismatch between IB1 and IB2. Problem 8.44 studies the effect of this mismatch on the
output in Fig. 8.33.
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Figure 8.33 Correction for variation of beta.
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Figure 8.34 (a) Effect of input bias currents on integrator, (b) Thevenin equivalent.

We now consider the effect of the input bias currents on the performance of integrators.
Illustrated in Fig. 8.34(a) with Vin = 0 and IB1 omitted (why?), the circuit forces IB2 to flow
throughC1 because R1 sustains a zero voltage drop. In fact, the Thevenin equivalent of R1

and IB2 [Fig. 8.34(b)] yields

Vout = − 1

R1C1

∫
Vin dt (8.81)

= + 1

R1C1

IB2R1 dt (8.82)

= IB2

C1

dt. (8.83)

(Of course, the flow of IB2 through C1 leads to the same result.) In other words, the
circuit integrates the input bias current, thereby forcing Vout to eventually saturate near
the positive or negative supply rails.

Can we apply the correction technique of Fig. 8.33 to the integrator? The model in
Fig. 8.34(b) suggests that a resistor equal to R1 placed in series with the noninverting input
can cancel the effect. The result is depicted in Fig. 8.35.
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Vin

Figure 8.35 Correction for input currents in an integrator.

Example

8.13
An electrical engineering student attempts the topology of Fig. 8.35 in the laboratory
but observes that the output still saturates. Give three possible reasons for this effect.

Solution First, the DC offset voltage of the op amp itself is still integrated (Section 8.4.1). Second,
the two input bias currents always suffer from a slight mismatch, thus causing incomplete
cancellation. Third, the two resistors in Fig. 8.35 also exhibit mismatches, creating an
additional error.

Exercise Is resistor R1 necessary if the internal circuitry of the op amp uses MOS devices?
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Figure 8.36 Frequency response of an op amp.

The problem of input bias current mismatch requires a modification similar to that in
Fig. 8.29(c). The mismatch current then flows through R2 rather than through C1 (why?).

8.4.3 Speed Limitations

Finite Bandwidth Our study of op amps has thus far assumed no speed limitations.
In reality, the internal capacitances of the op amp degrade the performance at high fre-
quencies. For example, as illustrated in Fig. 8.36, the gain begins to fall as the frequency of
operation exceeds f1. In this chapter, we provide a simple analysis of such effects, deferring
a more detailed study to Chapter 11.

To represent the gain roll-off shown in Fig. 8.36, we must modify the op amp model
offered in Fig. 8.1. As a simple approximation, the internal circuitry of the op amp can be
modeled by a first-order (one-pole) system having the following transfer function:

Vout

Vin1 − Vin2

(s) = A0

1 + s
ω1

, (8.84)

where ω1 = 2π f1. Note that at frequencies well below ω1, s/ω1 � 1 and the gain is equal
to A0. At very high frequencies, s/ω1 � 1, and the gain of the op amp falls to unity at
ωu = A0ω1. This frequency is called the “unity-gain bandwidth” of the op amp. Using this
model, we can reexamine the performance of the circuits studied in the previous sections.

Consider the noninverting amplifier of Fig. 8.5. We utilize Eq. (8.11) but replace A0

with the above transfer function:

Vout

Vin
(s) =

A0

1 + s
ω1

1 + R2

R1 + R2

+ A0

1 + s
ω1

. (8.85)

Multiplying the numerator and the denominator by (1 + s/ω1) gives

Vout

Vin
(s) = A0

s
ω1

+ R2

R1 + R2

A0 + 1

. (8.86)

The system is still of first order and the pole of the closed-loop transfer function is
given by

|ωp,closed| =
(

1 + R2

R1 + R2

A0

)
ω1. (8.87)
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Figure 8.37 Frequency response of open-loop op amp and closed-loop circuit.

As depicted in Fig. 8.37, the bandwidth of the closed-loop circuit is substantially higher than
that of the op amp itself. This improvement, of course, accrues at the cost of a proportional
reduction in gain—from A0 to 1 + R2A0/(R1 + R2).

Example

8.14
A noninverting amplifier incorporates an op amp having an open-loop gain of 100 and
bandwidth of 1 MHz. If the circuit is designed for a closed-loop gain of 16, determine
the resulting bandwidth and time constant.

Solution For a closed-loop gain of 16, we require that 1 + R1/R2 = 16 and hence

|ωp,closed| =
(

1 + R2

R1 + R2

A0

)
ω1 (8.88)

=

⎛
⎜⎜⎝1 + 1

R1

R2

+ 1

A0

⎞
⎟⎟⎠ω1 (8.89)

= 2π × (635 MHz). (8.90)

Given by |ωp,closed|−1, the time constant of the circuit is equal to 2.51 ns.

Exercise Repeat the above example if the op amp gain is 500.

The above analysis can be repeated for the inverting amplifier as well. The reader can
prove that the result is similar to Eq. (8.87).

The finite bandwidth of the op amp may considerably degrade the performance of
integrators. The analysis is beyond the scope of this book, but it is outlined in Problem 8.47
for the interested reader.

Another critical issue in the use of op amps is stability; if placed in the topologies
seen above, some op amps may oscillate. Arising from the internal circuitry of the op amp,
this phenomenon often requires internal or external stabilization, also called “frequency
compensation.” These concepts are studied in Chapter 12.

Slew Rate In addition to bandwidth and stability problems, another interesting effect is
observed in op amps that relates to their response to large signals. Consider the noninvert-
ing configuration shown in Fig. 8.38(a), where the closed-loop transfer function is given by
Eq. (8.86). A small step of �V at the input thus results in an amplified output waveform
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Figure 8.38 (a) Noninverting amplifier, (b) input and output waveforms in linear regime, (c) input

and output waveforms in slewing regime.

t

inV

t

Vout
With

Slewing

Slewing
Without

Figure 8.39 Output settling speed with and without slewing.

having a time constant equal to |ωp,closed|−1 [Fig. 8.38(b)]. If the input step is raised to 2�V,
each point on the output waveform also rises by a factor of two.7 In other words, doubling
the input amplitude doubles both the output amplitude and the output slope.

In reality, op amps do not exhibit the above behavior if the signal amplitudes are large.
As illustrated in Fig. 8.38(c), the output first rises with a constant slope (i.e., as a ramp) and
eventually settles as in the linear case of Fig. 8.38(b). The ramp section of the waveform
arises because, with a large input step, the internal circuitry of the op amp reduces to a
constant current source charging a capacitor. We say the op amp “slews” during this time.
The slope of the ramp is called the “slew rate” (SR).

Slewing further limits the speed of op amps. While for small-signal steps, the output
response is determined by the closed-loop time constant, large-signal steps must face
slewing prior to linear settling. Figure 8.39 compares the response of a non-slewing circuit
with that of a slewing op amp, revealing the longer settling time in the latter case.

It is important to understand that slewing is a nonlinear phenomenon. As suggested
by the waveforms in Fig. 8.38(c), the points on the ramp section do not follow linear
scaling (if x → y, then 2x →/ 2y). The nonlinearity can also be observed by applying a

7Recall that in a linear system, if x(t) → y(t), then 2x(t) → 2y(t).
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Figure 8.40 (a) Simple noninverting amplifier, (b) input and output waveforms without slewing,

(c) input and output waveforms with slewing.

large-signal sine wave to the circuit of Fig. 8.38(a) and gradually increasing the frequency
(Fig. 8.40). At low frequencies, the op amp output “tracks” the sine wave because the
maximum slope of the sine wave remains less than the op amp slew rate [Fig. 8.40(a)].
Writing Vin(t) = V0 sin ωt and Vout (t) = V0(1 + R1/R2) sin ωt , we observe that

dVout

dt
= V0

(
1 + R1

R2

)
ω cos ωt. (8.91)

The output therefore exhibits a maximum slope of V0ω(1 + R1/R2) (at its zero crossing
points), and the op amp slew rate must exceed this value to avoid slewing.

What happens if the op amp slew rate is insufficient? The output then fails to follow
the sinusoidal shape while passing through zero, exhibiting the distorted behavior shown
in Fig. 8.40(b). Note that the output tracks the input so long as the slope of the waveform
does not exceed the op amp slew rate, e.g., between t1 and t2.

Example

8.15
The internal circuitry of an op amp can be simplified to a 1-mA current source charging a
5-pF capacitor during large-signal operation. If an amplifier using this op amp produces a
sinusoid with a peak amplitude of 0.5 V, determine the maximum frequency of operation
that avoids slewing.

Solution The slew rate is given by I/C = 0.2 V/ns. For an output given by Vout = Vp sin ωt , where
Vp = 0.5 V, the maximum slope is equal to

dVout

dt

∣∣∣∣
max

= Vpω. (8.92)

Equating this to the slew rate, we have

ω = 2π(63.7 MHz). (8.93)

That is, for frequencies above 63.7 MHz, the zero crossings of the output experience
slewing.

Exercise Plot the output waveform if the input frequency is 200 MHz.
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Figure 8.41 Maximum op amp output swings.

Equation (8.91) indicates that the onset of slewing depends on the closed-loop gain,
1 + R1/R2. To define the maximum sinusoidal frequency that remains free from slewing,
it is common to assume the worst case, namely, when the op amp produces its maximum
allowable voltage swing without saturation. As exemplified by Fig. 8.41, the largest sinusoid
permitted at the output is given by

Vout = Vmax − Vmin

2
sin ωt + Vmax + Vmin

2
, (8.94)

where Vmax and Vmin denote the bounds on the output level without saturation. If the
op amp provides a slew rate of SR, then the maximum frequency of the above sinusoid
can be obtained by writing

dVout

dt

∣∣∣∣
max

= SR (8.95)

and hence

ωFP = SR
Vmax − Vmin

2

. (8.96)

Called the “full-power bandwidth,” ωFP serves as a measure of the useful large-signal
speed of the op amp.

8.4.4 Finite Input and Output Impedances

Actual op amps do not provide an infinite input impedance8 or a zero output impedance—
the latter often creating limitations in the design. We analyze the effect of this nonideality
on one circuit here.

Consider the inverting amplifier shown in Fig. 8.42(a), assuming the op amp suffers
from an output resistance, Rout . How should the circuit be analyzed? We return to the
model in Fig. 8.1 and place Rout in series with the output voltage source [Fig. 8.42(b)]. We
must solve the circuit in the presence of Rout . Recognizing that the current flowing through
Rout is equal to (−A0vX − vout )/Rout , we write a KVL from vin to vout through R2 and R1:

vin + (R1 + R2)
−A0vX − vout

Rout
= vout . (8.97)

8Op amps employing MOS transistors at their input exhibit a very high input impedance at low
frequencies.
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Figure 8.42 (a) Inverting amplifier, (b) effect of finite output resistance of op amp.

To construct another equation for vX , we view R1 and R2 as a voltage divider:

vX = R2

R1 + R2

(vout − vin) + vin. (8.98)

Substituting for vX in Eq. (8.97) thus yields

vout

vin
= −R1

R2

A0 − Rout

R1

1 + Rout

R2

+ A0 + R1

R2

. (8.99)

The additional terms −Rout/R1 in the numerator and Rout/R2 in the denominator increase
the gain error of the circuit.

Example

8.16
An electrical engineering student purchases an op amp with A0 = 10,000 and Rout = 1 �

and constructs the amplifier of Fig. 8.42(a) using R1 = 50 � and R2 = 10 �. Unfortu-
nately, the circuit fails to provide large voltage swings at the output even though Rout/R1

and Rout/R2 remain much less than A0 in Eq. (8.99). Explain why.

Solution For an output swing of, say, 2 V, the op amp may need to deliver a current as high as
40 mA to R1 (why?). Many op amps can provide only a small output current even though
their small-signal output impedance is very low.

Exercise If the op amp can deliver a current of 5 mA, what value of R1 is acceptable for output
voltages as high as 1 V?

8.5 DESIGN EXAMPLES

Following our study of op amp applications in the previous sections, we now consider sev-
eral examples of the design procedure for op amp circuits. We begin with simple examples
and gradually proceed to more challenging problems.
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Example

8.17
Design an inverting amplifier with a nominal gain of 4, a gain error of 0.1%, and an input
impedance of at least 10 k�. Determine the minimum op amp gain required here.

Solution For an input impedance of 10 k�, we choose the same value of R2 in Fig. 8.7(a),
arriving at R1 = 40 k� for a nominal gain of 4. Under these conditions, Eq. (8.21)
demands that

1

A0

(
1 + R1

R2

)
< 0.1% (8.100)

and hence

A0 > 5000. (8.101)

Exercise Repeat the above example for a nominal gain of 8 and compare the results.

Example

8.18
Design a noninverting amplifier for the following specifications: closed-loop
gain = 5, gain error = 1%, closed-loop bandwidth = 50 MHz. Determine the required
open-loop gain and bandwidth of the op amp. Assume the op amp has an input bias
current of 0.2 μA.

Solution From Fig. 8.5 and Eq. (8.9), we have

R1

R2

= 4. (8.102)

The choice of R1 and R2 themselves depends on the “driving capability” (output resis-
tance) of the op amp. For example, we may select R1 = 4 k� and R2 = 1 k� and check
the gain error from Eq. (8.99) at the end. For a gain error of 1%,

1

A0

(
1 + R1

R2

)
< 1% (8.103)

and hence

A0 > 500. (8.104)

Also, from Eq. (8.87), the open-loop bandwidth is given by

ω1 >
ωp,closed

1 + R2

R1 + R2

A0

(8.105)

ω1 >
ωp,closed

1 +
(

1 + R1

R2

)−1

A0

(8.106)

>
2π(50 MHz)

100
. (8.107)

Thus, the op amp must provide an open-loop bandwidth of at least 500 kHz.

Exercise Repeat the above example for a gain error of 2% and compare the results.
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Example

8.19
Design an integrator for a unity-gain frequency of 10 MHz and an input impedance
of 20 k�. If the op amp provides a slew rate of 0.1 V/ns, what is the largest peak-
to-peak sinusoidal swing at the input at 1 MHz that produces an output free from
slewing?

Solution From Eq. (8.29), we have

1

R1C1(2π × 10 MHz)
= 1 (8.108)

and, with R1 = 20 k�,

C1 = 0.796 pF. (8.109)

(In discrete design, such a small capacitor value may prove impractical.)
For an input given by Vin = Vp cos ωt ,

Vout = −1

R1C1

Vp

ω
sin ωt, (8.110)

with a maximum slope of

dVout

dt

∣∣∣∣
max

= 1

R1C1

Vp. (8.111)

Equating this result to 0.1 V/ns gives

Vp = 1.59 V. (8.112)

In other words, the input peak-to-peak swing at 1 MHz must remain below 3.18 V for
the output to be free from slewing.

Exercise How do the above results change if the op amp provides a slew rate of 0.5 V/ns?

P R O B L E M S

8.1. For a unity-gain op-amp buffer, deter-
mine output voltage if Vin = +2V and
AV = 1200.

8.2. An op amp exhibits the following nonlinear
characteristic:

Vout = α tanh[β(Vin1 − Vin2)]. (8.113)

Sketch this characteristic and determine the
small-signal gain of the op amp in the vicin-
ity of Vin1 − Vin2 ≈ 0.

8.3. A noninverting amplifier contains an op
amp with open-loop gain of 1500. If the cur-
rent provides nominal gain of 50, determine
the gain error.

8.4. A noninverting amplifier has a nominal gain
of 10. It has open-loop gain of 1000. Deter-
mine the gain error.

8.5. A* noninverting amplifier employs an op
amp with a finite output impedance, Rout .
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Representing the op amp as depicted in Fig.
8.43, compute the closed-loop gain and output
impedance. What happens if A0 → ∞?

in1

in2

A0
V

V

in1V( Vin2– )

outV
Rout

Figure 8.43

8.6. A* noninverting amplifier incorporates an
op amp having an input impedance of Rin.
Modeling the op amp as shown in Fig. 8.44,
determine the closed-loop gain and input
impedance. What happens if A0 → ∞?

R
in1

in2

A0
V

V

in1V( Vin2– )

outV

in

Figure 8.44

8.7. In the noninverting amplifier shown in Fig.
8.45, resistor R2 deviates from its nominal
value by �R. Calculate the gain error of the
circuit if �R/R2 � 1.

Vin

A0 outV

V

V

in1

in2 R1

R2

Figure 8.45

8.8. The* input/output characteristic of an op
amp can be approximated by the piecewise-
linear behavior illustrated in Fig. 8.46,
where the gain drops from A0 to 0.8A0 and
eventually to zero as |Vin1 − Vin2| increases.
Suppose this op amp is used in a noninvert-
ing amplifier with a nominal gain of 5. Plot
the closed-loop input/output characteristic
of the circuit. (Note that the closed-loop
gain experiences much less variation; i.e.,
the closed-loop circuit is much more linear.)

outV

in1V Vin2–

A0

A00.8

+2 mV +4 mV

–4 mV –2 mV

Figure 8.46

8.9. The circuit of a noninverting op amp is de-
signed to have nominal gain of 5.00, but R1

and R2 suffer from mismatch of 5%, i.e.,
R1 = (1 + 0.05)R2. What will be the actual
voltage gain? (Refer the log below).

inV
outV

R

R

1

2

Figure 8.47

8.10. For noninverting amplifier shown in Fig
8.48, find expression for Vout .

inV
outV

R

R

1

2

Figure 8.48

8.11. For Fig 8.49, calculate output voltage Vout .

R2

R

X

Y1

in

200 k

20 k

10 k

3 V

20 k

V
outV

R

R

4

3

Figure 8.49
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8.12. The op amp used in an inverting ampli-
fier exhibits a finite input impedance, Rin.
Modeling the op amp as shown in Fig. 8.43,
determine the closed-loop gain and input
impedance.

8.13. Derive the expression for output voltage in
terms of input voltage for the circuit shown
in Fig. 8.50.

R

inV

1

R2

outV

M1

Figure 8.50

8.14. Assuming A0 = ∞, compute the closed-
loop gain of the inverting amplifier shown
in Fig. 8.51. Verify that the result reduces to
expected values if R1 → 0 or R3 → 0.

R1

R2

inV
outV

R3

R4

Figure 8.51

8.15. Design an inverting amplifier of Fig 8.52 for
a nominal gain of 6, gain error of 0.05%, and
an input impedance of at least 8 k�.

R

X

1

R2

inV
outV

Figure 8.52

8.16. For the circuit shown in Fig. 8.53, the out-
put can swing from +5 V to −5 V. The input
is a step waveform. Analyze for timings at

which output voltage switches from 0 to 5 V
and 5 to −5 V.

R
V

outV
1 kΩ

1 μt

0 V

5 V

Figure 8.53

8.17. The integrator of Fig. 8.53 is used to am-
plify a sinusoidal input by a factor of 10.
If A0 = ∞ and R1C1 = 10 ns, compute the
frequency of the sinusoid.

8.18. Consider* the integrator shown in Fig. 8.53
and suppose the op amp is modeled as
shown in Fig. 8.43. Determine the transfer
function Vout/Vin and compare the location
of the pole with that given by Eq. (8.37).

8.19. The* op amp used in the integrator of Fig.
8.53 exhibits a finite output impedance and
is modeled as depicted in Fig. 8.44. Compute
the transfer function Vout/Vin and compare
the location of the pole with that given by
Eq. (8.37).

8.20. The differentiator shown in Fig 8.54 ampli-
fies input by 15, at a frequency of 2 MHZ.
If A0=∞, determine the value of R1C1.

R1C1

inV outV

Figure 8.54

8.21. We wish to design the differentiator of
Fig. 8.54 for a pole frequency of 100 MHz.
If the values of R1 and C1 cannot be lower
than 1 k� and 1 nF, respectively, compute
the required gain of the op amp.

8.22. Suppose* the op amp in Fig. 8.54 exhibits a
finite input impedance and is modeled as
shown in Fig. 8.43. Determine the trans-
fer function Vout/Vin and compare the result
with Eq. (8.42).
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8.23. Calculate the transfer function of the circuit
shown in Fig. 8.55 if A0 = ∞. What choice
of component values reduces |Vout/Vin| to
unity at all frequencies?

outV

C

inV
A0

R

C

R

2

2

1

1

Figure 8.55

8.24. For Fig 8.56, if V1 = 0.8 V, V2 = 1.1 and
V3 = 0.5 V, R1 = R2 = R3 = 5 k� and
RF = 10 k� A0 = ∞, find Vout .

The notation at the positive terminal of
the operational amplifier is the symbol for
ground or 0 V.

X
outV

RFR1

R2

R3

V1

V2

V3

Figure 8.56

8.25. For Fig. 8.56, if V1 =V0sinωt, V2 =V0sin2ωt ,
V3 = V0sin4ωt, R1 = R2 = R3 = R = 4 k�,
RF = 8 k�, A0 = ∞, plot Vout as a function
of time.

8.26. The voltage adder of Fig. 8.56 employs an
op amp having a finite output impedance,
Rout . Using the op amp model depicted
in Fig. 8.44, compute Vout in terms of V2

and V3.

8.27. Due to a manufacturing error, a parasitic
resistance RP has appeared in the adder of
Fig. 8.57. Calculate Vout in terms of V1 and
V2 for A0 = ∞ and A0 < ∞. (Note that RP

can also represent the input impedance of
the op amp.)

R
R

X
2

outV

F

R1

V1

V2 A0

RP

Figure 8.57

8.28. For Fig. 8.58, using ideal op-amp model, cal-
culate the closed-loop gain v0

vs
. Also find i0

when vS = 1.2V.

vs

v1

v2
i2

v0
v0
0

i0

kΩ2.5

kΩ20

kΩ10

 = 0

i1 = 0

Figure 8.58

8.29. Plot the current flowing through D1 in the
precision rectifier of Fig. 8.22(b) as a func-
tion of time for a sinusoidal input.

8.30. Plot the current flowing through D1 in the
precision rectifier of Fig. 8.23(a) as a func-
tion of time for a sinusoidal input.

8.31. For Fig 8.59, find v0 for input voltage
vi = sin ωt.

v0
D

R 10 kR

10 kV i = sin ωtω

Figure 8.59

8.32. For Fig. 8.60, find Vi value at which V0 will
be zero, for the given values, of components
and diode equation as ID = I0(eqV/ηKT − 1)
where V is forward voltages η = 2 for sili-
con. R = 200 k�, IS = 1.5μA, KT/q = 26
mV.

V0

V0

V1

Vi I i

R

= RIS

Figure 8.60

8.33. We wish to improve the speed of the rec-
tifier shown in Fig. 8.22(b) by connecting a
diode from node Y to ground. Explain how
this can be accomplished.

8.34. Suppose Vin in Fig. 8.24 varies from −1 V
to +1 V. Sketch Vout and VX as a function of
Vin if the op amp is ideal.

8.35. Determine the small-signal voltage gain
of the logarithmic amplifier depicted in
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Fig. 8.24 by differentiating both sides of
Eq. (8.66) with respect to Vin. Plot the mag-
nitude of the gain as a function of Vin and
explain why the circuit is said to provide a
“compressive” characteristic.

8.36. A* student attempts to construct a nonin-
verting logarithmic amplifier as illustrated
in Fig. 8.61. Describe the operation of this
circuit.

R X

inV

1

outV

Q1

Figure 8.61

8.37. For Fig. 8.62, analyze the function of a cir-
cuit and verify its function mathematically.

R

inV
outV1M

1

inV 2

Figure 8.62

8.38. For Fig. 8.63, analyze the functionality of
circuit and derive expression for Vout.

outV

1R X 2M

inV 1

inV 2

Figure 8.63

8.39. For Fig. 8.64, analyze the current for input
offset voltage and output voltage.

V 0 sin 0V

R2

R1

V0 sin - input offset voltage.

Figure 8.64

8.40. For the inverting amplifier illustrated in Fig.
8.65, calculate Vout if the op amp exhibits an
input offset of Vos . Assume A0 = ∞.

A0

R1

R2

inV
outV

Figure 8.65

8.41. The integrator of Fig. 8.29(c) must
operate with frequencies as low as 1 kHz
while providing an output offset of less
than 20 mV with an op amp offset of
3 mV. Determine the required values of
R1 and R2 if C1 ≤ 100 pF.

8.42. For Fig. 8.66(a), calculate output voltage V0

for the input offset voltage of 2 mV.

R2

R1

0V

2 kΩ
2000 kΩ

(a)

outVinV

0V

R1

i1

i2 K2

sin

(b)

V0 sin - input offset voltage.

Figure 8.66

8.43. What will be the effect of an inverting
op amp shown in Fig. 8.66(b) if the effect
of input offset is considered.

8.44. Suppose the input bias currents in Fig. 8.31
incur a small offset, i.e., IB1 = IB2 + �I. Cal-
culate Vout .

8.45. Explain the effect of output offset voltage
on the output voltage of an op-amp integra-
tor, when input voltage is a sine wave.

8.46. An inverting amplifier incorporates an
op amp whose frequency response is given
by Eq. (8.84). Determine the transfer func-
tion of the closed-loop circuit and compute
the bandwidth.
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8.47. Figure** 8.67 shows an integrator employ-
ing an op amp whose frequency response
is given by

A(s) = A0

1 + s
ω0

. (8.114)

Determine the transfer function of the over-
all integrator. Simplify the result if ω0 �
1/(R1C1).

outV

C1

R1

inV
A ( (s

Figure 8.67

8.48. The unity-gain buffer of Fig. 8.3 must be de-
signed to drive a 100 � load with a gain error
of 0.5%. Determine the required op amp
gain if the op amp has an output resistance
of 1 k�.

8.49. A noninverting amplifier with a nominal
gain of 4 senses a sinusoid having a peak
amplitude of 0.5 V. If the op amp provides a
slew rate of 1 V/ns, what is the highest input
frequency for which no slewing occurs?

Design Problems

8.50. Design the inverting amplifier of Fig. 8.7(a)
for a nominal gain of 8 and a gain error of
0.1%. Assume Rout = 100 �.

8.51. With a finite op amp gain, the step
response of an integrator is a slow expo-
nential rather than an ideal ramp. Design an
integrator whose step response approximates
V(t) = αt with an error less than 0.1%
for the range 0 < V(t) < V0 (Fig. 8.68).
Assume α = 10 V/μs, V0 =1 V, and the
capacitor must remain below 20 pF.

t

outV

VΔ
V0

= 0.1%VΔV0

Id
ea

l R
am

p

Figure 8.68

8.52. A voltage adder must realize the follow-
ing function: Vout = α1V1 + α2V2, where
α1 = −0.5 and α2 = −1.5. Design the circuit
if the worst-case error in α1 or α2 must re-
main below 0.5% and the input impedance
seen by V1 or V2 must exceed 10 k�.

8.53. Design a logarithmic amplifier that “com-
presses” an input range of [0.1 V 2 V] to
an output range of [−0.5 V −1 V].

S P I C E P R O B L E M S

8.1. Assuming an op amp gain of 1000 and
IS = 10−17 A for D1, plot the input/output
characteristic of the precision rectifier
shown in Fig. 8.69.

Y

Vout

inV

D1 Ω1 k

Figure 8.69

8.2. Repeat Problem 8.1 but assuming that the
op amp suffers from an output resistance of
1 k�.

8.3. In the circuit of Fig. 8.70, each op amp pro-
vides a gain of 500. Apply a 10-MHz sinu-
soid at the input and plot the output as a
function of time. What is the error in the
output amplitude with respect to the input
amplitude?

inV

 Ω1 k

10 pF

outV

 Ω1 k

10 pF

Figure 8.70



Chapter 9
Cascode Stages and
Current Mirrors

Following our study of basic bipolar and MOS amplifiers in previous chapters, we deal

with two other important building blocks in this chapter. The “cascode”1 stage is a

modified version of common-emitter or common-source topologies and proves useful in

high-performance circuit design, and the “current mirror” is an interesting and versatile

technique employed extensively in integrated circuits. Our study includes both bipolar

and MOS implementations of each building block. Shown below is the outline of the

chapter.

➤

Cascode Stages

• Cascode as Current

Source

• Cascode as Amplifier

Current Mirrors

• Bipolar Mirrors

• MOS Mirrors

9.1 CASCODE STAGE

9.1.1 Cascode as a Current Source

Recall from Chapters 5 and 7 that the use of current-source loads can markedly increase
the voltage gain of amplifiers. We also know that a single transistor can operate as a current
source but its output impedance is limited due to the Early effect (in bipolar devices) or
channel-length modulation (in MOSFETs).

How can we increase the output impedance of a transistor that acts as a current
source? An important observation made in Chapters 5 and 7 forms the foundation for our

1Coined in the vacuum-tube era, the term “cascode” is believed to be an abbreviation of “cascaded
triodes.”

359
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Vb

R

R

Q1 Vb

RS

R

M 1

out1 out2

E

Figure 9.1 Output impedance of degenerated bipolar and MOS devices.

study here: emitter or source degeneration “boosts” the impedance seen looking into the
collector or drain, respectively. For the circuits shown in Fig. 9.1, we have

Rout1 = [1 + gm(RE||rπ )]rO + RE||rπ (9.1)

= (1 + gmrO)(RE||rπ ) + rO (9.2)

Rout2 = (1 + gmRS)rO + RS (9.3)

= (1 + gmrO)RS + rO, (9.4)

observing that RE or RS can be increased to raise the output resistance. Unfortunately,
however, the voltage drop across the degeneration resistor also increases proportionally,
consuming voltage headroom and ultimately limiting the voltage swings provided by the
circuit using such a current source. For example, if RE sustains 300 mV and Q1 requires
a minimum collector-emitter voltage of 500 mV, then the degenerated current source
“consumes” a headroom of 800 mV.

Bipolar Cascode In order to relax the trade-off between the output impedance
and the voltage headroom, we can replace the degeneration resistor with a transis-
tor. Depicted in Fig. 9.2(a) for the bipolar version, the idea is to introduce a high
small-signal resistance (= rO2) in the emitter of Q1 while consuming a headroom in-
dependent of the current. In this case, Q2 requires a headroom of approximately
0.4 V to remain in soft saturation. This configuration is called the “cascode” stage.2 To
emphasize that Q1 and Q2 play distinctly different roles here, we call Q1 the cascode
transistor and Q2 the degeneration transistor. Note that IC1 ≈ IC2 if β1 � 1.

Vb

R

Q1
V

R

Q1

V Q2

b1

b2

r

)b()a(

O2

tuotuo

Figure 9.2 (a) Cascode bipolar current source, (b) equivalent circuit.

Let us compute the output impedance of the bipolar cascode of Fig. 9.2(a). Since
the base-emitter voltage of Q2 is constant, this transistor simply operates as a small-signal
resistance equal to rO2 [Fig. 9.2(b)]. In analogy with the resistively-degenerated counterpart

2Or simply the “cascode.”
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in Fig. 9.1, we have

Rout = [1 + gm1(rO2||rπ1)]rO1 + rO2||rπ1. (9.5)

Since typically gm1(rO2||rπ1) � 1,

Rout ≈ (1 + gm1rO1)(rO2||rπ1) (9.6)

≈ gm1rO1(rO2||rπ1). (9.7)

Note, however, that rO cannot generally be assumed much greater than rπ .

Example

9.1
IfQ1 andQ2 in Fig. 9.2(a) are biased at a collector current of 1 mA, determine the output
resistance. Assume β = 100 and VA = 5 V for both transistors.

Solution Since Q1 and Q2 are identical and biased at the same current level, Eq. (9.7) can be
simplified by noting that gm = IC /VT , rO = VA/IC , and rπ = βVT/IC :

Rout ≈ IC1

VT
· VA1

IC1

·
VA2

IC2

· βVT

IC1

VA2

IC2

+ βVT

IC1

(9.8)

≈ 1

IC1

· VA

VT
· βVAVT

VA + βVT
, (9.9)

where IC = IC1 = IC2 and VA = VA1 = VA2. At room temperature, VT ≈ 26 mV and
hence

Rout ≈ 328.9 k�. (9.10)

By comparison, the output resistance of Q1 with no degeneration would be equal to
rO1 = 5 k�; i.e., “cascoding” has boosted Rout by a factor of 66 here. Note that rO2 and
rπ1 are comparable in this example.

Exercise What Early voltage is required for an output resistance of 500 k�?

It is interesting to note that if rO2 becomes much greater than rπ1, then Rout1 approaches

Rout,max ≈ gm1rO1rπ1 (9.11)

≈ β1rO1. (9.12)

This is the maximum output impedance provided by a bipolar cascode. After all, even with
rO2 = ∞ (Fig. 9.3) [or RE = ∞ in Eq. (9.1)], rπ1 still appears from the emitter of Q1 to ac
ground, thereby limiting Rout to β1rO1.

Example

9.2
Suppose in Example 9.1, the Early voltage ofQ2 is equal to 50 V.3 Compare the resulting
output impedance of the cascode with the upper bound given by Eq. (9.12).

3In integrated circuits, all bipolar transistors fabricated on the same wafer exhibit the same Early
voltage. This example applies to discrete implementations.
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R

Q1

out

Ideal
 πr 1

Figure 9.3 Cascode topology using an ideal current source.

Solution Since gm1 = (26 �)
−1

, rπ1 = 2.6 k�, rO1 = 5 k�, and rO2 = 50 k�, we have

Rout ≈ gm1rO1(rO2||rπ1) (9.13)

≈ 475 k�. (9.14)

The upper bound is equal to 500 k�, about 5% higher.

Exercise Repeat the above example if the Early voltage of Q1 is 10 V.

Example

9.3
We wish to increase the output resistance of the bipolar cascode of Fig. 9.2(a) by a factor
of two through the use of resistive degeneration in the emitter of Q2. Determine the
required value of the degeneration resistor if Q1 and Q2 are identical.

Solution As illustrated in Fig. 9.4, we replace Q2 and RE with their equivalent resistance from
Eq. (9.1):

RoutA = [1 + gm2(RE||rπ2)]rO2 + RE||rπ2. (9.15)

It follows from Eq. (9.7) that

Rout ≈ gm1rO1(RoutA||rπ1). (9.16)

We wish this value to be twice that given by Eq. (9.7):

RoutA||rπ1 = 2(rO2||rπ1). (9.17)

Vb

R

Q1

V

R

Q1

V Q2

b1

b2

out

out

RE

RoutA

RoutA

Figure 9.4
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That is,

RoutA = 2rO2rπ1

rπ1 − rO2

. (9.18)

In practice, rπ1 is typically less than rO2, and no positive value of RoutA exists! In other
words, it is impossible to double the output impedance of the cascode by emitter
degeneration.

Exercise Is there a solution if the output impedance must increase by a factor of 1.5?

What does the above result mean? Comparing the output resistances obtained
in Examples 9.1 and 9.2, we recognize that even identical transistors yield an Rout

(= 328.9 k�) that is not far from the upper bound (= 500 k�). More specifically,
the ratio of (9.7) and (9.12) is equal to rO2/(rO2 + rπ1), a value greater than 0.5 if
rO2 > rπ1.

For completeness, Fig. 9.5 shows a pnp cascode, whereQ1 serves as the cascode device
and Q2 as the degeneration device. The output impedance is given by Eq. (9.5).

V Q1b1

V Qb2

VCC

Rout

2

Figure 9.5 PNP cascode current source.

While we have arrived at the cascode as an extreme case of emitter degenera-
tion, it is also possible to view the evolution as illustrated in Fig. 9.6. That is, since
Q2 provides only an output impedance of rO2, we “stack” Q1 on top of it to raise
Rout.

V

R

Q1

V Q2

b1

b2

out

R

V Q2b2

out r= O2

g rm1 O1 (r  πr )O2 1

Figure 9.6 Evolution of cascode topology viewed as stacking Q1 atop Q2.



364 Chapter 9 Cascode Stages and Current Mirrors

Example

9.4
Explain why the topologies depicted in Fig. 9.7 are not cascodes.

(a) (b)
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out

X
2

1

VCC

R

Q

out

1

r O2g
1
m2Vb1

Vb2

VCC

Figure 9.7

Solution Unlike the cascode of Fig. 9.2(a), the circuits of Fig. 9.7 connect the emitter of Q1 to
the emitter of Q2. Transistor Q2 now operates as a diode-connected device (rather than
a current source), thereby presenting an impedance of (1/gm2)||rO2 (rather than rO2) at
node X. Given by Eq. (9.1), the output impedance, Rout, is therefore considerably lower:

Rout =
[

1 + gm1

(
1

gm2

||rO2||rπ1

)]
rO1 + 1

gm2

||rO2||rπ1. (9.19)

In fact, since 1/gm2 � rO2, rπ1 and since gm1 ≈ gm2 (why?),

Rout ≈
(

1 + gm1

gm2

)
rO1 + 1

gm2

(9.20)

≈ 2rO1. (9.21)

The same observations apply to the topology of Fig. 9.7(b).

Exercise Estimate the output impedance for a collector bias current of 1 mA and VA = 8 V.

MOS Cascodes The similarity of Eqs. (9.1) and (9.3) for degenerated stages suggests
that cascoding can also be realized with MOSFETs so as to increase the output impedance
of a current source. Illustrated in Fig. 9.8, the idea is to replace the degeneration resistor
with a MOS current source, thus presenting a small-signal resistance of rO2 from X to
ground. Equation (9.3) can now be written as

Rout = (1 + gm1rO2)rO1 + rO2 (9.22)

≈ gm1rO1rO2, (9.23)

where it is assumed gm1rO1rO2 � rO1, rO2.

R

M 1

M 2

Vb1

Vb2

X
Vb

R

M 1

out
out

r O2

Figure 9.8 MOS cascode current source and its equivalent.
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Equation (9.23) is an extremely important result, implying that the output impedance
is proportional to the intrinsic gain of the cascode device.

Example

9.5
Design an NMOS cascode for an output impedance of 500 k� and a current of
0.5 mA. For simplicity, assume M1 and M2 in Fig. 9.8 are identical (they need not be).
Assume μnCox = 100 μA/V2 and λ = 0.1 V−1.

Solution We must determine W/L for both transistors such that

gm1rO1rO2 = 500 k�. (9.24)

Since rO1 = rO2 = (λID)
−1 = 20 k�, we require that gm1 = (800 �)

−1
and hence√

2μnCox
W
L

ID = 1

800 �
. (9.25)

It follows that
W
L

= 15.6. (9.26)

We should also note that gm1rO1 = 25 � 1.

Exercise What is the output resistance if W/L = 32?

Invoking the alternative view depicted in Fig. 9.6 for the MOS counterpart
(Fig. 9.9), we recognize that stacking a MOSFET on top of a current source “boosts”
the impedance by a factor of gm2rO2 (the intrinsic gain of the cascode transistor). This
observation reveals an interesting point of contrast between bipolar and MOS cas-
codes: in the former, raising rO2 eventually leads to Rout,bip = βrO1, whereas in the latter,
Rout,MOS = gm1rO1rO2 increases with no bound.4 This is because in MOS devices, β and rπ

are infinite (at low frequencies).

M 1

M 2

Vb1

Vb2

X

M 2
Vb2

Rout

Rout r= O2

g rm1 O1 r O2

Figure 9.9 MOS cascode viewed as stack of M1 atop M2.

Figure 9.10 illustrates a PMOS cascode. The output resistance is given by Eq. (9.22).

Vb1 M 1

V M

X
2

VDD

b2

Rout

Figure 9.10 PMOS cascode current source.

4In reality, other second-order effects limit the output impedance of MOS cascodes.
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Example

9.6
During manufacturing, a large parasitic resistor, RP, has appeared in a cascode as shown
in Fig. 9.11. Determine the output resistance.

R

M 1

M 2

Vb1

Vb2

out

RP

Figure 9.11

Solution We observe that RP is in parallel with rO1. It is therefore possible to rewrite Eq. (9.23) as

Rout = gm1(rO1||RP)rO2. (9.27)

If gm1(rO1||RP) is not much greater than unity, we return to the original equation, (9.22),
substituting rO1||RP for rO1:

Rout = (1 + gm1rO2)(rO1||RP) + rO2. (9.28)

Exercise What value of RP degrades the output impedance by a factor of two?

9.1.2 Cascode as an Amplifier

In addition to providing a high output impedance as a current source, the cascode topology
can also serve as a high-gain amplifier. In fact, the output impedance and the gain of
amplifiers are closely related.

For our study below, we need to understand the concept of the transconductance for
circuits. In Chapters 4 and 6, we defined the transconductance of a transistor as the change
in the collector or drain current divided by the change in the base-emitter or gate-source
voltage. This concept can be generalized to circuits as well. As illustrated in Fig. 9.12, the
output voltage is set to zero by shorting the output node to ground, and the “short-circuit
transconductance” of the circuit is defined as

Gm = iout

vin

∣∣∣∣
vout=0

. (9.29)

The transconductance signifies the “strength” of a circuit in converting the input voltage
to a current.5 Note the direction of iout in Fig. 9.12.

5While omitted for simplicity in Chapters 4 and 6, the condition vout = 0 is also required for the
transconductance of transistors. That is, the collector or drain must by shorted to ac ground.
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inv

outi
Circuit

ac
GND

Figure 9.12 Computation of transconductance for a circuit.

Example

9.7
Calculate the transconductance of the CS stage shown in Fig. 9.13(a).

R

M 1

VDD

D

inv

outv

R

M 1

VDD

D

inv

outi

ac
GND

(a) (b)

Figure 9.13

Solution As depicted in Fig. 9.13(b), we short the output node to ac ground and, noting that RD

carries no current (why?), write

Gm = iout

vin
(9.30)

= iD1

vGS1

(9.31)

= gm1. (9.32)

Thus, in this case, the transconductance of the circuit is equal to that of the transistor.

Exercise How does Gm change if the width and bias current of the transistor are doubled?

Lemma The voltage gain of a linear circuit can be expressed as

Av = −GmRout, (9.33)

where Rout denotes the output resistance of the circuit (with the input voltage set to zero).

Proof We know that a linear circuit can be replaced with its Norton equivalent [Fig.
9.14(a)]. Norton’s theorem states that iout is obtained by shorting the output to ground
(vout = 0) and computing the short-circuit current [Fig. 9.14(b)]. We also relate iout to vin

by the transconductance of the circuit, Gm = iout/vin. Thus, in Fig. 9.14(a),

vout = −ioutRout (9.34)

= −GmvinRout (9.35)
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inv

outV

i out Rout

outV

inv

outi

(a)

(b)

Figure 9.14 (a) Norton equivalent of a circuit, (b) computation of short-circuit output current.

and hence

vout

vin
= −GmRout. (9.36)

Example

9.8
Determine the voltage gain of the common-emitter stage shown in Fig. 9.15(a).

Q1inv

I 1

VCC

outv

Q1inv

outi

ac
GND Q1 Xv

Xi

(c)(a) (b)

Figure 9.15

Solution To calculate the short-circuit transconductance of the circuit, we place an ac short from
the output to ground and find the current through it [Fig. 9.15(b)]. In this case, iout is
simply equal to the collector current of Q1, gm1vin, i.e.,

Gm = iout

vin
(9.37)

= gm1. (9.38)

Note that rO does not carry a current in this test (why?). Next, we obtain the output
resistance as depicted in Fig. 9.15(c):

Rout = vX

iX
(9.39)

= rO1. (9.40)
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It follows that
Av = −GmRout (9.41)

= −gm1rO1. (9.42)

Exercise Suppose the transistor is degenerated by an emitter resistor equal to RE. The transcon-
ductance falls but the ouput resistance rises. Does the voltage gain increase or decrease?

The above lemma serves as an alternative method of gain calculation. It also indicates
that the voltage gain of a circuit can be increased by raising the output impedance, as in
cascodes.

Bipolar Cascode Amplifier Recall from Chapter 4 that to maximize the voltage gain
of a common-emitter stage, the collector load impedance must be maximized. In the limit,
an ideal current source serving as the load [Fig. 9.16(a)] yields a voltage gain of

Av = −gm1rO1 (9.43)

= −VA

VT
. (9.44)

In this case, the small-signal current, gm1vin, produced by Q1 flows through rO1, thus gen-
erating an output voltage equal to −gm1vinrO1.

Now, suppose we stack a transistor on top of Q1 as shown in Fig. 9.16(b). We know
from Section 9.1.1 that the circuit achieves a high output impedance and, from the above
lemma, a voltage gain higher than that of a CE stage.

Q1inv

VCC

(a)

r

I 1 g inv
m1

O1

outv
V Q

Q

b1

(b)

VCC

I 1

1

2

inv

outv

Figure 9.16 (a) Flow of output current generated by a CE stage through rO1, (b) use of cascode to

increase the output impedance.

Let us determine the voltage gain of the bipolar cascode with the aid of the above
lemma. As shown in Fig. 9.17(a), the short-circuit transconductance is equal to iout/vin. As
a common-emitter stage,Q1 still produces a collector current of gm1vin, which subsequently
flows through Q2 and hence through the output short:

iout = gm1vin. (9.45)

That is,

Gm = gm1. (9.46)
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outi

ac
GND

g inv
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r O2
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Figure 9.17 (a) Short-circuit output current of a cascode, (b) detailed view of (a).

The reader may view Eq. (9.46) dubiously. After all, as shown in Fig. 9.17(b), the
collector current of Q1 must split between rO1 and the impedance seen looking into the
emitter ofQ2. We must therefore verify that only a negligible fraction of gm1vin is “lost” in
rO1. Since the base and collector voltages of Q2 are equal, this transistor can be viewed as
a diode-connected device having an impedance of (1/gm2)||rO2. Dividing gm1vin between
this impedance and rO1, we have

iout = gm1vin
rO1||rπ2

rO1||rπ2 + 1

gm2

||rO2

. (9.47)

For typical transistors, 1/gm2 � rO2, rO1, and hence

iout ≈ gm1vin. (9.48)

That is, the approximation Gm = gm1 is reasonable.
To obtain the overall voltage gain, we write from Eqs. (9.33) and (9.5),

Av = −GmRout (9.49)

= −gm1{[1 + gm2(rO1||rπ2)]rO2 + rO1||rπ2} (9.50)

≈ −gm1[gm2(rO1||rπ2)rO2 + rO1||rπ2]. (9.51)

Also, since Q1 and Q2 carry approximately equal bias currents, gm1 ≈ gm2 and rO1 ≈ rO2:

Av = −gm1rO1[gm1(rO1||rπ2) + 1] (9.52)

≈ −gm1rO1gm1(rO1||rπ2). (9.53)

Compared to the simple CE stage of Fig. 9.16(a), the cascode amplifier exhibits a gain that
is higher by a factor of gm1(rO1||rπ2)—a relatively large value because rO1 and rπ2 are much
greater than 1/gm1.

Example

9.9
The bipolar cascode of Fig. 9.16(b) is biased at a current of 1 mA. If VA = 5 V and
β = 100 for both transistors, determine the voltage gain. Assume the load is an ideal
current source.



9.1 Cascode Stage 371

Solution We have gm1 = (26 �)
−1

, rπ1 ≈ rπ2 ≈ 2600 �, rO1 ≈ rO2 = 5 k�. Thus,

gm1(rO1||rπ2) = 65.8 (9.54)

and from Eq. (9.53),

|Av| = 12,654. (9.55)

Cascoding thus raises the voltage gain by a factor of 65.8.

Exercise What Early voltage gives a gain of 5,000?

It is possible to view the cascode amplifier as a common-emitter stage followed by
a common-base stage. Illustrated in Fig. 9.18, the idea is to consider the cascode device,
Q2, as a common-base transistor that senses the small-signal current produced byQ1. This
perspective may prove useful in some cases.

Q

VCC

I 1

1inv

outv

Q Vb2
CB

Stage

Stage
CE

Figure 9.18 Cascode amplifier as a cascade of a CE stage and a CB stage.

The high voltage gain of the cascode topology makes it attractive for many applications.
But, in the circuit of Fig. 9.16(b), the load is assumed to be an ideal current source. An
actual current source lowers the impedance seen at the output node and hence the voltage
gain. For example, the circuit illustrated in Fig. 9.19(a) suffers from a low gain because
the pnp current source introduces an impedance of only rO3 from the output node to ac
ground, dropping the output impedance to

Rout = rO3||{[1 + gm2(rO1||rπ2)]rO2 + rO1||rπ2} (9.56)

≈ rO3||[gm2rO2(rO1||rπ2) + rO1||rπ2]. (9.57)

How should we realize the load current source to maintain a high gain? We
know from Section 9.1.1 that cascoding also raises the output impedance of current
sources, postulating that the circuit of Fig. 9.5 is a good candidate and arriving at
the stage depicted in Fig. 9.19(b). The output impedance is now given by the parallel
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Figure 9.19 (a) Cascode with a simple current-source load, (b) use of cascode in the load to raise

the voltage gain.

combination of those of the npn and pnp cascodes, Ron and Rop, respectively. Using
Eq. (9.7), we have

Ron ≈ gm2rO2(rO1||rπ2) (9.58)

Rop ≈ gm3rO3(rO4||rπ3). (9.59)

Note that, since npn and pnp devices may display different Early voltages, rO1 (= rO2) may
not be equal to rO3 (= rO4).

Recognizing that the short-circuit transconductance, Gm, of the stage is still approxi-
mately equal to gm1 (why?), we express the voltage gain as

Av = −gm1(Ron||Rop) (9.60)

≈ −gm1{[gm2rO2(rO1||rπ2)]||[gm3rO3(rO4||rπ3)]}. (9.61)

This result represents the highest voltage gain that can be obtained in a cascode stage.
For comparable values of Ron and Rop, this gain is about half of that expressed by
Eq. (9.53).

Example

9.10
Suppose the circuit of Example 9.9 incorporates a cascode load using pnp transistors
with VA = 4 V and β = 50. What is the voltage gain?

Solution The load transistors carry a collector current of approximately 1 mA. Thus,

Rop = gm3rO3(rO4||rπ3) (9.62)

= 151 k� (9.63)

and

Ron = 329 k�. (9.64)
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It follows that

|Av| = gm1(Ron||Rop) (9.65)

= 3,981. (9.66)

Compared to the ideal current source case, the gain has fallen by approximately a factor
of 3 because the pnp devices suffer from a lower Early voltage and β.

Exercise Repeat the above example for a collector bias current of 0.5 mA.

It is important to take a step back and appreciate our analysis techniques. The cascode
of Fig. 9.19(b) proves quite formidable if we attempt to replace each transistor with its
small-signal model and solve the resulting circuit. Our gradual approach to constructing
this stage reveals the role of each device, allowing straightforward calculation of the output
impedance. Moreover, the lemma illustrated in Fig. 9.14 utilizes our knowledge of the
output impedance to quickly provide the voltage gain of the stage.

CMOS Cascode Amplifier The foregoing analysis of the bipolar cascode amplifier can
readily be extended to the CMOS counterpart. Depicted in Fig. 9.20(a) with an ideal
current-source load, this stage also provides a short-circuit transconductance Gm ≈ gm1 if
1/gm2 � rO1. The output resistance is given by Eq. (9.22), yielding a voltage gain of

Av = −GmRout (9.67)

≈ −gm1[(1 + gm2rO2)rO1 + rO2] (9.68)

≈ −gm1rO1gm2rO2. (9.69)

In other words, compared to a simple common-source stage, the voltage gain has risen by a
factor of gm2rO2 (the intrinsic gain of the cascode device). Since β and rπ are infinite for MOS
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Figure 9.20 (a) MOS cascode amplifier, (b) realization of load by a PMOS cascode.
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devices (at low frequencies), we can also utilize Eq. (9.53) to arrive at Eq. (9.69). Note, how-
ever, that M1 and M2 need not exhibit equal transconductances or output resistances (their
widths and lengths need not be the same) even though they carry equal currents (why?).

As with the bipolar counterpart, the MOS cascode amplifier must incorporate a cas-
code PMOS current source so as to maintain a high voltage gain. Illustrated in Fig. 9.20(b),
the circuit exhibits the following output impedance components:

Ron ≈ gm2rO2rO1 (9.70)

Rop ≈ gm3rO3rO4. (9.71)

The voltage gain is therefore equal to

Av ≈ −gm1[(gm2rO2rO1)||(gm3rO3rO4)]. (9.72)

Example

9.11
The cascode amplifier of Fig. 9.20(b) incorporates the following device parame-
ters: (W/L)1,2 = 30, (W/L)3,4 = 40, ID1 = · · · = ID4 = 0.5 mA. If μnCox = 100 μA/V2,

μpCox = 50 μA/V2, λn = 0.1 V−1 and λp = 0.15 V−1, determine the voltage gain.

Solution With the particular choice of device parameters here, gm1 = gm2, rO1 = rO2, gm3 = gm4,
and rO3 = rO4. We have

gm1,2 =
√

2μnCox

(
W
L

)
1,2

ID1,2 (9.73)

= (577 �)
−1

(9.74)

and

gm3,4 = (707 �)
−1

. (9.75)

Also,

rO1,2 = 1

λnID1,2

(9.76)

= 20 k� (9.77)

and

rO3,4 = 13.3 k�. (9.78)

Equations (9.70) and (9.71) thus respectively give

Ron ≈ 693 k� (9.79)

Rop ≈ 250 k� (9.80)

and

Av = −gm1(Ron||Rop) (9.81)

≈ −318. (9.82)

Exercise Explain why a lower bias current results in a higher output impedance in the above example.
Calculate the output impedance for a drain current of 0.25 mA.
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9.2 CURRENT MIRRORS

9.2.1 Initial Thoughts

The biasing techniques studied for bipolar and MOS amplifiers in Chapters 4 and 6 prove
inadequate for high-performance microelectronic circuits. For example, the bias current of
CE and CS stages is a function of the supply voltage—a serious issue because in practice,
this voltage experiences some variation. The rechargeable battery in a cellphone or laptop
computer, for example, gradually loses voltage as it is discharged, thereby mandating that
the circuits operate properly across a range of supply voltages.

Another critical issue in biasing relates to ambient temperature variations. A cell-
phone must maintain its performance at −20◦C in Finland and +50◦C in Saudi Arabia.
To understand how temperature affects the biasing, consider the bipolar current source
shown in Fig. 9.21(a), where R1 and R2 divide VCC down to the required VBE. That is, for a
desired current I1, we have

R2

R1 + R2

VCC = VT ln
I1

IS
, (9.83)

where the base current is neglected. But, what happens if the temperature varies? The
left-hand side remains constant if the resistors are made of the same material and hence
vary by the same percentage. The right-hand side, however, contains two temperature-
dependent parameters: VT = kT/q and IS . Thus, even if the base-emitter voltage remains
constant with temperature, I1 does not.

A similar situation arises in CMOS circuits. Illustrated in Fig. 9.21(b), a MOS cur-
rent source biased by means of a resistive divider suffers from dependence on VDD and
temperature. Here, we can write

I1 = 1

2
μnCox

W
L

(VGS − VTH)
2

(9.84)

= 1

2
μnCox

W
L

(
R2

R1 + R2

VDD − VTH

)2

. (9.85)

Since both the mobility and the threshold voltage vary with temperature, I1 is not constant
even if VGS is.

In summary, the typical biasing schemes introduced in Chapters 4 and 6 fail to establish
a constant collector or drain current if the supply voltage or the ambient temperature are
subject to change. Fortunately, an elegant method of creating supply- and temperature-
independent voltages and currents exists and appears in almost all microelectronic systems.
Called the “bandgap reference circuit” and employing several tens of devices, this scheme
is studied in more advanced books [1].
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Figure 9.21 Impractical biasing of (a) bipolar and (b) MOS current sources.
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Figure 9.22 Concept of current mirror.

The bandgap circuit by itself does not solve all of our problems! An integrated circuit
may incorporate hundreds of current sources, e.g., as the load impedance of CE or CS
stages to achieve a high gain. Unfortunately, the complexity of the bandgap prohibits its
use for each current source in a large integrated circuit.

Let us summarize our thoughts thus far. In order to avoid supply and temperature
dependence, a bandgap reference can provide a “golden current” while requiring a few
tens of devices. We must therefore seek a method of “copying” the golden current without
duplicating the entire bandgap circuitry. Current mirrors serve this purpose.

Figure 9.22 conceptually illustrates our goal here. The golden current generated by a
bandgap reference is “read” by the current mirror and a copy having the same character-
istics as those of IREF is produced. For example, Icopy = IREF or 2IREF .

9.2.2 Bipolar Current Mirror

Since the current source generating Icopy in Fig. 9.22 must be implemented as a bipolar
or MOS transistor, we surmise that the current mirror resembles the topology shown in
Fig. 9.23(a), where Q1 operates in the forward active region and the black box guarantees
Icopy = IREF regardless of temperature or transistor characteristics. (The MOS counterpart
is similar.)

How should the black box of Fig. 9.23(a) be realized? The black box generates an
output voltage, VX( = VBE), such that Q1 carries a current equal to IREF :

IS1 exp
VX

VT
= IREF, (9.86)

where the Early effect is neglected. Thus, the black box satisfies the following relationship:

VX = VT ln
IREF

IS1

. (9.87)

Q1
VBE

?

I

VCC

REF I

Q

I

VCC

REF

V1REF Q

I

VCC

REF

REF Q1

I

Current
Mirror

(c)(a) (b)

X
X

copy
copy

Figure 9.23 (a) Conceptual illustration of current copying, (b) voltage proportional to natural

logarithm of current, (c) bipolar current mirror.
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We must therefore seek a circuit whose output voltage is proportional to the natural
logarithm of its input, i.e., the inverse function of bipolar transistor characteristics. Fortu-
nately, a single diode-connected device satisfies Eq. (9.87). Neglecting the base-current in
Fig. 9.23(b), we have

V1 = VT ln
IREF

IS,REF
, (9.88)

where IS,REF denotes the reverse saturation current of QREF . In other words, V1 = VX if
IS,REF = IS1, i.e., if QREF is identical to Q1.

Figure 9.23(c) consolidates our thoughts, displaying the current mirror circuitry. We
sayQ1 “mirrors” or copies the current flowing throughQREF . For now, we neglect the base
currents. From one perspective,QREF takes the natural logarithm of IREF andQ1 takes the
exponential of VX , thereby yielding Icopy = IREF . From another perspective, since QREF

and Q1 have equal base-emitter voltages, we can write

IREF = IS,REF exp
VX

VT
(9.89)

Icopy = IS1 exp
VX

VT
(9.90)

and hence

Icopy = IS1

IS,REF
IREF, (9.91)

which reduces to Icopy = IREF if QREF and Q1 are identical. This holds even though VT and
IS vary with temperature. Note that VX does vary with temperature but in such a way that
Icopy does not.

Example

9.12
An electrical engineering student who is excited by the concept of the current
mirror constructs the circuit but forgets to tie the base of QREF to its collector
(Fig. 9.24). Explain what happens.

Q

I

VCC

REF

REF Q1

I copy ?

Figure 9.24

Solution The circuit provides no path for the base currents of the transistors. More fundamentally,
the base-emitter voltage of the devices is not defined. The lack of the base currents
translates to Icopy = 0.

Exercise What is the region of operation of QREF?
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Example

9.13
Realizing the mistake in the above circuit, the student makes the modification shown
in Fig. 9.25, hoping that the battery VX provides the base currents and defines the base-
emitter voltage of QREF and Q1. Explain what happens.

Q

I

VCC

REF

REF Q1

I copy ?

VX

Q

I

VCC

REF

REF Q1

I copy ?

VX VX

Figure 9.25

Solution While Q1 now carries a finite current, the biasing of Q1 is no different from that in Fig.
9.21; i.e.,

Icopy = IS1 exp
VX

VT
, (9.92)

which is a function of temperature if VX is constant. The student has forgotten that a
diode-connected device is necessary here to ensure that VX remains proportional to
ln(IREF/IS,REF).

Exercise Suppose VX is slightly greater than the necessary value, VT ln(IREF/IS,REF). In what region
does QREF operate?

We must now address two important questions. First, how do we make additional
copies of IREF to feed different parts of an integrated circuit? Second, how do we obtain
different values for these copies, e.g., 2IREF , 5IREF , etc.? Considering the topology in Fig.
9.22(c), we recognize that VX can serve as the base-emitter voltage of multiple transistors,
thus arriving at the circuit shown in Fig. 9.26(a). The circuit is often drawn as in Fig. 9.26(b)
for simplicity. Here, transistor Qj carries a current Icopy, j , given by

Icopy, j = IS, j exp
VX

VT
, (9.93)

which, along with Eq. (9.87), yields

Icopy,j = IS,j

IS,REF
IREF . (9.94)

The key point here is that multiple copies of IREF can be generated with minimal
additional complexity because IREF and QREF themselves need not be duplicated.

Equation (9.94) readily answers the second question as well: If IS,j (∝ the emitter area
of Qj ) is chosen to be n times IS,REF (∝ the emitter area of QREF), then Icopy, j = nIREF .
We say the copies are “scaled” with respect to IREF . Recall from Chapter 4 that this is
equivalent to placing n unit transistors in parallel. Figure 9.26(c) depicts an example where
Q1-Q3 are identical to QREF , providing Icopy = 3IREF .
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Q1 Q

I

Q2 3

copy I= 3 REF
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Figure 9.26 (a) Multiple copies of a reference current, (b) simplified drawing of (a),

(c) combining output currents to generate larger copies.

Example

9.14
A multistage amplifier incorporates two current sources of values 0.75 mA and
0.5 mA. Using a bandgap reference current of 0.25 mA, design the required current
sources. Neglect the effect of the base current for now.

Solution Figure 9.27 illustrates the circuit. Here, all transistors are identical to ensure proper
scaling of IREF .

Q

I

VCC

REF

REF

Q1 Q Q2 3

0.75 mA

Q Q4 5

0.25 mA

0.5 mA

Figure 9.27

Exercise Repeat the above example if the bandgap reference current is 0.1 mA.

The use of multiple transistors in parallel provides an accurate means of scaling the
reference in current mirrors. But, how do we create fractions of IREF? This is accom-
plished by realizing QREF itself as multiple parallel transistors. Exemplified by the cir-
cuit in Fig. 9.28, the idea is to begin with a larger IS,REF (= 3IS here) so that a unit
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Q

I

VCC

REF 0.25 mA

REF1 Q REF2 Q REF3

I copy

Q1X

Figure 9.28 Copying a fraction of a reference current.

transistor, Q1, can generate a smaller current. Repeating the expressions in Eqs. (9.89)
and (9.90), we have

IREF = 3IS exp
VX

VT
(9.95)

Icopy = IS exp
VX

VT
(9.96)

and hence

Icopy = 1

3
IREF . (9.97)

Example

9.15
It is desired to generate two currents equal to 50 μA and 500 μA from a reference of
200 μA. Design the current mirror circuit.

Solution To produce the smaller current, we must employ four unit transistors for QREF such that
each carries 50 μA. A unit transistor thus generates 50 μA (Fig. 9.29). The current of
500 μA requires 10 unit transistors, denoted by 10AE for simplicity.

I

VCC

REF I
Q1

0.2 mA
copy1

AE4

AE

I
Q

copy2
2

AE10

X

Figure 9.29

Exercise Repeat the above example for a reference current of 150 μA.

Effect of Base Current We have thus far neglected the base current drawn from node
X in Fig. 9.26(a) by all transistors, an effect leading to a significant error as the number
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Q

I

VCC

REF

REF
Q1

AE EnA

I

n

copy

I copy

β
copy

β

I

Figure 9.30 Error due to base currents.

of copies (i.e., the total copied current) increases. The error arises because a fraction of
IREF flows through the bases rather than through the collector of QREF . We analyze the
error with the aid of the diagram shown in Fig. 9.30, where AE and nAE denote one unit
transistor and n unit transistors, respectively. Our objective is to calculate Icopy, recognizing
that QREF and Q1 still have equal base-emitter voltages and hence carry currents with a
ratio of n. Thus, the base currents of Q1 and QREF can be expressed as

IB1 = Icopy

β
(9.98)

IB,REF = Icopy

β
· 1

n
. (9.99)

Writing a KCL at X therefore yields

IREF = IC,REF + Icopy

β
· 1

n
+ Icopy

β
, (9.100)

which, since IC,REF = Icopy/n, leads to

Icopy = nIREF

1 + 1

β
(n + 1)

. (9.101)

For a large β and moderate n, the second term in the denominator is much less than
unity and Icopy ≈ nIREF . However, as the copied current (∝ n) increases, so does the error
in Icopy.

To suppress the above error, the bipolar current mirror can be modified as illustrated
in Fig. 9.31. Here, emitter follower QF is interposed between the collector of QREF and
node X, thereby reducing the effect of the base currents by a factor of β. More specifically,

Q

I

VCC

REF

REF
Q1

AE EnA

I

n

copy

I copy

β
copy

β

I

QFP

I C,FI B,F

X

Figure 9.31 Addition of emitter follower to reduce error due to base currents.
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assuming IC,F ≈ IE,F , we can repeat the above analysis by writing a KCL at X:

IC,F = Icopy

β
+ Icopy

β
· 1

n
, (9.102)

obtaining the base current of QF as

IB,F = Icopy

β2

(
1 + 1

n

)
. (9.103)

Another KCL at node P gives

IREF = IB,F + IC,REF (9.104)

= Icopy

β2

(
1 + 1

n

)
+ Icopy

n
(9.105)

and hence

Icopy = nIREF

1 + 1

β2
(n + 1)

. (9.106)

That is, the error is lowered by a factor of β.∗

Example

9.16
Compute the error in Icopy1 and Icopy2 in Fig. 9.29 before and after adding a follower.

Solution Noting that Icopy1, Icopy2, and IC,REF (the total current flowing through four unit transis-
tors) still retain their nominal ratios (why?), we write a KCL at X:

IREF = IC,REF + Icopy1

β
+ Icopy2

β
+ IC,REF

β
(9.107)

= 4Icopy1 + Icopy1

β
+ 10Icopy1

β
+ IC,REF

β
. (9.108)

Thus,

Icopy1 = IREF

4 + 15

β

(9.109)

Icopy2 = 10IREF

4 + 15

β

. (9.110)

With the addition of emitter follower (Fig. 9.32), we have at X:

IC,F = IC,REF

β
+ Icopy1

β
+ Icopy2

β
(9.111)

= 4Icopy1

β
+ Icopy1

β
+ 10Icopy1

β
(9.112)

= 15Icopy1

β
. (9.113)

∗In more advanced designs, a constant current is drawn from X.
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copy1
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X
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Figure 9.32

A KCL at P therefore yields

IREF = 15Icopy1

β2
+ IC,REF (9.114)

= 15Icopy1

β2
+ 4Icopy1, (9.115)

and hence

Icopy1 = IREF

4 + 15

β2

(9.116)

Icopy2 = 10IREF

4 + 15

β2

. (9.117)

Exercise Calculate Icopy1 if one of the four unit transistors is omitted, i.e., the reference transistor
has an area of 3AE.

PNP Mirrors Consider the common-emitter stage shown in Fig. 9.33(a), where a current
source serves as a load to achieve a high voltage gain. The current source can be realized as
a pnp transistor operating in the active region [Fig. 9.33(b)]. We must therefore define the
bias current of Q2 properly. In analogy with the npn counterpart of Fig. 9.23(c), we form

Q1inv

I 1

VCC

outv

(c)(a) (b)

Q1inv

outv

Q

VCC

Vb

Q1inv

outv

Q

VCC

Q2 2REF

I REF

X

Figure 9.33 (a) CE stage with current-source load, (b) realization of current source by a pnp
device, (c) proper biasing of Q 2.
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the pnp current mirror depicted in Fig. 9.33(c). For example, if QREF and Q2 are identical
and the base currents negligible, then Q2 carries a current equal to IREF .

Example

9.17
Design the circuit of Fig. 9.33(c) for a voltage gain of 100 and a power budget of
2 mW. Assume VA,npn = 5 V, VA,pnp = 4 V, IREF = 100 μA, and VCC = 2.5 V.

Solution From the power budget and VCC = 2.5 V, we obtain a total supply current of
800 μA, of which 100 μA is dedicated to IREF andQREF . Thus,Q1 andQ2 are biased at a
current of 700 μA, requiring that the (emitter) area of Q2 be 7 times that of QREF . (For
example, QREF incorporates one unit device and Q1 seven unit devices.)

The voltage gain can be written as

Av = −gm1(rO1||rO2) (9.118)

= − 1

VT
· VA,npnVA,pnp

VA,npn + VA,pnp
(9.119)

= −85.5. (9.120)

What happened here?! We sought a gain of 100 but inevitably obtained a value of 85.5!
This is because the gain of the stage is simply given by the Early voltages and VT , a
fundamental constant of the technology and independent of the bias current. Thus, with
the above choice of Early voltages, the circuit’s gain cannot reach 100.

Exercise What Early voltage is necessary for a voltage gain of 100?

We must now address an interesting problem. In the mirror of Fig. 9.23(c), it is assumed
that the golden current flows from VCC to node X, whereas in Fig. 9.33(c) it flows from X
to ground. How do we generate the latter from the former? It is possible to combine the
npn and pnp mirrors for this purpose, as illustrated in Fig. 9.34. Assuming for simplicity
that QREF1, QM, QREF2, and Q2 are identical and neglecting the base currents, we observe
thatQM draws a current of IREF fromQREF2, thereby forcing the same current throughQ2

and Q1. We can also create various scaling scenarios between QREF1 and QM and between
QREF2 and Q2. Note that the base currents introduce a cumulative error as IREF is copied
onto IC,M, and IC,M onto IC2.

Q1inv

outv

Q

VCC

Q 2

Q

I REF

Q

I C,M

REF1

REF2
X 2

X 1
M

Figure 9.34 Generation of current for pnp devices.
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Example

9.18
We wish to biasQ1 andQ2 in Fig. 9.34 at a collector current of 1 mA while IREF = 25 μA.
Choose the scaling factors in the circuit so as to minimize the number of unit transistors.

Solution For an overall scaling factor of 1 mA/25 μA = 40, we can choose either

IC,M = 8IREF (9.121)

|IC2| = 5IC,M (9.122)

or
IC,M = 10IREF (9.123)

|IC2| = 4IC,M. (9.124)

(In each case, the npn and pnp scaling factors can be swapped.) In the former case, the
four transistors in the current mirror circuitry require 15 units, and in the latter case,
16 units. Note that we have implicitly dismissed the case IC,M = 40IC,REF1 and
IC2 = IC,REF2 as it would necessitate 43 units.

Exercise Calculate the exact value of IC2 if β = 50 for all transistors.

Example

9.19
An electrical engineering student purchases two nominally identical discrete bipolar
transistors and constructs the current mirror shown in Fig. 9.23(c). Unfortunately, Icopy

is 30% higher than IREF . Explain why.

Solution It is possible that the two transistors were fabricated in different batches and hence
underwent slightly different processing. Random variations during manufacturing may
lead to changes in the device parameters and even the emitter area. As a result, the two
transistors suffer from significant IS mismatch. This is why current mirrors are rarely
used in discrete design.

Exercise How much IS mismatch results in a 30% collector current mismatch?

9.2.3 MOS Current Mirror

The developments in Section 9.2.2 can be applied to MOS current mirrors as well. In
particular, drawing the MOS counterpart of Fig. 9.23(a) as in Fig. 9.35(a), we recognize
that the black box must generate VX such that

1

2
μnCox

(
W
L

)
1

(VX − VTH1)
2 = IREF, (9.125)

where channel-length modulation is neglected. Thus, the black box must satisfy the fol-
lowing input (current)/output (voltage) characteristic:

VX =
√√√√√ 2IREF

μnCox

(
W
L

)
1

+ VTH1. (9.126)
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copy

Figure 9.35 (a) Conceptual illustration of copying a current by an NMOS device, (b) generation of

a voltage proportional to square root of current, (c) MOS current mirror.

That is, it must operate as a “square-root” circuit. From Chapter 6, we recall that a
diode-connected MOSFET provides such a characteristic [Fig. 9.35(b)], thus arriving at
the NMOS current mirror depicted in Fig. 9.35(c). As with the bipolar version, we can
view the circuit’s operation from two perspectives: (1) MREF takes the square root of
IREF and M1 squares the result; or (2) the drain currents of the two transistors can be
expressed as

ID,REF = 1

2
μnCox

(
W
L

)
REF

(VX − VTH)
2

(9.127)

Icopy = 1

2
μnCox

(
W
L

)
1

(VX − VTH)
2
, (9.128)

where the threshold voltages are assumed equal. It follows that

Icopy =

(
W
L

)
1(

W
L

)
REF

IREF, (9.129)

which reduces to Icopy = IREF if the two transistors are identical.

Example

9.20
The student working on the circuits in Examples 9.12 and 9.13 decides to try the MOS
counterpart, thinking that the gate current is zero and hence leaving the gates floating
(Fig. 9.36). Explain what happens.

I

V

REF
I copy ?

M REF M 1

X

Floating
Node

DD

Figure 9.36
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Solution This circuit is not a current mirror because only a diode-connected device can establish
Eq. (9.129) and hence a copy current independent of device parameters and temperature.
Since the gates of MREF and M1 are floating, they can assume any voltage, e.g., an initial
condition created at node X when the power supply is turned on. In other words, Icopy

is very poorly defined.

Exercise Is MREF always off in this circuit?

Generation of additional copies of IREF with different scaling factors also follows the
principles shown in Fig. 9.26. The following example illustrates these concepts.

Example

9.21
An integrated circuit employs the source follower and the common-source stage shown
in Fig. 9.37(a). Design a current mirror that produces I1 and I2 from a 0.3-mA reference.
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in2

out2

W
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( (2

I
M

W
L

( (5

I2

2

(a)

(b)

2

2

DD

Figure 9.37

Solution Following the methods depicted in Figs. 9.28 and 9.29, we select an aspect ratio of 3(W/L)
for the diode-connected device, 2(W/L) for MI1, and 5(W/L) for MI2. Figure 9.37(b)
shows the overall circuit.

Exercise Repeat the above example if IREF = 0.8 mA.

Since MOS devices draw a negligible gate current,6 MOS mirrors need not resort to
the technique shown in Fig. 9.31. On the other hand, channel-length modulation in the

6In deep-submicron CMOS technologies, the gate oxide thickness is reduced to less than 30 A
◦
, leading

to “tunneling” and hence noticeable gate current. This effect is beyond the scope of this book.
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Figure 9.38 NMOS and PMOS current mirrors in a typical circuit.

current-source transistors does lead to additional errors. Investigated in Problem 9.43,
this effect mandates circuit modifications that are described in more advanced texts [1].

The idea of combining NMOS and PMOS current mirrors follows the bipolar coun-
terpart depicted in Fig. 9.34. The circuit of Fig. 9.38 exemplifies these ideas.

P R O B L E M S

9.1. Determine output resistance (Rout ) of CC/
CB cascade circuit as shown in Fig. 9.39(a).

R

R

out

Rout

V

1

2Q

Q

1i

(a)

Q1

Q2
S

S

D

D

(b)

Figure 9.39

9.2. In Fig. 9.39(b) show how o/p conductance is
considerably reduced compared to that of
single stage. Assume go for Q1,Q2 equal.

9.3. Due* to a manufacturing error, a parasitic
resistor RP has appeared in the cascode
circuits of Fig. 9.40. Determine the output
resistance in each case.

9.4. Repeat Example 9.1 for the circuit shown
in Fig. 9.41, assuming I1 is ideal and equal
to 0.5 mA, i.e., IC1 = 0.5 mA while IC2 =
1 mA.

9.5. Suppose the circuit of Fig. 9.41 is real-
ized as shown in Fig. 9.42, where Q3 plays
the role of I1. Assuming VA1 = VA2 = VA,n

and VA3 = VA,p, determine the output
impedance of the circuit.



Problems 389

V

R

Q1

V Q2

b1

b2

out

R P

V

R

Q1

V Q2

b1

b2

out

V

R

Q1

V

Q2

b1

b2

out

RP

V

R

Q1

V Q2

b1

b2

out

RP

RP

(d)(c)(a) (b)

Figure 9.40
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Figure 9.41
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Q V
3 b3

Figure 9.42

9.6. While* constructing a cascode stage, a stu-
dent adventurously swaps the collector and
base terminals of the degeneration transis-
tor, arriving at the circuit shown in Fig. 9.43.

V

R

Q1b1

out

Q 2

Vb2

Figure 9.43

(a) Assuming both transistors operate in
the active region, determine the output
impedance of the circuit.

(b) Compare the result with that of a cas-
code stage for a given bias current (IC1)
and explain why this is generally not a
good idea.

9.7. Excited* by the output impedance “boost-
ing” capability of cascodes, a student
decides to extend the idea as illustrated
in Fig. 9.44. What is the maximum output
impedance that the student can achieve?
Assume the transistors are identical.

V

R

Q1

V Q2

b1

b2

out

V Qnbn

Figure 9.44

9.8. Determine** the output impedance of each
circuit shown in Fig. 9.45. Assume β � 1.
Explain which ones are considered cascode
stages.

9.9. The* pnp cascode depicted in Fig. 9.46 must
provide a bias current of 0.5 mA to a circuit.
If IS = 10−16 and β = 100,

(a) Calculate the required value of Vb2.

(b) Noting that VX = Vb1 + |VBE1|, deter-
mine the maximum allowable value
of Vb1 such that Q2 experiences a
base-collector forward bias of only
200 mV.
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V Q1b1

V Qb2
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Circuit

0.5 mA

= 2.5 V

Figure 9.46

9.10. Explain diode connected MOS (both
NMOS and PMOS) as current sources.
Fig. 9.47 shows NMOS current. Draw simi-
larly PMOS current and explain.

Vin

ID
Vout

I REF

I out

Figure 9.47

9.11. Explain PMOS as a cascaded current
source, using circuit diagram and character-
istic CMOS.

9.12. Design an NMOS-based cascode circuit as
shown in Fig. 9.48 for the following specifi-
cations:

X

Rout

M1

I1

M2Vb2

Vb1

Figure 9.48

9.13. For Fig. 9.49, VG1 provides dc bias current
of 75 μA. Find the value of VG2 that gives
minimum o/p voltage. Also find voltage gain
Vout/Vin.

X

Rout Vout

VDD

M2 12/1

M1 15/1
Vin

VG2

VG1

RD = 25 kΩ

Figure 9.49
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9.14. Compute** the output resistance of the cir-
cuits depicted in Fig. 9.50. Assume all of
the transistors operate in saturation and
gmrO � 1.

9.15. For circuit of Fig. 9.51, find voltage gain, out-
put resistance. Take W

L = 2
1
, λ = 0.05 for all

transistors,

ID = 125 μA.

Take

K
′
n = 100 μA/V2.

K
′
p = 50 μA/V2.

9.16. For Fig. 9.51, determine Vmax and Vmin of
output of cascode amplifier.
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Figure 9.51

9.17. Determine** the output impedance of the
stages shown in Fig. 9.52. Assume all of
the transistors operate in saturation and
gmrO � 1.
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Figure 9.53

9.18. Compute the short-circuit transconduc-
tance and the voltage gain of each of
the stages in Fig. 9.53. Assume λ > 0 and
VA < ∞.

9.19. Prove* that Eq. (9.53) reduces to

Av ≈ −βV2
A

VT(VA + βVT)
, (9.130)

a quantity independent of the bias current.

9.20. For Fig. 9.54, biased at 2 mA, and if
VCC = 6 V, β = 125 for Q1 and Q2, find
voltage gain. Load is considered as ideal cur-
rent source.

V

Q

Qin 1

2b1

out

I1

VCC

V

V

Figure 9.54

9.21. For Fig. 9.55, determine voltage gain. The
given specifications are, (W/L)1,2 = 40,
(W/L)3,4 = 50, ID1 = ID2 = ID3 = ID4 =

0.6 mA, λn = 0.1 V−1, λp = 0.14 V−1.
μnCox = 100 μA/V2, μpCox = 50 MA/V2.
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Figure 9.55

9.22. Calculate** the voltage gain of each stage
illustrated in Fig. 9.56.

9.23. Due* to a manufacturing error, a bipolar
cascode amplifier has been configured as
shown in Fig. 9.57. Determine the voltage
gain of the circuit.

9.24. Writing gm = √
2μnCox(W/L)ID and rO =

1/(λID), express Eq. (9.72) in terms of the
device parameters and plot the result as a
function of ID.
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9.25. The MOS cascode of Fig. 9.20(a) must pro-
vide a voltage gain of 200 with a bias cur-
rent of 1 mA. If μnCox = 100 μA/V2 and
λ = 0.1 V−1 for both transistors, determine
the required value of (W/L)1 = (W/L)2.

9.26. The* MOS cascode of Fig. 9.20(a) is designed
for a given voltage gain, Av . Using Eq. (9.79)
and the result obtained in Problem 9.28, ex-
plain what happens if the widths of the tran-
sistors are increased by a factor of N while
the transistor lengths and bias currents re-
main unchanged.

9.27. In the cascode stage of Fig. 9.20(b), (W/L)1

= · · · = (W/L)4 = 20/0.18. If μnCox =
100 μA/V2, and μpCox = 50 μA/V2, λn =
0.1 V−1, and λp = 0.15 V−1, calculate the
bias current such that the circuit achieves a
voltage gain of 500.

9.28. Due to a manufacturing error, a CMOS
cascode amplifier has been configured as
shown in Fig. 9.58. Calculate the voltage
gain of the circuit.
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9.29. Determine** the voltage gain of each circuit
in Fig. 9.59. Assume gmrO � 1.
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9.30. From* Eq. (9.83), determine the sensitivity of
I1 to VCC, defined as ∂I1/∂VCC. Explain in-
tuitively why this sensitivity is proportional
to the transconductance of Q1.

9.31. The parameters μnCox and VTH in Eq.
(9.85) also vary with the fabrication pro-
cess. (Integrated circuits fabricated in dif-
ferent batches exhibit slightly different
parameters.) Determine the sensitivity of I1

to VTH and explain why this issue becomes
more serious at low supply voltages.

9.32. Having learned about the logarithmic func-
tion of the circuit in Fig. 9.23(b), a student
remembers the logarithmic amplifier stud-
ied in Chapter 8 and constructs the circuit
depicted in Fig. 9.60. Explain what happens.

R1
Q1

VREF

I X

Q2
V1

Figure 9.60

9.33. Find output current IC2 for Fig. 9.61 for
β = 75, Early voltage VEA = 50V.

VCC VCC

VCE1
Q1 Q2

IREF

IC1 IC2

IB1 IB2

R
10 V
50 kΩ

10 V

VCE2

Figure 9.61

9.34. Repeat* Problem 9.33 for the circuit shown
in Fig. 9.62, but assuming that I1 is twice its
nominal value.

Q

I

VCC

REF

REF Q1

I

RP

1

Figure 9.62

9.35. Derive expression for output resistance of
current mirror of Fig. 9.62 (use small signal
model).

9.36. Repeat* Problem 9.35 for the circuit shown
in Fig. 9.63, but assuming I1 is 10% less than
its nominal value.

Q

I

VCC

REF

REF Q1

I

R P

1

Figure 9.63

9.37. Taking base currents into account, deter-
mine the value of Icopy in each circuit de-
picted in Fig. 9.64. Normalize the error to
the nominal value of Icopy.

9.38. Determine the error in Icopy1 and Icopy2 for
the circuit as shown in Fig. 9.65.

9.39. Determine Icopy1 and Icopy2 error values for
Fig. 9.66.
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Figure 9.64



Problems 395
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Figure 9.65
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Figure 9.66

9.40. Refer to Fig. 9.67. What should be (W/L)1

to generate IREF of 2 mA? Take VDD = 3 V
VTh1 = 0.4 V k

′
n = 20 μA/V2 R = 1 k�.

I

V

REF

IR

DD

O

Q2Q1

Figure 9.67

9.41. For Fig. 9.67, what should be the ratio
(W/L)2 to generate output current I0 =
10 mA?

9.42. For Fig. 9.68, design the circuit to obtain
source current I5 = 12 mA.

IREF
R

Q2Q1

Q5Q4

Q3

I2 I3

I5I4

Figure 9.68

9.43. Consider** the MOS current mirror shown in
Fig. 9.35(c) and assume M1 and M2 are iden-
tical but λ �= 0.
(a) How should VDS1 be chosen so that Icopy1

is exactly equal to IREF?

(b) Determine the error in Icopy1 with re-
spect to IREF if VDS1 is equal to VGS−
VTH (so that M1 resides at the edge of
saturation).

Design Problems

In the following problems, unless otherwise
stated, assume IS,n = IS,p = 6 × 10−16 A, VA,n =
VA,p = 5 V,βn = 100, βp = 50, μnCox = 100 μA/V2,
μpCox = 50 μA/V2, VTH,n = 0.4 V, and VTH,p =
−0.5 V, where the subscripts n and p refer to
n-type (npn or NMOS) and p-type (pnp or
PMOS) devices, respectively.

9.44. Assuming a bias current of 1 mA, design
the degenerated current source of Fig.
9.69(a) such that RE sustains a voltage
approximately equal to the minimum re-
quired collector-emitter voltage of Q2 in
Fig. 9.69(b) (≈ 0.5 V). Compare the output
impedances of the two circuits.

Vb

R

Q1
V

R

Q1

V Q2

b1

b2

(a) (b)

outout

RE

Figure 9.69

9.45. We wish to design the MOS cascode of Fig.
9.70 for an output impedance of 200 k� and
a bias current of 0.5 mA.
(a) Determine (W/L)1 = (W/L)2 if λ =

0.1 V−1.

(b) Calculate the required value of Vb2.
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M 1

M 2

Vb1

Vb2

Rout

Figure 9.70

9.46. The bipolar cascode amplifier of Fig. 9.71
must be designed for a voltage gain of 500.
Use Eq. (9.53) and assume β = 100.
(a) What is the minimum required value of

VA?

(b) For a bias current of 0.5 mA, calculate
the required bias component in Vin.

(c) Compute the value of Vb1 such that Q1

sustains a collector-emitter voltage of
500 mV.

V Q

Q

b1

VCC

I 1

1

2

in

out

V

V

Figure 9.71

9.47. Design the cascode amplifier shown in
Fig. 9.72 for a power budget of 2 mW.
Select Vb1 and Vb2 such that Q1 and Q4 sus-
tain a base-collector forward bias of 200 mV.
What voltage gain is achieved?

V Q
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QVb3 4

V

V

= 2.5 V

Figure 9.72

9.48. Design the CMOS cascode amplifier of
Fig. 9.73 for a voltage gain of 200 and a
power budget of 2 mW with VDD = 1.8 V.
Assume (W/L)1 = · · · = (W/L)4 = 20/0.18

and λp = 2λn = 0.2 V−1. Determine the
required dc levels of Vin and Vb3. For sim-
plicity, assume Vb1 = Vb2 = 0.9 V.
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9.49. The current mirror shown in Fig. 9.74 must
deliver I1 = 0.5 mA to a circuit with a
total power budget of 2 mW. Assuming
VA = ∞ and β � 1, determine the required
value of IREF and the relative sizes of QREF

and Q1.

I REF

I 1

VCC

Circuit

= 2.5 V

Q1QREF

Figure 9.74

9.50. In the circuit of Fig. 9.75, Q2 operates as
an emitter follower. Design the circuit for
a power budget of 3 mW and an output
impedance of 50 �. Assume VA = ∞ and
β � 1.

I REF

VCC = 2.5 V

Q1QREF

Q

outV

inV
2

Figure 9.75

9.51. In the circuit of Fig. 9.76, Q2 operates as a
common-base stage. Design the circuit for
an output impedance of 500 �, a voltage
gain of 20, and a power budget of 3 mW.
Assume VA = ∞ and β � 1.
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Figure 9.76

9.52. Figure 9.77 shows an arrangement where
M1 and M2 serve as current sources for cir-
cuits 1 and 2. Design the circuit for a power
budget of 3 mW.
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M REF M 1

0.5 mA

Circuit 1
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1 mA

2
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= 1.8 V
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9.53. The common-source stage depicted in Fig.
9.78 must be designed for a voltage gain of
20 and a power budget of 2 mW. Assum-
ing (W/L)1 = 20/0.18, λn = 0.1 V−1, and
λp = 0.2 V−1, design the circuit.

I REF

VDD = 1.8 V

M 2M REF

inV M 1

Figure 9.78

9.54. The source follower of Fig. 9.79 must
achieve a voltage gain of 0.85 and an
output impedance of 100 �. Assum-
ing (W/L)2 = 10/0.18, λn = 0.1 V−1, and
λp = 0.2 V−1, design the circuit.
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2

VDD = 1.8 V

outV
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9.55. The common-gate stage of Fig. 9.80 em-
ploys the current source M3 as the load to
achieve a high voltage gain. For simplicity,
neglect channel-length modulation in M1.
Assuming (W/L)3 = 40/0.18, λn = 0.1 V−1,
and λp = 0.2 V−1, design the circuit for a
voltage gain of 20, an input impedance of
50 �, and a power budget of 13 mW. (You
may not need all of the power budget.)
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MM 4

M
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3
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Figure 9.80

S P I C E P R O B L E M S

In the following problems, use the MOS device
models given in Appendix A. For bipolar tran-
sistors, assume IS,npn = 5 × 10−16 A, βnpn = 100,
VA,npn = 5 V, IS,pnp = 8 × 10−16 A, βpnp = 50,
VA,pnp = 3.5 V.

9.1. In the circuit of Fig. 9.81, we wish to sup-
press the error due to the base currents by
means of resistor RP.
(a) Tying the collector of Q2 to VCC, select

the value of RP so as to minimize the
error between I1 and IREF .
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(b) What is the change in the error if the β

of both transistors varies by ±3%?

(c) What is the change in the error if RP

changes by ±10%?

Q

I REF

REF Q1

I

R P

1
1 mA

V = 2.5 VCC

Figure 9.81

9.2. Repeat Problem 9.1 for the circuit shown in
Fig. 9.82. Which circuit exhibits less sensi-
tivity to variations in β and RP?

Q

I REF

REF Q1

I 1
1 mA

V = 2.5 VCC

RP

Figure 9.82

9.3. Figure 9.83 depicts a cascode current source
whose value is defined by the mirror ar-
rangement, M1-M2. Assume W/L = 5 μm/

0.18 μm for M1-M3.
(a) Select the value of Vb so that Iout is pre-

cisely equal to 0.5 mA.

(b) Determine the change in Iout if Vb varies
by ±100 mV. Explain the cause of this
change.

(c) Using both hand analysis and SPICE
simulations, determine the output im-
pedance of the cascode and compare the
results.

M
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I out

VDD = 1.8 V

0.5 mA

1

M 2
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Figure 9.83
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Chapter 10
Differential Amplifiers

The elegant concept of “differential” signals and amplifiers was invented in the 1940s

and first utilized in vacuum-tube circuits. Since then, differential circuits have found

increasingly wider usage in microelectronics and serve as a robust, high-performance

design paradigm in many of today’s systems. This chapter describes bipolar and MOS

differential amplifiers and formulates their large-signal and small-signal properties. The

concepts are outlined below.

➤ ➤ ➤

General

Considerations

• Differential

Signals

• Differential Pair

Bipolar

Differential Pair

• Qualitative

Analysis

• Large-Signal

Analysis

• Small-Signal

Analysis

MOS

Differential Pair

• Qualitative

Analysis

• Large-Signal

Analysis

• Small-Signal

Analysis

Other Concepts

• Cascode Pair

• Common-Mode

Rejection

• Pair with Active

Load

10.1 GENERAL CONSIDERATIONS

10.1.1 Initial Thoughts

We have already seen that op amps have two inputs, a point of contrast to the ampli-
fiers studied in previous chapters. In order to further understand the need for differential
circuits, let us first consider an example.

Example

10.1
Having learned the design of rectifiers and basic amplifier stages, an electrical engineer-
ing student constructs the circuit shown in Fig. 10.1(a) to amplify the signal produced by
a microphone. Unfortunately, upon applying the result to a speaker, the student observes
that the amplifier output contains a strong “humming” noise, i.e., a steady low-frequency
component. Explain what happens.

399



400 Chapter 10 Differential Amplifiers

Solution Recall from Chapter 3 that the current drawn from the rectified output creates a ripple
waveform at twice the ac line frequency (50 or 60 Hz) [Fig. 10.1(b)]. Examining the
output of the common-emitter stage, we can identify two components: (1) the amplified
version of the microphone signal and (2) the ripple waveform present on VCC. For the
latter, we can write

Vout = VCC − RC IC , (10.1)

noting that Vout simply “tracks” VCC and hence contains the ripple in its entirety. The
“hum” originates from the ripple. Figure 10.1(c) depicts the overall output in the pres-
ence of both the signal and the ripple. Illustrated in Fig. 10.1(d), this phenomenon is
summarized as the “supply noise goes to the output with a gain of unity.” (A MOS
implementation would suffer from the same problem.)

110 V
60 Hz

R

outV

VCC

C

Q1C1

To Bias

t

VCC

t

outV

(c)

(a)

(b)

VCC

Ripple

Signal

(d)

Voice Signal

Figure 10.1 (a) CE stage powered by a rectifier, (b) ripple on supply voltage, (c) effect at output,

(d) ripple and signal paths to output.

Exercise What is the hum frequency for a full-wave rectifier or a half-wave rectifier?

How should we suppress the hum in the above example? We can increase C1, thus
lowering the ripple amplitude, but the required capacitor value may become prohibitively
large if many circuits draw current from the rectifier. Alternatively, we can modify the
amplifier topology such that the output is insensitive to VCC. How is that possible? Equation
(10.1) implies that a change in VCC directly appears in Vout, fundamentally because both
Vout and VCC are measured with respect to ground and differ by RC IC . But what if Vout

is not “referenced” to ground?! More specifically, what if Vout is measured with respect
to another point that itself experiences the supply ripple to the same extent? It is thus
possible to eliminate the ripple from the “net” output.

While rather abstract, the above conjecture can be readily implemented. Figure 10.2(a)
illustrates the core concept. The CE stage is duplicated on the right, and the output is now
measured between nodes X and Y rather than from X to ground. What happens if VCC

contains ripple? Both VX and VY rise and fall by the same amount and hence the difference
between VX and VY remains free from the ripple.
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outV
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Ripple
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(a) (b)

inv

X Y

Figure 10.2 Use of two CE stages to remove effect of ripple.

In fact, denoting the ripple by vr , we express the small-signal voltages at these
nodes as

vX = Avvin + vr (10.2)

vY = vr . (10.3)

That is,

vX − vY = Avvin. (10.4)

Note that Q2 carries no signal, simply serving as a constant current source.
The above development serves as the foundation for differential amplifiers: the sym-

metric CE stages provide two output nodes whose voltage difference remains free from
the supply ripple.

10.1.2 Differential Signals

Let us return to the circuit of Fig. 10.2(a) and recall that the duplicate stage consisting
of Q2 and RC2 remains “idle,” thereby “wasting” current. We may therefore wonder if
this stage can provide signal amplification in addition to establishing a reference point for
Vout. In our first attempt, we directly apply the input signal to the base of Q2 [Fig. 10.3(a)].
Unfortunately, the signal components at X and Y are in phase, canceling each other as
they appear in vX − vY :

vX = Avvin + vr (10.5)

vY = Avvin + vr (10.6)

⇒ vX − vY = 0. (10.7)

For the signal components to enhance each other at the output, we can invert one of
the input phases as shown in Fig. 10.3(b), obtaining

vX = Avvin + vr (10.8)

vY = −Avvin + vr (10.9)

and hence

vX − vY = 2Avvin. (10.10)
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RR C2C1

inV

Vr
VCC

Q1 Q 2

X Y

RR C2C1

inv+ inv–

(c)

(a) (b)

Figure 10.3 (a) Application of one input signal to two CE stages, (b) use of differential

input signals, (c) generation of differential phases from one signal.

Compared to the circuit of Fig. 10.2(a), this topology provides twice the output swing by
exploiting the amplification capability of the duplicate stage.

The reader may wonder how −vin can be generated. Illustrated in Fig. 10.3(c), a simple
approach is to utilize a transformer to convert the microphone signal to two components
bearing a phase difference of 180◦.

Our thought process has led us to the specific waveforms in Fig. 10.3(b): the circuit
senses two inputs that vary by equal and opposite amounts and generates two outputs that
behave in a similar fashion. These waveforms are examples of “differential” signals and
stand in contrast to “single-ended” signals—the type to which we are accustomed from
basic circuits and previous chapters of this book. More specifically, a single-ended signal is
one measured with respect to the common ground [Fig. 10.4(a)] and “carried by one line,”
whereas a differential signal is measured between two nodes that have equal and opposite
swings [Fig. 10.4(b)] and is thus “carried by two lines.”

Figure 10.4(c) summarizes the foregoing development. Here, V1 and V2 vary by equal
and opposite amounts and have the same average (dc) level, VCM, with respect to ground:

V1 = V0 sin ωt + VCM (10.11)

V2 = −V0 sin ωt + VCM. (10.12)

Since each of V1 and V2 has a peak-to-peak swing of 2V0, we say the “differential swing”
is 4V0. We may also say V1 and V2 are differential signals to emphasize that they vary by
equal and opposite amounts around a fixed level, VCM.

The dc voltage that is common to both V1 and V2 [VCM in Fig. 10.4(c)] is called the
“common-mode (CM) level.” That is, in the absence of differential signals, the two nodes
remain at a potential equal to VCM with respect to the global ground. For example, in the
transformer of Fig. 10.3(c), +vin and −vin display a CM level of zero because the center tap
of the transformer is grounded.

Example

10.2
How can the transformer of Fig. 10.3(c) produce an output CM level equal to +2 V?
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V

Differential Signal
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Figure 10.4 (a) Single-ended signals, (b) differential signals, (c) illustration of common-

mode level.

Solution The center tap can simply be tied to a voltage equal to +2 V (Fig. 10.5).

t

2 V

vin1

v in2

+2 V
vin1

v in2

Figure 10.5

Exercise Does the CM level change if the inputs of the amplifier draw a bias current?

Example

10.3
Determine the common-mode level at the output of the circuit shown in Fig. 10.3(b).

Solution In the absence of signals, VX = VY = VCC − RC IC (with respect to ground), where
RC = RC1 = RC2 and IC denotes the bias current ofQ1 andQ2. Thus, VCM = VCC − RC IC .
Interestingly, the ripple affects VCM but not the differential output.

Exercise If a resistor of value R1 is inserted between VCC and the top terminals of RC1 and RC2,
what is the output CM level?
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Our observations regarding supply ripple and the use of the “duplicate stage” provide
sufficient justification for studying differential signals. But, how about the common-mode
level? What is the significance of VCM = VCC − RC IC in the above example? Why is it
interesting that the ripple appears in VCM but not in the differential output? We will
answer these important questions in the following sections.

10.1.3 Differential Pair

Before formally introducing the differential pair, we must recognize that the circuit of
Fig. 10.4(b) senses two inputs and can therefore serve as A1 in Fig. 10.2(b). This observation
leads to the differential pair.

While sensing and producing differential signals, the circuit of Fig. 10.4(b) suffers
from some drawbacks. Fortunately, a simple modification yields an elegant, versatile topol-
ogy. Illustrated in Fig. 10.6(a), the (bipolar) “differential pair”1 is similar to the circuit of
Fig. 10.4(b), except that the emitters of Q1 and Q2 are tied to a constant current source
rather than to ground. We call IEE the “tail current source.” The MOS counterpart is shown
in Fig. 10.6(b). In both cases, the sum of the transistor currents is equal to the tail current.
Our objective is to analyze the large-signal and small-signal behavior of these circuits and
demonstrate their advantages over the “single-ended” stages studied in previous chapters.
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X Y

(a) (b)

CC
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Figure 10.6 (a) Bipolar and (b) MOS differential pairs.

For each differential pair, we begin with a qualitative, intuitive analysis and subse-
quently formulate the large-signal and small-signal behavior. We also assume each circuit
is perfectly symmetric, i.e., the transistors are identical and so are the resistors.

10.2 BIPOLAR DIFFERENTIAL PAIR

10.2.1 Qualitative Analysis

It is instructive to first examine the bias conditions of the circuit. Recall from Sec-
tion 10.1.2 that in the absence of signals, differential nodes reside at the common-mode
level. We therefore draw the pair as shown in Fig. 10.7, with the two inputs tied to VCM to
indicate no signal exists at the input. By virtue of symmetry,

VBE1 = VBE2 (10.13)

IC1 = IC2 = IEE

2
, (10.14)

1Also called the “emitter-coupled pair” or the “long-tailed pair.”
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Figure 10.7 Response of differential pair to input CM change.

where the collector and emitter currents are assumed equal. We say the circuit is in “equi-
librium.”

Thus, the voltage drop across each load resistor is equal to RC IEE/2 and hence

VX = VY = VCC − RC
IEE

2
. (10.15)

In other words, if the two input voltages are equal, so are the two outputs. We say a zero
differential input produces a zero differential output. The circuit also “rejects” the effect
of supply ripple: if VCC experiences a change, the differential output, VX − VY , does not.

Are Q1 and Q2 in the active region? To avoid saturation, the collector voltages must
not fall below the base voltages:

VCC − RC
IEE

2
≥ VCM, (10.16)

revealing that VCM cannot be arbitrarily high.

Example

10.4
A bipolar differential pair employs a load resistance of 1 k� and a tail current of 1 mA.
How close to VCC can VCM be chosen?

Solution Equation 10.16 gives

VCC − VCM ≥ RC
IEE

2
(10.17)

≥ 0.5 V. (10.18)

That is, VCM must remain below VCC by at least 0.5 V.

Exercise What value of RC allows the input CM level to approach VCC if the transistors can tolerate
a base-collector forward bias of 400 mV?

Now, let us vary VCM in Fig. 10.7 by a small amount and determine the circuit’s response.
Interestingly, Eqs. (10.13)–(10.15) remain unchanged, thereby suggesting that neither the
collector current nor the collector voltage of the transistors is affected. We say the circuit
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Figure 10.8 Effect of VCM1 and VCM2 at output.

does not respond to changes in the input common-mode level, or the circuit “rejects” input
CM variations. Figure 10.8 summarizes these results.

The “common-mode rejection” capability of the differential pair distinctly sets it apart
from our original circuit in Fig. 10.4(b). In the latter, if the base voltage of Q1 and Q2

changes, so do their collector currents and voltages (why?). The reader may recognize
that it is the tail current source in the differential pair that guarantees constant collector
currents and hence rejection of the input CM level.

With our treatment of the common-mode response, we now turn to the more interest-
ing case of differential response. We hold one input constant, vary the other, and examine
the currents flowing in the two transistors. While not exactly differential, such input signals
provide a simple, intuitive starting point. Recall that IC1 + IC2 = IEE.

Consider the circuit shown in Fig. 10.9(a), where the two transistors are drawn with a
vertical offset to emphasize thatQ1 senses a more positive base voltage. Since the difference
between the base voltages of Q1 and Q2 is so large, we postulate that Q1 “hogs” all of the
tail current, thereby turning Q2 off. That is,

IC1 = IEE (10.19)

IC2 = 0, (10.20)

and hence

VX = VCC − RC IEE (10.21)

VY = VCC. (10.22)
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Figure 10.9 Response of bipolar differential pair to (a) large positive input difference and (b) large

negative input difference.
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But, how can we prove that Q1 indeed absorbs all of IEE? Let us assume that it is not
so; i.e., IC1 < IEE and IC2 �= 0. If Q2 carries an appreciable current, then its base-emitter
voltage must reach a typical value of, say, 0.8 V. With its base held at +1 V, the device
therefore requires an emitter voltage of VP ≈ 0.2 V. However, this means thatQ1 sustains
a base-emitter voltage of Vin1 − VP = +2 V − 0.2 V = 1.8 V!! Since with VBE = 1.8 V, a
typical transistor carries an enormous current, and since IC1 cannot exceed IEE, we conclude
that the conditions VBE1 = 1.8 V and VP ≈ 0.2 V cannot occur. In fact, with a typical base-
emitter voltage of 0.8 V, Q1 holds node P at approximately +1.2 V, ensuring that Q2

remains off.
Symmetry of the circuit implies that swapping the base voltages ofQ1 andQ2 reverses

the situation [Fig. 10.9(b)], giving

IC2 = IEE (10.23)

IC1 = 0, (10.24)

and hence

VY = VCC − RC IEE (10.25)

VX = VCC. (10.26)

The above experiments reveal that, as the difference between the two inputs departs
from zero, the differential pair “steers” the tail current from one transistor to the other. In
fact, based on Eqs. (10.14), (10.19), and (10.23), we can sketch the collector currents ofQ1

and Q2 as a function of the input difference [Fig. 10.10(a)]. We have not yet formulated
these characteristics but we do observe that the collector current of each transistor goes
from 0 to IEE if |Vin1 − Vin2| becomes sufficiently large.

It is also important to note that VX and VY vary differentially in response to Vin1 − Vin2.
From Eqs. (10.15), (10.21), and (10.25), we can sketch the input/output characteristics of
the circuit as shown in Fig. 10.10(b). That is, a nonzero differential input yields a nonzero
differential output—a behavior in sharp contrast to the CM response. Since VX and VY

are differential, we can define a common-mode level for them. Given by VCC − RC IEE/2,
this quantity is called the “output CM level.”
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I EE

(a) (b)
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Q 2

Q1 Q 2

C2
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Y

Figure 10.10 Variation of (a) collector currents and (b) output voltages as a function of input.
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Example

10.5
A bipolar differential pair employs a tail current of 0.5 mA and a collector resistance
of 1 k�. What is the maximum allowable base voltage if the differential input is large
enough to completely steer the tail current? Assume VCC = 2.5 V.

Solution If IEE is completely steered, the transistor carrying the current lowers its collector voltage
to VCC − RC IEE = 2 V. Thus, the base voltage must remain below this value so as to avoid
saturation.

Exercise Repeat the above example if the tail current is raised to 1 mA.

In the last step of our qualitative analysis, we “zoom in” around Vin1 − Vin2 = 0 (the
equilibrium condition) and study the circuit’s behavior for a small input difference. As
illustrated in Fig. 10.11(a), the base voltage of Q1 is raised from VCM by �V while that of
Q2 is lowered from VCM by the same amount. We surmise that IC1 increases slightly and,
since IC1 + IC2 = IEE, IC2 decreases by the same amount:

IC1 = IEE

2
+ �I (10.27)

IC2 = IEE

2
− �I. (10.28)

How is �I related to �V? If the emitters of Q1 and Q2 were directly tied to ground, then
�I would simply be equal to gm�V. In the differential pair, however, node P is free to rise
or fall. We must therefore compute the change in VP.

Suppose, as shown in Fig. 10.11(b), VP rises by �VP. As a result, the net increase in
VBE1 is equal to �V − �VP and hence

�IC1 = gm(�V − �VP). (10.29)

Similarly, the net decrease in VBE2 is equal to �V + �VP, yielding

�IC2 = −gm(�V + �VP). (10.30)

But recall from Eqs. (10.27) and (10.28) that �IC1 must be equal to −�IC2, dictating that

gm(�V − �VP) = gm(�V + �VP) (10.31)
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Figure 10.11 (a) Differential pair sensing small, differential input changes, (b) hypothetical

change at P.



10.2 Bipolar Differential Pair 409

and hence

�VP = 0. (10.32)

Interestingly, the tail voltage remains constant if the two inputs vary differentially and by
a small amount—an observation critical to the small-signal analysis of the circuit.

The reader may wonder why Eq. (10.32) does not hold if �V is large. Which one of the
above equations is violated? For a large differential input, Q1 and Q2 carry significantly
different currents, thus exhibiting unequal transconductances and prohibiting the omission
of gm’s from the two sides of Eq. (10.31).

With �VP = 0 in Fig. 10.11(a), we can rewrite Eqs. (10.29) and (10.30) respectively as

�IC1 = gm�V (10.33)

�IC2 = −gm�V (10.34)

and

�VX = −gm�VRC (10.35)

�VY = gm�VRC . (10.36)

The differential output therefore goes from 0 to

�VX − �VY = −2gm�VRC . (10.37)

We define the small-signal differential gain of the circuit as

Av = Change in Differential Output

Change in Differential Input
(10.38)

= −2gm�VRC

2�V
(10.39)

= −gmRC . (10.40)

(Note that the change in the differential input is equal to 2�V.) This expression is similar
to that of the common-emitter stage.

Example

10.6
Design a bipolar differential pair for a gain of 10 and a power budget of 1 mW with a
supply voltage of 2 V.

Solution With VCC = 2 V, the power budget translates to a tail current of 0.5 mA. Each transistor
thus carries a current of 0.25 mA near equilibrium, providing a transconductance of

0.25 mA/26 mV = (104 �)
−1

. It follows that

RC = |Av|
gm

(10.41)

= 1040 �. (10.42)

Exercise Redesign the circuit for a power budget of 0.5 mW and compare the results.
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Example

10.7
Compare the power dissipation of a bipolar differential pair with that of a CE stage
if both circuits are designed for equal voltage gains, collector resistances, and supply
voltages.

Solution The gain of the differential pair is written from Eq. (10.40) as

|AV,diff| = gm1,2RC , (10.43)

where gm1,2 denotes the transconductance of each of the two transistors. For a CE stage

|AV,CE| = gmRC . (10.44)

Thus,

gm1,2RC = gmRC (10.45)

and hence

IEE

2VT
= IC

VT
, (10.46)

where IEE/2 is the bias current of each transistor in the differential pair, and IC represents
the bias current of the CE stage. In other words,

IEE = 2IC , (10.47)

indicating that the differential pair consumes twice as much power. This is one of the
drawbacks of differential circuits.

Exercise If both circuits are designed for the same power budget, equal collector resistances, and
equal supply voltages, compare their voltage gains.

10.2.2 Large-Signal Analysis

Having obtained insight into the operation of the bipolar differential pair, we now quantify
its large-signal behavior, aiming to formulate the input/output characteristic of the circuit
(the sketches in Fig. 10.10). Not having seen any large-signal analysis in the previous
chapters, the reader may naturally wonder why we are suddenly interested in this aspect
of the differential pair. Our interest arises from (a) the need to understand the circuit’s
limitations in serving as a linear amplifier, and (b) the application of the differential pair
as a (nonlinear) current-steering circuit.

In order to derive the relationship between the differential input and output of the
circuit, we first note from Fig. 10.12 that

Vout1 = VCC − RC IC1 (10.48)

Vout2 = VCC − RC IC2 (10.49)

and hence

Vout = Vout1 − Vout2 (10.50)

= −RC (IC1 − IC2). (10.51)

We must therefore compute IC1 and IC2 in terms of the input difference. Assuming α = 1
and VA = ∞, and recalling from Chapter 4 that VBE = VT ln (IC /IS), we write a KVL around
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Figure 10.12 Bipolar differential pair for large-signal analysis.

the input network,

Vin1 − VBE1 = VP = Vin2 − VBE2, (10.52)

obtaining

Vin1 − Vin2 = VBE1 − VBE2 (10.53)

= VT ln
IC1

IS1

− VT ln
IC2

IS2

(10.54)

= VT ln
IC1

IC2

. (10.55)

Also, a KCL at node P gives

IC1 + IC2 = IEE. (10.56)

Equations (10.55) and (10.56) contain two unknowns. Substituting for IC1 from Eq. (10.55)
in Eq. (10.56) yields

IC2 exp
Vin1 − Vin2

VT
+ IC2 = IEE (10.57)

and, therefore,

IC2 = IEE

1 + exp
Vin1 − Vin2

VT

. (10.58)

The symmetry of the circuit with respect to Vin1 and Vin2 and with respect to IC1 and IC2

suggests that IC1 exhibits the same behavior as Eq. (10.58) but with the roles of Vin1 and
Vin2 exchanged:

IC1 = IEE

1 + exp
Vin2 − Vin1

VT

(10.59)

=
IEE exp

Vin1 − Vin2

VT

1 + exp
Vin1 − Vin2

VT

. (10.60)

Alternatively, the reader can substitute for IC2 from Eq. (10.58) in Eq. (10.56) to
obtain IC1.
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Equations (10.58) and (10.60) play a crucial role in our quantitative understand-
ing of the differential pair’s operation. In particular, if Vin1 − Vin2 is very negative, then
exp(Vin1 − Vin2)/VT → 0 and

IC1 → 0 (10.61)

IC2 → IEE, (10.62)

as predicted by our qualitative analysis [Fig. 10.9(b)]. Similarly, if Vin1 − Vin2 is very positive,
exp(Vin1 − Vin2)/VT → ∞ and

IC1 → IEE (10.63)

IC2 → 0. (10.64)

What is meant by “very” negative or positive? For example, can we say IC1 ≈ 0 and
IC2 ≈ IEE if Vin1 − Vin2 = −10VT? Since exp(−10) ≈ 4.54 × 10−5,

IC1 ≈ IEE × 4.54 × 10−5

1 + 4.54 × 10−5
(10.65)

≈ 4.54 × 10−5IEE (10.66)

and

IC2 ≈ IEE

1 + 4.54 × 10−5
(10.67)

≈ IEE(1 − 4.54 × 10−5). (10.68)

In other words, Q1 carries only 0.0045% of the tail current; and IEE can be considered
steered completely to Q2.

Example

10.8
Determine the differential input voltage that steers 98% of the tail current to one tran-
sistor.

Solution We require that

IC1 = 0.02IEE (10.69)

≈ IEE exp
Vin1 − Vin2

VT
(10.70)

and hence

Vin1 − Vin2 ≈ −3.91VT . (10.71)

We often say a differential input of 4VT is sufficient to turn one side of the bipolar pair
nearly off. Note that this value remains independent of IEE and IS .

Exercise What differential input is necessary to steer 90% of the tail current?
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For the output voltages in Fig. 10.12, we have

Vout1 = VCC − RC IC1 (10.72)

= VCC − RC

IEE exp
Vin1 − Vin2

VT

1 + exp
Vin1 − Vin2

VT

(10.73)

and

Vout2 = VCC − RC IC2 (10.74)

= VCC − RC
IEE

1 + exp
Vin1 − Vin2

VT

. (10.75)

Of particular importance is the output differential voltage:

Vout1 − Vout2 = −RC (IC1 − IC2) (10.76)

= RC IEE

1 − exp
Vin1 − Vin2

VT

1 + exp
Vin1 − Vin2

VT

(10.77)

= −RC IEE tanh
Vin1 − Vin2

2VT
. (10.78)

Figure 10.13 summarizes the results, indicating that the differential output voltage be-
gins from a “saturated” value of +RC IEE for a very negative differential input, gradu-
ally becomes a linear function of Vin1 − Vin2 for relatively small values of |Vin1 − Vin2|,
and reaches a saturated level of −RC IEE as Vin1 − Vin2 becomes very positive. From
Example 10.8, we recognize that even a differential input of 4VT ≈ 104 mV “switches”
the differential pair, thereby concluding that |Vin1 − Vin2| must remain well below this
value for linear operation.
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Figure 10.13 Variation of currents and voltages as a function of input.
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Example

10.9
Sketch the output waveforms of the bipolar differential pair in Fig. 10.14(a) in response
to the sinusoidal inputs shown in Figs. 10.14(b) and (c). Assume Q1 and Q2 remain in
the forward active region.

Solution For the sinusoids depicted in Fig. 10.14(b), the circuit operates linearly because the
maximum differential input is equal to ±2 mV. The outputs are therefore sinusoids
having a peak amplitude of 1 mV × gmRC [Fig. 10.14(d)]. On the other hand, the sinusoids
in Fig. 10.14(c) force a maximum input difference of ±200 mV, turning Q1 or Q2 off.
For example, as Vin1 approaches 50 mV above VCM and Vin2 reaches 50 mV below VCM

(at t = t1), Q1 absorbs most of the tail current, thus producing

Vout1 ≈ VCC − RC IEE (10.79)

Vout2 ≈ VCC. (10.80)

Thereafter, the outputs remain saturated until |Vin1 − Vin2| falls to less than 100 mV. The
result is sketched in Fig. 10.14(e). We say the circuit operates as a “limiter” in this case,
playing a role similar to the diode limiters studied in Chapter 3.
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Exercise What happens to the above results if the tail current is halved?

10.2.3 Small-Signal Analysis

Our brief investigation of the differential pair in Fig. 10.11 revealed that, for small dif-
ferential inputs, the tail node maintains a constant voltage (and hence is called a “virtual
ground”). We also obtained a voltage gain equal to gmRC . We now study the small-signal
behavior of the circuit in greater detail. As explained in previous chapters, the definition
of “small signals” is somewhat arbitrary, but the requirement is that the input signals not
influence the bias currents of Q1 and Q2 appreciably. In other words, the two transistors
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Figure 10.15 (a) Small-signal model of bipolar pair, (b) simplified small-signal model,

(c) simplied diagram.

must exhibit approximately equal transconductances—the same condition required for
node P to appear as virtual ground. In practice, an input difference of less than 10 mV is
considered “small” for most applications.

Assuming perfect symmetry, an ideal tail current source, and VA = ∞, we construct
the small-signal model of the circuit as shown in Fig. 10.15(a). Here, vin1 and vin2 represent
small changes in each input and must satisfy vin1 = −vin2 for differential operation. Note
that the tail current source is replaced with an open circuit. As with the foregoing large-
signal analysis, let us write a KVL around the input network and a KCL at node P:

vin1 − vπ1 = vP = vin2 − vπ2 (10.81)

vπ1

rπ1

+ gm1vπ1 + vπ2

rπ2

+ gm2vπ2 = 0. (10.82)

With rπ1 = rπ2 and gm1 = gm2, Eq. (10.82) yields

vπ1 = −vπ2 (10.83)

and since vin1 = −vin2, Eq. (10.81) translates to

2vin1 = 2vπ1. (10.84)

That is,

vP = vin1 − vπ1 (10.85)

= 0. (10.86)

Thus, the small-signal model confirms the prediction made by Eq. (10.32).
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The virtual-ground nature of node P for differential small-signal inputs simplifies
the analysis considerably. Since vP = 0, this node can be shorted to ac ground, reducing
the differential pair of Fig. 10.15(a) to two “half circuits” [Fig. 10.15(b)]. With each half
resembling a common-emitter stage, we can write

vout1 = −gmRC vin1 (10.87)

vout2 = −gmRC vin2. (10.88)

It follows that the differential voltage gain of the differential pair is equal to

vout1 − vout2

vin1 − vin2

= −gmRC , (10.89)

the same as that expressed by Eq. (10.40). For simplicity, we may draw the two half cir-
cuits as in Fig. 10.15(c), with the understanding that the incremental inputs are small and
differential. Also, since the two halves are identical, we may draw only one half.

Example

10.10
Compute the differential gain of the circuit shown in Fig. 10.16(a), where ideal current
sources are used as loads to maximize the gain.
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Figure 10.16

Solution With ideal current sources, the Early effect in Q1 and Q2 cannot be neglected, and the
half circuits must be visualized as depicted in Fig. 10.16(b). Thus,

vout1 = −gmrOvin1 (10.90)

vout2 = −gmrOvin2 (10.91)

and hence

vout1 − vout2

vin1 − vin2

= −gmrO. (10.92)

Exercise Calculate the gain for VA = 5 V.
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Example

10.11
Figure 10.17(a) illustrates an implementation of the topology shown in Fig. 10.16(a).
Calculate the differential voltage gain.

Solution Noting that each pnp device introduces a resistance of rOP at the output nodes and
drawing the half circuit as in Fig. 10.17(b), we have

vout1 − vout2

vin1 − vin2

= −gm(rON||rOP), (10.93)

where rON denotes the output impedance of the npn transistors.
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Exercise Calculate the gain if Q3 and Q4 are configured as diode-connected devices.

We must emphasize that the differential voltage gain is defined as the difference
between the outputs divided by the difference between the inputs. As such, this gain
is equal to the single-ended gain of each half circuit.

We now make an observation that proves useful in the analysis of differential circuits.
As noted above, the symmetry of the circuit (gm1 = gm2) establishes a virtual ground at
node P in Fig. 10.12 if the incremental inputs are small and differential. This property holds
for any other node that appears on the axis of symmetry. For example, the two resistors
shown in Fig. 10.18 create a virtual ground at X if (1) R1 = R2 and (2) nodes A and B
vary by equal and opposite amounts.2 Additional examples make this concept clearer. We
assume perfect symmetry in each case.

R1 R2

X
A B

VΔ
VΔ

Figure 10.18

Example

10.12
Determine the differential gain of the circuit in Fig. 10.19(a) if VA < ∞ and the circuit
is symmetric.

Solution Drawing one of the half circuits as shown in Fig. 10.19(b), we express the total resistance
seen at the collector of Q1 as

Rout = rO1||rO3||R1. (10.94)

2Since the resistors are linear, the signals need not be small in this case.
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Figure 10.19

Thus, the voltage gain is equal to

Av = −gm1(rO1||rO3||R1). (10.95)

Exercise Repeat the above example if R1 �= R2.

Example

10.13
Calculate the differential gain of the circuit illustrated in Fig. 10.20(a) if VA < ∞.

QQ1 2

V

I EE

Vin1 Vin2

CC

P

Vout

Q1

in1

(a) (b)

Q

R1 R 2

3 Q4

X
Q

R1

3

X

v

vout1

Figure 10.20

Solution For small differential inputs and outputs, VX remains constant, leading to the conceptual
half circuit shown in Fig. 10.20(b)—the same as that in the above example. This is because
Q3 and Q4 experience a constant base-emitter voltage in both cases, thereby serving as
current sources and exhibiting only an output resistance. It follows that

Av = −gm1(rO1||rO3||R1). (10.96)

Exercise Calculate the gain if VA = 4 V for all transistors, R1 = R2 = 10 k�, and IEE = 1 mA.
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Example

10.14
Determine the gain of the degenerated differential pairs shown in Figs. 10.21(a) and (b).
Assume VA = ∞.
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X Y
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R E R E

outV
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X Y
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outV

R E I EEI EE

Q1

in1

RC

R E

out

Q1

in1

RC

R E

out

2

(d)(c)

(a) (b)

v

v

v

v

Figure 10.21

Solution In the topology of Fig. 10.21(a), node P is a virtual ground, yielding the half circuit
depicted in Fig. 10.21(c). From Chapter 5, we have

Av = − RC

RE + 1

gm

. (10.97)

In the circuit of Fig. 10.21(b), the line of symmetry passes through the “midpoint” of RE.
In other words, if RE is regarded as two RE/2 units in series, then the node between the
units acts as a virtual ground [Fig. 10.21(d)]. It follows that

Av = − RC

RE

2
+ 1

gm

. (10.98)

The two circuits provide equal gains if the pair in Fig. 10.21(b) incorporates a total
degeneration resistance of 2RE.

Exercise Design each circuit for a gain of 5 and power consumption of 2 mW. Assume VCC = 2.5 V,
VA = ∞, and RE = 2/gm.

I/O Impedances For a differential pair, we can define the input impedance as illustrated
in Fig. 10.22(a). From the equivalent circuit in Fig. 10.22(b), we have

vπ1

rπ1

= iX = −vπ2

rπ2

. (10.99)
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Figure 10.22 (a) Method for calculation of differential input impedance, (b) equivalent circuit

of (a).

Also,

vX = vπ1 − vπ2 (10.100)

= 2rπ1iX . (10.101)

It follows that
vX

iX
= 2rπ1, (10.102)

as if the two base-emitter junctions appear in series.
The above quantity is called the “differential input impedance” of the circuit. It is

also possible to define a “single-ended input impedance” with the aid of a half circuit
(Fig. 10.23), obtaining

vX

iX
= rπ1. (10.103)

This result provides no new information with respect to that in Eq. (10.102) but proves
useful in some calculations.

v

Xi

X

R

VCC

C

Q1

Figure 10.23 Calculation of single-ended input impedance.

In a manner similar to the foregoing development, the reader can show that the dif-
ferential and single-ended output impedances are equal to 2RC and RC , respectively.

10.3 MOS DIFFERENTIAL PAIR

Most of the principles studied in the previous section for the bipolar differential pair apply
directly to the MOS counterpart as well. For this reason, our treatment of the MOS circuit
in this section is more concise. We continue to assume perfect symmetry.
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Figure 10.24 Response of MOS differential pair to input CM variation.

10.3.1 Qualitative Analysis

Figure 10.24(a) depicts the MOS pair with the two inputs tied to VCM, yielding

ID1 = ID2 = ISS

2
(10.104)

and

VX = VY = VDD − RD
ISS

2
. (10.105)

That is, a zero differential input gives a zero differential output. Note that the output CM
level is equal to VDD − RDISS/2.

For our subsequent derivations, it is useful to compute the “equilibrium over-
drive voltage” of M1 and M2, (VGS − VTH)equil.. We assume λ = 0 and hence ID =
(1/2)μnCox(W/L)(VGS − VTH)

2
. Carrying a current of ISS/2, each device exhibits an over-

drive of

(VGS − VTH)equil. =
√√√√ ISS

μnCox
W
L

. (10.106)

As expected, a greater tail current or a smaller W/L translates to a larger equilibrium
overdrive.

To guarantee that M1 and M2 operate in saturation, we require that their drain voltages
not fall below VCM − VTH :

VDD − RD
ISS

2
> VCM − VTH . (10.107)

It can also be observed that a change in VCM cannot alter ID1 = ID2 = ISS/2, leaving VX

and VY undisturbed. The circuit thus rejects input CM variations.

Example

10.15
A MOS differential pair is driven with an input CM level of 1.6 V. If ISS = 0.5 mA,
VTH = 0.5 V, and VDD = 1.8 V, what is the maximum allowable load resistance?

Solution From Eq. (10.107), we have

RD < 2
VDD − VCM + VTH

ISS
(10.108)

< 2.8 k�. (10.109)
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We may suspect that this limitation in turn constrains the voltage gain of the circuit, as
explained later.

Exercise What is the maximum tail current if the load resistance is 5 k�?

Figure 10.25 illustrates the response of the MOS pair to large differential inputs. If
Vin1 is well above Vin2 [Fig. 10.25(a)], then M1 carries the entire tail current, generating

VX = VDD − RDISS (10.110)

VY = VDD. (10.111)

Similarly, if Vin2 is well above Vin1 [Fig. 10.25(b)], then

VX = VDD (10.112)

VY = VDD − RDISS. (10.113)

The circuit therefore steers the tail current from one side to the other, producing a differ-
ential output in response to a differential input. Figure 10.25(c) sketches the characteristics
of the circuit.

Let us now examine the circuit’s behavior for a small input difference. Depicted in
Fig. 10.26(a), such a scenario maintains VP constant because Eqs. (10.27)–(10.32) apply to
this case equally well. It follows that

�ID1 = gm�V (10.114)

�ID2 = −gm�V (10.115)
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Figure 10.25 (a) Response of MOS differential pair to very positive input, (b) response of

MOS differential pair to very negative input, (c) qualitative plots of currents and voltages.
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Figure 10.26 Response of MOS pair to small differential inputs.

and

�VX − �VY = −2gmRD�V. (10.116)

As expected, the differential voltage gain is given by

Av = −gmRD, (10.117)

similar to that of a common-source stage.

Example

10.16
Design an NMOS differential pair for a voltage gain of 5 and a power budget of 2 mW
subject to the condition that the stage following the differential pair requires an input
CM level of at least 1.6 V. Assume μnCox = 100 μA/V2, λ = 0, and VDD = 1.8 V.

Solution From the power budget and the supply voltage, we have

ISS = 1.11 mA. (10.118)

The output CM level (in the absence of signals) is equal to

VCM,out = VDD − RD
ISS

2
. (10.119)

For VCM,out = 1.6 V, each resistor must sustain a voltage drop of no more than 200 mV,
thereby assuming a maximum value of

RD = 360 �. (10.120)

Setting gmRD = 5, we must choose the transistor dimensions such that gm = 5/(360 �).
Since each transistor carries a drain current of ISS/2,

gm =
√

2μnCox
W
L

ISS

2
, (10.121)

and hence

W
L

= 1738. (10.122)

The large aspect ratio arises from the small drop allowed across the load resistors.

Exercise If the aspect ratio must remain below 200, what voltage gain can be achieved?
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Example

10.17
What is the maximum allowable input CM level in the previous example if VTH = 0.4 V?

Solution We rewrite Eq. (10.107) as

VCM,in < VDD − RD
ISS

2
+ VTH (10.123)

< VCM,out + VTH . (10.124)

This is conceptually illustrated in Fig. 10.27. Thus,

VCM,in < 2 V. (10.125)

Interestingly, the input CM level can comfortably remain at VDD. In contrast to
Example 10.5, the constraint on the load resistor in this case arises from the output CM
level requirement.

RD

M 1

I SS

RD

DD

M 2

V

X Y

VCM,in

VCM,in

V

VTH

CM,out

Figure 10.27

Exercise Does the above result hold if VTH = 0.2 V?

Example

10.18
The common-source stage and the differential pair shown in Fig. 10.28 incorporate equal
load resistors. If the two circuits are designed for the same voltage gain and the same
supply voltage, discuss the choice of (a) transistor dimensions for a given power budget,
(b) power dissipation for given transistor dimensions.

R

M 1

I SS

R

DD

M 2

V

Vin1 Vin2

M 1

VDD

inv

R

Figure 10.28
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Solution (a) For the two circuits to consume the same amount of power ID1 = ISS = 2ID2 = 2ID3;
i.e., each transistor in the differential pair carries a current equal to half of the drain
current of the CS transistor. Equation (10.121) therefore requires that the differential
pair transistors be twice as wide as the CS device to obtain the same voltage gain.
(b) If the transistors in both circuits have the same dimensions, then the tail current of
the differential pair must be twice the bias current of the CS stage for M1-M3 to have
the same transconductance, doubling the power consumption.

Exercise Discuss the above results if the CS stage and the differential pair incorporate equal source
degeneration resistors.

10.3.2 Large-Signal Analysis

As with the large-signal analysis of the bipolar pair, our objective here is to derive the
input/output characteristics of the MOS pair as the differential input varies from very
negative to very positive values. From Fig. 10.29, we have

Vout = Vout1 − Vout2 (10.126)

= −RD(ID1 − ID2). (10.127)

To obtain ID1 − ID2, we neglect channel-length modulation and write a KVL around the
input network and a KCL at the tail node:

Vin1 − VGS1 = Vin2 − VGS2 (10.128)

ID1 + ID2 = ISS. (10.129)

Since ID = (1/2)μnCox(W/L)(VGS − VTH)
2
,

VGS = VTH +
√√√√√ 2ID

μnCox
W
L

. (10.130)

Substituting for VGS1 and VGS2 in Eq. (10.128), we have

Vin1 − Vin2 = VGS1 − VGS2 (10.131)

=
√√√√√ 2

μnCox
W
L

(
√

ID1 −
√

ID2). (10.132)
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RD

DD

M 2

V

Vin1 Vin2

VVout1 out2outV

Figure 10.29 MOS differential pair for large-signal analysis.
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Squaring both sides yields

(Vin1 − Vin2)
2 = 2

μnCox
W
L

(ID1 + ID2 − 2
√

ID1ID2) (10.133)

= 2

μnCox
W
L

(ISS − 2
√

ID1ID2). (10.134)

We now find
√

ID1ID2,

4
√

ID1ID2 = 2ISS − μnCox
W
L

(Vin1 − Vin2)
2
, (10.135)

square the result again,

16ID1ID2 =
[

2ISS − μnCox
W
L

(Vin1 − Vin2)
2

]2

, (10.136)

and substitute ISS − ID1 for ID2,

16ID1(ISS − ID1) =
[

2ISS − μnCox
W
L

(Vin1 − Vin2)
2

]2

. (10.137)

It follows that

16I2
D1 − 16ISSID1 +

[
2ISS − μnCox

W
L

(Vin1 − Vin2)
2

]2

= 0 (10.138)

and hence

ID1 = ISS

2
± 1

4

√
4I2

SS −
[
μnCox

W
L

(Vin1 − Vin2)
2 − 2ISS

]2

. (10.139)

In Problem 10.44, we show that only the solution with the sum of the two terms is acceptable:

ID1 = ISS

2
+ Vin1 − Vin2

4

√
μnCox

W
L

[
4ISS − μnCox

W
L

(Vin1 − Vin2)
2

]
. (10.140)

The symmetry of the circuit also implies that

ID2 = ISS

2
+ Vin2 − Vin1

4

√
μnCox

W
L

[
4ISS − μnCox

W
L

(Vin2 − Vin1)
2

]
. (10.141)

That is,

ID1 − ID2 = 1

2
μnCox

W
L

(Vin1 − Vin2)

√√√√√ 4ISS

μnCox
W
L

− (Vin1 − Vin2)
2
.

Equations (10.140)–(10.142) form the foundation of our understanding of the MOS dif-
ferential pair.
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Let us now examine Eq. (10.142) closely. As expected from the characteristics in
Fig. 10.25(c), the right-hand side is an odd (symmetric) function of Vin1 − Vin2, dropping to
zero for a zero input difference. But, can the difference under the square root vanish, too?
That would suggest that ID1 − ID2 falls to zero as (Vin1 − Vin2)

2
reaches 4ISS/(μnCoxW/L),

an effect not predicted by our qualitative sketches in Fig. 10.25(c). Furthermore, it appears
that the argument of the square root becomes negative as (Vin1 − Vin2)

2
exceeds this value!

How should these results be interpreted?

M 1

I SS

M 2

V
+

–TH

+

–
VGS2

I SS~ 0
Edge of

Conduction

Figure 10.30 MOS differential pair with one device off.

Implicit in our foregoing derivations is the assumption both transistors are on. How-
ever, as |Vin1 − Vin2| rises, at some point M1 or M2 turns off, violating the above equations.
We must therefore determine the input difference that places one of the transistors at
the edge of conduction. This can be accomplished by equating Eqs. (10.140), (10.141), or
(10.142) to ISS, but this leads to lengthy algebra. Instead, we recognize from Fig. 10.30 that
if, for example, M1 approaches the edge of conduction, then its gate-source voltage falls
to a value equal to VTH . Also, the gate-source voltage of M2 must be sufficiently large to
accommodate a drain current of ISS:

VGS1 = VTH (10.142)

VGS2 = VTH +
√√√√√ 2ISS

μnCox
W
L

. (10.143)

It follows from Eq. (10.128) that

|Vin1 − Vin2|max =
√√√√√ 2ISS

μnCox
W
L

, (10.144)

where |Vin1 − Vin2|max denotes the input difference that places one transistor at the edge
of conduction. Equation (10.145) is invalid for input differences greater than this value.
Indeed, substituting from Eq. (10.145) in (10.142) also yields |ID1 − ID2| = ISS. We also
note that |Vin1 − Vin2|max can be related to the equilibrium overdrive [Eq. (10.106)] as
follows:

|Vin1 − Vin2|max =
√

2(VGS − VTH)equil.. (10.145)

The above findings are very important and stand in contrast to the behavior of the
bipolar differential pair and Eq. (10.78): the MOS pair steers all of the tail current3 for
|Vin1 − Vin2|max whereas the bipolar counterpart only approaches this condition for a finite

3In reality, MOS devices carry a small current for VGS = VTH , making these observations only an
approximate illustration.
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Figure 10.31 Variation of (a) drain currents, (b) the difference between drain currents, and

(c) differential output voltage as a function of input.

input difference. Equation (10.146) provides a great deal of intuition into the operation of
the MOS pair. Specifically, we plot ID1 and ID2 as in Fig. 10.31(a), where �Vin = Vin1 − Vin2,
arriving at the differential characteristics in Figs. 10.31(b) and (c). The circuit thus behaves
linearly for small values of �Vin and becomes completely nonlinear for �Vin > �Vin,max.
In other words, �Vin,max serves as an absolute bound on the input signal levels that have
any effect on the output.

Example

10.19
Examine the input/output characteristic of a MOS differential pair if (a) the tail current
is doubled, or (b) the transistor aspect ratio is doubled.

Solution (a) Equation (10.145) suggests that doubling ISS increases �Vin,max by a factor of
√

2.
Thus, the characteristic of Fig. 10.31(c) expands horizontally. Furthermore, since ISSRD

doubles, the characteristic expands vertically as well. Figure 10.32(a) illustrates the result,
displaying a greater slope.

(b) Doubling W/L lowers �Vin,max by a factor of
√

2 while maintaining ISSRD con-
stant. The characteristic therefore contracts horizontally [Fig. 10.32(b)], exhibiting a
larger slope in the vicinity of �Vin = 0.

Exercise Repeat the above example if (a) the tail current is halved, or (b) the transistor aspect ratio
is halved.

Example

10.20
Design an NMOS differential pair for a power budget of 3 mW and �Vin,max = 500 mV.
Assume μnCox = 100 μA/V2 and VDD = 1.8 V.
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Solution The tail current must not exceed 3 mW/1.8 V = 1.67 mA. From Eq. (10.145), we write

W
L

= 2ISS

μnCox�V2
in,max

(10.146)

= 133.6. (10.147)

The value of the load resistors is determined by the required voltage gain.

Exercise How does the above design change if the power budget is raised to 5 mW?

10.3.3 Small-Signal Analysis

The small-signal analysis of the MOS differential pair proceeds in a manner similar to that
in Section 10.2.3 for the bipolar counterpart. The definition of “small” signals in this case
can be seen from Eq. (10.142); if

|Vin1 − Vin2| 
 4ISS

μnCox
W
L

, (10.148)
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then

ID1 − ID2 ≈ 1

2
μnCox

W
L

(Vin1 − Vin2)

√√√√√ 4ISS

μnCox
W
L

(10.149)

=
√

μnCox
W
L

ISS(Vin1 − Vin2). (10.150)

Now, the differential inputs and outputs are linearly proportional, and the circuit operates
linearly.

We now use the small-signal model to prove that the tail node remains constant in
the presence of small differential inputs. If λ = 0, the circuit reduces to that shown in
Fig. 10.33(a), yielding

vin1 − v1 = vin2 − v2 (10.151)

gm1v1 + gm2v2 = 0. (10.152)

Assuming perfect symmetry, we have from Eq. (10.153)

v1 = −v2 (10.153)

and for differential inputs, we require vin1 = −vin2. Thus, Eq. (10.152) translates to

vin1 = v1 (10.154)

and hence

vP = vin1 − v1 (10.155)

= 0 (10.156)

Alternatively, we can simply utilize Eqs. (10.81)–(10.86) with the observation thatvπ/rπ = 0
for a MOSFET, arriving at the same result.

gv v1 1m1
g v2m2

v2

R R

P

v in1 v in2

RC RC

v in2

(a)

(b)

DD

g v1m1
g v2m2

v1v in1
v2

Figure 10.33 (a) Small-signal model of MOS differential pair, (b) simplified circuit.
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With node P acting as a virtual ground, the concept of half circuit applies, leading to
the simplified topology in Fig. 10.33(b). Here,

vout1 = −gmRDvin1 (10.157)

vout2 = −gmRDvin2, (10.158)

and, therefore,

vout1 − vout2

vin1 − vin2

= −gmRD. (10.159)

Example

10.21
Prove that Eq. (10.151) can also yield the differential voltage gain.

Solution Since Vout1 − Vout2 = −RD(ID1 − ID2) and since gm = √
μnCox(W/L)ISS (why?), we have

from Eq. (10.151)

Vout1 − Vout2 = −RD

√
μnCox

W
L

ISS(Vin1 − Vin2) (10.160)

= −gmRD(Vin1 − Vin2). (10.161)

This is, of course, to be expected. After all, small-signal operation simply means approx-
imating the input/output characteristic [Eq. (10.142)] with a straight line [Eq. (10.151)]
around an operating point (equilibrium).

Exercise Using the equation gm = 2ID/(VGS − VTH), express the above result in terms of the equi-
librium overdrive voltage.

As with the bipolar circuits studied in Examples 10.10 and 10.14, the analysis of MOS
differential topologies is greatly simplified if virtual grounds can be identified. The follow-
ing examples reinforce this concept.

Example

10.22
Determine the voltage gain of the circuit shown in Fig. 10.34(a). Assume λ �= 0.
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V
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(b)

M M3 4

Vout
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M 3

(a)

in1v
vout1

Figure 10.34
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Solution Drawing the half circuit as in Fig. 10.34(b), we note that the total resistance
seen at the drain of M1 is equal to (1/gm3)||rO3||rO1. The voltage gain is therefore equal to

Av = −gm1

(
1

gm3

||rO3||rO1

)
. (10.162)

Exercise Repeat the above example if a resistance of value R1 is inserted in series with the sources
of M3 and M4.

Example

10.23
Assuming λ = 0, compute the voltage gain of the circuit illustrated in Fig. 10.35(a).
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P
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V
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SS2I SS1
v in1

vout1

M 1 M 2

Figure 10.35

Solution Identifying both nodes P and Q as virtual grounds, we construct the half circuit shown
in Fig. 10.35(b), and write

Av = −gm1

gm3

. (10.163)

Exercise Repeat the above example if λ �= 0.

Example

10.24
Assuming λ = 0, calculate the voltage gain of the topology shown in Fig. 10.36(a).
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Figure 10.36



10.4 Cascode Differential Amplifiers 433

Solution Grounding the midpoint of RSS and RDD, we obtain the half circuit in Fig. 10.36(b),
where

Av = −
RDD

2
RSS

2
+ 1

gm

. (10.164)

Exercise Repeat the above example if the load current sources are replaced with diode-connected
PMOS devices.

10.4 CASCODE DIFFERENTIAL AMPLIFIERS

Recall from Chapter 9 that cascode stages provide a substantially higher voltage gain than
simple CE and CS stages do. Noting that the differential gain of differential pairs is equal
to the single-ended gain of their corresponding half circuits, we surmise that cascoding
boosts the gain of differential pairs as well.

We begin our study with the structure depicted in Fig. 10.37(a), whereQ3 andQ4 serve
as cascode devices and I1 and I2 are ideal. Recognizing that the bases of Q3 and Q4 are
at ac ground, we construct the half circuit shown in Fig. 10.37(b). Equation (9.51) readily
gives the gain as

Av = −gm1[gm3(rO1||rπ3)rO3 + rO1||rπ3], (10.165)

confirming that a differential cascode achieves a much higher gain.
The developments in Chapter 9 also suggest the use of pnp cascodes for current sources

I1 and I2 in Fig. 10.37(a). Illustrated in Fig. 10.38(a), the resulting configuration can be
analyzed with the aid of its half circuit, Fig. 10.38(b). Utilizing Eq. (9.61), we express the
voltage gain as

Av ≈ −gm1[gm3rO3(rO1||rπ3)]||[gm5rO5(rO7||rπ5)]. (10.166)
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Figure 10.37 (a) Bipolar cascode differential pair, (b) half circuit of (a).
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Figure 10.38 (a) Bipolar cascode differential pair with cascode loads, (b) half circuit of (a).

Called a “telescopic cascode,” the topology of Fig. 10.38(b) exemplifies the internal circuit
of some operational amplifiers.

Example

10.25
Due to a manufacturing defect, a parasitic resistance has appeared between nodes A
and B in the circuit of Fig. 10.39(a). Determine the voltage gain of the circuit.
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Figure 10.39
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Solution The symmetry of the circuit implies that the midpoint of R1 is a virtual ground, leading to
the half circuit shown in Fig. 10.39(b). Thus, R1/2 appears in parallel with rO7, lowering
the output impedance of the pnp cascode. Since the value of R1 is not given, we cannot
make approximations and must return to the original expression for the cascode output
impedance, Eq. (9.1):

Rop =
[

1 + gm5

(
rO7||rπ5||R1

2

)]
rO5 + rO7||rπ5||R1

2
. (10.167)

The resistance seen looking down into the npn cascode remains unchanged and approx-
imately equal to gm3rO3(rO1||rπ3). The voltage gain is therefore equal to

Av = −gm1[gm3rO3(rO1||rπ3)]||Rop. (10.168)

Exercise If β = 50 and VA = 4 V for all transistors and IEE = 1 mA, what value of R1 degrades the
gain by a factor of two?
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Figure 10.40 (a) MOS cascode differential pair, (b) half circuit of (a).

We now turn our attention to differential MOS cascodes. Following the above devel-
opments for bipolar counterparts, we consider the simplified topology of Fig. 10.40(a) and
draw the half circuit as depicted in Fig. 10.40(b). From Eq. (9.69),

Av ≈ −gm3rO3gm1rO1. (10.169)

Illustrated in Fig. 10.41(a), the complete CMOS telescopic cascode amplifier in-
corporates PMOS cascades as load current sources, yielding the half circuit shown in
Fig. 10.41(b). It follows from Eq. (9.72) that the voltage gain is given by

Av ≈ −gm1[(gm3rO3rO1)||(gm5rO5rO7)]. (10.170)
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Figure 10.41 (a) MOS telescopic cascode amplifier, (b) half circuit of (a).

Example

10.26
Due to a manufacturing defect, two equal parasitic resistances, R1 and R2, have appeared
as shown in Fig. 10.42(a). Compute the voltage gain of the circuit.

Solution Noting that R1 and R2 appear in parallel with rO5 and rO6, respectively, we draw the half
circuit as depicted in Fig. 10.42(b). Without the value of R1 given, we must resort to the
original expression for the output impedance, Eq. (9.3):

Rp = [1 + gm5(rO5||R1)]rO7 + rO5||R1. (10.171)

The resistance seen looking into the drain of the NMOS cascode can still be approximated
as

Rn ≈ gm3rO3rO1. (10.172)

The voltage gain is then simply equal to

Av = −gm1(Rp||Rn). (10.173)
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Figure 10.42

Exercise Repeat the above example if in addition to R1 and R2, a resistor of value R3 appears
between the sources of M3 and M4.
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10.5 COMMON-MODE REJECTION

In our study of bipolar and MOS differential pairs, we have observed that these circuits
produce no change in the output if the input CM level changes. The common-mode rejec-
tion property of differential circuits plays a critical role in today’s electronic systems. As
the reader may have guessed, in practice the CM rejection is not infinitely high. In this
section, we examine the CM rejection in the presence of nonidealities.

The first nonideality relates to the output impedance of the tail current source. Con-
sider the topology shown in Fig. 10.43(a), where REE denotes the output impedance of IEE.
What happens if the input CM level changes by a small amount? The symmetry requires
that Q1 and Q2 still carry equal currents and Vout1 = Vout2. But, since the base voltages of
bothQ1 andQ2 rise, so does VP. In fact, noting that Vout1 = Vout2, we can place a short circuit
between the output nodes, reducing the topology to that shown in Fig. 10.43(b). That is, as
far as node P is concerned, Q1 and Q2 operate as an emitter follower. As VP increases, so
does the current through REE and hence the collector currents ofQ1 andQ2. Consequently,
the output common-mode level falls. The change in the output CM level can be computed
by noting that the stage in Fig. 10.43(b) resembles a degenerated CE stage. That is, from
Chapter 5,

�Vout,CM

�Vin,CM
= −

RC

2

REE + 1

2gm

(10.174)

= − RC

2REE + g−1
m

, (10.175)

where the term 2gm represents the transconductance of the parallel combination of Q1

and Q2. This quantity is called the “common-mode gain.” These observations apply to
the MOS counterpart equally well. An alternative approach to arriving at Eq. (10.175) is
outlined in Problem 10.65.

In summary, if the tail current exhibits a finite output impedance, the differential
pair produces an output CM change in response to an input CM change. The reader
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Figure 10.43 (a) CM response of differential pair in the presence of finite tail impedance,

(b) simplified circuit of (a).
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Figure 10.44 (a) Differential pair sensing input CM noise, (b) effect of CM noise at output with

REE = ∞, (c) effect of CM noise at the output with REE �= ∞.

may naturally wonder whether this is a serious issue. After all, so long as the quantity of
interest is the difference between the outputs, a change in the output CM level introduces
no corruption. Figure 10.44(a) illustrates such a situation. Here, two differential inputs, Vin1

and Vin2, experience some common-mode noise, Vin,CM. As a result, the base voltages ofQ1

and Q2 with respect to ground appear as shown in Fig. 10.44(b). With an ideal tail current
source, the input CM variation would have no effect at the output, leading to the output
waveforms shown in Fig. 10.44(b). On the other hand, with REE < ∞, the single-ended
outputs are corrupted, but not the differential output [Fig. 10.44(c)].

In summary, the above study indicates that, in the presence of input CM noise, a finite
CM gain does not corrupt the differential output and hence proves benign.4 However,
if the circuit suffers from asymmetries and a finite tail current source impedance, then
the differential output is corrupted. During manufacturing, random “mismatches” appear
between the two sides of the differential pair; for example, the transistors or the load
resistors may display slightly different dimensions. Consequently, the change in the tail
current due to an input CM variation may affect the differential output.

As an example of the effect of asymmetries, we consider the simple case of load resistor
mismatch. Depicted in Fig. 10.45(a) for a MOS pair,5 this imperfection leads to a difference
between Vout1 and Vout2. We must compute the change in ID1 and ID2 and multiply the result
by RD and RD + �RD.

4Interestingly, older literature has considered this effect troublesome.
5We have chosen a MOS pair here to show that the treatment is the same for both technologies.
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Figure 10.45 MOS pair with asymmetric loads.

How do we determine the change in ID1 and ID2? Neglecting channel-length modula-
tion, we first observe that

ID1 = 1

2
μnCox

W
L

(VGS1 − VTH)
2

(10.176)

ID2 = 1

2
μnCox

W
L

(VGS2 − VTH)
2
, (10.177)

concluding that �ID1 must be equal to �ID2 because VGS1 = VGS2 and hence �VGS1 =
�VGS2. In other words, the load resistor mismatch does not impact the symmetry of currents
carried by M1 and M2.6 Writing �ID1 = �ID2 = �ID and �VGS1 = �VGS2 = �VGS, we
recognize that both �ID1 and �ID2 flow through RSS, creating a voltage change of 2�IDRSS

across it. Thus,

�VCM = �VGS + 2�IDRSS (10.178)

and, since �VGS = �ID/gm,

�VCM = �ID

(
1

gm
+ 2RSS

)
. (10.179)

That is,

�ID = �VCM

1

gm
+ 2RSS

. (10.180)

Produced by each transistor, this current change flows through both RD and RD + �RD,
thereby generating a differential output change of

�Vout = �Vout1 − �Vout2 (10.181)

= �IDRD − �ID(RD + �RD) (10.182)

= −�ID · �RD (10.183)

= − �VCM

1

gm
+ 2RSS

�RD. (10.184)

6But with λ �= 0, it would.
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It follows that ∣∣∣∣ �Vout

�VCM

∣∣∣∣ = �RD

1

gm
+ 2RSS

. (10.185)

(This result can also be obtained through small-signal analysis.) We say the circuit ex-
hibits “common mode to differential mode (DM) conversion” and denote the above gain
by ACM−DM. In practice, we strive to minimize this corruption by maximizing the output
impedance of the tail current source. For example, a bipolar current source may employ
emitter degeneration and a MOS current source may incorporate a relatively long transis-
tor. It is therefore reasonable to assume RSS � 1/gm and

ACM−DM ≈ �RD

2RSS
. (10.186)

Example

10.27
Determine ACM−DM for the circuit shown in Fig. 10.46. Assume VA = ∞ for Q1 and Q2.
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Figure 10.46

Solution Recall from Chapter 5 that emitter degeneration raises the output impedance to

Rout3 = [1 + gm3(R1||rπ3)]rO3 + R1||rπ3. (10.187)

Replacing this value for RSS in Eq. (10.186) yields

ACM−DM = �RC

1

gm1

+ 2{[1 + gm3(R1||rπ3)]rO3 + R1||rπ3}
. (10.188)

Exercise Calculate the above result if R1 → ∞.

The mismatches between the transistors in a differential pair also lead to CM-DM
conversion. This effect is beyond the scope of this book [1].
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While undesirable, CM-DM conversion cannot be simply quantified by ACM−DM. If
the circuit provides a large differential gain, ADM, then the relative corruption at the output
is small. We therefore define the “common-mode rejection ratio” (CMRR) as

CMRR = ADM

ACM−DM
. (10.189)

Representing the ratio of “good” to “bad,” CMRR serves as a measure of how much wanted
signal and how much unwanted corruption appear at the output if the input consists of a
differential component and common-mode noise.

Example

10.28
Calculate the CMRR of the circuit in Fig. 10.46.

Solution For small mismatches (e.g., 1%), �RC 
 RC , and the differential gain is equal to gm1RC .
Thus,

CMRR = gm1RC

�RC

{
1

gm1

+ 2[1 + gm3(R1||rπ3)]rO3 + 2(R1||rπ3)

}
. (10.190)

Exercise Determine the CMRR if R1 → ∞.

10.6 DIFFERENTIAL PAIR WITH ACTIVE LOAD

In this section, we study an interesting combination of differential pairs and current mirrors
that proves useful in many applications. To arrive at the circuit, let us first address a problem
encountered in some cases.

Recall that the op amps used in Chapter 8 have a differential input but a single-ended
output [Fig. 10.47(a)]. Thus, the internal circuits of such op amps must incorporate a stage

outV
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(a)
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RRC C

outV
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(b)

Figure 10.47 (a) Circuit with differential input and single-ended output, (b) possible

implementation of (a).
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that “converts” a differential input to a single-ended output. We may naturally consider
the topology shown in Fig. 10.47(b) as a candidate for this task. Here, the output is sensed
at node Y with respect to ground rather than with respect to node X.7 Unfortunately, the
voltage gain is now halved because the signal swing at node X is not used.

We now introduce a topology that serves the task of “differential to single-ended”
conversion while resolving the above issues. Shown in Fig. 10.48, the circuit employs a
symmetric differential pair, Q1-Q2, along with a current-mirror load, Q3-Q4. (Transistors
Q3 and Q4 are also identical.) The output is sensed with respect to ground.
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I EE

Vin1 Vin2

CC

QQ 3 4

outV

N

Figure 10.48 Differential pair with active load.

10.6.1 Qualitative Analysis

It is instructive to first decompose the circuit of Fig. 10.48 into two sections: the input
differential pair and the current-mirror load. As depicted in Fig. 10.49(a) (along with
a fictitious load RL), Q1 and Q2 produce equal and opposite changes in their collector
currents in response to a differential change at the input, creating a voltage change of
�IRL across RL. Now consider the circuit in Fig. 10.49(b) and suppose the current drawn
from Q3 increases from IEE/2 to IEE/2 + �I. What happens? First, since the small-signal
impedance seen at node N is approximately equal to 1/gm3, VN changes by �I/gm3 (for
small �I). Second, by virtue of current mirror action, the collector current of Q4 also
increases by �I. As a result, the voltage across RL changes by �IRL.
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Figure 10.49 (a) Response of input pair to input change, (b) response of active load to

current change.

7In practice, additional stages precede this stage so as to provide a high gain.
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Figure 10.50 Detailed operation of pair with active load.

In order to understand the detailed operation of the circuit, we apply small, differ-
ential changes at the input and follow the signals to the output (Fig. 10.50). The load
resistor, RL, is added to augment our intuition but it is not necessary for the actual oper-
ation. With the input voltage changes shown here, we note that IC1 increases by some
amount �I and IC2 decreases by the same amount. Ignoring the role of Q3 and Q4

for the moment, we observe that the fall in IC2 translates to a rise in Vout because Q2

draws less current from RL. The output change can therefore be an amplified version
of �V.

Let us now determine how the change in IC1 travels through Q3 and Q4. Neglect-
ing the base currents of these two transistors, we recognize that the change in IC3 is
also equal to �I. This change is copied into IC4 by virtue of the current mirror ac-
tion. In other words, in response to the differential input shown in Fig. 10.50, IC1, |IC3|,
and |IC4| increase by �I. Since Q4 “injects” a greater current into the output node, Vout

rises.
In summary, the circuit of Fig. 10.50 contains two signal paths, one throughQ1 andQ2

and another through Q1, Q3 and Q4 [Fig. 10.51(a)]. For a differential input change, each
path experiences a current change, which translates to a voltage change at the output node.
The key point here is that the two paths enhance each other at the output; in the above
example, each path forces Vout to increase.

Our initial examination of Q3 and Q4 in Fig. 10.50 indicates an interesting difference
with respect to current mirrors studied in Chapter 9: here Q3 and Q4 carry signals in
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Figure 10.51 Signal paths in pair with active load.
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Figure 10.52 Differential pair with current-source loads.

addition to bias currents. This also stands in contrast to the current-source loads in
Fig. 10.52, where the base-emitter voltage of the load transistors remains constant and
independent of signals. Called an “active load” to distinguish it from the load transistors
in Fig. 10.52, the combination of Q3 and Q4 plays a critical role in the operation of the
circuit.

The foregoing analysis directly applies to the CMOS counterpart, shown in Fig. 10.53.
Specifically, in response to a small, differential input, ID1 rises to ISS/2 + �I and ID2 falls to
ISS/2 − �I. The change in ID2 tends to raise Vout. Also, the change in ID1 and ID3 is copied
into ID4, increasing |ID4| and raising Vout. (In this circuit, too, the current mirror transistors
are identical.)
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outV
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Figure 10.53 MOS differential pair with active load.

10.6.2 Quantitative Analysis

The existence of the signal paths in the differential to single-ended converter circuit sug-
gests that the voltage gain of the circuit must be greater than that of a differential topology
in which only one output node is sensed with respect to ground [e.g., Fig. 10.47(b)]. To
confirm this conjecture, we wish to determine the small-signal single-ended output, vout,
divided by the small-signal differential input, vin1 − vin2. We deal with a CMOS implemen-
tation here (Fig. 10.54) to demonstrate that both CMOS and bipolar versions are treated
identically.

The circuit of Fig. 10.54 presents a quandary. While the transistors themselves are
symmetric and the input signals are small and differential, the circuit is asymmetric. With
the diode-connected device, M3, creating a low impedance at node A, we expect a relatively
small voltage swing—on the order of the input swing—at this node. On the other hand,
transistors M2 and M4 provide a high impedance and hence a large voltage swing at the
output node. (After all, the circuit serves as an amplifier.) The asymmetry resulting from
the very different voltage swings at the drains of M1 and M2 disallows grounding node P
for small-signal analysis. We present two approaches to solving this circuit.
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Figure 10.54 MOS pair for small-signal analysis.

Approach I Without a half circuit available, the analysis can be performed through the
use of a complete small-signal model of the amplifier. Referring to the equivalent circuit
shown in Fig. 10.55, where the dashed boxes indicate each transistor, we perform the
analysis in two steps. In the first step, we note that iX and iY must add up to zero at node P
and hence iX = −iY . Also, vA = −iX(g−1

mP||rOP) and

−iY = vout

rOP
+ gmPvA (10.191)

= vout

rOP
− gmPiX

(
1

gmP

∣∣∣∣
∣∣∣∣rOP

)
(10.192)

= iX . (10.193)

Thus,

iX = vout

rOP

[
1 + gmP

(
1

gmP

∣∣∣∣
∣∣∣∣rOP

)] . (10.194)
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Figure 10.55 Small-signal equivalent circuit of differential pair with active load.

In the second step, we write a KVL around the loop consisting of all four transistors. The
current through rON of M1 is equal to iX − gmNv1 and that through rON of M2 equal to
iY − gmNv2. It follows that

−vA + (iX − gmNv1)rON − (iY − gmNv2)rON + vout = 0. (10.195)

Since v1 − v2 = vin1 − vin2 and iX = −iY ,

−vA + 2iXrON − gmNrON(vin1 − vin2) + vout = 0. (10.196)
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Substituting for vA and iX from above, we have

vout

rOP

[
1 + gmP

(
1

gmP

∣∣∣∣
∣∣∣∣rOP

)] (
1

gmP

∣∣∣∣
∣∣∣∣rOP

)
+ 2rON

vout

rOP

[
1 + gmP

(
1

gmP

∣∣∣∣
∣∣∣∣rOP

)]

+ vout = gmNrON(vin1 − vin2). (10.197)

Solving for vout yields

vout

vin1 − vin2

= gmNrON

rOP

[
1 + gmP

(
1

gmP

∣∣∣∣
∣∣∣∣rOP

)]
2rON + 2rOP

. (10.198)

This is the exact expression for the gain. If gmPrOP � 1, then

vout

vin1 − vin2

= gmN(rON||rOP). (10.199)

The gain is indepedent of gmP and equal to that of the fully-differential circuit. In other
words, the use of the active load has restored the gain.

Approach II∗ In this approach, we decompose the circuit into sections that more easily
lend themselves to analysis by inspection. As illustrated in Fig. 10.56(a), we first seek a
Thevenin equivalent for the section consisting of vin1, vin2, M1 and M2, assuming vin1 and
vin2 are differential. Recall that vThev is the voltage between A and B in the “open-circuit
condition” [Fig. 10.56(b)]. Under this condition, the circuit is symmetric, resembling the
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Figure 10.56 (a) Thevenin equivalent, (b) Thevenin voltage, and (c) Thevenin resistance of input

pair.
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topology of Fig. 10.16(a). Equation (10.92) thus yields

vThev = −gmNrON(vin1 − vin2), (10.200)

where the subscript N refers to NMOS devices.
To determine the Thevenin resistance, we set the inputs to zero and apply a voltage

between the output terminals [Fig. 10.56(c)]. Noting that M1 and M2 have equal gate-source
voltages (v1 = v2) and writing a KVL around the “output” loop, we have

(iX − gm1v1)rO1 + (iX + gm2v2)rO2 = vX (10.201)

and hence

RThev = 2rON . (10.202)

The reader is encouraged to obtain this result using half circuits as well.
Having reduced the input sources and transistors to a Thevenin equivalent, we now

compute the gain of the overall amplifier. Figure 10.57 depicts the simplified circuit, where
the diode-connected transistor M3 is replaced with (1/gm3)||rO3 and the output impedance
of M4 is drawn explicitly. The objective is to calculate vout in terms of vThev. Since the voltage
at node E with respect to ground is equal to vout + vThev, we can view vA as a divided version
of vE:

vA =
1

gm3

∣∣∣∣
∣∣∣∣rO3

1

gm3

∣∣∣∣
∣∣∣∣rO3 + RThev

(vout + vThev). (10.203)

Given by gm4vA, the small-signal drain current of M4 must satisfy KCL at the output
node:

gm4vA + vout

rO4

+ vout + vThev

1

gm3

∣∣∣∣
∣∣∣∣rO3 + RThev

= 0, (10.204)
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M 4

out

RThev Thevv
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E

Figure 10.57 Simplified circuit for calculation of voltage gain.

where the last term on the left-hand side represents the current flowing through RThev. It
follows from Eqs. (10.204) and (10.205) that

⎛
⎜⎜⎝gm4

1

gm3

∣∣∣∣
∣∣∣∣rO3

1

gm3

∣∣∣∣
∣∣∣∣rO3 + RThev

+ 1

1

gm3

∣∣∣∣
∣∣∣∣rO3 + RThev

⎞
⎟⎟⎠ (vout + vThev) + vout

rO4

= 0. (10.205)

∗This section can be skipped in a first reading.
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Recognizing that 1/gm3 
 rO3, and 1/gm3 
 RThev and assuming gm3 = gm4 = gmp and
rO3 = rO4 = rOP, we reduce Eq. (10.206) to

2

RThev
(vout + vThev) + vout

rOP
= 0. (10.206)

Equations (10.201) and (10.207) therefore give

vout

(
1

rON
+ 1

rOP

)
= gmNrON(vin1 − vin2)

rON
(10.207)

and hence

vout

vin1 − vin2

= gmN(rON||rOP). (10.208)

The gain is independent of gmp. Interestingly, the gain of this circuit is the same as
the differential gain of the topology in Fig. 10.51(b). In other words, the path through the
active load restores the gain even though the output is single-ended.

Example

10.29
In our earlier observations, we surmised that the voltage swing at node A in Fig. 10.56 is
much less than that at the output. Prove this point.

Solution As depicted in Fig. 10.58, KCL at the output node indicates that the total current drawn
by M2 must be equal to −vout/rO4 − gm4vA. This current flows through M1 and hence
through M3, generating

vA = −(vout/rO4 + gm4vA)

(
1

gm3

∣∣∣∣
∣∣∣∣rO3

)
. (10.209)
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Figure 10.58

That is,

vA ≈ − vout

2gmPrOP
, (10.210)

revealing that vA is indeed much less that vout.

Exercise Calculate the voltage gain from the differential input to node A.
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P R O B L E M S

10.1. To calculate the effect of ripple at the
output of the circuit in Fig. 10.1, we can
assume VCC is a small-signal “input” and
determine the (small-signal) gain from
VCC to Vout. Compute this gain, assuming
VA < ∞.

10.2. Repeat Problem 10.1 for the stages shown
in Fig. 10.59. Assume VA < ∞ and λ > 0.

10.3. Find output voltages at X and Y for cir-
cuits in Fig. 10.60 for I1 = I0 cos ωt + I0,
I2 = −I0 cos ωt + I0. Determine peak-to-
peak voltages and common-mode level.

10.4. Repeat Problem 10.3 for the circuit de-
picted in Fig. 10.61. Also, plot the voltage
at node P as a function of time.

10.5. Repeat Problem 10.3 for the topology
shown in Fig. 10.62.

10.6. Repeat Problem 10.3 for the topology
shown in Fig. 10.63.

10.7. Determine common-mode level voltage
for Fig. 10.64. RC1

= RC2
= 1 k�, Q1 and

Q2 are identical; VCC = 5 V, IC = 2 mA;
(a) In absence of signals (b) In presence
of signals with Vin1

= Vin2
.
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outV

V

RS

M 1

VDD

inV

RS

outV

Q1

I EE

V

outV

VCC

in

(d)(c)(a) (b)

Figure 10.59
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R

V

X

CC

CRC

I 2I 1

Y

Figure 10.62
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Figure 10.65

10.8. Assuming* V1 = V0 cos ωt + V0 and V2 =
−V0 cos ωt + V0, plot VP as a function of
time for the circuits shown in Fig. 10.65.
Assume IT is constant.

10.9. In Fig. 10.7, IEE experiences a change of
�I. How do VX , VY , and VX − VY change?

10.10. Consider the circuit of Fig. 10.9(a) and
assume IEE = 1 mA. What is the maximum
allowable value of RC ifQ1 must remain in
the active region?

10.11. In the circuit of Fig. 10.9(b), RC = 500 �.
What is the maximum allowable value of
IEE ifQ2 must remain in the active region?

10.12. What happens to the characteristics
depicted in Fig. 10.10 if (a) IEE is halved,
(b) VCC rises by �V, or (c) RC is halved?

10.13. In the circuit of Fig. 10.12, the small-signal
transconductance of Q2 falls as Vin1 − Vin2

rises because IC2 decreases. Using
Eq. (10.58), determine the input differ-
ence at which the transconductance of Q2

drops by a factor of 2.

10.14. Suppose the input differential signal
applied to a bipolar differential pair must
not change the transconductance (and
hence the bias current) of each transis-
tor by more than 10%. From Eq. (10.58),
determine the maximum allowable input.

10.15. It is* possible to define a differential
transconductance for the bipolar differen-
tial pair of Fig. 10.12:

Gm = ∂(IC1 − IC2)

∂(Vin1 − Vin2)
. (10.212)

From Eqs. (10.58) and (10.60), compute
Gm and plot the result as a function of
Vin1 − Vin2. What is the maximum value of

Gm? At what value of Vin1 − Vin2 does Gm

drop by a factor of two with respect to its
maximum value?

10.16. With* the aid of Eq. (10.78), we can com-
pute the small-signal voltage gain of the
bipolar differential pair:

Av = ∂(Vout1 − Vout2)

∂(Vin1 − Vin2)
. (10.213)

Determine the gain and compute its value
if Vin1 − Vin2 contains a dc component of
30 mV.

10.17. In** Example 10.9, RC = 500 �, IEE = 1 mA,
and VCC = 2.5 V. Assume

Vin1 = V0 sin ωt + VCM (10.214)

Vin2 = −V0 sin ωt + VCM, (10.215)

where VCM = 1 V denotes the input
common-mode level.
(a) If V0 = 2 mV, plot the output wave-

forms (as a function of time).

(b) If V0 = 50 mV, determine the time t1
at which one transistor carries 95% of
the tail current. Plot the output wave-
forms.

10.18. The** study in Example 10.9 suggests that a
differential pair can convert a sinusoid to
a square wave. Using the circuit parame-
ters given in Problem 10.17, plot the out-
put waveforms if V0 = 80 mV or 160 mV.
Explain why the output square wave be-
comes “sharper” as the input amplitude
increases.

10.19. Repeat the small-signal analysis of
Fig. 10.15 for the circuit shown in Fig. 10.66.
(First, prove that P is still a virtual
ground.)
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QQ1 2
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V

I EE
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CRC

REE

Vout

Figure 10.66

10.20. For Fig. 10.67, RC = 40 k�, RE = 8 k�,
rS = 9 k�, β = 2200, R0 = 400 k� (for
transistor) and resistances (rbb + rπ ) in
model = 45 k�. Find differential voltage
gain.

VCC

RCRC

Q1 Q2

RE

rSrS

Vin1 Vin2

V01 02V

E

c1I c2I

EI

Figure 10.67

10.21. For Fig. 10.67 with all the data same
as Problem 10.20, calculate the common-
mode voltage gain, and determine CMKR.

10.22. All transistors in Fig. 10.68 are having
β = 90, Ri = 25 � = hie, at IC = 1.2 mA
circuit has CMRR 120. Determine dif-
ferential gain and common-mode gain of
circuit.

RCRC

Q1 Q2Vin1 Vin2

5 V

–5 V

1 k

3 mA

Vout

Q3

RE R

1 k

Figure 10.68

10.23. Assuming** perfect symmetry and VA < ∞,
compute the differential voltage gain of
each stage depicted in Fig. 10.69.
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10.24. Consider* the differential pair illustrated in
Fig. 10.70. Assuming perfect symmetry and
VA = ∞,
(a) Determine the voltage gain.

(b) Under what condition does the gain
become independent of the tail cur-
rents? This is an example of a very lin-
ear circuit because the gain does not
vary with the input or output signal
levels.

QQ

R

V

Vin1 Vin2

CC

CRC

outV

R E I EEI EE

Q Q3

1 2

4

Figure 10.70

10.25. Assuming perfect symmetry and VA < ∞,
compute the differential voltage gain of
each stage depicted in Fig. 10.71. You may
need to compute the gain as Av =−GmRout

in some cases.

10.26. Consider the MOS differential pair of
Fig. 10.24. What happens to the tail node
voltage if (a) the width of M1 and M2 is
doubled, (b) ISS is doubled, (c) the gate
oxide thickness is doubled?

10.27. In the MOS differential pair of Fig. 10.24,
VCM = 1 V, ISS = 1 mA, and RD = 1 k�.

What is the minimum allowable supply
voltage if the transistors must remain in
saturation? Assume VTH,n = 0.5 V.

10.28. For a NMOS differential pair providing
voltage gain of 7, and RD (drain resistance)
of 400 �, (W/L) ratio of 1400, λ = 0, and
VDD = 2 V, find minimum common-mode
input voltage level.

10.29. What will be the maximum allowable
input common-mode input voltage for
VTh = 0.38 V?

10.30. An adventurous student constructs the
circuit shown in Fig. 10.72 and calls it
a “differential amplifier” because ID ∝
(Vin1 − Vin2). Explain which aspects of
our differential signals and amplifiers this
circuit violates.

RD

DD

M

V

Vin21
Vin1

outV

Figure 10.72

10.31. NMOS differential amplifier biased at
0.5 mA, transistors with (W/L) ratio
of 40, K

′
n = 100 μA/V2, VA = 12 V,

RD = 10 k�, find (VGS − Vt ), gm, r0 and
differential voltage gain.

10.32. Examine Eq. (10.134) for the following
cases: (a) ID1 = 0, (b) ID1 = ISS/2, and
(c) ID1 = ISS. Explain the significance of
these cases.
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Figure 10.71
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10.33. Prove that the right-hand side of Eq.
(10.139) is always negative if the solution
with the negative sign is considered.

10.34. From Eq. (10.142), determine the value
of Vin1 − Vin2 such that ID1 − ID2 = ISS.
Verify that is result is equal to

√
2 times

the equilibrium overdrive voltage.

10.35. From Eq. (10.142), compute the small-
signal transconductance of a MOS differ-
ential pair, defined as

Gm = ∂(ID1 − ID2)

∂(Vin1 − Vin2)
. (10.216)

Plot the result as a function of Vin1 − Vin2

and determine its maximum value.

10.36. Suppose** a new type of MOS transistor has
been invented that exhibits the following
I-V characteristic:

ID = γ (VGS − VTH)
3
, (10.217)

where γ is a proportionality factor. Fig-
ure 10.73 shows a differential pair employ-
ing such transistors.

V

RD

1

I SS

RD

VDD

2

out

Vin1 Vin2
TT

Figure 10.73

(a) What similarities exist between this cir-
cuit and the standard MOS differential
pair?

(b) Calculate the equilibrium overdrive
voltage of T1 and T2.

(c) At what value of Vin1 − Vin2 does one
transistor turn off?

10.37. Using* the result obtained in Problem
10.35, calculate the value of Vin1 − Vin2 at
which the transconductance drops by a
factor of 2.

10.38. Explain* what happens to the character-
istics shown in Fig. 10.31 if (a) the gate

oxide thickness of the transistor is doubled,
(b) the threshold voltage is halved, (c) ISS

and W/L are halved.

10.39. Assuming* that the mobility of carriers falls
at high temperatures, explain what hap-
pens to the characteristics of Fig. 10.31 as
the temperature rises.

10.40. For Fig. 10.74, find voltage gain assuming
λ3 = λ1 = 0.01 V−1 and Id3

= Id4
= 1 mA

all gm’s = 0.1 mS.

VDD

M3 M4

M1 M2

Vout

Vin2Vin1

ISS

Figure 10.74

10.41. Calculate voltage gain of circuit in
Fig. 10.75 for given data K

′
n = μm Cox =

100 μA/v2; biasing VGS1
= VGS2

= 1.1 V,
VTh = 0.4 V.

VDD

Q

M1 M3Vin1 Vin2M4 M2

Vout

P
ISS1 ISS2
1.5 mA 1 mA

5/1 5/13/1 3/1

(5 V)

Figure 10.75

10.42. For Fig. 10.76, draw small-signal model
when common-mode signal is applied to
V1 and V2. Determine small-signal param-
eters. Vref provides bias current of 2.5 mA
to nFET current source transistors when
biased in saturation.

VT = 0.4 V, VA = 50 V, K
′
n = 40 mA/V2
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VDD

M5 M3

M1

M4

M2

M6

V1 V2
2/1

W/L = 2/1

W/L = 2 /1Vref

W/L = 3/1W/L = 3/1

Figure 10.76

10.43. The cascode differential pair of Fig.
10.37(a) must achieve a voltage gain of
4000. If Q1–Q4 are identical and β = 100,
what is the minimum required Early
voltage?

10.44. For Fig. 10.42 (a), find the voltage gain
if R1 = R2 = 5 k� gm5 = 0.01 S, all o/p
resistances of transistors (r0) = 300 k�,
gm3 = 0.01 S.

10.45. Repeat Problem 10.44 for the circuit
shown in Fig. 10.77.
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I EE

Vin1 Vin2

Vb
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VCC

Vout

3
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Vb

Q4

Figure 10.77

10.46. A student** has mistakenly used pnp
cascode transistors in a differential pair
as illustrated in Fig. 10.78. Calculate
the voltage gain of the circuit. (Hint:
Av = −GmRout.)
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Figure 10.78

10.47. Calculate* the voltage gain of the degen-
erated pair depicted in Fig. 10.79. (Hint:
Av = −GmRout.)
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Vout
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Figure 10.79

10.48. Realizing* that the circuit of Fig. 10.78 suf-
fers from a low gain, the student makes the
modification shown in Fig. 10.80. Calculate
the voltage gain of this topology.
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Vout
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10.49. The** telescopic cascode of Fig. 10.38 is to
operate as an op amp having an open-
loop gain of 800. If Q1-Q4 are identical
and so are Q5-Q8, determine the min-
imum allowable Early voltage. Assume
βn = 2βp = 100 and VA,n = 2VA,p.

10.50. For Fig. 10.81, MOSFET differential am-
plifier with Cascode active load, determine
differential mode voltage gain.

VTN = 0.4 V, k
′

n = 100 μA/v2

λN = 0.02 V−1 (W/L)n = 15

VTP = −0.4 V, K
′

p = 50 μA/v2

λP = 0.02 V−1. VDD = 5 V

IQ = 250 μA

IQ

V2V1 M1 M2

M3

M5

M4

M6

VDD

Vout
R01
R02

Figure 10.81

10.51. A student** adventurously modifies a
CMOS telescopic cascode as shown in
Fig. 10.82, where the PMOS cascode tran-
sistors are replaced with NMOS devices.
Assuming λ > 0, compute the voltage gain
of the circuit. (Hint: the impedance seen
looking into the source of M5 or M6 is not
equal to 1/gm||rO.)

10.52. The MOS telescopic cascode of Fig.
10.41(a) is designed for a voltage gain
of 200 with a tail current of 1 mA. If
μnCox = 100 μA/V2, μpCox = 50 μA/V2,
λn = 0.1 V−1, and λp = 0.2 V−1, determine
(W/L)1 = · · · = (W/L)8.
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Vout
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M 7

M 5 M 6

M 8

b3

Figure 10.82

10.53. Consider the circuit of Fig. 10.43(a) and re-
place REE with two parallel resistors equal
to 2REE places on the two sides of the cur-
rent source. Now draw a vertical line of
symmetry through the circuit and decom-
pose it to two common-mode half circuits,
each having a degeneration resistor equal
to 2REE. Prove that Eq. (10.175) still holds.

10.54. The bipolar differential pair depicted in
Fig. 10.83 must exhibit a common-mode
gain of less than 0.01. Assuming VA = ∞
for Q1 and Q2 but VA < ∞ for Q3, prove
that

RC IC < 0.02(VA + VT). (10.218)
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out1 out2
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v v
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10.55. Compute* the common-mode gain of the
MOS differential pair shown in Fig. 10.84.
Assume λ = 0 for M1 and M2 but λ �= 0 for
M3. Prove

ACM = −RDISS

2

λ
+ (VGS − VTH)eq.

, (10.219)
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where (VGS − VTH)eq. denotes the equilib-
rium overdrive of M1 and M2.

RD

M 1

RD

DD
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M 3
Vb

Figure 10.84

10.56. For Fig. 10.75, determine common-mode
voltage gain, different mode gain and
CMRR ratio.

10.57. Repeat Problem 10.56 for the circuits
shown in Fig. 10.86.

10.58. Compute* the common-mode rejection
ratio of the stages illustrated in Fig. 10.86
and compare the results. For simplicity,
neglect channel-length modulation in M1

and M2 but not in other transistors.

10.59. Explain how voltage gain is further im-
proved in Fig. 10.87 compared to Fig. 10.81
in Problem 10.50.
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10.60. Analyze Fig. 10.88 BJT differential am-
plifier with active load for common-mode
signal.
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Figure 10.88

10.61. Neglecting channel-length modulation,
compute the small-signal gains vout/i1 and
vout/i2 in Fig. 10.89.
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M 3 M 4

I 1 I 2
RL

outV

Figure 10.89

10.62. Consider** the circuit of Fig. 10.90, where the
inputs are tied to a common-mode level.
Assume M1 and M2 are identical and so
are M3 and M4.

(a) Neglecting channel-length modula-
tion, calculate the voltage at node N.

(b) Invoking symmetry, determine the
voltage at node Y.

(c) What happens to the results obtained
in (a) and (b) if VDD changes by a small
amount �V?
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P
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SS

DDV

M3 M4

N Y

Figure 10.90

10.63. Figure 10.91 shows bipolar differential
amplifier with active load. Analyze the cir-
cuit for differential mode signal gain.
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Figure 10.91

10.64. Determine** the output impedance of
the circuit shown in Fig. 10.54. Assume
gmrO � 1.

Design Problems

10.65. The bipolar differential pair of Fig. 10.6(a)
must operate with an input common-mode
level of 1.2 V without driving the transis-
tors into saturation. Design the circuit for
maximum voltage gain and a power budget
of 3 mW. Assume VCC = 2.5 V.

10.66. The differential pair depicted in Fig. 10.92
must provide a gain of 5 and a power bud-
get of 4 mW. Moreover, the gain of the
circuit must change by less than 2% if
the collector current of either transistor
changes by 10%. Assuming VCC = 2.5 V
and VA = ∞, design the circuit. (Hint: a
10% change in IC leads to a 10% change
in gm.)
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Vin1 Vin2
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CRC

outV

R E I EEI EE

Figure 10.92
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10.67. Design the circuit of Fig. 10.93 for a gain of
50 and a power budget of 1 mW. Assume
VA,n = 6 V and VCC = 2.5 V.

1 2QQ
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Q4
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Vout
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Figure 10.93

10.68. Design the circuit of Fig. 10.94 for a gain of
100 and a power budget of 1 mW. Assume
VA,n = 10 V, VA,p = 5 V, and VCC = 2.5 V.
Also, R1 = R2.
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Figure 10.94

10.69. Design the MOS differential pair of
Fig. 10.29 for an equilibrium overdrive
voltage of 100 mV and a power budget
of 2 mW. Select the value of RD to place
the transistor at the edge of triode re-
gion for an input common-mode level of
1 V. Assume λ = 0, μnCox = 100 μA/V2,
VTH,n = 0.5 V, and VDD = 1.8 V. What is
the voltage gain of the resulting design?

10.70. The differential pair depicted in Fig.
10.95 must provide a gain of 40.
Assuming the same (equilibrium) over-
drive for all of the transistors and a
power dissipation of 2 mW, design the cir-
cuit. Assume λn = 0.1 V−1, λp = 0.2 V−1,

μnCox = 100 μA/V2, μpCox = 100 μA/V2,
and VDD = 1.8 V.
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out

Vin1 Vin2

M 4
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M 3
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Figure 10.95

10.71. Design the telescopic cascode of Fig.
10.38(a) for a voltage gain of 2000. Assume
Q1-Q4 are identical and so are
Q5-Q8. Also, βn = 100, βp = 50, VA,n =
5 V, VCC = 2.5 V, and the power budget is
2 mW.

10.72. The differential pair of Fig. 10.96 must
achieve a CMRR of 60 dB (= 1000).
Assume a power budget of 2 mW, a nomi-
nal differential voltage gain of 5, and ne-
glecting channel-length modulation in M1

and M2, compute the minimum required
λ for M3. Assume (W/L)1,2 = 10/0.18,

μnCox = 100 μA/V2, VDD = 1.8 V, and
�R/R = 2%.

R

V

P

R

out1 out2

M 1 M 2

D D DΔR+

DD

v v

MV

Vin1 Vin2

3b1

Figure 10.96

10.73. Design the circuit of Fig. 10.54 for a volt-
age gain of 20 and a power budget of
1 mW with VDD = 1.8 V. Assume M1 op-
erates at the edge of saturation if the input
common-mode level is 1 V. Also, μnCox =
2μpCox = 100 μA/V2, VTH,n = 0.5 V,
VTH,p = −0.4 V, λn = 0.5λp = 0.1 V−1.
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S P I C E P R O B L E M S

In the following problems, use the MOS device
models given in Appendix A. For bipolar tran-
sistors, assume IS,npn = 5 × 10−16 A, βnpn = 100,
VA,npn = 5 V, IS,pnp = 8 × 10−16 A, βpnp = 50,
VA,pnp = 3.5 V.

10.1. Consider the differential amplifier shown in
Fig. 10.97, where the input CM level is equal
to 1.2 V.
(a) Adjust the value of Vb so as to set the

output CM level to 1.5 V.

(b) Determine the small-signal differen-
tial gain of the circuit. (Hint: to pro-
vide differential inputs, use an indepen-
dent voltage source for one side and
a voltage-dependent voltage source for
the other.)

(c) What happens to the output CM level
and the gain if Vb varies by ±10 mV?

QQ1 2

V

I EE

Vin1 Vin2

CC

Q4
Vb

Vout

= 2.5 V

1 mA

Figure 10.97

10.2. The differential amplifier depicted in
Fig. 10.98 employs two current mirrors to
establish the bias for the input and load
devices. Assume W/L = 10 μm/0.18 μm for
M1-M6. The input CM level is equal to
1.2 V.
(a) Select (W/L)7 so as to set the output CM

level to 1.5 V. (Assume L7 = 0.18 μm.)

(b) Determine the small-signal differential
gain of the circuit.

(c) Plot the differential input/output char-
acteristic.

V

M 1 M 2

out

Vin1 Vin2

M 4
M 3

VDD
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 Ω1 k

M 6

M 7

= 1.8 V

Figure 10.98

10.3. Consider the circuit illustrated in Fig. 10.99.
Assume a small dc drop across R1 and R2.
(a) Select the input CM level to place Q1

and Q2 at the edge of saturation.

(b) Select the value of R1 (= R2) such that
these resistors reduce the differential
gain by no more than 20%.

QQ1 2

V

I EE

Vin1 Vin2

CC

Vout

Q

R1 R 2

3 Q4

=    2.5 V

1 mA

Figure 10.99

REFERENCE

1. B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.



Chapter 11
Frequency Response

The need for operating circuits at increasingly higher speeds has always challenged design-

ers. From radar and television systems in the 1940s to gigahertz microprocessors today, the

demand to push circuits to higher frequencies has required a solid understanding of their

speed limitations.

In this chapter, we study the effects that limit the speed of transistors and circuits,

identifying topologies that better lend themselves to high-frequency operation. We also

develop skills for deriving transfer functions of circuits, a critical task in the study of

stability and frequency compensation (12). We assume bipolar transistors remain in the

active mode and MOSFETs in the saturation region. The outline is shown below.

➤ ➤

Fundamental Concepts

• Bode’s Rules

• Association of Poles

with Nodes

• Miller’s Theorem

High-Frequency Models

of Transistors

• Bipolar Model

• MOS Model

• Transit Frequency

Frequency Response

of Circuits

• CE/CS Stages

• CB/CG Stages

• Followers

• Cascode Stage

• Differential Pair

11.1 FUNDAMENTAL CONCEPTS

11.1.1 General Considerations

What do we mean by “frequency response?” Illustrated in Fig. 11.1(a), the idea is to apply
a sinusoid at the input of the circuit and observe the output while the input frequency is
varied. As exemplified by Fig. 11.1(a), the circuit may exhibit a high gain at low frequen-
cies but a “roll-off” as the frequency increases. We plot the magnitude of the gain as in
Fig. 11.1(b) to represent the circuit’s behavior at all frequencies of interest. We may loosely
call f1 the useful bandwidth of the circuit. Before investigating the cause of this roll-off,

460
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f

A v

(a) (b)

Roll-Off

1f

Figure 11.1 (a) Conceptual test of frequency response, (b) gain roll-off with frequency.

we must ask: why is frequency response important? The following examples illustrate the
issue.

Example

11.1
Explain why people’s voices over the phone sound different from their voices in face-
to-face conversation.

Solution The human voice contains frequency components from 20 Hz to 20 kHz [Fig. 11.2(a)].
Thus, circuits processing the voice must accommodate this frequency range. Unfortu-
nately, the phone system suffers from a limited bandwidth, exhibiting the frequency
response shown in Fig. 11.2(b). Since the phone suppresses frequencies above 3.5 kHz,
each person’s voice is altered. In high-quality audio systems, on the other hand, the
circuits are designed to cover the entire frequency range.

f

(a) (b)

f20 Hz 20 kHz 3.5 kHz400 Hz

Figure 11.2

Exercise Whose voice does the phone system alter more, men’s or women’s?

Example

11.2
When you record your voice and listen to it, it sounds somewhat different from the way
you hear it directly when you speak. Explain why?

Solution During recording, your voice propagates through the air and reaches the audio recorder.
On the other hand, when you speak and listen to your own voice simultaneously, your
voice propagates not only through the air but also from your mouth through your skull
to your ear. Since the frequency response of the path through your skull is different
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from that through the air (i.e., your skull passes some frequencies more easily than
others), the way you hear your own voice is different from the way other people hear
your voice.

Exercise Explain what happens to your voice when you have a cold.

Example

11.3
Video signals typically occupy a bandwidth of about 5 MHz. For example, the graphics
card delivering the video signal to the display of a computer must provide at least 5 MHz
of bandwidth. Explain what happens if the bandwidth of a video system is insufficient.

Solution With insufficient bandwidth, the “sharp” edges on a display become “soft,” yielding
a fuzzy picture. This is because the circuit driving the display is not fast enough to
abruptly change the contrast from, e.g., complete white to complete black from one
pixel to the next. Figures 11.3(a) and (b) illustrate this effect for a high-bandwidth and
low-bandwidth driver, respectively. (The display is scanned from left to right.)

(a) (b)

Figure 11.3

Exercise What happens if the display is scanned from top to bottom?

What causes the gain roll-off in Fig. 11.1? As a simple example, let us consider the
low-pass filter depicted in Fig. 11.4(a). At low frequencies,C1 is nearly open and the current
through R1 nearly zero; thus, Vout = Vin. As the frequency increases, the impedance of C1

falls and the voltage divider consisting of R1 and C1 attenuates Vin to a greater extent. The
circuit therefore exhibits the behavior shown in Fig. 11.4(b).

As a more interesting example, consider the common-source stage illustrated in
Fig. 11.5(a), where a load capacitance, CL, appears at the output. At low frequencies,
the signal current produced by M1 prefers to flow through RD because the impedance of

R1

Cin outV1

outV

inV

f

1.0
V

Figure 11.4 (a) Simple low-pass filter, and (b) its frequency response.
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Vin

inV

RD

out

CL

V

Figure 11.5 (a) CS stage with load capacitance, (b) small-signal model of the circuit.

CL, 1/(CLs), remains high. At high frequencies, on the other hand,CL “steals” some of the
signal current and shunts it to ground, leading to a lower voltage swing at the output. In
fact, from the small-signal equivalent circuit of Fig. 11.5(b),1 we note that RD and CL are
in parallel and hence:

Vout = −gmVin

(
RD|| 1

CLs

)
. (11.1)

That is, as the frequency increases, the parallel impedance falls and so does the amplitude
of Vout.

2 The voltage gain therefore drops at high frequencies.
The reader may wonder why we use sinusoidal inputs in our study of frequency re-

sponse. After all, an amplifier may sense a voice or video signal that bears no resemblance
to sinusoids. Fortunately, such signals can be viewed as a summation of many sinusoids
with different frequencies (and phases). Thus, responses such as that in Fig. 11.5(b) prove
useful so long as the circuit remains linear and hence superposition can be applied.

11.1.2 Relationship Between Transfer Function and

Frequency Response

We know from basic circuit theory that the transfer function of a circuit can be written as

H(s) = A0

(
1 + s

ωz1

)(
1 + s

ωz2

)
. . .(

1 + s
ωp1

)(
1 + s

ωp2

)
. . .

, (11.2)

where A0 denotes the low-frequency gain because H(s) → A0 as s → 0. The frequencies
ωzj and ωpj represent the zeros and poles of the transfer function, respectively. If the input
to the circuit is a sinusoid of the form x(t) = A cos (2π ft) = A cos ωt , then the output can
be expressed as

y(t) = A|H( jω)|cos[ωt + � H( jω)], (11.3)

1Channel-length modulation is neglected here.
2We use upper-case letters for frequency-domain quantities (Laplace transforms) even though they
denote small-signal values.
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where H( jω) is obtained by making the substitution s = jω. Called the “magnitude” and
the “phase,” |H( jω)| and � H( jω) respectively reveal the frequency response of the circuit.
In this chapter, we are primarily concerned with the former. Note that f (in Hz) and
ω (in radians per second) are related by a factor of 2π . For example, we may write
ω = 5 × 1010 rad/s = 2π(7.96 GHz).

Example

11.4
Determine the transfer function and frequency response of the CS stage shown in Fig.
11.5(a).

Solution From Eq. (11.1), we have

H(s) = Vout

Vin
(s) = −gm

(
RD|| 1

CLs

)
(11.4)

= −gmRD

RDCLs + 1
. (11.5)

For a sinusoidal input, we replace s = jω and compute the magnitude of the transfer
function:3 ∣∣∣∣Vout

Vin

∣∣∣∣ = gmRD√
R2

DC 2
Lω2 + 1

. (11.6)

As expected, the gain begins at gmRD at low frequencies, rolling off as R2
DC 2

Lω2 becomes
comparable with unity. At ω = 1/(RDCL),

∣∣∣∣Vout

Vin

∣∣∣∣ = gmRD√
2

. (11.7)

Since 20 log
√

2 ≈ 3 dB, we say the −3 dB bandwidth of the circuit is equal to 1/(RDCL)
(Fig. 11.6).

outV

inV

 ω  
R CL

1

D

–3–dB
Rolloff

–3–dB
Bandwidth

Figure 11.6

Exercise Derive the above results if λ �= 0.

3The magnitude of the complex number a + jb is equal to
√

a2 + b2.
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Example

11.5
Consider the common-emitter stage shown in Fig. 11.7. Derive a relationship among the
gain, the −3 dB bandwidth, and the power consumption of the circuit. Assume VA = ∞.

R

V

in

out

CL

V

V
1Q

C

CC

Figure 11.7

Solution In a manner similar to the CS topology of Fig. 11.5(a), the bandwidth is given by
1/(RCCL), the low-frequency gain by gmRC = (IC /VT)RC , and the power consumption
by IC · VCC. For the highest performance, we wish to maximize both the gain and the
bandwidth (and hence the product of the two) and minimize the power dissipation. We
therefore define a “figure of merit” as

Gain × Bandwidth

Power Consumption
=

IC

VT
RC × 1

RCCL

IC · VCC
(11.8)

= 1

VT · VCC

1

CL
. (11.9)

Thus, the overall performance can be improved by lowering (a) the temperature;4

(b) VCC but at the cost of limiting the voltage swings; or (c) the load capacitance. In
practice, the load capacitance receives the greatest attention. Equation (11.9) becomes
more complex for CS stages (Problem 11.13).

Exercise Derive the above results if VA < ∞.

Example

11.6
Explain the relationship between the frequency response and step response of the simple
low-pass filter shown in Fig. 11.4(a).

Solution To obtain the transfer function, we view the circuit as a voltage divider and write

H(s) = Vout

Vin
(s) =

1

C1s
1

C1s
+ R1

(11.10)

= 1

R1C1s + 1
. (11.11)

4For example, by immersing the circuit in liquid nitrogen (T = 77 K), but requiring that the user carry a
tank around!
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The frequency response is determined by replacing s with jω and computing the mag-
nitude:

|H(s = jω)| = 1√
R2

1C
2
1ω

2 + 1
. (11.12)

The −3 dB bandwidth is equal to 1/(R1C1).
The circuit’s response to a step of the form V0u(t) is given by

Vout(t) = V0

(
1 − exp

−t
R1C1

)
u(t). (11.13)

The relationship between Eqs. (11.12) and (11.13) is that, as R1C1 increases, the band-
width drops and the step response becomes slower. Figure 11.8 plots this behavior,
revealing that a narrow bandwidth results in a sluggish time response. This observation
explains the effect seen in Fig. 11.3(b): since the signal cannot rapidly jump from low
(white) to high (black), it spends some time at intermediate levels (shades of gray),
creating “fuzzy” edges.

f

1.0

H

t

outR1C1

R1C1

(a) (b)

V

Figure 11.8

Exercise At what frequency does |H| fall by a factor of two?

11.1.3 Bode’s Rules

The task of obtaining |H( jω)| from H(s) and plotting the result is somewhat tedious. For
this reason, we often utilize Bode’s rules (approximations) to construct |H( jω)| rapidly.
Bode’s rules for |H( jω)| are as follows:

• As ω passes each pole frequency, the slope of |H( jω)| decreases by 20 dB/dec. (A slope
of 20 dB/dec simply means a tenfold change in H for a tenfold increase in frequency);

• As ω passes each zero frequency, the slope of |H( jω)| increases by 20 dB/dec.5

Example

11.7
Construct the Bode plot of |H( jω)| for the CS stage depicted in Fig. 11.5(a).

Solution Equation (11.5) indicates a pole frequency of

|ωp1| = 1

RDCL
. (11.14)

5Complex poles may result in sharp peaks in the frequency response, an effect neglected in Bode’s
approximation.
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The magnitude thus begins at gmRD at low frequencies and remains flat up to ω = |ωp1|.
At this point, the slope changes from zero to −20 dB/dec. Figure 11.9 illustrates the
result. In contrast to Fig. 11.5(b), the Bode approximation ignores the 3 dB roll-off at
the pole frequency—but it greatly simplifies the algebra. As evident from Eq. (11.6), for
R2

DC 2
Lω2 � 1, Bode’s rule provides a good approximation.

outV

inV

 ω  

20 log

 ω  logp1

–20 dB/dec

gmRD

Figure 11.9

Exercise Construct the Bode plot for gm = (150 �)
−1

, RD = 2 k�, and CL = 100 fF.

11.1.4 Association of Poles with Nodes

The poles of a circuit’s transfer function play a central role in the frequency response. The
designer must therefore be able to identify the poles intuitively so as to determine which
parts of the circuit appear as the “speed bottleneck.”

The CS topology studied in Example 11.4 serves as a good example for identifying
poles by inspection. Equation (11.5) reveals that the pole frequency is given by the inverse
of the product of the total resistance seen between the output node and ground and the
total capacitance seen between the output node and ground. Applicable to many circuits,
this observation can be generalized as follows: if node j in the signal path exhibits a small-
signal resistance of Rj to ground and a capacitance of Cj to ground, then it contributes a

pole of magnitude (RjC j )
−1

to the transfer function.

Example

11.8
Determine the poles of the circuit shown in Fig. 11.10. Assume λ = 0.

R

M 1

VDD

D

in

out

CL

V

V
R

Cin

S

Figure 11.10

Solution Setting Vin to zero, we recognize that the gate of M1 sees a resistance of RS and a
capacitance of Cin to ground. Thus,

|ωp1| = 1

RSCin
. (11.15)
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We may call ωp1 the “input pole” to indicate that it arises in the input network. Similarly,
the “output pole” is given by

|ωp2| = 1

RDCL
. (11.16)

Since the low-frequency gain of the circuit is equal to −gmRD, we can readily write the
magnitude of the transfer function as:∣∣∣∣Vout

Vin

∣∣∣∣ = gmRD√(
1 + ω2/ω2

p1

) (
1 + ω2ω2

p2

) . (11.17)

Exercise If ωp1 = ωp2, at what frequency does the gain drop by 3 dB?

Example

11.9
Compute the poles of the circuit shown in Fig. 11.11. Assume λ = 0.

in

CL

V
R

Cin

S

RD

Vout

Vb

VDD

M 1

Figure 11.11

Solution With Vin = 0, the small-signal resistance seen at the source of M1 is given by RS||(1/gm),
yielding a pole at

ωp1 = 1(
RS|| 1

gm

)
Cin

. (11.18)

The output pole is given by ωp2 = (RDCL)
−1

.

Exercise How do we choose the value of RD such that the output pole frequency is ten times the
input pole frequency?

The reader may wonder how the foregoing technique can be applied if a node is loaded
with a “floating” capacitor, i.e., a capacitor whose other terminal is also connected to a
node in the signal path (Fig. 11.12). In general, we cannot utilize this technique and must
write the circuit’s equations and obtain the transfer function. However, an approximation
given by “Miller’s theorem” can simplify the task in some cases.
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Figure 11.12 Circuit with floating capacitor.

11.1.5 Miller’s Theorem

Our above study and the example in Fig. 11.12 make it desirable to obtain a method that
“transforms” a floating capacitor to two grounded capacitors, thereby allowing association
of one pole with each node. Miller’s theorem is such a method. Miller’s theorem, however,
was originally conceived for another reason. In the late 1910s, John Miller had observed that
parasitic capacitances appearing between the input and output of an amplifier may dras-
tically lower the input impedance. He then proposed an analysis that led to the theorem.

Consider the general circuit shown in Fig. 11.13(a), where the floating impedance, ZF ,
appears between nodes 1 and 2. We wish to transform ZF to two grounded impedances
as depicted in Fig. 11.13(b), while ensuring all of the currents and voltages in the circuit
remain unchanged. To determine Z1 and Z2, we make two observations: (1) the current
drawn by ZF from node 1 in Fig. 11.13(a) must be equal to that drawn by Z1 in Fig.
11.13(b); and (2) the current injected to node 2 in Fig. 11.13(a) must be equal to that
injected by Z2 in Fig. 11.13(b). (These requirements guarantee that the circuit does not
“feel” the transformation.) Thus,

V1 − V2

ZF
= V1

Z1

(11.19)

V1 − V2

ZF
= −V2

Z2

. (11.20)

Denoting the voltage gain from node 1 to node 2 by Av , we obtain

Z1 = ZF
V1

V1 − V2

(11.21)

= ZF

1 − Av

(11.22)

Z F1 2

V1 V2
Z 1

1 2

V1 V2 Z 2

(a) (b)

Figure 11.13 (a) General circuit including a floating impedance, (b) equivalent of (a) as obtained

from Miller’s theorem.
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and

Z2 = ZF
−V2

V1 − V2

(11.23)

= ZF

1 − 1

Av

. (11.24)

Called Miller’s theorem, the results expressed by Eqs. (11.22) and (11.24) prove extremely
useful in analysis and design. In particular, Eq. (11.22) suggests that the floating impedance
is reduced by a factor of 1 − Av when “seen” at node 1.

As an important example of Miller’s theorem, let us assume ZF is a single capacitor,
CF , tied between the input and output of an inverting amplifier [Fig. 11.14(a)]. Applying
Eq. (11.22), we have

Z1 = ZF

1 − Av

(11.25)

= 1

(1 + A0)CFs
, (11.26)

where the substitution Av = −A0 is made. What type of impedance is Z1? The 1/s depen-
dence suggests a capacitor of value (1 + A0)CF , as ifCF is “amplified” by a factor of 1 + A0.
In other words, a capacitor CF tied between the input and output of an inverting amplifier
with a gain of A0 raises the input capacitance by an amount equal to (1 + A0)CF . We say
such a circuit suffers from “Miller multiplication” of the capacitor.

The effect of CF at the output can be obtained from Eq. (11.24):

Z2 = ZF

1 − 1

Av

(11.27)

= 1(
1 + 1

A0

)
CFs

, (11.28)

which is close to (CFs)
−1

if A0 � 1. Figure 11.14(b) summarizes these results.
The Miller multiplication of capacitors can also be explained intuitively. Suppose the

input voltage in Fig. 11.14(a) goes up by a small amount �V. The output then goes down
by A0�V. That is, the voltage across CF increases by (1 + A0)�V, requiring that the input

A0– outVinV A0– outVinV

A0CF ( (1 +
A0

CF ( (1 + 1

(a) (b)

CF

ΔV A0 ΔV–

Figure 11.14 (a) Inverting circuit with floating capacitor, (b) equivalent circuit as obtained from

Miller’s theorem.
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provide a proportional charge. By contrast, ifCF were not a floating capacitor and its right
plate voltage did not change, it would experience only a voltage change of �V and require
less charge.

The above study points to the utility of Miller’s theorem for conversion of floating
capacitors to grounded capacitors. The following example demonstrates this principle.

Example

11.10
Estimate the pole of the circuit shown in Fig. 11.15(a). Assume λ = 0.
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Cin
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out
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Figure 11.15

Solution Noting that M1 and RD constitute an inverting amplifier having a gain of −gmRD, we
utilize the results in Fig. 11.14(b) to write:

Cin = (1 + A0)CF (11.29)

= (1 + gmRD)CF (11.30)

and

Cout =
(

1 + 1

gmRD

)
CF, (11.31)

thereby arriving at the topology depicted in Fig. 11.15(b). From our study in Example
11.8, we have:

ωin = 1

RSCin
(11.32)

= 1

RS(1 + gmRD)CF
(11.33)

and

ωout = 1

RDCout
(11.34)

= 1

RD

(
1 + 1

gmRD

)
CF

. (11.35)

Why does the circuit in (a) have one pole but that in (b) two? This is explained below.

Exercise Calculate Cin if gm = (150 �)
−1

, RD = 2 k�, and CF = 80 fF.
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The reader may find the above example somewhat inconsistent. Miller’s theorem
requires that the floating impedance and the voltage gain be computed at the same frequency
whereas Example 11.10 uses the low-frequency gain, gmRD, even for the purpose of finding
high-frequency poles. After all, we know that the existence of CF lowers the voltage gain
from the gate of M1 to the output at high frequencies. Owing to this inconsistency, we call
the procedure in Example 11.10 the “Miller approximation.” Without this approximation,
i.e., if A0 is expressed in terms of circuit parameters at the frequency of interest, application
of Miller’s theorem would be no simpler than direct solution of the circuit’s equations. Due
to the approximation, the circuit in the above example exhibits two poles.

Another artifact of Miller’s approximation is that it may eliminate a zero of the transfer
function. We return to this issue in Section 11.4.3.

The general expression in Eq. (11.22) can be interpreted as follows: an impedance tied
between the input and output of an inverting amplifier with a gain of Av is lowered by a
factor of 1 + Av if seen at the input (with respect to ground). This reduction of impedance
(hence increase in capacitance) is called “Miller effect.” For example, we say Miller effect
raises the input capacitance of the circuit in Fig. 11.15(a) to (1 + gmRD)CF .

11.1.6 General Frequency Response

Our foregoing study indicates that capacitances in a circuit tend to lower the voltage gain
at high frequencies. It is possible that capacitors reduce the gain at low frequencies as well.
As a simple example, consider the high-pass filter shown in Fig. 11.16(a), where the voltage
division between C1 and R1 yields

Vout

Vin
(s) = R1

R1 + 1

C1s

(11.36)

= R1C1s
R1C1s + 1

, (11.37)

and hence ∣∣∣∣Vout

Vin

∣∣∣∣ = R1C1ω√
R2

1C
2
1ω

2
1 + 1

. (11.38)

Plotted in Fig. 11.16(b), the response exhibits a roll-off as the frequency of operation
falls below 1/(R1C1). As seen from Eq. (11.37), this roll-off arises because the zero of the
transfer function occurs at the origin.

inv outV

outV

inV

1.0

C1

R1

1

(a) (b)

R1C1

 ω  

Figure 11.16 (a) Simple high-pass filter, and (b) its frequency response.
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The low-frequency roll-off may prove undesirable. The following example illustrates
this point.

Example

11.11
Figure 11.17 depicts a source follower used in a high-quality audio amplifier. Here, Ri

establishes a gate bias voltage equal to VDD for M1, and I1 defines the drain bias current.
Assume λ = 0, gm = 1/(200 �), and R1 = 100 k�. Determine the minimum required
value of C1 and the maximum tolerable value of CL.

M 1

VDD

I 1
CL

outV

R

C

i

i

inV

Figure 11.17

Solution Similar to the high-pass filter of Fig. 11.16, the input network consisting of Ri and Ci

attenuates the signal at low frequencies. To ensure that audio components as low as
20 Hz experience a small attenuation, we set the corner frequency 1/(RiCi ) to
2π × (20 Hz), thus obtaining

Ci = 79.6 nF. (11.39)

This value is, of course, much too large to be integrated on a chip. Since Eq. (11.38)
reveals a 3 dB attenuation at ω = 1/(RiCi ), in practice we must choose even a larger
capacitor if a lower attenuation is desired.

The load capacitance creates a pole at the output node, lowering the gain at high
frequencies. Setting the pole frequency to the upper end of the audio range, 20 kHz, and
recognizing that the resistance seen from the output node to ground is equal to 1/gm,
we have

ωp,out = gm

CL
(11.40)

= 2π × (20 kHz), (11.41)

and hence

CL = 39.8 nF. (11.42)

An efficient driver, the source follower can tolerate a very large load capacitance (for
the audio band).

Exercise Repeat the above example if I1 and the width of M1 are halved.

Why did we use capacitorCi in the above example? WithoutCi , the circuit’s gain would
not fall at low frequencies, and we would not need perform the above calculations. Called
a “coupling” capacitor, Ci allows the signal frequencies of interest to pass through the
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circuit while blocking the dc content of Vin. In other words, Ci isolates the bias conditions
of the source follower from those of the preceding stage. Figure 11.18(a) illustrates an
example in which a CS stage precedes the source follower. The coupling capacitor permits
independent bias voltages at nodes X and Y. For example, VY can be chosen relatively low
(placing M2 near the triode region) to allow a large drop across RD, thereby maximizing
the voltage gain of the CS stage (why?).

M 1

VDD

I 1

R

C

i

i

R

M

D

inV
2

X
Y

outV

M 1

VDD

I 1

R

M

D

inV
2

outV

P

(a) (b)

Figure 11.18 Cascade of CS stage and source follower with (a) capacitor coupling and

(b) direct coupling.

To convince the reader that capacitive coupling proves essential in Fig. 11.18(a), we
consider the case of “direct coupling” [Fig. 11.18(b)] as well. Here, to maximize the voltage
gain, we wish to set VP just above VGS2 − VTH2, e.g., 200 mV. On the other hand, the gate
of M2 must reside at a voltage of at least VGS1 + VI1, where VI1 denotes the minimum
voltage required by I1. Since VGS1 + VI1 may reach 600-700 mV, the two stages are quite
incompatible in terms of their bias points, necessitating capacitive coupling.

Capacitive coupling (also called “ac coupling”) is more common in discrete circuit
design due to the large capacitor values required in many applications (e.g.,Ci in the above
audio example). Nonetheless, many integrated circuits also employ capacitive coupling,
especially at low supply voltages, if the necessary capacitor values are no more than a few
picofarads.

Figure 11.19 shows a typical frequency response and the terminology used to refer to
its various attributes. We call ωL the lower corner or lower “cut-off” frequency and ωH the
upper corner or upper cut-off frequency. Chosen to accommodate the signal frequencies of
interest, the band between ωL and ωH is called the “midband range” and the corresponding
gain the “midband gain.”

H

 ω   ω  L  ω  H

MidbandMidband
Gain

Figure 11.19 Typical frequency response.
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11.2 HIGH-FREQUENCY MODELS OF TRANSISTORS

The speed of many circuits is limited by the capacitances within each transistor. It is
therefore necessary to study these capacitances carefully.

11.2.1 High-Frequency Model of Bipolar Transistor

Recall from Chapter 4 that the bipolar transistor consists of two pn junctions. The depletion
region associated with the junctions6 gives rise to a capacitance between base and emitter,
denoted byCje, and another between base and collector, denoted byCμ [Fig. 11.20(a)]. We
may then add these capacitances to the small-signal model to arrive at the representation
shown in Fig. 11.20(b).

n
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n

C g
m

B

E

 πv  πv πr r O

C

C μ

je

C μ

B

E

C

Cje

g
m

B

E

 πv  πv πr r O

C

C μ

C π

(c)

(a) (b)

+

Figure 11.20 (a) Structure of bipolar transistor showing junction capacitances, (b) small-signal

model with junction capacitances, (c) complete model accounting for base charge.

Unfortunately, this model is incomplete because the base-emitter junction exhibits
another effect that must be taken into account. As explained in Chapter 4, the operation
of the transistor requires a (nonuniform) charge profile in the base region to allow the
diffusion of carriers toward the collector. In other words, if the transistor is suddenly
turned on, proper operation does not begin until enough charge carriers enter the base
region and accumulate so as to create the necessary profile. Similarly, if the transistor is
suddenly turned off, the charge carriers stored in the base must be removed for the collector
current to drop to zero.

The above phenomenon is quite similar to charging and discharging a capacitor: to
change the collector current, we must change the base charge profile by injecting or remov-
ing some electrons or holes. Modeled by a second capacitor between the base and emitter,
Cb, this effect is typically more significant than the depletion region capacitance. Since Cb

and Cje appear in parallel, they are lumped into one and denoted by Cπ [Fig. 11.20(c)].

6As mentioned in Chapter 4, both forward-biased and reversed-biased junctions contain a depletion
region and hence a capacitance associated with it.
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Figure 11.21 (a) Structure of an integrated bipolar transistor, (b) small-signal model including

collector-substrate capacitance, (c) device symbol with capacitances shown explicitly.

In integrated circuits, the bipolar transistor is fabricated atop a grounded substrate
[Fig. 11.21(a)]. The collector-substrate junction remains reverse-biased (why?), exhibiting
a junction capacitance denoted byCCS. The complete model is depicted in Fig. 11.21(b). We
hereafter employ this model in our analysis. In modern integrated-circuit bipolar transis-
tors,Cje,Cμ, andCCS are on the order of a few femtofarads for the smallest allowable devices.

In the analysis of frequency response, it is often helpful to first draw the transistor
capacitances on the circuit diagram, simplify the result, and then construct the small-signal
equivalent circuit. We may therefore represent the transistor as shown in Fig. 11.21(c).

Example

11.12
Identify all of the capacitances in the circuit shown in Fig. 11.22(a).

V Q

Q

b1

VCC

1

2

inV

outV

RC

Q

VCC

1inV

outV

RC

C μ1

CCS1C π1

Q

C μ

CC π
Vb

2

2

2
CS2

)b()a(

Figure 11.22

Solution From Fig. 11.21(b), we add the three capacitances of each transistor as depicted in
Fig. 11.22(b). Interestingly, CCS1 and Cπ2 appear in parallel, and so do Cμ2 and CCS2.

Exercise Construct the small-signal equivalent circuit of the above cascode.

11.2.2 High-Frequency Model of MOSFET

Our study of the MOSFET structure in Chapter 6 revealed several capacitive components.
We now study these capacitances in the device in greater detail.
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Figure 11.23 (a) Structure of MOS device showing various capacitances, (b) partitioning of

gate-channel capacitance between source and drain.

Illustrated in Fig. 11.23(a), the MOSFET displays three prominent capacitances: one
between the gate and the channel (called the “gate oxide capacitance” and given by
WLCox), and two associated with the reverse-biased source-bulk and drain-bulk junctions.
The first component presents a modeling difficulty because the transistor model does not
contain a “channel.” We must therefore decompose this capacitance into one between the
gate and the source and another between the gate and the drain [Fig. 11.23(b)]. The exact
partitioning of this capacitance is beyond the scope of this book, but, in the saturation
region, C1 is about 2/3 of the gate-channel capacitance whereas C2 ≈ 0.

Two other capacitances in the MOSFET become critical in some circuits. Shown in
Fig. 11.24, these components arise from both the physical overlap of the gate with
source/drain areas7and the fringe field lines between the edge of the gate and the top
of the S/D regions. Called the gate-drain or gate-source “overlap” capacitance, this (sym-
metric) effect persists even if the MOSFET is off.

n+

Figure 11.24 Overlap capacitance between gate and drain (or source).

We now construct the high-frequency model of the MOSFET. Depicted in Fig. 11.25(a),
this representation consists of: (1) the capacitance between the gate and source, CGS (in-
cluding the overlap component); (2) the capacitance between the gate and drain (including
the overlap component); (3) the junction capacitances between the source and bulk and
the drain and bulk,CSB andCDB, respectively. (We assume the bulk remains at ac ground.)

gm

G

S

rO
CGS

CSB

CDBGSv v GS

CGD
C

C

GD

GS

G

S

CDB

C

D D

SB

(a) (b)

Figure 11.25 (a) High-frequency model of MOSFET, (b) device symbol with capacitances shown

explicitly.

7As mentioned in Chapter 6, the S/D areas protrude under the gate during fabrication.
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As mentioned in Section 11.2.1, we often draw the capacitances on the transistor symbol
[Fig. 11.25(b)] before constructing the small-signal model.

Example

11.13
Identify all of the capacitances in the circuit of Fig. 11.26(a).

M 1

VDD

inV

M 2

outV

M 1

VDD

inV

M 2

outV

C

CGD1

CGS1

CSB1

DB1

CGD2

C

C
GS2

DB2

CSB2

(a) (b)

M 1inV
C

CGD1

DB1 + C +DB2 CGS2

VDD

M 2

outV

(c)

CGS1

CSB1
CSB1

CSB2

Figure 11.26

Solution Adding the four capacitances of each device from Fig. 11.25, we arrive at the circuit in
Fig. 11.26(b). Note that CSB1 and CSB2 are shorted to ac ground on both ends, CGD2 is
shorted “out,” andCDB1,CDB2, andCGS2 appear in parallel at the output node. The circuit
therefore reduces to that in Fig. 11.26(c).

Exercise Noting that M2 is a diode-connected device, construct the small-signal equivalent circuit
of the amplifier.

11.2.3 Transit Frequency

With various capacitances surrounding bipolar and MOS devices, is it possible to define a
quantity that represents the ultimate speed of the transistor? Such a quantity would prove
useful in comparing different types or generations of transistors as well as in predicting
the performance of circuits incorporating the devices.

A measure of the intrinsic speed of transistors8 is the “transit” or “cut-off” frequency,
fT , defined as the frequency at which the small-signal current gain of the device falls to
unity. Illustrated in Fig. 11.27 (without the biasing circuitry), the idea is to inject a sinusoidal
current into the base or gate and measure the resulting collector or drain current while the
input frequency, fin, is increased. We note that, as fin increases, the input capacitance of
the device lowers the input impedance, Zin, and hence the input voltage Vin = IinZin and
the output current. We neglect Cμ and CGD here (but take them into account in Problem
11.26). For the bipolar device in Fig. 11.27(a),

Zin = 1

Cπ s
||rπ . (11.43)

8By “intrinsic” speed, we mean the performance of the device by itself , without any other limitations
imposed or enhancements provided by the circuit.
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Figure 11.27 Conceptual setup for measurement of fT of transistors.

Since Iout = gmIinZin,

Iout

Iin
= gmrπ

rπCπ s + 1
(11.44)

= β

rπCπ s + 1
. (11.45)

At the transit frequency, ωT(= 2π fT), the magnitude of the current gain falls to unity:

r2
πC 2

πω2
T = β2 − 1 (11.46)

≈ β2. (11.47)

That is,

ωT ≈ gm

Cπ

. (11.48)

The transit frequency of MOSFETs is obtained in a similar fashion. We therefore write:

2π fT ≈ gm

Cπ

or
gm

CGS
. (11.49)

Note that the collector-substrate or drain-bulk capacitance does not affect fT owing to
the ac ground established at the output.

Modern bipolar and MOS transistors boast fT ’s above 100 GHz. Of course, the speed
of complex circuits using such devices is quite lower.

Example

11.14
The minimum channel length of MOSFETs has been scaled from 1 μm in the late 1980s
to 65 nm today. Also, the inevitable reduction of the supply voltage has reduced the
gate-source overdive voltage from about 400 mV to 100 mV. By what factor has the fT

of MOSFETs increased?

Solution It can proved (Problem 11.28) that

2π fT = 3

2

μn

L2
(VGS − VTH). (11.50)

Thus, the transit frequency has increased by approximately a factor of 59. For example,
if μn = 400 cm2/(V·s), then 65 nm devices having an overdrive of 100 mV exhibit an fT

of 226 GHz.

Exercise Determine the fT if the channel length is scaled down to 45 nm but the mobility degrades
to 300 cm2/(V·s).
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11.3 ANALYSIS PROCEDURE

We have thus far seen a number of concepts and tools that help us study the frequency
response of circuits. Specifically, we have observed that:

• The frequency response refers to the magnitude of the transfer function of a system.9

• Bode’s approximation simplifies the task of plotting the frequency response if the
poles and zeros are known.

• In many cases, it is possible to associate a pole with each node in the signal path.

• Miller’s theorem proves helpful in decomposing floating capacitors into grounded
elements.

• Bipolar and MOS devices exhibit various capacitances that limit the speed of circuits.

In order to methodically analyze the frequency response of various circuits, we pre-
scribe the following steps:

1. Determine which capacitors impact the low-frequency region of the response and
compute the low-frequency cut-off. In this calculation, the transistor capacitances
can be neglected as they typically impact only the high-frequency region.

2. Calculate the midband gain by replacing the above capacitors with short circuits
while still neglecting the transistor capacitances.

3. Identify and add to the circuit the capacitances contributed by each transistor.

4. Noting ac grounds (e.g., the supply voltage or constant bias voltages), merge the
capacitors that are in parallel and omit those that play no role in the circuit.

5. Determine the high-frequency poles and zeros by inspection or by computing the
transfer function. Miller’s theorem may prove useful here.

6. Plot the frequency response using Bode’s rules or exact calculations.

We now apply this procedure to various amplifier topologies.

11.4 FREQUENCY RESPONSE OF CE AND CS STAGES

11.4.1 Low-Frequency Response

As mentioned in Section 11.1.6, the gain of amplifiers may fall at low frequencies due
to certain capacitors in the signal path. Let us consider a general CS stage with its in-
put bias network and an input coupling capacitor [Fig. 11.28(a)]. At low frequencies,
the transistor capacitances negligibly affect the frequency response, leaving only Ci as the
frequency-dependent component. We write Vout/Vin = (Vout/VX)(VX/Vin), neglect channel-
length modulation, and note that both R1 and R2 are tied between X and ac ground. Thus,
Vout/VX = −RD/(RS + 1/gm) and

VX

Vin
(s) = R1||R2

R1||R2 + 1

Ci s

(11.51)

= (R1||R2)Ci s
(R1||R2)Ci s + 1

. (11.52)

Similar to the high-pass filter of Fig. 11.16, this network attenuates the low frequencies,
dictating that the lower cut-off be chosen below the lowest signal frequency, fsig,min (e.g.,

9In a more general case, the frequency response also includes the phase of the transfer function, as
studied in Chapter 12.
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Figure 11.28 (a) CS stage with input coupling capacitor, (b) effect of bypassed degeneration,

(c) frequency response with bypassed degeneration.

20 Hz in audio applications):

1

2π [(R1||R2)Ci ]
< fsig,min. (11.53)

In applications demanding a greater midband gain, we place a “bypass” capacitor in
parallel with RS [Fig. 11.28(b)] so as to remove the effect of degeneration at midband
frequencies. To quantify the role ofCb, we place its impedance, 1/(Cbs), in parallel with RS

in the midband gain expression:

Vout

VX
(s) = −RD

RS|| 1

Cbs
+ 1

gm

(11.54)

= −gmRD(RSCbs + 1)

RSCbs + gmRS + 1
. (11.55)

Figure 11.28(c) shows the Bode plot of the frequency response in this case. At frequencies
well below the zero, the stage operates as a degenerated CS amplifier, and at frequencies
well above the pole, the circuit experiences no degeneration. Thus, the pole frequency
must be chosen significantly smaller than the lowest signal frequency of interest.

The above analysis can also be applied to a CE stage. Both types exhibit low-frequency
roll-off due to the input coupling capacitor and the degeneration bypass capacitor.

11.4.2 High-Frequency Response

Consider the CE and CS amplifiers shown in Fig. 11.29(a), where RS may represent the
output impedance of the preceding stage, i.e., it is not added deliberately. Identifying the
capacitances of Q1 and M1, we arrive at the complete circuits depicted in Fig. 11.29(b),
where the source-bulk capacitance of M1 is grounded on both ends. The small-signal
equivalents of these circuits differ by only rπ [Fig. 11.29(c)],10 and can be reduced to one
if Vin, RS and rπ are replaced with their Thevenin equivalent [Fig. 11.29(d)]. In practice,
RS � rπ and hence RThev ≈ RS . Note that the output resistance of each transistor would
simply appear in parallel with RL.

With this unified model, we now study the high-frequency response, first applying
Miller’s approximation to develop insight and then performing an accurate analysis to
arrive at more general results.

10The Early effect and channel-length modulation are neglected here.
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Figure 11.29 (a) CE and CS stages, (b) inclusion of transistor capacitances, (c) small-

signal equivalents, (d) unified model of both circuits.

11.4.3 Use of Miller’s Theorem

With CXY tied between two floating nodes, we cannot simply associate one pole with each
node. However, following Miller’s approximation as in Example 11.10, we can decompose
CXY into two grounded components (Fig. 11.30):

CX = (1 + gmRL)CXY (11.56)

CY =
(

1 + 1

gmRL

)
CXY . (11.57)
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Figure 11.30 Parameters in unified model of CE and CS stages with Miller’s approximation.
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Now, each node sees a resistance and capacitances only to ground. In accordance with our
notations in Section 11.1, we write

|ωp,in| = 1

RThev[Cin + (1 + gmRL)CXY]
(11.58)

|ωp,out| = 1

RL

[
Cout +

(
1 + 1

gmRL

)
CXY

] . (11.59)

If gmRL � 1, the capacitance at the output node is simply equal to Cout +CXY .
The intuition gained from the application of Miller’s theorem proves invaluable. The

input pole is approximately given by the source resistance, the base-emitter or gate-source
capacitance, and the Miller multiplication of the base-collector or gate-drain capacitance.
The Miller multiplication makes it undesirable to have a high gain in the circuit. The output
pole is roughly determined by the load resistance, the collector-substrate or drain-bulk
capacitance, and the base-collector or gate-drain capacitance.

Example

11.15
In the CE stage of Fig. 11.29(a), RS = 200 �, IC = 1 mA, β = 100,Cπ = 100 fF, Cμ =
20 fF, and CCS = 30 fF.

(a) Calculate the input and output poles if RL = 2 k�. Which node appears as the
speed bottleneck (limits the bandwidth)?

(b) Is it possible to choose RL such that the output pole limits the bandwidth?

Solution (a) Since rπ = 2.6 k�, we have RThev = 186 �. Fig. 11.30 and Eqs. (11.58) and (11.59)
thus give

|ωp,in| = 2π × (516 MHz) (11.60)

|ωp,out| = 2π × (1.59 GHz). (11.61)

We observe that the Miller effect multiplies Cμ by a factor of 78, making its contri-
bution much greater than that of Cπ . As a result, the input pole limits the bandwidth.

(b) We must seek such a value of RL that yields |ωp,in| > ωp,out|:
1

(RS||rπ )[Cπ + (1 + gmRL)Cμ]
>

1

RL

[
CCS +

(
1 + 1

gmRL

)
Cμ

] . (11.62)

If gmRL � 1, then we have

[CCS +Cμ − gm(RS||rπ )Cμ]RL > (RS||rπ )Cπ . (11.63)

With the values assumed in this example, the left-hand side is negative, implying that no
solution exists. The reader can prove that this holds even if gmRL is not much greater
than unity. Thus, the input pole remains the speed bottleneck here.

Exercise Repeat the above example if IC = 2 mA and Cπ = 180 fF.
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Example

11.16
An electrical engineering student designs the CS stage of Fig. 11.29(a) for a certain low-
frequency gain and high-frequency response. Unfortunately, in the layout phase, the
student uses a MOSFET half as wide as that in the original design. Assuming that the
bias current is also halved, determine the gain and the poles of the circuit.

Solution Both the width and the bias current of the transistor are halved, and so is its transcon-
ductance (why?). The small-signal gain, gmRL, is therefore halved.

Reducing the transistor width by a factor of two also lowers all of the capacitances
by the same factor. From Fig. 11.30 and Eqs. (11.58) and (11.59), we can express the
poles as

|ωp,in| = 1

RS

[
Cin

2
+

(
1 + gmRL

2

)
CXY

2

] (11.64)

|ωp,out| = 1

RL

[
Cout

2
+

(
1 + 2

gmRL

)
CXY

2

] , (11.65)

where Cin, gm, CXY and Cout denote the parameters corresponding to the original device
width. We observe that ωp,in has risen in magnitude by more than a factor of two, and
ωp,out by approximately a factor of two (if gmRL � 2). In other words, the gain is halved
and the bandwidth is roughly doubled, suggesting that the gain-bandwidth product is
approximately constant.

Exercise What happens if both the width and the bias current are twice their nominal values?

11.4.4 Direct Analysis

The use of Miller’s theorem in the previous section provides a quick and intuitive perspec-
tive on the performance. However, we must carry out a more accurate analysis so as to
understand the limitations of Miller’s approximation in this case.

The circuit of Fig. 11.29(d) contains two nodes and can therefore be solved by writing
two KCLs. That is,11

At Node X: (Vout − VX)CXYs = VXCins + VX − VThev

RThev
(11.66)

At Node Y: (VX − Vout)CXYs = gmVX + Vout

(
1

RL
+Couts

)
. (11.67)

We compute VX from Eq. (11.67):

VX = Vout

CXYs + 1

RL
+Couts

CXYs − gm
(11.68)

11Recall that we denote frequency-domain quantities with upper-case letters.
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and substitute the result in Eq. (11.66) to arrive at

VoutCXYs −
(

CXYs +Cins + 1

RThev

)CXYs + 1

RL
+Couts

CXYs − gm
Vout = −VThev

RThev
. (11.69)

It follows that
Vout

VThev
(s) = (CXYs − gm)RL

as2 + bs + 1
, (11.70)

where

a = RThevRL(CinCXY +CoutCXY +CinCout) (11.71)

b = (1 + gmRL)CXYRThev + RThevCin + RL(CXY +Cout). (11.72)

Note from Fig. 11.30 that for a CE stage, Eq. (11.70) must be multiplied by rπ/(RS + rπ )
to obtain Vout/Vin—without affecting the location of the poles and the zero.

Let us examine the above results carefully. The transfer function exhibits a zero at

ωz = gm

CXY
. (11.73)

(The Miller approximation fails to predict this zero.) Since CXY (i.e., the base-collector or
the gate-drain overlap capacitance) is relatively small, the zero typically appears at very
high frequencies and hence is unimportant.12

As expected, the system contains two poles given by the values of s that force the
denominator to zero. We can solve the quadratic as2 + bs + 1 = 0 to determine the poles
but the results provide little insight. Instead, we first make an interesting observation in
regard to the quadratic denominator: if the poles are given by ωp1 and ωp2, we can write

as2 + bs + 1 =
(

s
ωp1

+ 1

)(
s

ωp2

+ 1

)
(11.74)

= s2

ωp1ωp2

+
(

1

ωp1

+ 1

ωp2

)
s + 1. (11.75)

Now suppose one pole is much farther from the origin than the other: ωp2 � ωp1. (This is
called the “dominant pole” approximation to emphasize that ωp1 dominates the frequency

response). Then, ω−1
p1 + ω−1

p2 ≈ ω−1
p1 , i.e.,

b = 1

ωp1

, (11.76)

and from Eq. (11.72),

|ωp1| = 1

(1 + gmRL)CXYRThev + RThevCin + RL(CXY +Cout)
. (11.77)

How does this result compare with that obtained using the Miller approximation? Equa-
tion (11.77) does reveal the Miller effect of CXY but it also contains the additional term
RL(CXY +Cout) [which is close to the output time constant predicted by Eq. (11.59)].

12As explained in more advanced courses, this zero does become problematic in the internal circuitry of
op amps.
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To determine the “nondominant” pole, ωp2, we recognize from Eqs. (11.75) and (11.76)
that

|ωp2| = b
a

(11.78)

= (1 + gmRL)CXYRThev + RThevCin + RL(CXY +Cout)

RThevRL(CinCXY +CoutCXY +CinCout)
. (11.79)

Example

11.17
Using the dominant-pole approximation, compute the poles of the circuit shown in Fig.
11.31(a). Assume both transistors operate in saturation and λ �= 0.

Solution Noting thatCSB1,CGS2, andCSB2 do not affect the circuit (why?), we add the remaining ca-
pacitances as depicted in Fig. 11.31(b), simplifying the result as illustrated in Fig. 11.31(c),
where

Cin = CGS1 (11.80)

CXY = CGD1 (11.81)

Cout = CDB1 +CGD2 +CDB2. (11.82)

It follows from Eqs. (11.77) and (11.79) that

ωp1 ≈ 1

[1 + gm1(rO1||rO2)]CXYRS + RSCin + (rO1||rO2)(CXY +Cout)
(11.83)

ωp2 ≈ [1 + gm1(rO1||rO2)]CXYRS + RSCin + (rO1||rO2)(CXY +Cout)

RS(rO1||rO2)(CinCXY +CoutCXY +CinCout)
. (11.84)
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outVoutV
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GS1
DB1

CSB2

Figure 11.31

Exercise Repeat the above example if λ �= 0.

Example

11.18
In the CS stage of Fig. 11.29(a), we have RS = 200 �,CGS = 250 fF, CGD = 80 fF,

CDB = 100 fF, gm = (150 �)
−1

, λ = 0, and RL = 2 k�. Plot the frequency response with
the aid of (a) Miller’s approximation, (b) the exact transfer function, (c) the dominant-
pole approximation.
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Solution (a) With gmRL = 13.3, Eqs. (11.58) and (11.59) yield

|ωp,in| = 2π × (571 MHz) (11.85)

|ωp,out| = 2π × (428 MHz). (11.86)

(b) The transfer function in Eq. (11.70) gives a zero at gm/CGD = 2π × (13.3 GHz). Also,
a = 2.12 × 10−20 s−2 and b = 6.39 × 10−10 s. Thus,

|ωp1| = 2π × (264 MHz) (11.87)

|ωp2| = 2π × (4.53 GHz). (11.88)

Note the large error in the values predicted by Miller’s approximation. This error
arises because we have multiplied CGD by the midband gain (1 + gmRL) rather than the
gain at high frequencies.13

(c) The results obtained in part (b) predict that the dominant-pole approximation
produces relatively accurate results as the two poles are quite far apart. From Eqs. (11.77)
and (11.79), we have

|ωp1| = 2π × (249 MHz) (11.89)

|ωp2| = 2π × (4.79 GHz). (11.90)

Figure 11.32 plots the results. The low-frequency gain is equal to 22 dB ≈ 13 and the
−3 dB bandwidth predicted by the exact equation is around 250 MHz.
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Figure 11.32

Exercise Repeat the above example if the device width (and hence its capacitances) and the bias
current are halved.

11.4.5 Input Impedance

The high-frequency input impedances of the CE and CS amplifiers determine the ease
with which these circuits can be driven by other stages. Our foregoing analysis of

13The large discrepancy between |ωp,out| and |ωp2| results from an effect called “pole splitting” and is
studied in more advanced courses.



488 Chapter 11 Frequency Response

Q1

C μ
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inZ inZ

RDRC

(a)
(b)

Figure 11.33 Input impedance of (a) CE and (b) CS stages.

the frequency response and particularly the Miller approximation readily yields this
impedance.

As illustrated in Fig. 11.33(a), the input impedance of a CE stage consists of two
parallel components: Cπ + (1 + gmRD)Cμ and rπ .14 That is,

Zin ≈ 1

[Cπ + (1 + gmRD)Cμ]s
||rπ . (11.91)

Similarly, the MOS counterpart exhibits an input impedance given by

Zin ≈ 1

[CGS + (1 + gmRD)CGD]s
. (11.92)

With a high voltage gain, the Miller effect may substantially lower the input impedance
at high frequencies.

11.5 FREQUENCY RESPONSE OF CB AND CG STAGES

11.5.1 Low-Frequency Response

As with CE and CS stages, the use of capacitive coupling leads to low-frequency roll-off in
CB and CG amplifiers. Consider the CB circuit depicted in Fig. 11.34(a), where I1 defines
the bias current ofQ1 and Vb is chosen to ensure operation in the forward active region (Vb

is less than the collector bias voltage). How large should Ci be? Since Ci appears in series

with RS , we replace RS with RS + (Ci s)
−1

in the midband gain expression, RC /(RS + 1/gm),
and write the resulting transfer function as

Vout

Vin
(s) = RC

RS + (Ci s)
−1 + 1/gm

(11.93)

= gmRCCi s
(1 + gmRS)Ci s + gm

. (11.94)

Equation (11.93) implies that the signal does not “feel” the effect of Ci if |(Ci s)
−1| �

RS + 1/gm. From another perspective, Eq. (11.94) yields the response shown in

14In calculation of the input impedance, the output impedance of the preceding stage (denoted by RS) is
excluded.
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Figure 11.34 (a) CB stage with input capacitor coupling, (b) resulting frequency response.

Fig. 11.34(b), revealing a pole at

|ωp| = gm

(1 + gmRS)Ci
(11.95)

and suggesting that this pole must remain quite lower than the minimum signal frequency
of interest. These two conditions are equivalent.

11.5.2 High-Frequency Response

We know from Chapters 5 and 7 that CB and CG stages exhibit a relatively low input
impedance (≈ 1/gm). The high-frequency response of these circuits does not suffer from
Miller effect, an important advantage in some cases.

Consider the stages shown in Fig. 11.35, where rO = ∞ and the transistor capacitances
are included. Since Vb is at ac ground, we note that (1) Cπ and CGS +CSB go to ground;
(2) CCS and Cμ of Q1 appear in parallel to ground, and so do CGD and CDB of M1; (3) no
capacitance appears between the input and output networks, avoiding the Miller effect.
In fact, with all of the capacitances seeing ground at one of their terminals, we can readily
associate one pole with each node. At node X, the total resistance seen to ground is given
by RS||(1/gm), yielding

|ωp,X | = 1(
RS|| 1

gm

)
CX

, (11.96)
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Figure 11.35 (a) CB and (b) CG stages including transistor capacitances.
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where CX = Cπ or CGS +CSB. Similarly, at Y,

|ωp,Y | = 1

RLCY
, (11.97)

where CY = Cμ +CCS or CGD +CDB.
It is interesting to note that the “input” pole magnitude is on the order of the fT of the

transistor: CX is equal to Cπ or roughly equal to CGS while the resistance seen to ground is
less than 1/gm. For this reason, the input pole of the CB/CG stage rarely creates a speed
bottleneck.15

Example

11.19
Compute the poles of the circuit shown in Fig. 11.36(a). Assume λ = 0.

inV
RS

Vb

VDD

Vout

M

M 1

2

inV
RS

Vb

VDD

Vout

M

M 1

2

(a) (b)

C + CSB1 GS1

X

Y
CDB1 + C + CGD1 GS2 + CDB2

CSB2

Figure 11.36

Solution Noting that CGD2 and CSB2 play no role in the circuit, we add the device capacitances as
depicted in Fig. 11.36(b). The input pole is thus given by

|ωp,X | = 1(
RS

∣∣∣∣
∣∣∣∣ 1

gm1

)
(CSB1 +CGD1)

. (11.98)

Since the small-signal resistance at the output node is equal to 1/gm2, we have

|ωp,Y | = 1

1

gm2

(CDB1 +CGD1 +CGS2 +CDB2)

. (11.99)

Exercise Repeat the above example if M2 operates as a current source, i.e., its gate is connected to
a constant voltage.

Example

11.20
The CS stage of Example 11.18 is reconfigured to a common-gate amplifier (with RS tied
to the source of the transistor). Plot the frequency response of the circuit.

15One exception is encountered in radio-frequency circuits (e.g., cellphones), where the input
capacitance becomes undesirable.
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Solution With the values given in Example 11.18 and noting that CSB = CDB,16 we obtain from
Eqs. (11.96) and (11.97),

|ωp,in| = 2π × (5.31 GHz) (11.100)

|ωp,out| = 2π × (442 MHz). (11.101)

With no Miller effect, the input pole has dramatically risen in magnitude. The out-
put pole, however, limits the bandwidth. Also, the low-frequency gain is now equal
to RD/(RS + 1/gm) = 5.7, more than a factor of two lower than that of the CS stage.
Figure 11.37 plots the result. The low-frequency gain is equal to 15 dB ≈ 5.7 and the
−3 dB bandwidth is around 450 MHz.
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Figure 11.37

Exercise Repeat the above example if the CG amplifier drives a load capacitance of 150 fF.

11.6 FREQUENCY RESPONSE OF FOLLOWERS

The low-frequency response of followers is similar to that studied in Example 11.11 and
that of CE/CS stages. We thus study the high-frequency behavior here.

In Chapters 5 and 7, we noted that emitter and source followers provide a high in-
put impedance and a relatively low output impedance while suffering from a sub-unity
(positive) voltage gain. Emitter followers, and occasionally source followers, are utilized
as buffers and their frequency characteristics are of interest.

Figure 11.38 illustrates the stages with relevant capacitances. The emitter follower is
loaded withCL to create both a more general case and greater similarity between the bipolar
and MOS counterparts. We observe that each circuit contains two grounded capacitors and
one floating capacitor. While the latter may be decomposed using Miller’s approximation,

16In reality, the junction capacitances CSB and CDB sustain different reverse bias voltages and are
therefore not quite equal.
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CLSB +
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Figure 11.38 (a) Emitter follower and (b) source follower including transistor capacitances.

the resulting analysis is beyond the scope of this book. We therefore perform a direct
analysis by writing the circuit’s equations. Since the bipolar and MOS versions in Fig.
11.38 differ by only rπ , we first analyze the emitter follower and subsequently let rπ (or β)
approach infinity to obtain the transfer function of the source follower.

Consider the small-signal equivalent shown in Fig. 11.39. Recognizing that VX =
Vout + Vπ and the current through the parallel combination of rπ and Cπ is given by
Vπ/rπ + VπCπ s, we write a KCL at node X:

Vout + Vπ − Vin

RS
+ (Vout + Vπ )Cμs + Vπ

rπ

+ VπCπ s = 0, (11.102)

and another at the output node:

Vπ

rπ

+ VπCπ s + gmVπ = VoutCLs. (11.103)

The latter gives

Vπ = VoutCLs
1

rπ

+ gm +Cπ s
, (11.104)

which, upon substitution in Eq. (11.102) and with the assumption rπ � g−1
m , leads to

Vout

Vin
=

1 + Cπ

gm
s

as2 + bs + 1
, (11.105)

in
g

m π  π πrC πC μ

RS X

CL

outV

V VV

Figure 11.39 Small-signal equivalent of emitter follower.
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where

a = RS

gm
(CμCπ +CμCL +CπCL) (11.106)

b = RSCμ + Cπ

gm
+

(
1 + RS

rπ

)
CL

gm
. (11.107)

The circuit thus exhibits a zero at

|ωz| = gm

Cπ

, (11.108)

which, from Eq. (11.49), is near the fT of the transistor. The poles of the circuit can be
computed using the dominant-pole approximation described in Section 11.4.4. In practice,
however, the two poles do not fall far from each other, necessitating direct solution of the
quadratic denominator.

The above results also apply to the source follower if rπ → ∞ and corresponding
capacitance substitutions are made (CSB and CL are in parallel):

Vout

Vin
=

1 + CGS

gm
s

as2 + bs + 1
, (11.109)

where

a = RS

gm
[CGDCGS +CGD(CSB +CL) +CGS(CSB +CL)] (11.110)

b = RSCGD + CGD +CSB +CL

gm
. (11.111)

Example

11.21
A source follower is driven by a resistance of 200 � and drives a load capacitance of
100 fF. Using the transistor parameters given in Example 11.18, plot the frequency
response of the circuit.

Solution The zero occurs at gm/CGS = 2π × (4.24 GHz). To compute the poles, we obtain a and
b from Eqs. (11.110) and (11.111), respectively:

a = 2.58 × 10−21 s−2 (11.112)

b = 5.8 × 10−11 s. (11.113)

The two poles are then equal to

ωp1 = 2π [−1.79 GHz + j(2.57 GHz)] (11.114)

ωp2 = 2π [−1.79 GHz − j(2.57 GHz)]. (11.115)
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Figure 11.40

With the values chosen here, the poles are complex. Figure 11.40 plots the frequency
response. The −3 dB bandwidth is approximately equal to 3.5 GHz.

Exercise For what value of gm do the two poles become real and equal?

Example

11.22
Determine the transfer function of the source follower shown in Fig. 11.41(a), where M2

acts as a current source.
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CDB1

CSB2

Figure 11.41

Solution Noting thatCGS2 andCSB2 play no role in the circuit, we include the transistor capacitances
as illustrated in Fig. 11.41(b). The result resembles that in Fig. 11.38, but with CGD2 and
CDB2 appearing in parallel with CSB1. Thus, Eq. (11.109) can be rewritten as

Vout

Vin
(s) =

1 + CGS1

gm1

s

as2 + bs + 1
, (11.116)
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where

a = RS

gm1

[CGD1CGS1 + (CGD1 +CGS1)(CSB1 +CGD2 +CDB2)] (11.117)

b = RSCGD1 + CGD1 +CSB1 +CGD2 +CDB2

gm1

. (11.118)

Exercise Assuming M1 and M2 are identical and using the transistor parameters given in
Example 11.18, calculate the pole frequencies.

11.6.1 Input and Output Impedances

In Chapter 5, we observed that the input resistance of the emitter follower is given by
rπ + (β + 1)RL, where RL denotes the load resistance. Also, in Chapter 7, we noted that
the source follower input resistance approaches infinity at low frequencies. We now employ
an approximate but intuitive analysis to obtain the input capacitance of followers.

Consider the circuits shown in Fig. 11.42, where Cπ and CGS appear between the
input and output and can therefore be decomposed using Miller’s theorem. Since the
low-frequency gain is equal to

Av = RL

RL + 1

gm

, (11.119)

we note that the “input” component of Cπ or CGS is expressed as

CX = (1 − Av)CXY (11.120)

= 1

1 + gmRL
CXY . (11.121)

Interestingly, the input capacitance of the follower contains only a fraction of Cπ or CGS,
depending on how large gmRL is. Of course, Cμ or CGD directly adds to this value to yield
the total input capacitance.

M 1

VDD
CGD

CGS

CL

V

CL

Q1

C μ

C π

CC

X

Y

X

Y

(a) (b)

RL

CXY = CXY =

RL
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+ CSB

Figure 11.42 Input impedance of (a) emitter follower and (b) source follower.
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Example

11.23
Estimate the input capacitance of the follower shown in Fig. 11.43. Assume λ �= 0.

M 1

VDD

inV

M 2

Vb

Figure 11.43

Solution From Chapter 7, the low-frequency gain of the circuit can be written as

Av = rO1||rO2

rO1||rO2 + 1

gm1

. (11.122)

Also, from Fig. 11.42(b), the capacitance appearing between the input and output is
equal to CGS1, thereby providing

Cin = CGD1 + (1 − Av)CGS1 (11.123)

= CGD1 + 1

1 + gm1(rO1||rO2)
CGS1. (11.124)

For example, if gm1(rO1||rO2) ≈ 10, then only 9% of CGS1 appears at the input.

Exercise Repeat the above example if λ = 0.

Let us now turn our attention to the output impedance of followers. Our study
of the emitter follower in Chapter 5 revealed that the output resistance is equal to
RS/(β + 1) + 1/gm. Similarly, Chapter 7 indicated an output resistance of 1/gm for the
source follower. At high frequencies, these circuits display an interesting behavior.

Consider the followers depicted in Fig. 11.44(a), where other capacitances and resis-
tances are neglected for the sake of simplicity. As usual, RS represents the output resistance
of a preceding stage or device. We first compute the output impedance of the emitter fol-
lower and subsequently let rπ → ∞ to determine that of the source follower. From the

M 1

VDD

inV
RS

CGS

V

inV
RS

Q1
C π

CC

outZ outZ

(a) (b)

g
m π  π πrC π

VX
I X

RS

V V

Figure 11.44 (a) Output impedance of emitter and source followers, (b) small-signal model.
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equivalent circuit in Fig. 11.44(b), we have

(IX + gmVπ )

(
rπ

∣∣∣∣
∣∣∣∣ 1

Cπ s

)
= −Vπ (11.125)

and also

(IX + gmVπ )RS − Vπ = VX . (11.126)

Finding Vπ from Eq. (11.125)

Vπ = −IX
rπ

rπCπ s + β + 1
(11.127)

and substituting in Eq. (11.126), we obtain

VX

IX
= RSrπCπ s + rπ + RS

rπCπ s + β + 1
. (11.128)

As expected, at low frequencies VX/IX = (rπ + RS)/(β + 1) ≈ 1/gm + RS/(β + 1). On the
other hand, at very high frequencies, VX/IX = RS , a meaningful result considering thatCπ

becomes a short circuit.
The two extreme values calculated above for the output impedance of the emit-

ter follower can be used to develop greater insight. Plotted in Fig. 11.45, the mag-
nitude of this impedance falls with ω if RS < 1/gm + RS/(β + 1) or rises with ω if
RS > 1/gm + RS/(β + 1). In analogy with the impedance of capacitors and inductors, we
say Zout exhibits a capacitive behavior in the former case and an inductive behavior in the
latter.

 ω  

outZ

RS

+ 1β g m

1+

RS

 ω  

outZ

RS

+ 1β g m

1+

RS

(a) (b)

Figure 11.45 Output impedance of emitter follower as a function of frequency for (a) small RS and

(b) large RS .

Which case is more likely to occur in practice? Since a follower serves to reduce
the driving impedance, it is reasonable to assume that the follower low-frequency output
impedance is lower than RS .17 Thus, the inductive behavior is more commonly encountered.
(It is even possible that the inductive output impedance leads to oscillation if the follower
sees a certain amount of load capacitance.)

The above development can be extended to source followers by factoring rπ from the
numerator and denominator of Eq. (11.128) and letting rπ and β approach infinity:

VX

IX
= RSCGSs + 1

CGSs + gm
, (11.129)

where(β + 1)/rπ is replaced with gm, andCπ withCGD. The plots of Fig. 11.45 are redrawn
for the source follower in Fig. 11.46, displaying a similar behavior.

17If the follower output resistance is greater than RS , then it is better to omit the follower!
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 ω  

outZ

g m

1
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g m

1

RS
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Figure 11.46 Output impedance of source follower as a function of frequency for (a) small RS and

(b) large RS .

The inductive impedance seen at the output of followers proves useful in the realization
of “active inductors.”

Example

11.24
Figure 11.47 depicts a two-stage amplifier consisting of a CS circuit and a source follower.
Assuming λ �= 0 for M1 and M2 but λ = 0 for M3, and neglecting all capacitances except
CGS3, compute the output impedance of the amplifier.

M 1

M 2
Vb

inV

M

VDD

outV

3 M

VDD

3

r O1 r O2

outZ

(a) (b)

Figure 11.47

Solution The source impedance seen by the follower is equal to the output resistance of the CS
stage, which is equal to rO1||rO2. Assuming RS = rO1||rO2 in Eq. (11.129), we have

VX

IX
= (rO1||rO2)CGS3s + 1

CGS3s + gm3

. (11.130)

Exercise Determine Zout in the above example if λ �= 0 for M1-M3.

11.7 FREQUENCY RESPONSE OF CASCODE STAGE

Our analysis of the CE/CS stage in Section 11.4 and the CB/CG stage in Section 11.5 reveals
that the former provides a relatively high input resistance but suffers from Miller effect
whereas the latter exhibits a relatively low input resistance but is free from Miller effect.
We wish to combine the desirable properties of the two topologies, obtaining a circuit with
a relatively high input resistance and no or little Miller effect. Indeed, this thought process
led to the invention of the cascode topology in the 1940s.

Consider the cascodes shown in Fig. 11.48. As mentioned in Chapter 9, this structure
can be viewed as a CE/CS transistor,Q1 or M1, followed by a CB/CG device,Q2 or M2. As
such, the circuit still exhibits a relatively high (for Q1) or infinite (for M1) input resistance
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Figure 11.48 (a) Bipolar and (b) MOS cascode stages.

while providing a voltage gain equal to gm1RL.18 But, how about the Miller multiplication
ofCμ1 orCGD1? We must first compute the voltage gain from node X to node Y. Assuming
rO = ∞ for all transistors, we recognize that the impedance seen at Y is equal to 1/gm2,
yielding a small-signal gain of

Av,XY = vY

vX
(11.131)

= −gm1

gm2

. (11.132)

In the bipolar cascode, gm1 = gm2 (why?), resulting in a gain of −1. In the MOS counterpart,
M1 and M2 need not be identical, but gm1 and gm2 are comparable because of their relatively
weak dependence upon W/L. We therefore say the gain from X to Y remains near −1 in
most practical cases, concluding that the Miller effect of CXY = Cμ1 or CGD1 is given by

CX = (1 − Av,XY)CXY (11.133)

≈ 2CXY . (11.134)

This result stands in contrast to that expressed by Eq. (11.56), suggesting that the cascode
transistor breaks the trade-off between the gain and the input capacitance due to Miller
effect.

Let us continue our analysis and estimate the poles of the cascode topology with the aid
of Miller’s approximation. Illustrated in Fig. 11.49 is the bipolar cascode along with the tran-
sistor capacitances. Note that the effect ofCμ1 at Y is also equal to (1 − A−1

v,XY)Cμ1 = 2Cμ1.

V Q

Q

b1

VCC

1

2

outV
R

inV
RS X

Y

CCS1
C 1C π1+ 2 μ

CC π + 2+ 2 μ1

C + C μ2CS2

L

Figure 11.49 Bipolar cascode including transistor capacitances.

18The voltage division between RS and rπ1 lowers the gain slightly in the bipolar circuit.
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Associating one pole with each node gives

|ωp,X | = 1

(RS||rπ1)(Cπ1 + 2Cμ1)
(11.135)

|ωp,Y | = 1

1

gm2

(CCS1 +Cπ2 + 2Cμ1)

(11.136)

|ωp,out| = 1

RL(CCS2 +Cμ2)
. (11.137)

It is interesting to note that the pole at node Y falls near the fT ofQ2 ifCπ2 �CCS1 + 2Cμ1.
Even for comparable values of Cπ2 and CCS1 + 2Cμ1, we can say this pole is on the order
of fT/2, a frequency typically much higher than the signal bandwidth. For this reason, the
pole at node Y often has negligible effect on the frequency response of the cascode stage.

The MOS cascode is shown in Fig. 11.50 along with its capacitances after the use of
Miller’s approximation. Since the gain from X to Y in this case may not be equal to −1,
we use the actual value, −gm1/gm2, to arrive at a more general solution. Associating one
pole with each node, we have

|ωp,X | = 1

RS

[
CGS1 +

(
1 + gm1

gm2

)
CGD1

] (11.138)

|ωp,Y | = 1

1

gm2

[
CDB1 +CGS2 +

(
1 + gm2

gm1

)
CGD1 +CSB2

] (11.139)

|ωp,out| = 1

RL(CDB2 +CGD2)
. (11.140)

We note that ωp,Y is still in the range of fT/2 if CGS2 and CDB1 + (1 + gm2/gm1)CGD1 are
comparable.

R

M 1

VDD

inV
RS

outV

M 2
Vb

X
Y

C + CGS1 GD1 (1+
g m2

g m1
)

C + CGD1 (1+
g

)GS2

g m2

m1
+ CDB1 + CSB2

C + CGD2 DB2

L

Figure 11.50 MOS cascode including transistor capacitances.

Example

11.25
The CS stage studied in Example 11.18 is converted to a cascode topology. Assuming
the two transistors are identical, estimate the poles, plot the frequency response, and
compare the results with those of Example 11.18. Assume CDB = CSB.
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Solution Using the values given in Example 11.18, we write from Eqs. (11.138), (11.139), and
(11.140):

|ωp,X | = 2π × (1.95 GHz) (11.141)

|ωp,Y | = 2π × (1.73 GHz) (11.142)

|ωp,out| = 2π × (442 MHz). (11.143)

Note that the pole at node Y is significantly lower than fT/2 in this particular example.
Compared with the Miller approximation results obtained in Example 11.18, the input
pole has risen considerably. Compared with the exact values derived in that example, the
cascode bandwidth (442 MHz) is nearly twice as large. Figure 11.51 plots the frequency
response of the cascode stage.
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Figure 11.51

Exercise Repeat the above example if the width of M2 and hence all of its capacitances are doubled.

Assume gm2 = (100 �)
−1

.

Example

11.26
In the cascode shown in Fig. 11.52, transistor M3 serves as a constant current source,
allowing M1 to carry a larger current than M2. Estimate the poles of the circuit, assuming
λ = 0.

M 1

VDD

inV
RS

outV

M 2
V

X

Y

RL

b1

M 3
Vb2

Figure 11.52
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Solution Transistor M3 contributes CGD3 and CDB3 to node Y, thus lowering the corresponding
pole magnitude. The circuit contains the following poles:

|ωp,X | = 1

RS

[
CGS1 +

(
1 + gm1

gm2

)
CGD1

] (11.144)

|ωp,Y | = 1

1

gm2

[
CDB1 +CGS2 +

(
1 + gm2

gm1

)
CGD1 +CGD3 +CDB3 +CSB2

] (11.145)

|ωp,out| = 1

RL(CDB2 +CGD2)
. (11.146)

Note that ωp,X also reduces in magnitude because the addition of M3 lowers ID2 and
hence gm2.

Exercise Calculate the pole frequencies in the above example using the transistor parameters given
in Example 11.18 for M1-M3.

From our studies of the cascode topology in Chapter 9 and in this chapter, we identify
two important, distinct attributes of this circuit: (1) the ability to provide a high output
impedance and hence serve as a good current source and/or high-gain amplifier; (2) the
reduction of the Miller effect and hence better high-frequency performance. Both of these
properties are exploited extensively.

11.7.1 Input and Output Impedances

The foregoing analysis of the cascode stage readily provides estimates for the I/O
impedances. From Fig. 11.49, the input impedance of the bipolar cascode is given by

Zin = rπ1

∣∣∣∣
∣∣∣∣ 1

(Cπ1 + 2Cμ1)s
, (11.147)

where Zin does not include RS . The output impedance is equal to

Zout = RL

∣∣∣∣
∣∣∣∣ 1

(Cμ2 +CCS2)s
, (11.148)

where the Early effect is neglected. Similarly, for the MOS stage shown in Fig. 11.50, we
have

Zin = 1[
CGS1 +

(
1 + gm1

gm2

)
CGD1

]
s

(11.149)

Zout = 1

RL(CGD2 +CDB2)
, (11.150)

where it is assumed λ = 0.



11.8 Frequency Response of Differential Pairs 503

If RL is large, the output resistance of the transistors must be taken into account. This
calculation is beyond the scope of this book.

11.8 FREQUENCY RESPONSE OF DIFFERENTIAL PAIRS

The half-circuit concept introduced in Chapter 10 can also be applied to the high-frequency
model of differential pairs, thus reducing the circuit to those studied above.

Figure 11.53(a) depicts two bipolar and MOS differential pairs along with their
capacitances. For small differential inputs, the half circuits can be constructed as shown in
Fig. 11.53(b). The transfer function is therefore given by Eq. (11.70):

Vout

VThev
(s) = (CXYs − gm)RL

as2 + bs + 1
, (11.151)

where the same notation is used for various parameters. Similarly, the input and output
impedances (from each node to ground) are equal to those in Eqs. (11.91) and (11.92),
respectively.
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Vin2
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D D
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DDV
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R

RS

R

RS
Vin2

C C

C C

CC

EE

 π1 π2

C μ1 C μ2

Q1 Q2

(a)

(b)

V

Vin1

R

RS C

C

C

CC

CS1

 π2

C μ1

Q1

Vout1

Vin1

R

RS C

M 1

D

CGD1

DB1

CGS1

VDD

CCS1 C CDB1CS2 CDB2

CSB2CSB1

CSB1

Figure 11.53 (a) Bipolar and MOS differential pairs including transistor capacitances,

(b) half circuits.
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Example

11.27
A differential pair employs cascode devices to lower the Miller effect [Fig. 11.54(a)].
Estimate the poles of the circuit.

M 1

I SS

DD

M 2

V

Vin1 Vin2

M 3

V

Vout

M 4

RDRD

RS RS

R

M 1

VDD

inV
RS

outV
MVb

C + CGS1 GD1(1+
g

g m1 )

C + CGD1 (1+
g

)
g

m1
+ CDB1 + C

C + C

D

3b GD3 DB3

m3
GS3

m3
SB3

(a) (b)

X
Y

Figure 11.54

Solution Employing the half circuit shown in Fig. 11.54(b), we utilize the results obtained in
Section 11.7:

|ωp,X | = 1

RS

[
CGS1 +

(
1 + gm1

gm3

)
CGD1

] (11.152)

|ωp,Y | = 1

1

gm3

[
CDB1 +CGS3 +

(
1 + gm3

gm1

)
CGD1 +CSB3

] (11.153)

|ωp,out| = 1

RL(CDB3 +CGD3)
. (11.154)

Exercise Calculate the pole frequencies using the transistor parameters given in Example
11.18. Assume the width and hence the capacitances of M3 are twice those of M1.
Also, gm3 = √

2gm1.

11.8.1 Common-Mode Frequency Response∗

The CM response studied in Chapter 10 included no transistor capacitances. At high fre-
quencies, capacitances may raise the CM gain (and lower the differential gain), thus de-
grading the common-mode rejection ratio.

Let us consider the MOS differential pair shown in Fig. 11.55(a), where a finite ca-
pacitance appears between node P and ground. Since CSS shunts RSS, we expect the total
impedance between P and ground to fall at high frequencies, leading to a higher CM gain.

∗This section can be skipped in a first reading.
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I EE
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out1 out2
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DD
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gm

C
 ω  

CM
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Δ

SS SS

2

SSR

Δ

(a) (b)

R
g m

1+2 SS

V V

V

Figure 11.55 (a) Differential pair with parasitic capacitance at the tail node, (b) CM frequency

response.

In fact, we can simply replace RSS with RSS||[1/(CSSs)] in Eq. (10.186):

∣∣∣∣ �Vout

�VCM

∣∣∣∣ = �RD

1

gm
+ 2

(
RSS

∣∣∣∣
∣∣∣∣ 1

CSSs

) (11.155)

= gm�RD(RSSCSS + 1)

RSSCSSs + 2gmRSS + 1
. (11.156)

Since RSS is typically quite large, 2gmRSS � 1, yielding the following zero and pole
frequencies:

|ωz| = 1

RSSCSS
(11.157)

|ωp| = 2gm

CSS
, (11.158)

and the Bode approximation plotted in Fig. 11.55(b). The CM gain indeed rises dramatically
at high frequencies—by a factor of 2gmRSS (why?).

Figure 11.56 depicts the transistor capacitances that constitute CSS. For example, M3

is typically a wide device so that it can operate with a small VDS, thereby adding large
capacitances to node P.

P
M 1 M 2

M

CSB2CSB1

3

Vb CSB3

CGD3

Figure 11.56 Transistor capacitance contributions to the tail node.



506 Chapter 11 Frequency Response

P R O B L E M S

11.1. For the circuit in Fig. 11.57, −3 dB band-
width at 1.2 GHz is desired. Maximum gain
required is 1.8 with power dissipation of
2.5 mW. Take VCC = 2.5 V, neglect early
effect and other capacitances. Calculate
the value of CL required.

V

in CLV Q1

CC

R1

outV

Figure 11.57

11.2. For the amplifier in Fig. 11.58, RD =
1.5 k�,CL = 1.5 PF. Determine by what
percentage gain reduces if operated at
3 GHz. Neglect channel-length modula-
tion and other capacitances.

R

M1

VDD
D

in

out

CL

V
V

Figure 11.58

11.3. Determine the −3 dB bandwidth of the cir-
cuits shown in Fig. 11.59. Assume VA = ∞
but λ > 0. Neglect other capacitances.

11.4. For Fig. 11.59 (e), Rin = 200 k�, CL =
0.25 pF, C gs1

= 0.22 pF, C gd1
= 0.014 pF,

Cdb1
= 21 fF and Cdb2

= 40 fF. Estimate
−3 dB frequency (W/L) = 100/1.6.
μnCox = 90 μA/V2, μpCox = 30 μA/V2,

Ibias = 100 μA, (rds(ON)) = 8000L/ID(mA)·
rdsp = 12000L/ID mA.

11.5. For the transfer function (TF) 1
25 + 50

sketch
the Bode plot.

11.6. Find Bode magnitude plot for

TF = 5 × 104S
(S2 + 60S + 500)

.

11.7. Figure 11.59 (a) shows CS amplifier.
Analyze for low frequency response.

11.8. In Fig. 11.60, identify poles at various node
points.

in

CL
V

BV
R

Cin

G

RD
Vout

VDD

M
A

B

1

Figure 11.60

11.9. For Fig. 11.61 with parasitic resistance RP1

(on source) determine input and output
poles of circuit. λ = 0 and neglect other
parasitic capacitances.

in

CL
V

Cin

RP1 RS

RD
Vout

Vb

VDD

B

A

Figure 11.61
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outV
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outR
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in CLV Q1
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M 1in CLV

VDD
Vb M 2

M

in

CL

V
VDD

M 1

2

(d)(c)(a) (e)(b)

outV outV outV outV

Figure 11.59
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11.10. Figure 11.62 shows CS amplifier. Discuss
gain roll-off for this current for range of
frequencies and which meter is used for
“figure of merit”.

R

M1

VDD
D

M

out

C
V

V L

Figure 11.62

11.11. Repeat Problem 11.10 for the circuit
shown in Fig. 11.63.

in

CL

V
R

Cin

S

RD
Vout

Vb

VDD

RP

Figure 11.63

11.12. Repeat Problem 11.10 for the CS stage de-
picted in Fig. 11.64.

R

M 1

VDD

D

in

out

CL

V
V

R

Cin

S

RP

Figure 11.64

11.13. Derive* a relationship for the figure of merit
defined by Eq. (11.8) for a CS stage. Con-
sider only the load capacitance.

11.14. For Fig. 11.65, apply Miller’s theorem to
get input and output pole frequencies
(λ = 0).

R

M1

VDD
D

inV
RG

C
outV

F

Figure 11.65

11.15. Repeat Problem 11.14 for the source fol-
lower in Fig. 11.66. Assume λ = 0 and RF

is large enough to allow the approximation
vout/vX = RL/(RL + g−1

m ).

M 1

VDD

inV
RS

RL

outV
R F

X

Figure 11.66

11.16. For Fig. 11.67, determine input and output
impedances using Miller’s theorem.

R

M1

VDD
D

in

out

C

Z

Z CGS
DB

CGD

Figure 11.67

11.17. For a CG circuit in Fig. 11.68, find pole fre-
quencies at points X and Y (λ = 0).

RD

VDD

CGD

CGS RS
X

Y
VB

CDB

CSB

Vin

Figure 11.68
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11.18. Repeat Problem 11.17 for the source fol-
lower shown in Fig. 11.69.

M 1

VDD

CF
inC

Figure 11.69

11.19. For Fig. 11.70, determine the voltage gain
of the circuit which is source follower
(λ = 0).

Vout
Y

X

C

CGD

SB
CGS

VDD

M1

Figure 11.70

11.20. For Fig. 11.71, find expression for input ca-
pacitance for the source follower (λ = 0).

Y

X

C

CGD

SB
CGS RS

VDD

M1C =CGSXY

Figure 11.71

11.21. Repeat** Problem 11.22 for the circuit in
Fig. 11.72.

R
V

inV Q1

CC
C

RB
Q

CF
outV

2

Figure 11.72

11.22. For the bipolar circuits depicted in Fig.
11.73, identify all of the transistor capac-
itances and determine which ones are in
parallel and which ones are grounded on
both ends.

11.23. For the MOS circuits shown in Fig. 11.74,
identify all of the transistor capacitances
and determine which ones are in parallel
and which ones are grounded on both
ends.

11.24. In arriving at Eq. (11.49) for the fT of tran-
sistors, we neglected Cμ and CGD. Repeat
the derivation without this approximation.

11.25. It* can be shown that CGS ≈ (2/3)WLCox

for a MOSFET operating in saturation.
Using Eq. (11.49), prove that

2π fT = 3

2

μn

L2
(VGS − VTH). (11.180)

Note that fT increases with the overdrive
voltage.
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Figure 11.73
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M1
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inV RG

CGS
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outZ
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1in

b
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V
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M
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1
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b

M 2

VDD
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M V
Vout

1
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inV

S

b1
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Figure 11.74

11.26. Having* solved Problem 11.25 successfully,
a student attempts a different substitution
for gm: 2ID/(VGS − VTH), arriving at

2π fT = 3

2

2ID

WLCox

1

VGS − VTH
. (11.181)

This result suggests that fT decreases as
the overdrive voltage increases! Explain
this apparent discrepancy between Eqs.
(11.180) and (11.181).

11.27. For Fig. 11.74 (d), obtain the output
impedance of source follower (λ = 0).

11.28. Explain how the source follower shown
in Fig. 11.74 (d) acts as a virtual active
inductor.

11.29. Using Miller’s theorem, determine the
input and output poles of the CE and
CS stages depicted in Fig. 11.29(a) while
including the output impedance of the
transistors.

11.30. For Fig. 11.75 common-source stage, de-
rive expression for output impedance.
Take λ3 = 0.

V

V

M

M2

1

M3

B

in outV

Figure 11.75

11.31. Repeat Problem 11.30 for the stage shown
in Fig. 11.76.

V

inV 1Q

CC

RS
outV

QVb 2

Figure 11.76

11.32. Assuming* λ > 0 and using Miller’s theo-
rem, determine the input and output poles
of the stages depicted in Fig. 11.77.

M 1

VDD

M 2

outV

inV
RS

M 1

VDD

M 2

outV

inV
RS

M 1

VDD

M 2

outV
inV
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Vb

(c)(a) (b)

Figure 11.77
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11.33. Consider the amplifier shown in Fig. 11.78,
where VA = ∞. Determine the poles of the
circuit using (a) Miller’s approximation,
and (b) the transfer function expressed by
Eq. (11.70). Compare the results.

V

inV 1Q

CC

RS
outV

Figure 11.78

11.34. For Fig. 11.79 CS stage analyze for pole
locations. Take λ = 0.

R
V

1M

D
DD

inV
RG outV

Figure 11.79

11.35. For Fig. 11.80, derive expression for volt-
age gain and cut-off frequency (higher
side).

VDD

outV

inV+
–

VG

RL

Rin

Figure 11.80

11.36. Figure 11.81 shows CE amplifier. Perform
high-frequency analysis for this circuit.

Q1 RL
outV

CCV

RB

Rin

Vin
+

Figure 11.81

11.37. Figure 11.82 shows CS amplifier. Perform
exact analysis for the given circuit.

M1
RL

outV

DDV
DR

RG

Rin

Vin +
–

Figure 11.82

11.38. For Fig. 11.83 source follower circuits,
find the effective input capacitance. Take
λ �= 0.

V

V

VDD

M

M1

2B

in

CL

Figure 11.83

11.39. For Fig. 11.84 cascade stage, determine
input and output impedances.

R

M1

VDD

inV
RG

outV
MVB

C + CGS1 GD1 (1+ g
gm1)

C + CGD1 (1+ g )g
m1

+ CDB1 + C

C + C

D

2 GD2 DB2

m2

GS2
m2

SB2

X

Figure 11.84
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11.40. Determine the output impedance
of the emitter follower depicted in
Fig. 11.85, including Cμ and other capaci-
tances. Sketch |Zout| as a function of fre-
quency. Assume VA = ∞.

V

inV
R

Q1

CC

outZ

B

Figure 11.85

11.41. In the cascode of Fig. 11.86, Q3 serves as a
constant current source, providing 75% of
the bias current of Q1. Assuming VA = ∞
and using Miller’s theorem, determine the
poles of the circuit. Is Miller’s effect more
or less significant here than in the standard
cascode topology of Fig. 11.48(a)?

V Q

Q

b1

VCC

1

2

outV
RC

inV

QVb2 3

R B

Figure 11.86

11.42. For Fig. 11.84 Cascode MOSFET stage,
find the pole frequencies.

11.43. In** analogy with the circuit of Fig. 11.86,
a student constructs the stage depicted in
Fig. 11.87 but mistakenly uses an NMOS
device for M3. Assuming λ = 0 and using
Miller’s theorem, compute the poles of the
circuit.

M 1

VDD

inV

outV
M 2

RM

R G

3

Vb1

Vb2 D

Figure 11.87

Design Problems

11.44. We wish to design the CE stage of Fig.
11.88 for an input pole at 500 MHz and
an output pole at 2 GHz. Assuming IC =
1 mA, Cπ = 20 fF, Cμ = 5 fF, CCS = 10 fF,
and VA = ∞, and using Miller’s theorem,
determine the values of RB and RC such
that the (low-frequency) voltage gain is
maximized. You may need to use iteration.

R
V

1Q

C
CC

outV
inV

RB

Figure 11.88

11.45. We wish to design the common-base stage
of Fig. 11.89 for a −3 dB bandwidth of
10 GHz. Assume IC = 1 mA, VA = ∞,
RS = 50 �, Cπ = 20 fF, Cμ = 5 fF, and
CCS = 20 fF. Determine the maximum al-
lowable value of RC and hence the max-
imum achievable gain. (Note that the in-
put and output poles may affect the band-
width.)

inV
R Q 1

R
VCC

C

Vb
S

outV

Figure 11.89

11.46. The emitter follower of Fig. 11.90 must
be designed for an input capacitance of

V

inV Q1

CC

RL

outV

Figure 11.90

less than 50 fF. If Cμ = 10 fF, Cπ = 100 fF,
VA = ∞, and IC = 1 mA, what is the min-
imum tolerable value of RL?
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11.47. An NMOS source follower must drive a
load resistance of 100 � with a voltage gain
of 0.8. If ID = 1 mA, μnCox = 100 μA/V2,
Cox = 12 fF/μm2, and L = 0.18 μm, what
is the minimum input capacitance that
can be achieved? Assume λ = 0, CGD ≈ 0,
CSB ≈ 0, and CGS = (2/3)WLCox.

11.48. We wish to design the MOS cascode of
Fig. 11.91 for an input pole of 5 GHz
and an output pole of 10 GHz. As-
sume M1 and M2 are identical, ID = 0.5
mA, CGS = (2/3)WLCox, Cox = 12 fF/μm2,
μnCox = 100 μA/V2, λ = 0, L = 0.18 μm,
and CGD = C0W, where C0 = 0.2fF/μm
denotes the gate-drain capacitance per

unit width. Determine the maximum al-
lowable values of RG, RD, and the voltage
gain. Use Miller’s approximation forCGD1.
Assume an overdrive voltage of 200 mV
for each transistor.

M 1

VDD

inV
R

outV
M 2Vb

RD

G

Figure 11.91

S P I C E P R O B L E M S

In the following problems, use the MOS device
models given in Appendix A. For bipolar tran-
sistors, assume IS,npn = 5 × 10−16 A, βnpn = 100,
VA,npn = 5 V, IS,pnp = 8 × 10−16 A, βpnp = 50,
VA,pnp = 3.5 V. Also, SPICE models the effect of
charge storage in the base by a parameter called
τF = Cb/gm. Assume τF(tf ) = 20 ps.

11.1. In the two-stage amplifier shown in Fig.
11.92, W/L = 10 μm/0.18 μm for M1-M4.
(a) Select the input dc level to obtain an

output dc level of 0.9 V.

(b) Plot the frequency response and com-
pute the low-frequency gain and the
−3 dB bandwidth.

(c) Repeat (a) and (b) for W = 20 μm and
compare the results.

M 1

M 2

inV
M

M

outV
3

4

DDV  = 1.8 V

Figure 11.92

11.2. The circuit of Fig. 11.93 must drive a load
capacitance of 100 fF.

(a) Select the input dc level to obtain an
output dc level of 1.2 V.

(b) Plot the frequency response and com-
pute the low-frequency gain and the
−3 dB bandwidth.

1QinV

VCC
 Ω1 k  Ω1 k

outV

Q2
 Ω5 k

 =  2.5 V

Figure 11.93

11.3. The self-biased stage depicted in Fig. 11.94
must drive a load capacitance of 50 fF
with a maximum gain-bandwidth product
(= midband gain × unity-gain bandwidth).
Assuming R1 = 500 � and L1 = 0.18 μm,
determine W1, RF , and RD.

R

M 1

VDD
D

inV
R1

RF

CL
outV100 pF

 = 1.8 V

Figure 11.94



Chapter 12
Feedback

Feedback is an integral part of our lives. Try touching your fingertips together with your

eyes closed; you may not succeed the first time because you have broken a feedback loop

that ordinarily “regulates” your motions. The regulatory role of feedback manifests itself in

biological, mechanical, and electronic systems, allowing precise realization of “functions.”

For example, an amplifier targeting a precise gain of 2.00 is designed much more easily

with feedback than without.

This chapter deals with the fundamentals of (negative) feedback and its application

to electronic circuits. The outline is shown below.

➤ ➤ ➤

General

Considerations

• Elements of

Feedback

Systems

• Loop Gain

• Properties of

Negative

Feedback

Amplifiers and

Sense/Return

Methods

• Types of

Amplifiers

• Amplifier Models

• Sense/Return

Methods

• Polarity of

Feedback

Analysis of

Feedback Circuits

• Four Types of

Feedback

• Effect of Finite

I/O Impedances

Stability and

Compensation

• Loop Instability

• Phase Margin

• Frequency

Compensation

12.1 GENERAL CONSIDERATIONS

As soon as he reaches the age of 18, John eagerly obtains his driver’s license, buys a used
car, and begins to drive. Upon his parents’ stern advice, John continues to observe the
speed limit while noting that every other car on the highway drives faster. He then reasons
that the speed limit is more of a “recommendation” and exceeding it by a small amount
would not be harmful. Over the ensuing months, John gradually raises his speed so as to
catch up with the rest of the drivers on the road, only to see flashing lights in his rear-view
mirror one day. He pulls over to the shoulder of the road, listens to the sermon given by
the police officer, receives a speeding ticket, and, dreading his parents’ reaction, drives
home—now strictly adhering to the speed limit.

513
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A 1

K

X Y

Feedforward
System

Feedback
Network

Sense
Mechanism

Mechanism
Comparison

X F

Input Port of
Feedback NetworkFeedback Network

Output Port of

Figure 12.1 General feedback system.

John’s story exemplifies the “regulatory” or “corrective” role of negative feedback.
Without the police officer’s involvement, John would probably continue to drive increas-
ingly faster, eventually becoming a menace on the road.

Shown in Fig. 12.1, a negative feedback system consists of four essential compo-
nents. (1) The “feedforward” system:1 the main system, probably “wild” and poorly
controlled. John, the gas pedal, and the car form the feedforward system, where the input
is the amount of pressure that John applies to the gas pedal and the output is the speed
of the car. (2) Output sense mechanism: a means of measuring the output. The police
officer’s radar serves this purpose here. (3) Feedback network: a network that generates
a “feedback signal,” XF , from the sensed output. The police officer acts as the feedback
network by reading the radar display, walking to John’s car, and giving him a speeding
ticket. The quantity K = XF/Y is called the “feedback factor.” (4) Comparison or return
mechanism: a means of subtracting the feedback signal from the input to obtain the
“error,” E = X − XF . John makes this comparison himself, applying less pressure to the
gas pedal—at least for a while.

The feedback in Fig. 12.1 is called “negative” because XF is subtracted from X. Positive
feedback, too, finds application in circuits such as oscillators and digital latches. If K = 0,
i.e., no signal is fed back, then we obtain the “open-loop” system. If K �= 0, we say the
system operates in the “closed-loop” mode. As seen throughout this chapter, analysis of a
feedback system requires expressing the closed-loop parameters in terms of the open-loop
parameters. Note that the input port of the feedback network refers to that sensing the
output of the forward system.

As our first step towards understanding the feedback system of Fig. 12.1, let us deter-
mine the closed-loop transfer function Y/X. Since XF = KY, the error produced by the
subtractor is equal to X − KY, which serves as the input of the forward system:

(X − KY)A1 = Y. (12.1)

That is,

Y
X

= A1

1 + KA1

. (12.2)

This equation plays a central role in our treatment of feedback, revealing that nega-
tive feedback reduces the gain from A1 (for the open-loop system) to A1/(1 + KA1).

1Also called the “forward” system.



12.1 General Considerations 515

The quantity A1/(1 + KA1) is called the “closed-loop gain.” Why do we deliberately lower
the gain of the circuit? As explained in Section 12.2, the benefits accruing from negative
feedback very well justify this reduction of the gain.

Example

12.1
Analyze the noninverting amplifier of Fig. 12.2 from a feedback point of view.

A

R1

R2

1

X F

X
Y

Figure 12.2

Solution The op amp A1 performs two functions: subtraction of X and XF and amplification.
The network R1 and R2 also performs two functions: sensing the output voltage and
providing a feedback factor of K = R2/(R1 + R2). Thus, Eq. (12.2) gives

Y
X

= A1

1 + R2

R1 + R2

A1

, (12.3)

which is identical to the result obtained in Chapter 8.

Exercise Perform the above analysis if R2 = ∞.

It is instructive to compute the error, E, produced by the subtractor. Since E = X − XF

and XF = KA1E,

E = X
1 + KA1

, (12.4)

suggesting that the difference between the feedback signal and the input diminishes as
KA1 increases. In other words, the feedback signal becomes a close “replica” of the input
(Fig. 12.3). This observation leads to a great deal of insight into the operation of feedback
systems.

A

R1

R2

1

Good
Replica

X F

X

Figure 12.3 Feedback signal as a good replica of the input.
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Example

12.2
Explain why in the circuit of Fig. 12.2, Y/X approaches 1 + R1/R2 as [R2/ (R1 + R2)]A1

becomes much greater than unity.

Solution If KA1 = [R2/(R1 + R2)]A1 is large, XF becomes almost identical to X, i.e., XF ≈ X. The
voltage divider therefore requires that

Y
R2

R1 + R2

≈ X (12.5)

and hence

Y
X

≈ 1 + R1

R2

. (12.6)

Of course, Eq. (12.3) yields the same result if [R2/(R1 + R2)]A1 � 1.

Exercise Repeat the above example if R2 = ∞.

12.1.1 Loop Gain

In Fig. 12.1, the quantity KA1, which is equal to product of the gain of the forward
system and the feedback factor, determines many properties of the overall system.
Called the “loop gain,” KA1 has an interesting interpretation. Let us set the input X
to zero and “break” the loop at an arbitrary point, e.g., as depicted in Fig. 12.4(a).

A1

K

N

A1

K

Vtest

M

VN

(a) (b)

Figure 12.4 Computation of the loop gain by (a) breaking the loop and (b) applying a test signal.

The resulting topology can be viewed as a system with an input M and an output N. Now,
as shown in Fig. 12.4(b), let us apply a test signal at M and follow it through the feedback
network, the subtractor, and the forward system to obtain the signal at N.2 The input of
A1 is equal to −KVtest, yielding

VN = −KVtestA1 (12.7)

2We use voltage quantities in this example, but other quantities work as well.
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and hence

KA1 = − VN

Vtest
. (12.8)

In other words, if a signal “goes around the loop,” it experiences a gain equal to
−KA1; hence the term “loop gain.” It is important not to confuse the closed-loop gain,
A1/(1 + KA1), with the loop gain, KA1.

Example

12.3
Compute the loop gain of the feedback system of Fig. 12.1 by breaking the loop at the
input of A1.

Solution Illustrated in Fig. 12.5 is the system with the test signal applied to the input of A1. The
output of the feedback network is equal to KA1Vtest, yielding

VN = −KA1Vtest (12.9)

and hence the same result as in Eq. (12.8).

A1

K

Y

VtestVN

N M

Figure 12.5

Exercise Compute the loop gain by breaking the loop at the input of the subtractor.

The reader may wonder if an ambiguity exists with respect to the direction of the signal
flow in the loop gain test. For example, can we modify the topology of Fig. 12.4(b) as shown
in Fig. 12.6? This would mean applying Vtest to the output of A1 and expecting to observe
a signal at its input and eventually at N. While possibly yielding a finite value, such a test
does not represent the actual behavior of the circuit. In the feedback system, the signal
flows from the input of A1 to its output and from the input of the feedback network to its
output.

A 1

K

X

Vtest

VN

Figure 12.6 Incorrect method of applying test signal.
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12.2 PROPERTIES OF NEGATIVE FEEDBACK

12.2.1 Gain Desensitization

Suppose A1 in Fig. 12.1 is an amplifier whose gain is poorly controlled. For example, a
CS stage provides a voltage gain of gmRD while both gm and RD vary with process and
temperature; the gain thus may vary by as much as ±20%. Also, suppose we require a
voltage gain of 4.00.3 How can we achieve such precision? Equation (12.2) points to a
potential solution: if KA1 � 1, we have

Y
X

≈ 1

K
, (12.10)

a quantity independent of A1. From another perspective, Eq. (12.4) indicates that KA1 � 1
leads to a small error, forcing XF to be nearly equal to X and hence Y nearly equal to
X/K. Thus, if K can be defined precisely, then A1 impacts Y/X negligibly and a high
precision in the gain is attained. The circuit of Fig. 12.2 exemplifies this concept very well.
If A1R2/(R1 + R2) � 1, then

Y
X

≈ 1

K
(12.11)

≈ 1 + R1

R2

. (12.12)

Why is R1/R2 more precisely defined than gmRD is? If R1 and R2 are made of the
same material and constructed identically, then the variation of their value with process
and temperature does not affect their ratio. As an example, for a closed-loop gain of 4.00,
we choose R1 = 3R2 and implement R1 as the series combination of three “unit” resistors
equal to R2. Illustrated in Fig. 12.7, the idea is to ensure that R1 and R2 “track” each other;
if R2 increases by 20%, so does each unit in R1 and hence the total value of R1, still yielding
a gain of 1 + 1.2R1/(1.2R2) = 4.

R2

R1

Figure 12.7 Construction of resistors for good matching.

Example

12.4
The circuit of Fig. 12.2 is designed for a nominal gain of 4. (a) Determine the actual gain
if A1 = 1000. (b) Determine the percentage change in the gain if A1 drops to 500.

Solution For a nominal gain of 4, Eq. (12.12) implies that R1/R2 = 3. (a) The actual gain is given
by

Y
X

= A1

1 + KA1

(12.13)

= 3.984. (12.14)

3Some analog-to-digital converters (ADCs) require very precise voltage gains. For example, a 10-bit
ADC may call for a gain of 2.000.
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Note that the loop gain KA1 = 1000/4 = 250. (b) If A1 falls to 500, then

Y
X

= 3.968. (12.15)

Thus, the closed-loop gain changes by only (3.984/3.968)/3.984 = 0.4% if A1 drops by
factor of 2.

Exercise Determine the percentage change in the gain if A1 falls to 200.

The above example reveals that the closed-loop gain of a feedback circuit becomes rel-
atively independent of the open-loop gain so long as the loop gain, KA1, remains sufficiently
higher than unity. This property of negative feedback is called “gain desensitization.”

We now see why we are willing to accept a reduction in the gain by a factor of 1 + KA1.
We begin with an amplifier having a high, but poorly-controlled gain and apply negative
feedback around it so as to obtain a better-defined, but inevitably lower gain. This concept
was also extensively employed in the op amp circuits described in Chapter 8.

The gain desensitization property of negative feedback means that any factor that
influences the open-loop gain has less effect on the closed-loop gain. Thus far, we have
blamed only process and temperature variations, but many other phenomena change the
gain as well.

• As the signal frequency rises, A1 may fall, but A1/(1 + KA1) remains relatively con-
stant. We therefore expect that negative feedback increases the bandwidth (at the
cost of gain).

• If the load resistance changes, A1 may change; e.g., the gain of a CS stage depends
on the load resistance. Negative feedback, on the other hand, makes the gain less
sensitive to load variations.

• The signal amplitude affects A1 because the forward amplifier suffers from nonlinear-
ity. For example, the large-signal analysis of differential pairs in Chapter 10 reveals
that the small-signal gain falls at large input amplitudes. With negative feedback,
however, the variation of the open-loop gain due to nonlinearity manifests itself to
a lesser extent in the closed-loop characteristics. That is, negative feedback improves
the linearity.

We now study these properties in greater detail.

12.2.2 Bandwidth Extension

Let us consider a one-pole open-loop amplifier with a transfer function

A1(s) = A0

1 + s
ω0

. (12.16)

Here, A0 denotes the low-frequency gain and ω0 the −3 dB bandwidth. Noting from
Eq. (12.2) that negative feedback lowers the low-frequency gain by a factor of 1 + KA1,
we wish to determine the resulting bandwidth improvement. The closed-loop transfer
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function is obtained by substituting Eq. (12.16) for A1 in Eq. (12.2):

Y
X

=

A0

1 + s
ω0

1 + K
A0

1 + s
ω0

. (12.17)

Multiplying the numerator and the denominator by 1 + s/ω0 gives

Y
X

(s) = A0

1 + KA0 + s
ω0

(12.18)

=
A0

1 + KA0

1 + s
(1 + KA0)ω0

. (12.19)

In analogy with Eq. (12.16), we conclude that the closed-loop system now exhibits:

Closed−Loop Gain = A0

1 + KA0

(12.20)

Closed−Loop Bandwidth = (1 + KA0)ω0. (12.21)

In other words, the gain and bandwidth are scaled by the same factor but in opposite
directions, displaying a constant product.

Example

12.5
Plot the closed-loop frequency response given by Eq. (12.19) for K = 0, 0.1, and 0.5.
Assume A0 = 200.

Solution For K = 0, the feedback vanishes and Y/X reduces to A1(s) as given by Eq. (12.16). For
K = 0.1, we have 1 + KA0 = 21, noting that the gain decreases and the bandwidth in-
creases by the same factor. Similarly, for K = 0.5, 1 + KA0 = 101, yielding a proportional
reduction in gain and increase in bandwidth. The results are plotted in Fig. 12.8.

 ω  

A0

K = 0.1

K = 0

K = 0.5

Figure 12.8

Exercise Repeat the above example for K = 1.



12.2 Properties of Negative Feedback 521

Example

12.6
Prove that the unity-gain bandwidth of the above system remains independent of K if
1 + KA0 � 1 and K2 � 1.

Solution The magnitude of Eq. (12.19) is equal to

∣∣∣∣Y
X

( jω)

∣∣∣∣ =
A0

1 + KA0√
1 + ω2

(1 + KA0)
2
ω2

0

. (12.22)

Equating this result to unity and squaring both sides, we write

(
A0

1 + KA0

)2

= 1 + ω2
u

(1 + KA0)
2
ω2

0

, (12.23)

where ωu denotes the unity-gain bandwidth. It follows that

ωu = ω0

√
A2

0 − (1 + KA0)
2

(12.24)

≈ ω0

√
A2

0 − K2A2
0 (12.25)

≈ ω0A0, (12.26)

which is equal to the gain-bandwidth product of the open-loop system. Figure 12.9 depicts
the results.

 ω

A0

0 dB
 ω  0  ω  0A0

Figure 12.9

Exercise If A0 = 1000, ω0 = 2π × (10 MHz), and K = 0.5, calculate the unity-gain bandwidth from
Eqs. (12.24) and (12.26) and compare the results.

12.2.3 Modification of I/O Impedances

As mentioned above, negative feedback makes the closed-loop gain less sensitive to
the load resistance. This effect fundamentally arises from the modification of the out-
put impedance as a result of feedback. Feedback modifies the input impedance as well. We
will formulate these effects carefully in the following sections, but it is instructive to study
an example at this point.
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Example

12.7
Figure 12.10 depicts a transistor-level realization of the feedback circuit shown in
Fig. 12.2. Assume λ = 0 and R1 + R2 � RD for simplicity. (a) Identify the four com-
ponents of the feedback system. (b) Determine the open-loop and closed-loop voltage
gain. (c) Determine the open-loop and closed-loop I/O impedances.

inV

R

R

Vout

M 1

RD

VDD

1

2

Figure 12.10

Solution (a) In analogy with Fig. 12.10, we surmise that the forward system (the main amplifier)
consists of M1 and RD, i.e., a common-gate stage. Resistors R1 and R2 serve as both the
sense mechanism and the feedback network, returning a signal equal to VoutR2/(R1 + R2)
to the subtractor. Transistor M1 itself operates as the subtractor because the small-
signal drain current is proportional to the difference between the gate and source
voltages:

iD = gm(vG − vS). (12.27)

(b) The forward system provides a voltage gain equal to

A0 ≈ gmRD (12.28)

because R1 + R2 is large enough that its loading on RD can be neglected. The closed-loop
voltage gain is thus given by

vout

vin
= A0

1 + KA0

(12.29)

= gmRD

1 + R2

R1 + R2

gmRD

. (12.30)

We should note that the overall gain of this stage can also be obtained by simply solving
the circuit’s equations—as if we know nothing about feedback. However, the use of
feedback concepts both provides a great deal of insight and simplifies the task as circuits
become more complex.

(c) The open-loop I/O impedances are those of the CG stage:

Rin,open = 1

gm
(12.31)

Rout,open = RD. (12.32)
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At this point, we do not know how to obtain the closed-loop I/O impedances in terms
of the open-loop parameters. We therefore simply solve the circuit. From Fig. 12.11(a),
we recognize that RD carries a current approximately equal to iX because R1 + R2 is
assumed large. The drain voltage of M1 is thus given by iXRD, leading to a gate voltage
equal to +iXRDR2/(R1 + R2). Transistor M1 generates a drain current proportional to
vGS:

iD = gmvGS (12.33)

= gm

(+iXRDR2

R1 + R2

− vX

)
. (12.34)

Since iD = −iX , Eq. (12.34) yields

vX

iX
= 1

gm

(
1 + R2

R1 + R2

gmRD

)
. (12.35)

That is, the input resistance increases from 1/gm by a factor equal to 1 +
gmRDR2/(R1 + R2), the same factor by which the gain decreases.

R

R

M 1

RD

VDD

1

2

Xv

Xi

R

R

M 1

RD

VDD

1

2

X

Xi

v

(a) (b)

Figure 12.11

To determine the output resistance, we write from Fig. 12.11(b),

vGS = R2

R1 + R2

vX , (12.36)

and hence

iD = gmvGS (12.37)

= gm
R2

R1 + R2

vX . (12.38)

Noting that, if R1 + R2 � RD, then iX ≈ iD + vX/RD, we obtain

iX ≈ gm
R2

R1 + R2

vX + vX

RD
. (12.39)
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It follows that

vX

iX
= RD

1 + R2

R1 + R2

gmRD

. (12.40)

The output resistance thus decreases by the “universal” factor 1 + gmRDR2/ (R1 + R2).
The above computation of I/O impedances can be greatly simplified if feed-

back concepts are employed. As exemplified by Eqs. (12.35) and (12.40), the factor
1 + KA0 = 1 + gmRDR2/(R1 + R2) plays a central role here. Our treatment of feedback
circuits in this chapter will provide the foundation for this point.

Exercise In some applications, the input and output impedances of an amplifier must both be equal
to 50 �. What relationship guarantees that the input and output impedances of the above
circuit are equal?

The reader may raise several questions at this point. Do the input impedance and
the output impedance always scale down and up, respectively? Is the modification of I/O
impedances by feedback desirable? We consider one example here to illustrate a point and
defer more rigorous answers to subsequent sections.

Example

12.8
The common-gate stage of Fig. 12.10 must drive a load resistance RL = RD/2. How much
does the gain change (a) without feedback, (b) with feedback?

Solution (a) Without feedback [Fig. 12.12(a)], the CG gain is equal to gm(RD||RL) = gmRD/3.
That is, the gain drops by factor of three.

inV

R

Vout

M 1

RD

VDD

Vb L 2
=

RD

Figure 12.12

(b) With feedback, we use Eq. (12.30) but recognize that the open-loop gain has fallen
to gmRD/3:

vout

vin
= gmRD/3

1 + R2

R1 + R2

gmRD/3

(12.41)

= gmRD

3 + R2

R1 + R2

gmRD

. (12.42)
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For example, if gmRDR2/(R1 + R2) = 10, then this result differs from the “unloaded”
gain expression in Eq. (12.30) by about 18%. Feedback therefore desensitizes the gain
to load variations.

Exercise Repeat the above example for RL = RD.

12.2.4 Linearity Improvement

Consider a system having the input/output characteristic shown in Fig. 12.13(a). The non-
linearity observed here can also be viewed as the variation of the slope of the characteristic,
i.e., the small-signal gain. For example, this system exhibits a gain of A1 near x = x1 and
A2 near x = x2. If placed in a negative-feedback loop, the system provides a more uniform
gain for different signal levels and, therefore, operates more linearly. In fact, as illustrated
in Fig. 12.13(b) for the closed-loop system, we can write

Gain at x1 = A1

1 + KA1

(12.43)

≈ 1

K

(
1 − 1

KA1

)
, (12.44)

where it is assumed KA1 � 1. Similarly,

Gain at x2 = A2

1 + KA2

(12.45)

≈ 1

K

(
1 − 1

KA2

)
. (12.46)

Thus, so long as KA1 and KA2 are large, the variation of the closed-loop gain with the
signal level remains much less than that of the open-loop gain.

All of the above attributes of negative feedback can also be considered a result of the
minimal error property illustrated in Fig. 12.3. For example, if at different signal levels,
the forward amplifier’s gain varies, the feedback still ensures the feedback signal is a close
replica of the input, and so is the output.

x

y

A1

A2

A1

1 + A1K

(a) (b)

1x x2 x

y

1x x2

A

1 + AK 2

2

Closed–Loop 
Characteristic

Open–Loop 
Characteristic

Figure 12.13 (a) Nonlinear open-loop characteristic of an amplifier, (b) improvement in linearity

due to feedback.
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12.3 TYPES OF AMPLIFIERS

The amplifiers studied thus far in this book sense and produce voltages. While less intu-
itive, other types of amplifiers also exist, i.e., those that sense and/or produce currents.
Figure 12.14 depicts the four possible combinations along with their input and output
impedances in the ideal case. For example, a circuit sensing a current must display a
low input impedance to resemble a current meter. Similarly, a circuit generating an output
current must achieve a high output impedance to approximate a current source. The reader
is encouraged to confirm the other cases as well. The distinction among the four types of
amplifiers becomes important in the analysis of feedback circuits. Note that the “current-
voltage” and “voltage-current” amplifiers of Figs. 12.14(b) and (c) are commonly known
as “transimpedance” and “transconductance” amplifiers, respectively.

Vin

inR = outR
outV

= 0 inR outR
outV

= 0
I in

A 0 R 0

Vin

inR = outR

I out

= outR

I out

=inR = 0
I in

G m A l

(c)

(a) (b)

(d)

= 0

Figure 12.14 (a) Voltage, (b) transimpedance, (c) transconductance, and (d) current amplifiers.

12.3.1 Simple Amplifier Models

For our studies later in this chapter, it is beneficial to develop simple models for the
four amplifier types. Depicted in Fig. 12.15 are the models for the ideal case. The voltage
amplifier in Fig. 12.15(a) provides an infinite input impedance so that it can sense voltages
as an ideal voltmeter, i.e., without loading the preceding stage. Also, the circuit exhibits a

out

A0 in

out

0 inin R I

in

in

Gm in AI in

(c)

(a) (b)

(d)

in

i

v

ii

v

v

v

v

v

i out i out

Figure 12.15 Ideal models for (a) voltage, (b) transimpedance, (c) transconductance, and

(d) current amplifiers.
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Figure 12.16 (a) Realistic model of voltage amplifier, (b) incorrect voltage amplifier model,

(c) realistic model of transimpedance amplifier, (d) incorrect model of transimpedance amplifier,

(e) realistic model of transconductance amplifier, (f) realistic model of current amplifier.

zero output impedance so as to serve as an ideal voltage source, i.e., deliver vout = A0vin

regardless of the load impedance.
The transimpedance amplifier in Fig. 12.15(b) has a zero input impedance so that it can

measure currents as an ideal current meter. Similar to the voltage amplifier, the output
impedance is also zero if the circuit operates as an ideal voltage source. Note that the
“transimpedance gain” of this amplifier, R0 = vout/ iin, has a dimension of resistance. For
example, a transimpedance gain of 2 k� means a 1-mA change in the input current leads
to a 2-V change at the output.

The I/O impedances of the topologies in Figs. 12.15(c) and (d) follow similar observa-
tions. It is worth noting that the amplifier of Fig. 12.15(c) has a “transconductance gain,”
Gm = iout/vin, with a dimension of transconductance.

In reality, the ideal models in Fig. 12.15 may not be accurate. In particular, the I/O
impedances may not be negligibly large or small. Figure 12.16 shows more realistic models
of the four amplifier types. Illustrated in Fig. 12.16(a), the voltage amplifier model con-
tains an input resistance in parallel with the input port and an output resistance in series
with the output port. These choices are unique and become clearer if we attempt other
combinations. For example, if we envision the model as shown in Fig. 12.16(b), then the
input and output impedances remain equal to infinity and zero, respectively, regardless of
the values of Rin and Rout. (Why?) Thus, the topology of Fig. 12.16(a) serves as the only
possible model representing finite I/O impedances.

Figure 12.16(c) depicts a nonideal transimpedance amplifier. Here, the input resistance
appears in series with the input. Again, if we attempt a model such as that in Fig. 12.16(d),
the input resistance is zero. The other two amplifier models in Figs. 12.16(e) and (f) follow
similar concepts.

12.3.2 Examples of Amplifier Types

It is instructive to study examples of the above four types. Figure 12.17(a) shows a cascade
of a CS stage and a source follower as a “voltage amplifier.” The circuit indeed provides
a high input impedance (similar to a voltmeter) and a low output impedance (similar to
a voltage source). Figure 12.17(b) depicts a cascade of a CG stage and a source follower
as a transimpedance amplifier. Such a circuit displays low input and output impedances to
serve as a “current sensor” and a “voltage generator.” Figure 12.17(c) illustrates a single
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Figure 12.17 Examples of (a) voltage, (b) transimpedance, (c) transconductance, and (d) current

amplifiers.

MOSFET as a transconductance amplifier. With high input and output impedances, the
circuit efficiently senses voltages and generates currents. Finally, Fig. 12.17(d) shows a
common-gate transistor as a current amplifier. Such a circuit must provide a low input
impedance and a high output impedance.

Let us also determine the small-signal “gain” of each circuit in Fig. 12.17, assum-
ing λ = 0 for simplicity. The voltage gain, A0, of the cascade in Fig. 12.17(a) is equal to
−gmRD if λ = 0.4 The gain of the circuit in Fig. 12.17(b) is defined as vout/ iin, called the
“transimpedance gain,” and denoted by RT . In this case, iin flows through M1 and RD,
generating a voltage equal to iinRD at both the drain of M1 and the source of M2. That is,
vout = iinRD and hence RT = RD.

For the circuit in Fig. 12.17(c), the gain is defined as iout/vin, called the “transconduc-
tance gain,” and denoted by Gm. In this example, Gm = gm. For the current amplifier in
Fig. 12.17(d), the current gain, AI , is equal to unity because the input current simply flows
to the output.

Example

12.9
With a current gain of unity, the topology of Fig. 12.17(d) appears hardly better than a
piece of wire. What is the advantage of this circuit?

Solution The important property of this circuit lies in its input impedance. Suppose the
current source serving as the input suffers from a large parasitic capacitance, Cp.
If applied directly to a resistor RD [Fig. 12.18(a)], the current would be wasted

4Recall from Chapter 7 that the gain of the source follower is equal to unity in this case.
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Figure 12.18

through Cp at high frequencies, exhibiting a −3 dB bandwidth of only (RDCp)
−1

. On the
other hand, the use of a CG stage [Fig. 12.18(b)] moves the input pole to gm/Cp, a much
higher frequency.

Exercise Determine the transfer function Vout/Iin for each of the above circuits.

12.4 SENSE AND RETURN TECHNIQUES

Recall from Section 12.1 that a feedback system includes means of sensing the output and
“returning” the feedback signal to the input. In this section, we study such means so as to
recognize them easily in a complex feedback circuit.

How do we measure the voltage across a port? We place a voltmeter in parallel with
the port, and require that the voltmeter have a high input impedance so that it does not
disturb the circuit [Fig. 12.19(a)]. By the same token, a feedback circuit sensing an output
voltage must appear in parallel with the output and, ideally, exhibit an infinite impedance
[Fig. 12.19(b)]. Shown in Fig. 12.19(c) is an example in which the resistive divider consisting
of R1 and R2 senses the output voltage and generates the feedback signal, vF . To approach
the ideal case, R1 + R2 must be very large so that A1 does not “feel” the effect of the
resistive divider.

How do we measure the current flowing through a wire? We break the wire and place
a current meter in series with the wire [Fig. 12.20(a)]. The current meter in fact consists
of a small resistor, so that it does not disturb the circuit, and a voltmeter that measures

(a)

Vout
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Feedforward
System

Feedback

outV A

R1

R2

1 outV

VF

inV

(c)(b)

Network

Figure 12.19 (a) Sensing a voltage by a voltmeter, (b) sensing the output voltage by the feedback

network, (d) example of implementation.
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Figure 12.20 (a) Sensing a current by a current meter, (b) actual realization of current meter,

(c) sensing the output current by the feedback network, (d) example of implementation.

the voltage drop across the resistor [Fig. 12.20(b)]. Thus, a feedback circuit sensing an
output current must appear in series with the output and, ideally, exhibit a zero impedance
[Fig. 12.20(c)]. Depicted in Fig. 12.20(d) is an implementation of this concept. A resistor
placed in series with the source of M1 senses the output current, generating a proportional
feedback voltage, VF . Ideally, RS is so small (� 1/gm1) that the operation of M1 remains
unaffected.

To return a voltage or current to the input, we must employ a mechanism for adding
or subtracting such quantities.5 To add two voltage sources, we place them in series [Fig.
12.21(a)]. Thus, a feedback network returning a voltage must appear in series with the
input signal [Fig. 12.21(b)], so that

ve = vin − vF . (12.47)

For example, as shown in Fig. 12.21(c), a differential pair can subtract the feedback voltage
from the input. Alternatively, as mentioned in Example 12.7, a single transistor can operate
as a voltage subtractor [Fig. 12.21(d)].

To add two current sources, we place them in parallel [Fig. 12.22(a)]. Thus, a feedback
network returning a current must appear in parallel with the input signal, Fig. 12.22(b), so
that

ie = iin − iF . (12.48)

For example, a transistor can return a current to the input [Fig. 12.22(c)]. So can a resistor
if it is large enough to approximate a current source [Fig. 12.22(d)].

5Of course, only quantities having the same dimension can be added or subtracted. That is, a voltage
cannot be added to a current.
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Figure 12.22 (a) Addition of two currents, (b) addition of feedback current and input current,

(c) circuit realization, (d) another realization.

Example

12.10
Determine the types of sensed and returned signals in the circuit of Fig. 12.23.
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Figure 12.23
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Solution This circuit is an implementation of the noninverting amplifier shown in Fig. 12.2.
Here, the differential pair with the active load plays the role of an op amp. The re-
sistive divider senses the output voltage and serves as the feedback network, producing
vF = [R2/(R1 + R2)]vout. Also, M1 and M2 operate as both part of the op amp (the for-
ward system) and a voltage subtractor. The amplifier therefore combines the topologies
in Figs. 12.19(c) and 12.21(c).

Exercise Repeat the above example if R2 = ∞.

Example

12.11
Compute the feedback factor, K, for the circuit depicted in Fig. 12.24. Assume λ = 0.
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I in
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R
D1

D2

outV

M

Fi

F

Figure 12.24

Solution Transistor MF both senses the output voltage and returns a current to the input. The
feedback factor is thus given by

K = iF
vout

= gmF, (12.49)

where gmF denotes the transconductance of MF .

Exercise Calculate the feedback factor if MF is degenerated by a resistor of value RS .

Let us summarize the properties of the “ideal” feedback network. As illustrated in
Fig. 12.25(a), we expect such a network to exhibit an infinite input impedance if sensing
a voltage and a zero input impedance if sensing a current. Moreover, the network must
provide a zero output impedance if returning a voltage and an infinite output impedance
if returning a current.

12.5 POLARITY OF FEEDBACK

While the block diagram of a feedback system, e.g., Fig. 12.1, readily reveals the polarity
of feedback, an actual circuit implementation may not. The procedure of determining this
polarity involves three steps: (a) assume the input signal goes up (or down); (b) follow the
change through the forward amplifier and the feedback network; (c) determine whether
the returned quantity opposes or enhances the original “effect” produced by the input
change. A simpler procedure is as follows: (a) set the input to zero; (b) break the loop;
(c) apply a test signal, Vtest, travel around the loop, examine the returned signal, Vret, and
determine the polarity of Vret/Vtest.
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Figure 12.25 (a) Input impedance of ideal feedback networks for sensing voltage and current

quantities, (b) output impedance of ideal feedback networks for producing voltage and current

quantities.

Example

12.12
Determine the polarity of feedback in the circuit of Fig. 12.26.
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Figure 12.26

Solution If Vin goes up, ID1 tends to increase and ID2 tends to decrease. As a result, Vout and hence
VX tend to rise. The rise in VX tends to increase ID2 and decrease ID1, counteracting the
effect of the change in Vin. The feedback is therefore negative. The reader is encouraged
to apply the second procedure.

Exercise Suppose the top terminal of R1 is tied to the drain of M1 rather than the the drain of M2.
Determine the polarity of feedback.

Example

12.13
Determine the polarity of feedback in the circuit of Fig. 12.27.
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Solution If Vin goes up, ID1 tends to increase. Thus, VA falls, Vout rises, and so does VX . The rise in VX

tends to reduce ID1 (why?), thereby opposing the effect produced by Vin. The feedback
is therefore negative.

Exercise Repeat the above example if M2 is converted to a CG stage, i.e., its source is tied to node
A and its gate to a bias voltage.

Example

12.14
Determine the polarity of feedback in the circuit of Fig. 12.28.
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Figure 12.28

Solution If Iin goes up, VX tends to rise (why?), thus raising ID1. As a result, Vout falls and ID2

decreases, allowing VX to rise (why?). Since the returned signal enhances the effect
produced by Iin, the polarity of feedback is positive.

Exercise Repeat the above example if M2 is a PMOS device (still operating as a CS stage). What
happens if RD → ∞? Is this result expected?

12.6 FEEDBACK TOPOLOGIES

Our study of different types of amplifiers in Section 12.3 and sense and return mechanisms
in Section 12.4 suggests that four feedback topologies can be constructed. Each topology
includes one of four types of amplifiers as its forward system. The feedback network
must, of course, sense and return quantities compatible with those produced and sensed
by the forward system, respectively. For example, a voltage amplifier requires that the
feedback network sense and return voltages, whereas a transimpedance amplifier must
employ a feedback network that senses a voltage and returns a current. In this section,
we study each topology and compute the closed-loop characteristics such as gain and I/O
impedances with the assumption that the feedback network is ideal (Fig. 12.25).

12.6.1 Voltage-Voltage Feedback

Illustrated in Fig. 12.29(a), this topology incorporates a voltage amplifier, requiring that the
feedback network sense the output voltage and return a voltage to the subtractor. Recall
from Section 12.4 that such a feedback network appears in parallel with the output and
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in series with the input,6 ideally exhibiting an infinite input impedance and a zero output
impedance.

outVVin

VF

A0V1

K

0

Figure 12.29 Voltage-voltage feedback.

We first calculate the closed-loop gain. Since

V1 = Vin − VF (12.50)

Vout = A0V1 (12.51)

VF = KVout, (12.52)

we have

Vout = A0(Vin − KVout), (12.53)

and hence

Vout

Vin
= A0

1 + KA0

, (12.54)

an expected result.

Example

12.15
Determine the closed-loop gain of the circuit shown in Fig. 12.30, assuming R1 + R2 is
very large.
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Figure 12.30

6For this reason, this type of feedback is also called the “series-shunt” topology, where the first term
refers to the return mechanism at the input and the second term to the sense mechanism at the output.
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Solution As evident from Examples 12.10 and 12.12, this topology indeed employs negative
voltage-voltage feedback: the resistive network senses Vout with a high impedance
(because R1 + R2 is very large), returning a voltage to the gate of M2. As mentioned
in Example 12.10, M1 and M2 serve as the input stage of the forward system and as a
subtractor.

Noting that A0 is the gain of the circuit consisting of M1-M4, we write from
Chapter 10

A0 = gmN(rON||rOP), (12.55)

where the subscripts N and P refer to NMOS and PMOS devices, respectively.7 With
K = R2/(R1 + R2), we obtain

Vout

Vin
= gmN(rON||rOP)

1 + R2

R1 + R2

gmN(rON||rOP)

. (12.56)

As expected, if the loop gain remains much greater than unity, then the closed-loop gain
is approximately equal to 1/K = 1 + R1/R2.

Exercise If gmN = 1/(100 �), rON = 5 k�, and rOP = 2 k�, determine the required value of
R2/(R1 + R2) for a closed loop gain of 4. Compare the result with the nominal value
of (R2 + R1)/R2 = 4.
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Feedforward
System

in

K
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inIinI

Figure 12.31 Calculation of input impedance.

In order to analyze the effect of feedback on the I/O impedances, we assume the
forward system is a nonideal voltage amplifier (i.e., it exhibits finite I/O impedances)
while the feedback network remains ideal. Depicted in Fig. 12.31 is the overall topology
including a finite input resistance for the forward amplifier. Without feedback, of course,
the entire input signal would appear across Rin, producing an input current of Vin/Rin.8

With feedback, on the other hand, the voltage developed at the input of A0 is equal to
Vin − VF and also equal to IinRin. Thus,

IinRin = Vin − VF (12.57)

= Vin − (IinRin)A0K. (12.58)

7We observe that R1 + R2 must be much greater than rON ||rOP for this to hold. This serves as the
definition of R1 + R2 being “very large.”
8Note that Vin and Rin carry equal currents because the feedback network must appear in series with the
input [Fig. 12.21(a)].
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It follows that

Vin

Iin
= Rin(1 + KA0). (12.59)

Interestingly, negative feedback around a voltage amplifier raises the input impedance by
the universal factor of one plus the loop gain. This impedance modification brings the
circuit closer to an ideal voltage amplifier.

Example

12.16
Determine the input impedance of the stage shown in Fig. 12.32(a) if R1 + R2 is very
large.
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Figure 12.32

Solution We first open the loop to calculate Rin in Eq. (12.59). To open the loop, we break the
gate of M1 from the feedback signal and tie it to ground [Fig. 12.32(b)]:

Rin = 1

gm
. (12.60)

The closed-loop input impedance is therefore given by

Vin

Iin
= 1

gm

(
1 + R2

R1 + R2

gmRD

)
. (12.61)

Exercise What happens if R2 → ∞? Is this result expected?

The effect of feedback on the output impedance can be studied with the aid of the
diagram shown in Fig. 12.33, where the forward amplifier exhibits an output impedance of
Rout. Expressing the error signal at the input of A0 as −VF = −KVX , we write the output
voltage of A0 as −KA0VX and hence

IX = VX − (−KA0VX)

Rout
, (12.62)

where the current drawn by the feedback network is neglected. Thus,

VX

IX
= Rout

1 + KA0

, (12.63)
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Figure 12.33 Calculation of output impedance.

revealing that negative feedback lowers the output impedance if the topology senses the
output voltage. The circuit is now a better voltage amplifier—as predicted by our gain
desensitization analysis in Section 12.2.

Example

12.17
Calculate the output impedance of the circuit shown in Fig. 12.34 if R1 + R2 is very large.
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Figure 12.34

Solution Recall from Example 12.15 that the open-loop output impedance is equal to rON||rOP

and KA0 = [R2/(R1 + R2)]gmN(rON||rOP). Thus, the closed-loop output impedance,
Rout,closed, is given by

Rout,closed = rON||rOP

1 + R2

R1 + R2

gmN(rON||rOP)

. (12.64)

If the loop gain is much greater than unity,

Rout,closed ≈
(

1 + R1

R2

)
1

gmN
, (12.65)

a value independent of rON and rOP. In other words, while the open-loop amplifier
suffers from a high output impedance, the application of negative feedback lowers Rout

to a multiple of 1/gmN .

Exercise What happens if R2 → ∞? Can you prove this result by direct analysis of the circuit?
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In summary, voltage-voltage feedback lowers the gain and the output impedance by
1 + KA0 and raises the input impedance by the same factor.

12.6.2 Voltage-Current Feedback

Depicted in Fig. 12.35, this topology employs a transimpedance amplifier as the forward
system, requiring that the feedback network sense the output voltage and return a current
to the subtractor. In our terminology, the first term in “voltage-current feedback” refers
to the quantity sensed at the output, and the second, to the quantity returned to the input.
(This terminology is not standard.) Also, recall from Section 12.4 that such a feedback
network must appear in parallel with the output and with the input,9 ideally providing
both an infinite input impedance and an infinite output impedance (why?). Note that the
feedback factor in this case has a dimension of conductance because K = IF/Vout.

outR

F

e

in 0

K

V

I

I

I

Figure 12.35 Voltage-current feedback.

We first compute the closed-loop gain, expecting to obtain a familiar result. Since
Ie = Iin − IF and Vout = IeR0, we have

Vout = (Iin − IF)R0 (12.66)

= (Iin − KVout)R0, (12.67)

and hence

Vout

Iin
= R0

1 + KR0

. (12.68)

Example

12.18
For the circuit shown in Fig. 12.36(a), assume λ = 0 and RF is very large and (a) prove that
the feedback is negative; (b) calculate the open-loop gain; (c) calculate the closed-loop
gain.

Solution (a) If Iin increases, ID1 decreases and VX rises. As a result, Vout falls, thereby reducing
IRF . Since the currents injected by Iin and RF into the input node change in opposite
directions, the feedback is negative.
(b) To calculate the open-loop gain, we consider the forward amplifier without the
feedback network, exploiting the assumption that RF is very large [Fig. 12.36(b)].

9For this reason, this type is also called “shunt-shunt” feedback.
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The transimpedance gain is given by the gain from Iin to VX (i.e., RD1) multiplied by that
from VX to Vout (i.e., −gm2RD2):

R0 = RD1(−gm2RD2). (12.69)

Note that this result assumes RF � RD2 so that the gain of the second stage remains
equal to −gm2RD2.
(c) To obtain the closed-loop gain, we first note that the current returned by RF to the
input is approximately equal to Vout/RF if RF is very large. To prove this, we consider a
section of the circuit as in Fig. 12.36(c) and write

IRF = Vout

RF + 1

gm1

. (12.70)

Thus, if RF � 1/gm1, the returned current is approximately equal to Vout/RF . (We say
“RF operates as a current source.”) That is, K = −1/RF , where the negative sign arises
from the direction of the current drawn by RF from the input node with respect to that
in Fig. 12.35. Forming 1 + KR0, we express the closed-loop gain as

Vout

Iin

∣∣∣∣
closed

= −gm2RD1RD2

1 + gm2RD1RD2

RF

, (12.71)

which reduces to −RF if gm2RD1RD2 � RF .
It is interesting to note that the assumption that RF is very large translates to two

conditions in this example: RF � RD2 and RF � 1/gm1. The former arises from the
output network calculations and the latter from the input network calculations. What
happens if one or both of these assumptions are not valid? We deal with this (relatively
common) situation in Section 12.7.

Exercise What is the closed-loop gain if RD1 → ∞? How can this result be interpreted? (Hint: the
infinite open-loop gain creates a virtual ground node at the source of M1.)
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Figure 12.37 Calculation of input impedance.

We now proceed to determine the closed-loop I/O impedances. Modeling the for-
ward system as an ideal transimpedance amplifier but with a finite input impedance Rin

(Section 12.3), we construct the test circuit shown in Fig. 12.37. Since the current flowing
through Rin is equal to VX/Rin (why?), the forward amplifier produces an output voltage
equal to (VX/Rin)R0 and hence

IF = K
VX

Rin
R0. (12.72)

Writing a KCL at the input node thus yields

IX − K
VX

Rin
R0 = VX

Rin
(12.73)

and hence

VX

IX
= Rin

1 + KR0

. (12.74)

That is, a feedback loop returning current to the input lowers the input impedance by a
factor of one plus the loop gain, bringing the circuit closer to an ideal “current sensor.”

Example

12.19
Determine the closed-loop input impedance of the circuit studied in Example 12.18.

Solution The open-loop amplifier shown in Fig. 12.36(b) exhibits an input impedance Rin = 1/gm1

because RF is assumed to be very large. With 1 + KR0 from the denominator of
Eq. (12.71), we obtain

Rin,closed = 1

gm1

· 1

1 + gm2RD1RD2

RF

. (12.75)

Exercise Explain what happens if RD1 → ∞ and why.

From our study of voltage-voltage feedback in Section 12.6.1, we postulate that
voltage-current feedback too lowers the output impedance because a feedback loop “reg-
ulating” the output voltage tends to stabilize it despite load impedance variations. Drawing
the circuit as shown in Fig. 12.38, where the input current source is set to zero and Rout

models the open-loop output resistance, we observe that the feedback network produces
a current of IF =KVX . Upon flowing through the forward amplifier, this current translates
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Figure 12.38 Calculation of output impedance.

to VA = −KVXR0 and hence

IX = VX − VA

Rout
(12.76)

= VX + KVXR0

Rout
, (12.77)

where the current drawn by the feedback network is neglected. Thus,

VX

IX
= Rout

1 + KR0

, (12.78)

an expected result.

Example

12.20
Calculate the closed-loop output impedance of the circuit studied in Example 12.18.

Solution From the open-loop circuit in Fig. 12.36(b), we have Rout ≈ RD2 because RF is assumed
very large. Writing 1 + KR0 from the denominator of Eq. (12.71) gives

Rout,closed = RD2

1 + gm2RD1RD2

RF

. (12.79)

Exercise Explain what happens if RD1 → ∞ and why.

12.6.3 Current-Voltage Feedback

Shown in Fig. 12.39(a), this topology incorporates a transconductance amplifier, requiring
that the feedback network sense the output current and return a voltage to the subtrac-
tor. Again, in our terminology, the first term in “current-voltage feedback” refers to the

Vin

VF

V1

K

0

Gm

0

I out

Figure 12.39 Current-voltage feedback.
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quantity sensed at the output, and the second, to the quantity returned to the input. Recall
from Section 12.4 that such a feedback network must appear in series with the output
and with the input,10 ideally exhibiting zero input and output impedances. Note that the
feedback factor in this case has a dimension of resistance because K = VF/Iout.

Let us first confirm that the closed-loop gain is equal to the open-loop gain di-
vided by one plus the loop gain. Since the forward system produces a current equal to
Iout = Gm(Vin − VF) and since VF = KIout, we have

Iout = Gm(Vin − KIout) (12.80)

and hence
Iout

Vin
= Gm

1 + KGm
. (12.81)

Example

12.21
We wish to deliver a well-defined current to a laser diode as shown in Fig. 12.40(a),11

but the transconductance of M1 is poorly controlled. For this reason, we “monitor” the
current by inserting a small resistor RM in series, sensing the voltage across RM, and
returning the result to the input of an op amp [Fig. 12.40(b)]. Estimate Iout if the op amp
provides a very high gain. Calculate the closed-loop gain for the implementation shown
in Fig. 12.40(c).

VDD

M 1inV

I out

VDD

M 1
inV

I out

RM

VF

(a) (b)

M

I SS

M

M M

inv

VDD

M 1

I out

RM

VF

M

I SS

M

M M

inv

VDD

M 1

I out

5 6 5

3 4

3 4

3 4

6

5 6

M

I SS

M

M M

VDD

M 1

I out

RM

VF
Vin

(c)

(d) (e)

X X

X

Laser

Laser

Laser

Laser

Figure 12.40

10For this reason, this type is also called “series-series” feedback.
11Laser diodes convert electrical signals to optical signals and are widely used in DVD players,
long-distance communications, etc.
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Solution If the gain of the op amp is very high, the difference between Vin and VF is very small.
Thus, RM sustains a voltage equal to Vin and hence

Iout ≈ Vin

RM
. (12.82)

We now determine the open-loop gain of the transistor-level implementation in
Fig. 12.40(c). The forward amplifier can be identified as shown in Fig. 12.40(d), where
the gate of M4 is grounded because the feedback signal (voltage) is set to zero. Since
Iout = −gm1VX (why?) and VX = −gm3(rO3||rO5)Vin, we have

Gm = gm1gm3(rO3||rO5). (12.83)

The feedback factor K = VF/Iout = RM. Thus,

Iout

Vin

∣∣∣∣
closed

= gm1gm3(rO3||rO5)

1 + gm1gm3(rO3||rO5)RM
. (12.84)

Note that if the loop gain is much greater than unity, then

Iout

Vin

∣∣∣∣
closed

≈ 1

RM
. (12.85)

We must now answer two questions. First, why is the drain of M1 shorted to ground
in the open-loop test? The simple answer is that, if this drain is left open, then Iout = 0!
But, more fundamentally, we can observe a duality between this case and that of voltage
outputs, e.g., in Fig. 12.36. If driving no load, the output port of a voltage amplifier is left
open. Similarly, if driving no load, the output port of a circuit delivering a current must
be shorted to ground.

Second, why is the active-load amplifier in Fig. 12.40(c) drawn with the diode-
connected device on the right? This is to ensure negative feedback. For example, if
Vin goes up, VX goes down (why?), M1 provides a greater current, and the voltage drop
across RM rises, thereby steering a larger fraction of ISS to M4 and opposing the effect
of the change in Vin. Alternatively, the circuit can be drawn as shown in Fig. 12.40(e).

Exercise Suppose Vin is a sinusoid with a peak amplitude of 100 mV. Plot VF and the current through
the laser as a function of time if RM = 10 � and Gm = 1/(0.5 �). Is the voltage at the gate
of M1 necessarily a sinusoid?

From our analysis of other feedback topologies in Sections 12.6.1 and 12.6.2, we postu-
late that current-voltage feedback increases the input impedance by a factor of 1 + KGm.
In fact, the test circuit shown in Fig. 12.41(a) is similar to that in Fig. 12.31—except that
the forward system is denoted by Gm rather than A0. Thus, Eq. (12.59) can be rewritten as

Vin

Iin
= Rin(1 + KGm). (12.86)

The output impedance is calculated using the test circuit of Fig. 12.41(b). Note that,
in contrast to the cases in Figs. 12.33 and 12.38, the test voltage source is inserted in series
with the output port of the forward amplifier and the input port of the feedback network.
The voltage developed at port A is equal to −KIX and the current drawn by the Gm stage
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Figure 12.41 Calculation of (a) input and (b) output impedances.

equal to −KGmIX . Since the current flowing through Rout is given by VX/Rout, a KCL at
the output node yields

IX = VX

Rout
− KGmIX (12.87)

and hence

VX

IX
= Rout(1 + KGm). (12.88)

Interestingly, a negative feedback loop sensing the output current raises the output
impedance, bringing the circuit closer to an ideal current generator. As in other cases
studied thus far, this occurs because negative feedback tends to regulate the output quan-
tity that it senses.

Example

12.22
An alternative approach to regulating the current delivered to a laser diode is shown in
Fig. 12.42(a). As in the circuit of Fig. 12.40(b), the very small resistor RM monitors the
current, generating a proportional voltage and feeding it back to the subtracting device,
M1. Determine the closed-loop gain and I/O impedances of the circuit.

inV
M 1

RD

VDD
M
I out

RM

VF

X

2

Laser

inV
M 1

RD

VDD

I outX

M 2

(a) (b)

Figure 12.42

Solution Since RM is very small, the open-loop circuit reduces to that shown in Fig. 12.42(b),
where the gain can be expressed as

Gm = VX

Vin
· Iout

VX
(12.89)

= gm1RD · gm2. (12.90)
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The input impedance is equal to 1/gm1 and the output impedance equal to 1/gm2.12 The
feedback factor is equal to RM, yielding

Iout

Vin

∣∣∣∣
closed

= gm1gm2RD

1 + gm1gm2RDRM
, (12.91)

which reduces to 1/RM if the loop gain is much greater than unity. The input impedance
rises by a factor of 1 + GmRM:

Rin,closed = 1

gm1

(1 + gm1gm2RDRM), (12.92)

and so does the output impedance (i.e., that seen by the laser):

Rout,closed = 1

gm2

(1 + gm1gm2RDRM). (12.93)

Exercise If an input impedance of 500 � and an output impedance of 5 k� are desired, determine
the required values of gm1 and gm2. Assume RD = 1 k� and RM = 100 �.

Example

12.23
A student attempts to calculate the output impedance of the current-voltage feedback
topology with the aid of circuit depicted in Fig. 12.43. Explain why this topology is an
incorrect representation of the actual circuit.

R

K

Gm

out X

XAV I

V

Figure 12.43

Solution If sensing the output current, the feedback network must remain in series with the output
port of the forward amplifier, and so must the test voltage source. In other words, the
output current of the forward system must be equal to both the input current of the
feedback network and the current drawn by VX [as in Fig. 12.41(b)]. In the arrangement
of Fig. 12.43, however, these principles are violated because VX is placed in parallel with
the output.13

Exercise Apply the above (incorrect) test to the circuit of Fig. 12.42 and examine the results.

12To measure the output impedance, the test voltage source must be placed in series with the output wire.
13If the feedback network is ideal and hence has a zero input impedance, then VX must supply an infinite
current.
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12.6.4 Current-Current Feedback

From the analysis of the first three feedback topologies, we predict that this type lowers
the gain, raises the output impedance, and lowers the input impedance, all by a factor of
one plus the loop gain.

0

I out

F

e

in

K

I

I

I

A I

Figure 12.44 Current-current feedback.

As shown in Fig. 12.44, current-current feedback senses the output in series and returns
the signal in parallel with the input. The forward system has a current gain of AI and
the feedback network a dimensionless gain of K = IF/Iout. Given by Iin − IF , the current
entering the forward amplifier yields

Iout = AI(Iin − IF) (12.94)

= AI(Iin − KIout) (12.95)

and hence

Iout

Iin
= AI

1 + KAI
. (12.96)

The input impedance of the circuit is calculated with the aid of the arrangement
depicted in Fig. 12.45. As in the case of voltage-current feedback (Fig. 12.37), the in-
put impedance of the forward amplifier is modeled by a series resistor, Rin. Since the
current flowing through Rin is equal to VX/Rin, we have Iout = AIVX/Rin and hence
IF = KAIVX/Rin. A KCL at the input node therefore gives

IX = VX

Rin
+ IF (12.97)

= VX

Rin
+ KAI

VX

Rin
. (12.98)

out

Rin

K
X

FX

A I

I
I

I
V

Figure 12.45 Calculation of input impedance.
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That is,

VX

IX
= Rin

1 + KAI
. (12.99)

For the output impedance, we utilize the test circuit shown in Fig. 12.46, where the
input is left open and VX is inserted in series with the output port. Since IF = KIX , the
forward amplifier produces an output current equal to −KAIIX . Noting that Rout carries
a current of VX/Rout and writing a KCL at the output node, we have

IX = VX

Rout
− KAIIX . (12.100)

It follows that

VX

IX
= Rout(1 + KAI). (12.101)

Gm Rout

X

X

X X

K

0

F

I

V

III

Figure 12.46 Calculation of output impedance.

Example

12.24
Consider the circuit shown in Fig. 12.47(a), where the output current delivered to a
laser diode is regulated by negative feedback. Prove that the feedback is negative
and compute the closed-loop gain and I/O impedances if RM is very small and RF

very large.
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I out
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22

Laser Laser

X X

Figure 12.47
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Solution Suppose Iin increases. Then, the source voltage of M1 tends to rise, and so does its drain
voltage (why?). As a result, the overdrive of M2 decreases, Iout and hence VP fall, and
IF increases, thereby lowering the source voltage of M1. Since the feedback signal, IF ,
opposes the effect produced by Iin, the feedback is negative.

We must now analyze the open-loop system. Since RM is very small, we assume
VP remains near zero, arriving at the open-loop circuit depicted in Fig. 12.47(b). The
assumption that RF is very large (�1/gm1) indicates that almost all of Iin flows through
M1 and RD, thus generating VX = IinRD and hence

Iout = −gm2VX (12.102)

= −gm2RDIin. (12.103)

That is,

AI = −gm2RD. (12.104)

The input impedance is approximately equal to 1/gm1 and the output impedance is equal
to rO2.

To obtain the closed-loop parameters, we must compute the feedback factor, IF/Iout.
Recall from Example 12.18 that the current returned by RF can be approximated
as −VP/RF if RF � 1/gm1. We also note that VP = IoutRM, concluding that

K = IF

Iout
(12.105)

= −VP

RF
· 1

Iout
(12.106)

= −RM

RF
. (12.107)

The closed-loop parameters are therefore given by:

AI,closed = −gm2RD

1 + gm2RD
RM

RF

(12.108)

Rin,closed = 1

gm1

· 1

1 + gm2RD
RM

RF

(12.109)

Rout,closed = rO2

(
1 + gm2RD

RM

RF

)
. (12.110)

Note that if gm2RDRM/RF � 1, then the closed-loop gain is simply given by −RF/RM.

Exercise Noting that Rout|closed is the impedance seen by the laser in the closed-loop circuit, construct
a Norton equivalent for the entire circuit that drives the laser.
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Figure 12.48 Effect of feedback on input and output impedances.

The effect of feedback on the input and output impedances of the forward amplifier
is summarized in Fig. 12.48.

12.7 EFFECT OF NONIDEAL I/O IMPEDANCES

Our study of feedback topologies in Section 12.6 has been based on idealized models for
the feedback network, always assuming that the I/O impedances of this network are very
large or very small depending on the type of feedback. In practice, however, the finite
I/O impedances of the feedback network may considerably alter the performance of the
circuit, thereby necessitating analysis techniques to account for these effects. In such cases,
we say the feedback network “loads” the forward amplifier and the “loading effects” must
be determined.

Before delving into the analysis, it is instructive to understand the difficulty in the
context of an example.

Example

12.25
Suppose in the circuit of Example 12.7, R1 + R2 is not much greater than RD. How should
we analyze the circuit?

Solution In Example 12.7, we constructed the open-loop circuit by simply neglecting the effect of
R1 + R2. Here, on the other hand, R1 + R2 tends to reduce the open-loop gain because
it appears in parallel with RD. We therefore surmise that the open-loop circuit must be
configured as shown in Fig. 12.49, with the open-loop gain given by

AO = gm1[RD||(R1 + R2)], (12.111)

and the output impedance

Rout,open = RD||(R1 + R2). (12.112)
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inV

R

R

Vout

M 1

RD

VDD

1
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Figure 12.49

Other forward and feedback parameters are identical to those calculated in Exam-
ple 12.7. Thus,

Av,closed = gm1[RD||(R1 + R2)]

1 + R2

R1 + R2

gm1[RD||(R1 + R2)]

(12.113)

Rin,closed = 1

gm1

{
1 + R2

R1 + R2

gm1[RD||(R1 + R2)]

}
(12.114)

Rout,closed = RD||(R1 + R2)

1 + R2

R1 + R2

gm1[RD||(R1 + R2)]

. (12.115)

Exercise Repeat the above example if RD is replaced with an ideal current source.

The above example easily lends itself to intuitive inspection. But many other circuits
do not. To gain more confidence in our analysis and deal with more complex circuits, we
must develop a systematic approach.

12.7.1 Inclusion of I/O Effects

We present a methodology here that allows the analysis of the four feedback topologies
even if the I/O impedances of the forward amplifier or the feedback network depart from
their ideal values. The methodology is based on a formal proof that is somewhat beyond
the scope of this book and can be found in [1].

Our methodology proceeds in six steps:

1. Identify the forward amplifier.

2. Identify the feedback network.

3. Break the feedback network according to the rules described below.

4. Calculate the open-loop parameters.

5. Determine the feedback factor according to the rules described below.

6. Calculate the closed-loop parameters.

Rules for Breaking the Feedback Network The third step is carried out by “dupli-
cating” the feedback network at both the input and the output of the overall system.
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Figure 12.50 Method of breaking the feedback loop.

Illustrated in Fig. 12.50, the idea is to “load” both the input and the output of the for-
ward amplifier by proper copies of the feedback network. The copy tied to the output
is called the “sense duplicate” and that connected to the input, the “return duplicate.”
We must also decide what to do with the output port of the former and the input port
of the latter, i.e., whether to short or open these ports. This is accomplished through the
use of the “termination” rules depicted in Fig. 12.51. For example, for voltage-voltage
feedback [Fig. 12.51(a)], the output port of the sense replica is left open while the input
of the return duplicate is shorted. Similarly, for voltage-current feedback [Fig. 12.51(b)],
both the output port of the sense duplicate and the input port of the return duplicate are
shorted.

The formal proof of these concepts is given in [1] but it is helpful to remember these
rules based on the following intuitive (but not quite rigorous) observations. In an ideal
situation, a feedback network sensing an output voltage is driven by a zero impedance,
namely, the output impedance of the forward amplifier. Thus, the input port of the return
duplicate is shorted. Moreover, a feedback network returning a voltage to the input ideally
sees an infinite impedance, namely, the input impedance of the forward amplifier. Thus,
the output port of the sense duplicate is left open. Similar observations apply to the other
three cases.
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0 outV
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0 outVR
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outI
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outI
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(c)

(a) (b)

(d)

Figure 12.51 Proper termination of duplicates in (a) voltage-voltage, (b) voltage-

current, (c) current-current, and (d) current-voltage feedback.
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Figure 12.52 Calculation of feedback factor for (a) voltage-voltage, (b) voltage-current,

(c) current-current, and (d) current-voltage feedback.

Calculation of Feedback Factor The fifth step entails the calculation of the feedback
factor, a task requiring the rules illustrated in Fig. 12.52. Depending on the type of feedback,
the output port of the feedback network is shorted or opened, and the ratio of the output
current or voltage to the input is defined as the feedback factor. For example, in a voltage-
voltage feedback topology, the output port of the feedback network is open [Fig. 12.52(a)]
and K = V2/V1.

The proof of these rules is provided in [1], but an intuitive view can also be developed.
First, the stimulus (voltage or current) applied to the input of the feedback network is
of the same type as the quantity sensed at the output of the forward amplifier. Second,
the output port of the feedback network is opened (shorted) if the returned quantity is a
voltage (current)—just as in the case of the sense duplicates in Fig. 12.51. Of course, if the
output port of the feedback network is left open, the quantity of interest is a voltage, V2.
Similarly, if the port is shorted, the quantity of interest is a current, I2.

In order to reinforce the above principles, we reconsider the examples studied thus
far in this chapter and determine the closed-loop parameters if I/O impedance effects are
not negligible.

Example

12.26
Analyze the amplifier depicted in Fig. 12.53(a) if R1 + R2 is not much less than RD.
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Figure 12.53
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Solution We identify the forward system as M1 and RD, and the feedback network as R1 and R2.
We construct the open-loop circuit according to Fig. 12.51(a), as shown in Fig. 12.53(b).
Note that the feedback network appears twice. The sense duplicate output port is left
open and the input port of the return duplicate is shorted. The open-loop parameters of
this topology were computed in Example 12.25.

To determine the feedback factor, we follow the rule in Fig. 12.52(a) to form the
circuit shown in Fig. 12.53(c), arriving at

K = V2

V1

(12.116)

= R2

R1 + R2

. (12.117)

It follows that

KA0 = R2

R1 + R2

gm1[RD||(R1 + R2)], (12.118)

and hence

Av,closed = gm1[RD||(R1 + R2)]

1 + R2

R1 + R2

gm1[RD||(R1 + R2)]

(12.119)

Rin,closed = 1

gm1

{
1 + R2

R1 + R2

gm1[RD||(R1 + R2)]

}
(12.120)

Rout,closed = RD||(R1 + R2)

1 + R2

R1 + R2

gm1[RD||(R1 + R2)]

. (12.121)

Obtained through our general methodology, these results agree with those found by
inspection in Example 12.25.

Exercise Repeat the above analysis if RD is replaced with an ideal current source.

Example

12.27
Analyze the circuit of Fig. 12.54(a) if R1 + R2 is not much greater than rOP||rON .
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Figure 12.54
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Solution Here, M1-M4 constitute the forward amplifier, and R1 and R2 the feedback network.
The loop is broken in a manner similar to that in Example 12.26 because the type of
feedback is the same [Fig. 12.54(b)]. The open-loop parameters are therefore given by

A0 = gmN[rON||rOP||(R1 + R2)] (12.122)

Rin,open = ∞ (12.123)

Rout,open = rON||rOP||(R1 + R2). (12.124)

The test circuit for calculation of the feedback factor is identical to that in Fig. 12.53(c),
yielding

K = R2

R1 + R2

. (12.125)

It follows that

Vout

Vin

∣∣∣∣
closed

= gmN[rON||rOP||(R1 + R2)]

1 + R2

R1 + R2

gmN[rON||rOP||(R1 + R2)]

(12.126)

Rin,closed = ∞ (12.127)

Rout,closed = rON||rOP||(R1 + R2)

1 + R2

R1 + R2

gmN[rON||rOP||(R1 + R2)]

. (12.128)

Exercise Repeat the above example if a load resistor of RL is tied between the output of the circuit
and ground.

Example

12.28
Analyze the circuit of Fig. 12.55(a).
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Solution We identify the forward system as M1, RD1, M2, and RD2. The feedback network con-
sists of R1 and R2 and returns a voltage to the source of the subtracting transistor,
M1. In a manner similar to the above two examples, the open-loop circuit is con-
structed as shown in Fig. 12.55(b). Note that M1 is now degenerated by R1||R2. Writing
A0 = (VX/Vin)(Vout/VX), we have

A0 = −RD1

1

gm
+ R1||R2

· {−gm2[RD2||(R1 + R2)]} (12.129)

Rin,open = ∞ (12.130)

Rout,open = RD2||(R1 + R2). (12.131)

As in the above example, the feedback factor is equal to R2/(R1 + R2), yielding

Vout

Vin

∣∣∣∣
closed

= A0

1 + R2

R1 + R2

A0

(12.132)

Rin,closed = ∞ (12.133)

Rout,closed = RD2||(R1 + R2)

1 + R2

R1 + R2

A0

, (12.134)

where A0 is given by Eq. (12.129).

Exercise Repeat the above example if M2 is degenerated by a resistor of value RS .

Example

12.29
Analyze the circuit of Fig. 12.56(a), assuming that RF is not very large.

VDD

M V
1

M 2

RD2RD1

b

in

R F

out

RFi

VDD

M V
1

M 2

RD2RD1

b

in

out

(c)(a) (b)

V

I

X

R F R F

R F V
I 2

1

V

I

Figure 12.56
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Solution As a voltage-current feedback topology, this circuit must be handled according to the
rules in Figs. 12.51(b) and 12.52(b). The forward amplifier is formed by M1, RD1, M2,
and RD2. The feedback network simply consists of RF . The loop is opened as shown in
Fig. 12.56(b), where, from Fig. 12.51(b), the output port of the sense duplicate is shorted.
Since Iin splits between RF and M1, we have

VX = Iin
RFRD1

RF + 1

gm1

. (12.135)

Noting that R0 = Vout/Iin = (VX/Iin)(Vout/VX), we write

R0 = RFRD1

RF + 1

gm1

· [−gm2(RD2||RF)]. (12.136)

The open-loop input and output impedances are respectively given by

Rin,open = 1

gm1

||RF (12.137)

Rout,open = RD2||RF . (12.138)

To obtain the feedback factor, we follow the rule in Fig. 12.52(b) and construct the
test circuit shown in Fig. 12.56(c), obtaining

K = I2

V1

(12.139)

= − 1

RF
. (12.140)

Note that both R0 and K are negative here, yielding a positive loop gain and hence
confirming that the feedback is negative. The closed-loop parameters are thus expressed
as

Vout

Iin

∣∣∣∣
closed

= R0

1 − R0

RF

(12.141)

Rin,closed =
1

gm1

||RF

1 − R0

RF

(12.142)

Rout,closed = RD2||RF

1 − R0

RF

, (12.143)

where R0 is given by Eq. (12.136).

Exercise Repeat the above example if RD2 is replaced with an ideal current source.
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Example

12.30
Analyze the circuit of Fig. 12.57(a), assuming RM is not small, rO1 < ∞, and the laser
diode has an impedance of RL.
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Figure 12.57

Solution This circuit employs current-voltage feedback and must be opened according to the
rules shown in Figs. 12.51(d) and 12.52(d). The forward amplifier is formed by M1 and
M3-M6, and the feedback network consists of RM. Depicted in Fig. 12.52(d), the open-
loop circuit contains two instances of the feedback network, with the output port of the
sense duplicate and the input port of the return duplicate left open. The open-loop gain
Gm = Iout/Vin = (VX/Vin)(Iout/VX), and

VX

Vin
= −gm3(rO3||rO5). (12.144)

To calculate Iout/VX , we note that the current produced by M1 is divided between rO1

and RL + RM:

Iout = − rO1

rO1 + RL + RM
gm1VX , (12.145)

where the negative sign arises because Iout flows out of the transistor. The open-loop
gain is therefore equal to

Gm = gm3(rO3||rO5)gm1rO1

rO1 + RL + RM
. (12.146)

The output impedance is measured by replacing RL with a test voltage source
and measuring the small-signal current [Fig. 12.57(c)]. The top and bottom terminals
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of VX respectively see an impedance of rO1 and RM to ac ground; thus,

Rin,open = VX

IX
(12.147)

= rO1 + RM. (12.148)

The feedback factor is computed according to the rule in Fig. 12.52(d):

K = V2

I1

(12.149)

= RM. (12.150)

Forming KGm, we express the closed-loop parameters as

Iout

Vin

∣∣∣∣
closed

= Gm

1 + RMGm
, (12.151)

Rin,closed = ∞ (12.152)

Rout,closed = (rO1 + RM)(1 + RMGm), (12.153)

where Gm is given by Eq. (12.146).

Exercise Construct the Norton equivalent of the entire circuit that drives the laser.

Example

12.31
Analyze the circuit of Fig. 12.58(a), assuming RM is not small, and the laser diode exhibits
an impedance of RL.
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Figure 12.58

Solution The forward amplifier consisting of M1, RD, and M2 senses a voltage and delivers
a current to the load, and resistor RM plays the role of the feedback network. In
a manner similar to Example 12.30, we open the loop as shown in Fig. 12.58(b),
where Gm = Iout/Vin = (VX/Vin)(Iout/VX). As a common-gate stage, M1 and RD yield
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VX/Vin = gm1RD. To determine Iout, we first view M2 as a source follower and calculate
the voltage gain VA/VX from Chapter 7:

VA

VX
= RL + RM

RL + RM + 1

gm2

. (12.154)

Thus,

Iout = VA

RL + RM
(12.155)

= VX

RL + RM + 1

gm2

, (12.156)

yielding the open-loop gain as

Gm = gm1RD

RL + RM + 1

gm2

. (12.157)

The open-loop input impedance is equal to 1/gm1. For the open-loop output impedance,
we replace RL with a test voltage source [Fig. 12.58(c)], obtaining

VX

IX
= 1

gm2

+ RM. (12.158)

The feedback factor remains identical to that in Example 12.30, leading to the fol-
lowing expressions for the closed-loop parameters:

Iout

Vin

∣∣∣∣
closed

= Gm

1 + RMGm
(12.159)

Rin,closed = 1

gm1

(1 + RMGm) (12.160)

Rout,closed =
(

1

gm2

+ RM

)
(1 + RMGm), (12.161)

where Gm is given by Eq. (12.157).

Exercise Repeat the above example if a resistor of value of R1 is tied between the source of M2 and
ground.

Example

12.32
Analyze the circuit of Fig. 12.59(a), assuming RF is not large, RM is not small, and the
laser diode is modeled by a resistance RL. Also, assume rO2 < ∞.

Solution As a current-current feedback topology, the amplifier must be analyzed according to
the rules illustrated in Figs. 12.51(c) and 12.52(c). The forward system consists of M1,
RD, and M2, and the feedback network includes RM and RF . The loop is opened as
depicted in Fig. 12.59(b), where the output port of the sense duplicate is shorted be-
cause the feedback network returns a current to the input. Given by (VX/Iin)(Iout/VX),
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the open-loop gain is computed as

AI,open = (RF + RM)RD

RF + RM + 1

gm1

· −gm2rO2

rO2 + RL + RM||RF
, (12.162)

where the two fractions account for the division of Iin between RF + RM and M1, and
the division of ID2 between rO2 and RL + RM||RF .

The open-loop I/O impedances are expressed as

Rin,open = 1

gm1

||(RF + RM) (12.163)

Rout,open = rO2 + RF ||RM, (12.164)

with the latter obtained in a manner similar to that depicted in Fig. 12.57(c).
To determine the feedback factor, we apply the rule of Fig. 12.52(c) as shown in

Fig. 12.59(c), thereby obtaining

K = I2

I1

(12.165)

= − RM

RM + RF
. (12.166)

The closed-loop parameters are thus given by

AI,closed = AI,open

1 − RM

RM + RF
AI,open

(12.167)

Rin,closed =
1

gm1

||(RF + RM)

1 − RM

RM + RF
AI,open

(12.168)

Rout,closed = (rO2 + RF ||RM)

(
1 − RM

RM + RF
AI,open

)
, (12.169)

where AI,open is expressed by Eq. (12.162).

Exercise Construct the Norton equivalent of the entire circuit that drives the laser.



562 Chapter 12 Feedback

Example

12.33
Figure 12.60(a) depicts a circuit similar to that in Fig. 12.59(a), but the output of interest
here is Vout. Analyze the amplifier and study the differences between the two.
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Figure 12.60

Solution The circuit incorporates voltage-current feedback. In contrast to the previous case, RM

now belongs to the forward amplifier rather than the feedback network. After all, M2

would not be able to generate an output voltage without RM. In fact, this circuit resembles
the configuration of Fig. 12.56(a), except that the common-source stage employs a PMOS
device.

Opening the loop with the aid of the rules in Fig. 12.51(b), we arrive at the topology
in Fig. 12.60(b). Note that the return duplicate in this case (RF) differs from that in
Fig. 12.59(b) (RF + RM). The open-loop gain is then equal to

RO = Vout

Iin
(12.170)

= RFRD

RF + 1

gm1

[−gm2(RF ||RM)], (12.171)

and the open-loop input impedance is given by

Rin,open = 1

gm1

||RF . (12.172)

The output impedance is computed as illustrated in Fig. 12.60(c):

Rout,open = VX

IX
(12.173)

= RF ||RM. (12.174)

If rO2 < ∞, then it simply appears in parallel with RF and RM in both Eqs. (12.171) and
(12.174).

The feedback factor also differs from that in Example 12.32 and is determined with
the aid of Fig. 12.52(b):

K = I2

V1

(12.175)

= − 1

RF
, (12.176)
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yielding the following expressions for the closed-loop parameters:

Vout

Iin

∣∣∣∣
closed

= RO

1 − RO

RF

(12.177)

Rin,closed =
1

gm1

||RF

1 − RO

RF

(12.178)

Rout,closed = RF ||RM

1 − RO

RF

. (12.179)

In contrast to Example 12.32, the output impedance in this case decreases by 1 − RO/RF

even though the circuit topology remains unchanged. This is because the output
impedance is measured very differently in the two cases.

Exercise Repeat the above example if M2 is degenerated by a resistor of value RS .

12.8 STABILITY IN FEEDBACK SYSTEMS

Our studies in this chapter have thus far revealed many important benefits of negative
feedback. Unfortunately, if designed poorly, negative-feedback amplifiers may behave
“badly” or even oscillate. We say the system is marginally stable or simply unstable. In
this section, we reexamine our understanding of feedback so as to define the meaning of
“behaving badly” and determine the sources of instability.

12.8.1 Review of Bode’s Rules

In our review of Bode’s rules in Chapter 11, we noted that the slope of the magnitude of a
transfer function decreases (increases) by 20 dB/dec as the frequency passes a pole (zero).
We now review Bode’s rule for plotting the phase of the transfer function:

The phase of a transfer function begins to decrease (increase) at one-tenth of the
pole (zero) frequency, incurs a change of −45◦ (+45◦) at the pole (zero) frequency,
and experiences a total change of nearly −90◦ (+90◦) at ten times the pole (zero)
frequency.14

Since the phase begins to change at one-tenth of a pole or zero frequency, even poles
or zeros that seem far may affect it significantly—a point of contrast to the behavior of the
magnitude.

14It is assumed that the poles and the zeros are located in the left half plane.
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Example

12.34
Figure 12.61(a) depicts the magnitude response of an amplifier. Using Bode’s rule, plot
the phase response.15

Solution Plotted in Fig. 12.61(b), the phase begins to fall at 0.1ωp1, reaches −45◦ at ωp1 and
−90◦ at 10ωp1, begins to rise at 0.1ωz, reaches −45◦ at ωz and approximately zero at
10ωz, and finally begins to fall at 0.1ωp2, reaching −45◦ at ωp2 and −90◦ at 10ωp2. In
this example, we have assumed that the pole and zero frequencies are so wide apart that
10ωp1 < 0.1ωz and 10ωz < 0.1ωp2. In practice, this may not hold, requiring more detailed
calculations.
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 ω  p1  ω   ω  z p2

(a)

(b)

Figure 12.61

Exercise Repeat the above example if ωp1 falls between ωz and ωp2.

Amplifiers having multiple poles may become unstable if placed in a negative-feedback
loop. The following example serves as our first step toward understanding this
phenomenon.

Example

12.35
Construct the magnitude and phase response of an amplifier having (a) one pole,
(b) two poles, or (c) three poles.

Solution Figures 12.62(a)-(c) show the response for the three cases. The phase shift between the
input and the output asymptotically approaches −90◦, −180◦, and −270◦ in one-pole,
two-pole, and three-pole systems, respectively. An important observation here is that the
three-pole system introduces a phase shift of −180◦ at a finite frequency ω1, reversing
the sign of an input sinusoid at this frequency [Fig. 12.62(d)]. For example, a 1-GHz
sinusoid is shifted (delayed) by 0.5 ns.

15In general, it may not be possible to construct the phase profile from the magnitude plot.



12.8 Stability in Feedback Systems 565

 ω  
0

 ω  
0

 ω  

–90∞

–45∞

 ω  

(log scale)

(log scale)

H

H20log

 ω  
0

 ω  
0

 ω  p1  ω  p2

–180∞

–90∞

(log scale)

(log scale)

 ω  
0

 ω  
0

 ω  p1  ω  p3

–90∞
–180∞
–270∞

(log scale)

(log scale)

H20log

H

H

H20log

(c)

(a) (b)

 ω  p2

 ω  1
Three–Pole

System
 ω  1

(d)

p1

p1

Figure 12.62

Exercise Repeat the above analysis for a three-pole system if ωp1 = ωp2.

12.8.2 Problem of Instability

Suppose an amplifier having a transfer function H(s) is placed in a negative feedback loop
(Fig. 12.63). As with the cases studied in Section 12.1, we write the closed-loop transfer
function as

Y
X

(s) = H(s)

1 + KH(s)
, (12.180)

K

X Y( )H s

Figure 12.63 Negative feedback system.
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where KH(s) is sometimes called the “loop transmission” rather than the loop gain to
emphasize its frequency dependence. Recall from Chapter 11 that for a sinusoidal input,
x(t) = A cos ωt , we simply make the substitution s = jω in the above transfer function.
We assume the feedback factor, K, exhibits no frequency dependence. (For example, it is
equal to the ratio of two resistors.)

An interesting question that arises here is, what happens if at a certain input frequency
ω1, the loop transmission, KH( jω1), becomes equal to −1? Then, the closed-loop system
provides an infinite gain (even though the open-loop amplifier does not). To understand
the consequences of infinite gain, we recognize that even an infinitesimally small input at
ω1 leads to a finite output component at this frequency. For example, the devices compris-
ing the subtractor generate electronic “noise” containing all frequencies. A small noise
component at ω1 therefore experiences a very high gain and emerges as a large sinusoid
at the output. We say the system oscillates at ω1.16

It is also possible to understand the above oscillation phenomenon intuitively. Recall
from Example 12.35 that a three-pole system introducing a phase shift of −180◦ reverses the
sign of the input signal. Now, if H(s) in Fig. 12.63 contains three poles such that � H = −180◦

at ω1, then the feedback becomes positive at this frequency, thereby producing a feedback
signal that enhances the input. Circulating around the loop, the signal may thus continue to
grow in amplitude. In practice, the final amplitude remains bounded by the supply voltage
or other “saturation” mechanisms in the circuit.

For analysis purposes, we express the condition KH( jω1) = −1 in a different form.
Viewing KH as a complex quantity, we recognize that this condition is equivalent to

|KH( jω1| = 1 (12.181)

� KH( jω1) = −180◦, (12.182)

the latter confirming our above intuitive perspective. In fact, Eq. (12.182) guarantees
positive feedback (sufficient delay) and Eq. (12.181) ensures sufficient loop gain for the
circulating signal to grow. Called “Barkhausen’s criteria” for oscillation, Eqs. (12.181) and
(12.182) prove extremely useful in the study of stability.

Example

12.36
Explain why a two-pole system cannot oscillate.17

Solution As evident from the Bode plots in Fig. 12.62(b), the phase shift produced by such a
system reaches −180◦ only at ω = ∞, where |H| → 0. In other words, at no frequency
are both Eqs. (12.181) and (12.182) satisfied.

Exercise What happens if one of the poles is at the origin?

16It can be proved that the circuit continues to produce a sinusoid at ω1 even if the electronic noise of the
devices ceases to exist. The term “oscillation” is thus justified.
17It is assumed that at least one of the poles is not at the origin.
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Figure 12.64 Evolution of oscillatory system with time: (a) a component at ω1 is sensed at input,

(b) the component returns to subtractor with a 180◦ phase shift, (c) the subtractor enhances the

signal at node B.

In summary, a negative feedback system may become unstable if the forward amplifier
introduces a phase shift of −180◦ at a finite frequency, ω1, and the loop transmission |KH|
is equal to unity at that frequency. These conditions become intuitive in the time domain
as well. Suppose, as shown in Fig. 12.64(a), we apply a small sinusoid at ω1 to the system
and follow it around the loop as time progresses. The sinusoid incurs a sign reversal as
it emerges at the output of the forward amplifier [Fig. 12.64(b)]. Assumed frequency-
independent, the feedback factor simply scales the result by a factor of K, producing an
inverted replica of the input at node A if |KH( jω1)| = 1. This signal is now subtracted from
the input, generating a sinusoid at node B with twice the amplitude [Fig. 12.64(c)]. The
signal level thus continues to grow after each trip around the loop. On the other hand, if
|KH( jω1)| < 1, then the output cannot grow indefinitely.

Example

12.37
A three-pole feedback system exhibits the frequency response depicted in Fig. 12.65.
Does this system oscillate?
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Solution Yes, it does. The loop gain at ω1 is greater than unity, but we note from the analysis
in Fig. 12.64 that indefinite signal growth still occurs, in fact more rapidly. After each
trip around the loop, a sinusoid at ω1 experiences a gain of |KH| > 1 and returns with
opposite phase to the subtractor.

Exercise Suppose ωp1 is halved in value. Does the system still oscillate?

12.8.3 Stability Condition

Our foregoing investigation indicates that if |KH( jω1)| ≥ 1 and � H( jω1) = −180◦, then
the negative feedback system oscillates. Thus, to avoid instability, we must ensure that
these two conditions do not occur at the same frequency.

Figure 12.66 depicts two scenarios wherein the two conditions do not coincide. Are
both of these systems stable? In Fig. 12.66(a), the loop gain at ω1 exceeds unity (0 dB), still
leading to oscillation. In Fig. 12.66(b), on the other hand, the system cannot oscillate at ω1

(due to insufficient phase shift) or ω2 (because of inadequate loop gain).
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–180°
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0

 ω
0

–180°

 ω  2 ω  1

(a) (b)

KH 20log KH

KH KH

Figure 12.66 Systems with phase reaching −180◦ (a) before and (b) after the loop gain reaches

unity.

The frequencies at which the loop gain falls to unity or the phase shift reaches −180◦

play such a critical role as to deserve specific names. The former is called the “gain
crossover frequency” (ωGX) and the latter, the “phase crossover frequency” (ωPX). In
Fig. 12.66(b), for example, ωGX = ω1 and ωPX = ω2. The key point emerging from the two
above scenarios is that stability requires that

ωGX < ωPX . (12.183)

In summary, to guarantee stability in negative-feedback systems, we must ensure that
the loop gain falls to unity before the phase shift reaches −180◦ so that Barkhausen’s
criteria do not hold at the same frequency.
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Example

12.38
We wish to apply negative feedback with K = 1 around the three-stage amplifier
shown in Fig. 12.67(a). Neglecting other capacitances and assuming identical stages,
plot the frequency response of the circuit and determine the condition for stability.
Assume λ = 0.

Solution The circuit exhibits a low-frequency gain of (gmRD)
3

and three coincident poles given

by (RDC1)
−1

. Thus, as depicted in Fig. 12.67(b), |H| begins to fall at a rate of 60 dB/dec

at ωp = (RDC1)
−1

. The phase begins to change at one-tenth of this frequency,18 reaches
−135◦ at ωp, and approaches −270◦ at 10ωp.
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Figure 12.67

To guarantee that a unity-feedback system incorporating this amplifier remains sta-
ble, we must ensure that |KH|( = |H|) falls below unity at the phase crossover fre-
quency. Illustrated in Fig. 12.67(c), the procedure entails identifying ωPX on the phase
response, finding the corresponding point, P, on the gain response, and requiring that
|HP| < 1.

We now repeat the procedure analytically. The amplifier transfer function is given
by the product of those of the three stages:19

H(s) = (gmRD)
3(

1 + s
ωp

)3
, (12.184)

18Strictly speaking, we note that the three coincident poles affect the phase at frequencies even below
0.1ωp.
19For simplicity, we drop the negative sign in the gain of each stage here. The final result is still valid.
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where ωp = (RDC1)
−1

. The phase of the transfer function can be expressed as20

� H( jω) = −3 tan−1 ω

ωp
, (12.185)

where the factor 3 accounts for the three coincident poles. The phase crossover occurs
if tan−1(ω/ωp) = 60◦ and hence

ωPX =
√

3ωp. (12.186)

The magnitude must remain less than unity at this frequency:

(gmRD)
3⎡

⎣
√

1 +
(

ωPX

ωp

)2
⎤
⎦

3
< 1. (12.187)

It follows that

gmRD < 2. (12.188)

If the low-frequency gain of each stage exceeds 2, then a feedback loop around this
amplifier with K = 1 becomes unstable.

Exercise Repeat the above example if the last stage incorporates a load resistance equal to 2RD.

Example

12.39
A common-source stage is placed in a unity-gain feedback loop as shown in Fig. 12.68.
Explain why this circuit does not oscillate.

M

RD

C1

VDD

1

Figure 12.68

Solution Since the circuit contains only one pole, the phase shift cannot reach 180◦ at any fre-
quency. The circuit is thus stable.

Exercise What happens if RD → ∞ and λ → 0?

20Recall that the phase of a complex number a + jb is given by tan−1(b/a). Also, the phase of a product
is equal to the sum of phases.
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Example

12.40
Repeat Example 12.38 if the target value of K is 1/2, i.e., the feedback is weaker.

Solution We plot |KH| = 0.5|H| and � KH = � H as shown in Fig. 12.69(a). Note the |KH| plot is
simply shifted down by 6 dB on a logarithmic scale. Starting from the phase crossover fre-
quency, we determine the corresponding point, P, on |KH| and require that 0.5|HP| < 1.
Recognizing that Eqs. (12.185) and (12.186) still hold, we write

0.5(gmRD)
3⎡

⎣
√

1 +
(

ωPX

ωp

)2
⎤
⎦

3
< 1. (12.189)

That is,

(gmRD)
3

<
23

0.5
. (12.190)

Thus, the weaker feedback permits a greater open-loop gain.

 ω  
0

 ω  
0

(log scale)

(log scale)

H

20log

RD C1

1

–180°

 ω  PX

H
P

P

g mRD
3)(

g mRD
3)0.5(

KH

Figure 12.69

Exercise Repeat the above example if the third stage incorporates a load resistor of value 2RD.

12.8.4 Phase Margin

Our study of instability in negative-feedback systems reveals that ωGX must remain below
ωPX to avoid oscillation. But by how much? We surmise that if ωGX < ωPX but the differ-
ence between the two is small, then the feedback system displays an almost-oscillatory
response. Shown in Fig. 12.70 are three cases illustrating this point. In Fig. 12.70(a),
Barkhausen’s criteria are met and the system produces oscillation in response to an input
step. In Fig. 12.70(b), ωGX < ωPX , but the step response “rings” for a long time because



572 Chapter 12 Feedback

 ω  
0

 ω  
0

–180°

20log

 ω  

 ω  
0

 ω  
0

–180°

(a) (b)

KH

20log KH

KH

KH

PX

 ω  GX  ω  
0

 ω  
0

–180°

20log KH

KH

 ω  GX

 ω  PX

 ω  GX

 ω  PX

(c)

K

( )H s

K

( )H s

K

( )H s

Figure 12.70 Systems with (a) coincident gain and phase crossovers, (b) gain crossover slightly

below phase crossover, (c) gain crossover well below phase crossover.

the system is “marginally” stable and behaves “badly.” We therefore postulate that a
well-behaved system is obtained only if a sufficient “margin” is allowed between ωGX and
ωPX [Fig. 12.70(c)]. Note that in this case, � KH at ωGX remains significantly more positive
than −180◦.

A measure commonly used to quantify the stability of feedback systems is the “phase
margin” (PM). As exemplified by the cases in Fig. 12.70, the more stable a system is, the
greater is the difference between � H(ωGX) and −180◦. Indeed, this difference is called the
phase margin:

Phase Margin = � H(ωGX) + 180◦. (12.191)
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Example

12.41
Figure 12.71 plots the frequency response of a multipole amplifier. The magnitude drops
to unity at the second pole frequency. Determine the phase margin of a feedback system
employing this amplifier with K = 1.

0

0

 ω  p1

 ω  p2

–135°

 ω  

 ω  

(log scale)

(log scale)

H

H20log

Figure 12.71

Solution The plot suggests that the phase reaches −135◦ at the second pole frequency (i.e., the
poles are far apart). Thus, the phase margin is equal to 45◦.

Exercise Is the phase margin greater or less than 45◦ if K = 0.5?

How much phase margin is necessary? For a well-behaved response, we typically
require a phase margin of 60◦. Thus, the above example is not considered an acceptable
design. In other words, the gain crossover must fall below the second pole.

12.8.5 Frequency Compensation

It is possible that after the design of an amplifier is completed, the phase margin proves
inadequate. How is the circuit modified to improve the stability? For example, how do we
make the three-stage amplifier of Example 12.38 stable if K = 1 and gmRD > 2? The solu-
tion is to make two of the poles unequal in magnitude. Called “frequency compensation,”
this task can be accomplished by shifting ωGX toward the origin (without changing ωPX).
In other words, if |KH| is forced to drop to unity at a lower frequency, then the phase
margin increases [Fig. 12.72(a)].

How can ωGX be shifted toward the origin? We recognize that if the dominant pole
is translated to lower frequencies, so is ωGX . Figure 12.72(b) illustrates an example where
the first pole is shifted from ωp1 to ω′

p1, but other poles are constant. As a result, ωGX

decreases in magnitude.
What happens to the phase after compensation? As shown in Fig. 12.72(b), the low-

frequency section of � KH changes because ωp1 is moved to ω′
P1, but the critical section

near ωGX does not. Consequently, the phase margin increases.
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Figure 12.72 (a) Concept of frequency compensation, (b) effect on phase profile.

Example

12.42
The amplifier shown in Fig. 12.73(a) employs a cascode stage and a CS stage. Assuming
that the pole at node B is dominant, sketch the frequency response and explain how the
circuit can be “compensated.”
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Solution Recall from Chapter 11 that the cascode stage exhibits one pole arising from node A and
another from node B, with the latter falling much closer to the origin. We can express
these poles respectively as

ωp,A ≈ gm2

CA
(12.192)

ωp,B ≈ 1

[(gm2rO2rO1)||(gm3rO3rO4)]CB
, (12.193)

where CA and CB denote the total capacitance seen at each node to ground. The third
pole is associated with the output node:

ωp,out = 1

(rO5||rO6)Cout
, (12.194)

where Cout represents the total capacitance at the output node. We assume ωP,B <

ωP,out < ωP,A. The frequency response of the amplifier is plotted in Fig. 12.73(b).
To compensate the circuit for use in a feedback system, we can add capacitance

to node B so as to reduce ωp,B. If Ccomp is sufficiently large, the gain crossover occurs
well below the phase crossover, providing adequate phase margin [Fig. 12.73(c)]. An im-
portant observation here is that frequency compensation inevitably degrades the speed
because the dominant pole is reduced in magnitude.

Exercise Repeat the above example if M2 and M3 are omitted, i.e., the first stage is a simple CS
amplifier.

We now formalize the procedure for frequency compensation. Given the frequency
response of an amplifier and the desired phase margin, we begin from the phase response
and determine the frequency, ωPM, at which � H = −180◦ + PM (Fig. 12.74). We then mark
ωPM on the magnitude response and draw a line having a slope of 20 dB/dec toward the
vertical axis. The point at which this line intercepts the original magnitude response rep-
resents the new position of the dominant pole, ω′

p1. By design, the compensated amplifier
now exhibits a gain crossover at ωPM.

 ω  
0

 ω  
0

 ω   ω  ’

–20 dB/dec

20log KH

KH

+ PM–180°

 ω  PMp1p1 (log scale)

(log scale)

Figure 12.74 Systematic method for frequency compensation.
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Example

12.43
A multipole amplifier exhibits the frequency response plotted in Fig. 12.75(a). Assuming
the poles are far apart, compensate the amplifier for a phase margin of 45◦ with K = 1.

0

0

 ω  p1  ω  p2

–135°

 ω  

 ω  

(log scale)

(log scale)

H

H20log

 ω  p1
’

Figure 12.75

Solution Since the phase reaches −135◦ at ω = ωp2, in this example ωPM = ωp2. We thus draw a
line with a slope of −20 dB/dec from ωp2 toward the vertical axis. The dominant pole
must therefore be translated to ω′

p1. Since this phase margin is generally inadequate, in
practice, ωPM < ωp2.

Exercise Repeat the above example for K = 0.5 and compare the results.

The reader may wonder why the line originating at ωPM must rise at a slope of
20 dB/dec (rather than 40 or 60 dB/dec) toward the vertical axis. Recall from Examples
12.41 and 12.43 that, for adequate phase margin, the gain crossover must occur below the
second pole. Thus, the magnitude response of the compensated amplifier does not “see”
the second pole as it approaches ωGX ; i.e., the magnitude response has a slope of only
−20 dB/dec.

12.8.6 Miller Compensation

In Example 12.42, we noted that a capacitor can be tied from node B to ground to compen-
sate the amplifier. The required value of this capacitor may be quite large, necessitating
a large area on an integrated circuit. But recall from Miller’s theorem in Chapter 11 that
the apparent value of a capacitor increases if the device is connected between the input
and output of an inverting amplifier. We also observe that the two-stage amplifier of Fig.
12.73(a) can employ Miller multiplication because the second stage provides some voltage
gain. Illustrated in Fig. 12.76, the idea is to introduce the compensation capacitor between
the input and output of the second stage, thereby creating an equivalent grounded capac-
itance at B given by

Ceq = (1 − Av)Cc (12.195)

= [1 + gm5(rO5||rO6)]Cc. (12.196)



Problems 577

VDD

M 1

M

M

Vb1

Vb2

Vb3 4

3

M 2

M

inV

MV

outV

5

6A

B X

b4

CC

VDD

M 1

M

M

Vb1

Vb2

Vb3 4

3

M 2

M

inV

MV

outV

5

6A

B
X

b4

Ceq

Figure 12.76 Example of Miller compensation.

Called “Miller compensation,” this technique reduces the required value of Cc by a factor
of 1 + gm5(rO5||rO6).

Miller compensation entails a number of interesting side effects. For example, it shifts
not only the dominant pole but also the output pole. Such phenomena are studied in more
advanced texts, e.g., [1].

P R O B L E M S

12.1. Determine the transfer function, Y/X, for
the systems shown in Fig. 12.77.

12.2. For the systems depicted in Fig. 12.77,
compute the transfer function E/X.

12.3. Calculate the loop gain of the circuits
illustrated in Fig. 12.78. Assume the op
amp exhibits an open-loop gain of A1, but
is otherwise ideal. Also, λ = 0.

12.4. In the circuit of Fig. 12.3, the input is a
sinusoid with a peak amplitude of 2 mV.

If A1 = 500 and R1/R2 = 7, determine the
amplitude of the output waveform and the
feedback waveform.

12.5. In some applications, we may define a
“−1 dB bandwidth” as the frequency at
which the gain falls by 10%. Determine
the −1 dB bandwidth of the open-loop
and closed-loop first-order systems
described by Eqs. (12.16) and (12.19). Can
we say the −1 dB bandwidth increases by
1 + KA0 as a result of feedback?

A 1
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X Y

A 2

E

W

A 1

K

X Y
E W

A 1

K

X Y
E

W

A 2

A 1

K

X Y
E W

(c)

(a) (b)

(d)

Figure 12.77
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Figure 12.78

12.6. Consider the feedback system shown in
Fig. 12.79, where the common-source
stage serves as the feedforward network.
Assume μnCox may vary by ±10% and λ

by ±20%. What is the minimum loop gain
necessary to guarantee that the closed-
loop gain varies by less than ±5%?

Figure 12.79

12.7. For the circuit of Fig. 12.80, find the DC
gain and the −3-dB bandwidth. Assume
λ > 0.

M CL

VDD

outV

inV 1 M2

Figure 12.80

12.8. Repeat Example 12.7 for the circuit
depicted in Fig. 12.81. Assume the impe-
dance of C1 and C2 at the frequency of
interest is much higher than RD.

inV

Vout

VF
M 1

RD

VDD

C1

C2

Figure 12.81

12.9. In Fig. 12.13, A1 = 500 and A2 = 420.
What value of K guarantees that the
closed-loop gains at x1 and x2 differ by
less than 5%? What closed-loop gain is
achieved under this condition?

12.10. The* characteristic in Fig. 12.13(a) is some-
times approximated as

y = α1x − α3x3, (12.197)

where α1 and α3 are constant.
(a) Determine the small-signal gain

∂y/∂x at x = 0 and x = �x.

(b) Determine the closed-loop gain at
x = 0 and x = �x for a feedback fac-
tor of K.
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12.11. Develop the amplifier model for the cir-
cuit shown in Fig. 12.82. Assume λ > 0.

Vout

Vb

RDp
inI M1

RDn

VDD

X M2

Figure 12.82

12.12. Determine the amplifier model for the cir-
cuit of Example 12.7.

12.13. For each amplifier shown in Fig. 12.83,
identify the sense and return mechanism.
(a) Fig. 12.83(a): Voltage sense and Volt-

age return

(b) Fig. 12.83(b): Current sense and Volt-
age return

(c) Fig. 12.83(c): Voltage sense and Cur-
rent return

12.14. For each amplifier shown in Fig. 12.84,
identify the sense and return mechanism.

12.15. In the amplifier shown in Fig. 12.85, RL

is the load resistor. Identify the feedback
topology and find the closed loop gain.
What is the gain for RS = 0? Relate the
results to the concepts discussed in Sec-
tion 12.1.

12.16. For the closed loop amplifiers shown in
Fig. 12.86, the sign of the feedback con-
nection is not shown deliberately. Find the
sign so that a negative feedback is estab-
lished in the loop.

12.17. Determine* the polarity of feedback in
each of the stages illustrated in Fig. 12.87.

12.18. Determine the polarity of feedback in the
circuits depicted in Figs. 12.83–12.86.

12.19. For the feedback circuit shown in Fig.
12.88, compute the closed loop gain and
I/O impedance. Solve by assuming (a)λ=0
and (b) λ>0
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Figure 12.83
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12.20. Consider the feedback circuit shown in
Fig. 12.89. Compute the closed-loop gain
and I/O impedances of the circuit. Assume
C1 and C2 are very small and neglect other
capacitances.

12.21. The amplifier shown in Fig. 12.89 provides
a closed-loop gain close to unity but a very
low output impedance. Assuming λ > 0,
determine the closed-loop gain and out-
put impedance and compare the results
with those of a simple source follower.

12.22. An* adventurous student replaces the
NMOS source follower in Fig. 12.89 with a
PMOS common-source stage (Fig. 12.90).
Unfortunately, the amplifier does not op-
erate well.

(a) Prove by inspection that the feedback
is positive.

(b) Breaking the loop at the gate of M2,
determine the loop gain and prove
that the feedback is positive.

M 1

I SS

DD

M 2

V

inV

M

outV

M 3 M 4

5

Figure 12.89
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Figure 12.90

12.23. Having* discovered the polarity of feed-
back, the student in Problem 12.22 mod-
ifies the circuit as shown in Fig. 12.91.
Determine the closed-loop gain and I/O
impedances of the circuit and compare
the results with those obtained in Prob-
lem 12.21.
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Figure 12.91

12.24. Repeat Example 12.18 for the circuit illus-
trated in Fig. 12.92.
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Figure 12.92

12.25. A student adventurously modifies the cir-
cuit of Example 12.18 to that shown in
Fig. 12.93. Assume λ = 0.
(a) Prove by inspection that the feedback

is positive.

(b) Assuming RF is very large and break-
ing the loop at the gate of M2,

calculate the loop gain and prove that
the feedback is positive.
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outV
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RD

I in
R F

Vb

Figure 12.93

12.26. What is topology of the feedback the cir-
cuit shown in Fig. 12.94 has? Find the
closed loop gain and I/O impedances of
the amplifier.

Vout

VDD VDD

VbVb

RF

RD RD

Iin IinRS RS

RF RF

M1

M2 M2

Vout

M1

(a) (b)

Figure 12.94

12.27. For the circuits shown in Figure 12.95
find the impedance seen into node X.
Comment on the results.

VG1

VG2

X

M2

M1

VG2

X

M2

M1

(a) (b)

Figure 12.95

12.28. Repeat** Problem 12.27 for the circuit illus-
trated in Fig. 12.96. AssumeC1 andC2 are
very small and neglect other capacitances.
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Figure 12.96

12.29. A “laser diode” converts current to light
(as in laser pointers). We wish to design a
circuit that delivers a well-defined current
to a laser diode. Shown in Fig. 12.97 is an
example in which resistor RM measures
the current flowing through D1 and
amplifier A1 subtracts the resulting volt-
age drop from Vin. Assume RM is very
small and VA = ∞.

(a) Following the procedure used in
Example 12.21, determine the open-
loop gain.

(b) Calculate the loop gain and the closed-
loop gain.

Q1

R

Laser
Diode

A1
inV

VCC

I out

1D

M

Figure 12.97

12.30. A* student mistakenly replaces the
common-emitter pnp device in Fig. 12.97
with an npn emitter follower (Fig. 12.98).
Repeat Problem 12.29 for this circuit and
compare the results.
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M

Figure 12.98

12.31. The amplifier A1 in Fig. 12.98 can be real-
ized as a common-base stage (Fig. 12.99).
Repeat Problem 12.30 for this circuit. For
simplicity, assume β → ∞.
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Figure 12.99

12.32. A student has adventurously replaced
the PMOS common-source stage in
Fig. 12.47(a) with an NMOS source fol-
lower (Fig. 12.100).
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RD

I in
R F

Vb

Device

Figure 12.100

(a) Prove by inspection that the feedback
is positive.

(b) Break the loop at the gate of M2,
determine the loop gain, and prove
that the feedback is positive.

12.33. Find the closed loop gain and I/O
impedances of the amplifier shown in Fig.
12.101. Assume λ > 0.

12.34. The common-gate stage shown in Fig.
12.102 employs an ideal current source as
its load, requiring that the loading intro-
duced by R1 and R2 be taken into account.
Repeat Example 12.26 for this circuit.
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12.35. Figure 12.103 depicts the bipolar coun-
terpart of the circuit studied in Example
12.26. Assuming R1 + R2 is not very large,
1 � β < ∞ and VA = ∞, determine the
closed-loop gain and I/O impedances.
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Figure 12.103

12.36. Repeat Problem 12.35 for the amplifier
illustrated in Fig. 12.104.
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Figure 12.104

12.37. Repeat* Example 12.28 for the circuit
shown in Fig. 12.105. Assume VA = ∞.
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Figure 12.105

12.38. Repeat* Example 12.28 for the circuit
shown in Fig. 12.106. Assume λ = 0.
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V
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Figure 12.106

12.39. Find the input impedance and output
impedance of the closed loop amplifier
shown in Fig. 12.107. The feed-forward
amplifier has a finite gain A. The input
impedance and output impedance of the
feed forward amplifier are assumed to be
Rin and Rout respectively.

Vout
Vin

Figure 12.107
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12.40. Repeat Example 12.29 for the bipolar
transimpedance amplifier shown in Fig.
12.108. Assume VA = ∞.
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Figure 12.108

12.41. Repeat** Example 12.29 for the circuit illus-
trated in Fig. 12.109. Assume λ > 0.
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Figure 12.109

12.42. Figure 12.110 depicts a popular tran-
simpedance amplifier topology. Repeat
the analysis of Example 12.29 for this cir-
cuit. Assume VA < ∞.
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Figure 12.110

12.43. The* circuit of Fig. 12.110 can be improved
by inserting an emitter follower at the out-
put (Fig. 12.111). Assuming VA < ∞, re-
peat Example 12.29 for this topology.
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Figure 12.111

12.44. Determine the closed loop gain and I/O
impedances of the circuit shown in Fig.
12.112. Assume that PMOS transistors
have transconductance of gmp and NMOS
transistors have gmn.

12.45. The circuit of Fig. 12.97, repeated in Fig.
12.113, employs a value for RM that is
not very small. Assuming VA < ∞ and the
diode exhibits an impedance of RL, re-
peat the analysis of Example 12.30 for this
circuit.
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Figure 12.112
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Figure 12.113

12.46. Repeat Example 12.32 for the circuit
shown in Fig. 12.114. Note that RM is re-
placed with a current source but the anal-
ysis proceeds in a similar manner.
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12.47. Repeat Problem 12.46 for the circuit illus-
trated in Fig. 12.115. Assume VA = ∞.
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Figure 12.115

12.48. Repeat Problem 12.46 for the topology
depicted in Fig. 12.116. Assume VA = ∞.
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Figure 12.116

12.49. Compute** the closed-loop gain and I/O
impedances of the stages illustrated in
Fig. 12.117.

12.50. Construct the bode plot for the magnitude
and phase of the following three systems.
Assume each system has a DC gain of
40 dB.
(a) ωp1 = 2π × 1 MHz, ωp2 = 2π×

30 MHz and ωp3 = 2π × 100 MHz

(b) ωp1 = 2π × 1 MHz, ωp2 = 2π×
30 MHz and ωz = 2π × 100 MHz

(c) ωp1 = 2π × 1 MHz, ωp2 = 2π×
30 MHz and ωz = −2π × 100 MHz

ωp1, ωp2 and ωp3 denote poles and ωz

denotes the zero. Comment on the rela-
tive stability of the systems.

12.51. Find the transfer function of the circuit
shown in Fig. 12.119 for λ=0.

12.52. Unlike* a one-pole system, the magnitude
response of the circuit in Example 12.38
falls by more than 3 dB at the pole fre-
quency. Determine |H| at ωp. Can we say
|H| falls 9 dB due to three coincident
poles?
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Figure 12.117
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Figure 12.118

12.53. Consider a one-pole circuit whose open-
loop transfer function is given by

H(s) = A0

1 + s
ω0

. (12.198)

Determine the phase margin of a feedback
network using this circuit with K = 1.

12.54. Suppose the amplifier in Example 12.41 is
described by

H(s) = A0(
1 + s

ωp1

)(
1 + s

ωp2

) , (12.199)

where ωp2 � ωp1. Compute the phase
margin if the circuit is employed in a feed-
back system with K = 0.5.

12.55. Figure** 12.119 depicts the amplifier of
Example 12.38 with a compensation ca-
pacitor added to node X. Explain how the
circuit can be compensated for a phase
margin of 45◦.

M 1

RD

C1 M

RD

C1

RD

C1

VDD

outV
inV

2 M 3

CC

Figure 12.119

Design Problems

In the following problems, unless otherwise
stated, assume μnCox = 2μpCox = 100 μA/V2 and
λn = 0.5λp = 0.1 V−1.

12.56. Design the circuit of Example 12.15 for
an open-loop gain of 50 and a nominal
closed-loop gain of 4. Assume ISS = 0.5
mA. Choose R1 + R2 ≈ 10(rO2||rO4).

12.57. Design the circuit of Example 12.16 for
an open-loop gain of 10, a closed-loop
input impedance of 50 �, and a nom-
inal closed-loop gain of 2. Calculate
the closed-loop I/O impedances. Assume
R1 + R2 ≈ 10RD.

12.58. Design the transimpedance amplifier of
Example 12.18 for an open-loop gain of
10 k�, a closed-loop gain of 1 k�, a
closed-loop input impedance of 50 �,
and a closed-loop output impedance of
200 �. Assume RD1 = 1 k� and RF is very
large.

12.59. We wish to design the transimpedance
amplifier for a closed-loop gain of 1 k�.
Assume each transistor carries a collector
bias current of 1 mA, β = 100, VA = ∞,
and RF is very large.
(a) Determine the values of RC and RM

for an open-loop gain of 20 k� and
an open-loop output impedance of
500 �.

(b) Compute the required value of RF .

(c) Calculate the closed-loop I/O impe-
dances.

12.60. Design the circuit illustrated in Fig. 12.105
for an open-loop voltage gain of 20, an
open-loop output impedance of 2 k�, and
a closed-loop voltage gain of 4. Assume
λ = 0. Is the solution unique? If not, how
should the circuit parameters be chosen to
minimize the power dissipation?

12.61. Design the circuit for a closed-loop gain
of 2, a tail current of 1 mA, and minimum
output impedance. Assume β = 100 and
VA = ∞.

12.62. Design the transimpedance amplifier of
Fig. 12.111 for a closed-loop gain of 1 k�

and an output impedance of 50 �. Assume
each transistor is biased at a collector cur-
rent of 1 mA and VA = ∞.
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S P I C E P R O B L E M S

In the following problems, use the MOS device
models given in Appendix A. For bipolar
transistors, assume IS,npn = 5 × 10−16 A, βnpn =
100, VA,npn = 5 V, IS,pnp = 8 × 10−16 A, βpnp = 50,
VA,pnp = 3.5 V. Also, SPICE models the effect of
charge storage in the base by a parameter called
τF = Cb/gm. Assume τF(tf ) = 20 ps.

12.1. Figure 12.120 shows a transimpedance
amplifier often used in optical communi-
cations. Assume RF = 2 k	.
(a) Select the value of RC so that Q1 car-

ries a bias current of 1 mA.

(b) Estimate the loop gain.

(c) Determine the closed-loop gain and
I/O impedances.

(d) Determine the change in the closed-
loop gain if VCC varies by ±10%.

1Q

VCC = 2.5 V

Q

RF

1 mA

RC

outV

I in

2

Figure 12.120

12.2. Figure 12.121 depicts another tran-
simpedance amplifier, where the bias cur-
rent of M1 is defined by the mirror
arrangement (M2 and M3). Assume
W/L = 20 μm/0.18 μm for M1-M3.
(a) What value of RF yields a closed-loop

gain of 1 k	?

(b) Determine the change in the closed-
loop gain if VDD varies by ±10%.

(c) Suppose the circuit drives a load
capacitance of 100 fF. Verify that the
input impedance exhibits inductive
behavior and explain why.

M 1

DDV

Vout

= 1.8 V

RF

I in

M 2M 3

1 mA

Figure 12.121

12.3. In the circuit shown in Fig. 12.122,
W/L = 20 μm/0.18 μm for M1 and M2.
(a) Determine the circuit’s operating

points for an input dc level of 0.9 V.

(b) Determine the closed-loop gain and
I/O impedances.

DDV

M

R

outV

2

M 1inV

D2 Ω500

 Ω RD22 k

= 1.8 V

Figure 12.122
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Chapter 13
Oscillators

Most of our studies in previous chapters have focused on the analysis and design of am-

plifiers. In this chapter, we turn our attention to another important class of analog circuits,

namely, oscillators. From your laptop computer to your cell phone, today’s electronic

devices use oscillators for numerous purposes, and pose interesting challenges. For

example, the clock driving a 3 GHz microprocessor is generated by an on-chip oscilla-

tor running at 3 GHz. Also, a WiFi transceiver employs a 2.4 GHz or 5 GHz on-chip

oscillator to generate a “carrier.” Shown below is the outline of the chapter. The reader is

encouraged to review Chapter 12 before delving into oscillators.

➤ ➤ ➤

General

Considerations

• Barkhausen’s

Criteria

• Oscillatory

Feedback System

• Startup Condition

• Oscillator

Topologies

Ring Oscillators

• Feedback around

One or Two

Stages

• Three-Stage Ring

Oscillator

• Internal

Waveforms

LC Oscillators

• Parallel LC Tank

• Cross-Coupled

Oscillator

• Colpitts Oscillator

Other Oscillators

• Phase Shift

Oscillator

• Wien-Bridge

Oscillator

• Crystal Oscillator

13.1 GENERAL CONSIDERATIONS

We know from previous chapters that an amplifier senses a signal and reproduces it at
the output, perhaps with some gain. An oscillator, on the other hand, generates a signal,
typically a periodic one. For example, the clock in a microprocessor resembles a square
wave (Fig. 13.1).

Microprocessor

Oscillator

Figure 13.1 High-speed oscillator driving a microprocessor.

588
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How can a circuit generate a periodic output without an input? Let us return to our
study of amplifier stability in Chapter 12 and recall that a negative-feedback circuit can
oscillate if Barkhausen’s criteria are met. That is, as shown in Fig. 13.2, we have

Y
X

(s) = H(s)

1 + H(s)
, (13.1)

which goes to infinity at a frequency of ω1 if H(s = jω1) = −1, or, equivalently,
|H( jω1)| = 1 and � H( jω1) = 180◦. We may therefore view an oscillator as a badly-
designed feedback amplifier! The key point here is that the signal traveling around the
loop experiences so much phase shift (i.e., delay) that, upon reaching the subtractor, it
actually enhances X. With enough loop gain, the circuit continues to amplify X indefi-
nitely, generating an infinitely large output waveform from a finite swing at X.

X Y( )H s

Figure 13.2 Feedback system for oscillation study.

It is important not to confuse the frequency-dependent 180◦ phase shift stipulated by
Barkhausen with the 180◦ phase shift necessary for negative feedback. As depicted in
Fig. 13.3(a), the loop contains one net signal inversion (the negative sign at the input of the
adder) so as to ensure negative feedback and another 180◦ of phase shift at ω1. In other
words, the total phase shift around the loop reaches 360◦ at ω1 [Fig. 13.3(b)].

X Y( )H s

180  at  ω  

180  at 
Low

Frequencies

1

X Y( )H s

 ω  1360  at 

(a) (b)

Figure 13.3 (a) Phase shift around an oscillator loop, (b) alternative view.

We must now answer two urgent questions. First, where does X come from?
(We just stated that oscillators do not have an input.) In practice, X comes from the noise of
the devices within the loop. Transistors and resistors in the oscillator produce noise at all
frequencies, providing the “seed” for oscillation at ω1. Second, does the output ampli-
tude really go to infinity? No, in reality, saturation or nonlinear effects in the circuit limit
the output swing. After all, if the supply voltage is 1.5 V, it would be difficult to produce
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a swing greater than this amount.1 For example, consider the conceptual arrangement
shown in Fig. 13.4, where a common-source stage provides amplification within H(s). As
the output swing grows, at some point M1 enters the triode region and its transconductance
falls. Consequently, the loop gain decreases, eventually approaching the barely acceptable
value, unity.

R

M 1

VDD

D

X Y

( )H s

Figure 13.4 Feedback loop containing a common-source stage.

Example

13.1
An oscillator employs a differential pair [Fig. 13.5(a)]. Explain what limits the output
amplitude.

X Y

( )H s

M M

RD

V

VDD

RD

1 2

2

V1
V

V2

1

(a) (b)

Figure 13.5

Solution As the input swing to the differential pair grows, the circuit begins to experience satura-
tion [Fig. 13.5(b)]. (Recall the large-signal behavior of differential pairs in Chapter 10.)
Thus, the gain of the differential pair (i.e., the slope of the input-output characteristic)
drops and so does the loop gain. The oscillation amplitude growth ceases at some point.
In fact, if V1 is large enough, the tail current is steered completely to the left or to the
right, allowing V2 to swing from −ISSRD to +ISSRD. This is the maximum oscillation
amplitude.

Exercise Repeat the above example for a bipolar differential pair.

1But some oscillators can generate an output swing about twice the supply voltage.
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TABLE 13.1 Summary of various oscillator topologies and their applications.

LC Oscillators

Cross- Phase Wien-

Oscillator Ring Coupled Colpitts Shift Bridge Crystal

Topology Oscillator Oscillator Oscillator Oscillator Oscillator Oscillator

Implementation Integrated Integrated Discrete Discrete Discrete Discrete

or or

Integrated Integrated

Typical Up to Up to Up to Up to Up to Up to

Frequency Several Hundreds Tens of a Few a Few About

Range Gigahertz of Gigahertz Gigahertz Megahertz Megahertz 100 MHz

Application Microprocessors Wireless Stand-Alone Prototype Prototype Precise

and Memories Transceivers oscillators Design Design Reference

Startup Condition From the first Barkhausen criterion, we may design the circuit for a
unity loop gain at the desired oscillation frequency, ω1. This is called the oscillation “startup
condition.” However, this choice places the circuit at the edge of failure: a slight change in
the temperature, process, or supply voltage may drop the loop gain below 1. For this and
other reasons, the loop gain is usually quite larger than unity. (In fact, the design typically
begins with the required output voltage swing rather than the loop gain.)

What aspects of an oscillator design are important? Depending on the application, the
specifications include the frequency of oscillation, output amplitude, power consumption,
and complexity. In some cases, the “noise” in the output waveform is also critical.

Oscillators can be realized as either integrated or discrete circuits. The topologies are
quite different in the two cases but still rely on Barkhausen’s criteria. We study both types
here. It is helpful to first take a glance at the various types of oscillators studied in this
chapter. Table 13.1 summarizes the topologies and some of their attributes.

13.2 RING OSCILLATORS

Most microprocessors and memories incorporate CMOS “ring oscillators.” As the name
implies, the circuit consists of a number of stages in a ring, but to understand the underlying
principles, we must take a few steps back.

Let us place a common-source amplifier in a negative-feedback loop and see if it
oscillates. As shown in Fig. 13.6(a), we tie the output to the input. The feedback (at
low frequencies) is negative because the stage has a voltage gain of −gmRD (if λ = 0).
Now, consider the small-signal model [Fig. 13.6(b)]. Does this circuit oscillate? Of the two
Barkhausen’s criteria, the loop gain requirement, |H( jω1)| = 1, appears possible. But how
about the phase requirement? NeglectingCGD1, we observe that the circuit’s capacitances

merge into one at node X, forming a single (open-loop) pole with RD: ωp,X = −(RDCL)
−1

.
Unfortunately, a single pole can provide a maximum phase shift of −90◦ (at ω = ∞). That
is, the frequency-dependent phase shift of the open-loop transfer function, H(s), does not
exceed −90◦, prohibiting oscillation. From the perspective of Fig. 13.3(b), the total phase
shift around the loop cannot reach 360◦.
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M

VDD

R

1

D

CL

X

( )H s

g
m1V V1 RD CL

(a) (b)

X

Figure 13.6 (a) Hypothetical oscillator using a single CS stage, (b) equivalent circuit of (a).

This brief analysis suggests that we should increase the delay or phase shift around
the loop. For example, let us cascade two CS stages (Fig. 13.7). Now, the open-loop circuit
contains two poles, exhibiting a maximum phase shift of 180◦. Do we have an oscillator?
No, not yet; each CS stage provides a phase shift of −90◦ only at ω = ∞, but no gain
at this frequency. That is, we still cannot meet both of Barkhausen’s criteria at the same
frequency.

( )H s

M

VDD

R

C
M

R

1
C

X Y

D D

1 1

2

Figure 13.7 Feedback loop using two CS stages.

By now, we see the trend and postulate that we must insert one more CS stage in the
loop, as shown in the “ring oscillator” of Fig. 13.8.2 Each pole must provide a phase shift of
only 60◦ (or −60◦). Since the phase shift for a pole at RDCD is equal to −tan−1(RDCDω),

( )H s

M

VDD

R

C
M

R

1
C

X Y

D D
2 M

R

CD
3

Z

D D D

outV

Figure 13.8 Simple three-stage ring oscillator.

2We neglect CGD here.
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we have

−tan−1(RDCDω1) = −60◦, (13.2)

obtaining an oscillation frequency of

ω1 =
√

3

RDCD
. (13.3)

The reader is encouraged to apply the perspective of Fig. 13.3(b) and prove that the total
phase shift around the loop is 360◦ at ω1. The startup condition is calculated by setting
H(s) at s = jω1 equal to unity. If λ = 0, the transfer function of each stage is given by
−gmRD/(1 + RDCDs). We replace s with jω1, find the magnitude of the transfer function,
raise it to the third power (for three identical stages), and equate the result to 1:⎛

⎝ gmRD√
1 + R2

DC 2
Dω2

1

⎞
⎠

3

= 1. (13.4)

It follows that

gmRD =
√

1 + R2
DC 2

Dω2
1 (13.5)

= 2, (13.6)

indicating that the low-frequency gain of each stage must exceed 2 to ensure oscillation
startup.

Example

13.2
A student runs a transient SPICE simulation on the ring oscillator of Fig. 13.8 but
observes that all three drain voltages are equal and the circuit does not oscillate. Explain
why. Assume that the stages are identical.

Solution At the beginning of a transient simulation, SPICE computes the dc operating points for
all of the devices. With identical stages, SPICE finds equal drain voltages as one solution
of the network and retains it. Thus, the three drain voltages remain at the same value
indefinitely. In the actual circuit, on the other hand, the electronic noise of the devices
perturbs these voltages, initiating oscillation. (The transient simulation in SPICE does
not include device noise.) In order to “kick” the circuit in SPICE, we can apply an
initial condition of, say, 0 to node X. As a result, VY = VDD, and VZ ≈ 0, forcing VX to
rise toward VDD. Thus, SPICE cannot find an equilibrium point and is forced to allow
oscillation.

Exercise What happens if the ring contains four identical stages and we apply an initial condition
of zero to one of the nodes?

Another type of ring oscillator can be conceived as follows. Suppose we replace the
load resistors in Fig. 13.8 with PMOS current sources as shown in Fig. 13.9(a). The circuit
still satisfies our foregoing derivations if we substitute rOp||rOn for RD.3 But let us change

3We assume all of the transistors are in saturation, which is not quite correct when the drain voltage
comes close to ground or VDD.
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Figure 13.9 Ring oscillators using (a) CS stages with PMOS loads, (b) CMOS inverters.

each PMOS current source to an amplifying device by connecting its gate to the input
of the corresponding stage [Fig. 13.9(b)]. Each stage is now a CMOS inverter (a basic
building block in logic design), providing a voltage gain of −(gmp + gmn)(rOp||rOn) if both
transistors are in saturation. This type of ring oscillator finds use in many applications.
Note the transistors themselves contribute capacitance to each node, limiting the speed.

The operation of the inverter-based ring oscillator can also be studied from a different
perspective. If VX starts at zero, we have VY = VDD and VZ = 0. Thus, the first stage wants
to raise VX to VDD. Since each stage has some phase shift (delay), the circuit oscillates
such that the three voltages toggle between 0 and VDD consecutively (Fig. 13.10). First,
VX rises; after some delay, VY falls; after another delay, VZ rises; finally, with some delay,
VX falls. If each inverter has a delay of TD seconds, the overall oscillation period is equal
to 6TD and hence the output frequency is given by 1/(6TD).

t

VX

VY

VZ

Delay of
One Stage

T6 D

0

VDD

0

0

Figure 13.10 Ring oscillator waveforms.

Example

13.3
Can we cascade four inverters to implement a four-stage ring oscillator?

Solution No, we cannot. Consider the ring in Fig. 13.11 and suppose the circuit begins with VX = 0.
Thus, VY = VDD, VZ = 0, and VW = VDD. Since the first stage senses a high input, it
happily retains its low output indefinitely. Note that all of the transistors are either off or
in deep triode region (with zero drain current), yielding a zero loop gain and violating
Barkhausen’s first criterion. We say the circuit is “latched up.” In general, a single-ended
ring having an even number of inverters experiences latch-up.
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Figure 13.11

How fast can ring oscillators run? The gate delay in 40-nm CMOS technology is
about 8 ps. Thus, a three-stage ring can oscillate at frequencies as high as 20 GHz. Their
simplicity makes ring oscillators a popular choice in many integrated circuits. For example,
memories, microprocessors, and some communication systems employ ring oscillators for
on-chip clock generation.

13.3 LC OSCILLATORS

Another class of oscillators employs inductors and capacitors to define the oscillation
frequency. Called “LC oscillators,” these circuits can be realized in both integrated and
discrete forms but with different topologies and design constraints. We begin with inte-
grated LC oscillators.

Why LC oscillators? Why not just ring oscillators? LC oscillators offer two advantages
that have made them popular, especially in radio-frequency and wireless transceivers:
they can operate faster than ring oscillators (the author has developed one that reaches
300 GHz in 65 nm CMOS technology), and they exhibit less noise (although we have not
studied noise in this book). Unfortunately, LC oscillators are more difficult to design and
occupy a larger chip area than ring oscillators. As our first step, let us return to some
concepts from basic circuit theory.

13.3.1 Parallel LC Tanks

Shown in Fig. 13.12, an ideal parallel LC tank provides an impedance given by

Z1(s) = (L1s)|| 1

C1s
(13.7)

= L1s
L1C1s2 + 1

. (13.8)

For a sinusoidal input current or voltage, we have s = jω and

Z1( jω) = jL1ω

1 − L1C1ω2
, (13.9)

observing that the impedance goes to infinity at ω1 = 1/
√

L1C1. That is, even though the
voltage applied to the tank, Vin, varies sinusoidally with time, no net current flows into
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L1 C1Vin Z in

I in

Figure 13.12 Impedance of a parallel LC tank.

the tank. How does this happen? At ω = ω1, the inductor and the capacitor exhibit equal
and opposite impedances [ jL1ω1 and 1/( jC1ω1), respectively], canceling each other and
yielding an open circuit. In other words, the current required by L1 is exactly provided
by C1. We say the tank “resonates” at ω = ω1.

Example

13.4
Sketch the magnitude and phase of Z1( jω) as a function of frequency.

Solution We have

|Z1( jω)| = L1ω

|1 − L1C1ω2| , (13.10)

obtaining the plot in Fig. 13.13(a). As for the phase, we note from Eq. (13.9) that if ω < ω1,
then 1 − L1C1ω

2 > 0 and � Z1( jω) = � ( jL1ω) = +90◦ [Fig. 13.13(b)]. On the other
hand, if ω > ω1, then 1 − L1C1ω

2 < 0 and hence � Z1( jω) = � ( jL1ω1) − 180◦ = −90◦.
We roughly say the tank has an inductive behavior for ω < ω1 and a capacitive behavior
for ω > ω1.

 ω  ω1

Z in

 ω  ω1

Z in

+90

−90

(a) (b)

Figure 13.13

Exercise Determine |Z1| at ω = ω1/2 and ω = 2ω1/2.

In practice, the impedance of a parallel LC tank does not go to infinity at the resonance
frequency. To understand this point, we recognize that the wire forming the inductor has a
finite resistance. As illustrated in Fig. 13.14(a), when L1 carries current, its wire resistance,
R1, heats up, dissipating energy. Thus, Vin must replenish this energy in every cycle, and
Z2 < ∞ even at resonance. The circuit is now called a “lossy tank” to emphasize the loss
of energy within the inductor’s resistance.
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2 2

Figure 13.14 (a) Impedance of lossy tank, (b) equivalent circuit of (a).

In the analysis of LC oscillators, we prefer to model the loss of the tank by a parallel
resistance, Rp [Fig. 13.14(b)]. Are the two circuits in Fig. 13.14 equivalent? They cannot be
equivalent at all frequencies: at ω ≈ 0, L1 is a short circuit andC1 is open, yielding Z2 = R1

in Fig. 13.14(a) but Z2 = 0 in Fig. 13.14(b). But for a narrow range around the resonance
frequency, the two models can be equivalent. The proof and derivations are outlined in
Problem 13.23 for the interested reader, but we present the final result here: for the two
tanks to be approximately equivalent, we must have

Rp = L2
1ω

2

R1

. (13.11)

Note that an ideal inductor exhibits R1 = 0 and hence Rp = ∞. The following example
illustrates how the parallel model simplifies the analysis.

Example

13.5
Plot the magnitude and phase of Z2(s) in Fig. 13.14(b) as a function of frequency.

Solution We have

Z2(s) = Rp||(L1s)|| 1

C1s
(13.12)

= RpL1s
RpL1C1s2 + L1s + Rp

. (13.13)

At s = jω,

Z2( jω) = jRpL1ω

Rp(1 − L1C1ω2) + jL1ω
. (13.14)

At ω1 = 1/
√

L1C1, we have Z2( jω1) = Rp, an expected result because the inductor and
capacitor impedances still cancel each other. Since Z2 reduces to a single resistance at
ω1, � Z2( jω1) = 0. We also note that (1) at very low frequencies, jL1ω is very small,
dominating the parallel combination, i.e., Z2 ≈ jL1ω, and (2) at very high frequencies,
1/( jC1ω) is very small and hence Z2 ≈ 1/( jC1ω). Thus, |Z2| and � Z2 follow the general
behaviors shown in Fig. 13.15.
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Figure 13.15 Magnitude and phase of lossy tank.

Exercise Determine |Z2| at ω = ω1/2 and ω = 2ω1/2.

Example

13.6
Suppose we apply an initial voltage of V0 across the capacitor in an isolated parallel
tank. Study the behavior of the circuit in the time domain if the tank is ideal or lossy.

Solution As illustrated in Fig. 13.16(a) for the ideal tank, the capacitor begins to discharge through
the inductor, i.e., the electric energy is transformed to magnetic energy. When Vout = 0,
only L1 carries energy in the form of a current. This current now continues to chargeC1

toward −V0. This transfer of energy between C1 and L1 repeats and the tank oscillates
indefinitely.

With a lossy tank [Fig. 13.16(b)], on the other hand, a nonzero output voltage causes
current flow through Rp and hence dissipation of energy. Thus, the tank loses some energy
in every cycle, producing a decaying oscillatory output. To construct an oscillator, we
must somehow cancel this decay.

L1C1V0 outV L1C1V0 outVRp
t

outV
V0+

V0−

t

outV
V0+

V0−

(a) (b)

Figure 13.16 Time-domain behavior of (a) ideal, and (b) lossy tanks.

Exercise Calculate the maximum energy stored in L1 in Fig. 13.16(a).

With our basic understanding of the parallel LC tank, we can now incorporate it in
amplifying stages and oscillators.
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13.3.2 Cross-Coupled Oscillator

In our study of CMOS amplifiers, we have considered common-source stages with resistor
or current-source loads. Now, let us construct a common-source stage using a parallel LC
tank as its load [Fig. 13.17(a)]. We wish to analyze the frequency response of this “tuned”
amplifier. Denoting the tank impedance by Z2 and neglecting channel-length modulation,4

we have

Vout

Vin
= −gmZ2(s), (13.15)

where Z2(s) is given by Eq. (13.13). Using the plots of |Z2| and � Z2 in Fig. 13.15, we can
sketch |Vout/Vin| and � (Vout/Vin) as shown in Fig. 13.17(b). Note � (Vout/Vin) is obtained
by shifting � Z2 by 180◦ (up or down) to account for the negative sign in −gmZ2(s). The CS
stage thus exhibits a gain that reaches a maximum of gmRp at resonance and approaches
zero at very low or very high frequencies. The phase shift at ω1 is equal to 180◦ because
the load reduces to a resistor at resonance.

M 1

L1C1 Rp

VDD

outV

Z 2

inV
 ω  ω1

 ω  
ω1

Z in

(a) (b)

Rp

V

Vin

out

g m

−90

−180

−270

Figure 13.17 (a) CS stage with a tank load, (b) magnitude and phase plots of the stage.

Does the CS stage of Fig. 13.17(a) oscillate if we tie its output to its input? As illustrated
in Fig. 13.3(b), the total phase shift around the loop must reach 360◦ at a finite frequency,
but Fig. 13.17(b) reveals that this is not possible. We therefore insert one more CS stage
in the loop and try again [Fig. 13.18(a)]. For a total phase shift of 360◦, each stage must
provide 180◦, which is possible at ω = ω1 in Fig. 13.17(b). Thus, the circuit oscillates at ω1

if the loop gain at this frequency is sufficient. Since each stage has a voltage gain of gmRp

at ω1, Barkhausen’s loop gain criterion translates to

(gmRp)
2 ≥ 1. (13.16)

Stated more accurately, the startup condition emerges as gm(Rp||rO) ≥ 1. With identi-
cal stages, the oscillator of Fig. 13.18 generates differential signals at nodes X and Y
[Fig. 13.18(b)] (why?), a useful property for integrated-circuit applications.

A critical issue in the above topology is that the bias current of the transistors is poorly
defined. Since no current mirror or other means of proper biasing are used, the drain
currents of M1 and M2 vary with process, supply voltage, and temperature. For example, if
the transistors’ threshold voltage is lower than the nominal value, then the peak value of

4The output resistance of M1 can be simply absorbed in Rp.
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Figure 13.18 (a) Two LC-load CS stages in a loop, (b) oscillation waveforms.

VX yields a greater overdrive voltage for M2 and hence a larger drain current. To resolve
this issue, we first note that the gate of each device is tied to the drain of the other and
redraw the circuit as shown in Fig. 13.19(a). Now, M1 and M2 almost resemble a differential
pair whose output is fed back to its input. Let us then add a tail current source as illustrated
in Fig. 13.19(b), ensuring that the total bias current of M1 and M2 is equal to ISS . We usually
redraw this circuit as shown in Fig. 13.19(c).
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X Y

(a) (b)

M 2 M 1
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X Y
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M

L1 RpC1 L1 Rp

VDD

C1

X

M

I SS

Y

1 2

(c)

Figure 13.19 Different drawings of the cross-coupled oscillator.
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The “cross-coupled” oscillator of Fig. 13.19(c) is the most popular and robust LC
oscillator used in integrated circuits. The carrier frequency in your cell phone and in its
GPS receiver is very likely generated by such a topology.

Example

13.7
Plot the drain currents of M1 and M2 in Fig. 13.19(c) if the voltage swings at X and Y
are large.

Solution Let us first consider the differential pair in Fig. 13.20(a). With large input voltage swings,
the entire current is steered to the left or to the right [Fig. 13.20(b)]. The circuit of
Fig. 13.19(b), too, exhibits the same behavior, producing drain currents that swing
between zero and ISS [Fig. 13.20(c)].

M M1 2

I SS

I D1 I D2

Vin1 Vin2

Vin1 Vin2−0

I
I

I

SS

D2

D1

t

I D2

I D1
I SS

(a) (b) (c)

Figure 13.20

Exercise Redraw the cross-coupled oscillator with PMOS transistors.

Our study of ring and cross-coupled oscillators points to a general procedure for the
analysis of oscillators: open the feedback loop (while including the effect of I/O impedances
as in Chapter 12), determine the transfer function around the loop (similar to the loop
gain), and equate the phase of this result to 360◦ and its magnitude to unity. In the next
section, we apply this procedure to the Colpitts oscillator.

13.3.3 Colpitts Oscillator

The Colpitts topology employs only one transistor and finds wide application in discrete
design. This is because (high-frequency) discrete transistors are more expensive than pas-
sive discrete devices. (In integrated circuits, on the other hand, transistors are the least
expensive because they occupy the smallest area.) Since bipolar transistors are much more
common in discrete design than are MOSFETs, we analyze a bipolar Colpitts oscillator
here.

How can we construct an oscillator using only one transistor? We observed in
Figs. 13.6(a) and 13.17(a) that a common-source (or common-emitter) stage cannot serve
this purpose. But how about a common-gate (or common-base) stage? Depicted in
Fig. 13.21(a), the Colpitts oscillator resembles a common-base topology whose output
(the collector voltage) is fed back to its input (the emitter node). Current source I1 defines
the bias current of Q1, and Vb ensures Q1 is in the forward active region. As with the
cross-coupled oscillator, resistor Rp models the loss of the inductor. This resistor can also
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Figure 13.21 (a) Colpitts oscillator, (b) open-loop equivalent of (a).

model the input resistance of the subsequent stage, e.g., rπ if the oscillator drives a simple
common-emitter stage.

In order to analyze the Colpitts oscillator, we wish to break the feedback loop. Neglect-
ing the Early effect, we note thatQ1 in Fig. 13.21(a) operates as an ideal voltage-dependent
current source, injecting its small-signal current into node Y. We therefore break the loop
at the collector as shown in Fig. 13.21(b), where an independent current source Itest is
drawn from Y, and the current returned by the transistor, Iret , is measured as the quantity
of interest. The transfer function Iret/Itest must exhibit a phase of 360◦ and a magnitude of
at least unity at the frequency of oscillation.

We observe that Itest is divided between (L1s)||Rp = L1sRp/(L1s + Rp) and Z1, which
is given by

Z1 = 1

C1s
+ 1

gm

∣∣∣∣∣∣ 1

C2s
(13.17)

= 1

C1s
+ 1

C2s + gm
. (13.18)

That is, the current flowing through C1 is equal to

IZ1 = −Itest

L1sRp

L1s + Rp

L1sRp

L1s + Rp
+ 1

C1s
+ 1

C2s + gm

. (13.19)

This current is now multiplied by the parallel combination of 1/(C2s) and 1/gm to yield
VX . Since Iret = gmVπ = −gmVX , we have

Iret

Itest
(s) = gmRpL1C1s2

L1C1C2Rps3 + [gmRpL1C1 + L1(C1 +C2)]s2 + [gmL1 + Rp(C1 +C2)]s + gmRp
.

(13.20)

We now equate this transfer function to unity (which is equivalent to setting its phase to
360◦ and its magnitude to 1) and cross-multiply, obtaining:

L1C1C2Rps3 + L1(C1 +C2)s2 + [gmL1 + Rp(C1 +C2)]s + gmRp = 0. (13.21)
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At the oscillation frequency, s = jω1, both the real and imaginary parts of the right-hand
side must drop to zero:

−L1(C1 +C2)ω2
1 + gmRp = 0 (13.22)

−L1C1C2Rpω
3
1 + [gmL1 + Rp(C1 +C2)]ω1 = 0. (13.23)

From the second equation, we obtain the oscillation frequency:

ω2
1 = (C1 +C2)

L1C2C2

+ gm

RpC1C2

. (13.24)

The second term on the right is typically negligible, yielding

ω2
1 ≈ 1

L1

C1C2

C1 +C2

. (13.25)

That is, the oscillation occurs at the resonance of L1 and the series combination of C1 and
C2. Using this result in Eq. (13.23) gives the startup condition:

gmRp = (C1 +C2)
2

C1C2

. (13.26)

The transistor must thus provide sufficient transconductance to satisfy or exceed this re-
quirement. Since the right-hand side is minimum if C1 = C2, we conclude that gmRp must
be at least equal to 4.

Example

13.8
Compare the startup conditions of cross-coupled and Colpitts oscillators.

Solution We note from Eq. (13.16) that the cross-coupled topology requires a minimum gmRp of
1, i.e., it can tolerate a lossier inductor than the Colpitts oscillator can. (Also, note that
the Colpitts topology provides only a single-ended output.)

Exercise How much is the dc voltage at node Y in Fig. 13.21(a)? Can you sketch the oscillation
waveform at this node?

Where is the output node in the oscillator of Fig. 13.21(a)? The output can be sensed at
node Y, in which case the input resistance of the next stage (e.g., rπ ) shunts Rp, requiring
a greater gm to satisfy the startup condition. Alternatively, the output can be sensed at
the emitter (Fig. 13.22). This is usually preferable in discrete design because (1) discrete
inductors have a low loss (a high equivalent Rp) and are therefore sensitive to resistive
loading, and (2) with only Rin loading the emitter (and Rp → ∞), the startup condition is
modified to:

gmRin = 1 (13.27)

Derived in Problem 13.29, this more relaxed condition simplifies the design of the oscillator.
For example, the oscillator can drive a lower load resistance in this case than when the
load is tied to the collector. It is important to note that most textbooks derive Eq. (13.27)
as the startup condition, which holds only if Rp is very large (the inductor has a low loss).
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Figure 13.22 Colpitts oscillator driving next stage at its emitter.

13.4 PHASE SHIFT OSCILLATOR

In our development of ring oscillators in Section 13.2, we created sufficient phase shift by
cascading three active stages. Alternatively, we can cascade passive sections along with a
single amplifier to achieve the same goal. Shown in Fig. 13.23(a) is a “phase shift oscillator”
based on this principle. We expect that the three RC sections can provide a phase shift of
180◦ at the frequency of interest even if the amplifier itself contributes negligible phase.
Nonetheless, the signal attenuation introduced by the passive stages must be compensated
by the amplifier to fulfill the startup condition.5
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R

2

2

3

3
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A0−

C1

R1

C

R

C

R

2
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3

3

X Y
inV outVoutV

(a) (b)

Figure 13.23 (a) Phase shift oscillator, (b) phase shift network.

Let us first compute the transfer function of the passive network shown in Fig. 13.23(b),
assuming that C1 = C2 = C3 = C and R1 = R2 = R3 = R. Beginning from the output, we
write the current through R3 as Vout/R and hence

VY = Vout

R
1

Cs
+ Vout . (13.28)

Dividing VY by R2 and multiplying it by 1/(C2s), we have the voltage drop across C2 and
thus

VX = VY

R2

1

Cs
+ VY (13.29)

=
(

1

RCs
+ 1

)2

Vout . (13.30)

5Note that the bottom terminal of RS must in fact be tied to a bias voltage that is proper for the amplifier.
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Finally,

Vin =
(

1

RCs
+ 1

)3

Vout (13.31)

and hence

Vout

Vin
= (RCs)

3

(RCs + 1)
3
. (13.32)

At s = jω1,

� Vout

Vin
= 3 × 90◦ − 3tan−1(RCω1). (13.33)

For oscillation to occur at ω1, this phase must reach 180◦:

tan−1(RCω1) = 30◦. (13.34)

It follows that

ω1 = 1√
3RC

. (13.35)

For the startup condition to hold, we multiply the magnitude of Eq. (13.32) by the gain of
the amplifier and equate the result to unity:

ARCω1√
R2C 2ω2

1 + 1
= 1. (13.36)

That is, the gain of the amplifier must be at least:

A = 2. (13.37)

The phase shift oscillator is occasionally used in discrete design as it requires only
one amplifying stage. This topology does not find wide application in integrated circuits
because its output noise is quite high.

Example

13.9
Design the phase shift oscillator using an op amp.

Solution We must configure the op amp as an inverting amplifier. Figure 13.24(a) shows an exam-
ple. Here, however, resistor R4 appears between node Z and a virtual ground, equiva-
lently shunting resistor R3. Thus, for our foregoing derivations to apply, we must choose
R3||R4 = R2 = R1 = R. In fact, we may simply allow R3 to be infinity and R4 to be equal
to R, arriving at the topology depicted in Fig. 13.24(b).
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Figure 13.24

Exercise How should RF/R4 be chosen to obtain a loop gain of 1 at the frequency of oscillation?
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What determines the oscillation amplitude in the circuit of Fig. 13.24(b)? If the loop
gain at ω1 is greater than unity, the amplitude grows until the op amp output swings
from one supply rail to the other. Owing to the saturation of the op amp, the out-
put waveform resembles a square wave rather than a sinusoid, an undesirable effect in
some applications. Moreover, the saturation tends to slow down the op amp response,
limiting the maximum oscillation frequency. For these reasons, one may opt to define
(“stabilize”) the oscillation amplitude by additional means. For example, as illustrated in
Fig. 13.25(a), we can replace the feedback resistor with two “anti-parallel” diodes. The out-
put now swings by one diode drop (VD,on = 700 to 800 mV) below and above its average
value.
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outV
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R
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2

3
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(a)
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t

VD,on+

VD,on−

outV

Figure 13.25 (a) Use of diodes to limit the output swing, (b) alternative topology providing

larger output swing.

The oscillation amplitude obtained above may prove inadequate in many applications.
We must therefore modify the feedback network such that the diodes turn on only when
Vout reaches a larger, predetermined value. To this end, we divide Vout down and feed the
result to the diodes [Fig. 13.25(b)]. Assuming a constant-voltage model for D1 and D2, we
observe that one diode turns on when

Vout
RD2

RD2 + RD1

= VD,on, (13.38)

and hence

Vout =
(

1 + RD1

RD2

)
VD,on. (13.39)
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13.5 WIEN-BRIDGE OSCILLATOR

The Wien-bridge oscillator is another topology sometimes used in discrete design as it
requires only one amplifying stage. Unlike the phase shift oscillator, however, the Wien-
bridge configuration employs a passive feedback network with zero phase shift rather than
180◦ phase shift. The amplifier must therefore provide a positive gain so that the total phase
shift at the frequency of oscillation is equal to zero (or 360◦).

Let us first construct a simple passive network with zero phase shift at a single fre-
quency. Shown in Fig. 13.26(a) is an example. If R1 = R2 = R and C1 = C2 = C , we have

Vout

Vin
(s) =

R
RCs + 1

R
RCs + 1

+ 1

Cs
+ R

(13.40)

= RCs
R2C 2s2 + 3RCs + 1

. (13.41)

The phase thus emerges as

� Vout

Vin
(s = jω) = π

2
− tan−1 3RCω

1 − R2C 2ω2
, (13.42)

falling to zero at

ω1 = 1

RC
. (13.43)

We now place this network around an op amp as illustrated in Fig. 13.26(b). Denoting the
gain of the non-inverting amplifier by A, we multiply the magnitude of Eq. (13.41) by A
and equate the result to unity:∣∣∣ ARC jω

1 − R2C 2ω2 + 3 jRCω

∣∣∣ = 1. (13.44)

At ω1, this equation yields

A = 3. (13.45)

That is, we choose RF1 ≥ 2RF2.

R1 C1

R C

inV outV

2 2
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R C2 2
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outV

F1F2

(a) (b)

Figure 13.26 (a) Phase shift network, (b) Wien-bridge oscillator.
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To avoid uncontrolled amplitude growth, the Wien-bridge oscillator can incorporate
diodes in the gain definition network, RF1 and RF2. As depicted in Fig. 13.27, two anti-
parallel diodes can be inserted in series with RF1 so as to create strong feedback as |Vout |
exceeds VD,on. If larger amplitudes are desired, resistor RF3 can be added to divide Vout

and apply the result to the diodes.

R

R C2 2

R1C1

outV

F2

R

R

F1

F3

Figure 13.27 Addition of diodes to limit output swing of Wien-bridge oscillator.

13.6 CRYSTAL OSCILLATORS

The oscillators studied thus far do not offer a precise output frequency. For example, as
the temperature varies, so does the value of the capacitances in each circuit, creating a
drift in the oscillation frequency. Many applications, on the other hand, demand a precise
clock frequency. If the oscillator frequency in your watch departs from 215 Hz by 0.1%,
the time reading will be 10 minutes off after one week.

For high-precision applications, we employ “crystal oscillators.” A crystal is made of
a piezoelectric material such as quartz and it mechanically vibrates at a certain frequency
if subjected to a voltage difference. Crystals are attractive as a frequency “reference” for
three reasons. (1) Given by the physical dimensions of the crystal, the vibration frequency
is extremely stable with temperature, varying by only a few parts per million (ppm) for a
1◦ change, (2) the crystal can be cut with relative ease in the factory so as to produce a
precise vibration frequency, e.g., with an error of 10–20 ppm.6 (3) Crystals exhibit a very
low loss, behaving almost like an ideal LC tank. That is, an electric impulse applied to the
crystal makes it vibrate for thousands of cycles before the oscillation decays.

Our treatment of crystal oscillators in this section proceeds as follows. First, we derive
a circuit model for the crystal, concluding that it behaves as a lossy LC tank. Next, we
develop an active circuit that provides a negative resistance. Finally, we attach the crystal
to such a circuit so as to form an oscillator.

13.6.1 Crystal Model

For circuit design, we need an electrical model of the crystal. Figure 13.28(a) shows the
circuit symbol and the typical impedance characteristic of a crystal. The impedance falls
to nearly zero at ω1 and rises to a very high value at ω2. Let us construct an RLC circuit
model to represent this behavior. Since the impedance is close to zero at ω1, we envision a
series resonance at this frequency [Fig. 13.28(b)]: if jL1ω + 1/( jC1ω) = 0 at ω = ω1, then

6Crystals with an error of a few ppm are also available but at a higher cost.
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Figure 13.28 (a) Symbol and impedance of a crystal, (b) circuit model for series resonance,

(c) complete model.

the impedance reduces to RS , which is usually a small resistance. That is, ZS can model the
crystal in the vicinity of ω1.

Around ω2, the device experiences parallel resonance—as seen earlier in LC oscilla-
tors. We can therefore place a capacitance in parallel with ZS as shown in Fig. 13.28(c). To
determine ω2 in terms of the circuit parameters, we neglect RS and write

Zcr ( jω) = ZS( jω)|| 1

jC2ω
(13.46)

≈ 1 − L1C1ω
2

jω(C1 +C2 − L1C1C2ω2)
. (13.47)

We note that Zcr goes to infinity at

ω2 = 1√
L1

C1C2

C1 +C2

. (13.48)

In practice, ω1 and ω2 are very close, i.e.,

1√
L1C1

≈ 1√
L1

C1C2

C1+C2

(13.49)

and hence

C1 ≈ C1C2

C1 +C2

. (13.50)

It follows that

C2 	 C1. (13.51)
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Example

13.10
If C2 	 C1, find a relation between the series and parallel resonance frequencies.

Solution We have

ω2

ω1

=
√

C1 +C2

C2

(13.52)

≈ 1 + C1

2C2

. (13.53)

Exercise Derive an expression for ω2/ω1 if RS is not neglected.

13.6.2 Negative-Resistance Circuit

In order to arrive at a popular crystal oscillator topology, we must first devise a circuit
that provides a negative (small-signal) input resistance. Consider the topology shown in
Fig. 13.29(a), where the bias network of M1 is omitted for simplicity. Let us obtain Zin

with the aid of the arrangement in Fig. 13.29(b), neglecting channel-length modulation
and other capacitances. Upon flowing through CA, IX generates a gate-source voltage for
M1. Thus, the drain current is given by

I1 = − IX

CAs
gm. (13.54)

Since CB carries a current equal to IX − I1, it sustains a voltage equal to (IX − I1)/
CBs = [IX + gmIX/(CAs)]/(CBs). Writing a KVL around CA, VX and CB, we eventually
obtain

VX = IX

CAs
+ IX

CBs
+ gmIX

CACBs2
. (13.55)

That is,

Zin(s) = 1

CAs
+ 1

CBs
+ gm

CACBs2
. (13.56)
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Figure 13.29 (a) Circuit providing negative resistance, (b) setup for impedance measurement,

(c) equivalent impedance.
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For a sinusoidal input, s = jω, and

Zin( jω) = 1

jCAω
+ 1

jCBω
− gm

CACBω2
. (13.57)

What do the three terms in this equation signify? The first two represent two capacitors in
series. The third, on the other hand, is real, i.e., a resistance, and negative [Fig. 13.29(c)]. A
small-signal negative resistance simply means that if the voltage across the device increases,
the current through it decreases.

A negative resistance can help sustain oscillation. To understand this point, consider a
lossy parallel LC tank [Fig. 13.30(a)]. As explained previously, an initial condition on the
capacitor leads to a decaying oscillation because Rp dissipates energy in every cycle. Let us
now place a negative resistance in parallel with Rp [Fig. 13.30(b)]. We choose |−R1| = Rp,
obtaining (−R1)||Rp = ∞. Since R1 and Rp cancel, the tank consisting of L1 and C1 sees
no net loss, as if the tank were lossless. In other words, since the energy lost by Rp in every
cycle is replenished by the active circuit, the oscillation continues indefinitely.

t

outV

(a)

(b)

L1C1
V0 outVRp t

outV
V0+

V0−

L1C1 Rp
Active
CircuitR1−outV

Figure 13.30 (a) Time response of a lossy LC tank, (b) use of a negative resistance to cancel the

loss of the tank.

What happens if |−R1| < Rp? Then, (−R1)||Rp is still negative, allowing the oscillation
amplitude to grow until nonlinear mechanisms in the active circuit limit the amplitude
(Section 13.1).

13.6.3 Crystal Oscillator Implementation

We now attach a crystal to a negative resistance to form an oscillator [Fig. 13.31(a)].
Replacing the crystal with its electrical model and the negative-resistance circuit with
its equivalent network, we arrive at Fig. 13.31(b). Of course, to benefit from the precise
resonance frequency of the crystal, we must chooseCA andCB so as to minimize their effect
on the oscillation frequency. As evident from Fig. 13.31(b), this occurs ifCACB/(CA +CB)
is much smaller than the crystal impedance, Zcr . However, if CA and CB are excessively
large, then the negative resistance, −gm/(CACBω2), is not “strong” enough to cancel the
crystal loss. In typical designs, CA and CB are chosen 10 to 20 times smaller than C2.
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Figure 13.31 (a) Use of negative resistance to cancel loss of crystal, (b) equivalent circuit.

The analysis of the basic crystal oscillator in Fig. 13.31 is somewhat beyond the scope
of this book and is outlined in Problem 13.42 for the interested reader. It can be shown
that the circuit oscillates at the crystal’s parallel resonance frequency if

L1C1ω
2 − 1 ≤ gmRS

C1C2

CACB
. (13.58)

The crystal data sheet specifies L1, C1, C2, and RS . The designer must choose CA, CB, and
gm properly.

We must now add bias elements to the circuit. Unlike parallel LC tanks, a crystal
does not provide a path for the bias current or voltage. (Recall the series capacitance,
C1, in the crystal model.) For example, the stages in Fig. 13.32(a) do not operate properly
because the drain bias current of MA is zero and the gate bias voltage of MB is not defined.
We can add a feedback resistor as shown in Fig. 13.32(b) to realize a self-biased stage.
Note that RF must be very large (tens of kiloohms) to contribute negligible loss. We can
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Figure 13.32 (a) Stages with no dc bias path, (b) simple biasing of a crystal oscillator, (c) biasing

using a PMOS current source, (d) inverter-based crystal oscillator.
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replace RD with a current source [Fig. 13.32(c)]. Now the current source can be transformed
to an amplifying device if its gate is tied to node X [Fig. 13.32(d)].

The circuit of Fig. 13.32(d) merits several remarks. First, both transistors are biased in
saturation before oscillation begins (why?). Second, for small-signal operation, M1 and M2

appear in parallel, providing a total transconductance of gm1 + gm2. Third, M1 and M2 can
be viewed as a CMOS inverter (Chapter 16) that is biased at its trip point. This oscillator
topology is popular in integrated circuits, with the inverter placed on the chip and the
crystal off the chip.

The circuit of Fig. 13.32(d) may exhibit a tendency to oscillate at higher harmonics
of the crystal’s parallel resonance frequency. For example, if this resonance frequency is
20 MHz, the circuit may oscillate at 40 MHz. To avoid this issue, a low-pass filter must be
inserted in the feedback loop so as to suppress the gain at higher frequencies. As illustrated
in Fig. 13.33, we place resistor R1 in series with the feedback network. The pole frequency,
1/(2πR1CB), is typically chosen slightly above the oscillation frequency.

M 1

C CA B

VDD

M 2

RF

R1

Figure 13.33 Complete crystal oscillator including low-pass filter to avoid higher modes.

In discrete circuit design, a high-speed CMOS inverter may not be available. An
alternative topology using a single bipolar transistor can be derived from the circuit of
Fig. 13.31(a) as shown in Fig. 13.34(a). To bias the transistor, we add a large resistor from
the collector to the base and an inductor from the collector to VCC [Fig. 13.34(b)]. We
wish L1 to provide the bias current of Q1 but not affect the oscillation frequency. Thus,
we choose L1 large enough that L1ω is a high impedance (approximately an open circuit).
An inductor playing such a role is called a “radio-frequency choke” (RFC). Note that this
circuit reduces to that in Fig. 13.34(a) if RF and L1 are large.

C
C

A

B

V

RF

(a) (b)

Q1
C

C

A

BQ1

L1

CC

Figure 13.34 Crystal oscillator using a bipolar device.
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P R O B L E M S

13.1. A negative-feedback system is shown in
Fig. 13.35. Under what conditions does the
system oscillate?

H (s)X Y

G (s)

Figure 13.35

13.2. A negative-feedback system is shown in
Fig. 13.36. Under what conditions does the
system oscillate?

K (s)

X YH (s)

G (s)

Figure 13.36

13.3. Consider the simple common-emitter
stage shown in Fig. 13.37. Explain why this
circuit does not oscillate.

VCC

RC

Q1

Figure 13.37

13.4. A differential pair is placed in a negative-
feedback loop as shown in Fig. 13.38. Can
this circuit oscillate? Explain.

VDD

RD RD

M1 M2

ISS

Figure 13.38

13.5. A* differential pair followed by source fol-
lowers is placed in a negative-feedback
loop as illustrated in Fig. 13.39. Consider
only the capacitances shown in the circuit.
Can this circuit oscillate? Explain.

VDD

RD RD
M3

M1 M2

M4
CB

CLCL

ISS

Figure 13.39

13.6. We** insert two resistors in series with the
gates of M1 and M2 in Fig. 13.39. Taking
into account CGS1 and CGS2 in addition to
the other four capacitors, explain whether
the circuit can oscillate.

13.7. Suppose* in the ring oscillator of Fig. 13.8,
the value of CD is doubled. How do the
oscillation frequency and startup condi-
tion change?

13.8. In the* ring oscillator of Fig. 13.8, we
assume CD arises from CGS and neglect
other capacitances. If the width and bias
current of each transistor are doubled and
RD is halved, what happens to the oscilla-
tion frequency?
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13.9. Derive** the oscillation frequency and
startup condition for the ring oscillator
of Fig. 13.8 if the number of stages is in-
creased to five.

13.10. Derive* the oscillation frequency and
startup condition for the ring oscillator of
Fig. 13.9(a). Consider only the CGS of the
NMOS transistors and assume all transis-
tors are in saturation.

13.11. Suppose the bias voltage, Vb, in Fig.
13.9(a) is gradually raised to reduce the
bias current of each stage. Does the circuit
have a lower or higher tendency to oscil-
late? (Hint: as the bias current decreases,
rO rises more rapidly than gm falls.)

13.12. Derive** the oscillation frequency and
startup condition for the ring oscillator
of Fig. 13.9(b). Consider the CGS of both
NMOS and PMOS transistors and assume
all transistors are in saturation.

13.13. A ring oscillator is sometimes used to
provide multiple outputs with different
phases. What is the phase difference be-
tween consecutive nodes in the circuit of
Fig. 13.9(b)? (Hint: consider the wave-
forms in Fig. 13.10.)

13.14. A ring oscillator employs N stages. What
is the phase difference between the con-
secutive outputs of the circuit?

13.15. Repeat the plots in Fig. 13.13 if both L1

and C1 in Fig. 13.12 are doubled.

13.16. In the circuit of Fig. 13.12, assume
Vin(t) = V0 cos ωint . Plot Iin(t) if ωin is
slightly below ω1 or above ω1. (Hint: con-
sider the magnitude and phase response
in Fig. 13.13.)

13.17. Compute Z2(s) in the tank of Fig. 13.14(a).
Compute the pole frequencies.

13.18. Determine the pole frequencies of Z2(s)
in Eq. (13.13) and sketch their locations
on the complex plane as Rp goes from
infinity to a small value.

13.19. In* this problem, we wish to determine
how the tank in Fig. 13.14(a) can be trans-
formed to that in Fig. 13.14(b). Compute

the impedance of each tank at a frequency
s = jω and equate the two impedances.
Now, equate their real parts and do the
same with their imaginary parts. Also, as-
sume L1ω/R1 � 1. (We say the inductor
has a high quality factor, Q .) Determine
the value of Rp.

13.20. Explain qualitatively what happens to the
plots in Fig. 13.15 if Rp is doubled.

13.21. Sketch the instantaneous power dissi-
pated by Rp in Fig. 13.16(b) as a func-
tion of time. Can you predict what we will
obtain if we integrate the area under this
plot?

13.22. In the CS stage of Fig. 13.17(a), Vin =
V0cosω1t + V1, where ω1 = 1/

√
L1C1 and

V1 is a bias value. Plot Vout as a function
of time. (Hint: what is the dc value of the
output when the input is just equal to V1?)

13.23. Explain qualitatively what happens to the
plots in Fig. 13.17(b) if Rp is doubled.

13.24. In the** circuit of Fig. 13.18(a), we break
the loop at the gate of M1 and apply
an input as shown in Fig. 13.40. Suppose
Vin = V0 cos ω1t + V1, where ω1 is the res-
onance frequency of each tank and V1 is a
bias voltage. Plot the waveforms at nodes
X and Y.

VDD

YX

C1 L1 Rp C1 L1 Rp

M1 M2

Vin

Vout

Figure 13.40

13.25. Suppose* the two tanks in the oscillator of
Fig. 13.18(a) have slightly different reso-
nance frequencies. Can you roughly pre-
dict the oscillation frequency? (Hint: con-
sider the open-loop frequency response.)
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13.26. Explain why the circuit of Fig. 13.19(c)
does not oscillate if the tanks are replaced
with resistors.

13.27. If we increaseC1 in the Colpitts oscillator
of Fig. 13.21(a), do we relax or tighten the
startup condition?

13.28. Repeat** the analysis of the Colpitts oscilla-
tor but by breaking the loop at the emitter
of Q1. The equivalent circuit is shown in
Fig. 13.41. Note that the loading seen at
the emitter, 1/gm, is included in parallel
with C2.

1

rπ Vπ gmVπ

gm

Rp

Vtest Vret

L1

C1

C2

X

Y

Figure 13.41

13.29. Derive Eq. (13.27) if Rp = ∞. You can use
the equivalent circuit of Fig. 13.21(b) and
tie Rin from X to ground.

13.30. In the oscillator of Fig. 13.23(a), we have
R1 = R2 = R3 = R, C1 = C2 = C3 = C ,
and Vout = V0 cos ω0t , whereω0 = 1/(RC).
Plot the waveforms at X and Y. Assume
A0 = 2.

13.31. A student decides to employ three low-
pass sections to create the phase shift
necessary in a phase shift oscillator
(Fig. 13.42). If R1 = R2 = R3 = R and
C1 = C2 = C3 = C , repeat the analysis for
this circuit.

R1 R2 R3
Vout

−A0C1 C2 C3

Figure 13.42

13.32. Suppose a phase shift oscillator incorpo-
rates four high-pass sections with equal
resistors and capacitors. Derive the oscil-
lation frequency and the startup condition
for such a circuit.

13.33. Can the* circuit shown in Fig. 13.43 oscil-
late? Explain. Assume R1 = R2 = R3 = R
and C1 = C2 = C3 = C .

R1 R2

R3
Vout

−A0

C1 C2

C3

Figure 13.43

13.34. Consider the oscillator of Fig. 13.23(a)
and assume the amplifier contains a pole,
i.e., A(s) = A0/(1 + s/ω0). Also, assume
the phase shift network contains only two
high-pass sections with R1 = R2 = R and
C1 = C2 = C . Can ω0 be chosen such that
this circuit oscillates?

13.35. In the circuit of Fig. 13.26(a), R1 = R2 = R
and C1 = C2 = C . If Vin = V0 cos ω0t ,
where ω0 = 1/(RC), plot Vout as a func-
tion of time.

13.36. A student* decides to modify the Wien
oscillator of Fig. 13.26(b) as shown in
Fig. 13.44. Can this circuit oscillate?
Explain.

Vout

C2

R2

R1

RF2 RF1
C1

Figure 13.44

13.37. Derive an expression for ZS in Fig.
13.28(b) if s = jω.

13.38. Sketch the real and imaginary parts of Zin

in Fig. 13.29(c) as a function of frequency.
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13.39. Suppose the negative-resistance circuit of
Fig. 13.29(a) employs a bipolar transistor
rather than a MOSFET. Determine Zin

and the equivalent circuit.

13.40. Determine Zin in Fig. 13.29(a) if channel-
length modulation is not neglected. Can
you construct a simple equivalent circuit
for Zin such as that in Fig. 13.29(c)?

13.41. Suppose capacitor C1 in Fig. 13.30(a)
begins with an initial condition of V0.
Derive an equation for Vout assuming that
Rp is large. (A large Rp means the tank
has a high quality factor, Q).

13.42. We wish** to determine the startup con-
dition for the crystal oscillator of Fig.
13.31(b).
(a) Prove that Zcr is given by the follow-

ing equation at the parallel resonance
frequency:

Zcr ( jω2) = L1C1ω
2
2 − 1

RSC1C2ω
2
2

+ 1

jC2ω2

.

(13.59)

(b) Now, cancel the real part of Zcr ( jω2)
by the negative resistance and prove
Eq. (13.58).

Design Problems

In the following problems, unless otherwise
stated, assume μnCox = 2μpCox = 100 μA/V2,
λn = 0.5 λp = 0.1 V−1, VTHN = 0.3 V, and
VTHP = −0.35 V.

13.43. In Fig. 13.8, RD = 1 k�. Design the cir-
cuit for a power budget of 3 mW and a
frequency of 1 GHz. Assume VDD = 1.5 V
and λ = 0.

13.44. In the circuit of Fig. 13.9(a), VDD − Vb =
0.6 V.
(a) Choose W/L of the PMOS devices for

a bias current of 1 mA.

(b) Choose W/L of the NMOS de-
vices to meet the startup condition,
gmN(rON||rOP) = 2.

13.45. (a) A 20 nH inductor has a series resis-
tance of 15 �. Compute the equivalent
parallel resistance, Rp, at 2 GHz.

(b) Design a 2 GHz Colpitts oscillator
using this inductor with a power bud-
get of 2 mW and VDD = 1.5 V. For
simplicity, neglect the capacitances
of the bipolar transistor and assume
C1 = C2. Verify that the startup con-
dition is met.

13.46. Design the phase shift oscillator of Fig.
13.24 for a frequency of 10 MHz, assuming
an ideal op amp andC1 = C2 = C3 = 1 nF.

13.47. Design the Wien bridge oscillator of
Fig. 13.26(b) for a frequency of 10 MHz,
assume an ideal op amp and C1 = C2 =
1 nF.

13.48. (a) A crystal with a parallel resonance fre-
quency at 10 MHz has C2 = 100 pF,
C1 = 10 pF [Fig. 13.28(c)]. Determine
the value of L1.

(b) Suppose the crystal series resistance
is equal to 5 �. Design the oscilla-
tor of Fig. 13.32(d) for a frequency
of 10 MHz. Neglect the transistor
capacitances and assume CA = CB =
20 pF, (W/L)2 = 2(W/L)1, and VDD =
1.2 V.

S P I C E P R O B L E M S

In the following problems, use the MOS de-
vice models given in Appendix A. For bipolar
transistors, assume IS = 5 × 10−16 A, β = 100,
and VA = 5 V. Also, assume a supply voltage of
1.8 V. (In SPICE, one node of the oscillators
must be initialized near zero or VDD to ensure
startup.)

13.1. Simulate the oscillator of Fig. 13.8 with
W/L = 10/0.18 and CD = 20 fF. Choose
the value of RD so that the circuit barely
oscillates. Compare the value of gmRD

with the theoretical minimum of 2. Plot
the voltage swings at X, Y, and Z and mea-
sure their phase difference.
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13.2. Simulate the oscillator of Fig. 13.9(a)
with (W/L)N = 10/0.18 and (W/L)P =
15/0.18. Choose Vb to obtain a bias cur-
rent of 0.5 mA in each branch.

(a) Measure the oscillation frequency.

(b) Now, change Vb by ±100 mV and mea-
sure the oscillation frequency. Such a
circuit is called a voltage-controlled
oscillator (VCO).

13.3. Simulate the ring oscillator of Fig. 13.9(b)
in two cases.

(a) Choose (W/L)P = 2(W/L)N = 20/0.18.

(b) Choose (W/L)P = 2(W/L)N = 10/0.18.
Which case yields a higher oscillation
frequency?

13.4. We wish to design the circuit of Fig.
13.9(b) for the highest oscillation fre-
quency. Begin with (W/L)N = (W/L)P =
5/0.18 and decrease the width of the tran-
sistors in 0.5 μm steps. Plot the oscillation
frequency as a function of W.

13.5. Simulate the cross-coupled oscillator of
Fig. 13.19(c) with W/L = 10/0.18, ISS =
1 mA, and L1 = 10 nH. Place a resistance
of 10 � in series with each inductor (and
exclude Rp) and add enough capacitance
from X and Y to ground so as to obtain
an oscillation frequency of 1 GHz. Plot the
output voltages and the drain currents of
M1 and M2 as a function of time. What
is the minimum value of ISS to sustain
oscillation?



Chapter 14
Output Stages
and Power Amplifiers

The amplifier circuits studied in previous chapters aim to achieve a high gain with desirable

input and output impedance levels. However, many applications require circuits that can

deliver a high power to the load. For example, the cellphone described in Chapter 1 must

drive the antenna with 1 W of power. As another example, typical stereo systems deliver

tens or hundreds of watts of audio power to speakers. Such circuits are called “power

amplifiers” (PAs).

This chapter deals with circuits that can provide a high output power. We first reex-

amine circuits studied in previous chapters to understand their shortcomings for this task.

Next, we introduce the “push-pull” stage and various modifications to improve its per-

formance. The chapter outline is shown below.

➤ ➤ ➤

Basic Stages

• Emitter Follower

• Push-Pull Stage

and Improved

Variants

Large-Signal

Considerations

• Omission of PNP

Transistor

• High-Fidelity

Design

Heat

Dissipation

• Power Ratings

• Thermal Runaway

Efficiency and

PA Classes

• Efficiency of PAs

• Classes of PAs

14.1 GENERAL CONSIDERATIONS

The reader may wonder why the amplifier stages studied in previous chapters are not
suited to high-power applications. Suppose we wish to deliver 1 W to an 8-� speaker.
Approximating the signal with a sinusoid of peak amplitude VP, we express the power
absorbed by the speaker as

Pout =
(

VP√
2

)2

· 1

RL
, (14.1)

619
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where VP/
√

2 denotes the root mean square (rms) value of the sinusoid and RL represents
the speaker impedance. For RL = 8 � and Pout = 1 W,

VP = 4 V. (14.2)

Also, the peak current flowing through the speaker is given by IP = VP/RL = 0.5 A.
We can make a number of important observations here. (1) The resistance that must

be driven by the amplifier is much lower than the typical values (hundreds to thousands
of ohms) seen in previous chapters. (2) The current levels involved in this example are
much greater than the typical currents (milliamperes) encountered in previous circuits.
(3) The voltage swings delivered by the amplifier can hardly be viewed as “small” signals,
requiring a good understanding of the large-signal behavior of the circuit. (4) The power
drawn from the supply voltage, at least 1 W, is much higher than our typical values. (5) A
transistor carrying such high currents and sustaining several volts (e.g., between collector
and emitter) dissipates a high power and, as a result, heats up. High-power transistors must
therefore handle high currents and high temperature.1

Based on the above observations, we can predict the parameters of interest in the
design of power stages:

(1) “Distortion,” i.e., the nonlinearity resulting from large-signal operation. A high-
quality audio amplifier must achieve a very low distortion so as to reproduce music
with high fidelity. In previous chapters, we rarely dealt with distortion.

(2) “Power efficiency” or simply “efficiency,” denoted by η and defined as

η = Power Delivered to Load

Power Drawn from Supply
. (14.3)

For example, a cellphone power amplifier that consumes 3 W from the battery to
deliver 1 W to the antenna provides η ≈ 33.3%. In previous chapters, the efficiency
of circuits was of little concern because the absolute value of the power consumption
was quite small (a few milliwatts).

(3) “Voltage rating.” As suggested by Eq. (14.1), higher power levels or load resistance
values translate to large voltage swings and (possibly) high supply voltages. Also,
the transistors in the output stage must exhibit breakdown voltages well above the
output voltage swings.

14.2 EMITTER FOLLOWER AS POWER AMPLIFIER

With its relatively low output impedance, the emitter follower may be considered a good
candidate for driving “heavy” loads, i.e., low impedances. As shown in Chapter 5, the
small-signal gain of the follower is given by

Av = RL

RL + 1

gm

. (14.4)

We may therefore surmise that for, say, RL = 8 �, a gain near unity can be obtained if
1/gm � RL, e.g., 1/gm = 0.8 �, requiring a collector bias current of 32.5 mA. We assume
β � 1.

1And, in some applications, high voltages.
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= 32.5 mA

Figure 14.1 (a) Follower driving a heavy load, (b) input and output waveforms, (c) current

path as input becomes more negative, (d) current path as input becomes more positive.

But, let us analyze the circuit’s behavior in delivering large voltage swings (e.g. 4 VP) to
heavy loads. To this end, consider the follower shown in Fig. 14.1(a), where I1 serves as the
bias current source. To simplify the analysis, we assume the circuit operates from negative
and positive power supplies, allowing Vout to be centered around zero. For Vin ≈ 0.8 V, we
have Vout ≈ 0 and IC ≈ 32.5 mA. If Vin rises from 0.8 V to 4.8 V, the emitter voltage follows
the base voltage with a relatively constant difference of 0.8 V, producing a 4-V swing at
the output [Fig. 14.1(b)].

Now suppose Vin begins from +0.8 V and gradually goes down [Fig. 14.1(c)]. We expect
Vout to go below zero and hence part of I1 to flow from RL. For example, if Vin ≈ 0.7 V, then
Vout ≈ −0.1 V, and RL carries a current of 12.5 mA. That is, IC1 ≈ IE1 = 20 mA. Similarly,
if Vin ≈ 0.6 V, then Vout ≈ −0.2 V, IRL ≈ 25 mA, and hence IC1 ≈ 7.5 mA. In other words,
the collector current of Q1 continues to fall.

What happens as Vin becomes more negative? Does Vout still track Vin? We observe
that for a sufficiently low Vin, the collector current of Q1 drops to zero and RL carries
the entire I1 [Fig. 14.1(d)]. For lower values of Vin, Q1 remains off and Vout = −I1RL =
−260 mV.

Example

14.1
If in Fig. 14.1(a), IS = 5 × 10−15 A, determine the output voltage for Vin = 0.5 V. For
what value of Vin does Q1 carry only 1% of I1?

Solution We have

Vin − VBE1 = Vout (14.5)
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and

Vout

RL
+ I1 = IC1. (14.6)

Since VBE1 = VT ln(IC1/IS), Eqs. (14.5) and (14.6) can be combined to yield

Vin − VT ln

[(
Vout

RL
+ I1

)
1

IS

]
= Vout . (14.7)

Beginning with a guess Vout = −0.2 V and after a few iterations, we obtain

Vout ≈ −211 mV. (14.8)

Note from Eq. (14.6) that IC1 ≈ 6.13 mA.
To determine the value of Vin that yields IC1 ≈ 0.01I1 = 0.325 mA, we eliminate Vout

from Eqs. (14.5) and (14.6):

Vin = VT ln
IC1

IS
+ (IC1 − I1)RL. (14.9)

Setting IC1 = 0.325 mA, we obtain

Vin ≈ 390 mV. (14.10)

Note from Eq. (14.5) that Vout ≈ −257 mV under this condition.

Exercise Repeat the above example if RL = 16 � and I1 = 16 mA.

Let us summarize our thoughts thus far. In the arrangement of Fig. 14.1(a), the output
tracks the input2 as Vin rises because Q1 can carry both I1 and the current drawn by RL.
On the other hand, as Vin falls, so does IC1, eventually turning Q1 off and leading to a
constant output voltage even though the input changes. As illustrated in the waveforms of
Fig. 14.2(a), the output is severely distorted. From another perspective, the input/output
characteristic of the circuit, depicted in Fig. 14.2(b), begins to depart substantially from a
straight line as Vin falls below approximately 0.4 V (from Example 14.2).

0.8 V

t
0

inV

Vout

– 0.26 

– 0.26 

V
inV

Vout

V

0.4

0.8 (V)

(a) (b)

Figure 14.2 (a) Distortion in a follower, (b) input/output characteristic.

2The tracking may not be quite faithful because VBE experiences some change, but we ignore this effect
for now.
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Our foregoing study reveals that the follower of Fig. 14.1(a) cannot deliver voltage
swings as large as ±4 V to an 8-� speaker. How can we remedy the situation? Noting
that Vout,min = −I1RL, we can increase I1 to greater than 50 mA so that for Vout = −4 V,
Q1 still remains on. This solution, however, yields a higher power dissipation and a lower
efficiency.

14.3 PUSH-PULL STAGE

Considering the operation of the emitter follower in the previous section, we postulate
that the performance can be improved if I1 increases only when needed. In other words,
we envision an arrangement wherein I1 increases as Vin becomes more negative and vice
versa. Shown in Fig. 14.3(a) is a possible realization of this idea. Here, the constant current
source is replaced with a pnp emitter follower so that, as Q1 begins to turn off, Q2 “kicks
in” and allows Vout to track Vin.

1

Q
RL

VCC

VEE

2

Q1

inV

Q
RL

VCC

VEE

2

inV

Q
RL

VCC

VEE

2

Q1

(c)(a) (b)

outVoutVoutinV V

Q

Figure 14.3 (a) Basic push-pull stage, (b) current path for sufficiently positive inputs,

(c) current path for sufficiently negative inputs.

Called the “push-pull” stage, this circuit merits a detailed study. We note that if Vin is
sufficiently positive,Q1 operates as an emitter follower, Vout = Vin − VBE1, andQ2 remains
off [Fig. 14.3(b)] because its base-emitter junction is reverse-biased. By symmetry, if Vin

is sufficiently negative, the reverse occurs [Fig. 14.3(c)] and Vout = Vin + |VBE2|. We say
Q1 “pushes” current into RL in the former case and Q2 “pulls” current from RL in the
latter.

Example

14.2
Sketch the input/output characteristic of the push-pull stage for very positive or very
negative inputs.

Solution As noted above,

Vout = Vin + |VBE2| for very negative inputs (14.11)

Vout = Vin − VBE1 for very positive inputs. (14.12)
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inV

inV + VBE2

Q on2

inV V– BE1

Q on1

Vout

Figure 14.4 Push-pull stage characteristic.

That is, for negative inputs, Q2 shifts the signal up, and for positive inputs, Q1 shifts the
signal down. Figure 14.4 plots the resulting characteristic.

Exercise Repeat the above example for a CMOS output stage.

What happens as Vin approaches zero? The rough characteristic in Fig. 14.4 suggests
that the two segments cannot meet if they must remain linear. In other words, the overall
characteristic inevitably incurs nonlinearity and resembles that shown in Fig. 14.5, exhibit-
ing a “dead zone” around Vin = 0.

Why does the circuit suffer from a dead zone? We make two observations. First,Q1 and
Q2 cannot be on simultaneously: forQ1 to be on, Vin > Vout , but forQ2, Vin < Vout . Second,
if Vin = 0, Vout must also be zero. This can be proved by contradiction. For example, if
Vout > 0 (Fig. 14.6), then the current Vout/RL must be provided byQ1 (from VCC ), requiring
VBE1 > 0 and hence Vout = Vin − VBE1 < 0. That is, for Vin = 0, both transistors are off.

Now suppose Vin begins to increase from zero. Since Vout is initially at zero, Vin must
reach at least VBE ≈ 600–700 mV before Q1 turns on. The output therefore remains at

inV

inV + VBE2

Q on2

inV V– BE1

Q on1

Vout

Dead
Zone

Figure 14.5 Push-pull stage characteristic with dead zone.
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Q1

outV

Q
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VEE

2

> 0

outV

RL

RL

Figure 14.6 Push-pull stage with zero input voltage.

zero for Vin < 600 mV, exhibiting the dead zone depicted in Fig. 14.5. Similar observations
apply to the dead zone for Vin < 0.

Example

14.3
Sketch the small-signal gain for the characteristic of Fig. 14.5 as a function of Vin.

Solution The gain (slope) is near unity for very negative or positive inputs, falling to zero in the
dead zone. Figure 14.7 plots the result.

inV

Gain

1

Figure 14.7 Gain of push-pull stage as a function of input.

Exercise Repeat the above example if RL is replaced with an ideal current source.

In summary, the simple push-pull stage of Fig. 14.3(a) operates as a pnp or npn emit-
ter follower for sufficiently negative or positive inputs, respectively, but turns off for
−600 mV < Vin < +600 mV. The resulting dead zone substantially distorts the input signal.

Example

14.4
Suppose we apply a sinusoid with a peak amplitude of 4 V to the push-pull stage of
Fig. 14.3(a). Sketch the output waveform.

Solution For Vin well above 600 mV, eitherQ1 orQ2 serves as an emitter follower, thus producing a
reasonable sinusoid at the output. Under this condition, the plot in Fig. 14.5 indicates that
Vout = Vin + |VBE2| or Vin − VBE1. Within the dead zone, however, Vout ≈ 0. Illustrated
in Fig. 14.8, Vout exhibits distorted “zero crossings.” We also say the circuit suffers from
“crossover distortion.”
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t

inV

Vout

+0.6 V

–0.6 V

Crossover
Distortion

Figure 14.8 Input and output waveforms in the presence of dead zone.

Exercise Sketch the input and output waveforms if the push-pull stage incorporates NMOS and
PMOS transistors with zero threshold voltage.

14.4 IMPROVED PUSH-PULL STAGE

14.4.1 Reduction of Crossover Distortion

In most applications, the distortion introduced by the simple push-pull stage of Fig. 14.3(a)
proves unacceptable. We must therefore devise methods of reducing or eliminating the
dead zone.

The distortion in the push-pull stage fundamentally arises from the input connections:
since the bases ofQ1 andQ2 in Fig. 14.3(a) are shorted together, the two transistors cannot
remain on simultaneously around Vin = 0. We surmise that the circuit can be modified as
shown in Fig. 14.9(a), where a battery of voltage VB is inserted between the two bases.

Q1

inV Q
RL

VCC

VEE

2

(a)

VB

V1

V2

inV

outV

VBE2

t

inV

inV + VBE2

Vout

VBE2

(c)(b)

outV

Figure 14.9 (a) Addition of voltage source to remove the dead zone, (b) input and output

waveforms, (c) input/output characteristic.



14.4 Improved Push-Pull Stage 627

What is the required value of VB? If Q1 is to remain on, then V1 = Vout + VBE1. Similarly,
if Q2 is to remain on, then V2 = Vout − |VBE2|. Thus,

VB = V1 − V2 (14.13)

= VBE1 + |VBE2|. (14.14)

We say VB must be approximately equal to 2VBE (even though VBE1 and |VBE2| may not be
equal).

With the connection of Vin to the base of Q2, Vout = Vin + |VBE2|; i.e., the output is a
replica of the input but shifted up by |VBE2|. If the base-emitter voltages of Q1 and Q2 are
assumed constant, both transistors remain on for all input and output levels, yielding the
waveforms depicted in Fig. 14.9(b). The dead zone is thus eliminated. The input/output
characteristic is illustrated in Fig. 14.9(c).

Example

14.5
Study the behavior of the stage shown in Fig. 14.10(a). Assume VB ≈ 2VBE.

Q1

Q
RL

VCC

VEE

2

(a)

VB

inV

outV
V

t

inV

inV V

Vout

V

(c)(b)

–

BE1–

BE1

BE1

outV

inV

Figure 14.10 (a) Push-pull stage with input applied to base of Q1, (b) input and output

waveforms, (c) input/output characteristic.

Solution In this circuit, both transistors remain on simultaneously, and Vout = Vin − VBE1. Thus,
the output is a replica of the input but shifted down. Figures 14.10(b) and (c) plot the
waveforms and the input/output characteristic, respectively.

Exercise What happens if VB ≈ VBE?

We now determine how the battery VB in Fig. 14.9(a) must be implemented. Since
VB = VBE1 + |VBE2|, we naturally decide that two diodes placed in series can provide the
required voltage drop, thereby arriving at the topology shown in Fig. 14.11(a). Unfor-
tunately, the diodes carry no current here (why?), exhibiting a zero voltage drop. This
difficulty is readily overcome by adding a current source on top [Fig. 14.11(b)]. Now, I1

provides both the bias current of D1 and D2 and the base current of Q1.
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1D

D2
outV

Q1

inV Q
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2
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D2
outV

I 1

(b)

Figure 14.11 (a) Use of diodes as a voltage source, (b) addition of current source I1 to bias the

diodes.

Example

14.6
Determine the current flowing through the voltage source Vin in Fig. 14.11(b).

Solution The current flowing through D1 and D2 is equal to I1 − IB1 (Fig. 14.12). The voltage
source must sink both this current and the base current of Q2. Thus, the total current
flowing through this source is equal to I1 − IB1 + |IB2|.

Q1

Q
RL

VCC

VEE

2

1D

D2
outV

I 1

inV

I B1

I B2

I 1 I B1–

Figure 14.12 Circuit to examine base currents.

Exercise Sketch the current flowing through the voltage source as a function of Vin as Vin goes from
−4 V to +4 V. Assume β1 = 25, β2 = 15, and RL = 8 �.

Example

14.7
Under what condition are the base currents ofQ1 andQ2 in Fig. 14.11(b) equal? Assume
β1 = β2 � 1.

Solution We must seek the condition IC1 = |IC2|. As depicted in Fig. 14.13, this means no current
flows through RL and Vout = 0. As Vout departs from zero, the current flowing through
RL is provided by either Q1 or Q2 and hence IC1 �= |IC2| and IB1 �= |IB2|. Thus, the base
currents are equal only at Vout = 0.
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I C
outV

Figure 14.13 Stage with zero output voltage.

Exercise Repeat the above example if β1 = 2β2.

Example

14.8
Study the behavior of the circuit illustrated in Fig. 14.14, where I2 absorbs both the bias
current of D2 and IB2.

Q1

inV

Q
RL

VCC

VEE

2
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D2
outV

I 1
I B1

I B2

I 2

1

2

Figure 14.14 Stage with input applied to midpoint of diodes.

Solution Here, we have V1 = Vin + VD1 and Vout = V1 − VBE1. If VD1 ≈ VBE1, then Vout ≈ Vin, ex-
hibiting no level shift with respect to the input. Also, the current flowing through D1 is
equal to I1 − IB1 and that through D2 equal to I2 − |IB2|. Thus, if I1 = I2 and IB1 ≈ IB2,
the input voltage source need not sink or source a current for Vout = 0, a point of contrast
with respect to the circuit of Fig. 14.12.

Exercise Sketch the current provided by the input source as a function of Vin as Vin goes from −4 V
to +4 V. Assume β1 = 25, β2 = 15, and RL = 8 �.

14.4.2 Addition of CE Stage

The two current sources in Fig. 14.14 can be realized with pnp and npn transistors as
depicted in Fig. 14.15(a). We may therefore decide to apply the input signal to the base of
one of the current sources so as to obtain a greater gain. Illustrated in Fig. 14.15(b), the



630 Chapter 14 Output Stages and Power Amplifiers

idea is to employ Q4 as a common-emitter stage, thus providing voltage gain from Vin to
the base of Q1 and Q2.3 The CE stage is called the “predriver.”
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VEE

2
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D2
outV

Q3

Q

Vb1

Vb2 4
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2
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D2
outV

Q3

Q

Vb1

4
Vin

(a) (b)

Figure 14.15 (a) Push-pull stage with realization of current sources, (b) stage with input applied

to base of Q4.

The push-pull circuit of Fig. 14.15(b) is used extensively in high-power output stages
and merits a detailed analysis. We must first answer the following questions: (1) Given the
bias currents of Q3 and Q4, how do we determine those of Q1 and Q2? (2) What is the
overall voltage gain of the circuit in the presence of a load resistance RL?

To answer the first question, we assume Vout = 0 for bias calculations and also IC4 = IC3.
If VD1 = VBE1 and VD2 = |VBE2|, then VA = 0 (why?). With both Vout and VA at zero, the
circuit can be reduced to that shown in Fig. 14.16(a), revealing a striking resemblance to a
current mirror. In fact, since

VD1 = VT ln
|IC3|
IS,D1

, (14.15)

where the base current of Q1 is neglected and IS,D1 denotes the saturation current of D1,
and since VBE1 = VT ln(IC1/IS,Q1), we have

IC1 = IS,Q1

IS,D1

|IC3|. (14.16)

To establish a well-defined value for IS,Q1/IS,D1, diode D1 is typically realized as a diode-
connected bipolar transistor [Fig. 14.16(b)] in integrated circuits. Note that a similar anal-
ysis can be applied to the bottom half of the circuit, namely, Q4, D2, and Q2.

The second question can be answered with the aid of the simplified circuit shown in
Fig. 14.17(a), where VA = ∞ and 2rD represents the total small-signal resistance of D1 and

3If the dc level of Vin is close to VCC , then Vin is applied to the base of Q3 instead.
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Q1
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Q3
Vb1

(b)

Q1

VCC

Q3
Vb1

1D

(a)

Figure 14.16 (a) Simplified diagram of a push-pull stage, (b) illustration of current

mirror action.

D2. Let us assume for simplicity that 2rD is relatively small and v1 ≈ v2, further reducing
the circuit to that illustrated in Fig. 14.17(b),4 where

vout

vin
= vN

vin
· vout

vN
. (14.17)

Now, Q1 and Q2 operate as two emitter followers in parallel, i.e., as a single transistor
having an rπ equal to rπ1||rπ2 and a gm equal to gm1 + gm2 [Fig. 14.17(c)]. For this circuit,
we have vπ1 = vpi2 = vN − vout and

vout

RL
= vN − vout

rπ1||rπ2

+ (gm1 + gm2)(vN − vout ). (14.18)

It follows that

vout

vN
= 1 + (gm1 + gm2)(rπ1||rπ2)

rπ1||rπ2

RL
+ 1 + (gm1 + gm2)(rπ1||rπ2)

. (14.19)
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Figure 14.17 (a) Simplified circuit to calculate gain, (b) circuit with resistance of diodes neglected,

(c) small-signal model.

4It is important to note that this representation is valid for signals but not for biasing.
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Multiplying the numerator and denominator by RL, dividing both by 1 + (gm1 +gm2)×
(rπ1||rπ2), and assuming (gm1 + gm2)(rπ1||rπ2) � 1, we obtain

vout

vN
= RL

RL + 1

gm1 + gm2

, (14.20)

a result expected of a follower transistor having a transconductance of gm1 + gm2.
To compute vN/vin, we must first derive the impedance seen at node N, RN . From the

circuit of Fig. 14.17(c), the reader can show that

RN = (gm1 + gm2)(rπ1||rπ2)RL + rπ1||rπ2. (14.21)

(Note that for IC1 = IC2 and β1 = β2, this expression reduces to the input impedance of a
simple emitter follower.) Consequently,

vout

vin
= −gm4[(gm1 + gm2)(rπ1||rπ2)RL + rπ1||rπ2]

RL

RL + 1

gm1 + gm2

(14.22)

= −gm4(rπ1||rπ2)(gm1 + gm2)RL. (14.23)

Example

14.9
Calculate the output impedance of the circuit shown in Fig. 14.18(a). For simplicity,
assume 2rD is small.
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Figure 14.18 (a) Circuit for calculation of output impedance, (b) simplified diagram,

(c) further simplification, (d) small-signal model.
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Solution The circuit can be reduced to that in Fig. 14.18(b), and, with 2rD negligible, to that in
Fig. 14.18(c). Utilizing the composite model illustrated in Fig. 14.17(c), we obtain the
small-signal equivalent circuit of Fig. 14.18(d), where VA = ∞ forQ1 andQ2 but not for
Q3 and Q4. Here, rO3||rO4 and rpi1||rpi2 act as a voltage divider:

vπ = −vX
rπ1||rπ2

rπ1||rπ2 + rO3||rO4

. (14.24)

A KCL at the output node gives

iX = vX

rπ1||rπ2 + rO3||rO4

+ (gm1 + gm2)vX
rπ1||rπ2

rπ1||rπ2 + rO3||rO4

. (14.25)

It follows that

vX

iX
= rπ1||rπ2 + rO3||rO4

1 + (gm1 + gm2)(rπ1||rπ2)
(14.26)

≈ 1

gm1 + gm2

+ rO3||rO4

(gm1 + gm2)(rπ1||rπ2)
, (14.27)

if (gm1 + gm2)(rπ1||rπ2) � 1.
The key observation here is that the second term in Eq. (14.27) may raise the output

impedance considerably. As a rough approximation, we assume rO3 ≈ rO4, gm1 ≈ gm2,
and rπ1 ≈ rπ2, concluding that the second term is on the order of (rO/2)/β. This effect
becomes particularly problematic in discrete design because power transistors typically
suffer from a low β.

Exercise If rO3 ≈ rO4, gm1 ≈ gm2, and rπ1 ≈ rπ2, for what value of β is the second term in Eq. (14.27)
equal to the first?

14.5 LARGE-SIGNAL CONSIDERATIONS

The calculations in Section 14.4.2 reveal the small-signal properties of the improved push-
pull stage, providing a basic understanding of the circuit’s limitations. For large-signal
operation, however, a number of other critical issues arise that merit a detailed study.

14.5.1 Biasing Issues

We begin with an example.

Example

14.10
We wish to design the output stage of Fig. 14.15(b) such that the CE amplifier provides
a voltage gain of 5 and the output stage, a voltage gain of 0.8 with RL = 8 �. If βnpn =
2βpnp = 100 and VA = ∞, compute the required bias currents. Assume IC1 ≈ IC2 (which
may not hold for large signals).

Solution From Eq. (14.20) for vout/vN = 0.8, we have

gm1 + gm2 = 1

2 �
. (14.28)



634 Chapter 14 Output Stages and Power Amplifiers

With IC1 ≈ IC2, gm1 ≈ gm2 ≈ (4 �)
−1

and hence IC1 ≈ IC2 ≈ 6.5 mA. Also, rπ1||rπ2 =
133 �. Setting Eq. (14.20) equal to −5 × 0.8 = −4, we have IC4 ≈ 195 μA. We thus bias
Q3 and Q4 at 195 μA.

Exercise Repeat the above example if the second stage must provide a voltage gain of 2.

The above example entails moderate current levels in the milliampere range. But
what happens if the stage must deliver a swing of, say, 4 VP to the load? Each out-
put transistor must now provide a peak current of 4 V/8 � = 500 mA. Does the design
in Example 14.10 deliver such voltage and current swings without difficulty? Two
issues must be considered here. First, a bipolar transistor carrying 500 mA requires a
large emitter area, about 500 times the emitter area of a transistor capable of handling
1 mA.5 Second, with a β of 100, the peak base current reaches as high as 5 mA! How is
this base current provided? Transistor Q1 receives maximum base current if Q4 turns off
so that the entire IC3 flows to the base of Q1. Referring to the bias currents obtained in
Example 14.10, we observe that the circuit can be simplified as shown in Fig. 14.19 for the
peak of positive half cycles. With an IC3 of only 195 μA, the collector current ofQ1 cannot
exceed roughly 100 × 195 μA = 19.5 mA, far below the desired value of 500 mA.

Q1
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D2
outV
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Q

Vb1

4
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195 μ A

Figure 14.19 Calculation of maximum available current.

The key conclusion here is that, while achieving a small-signal gain of near unity with
an 8-� load, the output stage can deliver an output swing of only 195 mA × 8 � = 156 mVP.
We must therefore provide a much higher base current, requiring proportionally higher
bias currents in the predriver stage. In practice, power transistors suffer from a low β, e.g.,
20, exacerbating this issue.

14.5.2 Omission of PNP Power Transistor

PNP power transistors typically suffer from both a low current gain and a low fT , posing
serious constraints on the design of output stages. Fortunately, it is possible to combine an
npn device with a pnp transistor to improve the performance.

5For a given emitter area, if the collector current exceeds a certain level, “high-level injection” occurs,
degrading the transistor performance, e.g., β.



14.5 Large-Signal Considerations 635

Q1

Q

RL

VCC

VEE

2

outV

Q1

Q

RL

VCC

VEE

2

outV

inV

Q3

Composite
Transistor

gv  πv πr  π m22 2 2

g
m3( v in – )v out πr

inv
RL

v out

RL

v outinv

β2
+ 1)( g

m3
+

13

 πr 3

1

(d)(c)

(a) (b)

Figure 14.20 (a) Use of an npn transistor for pull-down action, (b) composite device,

(c) small-signal model, (d) equivalent circuit.

Consider the common-emitter npn transistor, Q2, depicted in Fig. 14.20(a). We wish
to modify the circuit so that Q2 exhibits the characteristics of an emitter follower. To
this end, we add the pnp device Q3 as shown in Fig. 14.20(b) and prove that the Q2-Q3

combination operates as an emitter follower. With the aid of the small-signal equivalent
circuit illustrated in Fig. 14.20(c) (VA = ∞), and noting that the collector current of Q3

serves as the base current of Q2, and hence gm2vπ2 = −β2gm3(vin − vout ), we write a KCL
at the output node:

−gm3(vin − vout )β2 + vout − vin

rπ3

− gm3(vin − vout ) = −vout

RL
. (14.29)

Note that the first term on the left-hand side represents the collector current of Q2. It
follows that

vout

vin
= RL

RL + 1

(β2 + 1)gm3 + 1

rπ3

. (14.30)

In analogy with the standard emitter follower (Chapter 5), we can view this result as voltage

division between two resistances of values [(β2 + 1)gm3 + 1/rπ3]
−1

and RL [Fig. 14.20(d)].
That is, the output resistance of the circuit (excluding RL) is given by

Rout = 1

(β2 + 1)gm3 + 1

rπ3

(14.31)

≈ 1

(β2 + 1)gm3

(14.32)
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because 1/rπ3 = gm3/β3 � (β2 + 1)gm3. If Q3 alone operated as a follower, the output
impedance would be quite higher (1/gm3).

The results expressed by Eqs. (14.30) and (14.32) are quite interesting. The voltage
gain of the circuit can approach unity if the output resistance of the Q2-Q3 combination,

[(β2 + 1)gm3]
−1

, is much less than RL. In other words, the circuit acts as an emitter follower
but with an output impedance that is lower by a factor of β2 + 1.

Example

14.11
Compute the input impedance of the circuit shown in Fig. 14.20(c).

Solution Since the current drawn from the input is equal to (vin − vout )/rπ3, we have from
Eq. (14.30)

iin = 1

rπ3

⎛
⎜⎜⎝vin − vin

RL

RL + 1

(β2 + 1)gm3

⎞
⎟⎟⎠, (14.33)

where 1/rpi3 is neglected with respect to (β2 + 1)gm3. It follows that

vin

iin
= β3(β2 + 1)RL + rπ3. (14.34)

Interestingly, RL is boosted by a factor of β3(β2 + 1) as seen at the input—as if theQ2-Q3

combination provides a current gain of β3(β2 + 1).

Exercise Calculate the output impedance if rO3 < ∞.

The circuit of Fig. 14.20(b) proves superior to a single pnp emitter follower. However,
it also introduces an additional pole at the base ofQ2. Also, sinceQ3 carries a small current,
it may not be able to charge and discharge the large capacitance at this node. To alleviate
these issues, a constant current source is typically added as shown in Fig. 14.21 so as to
raise the bias current of Q3.

Q

VEE

2

inV

Q3

I 1

Figure 14.21 Addition of current source to improve speed of composite device.

Example

14.12
Compare the two circuits depicted in Fig. 14.22 in terms of the minimum allowable input
voltage and the minimum achievable output voltage. (Bias components are not shown.)
Assume the transistors do not enter saturation.
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Solution In the emitter follower of Fig. 14.22(a), Vin can be as low as zero so that Q2 operates at
the edge of saturation. The minimum achievable output level is thus equal to |VBE2| ≈
0.8 V.

In the topology of Fig. 14.22(b), Vin can be equal to the collector voltage of Q3,
which is equal to VBE2 with respect to ground. The output is then given by Vin +
|VBE3| = VBE2 + |VBE3| ≈ 1.6 V, a disadvantage of this topology. We say the circuit
“wastes” one VBE in voltage headroom.

(a) (b)

Q2

outV

inV

Q3
inV

Q2

outV

Figure 14.22 Voltage headroom for (a) simple follower, (b) composite device.

Exercise Explain why Q2 cannot enter saturation in this circuit.

14.5.3 High-Fidelity Design

Even with the diode branch present in Fig. 14.15(b), the output stage introduces some
distortion in the signal. Specifically, since the collector currents of Q1 and Q2 vary consid-
erably in each half cycle, so does their transconductance. As a result, the voltage division
relationship governing the emitter follower, Eq. (14.20), exhibits an input-dependent be-
havior: as Vout becomes more positive, gm1 rises (why?) and Av comes closer to unity. Thus,
the circuit experiences nonlinearity.

In most applications, especially in audio systems, the distortion produced by the
push-pull stage proves objectionable. For this reason, the circuit is typically embedded in
a negative feedback loop to reduce the nonlinearity. Figure 14.23 illustrates a conceptual
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Figure 14.23 Reduction of distortion by feedback.
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realization, where amplifier A1, the output stage, and resistors R1 and R2 form a nonin-
verting amplifier (Chapter 8), yielding Vout ≈ (1 + R1/R2)Vin and significantly lowering
the distortion. However, owing to the multiple poles contributed by A1 and the push-
pull stage, this topology may become unstable, necessitating frequency compensation
(Chapter 12).

14.6 SHORT-CIRCUIT PROTECTION

Electronic devices and circuits may experience “hostile” conditions during handling, as-
sembly, and usage. For example, a person attempting to connect a speaker to a stereo
may accidentally short the amplifier output to ground while the stereo is on. The high
currents flowing through the circuit under this condition may permanently damage the
output transistors. Thus, a means of limiting the short-circuit current is necessary.

The principle behind short-circuit protection is to sense the output current (by
a small series resistor) and reduce the base drive of the output transistors if this
current exceeds a certain level. Shown in Fig. 14.24 is an example, where QS senses the
voltage drop across r , “stealing” some of the base current of Q1 as Vr approaches 0.7 V.
For example, if r = 0.25 �, then the emitter current of Q1 is limited to about 2.8 A.
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Figure 14.24 Short-circuit protection.

The protection scheme of Fig. 14.24 suffers from several drawbacks. First, resis-
tor r directly raises the output impedance of the circuit. Second, the voltage drop
across r under normal operating condition, e.g., 0.5–0.6 V, reduces the maximum output
voltage swing. For example, if the base voltage of Q1 approaches VCC , then Vout =
VCC − VBE1 − Vr ≈ VCC − 1.4 V.

14.7 HEAT DISSIPATION

Since the output transistors in a power amplifier carry a finite current and sustain a finite
voltage for part of the period, they consume power and hence heat up. If the junction
temperature rises excessively, the transistor may be irreversibly damaged. Thus, the “power
rating” (the maximum allowable power dissipation) of each transistor must be chosen
properly in the design process.
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14.7.1 Emitter Follower Power Rating

Let us first compute the power dissipated byQ1 in the simple emitter follower of Fig. 14.25,
assuming that the circuit delivers a sinusoid of VP sin ωt to a load resistance RL. Recall
from Section 14.2 that I1 ≥ VP/RL to ensure Vout can reach −VP. The instantaneous power
dissipated by Q1 is given by IC · VCE and its average value (over one period) equals:

Pav = 1

T

∫ T

0

IC · VCE dt, (14.35)

where T = 2π/ω. Since IC ≈ IE = I1 +Vout/RL and VCE = VCC −Vout = VCC −VP sin ωt , we
have

Pav = 1

T

∫ T

0

(
I1 + VP sin ωt

RL

)
(VCC − VP sin ωt) dt. (14.36)
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Figure 14.25 Circuit for calculation of follower power dissipation.

To carry out the integration, we note that (1) the average value of sin ωt over one period
T is zero; (2) sin2ωt = (1 − cos 2ωt)/2; and (3) the average value of cos 2ωt over one
period T is zero. Thus,

Pav = I1

(
VCC − VP

2

)
. (14.37)

Note that the result applies to any type of transistor (why?). Interestingly, the power
dissipated by Q1 reaches a maximum in the absence of signals, i.e., with VP = 0:

Pav,max = I1VCC . (14.38)

At the other extreme, if VP ≈ VCC ,6 then

Pav ≈ I1

VCC

2
. (14.39)

Example

14.13
Calculate the power dissipated by the current source I1 in Fig. 14.25.

Solution The current source sustains a voltage equal to Vout − VEE = VP sin ωt − VEE. Thus,

PI1 = 1

T

∫ T

0

I1(VP sin ωt − VEE) dt (14.40)

= −I1VEE. (14.41)

6Here, VBE is neglected with respect to VP.
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The value is, of course, positive because VEE < 0 to accommodate negative swings at the
output.

Exercise Explain why the power delivered by VEE is equal to that dissipated by I1.

14.7.2 Push-Pull Stage Power Rating

We now determine the power dissipated by the output transistors in the push-pull stage
(Fig. 14.26). To simplify our calculations, we assume that each transistor carries a negligi-
ble current around Vout = 0 and turns off for half of the period. If Vout = VP sin ωt , then
IRL = (VP/RL) sin ωt but only for half of the cycle. Also, the collector-emitter voltage ofQ1

is given by VCC − Vout = VCC − VP sin ωt . The average power dissipated in Q1 is therefore
equal to

Pav = 1

T

∫ T/2

0

VCE · IC dt (14.42)

= 1

T

∫ T/2

0

(VCC − VP sin ωt)
(

VP

RL
sin ωt

)
dt, (14.43)

where T = 1/ω, and β is assumed large enough to allow the approximation IC ≈ IE.
Expanding the terms inside the integral and noting that∫ T/2

0

cos 2ωt dt = 0, (14.44)

we have

Pav = 1

T

∫ T/2

0

VCC VP

RL
sin ωt dt − 1

T

∫ T/2

0

V2
P

2RL
dt (14.45)

= VCC VP

πRL
− V2

P

4RL
(14.46)

= VP

RL

(
VCC

π
− VP

4

)
. (14.47)
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2

1D

D2

I 1

I 2

t
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t
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Q
RL

VCC

VEE

2

1D

D2

I 1

I 2

t

Vp

I RL

t

–

(a)
(b)

Figure 14.26 Push-pull stage during (a) positive half cycle and (b) negative half cycle.
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For example, if VP = 4 V, RL = 8 �, and VCC = 6 V, thenQ1 dissipates 455 mW. Transistor
Q2 also consumes this amount of power if |VEE| = VCC .

Equation (14.47) indicates that for VP ≈ 0 or VP ≈ 4VCC /π , the power dissipated in
Q1 approaches zero, suggesting that Pav must reach a maximum between these extremes.
Differentiating Pav with respect to VP and equating the result to zero, we have VP = 2VCC /π

and hence

Pav,max = V2
CC

π2RL
. (14.48)

Example

14.14
A student observes from Eq. (14.47) that Pav = 0 if VP = 4VCC /π , concluding that this
choice of peak swing is the best because it minimizes the power “wasted” by the transistor.
Explain the flaw in the student’s reasoning.

Solution With a supply voltage of VCC , the circuit cannot deliver a peak swing of 4VCC /π(> VCC ).
It is thus impossible to approach Pav = 0.

Exercise Compare the power dissipated in Q1 with that delivered to RL for VP = 2VCC /π .

The problem of heat dissipation becomes critical for power levels greater than a few
hundred milliwatts. The physical size of transistors is quite small, e.g., 1 mm × 1 mm×
0.5 mm, and so is the surface area through which the heat can exit. Of course, from the
perspective of device capacitances and cost, the transistor(s) must not be enlarged just
for the purpose of heat dissipation. It is therefore desirable to employ other means that
increase the conduction of the heat. Called a “heat sink” and shown in Fig. 14.27, one such
means is formed as a metal structure (typically aluminum) with a large surface area and
attached to the transistor or chip package. The idea is to “sink” the heat from the package
and subsequently dissipate it through a much larger surface area.

Heat
Dissipation

Package

Figure 14.27 Example of heat sink.

14.7.3 Thermal Runaway

As described above, the output transistors in a power amplifier experience elevated tem-
peratures. Even in the presence of a good heat sink, the push-pull stage is susceptible to a
phenomenon called “thermal runaway” that can damage the devices.
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To understand this effect, let us consider the conceptual stage depicted in
Fig. 14.28(a), where the battery VB ≈ 2VBE eliminates the dead zone and Vout = 0. What
happens as the junction temperature of Q1 and Q2 rises? It can be proved that, for a
given base-emitter voltage, the collector current increases with temperature. Thus, with
a constant VB, Q1 and Q2 carry increasingly larger currents, dissipating greater power.
The higher dissipation in turn further raises the junction temperature and hence the col-
lector currents, etc. The resulting positive feedback continues until the transistors are
damaged.

Q1

Q
RL

VCC

VEE

2

outV

I 1

I 2

VB

Q1

Q

VCC

VEE

2

1D

D2

Q3

Q

Vb1

4
Vin

(a) (b)

RL

outV

Figure 14.28 (a) Runaway in the presence of constant voltage shift, VB, (b) use of diodes to avoid

runaway.

Interestingly, the use of diode biasing [Fig. 14.28(b)] can prohibit thermal runaway.
If the diodes experience the same temperature change as the output transistors, then
VD1 + VD2 decreases as the temperature rises (because their bias current is relatively con-
stant), thereby stabilizing the collector currents of Q1 and Q2. From another perspective,
since D1 andQ1 form a current mirror, IC1 is a constant multiple of I1 if D1 andQ1 remain
at the same temperature. More accurately, we have for D1 and D2:

VD1 + VD2 = VT ln
ID1

IS,D1

+ VT ln
ID2

IS,D2

(14.49)

= VT ln
ID1ID2

IS,D1IS,D2

. (14.50)

Similarly, for Q1 and Q2:

VBE1 + VBE2 = VT ln
IC1

IS,Q1

+ VT ln
IC2

IS,Q2

(14.51)

= VT ln
IC1IC2

IS,Q1IS,Q2

. (14.52)

Equating (14.50) and (14.52) and assuming the same value of VT (i.e., the same tempera-
ture) for both expressions, we write

ID1ID2

IS,D1IS,D2

= IC1IC2

IS,Q1IS,Q2

. (14.53)
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Since ID1 ≈ ID2 ≈ I1, IC1 ≈ IC2, we observe that IC1 and IC2 “track” I1 so long as the IS

values (which are temperature-dependent) also track.

14.8 EFFICIENCY

Since power amplifiers draw large amounts of power from the supply voltage, their “effi-
ciency” proves critical in most applications. In a cellphone, for example, a PA delivering
1 W to the antenna may pull several watts from the battery, a value comparable to the
power dissipation of the rest of the circuits in the phone.

The “power conversion efficiency” of a PA, η, is defined as

η = Power Delivered to Load

Power Drawn from Supply Voltage
. (14.54)

Thus, an efficiency of 30% in the above cellphone translates to a power drain of 3.33 W
from the battery.

It is instructive to compute the efficiency of the two output stages studied in this
chapter. The procedure consists of three steps: (1) calculate the power delivered to the
load, Pout ; (2) calculate the power dissipated in the circuit components (e.g., the output
transistors), Pckt ; (3) determine η = Pout/(Pout + Pckt ).

14.8.1 Efficiency of Emitter Follower

With the results obtained in Section 14.7.1, the efficiency of emitter followers can be readily
calculated. Recall that the power dissipated by Q1 is equal to

Pav = I1

(
VCC − VP

2

)
(14.55)

or that consumed by I1 is

PI1 = −I1VEE. (14.56)

If VEE = −VCC , the total power “wasted” in the circuit is given by

Pckt = I1

(
2VCC − VP

2

)
. (14.57)

It follows that

η = Pout

Pout + Pckt
(14.58)

=
V2

P

2RL

V2
P

2RL
+ I1

(
2VCC − VP

2

) . (14.59)
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For proper operation, I1 must be at least equal to VP/RL, yielding

η = VP

4VCC
. (14.60)

That is, the efficiency reaches a maximum of 25% as VP approaches VCC .7 Note that this
result holds only if I1 = VP/RL.

Example

14.15
An emitter follower designed to deliver a peak swing of VP operates with an output
swing of VP/2. Determine the efficiency of the circuit.

Solution Since the circuit is originally designed for an output swing of VP, we have VCC =
−VEE ≈ VP and I1 = VP/RL. Replacing VP with VCC /2 and I1 with VCC /RL in (14.59),
we have

η = 1

15
. (14.61)

This low efficiency results because both the supply voltages and I1 are “overdesigned.”

Exercise At what peak swing does the efficiency reach 20%?

The maximum efficiency of 25% proves inadequate in many applications. For example,
a stereo amplifier delivering 50 W to a speaker would consume 150 W in the output stage,
necessitating very large (and expensive) heat sinks.

14.8.2 Efficiency of Push-Pull Stage

In Section 14.7.2, we determined that each of Q1 and Q2 in Fig. 14.26 consumes a power
of

Pav = VP

RL

(
VCC

π
− VP

4

)
. (14.62)

Thus,

η =
V2

P

2RL

V2
P

2RL
+ 2VP

RL

(
VCC

π
− VP

4

) (14.63)

= π

4

VP

VCC
. (14.64)

7This is only an approximation because VCE or the voltage across I1 cannot go to zero.
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The efficiency thus reaches a maximum of π/4 = 78.5% for VP ≈ VCC , a much more
attractive result than that of the emitter follower. For this reason, push-pull stages are
very common in many applications, e.g., audio amplifiers.

Example

14.16
Calculate the efficiency of the stage depicted in Fig. 14.26. Assume I1( = I2) is chosen
so as to allow a peak swing of VP at the output. Also, VCC = −VEE.

Solution Recall from Section 14.3 that I1 must be at least equal to (VP/RL)/β. Thus, the branch
consisting of I1, D1, D2, and I2 consumes a power of 2VCC (VP/RL)/β, yielding an overall
efficiency of:

η =
V2

P

2RL
2VPVCC

πRL
+ 2VPVCC

βRL

(14.65)

= 1

4

VP

VCC

π
+ VP

β

. (14.66)

We should note the approximation made here: with the diode branch present, we can
no longer assume that each output transistor is on for only half of the cycle. That is, Q1

and Q2 consume slightly greater power, leading to a lower η.

Exercise If VP ≤ VCC and β � π , what is the maximum efficiency that can be achieved in this circuit?

14.9 POWER AMPLIFIER CLASSES

The emitter follower and push-pull stages studied in this chapter exhibit distinctly different
properties: in the former, the transistor conducts current throughout the entire cycle, and
the efficiency is low; in the latter, each transistor is on for about half of the cycle, and the
efficiency is high. These observations lead to different “PA classes.”

An amplifier in which each transistor is on for the entire cycle is called a “class A”
stage [Fig. 14.29(a)]. Exemplified by the emitter follower studied in Section 14.2, class A
circuits suffer from a low efficiency but provide a higher linearity than other classes.

A “class B stage” is one in which each transistor conducts for half of the cycle
[Fig. 14.29(b)]. The simple push-pull circuit of Fig. 14.3(a) is an example of class B stages.8

The efficiency in this case reaches π/4 = 78.5%, but the distortion is rather high.
As a compromise between linearity and efficiency, PAs are often configured as

“class AB” stages, wherein each transistor remains on for greater than half a cycle
[Fig. 14.29(c)]. The modified push-pull stage of Fig. 14.11(a) serves as an example of
class AB amplifiers.

Many other classes of PAs have been invented and used in various applications. Exam-
ples include classes C, D, E, and F. The reader is referred to more advanced texts [1].

8The dead zone in this stage in fact allows conduction for slightly less than half cycle for each transistor.
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Figure 14.29 Collector waveforms for (a) class A, (b) class B, and (c) class C operation.

P R O B L E M S

Unless otherwise stated, assume VCC = +5 V,
VEE = −5 V, VBE,on = 0.8 V, IS = 6 × 10−17,

VA = ∞, RL = 8 �, and β � 1 in the following
problems.

14.1. Consider the emitter follower circuit
shown in Fig. 14.30. (a) Determine the
value of I1 required to get a small signal
voltage gain of 0.6. (b) Calculate the volt-
age gain for as Vin reaches its positive peak
value of 3 V. Assume RL = 5 �.

Q1

RL

VCC

outV

I1

 = 3 VV

VEE

in

Figure 14.30

14.2. For the emitter follower of Fig. 14.30, we
can express the voltage gain as

Av = IC RL

IC RL + VT
. (14.67)

Recall from Section 14.2 that I1 ≥ VP/RL,
where VP denotes the peak voltage deliv-
ered to RL.
(a) Assuming I1 = VP/RL and VP � VT ,

determine an expression for AV if the
swings are small.

(b) Now assume the output reaches a
peak of VP. Calculate the small-signal
voltage gain in this region and obtain
the change with respect to the result
in part (a).

14.3. For the voltage follower shown in
Fig. 14.30, determine the maximum power
that can be delivered to the load without
turning Q1 off.

14.4. A student designs the emitter follower
of Fig. 14.30 in such a way that it has
to deliver a maximum average power of
0.5 mW to a load resistance of 4 � without
turning Q1 off. Calculate the small signal
voltage gain.

14.5. In the circuit shown in Fig. 14.31, find
the value of Vout if Vin = 3 V, VCC = 5 V,
IS1 = 5 × 10−17 A, RL = 8 � and I1 =
10 mA.
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Q1

VCC

outV

I 1
VEE

Vin = 3 V

= 5 V

RL = 8 Ω

Figure 14.31

14.6. The emitter follower of Fig. 14.30 senses
a sinusoidal input with a peak ampli-

tude of 1 V. Assuming IS1 = 5 × 10−15 A,
RL = 6 � and I1 = 25 mA. Sketch the out-
put waveform.

14.7. Consider the push-pull stage shown in
Fig. 14.32, where a current source of
I1 = 20 mA is tied from output node to
ground. Determine the output voltage
when Vin is (a) 1 V and (b) −1 V.

1

inV

Q RL

VCC

VEE

2 I 1

outV

Q

Figure 14.32

14.8. Explain how I1 in the Fig. 14.32 alters the
input and output characteristics, and the
dead zone.

14.9. For the circuit shown in Fig. 14.33, sketch
the input/output characteristics and esti-
mate the width of the dead zone. Assume
Vin swings from −3 V to +3 V.

Q1

Q
RL

VCC

VEE

2

outV

QinV 3

VCC

Figure 14.33

14.10. Sketch the input/output characteristics
and estimate the width of the dead zone
for the circuit shown in Fig. 13.34.

Q1

Q
RL

VCCQ3

VCC

VEE

VEE

2

outV

Q

VEE

4

VCC

inV

Figure 14.34

14.11. A large sinusoidal signal of peak ampli-
tude 3 V is applied to the circuit of
Fig. 14.33. Sketch the output waveform.

14.12. Consider the push-pull stage shown in
Fig. 14.35. (a) Sketch the input/output
characteristics. (b) Sketch the output
waveform for a sinusoidal input of peak
amplitude 2 V.

Q1

inV Q
RL

VCC

VEE

2

VB
outV

Figure 14.35

14.13. In the push-pull stage of Fig. 14.35,

IS1 = 5 × 10−17 A and IS2 = 8 × 10−17 A.
Calculate the bias currents IC1 and IC2 for
VB = 1.67 V and Vout = 0 V.

14.14. In the circuit depicted in Fig. 14.35, sketch
the output waveform for a sinusoidal
input of peak amplitude 2 V.

14.15. Consider the circuit shown in Fig. 14.36,
where VB = 0.8 V, is placed in series with
the emitter ofQ1. Sketch the input/output
characteristics for Vin varying from −3 V
to +3 V. Assume VBE = 0.8 V for Q1 and
Q2.
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Q1

Q

VCC

VEE

2
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outVinV

VB

Figure 14.36

14.16. The circuit of Fig. 14.11(b) is designed
with I1 = 1 mA and IS,Q1 = IS,Q2 =
16IS,D1 = 16IS,D2. Calculate the bias cur-
rent of Q1 and Q2 (for Vout = 0). (Hint:
VBE1 + |VBE2| = VD1 + VD2.)

14.17. In the output stage of Fig. 14.11(b), I1 = 2
mA, IS,Q1 = 8IS,D1, and IS,Q2 = 16IS,D2.
Determine the bias current of Q1 and
Q2 (for Vout = 0). (Hint: VBE1 + |VBE2| =
VD1 + VD2.)

14.18. A critical* problem in the design of the
push-pull stage shown in Fig. 14.11(b) is
the temperature difference between the
diodes and the output transistors because
the latter consume much greater power
and tend to rise to a higher temperature.
Noting that VBE1 + |VBE2| = VD1 + VD2,
explain how a temperature difference in-
troduces an error in the bias currents of
Q1 and Q2.

14.19. Determine* the small-signal voltage gain
of the stage shown in Fig. 14.37. Assume
I1 is an ideal current source. Neglect
the incremental resistance of D1 and
D2.

Q1

inV Q
RL

VCC

VEE

2

1D

D2
outV

I 1

Figure 14.37

14.20. The output stage of Fig. 14.37 must
achieve a small signal voltage gain of 2.
Determine the required bias current of Q1

and Q2. Neglect incremental resistance of
D1 and D2.

14.21. Compute the small signal input impe-
dance of the output stage shown in
Fig. 14.37 if the incremental resistance of
D1 and D2 is not neglected.

14.22. Noting* that gm1 ≈ gm2 in Fig. 14.15(b),
prove that Eq. (14.23) reduces to

vout

vin
= − 2β1β2

β1 + β2

gm4RL. (14.68)

Interestingly, the gain remains indepen-
dent of the bias current of Q1 and Q2.

14.23. The stage of Fig. 14.15(b) is designed
with a bias current of 1 mA in Q3 and
Q4 and 10 mA in Q1 and Q2. Assum-
ing β1 = 40, β2 = 20, and RL = 8 �, cal-
culate the small-signal voltage gain if the
incremental resistance of D1 and D2 is
neglected.

14.24. The output stage of Fig. 14.15(b) must
provide a small-signal voltage gain of
4. Assuming β1 = 40, β2 = 20, and RL =
8 �, determine the required bias current
ofQ3 andQ4. Neglect the incremental re-
sistance of D1 and D2.

14.25. Consider** Eq. (14.27) and note that
gm1 ≈ gm2 = gm. Prove that the output
impedance can be expressed as

vX

iX
≈ 1

2gm
+ rO3||rO4

2β1β2

(β1 + β2). (14.69)

14.26. The push-pull stage of Fig. 14.15(b) em-
ploys a bias current of 1 mA inQ3 andQ4

and 8 mA in Q1 and Q2. If Q3 and Q4 suf-
fer from the Early effect and VA3 = 10 V
and VA4 = 15 V,
(a) Calculate the small-signal output im-

pedance of the circuit if β1 = 40 and
β2 = 20.

(b) Using the result obtained in (a), de-
termine the voltage gain if the stage
drives a load resistance of 8 �.
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14.27. The circuit of Fig. 14.15(b) employs a bias
current of 1 mA in Q3 and Q4. If β1 = 40
and β2 = 20, calculate the maximum
current that Q1 and Q2 can deliver to the
load.

14.28. We wish to deliver a power of 0.5 W to
an 8-� load. Determine the minimum re-
quired bias current of Q3 and Q4 in Fig.
14.15(b) if β1 = 40 and β2 = 20.

14.29. The push-pull stage of Fig. 14.15 delivers
an average power of 0.5 W to RL = 8 �

with VCC = 5 V. Compute the average
power dissipated in Q1.

14.30. Consider the composite stage shown in
Fig. 14.38. Assume I1 = 10 mA, β1 = 30
and β2 = 40, calculate the bias current of
Q2.

Q

VCC

VEE

inV

Q

I 1

2
1

outV

Figure 14.38

14.31. In Problem 14.30, Vin = 0.5 V. Determine
the output voltage if IS2 = 6 × 10−17 A.

14.32. In the circuit of Fig. 14.38, determine the
output impedance, if I1 = 25 mA, β1 = 40
and β2 = 50.

14.33. An emitter follower delivers a peak swing
of 0.5 V to an 8� load with VCC = 5 V. If
the power efficiency of the circuit is 10 %,
calculate the value of bias current needed.

14.34. In a practical emitter follower, the peak
swing reaches only to VCC − VBE. If
VCC = 2 V and VBE = 0.8 V, calculate the
efficiency.

14.35. A push-pull stage is designed to deliver a
peak swing of VP to a load resistance of
RL. What is the efficiency of the circuit
delivers a swing of only VP/3?

14.36. A push-pull* stage operating from
VCC = 2 V delivers a power of 0.3 W to a

load. Determine the value of RL needed
to achieve an efficiency of 50%.

Design Problems

14.37. We wish to design the emitter follower of
Fig. 14.30 for a power of 1 W delivered
to RL = 8 �. Determine I1 and the power
rating of Q1.

14.38. The emitter follower of Fig. 14.30 must be
designed to drive RL = 4 � with a voltage
gain of 0.8. Determine I1, the maximum
output voltage swing, and the power rat-
ing of Q1.

14.39. Consider the push-pull stage shown in
Fig. 14.37. Determine the bias current of
Q1 andQ2 so as to obtain a voltage gain of
0.6 with RL = 8 �. Neglect the incremen-
tal resistance of D1 and D2.

14.40. The push-pull stage of Fig. 14.37 must
deliver a power of 1 W to RL = 8 �.
Determine the minimum allowable supply
voltage if |VBE| ≈ 0.8 V and the minimum
value of I1 if β1 = 40.

14.41. Suppose the transistors in the stage of
Fig. 14.37 exhibit a maximum power rat-
ing of 2 W. What is the largest power that
the circuit can deliver to an 8-� load?

14.42. We wish to design the push-pull amplifier
for Fig. 14.15(b) for a small-signal voltage
gain of 4 with RL = 8 �. If β1 = 40 and
β2 = 20, compute the bias current of Q3

andQ4. What is the maximum current that
Q1 can deliver to RL?

14.43. The push-pull stage of Fig. 14.15(b) must
be designed for an output power of
2 W and RL = 8 �. Assume |VBE| ≈ 0.8 V,
β1 = 40, and β2 = 20.
(a) Determine the minimum required

supply voltage if Q3 and Q4 must re-
main in the active region.

(b) Calculate the minimum required bias
current of Q3 and Q4.

(c) Determine the average power dissi-
pated in Q1 while the circuit delivers
2 W to the load.

(d) Compute the overall efficiency of the
circuit, taking into account the bias
current of Q3 and Q4.
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S P I C E P R O B L E M S

In the following problems, use the MOS device
models given in Appendix A. For bipolar tran-
sistors, assume IS,npn = 5 × 10−16 A, βnpn = 100,
VA,npn = 5 V, IS,pnp = 8 × 10−16 A, βpnp = 50,
VA,pnp = 3.5 V. Also, SPICE models the effect of
charge storage in the base by a parameter called
τF = Cb/gm. Assume τF(t f ) = 20 ps.

14.1. The emitter follower shown in Fig. 14.39
must deliver a power of 50 mW to an 8-�
speaker at a frequency of 5 kHz.
(a) Determine the minimum required

supply voltage.

(b) Determine the minimum bias current of
Q2.

(c) Using the values obtained in (a) and (b)
and a current mirror to biasQ2, examine
the output waveform. What supply volt-
age and bias current yield a relatively
pure sinusoid?

Q1

Ω
outV

inV

VCC = +2.5 V 

Vb

50 μF

8
Q2

Figure 14.39

14.2. Repeat Problem 14.1 for the source fol-
lower of Fig. 14.40, where (W/L)1−2 =
300 μm/0.18 μm and compare the results.

 = 1.8 VM 1
VDD

inV

M 2
Ω

outV
50 μF

8Vb

Figure 14.40

14.3. Plot the input/output characteristic of
the circuit shown in Fig. 14.41 for
−2 V < Vin < +2 V. Also, plot the output
waveform for an input sinusoid having a
peak amplitude of 2 V. How are these re-
sults changed if the load resistance is raised
to 16 �.
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inV

Q

VCC

VEE

2

outV

 Ω8

= +2.5 V

= –2.5 V

Figure 14.41
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Chapter 15
Analog Filters

Our treatment of microelectronics thus far has mostly concentrated on the problem of

amplification. Another important function vastly used in electronic systems is “filtering.”

For example, a cellphone incorporates filters to suppress “interferers” that are received in

addition to the desired signal. Similarly, a high-fidelity audio system must employ filters

to eliminate the 60 Hz (50 Hz) ac line interference. This chapter provides an introduction

to analog filters. The outline is shown below.

➤ ➤ ➤

General

Considerations

• Filter

Characteristics

• Classification of

Filters

• Transfer Function

of Filters
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15.1 GENERAL CONSIDERATIONS

In order to define the performance parameters of filters, we first take a brief look at some
applications. Suppose a cellphone receives a desired signal, X( f ), with a bandwidth of
200 kHz at a center frequency of 900 MHz [Fig. 15.1(a)]. As mentioned in Chapter 1,
the receiver may translate this spectrum to zero frequency and subsequently “detect” the
signal.

Now, let us assume that, in addition to X( f ), the cellphone receives a large interferer
centered at 900 MHz + 200 kHz [Fig. 15.1(b)].1 After translation to zero center frequency,

1This is called the “adjacent channel.”
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Figure 15.1 (a) Desired channel in a receiver, (b) large interferer, (c) use of filter to suppress the

interferer.

the desired signal is still accompanied by the large interferer and cannot be detected pro-
perly. We must therefore “reject” the interferer by means of a filter [Fig. 15.1(c)].

15.1.1 Filter Characteristics

Which characteristics of the above filter are important here? First, the filter must not
affect the desired signal; i.e., it must provide a “flat” frequency response across the band-
width of X( f ). Second, the filter must sufficiently attenuate the interferer; i.e., it must
exhibit a “sharp” transition [Fig. 15.2(a)]. More formally, we divide the frequency response
of filters into three regions: the “passband,” the “transition band,” and the “stopband.”
Depicted in Fig. 15.2(b), the characteristics of the filter in each band play a critical role in
the performance. The “flatness” in the passband is quantified by the amount of “ripple”
that the magnitude response exhibits. If excessively large, the ripple substantially (and
undesirably) alters the frequency contents of the signal. In Fig. 15.2(b), for example, the
signal frequencies between f2 and f3 are attenuated whereas those between f3 and f4 are
amplified.
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f
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f 2 f 4f f 5 f 6

(a) (b)

Figure 15.2 (a) Generic and (b) ideal filter characteristics.
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The width of the transition band determines how much of the interferer remains
alongside the signal, i.e., the inevitable corruption inflicted upon the signal by the interferer.
For this reason, the transition band must be sufficiently narrow, i.e., the filter must provide
sufficient “selectivity.”

The stopband “attenuation” and ripple also impact the performance. The attenuation
must be large enough to suppress the interferer to well below the signal level. The ripple
in this case proves less critical than that in the passband, but it simply subtracts from the
stopband attenuation. In Fig. 15.2(b), for example, the stopband attenuation is degraded
between f5 and f6 as a result of the ripple.

Example

15.1
In a wireless application, the interferer in the adjacent channel may be 25 dB higher
than the desired signal. Determine the required stopband attenuation of the filter in
Fig. 15.2(b) if the signal power must exceed the interferer power by 15 dB for proper
detection.

Solution As illustrated in Fig. 15.3, the filter must suppress the interferer by 40 dB, requiring the
same amount of stopband attenuation.

f

25 dB

Filter

f

15 dB

Figure 15.3

Exercise Suppose there are two interferers in two adjacent channels, each one 25 dB higher than
the desired signal. Determine the stopband attenuation if the signal power must exceed
each interferer by 18 dB.

In addition to the above characteristics, other parameters of analog filters such as
linearity, noise, power dissipation, and complexity must also be taken into account. These
issues are described in [1].

15.1.2 Classification of Filters

Filters can be categorized according to their various properties. We study a few classifica-
tions of filters in this section.

One classification of filters relates to the frequency band that they “pass” or “reject.”
The example illustrated in Fig. 15.2(b) is called a “low-pass” filter as it passes low-frequency
signals and rejects high-frequency components. Conversely, one can envision a “high-pass”
filter, wherein low-frequency signals are rejected (Fig. 15.4).
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f

( ) ω  H Passband

Stopband

f C

Figure 15.4 High-pass filter frequency response.

Example

15.2
We wish to amplify a signal in the vicinity of 1 kHz but the circuit board and wires pick
up a strong 60 Hz component from the line electricity. If this component is 40 dB higher
than the desired signal, what filter stopband attenuation is necessary to ensure the signal
level remains 20 dB above the interferer level?

Solution As shown in Fig. 15.5, the high-pass filter must provide a stopband attenuation of 60 dB
at 60 Hz.

f60 Hz 1 kHz

High–Pass
Filter

40 dB

f60 Hz 1 kHz

20 dB

Figure 15.5

Exercise A signal in the audio frequency range is accompanied by an interferer at 100 kHz. If the
interferer is 30 dB above the signal level, what stopband attenuation is necessary if the
signal must be 20 dB above the interferer?

Some applications call for a “bandpass” filter, i.e., one that rejects both low- and high-
frequency signals and passes a band in between (Fig. 15.6). The example below illustrates
the need for such filters.

f

( ) ω  H Passband

Stopband

f f1 2

Stopband

Figure 15.6
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Example

15.3
Receivers designed for the Global Positioning System (GPS) operate at a frequency of
approximately 1.5 GHz. Determine the interferers that may corrupt a GPS signal and
the type of filters necessary to suppress them.

Solution The principal sources of interference in this case are cellphones operating in the 900-MHz
and 1.9 GHz bands.2 A bandpass filter is therefore required to reject these interferers
(Fig. 15.7).

f1.5 GHz900 MHz 1.9 GHz

Cellular
Signal Signal

PCS

Signal
GPS

Required
Filter Response

Figure 15.7

Exercise Bluetooth transceivers operate at 2.4 GHz. What type of filter is required to avoid cor-
rupting Bluetooth signals by PCS signals?

Figure 15.8 summarizes four types of filters, including a “band-reject” response that
suppresses components between f1 and f2.

f

Low–Pass
( ) ω  H

f

( ) ω  H
High–Pass

f 1f

( ) ω  H
Band–Pass

f

( ) ω  H
Band–Reject

f 2

Figure 15.8 Summary of filter responses.

Another classification of analog filters concerns their circuit implementation and in-
cludes “continuous-time” and “discrete-time” realizations. The former type is exemplified
by the familiar RC circuit depicted in Fig. 15.9(a), whereC1 exhibits a lower impedance as
the frequency increases, thus attenuating high frequencies. The realization in Fig. 15.9(b)
replaces R1 with a “switched-capacitor” network. Here, C2 is periodically switched be-
tween two nodes having voltages V1 and V2. We prove that this network acts as a resistor
tied between the two nodes—an observation first made by James Maxwell in the 19th
century.

2The former is called the “cellular band” and the latter, the “PCS band,” where PCS stands for Personal
Communication System.
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Figure 15.9 (a) Continuous-time and (b) discrete-time realizations of a low-pass filter.

In each cycle, C2 stores a charge of Q1 = C2V1 while connected to V1 and Q2 =
C2V2 while tied to V2. For example, if V1 > V2, C2 absorbs charge from V1 and deliv-
ers it to V2, thus approximating a resistor. We also observe that the equivalent value of
this resistor decreases as the switching is performed at a higher rate because the amount
of charge delivered from V1 to V2 per unit time increases. Of course, practical switched-
capacitor filters employ more sophisticated topologies.

The third classification of filters distinguishes between “passive” and “active” imple-
mentations. The former incorporates only passive devices such as resistors, capacitors, and
inductors, whereas the latter also employs amplifying components such as transistors and
op amps.

The concepts studied in Chapter 8 readily provide examples of passive and active
filters. A low-pass filter can be realized as the passive circuit in Fig. 15.10(a) or the active
topology (integrator) in Fig. 15.10(b). Active filters provide much more flexibility in
the design and find wide application in many electronic systems. Table 15.1 summarizes
these classifications.

R1

C1

outVinV

(a) (b)

outV

C1

R1

inV

Figure 15.10 (a) Passive and (b) active realizations of a low-pass filter.

15.1.3 Filter Transfer Function

The foregoing examples of filter applications point to the need for a sharp transition
(a high selectivity) in many cases. This is because (1) the interferer frequency is close to
the desired signal band and/or (2) the interferer level is quite higher than the desired signal
level.

How do we achieve a high selectivity? The simple low-pass filter of Fig. 15.11(a) exhibits
a slope of only −20 dB/dec beyond the passband, thus providing only a tenfold suppression
as the frequency increases by a factor of ten. We therefore postulate that cascading two
such stages may sharpen the slope to −40 dB/dec, providing a suppression of 100 times for
a tenfold increase in frequency [Fig. 15.11(b)]. In other words, increasing the “order” of
the transfer function can improve the selectivity of the filter.
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TABLE 15.1 Classifications of filters.

Frequency
Response

Continuous-Time
and Discrete-Time

Passive and 
Active

Low-Pass High-Pass Band-Pass Band-Reject
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inV

(a) (b)
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Figure 15.11 (a) First-order filter along with its frequency response, (b) addition of another RC

section to sharpen the selectivity.

The selectivity, ripple, and other attributes of a filter are reflected in its transfer func-
tion, H(s):

H(s) = α
(s − z1)(s − z2) · · · (s − zm)

(s − p1)(s − p2) · · · (s − pn)
, (15.1)

where zk and pk (real or complex) denote the zero and pole frequencies, respectively.
It is common to express zk and pk as σ + jω, where σ represents the real part and ω

the imaginary part. One can then plot the poles and zeros on the complex plane.

Example

15.4
Construct the pole-zero diagram for the circuits shown in Fig. 15.12.
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outVinV

(a) (b)

C1

outVinV

C

R1

2

C1

inV

L1

outV

(c)

R1

Figure 15.12
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Solution For the circuit in Fig. 15.12(a), we have

Ha(s) = 1

R1C1s + 1
, (15.2)

obtaining a real pole at −1/(R1C1). For the topology in Fig. 15.12(b),

Hb(s) =
1

C1s
1

C1s
+ R1|| 1

C2s

(15.3)

= R1C2s + 1

R1(C1 + C2)s + 1
. (15.4)

The circuit therefore contains a zero at −1/(R1C2) and a pole at −1/[R1(C1 +C2)]. Note
that the zero arises from C2. The arrangement in Fig. 15.12(c) provides the following
transfer function:

Hc(s) = (L1s)||R1

(L1s)||R1 + 1

C1s

(15.5)

= C1s
R1L1C1s2 + L1s + R1

. (15.6)

The circuit exhibits a zero at zero frequency and two poles that may be real or complex
depending on whether L2 − 4R2

1L1C1 is positive or negative. Figure 15.13 summarizes
our findings for the three circuits, where we have assumed Hc(s) contains complex
poles.
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Figure 15.13

Exercise Repeat the above example if the capacitor and the inductor in Fig. 15.12(c) are swapped.
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Example

15.5
Explain why the poles of the circuits in Fig. 15.12 must lie in the right half plane.

Solution Recall that the impulse response of a system contains terms such as exp(pkt) =
exp(σkt) exp( jωkt). If σk > 0, these terms grow indefinitely with time while oscillating
at a frequency of ωk [Fig. 15.14(a)]. If σk = 0, such terms still introduce oscillation at ωk

[Fig. 15.14(b)]. Thus, we require σk < 0 for the system to remain stable [Fig. 15.14(c)].

t t t

σk > 0 σk = 0 σk < 0 

(c)(a) (b)

Figure 15.14

Exercise Redraw the above waveforms if ωk is doubled.

It is instructive to make several observations in regard to Eq. (15.1). (1) The order
of the numerator, m, cannot exceed that of the denominator; otherwise, H(s) → ∞ as
s → ∞, an unrealistic situation. (2) For a physically-realizable transfer function, complex
zeros or poles must occur in conjugate pairs, e.g., z1 = σ1 + jω1 and z2 = σ1 − jω1. (3) If
a zero is located on the jω axis, z1,2 = ± jω1, then H(s) drops to zero at a sinusoidal input
frequency of ω1 (Fig. 15.15). This is because the numerator contains a product such as
(s − jω1)(s + jω1) = s2 + ω2

1, which vanishes at s = jω1. In other words, imaginary zeros
force |H| to zero, thereby providing significant attenuation in their vicinity. For this reason,
imaginary zeros are placed only in the stopband.

( ) ω  H

 ω   ω  1

Figure 15.15 Effect of imaginary zero on the frequency response.
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15.1.4 Problem of Sensitivity

The frequency response of analog filters naturally depends on the values of their con-
stituent components. In the simple filter of Fig. 15.10(a), for example, the −3 dB corner
frequency is given by 1/(R1C1). Such dependencies lead to errors in the cut-off frequency
and other parameters in two situations: (a) the value of components varies with process
and temperature (in integrated circuits), or (b) the available values of components deviate
from those required by the design (in discrete implementations).3

We must therefore determine the change in each filter parameter in terms of a given
change (tolerance) in each component value.

Example

15.6
In the low-pass filter of Fig. 15.10(a), resistor R1 experiences a (small) change of �R1.
Determine the error in the corner frequency, ω0 = 1/(R1C1).

Solution For small changes, we can utilize derivatives:

dω0

dR1

= −1

R2
1C1

. (15.7)

Since we are usually interested in the relative (percentage) error in ω0 in terms of the
relative change in R1, we write Eq. (15.7) as

dω0

ω0

= − dR1

ω0 · R2
1C1

(15.8)

= −dR1

R1

· 1

ω0R1C1

(15.9)

= −dR1

R1

. (15.10)

For example, a +5% change in R1 translates to a −5% error in ω0.

Exercise Repeat the above example if C1 experiences a small change of �C .

The above example leads to the concept of “sensitivity,” i.e., how sensitive each filter
parameter is with respect to the value of each component. Since in the first-order circuit,
|dω0/ω0| = |dR1/R1|, we say the sensitivity of ω0 with respect to R1 is unity in this example.
More formally, the sensitivity of parameter P with respect to the component value C is
defined as

SP
C =

dP
P

dC
C

. (15.11)

3For example, a particular design requires a 1.15-k� resistor but the closest available value is
1.2 k�.
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Sensitivities substantially higher than unity are undesirable as they make it difficult to
obtain a reasonable approximation of the required transfer function in the presence of
component variations.

Example

15.7
Calculate the sensitivity of ω0 with respect to C1 for the low-pass filter of Fig. 15.10(a).

Solution Since

dω0

dC1

= − 1

R1C 2
1

, (15.12)

we have

dω0

ω0

= −dC1

C1

(15.13)

and hence

Sω0
C1 = −1. (15.14)

Exercise Calculate the sensitivity of the pole frequency of the circuit in Fig. 15.12(b) with respect
to R1.

15.2 FIRST-ORDER FILTERS

As our first step in the analysis of filters, we consider first-order realizations, described by
the transfer function

H(s) = α
s + z1

s + p1

. (15.15)

The circuit of Fig. 15.12(b) and its transfer function in Eq. (15.4) exemplify this type of
filter. Depending on the relative values of z1 and p1, a low-pass or high-pass characteristic
results, as illustrated in the plots of Fig. 15.16. Note that the stopband attenuation factor
is given by z1/p1.

Let us consider the passive circuit of Fig. 15.12(b) as a candidate for realization of the
above transfer function. We note that, since z1 = −1/(R1C2) and p1 = −1/[R1(C1 +C2)],
the zero always falls above the pole, allowing only the response shown in Fig. 15.16(b).
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Figure 15.16 First-order (a) high-pass and (b) low-pass filters.
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Example

15.8
Determine the response of the circuit depicted in Fig. 15.17(a).
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Figure 15.17

Solution We have

Vout

Vin
(s) =

R2|| 1

C2s

R2|| 1

C2s
+ R1|| 1

C1s

(15.16)

= R2(R1C1s + 1)

R1R2(C1 +C2)s + R1 + R2

. (15.17)

The circuit contains a zero at −1/(R1C1) and a pole at −[(C1 +C2)R1||R2]
−1

. Depending
on the component values, the zero may lie below or above the pole. Specifically, for the
zero frequency to be lower:

1

R1C1

<
R1 + R2

(C1 +C2)R1R2

(15.18)

and hence

1 + C2

C1

< 1 + R1

R2

. (15.19)

That is,

R2C2 < R1C1. (15.20)

Figures 15.17(b) and (c) plot the response for the two cases R2C2 < R1C1 and R2C2 >

R1C1, respectively. Note that Vout/Vin = R2/(R1 + R2) at s = 0 because the capacitors
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act as open circuit. Similarly, Vout/Vin = C1/(C1 + C2) at s = ∞ because the impedance
of the capacitors becomes much smaller than R1 and R2 and hence the determining
factor.

Exercise Design the circuit for a high-pass response with a zero frequency of 50 MHz and a pole
frequency of 100 MHz. Use capacitors no larger than 10 pF.

Example

15.9
Figure 15.18(a) shows the active counterpart of the filter depicted in Fig. 15.17(a). Com-
pute the response of the circuit. Assume the gain of the op amp is large.
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Figure 15.18

Solution We have from Chapter 8

Vout

Vin
(s) =

−
(

R2|| 1

C2s

)

R1|| 1

C1s

(15.21)

= −R2

R1

· R1C1s + 1

R2C2s + 1
. (15.22)

As expected, at s = 0, Vout/Vin = −R2/R1 and at s = ∞, Vout/Vin = −C1/C2. Figures
15.18(b) and (c) plot the response for the two cases R1C1 < R2C2 and R1C1 > R2C3,
respectively.

Exercise Is it possible for the pole frequency to be five times the zero frequency while the passband
gain is ten times the stopband gain?

The first-order filters studied above provide only a slope of −20 dB/dec in the transition
band. For a sharper attenuation, we must seek circuits of higher order.
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15.3 SECOND-ORDER FILTERS

The general transfer function of second-order filters is given by the “biquadratic” equation:

H(s) = αs2 + βs + γ

s2 + ωn

Q
s + ω2

n

. (15.23)

Unlike the numerator, the denominator is expressed in terms of quantities ωn and Q
because they signify important aspects of the response. We begin our study by calculating
the pole frequencies. Since most second-order filters incorporate complex poles, we assume

(ωn/Q)
2 − 4ω2

n < 0, obtaining

p1,2 = − ωn

2Q
± jωn

√
1 − 1

4Q2
. (15.24)

Note that as the “quality factor” of the poles, Q , increases, the real part decreases while
the imaginary part approaches ±ωn. This behavior is illustrated in Fig. 15.19. In other
words, for high Qs, the poles look “very imaginary,” thereby bringing the circuit closer to
instability.

j ω

σ

Q

 ω  n+

 ω  n–

Figure 15.19 Variation of poles as a function of Q.

15.3.1 Special Cases

It is instructive to consider a few special cases of the biquadratic transfer function that
prove useful in practice. First, suppose α = β = 0 so that the circuit contains only poles4

and operates as a low-pass filter (why?). The magnitude of the transfer function is then
obtained by making the substitution s = jω in Eq. (15.23) and expressed as

|H( jω)|2 = γ 2

(ω2
n − ω2)

2 +
(

ωn

Q
ω

)2
. (15.25)

Note that |H( jω)| provides a slope of −40 dB/dec beyond the passband (i.e., if
ω � ωn). It can be shown that the response is (a) free from peaking if Q ≤ √

2/2;

4Since H(s) → 0 at s = ∞, we say the circuit exhibits two zeros at infinity.
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Figure 15.20 Frequency response of second-order system for different values of Q.

and (b) reaches a peak at ωn

√
1 − 1/(2Q2) if Q >

√
2/2 (Fig. 15.20). In the latter

case, the peak magnitude normalized to the passband magnitude is equal to

Q/
√

1 − (4Q2)−1.

Example

15.10
Suppose a second-order LPF is designed with Q = 3. Estimate the magnitude and fre-
quency of the peak in the frequency response.

Solution Since 2Q2 = 18 � 1, we observe that the normalized peak magnitude is Q/√
1 − 1/(4Q2) ≈ Q ≈ 3 and the corresponding frequency is ωn

√
1 − 1/(2Q2) ≈ ωn. The

behavior is plotted in Fig. 15.21.
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 ω   ω  n
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 γ  
2

 ω  n

 γ  
2

3

Figure 15.21

Exercise Repeat the above example for Q = 1.5.

How does the transfer function in Eq. (15.23) provide a high-pass response? In a
manner similar to the first-order realization in Fig. 15.12(b), the zero(s) must fall below
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Figure 15.22 (a) Pole and zero locations and (b) frequency response of a second-order high-

pass filter.

the poles. For example, with two zeros at the origin:

H(s) = αs2

s2 + ωn

Q
s + ω2

n

, (15.26)

we note that H(s) approaches zero as s → 0 and a constant value, α, as s → ∞, thus
providing a high-pass behavior (Fig. 15.22). As with the low-pass counterpart, the circuit
exhibits a peak ifQ >

√
2/2 with a normalized value ofQ/

√
1 − 1/(4Q2) but at a frequency

of ωn/
√

1 − 1/(2Q2).

Example

15.11
Explain why a high-pass response cannot be obtained if the biquadratic equation contains
only one zero.

Solution Let us express such a case as

H(s) = βs + γ

s2 + ωn

Q
s + ω2

n

. (15.27)

Since H(s) → 0 as s → ∞, the system cannot operate as a high-pass filter.

Exercise Calculate the magnitude of H(s).

A second-order system can also provide a band-pass response. Specifically, if

H(s) = βs

s2 + ωn

Q
s + ω2

n

, (15.28)

then, the magnitude approaches zero for both s → 0 and s → ∞, reaching a maximum in
between (Fig. 15.23). It can be proved that the peak occurs at ω = ωn and has a value of
βQ/ωn.
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Figure 15.23 (a) Pole and zero locations and (b) frequency response of a second-order band-pass

filter.

Example

15.12
Determine the −3 dB bandwidth of the response expressed by Eq. (15.28).

Solution As shown in Fig. 15.24, the response reaches 1/
√

2 times its peak value at frequencies
ω1 and ω2, exhibiting a bandwidth of ω2 − ω1. To calculate ω1 and ω2, we equate the

squared magnitude to (βQ/ωn)
2
(1/

√
2)

2
:

β2ω2

(ω2
n − ω2)

2 +
(

ωn

Q
ω

)2
= β2Q2

2ω2
n

, (15.29)

obtaining

ω1,2 = ω0

[√
1 + 1

4Q2
± 1

2Q

]
. (15.30)

The total −3 dB bandwidth spans ω1 to ω2 and is equal to ωo/Q . We say the “normalized”
bandwidth is given by 1/Q ; i.e., the bandwidth trades with Q .

( ) ω  H

 ω   ω  n

 ω  n
 β Q

 ω  n
 β Q

2

1

 ω  2 ω  1

Figure 15.24

Exercise For what value of Q is ω2 twice ω1?
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15.3.2 RLC Realizations

It is possible to implement the second-order transfer function in Eq. (15.23) by means of
resistors, capacitors, and inductors. Such RLC realizations (a) find practical applications in
low-frequency discrete circuits or high-frequency integrated circuits, and (b) prove useful
as a procedure for designing active filters. We therefore study their properties here and
determine how they can yield low-pass, high-pass, and band-pass responses.

j ω

(a) (b)

CL1Z 1 1

( ) ω  

σ

j

L1C1

+

j

L1C1

–

Z 1

L1C1

1

(c)

 ω  

Figure 15.25 (a) LC tank, (b) imaginary poles, (c) and frequency response.

Consider the parallel LC combination (called a “tank”) depicted in Fig. 15.25(a).
Writing

Z1 = (L1s)|| 1

C1s
(15.31)

= L1s
L1C1s2 + 1

, (15.32)

we note that the impedance contains a zero at the origin and two imaginary poles at
± j/

√
L1C1 [Fig. 15.25(b)]. We also examine the magnitude of the impedance by replacing

s with jω:

|Z1| = L1ω√
1 − L1C1ω2

. (15.33)

The magnitude thus begins from zero for ω = 0, goes to infinity at ω0 = 1/
√

L1C1, and
returns to zero at ω = ∞ [Fig. 15.25(c)]. The infinite impedance at ω0 arises simply because
the impedances of L1 and C1 cancel each other while operating in parallel.

Example

15.13
Explain intuitively why the impedance of the tank goes to zero at ω = 0 and ω = ∞.

Solution At ω = 0, L1 operates as a short circuit. Similarly, at ω = ∞, C1 becomes a short.

Exercise Explain why the impedance has a zero at the origin.
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CL1Z 1 R12

Figure 15.26 Lossy tank.

Now let us turn our attention to the parallel RLC tank depicted in Fig. 15.26(a). We
can obtain Z2 by replacing R1 in parallel with Z1 in Eq. (15.32):

Z2 = R1|| L1s
L1C1s2 + 1

(15.34)

= R1L1s
R1L1C1s2 + L1s + R1

. (15.35)

The impedance still contains a zero at the origin due to the inductor. To compute the
poles, we can factor R1L1C1 from the denominator, thus obtaining a form similar to the
denominator of Eq. (15.23):

R1L1C1s2 + L1s + R1 = R1L1C1

(
s2 + 1

R1C1

s + 1

L1C1

)
(15.36)

= R1L1C1

(
s2 + ωn

Q
s + ω2

n

)
, (15.37)

where ωn = 1/
√

L1C1 and Q = R1C1ωn = R1

√
C1/L1. It follows from Eq. (15.24) that

p1,2 = − ωn

2Q
± jωn

√
1 − 1

4Q2
(15.38)

= − 1

2R1C1

± j
1√

L1C1

√
1 − L1

4R2
1C1

. (15.39)

These results hold for complex poles, i.e., if

4R2
1 >

L1

C1

(15.40)

or

Q >
1

2
. (15.41)

On the other hand, if R1 decreases and 4R2
1 < L1/C1, we obtain real poles:

p1,2 = − ωn

2Q
± ωn

√
1

4Q2
− 1 (15.42)

= − 1

2R1C1

± 1√
L1C1

√
L1

4R2
1C1

− 1. (15.43)

So long as the excitation of the circuit does not alter its topology,5 the poles are given by
Eq. (15.39) or (15.43), a point that proves useful in the choice of filter structures.

5The “topology” of a circuit is obtained by setting all independent sources to zero.
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outVinV
Z S

Z P

Figure 15.27 Voltage divider using general impedances.

Before studying different RLC filters, it is instructive to make several observations.
Consider the voltage divider shown in Fig. 15.27, where a series impedance ZS and a
parallel impedance ZP yield

Vout

Vin
(s) = ZP

ZS + ZP
. (15.44)

We note that (a) if, at high frequencies, ZP goes to zero and/or ZS goes to infinity,6 then
the circuit operates as a low-pass filter; (b) if, at low frequencies, ZP goes to zero and/or
ZS goes to infinity, then the circuit serves as a high-pass filter; (c) if ZS remains constant
but ZP falls to zero at both low and high frequencies, then the topology yields a band-pass
response. These cases are conceptually illustrated in Fig. 15.28.

f

( ) ω  H

f

( ) ω  H

f

( ) ω  H

Z S

Z P= 0 or

= Z S

Z P= 0 or

= Z P= 0 Z p= 0

(c)(a) (b)

Figure 15.28 (a) Low-pass, (b) high-pass, and (c) bandpass responses obtained from the voltage

divider of Fig. 15.27.

Low-Pass Filter Following the observation depicted in Fig. 15.28(a), we construct the
circuit shown in Fig. 15.29, where

ZS = L1s → ∞ as s → ∞ (15.45)

ZP = 1

C1s
||R1 → 0 as s → ∞. (15.46)

C

outVinV

R

L1

1 1

Z S

Z P

Figure 15.29 Low-pass filter obtained from Fig. 15.27.

6We assume ZS and ZP do not go to zero or infinity simultaneously.
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This arrangement provides a low-pass response having the same poles as those given by
Eq. (15.39) or (15.43) because for Vin = 0, it reduces to the topology of Fig. 15.26. Further-
more, the transition beyond the passband exhibits a second-order roll-off because both
ZS → ∞ and ZP → 0. The reader can show that

Vout

Vin
(s) = R1

R1C1L1s2 + L1s + R1

. (15.47)

Example

15.14
Explain how the transfer function of Eq. (15.47) can provide a voltage gain greater than
unity.

Solution If the Q of the network is sufficiently high, the frequency response exhibits “peaking,”
i.e., a gain of greater than unity in a certain frequency range. With a constant numerator,
the transfer function provides this effect if the denominator falls to a local minimum.
Writing the squared magnitude of the denominator as

|D|2 = (R1 − R1C1L1ω
2)

2 + L2
1ω

2 (15.48)

and taking its derivative with respect to ω2, we have

d|D|2
d(ω2)

= 2(−R1C1L1)(R1 − R1C1L1ω
2) + L2

1. (15.49)

The derivative goes to zero at

ω2
a = 1

L1C1

− 1

2R2
1C

2
1

. (15.50)

For a solution to exist, we require that

2R2
1

C1

L1

> 1 (15.51)

or

Q >
1√
2
. (15.52)

Comparison with Eq. (15.41) reveals the poles are complex here. The reader is encour-
aged to plot the resulting frequency response for different values of R1 and prove that
the peak value increases as R1 decreases.

Exercise Compare the gain at ωa with that at 1/
√

L1C1.

The peaking phenomenon studied in the above example proves undesirable in many
applications as it disproportionately amplifies some frequency components of the signal.
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Viewed as ripple in the passband, peaking must remain below approximately 1 dB (10%)
in such cases.

Example

15.15
Consider the low-pass circuit shown in Fig. 15.30 and explain why it is less useful than
that of Fig. 15.29.

C

outVinV
L1

1

R1

Figure 15.30

Solution This circuit satisfies the conceptual illustration in Fig. 15.28(a) and hence operates as
a low-pass filter. However, at high frequencies, the parallel combination of L1 and R1

is dominated by R1 because L1ω → ∞, thereby reducing the circuit to R1 and C1. The
filter thus exhibits a roll-off less sharp than the second-order response of the previous
design.

Exercise What type of frequency response is obtained if L1 and C1 are swapped?

High-Pass Filter To obtain a high-pass response, we swap L1 and C1 in Fig. 15.29,
arriving at the arrangement depicted in Fig. 15.31. Satisfying the principle illustrated in
Fig. 15.28(b), the circuit acts as a second-order filter because as s → 0, C1 approaches an
open circuit and L1 a short circuit. The transfer function is given by

Vout

Vin
(s) = (L1s)||R1

(L1s)||R1 + 1

C1s

(15.53)

= L1C1R1s2

L1C1R1s2 + L1s + R1

. (15.54)

The filter therefore contains two zeros at the origin. As with the low-pass counterpart, this
circuit can exhibit peaking in its frequency response.

outVinV

R1 L1

C1

Figure 15.31 High-pass filter obtained from Fig. 15.27.
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Band-Pass Filter From our observation in Fig. 15.28(c), we postulate that ZP must
contain both a capacitor and an inductor so that it approaches zero as s → 0 or s → ∞.
Depicted in Fig. 15.32 is a candidate. Note that at ω = 1/

√
L1C1, the parallel combina-

tion of L1 and C1 acts as an open circuit, yielding |Vout/Vin| = 1. The transfer function
is given by

Vout

Vin
(s) =

(L1s)|| 1

C1s

(L1s)|| 1

C1s
+ R1

(15.55)

= L1s
L1C1R1s2 + L1s + R1

. (15.56)

outVinV

L1C1

R1

Figure 15.32 Band-pass filter obtained from Fig. 15.27.

15.4 ACTIVE FILTERS

Our study of second-order systems in the previous section has concentrated on passive
RLC realizations. However, passive filters suffer from a number of drawbacks; e.g., they
constrain the type of transfer function that can be implemented, and they may require
bulky inductors. In this section, we introduce active implementations that provide second-
or higher-order responses. Most active filters employ op amps to allow simplifying ideal-
izations and hence a systematic procedure for the design of the circuit. For example, the
op-amp-based integrator studied in Chapter 8 and repeated in Fig. 15.10(a) serves as an
ideal integrator only when incorporating an ideal op amp, but it still provides a reason-
able approximation with a practical op amp. (Thus, the term “integrator” is a simplifying
idealization.)

An important concern in the design of active filters stems from the number of op
amps required as it determines the power dissipation and even cost of the circuit. We
therefore consider second-order realizations using one, two, or three op amps.

15.4.1 Sallen and Key Filter

The low-pass Sallen and Key (SK) filter employs one op amp to provide a second-order
transfer function (Fig. 15.33). Note that the op amp simply serves as a unity-gain buffer,
thereby providing maximum bandwidth. Assuming an ideal op amp, we have VX = Vout.
Also, since the op amp draws no current, the current flowing through R2 is equal to
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outV

C

inV R1 C
R 2

X
Y

1

2

Figure 15.33 Basic Sallen and Key Filter.

VXC2s = VoutC2s, yielding

VY = R2C2sVout + Vout (15.57)

= Vout(1 + R2C2s). (15.58)

Writing a KCL at node Y thus gives

Vout(1 + R2C2s) − Vin

R1

+ VoutC2s + [Vout(1 + R2C2s) − Vout]C1s = 0 (15.59)

and hence

Vout

Vin
(s) = 1

R1R2C1C2s2 + (R1 + R2)C2s + 1
. (15.60)

To obtain a form similar to that in Eq. (15.23), we divide the numerator and the denomi-
nator by R1R2C1C2 and define

Q = 1

R1 + R2

√
R1R2

C1

C2

(15.61)

ωn = 1√
R1R2C1C2

. (15.62)

Example

15.16
The SK topology can provide a passband voltage gain of greater than unity if configured
as shown in Fig. 15.34. Assuming an ideal op amp, determine the transfer function of the
circuit.

outV

C

inV R1 C
R 2

X
Y

1

2

Figure 15.34 Sallen and Key filter with in-band gain.
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Solution Returning to our derivations above, we note that now (1 + R3/R4)VX = Vout, and the
current flowing through R2 is given by VXC2s = VoutC2s/(1 + R3/R4). It follows that

VY = Vout

1 + R3

R4

+ R2VoutC2s

1 + R3

R4

(15.63)

= Vout
1 + R2C2s

1 + R3

R4

. (15.64)

A KCL at node Y thus yields

1

R1

⎛
⎜⎜⎝Vout

1 + R2C2s

1 + R3

R4

− Vin

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝Vout

1 + R2C2s

1 + R3

R4

− Vout

⎞
⎟⎟⎠C1s + VoutC2s

1 + R3

R4

= 0 (15.65)

and hence

Vout

Vin
(s) =

1 + R3

R4

R1R2C1C2s2 +
(

R1C2 + R2C2 − R1

R3

R4

C1

)
s + 1

. (15.66)

Interestingly, the value of ωn remains unchanged.

Exercise Repeat the above analysis if a resistor of value R0 is tied between node Y and ground.

Example

15.17
A common implementation of the SK filter assumes R1 = R2 and C1 = C2. Does such a
filter contain complex poles? Consider the general case depicted in Fig. 15.34.

Solution From Eq. (15.66), we have

1

Q
=

√
R1C2

R2C1

+
√

R2C2

R1C1

−
√

R1C1

R2C2

R3

R4

, (15.67)

which, for R1 = R2 and C1 = C2, reduces to

1

Q
= 2 − R3

R4

. (15.68)

That is,

Q = 1

2 − R3

R4

, (15.69)

suggesting thatQ begins from 1/2 if R3/R4 = 0 (unity-gain feedback) and rises as R3/R4

approaches 2. The poles begin with real, equal values for R3/R4 = 0 and become complex
for R3/R4 > 0 (Fig. 15.35).
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j ω

σ

Coincident
Poles

R
R

3
4

= 0

R
R

3
4

Figure 15.35

Exercise Calculate the pole frequencies if R3 = R4.

Sensitivity Analysis With so many components, how is the SK filter designed for a
desired frequency response? An important objective in choosing the values is to minimize
the sensitivities of the circuit. Considering the topology shown in Fig. 15.34 and defining
K = 1 + R3/R4,7 we compute the sensitivity of ωn and Q with respect to the resistor and
capacitor values.

From Eq. (15.66), we have ωn = 1/
√

R1R2C1C2 and hence:

dωn

dR1

= −1

2
· 1

R1

√
R1R2C1C2

. (15.70)

That is,
dωn

ωn
= −1

2

dR1

R1

(15.71)

and

Sωn
R1 = −1

2
. (15.72)

This means a 1% error in R1 translates to a 0.5% error in ωn. Similarly,

Sωn
R2 = Sωn

C1 = Sωn
C2 = −1

2
. (15.73)

For the Q sensitivities, we first rewrite Eq. (15.67) in terms of K = 1 + R3/R4:

1

Q
=

√
R1C2

R2C1

+
√

R2C2

R1C1

− (K − 1)

√
R1C1

R2C2

. (15.74)

Differentiating the right-hand side with respect to Q and the left-hand side with respect
to R1 yields:

−dQ
Q2

= dR1

2
√

R1

√
C2

R2C1

− dR1

2R1

√
R1

√
R2C2

C1

− (K − 1)
dR1

2
√

R1

√
C1

R2C2

(15.75)

= dR1

2R1

[√
R1C2

R2C1

−
√

R2C2

R1C1

− (K − 1)

√
R1C1

R2C2

]
. (15.76)

7In filter literature, the letter K denotes the gain of the filter and should not be confused with the
feedback factor (Chapter 12).
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It follows that

SQ
R1 = −1

2

[√
R1C2

R2C1

−
√

R2C2

R1C1

− (K − 1)

√
R1C1

R2C2

]
Q . (15.77)

The expression in the square brackets is similar to that in Eq. (15.74), except for a change
in the sign of the second term. Adding and subtracting 2

√
R2C2/

√
R1C1 to this expression

and substituting for Q from Eq. (15.74), we arrive at

SQ
R1 = −1

2
+Q

√
R2C2

R1C1

. (15.78)

Following the same procedure, the reader can show that:

SQ
R2 = −SQ

R1 (15.79)

SQ
C1 = −SQ

C2 = −1

2
+Q

(√
R1C2

R2C1

+
√

R2C2

R1C1

)
(15.80)

SQ
K = QK

√
R1C1

R2C2

. (15.81)

Example

15.18
Determine the Q sensitivities of the SK filter for the common choice R1 = R2 = R and
C1 = C2 = C .

Solution From Eq. (15.74), we have

Q = 1

3 − K
(15.82)

and hence

SQ
R1 = −SQ

R2 = −1

2
+ 1

3 − K
(15.83)

SQ
C1 = −SQ

C2 = −1

2
+ 2

3 − K
(15.84)

SQ
K = K

3 − K
. (15.85)

Interestingly, for K = 1, the sensitivity to R1 and R2 vanishes and∣∣SQ
C1

∣∣ = ∣∣SQ
C2

∣∣ = ∣∣SQ
K

∣∣ = 1

2
. (15.86)

The choice of equal component values and K = 1 thus leads to low sensitivities but also
a limited Q and hence only a moderate transition slope. Moreover, the circuit provides
no voltage gain in the passband.

Exercise Repeat the above example if R1 = 2R2.
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In applications requiring a high Q and/or a high K, one can choose unequal resistors
or capacitors so as to maintain reasonable sensitivities. The following example illustrates
this point.

Example

15.19
An SK filter must be designed for Q = 2 and K = 2. Determine the choice of filter
components for minimum sensitivities.

Solution For SQ
k2 = 0, we must have

Q

√
R2C2

R1C1

= +1

2
(15.87)

and hence √
R2C2

R1C1

= 1

4
. (15.88)

For example, we can choose R1 = 4R2 and C1 = 4C2. But, how about the other sensitiv-

ities? For SQ
C1 = −SQ

C2 to vanish, √
R1C2

R2C1

+
√

R2C2

R1C1

= 1

4
, (15.89)

a condition in conflict with Eq. (15.88) because it translates to
√

R1C2/
√

R2C1 = 0. In
fact, we can combine Eqs. (15.78) and (15.80) to write

SQ
R1 +Q

√
R1C2

R2C1

= SQ
C1, (15.90)

thereby observing that the two sensitivities cannot vanish simultaneously. Moreover, the

term
√

R2C2/
√

R1C1 plays opposite roles in SQ
R1 and SQ

K , leading to

SQ
K = Q2K

SQ
R1 + 1

2

. (15.91)

That is, lowering SQ
R1 tends to raise SQ

K .
The foregoing observations indicate that some compromise must be made to achieve

reasonable (not necessarily minimum) sensitivities. For example, we choose

SQ
R1 = 1 ⇒

√
R2C2

R1C1

= 3

4
(15.92)

SQ
C1 = 5

4
⇒

√
R1C1

R2C2

= 1

8
(15.93)

SQ
K = 8

1.5
(15.94)

The sensitivity to K is quite high and unacceptable in discrete design. In integrated
circuits, on the other hand, K (typically the ratio of two resistors) can be controlled very

accurately, thus allowing a large value of SQ
K .

Exercise Can you choose sensitivities with respect to R1 and C1 such that SQ
K remains below 2?
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15.4.2 Integrator-Based Biquads

It is possible to realize the biquadratic transfer function of Eq. (15.23) by means of inte-
grators. To this end, let us consider a special case where β = γ = 0:

Vout

Vin
(s) = αs2

s2 + ωn

Q
s + ω2

n

. (15.95)

Cross-multiplying and rearranging the terms, we have

Vout(s) = αVin(s) − ωn

Q
· 1

s
Vout(s) − ω2

n

s2
Vout(s). (15.96)

This expression suggests that Vout can be created as the sum of three terms: a scaled version
of the input, an integrated version of the output, and a doubly-integrated version of the
output. Figure 15.36(a) illustrates how Vout is generated by means of two integrators and
a voltage adder. Utilizing the topologies introduced in Chapter 8, we readily arrive at the
circuit realization depicted in Fig. 15.36(b). Note that the inherent signal inversion in each
integrator necessitates returning VX to the noninverting input of the adder and VY to the
inverting input. Since

VX = − 1

R1C1s
Vout (15.97)

and

VY = − 1

R2C2s
VX (15.98)

= 1

R1R2C1C2s2
Vout, (15.99)

α

n 1
sQ

 ω  n
s

Q
 ω  

inV outV

C1 C

R

R

R

R
6

4

5

2

inV

outV

R1 R 2
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3
R

R6

inV

VY

R

R
VX

3

4

5

(c)

(a)

(b)

–

outV

Figure 15.36 (a) Flow diagram showing the generation of Vout as a weighted sum of three terms,

(b) realization of (a), (c) simplified diagram for calculating Vout.
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we obtain from Fig. 15.36(c) the weighted sum of Vin, VX , and VY as

Vout = VinR5 + VXR4

R4 + R5

(
1 + R6

R3

)
− VY

R6

R3

(15.100)

= R5

R4 + R5

(
1 + R6

R3

)
Vin − R4

R4 + R5

1

R1C1s
Vout − R6

R3

1

R1R2C1C2s2
Vout. (15.101)

Equating similar terms in Eqs. (15.96) and (15.101) yields

α = R5

R4 + R5

(
1 + R6

R3

)
(15.102)

ωn

Q
= R4

R4 + R5

· 1

R1C1

(15.103)

ω2
n = R6

R3

· 1

R1R2C1C2

. (15.104)

It is thus possible to select the component values so as to obtain a desired transfer function.
Called the “KHN biquad” after its inventors, Kerwin, Huelsman, and Newcomb, the

topology of Fig. 15.36(b) proves quite versatile. In addition to providing the high-pass
transfer function of Eq. (15.95), the circuit can also serve as a low-pass and a band-pass
filter. Specifically,

VX

Vin
= Vout

Vin
· VX

Vout
(15.105)

= αs2

s2 + ωn

Q
s + ω2

n

· −1

R1C1s
, (15.106)

which is a band-pass function. Also,

VY

Vin
= Vout

Vin
· VY

Vout
(15.107)

= αs2

s2 + ωn

Q
s + ω2

n

· 1

R1R2C1C2s2
, (15.108)

which provides a low-pass response.
Perhaps the most important attribute of the KHN biquad is its low sensitivities to

component values. It can be shown that the sensitivity of ωn with respect to all values is
equal to 0.5 and ∣∣SQ

R1,R2,C1,C2

∣∣ = 0.5 (15.109)

∣∣SQ
R4,R5

∣∣ = R5

R4 + R5

< 1 (15.110)

∣∣SQ
R3,R6

∣∣ = Q
2

|R3 − R6|
1 + R5

R4

√
R2C2

R3R6R1C1

. (15.111)

Interesting, if R3 = R6, then SQ
R3,R6 vanishes.

The use of three op amps in the feedback loop of Fig. 15.36(b) raises concern re-
garding the stability of the circuit because each op amp contributes several poles. Careful
simulations are necessary to avoid oscillation.
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C1 C

R

2

inV
R1 R 2

Y

outV

R
3 4

–1

X

Figure 15.37 Tow-Thomas biquad.

Another type of biquad developed by Tow and Thomas is shown in Fig. 15.37. Here,
the adder and the first integrator are merged, and resistor R3 is introduced to create lossy
integration. (Without R3, the loop consisting of two ideal integrators oscillates.) Noting
that VY = −Vout/(R2C2s) and VX = −VY , we sum the currents flowing through R4 and R1

and multiply the result by the parallel impedances of R3 and C1:(
Vout

R2C2s
· 1

R4

+ Vin

R1

)
R3

R3C1s + 1
= −Vout. (15.112)

It follows that

Vout

Vin
= −R2R3R4

R1

C2s
R2R3R4C1C2s2 + R2R4C2s + R3

, (15.113)

which provides a band-pass response. The output at Y exhibits a low-pass behavior:

VY

Vin
= R3R4

R1

1

R2R3R4C1C2s2 + R2R4C2s + R3

. (15.114)

It can be shown that the sensitivities of the Tow-Thomas biquad with respect to the
component values are equal to 0.5 or 1. An important advantage of this topology over the
KHN biquad is accrued in integrated circuit design, where differential integrators obviate
the need for the inverting stage in the loop, thus saving one op amp. Illustrated in Fig. 15.38,
the idea is to swap the differential outputs of the second integrator to establish negative
feedback.

Vin

Figure 15.38 Differential Tow-Thomas filter.
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Example

15.20
Prove that ωn and Q of the Tow-Thomas filter can be adjusted (tuned) independently.

Solution From Eq. (15.114), we have

ωn = 1√
R2R4C1C2

(15.115)

and

Q−1 = 1

R3

√
R2R4C2

C1

. (15.116)

It is therefore possible to adjust ωn by R2 or R4 and Q by R3. As expected, if R3 = ∞,
then Q = ∞ and the circuit contains two purely imaginary poles.

Exercise A Tow-Thomas filter exhibits ωn = 2π × (10 MHz) and Q = 5. Is it possible to have R1 =
R2 = R3 and C1 = C2?

15.4.3 Biquads Using Simulated Inductors

Recall from Section 15.3.2 that second-order RLC circuits can provide low-pass, high-
pass, or band-pass responses, but their usage in integrated circuits is limited because of
the difficulty in building high-value, high-quality on-chip inductors. We may therefore ask:
is it possible to emulate the behavior of an inductor by means of an active (inductorless)
circuit?

Consider the circuit shown in Fig. 15.39, where general impedances Z1-Z5 are placed
in series and the feedback loops provided by the two (ideal) op amps force V1 − V3 and
V3 − V5 to zero:

V1 = V3 = V5 = VX . (15.117)

That is, the op amps establish a current of VX/Z5 through Z5. This current flows through
Z4, yielding

V4 = VX

Z5

Z4 + VX . (15.118)

Z

Z

1 Z Z2 Z 3 4

5

1

VX

I X

inZ

VX

RS

2 3

4

5

A1

A2

Figure 15.39 General impedance converter.
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The current flowing through Z3 (and hence through Z2) is given by

IZ3 = V4 − V3

Z3

(15.119)

= VX

Z5

· Z4

Z3

. (15.120)

The voltage at node 2 is thus equal to

V2 = V3 − Z2IZ3 (15.121)

= VX − Z2 · VX

Z5

· Z4

Z3

. (15.122)

Finally,

IX = VX − V2

Z1

(15.123)

= VX
Z2Z4

Z1Z3Z5

(15.124)

and hence

Zin = Z1Z3

Z2Z4

Z5. (15.125)

The above result suggests that the circuit can “convert” Z5 to a different type of

impedance if Z1-Z4 are chosen properly. For example, if Z5 = RX , Z2 = (Cs)
−1

, and
Z1 = Z3 = Z4 = RY (Fig. 15.40), we have

Zin = RXRYCs, (15.126)

which is an inductor of value RXRYC (why?). We say the circuit converts a resistor to an
inductor, i.e., it “simulates” an inductor.8

inZ

RY C

RX

R Y R Y

Figure 15.40 Example of inductance simulation.

8In today’s terminology, we might call this an “emulated” inductor to avoid confusion with circuit
simulation programs. But the term “simulated” has been used in this context since the 1960s.
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Example

15.21
From Eq. (15.125), determine another possible combination of components that yields
a simulated inductor.

Solution It is possible to choose Z4 = (Cs)
−1

and the remaining passive elements to be resistors:
Z1 = Z2 = Z3 = RY . Thus,

Zin = RXR2
YCs. (15.127)

The resulting topology is depicted in Fig. 15.41.

inZ

RY

C
RX

R Y

RY

Figure 15.41

Exercise Is there yet another possible combination that yields a simulated inductor?

Introduced by Antoniou, the “general impedance converter” (GIC) in Fig. 15.39 and
its descendants in Figs. 15.40 and 15.41 prove useful in transforming a passive RLC filter
to an active counterpart. For example, as depicted in Fig. 15.42, a high-pass active section
is obtained by replacing L1 with a simulated inductor.

inV

L1

outVinV

RY C

R Y R Y

outV

RX

3

A1

A2

2

4
5

C1

R1

C1

R1

1

Figure 15.42 High-pass filter using a simulated inductor.
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Example

15.22
Prove that node 4 in Fig. 15.42 can also serve as an output.

Solution Since Vout = V1 = V3 = V5, the current flowing through RX is equal to Vout/RX , yielding

V4 = Vout

RX
RY + Vout (15.128)

= Vout

(
1 + RY

RX

)
. (15.129)

Thus, V4 is simply an amplified version of Vout. Driven by op amp A1, this port exhibits
a lower output impedance than does node 1, and is often utilized as the output of the
circuit.

Exercise Determine the transfer function from Vin to V3.

How is a low-pass filter derived? From the RLC network of Fig. 15.29, we note the
need for a floating (rather than grounded) inductor and attempt to create such a device as
shown in Fig. 15.43(a). Can this circuit serve as a floating inductor? A simple test is to tie
a voltage source to node P and determine the Thevenin equivalent as seen from node Q
[Fig. 15.43(b)]. To compute the open-circuit voltage, VThev, recall that the op amps force
V5 to be equal to VP (= Vin). Since no current flows through RX ,

VThev = Vin. (15.130)

To obtain ZThev, we set Vin to zero and apply a voltage to the left terminal of RX

[Fig. 15.43(c)]. Since V5 = V1 = 0, IX = VX/RX and hence

ZThev = RX . (15.131)

Unfortunately, the network operates as a simple resistor rather than a floating in-
ductor! Fortunately, the impedance converter of Fig. 15.39 can overcome this difficulty.

Consider the special case illustrated in Fig. 15.44(a), where Z1 = (Cs)
−1

, Z3 = (Cs)
−1||RX ,

and Z2 = Z4 = Z5 = RX . From Eq. (15.125), we have

Zin =
1

Cs
· RX

RXCs + 1
· RX

R2
X

(15.132)

= 1

Cs(RXCs + 1)
. (15.133)

This impedance may be viewed as a “super capacitor” because it is equal to the product

of two capacitive components: (Cs)
−1

and (RXCs + 1)
−1

.
Now, let us study the circuit depicted in Fig. 15.44(b):

Vout

Vin
= Zin

Zin + R1

(15.134)

= 1

R1RXC 2s2 + R1Cs + 1
. (15.135)

This topology thus provides a second-order low-pass response. From Example 15.22, we
note that node 4 serves as a better output port.
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Figure 15.43 (a) General impedance converter considered as a floating impedance, (b) Thevenin

equivalent, (c) test circuit for obtaining the output impedance.

Example

15.23
Excited by the versatility of the general impedance converter, a student constructs the
circuit shown in Fig. 15.45 as an alternative to that in Fig. 15.44. Explain why this topology
is less useful.

Solution Employing Z3 = RX and Z5 = (Cs)
−1||RX , this configuration provides the same transfer

function as Eq. (15.135). However, V4 is no longer a scaled version of Vout:

V4 =
[

Vout

(
1

RX
+ Cs

)]
RX + Vout (15.136)

= Vout(2 + RXCs). (15.137)

Thus, the output can be sensed at only node 1, suffering from a relatively high impedance.

Exercise Determine the transfer function from Vin to V5.
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Figure 15.44 (a) General impedance converter producing a “super capacitor,” (b) second-

order low-pass filter obtained from (a).
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outV

inV
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Figure 15.45

It can be proved that the sensitivities of the general impedance converter and the
resulting filters with respect to component values are equal to 0.5 or 1. Such circuits
therefore prove useful in both discrete and integrated design.

15.5 APPROXIMATION OF FILTER RESPONSE

How does the design of a filter begin? Based on the expected levels of the desired signal
and the interferers, we decide on the required stopband attenuation. Next, depending on
how close the interferer frequency is to the desired signal frequency, we choose a slope for
the transition band. Finally, depending on the nature of the desired signal (audio, video,
etc.), we select the tolerable passband ripple (e.g., 0.5 dB). We thus arrive at a “template”
such as that shown in Fig. 15.46 for the frequency response of the filter.
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f

Transition
Band

Ripple

Stopband

Passband

Ripple
Stopband

Attenuation

( ) ω  H

Figure 15.46 Frequency response template.

With the template in hand, how do we determine the required transfer function?
This task is called the “approximation problem,” by which we mean a transfer function is
chosen to approximate the response dictated by the template. We prefer to select a transfer
function that lends itself to efficient, low-sensitivity circuit realization.

A multitude of approximations with various trade-offs exist that prove useful in prac-
tice. Examples include “Butterworth,” “Chebyshev,” “elliptic,” and “Bessel” responses.
Most filters suffer from a trade-off between the passband ripple and the transition band
slope. We study the first two types here and refer the reader to texts on filter design [1] for
others.

15.5.1 Butterworth Response

The Butterworth response completely avoids ripple in the passband (and the stopband) at
the cost of the transition band slope. This type of response only stipulates the magnitude
of the transfer function as:

|H( jω)| = 1√
1 +

(
ω

ω0

)2n
, (15.138)

where n denotes the order of the filter.9

It is instructive to examine Eq. (15.138) carefully and understand its properties. First,
we observe that the −3 dB bandwidth is calculated as:

1√
1 +

(
ω−3dB

ω0

)2n
= 1√

2
(15.139)

and hence

ω−3dB = ω0. (15.140)

Interestingly, the −3 dB bandwidth remains independent of the order of the filter. Second,
as n increases, the response assumes a sharper transition band and a greater passband
flatness. Third, the response exhibits no ripple (local maxima or minima) because the first
derivative of Eq. (15.138) with respect to ω vanishes only at ω = 0. Figure 15.47 illustrates
these points.

9This is called a “maximally-flat” response because the first 2n − 1 derivatives of Eq. (15.138) vanish at
ω = 0.
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 ω   ω  0
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2
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Figure 15.47 Butterworth response.

Example

15.24
A low-pass filter must provide a passband flatness of 0.45 dB for f < f1 = 1 MHz and
a stopband attenuation of 9 dB at f2 = 2 MHz. Determine the order of a Butterworth
filter satisfying these requirements.

Solution Figure 15.48 shows the template of the desired response. Noting that |H( f1 = 1 MHz)| =
0.95 (≈ −0.45 dB) and |H( f2 = 2 MHz)| = 0.355 (≈ −9 dB),

f

( ) ω  H20log

9 dB

(log scale)f f 21

0 dB

1 MHz 2 MHz

0.45 dB

Figure 15.48

we construct two equations with two unknowns:

1

1 +
(

2π f1

ω0

)2n = 0.952 (15.141)

1

1 +
(

2π f2

ω0

)2n = 0.3552. (15.142)

The former yields

ω2n
0 = (2π f1)

2n

0.108
, (15.143)

which, upon substitution in the latter, leads to(
f2

f1

)2n

= 64.2. (15.144)

Since f2 = 2 f1, the smallest n that satisfies the requirement is 3. With n = 3, we obtain
ω0 from Eq. (15.141): ω0 = 2π × (1.45 MHz).
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Exercise If the order of the filter must not exceed 2, how much attenuation can be obtained from
f1 to f2?

Given filter specifications and hence a template, we can readily choose ω0 and n in
Eq. (15.138) to arrive at an acceptable Butterworth approximation. But how do we translate
Eq. (15.138) to a transfer function and hence a circuit realization? Equation (15.138) sug-
gests that the corresponding transfer function contains no zeros. To obtain the poles, we
make a reverse substitution, ω = s/j , and set the denominator to zero:

1 +
(

s
jω0

)2n

= 0. (15.145)

That is,

s2n + (− 1)
n
ω2n

0 = 0. (15.146)

This polynomial has 2n roots given by

pk = ω0 exp
jπ
2

exp

(
j
2k − 1

2n
π

)
, k = 1, 2, . . . , 2n, (15.147)

but only the roots having a negative real part are acceptable (why?):

pk = ω0 exp
jπ
2

exp

(
j
2k − 1

2n
π

)
, k = 1, 2, . . . , n. (15.148)

How are these poles located in the complex plane? As an example, suppose n = 2. Then,

p1 = ω0 exp

(
j
3π

4

)
(15.149)

p2 = ω0 exp

(
j
5π

4

)
. (15.150)

As shown in Fig. 15.49(a), the poles are located at ±135◦, i.e., their real and imaginary
parts are equal in magnitude. For larger values of n, each pole falls on a circle of radius ω0

and bears an angle of π/n with respect to the next pole [Fig. 15.49(b)].

 ω  

j ω

σ

+135

–135
 ω  

j ω

σ0

 π
n

0

(a)
(b)

Figure 15.49 Locations of poles for (a) second-order, and (b) nth-order Butterworth filter.
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Having obtained the poles, we now express the transfer function as

H(s) = (−p1)(−p2) · · · (−pn)

(s −p1)(s −p2) · · · (s −pn)
(15.151)

where the factor in the numerator is included to yield H(s = 0) = 1.

Example

15.25
Using a Sallen and Key topology as the core, design a Butterworth filter for the response
derived in Example 15.24.

Solution With n = 3 and ω0 = 2π × (1.45 MHz), the poles appear as shown in Fig. 15.50(a). The
complex conjugate poles p1 and p3 can be created by a second-order SK filter, and the
real pole p2 by a simple RC section. Since

p1 = 2π × (1.45 MHz) ×
(

cos
2π

3
+ j sin

2π

3

)
(15.152)

p3 = 2π × (1.45 MHz) ×
(

cos
2π

3
− j sin

2π

3

)
, (15.153)

j ω

σ

(a) (b)

p
2

p
1

p
3

π
3
π
3

outVinV

228 pF

4.52 pF
109.8 pF

 Ω1 k  Ω1 k  Ω1 k

Figure 15.50

the SK transfer function can be written as

HSK(s) = (−p1)(−p3)

(s −p1)(s −p3)
(15.154)

= [2π × (1.45 MHz)]
2

s2 − [4π × (1.45 MHz) cos(2π/3)]s + [2π × (1.45 MHz)]
2
. (15.155)

That is,

ωn = 2π × (1.45 MHz) (15.156)

Q = 1

2 cos
2π

3

= 1. (15.157)
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In Eq. (15.61), we choose R1 = R2 and C1 = 4C2 to obtain Q = 1. From Eq. (15.62),

to obtain ωn = 2π × (1.45 MHz) = (
√

4R2
1C

2
2)

−1 = (2R1C2)
−1

, we have some freedom,

e.g., R1 = 1 k� and C2 = 54.9 pF. The reader is encouraged to verify that this design
achieves low sensitivities.

The real pole, p2, is readily created by an RC section:

1

R3C3

= 2π × (1.45 MHz). (15.158)

For example, R3 = 1 k� and C3 = 109.8 pF. Figure 15.50(b) shows the resulting design.

Exercise If the 228 pF capacitor incurs an error of 10%, determine the error in the value of f1.

The Butterworth response is employed only in rare cases where no ripple in the pass-
band can be tolerated. We typically allow a small ripple (e.g., 0.5 dB) so as to exploit
responses that provide a sharper transition slope and hence a greater stopband attenua-
tion. The Chebyshev response is one such example.

15.5.2 Chebyshev Response

The Chebyshev response provides an “equiripple” passband behavior, i.e., with equal local
maxima (and equal local minima). This type of response specifies the magnitude of the
transfer function as:

|H( jω)| = 1√
1 + ε2C 2

n

(
ω

ω0

) , (15.159)

where ε sets the amount of ripple and C 2
n(ω/ω0) denotes the “Chebyshev polynomial” of

nth order. We consider ω0 as the “bandwidth” of the filter. These polynomials are expressed
recursively as

C1

(
ω

ω0

)
= ω

ω0

(15.160)

C2

(
ω

ω0

)
= 2

(
ω

ω0

)2

− 1 (15.161)

C3

(
ω

ω0

)
= 4

(
ω

ω0

)3

− 3
ω

ω0

(15.162)

Cn+1

(
ω

ω0

)
= 2

ω

ω0

Cn

(
ω

ω0

)
−Cn−1

(
ω

ω0

)
(15.163)

or, alternatively, as

Cn

(
ω

ω0

)
= cos

(
n cos −1 ω

ω0

)
ω < ω0 (15.164)

= cosh

(
n cosh−1 ω

ω0

)
ω > ω0. (15.165)
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Figure 15.51 (a) Behavior of Chebyshev polynomials, (b) second- and third-order Chebyshev

responses.

As illustrated in Fig. 15.51(a), higher-order polynomials experience a greater number of
fluctuations between 0 and 1 in the range of 0 ≤ ω/ω0 ≤ 1, and monotonically rise there-
after. Scaled by ε2, these fluctuations lead to n ripples in the passband of |H| [Fig. 15.51(b)].

Example

15.26
Suppose the filter required in Example 15.24 is realized with a third-order Chebyshev
response. Determine the attenuation at 2 MHz.

Solution For a flatness (ripple) of 0.45 dB in the passband:

1√
1 + ε2

= 0.95, (15.166)

and hence

ε = 0.329. (15.167)

Also, ω0 = 2π × (1 MHz) because the response departs from unity by 0.45 dB at this
frequency. It follows that

|H( jω)| = 1√√√√1 + 0.3292

[
4

(
ω

ω0

)3

− 3
ω

ω0

]2
. (15.168)
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At ω2 = 2π × (2 MHz),

|H( jω2)| = 0.116 (15.169)

= −18.7 dB. (15.170)

Remarkably, the stopband attenuation improves by 9.7 dB if a Chebyshev response is
employed.

Exercise How much attenuation can be obtained if the order if raised to four?

Let us summarize our understanding of the Chebyshev response. As depicted in
Fig. 15.52, the magnitude of the transfer function in the passband is given by

|HPB( jω)| = 1√
1 + ε2 cos 2

(
n cos −1

ω

ω0

) , (15.171)

H

1

 ω  
 ω  

0
( )

 ω  
 ω  

0

ε2
1 +

1

1

HPB

H SB

Figure 15.52 General Chebyshev response.

exhibiting a peak-to-peak ripple of

Ripple|dB = 20 log
√

1 + ε2. (15.172)

In the stopband,

|HSB( jω)| = 1√
1 + ε2cosh2

(
n cosh−1 ω

ω0

) , (15.173)

revealing the attenuation at frequencies greater than ω0. In practice, we must determine
n so as to obtain required values of ω0, ripple, and stopband attenuation.

Example

15.27
A Chebyshev filter must provide a passband ripple of 1 dB across a bandwidth of 5 MHz
and an attenuation of 30 dB at 10 MHz. Determine the order of the filter.
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Solution We set ω0 to 2π × (5 MHz) and write

1 dB = 20 log
√

1 + ε2, (15.174)

arriving at

ε = 0.509. (15.175)

Now, we equate Eq. (15.173) to 0.0316 (= −30 dB) at ω = 2ω0:

1√
1 + 0.5092 cosh2(n cosh−12)

= 0.0316. (15.176)

Since cosh−1 2 ≈ 1.317, Eq. (15.176) yields

cosh2(1.317n) = 3862 (15.177)

and hence

n > 3.66. (15.178)

We must therefore select n = 4.

Exercise If the order is limited to three, how much attenuation can be obtained at 10 MHz?

With the order of the response determined, the next step in the design is to obtain the
poles and hence the transfer function. It can be shown [1] that the poles are given by

pk = −ω0 sin
(2k − 1)π

2n
sinh

(
1

n
sinh−1 1

ε

)
+ jω0 cos

(2k − 1) π

2n
cosh

(
1

n
sinh−1 1

ε

)

k = 1, 2, . . . , n. (15.179)

(The poles, in fact, reside on an ellipse.) The transfer function is then expressed as

H(s) = (−p1)(−p2) · · · (−pn)

(s −p1)(s −p2) · · · (s − pn)
. (15.180)

Example

15.28
Using two SK stages, design a filter that satisfies the requirements in Example 15.27.

Solution With ε = 0.509 and n = 4, we have

pk = −0.365ω0 sin
(2k − 1)π

8
+ 1.064 jω0 cos

(2k − 1)π

8
, k = 1, 2, 3, 4, (15.181)

which can be grouped into two sets of conjugate poles

p1,4 = −0.365ω0 sin
π

8
± 1.064 jω0 cos

π

8
(15.182)

= −0.140ω0 ± 0.983 jω0 (15.183)
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p2,3 = −0.365ω0 sin
3π

8
± 1.064 jω0 cos

3π

8
(15.184)

= −0.337ω0 ± 0.407 jω0. (15.185)

Figure 15.53(a) plots the pole locations. We note that p1 and p4 fall close to the imaginary
axis and thus exhibit a relatively high Q . The SK stage for p1 and p4 is characterized by
the following transfer function:

HSK1(s) = (−p1)(−p4)

(s −p1)(s −p4)
(15.186)

= 0.986ω2
0

s2 + 0.28ω0s + 0.986ω2
0

, (15.187)

j ω

σ
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94.3 pF

38.5 pF
outV

Figure 15.53

indicating that

ωn1 = 0.993ω0 = 2π × (4.965 MHz) (15.188)

Q1 = 3.55. (15.189)

Equation (15.61) suggests that such a high Q can be obtained only if C1/C2 is large. For
example, with R1 = R2, we require

C1 = 50.4C2 (15.190)

and hence

1√
50.4R1C2

= 2π × (4.965 MHz). (15.191)

If R1 = 1 k�, thenC2 = 4.52 pF. (For discrete implementations, this value ofC2 is exces-
sively small, necessitating that R1 be scaled down by a factor of, say, 5.)
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Similarly, the SK stage for p2 and p3 satisfies

HSK2(s) = (−p2)(−p3)

(s −p2)(s −p3)
(15.192)

= 0.279ω2
0

s2 + 0.674ω0s + 0.279ω2
0

, (15.193)

and hence

ωn2 = 0.528ω0 = 2π × (2.64 MHz) (15.194)

Q2 = 0.783. (15.195)

If R1 = R2 = 1 k�, then (15.61) and (15.62) translate to

C1 = 2.45C2 (15.196)

= 2.45 × (38.5 pF). (15.197)

Figure 15.53(b) shows the overall design. The reader is encouraged to compute the
sensitivities.

Exercise Repeat the above example if capacitor values must exceed 50 pF.

P R O B L E M S

15.1. Determine the type of response (low-pass,
high-pass, or band-pass) provided by each
network depicted in Fig. 15.54.

15.2. We wish to realize a transfer function of
the form

Vout

Vin
(s) = 1

(s + a)(s + b)
, (15.198)

where a and b are real and positive. Which
one of the networks illustrated in Fig.
15.54 can satisfy this transfer function?

15.3. In* some applications, the input to a filter
may be provided in the form of a current.
Compute the transfer function, Vout/Iin, of
each of the circuits depicted in Fig. 15.55
and determine the poles and zeros.

inV

inVinV outV outV

outV

inV outV

inV outV

(d)

(c)(a) (b)

(e)

Figure 15.54
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outV outV

outV

outV

outV

(d)

(c)(a) (b)

(e)

I in I in I in

I in I in

Figure 15.55

15.4. For the high-pass filter depicted in Fig.
15.56, determine the sensitivity of the pole
and zero frequencies with respect to R1

and C1.

R

C1

inV

1

outV

Figure 15.56

15.5. Consider the filter shown in Fig. 15.57.
Compute the sensitivity of the pole and
zero frequencies with respect to C1, C2,
and R1.

C1

outVinV

C

R1

2

Figure 15.57

15.6. We wish to achieve a pole sensitivity of
5% in the circuit illustrated in Fig. 15.58.
If R1 exhibits a variability of 3%, what is
the maximum tolerance of L1?

R

inV

1

outV

L1

Figure 15.58

15.7. The low-pass filter of Fig. 15.59 is designed
to contain two real poles.
(a) Derive the transfer function.

(b) Compute the poles and the condition
that guarantees they are real.

(c) Calculate the pole sensitivities to R1,
C1, and L1.

R

inV

1

L1

C1

outV

Figure 15.59

15.8. Explain what happens to the transfer func-
tions of the circuits in Figs. 15.17(a) and
15.18(a) if the pole and zero coincide.

15.9. Prove** that the response expressed by
Eq. (15.25) reaches a normalized peak

of Q/
√

1 − (4Q2)−1 if Q >
√

2/2. Sketch
the response for Q = 2, 4, and 8.

15.10. Prove* that the response expressed by
Eq. (15.28) reaches a normalized peak of
Q/ωn at ω = ωn. Sketch the response for
Q = 2, 4, and 8.

15.11. Consider the parallel RLC tank depicted
in Fig. 15.26. Plot the location of the poles
of the circuit in the complex plane as R1

goes from very small values to very large
values while L1 and C1 remain constant.

15.12. Repeat* Problem 15.11 if R1 and L1 remain
constant andC1 varies from very small val-
ues to very large values.
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15.13. With the aid of the observations made for
Eq. (15.25), determine a condition for the
low-pass filter of Fig. 15.29 to exhibit a
peaking of 1 dB (10%).

15.14. Determine the poles of the Sallen and Key
filter shown in Fig. 15.33 and plot their
location in the complex plane as (a) R1

varies from zero to ∞, (b) R2 varies from
zero to ∞, (c) C1 varies from zero to ∞,
or (d) C2 varies from zero to ∞. In each
case, assume other component values re-
main constant.

15.15. A* student mistakenly configures a Sallen
and Key filter as shown in Fig. 15.60. De-
termine the transfer function and explain
why this is not a useful circuit.

outV

C

inV
R1 R 2

C

1

2

Figure 15.60

15.16. A Sallen and Key filter with K = 1 must
exhibit a peaking of only 1 dB in its
response. Determine the relationship
required among the component values.

15.17. The Sallen and Key filter of Fig. 15.34 must
be designed with K = 4 andC1 = C2. How
should R1/R2 be chosen to yield Q = 4?
What is the resulting Q sensitivity to R1?

15.18. Figure* 15.61 shows a high-pass Sallen and
Key filter. Derive the transfer function
and determine Q and ωn.

outV

inV

R2

R1

CC1 2

Figure 15.61

15.19. From** the results obtained in Problem
15.18, compute the Q sensitivities of the
circuit.

15.20. It is possible to realize the transfer func-
tion of Eq. (15.95) by means of differen-
tiators rather than integrators. Noting that
the factor s in the frequency domain trans-
lates to d/dt in the time domain, construct
a block diagram such as that shown in
Fig. 15.36(a) but using only differentiators.
(Due to amplification of noise at high
frequencies, this implementation is less
popular.)

15.21. The KHN biquad of Fig. 15.36(b) must
provide a band-pass response with Q = 2
and ωn = 2π × (2 MHz). If R6 = R3,
R1 = R2, and C1 = C2, determine the
resistor and capacitor values subject to the
restrictions 10 pF < C < 1nF and 1 k� <

R < 50 k�.

15.22. From Eqs. (15.103) and (15.104), derive an
expression forQ and explain why the sen-
sitivity to R3 and R6 vanishes if R3 = R6.

15.23. The KHN biquad of Fig. 15.36(b) must
be designed for a low-pass response with
a low-frequency gain α = 2. Explain why

this is impossible if SQ
R3,R6 must be zero.

15.24. A* student mistakenly omits resistor R5

from the KHN biquad of Fig. 15.36(b).
Derive the resulting transfer function
Vout/Vin and determine α, Q , and ωn.

15.25. Determine** the sensitivities of the Tow-
Thomas filter shown in Fig. 15.37 with
respect to resistor and capacitor values.

15.26. The Tow-Thomas filter of Fig. 15.37 must
be designed for a low-pass response hav-
ing a peaking of 1 dB and a bandwidth
ωn = 2π × (10 MHz). If R3 = 1 k�, R2 =
R4, and C1 = C2, determine the values of
R2 and C1.

15.27. Equation* (15.114) implies that the low-
frequency gain of the Tow-Thomas filter is
equal to R4/R1. Setting C1 and C2 to zero
in Fig. 15.37, explain intuitively why this
result makes sense.
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15.28. For** the general impedance converter of
Fig. 15.39, determine all possible com-
binations of Z1-Z5 that yield an induc-
tive behavior for Zin. Assume each of
Z1-Z5 consists of only one resistor or one
capacitor. (Note that a solution is not
acceptable if it does not provide a dc path
to each input of the op amps.)

15.29. In Example 15.23, the parallel RC branch
tied between node 5 and ground is re-

placed with a series branch RX + (Cs)
−1

.
Determine the resulting transfer function
Vout/Vin.

15.30. Select* the components in Fig. 15.39 such
that the circuit provides a large capacitive
impedance, i.e., it multiplies the value of a
capacitor by a large number.

15.31. We wish to design a Butterworth filter with
a roll-off of 1 dB at ω = 0.9ω0. Determine
the required order.

15.32. Using Eq. (15.138), plot the roll-off of a
Butterworth response at ω = 0.9ω0 as a
function of n. Express the roll-off (on the
vertical axis) in decibels.

15.33. Suppose the filter of Example 15.24
receives an interferer at 5 MHz. How
much attenuation does the filter provide?

15.34. A low-pass Butterworth filter must pro-
vide a passband flatness of 0.5 dB for
f < f1 = 1 MHz. If the order of the fil-
ter must not exceed 5, what is the greatest
stopband attenuation at f2 = 2 MHz?

15.35. Explain* why the poles expressed by
Eq. (15.148) lie on a circle.

15.36. Repeat Example 15.25 but with an KHN
biquad.

15.37. Repeat Example 15.25 but with a Tow-
Thomas filter.

15.38. Plot* the Chebyshev response expressed by
Eq. (15.159) for n = 4 and ε = 0.2. Esti-
mate the locations of the local maxima and
minima in the passband.

15.39. A Chebyshev filter must provide an atten-
uation of 25 dB at 5 MHz. If the order

of the filter must not exceed 5, what is
the minimum ripple that can be achieved
across a bandwidth of 2 MHz?

15.40. Repeat Problem 15.39 for an order of 6
and compare the results.

Design Problems

15.41. Design the first-order filter of Fig. 15.18(a)
for a high-pass response so that the circuit
attenuates an interferer at 1 MHz by 10
dB and passes frequencies above 5 MHz
with a gain close to unity.

15.42. Design the passive filter of Fig. 15.29
for a −3 dB bandwidth of approximately
100 MHz, a peaking of 1 dB, and an induc-
tance value less than 100 nH.

15.43. Design the SK filter of Fig. 15.34 for
ωn = 2π × (50 MHz), Q = 1.5, and low-
frequency gain of 2. Assume capacitor val-
ues must fall in the range of 10 pF to
100 pF.

15.44. Design the KHN biquad of Fig. 15.36(b)
for a bandpass response so that it provides
a peak gain of unity at 10 MHz and an
attenuation of 13 dB at 3 MHz and
33 MHz. Assume R3 = R6.

15.45. The design obtained in Problem 15.44 also
provides low-pass and high-pass outputs.
Determine the −3 dB corner frequencies
for these two transfer functions.

15.46. Repeat Problem 15.44 for the Tow-
Thomas biquad shown in Fig. 15.37.

15.47. Design the active high-pass filter of Fig.
15.42 for a −3 dB corner frequency of
3.69 MHz and an attenuation of 13.6 dB
at 2 MHz. Assume a peaking of 1 dB at
7 MHz.

15.48. Design the low-pass filter of Fig. 15.44(b)
for a −3 dB bandwidth of 16.4 MHz and
an attenuation of 6 dB at 20 MHz. Assume
a peaking of 0.5 dB at 8 MHz.

15.49. For each frequency response template
shown in Fig. 15.62, determine a Butter-
worth and a Chebyshev transfer function.
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Figure 15.62

S P I C E P R O B L E M S

15.1. Figure 15.63 shows the Butterworth filter
designed in Example 15.25.

outVinV

228 pF

4.52 pF 109.8 pF

 Ω1 k  Ω1 k  Ω1 k

Figure 15.63

(a) Simulate the circuit with an op amp
gainof500anddetermine if itmeets the
template specified in Example 15.24.

(b) Repeat (a) if the op amp exhibits
an (open-loop) output resistance of
10 k�. (The output resistance can be
modeled by inserting a 10 k� in series
with the voltage-dependent source.)

(c) Repeat (b) if the op amp exhibits a sin-
gle (open-loop) pole at 500 kHz. (The
pole can be modeled by allowing a
capacitor to form a low-pass filter with
the 10 k� resistor.)

15.2. Repeat Problem 15.1 for the design
obtained in Example 15.28.

15.3. (a) Repeat Example 15.28 with a cascade
of two KHN biquads.

(b) Using SPICE, determine the mini-
mum required op amp bandwidth if
the overall response must exhibit a
peaking no higher than 3 dB. As-
sume an op amp gain of 1000 and
model the bandwidth as explained in
Problem 15.1.

(c) Repeat (b) for the SK realization
obtained in Example 15.28 and com-
pare the results.
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Chapter 16
Digital CMOS Circuits

It is virtually impossible to find electronic devices in our daily lives that do not contain

digital circuits. From watches and cameras to computers and cellphones, digital circuits

account for more than 80% of the semiconductor market. Examples include microproces-

sors, memories, and digital signal processing ICs.

This chapter serves as an introduction to the analysis and design of digital CMOS

(complementary metal oxide semiconductor) circuits. The objective is to provide a detailed

transistor-level understanding of logical gates so as to prepare the reader for courses on

digital circuit design. The outline is shown below.

➤ ➤

General Considerations

• Static Characteristics

• Dynamic

Characteristics

CMOS Inverter

• Voltage Transfer

Characteristic

• Dynamic Behavior

• Power Dissipation

Other CMOS Gates

• NOR Gate

• NAND Gate

16.1 GENERAL CONSIDERATIONS

In the past five decades, digital circuits have evolved dramatically, going from a few gates
per chip in the 1960s to hundreds of millions of transistors per chip today. Very early
generations incorporated only resistors and diodes and were called “resistor-diode logic”
(RDL). These were followed by bipolar realizations such as “transistor-transistor logic”
(TTL) and “emitter-coupled logic” (ECL). But it was the advent of CMOS technology and
the unique properties of digital CMOS circuits that led to the explosive growth of digital
systems. We will study and appreciate these properties in this chapter.

Recall from basic logic design that digital systems employ building blocks such as gates,
latches, and flipflops. For example, gates can form a “combinational” circuit that operates
as a binary-Gray decoder. Similarly, gates and flipflops can comprise a “sequential” circuit
that serves as a counter or a “finite-state machine.” In this chapter, we delve into the

702
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internal design of some of these building blocks and analyze their limitations. In particular,
we address three important questions:

(1) What limits the speed of a digital gate?

(2) How much power does a gate consume while running at a certain speed?

(3) How much “noise” can a gate tolerate while producing a valid output?

These questions play a critical role in the design of digital systems. The first reveals how
microprocessor speeds have risen from a few hundred megahertz to several gigahertz in
past ten years. The second helps predict how much power a microprocessor drains from
the battery of a laptop computer. The third illustrates how reliably a gate operates in the
presence of nonidealities in the system.

16.1.1 Static Characterization of Gates

Unlike many of the amplifying stages studied in this book, logical gates always operate
with large signals. In digital CMOS circuits, a logical ONE is represented by a voltage equal
to the supply, VDD, and a logical ZERO by zero volt. Thus, the inputs and outputs of gates
swing between zero and VDD as different states are processed.

How do we characterize the large-signal behavior of a circuit? Recall from Chapter 3
that we can construct the input/output characteristic by varying the input across the entire
allowable range (e.g., 0 to VDD) and computing the corresponding output. Also called the
“voltage transfer characteristic” (VTC),1 the result illustrates the operation of the gate in
great detail, revealing departures from the ideal case.

As an example, consider a NOT gate whose logical operation is expressed as X = A.
Called an “inverter” and denoted by the symbol shown in Fig. 16.1(a), such a gate must
ideally behave as depicted in Fig. 16.1(b). For Vin = 0, the output remains at a logical ONE,
Vout = VDD. For Vin = VDD, the output provides a logical zero, Vout = 0. As Vin goes from
0 to VDD, Vout abruptly changes its state at some value of the input, V1.

XA

inV outV( )( )

inV

Vout

VDD

V1

(a) (b)

Figure 16.1 (a) Inverter, (b) ideal characteristic.

Example

16.1
Explain why a common-source stage can operate as an inverter.

Solution In the CS stage shown in Fig. 16.2(a), if Vin = 0, then M1 is off, the voltage drop across
RD is zero, and hence Vout = VDD. On the other hand, if Vin = VDD, M1 draws a relatively

1The term “transfer” should not create confusion with the transfer function.
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R
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VDD
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outV

Vin

inV

Vout

VDD

(a) (b)

VDD

Figure 16.2 (a) CS stage, (b) input/output characteristic.

large current from RD and Vout = VDD − IDRD can be near zero. Thus, as sketched in
Fig. 16.2(b), the input/output characteristic resembles that of an inverter.

Exercise What happens if RD is replaced by a PMOS current source?

Example

16.2
A common-source stage operates as a inverter. Determine the VTC for such a realization.

Solution Consider the CS stage shown in Fig. 16.3(a). We vary Vin from 0 to VDD and plot the
corresponding output. For Vin ≤ VTH , M1 remains off and Vout = VDD (logical ONE). As
Vin exceeds VTH , M1 turns on and Vout begins to fall:

Vout = VDD − IDRD (16.1)

= VDD − 1

2
μnCox

W
L

RD(Vin − VTH)
2
, (16.2)

where channel-length modulation is neglected. As the input increases further, Vout drops,
eventually driving M1 into the triode region for Vout ≤ Vin − VTH and hence:

VDD − 1

2
μnCox

W
L

RD(Vin1 − VTH)
2 ≤ Vin1 − VTH . (16.3)

R
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outV
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R

VDD

D

V

Ron1

out,min

VDDVTH

M 1 off

M 1 in Saturation

M 1 in Triode Region

(c)

Figure 16.3 (a) CS stage, (b) equivalent circuit for M1 in deep triode region, (c) input/

output characteristic.
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From this equation, the value of Vin that places M1 at the edge of triode region can be
calculated. As Vin exceeds this value, Vout continues to decrease, reaching its lowest level
for Vin = VDD:

Vout,min = VDD − RDID,max (16.4)

= VDD − 1

2
μnCox

W
L

RD[2(VDD − VTH)Vout,min − V2
out,min]. (16.5)

Equation (16.5) can be solved to obtain Vout,min. If we neglect the second term in the
square brackets, then

Vout,min ≈ − VDD

1 + μnCox
W
L

RD(VDD − VTH)

. (16.6)

This is, of course, equivalent to viewing M1 as a resistor of value Ron1 =
[μnCox(W/L)RD(VDD − VTH)]

−1
and hence Vout,min a result of voltage division between

RD and Ron1 [Fig. 16.3(b)]. Figure 16.3(c) plots the VTC, illustrating the regions of op-
eration. In this role, the CS stage is also called an “NMOS inverter.”

Exercise Repeat the above example if RD is replaced with a PMOS current source.

Can the characteristic of Fig. 16.1(b) be realized in practice? We recognize that Vout

changes by an amount equal to VDD for an infinitesimally small change in Vin around V1,
i.e., the voltage gain of the circuit is infinite at this point. In reality, as illustrated in Exam-
ple 16.2, the gain remains finite, thereby producing a gradual transition from high to low
(Fig. 16.4). We may call the range V0 < Vin < V2 the “transition region.”

inV

Vout

VDD

VDDV0 V1 V2

Figure 16.4 Characteristic with finite gain.

Example

16.3
An inverter must exhibit a transition region only 50 mV wide. If the supply voltage is
1.8 V, estimate the gain of the circuit in this region.

Solution Since a 50-mV change at the input results in a change of approximately 1.8 V at the
output, the voltage gain is equal to 1.8/0.05 = 36.

Exercise What happens to the transition region if the width of the NMOS transistor is increased?
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The reader may wonder why the gradual transition in Fig. 16.4 may prove problematic.
After all, if the input jumps between 0 and VDD, the output still provides valid logical levels.
In reality, however, the input may not reach exactly 0 or VDD. For example, a logical zero
may appear as +100 mV rather than 0 V. Such “degradation” of the logical levels arises
from a multitude of phenomena in a large integrated circuit, but a simple example can
illustrate this effect.

Example

16.4
The supply voltage, VDD, is distributed on a microprocessor chip through a wide metal
line 15 mm long [Fig. 16.5(a)]. Called the “power bus,” this line carries a current of 5 A
and suffers from a resistance of 25 m�. If inverter Inv1 produces a logical ONE given
by the local value of VDD, determine the degradation in this level as sensed by inverter
Inv2.

5 A

Block 1 Block 2

AB

Inv1 Inv2

Inv1 Inv2

1.675 V 1.8 V

VDD = 1.8 V

(a)

(b)

Figure 16.5 (a) Two inverters separated by a long distance on a chip, (b) equivalent supply

voltages.

Solution The power bus experiences a voltage drop of 5 A × 25 m� = 125 mV from point A to
point B, thereby allowing a logical ONE of only 1.8 V − 0.125 V = 1.675 V at the output
of Inv1 [Fig. 16.5(b)]. As a result, Inv2 senses a high level that is degraded by 125 mV
with respect to its own supply voltage, 1.8 V.

Exercise Repeat the above example if the width of the power bus is halved.

How much degradation can we tolerate in the input levels applied to a gate? Consider
the situation depicted in Fig. 16.6, where both the low and high levels of the input, V0 and
V2, respectively, depart considerably from their ideal values. Mapping these levels to the
output, we observe that Vout also exhibits degraded logical levels. In a chain of gates, such
successive degradations may make the system very “fragile” and even completely corrupt
the states.
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inV

Vout

VDD

VDDV0 V2

t

Input
Waveform

t

Waveform
Output

Figure 16.6 Degradation of output levels in an inverter.

Example

16.5
Sketch the small-signal voltage gain for the characteristic shown in Fig. 16.4 as a function
of Vin.

Solution The slope of the VTC begins from zero, becomes more negative above V0, and ap-
proaches zero again for Vin > V2. Figure 16.7 plots the result.

inV
0 VDD

outdV

indV

Figure 16.7

Exercise Is this plot necessarily symmetric? Use an CS stage as an example.

Example

16.6
Prove that the magnitude of the small-signal gain obtained in Example 16.5 must exceed
unity at some point.

Solution Superimposing a line with a slope of −1 on the VTC as shown in Fig. 16.8, we note that
the slope of the VTC is sharper than unity across part of the transition region. This is
because the transition region spans a range narrower than 0 to VDD.

inV

Vout

VDD

VDD

–1

Figure 16.8
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Exercise An inverter exhibits a gain of about 2 in its transition region. How wide is the transition
region?

Noise Margin In order to quantify the robustness of a gate with respect to the degra-
dation of the input logical levels, we introduce the concept of “noise margin” (NM). A
rough definition is: NM is the maximum amount of degradation (noise) at the input that
can be tolerated before the output is affected “significantly.” What do we mean by “sig-
nificantly?” We postulate that the output remains relatively unaffected if the gain of the
circuit remains below unity, thus arriving at the following definition:

The noise margin is the maximum departure from the ideal logical level that places
the gate at a small-signal voltage gain of unity.

The procedure for calculating NM is straightforward: we construct the VTC and deter-
mine the input level at which the small-signal gain reaches unity. The difference between
this level and the ideal logical level yields the NM. Of course, we associate a noise margin
with the input low level, NML, and another with the input high level, NMH . Figure 16.9
summarizes these concepts. The two input voltages are denoted by VIL and VIH , respec-
tively.

inV

Vout

VDD

VDDV V

–1

–1

IL IH

NM L NM H

Figure 16.9 Illustration of noise margins.

Example

16.7
A common-source stage operates as an NMOS inverter. Compute the noise margins.

Solution We can adopt one of two approaches here. First, since the small-signal gain of the stage
is equal to −gmRD and since gm = μnCox(W/L)(VGS − VTH), we have

μnCox
W
L

(VIL − VTH)RD = 1, (16.7)

and hence

VIL = 1

μnCox
W
L

RD

+ VTH . (16.8)

In the second approach, we directly differentiate both sides of Eq. (16.2) with respect
to Vin:

∂Vout

∂Vin
= −μnCox

W
L

RD(VIL − VTH) (16.9)

= −1 (16.10)
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and hence

NML = VIL = 1

μnCox
W
L

RD

+ VTH . (16.11)

That is, the input must exceed VTH by (μnCoxRDW/L)
−1

for the circuit to reach the
unity-gain point.

As Vin drives M1 into the triode region, the transconductance of M1 and hence the
voltage gain of the circuit begin to fall. Since in Chapter 6, we did not derive a small-
signal model for MOSFETs operating in the triode region, we continue with the second
approach:

Vout = VDD − RDID (16.12)

= VDD − 1

2
μnCox

W
L

RD[2(Vin − VTH)Vout − V2
out ]. (16.13)

We must equate the slope of this characteristic to −1 to determine NMH :

∂Vout

∂Vin
= −1

2
μnCox

W
L

RD

[
2Vout + 2(Vin − VTH)

∂Vout

∂Vin
− 2Vout

∂Vout

∂Vin

]
. (16.14)

With ∂Vout/∂Vin = −1, Eq. (16.14) yields

Vout = 1

2μnCox
W
L

RD

+ Vin − VTH

2
. (16.15)

If this value of Vout is substituted in Eq. (16.13), the required value of Vin (VIH in
Fig. 16.9) can be obtained. Thus, NMH = VDD − VIH .

Exercise If RD = 1 k�, μnCox = 100 μA/V2, W/L = 10, VTH = 0.5 V, and VDD = 1.8 V, calculate
the high and low noise margins.

Example

16.8
As suggested by Eq. (16.6), the output low level of an NMOS inverter is always degraded.
Derive a relationship to guarantee that this degradation remains below 0.05VDD.

Solution Equating Eq. (16.6) to 0.05VDD, we have

μnCox
W
L

RD(VDD − VTH) = 19 (16.16)

and hence

RD = 19

μnCox
W
L

(VDD − VTH)

. (16.17)

Note that the right-hand side is equal to 19 times the on-resistance of M1. Thus, RD must
remain above 19Ron1.

Exercise Repeat the above example if the degradation can be as high as 0.1VDD.
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16.1.2 Dynamic Characterization of Gates

The input/output characteristic of a gate proves useful in determining the degradations that
the circuit can tolerate in its input levels. Another important aspect of a gate’s performance
is its speed. How do we quantify the speed of a logical gate? Since the gate operates with
large signals at the input and output and hence experiences heavy nonlinearity, the concepts
of transfer function and bandwidth are not meaningful here. Instead, we must define the
speed according to the role of gates in digital systems. An example serves us well at this
point.

Example

16.9
The input to an NMOS inverter jumps from VDD to 0 at t = 0 [Fig. 16.10(a)]. If the circuit
sees a load capacitance of CL, how long does the output take to reach within 5% of the
ideal high level? Assume Vout can be approximated by Eq. (16.6) when M1 is on.

R

M 1

VDD

D

Vin

(a) (b) (c)

VDD

0
CL

outV

R

VDD

D

CL

outV

t

VDD

0

Vin

VDD
Vout

0

0.05VDD

3RD CL

M 1

Figure 16.10 (a) NMOS inverter experiencing a step input, (b) charging path for CL,

(c) input and output waveforms.

Solution At t = 0−, M1 is on, establishing an initial condition across CL equal to

Vout (0−) = VDD

1 + μnCox
W
L

RD(VDD − VTH)

. (16.18)

At t = 0+, the circuit reduces to that shown in Fig. 16.10(b), where CL charges toward
VDD through RD. We therefore have

Vout (t) = Vout (0−) + [VDD − Vout (0−)]

(
1 − exp

−t
RDCL

)
t > 0 (16.19)

(This equation is constructed so that the first term denotes the initial value if we choose
t = 0, and the sum of the first and second terms yields the final value if we select t = ∞.)
The time required for the output to reach within 95% of VDD, T95%, is obtained from

0.95VDD = Vout (0−) + [VDD − Vout (0−)]

(
1 − exp

−T95%

RDCL

)
. (16.20)
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It follows that

T95% = −RDCL ln
0.05VDD

VDD − Vout (0−)
. (16.21)

If we can assume VDD − Vout (0−) ≈ VDD, then

T95% ≈ 3RDCL. (16.22)

In other words, the output takes about three time constants to reach a voltage close
to the ideal high level [Fig. 16.10(c)]. Unlike ideal gates used in basic logic design, this
inverter exhibits a finite transition time at the output.

Exercise How many time constants does the output take to reach within 90% of its ideal value?

The foregoing example reveals a fundamental limitation: in the presence of a load ca-
pacitance, a logical gate cannot respond immediately to an input. The circuit of Fig. 16.10(a)
takes roughly three time constants to produce a reliable level at the output and, as such,
suffers from a “delay.” That is, the speed of gates is limited by the finite transition time at
the output and the resulting delay.

Playing a critical role in high-speed digital design, the transition time and the delay
must be defined carefully. As illustrated in Fig. 16.11(a), we define the output “risetime,”
TR, as the time required for the output to go from 10% of VDD to 90% of VDD.2 Similarly,
the output “falltime,” TF , is defined as the time required for the output to go from 90% of
VDD to 10% of VDD. In general, TR and TF may not be equal.

Since the input to a gate is produced by another gate and hence suffers from a finite
transition time, the delay of the gate must be characterized with a realistic input waveform
rather than the abrupt step in Fig. 16.11(a). We therefore apply a step with a typical risetime

VDD

0

VDD

t

VDD90%

VDD10%

TR TF

t

Vin

outV

VDD

2

TPLH TPHL

(a)

(b)

Figure 16.11 Definition of (a) rise and fall times, and (b) propagation delays.

2This definition applies only if the low and high levels are equal to 0 and VDD, respectively.
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at the input and define the propagation delay as the difference between the time points
at which the input and the output cross VDD/2 [Fig. 16.11(b)]. Since the output rise and
fall times may not be equal, a low-to-high delay, TPLH , and a high-to-low delay, TPHL, are
necessary to characterize the speed. In today’s CMOS technology, gate delays as little as
10 ps can be obtained.

The reader may wonder about the nature of the load capacitance in Example 16.9. If
the gate drives only another stage on the chip, this capacitance arises from two sources:
the input capacitance of the subsequent gate(s) and the capacitance associated with the
“interconnect” (on-chip wire) that carries the signal from one circuit to another.

Example

16.10
An NMOS inverter drives an identical stage as depicted in Fig. 16.12. We say the first gate
sees a “fanout” of unity. Assuming a 5% degradation in the output low level (Example
16.8), determine the time constant at node X when VX goes from low to high. Assume
CX ≈ WLCox.

R

M 1

D

Vin

R

M

VDD

D

outV

2
X

Figure 16.12 Cascade of inverters.

Solution Recall from Example 16.9 that this time constant is simply equal to RDCX . Assuming
RD = 19Ron1, we write

τ = RDCX (16.23)

= 19

μnCox
W
L

(VDD − VTH)

· WLCox (16.24)

= 19L2

μn(VDD − VTH)
. (16.25)

Exercise Suppose the width of M2 is doubled while M1 remains unchanged. Calculate the time
constant.

Example

16.11
In Example 16.4, the wire connecting the output of Inv1 to the input of Inv2 exhibits
a capacitance of 50 × 10−18 F (50 aF)3 per micron of length. What is the interconnect
capacitance driven by Inv1?

Solution For 15,000 microns, we have

Cint = 15,000 × 50 × 10−18 F (16.26)

= 750 fF. (16.27)

3The abbreviation for 10−18 is called “ato.”
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To appreciate the significance of this value, let us calculate the gate capacitance of a
small MOSFET, e.g., with W = 0.5 μm, L = 0.18 μm, and Cox = 13.5 fF/μm2:

CGS ≈ WLCox (16.28)

≈ 1.215 fF. (16.29)

In other words, Inv1 sees a load equivalent to a fanout of 750 fF/1.215 fF ≈ 617, as if it
drives 640 gates.

Exercise What is the equivalent fanout if the width of the wire is halved?

16.1.3 Power-Speed Trade-Off

Integrated circuits containing millions of gates can consume a very high power (tens of
watts). The power dissipation proves critical for several reasons. First, it determines the
battery lifetime in portable applications such as laptop computers and cellphones. Second,
it tends to raise the temperature of the chip, degrading the performance of the transistor.4

Third, it requires special (expensive) packages that can conduct the heat away from the
chip.

How does a gate consume power? Let us consider the NMOS inverter of Fig. 16.13
as an example. If Vin = 0, M1 is off. On the other hand, if Vin = VDD, M1 draws a current
equal to

ID = VDD − Vout,min

RD
, (16.30)

R

M 1

VDD

D

Vin CL

outVX

Figure 16.13 NMOS inverter driving a load capacitance.

which, from Eq. (16.6), translates to

ID =
μnCox

W
L

(VDD − VTH)VDD

1 + μnCox
W
L

RD(VDD − VTH)

. (16.31)

Alternatively,

ID = VDD

RD + Ron1

. (16.32)

4For example, the mobility of MOS devices falls as the temperature rises.
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The gate thus consumes a power of ID · VDD while the output is low. (If RD � Ron1, then
IDVDD ≈ V2

DD/RD.) Now, recall from Example 16.9 that the output risetime of the gate is
determined by the time constant RDCL. We therefore observe a direct trade-off between
the power dissipation and the speed: a high value of RD reduces the power dissipation but
yields a longer delay. In fact, we may define a figure of merit as the product of the power
dissipation and the time constant:

(IDVDD) · (RDCX) = V2
DD

RD + Ron1

· (RDCX). (16.33)

As noted in Example 16.8, typically RD � Ron1 and hence,

(IDVDD) · (RDCX) ≈ V2
DDCX . (16.34)

In digital design, the figure of merit is defined as the product of the power dissipation,
P, and the gate delay rather than the output time constant. This is because the nonlinear
operation of gates often prohibits the use of a single time constant to express the output
transition behavior. As such, the figure of merit is called the “power-delay product” (PDP).
Since TPHL and TPLH may not be equal, we define PDP with respect to the average of the
two:

PDP = P · TPHL + TPLH

2
. (16.35)

Note that PDP has dimension of energy, i.e., it indicates how much energy is consumed
for a logical operation.

Example

16.12
Consider the cascade of identical NMOS inverters studied in Example 16.10. Assuming
TPLH is roughly equal to three time constants, determine the power-delay product for
the low-to-high transitions at node X.

Solution Expressing the power dissipation as IDVDD ≈ V2
DD/RD, we have

PDP = (IDVDD)(3RDCX) (16.36)

= 3V2
DDCX (16.37)

= 3V2
DDWLCox. (16.38)

For example, if VDD = 1.8 V, W = 0.5 μm, L = 0.18 μm, and Cox = 13 fF/μm2, then
PDP = 1.14 × 10−14 J = 11.4 fJ.

Exercise How much average power is consumed if the circuit runs at a frequency of 1 GHz?

16.2 CMOS INVERTER

Perhaps the most elegant and the most important circuit invention in CMOS technology,
the CMOS inverter forms the foundation for modern digital VLSI systems. In this section,
we study the static and dynamic properties of this circuit.
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16.2.1 Initial Thoughts

We have seen in Section 16.1.1 that the NOT (inverter) function can be realized by a
common-source stage, Fig. 16.3(a). As formulated in Examples 16.8 and 16.9, this circuit
faces the following issues: (1) the load resistance, RD, must be chosen much greater than
the on-resistance of the transistor; (2) the value of RD creates a trade-off between speed
and power dissipation; (3) the inverter consumes a power of roughly V2

DD/RD so long as
the output remains low. Of particular concern in large digital circuits is the last effect,
called “static power dissipation” because the inverter consumes energy even though it
is not switching. For example, in a VLSI chip containing one million gates, half of the
outputs may be low at a given point in time, thereby demanding a power dissipation of
5 × 105 × V2

DD/RD. If VDD = 1.8 V and RD = 10 k�, this amounts to 162 W of static power
consumption!

The foregoing drawbacks of the NMOS inverter fundamentally arise from the “pas-
sive” nature of the load resistor, called the “pull-up” device here. Since RD presents a
constant resistance between VDD and the output node, (1) M1 must “fight” RD while
establishing a low level at the output and hence Ron1 must remain much smaller than
RD [Fig. 16.14(a)]; (2) after M1 turns off, only RD can pull the output node up toward VDD

[Fig. 16.14(b)]; (3) the circuit draws a current of approximately VDD/RD from the supply
when the output is low [Fig. 16.14(c)]. We therefore seek a more efficient realization that
employs an “intelligent” pull-up device.

R

VDD

D

Ron1

VDD

Ron1

Ron1 + RD

(b)

R

M 1

VDD

D

CL

R

VDD

D

Ron1

(c)

VDD

RD

(a)

Figure 16.14 (a) Degradation of output level in an NMOS inverter, (b) risetime limitation due

to RD, (c) static power consumed during output low level.

Let us ask, how should the ideal pull-up device behave in an inverter? When M1

turns off, the pull-up device must connect the output node to VDD, preferably with a low
resistance [Fig. 16.15(a)]. On the other hand, when M2 turns on, the pull-up device must
turn off so that no current can flow from VDD to ground (and Vout is exactly equal to zero).

M 1

VDD

outV

(a)

Pullup
Device

= VDD

M 1

VDD

outV

Pullup
Device

VDD

= 0

(b)

Figure 16.15 Use of active pullup device for (a) high output and (b) low output.



716 Chapter 16 Digital CMOS Circuits

This latter property also reduces the falltime at the output, as illustrated in the following
example.

Example

16.13
Consider the two inverter implementations depicted in Fig. 16.16. Suppose Vin jumps
from 0 to VDD at t = 0 and the pull-up device in Fig. 16.16(b) turns off at the same time.
Compare the output falltimes of the two circuits if M1 and CL are identical in the two
cases.

R

M 1

VDD

D

Vin

(a)

VDD

0
CL

outV

M 1
Vin

VDD

0
CL

outV

(b)

VDD

Pullup
Device

Figure 16.16 Comparison of (a) NMOS inverter and (b) inverter using an active pull-up device.

Solution In Fig. 16.16(a), M1 must absorb two currents: one carried by RD and another required
to discharge CL. In Fig. 16.16(b), on the other hand, ID1 simply discharges CL because
the pull-up device is turned off. As a consequence, Vout falls more rapidly in the topology
of Fig. 16.16(b).

Exercise For each circuit, determine the energy consumed by M1 as Vout falls from VDD to zero.

In summary, we wish the pull-up device in Fig. 16.15 to turn on when M1 turns off
and vice versa. Is it possible to employ a transistor for this purpose and turn it on and off
by the input voltage [Fig. 16.17(a)]? We recognized that the transistor must turn on when
Vin is low, postulating that a PMOS device is necessary [Fig. 16.17(b)]. Called the “CMOS
inverter,” this topology benefits from “cooperation” between the NMOS device and the
PMOS device: when M1 wishes to pull Vout low, M2 turns off , and vice versa.

M 1

VDD

outV

Pullup
Device

(b)

inV M 1

outVinV

VDD

(a)

inV

Vout

VDD

VDD

(c)

M 2

M Off1

M Off2

Figure 16.17 (a) Pull-up device controlled by input, (b) CMOS inverter.
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It is important to note that, by virtue of the “active” pull-up device, the CMOS inverter
indeed avoids the drawbacks of the NMOS implementation: (1) the output low level
is exactly equal to zero because Vin = VDD ensures that M2 remains off; (2) the circuit
consumes zero static power for both high and low output levels. Figure 16.17(c) shows a
rough sketch of the input/output characteristic, emphasizing that Vout = 0 for Vin = VDD.
Throughout this chapter, we denote the aspect ratios of the NMOS and PMOS transistors
in an inverter by (W/L)1 and (W/L)2, respectively.

16.2.2 Voltage Transfer Characteristic

We begin our in-depth study of the CMOS inverter with its static characteristics. We must
vary Vin from zero to VDD and plot the corresponding output voltage. Note that the two
transistors carry equal currents under all conditions (so long as the inverter is not loaded
by any other circuit). Suppose Vin = 0 [Fig. 16.18(a)]. Then, M1 is off and M2 is on. How can
M2 remain on while |ID2| = ID1 = 0? This is possible only if M2 sustains a zero drain-source
voltage. That is,

|ID2| = 1

2
μpCox

(
W
L

)
2

[
2(VDD − |VTH2|)|VDS2| − V2

DS

] = 0 (16.39)

requires that

VDS2 = 0 (16.40)

and hence

Vout = VDD. (16.41)
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outV
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M 2

inV
I D

g vv 1 1

v g v

M 1

M 2

outvinv

2 2m2

m1

(d)(c)

r O2

r O1

Figure 16.18 (a) CMOS inverter sensing a low input, (b) equivalent circuit, (c) supply current

when both transistors are one, (d) small-signal model.
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From another perspective, M2 operates as a resistor of value

Ron2 = 1

μpCox

(
W
L

)
2

(VDD − |VTH2|)
, (16.42)

pulling the output node to VDD [Fig. 16.18(b)].
As Vin rises, the gate-source overdrive of M2 decreases and its on-resistance increases.

But, for Vin < VTH1, M1 remains off and Vout = VDD. As Vin exceeds VTH1 slightly, M1 turns
on, drawing a current from VDD through the on-resistance of M2 [Fig. 16.18(c)]. Since Vout

is still close to VDD, M1 operates in saturation and M2 still resides in the triode region.
Equating the drain currents of the two, we have

1

2
μnCox

(
W
L

)
1

(Vin − VTH1)
2

= 1

2
μpCox

(
W
L

)
2

[2 (VDD − Vin − |VTH2|) (VDD − Vout ) − (VDD − Vout )
2 ], (16.43)

where channel-length modulation is neglected. This quadratic equation can be solved
in terms of VDD − Vout to express the behavior of Vout as a function of Vin. But from a
qualitative point of view, we observe that Vout continues to fall as Vin rises because both
ID1 and the channel resistance of M2 increase.

If Vout falls sufficiently, M2 enters saturation. That is, if Vout = Vin + |VTH2|, then M2 is
about to exit the triode region. But how about M1? Since the drain voltage of M1 (= Vout )
is higher than its gate voltage (Vin), this device still operates in saturation. To obtain the
inverter VTC in this region, we equate the drain currents again and neglect channel-length
modulation:

1

2
μnCox

(
W
L

)
1

(Vin − VTH1)
2 = 1

2
μpCox

(
W
L

)
2

(VDD − Vin − |VTH2|)2
. (16.44)

What happened to Vout here?! Equation (16.44) is meaningless as it does not contain Vout

and implies a unique value for Vin. This quandary arises because we have allowed two
ideal current sources to fight each other at the output node. Inclusion of channel-length
modulation resolves this issue:

1

2
μnCox

(
W
L

)
1

(Vin − VTH1)
2
(1 + λ1Vout )

= 1

2
μpCox

(
W
L

)
2

(VDD − Vin − |VTH2|)2
[1 + λ2(VDD − Vout )]. (16.45)

It follows that

Vout =
μp

(
W
L

)
2

(VDD − Vin − |VTH2|)2 − μn

(
W
L

)
1

(Vin − VTH1)
2

λ2μp

(
W
L

)
2

(VDD − Vin − |VTH2|)2 + λ1μn

(
W
L

)
1

(Vin − VTH1)
2

. (16.46)
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Figure 16.19 (a) Behavior of CMOS inverter for Vin ≤ VinT , (b) CMOS inverter at trip point,

(c) M1 at the edge of saturation, (d) overall characteristic.

To gain more insight and prove that Vout changes sharply here, let us compute the
small-signal gain of the inverter in this region. Operating is saturation, each transistor
can be modeled as a voltage-dependent current source with a finite output impedance
[Fig. 16.18(d)]. Since v2 = v1 = vin, a KCL at the output node yields

vout

vin
= −(gm1 + gm2)(rO1||rO2), (16.47)

indicating that the voltage gain is on the order of the intrinsic gain of a MOSFET. Thus,
for a small change in Vin, we expect a large change in Vout .

Figure 16.19(a) summarizes our findings this far. The output remains at VDD for
Vin < VTH1, begins to fall as Vin exceeds VTH1, and experiences a sharp drop when M2

enters saturation. The input level at which Vout = Vin is called the “trip point” (also called
the “switching threshold”) of the inverter [Fig. 16.19(b)]. Both transistors are in saturation
at this point (why?). The trip point is denoted by VM. Also, the maximum and minimum
values of a gate output are denoted by VOH and VOL, respectively.

As the input goes beyond the trip point, Vin − Vout eventually exceeds VTH1, thereby
driving M1 into the triode region. The transconductance of M1 therefore falls and so does
the small-signal gain of the circuit [Fig. 16.19(c)]. We now have

1

2
μnCox

(
W
L

)
1

[2(Vin − VTH1)Vout − V2
out ] = 1

2
μpCox

(
W
L

)
2

(VDD − Vin − |VTH2|)2
,

(16.48)

where channel-length modulation is neglected. From this quadratic equation, Vout can be
expressed in terms of Vin, but we expect a more gradual slope due to the operation of M1

in the triode region.
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Finally, as Vin rises to VDD − |VTH2|, M2 turns off, allowing Vout = 0. In this region, M1

acts as a resistor carrying a zero current. Figure 16.19(d) plots the overall VTC, identifying
different regions of operations by numbers.

Example

16.14
Determine a relationship between (W/L)1 and (W/L)2 that sets the trip point of the
CMOS inverter to VDD/2, thus providing a “symmetric” VTC.

Solution Replacing both Vin and Vout with VDD/2 in Eq. (16.45), we have

μnCox

(
W
L

)
1

(
VDD

2
− VTH1

)2 (
1 + λ1

VDD

2

)

= μpCox

(
W
L

)
2

(
VDD

2
− |VTH2|

)2 (
1 + λ2

VDD

2

)
, (16.49)

and hence

(
W
L

)
1(

W
L

)
2

=
μp

(
VDD

2
− |VTH2|

)2 (
1 + λ2

VDD

2

)

μn

(
VDD

2
− VTH1

)2 (
1 + λ1

VDD

2

) . (16.50)

In practice, the difference between |VTH2| and VTH1 can be neglected with respect to
VDD/2 − |VTH1,2|. Similarly, 1 + λ1VDD/2 ≈ 1 + λ2VDD/2. Also, in digital design, both
L1 and L2 are typically chosen equal to the minimum allowable value. Thus,

W1

W2

≈ μp

μn
. (16.51)

Since the PMOS mobility is about one-third to one-half of the NMOS mobility, M2 is
typically twice to three times as wide as M1.

Exercise What is the small-signal gain of the inverter under this condition?

Example

16.15
Explain qualitatively what happens to the VTC of the CMOS inverter as the width of
the PMOS transistor is increased (i.e., as the PMOS device is made “stronger”).

Solution Let us first consider the transition region around the trip point, where both M1 and M2

operate in saturation. As the PMOS device is made stronger, the circuit requires a higher
input voltage to establish ID1 = |ID2|. This is evident from Eq. (16.45): for Vout = VDD/2,

as (W/L)2 increases, Vin must also increase so that (VDD − Vin − |VTH2|)2
on the right-

hand side decreases and (Vin − VTH1)
2

on the left-hand side increases. Consequently, the
characteristic is shifted to the right (why?). (What happens to the small-signal gain near
the trip point?)
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Exercise What happens to the VTC of the CMOS inverter if the PMOS device experiences resistive
degeneration?

Noise Margins Recall from Example 16.6 that a digital inverter always exhibits a small-
signal voltage gain greater than unity in some region of the input/output characteristic.
Since the gain of a CMOS inverter falls to zero near Vin = 0 and Vin = VDD (why?), we
expect a gain of (negative) unity at two points between 0 and VDD.

To determine the noise margin for logical low levels, we focus on region 2 in Fig.
16.19(d). With M2 in the triode region, the voltage gain is relatively low and likely to
assume a magnitude of unity somewhere. How do we express the gain of the circuit here?
In a manner similar to Example 16.7, we directly differentiate both sides of Eq. (16.43)
with respect to Vin:

2μn

(
W
L

)
1

(Vin −VTH1) = μp

(
W
L

)
2

[
−2(VDD −Vout ) − 2(VDD − Vin − |VTH2|)∂Vout

∂Vin

+ 2(VDD − Vout )
∂Vout

∂Vin

]
. (16.52)

The input level, VIL, at which the gain reaches −1 can be solved by assuming ∂Vout/

∂Vin = −1:

μn

(
W
L

)
1

(VIL − VTH1) = μp

(
W
L

)
2

(2VOH − VIL − |VTH2| − VDD) , (16.53)

where VOH denotes the corresponding output level. Obtaining VOH from Eq. (16.53),
substituting in Eq. (16.43), and carrying out some lengthy algebra, we arrive at

VIL = 2
√

a (VDD − VTH1 − |VTH2|)
(a − 1)

√
a + 3

− VDD − aVTH1 − |VTH2|
a − 1

, (16.54)

where

a =
μn

(
W
L

)
1

μp

(
W
L

)
2

. (16.55)

Example

16.16
Recall from Example 16.14 that a symmetric VTC results if a = 1, VTH1 = |VTH2|, and
λ1 = λ2. Compute VIL for this case.

Solution Choice of a = 1 in Eq. (16.54) yields VIL = ∞ − ∞. We can use L’Hopital’s rule by first
writing Eq. (16.54) as

VIL = 2
√

a (VDD − 2VTH1) − √
a + 3 [VDD − (a + 1) VTH1]

(a − 1)
√

a + 3
, (16.56)
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where it is assumed VTH1 = |VTH2|. Differentiating the numerator and the denominator
with respect to a and substituting 1 for a, we have

VIL = 3

8
VDD + 1

4
VTH1. (16.57)

For example, if VDD = 1.8 V and VTH1 = 0.5 V, then VIL = 0.8 V.

Exercise Explain why VIL must always exceed VTH1.

We now turn our attention to NMH and differentiate both sides of Eq. (16.48) with
respect to Vin:

μn

(
W
L

)
1

[
2Vout + 2(Vin − VTH1)

∂Vout

∂Vin
− 2Vout

∂Vout

∂Vin

]

= 2μp

(
W
L

)
2

(Vin − VDD − |VTH2|) . (16.58)

Again, we assume ∂Vout/∂Vin = −1, Vin = VIH , and Vout = VOL, obtaining

VIH = 2a(VDD − VTH1 − |VTH2|)
(a − 1)

√
1 + 3a

− VDD − aVTH1 − |VTH2|
a − 1

. (16.59)

The reader can prove that for a = 1, VTH1 = |VTH2|, and λ1 = λ2,

NMH = NML = 3

8
VDD + 1

4
VTH1. (16.60)

Example

16.17
Compare the noise margins expressed by Eq. (16.60) with those of an ideal inverter.

Solution An ideal inverter is characterized by the behavior illustrated in Fig. 16.1(b), where the
small-signal gain goes abruptly from zero to infinity at the trip point. With a symmetric
VTC,

NMH,ideal = NML,ideal = VDD

2
. (16.61)

This value is greater than that in Eq. (16.60) because VTH1 and |VTH2| are typically less
than VDD/2 (and the gain in the transition region less than infinity).

Exercise Determine the reduction in the noise margins of an ideal inverter if its transition region
gain is equal to 5. Assume a symmetric VTC.
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Example

16.18
Explain what happens if VTH1 and |VTH2 in a CMOS inverter exceed VDD/2.

Solution Consider the operation of the circuit for Vin = VDD/2. In this case, both transistors are
off, allowing the output node to “float.” For this and speed reasons (explained in the
next section), the threshold voltage is typically chosen to be less than VDD/4.

Exercise What happens if VTH1 = VDD/4 but |VTH2| = 3VDD/4?

16.2.3 Dynamic Characteristics

As explained in Section 16.1.2, the dynamic behavior of gates is related to the rate at which
their output can change from one logical level to another. We now analyze the response
of a CMOS inverter to a step input while the circuit drives a finite load capacitance. Our
study of the NMOS inverter in Section 16.1.2 and the contrasts drawn in Section 16.2.1
prove useful here.

Qualitative Study Let us first understand qualitatively how a CMOS inverter charges
and discharges a load capacitance. Suppose, as depicted in Fig. 16.20(a), Vin jumps from
VDD to 0 at t = 0 and Vout begins to from 0. Transistor M1 turns off and transistor M2 turns
on in saturation, charging CL toward VDD. With the relatively constant current provided
by M2, Vout rises linearly until M2 enters the triode region and hence supplies a smaller
current. The output voltage continues to rise, almost as if M2 acts as a resistor, eventually
approaching VDD and forcing the drain current of M2 to zero. Figure 16.20(b) sketches the
behavior of the output.

M 1

outV

VDD

M 2

inV

VDD

0
CL

(a)

t

VDD

outV

Linear
Charge

Charge
Sublinear

(b)

Figure 16.20 (a) CMOS inverter charging a load capacitance, (b) output waveform.

Example

16.19
Sketch the drain current of M2 as a function of time.

Solution The current begins at a high (saturated) value and begins to fall as Vout exceeds |VTH2|
(why?). Thereafter, the current continues to drop as Vout approaches VDD and hence
VDS2 falls to zero. Figure 16.21 plots the result.
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t

VDD

outV

t

I D2

VTH2

M in Saturation2

M 2 in Triode Region

Figure 16.21

Exercise Sketch the supply current as a function of time.

Example

16.20
Sketch the output waveform of Fig. 16.20(b) for different values of (W/L)2.

Solution As (W/L)2 increases, so does the current drive of M2 (in both saturation and tri-
ode regions). The circuit therefore exhibits a faster rising transition, as illustrated in
Fig. 16.22. Of course, for very large values of W2, the capacitance contributed by M2

itself at the output node becomes comparable with CL, and the speed improves to a
lesser extent.

t

VDD

outV

VTH2

W
L

( (
2

Figure 16.22

Exercise Sketch the drain current of M2 for different values of (W/L)
2.

How about the output discharge behavior? As shown in Fig. 16.23(a), if the input
steps from 0 to VDD at t = 0, M2 turns off, M1 turns on, beginning to discharge CL from
VDD toward 0. Transistor M1 operates in saturation until Vout falls by VTH1 below the gate
voltage (= VDD), upon which ID1 begins to decrease, slowing down the discharge. Plotted
in Fig. 16.23(b), Vout then gradually approaches zero.

Quantitative Analysis With the insights developed above, we can now quantify the
rising and falling transitions at the output of the CMOS inverter, thereby arriving at the
propagation delays. We neglect channel-length modulation here.
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M 1

outV

VDD

M 2

inV

VDD

0 CL

(a)

t

VDD

outV Linear

(b)

Discharge

Sublinear
Discharge

Figure 16.23 (a) CMOS inverter discharging a load capacitance, (b) output waveform.

Recall from Fig. 16.20 that, after the input falls to zero, M2 begins to charge CL with a
constant current, given by

|ID2| = 1

2
μpCox

(
W
L

)
2

(VDD − |VTH2|)2
, (16.62)

producing

Vout (t) = |ID2|
CL

t (16.63)

= 1

2
μp

Cox

CL

(
W
L

)
2

(VDD − |VTH2|)2 t. (16.64)

Transistor M2 enters the triode region for Vout = |VTH2| at a time given by

TPLH1 = 2|VTH2|CL

μpCox

(
W
L

)
2

(VDD − |VTH2|)2

. (16.65)

Thereafter, M2 operates in the triode region, yielding

|ID2| = CL
dVout

dt
, (16.66)

and hence

1

2
μpCox

(
W
L

)
2

[
2(VDD − |VTH2|)(VDD − Vout − (VDD − Vout )

2
]

= CL
dVout

dt
. (16.67)

Rearranging the terms gives

dVout

2(VDD − |VTH2|)(VDD − Vout ) − (VDD − Vout )
2

= 1

2
μp

Cox

CL

(
W
L

)
2

dt. (16.68)

Defining VDD − Vout = u and noting that∫
du

au − u2
= 1

a
ln

u
a − u

, (16.69)

we have

−1

2(VDD − |VTH2|) ln
VDD − Vout

VDD − 2|VTH2| + Vout

∣∣∣∣
Vout=VDD/2

Vout=|VTH2|
= 1

2
μp

Cox

CL

(
W
L

)
2

TPLH2,

(16.70)
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where the origin of time is chosen to coincide with t = TPLH1 for simplicity, and TPLH2

denotes the time required for Vout to go from |VTH2| to VDD/2. It follows that

TPLH2 = CL

μpCox

(
W
L

)
2

[VDD − |VTH2|)
ln

(
3 − 4

|VTH2|
VDD

)
. (16.71)

Interestingly, the denominator of Eq. (16.71) represents the inverse of the on-resistance
of M2 when it operates in the deep triode region. Thus,

TPLH2 = Ron2CL ln

(
3 − 4

|VTH2|
VDD

)
. (16.72)

If 4|VTH2| ≈ VDD, this result reduce s to TPLH2 = Ron2CL ln 2—as ifCL charges up through
a constant resistance equal to Ron2. The overall propagation delay is therefore given by

TPLH = TPLH1 + TPLH2 (16.73)

= Ron2CL

[
2|VTH2|

VDD − |VTH2| + ln

(
3 − 4

|VTH2|
VDD

)]
. (16.74)

An important observation here is that TPLH decreases as VDD increases (why?). Also, for
|VTH2| ≈ VDD/4, the two terms inside the square brackets are nearly equal.

Example

16.21
A student decides to avoid the foregoing derivation of TPLH2 through the use of an
average current for M2. That is, ID2 is approximated as a constant value equal to the

average between its initial value, (1/2)μpCox(W/L)2(VDD − |VTH2|)2
, and its final value, 0.

Determine the resulting TPLH2 and compare with that expressed by Eq. (16.72).

Solution The average current is equal to (1/4)μpCox(W/L)2(VDD − |VTH2|)2
, yielding:

TPLH2 = CL

μpCox

(
W
L

)
2

(VDD − |VTH2|)
· VDD/2 − (VDD − |VTH2|)

VDD − |VTH2| . (16.75)

Assuming |VTH2| is roughly equal to VDD/4 and hence VDD/(VDD − |VTH2|) ≈ 4/3, we
have

TPLH2 ≈ 4

3
Ron2CL, (16.76)

about 50% greater than that obtained above.

Exercise What happens if |VTH2| ≈ VDD/3?

The calculation of TPHL follows the same procedure as above. Specifically, after
the input jumps from 0 to VDD [Fig. 16.23(a)], M2 turns off and M1 draws a current of

(1/2)μnCox(W/L)1(VDD − VTH1|)2
. The time required for M1 to enter the triode region is

thus given by

TPHL1 = 2VTH1CL(
μnCox

W
L

)
1

(VDD − VTH1)
2

. (16.77)
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After this point in time,

1

2
μnCox

(
W
L

)
1

[
2(VDD − VTH1)Vout − V2

out

] = −CL
dVout

dt
, (16.78)

where the negative sign on the right accounts for the flow of the current out of the capacitor.
Using Eq. (16.69) to solve this differential equation and bearing in mind that Vout (t = 0) =
VDD − VTH1, we obtain

−1

2(VDD − |VTH1|) ln
Vout

2(VDD − VTH2) − Vout

∣∣∣∣
Vout=VDD/2

Vout=VDD−VTH1

= 1

2
μn

Cox

CL

(
W
L

)
1

TPLH2.

(16.79)

It follows that

TPHL2 = Ron1CL ln

(
3 − 4

VTH1

VDD

)
, (16.80)

which, of course, has the same form as Eq. (16.72). Also, the total delay is given by

TPHL = TPHL1 + TPHL2 (16.81)

= Ron1CL

[
2VTH1

VDD − VTH1

+ ln

(
3 − 4

VTH1

VDD

)]
. (16.82)

Example

16.22
Compare the two terms inside the square brackets in Eq. (16.82) as VTH1 varies from
zero to VDD/2.

Solution For VTH1 = 0, the first term is equal to 0 and and the second equal to ln 3 ≈ 1.1. As VTH1

increases, the two terms converge, both reaching 0.684 for VTH1 = 0.255VDD. Finally, for
VTH1 = VDD/2, the first term rises to 2 and the second falls to 0. Figure 16.24 plots each
term and the sum of the two, suggesting that low thresholds improve the speed.

VTH

2.0

1.1

VDD0.5VDD0.255

Sum

Second
Term

Term
First

Figure 16.24

Exercise Repeat the above example if VTH1 varies from 0 to 3VDD/4.
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Example

16.23
Due to a manufacturing error, an inverter is constructed as shown in Fig. 16.25, where
M1

′ appears in series with M1 and is identical to M1. Explain what happens to the output
falltime. For simplicity, view M1 and M1

′ as resistors when they are on.

M 1

outV

VDD

M 2

inV

M 1
'

Figure 16.25

Solution Placing the two on-resistances in series, we have

Ron1||R ′
on1 = 1

μnCox

(
W
L

)
1

(VDD − VTH1)

+ 1

μnCox

(
W
L

)′

1

(VDD − V ′
TH1)

(16.83)

= 2

μnCox

(
W
L

)
1

(VDD − VTH1)

(16.84)

= 2Ron1. (16.85)

Thus, the falltime is doubled.

Exercise What happens if M1
′ is twice as wide as M1?

16.2.4 Power Dissipation

Having determined the propagation delays of the CMOS inverter, we now turn our atten-
tion to the power dissipation of the circuit. Unlike the NMOS inverter, this type of logic
consumes no static power. We therefore need only study the behavior of the circuit during
transitions and determine the “dynamic” power dissipation. Let us first assume abrupt
transitions at the input.

If the input voltage jumps from VDD to 0, then the PMOS device charges the load
capacitance toward VDD [Fig. 16.26(a)]. As Vout approaches VDD, the energy stored in CL

is equal to

E1 = 1

2
CLV2

DD. (16.86)

This energy is supplied by M2 from VDD. On the other hand, if Vin steps from 0 to VDD,
then the NMOS transistor discharges CL toward zero [Fig. 16.26(b)]. That is, the energy
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E1 is removed from CL and dissipated by M1 in the discharge process. This cycle repeats
for every pair of falling and rising transitions at the input.

M 1

outV

VDD

M 2

inV

VDD

0
CL

(a)

M 1

outV

VDD

M 2

inV

VDD

0
CL

(b)

Figure 16.26 Power consumed in transistors during (a) charge and (b) discharge of load

capacitance.

In summary, for every pair of falling and rising transitions at the input of the inverter,
CL acquires and loses an energy of (1/2)CLV2

DD. For a periodic input, we may then surmise
that the circuit consumes an average power of (1/2)CLV2

DD/Tin, where Tin denotes the
input period. Unfortunately, this result is incorrect. In addition to delivering energy to
CL, the PMOS transistor in Fig. 16.26(a) also consumes power because it carries a finite
current while sustaining a finite voltage. In other words, the total energy drawn from VDD

in Fig. 16.26(a) consists of that stored on CL plus that dissipated in M2.
How do we compute the energy consumed by M2? We first observe that (a) the

instantaneous power dissipated in M2 is given by |VDS2||ID2| = (VDD − Vout )|ID2|, and (b)
this transistor charges the load capacitor and hence |ID2| = CLdVout/dt . To calculate the
energy lost in M2, we must integrate the instantaneous power dissipation with respect to
time:

E2 =
∫ ∞

t=0

(VDD − Vout )

(
CL

dVout

dt

)
dt, (16.87)

which reduces to

E2 = CL

∫ VDD

Vout=0

(VDD − Vout ) dVout (16.88)

= 1

2
CLV2

DD. (16.89)

Interestingly, the energy consumed by M2 is equal to that stored on CL. Thus, the total
energy drawn from VDD is

Etot = E1 + E2 (16.90)

= CLV2
DD. (16.91)

It follows that, for a periodic input with frequency fin, the average power drawn from VDD

is equal to

Pav = finCLV2
DD. (16.92)
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Example

16.24
In the circuit of Fig. 16.27, Vout = 0 at t = 0. Compute the energy drawn from the supply
as Vout reaches VDD.

RL

VDD

outV

CL

Figure 16.27

Solution We note that the derivation leading to Eq. (16.91) is completely general and independent
of the I/V characteristics of the device that charges CL. In other words, the circuit of
Fig. 16.27 stores an energy of (1/2)CLV2

DD on the load capacitor and consumes an energy
of (1/2)CLV2

DD in R1 while charging CL. The total energy supplied by VDD is therefore
equal to CLV2

DD.

Exercise Compute the energy consumed by RL.

Equation (16.92) plays a central role in CMOS logic design, elegantly expressing the
dependence of Pav on the data rate, the load capacitance, and the supply voltage. The
square dependence on VDD calls for the reduction of the supply voltage, whereas Eqs.
(16.74) and (16.82) for the propagation delays favor raising VDD.

Power-Delay Product As mentioned in Section 16.1.3, the power-delay product rep-
resents the trade-off between the power dissipation and the speed. With the aid of Eqs.
(16.35), (16.74), and (16.82) and assuming that TPHL and TPLH are roughly equal, we write

PDP = Ron1C 2
L V2

DD

[
2VTH

VDD − VTH
+ ln

(
3 − 4

VTH

VDD

)]
. (16.93)

Interestingly, the PDP is proportional to C 2
L , underlining the importance of minimizing

capacitances in the circuit.

Example

16.25
In the absence of long interconnects, CL in Fig. 16.26 arises only from transistor capaci-
tances. Consider a cascade of two identical inverters, Fig. 16.28, where the PMOS device
is three times as wide as the NMOS transistor to provide a symmetric VTC. For simplicity,
assume the capacitance at node X is equal to 4WLCox. Also, VTHN = |VTHP| ≈ VDD/4.
Compute the PDP.

M 1

M 2

inV

M

outV

VDD

M

3

4

X

Figure 16.28
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Solution We have

Ron = 1

μnCox

(
W
L

)
(VDD − VTH)

(16.94)

≈ 4

3

1

μnCox

(
W
L

)
VDD

. (16.95)

Also, from Example 16.22, the two terms in the square brackets in Eqs. (16.74) and
(16.82) add up to 1.36. Thus, Eq. (16.93) reduces to

PDP = 7.25WL2Cox finV2
DD

μn
. (16.96)

Exercise Suppose the withs of all four transistors are doubled. Does the delay of the first inverter
change? How about the power dissipated per transition? From these observations, explain
why PDP is linearly proportional to W.

Crowbar Current In our study of the dynamic power consumption, we have assumed
abrupt transitions at the input. In practice, however, the input suffers from a finite transition
time, thereby leading to another dissipation component.

Recall from the VTC of Fig. 16.19(d) that both transistors in an inverter are on in
regions 2, 3, and 4. That is, if the input lies in the range [VTH1 VDD − |VTH2|], then M2

draws a current from VDD and M1 passes this current to ground—as if a direct path conducts
current from VDD to ground [Fig. 16.29(a)]. Called the “crowbar current,” this component
arises each time the input swings from one rail to the other with a finite transition time.
As illustrated in Fig. 16.29(b), the circuit draws a crowbar current from t1 to t2.

How does the crowbar current very between t1 and t2 in Fig. 16.29(b)? For Vin slightly
above VTH1, M1 is barely on, drawing only a small current. As Vin approaches the trip
point of the inverter, both transistors enter saturation and the crowbar current reaches
a maximum. Finally, as Vin reaches VDD − |VTH2|, the crowbar current returns to zero.
Figure 16.29(c) plots the behavior of this current as a function of t and Vin. The peak value
is obtained by assuming Vin = Vout = VDD/2 in either side of Eq. (16.45):

Ipeak = 1

2
μnCox

(
W
L

)
1

(
VDD

2
− VTH1

)2 (
1 + λ1

VDD

2

)
. (16.97)

16.3 CMOS NOR AND NAND GATES

The CMOS inverter serves as the foundation for realizing other logical gates. In this section,
we study NOR and NAND gates, both of which find wide application.
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Figure 16.29 (a) Crowbar current drawn by CMOS inverter, (b) time period during which crowbar

current is drawn, (c) crowbar current as a function of time and Vin.

16.3.1 NOR Gate

Recall from basic logic design that the OR operation, A + B, produces a high output if at
least one input is high. The NOR gate, A + B, thus generates a low output if at least one
input is high.

How should a CMOS inverter be modified to serve as a NOR gate? First, we need two
sets of NMOS and PMOS devices that are controlled by the two inputs. Second, considering
the NMOS section first, we note that if one of the NMOS gates is high, the output (the
drain voltage) must remain low. We then surmise that the NMOS section can be realized
as shown in Fig. 16.30, recognizing that, if A or B is high, the corresponding transistor is on,
pulling Vout to zero. This, of course, occurs only if the remainder of the circuit (the PMOS
section) “cooperates,” as observed for the inverter in Section 16.2.1.

M

outV

M 1
A B

2

Figure 16.30 NMOS section of a NOR gate.

Example

16.26
Excited by the simple realization in Fig. 16.30, a student decides that the PMOS section
should incorporate a similar topology, thus arriving at the circuit depicted in Fig. 16.31(a).
Explain why this configuration does not operate as a NOR gate.

Solution Recall from Section 16.2.1 that cooperation between the NMOS and PMOS sections
means that when one is on, the other must remain off. Unfortunately, the circuit of
Fig. 16.31(a) fails to satisfy this principle. Specifically, if A is high and B is low, then both
M1 and M4 are on [Fig. 16.31(b)], “fighting” each other and producing an ill-defined
logical output. (Also, the circuit draws significant static power from VDD.)
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outV
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outV
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VDD
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Figure 16.31

Exercise What happens if M4 is omitted?

The above example reveals that the PMOS section must remain off if A or B (or both)
are high. Moreover, if both inputs are low, the PMOS section must be on so as to ensure
Vout is pulled up to VDD. Shown in Fig. 16.32(a) is such a circuit, blocking the path from
VDD to Vout if one of the inputs is high (why?), but raising Vout to VDD if both inputs are
low. The operation, of course, remains unchanged if A and B are swapped.

Figure 16.32(b) depicts the overall CMOS NOR implementation. The reader is en-
couraged to verify the operation for all four input logical combinations and prove that the
circuit consumes no static power.

VDD

M 4

(a) (b)

A

M 3
B

outV
M

outV

M 1
A B

2

VDD

M 4

M 3

Figure 16.32 (a) PMOS section of a NOR gate, (b) complete CMOS NOR gate.

The reader may wonder why we did not attempt to implement an OR gate. As evi-
dent from the foregoing development, the evolution of the circuit from a CMOS inverter
inherently contains an inversion. If an OR gate is necessary, the topology of Fig. 16.32(b)
can be followed by an inverter.

Example

16.27
Construct a three-input NOR gate.

Solution We expand the NMOS section of Fig. 16.30 and the PMOS section of Fig. 16.32(a) so as
to accommodate three inputs. The result is depicted in Fig. 16.33.
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Figure 16.33

Exercise Study the behavior of the circuit if M3 is accidentally omitted.

The principal drawback of the CMOS NOR gate stems from the use of PMOS devices
in series. Recall that the low mobility of holes requires a proportionally wider PMOS
transistor to obtain a symmetric VTC and, more importantly, equal rise and fall times.
Viewing the transistors in a two-input NOR gate as resistors for simplicity, we observe that
the PMOS section suffers from twice the resistance of each PMOS device (Example 16.23),
creating a slow rising transition at the output (Fig. 16.34). If wider PMOS transistors are
employed to reduce Ron, then their gate capacitance (≈ WLCox) increases, thereby loading
the preceding stage. The situation worsens as the number of inputs to the gate increases.

M

outV

M 1 2

VDD

M 4

M 3

CL

R2 on

Figure 16.34 PMOS devices in series charging a load capacitance.

Example

16.28
Select the relative widths of the transistors in the three-input NOR gate of Fig. 16.33 for
equal rise and fall times. Assume μn ≈ 2μp and equal channel lengths.

Solution The series combination of the three PMOS devices must present a resistance equal to
that of an NMOS transistor. If W1 = W2 = W3 = W, then we must choose

W4 = W5 = W6 = 6W, (16.98)

so as to ensure that each PMOS device exhibits an on-resistance equal to one-third
of that of each NMOS transistor. Note that the gate presents a capacitance of about
7WLCox at each input, quite larger than that of an inverter (≈ 3WLCox).

Exercise Repeat the above example if μn ≈ 3μp.
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16.3.2 NAND Gate

The developments in Section 16.3.1 for the NOR gate can readily be extended to create a
NAND gate. Since an NAND operation, A · B, produces a zero output if both inputs are
high, we construct the NMOS section as shown in Fig. 16.35(a), where M1 or M2 blocks
the path from Vout to ground unless both A and B remain high. The PMOS section, on
other hand, must pull Vout to VDD if at least one of the inputs is low, and is thus realized as
shown in Fig. 16.35(b). Figure 16.35(c) depicts the overall NAND gate. This circuit, too,
consumes zero static power.
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M 1
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B
2

outV

VDD

MM 3 4 3 4
A B

outV
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M

M 1

A
2

outV

B

(a) (b) (c)

Figure 16.35 (a) NMOS section of a NAND gate, (b) PMOS section of a NAND gate, (c) complete

CMOS NAND gate.

In contrast to the NOR gate, the NAND gate places NMOS devices in series, thus
suffering less severely from speed limitation of PMOS transistors. The following example
illustrates this point.

Example

16.29
Design a three-input NAND gate and determine the relative widths of the transistors
for equal rise and fall times. Assume μn ≈ 2μp and equal channel lengths.

Solution Figure 16.36 shows the realization of the gate. With three NMOS transistors in series,
we select a width of 3W for M1-M3 so that the total series resistance is equivalent to one
device having a width of W. Each PMOS device must therefore have a width of 2W.
Consequently, the capacitance seen at each input is roughly equal to 5WLCox, about
30% less than that of the NOR gate in Example 16.28.

VDD

MM

M

M

outV

M 1

2

3

M

A B C

4 5 6

Figure 16.36

Exercise Repeat the above example if μn ≈ 3μp.
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In CMOS logic, the PMOS and NMOS sections are called “dual” of each other. In
fact, given one section, we can construct the other according to the following rule: convert
each series branch to parallel branches and vice versa.

Example

16.30
Determine the PMOS dual of the circuit shown in Fig. 16.37(a) and determine the logical
function performed by the overall CMOS realization.
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C C

4 5 M5

6

4
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(a) (b) (c)

Figure 16.37

Solution Here, M1 and M2 are placed in series (to perform a NAND operation) and the com-
bination appears in parallel with M3 (to implement a NOR function). The PMOS dual
therefore consists of a parallel combination of two transistors, and a third transistor
in series with this combination [Fig. 16.37(b)]. Figure 16.37(c) depicts the overall gate,
which performs the logical function A · B +C .

Exercise Suppose M3 is accidentally omitted. Study the behavior of the gate.

P R O B L E M S

Unless otherwise stated, in the following prob-
lems assume VDD = 1.8 V, μnCox = 100 μA/V2,
μpCox = 50 μA/V2, VTH,N = 0.4 V, VTH,P = −0.5
V, λN = 0, and λP = 0.

16.1. The CS stage of Example 16.2 must
achieve an output low level no higher than
100 mV. If RD = 5 k�, determine the min-
imum required value of (W/L)1.

16.2. Consider the PMOS common-source
stage shown in Fig. 16.38. We wish to
utilize this circuit as a logical inverter.
Compute the low and high output levels
if (W/L)1 = 20/0.18 and RD = 5 k�. As-
sume the input swings from zero to VDD.

VDD

M

outV

1

R

inV

D

Figure 16.38

16.3. Fig. 16.39 shows a CS stage with a MOS
pull-up resistor with (W/L)1 = 2/0.18 and
(W/L)2 = 3/0.18. Assuming M2 in satu-
ration, calculate the output voltage for
Vin = VDD.
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M 1

outV

Vin

VDD

M 2

Figure 16.39

16.4. In the inverter of Fig. 16.39, the out-
put level must remain below 200 mV. If
(W/L)1 = 3/0.18, determine the required
value of (W/L)2.

16.5. The inverter of Fig. 16.39 must provide an
output low level not higher than 50 mV.
If (W/L)2 = 3/0.18, what is the required
value of (W/L)1?

16.6. Due* to a manufacturing error, an NMOS
inverter has been reconfigured as shown
in Fig. 16.40.
(a) Determine the output for Vin = 0 and

Vin = VDD. Does the circuit invert?

(b) Can a trip point be obtained for this
circuit?

R

VDD

D

outV

Vin

M V
1 DD

Figure 16.40

16.7. In a logic circuit noise margin is defined
as the input level at which the small sig-
nal gain reaches −0.5. For NMOS inverter
with (W/L)1 = 3/0.18 and RD= 2 k�,
compute the noise margin.

16.8. Consider the inverter shown in Fig. 16.39,
assuming (W/L)1 = 4/0.18 and (W/L)2 =
9/0.18. Calculate the noise margins.

16.9. Consider** the cascade of identical NMOS
inverters depicted in Fig. 16.41. If
RD = 5 k�, determine (W/L)1,2 such that
the output low level of M1 (for Vin = VDD)
is equal to NML of the second inverter.
(In this situation, the output of the first
inverter is degraded so much as to place
the second stage at the point of unity gain.)

R

M 1

D

Vin

R

M

VDD

D

outV

2

X

Figure 16.41

16.10. Two** inverters having the characteristics
shown in Fig. 16.42 are placed in a cascade.
Sketch the overall VTC of the cascade
if (a) inverter A precedes inverter B, or
(b) inverter B precedes inverter A.

inV

Vout

VDD

V1 inV

Vout

VDD

V2

Inverter A Inverter B

Figure 16.42

16.11. An inverter is constructed as illustrated
in Fig. 16.43, where Ron denotes the on-
resistance of the switch. Assume Ron �
R2 so that the output low level is degraded
negligibly.
(a) Compute the time required for the

output to reach 95% of VDD if S1 turns
off at t = 0.

(b) Compute the time required for the
output to reach 5% of VDD if S1 turns
on at t = 0. How does the result com-
pare with that in (a)?

R

VDD

Ron1

A 1S

2

CL

Vout

Figure 16.43

16.12. An NMOS inverter must drive a load
resistor of 1 k� with an output rise time
of 100 ps. Assuming the rise time is given
by three output time constants, determine
the maximum load capacitance required.
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16.13. An NMOS inverter with a load resistor
of 1 k� exhibits an output low level and
an output rise time of 200 ps. Compute
the load capacitance and output level for
Vin = VDD, if the rise time is given by
three times output time constants and
(W/L) = 3/0.18.

16.14. A NMOS inverter must drive a load capa-
citance of 100 fF and a load resistance of
1.8 k�. Calculate the supply current when
the output is low. What is the fastest rise
time that the circuit can achieve? Assume
output low level is nearly zero.

16.15. In a CMOS inverter, (W/L)1 = 2/0.18
and the trip point of the circuit is 0.8 V.
Determine the value of (W/L)2 and the
supply current drawn at this point.

16.16. Explain qualitatively what happens to the
VTC of CMOS inverter as the length of
M1 or M2 is increased.

16.17. A CMOS inverter employs (W/L)1 =
3/0.18 and (W/L)2 = 7/0.18. Derive ex-
pressions for the VTC in each region of
Fig. 16.19(d) and plot the result.

16.18. In a CMOS inverter the ratio of (W/L)1

to (W/L)2 is 32. Find the trip point of the
circuit. Assume both M1 and M2 are in the
saturation region.

16.19. In a CMOS inverter (W/L)1 = 3/0.18 and
(W/L)2 = 5/0.18. Determine the mini-
mum and maximum input voltages at
which both transistors operate in sat-
uration. Also calculate the difference
between each and trip point.

16.20. What is the minimum trip point volt-
age possible in a CMOS inverter? Give
reasons.

16.21. Figure 16.44 shows three circuits along
with three VTCs. Match the VTC with its
corresponding circuit.
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M 1

VDD

M 2

inV

RP

outV

Figure 16.45

16.22. Due to a manufacturing error, a parasitic
resistor RP = 2 k� has appeared in the
inverter of Fig. 16.45. If (W/L)1 = 3/0.18
and (W/L)2 = 5/0.18, calculate the low
and high output levels and the trip
point.
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16.23. Determine the (W/L)2 for a CMOS
inverter if NMH = 0.82 V and (W/L)1 =
5/0.18.

16.24. Determine the VIL and VIH of a CMOS
inverter of the ratio of (W/L)1 to (W/L)2

is 3/4.

16.25. Consider* Eq. (16.54) for VIL (= NML).
Sketch the noise margin as a varies from
0 to infinity. Explain the results intu-
itively for very small and very large values
of a.

16.26. Consider the circuit shown in Fig.
16.20(a), where Vout (t = 0) = 0. If
(W/L)2 = 6/0.18 and CL = 50 fF, deter-
mine the time it takes for the output to
reach VDD/2.

16.27. In the circuit depicted in Fig. 16.23(a), the
input jumps from 0 to V1 at t = 0. Assum-
ing Vout (t = 0) = VDD, (W/L)1 = 1/0.18,
andCL = 30 fF, determine the time it takes
the output to fall to VDD/2 if (a) V1 = VDD

and (b) V1 = VDD/2.

16.28. Consider a CMOS inverter with
(W/L)1 = 1/0.18, (W/L)2 = 2.4/0.18,
and CL = 80 fF. Determine the TPLH and
TPHL.

16.29. Suppose the supply voltage in Problem
16.28 is raised by 10%. By how much do
TPHL and TPLH decrease?

16.30. Repeat Problem 16.29 with VDD = 0.9 V
and compare the results. Note the signifi-
cant increase in TPHL and TPLH .

16.31. In Eq. (16.82), suppose VTH1 = 0.4 V. For
what supply voltage do the two terms
in the square brackets become equal?
How should the supply voltage be cho-
sen to make the first term 10% of the
second?

16.32. A CMOS inverter must achieve symmet-
ric propagation delays equal to 45 ps
while driving a load capacitance of 50 fF.
If (W/L)1 = 2/0.18 and (W/L)2 = 5/0.18,
determine the value of VTH1 and VTH2.

16.33. A CMOS inverter with the W/L = 1/0.18
exhibits a TPHL of 100 ps with
VDD = 2.2 V. Determine the value of load
capacitance CL.

16.34. A CMOS inverter with unknown de-
vice dimensions and threshold shows
a TPLH = 120 ps with CL = 90 fF,
VDD = 1.8 V, and TPLH = 160 ps with
CL = 90 fF, VDD = 1.5 V. Determine
(W/L)2 and VTH2.

16.35. In Eq. (16.82), the argument of the
logarithm becomes negative if VDD <

4VTH1/3. Explain intuitively why this
happens.

16.36. A resistor of value 1 k� charges a capaci-
tor of 100 fF from 0 to VDD. If the energy
dissipated in the resistor is 0.2 pJ, deter-
mine the value of VDD.

16.37. A certain logic circuit draws an aver-
age power of 25 mW with VDD = 1.8 V
and CL = 20 fF. Determine the switching
frequency.

16.38. A clock buffer with a frequency of 5 GHz
drives five million transistors having an av-
erage width of 1 μm, COX = 10 fF/μm2

and gate capacitance approximated by
WLCOX . Determine the power dissipated
by the clock buffer.

16.39. In an inverter the peak crow bar current
increases by 54.5 μA when the supply
voltage is increased by 10%. Determine
the value of (W/L)1 and Ipeak. Assume
λ = 0.

16.40. Approximating** the crowbar current
waveform in Fig. 16.29(c) with an isosceles
triangle, calculate the average power dis-
sipation resulting from this mechanism.
Assume an operation frequency of f1.

16.41. A CMOS NOR gate drives a load capa-
citance of 20 fF. Suppose the input wave-
forms are as shown in Fig. 16.46, each
having a frequency of f1 = 500 MHz. Cal-
culate the power dissipated by the gate.
Neglect the crowbar current.

t

A

B

Figure 16.46
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16.42. Repeat Problem 16.41 for a NAND gate.

16.43. For each NMOS section shown in Fig.
16.47, draw the dual PMOS section, con-
struct the overall CMOS gate, and deter-
mine the logical function performed by
the gate.

Design Problems

16.44. Design an NMOS inverter (i.e., determine
RD and W/L) for a static power budget of
0.25 mW and NML = 600 mV.

16.45. Design an NMOS inverter (i.e., determine
RD and W/L) for an output low level of
100 mV and a power budget of 0.25 mW.

16.46. Determine (W/L)1,2 for a CMOS inverter
such that the trip point is equal to 0.8 V
and the current drawn from VDD at this
point is equal to 0.5 mA. Assume λn =
0.1 V−1 and λp = 0.2 V−1.

16.47. Determine (W/L)1,2 for a CMOS inverter
such that TPLH = TPHL = 100 ps while the
circuit drives a load capacitance of 50 fF.

S P I C E P R O B L E M S

In the following problems, use the MOS device
models given in Appendix A.

16.1. The inverter of Fig. 16.48 must provide a
trip point at 0.8 V. If (W/L)1 = 0.6 μm/

0.18 μm, determine (W/L)2. Also, plot the
supply current as a function of Vin for
0 < Vin < 1.8 V.
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Figure 16.48

16.2. The inverter cascade shown in Fig. 16.49
drives a load capacitance of 100 fF.
Assume W1 = 0.5W2 = 0.6 μm, W3 =
0.5W4, and L = 0.18 μm for all four
devices.
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Figure 16.49
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(a) Determine the optimum choice of W3

(and W4) if the total delay from Vin to
Vout must be minimized. What is the
delay contribution of each stage?

(b) Determine the average power dissipa-
tion of the circuit at a frequency of
500 MHz.

16.3. Consider a CMOS NAND gate with its
inputs shorted together so as to form an
inverter (Fig. 16.50). We wish to determine
the delay of this circuit with a fanout of four;
i.e., if it is loaded by a similar stage that

incorporates devices whose width is scaled
up by a factor of four. Use SPICE to com-
pute this delay.
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Figure 16.50



Chapter 17
CMOS Amplifiers∗

With the physics and operation of MOS transistors described in Chapter 6, we now deal

with amplifier circuits employing such devices. While the field of microelectronics involves

much more than amplifiers, our study of cellphones and digital cameras in Chapter 1

indicates the extremely wide usage of amplification, motivating us to master the analysis

and design of such building blocks. This chapter proceeds as follows.

➤ ➤

General Concepts

• Input and Output

Impedances

• Biasing

• DC and Small-Signal

Analysis

Operating Point Analysis

• Simple Biasing

• Source Degeneration

• Self-Biasing

• Biasing of PMOS

Devices

Amplifier Topologies

• Common-Source Stage

• Common-Gate Stage

• Source Follower

Building the foundation for the remainder of this book, this chapter is quite long. Most
of the concepts introduced here are invoked again in Chapter 5 (bipolar amplifiers). The
reader is therefore encouraged to take frequent breaks and absorb the material in small
doses.

17.1 GENERAL CONSIDERATIONS

Recall from Chapter 6 that a voltage-controlled current source along with a load
resistor can form an amplifier. In general, an amplifier produces an output (voltage
or current) that is a magnified version of the input (voltage or current). Since most
electronic circuits both sense and produce voltage quantities,1 our discussion primarily
centers around “voltage amplifiers” and the concept of “voltage gain,” vout/vin.

∗This chapter is written for courses that deal with CMOS circuits before bipolar circuits.
1Exceptions are described in Chapter 12.

742
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What other aspects of an amplifier’s performance are important? Three parameters
that readily come to mind are (1) power dissipation (e.g., because it determines the bat-
tery lifetime in a cellphone or a digital camera); (2) speed (e.g., some amplifiers in a cell-
phone or analog-to-digital converters in a digital camera must operate at high frequencies);
(3) noise (e.g., the front-end amplifier in a cellphone or a digital camera processes small
signals and must introduce negligible noise of its own).

17.1.1 Input and Output Impedances

In addition to the above parameters, the input and output (I/O) impedances of an ampli-
fier play a critical role in its capability to interface with preceding and following stages.
To understand this concept, let us first determine the I/O impedances of an ideal volt-
age amplifier. At the input, the circuit must operate as a voltmeter, i.e., sense a voltage
without disturbing (loading) the preceding stage. The ideal input impedance is there-
fore infinite. At the output, the circuit must behave as a voltage source, i.e., deliver a
constant signal level to any load impedance. Thus, the ideal output impedance is equal
to zero.

In reality, the I/O impedances of a voltage amplifier may considerably depart from the
ideal values, requiring attention to the interface with other stages. The following example
illustrates the issue.

Example

17.1
An amplifier with a voltage gain of 10 senses a signal generated by a microphone
and applies the amplified output to a speaker [Fig. 17.1(a)]. Assume the microphone
can be modeled with a voltage source having a 10 mV peak-to-peak signal and a
series resistance of 200 �. Also assume the speaker can be represented by an 8 �

resistor.
(a) Determine the signal level sensed by the amplifier if the circuit has an input

impedance of 2 k� or 500 �.
(b) Determine the signal level delivered to the speaker if the circuit has an output

impedance of 10 � or 2 �.

Solution (a) Figure 17.1(b) shows the interface between the microphone and the amplifier. The
voltage sensed by the amplifier is therefore given by

v1 = Rin

Rin + Rm
vm. (17.1)

For Rin = 2 k�,

v1 = 0.91vm, (17.2)

only 9% less than the microphone signal level. On the other hand, for Rin = 500 �,

v1 = 0.71vm, (17.3)

i.e., nearly 30% loss. It is therefore desirable to maximize the input impedance in this
case.
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Microphone Amplifier Speaker

A v = 10

v m

 Ω200

R m
10 mV  Ω8

Rin
v m
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1v

v

Ramp

amp  Ω8RL outv

(c)

(a)

(b)

Figure 17.1 (a) Simple audio system, (b) signal loss due to amplifier input impedance,

(c) signal loss due to amplifier output impedance.

(b) Drawing the interface between the amplifier and the speaker as in Fig. 17.1(c),
we have

vout = RL

RL + Ramp
vamp. (17.4)

For Ramp = 10 �,

vout = 0.44vamp, (17.5)

a substantial attenuation. For Ramp = 2 �,

vout = 0.8vamp. (17.6)

Thus, the output impedance of the amplifier must be minimized.

Exercise Prove that the power delivered to RL is maximized if Ramp = RL for a given value
of RL.

The importance of I/O impedances encourages us to carefully prescribe the method
of measuring them. As with the impedance of two-terminal devices such as resistors and
capacitors, the input (output) impedance is measured between the input (output) nodes
of the circuit while all independent sources in the circuit are set to zero.2 Illustrated in
Fig. 17.2, the method involves applying a voltage source to the two nodes (also called
“port”) of interest, measuring the resulting current, and defining vX/ iX as the impedance.

2Recall that a zero voltage source is replaced by a short and a zero current source by an open.
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v x

Xi

Input
Port

Rin
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Output
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R

Xi

(a) (b)

out

Figure 17.2 Measurement of (a) input and (b) output impedances.

Also shown are arrows to denote “looking into” the input or output port and the corre-
sponding impedance.

The reader may wonder why the output port in Fig. 17.2(a) is left open whereas
the input port in Fig. 17.2(b) is shorted. Since a voltage amplifier is driven by a voltage
source during normal operation, and since all independent sources must be set to
zero, the input port in Fig. 17.2(b) must be shorted to represent a zero voltage source.
That is, the procedure for calculating the output impedance is identical to that used
for obtaining the Thevenin impedance of a circuit (Chapter 1). In Fig. 17.2(a), on
the other hand, the output remains open because it is not connected to any external
sources.

Affecting the transfer of signals from one stage to the next, the I/O impedances are
usually regarded as small-signal quantities—with the tacit assumption that the signal levels
are indeed small. For example, the input impedance is obtained by applying a small change
in the input voltage and measuring the resulting change in the input current. The small-
signal models of semiconductor devices therefore prove crucial here.

Example

17.2
Assuming that the transistor operates in the saturation region, determine the input
impedance of the circuit shown in Fig. 17.3(a).

g
mv

R
R

V

Xi

inv r OX

(a) (b)

v1v1

D

D

DD

M 1

Figure 17.3 (a) Simple amplifier stage, (b) small-signal model.

Solution Constructing the small-signal equivalent circuit depicted in Fig. 17.3(b), we note that
the gate draws no current (at low frequencies) and the input impedance is simply
given by

vx

ix
= ∞. (17.7)

Exercise Compute the input impedance if RD = 0 or λ = 0.
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in

Short

(a) (b)

R Rout

Figure 17.4 Concept of impedance seen at a node.

To simplify the notations and diagrams, we often refer to the impedance seen at a node
rather than between two nodes (i.e., at a port). As illustrated in Fig. 17.4, such a convention
simply assumes that the other node is the ground, i.e., the test voltage source is applied
between the node of interest and ground.

Example

17.3
Calculate the impedance seen looking into the drain of M1 in Fig. 17.5(a).

inv

(a) (b)

Rout RoutM 1

g
m

vv r O1 1

Figure 17.5 (a) Impedance seen at drain, (b) small-signal model.

Solution Setting the input voltage to zero and using the small-signal model in Fig. 17.5(b), we
note that v1 = 0, gmv1 = 0, and hence Rout = rO.

Exercise What is the output impedance if a resistor is placed in series with the gate of M1?

Example

17.4
Calculate the impedance seen at the source of M1 in Fig. 17.6(a). Neglect channel-length
modulation for simplicity.
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vv 1 1
M 1

DD

Figure 17.6 (a) Impedance seen at source, (b) small-signal model.
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Solution Setting the input voltage to zero and replacing VDD with ac ground, we arrive at the
small-signal circuit shown in Fig. 17.6(b). Interestingly, v1 = −vX and

gmv1 = −iX . (17.8)

That is,

vX

iX
= 1

gm
. (17.9)

Exercise Does the above result change if a resistor is placed in series with the drain terminal of M1?

The preceding three examples provide three important rules that will be used through-
out this book (Fig. 17.7):

• Looking into the gate, we see infinity.

• Looking into the drain, we see rO if the source is (ac) grounded.

• Looking into the source, we see 1/gm if the gate is (ac) grounded and channel-length
modulation is neglected.

ac acac

r O

g m

1ac

 λ = 0

Figure 17.7 Summary of impedances seen at terminals of a MOS transistor.

It is imperative that the reader master these rules and be able to apply them in more
complex circuits.3

17.1.2 Biasing

Recall from Chapter 6 that a MOS transistor operates as an amplifying device if it is biased
in the saturation mode; that is, in the absence of signals, the environment surrounding the
device must ensure that VGS is sufficiently large to create the required overdrive and VDS

is high enough to ensure pinch-off in the channel. Moreover, as explained in Chapter 6,
amplification properties of the transistor such as gm and rO depend on the quiescent (bias)
drain current. Thus, the surrounding circuitry must also set (define) the device bias current
properly.

3While beyond the scope of this book, it can be shown that the impedance seen at the source is equal to
1/gm only if the drain is tied to a relatively low impedance.



748 Chapter 17 CMOS Amplifiers

17.1.3 DC and Small-Signal Analysis

The foregoing observations lead to a procedure for the analysis of amplifiers (and many
other circuits). First, we compute the operating (quiescent) conditions (terminal voltages
and currents) of each transistor in the absence of signals. Called the “dc analysis” or “bias
analysis,” this step determines both the region of operation (saturation or triode) and
the small-signal parameters of each device. Second, we perform “small-signal analysis,”
i.e., study the response of the circuit to small signals (superimposed on bias levels) and
compute quantities such as the voltage gain and I/O impedances. As an example, Fig. 17.8
illustrates the bias and signal components of a voltage and a current.

t

V
Bias (dc)

Value

t

Bias (dc)
Value

I

GS

D

Figure 17.8 Bias and signal levels for a MOS transistor.

It is important to bear in mind that small-signal analysis deals with only (small) changes
in voltages and currents in a circuit around their quiescent values. Thus, as mentioned in
Chapter 6, all constant sources, i.e., voltage and current sources that do not vary with time,
must be set to zero for small-signal analysis. For example, the supply voltage is constant
and, while establishing proper bias points, plays no role in the response to small signals.
We therefore ground all constant voltage sources4 and open all constant current sources
while constructing the small-signal equivalent circuit. From another point of view, the two
steps described above follow the superposition principle: first, we determine the effect
of constant voltages and currents while signal sources are set to zero, and second, we
analyze the response to signal sources while constant sources are set to zero. Figure 17.9
summarizes these concepts.

R

I

V

V

DC Analysis Small–Signal Analysis

Short

Open

I
inv outvD2

D1

GS

D1

DD

VDS

Figure 17.9 Steps in a general circuit analysis.

4We say all constant voltage sources that are tied to ground are replaced by an “ac ground.”
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We should remark that the design of amplifiers follows a similar procedure. First, the
circuitry around the transistor is designed to establish proper bias conditions and hence
the necessary small-signal parameters. Second, the small-signal behavior of the circuit is
studied to verify the required performance. Some iteration between the two steps may
often be necessary so as to converge toward the desired behavior.

How do we differentiate between small-signal and large-signal operations? In other
words, under what conditions can we represent the devices with their small-signal mod-
els? If the signal perturbs the bias point of the device only negligibly, we say the circuit
operates in the small-signal regime. In Fig. 17.8, for example, the change in ID due to
the signal must remain small. This criterion is justified because the amplifying properties
of the transistor such as gm and rO are considered constant in small-signal analysis even
though they in fact vary as the signal perturbs ID. That is, a linear representation of the
transistor holds only if the small-signal parameters themselves vary negligibly. The defini-
tion of “negligibly” depends somewhat on the circuit and the application, but as a rule of
thumb, we consider 10% variation in the drain current as the upper bound for small-signal
operation.

In drawing circuit diagrams hereafter, we will employ some simplified notations
and symbols. Illustrated in Fig. 17.10 is an example where the battery serving as the
supply voltage is replaced with a horizontal bar labeled VDD.5 Also, the input voltage
source is simplified to one node called vin, with the understanding that the other node is
ground.

R

V

in

R
V

in

out

out

V
V

V
V

DD
D D

DD

M 1

M 1

Figure 17.10 Notation for supply voltage.

In this chapter, we begin with the DC analysis and design of MOS stages, developing
skills to determine or create bias conditions. This phase of our study requires no knowledge
of signals and hence the input and output ports of the circuit. Next, we introduce various
amplifier topologies and examine their small-signal behavior.

17.2 OPERATING POINT ANALYSIS AND DESIGN

It is instructive to begin our treatment of operating points with an example.

5The subscript DD indicates supply voltage feeding the drain.
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Example

17.5
A student familiar with MOS devices constructs the circuit shown in Fig. 17.11 and
attempts to amplify the signal produced by a microphone. The microphone generates
an output signal having a peak value of 20 mV with a zero dc (average) level. Explain
what has happened.

R

V

in

 Ω1 k

outV

V

M 1

D

DD

Figure 17.11 Amplifier driven directly by a microphone.

Solution Unfortunately, the student has forgotten to bias the transistor. Since the microphone
does not produce a dc output, a peak input of 20 mV fails to turn the transistor on.
Consequently, the transistor carries no drain current and hence its transconductance is
zero. The circuit thus generates no output signal.

Exercise Do we expect reasonable amplification if the threshold voltage of the device is zero?

As mentioned in Section 17.1.2, biasing seeks to fulfill two objectives: ensure operation
in the saturation region, and set the drain current to the value required in the application.
Let us return to the above example for a moment.

Example

17.6
Having realized the bias problem, the student in Example 17.5 modifies the circuit as
shown in Fig. 17.12, connecting the gate to VDD to allow dc biasing for the gate. Explain
why the student needs to learn more about biasing.

R

V

 Ω1 k

outV

= 2.5 V

D

DD

M 1

Figure 17.12 Amplifier with gate tied to VDD.

Solution The fundamental issue here is that the signal generated by the microphone is shorted to
VDD. Acting as an ideal voltage source, VDD maintains the gate voltage at a constant value,
prohibiting any change introduced by the microphone. Since VGS remains constant, so
does Vout, leading to no amplification.

Exercise What happens if a resistor is placed in series with the source of M1?
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The preceding examples suggest that the gate can be neither tied to a zero dc voltage
nor directly connected to a nonzero dc voltage. So what can we do?!

Example

17.7
Quite disappointed, the student contemplates transferring to the biology department.
But he makes one last attempt and builds the circuit shown in Fig. 17.13, where
VB = 0.75 V. Can this arrangement operate as an amplifier?

V

X

 ΩR 1 k

outV

M 1

= 1.8 V

D

DD

VB

Figure 17.13 Amplifier with gate bias.

Solution Yes, it can. In the absence of voice, the microphone produces a zero output and hence
VGS = VB. Proper choice of VB can ensure operation in the saturation region with the
required drain current (and the required transconductance).

Unfortunately, this arrangement necessitates one battery for each amplifier stage.
(Different stages may operate with different gate-source voltages.) We must therefore
seek a simple replacement for the battery. Nonetheless, the student has come close
enough and need not quit electrical engineering.

Exercise Does the gate voltage depend on the value of RD?

17.2.1 Simple Biasing

Now consider the topology shown in Fig. 17.14(a), where the gate is tied to VDD through
a relatively large resistor, RG, so as to provide the gate bias voltage. With zero current
flowing through RG (why?), the above circuit yields VGS = VDD, a relatively large and
fixed value. Most amplifier designs, on the other hand, require flexibility in the choice of

R

I
Y

R

X
M 1

D

G D

(a) (b)

outV

VDD = 1.8 V

R1

R2

V

R

DD

M 1

D

outV

X

= 1.8 V

Figure 17.14 Use of (a) RG, or (b) resistor divider to bias the gate.
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VGS. This issue can readily be remedied as depicted in Fig. 17.14(b), where

VGS = R2

R1 + R2

VDD. (17.10)

Our objective is to analyze this circuit and determine its bias current and voltages.
We begin by assuming M1 operates in the saturation region (and check this assumption

at the end). We also neglect channel-length modulation in bias calculations. From the
square-law characteristic,

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(17.11)

= 1

2
μnCox

W
L

(
R2

R1 + R2

VDD − VTH

)2

. (17.12)

Thus, proper choice of the resistor divider ratio and W/L can establish the required bias
current.

We must also compute the drain-source voltage and determine whether the device
is indeed in saturation. Noting that RD carries a current equal to ID and hence sus-
tains a voltage of RDID, we write a KVL around the supply voltage and the output
branch:

VDS = VDD − RDID. (17.13)

For operation in saturation, the drain voltage must be no more than one threshold below
the gate voltage, VDS ≥ VGS − VTH :

VDD − RDID ≥ VGS − VTH (17.14)

≥ R2

R1 + R2

VDD − VTH . (17.15)

Example

17.8
Determine the bias current of M1 in Fig. 17.14(b) assuming VTH = 0.5 V, μnCox =
100 μA/V2, W/L = 5/0.18, λ = 0, R1 = 20 k�, and R2 = 15 k�. What is the maximum
allowable value of RD for M1 to remain in saturation?

Solution Since VGS = 0.771 V, we have

ID = 102 μA. (17.16)

The drain voltage can fall to as low as VGS − VTH = 0.271 V. Thus, the voltage drop
across RD can reach 1.529 V, allowing a maximum RD of 15 k�.

Exercise If W is doubled, what is the maximum allowable value of RD for M1 to remain in saturation?

The reader may wonder why we concerned ourselves with the maximum value of RD

in the above example. As seen later in this chapter, the voltage gain of such a stage is
proportional to RD, demanding that it be maximized.
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R1
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DD

M 1

D

outV
C1

Figure 17.15 Use of capacitive coupling to isolate bias from microphone.

The reader may also wonder how exactly the microphone would be connected to the
above amplifier. To ensure that only the signal is applied to the circuit and the zero dc
level of the microphone does not disrupt the biasing, we must insert a device in series with
the microphone that passes signals but blocks dc levels, i.e., a capacitor (Fig. 17.15). This
technique is a direct result of the superposition perspective that we invoked earlier: for bias
calculations we assume no signals are present and hence the capacitor is an open circuit,
whereas for small-signal calculations we ignore the bias values and consider the capacitor
a short circuit. Since the impedance of the capacitor, 1/(C1s), is inversely proportional to
its value and the frequency of operation, we must choose C1 large enough that it behaves
nearly as a short circuit at the lowest frequency of interest. We return to this concept later
in this chapter.

17.2.2 Biasing with Source Degeneration

In some applications, a resistor may be placed in series with the source of the transistor,
thereby providing “source degeneration.” Illustrated in Fig. 17.16 is such a topology, where
the gate voltage is defined by R1 and R2. We assume M1 operates in saturation and neglect
channel-length modulation. Noting that the gate current is zero, we have

VX = R2

R1 + R2

VDD. (17.17)

Since VX = VGS + IDRS ,

R2

R1 + R2

VDD = VGS + IDRS . (17.18)

Also,

ID = 1

2
μnCox

W
L

(VGS − VTH)
2
. (17.19)
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R2 Ω10 k

= 1.8 V

Figure 17.16 MOS stage with biasing.
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Equations (17.18) and (17.19) can be solved to obtain ID and VGS, either by iteration or by
finding ID from Eq. (17.18) and replacing for it in Eq. (17.19):(

R2

R1 + R2

VDD − VGS

)
1

RS
= 1

2
μnCox

W
L

(VGS − VTH)
2
. (17.20)

That is

VGS = −(V1 − VTH) +
√

(V1 − VTH)
2 − V2

TH + 2R2

R1 + R2

V1VDD, (17.21)

= −(V1 − VTH) +
√

V2
1 + 2V1

(
R2VDD

R1 + R2

− VTH

)
, (17.22)

where

V1 = 1

μnCox
W
L

RS

. (17.23)

This value of VGS can then be substituted in Eq. (17.18) to obtain ID. Of course, VY must
exceed VX − VTH to ensure operation in the saturation region.

Example

17.9
Determine the bias current of M1 in Fig. 17.16 assuming VTH = 0.5 V, μnCox =
100 μA/V2, W/L = 5/0.18, and λ = 0. What is the maximum allowable value of RD

for M1 to remain in saturation?

Solution We have

VX = R2

R1 + R2

VDD (17.24)

= 1.286 V. (17.25)

With an initial guess VGS = 1 V, the voltage drop across RS can be expressed as
VX − VGS = 286 mV, yielding a drain current of 286 μA. From Eq. (17.19), we have

VGS = VTH +
√√√√√ 2ID

μnCox
W
L

(17.26)

= 0.954 V. (17.27)

Consequently,

ID = VX − VGS

RS
(17.28)

= 332 μA, (17.29)

and hence

VGS = 0.989 V. (17.30)

This gives ID = 297 μA.
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As seen from the iterations, the solutions converge slowly. We may therefore utilize the
exact result in Eq. (17.22) to avoid lengthy calculations. Since V1 = 0.36 V,

VGS = 0.974 V (17.31)

and

ID = VX − VGS

RS
(17.32)

= 312 μA. (17.33)

The maximum allowable value of RD is obtained if VY = VX − VTH = 0.786 V.
That is,

RD = VDD − VY

ID
(17.34)

= 3.25 k�. (17.35)

Exercise Calculate the bias current if RS is doubled.

Example

17.10
In the circuit of Example 17.9, assume M1 is in saturation and RD = 2.5 k� and compute
(a) the maximum allowable value of W/L and (b) the minimum allowable value of RS

(with W/L = 5/0.18). Assume λ = 0.

Solution (a) As W/L becomes larger, M1 can carry a larger current for a given VGS. With
RD = 2.5 k� and VX = 1.286 V, the maximum allowable value of ID is given by

ID = VDD − VY

RD
(17.36)

= 406 μA. (17.37)

The voltage drop across RS is then equal to 406 mV, yielding VGS = 1.286 V−
0.406 V = 0.88 V. In other words, M1 must carry a current of 406 μA with VGS = 0.88 V:

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(17.38)

406 μA = (50 μA/V2)
W
L

(0.38 V)
2
; (17.39)

thus,

W
L

= 56.2. (17.40)

(b) With W/L = 5/0.18, the minimum allowable value of RS gives a drain current
of 406 μA. Since

VGS = VTH +
√√√√√ 2ID

μnCox
W
L

(17.41)

= 1.041 V, (17.42)
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the voltage drop across RS is equal to VX − VGS = 245 mV. It follows that

RS = VX − VGS

ID
(17.43)

= 604 �. (17.44)

Exercise Repeat the above example if VDD = 1.5 V.

17.2.3 Self-Biased Stage

Another biasing scheme commonly used in discrete and integrated circuits is shown in
Fig. 17.17. Called “self-biased” because the gate voltage is provided from the drain, this
stage exhibits many interesting and useful attributes. The circuit can be analyzed by noting
that the voltage drop across RG is zero and M1 is always in saturation (why?). Thus,

IDRD + VGS + RSID = VDD. (17.45)

Finding VGS from this equation and substituting it in Eq. (17.19), we have

ID = 1

2
μnCox

W
L

[VDD − (RS + RD)ID − VTH]
2
, (17.46)

where channel-length modulation is neglected. It follows that

(RS + RD)
2I2

D − 2

⎡
⎢⎣(VDD − VTH)(RS + RD) + 1

μnCox
W
L

⎤
⎥⎦ID + (VDD − VTH)

2 = 0.

(17.47)

The value of ID can be obtained by solving the quadratic equation. With ID known, VGS

can also be computed.

V

I

R

DD

D

M 1

D

RS

RG

Figure 17.17 Self-biased MOS stage.
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Example

17.11
Calculate the drain current of M1 in Fig. 17.18 if μnCox = 100 μA/V2, VTH = 0.5 V, and
λ = 0. What value of RD is necessary to reduce ID by a factor of two?

VDD

M 1

W
L

=
0.18

 Ω1 k

 Ω20 k

5

 Ω200

RD

= 1.8 V

Figure 17.18 Example of self-biased MOS stage.

Solution Equation (17.47) gives

ID = 556 μA. (17.48)

To reduce ID to 278 μA, we solve Eq. (17.47) for RD:

RD = 2.867 k�. (17.49)

Exercise If W is quadrupled, does the bias current increase by a factor of four?

17.2.4 Biasing of PMOS Transistors

The dc biasing schemes considered thus far employ only NMOS devices. Similar ideas apply
to PMOS circuits as well but attention must be paid to polarities and voltage relationships
that ensure the device operates in saturation. The following examples reinforce these
points.

Example

17.12
Determine the bias current of M1 in Fig. 17.19 assuming VTH = −0.5 V, μpCox =
50 μA/V2, W/L = 5/0.18, λ = 0, R1 = 20 k�, and R2 = 15 k�. What is the maximum
allowable value of RD for M1 to remain in saturation?

V

X

DD

M 1

R

R

R

= 1.8 V

D1

2

I D

Figure 17.19 PMOS stage with biasing.



758 Chapter 17 CMOS Amplifiers

Solution The gate-source voltage of the transistor is given by the voltage drop across R2:

VGS = − R2

R1 + R2

VDD (17.50)

= −0.771 V (17.51)

The drain current is equal to

ID = 1

2
μpCox

W
L

(VGS − VTH)
2

(17.52)

= 56 μA. (17.53)

For M1 to remain in saturation, its drain voltage can reach at most one VTH above its
gate voltage. That is, RD can sustain a maximum voltage of VX + |VTH| = 1.529 V. The
maximum allowable value of RD is thus equal to 27.3 k�.

Exercise What is the bias current if W/L = 10/0.18?

Example

17.13
Determine the bias current of the self-biased stage shown in Fig. 17.20. Assume
VTH = −0.5 V, μpCox = 50 μA/V2, W/L = 5/0.18, and λ = 0.

VDD

M 1

R

= 1.8 V

D

I D

 Ω1 k

 Ω20 k

Figure 17.20 PMOS stage with self-biasing.

Solution Since IDRD + |VGS| = VDD, we have

ID = 1

2
μpCox

W
L

(VDD − IDRD − |VTH|)2
. (17.54)

Solution of this quadratic equation for ID gives

ID = 418 μA. (17.55)

Note that the device is always in saturation.

Exercise What supply voltage gives a bias current of 200 μA?

17.2.5 Realization of Current Sources

MOS transistors operating in saturation can act as current sources. As illustrated in
Fig. 17.21(a), an NMOS device serves as a current source with one terminal tied to ground,
i.e., it draws current from node X to ground. On the other hand, a PMOS transistor
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M 1
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M 1

VDD

M
Vb

Vb 1

X

Y

(d)(c)

Figure 17.21 (a) NMOS device operating as a current source, (b) PMOS device operating as a

current source, (c) PMOS topology not operating as a current source, (d) NMOS topology not

operating as a current source.

[Fig. 17.21(b)] draws current from VDD to node Y. If λ = 0, these currents remain inde-
pendent of VX or VY (so long as the transistors are in saturation).

It is important to understand that only the drain terminal of a MOSFET can draw a dc
current and still present a high impedance. Specifically, NMOS or PMOS devices configured
as shown in Figs. 17.21(c) and (d) do not operate as current sources because variation of
VX or VY directly changes the gate-source voltage of each transistor, thus changing the
drain current considerably. To gain another perspective, the reader is encouraged to prove
that the small-signal resistance seen at node Y or X (to ac ground) in these two circuits is
equal to 1/gm, a relatively low value.

17.3 CMOS AMPLIFIER TOPOLOGIES

Following our detailed study of biasing, we can now delve into different amplifier topologies
and examine their small-signal properties.6

Since the MOS transistor contains three terminals,7 we may surmise that three possi-
bilities exist for applying the input signal to the device, as conceptually illustrated in Figs.
17.22(a)–(c). Similarly, the output signal can be sensed from any of the terminals (with
respect to ground) [Figs. 17.22(d)–(f)], leading to nine possible combinations of input and
output networks and hence nine amplifier topologies.

However, as seen in Chapter 6, MOSFETs operating in the saturation region respond
to gate-source voltage variations by varying their drain current. This property rules out the
input connection shown in Fig. 17.22(c) because here Vin does not affect the gate or source
voltages. Also, the topology in Fig. 17.22(f) proves of no value as Vout cannot be varied
by varying the drain current. The number of possibilities therefore falls to four. But we
note that the input and output connections in Figs. 17.22(b) and (e) remain incompatible
because Vout would be sensed at the input node (the source) and the circuit would provide
no function.

The above observations reveal three possible amplifier topologies. We study each
carefully, seeking to compute its gain and input and output impedances. In all cases,
the MOSFETs operate in saturation. The reader is encouraged to review Examples
(17.2)–(17.4) and the three resulting rules illustrated in Fig. 17.7 before proceeding
further.

6While beyond the scope of this book, the large-signal behavior of amplifiers also becomes important in
many applications.
7The substrate also acts as a terminal through body effect, but we neglect this phenomenon in this book.
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Figure 17.22 Possible input and output connections to a MOS transistor.

17.4 COMMON-SOURCE TOPOLOGY

If the input signal is applied to the gate [Fig. 17.22(a)] and the output signal is sensed at the
drain [Fig. 17.22(d)], the circuit is called a “common-source” (CS) stage (Fig. 17.23). We
have encountered and analyzed this circuit in different contexts without giving it a name.
The term “common-source” is used because the source terminal is grounded and hence
appears in common to the input and output ports. Nevertheless, we identify the stage based
on the input and output connections (to the gate and from the drain, respectively) so as to
avoid confusion in more complex topologies.

R

M 1

VDD

D

I D
outV

inV

Input Applied 
to Gate

Output Sensed
at Drain

Figure 17.23 Common-source stage.

We deal with the CS amplifier in two phases: (a) analysis of the CS core to understand
its fundamental properties, and (b) analysis of the CS stage including the bias circuitry as
a more realistic case.

Analysis of CS Core Recall from the definition of transconductance that a small incre-
ment of �V applied to the base of M1 in Fig. 17.23 increases the drain current by gm�V
and hence the voltage drop across RD by gm�VRD. In order to examine the amplifying
properties of the CS stage, we construct the small-signal equivalent of the circuit, shown in
Fig. 17.24. As explained in Chapter 6, the supply voltage node, VDD, acts as an ac ground
because its value remains constant with time. We neglect channel-length modulation for
now.
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Figure 17.24 Small-signal model of CS stage.

Let us first compute the small-signal voltage gain Av = vout/vin. Beginning from the
output port and writing a KCL at the drain node, we have

−vout

RD
= gmv1, (17.56)

and v1 = vin. It follows that

Av = −gmRD. (17.57)

Equation (17.57) embodies two interesting and important properties of the CS stage.
First, the small-signal gain is negative because raising the gate voltage and hence the drain
current in Fig. 17.23 lowers Vout. Second, Av is proportional to gm = √

2μnCox(W/L)ID

(i.e., the device aspect ratio and the drain bias current) and the drain resistor, RD.
It is worth noting that the voltage gain of the stage is limited by the supply voltage. A

higher drain bias current or a larger RD dictates a greater voltage drop across RD, but this
drop cannot exceed VDD.

Example

17.14
Calculate the small-signal voltage gain of the CS stage shown in Fig. 17.25 if ID = 1 mA,
μnCox = 100 μA/V2, VTH = 0.5 V, and λ = 0. Verify that M1 operates in saturation.

R  Ω

M 1
W
L

=

VDD

D

0.18

1 k

10
inv

outv

= 1.8 V

Figure 17.25 Example of CS stage.

Solution We have

gm =
√

2μnCox
W
L

ID (17.58)

= 1

300 �
. (17.59)

Thus,

Av = −gmRD (17.60)

= 3.33. (17.61)
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To check the operation region, we first determine the gate-source voltage:

VGS = VTH +
√√√√√ 2ID

μnCox
W
L

(17.62)

= 1.1 V. (17.63)

The drain voltage is equal to VDD − RDID = 0.8 V. Since VGS − VTH = 0.6 V, the device
indeed operates in saturation and has a margin of 0.2 V with respect to the triode region.
For example, if RD is doubled with the intention of doubling Av , then M1 enters the
triode region and its transconductance drops.

Exercise Suppose we double W and choose RD to place M1 at the edge of saturation. Is the resulting
gain higher or lower than the above value?

Example

17.15
Design a CS core with VDD = 1.8 V and a power budget, P, of 1 mW while achieving a
voltage gain of 5. Assume VTH = 0.5 V, μnCox = 100 μA/V2, W/L = 5/0.18, and λ = 0.

Solution Since P = IDVDD, the core can draw a maximum bias current of 556 μA. With such a
current, the transistor transconductance reaches gm = √

2μnCox(W/L)ID = 1/(569 �),
requiring RD = 2845 � for a gain of 5.

Does such choice of bias current and load resistor conform to the supply
voltage? That is, does M1 operate in saturation? We must first calculate VGS =
VTH + √

2ID/(μnCoxW/L). With ID = 556 μA, VGS = 1.133 V. On the other hand, the
drain bias voltage is equal to VDD − RDID = 0.218 V. Unfortunately, the drain voltage
is lower than VGS − VTH = 0.633 V, prohibiting M1 from operation in saturation! That
is, no solution exists.

Exercise Is there a solution if the power budget is reduced to 1 mW?

Writing the voltage gain as

Av = −
√

2μnCox
W
L

IDRD, (17.64)

we may surmise that the gain can become arbitrarily large if W/L is increased indefinitely. In
reality, however, as the device width increases (while the drain current remains constant),
an effect called “subthreshold conduction” arises, which limits the transconductance. This
effect is beyond the scope of this book, but the reader should bear in mind that the
transconductance of a MOSFET cannot be increased arbitrarily by increasing only W/L.

Let us now calculate the I/O impedances of the CS stage. Using the equivalent circuit
depicted in Fig. 17.26(a), we write

Rin = vX

iX
(17.65)

= ∞. (17.66)

The very high input impedance proves essential in many applications.
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Figure 17.26 (a) Input and (b) output impedance calculation of CS stage.

The output impedance is obtained from Fig. 17.26(b), where the input voltage source
is set to zero (replaced with a short). Since v1 = 0, the dependent current source also
vanishes, leaving RD as the only component seen by vX . In other words,

Rout = vX

iX
(17.67)

= RD. (17.68)

The output impedance therefore trades with the voltage gain, −gmRD.

Inclusion of Channel-Length Modulation Equation (17.57) suggests that the voltage
gain of the CS stage can be increased indefinitely if RD → ∞ while gm remains constant.
From an intuitive point of view, a given change in the input voltage and hence the drain
current gives rise to an increasingly larger output swing as RD increases.

In reality, however, channel-length modulation limits the voltage gain even if RD

approaches infinity. Since achieving a high gain proves critical in circuits such as operational
amplifiers, we must reexamine the above derivations in the presence of channel-length
modulation.

Figure 17.27 depicts the small-signal equivalent circuit of the CS stage including the
transistor output resistance. Note that rO appears in parallel with RD, allowing us to rewrite
(17.57) as

Av = −gm(RD||rO). (17.69)

We also recognize that the input impedance remains equal to infinity whereas the output
impedance falls to

Rout = RD||rO. (17.70)

inv

R
outv

r Og
m

vv 1 1 D

Figure 17.27 CS stage including channel-length modulation.
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Example

17.16
The voltage gain of a CS stage drops by a factor of two when channel-length modulation
is included. What is the λ of the transistor?

Solution The twofold reduction indicates that rO = RD. From Chapter 6, we know that
rO = 1/(λID), where ID is the bias current. It follows that

λ = 1

IDRD
. (17.71)

Exercise What value of λ drops the gain by 10% when channel-length modulation is included?

What happens as RD → ∞? The following example illustrates this case.

Example

17.17
Assuming M1 operates in saturation, determine the voltage gain of the circuit depicted
in Fig. 17.28(a) and plot the result as a function of the transistor channel length while
other parameters remain constant.

M 1

VDD

inv
outv

L

A v

(a) (b)

Figure 17.28 (a) CS stage with ideal current source as a load, (b) gain as a function of

device channel length.

Solution The ideal current source presents an infinite small-signal resistance, allowing the use of
Eq. (17.69) with RD = ∞:

Av = −gmrO. (17.72)

Called the “intrinsic gain,” this is the highest voltage gain that a single transis-
tor can provide and its value falls in the range of 10–30 for MOS devices. Writing

gm = √
2μnCox(W/L)ID and rO = (λID)

−1
, we have

|Av| =

√
2μnCox

W
L

λ
√

ID
. (17.73)

This result may imply that |Av| falls as L increases, but recall from Chapter 6 that λ ∝ L−1:

|Av| ∝
√

2μnCoxWL
ID

. (17.74)

Consequently, |Av| increases with L [Fig. 17.28(b)] and decreases with ID.

Exercise What happens to the gain if both W and ID are doubled? This is equivalent to placing two
transistors in parallel.
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17.4.1 CS Stage with Current-Source Load

As seen in the above example, the gain of a CS stage can be maximized by replacing
the load resistor with a current source. But, how is the current source implemented? The
observations made in relation to Fig. 17.21(b) suggest the use of a PMOS device as the
load for an NMOS CS amplifier [Fig. 17.29(a)].

M 1

VDD

M 2
Vb

in

out

rv 1 g v 1 O2m2

M 1

in

out

r O1

(a) (b)

v

v

v

v

Current
Source

r O2

M 1

in

out

r O1
v

v

(c)

Figure 17.29 (a) CS stage using a PMOS device as a current source, (b) small-signal model of M2,

(c) simplified circuit.

Let us determine the small-signal gain and output impedance of the circuit. Focusing
on M2 first and drawing the circuit as shown in Fig. 17.29(b), we recognize that the gate-
source voltage of M2 is constant, i.e., v1 = 0 (because v1 denotes changes in VGS) and hence
gm2v1 = 0. Thus, M2 simply behaves as a resistor equal to its output impedance. Noting
that this impedance is tied between the output node and ac ground, we redraw the circuit
as depicted in Fig. 17.29(c), where the output resistance of M1 is shown explicitly. This
stage is indeed similar to a standard CS amplifier except that it sees two parallel resistors
from the output node to ac ground. Equations (17.69) and (17.70) respectively give

Av = −gm1(rO1||rO2) (17.75)

Rout = rO1||rO2. (17.76)

We conclude that inclusion of a realistic current source drops the gain from the intrinsic
value (gmrO) to the value given above—by roughly a factor of two.

Example

17.18
Figure 17.30(a) shows a PMOS CS stage using an NMOS current source load. Compute
the voltage gain of the circuit.

VDD

Min

out

M 1
Vb

2
v

v

(a) (b)

r O2

M 1

out

r O1

v

inv

M 2

Figure 17.30 (a) CS stage using an NMOS device as current source, (b) simplified circuit.
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Solution Here, M2 acts as the “input” device and M1 as the current source. Thus, M2 generates
a small-signal current equal to gm2vin, which, as shown in Fig. 17.30(b), flows through
rO1||rO2, producing vout = −gm2vin(rO1||rO2). Thus,

Av = −gm2(rO1||rO2). (17.77)

Exercise For a given bias current, does the gain increase if L1 increases?

The reader may have noticed that we use small-signal equivalent circuits only sparingly.
Our objective is to learn “analysis by inspection,” i.e., we wish to determine the properties
of a circuit by just looking at it! This skill becomes increasingly more important as we deal
with more complex circuits.

17.4.2 CS Stage with Diode-Connected Load

As explained in Chapter 6, a MOSFET whose gate and drain are shorted acts as a two-
terminal device with an impedance of (1/gm)||rO ≈ 1/gm. In some applications, we may use
a diode-connected MOSFET as the drain load. Illustrated in Fig. 17.31(a), such a topology
exhibits only a moderate gain due to the relatively low impedance of the diode-connected
device. With λ = 0, M2 exhibits a small-signal resistance equal to 1/gm2, and Av = −gmRD

yields

Av = −gm1 · 1

gm2

(17.78)

= −
√

2μnCox(W/L)1ID√
2μnCox(W/L)2ID

(17.79)

= −
√

(W/L)1

(W/L)2

. (17.80)

Interestingly, the gain is given by the dimensions of M1 and M2 and remains independent
of process parameters μn and Cox and the drain current, ID.

A more accurate expression for the gain of the stage in Fig. 17.31(a) must take channel-
length modulation into account. As depicted in Fig. 17.31(b), the resistance seen at the
drain is now equal to (1/gm2)||rO2||rO1, and hence

Av = −gm1

(
1

gm2

||rO2||rO1

)
. (17.81)

M 1

VDD

(a)

M 2

inV
outV

M 1

in

out
v

v

g
1

m2
r O2

r O1

(b)

Figure 17.31 (a) MOS stage using a diode-connected load, (b) simplified circuit of (a).
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Similarly, the output resistance of the stage is given by

Rout = 1

gm2

||rO2||rO1. (17.82)

Example

17.19
Determine the voltage gain of the circuit shown in Fig. 17.32 if λ 	= 0.

M 1

VDD

M 2inV

outV

Figure 17.32 CS stage with diode-connected PMOS device.

Solution This stage is similar to that in Fig. 17.31(a), but with NMOS devices changed to PMOS
transistors: M1 serves as a common-source device and M2 as a diode-connected load.
Thus,

Av = −gm2

(
1

gm1

||rO1||rO2

)
. (17.83)

Exercise Calculate the gain if the gate of M1 is tied to a constant voltage equal to 0.5 V.

17.4.3 CS Stage with Source Degeneration

In many applications, the CS core is modified as shown in Fig. 17.33(a), where a resistor RS

appears in series with the source. Called “source degeneration,” this technique improves
the “linearity” of the circuit and provides many other interesting properties that are studied
in more advanced courses.

As with the CS core, we intend to determine the voltage gain and I/O impedances of
the circuit, assuming M1 is biased properly. Before delving into a detailed analysis, it is
instructive to make some qualitative observations. Suppose the input signal raises the gate
voltage by �V [Fig. 17.33(b)]. If RS were zero, then the gate-source voltage would also

V

R

outV

in

V

R

outV

V VΔ

R
R

(a) (b)

M 1 M 1

DD DD

D D

S
S

Figure 17.33 (a) CS stage with degeneration, (b) effect of input voltage change.
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R
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R

inv g
m

vv 1 1

S

D

Figure 17.34 Small-signal model of CS stage with source degeneration.

increase by �V, producing a drain current change of gm�V. But with RS 	= 0, some fraction
of �V appears across RS , thus leaving a change in VGS that is less than �V. Consequently,
the drain current change is also less than gm�V. We therefore expect that the voltage gain
of the degenerated stage is lower than that of the CS core with no degeneration. While
undesirable, the reduction in gain is incurred to improve other aspects of the performance.

We now quantify the foregoing observations by analyzing the small-signal behavior
of the circuit. Depicted in Fig. 17.34 is the small-signal equivalent circuit, where VDD is
replaced with an ac ground and channel-length modulation is neglected. To determine
vout/vin, we first write a KCL at the output node,

gmv1 = −vout

RD
, (17.84)

obtaining

v1 = − vout

gmRD
. (17.85)

We also recognize that the current through RS is equal to gmv1. Thus, the voltage drop
across RS is given by gmv1RS . Since the voltage drop across RS and v1 must add up to vin,
we have

vin = v1 + gmv1RS (17.86)

= −vout

gmRD
(1 + gmRS). (17.87)

It follows that

vout

vin
= − gmRD

1 + gmRS
. (17.88)

As predicted earlier, the magnitude of the voltage gain is lower than gmRD for RS 	= 0.
To arrive at an interesting interpretation of Eq. (17.88), we divide the numerator and

denominator by gm,

Av = − RD

1

gm
+ RS

. (17.89)

It is helpful to memorize this result as “the gain of the degenerated CS stage is equal to the
total load resistance seen at the drain (to ground) divided by 1/gm plus the total resistance
tied from the source to ground.” (In verbal descriptions, we often ignore the negative sign in
the gain, with the understanding that it must be included.) This and similar interpretations
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throughout this book serve as powerful tools for analysis by inspection—often obviating
the need for drawing small-signal circuits.

Example

17.20
Compute the voltage gain of the circuit shown in Fig. 17.35(a) if λ = 0.

V

R

DD

M 1

D

outV

inV

(a) (b)

M 2

R

M 1

D

out

inv

v

g
1

m2

Figure 17.35 (a) Example of CS stage with degeneration, (b) simplified circuit.

Solution Transistor M2 serves as a diode-connected device, presenting an impedance of 1/gm2

[Fig. 17.35(b)]. The gain is therefore given by Eq. (17.89) if RS is replaced with 1/gm2:

Av = − RD

1

gm1

+ 1

gm2

. (17.90)

Exercise Repeat the above example assuming λ 	= 0 for M2.

The input impedance of the degenerated CS stage is infinite. But, how about the output
impedance? Considering the equivalent circuit shown in Fig. 17.36, we note that the current
flowing through RS is equal to gmv1, and v1 and the voltage across RS must add up to zero
(why?):

gmv1RS + v1 = 0. (17.91)

That is, v1 = 0, indicating that all of ix flows through RD. It follows that

vX

iX
= RD, (17.92)

the same as that of an undegenerated stage.

g
m

vv 1 1

RS

Xv

Xi

RD

Figure 17.36 Equivalent circuit for calculation of output impedance.
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Example

17.21
A CS stage incorporates a MOS device having a transconductance of 1/(200 �). If the
circuit provides a voltage gain of 8 without degeneration and 4 with degeneration,
calculate RS and the output impedance. Assume λ = 0.

Solution With no degeneration, gmRD = 8 and hence RD = 1.6 k�. With degeneration,

gmRD

1 + gmRS
= 4, (17.93)

yielding RD = 1/gm = 200 �.

Exercise What is the voltage gain if RS reduced to 50 �?

The degenerated CS stage can be analyzed from a different perspective to provide
more insight. Let us place the transistor and the source resistor in a black box still hav-
ing three terminals [Fig. 17.37(a)]. For small-signal operation, we can view the box as a
new transistor (or “active” device) and model its behavior by new values of transconduc-
tance and impedances. Denoted by Gm to avoid confusion with gm of M1, the equivalent
transconductance is obtained from Fig. 17.37(b). Since the current flowing through RS is
equal to iout and since the voltage across this resistor and v1 must add up to vin, we have
v1 + gmv1RS = vin and hence v1 = vin/(1 + gmRS). Thus,

iout = gmv1 (17.94)

= gm
vin

1 + gmRS
, (17.95)

R
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Figure 17.37 (a) Degenerated MOSFET viewed as a black box, (b) small-signal equivalent.

and hence

Gm = iout

vin
(17.96)

= gm

1 + gmRS
. (17.97)

For example, the voltage gain of the stage with a load resistance of RD is given by −GmRD.
An interesting property of the degenerated CS stage is that its voltage gain becomes

relatively independent of the transistor transconductance and hence bias current if
gmRS � 1. From Eq. (17.89), we note that Av → −RD/RS under this condition.
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Effect of Transistor Output Resistance The analysis of the degenerated CS stage has
thus far neglected channel-length modulation effect. We explore one aspect of the circuit,
namely, the output resistance, as it provides the foundation for many other topologies
studied later.

r O Xv

Xi

R

in

R

(a) (b)

v M 1

g
m

vv 1 1

S S

P

Rout

Figure 17.38 (a) Output impedance of degenerated stage, (b) equivalent circuit.

Our objective is to determine the output impedance seen looking into the drain of a
degenerated transistor [Fig. 17.38(a)]. We know that Rout = rO if RS = 0. Also, Rout = ∞ if
λ = 0 (why?). To include channel-length modulation, we draw the small-signal equivalent
circuit as in Fig. 17.38(b), grounding the input terminal. A common mistake here is to write
Rout = rO + RS . Since gmv1 flows from the output node into P, resistors rO and RS are not
in series. We readily note that the current flowing through RS is equal to iX . Thus,

v1 = −iXRS, (17.98)

where the negative sign arises because the positive side of v1 is at ground. We also recognize
that rO carries a current of iX − gmv1 and hence sustains a voltage of (iX − gmv1)rO. Adding
this voltage to that across RS (= −v1) and equating the result to vX , we obtain

vX = (iX − gmv1)rO − v1 (17.99)

= (iX + gmiXRS)rO + iXRS . (17.100)

It follows that

Rout = (1 + gmRS)rO + RS (17.101)

= rO + (gmrO + 1)RS . (17.102)

Recall from (17.72) that the intrinsic gain of the transistor, gmrO � 1, and hence

Rout ≈ rO + gmrORS (17.103)

≈ rO(1 + gmRS). (17.104)

Interestingly, source degeneration raises the output impedance from rO to the above value,
i.e., by a factor of 1 + gmRS .

The reader may wonder if the increase in the output resistance is desirable or unde-
sirable. The “boosting” of output resistance as a result of degeneration proves extremely
useful in circuit design, leading to amplifiers with a higher gain as well as creating more
ideal current sources. These concepts are studied in Chapter 9.
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In the analysis of circuits, we sometimes draw the transistor output resistance explicitly
to emphasize its significance (Fig. 17.39). This representation, of course, assumes M1 itself
does not contain another rO.

inV

R

Rout

r O

S

M 1

Figure 17.39 Stage with explicit depiction of rO.

Example

17.22
We wish to design an NMOS current source having a value of 1 mA and an output
resistance of 20 k�. Assume μnCox = 100 μA/V2 and λ = 0.25 V−1. Compute the device
aspect ratio and the degeneration resistance if the minimum allowable VDS is 0.3 V.

Solution Setting the transistor overdrive voltage to 0.3 V (so that it can tolerate a minimum VDS

of the same value), we write:

gm = 2ID

VGS − VTH
(17.105)

= 1

150 �
. (17.106)

Also, since gm = μnCox(W/L)(VGS − VTH), we have W/L = 222. Moreover, rO =
1/(λID) = 4 k�. For the output resistance to reach 20 k�,

(1 + gmRS)rO + RS = 20 k�, (17.107)

and hence
RS = 578 �. (17.108)

Exercise What is the output resistance if ID = 1 mA, VDS = 0.15 V and RS = 200 �?

Example

17.23
Compute the output resistance of the circuit in Fig. 17.40(a) if M1 and M2 are identical.

M 1

M 2

Rout

M 1

Rout

g
1

m2
r O2

r O1

(a) (b)

Vb

Figure 17.40 (a) Example of CS stage with degeneration, (b) simplified circuit.
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Solution The diode-connected device M2 can be represented by a small-signal resistance
of (1/gm2)||rO2 ≈ 1/gm2. Transistor M1 is degenerated by this resistance, and from
Eq. (17.101):

Rout = rO1

(
1 + gm1

1

gm2

)
+ 1

gm2

(17.109)

which, since gm1 = gm2 = gm, reduces to

Rout = 2rO1 + 1

gm
(17.110)

≈ 2rO1. (17.111)

Exercise Suppose W2 = 2W1. Calculate the output impedance.

The procedure of progressively simplifying a circuit until it resembles a known topol-
ogy proves extremely critical in our work. Called “analysis by inspection,” this method
obviates the need for complex small-signal models and lengthy calculations. The reader
is encouraged to attempt the above example using the small-signal model of the overall
circuit to appreciate the efficiency and insight provided by our intuitive approach.

Example

17.24
Determine the output resistance of the circuit in Fig. 17.41(a) and compare the result
with that in the above example. Assume M1 and M2 are in saturation.

M 1

M 2

Rout

M 1

Rout

r O2

r O1

(a) (b)

Vb1

Vb2

Figure 17.41 (a) Example of CS stage with degeneration, (b) simplified circuit.

Solution With its gate-source voltage fixed, transistor M2 operates as a current source, introducing
a resistance of rO2 from the source of M1 to ground [Fig. 17.41(b)].

Equation (17.101) can therefore be written as

Rout = (1 + gm1rO1)rO2 + rO1 (17.112)

≈ gm1rO1rO2 + rO1. (17.113)

Assuming gm1rO2 � 1 (which is valid in practice), we have

Rout ≈ gm1rO1rO2. (17.114)

We observe that this value is significantly higher than that in Eq. (17.111).

Exercise Determine the output impedance if a resistor of value R1 is inserted in series with the drain
of M2.



774 Chapter 17 CMOS Amplifiers

CS Stage with Biasing Having learned the small-signal properties of the common-
source amplifier and its variants, we now study a more general case wherein the circuit
contains a bias network as well. We begin with simple biasing schemes described earlier
and progressively add complexity (and more robust performance) to the circuit. Let us
begin with an example.

Example

17.25
A student familiar with the CS stage and basic biasing constructs the circuit shown in
Fig. 17.42 to amplify the signal produced by a microphone. Unfortunately, M1 carries no
current, failing to amplify. Explain the cause of this problem.

V

X

 ΩR 1 k

outV

M 1

= 1.8 V

D

DD

 Ω100 k

 Ω50 k

R1

R2

Figure 17.42 Microphone amplifier.

Solution Many microphones exhibit a small low-frequency resistance (e.g., <100 �). If used in
this circuit, such a microphone creates a low resistance from the gate of M1 to ground,
providing a very low gate voltage. For example, a microphone resistance of 100 � yields

VX = 100 �||50 k�

100 k� + 100 �||50 k�
× 2.5 V (17.115)

≈ 2.5 mV. (17.116)

Thus, the microphone low-frequency resistance disrupts the bias of the amplifier.

Exercise Can we resolve this issue by tying the source of M1 to a negative voltage?

How should the circuit of Fig. 17.42 be fixed? Since only the signal generated by the
microphone is of interest, a series capacitor can be inserted as depicted in Fig. 17.43 so as
to isolate the dc biasing of the amplifier from the microphone. That is, the bias point of
M1 remains independent of the resistance of the microphone because C1 carries no bias
current. The value of C1 is chosen so that it provides a relatively low impedance (almost

V

X

 ΩR 1 kR

C1

outV

M 1

= 1.8 VDD

D1

R2

Figure 17.43 Capacitive coupling at the input of microphone amplifier.
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a short circuit) for the frequencies of interest. We say C1 is a “coupling” capacitor and
the input of this stage is “ac-coupled” or “capacitively coupled.” Many circuits employ
capacitors to isolate the bias conditions from “undesirable” effects. More examples clarify
this point later.

The foregoing observation suggests that the methodology illustrated in Fig. 17.9 must
include an additional rule: replace all capacitors with an open circuit for dc analysis and a
short circuit for small-signal analysis.

Let us begin with the CS stage depicted in Fig. 17.44(a). For bias calculations, the signal
source is set to zero and C1 is opened, leading to Fig. 17.44(b). As shown earlier, we have

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(17.117)

= 1

2
μnCox

W
L

(
R2

R1 + R2

VDD − VTH

)2

. (17.118)

Also, VDS( = VDD − RDID) must remain greater than the overdrive voltage so that M1

operates in saturation.
With the bias current known, the small-signal parameters gm and rO can be calculated.

We now turn our attention to small-signal analysis, considering the simplified circuit of
Fig. 17.44(c). Here,C1 is replaced with a short and VDD with ac ground, but M1 is maintained
as a symbol. Note that R1 and R2 now appear in parallel. We attempt to solve the circuit by
inspection: if unsuccessful, we will resort to using a small-signal model for M1 and writing
KVLs and KCLs.

The circuit of Fig. 17.44(c) resembles the CS core illustrated in Fig. 17.23, except for
R1 and R2. Interestingly, these resistors have no effect on the voltage at node X so long
as vin remains an ideal voltage source; i.e., vX = vin regardless of the values of R1 and R2.
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Figure 17.44 (a) Capacitive coupling at the input of a CS stage, (b) simplified stage for bias

calculation, (c) simplified stage for small-signal calculation, (d) simplified circuit for input

impedance calculation, (e) simplified circuit for output impedance calculation.
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Since the voltage gain from the gate to the drain is given by vout/vX = −gmRD, we have

vout

vin
= −gmRD. (17.119)

If λ �= 0, then

vout

vin
= −gm(RD||rO). (17.120)

However, the input impedance is affected by R1 and R2 [Fig. 17.44(d)]. Recall from
Fig. 17.7 that the impedance seen looking into the gate, Rin1, is infinity. Here, R1 and
R2 simply appear in parallel with Rin1, yielding

Rin2 = R1||R2. (17.121)

Thus, the bias resistors lower the input impedance.
To determine the output impedance, we set the input source to zero [Fig. 17.44(e)].

Comparing this circuit with that in Fig. 17.27, we recognize that Rout remains unchanged:

Rout = RD||rO. (17.122)

Example

17.26
Having learned about ac coupling, the student in Example 17.25 modifies the design to
that shown in Fig. 17.45 and attempts to drive a speaker. Unfortunately, the circuit still
fails. Explain why.

V

X

 ΩR 1 kR

C1

M 1

= 1.8 VDD

D1

R2

Figure 17.45 Amplifier with direct connection of speaker.

Solution Typical speakers incorporate a solenoid (inductor) to actuate a membrane. The solenoid
exhibits a very low dc resistance, e.g., less than 1 �. Thus, the speaker in Fig. 17.45 shorts
the drain to ground, driving M1 into deep triode region.

Exercise Does the circuit behave better if the bottom terminal of the speaker is attached to VDD

rather than to ground?

Example

17.27
The student applies ac coupling to the output as well [Fig. 17.46(a)] and measures the
quiescent points to ensure proper biasing. The drain bias voltage is 1.0 V and M1 operates
in the saturation region. However, the student still observes no gain in the circuit. If

gm = (100 �)
−1

and the speaker exhibits an impedance of Rsp = 8 � in the audio range,
explain why the circuit provides no gain.
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Figure 17.46 (a) Amplifier with capacitive coupling at the input and output,

(b) simplified small-signal model.

Solution From the small-signal circuit of Fig. 17.46(b), we recognize that the equivalent load
resistance is equal to RD||Rsp ≈ 8 �. Thus,

|Av| = gm(RD||Rsp) = 0.08 (17.123)

Exercise What speaker impedance drops the gain of the CS stage by only a factor of two?

The design in Fig. 17.46(a) exemplifies an improper interface between an amplifier
and a load: the output impedance is so much higher than the load impedance that the
connection of the load to the amplifier drops the gain drastically.

How can we remedy the problem of loading here? Since the voltage gain is proportional
to gm, we can bias M1 at a much higher current to raise the gain. Alternatively, we can
interpose a “buffer” stage between the CS amplifier and the speaker (Section 17.4.5).

Let us now consider the circuit in Fig. 17.47(a), where the transistor is degenerated by
RS . As a more general case, we also include a finite resistance, RG in series with the input
(i.e., the output impedance of the preceding stage or signal source) [Fig. 17.47(b)]. Since
R1 and R2 form a voltage divider along with RG, the overall voltage gain falls to

Av = R1||R2

RG + R1||R2

· −RD

1

gm
+ RS

, (17.124)

where λ is assumed to be zero.
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R1

R2

V

R

DD

M 1

D

RS

outV

C2

(c)(a) (b)

inV
C1RG
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Figure 17.47 (a) CS stage with input coupling capacitor, (b) inclusion of RG, (c) use of bypass

capacitor.
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It is possible to utilize degeneration for biasing but eliminate its effect on the small-
signal performance by means of a bypass capacitor [Fig. 17.47(c)]. If the capacitor operates
as a short circuit at the frequency of interest, then the source of M1 remains at ac ground
and the amplification is free from degeneration:

Av = − R1||R2

RG + R1||R2

gmRD. (17.125)

Example

17.28
Design the CS stage of Fig. 17.47(c) for a voltage gain of 5, an input impedance of 50 k�,
and a power budget of 5 mW. Assume μnCox = 100 μA/V2, VTH = 0.5 V, λ = 0, and
VDD = 1.8 V. Also, assume a voltage drop of 400 mV across RS .

Solution The power budget along with VDD = 1.8 V implies a maximum supply current of
2.78 mA. As an initial guess, we allocate 2.7 mA to M1 and the remaining 80 μA to
R1 and R2. It follows that

RS = 148 �. (17.126)

As with typical design problems, the choice of gm and RD is somewhat flexible so
long as gmRD = 5. However, with ID known, we must ensure a reasonable value for VGS,
e.g., VGS = 1 V. This choice yields

gm = 2ID

VGS − VTH
(17.127)

= 1

92.6 �
, (17.128)

and hence

RD = 463 �. (17.129)

Writing

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(17.130)

gives

W
L

= 216. (17.131)

With VGS = 1 V and a 400 mV drop across RS , the gate voltage reaches 1.4 V, re-
quiring that

R2

R1 + R2

VDD = 1.4 V, (17.132)

which, along with Rin = R1||R2 = 50 k�, yields

R1 = 64.3 k� (17.133)

R2 = 225 k�. (17.134)

We must now check to verify that M1 indeed operates in saturation. The drain
voltage is given by VDD − IDRD = 1.8 V − 1.25 V = 0.55 V. Since the gate voltage
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is equal to 1.4 V, the gate-drain voltage difference exceeds VTH , driving M1 into the
triode region!

How did our design procedure lead to this result? For the given ID, we have chosen
an excessively large RD, i.e., an excessively small gm (because gmRD = 5), even though
VGS is reasonable. We must therefore increase gm so as to allow a lower value for RD.
For example, suppose we halve RD and double gm by increasing W/L by a factor of
four:

W
L

= 864 (17.135)

gm = 1

46.3 �
. (17.136)

The corresponding gate-source voltage is obtained from Eq. (17.127):

VGS = 250 mV, (17.137)

yielding a gate voltage of 650 mV.
Is M1 in saturation? The drain voltage is equal to VDD − RDID = 1.17 V, a value

higher than the gate voltage minus VTH . Thus, M1 operates in saturation.

Exercise Repeat the above example for a power budget of 3 mW and VDD = 1.2 V.

Figure 17.48 summarizes the concepts studied in this section.

R

g mA v = – R

R

g mA v = –

r O

R( r O )

R

Rout RR1

R2 R C

C1
D

D

S

D

D

D

S 2

Figure 17.48 Summary of concepts studied thus far.

17.4.4 Common-Gate Topology

Following our extensive study of the CS stage, we now turn our attention to the “common-
gate“ (CG) topology. Nearly all of the concepts described for the CS configuration apply
here as well. We therefore follow the same train of thought, but at a slightly faster pace.

Given the amplification capabilities of the CS stage, the reader may wonder why
we study other amplifier topologies. As we will see, other configurations provide dif-
ferent circuit properties that are preferable to those of the CS stage in some appli-
cations. The reader is encouraged to review Examples 17.2–17.4, their resulting rules
illustrated in Fig. 17.7, and the possible topologies in Fig. 17.22 before proceeding
further.

Figure 17.49 shows the CG stage. The input is applied to the source and the output is
sensed at the drain. Biased at a proper voltage, the gate acts as ac ground and hence as
a node “common” to the input and output ports. As with the CS stage, we first study the
core and subsequently add the biasing elements.
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to Source

Output Sensed
at Drain

Figure 17.49 Common-gate stage.

Analysis of CG Core How does the CG stage of Fig. 17.50(a) respond to an input signal?8

If Vin goes up by a small amount �V, the gate-source voltage of M1 decreases by the same
amount because the gate voltage is fixed. Consequently, the drain current falls by gm�V,
allowing Vout to rise by gm�VRD. We therefore surmise that the small-signal voltage gain
is equal to

Av = gmRD. (17.138)

Interestingly, this expression is identical to the gain of the CS topology. Unlike the CS
stage, however, this circuit exhibits a positive gain because an increase in Vin leads to an
increase in Vout.

Let us confirm the above results with the aid of the small-signal equivalent depicted
in Fig. 17.50(b), where channel-length modulation is neglected. Beginning with the output
node, we equate the current flowing through RD to gmv1:

−vout

RD
= gmv1, (17.139)

obtaining v1 = −vout/(gmRD). Considering the input node next, we recognize that
v1 = −vin. It follows that

vout

vin
= gmRD. (17.140)

As with the CS stage, the CG topology suffers from trade-offs among the gain, the
voltage headroom, and the I/O impedances. The following example illustrates these trade-
offs.

R

V

in
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VΔ

g
m

VΔ R

inv

R
outv

(a) (b)

V

outV

M 1

D

DD

D
g

m
vv 1 1 D

Figure 17.50 (a) Response of CG stage to small input change, (b) small-signal model.

8Note that the topologies of Figs. 17.49 and 17.50(a) are identical even though M1 is drawn differently.
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Example

17.29
A microphone having a dc level of zero drives a CG stage biased at ID = 0.5 mA. If
W/L = 50, μnCox = 100 μA/V2, VTH = 0.5 V, and VDD = 1.8 V, determine the maxi-
mum allowable value of RD and hence the maximum voltage gain. Neglect channel-
length modulation.

Solution With W/L known, the gate-source voltage can be determined from

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(17.141)

as

VGS = 0.947 V. (17.142)

For M1 in Fig. 17.50(a) to remain in saturation,

VDD − IDRD > Vb − VTH (17.143)

and hence

RD < 2.71 k�. (17.144)

Also, the above values of W/L and ID yield gm = (447 �)
−1

and

Av ≤ 6.06. (17.145)

Figure 17.51 summarizes the allowable signal levels in this design. The gate voltage can
be generated using a resistive divider similar to that in Fig. 17.47(a).

V

R

DD

D

outV

M 1

Vb
–VTHVb

inV0

= 0.947 V
= 0.447 V

Figure 17.51 Signal levels in CG stage.

Exercise If a gain of 10 is required, what value should be chosen for W/L?

Let us now compute the I/O impedances of the CG topology so as to understand its
capabilities in interfacing with preceding and following stages. The rules illustrated in
Fig. 17.7 prove extremely useful here, obviating the need for small-signal equivalent
circuits. Shown in Fig. 17.52(a), the simplified ac circuit reveals that Rin is simply the
impedance seen looking into the source with the gate at ac ground. From the rules in
Fig. 17.7, we have

Rin = 1

gm
(17.146)

if λ = 0. The input impedance of the CG stage is therefore relatively low, e.g., no more
than a few hundred ohms.



782 Chapter 17 CMOS Amplifiers
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Figure 17.52 (a) Input impedance of CG stage, (b) response to a small change in input.

The input impedance of the CG stage can also be determined intuitively
[Fig. 17.52(b)]. Suppose a voltage source VX tied to the source of M1 changes by a small
amount �V. The gate-source voltage therefore changes by the same amount, leading
to a change in the drain current equal to gm�V. Since the drain current flows through
the input source, the current supplied by VX also changes by gm�V. Consequently,
Rin = �VX/�IX = 1/gm.

Does an amplifier with a low input impedance find any practical use? Yes, indeed.
For example, many stand-alone high-frequency amplifiers are designed with an input
resistance of 50 � to provide “impedance matching” between modules in a cascade
and the transmission lines (traces on a printed-circuit board) connecting the modules
(Fig. 17.53).9

 Ω50–
Transmission

Line

 Ω

 Ω50–
Transmission

Line

 Ω50 50 

Figure 17.53 System using transmission lines.

The output impedance of the CG stage is computed with the aid of Fig. 17.54,
where the input voltage source is set to zero. We note that Rout = Rout1||RD, where
Rout1 is the impedance seen at the drain with the source grounded. From the rules of
Fig. 17.7, we have Rout1 = rO and hence

Rout = rO||RD (17.147)

or

Rout = RD if λ = 0. (17.148)

9If the input impedance of each stage is not matched to the characteristic impedance of the preceding
transmission line, then “reflections” occur, corrupting the signal or at least creating dependence on the
length of the lines.
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Figure 17.54 Output impedance of CG stage.

Example

17.30
A common-gate amplifier is designed for an input impedance of Rin and an output
impedance of Rout. Neglecting channel-length modulation, determine the voltage gain
of the circuit.

Solution Since Rin = 1/gm and Rout = RD, we have

Av = Rout

Rin
. (17.149)

Exercise Explain why we sometimes say the “current gain” of a CG stage is equal to unity.

It is instructive to study the behavior of the CG topology in the presence of a finite
source resistance. Shown in Fig. 17.55, such a circuit suffers from signal attenuation from
the input to node X, thereby providing a smaller voltage gain. More specifically, since the
impedance seen looking into the source of M1 (with the gate grounded) is equal to 1/gm

(for λ = 0), we have

vX =
1

gm

RS + 1

gm

vin (17.150)

= 1

1 + gmRS
vin. (17.151)
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DD

Figure 17.55 CG stage with source resistance.
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We also recall from Eq. (17.140) that the gain from the source to the output is given by

vout

vX
= gmRD. (17.152)

It follows that

vout

vin
= gmRD

1 + gmRS
(17.153)

= RD

1

gm
+ RS

, (17.154)

a result identical to that of the CS stage (except for a negative sign) if RS is viewed as a
source degeneration resistor.

As with the CS stage, we may desire to analyze the CS topology in the general case:
with source degeneration, λ �= 0, and a resistance in series with the gate [Fig. 17.56(a)].
This analysis is somewhat beyond the scope of this book. Nevertheless, it is instructive
to compute the output impedance. As illustrated in Fig. 17.56(b), Rout is equal to RD in
parallel with the impedance seen looking into the drain, Rout1. But Rout1 is identical to the
output resistance of a source-degenerated common-source stage:

Rout1 = (1 + gmRS)rO + RS . (17.155)

It follows that

Rout = RD||[(1 + gmRS)rO + RS]. (17.156)

The reader may have recognized that the output impedance of the CG stage is equal
to that of the CS stage. Is this true in general? Recall that the output impedance is
determined by setting the input source to zero. In other words, when calculating Rout,
we have no knowledge of the input terminal of the circuit, as illustrated in Fig. 17.57 for
CS and CG stages. It is therefore no coincidence that the output impedances are identical
if the same assumptions are made for both circuits (e.g., identical values of λ and source
degeneration).
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Figure 17.56 (a) General CG stage, (b) output impedance seen at different nodes.
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Figure 17.57 (a) CS stage and (b) CG stage simplified for output impedance calculation.

Example

17.31
For the circuit shown in Fig. 17.58(a), calculate the voltage gain if λ = 0 and the output
impedance if λ > 0.
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R
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g
1

m2
r O2

(c)(a) (b)

RS

V

Figure 17.58 (a) Example of CG stage, (b) equivalent input network, (c) calculation of output

resistance.

Solution We first compute vX/vin with the aid of the equivalent circuit depicted in Fig. 17.58(b):

vX

vin
=

1

gm2

|| 1

gm1

1

gm2

|| 1

gm1

+ RS

(17.157)

= 1

1 + (gm1 + gm2)RS
. (17.158)

Noting that vout/vX = gm1RD (why?), we have

vout

vin
= gm1RD

1 + (gm1 + gm2)RS
. (17.159)

To compute the output impedance, we first consider Rout1, as shown in Fig. 17.58(c),
which is equal to

Rout1 = (1 + gm1rO1)

(
1

gm2

||rO2||RS

)
+ rO1 (17.160)

≈ gm1rO1

(
1

gm2

||RS

)
+ rO1. (17.161)
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The overall output impedance is then given by

Rout = Rout1||RD (17.162)

≈
[

gm1rO1

(
1

gm2

||RS

)
+ rO1

]
||RD. (17.163)

Exercise Calculate the output impedance if the gate of M2 is tied to a constant voltage.

CG Stage with Biasing Having learned the small-signal properties of the CG core, we
now extend our analysis to the circuit including biasing. An example proves instructive at
this point.

Example

17.32
A student decides to incorporate ac coupling at the input of a CG stage to ensure the bias
is not affected by the signal source, drawing the design as shown in Fig. 17.59. Explain
why this circuit does not work.
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V

V

Vb

M 1

D

DD

Figure 17.59 Cg stage lacking bias current.

Solution Unfortunately, the design provides no dc path for the source current of M1, forcing a
zero bias current and hence a zero transconductance.

Exercise Is the issue resolved if a capacitor is tied from the source of M1 to ground?

Example

17.33
Somewhat embarrassed, the student quickly connects the source to ground so that
VGS = Vb and a reasonable bias current can be established (Fig. 17.60). Explain why
“haste makes waste.”
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Figure 17.60 CG stage with source shorted to ground.
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Solution The student has shorted the signal to ac ground. That is, the source voltage is equal to
zero regardless of the value of vin, yielding vout = 0.

Exercise Does a signal current flow through C1?

The foregoing examples imply that the source can remain neither open nor shorted to
ground, thereby requiring some bias element. Shown in Fig. 17.61(a) is an example where
R1 provides a path for the bias current at the cost of lowering the input impedance. We
recognize that Rin now consists of two parallel components: (1) 1/gm, seen looking “up”
into the source and (2) R1, seen looking “down.” Thus,

Rin = 1

gm
||R1. (17.164)

The reduction in Rin manifests itself if the signal generator exhibits a finite output
resistance. Depicted in Fig. 17.61(b), such a circuit attenuates the signal, lowering the
overall voltage gain. Following the analysis illustrated in Fig. 17.55, we can write

vX

vin
= Rin

Rin + RS
(17.165)

=
1

gm
||R1

1

gm
||R1 + RS

(17.166)

= 1

1 + (1 + gmR1)RS
. (17.167)

Since vout/vX = gmRD,

vout

vin
= 1

1 + (1 + gmR1)RS
· gmRD. (17.168)

As usual, we have preferred solution by inspection over drawing the small-signal
equivalent.

The reader may see a contradiction in our thoughts: on the one hand, we view the
low input impedance of the CG stage a useful property; on the other hand, we consider
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Figure 17.61 (a) CG stage with biasing, (b) inclusion of signal generator resistance.
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Figure 17.62 Small-signal input current components in a CG stage.

the reduction of the input impedance due to R1 undesirable. To resolve this apparent
contradiction, we must distinguish between the two components 1/gm and R1, noting
that the latter shunts the input source current to ground, thus “wasting” the signal. As
shown in Fig. 17.62, iin splits two ways, with only i2 reaching RD and contributing to
the output signal. If R1 decreases while 1/gm remains constant, then i2 also falls.10 Thus,
reduction of Rin due to R1 is undesirable. By contrast, if 1/gm decreases while R1

remains constant, then i2 rises. For R1 to affect the input impedance negligibly, we must
have

R1 � 1

gm
. (17.169)

How is the gate voltage, Vb, generated? We can employ a resistive divider similar to
that used in the CS stage. Shown in Fig. 17.63 is such a topology.

Example

17.34
Design the common-gate stage of Fig. 17.63 for the following parameters: vout/

vin = 5, RS = 0, R1 = 500 �, 1/gm = 50 �, power budget = 2 mW, VDD = 1.8 V. Assume
μnCox = 100 μA/V2, VTH = 0.5 V, and λ = 0.
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Figure 17.63 CG stage with gate bias network.

Solution From the power budget, we obtain a total supply current of 1.11 mA. Allocating 10 μA
to the voltage divider, RG1 and RG2, we leave 1.1 mA for the drain current of M1. Thus,
the voltage drop across R1 is equal to 550 mV.

10In the extreme case, R1 = 0 (Example 17.33) and i2 = 0.
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We must now compute two interrelated parameters: W/L and RD. A larger value of W/L
yields a greater gm, allowing a lower value of RD. As in Example 17.28, we choose an
initial value for VGS to arrive at a reasonable guess for W/L. For example, if VGS = 0.8 V,

then W/L = 244, and gm = 2ID/(VGS − VTH) = (136.4 �)
−1

, dictating RD = 682 � for
vout/vin = 5.

Let us determine whether M1 operates in saturation. The gate voltage is equal to
VGS plus the drop across R1, amounting to 1.35 V. On the other hand, the drain voltage is
given by VDD − IDRD = 1.05 V. Since the drain voltage exceeds VG − VTH , M1 is indeed
in saturation.

The resistive divider consisting of RG1 and RG2 must establish a gate voltage equal
to 1.35 V while drawing 10 μA:

VDD

RG1 + RG2

= 10 μA (17.170)

RG2

RG1 + RG2

VDD = 1.35 V. (17.171)

It follows that RG1 = 45 k� and RG2 = 135 k�.

Exercise If W/L cannot exceed 100, what voltage gain can be achieved?

Example

17.35
Suppose in Example 17.34, we wish to minimize W/L (and hence transistor capacitances).
What is the minimum acceptable value of W/L?

Solution For a given ID, as W/L decreases, VGS − VTH increases. Thus, we must first compute the
maximum allowable VGS. We impose the condition for saturation as

VDD − IDRD > VGS + VR1 − VTH, (17.172)

where VR1 denotes the voltage drop across R1, and set gmRD to the required gain:

2ID

VGS − VTH
RD = Av. (17.173)

Eliminating RD from Eqs. (17.172) and (17.173) gives:

VDD − Av

2
(VGS − VTH) > VGS − VTH + VR1 (17.174)

and hence

VGS − VTH <
VDD − VR1

Av

2
+ 1

. (17.175)

In other words,

W/L >
2ID

μnCox

(
2

VDD − VR1

Av + 2

)2
. (17.176)
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It follows that

W/L > 172.5. (17.177)

Exercise Repeat the above example for Av = 10.

17.4.5 Source Follower

Another important circuit topology is the source follower (also called the “common-drain”
stage). The reader is encouraged to review Examples 17.2–17.3, the rules illustrated in
Fig. 17.7, and the possible topologies in Fig. 17.22 before proceeding further. For the sake
of brevity, we may also use the term “follower” to refer to source followers in this chapter.

Shown in Fig. 17.64, the source follower senses the input at the gate of the transistor
and produces the output at the source. The drain is tied to VDD and hence ac ground. We
first study the core and subsequently add the biasing elements.

M 1

VDD

R
outV

inV

Input Applied 
to Gate

Output Sensed
at Source

S

Figure 17.64 Source follower.

Source Follower Core How does the follower in Fig. 17.65(a) respond to a change in
Vin? If Vin rises by a small amount �Vin, the gate-source voltage of M1 tends to increase,
raising the drain current. The higher drain current translates to a greater drop across RS

and hence a higher Vout. (If we mistakenly assume that Vout falls, then VGS must rise and
so must ID, requiring that Vout go up.) Since Vout changes in the same direction as Vin, we
expect the voltage gain to be positive. Note that Vout is always lower than Vin by an amount
equal to VGS, and the circuit is said to provide “level shift.”

Another interesting and important observation here is that the change in Vout cannot
be larger than the change in Vin. Suppose Vin increases from Vin1 to Vin1 + �Vin and Vout

from Vout1 to Vout1 + �Vout [Fig. 17.65(b)]. If the output changes by a greater amount
than the input, �Vout > �Vin, then VGS2 must be less than VGS1. But this means the drain
current also decreases and so does IDRS = Vout, contradicting the assumption that Vout has
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Figure 17.65 (a) Source follower sensing an input change, (b) response of the circuit.
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Figure 17.66 Small-signal model of source follower.

increased. Thus, �Vout < �Vin, implying that the follower exhibits a voltage gain less than
unity.11

The reader may wonder if an amplifier with a sub-unity gain has any practical value.
As explained later, the input and output impedances of the source follower make it a
particularly useful circuit for some applications.

Let us now derive the small-signal properties of the follower, first assuming λ = 0.
Shown in Fig. 17.66, the equivalent circuit yields

gmv1 = vout

RS
. (17.178)

We also have vin = v1 + vout. Thus,

vout

vin
= RS

RS + 1

gm

. (17.179)

The voltage gain is therefore positive and less than unity.

Example

17.36
In integrated circuits, the follower is typically realized as shown in Fig. 17.67. Determine
the voltage gain if the current source is ideal and VA = ∞.

V

inV

I 1

outV

M 1

DD

Figure 17.67 Follower with current source.

Solution Since the source resistor is replaced with an ideal current source, the value of RS in
Eq. (17.179) must tend to infinity, yielding

Av = 1. (17.180)

This result can also be derived intuitively. A constant current source flowing through
M1 requires that VGS remain constant. Writing Vout = Vin − VGS, we recognize that Vout

exactly follows Vin if VGS is constant.

Exercise Calculate the gain if λ �= 0.

11In an extreme case described later, the gain becomes equal to unity.
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=
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(b)

M 1

DD

S

DD

DD

M 1

M 1

S

Figure 17.68 (a) Source follower stage, (b) Thevenin voltage, (c) Thevenin resistance,

(d) simplified circuit.

Equation (17.179) suggests that the source follower acts as a voltage divider, a
perspective that can be reinforced by an alternative analysis. Suppose, as shown in
Fig. 17.68(a), we wish to model vin and M1 by a Thevenin equivalent. The Thevenin
voltage is given by the open-circuit output voltage produced by M1 [Fig. 17.68(b)], as
if M1 operates with RS = ∞ (Example 17.36). Thus, vThev = vin. The Thevenin resistance
is obtained by setting the input to zero [Fig. 17.68(c)] and is equal to 1/gm. The circuit of
Fig. 17.68(a) therefore reduces to that shown in Fig. 17.68(d), confirming operation as a
voltage divider.

Figure 17.69(a) depicts the small-signal equivalent of the source follower, including
channel-length modulation. Recognizing that rO appears in parallel with RS and viewing
the circuit as a voltage divider [Fig. 17.69(b)], we have

vout

vin
= rO||RS

1

gm
+ rO||RS

. (17.181)

It is desirable to maximize RS and rO.

g
m

vv r O1 1inv

R
outv inv

outv

g m

1

R r O

(a) (b)

S

S

Figure 17.69 (a) Small-signal equivalent of source follower, (b) simplified circuit.
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Example

17.37
A source follower is realized as shown in Fig. 17.70(a), where M2 serves as a current
source. Calculate the voltage gain of the circuit.

M 1

VDD

outV

inV

M 2
Vb

M 1
outV

inV r

r O2

O1

(a) (b)

Figure 17.70 (a) Follower with ideal current source, (b) simplified circuit.

Solution Since M2 simply presents an impedance of rO2 from the output node to ac ground
[Fig. 17.70(b)], we substitute RS = rO2 in Eq. (17.181):

Av = rO1||rO2

1

gm1

+ rO1||rO2

. (17.182)

If rO1||rO2 � 1/gm1, then Av ≈ 1.

Exercise Repeat the above example if a resistance of value RS is placed in series with the source
of M2.

Example

17.38
Design a source follower to drive a 50-� load with a voltage gain of 0.5 and a power
budget of 10 mW. Assume μnCox = 100 μA/V2, VTH = 0.5 V, λ = 0, and VDD = 1.8 V.

Solution With RS = 50 � and rO = ∞ in Fig. 17.64, we have

Av = RS

1

gm
+ RS

= 0.5 (17.183)

and hence

gm = 1

50 �
. (17.184)

The power budget and supply voltage yield a maximum supply current of 5.56 mA.

Using this value for ID in gm = √
2μnCox(W/L)ID gives

W/L = 360. (17.185)

Exercise What voltage gain can be achieved if the power budget is raised to 15 mW?
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M 1

r O

outR

M 1

r O

R

g
1 r O
mRS

S

Figure 17.71 Output resistance of source follower.

In order to appreciate the usefulness of source followers, let us compute their input
and output impedances. The input impedance is very high at low frequencies, making the
circuit a good “voltmeter;” i.e., the follower can sense a voltage without disturbing it. As
illustrated in Fig. 17.71, the output impedance consists of the resistance seen looking up
into the source in parallel with that seen looking down into RS . With λ �= 0, the former is
equal to (1/gm)||rO, yielding

Rout = 1

gm
||rO||RS . (17.186)

The circuit thus presents a relatively low output impedance. Followers can serve as good
“buffers,” e.g., between a CS stage and a low-impedance load (as in Example 17.27).

Source Follower with Biasing The biasing of source followers entails defining the ter-
minal voltages and the drain current. Figure 17.72 depicts an example where RG establishes
a dc voltage equal to VDD at the gate of M1 (why?) and RS sets the drain bias current. Note
that M1 operates in saturation because the gate and drain voltages are equal. Also, the
input impedance of the circuit has dropped from infinity to RG.

Let us compute the bias current of the circuit. With a zero voltage drop across RG, we
have

VGS + IDRS = VDD. (17.187)

M 1

VDD

R

inV
C1

G

RS

C2

outV

Figure 17.72 Source follower with biasing and coupling capacitors.
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Neglecting channel-length modulation, we write

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(17.188)

= 1

2
μnCox

W
L

(VDD − IDRS − VTH)
2
. (17.189)

The resulting quadratic equation can be solved to obtain ID.

Example

17.39
Design the source follower of Fig. 17.72 for a drain current of 1 mA and a voltage gain
of 0.8. Assume μnCox = 100 μA/V2, VTH = 0.5 V, λ = 0, VDD = 1.8 V, and RG = 50 k�.

Solution The unknowns in this problem are VGS, W/L, and RS . The following three equations can
be formed:

ID = 1

2
μnCox

W
L

(VGS − VTH)
2

(17.190)

IDRS + VGS = VDD (17.191)

Av = RS

1

gm
+ RS

. (17.192)

If gm is written as 2ID/(VGS − VTH), then Eqs. (17.191) and (17.192) do not contain W/L
and can be solved to determine VGS and RS . We write Eq. (17.192) as

Av = RS

VGS − VTH

2ID
+ RS

(17.193)

= 2IDRS

VGS − VTH + 2IDRS
(17.194)

= 2IDRS

VDD − VTH + IDRS
. (17.195)

Thus,

RS = VDD − VTH

ID

Av

2 − Av

(17.196)

= 867 �. (17.197)

and

VGS = VDD − IDRS (17.198)

= VDD − (VDD − VTH)
Av

2 − Av

(17.199)

= 0.933 V. (17.200)
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It follows from Eq. (17.190) that

W
L

= 107. (17.201)

Exercise What voltage gain can be achieved if W/L cannot exceed 50?

Equation (17.189) reveals that the bias current of the source follower varies with the
supply voltage. To avoid this effect, integrated circuits bias the follower by means of a
current source (Fig. 17.73).

M 1

VDD

R

inV
C1

G

C2

outV

M 1

VDD

R

inV
C1

G

C2

outV

M 2
Vb

Figure 17.73 Source follower with biasing.

P R O B L E M S

In the following problems, unless otherwise
stated, assume μnCox = 200 μA/V2, μpCox =
100 μA/V2, λ = 0, and VTH = 0.4 V for NMOS
devices and −0.4 V for PMOS devices.

17.1. In the circuit of Fig. 17.74, determine the
maximum value of RD required to keep
the transistor M1 in saturation. Assume
λ = 0 and W/L = 11/0.18.

M1

V

R

DD

 Ω50 k

= 1.8 V

D

Figure 17.74

17.2. For the circuit of Fig. 17.75 calculate
the value of RD and W/L such that
ID1 = 1mA.

M1

VDD = 1.8 V 

RD55  Ωk

35  Ωk

Figure 17.75

17.3. Design the circuit shown in Fig. 17.76 to
obtain a current of 400 μA with W/L =
20/0.18 and gm = 0.58 mS. Assume M1

operates in the saturation region.

M1

VDD = 1.8 V

 Ω10 k RD

RS

Figure 17.76
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17.4. For the circuit shown in Fig. 17.77,
determine VGS, VDS and ID. Assume
W/L = 1/0.18 and M1 operates in the sat-
uration region.

M1

VDD = 1.8 V

R1

R2 RS

RD Ω50 k  Ω1 k

 Ω1 k
 Ω100 k

Figure 17.77

17.5. Consider the circuit shown in Fig. 17.78,
where W/L = 20/0.18. Assuming the
transistor is operating in the saturation
region, determine the value of ID and VGS .

M1

VDD = 1.8 V

R1

R2

 Ω500

RS  Ω200

 Ω21 k

 Ω12 k

Figure 17.78

17.6. Design the circuit shown in Fig. 17.79 to
obtain a drain current of 0.5 mA. If M1 is to
provide a transconductance of (1/100 �),
calculate the required value of RD.

M1

VDD = 1.8 V

RD

Figure 17.79

17.7. Calculate the value of ID and VGS in
the circuit shown in Fig. 17.80. Assume
W/L = 50/0.18.

M1

VDD = 1.8 V

2  Ωk

R1

R210  Ωk

3.3  Ωk

Figure 17.80

17.8. For the circuit shown in Fig. 17.81, deter-
mine the value of W/L, to get a drain cur-
rent of 1 mA.

M1

VDD = 1.8 V

 ΩRS 200

 Ω10 k  Ω1 k

 Ω20 k

R1

R2

Figure 17.81

17.9. Determine the value of ID and W/L, in
the circuit shown in Fig. 17.82 such that
M1 operating in saturation.

M1

VDD = 1.8 V

2  Ωk Ω30 k
 Ω36 k

Figure 17.82

17.10. An NMOS current source must be
designed for an output resistance of
100 k� and with λ = 0.1 V−1. Calculate
the maximum possible output current.

17.11. In the circuit of Fig. 17.83, M1 and M2

have lengths 0.18 μm and λ = 0.1V−1.
If W1 = 2W and IX = 1 mA, VDS1 =
VDS2 = VB = 0.8 V, determine the value
of IY .

M 1 M

I I

VB

2

X Y

Figure 17.83
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17.12. The two current sources in Fig. 17.84
must be designed for IX = IY = 0.5 mA. If
VB1 = 1 V, VB2 = 1.2 V, λ = 0.1 V−1, and
L1 = L2 = 0.25 μm, calculate W1 and W2.
Compare the output resistances of the two
current sources.

M 1 M

I I

V
2

X Y

B1 VB2

Figure 17.84

17.13. A student mistakenly uses the circuit
of Fig. 17.85 as a current source. If
W/L = 10/0.25, λ = 0.1 V−1, VB1 = 0.2 V,
and VX has a dc level of 1.2 V, calculate the
impedance seen at the source of M1.

M 1
VB1

VX

Figure 17.85

17.14. Consider the circuit shown in Fig.
17.86, where (W/L)1 = 10/0.18 and
(W/L)2 = 30/0.18. if λ = 0.1 V−1, calcu-
late VB such that VX = 0.9 V.

VDD

M 1

M 2

VB

X

= 1.8 V

Figure 17.86

17.15. In the circuit of Fig. 17.87, M1 and M2

serve as current sources. Calculate IX and

VDD

VB

W
L

I YI X

M 1 M 2

W
L

2

Figure 17.87

IY if VB = 1 V and W/L = 20/0.25. How
are the output resistances of M1 and M2

related?

17.16. In* the circuit of Fig. 17.88, (W/L)1 =
5/0.18, (W/L)2 = 10/0.18, λ1 = 0.1 V−1,
and λ2 = 0.15 V−1.
(a) Determine VB such that ID1 = |ID2| =

0.5 mA for VX = 0.9 V.

(b) Now sketch IX as a function of VX as
VX goes from 0 to VDD.

VDD

M 1

M 2

VB VX

I X

= 1.8 V

Figure 17.88

17.17. Design a common source stage of Fig.
17.89, with W/L = 20/0.18 and λ = 0 to
yield a gain of 12 with Vin = 0.6 V.

R  Ω

M 1

VDD

D

in

out

V

V

2 k

= 1.8 V

Figure 17.89

17.18. The circuit of Fig. 17.89 is designed with
W/L = 5/0.18, λ = 0 and ID = 0.5 mA.
(a) Compute the required value of gate
bias voltage (b) Voltage gain of the circuit.

17.19. Design the CS stage of Fig. 17.90 for a
gm = 5 mS and W/L = 5/0.18. Determine
the value RD and power dissipation.

M 1

VDD

in

out

V

V

= 1.8 V

RD

Figure 17.90
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17.20. In the circuit of Fig. 17.91, (W/L)1 =
5/0.18, Vb = 1 V, (W/L)2 = 20/0.18,

λ = 0.1 V−1 and λ2 = 0.2 V−1. Compute
the voltage gain.

VDD

M 1

M 2

outV

inV

Vb

= 1.8 V

Figure 17.91

17.21. In the CS stage of Fig. 17.91, if λ2 << λ1,
what is the effect on voltage gain? As-
sume (W/L)1 = 10/0.18, λ1 = 0 V−1 and
ID = 2 mA.

17.22. In** Problem 17.20, if the width or lengths
of the both transistors are doubled, what
is the new voltage gain?

17.23. The CS stage depicted in Fig. 17.92 must
achieve a voltage gain of 15 at a bias
current of 0.5 mA. If λ1 = 0.15 V−1 and
λ2 = 0.05 V−1, determine the required
value of (W/L)2.

VDD

M 1

M 2

outV

inV

Vb

= 1.8 V

Figure 17.92

17.24. Explain which one of the topologies
shown in Fig. 17.93 is preferred.

VDD

M 1

M 2

outV

inV

Vb

VDD

M 1

M 2

outV

inV

Vb

(a) (b)

Figure 17.93

17.25. In the circuit shown in Fig. 17.94, if
ID2 = 1mA and (W/L)2 = 10/0.18, deter-
mine the voltage gain. Assume λ = 0 and
M1 operates in the saturation region.

VDD

M 1

M 2

outV

inV

= 1.8 V

Figure 17.94

17.26. In the circuit shown in Fig 17.94,
(W/L)1 = 20/0.18, (W/L)2 = 2/0.18,
gm1 = 0.5 mS. Determine the voltage gain
if λ1 = 0.1 V−1 and λ2 = 0.2 V−1.

17.27. In the CS stage of Fig. 17.94, determine
the value of (W/L)1 and (W/L)2 required
to achieve a voltage gain of 5. Assume
ID1 = 2 mA and M1 operates in the sat-
uration region.

17.28. If* λ �= 0, determine the voltage gain of the
stages shown in Fig. 17.95.

17.29. The circuit of Fig. 17.96 must provide a
voltage gain of 5 with a bias current of
1 mA. Find the value of RD and RS such
that M1 operates at the edge of saturation.
Assume λ = 0, voltage drop across RS =
200 mV and (W/L) = 5/0.18.

17.30. In the circuit of Fig. 17.96, determine
the gate voltage such that M1 oper-
ates at the edge of saturation. Assume
λ = 0, (W/L) = 5/0.18, RD = 1 k� and
RS = 200 �.

17.31. Consider the degenerated CS
stage of Fig. 17.96. If ID = 1 mA,
RS = 200 �, RD = 1 k�, W/L = 5/0.18
and λ = 0.1 V−1. Calculate the voltage
gain.

17.32. Calculate** the voltage gain of the circuits
depicted in Fig. 17.97. Assume λ = 0.

17.33. Determine** the output impedance of each
circuit shown in Fig. 17.98. Assume λ �= 0.

17.34. The CS stage of Fig. 17.99 carries a
bias current of 1 mA. If RD = 1 k� and
λ = 0.1 V−1, compute the required value
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Figure 17.95
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outV
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M 3

M

VDD

Vb 2

(d)

(c)(b)

(e)

Figure 17.97

of W/L for a gate voltage of 1 V. What is
the voltage gain of the circuit?

17.35. An* adventurous student decides to try a
new circuit topology wherein the input

is applied to the drain and the output is
sensed at the source (Fig. 17.100). Assume
λ �= 0, determine the voltage gain of the
circuit and discuss the result.
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M 1inV

VbM 2
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Figure 17.98
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out

V

V
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= 1.8 V

Figure 17.99

M 1

RS

VB

inV

outV

Figure 17.100

17.36. In the common-source stage depicted in
Fig. 17.101, the drain current of M1 is
defined by the ideal current source I1 and
remains independent of R1 and R2 (why?).
Suppose I1 = 1 mA, RD = 500 �, λ = 0,
and C1 is very large.
(a) Compute the value of W/L to obtain

a voltage gain of 5.

(b) Choose the values of R1 and R2 to
place the transistor 200 mV away from
the triode region while R1 + R2 draws
no more than 0.1 mA from the supply.

(c) With the values found in (b), what
happens if W/L is twice that found in
(a)? Consider both the bias conditions
(e.g., whether M1 comes closer to the
triode region) and the voltage gain.

M 1

VDD = 1.8 V

R1

R2

I 1 C1

C1

inV

RD

outV

Figure 17.101

17.37. Consider the CS stage shown in Fig.
17.102, where I1 defines the bias current
of M1 and C1 is very large.
(a) If λ = 0 and I1 = 1 mA, what is the

maximum allowable value of RD?

(b) With the value found in (a), determine
W/L to obtain a voltage gain of 5.
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M 1

VDD = 1.8 V

R1

I 1 C1

C1

inV

RD

outV

Figure 17.102

17.38. The common-gate stage shown in Fig.
17.103 must provide a voltage gain of
4 and an input impedance of 50 �. If
ID = 0.5 mA, and λ = 0, determine the
values of RD and W/L.

V

R

DD

D

outV

M 1 Vb

inV

= 1.8 V

Figure 17.103

17.39. The CG stage shown in Fig. 17.102 must
provide a voltage gain of 2. If ID = 0.5 mA
and W/L = 5/0.18, determine the input
and output impedance.

17.40. The CG stage depicted in Fig. 17.104 must
provide an input impedance of 50 � and
an output impedance of 500 �. Assume
λ = 0.

V

R

DD

D

outV

M 1

inV

= 1.8 V

Figure 17.104

(a) What is the maximum allowable value
of ID?

(b) With the value obtained in (a), calcu-
late the required value of W/L.

(c) Compute the voltage gain.

17.41. The CG amplifier shown in Fig. 17.105 is
biased by means of I1 = 1 mA. Assume
λ = 0 and C1 is very large.

(a) What value of RD places the transis-
tor M1 100 mV away from the triode
region?

(b) What is the required W/L if the circuit
must provide a voltage gain of 5 with
the value of RD obtained in (a)?

V

R

DD

D

outV

M 1

I 1

C1

inV

= 1.8 V

Figure 17.105

17.42. Determine** the voltage gain of each stage
depicted in Fig. 17.106. Assume λ = 0.

17.43. Consider* the circuit of Fig. 17.107, where
a common-source stage (M1 and RD1) is
followed by a common-gate stage (M2 and
RD2).
(a) Writing vout/vin = (vX/vin)(vout/vX)

and assuming λ = 0, compute the
overall voltage gain.

(b) Simplify the result obtained in (a) if
RD1 → ∞. Explain why this result is
to be expected.

17.44. Repeat Problem 17.43 for the circuit
shown in Fig. 17.108.

17.45. Calculate the voltage gain of the stage
depicted in Fig. 17.109. Assume λ = 0 and
the capacitors are very large.

17.46. Assuming* λ = 0, calculate the voltage
gain of the circuit shown in Fig. 17.110.
Explain why this stage is not a common-
gate amplifier.

17.47. The source follower shown in Fig. 17.111 is
biased through RG. Calculate the voltage
gain if W/L = 20/0.18 and λ = 0.1 V−1.

17.48. The source follower of Fig. 17.112 is to
be designed with a maximum bias gate
voltage of 1.8 V. Compute the required
value of W/L for a voltage gain of 0.8 if
λ = 0.
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VDD

outV

M 1

inV

I 1

R G

Figure 17.110

M 1

VDD

R

inV

G

RS

outV

 Ω1 k
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Figure 17.111
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Figure 17.112
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17.49. The source follower depicted in Fig.
17.113 employs a current source. Deter-
mine the values of I1 and W/L if the cir-
cuit must provide an output impedance
less than 100 � with VGS = 0.9 V. Assume
λ = 0.

M 1

VDD

outV

inV

I 1

= 1.8 V

Figure 17.113

17.50. We wish to design the source follower of
Fig. 17.114 for a voltage gain of 0.8 with
a power budget of 3 mW. Compute the
required value of W/L. AssumeC1 is very
large and λ = 0.

M 1

VDD

inV

I 1

C

outV
1

RL Ω50

= 1.8 V

Figure 17.114

17.51. Determine** the voltage gain of the stages
shown in Fig. 17.115. Assume λ �= 0.

17.52. Consider* the circuit shown in Fig. 17.116,
where a source follower (M1 and I1) pre-
cedes a common-gate stage (M2 and RD).
(a) Writing vout/vin = (vX/vin)(vout/vX),

compute the overall voltage gain.

(b) Simplify the result obtained in (a) if
gm1 = gm2.
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Figure 17.115
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Figure 17.116

Design Problems

In the following problems, unless otherwise
stated, assume λ = 0.

17.53. Design the CS stage shown in Fig. 17.117
for a voltage gain of 5 and an output
impedance of 1 k�. Bias the transistor so
that it operates 100 mV away from the

triode region. Assume the capacitors are
very large and RD = 10 k�.

17.54. Design the circuit of Fig. 17.118 for a
voltage gain of 5 and a power budget of
6 mW. Assume the voltage drop across RS

is equal to the overdrive voltage of the
transistor and RD = 200 �.
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1

= 1.8 V

Figure 17.117

M 1

VDD = 1.8 V

R1

R2

C1

inV

RD

outV

RS

Figure 17.118

17.55. The circuit shown in Fig. 17.119 must pro-
vide a voltage gain of 6, with CS serv-
ing as a low impedance at the frequencies
of interest. Assuming a power budget of
2 mW and an input impedance of 20 k�,
design the circuit such that M1 operates
200 mV away from the triode region.
Select the values ofC1 andCS so that their
impedance is negligible at 1 MHz.

C

M 1

VDD = 1.8 V

R1
C1

inV

RD

outV

RS S

Figure 17.119

17.56. In the circuit of Fig. 17.120, M2 serves as
a current source. Design the stage for a
voltage gain of 20 and a power budget of
2 mW. Assume λ = 0.1 V−1 for both tran-
sistors and the maximum allowable level
at the output is 1.5 V (i.e., M2 must remain
in saturation if Vout ≤ 1.5 V).

17.57. Consider the circuit shown in Fig.
17.121, where CB is very large and λn =
0.5λp = 0.1 V−1.
(a) Calculate the voltage gain.

(b) Design the circuit for a voltage gain
of 15 and a power budget of 3 mW.
Assume RG ≈ 10(rO1||rO2) and the dc

VDD

M 1

M 2

outV

inV

Vb

= 1.8 V

Figure 17.120

VDD

M 1

M 2

outV

inV

RG

CB

= 1.8 V

Figure 17.121

level of the output must be equal to
VDD/2.

17.58. The CS stage of Fig. 17.122 incorporates
a degenerated PMOS current source.
The degeneration must raise the output
impedance of the current source to about
10rO1 such that the voltage gain remains
nearly equal to the intrinsic gain of M1.
Assume λ = 0.1 V−1 for both transistors
and a power budget of 2 mW.
(a) If VB = 1 V, determine the values of

(W/L)2 and RS so that the impedance
seen looking into the drain of M2 is
equal to 10rO1.

(b) Determine (W/L)1 to achieve a volt-
age gain of 30.

VDD

M 1

M 2

outV

inV

Vb

RS

= 1.8 V

Figure 17.122

17.59. Assuming a power budget of 1 mW and
an overdrive of 200 mV for M1, design the
circuit shown in Fig. 17.123 for a voltage
gain of 4.
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VDD

M 1

M 2

outV

inV

= 1.8 V

Figure 17.123

17.60. Design the common-gate stage depicted
in Fig. 17.124 for an input impedance of
50 � and a voltage gain of 5. Assume a
power budget of 3 mW.

V

R

DD

D

outV

M 1

inV

= 1.8 V

I 1

Figure 17.124

17.61. Design the circuit of Fig. 17.125 such that
M1 operates 100 mV away from the triode
region while providing a voltage gain of 4.
Assume a power budget of 2 mW.

V

R

DD

D

outV

M 1

inV

= 1.8 V

RS

Figure 17.125

S P I C E P R O B L E M S

In the following problems, use the MOS
models and source/drain dimensions given in
Appendix A. Assume the substrates of NMOS
and PMOS devices are tied to ground and VDD,
respectively.

17.1. In the circuit of Fig. 17.126, I1 is an ideal
current source equal to 1 mA.

(a) Using hand calculations, determine

(W/L)1 such that gm1 = (100 �)
−1

.

(b) SelectC1 for an impedance of ≈ 100 �

(� 1 k�) at 50 MHz.

(c) Simulate the circuit and obtain the
voltage gain and output impedance at
50 MHz.

(d) What is the change in the gain if I1

varies by ±20%?

M 1

VDD = 1.8 V

outV

I 1
 Ω10 k

 Ω1 k

C1

inV W
L

( (
1

Figure 17.126

17.2. The source follower of Fig. 17.127 employs
a bias current source, M2.
(a) What value of Vin places M2 at the

edge of saturation?

(b) What value of Vin places M1 at the
edge of saturation?

(c) Determine the voltage gain if Vin has
a dc value of 1.5 V.

(d) What is the change in the gain if Vb

changes by ±50 mV?
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= 1.8 V
M 1

VDD

outV

inV

0.8 V
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0.18

20

0.18

10

Figure 17.127

17.3. Figure 17.128 depicts a cascade of
a source follower and a common-
gate stage. Assume Vb = 1.2 V and
(W/L)1 = (W/L)2 = 10 μm/0.18 μm.

(a) Determine the voltage gain if Vin has
a dc value of 1.2 V.

(b) Verify that the gain drops if the dc
value of Vin is higher or lower than
1.2 V.

(c) What dc value at the input reduces
the gain by 10% with respect to that
obtained in (a)?

inV M M1 2

VDD

Vb

1 mA

 Ω1 k

outV

Figure 17.128





Chapter A
Introduction to SPICE

The circuits encountered in microelectronics may contain a few devices or a few million de-
vices.1 How do we analyze and design these circuits? As the number of devices in a circuit
increases, hand analysis becomes more difficult, eventually reaching a point where other
methods are required. For example, one can build a prototype using discrete components
and observe its behavior. However, discrete devices provide a poor approximation of mod-
ern integrated circuits. Furthermore, even for a few hundred devices, discrete prototypes
become prohibitively complex.

Today’s microelectronics employs simulation programs extensively. A versatile tool
used to predict the behavior of circuits is Simulation Program with Integrated Circuit
Emphasis (SPICE). While orginally developed as a public-domain tool (at University of
California, Berkeley), SPICE has evolved into commercial tools such as PSPICE, HSPICE,
etc., most of which retain the same format. This appendix provides a tutorial overview
of SPICE, enabling the reader to perform basic simulations. More details can be found
in [1].

A.1 SIMULATION PROCEDURE

Suppose we have the circuit shown in Fig. A.1(a) and wish to use SPICE to study its
frequency response. That is, we wish to verify that the response is relatively flat for
f < 1/(2πR1C1) ≈ 15.9 MHz and begins to roll off thereafter [Fig. A.1(b)]. To this end,
we apply a sinusoidal voltage to the input and vary its frequency from, say, 1 MHz to
50 MHz.

The procedure consists of two steps: (1) define the circuit in a language (format) that
SPICE understands, and (2) use an appropriate command to tell SPICE to determine
the frequency response. Let us begin with the first step. This step itself consists of three
tasks.

(1) Label each node in the circuit. Figure A.1(c) depicts an example, where the labels “in”
and “out” refer to the input and output nodes, respectively. The common (ground)
node must be called “0” in SPICE. While arbitrary, the labels chosen for other nodes

1Recent microprocessors contain one billion MOS transistors.

809
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R1

C

outVinV

1

 Ω1 k

1 pF

outV

inV

 ω  
R C

1

(a) (b)

1 1

 Ω1 k

1 pF

in out
r1

c1

 Ω1 k

1 pF

in
out

r1

c1

0

vin

0

(d)(c)

Figure A.1 (a) Simple RC circuit, (b) its frequency response, (c) with nodes labeled, (d) with

elements labeled.

should carry some information about their respective nodes so as to facilitate reading
the SPICE description of the circuit.

(2) Label each element in the circuit. Defining the type of the element (resistors, ca-
pacitors, etc.), each of these labels must begin with a specific letter so that SPICE
recognizes the element. For example, resistor labels must begin with r, capacitor la-
bels with c, inductor labels with l, diode labels with d, and voltage sources with v.2

Our simple circuit now appears as shown in Fig. A.1(d).

(3) Construct the “netlist,” i.e., a precise description of each element along with the nodes
to which it is tied. The netlist consists of text lines, each describing one element, with
the following format for two-terminal devices:

elementlabel node1 node2 value

From the example in Fig. A.1(d), we begin the netlist with:

r1 in out 1k
c1 out 0 1p

Note that the units are specified as a single letter (k for 103, p for 10−12, etc.). For the
input voltage source, we write

vin in 0 ac 1

2SPICE does not distinguish between lower-case and upper-case letters.
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where ac denotes our desire to determine the frequency (ac) response and hence
designates Vin as a sinusoidal voltage source whose frequency will be varied. The
value 1 at the end represents the peak amplitude of the sinusoid. Also note
that the first node, “in,” is assumed to be the positive terminal of the voltage
source.

The netlist must also include the “type of analysis” that we wish SPICE to perform.
In our example, SPICE must vary the frequency from one value to another, e.g., 1 MHz to
50 MHz. The corresponding command appears as

.ac dec 200 1meg 50meg

Note that each “command” line begins with a period. The first entry, “ac,” requests SPICE
to perform an “ac analysis,” i.e., determine the frequency response. The second and third
entries, “dec 200,” tell SPICE to simulate the circuit at 200 frequency values in every decade
of frequency (e.g., from 1 MHz to 10 MHz). The last two entries, “1meg 50meg,” set the
lower and upper values of the frequency range, respectively. Note that “meg” denotes 106

and should not be confused with “m,” which stands for 103.
We need two more lines to complete our netlist. The first line of the file is called the

“title” and carries no information for SPICE. For example, the title line may read “My
Amplifier.” Note that SPICE always ignores the first line of the file, encountering errors
if you forget to include the title. The last line of the file must be a “.end” command. Our
netlist now appears as:

Test Circuit for Frequency Response
r1 in out 1k
c1 out 0 10p
vin in 0 ac 1
.ac dec 200 1meg 50 meg
.end

Note that, except for the first and last lines, the order of other lines in the netlist is unim-
portant.

What do we do with the above netlist? We must “run” SPICE on this file, which we
call, for example, test.sp. Depending on the operating system, running SPICE may entail
clicking on an icon in a graphics interface or simply typing:

spice test.sp

After the simulation is successfully run, various node voltages can be plotted using
the graphics interface that accompanies SPICE.

Figure A.2 summarizes the SPICE simulation procedure. The definition of (voltage
or current) sources in the netlist must be consistent with the type of analysis. In the above
example, the input voltage source definition contains the entry “ac” so that SPICE applies
the frequency sweep to Vin rather than to other sources.

At this point, the reader may raise many questions: How are other elements defined
in the netlist? How are the units specified? Is the order of the node labels in the netlist
important? How are other types of analysis specified? We answer these questions in the
following sections.
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Labeling

Label each node.

Label each element.

Netlist

Title

Element Definitions

Source Definitions

.Type of Analysis

.end

Execution

View outputs.

Run SPICE.

Figure A.2 Simulation procedure.

A.2 TYPES OF ANALYSIS

In addition to frequency response, other aspects of circuits may also be of interest. This
section provides the (voltage or current) source descriptions and commands necessary to
perform other types of analysis.

A.2.1 Operating Point Analysis

In many electronic circuits, we must first determine the bias conditions of the devices.
SPICE performs such an analysis with the .op command. The following example illustrates
the procedure.

Example

A.1
Determine the currents flowing through R3 and R4 in Fig. A.3(a).

R1

 Ω1 k

(a) (b)

1.5 V
R2  Ω2 k

R  Ω2 k3 R  Ω3 k4

R1

 Ω1 k

R2  Ω2 k

R  Ω2 k3 R  Ω3 k4

v1

batt
x

y

Figure A.3
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Solution We label the nodes as shown in Fig. A.3(b) and construct the netlist as follows:

Simple Resistive Network
v1 batt 0 1.5
r1 batt x 1k
r2 x y 2k
r3 y 0 2k
r4 y 0 3k
.op
.end

SPICE predicts a current of 0.214 mA through R3 and 0.143 mA through R4.

A.2.2 Transient Analysis

Suppose we wish to study the pulse response of the RC section shown in Fig. A.1(d). Called
“transient analysis,” this type of simulation requires changing the vin and .ac lines while
maintaining the same netlist descriptions for R1 and C1. The voltage source must now be
specified as

V1 V2 Tdel Tr Tf Tw
vin in 0 pulse(0 1 0 1n 2n 5n)

where V1, . . . , Tw are defined as depicted in Fig. A.4(a).3 We say Vin is a pulse that goes
from 0 V to 1 V with zero delay (Tdel), a rising transition of 1 ns (TR), a falling transistion
of 2 ns (TF), and a width of 5 ns (Tw). Note that the first node, “in,” is assumed to be the
positive terminal of the voltage source.

How do we tell SPICE to perform a transient analysis? The command is as follows:

.tran 0.2n 10n

where 0.2n indicates the increments (“time steps”) that SPICE must use in calculating the
response, and 10n the total time of interest [Fig. A.4(b)].

t0 Tdel

TR TF

V1

V2

(a) (b)

t

1
0

 n
s

0.2 ns

Figure A.4 (a) Definition of pulse parameters, (b) illustration of time step.

3The parentheses following the pulse description are for clarity and not essential.
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The overall netlist now appears as:

Pulse Response Example
r1 in out 1k
c1 out 0 10p
vin in 0 pulse(0 1 0 1n 2n 5n)
.tran 0.2n 10n
.end

Example

A.2
Construct a SPICE netlist for the pulse response of the circuit shown in Fig. A.5(a).

outVinV
5 pF

 Ω2 M

5 pF

 Ω2 M

(a) (b)

out

r1
c1

in

vin

0

Figure A.5

Solution We begin with labeling the nodes and the elements [Fig. A.5(b)]. Given the time constant
R1C1 = 10 μs, we postulate that the rising and falling transitions of the input pulse can be
as long as approximately 1 μs and still appear “abrupt” to the circuit. For the pulsewidth,
we choose 30 μs to allow the output to “settle.” We therefore have

High-Pass Filter Pulse Response
c1 in out 5p
r1 out 0 2meg
vin in 0 pulse(0 1 1u 1u 30u)
.tran 0.2u 60u
.end

(The letter u in the pulse description denotes 10−6.) Note that the timestep is chosen
sufficiently smaller than the pulse transition times, and the overall transient time long
enough to reveal the response after the input falls to zero.

Example

A.3
Revise the SPICE netlist constructed in Example A.2 so as to observe the step response
of the circuit.

Solution We wish Vin to jump to 1 V and remain at this level. The pulse description, however,
requires a pulsewidth value. Thus, we choose the pulsewidth sufficiently larger than our
“observation window.”

vin in 0 pulse(0 1 1u 1u 1)
.tran 0.2u 30u
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A pulsewidth of 1 s proves quite versatile for step response analyses because most of
our circuits exhibit a much faster response. Note that the overall transient time is now
30 μs, just long enough to show the response to the input rising edge.

Example

A.4
Construct a SPICE netlist for the step response of the circuit depicted in Fig. A.6(a).

outVinV

 Ω

(a) (b)

out

c1

20 nH

30

1 pF

in

vin

0

mid

l1

r1

Figure A.6

Solution We begin with labeling the nodes and the elements [Fig. A.6(b)]. How do we choose the
transition time of the step? Ignoring the damping behavior of the circuit for now, we
may consider R1/(2L1) = 1.5 ns as the time constant of the response and hence choose
the transition time to be about 150 ps. The netlist is as follows:

My RLC Circuit
l1 in out 20n
r1 out mid 30
c1 mid 0 1p
vin in 0 pulse(0 1 0 150p 150p 1)
.tran 25p 500p
.end

Note that the falling transition time is unimportant here.

Example

A.5
Suppose we wish to determine the frequency response of the RLC circuit illustrated in
Fig. A.6(a). Revise the netlist accordingly.

Solution We must often study both the transient and the ac response of circuits. For convenience,
only one file should serve both purposes. Fortunately, SPICE allows us to “comment
out” lines of the file by inserting a ∗ at the beginning of each line. We therefore repeat
the netlist from the above example, comment out the lines related to transient analysis,
and add the lines necessary for ac analysis:
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My RLC Circuit
l1 in out 20n
r1 out mid 30
c1 mid 0 1p
∗vin in 0 pulse(0 1 0 150p 150p 1)
∗.tran 25p 500p
∗Added next two lines for ac analysis.
vin in 0 ac 1
.ac dec 100 1meg 1g
.end

(The letter g at the end of the .ac line denotes 109.) As seen above, comment lines can
also serve as reminders.

A.2.3 DC Analysis

In some cases, we wish to plot the output voltage (or current) of a circuit as a function of
the input voltage (or current). Called “dc analysis,” this type of simulation requires that
SPICE sweep the input across a range in sufficiently small steps. For example, we may
write

vin in 0 dc 1
Lower Upper Step
End End Size

.dc vin 0.5 2 1m

The vin description specifies the type as dc with a nominal value of 1 V.4 The dc sweep
command begins with .dc and specifies vin as the source that must be swept. The following
two entries denote the lower and upper ends of the range, respectively, and the last entry
indicates the step size.

Example

A.6
Construct a netlist to plot Vout as a function of Vin for the circuit shown in Fig. A.7(a).
Assume an input range of −1 V to +1 V with 2-mV steps.

outVinV

(a) (b)

out
 Ω100

 Ω200

 Ω100

 Ω200

in

vin

0

Figure A.7

4This nominal value is arbitrary and unimportant in dc analysis.
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Solution We label the nodes and the elements as illustrated in Fig. A.7(b). The netlist can be
written as:

Voltage Divider
r1 in out 100
r2 out 0 200
vin in 0 dc 1
.dc vin -1 +1 2m
.end

Note that the values of r1 and r2 are not followed by a unit so that SPICE assumes they
are expressed in ohms.

A.3 ELEMENT DESCRIPTIONS

In our study of SPICE netlists thus far, we have seen descriptions of resistors, capacitors,
inductors, and voltage sources. In this section, we consider the descriptions of elements
such as current sources, diodes, bipolar transistors, and MOSFETs.

A.3.1 Current Sources

The definition of current sources for various types of analysis follows those of volt-
age sources, with the understanding that the current flows out of the first node and
into the second node specified in the description. For example, the current source in
Fig. A.8(a) is expressed as

iin in 0 ac 1

for ac analysis.
If the circuit is configured as shown in Fig. A.8(b), then we must write

iin 0 in ac 1

Similarly, for pulse response, the current source in Fig. A.8(a) can be expressed as

iin in 0 pulse(0 1m 0 0.1n 0.1n 5n)

where the current jumps from 0 to 1 mA with zero delay and a rising transition time
of 0.1 ns.

R1

C1

(a) (b)

in
out

iin

R1

C1

in
out

iin

Figure A.8 Circuits for illustrating the polarity of current sources in SPICE.
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Example

A.7
Study the response of the circuit depicted in Fig. A.9(a) to an input current step.

(a) (b)

 Ω1 k 1 pF iinI in

0

in

c1r1

Figure A.9

Solution Labeling the circuit as shown in Fig. A.9(b) and noting a time constant of 1 ns, we write

Step Response Example
r1 in 0 1k
c1 in 0 1p
iin 0 in pulse(0 1m 0 0.1n 0.1n 1)
.tran 20p 3n
.end

A.3.2 Diodes

Unlike passive elements studied thus far, diodes cannot be specified by a “value.” Rather,
the equation ID = IS[exp (VD/VT) − 1] suggests that the value of IS must be provided.
Thus, in the example illustrated in Fig. A.10, we have

Anode Cathode Is
d1 in out is=1f

where the element name begins with d to denote a diode, the first node indicates the anode,
and the second represents the cathode. The last entry specifies the value of IS as 1 × 10−15

A.5

In some cases, a reverse-biased diode may serve as a voltage-dependent capac-
itor, requiring that the value of the junction capacitance be specified. Recall that

outin

0

D1

R1

Figure A.10 Simple diode circuit.

5Note that f stands for femto and not for farad. That is, a capacitor expressed as 1f in SPICE description
assumes a value of 1 fF.
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Cj = Cj0/
√

1 + |VR|/V0, where VR < 0 is the reverse-biase voltage. We must therefore
provide the values of Cj0 and V0 to SPICE.

The above diode line may then evolve to

d1 in out is=1f, cjo=1p, vj=0.7

(Note that the third letter in cjo is an o rather than a zero.) SPICE recognizes vj as V0 for
diodes.

Example

A.8
Determine the step response of the circuit shown in Fig. A.11 if Vin jumps from 0 to 1 V
and D1 satisfies the parameters given above.

outVinV

1D

 Ω1 k

Figure A.11

Solution The voltage dependence of the junction capacitance of D1 makes the analysis of this
circuit difficult. For Vout near zero, D1 experiences a small reverse bias, exhibiting a
capacitance close to Cj0. As Vout rises, however, the capacitance falls, and so does the
time constant of the circuit. Thus, SPICE proves quite useful here.

Labeling the circuit in our mind, we write the netlist as:

Step Response Example
r1 in out 1k
d1 out 0 is=1f, cjo=1p, vj=0.7
vin in 0 pulse(0 1 0 0.1n 0.1n 1)
.tran 25p 3n
.end

As we encounter more sophisticated devices, the number of parameters that must be
specified for their SPICE description increases, thereby making the task of netlist con-
struction cumbersome and error-prone. For example, today’s MOSFETs require hundreds
of parameters in their SPICE descriptions. To avoid repeating the parameters for each
element, SPICE allows the definition of “models.” For example, the above diode line can
be written as

d1 in out mymodel
.model mymodel d (is=1f, cjo=1p, vj=0.7)

Upon reaching the fourth entry in the diode line, SPICE recognizes that this is not a
value, but a model name and hence seeks a .model command that defines the details of
“mymodel.” The letter “d” in the .model line specifies a diode model. As seen below,
this letter is replaced with “npn” for an npn bipolar transistor and “nmos” for an NMOS
device.
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Example

A.9
Plot the input/output characteristic of the circuit shown in Fig. A.12(a). Assume D1 and
D2 follow the above diode model.

D1

D2

inV outV

 Ω1 k

Figure A.12

Solution Labeling the circuit in our mind, we write the netlist as:

Diode Circuit
d1 in out mymodel
d2 out in mymodel
r1 out 0 1k
vin in 0 dc 1
.dc vin -3 +3 2m
.end

A.3.3 Bipolar Transistors

The definition of bipolar transistors requires special attention to the order of the terminals.
Consider the example shown in Fig. A.13, where Q1 is expressed as:

Collector Base Emitter Substrate Model
q1 out in emi 0 bimod

where the device name begins with the letter q to indicate a bipolar transistor, and the
first four nodes represent the collector, base, emitter, and substrate terminals, respectively.
(In most cases, the substrate of npn transistors is tied to ground.) As with diodes, the
parameters of the transistor are expressed in a model called, for example, bimod:

.model bimod npn (beta=100, is=10f)

VCC

 Ω1 k

= 2.5 V

emi

in
out

 Ω100

Q1

Figure A.13 Common-emitter stage.



A.3 Element Descriptions 821

Example

A.10
Construct the SPICE netlist for the circuit of Fig. A.13. Assume the input must be swept
from 0.8 V to 0.9 V.

Solution The netlist is as follows:

Simple CE Stage
q1 out in emi 0 bimod
remi emi 0 100
rout out vcc 1k
vcc vcc 0 2.5
vin in 0 dc 1
.dc 0.8 0.9 1m
.model bimod npn (beta=100, is=10f)
.end

Two observations prove useful here. (1) The two resistors are labeled according to
the nodes to which they are attached. This approach allows us to find each resistor more
readily than if it is simply labeled by a number, e.g., r1. (2) In the above netlist, the term
“vcc” refers to two distinct entities: a voltage source (the first entry on the vcc line), and a
node (the second entry on the vcc line).

The model of a bipolar transistor can contain high-frequency effects. For exam-
ple, the base-emitter and base-collector junction capacitances are denoted by cje and
cjc, respectively. The effect of charge storage in the base region is represented by a
transit time, tf (equivalent to τF). Also, for integrated bipolar transistors, the collector-
substrate junction capacitance, cjs, must be specified. Thus, a more complete model may
read:

.model newmod npn (beta=100, is=10f, cje=5f, cjc=6f,
cjs=10f, tf=5p)

Modern bipolar transistor models contain hundreds of parameters.

Example

A.11
Construct the netlist for the circuit shown in Fig. A.14(a), and obtain the frequency
response from 100 MHz to 10 GHz. Use the above transistor model.

VCC
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= 2.5 V

 Ω100
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Q2
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Figure A.14
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Solution Labeling the circuit as depicted in Fig. A.14(b), we write

Two-Stage Amp
cin in inb 0.5p
rinb inb vcc 50k
q1 x inb emi 0 newmod
rx x vcc 1k
remi emi 0 2k
cemi emi 0 0.5p
q2 vcc x out 0 newmod
iout out 0 1m
vcc vcc 0 2.5
vin in 0 ac 1
.ac dec 100 100meg 10g
.model newmod npn (beta=100, is=10f, cje=5f, cjc=6f,
cjs=10f, tf=5p)
.end

A.3.4 MOSFETs

The definition of MOSFETs is somewhat similar to that of bipolar transistors but contains
more details regarding the dimensions of the device. Unlike bipolar transistors, MOSFETs
are both biased and “sized” so as to achieve certain smal-signal properties. For example,
both the transconductance and the output resistance of MOSFETs depend on the channel
length.

In order to understand how the device dimensions are specified, we first consider
the top view illustrated in Fig. A.15(a). In addition to the channel width and length,
we must also provide the source/drain dimensions so that SPICE can calculate the as-
sociated capacitances. To this end, we specify the “area” and “perimeter” of the source
and drain junctions. Denoted by “as” and “ps” for the source, respectively (and “ad”
and “pd” for the drain), the area and perimeter are computed as follows: as = X1 · W,
ps = 2X1 + 2W, ad = X2 · W, pd = 2X2 + 2W. In most cases, X1 = X2 and hence
as = ad and ps = pd.

as ad

Source Drain

L

W

X1 X2

G
a

te

R  Ω

M 1
W
L

=

VDD

D

0.18

1 k

10
in

out

mid

(a) (b)

Figure A.15 (a) Top view of a MOSFET, (b) a common-source stage.
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The value of X1,2 is determined by “design rules” for each specific technology. As a rule
of thumb, we assume X1,2 ≈ 3Lmin, where Lmin denotes the minimum allowable channel
length (e.g., 0.18 μm). In this section, we assume X1,2 = 0.6 μm.

Now consider the example shown in Fig. A.15(b), where the dashed line attached to
M1 indicates its substrate. Before considering the dimensions, we have:

Drain Gate Source Substrate Model
m1 out in mid 0 nmos

As with the bipolar transistor, the terminal names appear in a certain order: drain, gate,
source, and substrate. Now we add the dimensions:

Drain Gate Source Substrate Model
m1 out in mid 0 nmos w=10u l=0.18u as=6p
+ps=21.2u ad=6p pd=21.2u

(The + sign allows continuing a line on the next.) The order of the dimensions is unimpor-
tant, but it is helpful to maintain a consistent pattern throughout the netlist so as to make
it more readable. Note that

as=6p

denotes an area of 6 × 10−12 m2.
The model of the MOSFET must provide various parameters of the transistor, e.g., mo-

bility (uo), gate oxide thickness (tox), threshold voltage (vth), channel-length modulation
coefficient (lambda), etc. For example,

.model mymod nmos (uo=360, tox=0.4n, vth=0.5, lambda=0.4)

Note that the default unit of mobility is cm2/s, whereas the units of other parameters are
based on the metric system. For example,

tox=0.4n

translates to 0.4 × 10−9 m = 40 Å.

Example

A.12
Figure A.16(a) shows a two-stage amplifier. Construct a SPICE netlist to plot the input/
output characteristic of the circuit. The substrate connections are not shown with
the understanding that the default is ground for NMOS devices and VDD for PMOS
transistors.

 Ω

VDD

0.18

1 k

0.18

10

5
outV

= 1.8 V

inV

 Ω500

vdd

rx

x

in

m2

m1

rout

out

(a) (b)

Figure A.16
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Solution Labeling the circuit as depicted in Fig. A.16(b), we write

MOS Amplifier
m1 x in 0 0 nmos w=5u l=0.18u as=3p ps=11.2u ad=3p
pd=11.2u
rx x vdd 1k
m2 out x vdd vdd pmos w=10u l=0.8u as=6p ps=21.2u ad=6p
pd=21.2u
rout out 0 500
vdd vdd 0 1.8
vin in 0 dc 1
.dc vin 0 1 1m
.model mymod nmos (uo=360, tox=0.4n, vth=0.5, lambda=0.4)
.end

For high-frequency analysis, we must specify the junction capacitance of the source
and drain areas. As illustrated in Fig. A.17, this capacitance is partitioned into two com-
ponents: the “area” capacitance, Cj , and the “sidewall” capacitance, Cjsw. This separation
is necessary because the values of Cj and Cjsw (e.g., per unit area) are typically unequal.

Cj

Cjsw

Figure A.17 Area and sidewall capacitances.

In SPICE, the above capacitance components are defined differently. The area ca-
pacitance is specified per unit area, e.g., Cj = 3 × 10−4 F/m2 (= 0.3 fF/μm2), whereas the
sidewall capacitance is defined per unit width, e.g., Cjsw = 4 × 10−10 F/m (= 0.4 fF/μm).
With these specifications, SPICE simply calculates the overall junction capacitance as
Cj · ad +Cjsw · pd. For example, with the above values of Cj and Cjsw, the drain junction
capacitance of M1 in Example A.12 is equal to:

CDB1 = (3 × 10−12 m2) × (3 × 10−4 F/m2) + (11.2 × 10−6 m)

× (4 × 10−10 F/m) (A.1)

= 5.38 fF. (A.2)

Note that, if the area and perimeter values are absent in the netlist, SPICE may use a
default value of zero, thus underestimating the capacitances in the circuit.

The source/drain junction capacitances exhibit a voltage dependence that may not
follow the square-root equation associated with “abrupt” pn junctions. SPICE allows an
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equation of the form

C = C0(
1 + VR

φB

)m , (A.3)

where C0 denotes the value for zero voltage across the junction, and m typically falls in
the range of 0.3 to 0.4. Thus for Cj and Cjsw, we specify

(cjo, mj)

and

(cjswo, mjsw)

A more complete MOS model may therefore appear as:

.model mymod nmos (level=1, uo=360, tox=0.4n, vth=0.5,
lambda=0.4, +cjo=3e-4, mj=0.35, cjswo=40n, mjswo=0.3)

where the “level” denotes a certain complexity for the model. In practice, higher levels
with many more parameters are used. Similarly, a PMOS model may be constructed as
follows:

.model mymod2 pmos (level=1, uo=150, tox=0.4n, vth=-0.55,
+lambda=0.5, cjo=3.5e-4, mj=0.35, cjswo=35n, mjswo=0.3)

A.4 OTHER ELEMENTS AND COMMANDS

A.4.1 Dependent Sources

In addition to the independent voltage and current sources studied above, we may need
to incorporate dependent sources in simulations. For example, as mentioned in Chapter 8,
op amps can be viewed as voltage-dependent voltage sources. Similarly, a MOSFET acts
as a voltage-dependent current source.

Consider the arrangement shown in Fig. A.18, where the voltage source tied between
nodes C and D is equal to three times the voltage difference between nodes A and B. For
simplicity, we call (A, B) the “input nodes,” (C, D) the “output nodes,” and the factor of
3, the “gain.” Such a voltage-dependent voltage source is expressed as

Output Input DC Gain
Nodes Nodes Value

e1 c d poly(1) a b 0 3

VAB

A

B

C

D

3

Figure A.18 Voltage-dependent voltage source.
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Note the element name begins with the letter “e” to signify a voltage-dependent voltage
source. The next two entries are the output nodes, with the first representing the positive
terminal. The entry poly(1) indicates a first-order polynomial relationship between VCD

and VAB. Next, the controlling (input) nodes are specified, and the zero is entered to
denote a zero additional dc voltage. Finally, the gain is specified. In a more general case,
this expression can realize VCD = α + βVAB, where α is the dc value (zero in the above
example) and β is the gain (3 in the previous example).

Example

A.13
The circuit of Fig. A.19(a) employs an op amp with a gain of 500. Construct a SPICE
netlist for the circuit.

in
X

inV
outV X

(a) (b)

 Ω1 k

 Ω10 k

 Ω1 k

 Ω10 k

out
r1

rf

eopamp

Figure A.19

Solution We first draw and label the circuit as shown in Fig. A.19(b). Thus,

r1 in x 1k
rf x out 5k
eopamp out 0 poly(1) x 0 0 -500

For the voltage-dependent current source depicted in Fig. A.20, the description is as
follows:

g1 c d poly(1) a b 0 0.05

where the letter g denotes a voltage-dependent current source and the gain is specified as
1/(20 �) = 0.05 �−1.

Current-controlled voltage and current sources are also described in a similar manner,
but they are rarely used.

VAB

A

B

C

D

Gm

Gm= (20 Ω)–1

Figure A.20 Voltage-dependent current source.
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A.4.2 Initial Conditions

In the transient analysis of circuits, we may wish to specify an initial voltage at a node with
respect to ground. This is accomplished using the .ic command:

.ic v(x)=0.5

This example sets the initial voltage at node X to 0.5 V.

REFERENCE

1. G. Roberts and A. S. Sedra, SPICE, Oxford University Press, 1997.





Index

A

Ac analysis, 815–816
Acceptor, 14–15, 26, 30
Ac-coupled, 198, 775
Ac-dc converter, 76
Ac ground, 129, 222
Ac voltage, converting to dc quantity, 46
Active inductors, 498
Active load, 399, 441–448
Active mode, 140, 141
Adjacent channel, 651, 653
Amplification, 5, 7, 107, 108, 113, 129
Amplifiers, 5–7, 145, 153, 155, 340, 399

analysis, 134, 158
cascode, 366–374, 436
design, 130, 159
gain, 133, 134, 366
impedance, 154
low-power, 7
performance, 153–154
resistance, 620
simple, 108
topology, 129, 153, 160, 178, 205, 526–529
voltage, 153

Amplitude, 336, 347–350
limiting, 88–89
measure of input strength, 54
peak-to-peak ripple, 77–78

Amplitude modulation, 3
Analog, 7
Analog computers, 321, 330
Analog filters, 330, 651, 655
Analog functions, 7
Analog memories. See Capacitors
Analog-to-digital conversion, 7
Analog-to-digital converter (ADC), 7, 153, 321
Analysis, 812–817
Analysis by inspection, 197, 766, 773
Anode, 24, 48, 818
Antenna, 211
Antiparallel, 50, 89
Approximation problem, 687–697
Aspect ratio, 255, 261, 387, 761, 772

minimum and large, 258, 423
of the switch, 258
transistor, 428, 717

Attenuation, 249, 652–653
Avalanche breakdown, 42
Avalanche effect, 42

B

Band-reject, 655–656
Bandgap energy, 10, 12–13
Bandgap reference circuit, 375
Bandpass filter, 655, 664, 673
Bandwidth, 3, 346–350, 501, 519–521, 667

Barkhausen’s criteria, 566, 571–572
Base, 109–113, 115–118, 120, 128, 130, 132, 134–143,

145, 157, 158, 179, 636
current, 627–630, 634, 638
drive, 638
emitter junction, 623
emitter voltage, 627, 642
input applied, 222
region, 112, 821

Bessel, 688
Bias, 116, 119, 127, 133, 134, 136, 139, 140, 158,

628, 634
bipolar cascode, 361
calculations, 630
CB and CG stages, 217, 302
CMOS amplifiers, 747, 751–756
common-source core, 295–297
common-source stage, 197–205
components, 636
configuration, 167
definition, 29
diode, 642
emitter degeneration, 167–171
input, 218
issues, 633
MOS circuits, 281–282
point, 68
resistive divider, 164–167
scheme, 171, 197
simple, 153, 751–753
techniques, 174
topology, 169
transistors, 174, 281–285, 757–758

Bias analysis, 153, 159, 748, 812
Bias current, 217, 367, 620, 621, 627, 629, 634, 636, 642
Biased stage, example of, 164
Binary

decoder, 702
levels, 7

Bipolar amplifiers, 153, 178
Bipolar transistors, 107–110, 118, 119, 121–122, 132,

143, 153, 158, 159, 178–179, 185, 634, 820–822
active mode, 110–118
base-emitter, 132
characteristics of, 118
definition, 820–822
discrete, 115
excitation of, 125
forward bias, 135–136
input, 178
integrated, 821
models of, 118, 137, 821
NPN, 112, 819
operation of, 107, 110
output, 178
physics of, 107
principles, 129
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Bipolar transistors (continued )
properties of, 116
response of, 126
saturation effects, 137
speed, 137
structure of, 107, 109

Biquadratic equations and functions, 664, 679
Bode’s rules, 466–467, 563–565
Body, 245
Body effect, 247, 266–267, 269, 759
Bond, 11
Boosting, 195, 389, 771
Breakdown, 41–42, 620
Bridge rectifier, 82, 84
Buffer, capability, 306
Built-in potential, 24, 27–29, 36
Bulk, 266, 477, 479
Butterworth response, 688–692
Bypass capacitor, 220, 296, 777, 778

C

Capacitance, 5, 30–33
area, 824
junction, 24, 818, 819, 821, 824
load, 711, 713, 723, 725, 728–730, 734
sidewall, 824
voltage-dependent, 30, 33

Capacitively coupled, 198, 229, 474, 775
Capacitors, 9, 30–33, 74, 80, 155, 194, 480

filter, 77
MOSFET operates as, 244–245
variable, 32
voltage-dependent, 32, 818
in voltage division, 92
voltage doublers, 92

Carrier densities, 10, 13, 18
Carriers, 10, 13, 16, 20, 25, 26, 42, 109
Cascaded triodes, 359
Cascode, 433

bipolar, 360–364, 433, 434
configuration of, 360
as current source, 359–360
differential pair, 433–436
MOS, CMOS, and NMOS, 364–366, 373–374, 436
output impedance, 435
pair, 399
PNP, 363, 417, 433, 435

Cathode, 24, 48, 52, 818
Cellular band, 655
Channel

of mobile charge, 247
pinch-off, 252–253

Channel-length modulation, 262–264, 269, 425, 439,
704, 718, 719, 724, 763–764

Channel-length modulation coefficient, 263, 823
Charge, 9, 17, 111
Charge density, 17, 253–254
Chebyshev polynomial, 692–693
Chebyshev response, 692–697
Circuit(s), 1, 108, 114, 116

amplifier, 153, 619
analysis and design, 9, 30, 40, 73, 107, 118
bipolar, 127
electronic, 812

diode-capacitor, 74
functions, 1
integrated, 1, 107, 322
limiting, 73
linear and nonlinear, 338, 637
model, 9, 24, 33, 39
open, 39
polarities, 817
properties of, 11
RC, 810
step response, 819
symbol, 109
theory, 1, 7
topologies, 32, 322, 340

Class A stage, 645
Class AB stages, 645
Class B stage, 645
Closed loop, 325

bandwidth, 352
circuit, 347, 348
gain, 325–326, 328, 347, 350, 352
time constant, 348
transfer function, 346, 347

CM level
change, 403
input, 405, 406, 421, 423–424, 437
output, 404, 408, 424, 438
of zero, 402

CMOS amplifiers, 742, 759–760
CMOS inverter, 702, 714–731
Collector(s), 109–145, 179, 206

current, 113–116, 620–621, 634–635, 637, 642, 645
substrate, 759
waveforms, 645

Combination, 635, 642
Combinational, 702
Command, 5, 809, 811–812, 816, 819, 825–827
Common-base (CB)

core, 206, 212, 217
stage, 206, 210–213, 215, 217, 219, 490
topology, 206–221

Common-collector, 222
Common-drain, 303
Common-emitter (CE), 630, 635

addition of, 629–632
amplification capabilities, 779
amplifier, 179, 197, 210
biasing, 197
core, 179, 185
degeneration, 185
stage, 179–191, 193–194, 196–197, 199, 204–211,

215, 218, 225, 232, 235, 401–402, 481–482, 820
topology, 153, 179–206

Common-gate, 281, 297–300, 490–491
core analysis, 780–786
topology, 779–790

Common-mode gain, 437
Common-mode rejection, 399, 406, 437, 439
Common-mode rejection ratio, 441
Common-source, 281, 286–289, 703, 715, 765–767

core analysis, 760–763
stage, 822
stage with biasing, 786–790, 822
topology, 760–796
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Complementary MOS, 273
Constant-Voltage Model, 39–41, 61, 89
Continuous-time, 655–656
Coupling

ac, 200, 217, 341, 474, 753, 776, 786
capacitatative, 198–202, 474, 490, 506, 774–777
capacitor (input and output), 202, 226, 296, 306,

473–474, 480–481, 489, 775, 777, 794
design specifications, 183
direct, 474

Covalent bonds, 10–12, 15, 33, 42
Crossover distortion, 626
Crowbar current, 731
Crystal(s), 10–16
Current, 5, 113, 114, 130, 136, 812

base, 116–117, 139
bias, 133
diffusion, 21, 23–26, 28–29, 34–36
electron, 17–18
emitter, 116–118
hole drift, 18
output, 107
polarities, predicting, 51
source, 817, 825
source, controlled, 108, 110, 111, 133, 138
source, voltage-dependent, 107–109, 113, 122, 135,

153, 719
Current-current feedback, 547
Current density and flow, 10, 17, 20–22, 727
Current gain, 117–118, 634, 636
Current mirror, 359, 375–388, 630–631, 642
Current sensor, 527, 541
Current-voltage feedback, 542–550
Cut-off, frequency, 474, 478–480

D

Darlington pair, 240
Dc analysis, 153, 158, 159, 748–749, 816–817
Dc bias, topologies, 174
Dc-dc converters, voltage doubler as example

of, 92
Dead zone, 336, 624–627, 642
Deep triode region, 704
Degradation, 706–707, 710, 715
Delay, propagation, 712
Density, nonuniform, 21, 22
Depletion region, 24, 26–28, 30–31, 34–37, 41–42,

110–112, 130, 134–135, 247
Dielectric constant, 31
Differential amplifiers, 399, 433
Differential gain, 409, 416–418, 433, 441
Differential input impedance, 420
Differential pair, 406, 408, 503–505

with active load, 441–445
bipolar, 399, 404, 411, 413, 415, 420, 425, 427,

435, 437
current-source loads, 444
MOS and NMOS, 399, 404, 420–433, 437,

444, 445
Differential signals, 399–404
Differential swing, 402
Differential to single-ended, 442, 444

Differentiators, 321, 329, 333
circuit acting as, 331
frequency response of, 332
ideal and nonideal, 333–335

Diffuse, 20
Diffusion, 10, 20–29, 34–36, 112–113, 139
Digital

cameras, 1, 5–7, 33
circuits, 7, 702
communications, 7
functions, 7

Digitization, 7
Diode, 23, 36, 38–40, 113, 115, 119, 129, 336, 627–631,

637, 642, 645, 818–820
base-collector, 136
in bipolar transistors, 111, 118
characteristics of, 10, 39
circuit applications of, 73
as circuit elements, 46
conceptual operation, 47
constant voltage, 58, 60
definition, 9
elementary circuit analysis, 109
law of, 113
as level shifters, 96–99
nonlinear, 47
parallel and antiparallel, 37, 89
peak current of, 79–80
resistance neglected, 631
same bias current, 143
simple circuit using, 40
small-signal resistance of, 123
as switches, 96–99
typical, 135
waveform conversion, 46
Zener, 42

Diode-connected device, 143, 444
Diode-connected load, 766–767
Diode-connected transistor, 143, 629
Discrete

design, 632
processor, 2
prototypes, 809

Discrete-time, 655–656
Dissipation, 642, 702, 713, 728–730
Distortion, 7, 620, 626, 637
Divider, 93, 298
DM conversion, 440
Dominant pole, 486–488
Dopant, 13, 15, 16, 138
Doped, 14–15, 18, 31, 43, 44, 109, 139
Doping, 9–10, 13, 24

boron, 14
concept of, 15
density, 14–15
levels, 13, 18, 25, 29, 37, 42, 110–111, 113, 117, 136

Drain, 245, 717, 822
Drain current, 254–256, 428, 447, 718, 723, 724
Drift, 10, 16–17, 20, 23, 112

current, 21, 23, 26–29, 112
mechanism, 20, 23
in semiconductors, 16

Drift current density, 18
Driving capability, 227, 352
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Duplicate stage, 401–402, 404
Dynamic

behavior, 702, 723
characterization, 710–713, 723–728

E

Early effect, 129–135, 141, 157, 158, 194
Efficiency, 5, 619–620, 623, 643–645
Einstein Relation, 23, 28
Electric field, 16–20, 24, 26–27, 41–42, 110

built-in, 29, 112
high, 18, 30, 41–42
pn junction and, 23, 26

Electron-hole pair, 11, 33
Electron-hole recombination, 11
Electrons

covalent, 42
density of, 12–13, 23, 113
drift, 28
elliptic, 688
flow, 35
free, 11–13, 17, 24, 26

Emitter, 113, 114, 620
area, 115, 634
input and output, 206, 223
workings, 109

Emitter-coupled logic, 702
Emitter-coupled pair, 404
Emitter degeneration, 153, 167, 185–186, 188–189,

191, 194–197, 211–213, 216
Emitter follower, 222–229, 619–620, 623, 625,

631–632, 635–637, 639, 645 core, 206
efficiency, 643–645
NPN and PNP, 629
as power amplifier, 620
topology, 222–229

Equilibrium, 24–27, 29, 34, 404, 408–409, 421, 431
Equilibrium overdrive voltage, 431
Equiripple, 692
Equivalence, 114
Exponential gradient, 22
Exponential model, 40
Extrinsic, 10, 13, 15
Extrinsic semiconductors, 10, 13–15

F

Falltime, 8, 711, 716,
Fanout, 712–713
Feedback, 637, 642

closed-and open-loop systems, 514, 563–577
instability in, 565–568
negative, properties of, 518–525
polarity of, 532–534
stability condition, 568–571
topologies, 551–563

Feedback factor, calculation of, 553–563
Feedback signal, 514–515, 525, 529, 537, 544, 549, 566
Feedforward, 514, 529–531, 536, 538
Feedthrough, 99
File title, 811–812
Filter, 5, 321, 652

active, 651, 673
classification, 653–656

first-order, 661–663
RC, 331, 334
Sallen and Key (SK), 673–676
second-order, 664–673
transfer function, 656–659

Follower stage, 224
Forward active region, 110, 116, 118, 120, 129, 135,

137, 141
Forward amplifier 519, 525, 532, 536, 539, 542, 546,

550–553, 555, 557–559, 562, 567
Forward bias, 24, 34, 48, 139

collector-base, 149, 150
I/V characteristics in, 34
region, 36, 38

Forward-biased, 110–111, 118, 135–137, 158, 181
diode, 39, 113, 126

Forward system, 514, 516, 522, 529–532, 534, 536,
539, 541, 544, 546, 554, 556, 560

Frequency, 3–4, 32, 134, 714
values, 811
oscillation, 32

Frequency compensation, 573–576
Frequency response, 330, 332, 346–347, 460, 489–498,

573–574, 652, 809–810, 815, 821
cascode stage, 498–503
common emitter, 481–482
common mode, 504
common source, 480–481
differential pairs, 503–505
followers, 493–498
high, 481
transfer function, 463–466

Front end, 5, 154, 221, 743
Full-power bandwidth, 350
Full-wave rectifier, 80–86

breakdown voltage, 84
bridge rectifier, 82
components of, 81–82
input-output characteristic of, 81
inverted negative half cycles, 81–82
lower ripple, 83
reducing ripple voltage, 80
using two more diodes, 84

G

Gain, 5, 625, 631, 708, 826
Gain crossover frequency, 568
Gain desensitization, 518–519
Gain error, 326, 328, 351–353
Gate

capacitance, 712
CMOS, 702, 731–736
delay, 714
NAND, 702, 731, 735–736
NMOS, 732
NOR, 702, 732–734
NOT, 703
operation, 714
OR, 52, 733
polysilicon, 246
static characterization, 703

Gate oxide capacitance, 255, 477
General impedance converter, 682
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Gigahertz, 3–5, 32
Global, 92, 402
Gradient, 21, 24–26, 35, 113
Ground, 128, 129, 144, 157, 158, 827

H

Half circuits, 416–418, 433, 445, 503
Half-wave rectifier, 73–77
Headroom, 360
Heat dissipation, 638–643
Heat sink, 641, 644
High-fidelity design, 637
High-level injection, 634
High-pass filter, 332, 334, 653, 672
Holes, 10–15, 17–18, 21–27, 33, 35, 43

I

Ideal diode, 48, 58
Impact ionization, 42
Impedance, 127, 143, 157, 216, 329, 365, 420,

435–438, 440, 442, 444, 447, 620
input and output (I/O), 153–156, 159, 179, 182,

185, 225, 326, 419–420, 619, 743, 772
matching, 209, 211–212, 782
small-signal, 142

Impurity, 13
Incremental, 69, 416–417
Inductance simulation, 682–687
In parallel

bypass capacitor, 481
current source, 306
devices, 37, 48, 251
diodes, 37, 48
emitter followers, 631
feedback network, 534, 539
impedances, 668
MOSFET, 265
resistors, 341, 528
signal, 547
transistors, 114, 132, 252, 255, 265, 378–379,

480–482, 764
voltmeter, 529

Input bias current, 343–346, 352
Input impedance, 154–156, 171, 182–183, 185, 188,

190, 192, 199, 202–204, 209–210, 218–221, 227,
488–489, 495–498, 636

amplifier, 211
calculation, 182, 199, 745, 775
cascode stage, 502
CB, 212, 215
CE topology, 225
closed-loop, 522
different nodes, 193, 745–746
effect of nonideal, 550–563
emitter follower, 226
finite, 321, 350–351
modification of, 521–525
open-loop, 522
source follower, 306

Input/output characteristics, 52, 704, 710
Input pole, 468, 484, 491, 501

bandwidth, 484
CB/CG stage, 490

frequency, 529
magnitude, 491
as speed bottleneck, 484

Integrated circuits, 1, 321
Integrators, 321, 329, 331, 335, 353

correction for input currents in, 345
effect of input bias currents on, 345
effect of offset on, 342
frequency response of, 330
lossy, 331
performance of, 331, 347
pulse input, 330
virtual ground, 331

Interconnect capacitance, 712
Interference, ac line, 651
Interferer, 652, 653
Intrinsic gain, 764, 771
Intrinsic semiconductors, 10, 13–15, 21
Intrinsic silicon, 21
Inverter, 703, 704, 706–708, 715, 719, 721, 722, 733
Inverting, 321

circuits, 335
half-wave rectifier, 81
input, 323, 324, 327, 337, 338, 340, 344, 679
negative half cycles, 80–81

Inverting amplifier, 321, 326, 328, 335, 341–344,
347, 350–351

topology, 327
Inverts, 81
Ion

acceptor, 26, 30
donor, 26, 30
positive, 26

I/V characteristics, 36–41, 49–52

K

KHN biquad, 651, 680
Kirchoff’s Laws (KCL and KVL), 21, 62, 116–117,

119, 143, 162, 177, 180, 186, 199, 214, 216, 229,
350, 381–383, 410–411, 415, 425, 446–447, 485,
492, 541, 545, 547–548, 610, 633, 635, 675–675,
719, 752, 761, 768, 775

L

Large-signal analysis, 399, 410–412, 425–429, 519
Large-signal considerations, 619, 633–638
Large-signal model, 64, 107, 118–120, 125, 132–135,

139–141
Large-signal operation, 64–73, 159, 620, 633
Lateral, 252
Layout, 251, 485
Leakage, 37, 39, 42, 73, 747
Level shift, 73, 90, 94, 97–99, 222, 304, 629, 790
Limiters, 56, 90, 414
Limiting circuits, 88–92
Linearity, improvement, 185, 194, 525
Linear models, 66
Linear region; see Triode region
Line regulation, 87–88
Load, 76–77, 79–80, 86, 88
Loading effects, 550
Load regulation, 87–88
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Load resistor, 107–108, 153, 225, 289, 324, 405,
422–424, 429, 438–439, 443, 555, 571, 593,
715, 742, 765

Logarithmic amplifier (Logamps), 321, 338–339
Long-tailed pair, 404
Loop gain, 322, 325, 328, 347, 350, 352, 513, 515–517,

519–521, 524, 535, 537–539, 543–546, 550,
557–558, 560–562, 566, 568, 590–591, 594, 599

Loop transmission, 566–567
Lossy, 331, 596–598, 608, 611, 669, 681, 770
Low-field, 19–20
Low-noise amplifier, 4–5, 489, 499
Low-pass filter, 4, 46, 329, 331, 462, 465, 613, 653,

656, 660–661, 664, 670, 672, 685, 687, 689

M

Magnitude, 14, 25, 27, 29, 92, 120, 135, 186, 247, 269,
329, 332, 460, 464, 466–468, 479–480, 490–491,
497, 501–502, 521, 563–564, 573, 575–576, 593,
596–599, 601–602, 605, 607, 652, 664–668, 688,
690, 692, 694, 721, 747, 768

Majority carriers, 14–15, 18, 25, 34, 36, 139
Maximally flat, 688
Metal-oxide-semiconductor field effect transistor;

see MOSFET
Microchips, 1
Midpoint, 419, 433, 632
Miller approximation, 472, 486, 489, 501
Miller compensation, 576–577, 638
Miller effect, 373, 472, 484, 486, 489, 491, 498–499,

502, 504
Miller multiplication, 470, 483, 576
Miller’s Theorem, 460, 468–472, 482–484
Minority carriers, 14–15, 36, 112
Mirroring, 245
Mismatches, 340, 345–346, 385, 438–441
Mixer, 3
Mobility, 20, 251, 255, 266, 272, 375, 479, 713, 720,

734, 823
Modulation, principle of, 4
MOSFET, 339–340, 365

as amplifying device, 245
as constant current source, 253, 259
definition, 822–825
high-frequency model, 476–478
materials used in, 246
mirrors, 385–388
mobile charge, 247
operates as capacitor, 245
operating in saturation, 265, 759
operation of, 247–267
parameters, 819
output impedance, 263, 364
small-signal model, 269
SPICE, description of elements, 816
structure of, 244–247
as variable resistor, 248–252

Multiplier, 3, 5, 7, 638

N

Netlist, 810–816
NMOS inverter, 705, 708–710, 713–716, 723, 728
NMOS transistor, 246, 272–273, 705, 728, 734–735

Noise, 5, 7, 154, 335, 399–400, 438, 441, 566, 591,
593, 595, 605, 653, 703, 743

Noise cancelling, 335
Noise margin, 708–709, 721–723
Nondominant pole, 487
Nonidealities, 322, 333, 339, 437, 703
Noninverting, 322

circuit, 327
configuration, 348
counterpart, 327
input, 322, 326, 336–338, 342, 344, 346, 349, 679

Noninverting amplifier, 324–328, 335, 340, 343,
346–349, 352, 405, 515, 532, 638

currents on, 343–344
offset in, 341

Nonlinear, 32, 39, 47, 54, 65–67, 72, 73, 89, 162, 194,
256, 269, 336–339, 348, 410, 428, 519, 525, 589,
611, 620, 624, 637, 710, 714

Norton theorem, 367
NPN transistors, 109, 113, 117, 138–140, 142–144, 174,

417, 629, 635, 820
N-type MOS (NMOS) device, 246
N-well, 273

O

Offset, 321, 340–343, 345, 406
Offset voltage, 339–340, 345
Ohmic, 245, 266
Ohm’s Law, 16, 47, 49, 68, 126, 133
On-resistance, 249–251, 257–258, 709, 715, 718,

726, 728, 734
Op amp

characteristics, 322
definition, 321
gain, 323–324, 326, 328, 334, 336, 339, 343, 347, 352
ideal, 322–326, 329, 336, 338, 673, 682
nonidealities, 322, 334, 339–351

Op-amp-based circuit, 324–336
Open-circuit condition, 446
Open-loop, 322, 325, 330, 347, 352, 514, 519, 521–522,

524–525, 538–545, 549–551, 554–558, 560–562,
566, 571, 577, 591–592, 602

Operating point, analysis and design, 67–68, 160–178,
431, 593, 749–759, 812–813

Operational amplifier, 183, 321–353; see also Op amp;
Op-amp-based circuit

Oscillation, frequency, 33
Oscillator, 3–5, 7, 32–33, 205
Output CM level, 402–403, 408, 421, 423–424, 437–438
Output impedance, 86, 154–158, 195–196, 200–201,

227, 263, 369, 495–498, 620
calculating, 157–158, 209, 213, 226, 288, 632, 775
cascode stage, 502
CB stage, 209–210, 212
closed-loop, 561
of circuit, 193
degenerated stage, 194, 202, 225
effect of nonideal, 550–563
finite, 321, 351
of follower, 226
modification of, 521–525
open-loop, 522–523, 561
source follower, 306
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transistor, 293–294
versus voltage headroom, 360

Output pole, 468, 484, 491, 577
Output resistance, 133–134, 165, 183, 192–197, 202,

212, 214, 218, 226–227, 291, 294–295, 300, 306,
350–352, 360–363, 365–368, 373–374, 418, 481,
496–498, 503, 523, 527, 541, 599, 635–636, 763,
765, 767, 771–773, 784, 787, 794, 822

Output stages, 619–646
Output swing, 183, 323, 326, 351, 402, 590, 606, 608,

634, 644, 763
Overdrive voltage, 259, 421, 431, 600, 772, 775
Overlap, 477, 486
Oxide, 246–248, 250–251, 387, 477, 702, 747

P

PA classes, 619, 645
Parallel, 30, 37–38, 50, 108, 124, 132, 145, 183, 194,

196, 199, 202, 212, 218, 226–227, 251–252, 255,
265, 275, 293, 304, 306, 341, 366, 371, 378–379,
435–437, 463, 475–478, 480–481, 489, 493–494,
527, 529, 530, 534, 539, 546, 550, 562, 595–599,
609–610, 668–670, 672, 681, 736, 753, 763–765,
770, 775–776, 784, 787, 792, 794

Passband, 652–654, 656, 663–665, 671, 674, 677,
687–689, 692–694

Passive filters, 673, 682
PCS band, 655
Peak detector; see Ac-dc converter
Peaking, definition, 671
Periodic table, 10–11
Permitivity, 245
Perturbations, 66, 68–69, 124
Phase, 179, 401–402, 463, 485, 564, 568, 573–574, 760

change, 563, 569
differential, 402
frequency, 563, 573
input, 401
insufficient, 568
opposite, 568
profile, 564, 574
response, 564, 569, 575
shift, 566–570,
of transfer function, 486, 565, 570

Phase crossover frequency, 568–569, 571
Phase margin, 513, 571–573
Photodiode, 5–6, 33
Pinch-off point, shifting, 259
Pixels, 5
PMOS current source, 374, 593–594, 612, 704–705
PMOS transistor, 270–272, 285, 292, 601, 626, 706,

717, 729, 734–735, 757–758, 767, 823
pn junction, 41–42, 47, 112, 118, 244, 247

abrupt, 824
bipolar transistor, 475
characteristics, 9
diode, 57–59, 109
equilibrium, 24–29
forward bias, 9, 24, 33–36, 117
I/V characteristics of, 36–40
reverse bias, 9, 29–33, 110
structure, 9, 24

PNP devices, biasing, 153
PNP mirrors, 383–385

PNP transistor, 138–145, 174–178, 619
current flow, 139
large-signal method, 139–142
omission, 634
operation of, 139
performance, 634
properties of, 138–139
simple stage, 141
symbol, 139

Polarity, 27, 81, 247, 340, 532–534, 817
Poly, 246, 826
Polysilicon, 246
Port, input and output, 84, 160, 179, 206, 749, 760, 779
Potential barrier, 29, 34
Power amplifier (PA), 3–4, 7, 619–620, 623, 626, 638,

643, 645–646
Power bus, 706
Power conversion efficiency, 643
Power dissipation, 5, 76, 153, 265, 410, 424, 465, 623,

638–639, 643, 653, 673, 702, 713–715, 728–730, 743
Power drain, 85, 643
Power efficiency. See Efficiency
Power rating, 638–641
Power stages, design, 620
Power supply, 96, 119, 387, 629
Power-delay product, 714, 730–731
Precision rectification, 86
Precision rectifier, 321, 336–338, 405
Predriver, 630, 634
P-type, 14–15, 23–24, 138, 245–247, 273
Pull-up device, 715–717
Pulse parameters, 813
Pulse-width, 814–815
Push-pull, 619, 623–633, 637–638, 640–641, 644–645

Q

Qualitative analysis, 247, 399, 404–409, 412, 421–425,
442–444

Quality factor, 664
Quantitative analysis, 444–448
Quiescent, 68, 124, 158–159, 747–748, 776

R

Recombination, 11, 117
Recombine, 12, 14, 36, 117, 139
Rectifier, 60

complete, 53
diodes in, 80–86
full-wave, 73, 80–86
half-wave, 73–86
nonlinear circuit, 54
resistive load, 76
ripple at output of, 78

Rectifier diodes, reverse voltage, 86
Reflections, 209, 782
Regions, active, 258
Resistance, 69, 87–88, 107, 119–120, 123, 126, 165

base, 162, 172, 191–192, 214–216
internal, 11, 108
output, 133–134, 165, 183, 192–197, 202, 212, 214,

218, 227, 229, 291, 294–295, 300, 351–352,
360–363, 365–367, 373–374, 418, 483, 496–498,
503, 523, 527, 541, 599, 635–636, 763, 765, 767,
771–773, 784, 822
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Resistor, 47, 49–53, 55, 62, 65, 68, 72, 76, 107–109, 116,
119, 124–126, 128, 133, 137, 153–155, 161, 167,
180, 185, 187–190, 194, 199, 212, 214, 217, 221,
224–225, 229, 245, 247–249, 252, 256, 289, 302,
324, 330, 332, 341, 345, 366, 375, 403–405, 417,
423–425, 429, 436, 438–440, 443–444, 518, 522,
528–530, 539, 543, 545, 547, 555–556, 559–560,
571, 589, 593, 599, 601, 605–606, 608, 638,
655–656, 660, 668, 675–676, 678, 681–685, 702,
705–706, 715, 718, 720, 723, 727, 742–744,
746–747, 750–753, 761–762, 765, 767, 770–771,
773, 780, 810, 817, 821

degeneration, 167, 176, 194, 211, 292, 360,
364, 784

ratio, 325–327, 566
Resistor-diode logic, 702
Resonates, 32
Return duplicate, 552, 554, 558, 562
Reverse bias, 29–34, 36–37, 39, 41–42, 48–50, 55, 57,

64, 75, 83, 85, 99, 110, 130, 135, 163
Reverse-biased, 30, 33, 48, 58, 59, 76, 110, 112, 116,

145, 158, 247, 266, 476–477, 623, 818
Reverse breakdown, characteristic, 41
Reverse saturation current, 35–37, 119, 377
Ripple, 77–78, 80, 400, 403–404

amplitude, 77–79, 400
effect of, 401
in magnitude response, 564, 575–576
signal paths to output, 400
voltage regulators and, 86
waveform, 400

Risetime, 711, 714–715
RLC realizations, 668–673
Roll-off, 347, 460–462, 467, 473, 481, 488,

671, 672

S

Saturation, 18–20, 35, 37, 65, 119, 135–141, 159,
162–165, 167, 169–171, 175–176, 178, 180–181,
199–200, 208, 229, 247, 258–263, 265–266, 268,
270, 282–289, 295, 297–298, 302–303, 306,
340–342, 350, 360, 377, 405–406, 408, 477, 487,
566, 590, 593–594, 606, 613, 630, 636–637, 704,
718–719, 723–724, 747, 752, 756–759, 761–762,
764, 773, 775, 778–779, 781, 789, 794

Saturation region, 135–136, 138–140, 247, 258–262,
264, 267–270, 282, 460, 477, 745, 750–752, 754,
759, 776

Selectivity, 653, 656–657
Self-biased, 153, 177

MOS amplifiers, 281
stage, 171–174, 177, 205, 341, 379, 498, 569, 573,

576, 823
Semiconductor materials, 10–23
Semiconductors

basic physics of, 9–42
doping, 9, 13–15, 18, 24–25

Sense and return techniques, 529–534
Sense duplicate, 552–554, 557–558, 560
Sensitivity, 660–661, 676–678
Sequential, 702
Series-series, 543
Series-shunt, 535

Short circuit(s), 49, 190, 194, 198, 202, 220, 367–370,
372–373, 392, 437, 480, 497, 597, 638

Short-circuit transconductance, 368–369, 372–373
Shunt-shunt, 539
Siemens, 123
Signal processing, 5–7, 244, 702
Silicon, 10–18, 21, 23, 28, 31, 118, 142, 245–248,

250, 252
Simulation Program with Integrated Circuit

Emphasis (SPICE), 809–827
Single-ended

conversion, 442
gain, 417, 433
input impedance, 154–156, 171, 188, 199, 420,

438, 441–442, 478
signals, 402–403
stages, 404

Slew rate (SR), 348–350
Small signal

gain, 170, 180, 289, 485, 519, 525, 580, 620, 625,
634, 707–708, 719–722

properties, 178, 197, 217, 223, 227, 399, 633, 759,
774, 786, 791

voltages, 69, 142, 401
Small-signal analysis, 158–160, 415–416, 748–749
Small-signal models, 66, 129, 132, 197, 749, 773

development of, 126
diodes, 125, 129
MOSFET, 269
nonlinear devices, 66
of supply voltage, 129

Small-signal operation, 64–73, 159–160
Small-signal resistance, 86–88, 123, 126, 272, 289,

360, 364, 467, 492, 630, 759, 764, 766, 773
Smoothing, capacitor, 77, 82, 84–85
Soft saturation, 136–138, 165, 167, 170, 176, 181, 360
Source, 263

current, 9, 79, 99, 107–111, 113, 116, 118, 122–123,
125, 131, 133, 135, 138, 153, 155, 159, 180, 190,
195, 213–214, 219, 223–224, 226, 229, 244–245,
249, 252–253, 260, 264, 268–269, 285–286,
289–290, 295, 304–305, 308, 343, 349, 359–360,
362–366, 369, 371–376, 379, 383, 401, 404, 406,
415, 418, 433, 435, 437, 440, 444, 492, 501–502,
526, 530, 540–541, 547, 551, 554, 557, 593–594,
599–602, 612–613, 621, 623, 625, 627, 630, 636,
704–705, 718–719, 742, 744, 748, 758–759,
763–766, 772, 774, 786, 788, 791, 793, 796, 811,
817, 825–826

degeneration, 360, 753–756, 767–779
substrate junction, 266, 476

Source follower, 303–308
biasing, 306, 308, 794–796
core, 304, 790–794
small-signal equivalent, 304

Speed, limitations, 346–350, 460, 735
Square-law, 261, 266, 752
Square root, 339, 386, 427, 824
Static power dissipation, 715
Stopband, 652–654, 659, 661, 663, 687–689, 692, 694
Substrate, 245–248, 250, 252–253, 266–267, 270, 273,

476, 479, 484, 638, 759, 820–821, 823
Subthreshold conduction, 247, 267, 287, 762
Summer, 336
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Super capacitor, 685, 687
Switch, 5, 39, 98–99, 257–258
Switched-capacitor, 98, 655–656
Switching threshold, 719

T

Tail current source, 404, 406, 415, 437–438
Tank, 32, 465, 595, 599, 608, 611–612
Telescopic cascode, 434–436
Template, 687–690
Terminals, 24–26, 29, 48, 51, 54, 56, 61–62, 76, 84,

108–110, 114, 118, 120, 125–126, 133–134, 145,
158, 178, 191, 200, 245–249, 323, 403, 405, 447,
489, 558, 747, 759, 770, 820

Termination, 552
Terminal velocity, 16
Thermal energy, 11–12
Thermal runaway, 641–643
Thermal voltage, 34
Thevenin, 156, 165–166, 175, 205, 220, 224–225, 227,

343–345, 446–447, 481, 685–686, 745, 792
impedance, 156
resistance, 224–225, 446–447, 792
voltage, 224, 447, 792

Threshold, 89, 248, 270, 375, 386, 599, 626, 719, 723,
750, 752, 823

low, 727
sub, 246, 267, 287, 762

Threshold voltage, 248, 267, 270, 375, 386, 599, 626,
723, 750

Time step, 813
Tolerances, 137
Topology, 4, 49–50, 55, 57, 81, 89, 98, 162, 164, 167,

169–171, 174, 178–183, 187, 197, 202, 206–217,
220, 222, 225, 229, 286, 288, 290, 297–300, 304,
327, 332, 335, 344–345, 362–364, 371, 376, 378,
400, 402, 404, 419, 431, 434, 437, 442, 444, 447,
465, 467, 471, 498–499, 502, 517, 527–528,
534–539, 542, 546, 553–554, 557, 560, 562, 591,
599, 601, 603, 605–607, 610, 613, 627, 637, 656,
658, 669–671, 674, 676, 680–681, 684, 686, 716,
732–733, 751, 753, 759–796

Transconductance, 122–125, 161, 170, 191, 217, 247,
261, 264–265, 272, 287–288, 291, 367–369,
372–374, 409–410, 415, 425, 437, 485, 526–528,
542–543, 590, 603, 613, 632, 637, 709, 719,
750–751, 760, 762, 770, 786, 822

concept, 122–124
definition, 122, 125, 179, 366

Transconductance gain, 527–528
Transfer function, 335, 342, 346–347, 460, 467–469,

472, 480, 486, 488, 492, 503, 514, 519, 529,
563–565, 570, 591, 593, 601–602, 604, 664–665,
671–673, 679–680, 685, 688, 690–692, 694,
703, 710

filter, 334, 651, 656–659
frequent response, 463–466

Transformer, 46, 78–79, 85–86, 402
Transient analysis, 813–816
Transimpedance, 526–528, 534, 539, 541

amplifier, 526–528, 534, 539, 541
gain, 527–528, 540
nonideal, 527

Transistors, 1–2, 15, 18, 23–24, 46, 51, 66, 73, 108–110,
114–115, 117–118, 124, 125, 129, 132, 137,
140–143, 164, 174, 178–179, 184–185, 197, 216,
225, 235, 244, 246, 251–252, 255, 258–259, 261,
263, 265, 269, 272, 324, 338–341, 343–344, 350,
361, 363, 365–366, 370, 372, 378–386, 388,
404–406, 414, 417–418, 425, 427, 435, 438, 440,
442–447, 460, 476, 478–479, 487, 499, 501, 589,
593–594, 599, 601, 613, 620, 624, 626–627, 630,
633, 636, 638, 641–642, 656, 702, 706, 717, 719,
723, 729, 731, 734–736, 742, 747–748, 758–760,
763, 771–773, 809

amplification properties, 158, 747
biased, 124
comparison of bipolar and MOS, 273
exponential relationship, 120
follower, 632
high-frequency models, 460, 475–479
high-power, 620
I/V characteristics, 107, 116, 120–122,

135–138
model, 118–120, 130, 132, 138, 477, 821
MOS, 244–273, 285, 376, 479, 730, 742, 747–748,

758–760, 809
operation, 111, 118, 120, 137
output resistance, 133–134, 183, 194–197, 227–228,

763, 771–773
in parallel, 114, 252, 255, 378–379, 764
single, 114, 184, 289, 359, 530–531, 631, 764
two-terminal device, 131

Transistor-transistor logic, 702
Transit frequency, 118, 460, 478–479
Transition band, 652–653, 663, 687–688
Transition region, 705, 707–708, 720, 722
Transmission lines, 209–210, 782
Transmitter, 2–5, 205, 257–258
Triode region, 244, 259–261, 267–268, 270–271, 288,

297, 341, 474, 590, 594, 704–705, 709, 718–721,
723–726, 762, 776, 779

Trip point, 613, 719–722, 731
Tunneling, 387

U

Unilateral current conduction, 57
Unity-gain

bandwidth, 347, 521
buffer, 323, 325, 336, 673

V

Vacuum tubes, 1, 107, 321, 626
Valence electrons, 10–11, 13–14
Variable-gain amplifiers, 249
Velocity saturation, 18–20, 266
Vertical, 97, 428

axis, 69, 575–576
bar, 48
dimensions, 252
offset, 406

Virtual ground, 326–328, 331, 333, 336, 338, 343,
414–417, 419, 431–432, 540, 605

VBE multiplier, 627
Voice band, 3–4
Voice signal, 3, 5, 7, 400
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Voltage, 9–10, 16–17, 19–20, 24, 29–30, 32–34, 37,
39–43, 115–116, 125, 135, 137, 140, 161–162,
169–171, 176, 180, 185, 198, 206–208, 220, 228,
405–408, 437–438, 621, 638

adder, 321, 336 base, 110, 119–120, 126, 128, 130,
138, 141–142, 161–162, 169–171, 176, 180, 185,
198, 206–208, 220, 228, 405–408, 437–438,
621, 638

base emitter, 115–116, 118–123, 126, 132, 140,
163–164, 171, 178, 185, 197, 206, 209, 222, 339,
360, 375, 377–378, 381, 407, 418, 627, 642

change, 68, 92, 122, 126, 133, 185, 261, 292, 439,
442–443, 471, 767

collector, 110, 116, 119–120, 125–126, 128–130,
135–139, 141–142, 162, 169–171, 173–174,
177–178, 201, 208, 213, 370, 405–406, 408, 601, 637

collector-base, 126, 128
collector current, 128
collector-emitter, 116, 118, 125, 138, 180, 360, 640
column, 6
constant, 39–40, 57–58, 60–61, 65–66, 73–74, 78, 82,

86, 89, 93, 96–97, 129, 139, 159, 161, 292, 301, 414,
490, 539, 547, 606, 642, 748, 767, 786

dc, 46, 86, 96, 134, 219, 306, 402, 603, 638, 751, 794,
826

difference, 16, 75, 109–110, 125, 135, 252–254, 266,
297, 337, 401, 608, 638, 779, 825

divider, 58, 302, 324, 334, 351, 462, 465, 516, 633,
670, 777, 788, 792

emitter, 115–116, 118–119, 121–123, 125–126, 132,
138–140, 162–164, 171, 178, 180, 185, 197, 206,
209, 360, 375, 377–378, 381, 407, 418, 444, 621,
627, 640, 642

external, 29–30, 33–34, 36
gate-source, 255–257, 286–287, 289, 295, 297–298,

304, 366, 427, 447, 610, 751, 758–759, 762, 767,
773, 779–782, 790

headroom, 181–182, 206–207, 289, 298, 360, 444,
637, 780

independent, 375, 825
input, 60–61, 64, 107, 122, 156–158, 160, 182–183,

185, 189, 209, 286, 292, 300, 322, 326, 366–367,
405, 412, 443, 470, 480, 531, 601, 625, 629, 708,
716, 721, 728, 745–747, 749, 763, 767, 782, 810,
811, 816

op amp, 346
pixels, 7
polarities, 51, 139–140, 174, 271
potential, 27
proportional, 5, 124, 545
quantities, 116, 153, 516, 742
small-signal, 69, 142–143, 180, 184, 206, 287, 401,

707–708, 761, 780
source, 29, 39, 58, 69, 89, 91, 107, 139, 154–157,

159–161, 182, 189, 199, 209, 211, 214, 227, 250,
300, 339, 342–344, 350, 527, 530, 544, 546–547,
558, 560, 626, 628–629, 685, 743–746, 748–750,
763, 776, 782, 810–811, 813, 817, 821, 825–826

source, voltage-dependent, 825–826
waveform, 6

Voltage amplifiers, 153, 742
Voltage buffer, 227
Voltage-controlled oscillator, 33
Voltage-current feedback, 539, 541, 547, 552, 557
Voltage-dependent voltage source, 825–826
Voltage doublers, 73, 76, 92–96
Voltage drop, 46, 51, 58, 116, 129, 136, 144, 157,

167–168, 175–177, 179–180, 186, 188–189,
201–203, 207–208, 219, 221, 225, 229, 252,
283–284, 287, 293–294, 296, 302–303, 345, 360,
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