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Preface

A memristor is a two-terminal device whose resistance depends on one or more
internal state variables of the device. A memristor is defined by a state-dependent
Ohm’s law. Its resistance depends on the entire past signal waveform of the applied
voltage, or current, across the memristor. Using memristors one can achieve circuit
functionalities that it is not possible to establish with resistors, capacitors and in-
ductors, therefore the memristor is of great pragmatic usefulness. Potential unique
applications of memristors are in spintronic devices, ultra-dense information stor-
age, neuromorphic circuits, and programmable electronics.

Despite explosive growth of memristor related findings there are few results on
networks of memristive devices. Our book fills the gap. There are four main parts
in the book yet their boundaries are eroded and their contents might sometimes
overlap.

The first part deals with foundations of the memristor theory and applications.
We start the book with a canonical text by Chua (“The Fourth Element”), where
existence of memristor was predicted. This is followed by Williams’s vivid vi-
sion of the impact the discovery of material memristors made on electronics and
computer engineering (“Aftermath of Finding the Memristor”). In his chapter “Re-
sistance Switching Memories are Memristors” Chua introduces fundamental circuit-
theoretic concepts and properties of memristors, clarifying and demystifying com-
mon misconceptions on memristive devices. The ubiquitous nature of memristors is
highlighted, from a historical perspective by Gandhi et al. (“The Detectors Used in
the First Radios were Memristors”). They prove that first wireless radio detectors, or
cat’s whiskers, are amongst the first engineered memristors. The chapter “Memris-
tor, Hodgkin-Huxley, and Edge of Chaos” by Chua demonstrates memristive proper-
ties of the Hodgkin-Huxley equation. Two critical elements of the Hodgkin-Huxley
circuit model are a potassium ion channel memristor, and a sodium ion channel
memristor, both of which are locally active. Adhikari and Kim help readers to dif-
ferentiate between two devices, which are usually confused by non-initiated people:
memristors and memistor.

The second part uncovers a rainbow of neuromorphic network architectures
based on memristor assembles. The memristor with adaptive thresholds mimic
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vi Preface

higher-order behaviour of synapses, show Cai and Tetzlaff in “Synapse as a Memris-
tor”. Sheridan and Wei introduce material systems, anion based memristive devices,
which are used in the design of learning networks with neuromorphic architectures
(“Memristors and Memristive Devices for Neuromorphic Computing”). Memris-
tive networks showing a long-term potentiation and spike-time-dependent plasticity,
and associative memory, are discussed by Thomas and Kaltschmidt in their chap-
ter “Bio-inspired neural networks”. Chapter “Self-organization and Emergence of
Dynamical Structures in Neuromorphic Atomic Switch Networks” by Stieg et al.
introduces networks of atomic switches, inorganic synapse-like devices. The atomic
switching networks are proved to be a uniquely scalable physical platform capable
of exploring the dynamical interface of complexity, neuroscience, and engineering.

Serrano-Gotarredona et al., in “Spike-Timing-Dependent-Plasticity with Mem-
ristors” give a tutorial on the realisation of learning networks with memristors.
They illustrate their approach on a visual cortex layer capable of orientation ex-
traction. A memristor bridge synapses, based on a Wheatstone bridge-like circuit
consisting of four identical memristors with specifically oriented polarities, are im-
plemented by Kim et al. in “Memristor Bridge-based Artificial Neural Weighting
Circuit”. Networks of memristor bridge synapses are employed in image processing
tasks. Nano-scale cellular-nonlinear network implemented from memristors in “Cel-
lular Nonlinear Networks with memristor synapses” by Corinto et al., and utilised
in image processing and multiplication tasks. Variable memristor networks are anal-
ysed and their efficiency in robot control is evaluated by Howard et al. in “Evolving
Memristive Neural Networks”. Computer experiments conclude that the variable
memristor synapses bestow more behavioural degrees of freedom to the networks,
allowing them to outperform the comparative synapse types.

The third part deals with dynamic behavior of memristive networks. Budhathoki
et al. investigate the relationships among flux, charge and memristance of diverse
composite memristors, using both linear and nonlinear memristor models, and ana-
lyze the characteristics of complex memristor circuits (“Behavior of Multiple Mem-
ristor Circuits”). In the chapter “A Memristor-Based Chaotic System with Bound-
ary Conditions”, Hu et al. incorporate charge-controlled and flux-controlled mem-
ristors into Chen oscillator and categorise non-trivial dynamical behaviour, includ-
ing chaotic attractors. Gale et al. (“Spiking in Memristor Networks”) show emer-
gence of an oscillatory behaviour in groups of two and three memristors. Polyaniline
(PANI) is an essential material of the organic memristive device. In his chapter “Or-
ganic memristive devices and neuromorphic circuits” Erokhin shows how to make
organic memristors of PANI polymers and experimentally studies types of learning
implementable in the networks of polymer-based organic memristors.

The fourth part is about computing with memristive networks. Kavehei et al.,
“Memristive in situ Computing”, overview designs and computational potential of
resistive random access memories, phase change memories and spin-transfer torque
magnetoresistive memories. Designs of through-silicon via on chip stackable mem-
ristor arrays and their applications in neuromorphic circuits, current and tempera-
ture sensors are discussed in the chapter “Memory Effects in Multi-Terminal solid
state devices and their Applications” by Sacchetto et al. Binary arithmetic is at the
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heart of all general purpose computing devices. Bickerstaff and Swartzlander, in
“Memristor-Based Addition and Multiplication”, provide an overview of analog
and digital implementations of binary additions and multiplications. The schemes
are exemplified on a ripple carry adder and an array multiplier. Circuit designs of
memristors emulators for practical laboratory experiments are presented by Biolek
in “Memristor emulators”.

Vourkas and Sirakoulis, in “Modeling memristor–based circuit networks on
crossbar architectures”, explore dynamics of regularly connected networks of mem-
ristors; they also model memristors using quantum-mechanical phenomenon of tun-
nelling and test universal logic schemes. Computing potential of two- and three-
dimensional memristive networks is discussed in chapters “Computing shortest
paths in 2D and 3D memristive networks” by Ye et al., and “Computing Image
and Motion with 3-D Memristive Grids” by Kai et al. Both chapters provide viable
architectural designs and computer models which could be used in future material
implementations of massively-parallel memristive processor at nano-, micro- and
meso-scales. Flak, in “Solid-State Memcapacitors and Their Applications”, intro-
duces the concept of a memcapacitor, evaluates their physical implementations, and
analyses a potential of memcapacitors for memory and logic applications. Stateful
logical operations and synthesis of Boolean functions using the memristive stateful
operations are outlined in chapter “Memristive Stateful Logic” by Lehtonen et al.
A two-dimensional excitable medium with memristive diffusion links is imitated
via Oregonator model and analysed by Asai in “Reaction-Diffusion Media with
Excitable Oregonators Coupled by Memristors”. A range of spatio-temporal be-
havioural scenarios is discovered, including emergence of non-uniform spatial pat-
terns of excitation determined by initial conditions and memristor polarities. Pham
et al., in “Autowaves in a lattice of memristor-based cells”, study two-dimensional
cellular non-linear networks, where every cell is equipped with memristors, and
FPGA implementations of these networks. Generation and propagation of excitation
waves is demonstrated. Iconic designs of memristive cellular automata are presented
by Itoh and Chua, in “Memristor Cellular Automata and Memristor Discrete-Time
Cellular Neural Networks”. Cellular non-linear networks equipped with non-liner
passive memristors show non-trivial behaviour, and perform logical and image pro-
cessing operations.

The book is a unique self-contained compendium of results on memristor re-
search developed by top world experts in the field. All aspects of memristor net-
works are presented in detail, in a fully accessible, often tutorial-like style. Math-
ematics, physics, engineering and computing of memristor devices are tackled in
detail. The book is an indispensable source of information and an inspiring refer-
ence text for future generations of computer scientists, mathematicians, physicists
and engineers.

Andy Adamatzky
Leon Chua

Bristol, UK
Berkeley, USA
September 2013
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The Fourth Element

Leon Chua

Abstract This tutorial clarifies the axiomatic definition of (v(α), i(β)) circuit el-
ements via a look-up-table dubbed an, of admissible (v, i) signals measured via
Gedanken Probing Circuits. The (v(α), i(β)) elements are ordered via a complex-
ity metric. Under this metric, the memristor emerges naturally as the fourth ele-
ment (Tour and He in Nature 453:42–43, 2008), characterized by a state-dependent
Ohm’s law. A logical generalization to memristive devices reveals a common fin-
gerprint consisting of a dense continuum of pinched hysteresis loops whose area
decreases with the frequency ω and tends to a straight line as ω → ∞, for all
bipolar periodic signals and for all initial conditions. This common fingerprint sug-
gests that the term memristor be used henceforth as a moniker for memristive de-
vices.

1 Axiomatic Definition of Circuits Elements

How do you characterize a 2 terminal “black box” B such that its response to any
electrical signal can be predicted? Since you are not allowed to peek inside B your
only recourse is to carry out measurements by probing B with all possible electrical
circuits, containing arbitrary interconnections of circuit elements, such as resistors,
capacitors, inductors, diodes, transistors, op amps, batteries, voltage and current
sources with arbitrary time functions, etc. We will henceforth call such circuits
“Gedanken Probing Circuits”, as depicted in the Gedanken Experimental Setup
shown in Fig. 1. Let us insert an instrument called an ammeter in series with the
top wire to record a time function i(t) called the current in Amperes entering the
top terminal (labeled by a plus (+) sign). Next let us connect an instrument called a
voltmeter across B to record a time function v(t) called the voltage in Volts across

L. Chua (B)
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,
CA 94720 USA
e-mail: chua@eecs.berkeley.edu

A. Adamatzky, L. Chua (eds.), Memristor Networks,
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2 L. Chua

the plus-minus terminals of B.1 Let us call (v(t), i(t)) an admissible (v, i) signal
of B . The recorded list

B(v, i) �
{(

v1(t), i1(t)
)
,
(
v2(t), i2(t)

)
, . . . ,

(
vn(t), in(t)

)
, . . .
}

(1)

of admissible (v, i) signals (AVIS) from all possible Gedanken Probing Circuits
constitutes the complete characterization of the 2-terminal black box B in the sense
that given any voltage signal or current signal, one can search the AVIS “memory
bank”, henceforth called the AVIS-pad of B or just A-pad, and identify the unique
admissible signals (ṽ(t), ĩ(t)) being sought. The A-pad must contain this entry in
its memory bank because the signal is associated with some circuit connected to
B, and this circuit is a Gedanken probing circuit, by definition. The A-pad is just a
look-up-table containing all admissible (v, i) signals of B. Observe that the A-pad
is in general an infinitely long pad containing infinitely-many pairs of admissible
signal waveforms (v(t), i(t)) of B, as depicted in Fig. 1.

The above Gedanken experiment is only a thought experiment. However, for a
large number of real-world 2-terminal devices, the A-pad for B can be generated via
equations.

Example 1 (Ohm’s Law) A very small subset of all 2-terminal black boxes are
characterized by an A-pad that satisfies Ohm’s Law; namely,

v =Ri or i =Gv (2)

where R is called the resistance in Ohms (Ω) of B and G is called the conductance
in Siemens (S) of B . In this case

AVIS = {(Ri1(t), i1(t)
)
,
(
Ri2(t), i2(t)

)
, . . . ,

(
Rin(t), in(t)

)
, . . .
}

(3)

can be reconstructed by (2). When Ohm’s law is written with i as the independent
variable, namely; v = Ri, it is called current controlled. If it is written in the form
i = Gv, it is called voltage controlled. Often it is more convenient to recast (2) in
the implicit form

fR(v, i)= v −Ri = 0 (4)

Since (4) is neither a function of v, nor of i, it is called a relation in mathematics.
In nonlinear circuit theory, it is called a constitutive relation [2–4]. Observe that
the constitutive relation is just a compact formula, or algorithm, for generating the
A-pad of B.

1Observe that the voltage v and the current i are defined axiomatically via two instruments called
voltmeter and ammeter, without invoking any physical concepts such as electric field, magnetic
field, charge, flux linkages, etc. One does not even have to know how a voltmeter, or an ammeter,
works. They are just names assigned to the instruments.
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Fig. 1 Axiomatic definition
of a 2-terminal circuit
element

Example 2 Suppose the A-pad of the 2-terminal black box B in Fig. 1 can be writ-
ten in the form

AVIS =
{(

v1, v1 + 1

3
v3

1

)
,

(
v2, v2 + 1

3
v3

2

)
, . . . ,

(
vn, vn + 1

3
v3
n

)
. . .

}
(5)

for all possible voltage signals

v(t)= v1(t), v(t)= v2(t), . . . , v(t)= vn(t) . . .

then the A-pad of B can be generated by the much more compact constitutive rela-
tion

fR(v, i)= v + 1

3
v3 − i = 0 (6)

Since both (4) of Example 1 and (6) of Example 2 involve the same pair of circuit
variables (voltage, current), and since all 2-terminal devices that can be character-
ized by a constitutive relation

fR(v, i)= 0 (7)

between the variable pair (v, i) can be proved to be dissipative (or passive) if v ×
i > 0 for all (v, i) listed in the A-pad, this class of 2-terminal elements are called
resistors [2–4].

Example 3 Most 2-terminal black boxes can not be described by a constitutive re-
lation between the variable pair (v, i). However, another important subclass can be
expressed by a relationship between the variable pair (v, q), where

q(t)=
∫ t

−∞
i(τ )dτ = q0 +

∫ t

t0

i(τ )dτ (8)
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and

q0 �
∫ t0

−∞
i(τ )dτ (9)

is called the initial state2 of q(t) at the initial time t = t0. This subclass of 2-terminal
black boxes can be characterized by a collection of admissible signals between the
variable pair (v, q), namely,

B(v, q)= {(v1(t), q1(t)
)
,
(
v2(t), q2(t)

)
, . . . ,

(
vn(t), qn(t)

)
, . . .
}

(10)

where,

q = Cv (11)

and C is a constant called the Capacitance of B. Equation (11) is the constitutive
relation of B because we can generate the corresponding AVIS (v(t), i(t)) via (8);
namely

i(t)= dq(t)

dt
(12)

Indeed, any relationship

q = fC(v) (13)

is a valid constitutive relation and this class of 2-terminal devices are called capac-
itors.

By the same reasoning, the constitutive relation

ϕ = fL(i) (14)

involving the variable pair (i, ϕ) defines a third subclass of 2-terminal devices called
inductors, where

ϕ(t)=
∫ t

−∞
v(τ)dτ = ϕ0 +

∫ t

t0

v(τ)dτ (15)

Observe that the above 3 classes of basic circuit elements, called resistors, capac-
itors and inductors, are defined axiomatically, via a constitutive relation between a
pair of variables chosen from {v, i, q,ϕ}. There are 6 different pairs that can be
formed from these 4 variables; namely

{
(v,ϕ), (i, q), (v, i), (v, q), (i, ϕ), (ϕ, q)

}
(16)

2In practice one can never know the precise signal i(t) over the infinite past. Rather we can only
set up our measurements to begin at some initial time t = t0. Consequently, the initial condition q0
in Eq. (8) represents a summary of the past memory of q(t) measured at t = t0.
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Fig. 2 Four
axiomatically-defined Circuit
Elements

The first 2 pairs (v,ϕ) and (i, q) are already related via (15) and (8), respectively,
and are not constitutive relations because they can not predict the corresponding
current i(t) and voltage v(t). However, the last pair (ϕ, q) defines yet another con-
stitutive relation since given any admissible signals (ϕ(t), q(t)), one can recover the
corresponding (v(t), i(t)) via (15) and (8). For logical consistency, and symmetry
considerations, it is necessary to define a 4th circuit element [1] via the constitutive
relation

fM(ϕ,q)= 0 (17)

between the variables ϕ and q . This element was postulated and named the mem-
ristor (acronym for memory resistor in [5]. A physical approximation of such an
element has been fabricated in 2008 as a TiO2 nano device by Dr. Stanley Williams
group at hp [6]. The above axiomatic definition of the 4 basic circuit elements
are summarized in Fig. 2, along with their respective symbols [7]. Note that the
standard symbols for resistor, capacitor and inductor are enclosed by a thin rectan-
gle with a dark band at the bottom because it is essential to distinguish the ref-
erence polarity of each nonlinear element if its constitutive relation is not odd-
symmetric.

We wish to stress that although the symbols of q and ϕ in Fig. 2 are given
the names charge and flux, respectively, they need not be associated with a real
physical charge as in the case of a classical capacitor built by sandwiching a
pair of parallel metal plates between an insulator, or a real physical flux as in
the case of a classical inductor built by winding a copper wire around an iron
core.
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Fig. 3 The first 25 (α,β)

circuit elements, −2 ≤ α ≤ 2,
−2 ≤ β ≤ 2

2 (v(α) − i(β)) Circuit Elements

Let us introduce the notations [4]

v(α)(t) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dαv(t)
dtα

, if α = 1,2, . . . ,∞
v(t), if α = 0
∫ t

−∞ v(τ)dτ, if α =−1
∫ t

−∞
∫ τ|α|
−∞ · · · ∫ τ2

−∞ v(τ1)dτ1dτ2 · · ·dτ|α|, if α =−2,−3, . . . ,∞
(18)

and

i(β)(t)�

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dβ i(t)

dtβ
, if β = 1,2, . . . ,∞

i(t), if β = 0
∫ t

−∞ i(τ )dτ, if β =−1
∫ t

−∞
∫ τ|β|
−∞ · · · ∫ τ2

−∞ i(τ1)dτ1dτ2 · · ·dτ|β|, if β =−2,−3, . . . ,∞
(19)

where |α| and |β| are integers. Let us identify a (v(0), i(0)) element as a resistor,
a (v(0), i(−1)) element as a capacitor, a (v(−1), i(0)) element as an inductor, and a
(v(−1), i(−1)) element as a memristor. Using this notation, we can define an infinite
family of circuit elements, each one identified by its element code (v(α) − i(β)) and
referred to simply as an (α,β) element.

The first 25 (α,β) elements are listed in Fig. 3, each coded by an integer pair
(α,β), and identified by a rectangular box where “α” and “β” are printed on the
“top”, and at the “bottom” respectively. Each (α,β) element is located at the in-
tersection between a vertical line through α, and a horizontal line through β . The
four circuit element symbols shown in Fig. 2 are printed in their corresponding
locations in Fig. 3. The 2 elements (α,β) = (−1,−2) and (α,β) = (−2,−1) are
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called memcapacitor, and meminductor respectively [11], and are identified by their
corresponding symbols.

The above infinite family of circuit elements are defined not for the sake of gen-
erality. Rather, they are essential for developing a rigorous mathematical theory of
nonlinear circuits in the sense that if one excludes all elements with |α| > k and
|β|> k, for any finite integer k, then one can construct hypothetical circuits whose
solutions do not exist after certain finite times t ≥ Tk due to the presence of a “singu-
larity” called an impasse point [2, 3, 10]. It is unlikely however that (α,β) elements
with |α|> 2 and |β|> 2 will be needed in modeling most real world devices.

It can be proved that any (α,β) element with |α| + |β|> 2 is active in the sense
that it can be built only with active components, such as transistors and op amps,
which requires a power supply. Finally, we remark that every (α,β) element can be
built by the same procedure illustrated in [2, 5, 12] using a family of linear active
2-ports called mutators. They can also be emulated via various off-the-shelf digital
components [13], or by programmable softwares interfaced with analog-to-digital
(A/D) and digital-to-analog (D/A) converters.

3 Complexity Metric of Circuit Elements

For each (α,β) element, let

χ � |α| + |β| (20)

be its associated complexity metric [9]. For example χ(0,0) = 0 for a resistor,
χ(0,−1) = 1 for a capacitor, χ(−1,0) = 1 for an inductor, χ(−1,−1) = 2 for
a memristor, χ(−1,−2)= 3 for a memcapacitor and χ(−2,−1)= 3 for a memin-
ductor. If one associates the vertical and horizontal lines passing through the ele-
ments in Fig. 3 as streets of Manhattan, New York city, then the complexity metric χ

of an (α,β) element gives a measure of its distance from the resistor (α,β)= (0,0).
The larger the metric χ(α,β), the farther it is from the resistor.

The complexity metric measures not just the distance of (α,β) element from
the resistor, but also the minimum number of capacitors (or inductors) needed to
build an (α,β) element using off-the-shelf components. For example, a minimum
of one capacitor along with active elements such as transistors and op amps, are
needed to build a memristor while a minimum of two capacitors are needed to build
a meminductor. From a mathematical perspective, the larger the complexity metric,
the higher the dimension of the state space and the larger the number of nonlinear
differential equations and exotic dynamical phenomena that can emerge.

Based on any of the above measures of complexity, the 4 elements depicted in
Fig. 3 are indeed the simplest circuit elements, with the memristor ranked as the 4th
element in increasing complexity.
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4 Fingerprint of Memristors

The formal mathematical definition of the memristor is given in [5], along with its
circuit-theoretic properties. Here we recall that the memristor is defined by a col-
lection of all admissible signals, namely, an A-pad listing all signals measured from
all admissible “Gedanken Probing Circuits” (Fig. 1) and which can be completely
reproduced by the constitutive relation (17).

For example, a charge-controlled memristor can be defined by

ϕ = fM(q) (21)

where fM is a piecewise-differentiable function [9]. In this case, we can generate all
(v(t), i(t)) from the A-pad via the following q-dependent Ohm’s law:

v =R(q)i

R(q) � dfM(q)

dq

(22a)

(22b)

The function R(q) is called the memristance (acronym for Memory Resistance)
where

R(q)≥ 0 (23)

for all passive memristors [2].
Now observe from (8) that since

dq

dt
= 0 when i = 0 (24)

the memristor can assume a continuous range of distinct equilibrium states

q = q(t0), t ≥ t0 (25)

when the power is switched off at any time t = t0. It follows that the memristor
can be used as a non-volatile analog memory. In particular, it can be used as a
non-volatile binary memory where two sufficiently different values of resistance are
chosen to code the binary states “0” and “1”, respectively. Because the hp memristor
reported in [6] as well as in many other nano devices [14] can be scaled down to
atomic dimensions, the memristor offers immense potentials for an ultra low-power
and ultra dense non-volatile memory technology that could replace flash memories
and DRAMS.

An incisive analysis of (22a), (22b) reveals that the non-volatile memory property
possessed by the memristor is a direct consequence of its state-dependent Ohm’s
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law. Moreover, all circuit-theoretic properties possessed by the memristor are pre-
served if we generalize Eqs. (22a), (22b) to the form [8].

v =R(x, i)i

dx/dt = f(x, i)

(26a)

(26b)

The generalized memristor defined in (26a), (26b) is dubbed a memristive device
in [8] where x = (x1, x2, . . . , xn) denotes n states variables, which do not depend
on any external voltages or currents. However, since both (22a), (22b) and (26a),
(26b) are endowed with the same circuit-theoretic properties, it is more convenient
and logical to refer to both equations as defining a memristor. In the rare events
where a distinction may be desirable, one can refer to (22a), (22b) as defining an
“ideal memristor”.

The most important common property of (22a), (22b) and (26a), (26b) is that
the loci (i.e. Lissajous figure) of (v(t), i(t)) due to any periodic current source,
or periodic voltage source, which assumes both positive and negative values, must
always be pinched at the origin in the sense that (v, i) = (0,0) must always lie
on the (v, i)-loci, called a pinched hysteresis loop in the literature [14]. We wish
to stress that (22a), (22b) and (26a), (26b) imply that the pinched hysteresis loop
phenomenon of the memristor must hold for any periodic signal, v(t) or i(t), that
assumes both positive and negative values, as well as for any initial condition used
to integrate the differential equations to obtain the corresponding steady state i(t)

and v(t), respectively.
Another unique property shared by all memristor hysteresis loops is that for every

given periodic function i = f (t) (where f (•) assumes both positive and negative
values), and for any initial state x(0) the area enclosed within the part of the pinched
hysteresis loop in the first quadrant, and the third quadrant, of the v–i plane shrinks
continuously as the frequency ω increases, and the hysteresis loop tends to a single-
valued function through the origin as ω tends to ∞.

The above dense continuum of pinched hysteresis loops, as well as their single-
valued function limiting phenomenon as ω →∞ must hold for all memristors. Any
purported system which may exhibit a pinched hysteresis loop but which violates
the above continuum and frequency-dependent limiting memristor fingerprint is not
a memristor, the reader is referred to [15] for several contrived examples which fails
the above “memristor fingerprint test”.

We end this tutorial by pointing out that not all memristors are non-volatile mem-
ories. In fact there is an even larger class of locally-active memristors [2, 4, 10]
which exhibit many exotic nonlinear dynamical phenomena. A very interesting
and scientifically significant example is the classic Hodgkin-Huxley Axon circuit
model of the squid giant axon.3 Notwithstanding the immense importance of their

3Hodgkin and Huxley were awarded the 1965 Nobel Prize in physiology for their derivation of the
circuit shown in Fig. 4a, where the 2 memristors were drawn as time-varying resistors in Fig. 1
(p. 501) of [16].
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Fig. 4 Hodgkin-Huxley Axon. (a) Memristive Hodgkin-Huxley Circuit model of giant axon (cen-
ter) of North Atlantic squid Loligo (right). (b) Potassium ion-channel memristor and its pinched
hysteresis loops (c) Sodium ion-channel memristor and its pinched hysteresis loops [39]

circuit model, Hodgkin and Huxley had erroneously named 2 circuit elements in
their model associated with the potassium ion, and the sodium ion, respectively, as
time-varying conductances. This mistaken identity has led to numerous confusions
and paradoxes ever since the publications of their classic axon circuit model [16].
Well-known physiologists were puzzled by experimentally observed rectification
phenomenon as well as gigantic inductances that could not exist within the soft tis-
sues of the brain. The following quotation from Cole (see p. 78 of [18]), an eminent
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physiologist and the recipient of the 1967 USA National Medal of Science, is a case
in point:

“The suggestion of an inductive reactance anywhere in the system was
shocking to the point of being unbelievable”.

We have solved the above conundrum, and many other hitherto unresolved
paradoxes associated with the Hodgkin-Huxley Axon, by showing the Hodgkin-
Huxley time-varying potassium conductance is in fact a 1st-order memristor, and
the Hodgkin-Huxley time-varying sodium conductance is in fact a 2nd-order mem-
ristor, as defined in Figs. 4b and 4c, respectively [39]. Also depicted in Fig. 4 are the
pinched hysteresis loops associated with each memristor. Observe that they are all
pinched at the origin, and that the lobe area in the first and third quadrants shrinks
continuously to a straight line as ω increases, both being the fingerprint of memris-
tors.

We conclude this tutorial by stressing that memristors are not inventions. They
are discoveries and are ubiquitous. Indeed, many devices, including the “electric
arc” dating back to 1801, have now been identified as memristors [19, 38]. Aside
from serving as non-volatile memories [20], locally-passive memristors, have been
used for switching electromagnetic devices [21], for field programmable logic arrays
[22–26], for synaptic memories [27–29], for learning [30–32], etc.

In addition, locally-active memristors have been found to exhibit many exotic dy-
namical phenomena, such as oscillations [33], chaos [34, 35], Hamiltonian vortices
[36] and autowaves [37], etc.

5 Concluding Remarks

Any 2-terminal device which exhibits a pinched hysteresis loop in the v-i plane
when driven by any bipolar periodic voltage or current waveform, for any initial
conditions, is a memristor. In the case where the memristance R(x1, x2, . . . , xn)

does not depend on the current i, the loop shrinks to a straight line whose slope
depends on the excitation waveform, as the excitation frequency tends to infinity.

Except in ideal cases, memristors, memcapacitors, and meminductors do not be-
have like resistors, capacitors, and inductors, respectively. For example, the potas-
sium and sodium ion channel memristors in the Hodgkin-Huxley axon circuit model
behave like R-L circuits [17, 39]. It is conceptually wrong and misleading to iden-
tify memristors, memcapacitors, and meminductors with resistors, capacitors, and
inductors. Each (α,β) element is a distinct circuit element because it can not be
built from the other elements.

Readers who may have been mislead by some erroneous commentary in the pop-
ular press which associates an earlier gadget called a memistor with the memristor
are referred to a technical clarification in [15, 40].

We end this tutorial with the following succinct signature of a memristor [14]:

If it’s pinched it’s a memristor.
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Aftermath of Finding the Memristor

R. Stanley Williams

Abstract In this paper, a personal guide to the set of Leon Chua’s papers that I
have found most helpful in my research will be provided in the hope that this will
encourage others to study them and answer the questions they have. Then, the paper
will be finished with some observations and comments about Prof. Leon Chua’s
definition of memristor in mathematics.

Observing the response to our paper “The missing memristor found” [1] over the
past four years in both the popular press and the scientific literature has been fasci-
nating. A significant part of the scientific process is to vet descriptions of new ideas
or objects, and the bigger the potential impact of a concept, the more rigorous that
scrutiny should be. However, intertwined with this process are many human issues
of desire for recognition and priority of discovery, as well as an often strong bias
to reject anything new without actually understanding it. There are a lot of miscon-
ceptions about memristors floating around that are difficult to correct with only a
few explanatory pages. Real understanding requires a great deal of hard work, and
the resources essential to achieve that understanding already exist in the literature.
However, for the vast majority of us, skimming over a few papers is completely
insufficient; I spent years reading and re-reading Prof. Leon Chua’s papers before
I started to really get an appreciation of what he was saying. I have several copies
of many different papers completely covered with highlighter of many colors and
with my scrawled notes—each time I read one of his paper, and I continually refer
back to them, I learn something new and my appreciation deepens. Although he
has written some wonderful tutorials, most of Prof. Chua’s writings are formal and
dense with information, and thus can be intimidating; they absolutely require a level
of mathematical sophistication to comprehend, but to those who persevere, they are
marvels of rigor and, eventually, clarity. Here I will provide a personal guide to the
set of papers that I have found most helpful in my research in the hope that this will
encourage others to study them and answer the questions they have, and then I will
finish with some observations and comments.
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During the 1960’s, Prof. Chua established the mathematical foundations for non-
linear circuit theory, which was the basis for his classic 1969 textbook Introduction
to Nonlinear Network Theory as well as a large number of papers in refereed jour-
nals. As a result of this work, Prof. Chua made an interesting observation that led
to his discovery of the memristor as a mathematical entity, reported in 1971 [2].
For completely linear circuits (which is highly restrictive, since real physical sys-
tems will display nonlinearity beyond some operating range), there are only three
independent two-terminal passive circuit elements: the resistor R, the capacitor C

and the inductor L. However, when he generalized the mathematical relations to
be nonlinear, there was another independent differential relationship that in princi-
ple coupled the charge q that flowed through a circuit and the flux φ in the circuit,
dφ = M dq , that was mathematically different from the nonlinear resistance that
coupled the voltage v to the current i, dv = R di. He mathematically explored the
properties of this new model nonlinear circuit element, and found that it was essen-
tially a resistor with memory—it was a device that changed its resistance depending
on the amount of charge that flowed through the device, and thus he called this hy-
pothetical circuit element M a memristor. This conclusion was independent of any
physical mechanism that might couple the flux and charge, and none was postu-
lated. Moreover, the memristor definition did not require causality. In other words,
the mathematical relationship between flux and charge could be the result of some
other cause—any mechanism that led to the constraint embodied by the equation
dφ = M dq would lead to a device with the circuit properties of a memristor. This
prediction of the properties of a new circuit element from symmetry principles was
totally unique and revolutionary, and did not depend on any experimental observa-
tion. He published these initial findings essentially as a curiosity—it was not obvi-
ous at that time that a physical analog of such a circuit element existed, and thus he
called it the “missing element”.

In 1976, with his then student Sung Mo Kang, he published a critical general-
ization of the original memristor concept [3], but this has not been cited with the
frequency of the 1971 paper, so fewer people seem to be aware of it. Chua and
Kang introduced the fact that a ‘memristive device’ has a state variable (or vari-
ables), indicated by w, that describes the physical properties of the device at any
time. A memristive system is characterized by two equations, the ‘quasi-static’ con-
duction equation that relates the voltage across the device to the current through it
at any particular time via a generalized resistance,

v =R(w, i)i

and the dynamical equation, which explicitly asserts that the derivative of the state
variable w is a function f of itself and the current through the device,

dw/dt = f (w, i).

Neither the flux φ nor the charge q explicitly appears in either of these two equa-
tions, but if w = q , R(w, i) = R(w) and f (w, i) = i, the two equations reduce
to the original definition of a memristor. Furthermore, the quasi-static conduction
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equation places a requirement on the current-voltage characteristic of the device—
if a memristive system is driven with some type of cyclic excitation, such as a
sinusoidal current, the plot of the voltage vs. the current will be a Lissajous curve for
which the voltage is always equal to zero when the current is zero, and vice versa.
Chua called this curve a ‘pinched hysteresis loop’, and it has an important physical
interpretation—neither a memristor nor a memristive system stores either charge or
energy (like a capacitor, for example), but they do ‘remember’ their history because
of their changing resistance. This 1976 paper showed many other properties of the
generalized memristor and also discussed possible examples, but again this was a
mathematical exercise that was independent of any physical mechanism known at
the time. The importance to real systems is that if one can identify the state variable
with a physical property of a device and experimentally determine the dynamical
and quasistatic equations, then one has a useful model for the element that can be
used for designing a circuit that would utilize the device.

There is another pair of papers that are critical for not only understanding how
memristors stand as independent devices, but how to appropriately understand a
nonlinear circuit element model, how to construct one from a physics-based mech-
anism or black-box electrical measurements, and how the model relates to an actual
nonlinear circuit [4, 5]. The two papers are best read together; the 1980 paper [4] is
mathematically thorough, broad in coverage and filled with deep insights, whereas
the 1984 paper is more tutorial and descriptive. I often find myself going back and
forth between the two for the complementary viewpoints they express. We learn that
no circuit model is an exact equivalent because no physical device can be exactly
mimicked by a mathematical equation. A particular physical device may be best de-
scribed by different models depending on the operating range, with the ‘best’ model
being the simplest one that produces realistic results. There are several properties
that a realistic model should have, including well-posedness (no mathematical arti-
facts that cause an unphysical situation), the capability to be simulated, qualitative
similarity to the physical system (e.g. same initial and asymptotic behavior), the
ability to predict previously unexplored operating modes, and structural resilience
(stability under small perturbations of the model parameters). These concepts are
made clear through mathematical definitions and examples. Thus, one needs an ap-
propriate set of models (I think of them as basis functions) that are as complete as
possible to describe a real system. Creating a device model is an art that can uti-
lize a wide range of inputs and insights—there is no unique way to define the best
possible model; was it useful in enabling a circuit to be designed and did it predict
the properties of the circuit to within some desired accuracy? If there is a physical
device for which the properties are well described by a particular model, then we
can call that device by the name of the model, understanding that a more complete
description may require some attribute of a different model. For example, all phys-
ical inductors have an intrinsic resistance, which is usually described as a model
resistance in series with a model inductance.

The final two papers are both tutorials and are written in a much more informal
style [6, 7]. They are very useful for people who just want to get a light overview
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of memristors without digging into the mathematical details, but also contain sig-
nificant new insights and are therefore valuable even for people who have mas-
tered the first four papers. However, no one should read only [6, 7] and think that
they comprehend the subject—any word description can be misconstrued or mis-
represented; the actual definitions are all mathematical. In his 2002 publication [6],
Prof. Chua correctly realized that as electronic device dimensions shrink into the
nanometer scale, their properties will become more nonlinear and thus the issues
for understanding nonlinear circuits are becoming increasingly more relevant and
critical. He used a fascinating analogy working up from the ‘Laws’ of motion pos-
tulated by Aristotle, Newton and Einstein to illustrate the necessity of choosing
the right variables for a model in the first place and then what happens when the
model progresses from an initial linear approximation to a more realistic nonlin-
ear formulation. There follows several completely worked out examples to illustrate
nonlinear circuit element modeling from his previous papers, including memristors.
In the final paper [7], he describes memristors and memristive systems, and makes
the observation that in fact the latter are a relatively straightforward generalization
of the former, and recommends that from now on to simplify the nomenclature that
both should be called memristors. By creating memristor models for the pinched
i–v hysteresis loops of each, he shows that specific physical examples of memris-
tors include several devices that are the subject of contemporary research: bipolar
and unipolar resistive switches, often called RRAM or ReRAM; ‘atomic switches’;
spin-transfer torque (STT) RAM devices; and phase-change memory devices; which
are based on a wide variety of materials and physical mechanisms [7].

An important issue to understand is that the discovery of the memristor math-
ematical model does not conflict with nor compete for priority against the various
realizations of physical devices that exhibit this circuit behavior. It is complemen-
tary, in that it provides a mathematical framework for designing and actually using
the devices in circuits. It also provides an important mathematical constraint for
those who are interested in the physics of their devices—any mechanism proposed
for how the device operates needs to be in agreement with the memristor equations
or it is not valid. Thus, researchers who are working on various types of resistive
switching devices need not fear the memristor, but rather should embrace it. It is a
high-level mathematical model that can be used to predict the circuit behavior of a
wide variety of physical devices, it provides a unifying framework to put the circuit
properties of all the devices into context, and therefore provides insight into how
the various devices may substitute for each other in a wide variety of (especially
nonmemory) applications originally developed for a different device.

Another issue is that no matter how careful one tries to be, any word descrip-
tion of a mathematical model will likely be incomplete, just as the model itself is
only an approximation of the properties of a physical system. Thus, papers or dis-
cussions that argue about the meaning of a particular word or phrase often miss
the point, since words can be ambiguous and interpreted (or twisted) in different
ways. That is why we use mathematics in science—when a question arises about
the specific meaning of a concept, we must go back to the defining equations. This
is where Prof. Leon Chua’s work stands out—precise, complete, insightful and to-
tally rigorous.
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Resistance Switching Memories Are Memristors

Leon Chua

Abstract All 2-terminal non-volatile memory devices based on resistance switch-
ing are memristors, regardless of the device material and physical operating mech-
anisms. They all exhibit a distinctive “fingerprint” characterized by a pinched hys-
teresis loop confined to the first and the third quadrants of the v–i plane whose
contour shape in general changes with both the amplitude and frequency of any
periodic “sine-wave-like” input voltage source, or current source. In particular, the
pinched hysteresis loop shrinks and tends to a straight line as frequency increases.
Though numerous examples of voltage vs. current pinched hysteresis loops have
been published in many unrelated fields, such as biology, chemistry, physics, etc.,
and observed from many unrelated phenomena, such as gas discharge arcs, mercury
lamps, power conversion devices, earthquake conductance variations, etc., we re-
strict our examples in this tutorial to solid state and/or nano devices where copious
examples of published pinched hysteresis loops abound. In particular, we sampled
arbitrarily, one example from each year between the years 2000 and 2010, to demon-
strate that the memristor is a device that does not depend on any particular material,
or physical mechanism. For example, we have shown that spin-transfer magnetic
tunnel junctions are examples of memristors. We have also demonstrated that both
bipolar and unipolar resistance switching devices are memristors. The goal of this
tutorial is to introduce some fundamental circuit-theoretic concepts and properties
of the memristor that are relevant to the analysis and design of non-volatile nano
memories where binary bits are stored as resistances manifested by the memris-
tor’s continuum of equilibrium states. Simple pedagogical examples will be used to
illustrate, clarify, and demystify various misconceptions among the uninitiated.

1 Pinched Hysteresis Loops

The memristor [1] is a 2-terminal circuit element characterized by a constitutive
relation between two mathematical variables q and ϕ representing the time integral
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of the element’s current i(t), and voltage v(t); namely,

q(t)�
∫ t

−∞
i(τ )dτ (1)

ϕ(t)�
∫ t

−∞
v(τ)dτ (2)

It is important to stress that “q” and “ϕ” are defined mathematically and need not
have any physical interpretations. Nevertheless, we call q the charge and ϕ the flux
of the memristor since Eqs. (1) and (2) coincide with the formula relating charge to
current, and flux to voltage, respectively. We say the memristor is charge-controlled,
or flux-controlled, if its constitutive relation can be expressed by

ϕ = ϕ̂(q) (3)

or

q = q̂(ϕ) (4)

respectively, where ϕ̂(q) and q̂(ϕ) are continuous and piecewise-differentiable func-
tions1 with bounded slopes.

Differentiating Eqs. (3) and (4) with respect to time t , we obtain

v = dϕ

dt
= dϕ̂(q)

dq

dq

dt
=R(q)i (5)

where,

R(q) � dϕ̂(q)

dq
(6)

is called the memristance2 at q , and has the unit of Ohms (
), and

i = dq

dt
= dq̂(ϕ)

dϕ

dϕ

dt
=G(ϕ)v (7)

where

G(ϕ) � dq̂(ϕ)

dϕ
(8)

is called the memductance at ϕ, and has the unit of Siemens (S). Observe that
Eqs. (5) and (6) can be interpreted as Ohm’s law except that the resistance R(q)

at any time t = t0 depends on the entire past history of i(t) from t =−∞ to t = t0.

1A function is piecewise-differentiable if its derivative is uniquely defined everywhere except pos-
sibly at isolated points.
2Just as memristor is an acronym for memory resistor, memristance is an acronym for memory
resistance. Similarly memductance is an acronym for memory conductance.
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Similarly the memductance G(ϕ) in Eq. (8) depends on the entire past history of
v(t) from t =−∞ to t = t0. It follows from Eq. (5) that the charge-controlled mem-
ristor defined in Eq. (3) is equivalent to the charge-dependent Ohm’s law

v =R(q)i (9)

where R(q) is just the slope of the curve ϕ = ϕ̂(q) at q . To show Eqs. (3) and (5)
are equivalent representations, we can recover Eq. (3) by integrating both sides of
Eq. (5) with respect to t :

ϕ �
∫ t

−∞
v(τ)dτ =

∫ t

−∞
R
(
q(τ)

)
i(τ )dτ

=
∫ t

−∞
R
(
q(τ)

)dq(τ)

dτ
dτ

=
∫ q(t)

q(−∞)

R
(
q(τ)

)
dq(τ)

=
∫ q(t)

q(−∞)

R(q)dq

= ϕ̂(q) (10)

It follows from Eq. (10) that

ϕ̂(q)=
∫

R(q)dq (11)

Similarly, a flux-controlled memristor is equivalent to the flux-dependent Ohm’s
law

i =G(ϕ)v (12)

where

q̂(ϕ)=
∫ ϕ(t)

ϕ(−∞)

G(ϕ)dϕ (13)

Example 1 Consider the charge-controlled memristor shown in Fig. 1a along with
the memristor symbol in the upper left corner. The memristor constitutive relation,
shown in red, is described analytically by a cubic polynomial

ϕ = q + 1

3
q3 (14)

Let us apply a sinusoidal current source (blue sine wave in Fig. 1c) defined by

i(t)=
{

A sinωt, t ≥ 0

0, t < 0
(15)
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Fig. 1 Memristor symbol, constitutive relation, and pinched hysteresis loop associated with
(v(t), i(t)) plotted for A= 1 and ω = 1. (a) Memristor symbol and ϕ = ϕ̂(q) characteristic curve.
(b) Pinched hysteresis loop: double-valued Lissajous figure of (v(t), i(t)) for all times t except
when it passes through the origin, where the loop is pinched. (c) Periodic waveforms associated
with i(t) and q(t) = ∫ t

0 i(τ )dτ plotted with A = 1 and ω = 1. (d) Periodic waveforms associated

with v(t) and ϕ(t)= ∫ t

0 v(τ)dτ

across this memristor, as shown in Fig. 1c for A = 1 and ω = 1. To determine the
corresponding voltage response v(t) from the constitutive relation (14), we must
calculate first the corresponding charge (shown in red in Fig. 1c). Assuming the
initial charge q0 = q(0) = 0, we obtain upon integrating Eq. (15) the following
equation for q(t):

q(t)=
∫ t

0
A sin(ωτ)dτ = A

ω
[1− cosωt], t ≥ 0 (16)

Substituting Eq. (16) into Eq. (14), we obtain the corresponding flux (shown in
magenta in Fig. 1d)

ϕ(t)= A

ω
(1− cosωt)

[
1+ 1

3

(
A2

ω2

)
(1− cosωt)2

]
(17)
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Differentiating Eq. (17) with respect to t , we obtain

v(t)=A

[
1+ A2

ω2
(1− cosωt)2

]
sinωt (18)

Plotting the loci3 of (i(t), v(t)) in the v–i plane, via Eqs. (15) and (18), we obtain the
pinched hysteresis loop shown in Fig. 1b for A= 1 and ω = 1. The hysteresis occurs
because the maxima and minima of the sinusoidal input current i(t) in Fig. 1c do
not occur at the same time as the corresponding memristor voltage v(t) in Fig. 1d.
The pinching at the origin in Fig. 1b occurs because both i(t) and v(t) become zero
at the same time. To show that the hysteresis loop is always pinched at the origin
(v, i)= (0,0), let us calculate the memristance R(q) from Eqs. (6) and (14):

R(q)= dϕ̂(q)

dq
= 1+ q2 (19)

Substituting q(t) from Eq. (16) into Eq. (19), we obtain

R
(
q(t)

)= 1+
[
A

ω
(1− cosωt)

]2

, t ≥ 0 (20)

Observe from Eq. (19) and Fig. 2c that

R(q) > 0 (21)

Substituting Eqs. (20) and (15) in Eq. (9), we obtain the same expression for the
memristor voltage v(t) derived earlier in Eq. (18).

Now since R(q) is finite for all finite q , it follows that

v(t)= 0 whenever i(t)= 0 (22)

for any input current i(t). Similarly, for any ϕ-controlled memristor whose mem-
ductance G(ϕ) is finite for all finite ϕ, we have

i(t)= 0 whenever v(t)= 0 (23)

for any input voltage v(t).
The waveform of R(t) given by Eq. (20) is shown in Fig. 2d for A= 1 and ω = 1.

The loci traced out by (R(t), i(t)) is shown in Fig. 2b. Again we obtain a hysteresis
loop, but it is not pinched since R(t) > 0 for all times.

It is important to observe from Figs. 1d and 2d that while v(t) and i(t) assume
both positive and negative values, both ϕ(t) and q(t) are non-negative. It follows
that only the memristor ϕ–q curve in the first quadrant is visited during every period
of i(t). Observe also that the pinched hysteresis loop in Fig. 1b is odd symmetric
with respect to the origin.

3Also known as a Lissajous figure.
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Fig. 2 (a) Memristor constitutive relation. (b) Resistance hysteresis loop associated with
(R(t), i(t)). (c) Memristance plotted as a function of q . (d) Periodic waveforms of i(t), q(t),
v(t), and R(t), plotted for A= 1, ω = 1

Finally, observe that except for the memristor constitutive relation ϕ = ϕ̂(q) in
Fig. 1a, and its associated memristance R(q) in Fig. 2c, which remain unchanged,
all other waveforms of Figs. 1 and 2 will change when we vary the amplitude A or
the frequency ω of the input signal i(t)=A sinωt . In particular, note from Eqs. (16)
and (17) that q(t)→ 0 and ϕ(t)→ 0 as ω →∞. This makes perfect sense since as
we increase the frequency ω of the sinusoidal input current i(t) = A sinωt , while
keeping the amplitude constant, the “area” accumulated from t = 0 to the first half
period t = π

ω
diminishes with ω. It follows therefore that the memristance

R
(
q(t)

)→R(0)= 1 
, as ω →∞ (24)

We can confirm this prediction via Eq. (18) by noting that

v(t)→A sinωt, as ω →∞ (25)

In fact, this is one of the signature properties of a memristor, which we formalize as
follows:
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Memristor pinched hysteresis loop fingerprint

The loci (Lissajous figure) in the v–i plane of any passive memristor with positive
memristance

R(q)= dϕ̂(q)

dq
> 0 (26)

and driven by a sinusoidal current source i(t)=A sinωt is always a pinched hys-
teresis loop, whose area shrinks with frequency and tends to a linear resistance
equal to R(0)= slope of the constitutive relation ϕ = ϕ̂(q) at q = 0.

We remark here that there exist degenerate cases where the v–i Lissajous figure
is a single-valued function, such as the example shown in Fig. 3 when we drive the
same memristor from Fig. 1 with the special input i(t) = cos t for t ≥ 0. In fact,
we can interpret the loci shown in Fig. 3b as a degenerate case where the hysteresis
loop collapsed into a single-valued function, passing through the origin. Hence, the
loci is still pinched, even in this degenerate scenario.

Another degenerate scenario can occur when the slope R(q)= 0 at some points
on ϕ = ϕ̂(q) function, as illustrated in Fig. 4 for the constitutive relation

ϕ = 1

3
q3 (27)

In this case R(0)= 0. For the same input current source i(t)= cos t as in Fig. 3, we
obtain a single-valued function in the v–i plane which touches the i-axis, as shown
in Fig. 4b. This represents another degenerate situation where the v–i Lissajous
figure actually includes points on the i-axis, as it is impossible to cross the i-axis
for any passive memristor where R(q) ≥ 0.4 In such situations, the v–i Lissajous
figure must still pass through the origin (i.e., it is pinched), but it makes contact
with the i-axis as well. In either case, the Lissajous figure (R(q) ≥ 0) of a passive
memristor must be confined to the first and the third quadrants, including possibly
the i-axis, of the v–i plane [3].

2 Continuum of Non-volatile Memories

A cursory examination of the charge-controlled memristor constitutive relation
ϕ = ϕ̂(q) in Fig. 2a shows that its memristance M(q) varies from5 R(q1) =

4Note the preceding memristor fingerprint property is stated for the case R(q) > 0.
5To avoid clutter, we will often write Memristance M(q) and Resistance R(q) interchangeably.
Likewise, we will often write Conductance G(ϕ) for Memductance W(ϕ). Similarly, we use the
terms memristance and resistance, as well as memductance and conductance, to mean the same
thing.
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Fig. 3 Illustration of a degenerate scenario where the pinched hysteresis loop collapsed into a sin-
gle-valued function when driven in this case with i(t)= cos t , with the same ϕ = ϕ̂(q)constitutive
relation as Fig. 1a

l 
 to ∞, as depicted in the “Resistance vs. charge” curve in Fig. 2c, hence-
forth called the Resistance vs. State map. In Fig. 2c, charge is the state vari-
able.

The Resistance vs. State mapis a very useful graph because it shows how to
navigate from one memristance R0 at state q = q0 on the memristor ϕ vs. q curve
to another memristance R1 at state q = q1 by simply applying a short current pulse
Δi(t) whose area is equal to the increment Δq needed to be added to the latest
value of q(t0)= q0 in order to move from R0 to Rl . The memristance vs. state map
in Fig. 2c therefore allows one to tune the memristor’s resistance continuously from
R = 1 
 to R =∞.

It is important to observe that if one opens or short circuits a memristor having a
resistance R0 at t = t0 so that the memristor is in equilibrium, i.e., v = 0, and i = 0,
at t = t0, the memristor does not lose the value of ϕ and q when both voltage v and
current i became zero at the instant when the power is switched off, but rather held
the value unchanged at q0 and ϕ0, forever! Hence the passive memristor exhibits
non-volatile memory.
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Fig. 4 Example illustrating the second degenerate scenario where the Lissajous figure in the v–i

plane actually reaches the i-axis. This limiting case can occur when the memristor constitutive
relation has R(q)= 0 at some q , as in Fig. 4a where R(q)= 0 at q = 0 [3]

3 ϕ–q Curve and Memristance vs. State Maps Are Equivalent
Memristor Representations

Both the ϕ vs. q constitutive relation (such as Fig. 2a) and its associated resistance
vs. state map (such as Fig. 2c) with the state equation dq/dt = i are equivalent
representations of a memristor in the sense that given any applied current source
input signal i(t) for all times from t =−∞, or equivalently, for positive times from
t = 0, plus the initial charge q(0) which represents the time-integral of i(t) from
t = −∞→ t = 0, one can calculate the corresponding voltage v(t). Conversely,
given any v(t), one can calculate the corresponding i(t), assuming R > 0 so that
the inverse constitutive relation q = q̂(ϕ) is a continuous function.

In contrast, all of the waveforms and hysteresis loops depicted in Figs. 1 and 2
are only manifestations of a memristor, and cannot be used to predict the voltage
response given any other excitation waveforms different from the waveform i =
A sinωt , with A = 1 and ω = 1, in Fig. 1c. The reader should verify that changing
the parameter A, or ω, or changing the waveforms of i(t) would result in completely
different responses. For example, it follows from Eqs. (16), (18) and (19) that if we
hold the amplitude A = 1 while increasing the frequency ω →∞, we would find
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that q(t) tends to zero, v(t) tends to 0, and R(t) tends to 1 
, as the hysteresis
loop in Fig. 1b shrinks until it collapses into a unit-slope straight line through the
origin. Indeed, as ω tends to ∞, the charge q(t), and flux ϕ(t) would both tend to
the origin in Fig. 1a, and remain motionless thereafter. Under this limiting situation,
the memristor degenerates into a linear R 
 resistor where R is just the slope of the
ϕ–q curve at the origin in Fig. 1a; namely, R = 1 
.

Memristor Lesson 1. Pinched Hysteresis Loops Are Not Models! While a
pinched v–i hysteresis loop measured from an experimental 2-terminal device im-
plies that the device is a memristor, the pinched loop itself is useless as a model
since it cannot be used to predict the voltage response to arbitrarily applied current
signals, and vice-versa. The only way to predict the response of the device is to
derive either the ϕ–q constitutive relation, or the memristance vs. state map.

4 Resistance vs. State Map and State Equation

When we write, or utter, the term resistance, or conductance,6 we must always sub-
consciously remind ourselves that we are referring to a 2-terminal electrical device
that obeys a linear equation called Ohm’s Law; namely,

Ohm’s Law:

v =Ri (28)

where R is a constant, called the resistance of the resistor, where R has the unit of 
.
It is conceptually important to distinguish between the two words resistance and
resistor: resistor is a device, while resistance is the slope of the straight line defined
by Ohm’s law. No harm is done when the device is linear-hence the sloppiness
in current usage. However, for nonlinear devices, it is crucial to distinguish them!
The resistance vs. state map of a memristor also obeys Ohm’s Law, except that the
resistance R is not a constant, as illustrated by the example in Fig. 2c, but depends
on a dynamical state variable x (x = q in the ideal memristor case considered so
far) which evolves according to a prescribed ordinary differential equation, called
the state equation. An ideal memristor is therefore defined by:7

State-dependent Ohm’s Law:

v =R(x)i (29a)

6To avoid clutter, we usually write only the term resistance, or conductance, with the understand-
ing, mutatis mutandis, that the same follows for the dual case.
7We henceforth adopt the standard notation x to denote a state variable in mathematical system
theory, where x may be a vector x = (x1, x2, . . . , xn). This will be the case for many non-ideal
memristors found in practice.
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Memristor State equation:

dx

dt
= i (29b)

Memristor Lesson 2 A memristor is defined by a state-dependent Ohm’s Law.

5 Correspondence Between Small-Signal Memristance and
Chord Memristance

Let us apply a sinusoidal current source i(t) = A sinωt across a charge-controlled
memristor as in Fig. 1. The memristance R(q(tk)) at t = tk as calculated from
Eq. (6) is equal to the slope of the ϕ–q curve at q = q(tk). The slope at q(tk)

will in general vary with the time-evolution of ϕ(t). However, we can keep the
slope at q(tk) approximately constant over time by choosing a sufficiently small
amplitude A while fixing the frequency ω, assuming the ϕ–q curve is continuous
at q = q(tk). Under this small-signal condition, the memristance, henceforth called
the small-signal memristance, would be indistinguishable from that of a linear resis-
tance, which obeys Ohm’s Law with a constant resistance equal to R(tk) at all times.
It follows that by applying a short current pulse signal of appropriate height, we can
tune the memristance over a continuous range of values without introducing a third
terminal, and without applying a continuous supply of power via a biasing circuit.
For the example shown in Fig. 2c, any small-signal memristance greater than 1 


can be easily programmed. In particular, observe that we have aligned the vertical
axis of Figs. 2a and 2c so that the value of R (height of the resistance vs. state map)
is equal to the slope of the ϕ–q curve in Fig. 2a at the point (q(tk), ϕ(tk)), i.e., both
points must fall on the vertical projection line through q = q(tk).

In other words, the memristor can be designed to function as a non-volatile and
continuously tunable resistance. Let us consider next the large-signal case where
A � 0, e.g. A = 1 and ω = 1, as shown in Fig. 2 In this case, a quick calculation
using Eq. (17) shows that the flux ϕ(t) oscillates between ϕ = 0 and ϕ = 14/3, as
shown in Fig. 1d. The corresponding memristance calculated from Eq. (20) ranges
from R = 1 to R = 5 
, as shown in Fig. 2d. The corresponding v–i Lissajous figure
is the pinched hysteresis loop shown in Fig. 1b. At any time t = tk , the memristance
is equal to R(tk) = v(tk)

i(tk)
. This number can be interpreted simply as the slope of a

straight line, i.e., a chord, connecting the origin to the point (i(tk), v(tk)) in the i–v

plane. We will henceforth call this large-signal resistance at time t = tk the “chord
memristance” at t = tk .8

Observe that the chord memristance at t = tk is simply the memristance calcu-
lated from the pinched hysteresis loop in Fig. 1b at the point where t = tk . This

8The terminology “chord resistance” had been widely used by neuro-biologists, including Hodgkin
and Huxley [5], for similar geometrical interpretations.



32 L. Chua

number is equal to the slope of a corresponding point on the ϕ–q curve in Fig. 1a,
traversed at the same time t = tk ; namely, the small-signal memristance calculated
at the same point. In fact, had we plotted Figs. 1a and 1b on the same scale, the
chord connecting the point (i(tk), v(tk)) to the origin at t = tk will be parallel to a
corresponding line drawn tangent to the ϕ–q curve in Fig. 1a.

For example, at t = π
2 , (i(π

2 ), v(π
2 )) = (1,2), and the chord resistance is given

by R(π
2 ) = 2/1 = 2 
, and the corresponding small-signal memristance is given

by Eq. (19) for q(π
2 ) = 1, namely, R(π

2 ) = 1 + 1 = 2, as predicted and shown in
Fig. 2c. Let us summarize the above results as follow:

Small-Signal and Chord Memristance Correspondence Property The large-
signal chord memristance calculated at any point (i(tk), v(tk)) at time t = tk of a
pinched hysteresis loop in the v–i plane is equal to the small signal memristance at
a corresponding point on the ϕ–q curve traversed at the same time. In particular, the
slope of the chord connecting (0,0) to (i(tk), v(tk)) is equal to the slope of the line
drawn tangent to the ϕ–q curve at the corresponding point (q(tk), ϕ(tk)).

Recall that the small-signal memristance R(q(t)) remains constant under any
sufficiently small odd-symmetric periodic current input signals, such as i(t) =
A sinωt where i(−t) = −i(t) because every value of the state variable x (charge
in Fig. 1) is a stable equilibrium point9 and because the memristor is locally passive
when R(q)≥ 0 [3]. The local passivity property is essential for small-signal mem-
ristor circuit analysis to make sense because a locally active memristor [3] could
give rise to oscillations, and even chaos [6].

In contrast to the small-signal memristance, which does not depend on the input
waveform of i(t) other than it being sufficiently small, the chord memristance is al-
ways associated with a particular Lissajous figure, such as a pinched hysteresis loop
corresponding to a periodic input signal. However, once the input current waveform
is given, we can derive the associated pinched hysteresis loop, such as that shown in
Fig. 1b when i = A sinωt with A = 1 and ω = 1. In this case, we can interpret the
meaning of the two limiting chord memristances associated with the two hysteretic
branches through the origin. In particular, the chord memristance of the lower limit-
ing branch is equal in value to the small-signal memristance at the origin of the ϕ–q

curve in Fig. 2a, namely, R(0) = 1. This also follows upon substitution of q = 0
in Eq. (19) at time t = 0. The second chord memristance associated with the lim-
iting upper branch through the origin in Fig. 2b is associated with the small-signal
memristance at the point q = q(π)= 2, namely, R(2)= 5.

9A state x = xo is said to be an equilibrium point of a dynamical circuit if dx(t)
dt

= 0 at x = xo .
It is said to be locally asymptotically stable if it always returns to its original position whenever
subjected to small perturbations, such as a small current pulse. An equilibrium point is said to be
stable if any drift from its original position due to any perturbation to the state variable x is confined
to a neighborhood of radius of about the same size as that of the perturbation. In other words, it
does not diverge to infinity, as would be the case for an unstable equilibrium point. Neither does
it return to its original position, as would be the case if the equilibrium point is asymptotically
stable [3].
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For the pinched hysteresis loop shown in Fig. 1b, the chord memristance will
sweep from the lower limit R(0)= 1 to the upper limit R(2)= 5 in a counterclock-
wise direction in the 1st quadrant during the first half cycle, and then reversing the
sweep in a symmetrical manner in the 3rd quadrant during the second half cycle,
resulting in an odd-symmetric pinched hysteresis loop. The motion of the chord
memristance in the 1st quadrant Fig. 1b is similar to that of an automobile wind-
shield wiper except that the length of the blade changes continuously in accordance
to the square root of the sum of squares of i(t) and v(t), from t = 0 to t = π in the
v–i plane.

6 Ideal Memristor ϕ–q Curves for Binary Memories

For digital computer applications requiring only two memory states, the memristor
needs to exhibit only two sufficiently distinct equilibrium states R0 and R1 where
R0 � R1, and such that the high resistance state R0 can be easily switched to the
low resistance state R1, and vice versa, as fast as possible while consuming as little
energy as possible. In contrast to conventional memories, the memristor does not
dissipate any power except during the brief switching time intervals because v(t)=
dϕ(t)/dt = 0, and i(t) = dq(t)/dt = 0 at both equilibrium states R0 and R1. Our
goal in this section is to present two ideal memristors for mimicking two, among
many, recently published resistance switching memories.

Memristor Switching Memory 1 Figure 5 shows a charge-controlled memristor
characterized by a 3-segment odd-symmetric ϕ–q curve (Fig. 5b). This piecewise-
linear function can be described by the equation

ϕ =R0q +
(

1

2
(R1 −Ro)

)[|q +B| − |q −B|] (30)

where R1 denotes the slope of the middle segment in Fig. 5b, R0 denotes the slope
of the outer segments in Fig. 5b, q = −B denotes the left charge breakpoint in
Fig. 5b, and q = B denotes the right charge breakpoint in Fig. 5b. The corresponding
memristance function R(q) is derived by differentiating Eq. (30) with respect to q;
namely,

R(q)=R0 + 1

2
(R1 −R0)

[
sgn(q +B)− sgn(q −B)

]
(31)

where sgn(·) is defined by

sgnx =
{

1, if x > 0

−1, if x < 0
(32)

A graph of the memristance vs. state map is shown in Fig. 5d for the parameter
values R0 = 6000 
 and R1 = 2500 
.
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Fig. 5 A two-state pinched hysteresis loop resulting from driving a piecewise-linear charge-con-
trolled memristor with a sinusoidal current source i(t)=A sinωt , where A > ωB , and B denotes
the numerical value of the breakpoint in (b). Notice the horizontal axis is “q” in (b) and “i” in (c),
which are the vertical axis in Figs. 6c and 6(f), respectively. Consequently, the slope of the piece-
wise-linear segments in (b) represents memristance in 
. (d) shows the relationship between the
memristance as a function of q , assuming the slopes are given by Ro = 6000 
 and R1 = 2500 


Applying the sinusoidal current source defined in Eq. (16) with A= 2Bω across
the memristor, the corresponding memristor charge is given by

q(t)=
{

2B(1− cosωt), t > 0

0, t < 0
(33)

In this case, the memristor ϕ–q curve in Fig. 5b traverses from q = 0 at t = 0 to
q = 4B at t = π

ω
. Observe that starting from q(0)= 0 in Fig. 5b at t = 0, the mem-

ristor charge q(t) increases along the lower branch while maintaining a constant
memristance value of R1 until it reaches the right breakpoint at q = B where it
switches abruptly to the upper branch and continues to increase, with the constant
high memristance value of R0, until it reaches the maximum value of q(t)= 4B at
t = π

ω
corresponding to the end of the first half cycle of the sinusoidal current in-
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put i(t). The corresponding chord memristance also remains constant at R1 before
the breakpoint q = B , and at R0 after the breakpoint. During the next half cycle, the
memristor input current i(t) changes sign, and so does the corresponding memristor
voltage v(t). The loci in Fig. 5b then retraces the same route from q = 4B with a
constant memristance R0 at t = π

ω
until it reaches the right breakpoint q = B again,

where the memristance switches to R1, and continue to decease until it returns to
the initial departure point q = 0 at t = 2π

ω
. Since both i(t) and v(t) are negative

during the return trip, the plot of the corresponding Lissajous figure in the v–i plane
is an odd-symmetric pinched hysteresis loop, as shown in Fig. 5c. Observe that it
consists of only two chord memristances equal to R1 for the lower branch, and R0

for the upper branch. Observe also that the switching occurs instantaneously, in both
directions, in this case in view of the discontinuity in slope of the ϕ–q curve at the
two breakpoints q = B and q =−B .

The corresponding memristance vs. state map shown in Fig. 5d for R1 = 2500 
,
and R0 = 6000 
, also shows a discontinuous jump at the same breakpoints, as
expected. If we transcribe the corresponding loci of the memristance R(t) from the
pinched hysteresis loop in Fig. 5c into the R vs. i plane, we would obtain the square
resistance hysteresis loop shown in Fig. 5e. This plot is the piecewise-linear analog
of the smooth differentiable ϕ-q curve in Fig. 2b.

A cursory glance at the figures from [7] reveals similarities in the respective rect-
angular resistance hysteresis loops. From a circuit-theoretic perspective, the non-
volatile resistance switching memory device reported in [7] bears the fingerprint of
a memristor, and should be modeled as a memristor. This example suggests that
spin-transfer magnetic tunnel junctions are memristors. Indeed, unless a memristive
device is properly identified and modeled as a memristor, no deep physical under-
standing of the rectangular resistance hysteresis mechanisms, let alone the develop-
ment of a reliable commercial product, would be possible.

So far we have chosen charge-controlled memristors for illustrations. Let us now
consider the dual case of a flux-controlled memristor where the flux ϕ is the inde-
pendent variable.10

Memristor Switching Memory 2 Consider the flux-controlled memristor q–ϕ

curve shown in Fig. 6f where q (vertical axis) is the charge in nano Coulomb (nC),
and ϕ (horizontal axis) is the flux in Webers (Wb). This odd-symmetric piecewise-
linear function can be described exactly by an equation involving two absolute-value
functions; namely,

q = 1

2
G1
{
2ϕ + |ϕ −B| − |ϕ +B|} (34)

10For a strictly-passive memristor, defined by R(q) > 0, there is no mathematical difference be-
tween a charge-controlled memristor and a flux-controlled memristor except for the choice of the
independent variable. However, for a locally-active memristor, defined by R(q) < 0 at some point
on the ϕ–q curve, the difference becomes important because the ϕ–q curve in this case is no longer
a single-valued function, and therefore does not have an inverse function.
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Fig. 6 A two-state pinched hysteresis loop resulting from driving a piecewise-linear flux-con-
trolled memristor with a sinusoidal voltage source v = 5 sin(t). The horizontal segment has a mem-
ductance G(ϕ)= 0 nS, and the two parallel outer segments have a memductance of G(ϕ)= 800 nS
(Reproduced from Fig. 26 of [4], except for a revision of the original cartoon sketch (e) which was
drawn distorted in order to unfold portions of the pinched hysteresis loop, as well as to exhibit a
typical return loci for other periodic input signals)

where G1 = 800 nS, and B = 2.5 Wb.11

Let us apply a sinusoidal voltage source

v(t)=
{

5 sin t, t > 0

0, t < 0
(35)

11This memristor is not charged-controlled because its memristance is infinite at all points on the
horizontal segment where the memductance Go is equal to zero.
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shown in Fig. 6a, across the memristor. Integrating Eq. (35) we obtain the flux

ϕ(t)=
{

5(l − cos t), t > 0

0, t < 0
(36)

as shown in Fig. 6b. Substituting Eq. (36) into Eq. (34), we obtain the corresponding
charge

q(t)= 400
{
10(1− cos t)+ ∣∣5(1− cos t)− 2.5

∣
∣− ∣∣5(1− cos t)+ 2.5

∣
∣} (37)

as shown in Fig. 6c. Differentiating q(t) from Eq. (37), we obtain

i(t)= 4000 · sin t · {1+ θ
(
5(1− cos t)− 2.5

)− θ
(
5(1− cos t)+ 2.5

)}
(38)

as shown in Fig. 6d, where

θ(z)=
{

1, z > 0

0, z < 0
(39)

Plotting the Lissajous figure of i(t) from Fig. 6d, or Eq. (38), and v(t) from Fig. 6a,
or Eq. (35), we obtain the pinched hysteresis loop shown in Fig. 6e. Since the current
i is chosen as the vertical axis, and the voltage v is chosen as the horizontal axis, we
must now use the dual terminology of chord memductance, instead of chord mem-
ristance. Observe that the memductance in Fig. 6e switches abruptly from Go = 0
(horizontal segment) at the two breakpoint voltages v = 4.33 V, and v =−4.33 V,
to G1 = 800 nS. This switching is instantaneous because the slope of the q–ϕ curve
in Fig. 6f changes abruptly at the corresponding breakpoints at ϕ = 2.5 Wb, and at
ϕ =−2.5 Wb, respectively.

Observe that the pinched hysteresis loop in Fig. 6e has only two chord mem-
ductances. They correspond to the two small-signal memductances Go = 0 and
G1 = 800 nS of the flux-controlled q–ϕ curve in Fig. 6f.

Let us now compare the dynamical behaviors of this memristor with the recent
non-volatile nano-wire memory device reported by Professor Lieber’s group from
Harvard [8]. There seems to be little resemblance at first sight. This is because
Lieber’s group uses a square wave instead of a sinusoidal voltage source in their
experiments. We have therefore repeated their experiments by applying the same
voltage source, and parameters, across the flux-controlled memristor with the q–ϕ

curve shown in Fig. 6f, and enlarged in Fig. 7a. Lieber’s bipolar 10-volt square-
wave input voltage v(t) is shown in Fig. 7b. Integrating v(t), we obtain the flux
waveform ϕ(t) shown in Fig. 7c, which is a triangular wave of the same frequency.
Observe from Fig. 7a that the memductance is equal to zero for |ϕ(t)| < 2.5 Wb,
and is equal to 800 nS elsewhere. It follows from Fig. 7c that the memductance G(t)

corresponding to the square wave voltage v(t) in Fig. 7b will be a square wave of
the same frequency, but delayed by 0.25 seconds. The memductance waveform pre-
dicted from the flux-controlled memristor constitutive relation is Fig. 7a is virtually
identical to the experimental results reported in [8]. Moreover, by massaging the
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Fig. 7 Voltage and flux waveforms associated with the same memristor from Fig. 6f, but enlarged
in (a). The memristor is driven by a ±10-volt square wave in (b), whose associated flux is the
triangular wave shown in (c). The conductance waveform is a positive 800 nS square wave of the
same frequency but shifted in time by 0.25 s. Observe that the conductance is zero over all times
when ϕ(t) in (c) falls below 2.5 Wb

q–ϕ curve into a smooth function, it is easy to obtain almost the same pinched hys-
teresis loop in the 1st quadrant as reported in [8]. There is one discrepancy, however,
between our memristor prediction, and the experimental pinched hysteresis loop in
[8]; namely, the pinched hysteresis loop predicted from the memristor in Fig. 7a
is odd-symmetric, whereas that reported in [8] is not. In the next section, we will
show how to unfold our ideal memristor model into a more general form that would
allow us to model non-symmetric pinched hysteresis loops as well. Finally, we re-
mark that, although not reported in [8], a private conversation with Prof. Lieber had
confirmed that their hysteresis loop will shrink in size as the frequency of the input
voltage signal increases, consistent with one of the fingerprints of a memristor.

7 Unfolding the Memristor

In order to develop a more precise quantitative model of non-volatile resistance
switching memory devices, such as the nano-wire device cited in the preceding sec-
tion, let us unfold the memristor’s state-dependent Ohm’s Law , and its associated
state equation, defined earlier in Eqs. (29a), (29b), by introducing additional non-
linear terms, and parameters, while preserving the key properties of the memristor.
Our approach is based on the mathematical theory of unfoldings of functions [9].
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The foremost characteristic property of the memristor which distinguishes it from
the other basic circuit elements defined axiomatically in [4] is its pinched hysteresis
loop. The adjective “pinched” is chosen to emphasize that the loci, i.e., the Lis-
sajous figure, of any bipolar current (resp., voltage) source waveform i(t) (resp.,
v(t)), including chaotic signals, that is applied across the memristor, and its associ-
ated voltage (resp., current) response v(t) (resp., i(t)), must pass through the origin
(v, i) = (0,0). This mathematical constraint can be generalized by introducing ad-
ditional state variables, and the current i, into the state-dependent Ohm’s Law and
its associated state equation, defined in Eqs. (29a), (29b) as follow:

State-dependent Ohm’s Law:

v =R(x, i)i (40a)

State Equation:

dx/dt = f(x, i) (40b)

where

R(x,0) �=∞ (41)

and

x = (x1, x2, . . . , xn) (42)

denotes a vector with n internal state variables (x1, x2, . . . , xn). We stress here that
the state variables are internal variables associated with the device material and its
physical operating mechanisms, and must not be influenced by any external variable,
such as a voltage or current applied to a third terminal, or a magnetic field generated
from an external source. Observe that Eq. (41) is needed to ensure that v = 0 when-
ever i = 0. Indeed, if R(x, i) tends to infinity when i = 0, then v = R(x,0)(0) �= 0
and the hysteresis loop would not be pinched at the origin.

We will illustrate the mathematical concept of unfolding with the following ex-
ample of memristor Eqs. (40a), (40b) where x is a scalar:

v =R(x)i (43a)

dx

dt
= a1x + a2x

2 + · · · + amxm + b1i + b2i
2 + · · · + bni

n +
p,r∑

j,k=1

cjkx
j ik (43b)

By assigning different numerical values to the parameters aj , bk , cjk , we can gen-
erate a very large family of distinct memristors, all of them originating from the
same ancestor, namely, the original memristor defining Eqs. (29a), (29b). Just like
the unfolding of flower petals, different parameter values gives rise to a memristor
with a different pinched hysteresis loop. We will henceforth call these parameters
the memristor unfolding parameters. Let us look at some special choices of these
unfolding parameters.
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Memristor Unfolding Example 1

aj = 0, j = 1,2, . . . ,m

b1 = 1, bk = 0, k = 2,3, . . . , n

cjk = 0, j = 1,2, . . . , p, k = 1,2, . . . , r

In this case, Eq. (43b) reduces to the original memristor equations (29a), (29b).

Memristor Unfolding Example 2 Let us choose the same unfolding parameters
as above except b1, where

b1 = μv

[
RON

D

]

In this case, Eq. (43b) reduces to Eq. (6) from [10] describing the famous HP
Titanium-Dioxide memristor reported in a seminal paper in the May 1 2008 issue of
Nature [10].

Memristor Unfolding Example 3 Let us choose

aj = 0, j = 1,2, . . . ,m

and

cjk = 0, j = 1,2, . . . , p, k = 1,2, . . . , r

In this case, the memristor unfolding assumes the following form:

State-dependent Ohm’s Law:

v =R(x)i (44a)

State Equation:

dx/dt =m(i) (44b)

By choosing different values for the unfolding parameters bk , the resulting nonlin-
ear scalar function m(i) in Eq. (44b) can be used to massage the corresponding
pinched hysteresis loop into almost any shape which best approximates the ex-
perimental data. In particular, the odd-symmetric pinched hysteresis loops shown
in Figs. 1c, 5c, and 6e can be deformed and morphed into other non-symmetrical
shapes, such as the one alluded to [8] in the previous section. We will henceforth
call the function m(i) in Eq. (44b) the “memristor morphing function” since it can
be chosen to approximate numerous non symmetrical pinched hysteresis loops mea-
sured experimentally from real resistance- switching devices, such as those exhib-
ited in Figs. 8a–8l, which were sampled from the literature on non-volatile resistance
switching devices.



Resistance Switching Memories Are Memristors 41

Fig. 8 A sample of 12 experimentally measured pinched hysteresis loops extracted from dozens
of similar loops published in the literature on a large variety of resistance switching devices, made
from different materials, processes and physical mechanisms

7.1 Non-volatile Memristors

A careful examination of the 12 memristor pinched hysteresis loops exhibited in
Figs. 8a to 8l shows that except for Figs. 8a, 8d, and 8h, most of the loops can be
reproduced approximately by the preceding simpler memristor Eqs. (44a), (44b).
A few of the pinched hysteresis loops, such as Figs. 8a, 8d, 8i and 8k contains
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Fig. 8 (Continued)

small oscillatory or noisy signal components superimposed upon them. Since the
cited authors did not provide details on how their pinched hysteresis loops were
measured, we can only conjecture that these small signal components were either
artifacts of their measurement systems, or they may represent genuine nonlinear
dynamical phenomena. In the latter case, it may be necessary to use the generic
memristor Eqs. (40a), (40b) to reproduce them. We wish to stress, however, that
even this seemingly complex case would represent only the tip of an iceberg of
vast nonlinear dynamical phenomena, such as chaos, which is not considered in
this tutorial. Indeed, to build a non-volatile resistance switching memory exhibiting
the fine details depicted in some of the pinched hysteresis loops shown in Fig. 8,
we only need to consider a subclass of the memristor morphing function f(x, i) in
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Eq. (40b), namely, the class satisfying the condition

f(x, i)= 0, whenever i = 0 (45a)

Under the constraint imposed by Eq. (45a), the memristor state equation is thereby
endowed with the following non-volatility property:

dx/dt = f(x, i)= 0, when i = 0 (45b)

In other words, (x, i) = (x,0) is an equilibrium point of the memristor state
Eq. (40b), for any value of x. Hence, we have a continuum of stable equilibrium
points, when i = 0, just as in the case of the ideal memristor of yore. This means that
when we switch off the power at t = 0, such that i(t)= 0, for t > 0, the state vector
x in Eq. (42) does not have to tend to zero, but is held unchanged at x(t)= x(0) for
all t > 0, where x(0) can be set by applying an appropriate input switching signal.
But since we can choose many state variables, along with their numerous unfold-
ing parameters, the device engineer has many degrees of freedom to massage his
memristor model and optimize a memristance function R(x, i), and a correspond-
ing memristor morphing function f(x, i), to develop a memristor model capable of
reproducing almost any fine details observed from their experiments.

7.2 Negative Resistance

Let us observe next that the pinched hysteresis loops shown in Figs. 8h and 8k con-
tain a non-monotonic current-controlled region with a “negative” slope (i.e., a neg-
ative small-signal resistance), implying that the device is locally-active [3], and is
capable of oscillation under dc bias. Such a pinched hysteresis loop could not be
realized by any ideal passive memristor [1], but can be realized by connecting a
locally-active current-controlled nonlinear resistor in series with a passive memris-
tor described by Eq. (44a), as shown in Fig. 9a. Note that the resulting one-port in
Fig. 9a is equivalent to a memristor described by the generic memristor Eqs. (40a),
(40b).

To prove this equivalence property, let the memristor be described by

v1 =R(x)i1 (46a)

Let the locally-active current-controlled nonlinear resistor be described by

v2 = h(i2) (46b)

Applying Kirchoff Current Law (KCL), we obtain

i = i1 = i2 (47)



44 L. Chua

Fig. 9 The
memristor-resistor series
connected circuit in (a) is
equivalent to another
memristor with a transformed
characteristic. In general,
a one-port (2-terminal black
box) made of arbitrary
interconnections of arbitrary
assortments of memristors
and resistors is also
equivalent to a memristor
characterized by a more
complex constitutive
relation [3]

Applying Kirchoff Voltage Law (KVL), we obtain

v = v1 + v2 (48)

Substituting Eqs. (46a), (46b), into Eq. (48), and making use of Eq. (47), we obtain
the following equation for the one-port:

v =R(x)i + h(i) (49)

Since Eq. (49) is a special case of Eq. (40a), the composite one-port in Fig. 9a is a
memristor. The above example is but a special case of the following general result:

7.2.1 Memristor-Resistor Interconnection Theorem

Any one-port made of an arbitrary interconnection of memristors and passive non-
linear resistors, is equivalent to a memristor described by either Eqs. (40a), (40b), or
by an implicit system of equations, whose behavior seen from outside the composite
one-port shown in Fig. 9b bears all of the fingerprints of a memristor [2].

7.3 Is Memristor Negative Resistance Real or Artifact?

A careful examination of Figs. 8a, 8d, 8h and 8k reveals that these pinched hys-
teresis loops contain a small region with a negative slope. Assuming these regions
are real measurements pertaining to the device, and not artifacts introduced via the
measuring instruments, and/or their inflexible softwares, can we conclude that these
devices are endowed with a small-signal (i.e., differential) resistance operating re-
gion, and hence is locally-active, and can be designed to amplify small signals, and/
or to function as an oscillator [3] via an external biasing circuit?
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The answer is no! Indeed, in many cases, the negative slope is merely a mani-
festation of a phase-lag between the maxima (or, peak) of the response voltage v(t)

(resp., current i(t)) and the peak of its excitation current waveform i(t) (resp., volt-
age waveform v(t)). This phenomenon is best seen in Figs. 1b, 1c, and 1d where the
voltage peak in Fig. 1d lags behind the input current peak in Fig. 1c. Observe that
there is a short time interval where the voltage v(t) in Fig. 1d increases while the
input current i(t) decreases. This phenomenon occurs after the pinched hysteresis
loop in Fig. 1b reaches its peak at i = 1, and is the sole mechanism which gives rise
to the negative slope. It has nothing to do with local activity [3]!

So how can we determine which of the pinched hysteresis loops in Fig. 8 with a
negative-slope region is a bona fide small-signal resistance? The generic answer is
we do not know unless we have already derived a realistic memristor circuit model,
such as Fig. 9, or a memristor state equation, such as Eq. (40b), where we can find a
point (V , I ) on the negative-slope region of the pinched hysteresis loop which can
be proved analytically to be an equilibrium point (otherwise known as a dc operating
point in electronic circuit jargon), namely,

dx/dt = f(x, I )= 0, V =R(x(I ), (I )I ) (50′)

for some state variable x = x(I ), which depends on I . This means that there exists
a dc operating point (V , I ) where, in the absence of noise, there is a state variable
x = x(I ) where the composite memristor-biasing circuit is in equilibrium. This sit-
uation is usually not observable experimentally because the memristor small-signal
resistance would usually make the circuit unstable, resulting in an oscillation. This
alone suffices to conclude that the memristor is locally active. However, for ped-
agogical reasons, we can design an appropriate external stabilizing biasing circuit
such that the composite circuit is locally asymptotically stable [3], whereupon the
dc operating point (V , I ) on the memristor pinched hysteresis loop can actually be
measured. Alternately, we can determine whether the memristor is locally active by
deriving first either a memristor circuit model, or a memristor state equation, and
then apply standard nonlinear circuit analysis methods to determine whether there
exists a locally-active equilibrium point [3].

Observe that for an ideal memristor we have x = q , and the equilibrium state
equation

dq/dt = I = 0 (50′′)

does not have a solution if I �= 0. It follows that an ideal memristor can have only
one dc operating point; namely, the origin (v, i) = (V , I ) = (0,0). If the small-
signal resistance at the origin is negative, this would imply that the pinched hystere-
sis loop has a branch which crosses the origin into the 2nd and the 4th quadrants of
the v–i plane, implying that the memristor is not passive. It follows therefore that an
ideal memristor cannot exhibit a small-signal negative resistance unless it is locally
active at the origin , which is possible only if the memristor has an internal source of
power, such as light, chemical or nuclear reactions, or batteries, as demonstrated in
Fig. 4(f), p. 511 of [1], where a locally-active memristor exhibiting a negative slope
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at the origin of the q vs. ϕ curve was built using transistors and op amps (see Fig. 2,
p. 509 of [1]), powered by batteries. We can conclude therefore that if the pinched
hysteresis loop of a physical device without internal power source exhibits a bona
fide small-signal negative resistance, then that device cannot be an ideal memristor,
and must therefore be an unfolded memristor sibling, characterized by Eqs. (40a),
(40b).

8 Switching and Sensing Resistance Memory

We have presented in the preceding section a very special subclass, albeit of great
interests to the theme of this special issue, of memristors whose members are en-
dowed with the priceless, and timeless, gift of non-volatile memories. This subclass
is defined by the memristor constitutive relation

v =R(x, i)i (51)

dx/dt = f(x, i) (52)

where the memristance function R(x, i) satisfies the memristor passivity condition

R(x, i)≥ 0 (53)

and where the memristor dynamical function f(x, i) satisfies the following condi-
tion:

Continuous Non-volatility Condition

f(x, i)= 0, if i = 0 (54)

The non-volatility condition (54) ensures that any state variable x is a stable, non-
isolated, equilibrium point of the memristor state equation (52) when i = 0, or
equivalently, when the power is switched off. In other words, Eq. (54) is the genesis
of the memristor’s memory non-volatility. Observe that since every x is an equilib-
rium state of Eq. (52) when i = 0, the subclass of memristors defined by Eq. (54)
has a continuum of equilibrium states, where every equilibrium state is stable, but
not asymptotically stable [3] in the sense that while small perturbations around each
equilibrium state may perturb its location slightly, it will never diverge beyond its
perturbed boundary [3]. Hence, in principle, every memristor satisfying Eq. (54) is
endowed with an infinite memory store. In the context of this special issue, we will
consider only the special case of binary memory where only two sufficiently distant
memory states are of interest because they will be used to store the “0” and “l” states
for digital electronics. In this case, the ideal memristor ϕ vs. q curve only needs to
have two approximately linear regions, where one region should have as small a
slope as possible, while the other region should have as large a slope as possible.
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The Continuous Non-Volatility Condition (Eq. (54)) guarantees a continuum of
tunable resistances, which is essential for synaptive learning applications. For non-
volatile binary memory applications, we can replace Eq. (54) by the following less
restrictive condition:

Discrete Non-volatility Condition

f
(
x′,0

)= 0 and f
(
x′′,0

)= 0 (54′)

where x′ and x′′ denote two locally-asymptotically-stable equilibrium points of the
memristor state equation (40b) with i = 0, i.e.,

dx/dt = f(x,0) (40b′)

As an example, consider the state equation:

dx/dt = x − x3 − i (40b′′)

Here, x = x′ = 1 and x = x′′ = −1 are two isolated locally-asymptotically-stable
equilibrium points of

dx(t)/dt = x − x3 (40b′′′)

obtained by setting i = 0 in Eq. (40b′′).
Let us now pause to consider some examples.12

Any device capable of non-volatile memory is useless unless it is relatively easy
and inexpensive to sense its memory state. One of the great virtues of the memristor
is that since its memristance function in Eq. (44a) is a state-dependent resistance
obeying Ohm’s law, one only needs to inject a small sensing voltage (resp, current),
and observe its response. Since in practice, the two resistance memory states ROFF
and RON are chosen so that their ratio is sufficiently large, one can easily deter-
mine the memory state by observing the magnitude of the current (resp., voltage)
response, to a small ac sensing voltage (resp., current) signal, or a small doublet-like
pulse signal with a zero average area. The reason for requiring the sensing signal to
have a zero dc average is to prevent the location of a non-isolated memory state
from slowly drifting away.

Memristor Switching Example 1: Bipolar Switching Let us revisit the two-state
charge-controlled memristor in Fig. 5. To switch from the low-resistance state R1
corresponding to the middle segment with a small slope to the high resistance state
R0 corresponding to the upper segment with the much steeper slope, we simply ap-
ply a sufficiently large current pulse so that its corresponding charge q(t) would
traverse beyond the charge breakpoint q = B . To switch back from a point on the

12The two memory states are chosen sufficiently far apart in practice to enhance robustness and
reliability.
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Fig. 10 A “staircase-like”
flux-controlled memristor can
switch from a high
conductance to a low
conductance state using
voltage pulses of the same
polarity, somewhat
reminiscent of the “unipolar”
switching characteristic
depicted in Fig. 1(a) of [7]

upper segment (high resistance state R0, simply apply a similar pulse of the oppo-
site polarity. This method of switching is usually referred to as bipolar resistance
switching. Our next example illustrates how switching can be achieved by applying
switching pulses of the same polarity, but of different amplitudes, often referred to
in practice as unipolar resistance switching.

Memristor Switching Example 2: Unipolar Switching Consider the flux-
controlled memristor depicted in Fig. 10 with a 5-segment piecewise-linear ϕ–q

curve (Fig. 10a). Here the 3 parallel red segments with a steep slope have a high
conductance state GON, whereas the 4 parallel green segments with a much smaller
slope have a much smaller conductance state GOFF. For the memristor constitutive
relation shown in Fig. 10a, we can switch from a high conductance state to a low-
conductance state with a relatively small-amplitude voltage pulse since it only needs
a small increment Δϕ in ϕ to cross the breakpoint B1 into the low conductance state.
In contrast, a much larger-amplitude voltage-pulse, but of the same polarity, and the
same pulse width, would be needed in order to reach the next breakpoint B2, and
beyond, in order to switch back to a high conductance state GON again. The same
switching sequence with the opposite polarity can also be executed to achieve the
same results, as illustrated in Fig. 10b. The corresponding switching loci plotted
in the v–i plane is shown in Fig. 10c. Here, to prevent the excessive current jump
from a small current to a very high current, thereby damaging the device, measur-
ing instruments are normally programmed to clamp the current at a maximum safe
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value, called the “compliance current level” in industry, as illustrated in Fig. 10c.
The above mode of using voltage pulses of the same polarity to switch between low
and high resistance states has been reported in some so-called “unipolar” devices in
industry [11].

9 Concluding Remarks

Any electronic device with only two electrical terminals is usually referred to in the
semiconductor industry as a non-volatile resistance-switching memory device if the
device can exhibit one of two resistance values over a sufficiently long time period,
without consuming any power, and can be switched from a low-resistance state to
a high-resistance state , and vice-versa, by applying either a short voltage pulse, or
a short current pulse, of appropriate amplitude and polarity, across the two device
terminals, and such that the resistance state at any time , either low or high, can
be sensed by applying a relatively much smaller sensing voltage pulse , or current
pulse, of some preset waveform, across the same terminals.

Implicit in the above definition is that at any time, the device can be modeled
as a linear resistor obeying Ohm’s Law, when the sensing signal amplitude is suf-
ficiently small, for otherwise, the word resistance would be meaningless. The lin-
earity property implies that the sensing voltage, or current, and its corresponding
voltage response, or current response, have identical waveforms, and have the same
zero-crossings in time. It follows that the loci in the v–i plane during sensing when
observed from an oscilloscope will appear as a short linear segment through the ori-
gin whose slope will be small if the resistance being sensed is low, or much larger, if
the resistance being sensed is high. In other words, the two resistance states can be
depicted as two short straight line segments of slopes R1 and R2, crossing each other
at the origin of the v–i plane. These two segments can be emulated exactly by an
ideal memristor having the memristance R(q) = R1 at the origin, and R(q) = R2
at another point , say q = q2 of a smooth ϕ vs. q curve in the ϕ vs. q plane. By
uncovering the physical operating mechanisms taking place internal to the device,
one could construct a model that not only exhibits these two memristances, but also
faithfully reproduces one or more pinched hysteresis loops, measured using differ-
ent large-amplitude periodic signals [12]. The resulting mathematical expressions
may be extremely complex, and may often be expressible only by implicit mathe-
matical equations. Nevertheless, they would define a memristor of the generic form
given by Eqs. (40a), (40b), by virtue of the characteristic property of the memristor.

The take-home lesson from this tutorial can be summarized succinctly as follow:

Any 2-terminal electronic device devoid of internal power source and which is
capable of switching between two resistances upon application of an appropriate
voltage or current signal, and whose resistance state at any instant of time can
be sensed by applying a relatively much smaller sensing signal, is a memristor,
defined either by the ideal memristor equation, or by one of its unfolded siblings
via Eqs. (40a), (40b).
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Fig. 11 An enlargement of
the first 25 axiomatically-
defined circuit elements from
the periodic table of circuit
elements (Fig. 31 of [3])
where the 4 basic circuit
elements (resistor, capacitor,
inductors and memristor) are
replaced by their symbols.
Observe that since these two
elements require a double
time-integrals of voltage and
current, their dynamics are of
a higher order than those of
the 4 basic circuit elements
enclosed inside the dotted red
box

Our final remark is concerned with the significance of the pinched hysteresis
loop in the modeling of non-volatile resistance switching memories. Let us recall
that while the memristance vs. state map tells us the complete set of small-signal
memristances endowed upon a memristive device, it is rather difficult to measure
them experimentally unless the memristor can be modeled by the ideal memristor
equation v =R(q)i, where dq/dt = i. To extract such information from the generic
memristor Eqs. (40a), (40b), we have to identify first the relevant state variable, or
state variables in cases demanding a higher-order memristor state space. In contrast,
the chord memristances associated with a pinched hysteresis loop can be readily
extracted since it is simply the set of all slopes of a straight line anchored at the
origin whose tips traces along the loci of a measured pinched hysteresis loop. Each
such chord resistance is a true resistance indistinguishable from a linear resistor
having the same resistance. The set of all such chord memristances associated with
a pinched hysteresis loop therefore provides a subset of the memristor’s endowed
small-signal memristances. Since measuring pinched hysteresis loops associated
with different periodic input voltage, or current, waveforms applied across a mem-
ristive device is a relatively simple task that could be automated,13 it is a useful tool
for uncovering a memristive device’s nonlinear physical operating mechanisms, and
for validating its memristive models. In the case of an ideal memristor, it is impor-
tant to bear in mind that the small-signal memristance, and its corresponding chord
memristance, represent exactly the same information. The main difference is that
while the chord memristance is a long vector pinned at the origin of the v–i plane,
its corresponding small-signal memristance is an infinitesimal tangent attached at
each point on an ideal memristor’s constitutive relation in the ϕ vs. q plane. It is
also useful to note that unlike classical electronic circuit analysis, the small-signal
memristor voltage associated with an applied small-signal memristor current rep-
resents the actual total solution, and is not superimposed upon some dc bias. We

13Measurement instrument companies could exploit the high market potentials of automated
pinched-hysteresis-loop measuring instrumentations, and their memristance extractions.
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end this tutorial with the following terse characterization of a resistance-switching
memory device:14

“If it’s pinched, it’s a memristor.”
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The Detectors Used in the First Radios Were
Memristors

Gaurav Gandhi, Varun Aggarwal, and Leon O. Chua

Abstract The recent discovery of memristor has sparked renewed interest in the
scientific community about state dependent resistances. In the current paper, we
show that the detector used in the first radios, called cat’s whisker, had memristive
properties. We have identified the state variable governing the resistance state of
the device and can program it to switch between multiple stable resistance states.
Our observations are valid for a larger class of devices called coherers, including
cat’s whisker. We further argue that these constitute the missing canonical physical
implementations for a memristor.

1 Introduction

There are two general types of components used in electronics: passive (e.g. resis-
tors, capacitors and inductor) and active (e.g. transistors and integrated circuits).
Passive components are incapable of power gain i.e. they cannot amplify signals
while active circuit components can amplify signals. The three most commonly
used passive components are resistor, capacitor and inductor. A simple wire acts
as resistor, two parallel plates separated by a dielectric work as a capacitor and a
coiled metallic wire functions as an inductor. No such implementation is there for a
memristor.
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Table 1 Passive components

Component Canonical implementation Behavior

Resistor Simple wire Dissipates energy

Capacitor Parallel plates Store energy in electric field

Inductor Coiled wire Store energy in magnetic field

Memristor ? State dependent resistor

Memristors are a new addition to this family. It was proposed by Leon Chua in
1971 [6] that there must be a fourth passive circuit element and it was discovered by
HP Labs in 2008 [22].

A passive memristor is defined as any two-terminal electronic device that is de-
void of an internal power-source and is capable of switching between two resistance
states upon application of an appropriate voltage or current signal that can be sensed
by applying a relatively much smaller sensing signal [8, 9, 11].1 When one plots a
curve of voltage versus current applied to the memristor, it shows pinched hystere-
sis loop [1]. Thus a pinched hysteresis loop in the voltage vs. current characteristics
of the device serves as the fingerprint for memristor [1]. Despite the simplicity of
symmetry argument that predicts the existence of memristor [6, 9], a simple macro
memristor device, such as resistance wires, capacitor plates and inductor coils, does
not exist [20] (refer Table 1). Current memristor implementations use specialized
materials such as transition metal oxides, chalcogenides, perovskites, oxides with
valence defects, or a combination of an inert and an electrochemically active elec-
trode.

We look at devices invented in the quest to build a radio wave detector more than
100 years back, which ultimately culminated in the vacuum tube. Coherer, invented
by Edouard Branly [12, 13, 19] in the 19th century, in many of its embodiments such
as ball bearings, metallic filings (also referred to as granular media) in a tube or a
point-contact, exhibits an initial high-resistance state and coheres to a low-resistance
state on the arrival of radio waves. The device attains its original resistance state
on being tapped mechanically. These were used as detector for wireless wave. The
first electrically reset-able coherer, comprising a metal-mercury interface and named
as an auto-coherer, [2–5] did not require tapping and resets automatically in the
absence of radio waves.

Coherers and autocoherers worked unreliably for the purpose of radio wave de-
tection, which actually required a diode for rectification. Cat’s whisker was the first
metal-semiconductor point contact device patented by J.C. Bose and was actively
used in early radio research [5, 14]. A cat’s whisker detector, also called a crystal de-
tector, is an antique electronic component consisting of a thin metal wire that lightly

1In this paper, we are referring to memristor as defined in [9, 20], which includes the ideal mem-
ristor as defined in Chua’s 1971 paper [6] as a subclass. Throughout the paper, the reference is to
memristor and not ideal memristor [1, 9].
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Fig. 1 Complete set of
canonical discrete
implementations of the four
fundamental circuit elements

touches a crystal of semiconducting mineral (usually Galena) to make a crude point-
contact rectifier (ref. Fig. 2). The symbol of diode is derived from this point-contact
setup. The current flows from metal whisker to crystal but not the other way round
making it function like a diode and hence a detector for wireless waves. Only certain
sites (also referred as ‘hot’ spots) on the crystal function as a rectifying junction and
are very sensitive to exact geometry and the pressure applied.

In the present work we have established that the crystal detector in the cat’s
whisker setup shows memristive properties. Our observations and results are valid
for a larger class of devices (coherers) that also include the cat’s whisker. These
devices form a pinched hysteresis loop in their voltage-current plane, the fingerprint
of a memristor, on the application of specific set of bipolar periodic inputs. The
device can also be programmed in various resistance states, erased and read making
it a suitable memristive device to study. Note that for convenience of exposition,
this paper uses terms like “state”, “state variable”, and “average resistance” in an
intuitive sense and they may not adhere to their definition as in literature in the
strictest sense.

The discovery of memristive phenomenon in a device as simple and pervasive as
cat’s whisker provides students with a simple, inexpensive and easy to use memristor
for research, experimentation and building applications. The lack of availability of
such a simple discrete memristor has been an impediment in the research being
pursued by many in the field of memristor.

The existence of the memristive phenomena in the larger class of devices, co-
herers, whose signature is an imperfect metal-metal contact show the ubiquity of
the memristive phenomena. It shows that memristor phenomena is not limited to
specific materials assembled at small geometries, but is present in a large class of
metals put together as a point contact [15, 16, 18]. We believe that this constitutes
the canonical “macro” implementation for a memristor (ref. Fig. 1).

This paper is organized as follows: The next section discusses about the cat’s
whisker setup used for studying the memristive properties of the device and the
terminology used to explain the observations. It is followed by a section, which
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Fig. 2 Philmore Cat’s
Whisker in contact with a
Galena Crystal

describes in detail the electrical properties of the cat’s whisker setup and its behavior
under different electrical stimulations. Based on the observed behavior, we postulate
an electrical model and identify the state-variable controlling the resistance change.
The paper concludes with a discussion on the observations and results.

2 Cat’s Whisker Detector Setup

We used a setup comprising of a Galena crystal in contact with a Phosphorous
bronze wire, also famously known as Philmore’s 7003 cat’s whisker setup, which
was actively used in the past.2 It consists of fixed whisker (phosphorous bronze) to
control the pressure and contact area between the Galena crystal and the wire, which
is a critical parameter to be setup for the device to work as a diode or memristor (re-
fer Fig. 2).

For our experiments, we provided the Cat’s whisker setup with different rising
triangular-shaped current mode inputs (ref. Fig. 3) and recorded the voltage across
the setup. We built a programmable system where we could digitally input the am-
plitude and time period properties for the input waveform, generate the input, apply
it to our setup and automatically record the output voltage waveform.

This was achieved through the setup described in Fig. 4. The waveform specifica-
tions were fed into a micro-controller based system, which created a digital voltage
waveform having the prescribed properties. This was passed to a digital-to-analog
converter (DAC) to generate an analog voltage signal followed by a level shifter
(such that negative voltage values can be generated). This voltage mode signal was

2Philmore 7003 cat’s whisker is easily available from various antique radio or radio hobbyists
shops and can also be ordered online through sites like eBay. On the other hand, it is easy to build
it oneself using one of the semiconducting crystals and a metallic wire.
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Fig. 3 Current input used to
unravel various memristive
behaviors. (a) Triangular
pulse with rising amplitude
used to unravel the multi-state
resistive behavior of cat’s
whisker. (b) Bipolar input
provided to demonstrate the
memristive behavior

converted to a current mode signal using an AD844 current conveyor chip. The
AD844 chip was connected in the configuration shown in Fig. 4. Finally, the current
mode signal from the chip was fed to the phosphorous bronze metal of the Cat’s
whisker setup with the other terminal being grounded. The voltage across the Cat’s
whisker setup was captured and stored back in the micro controller.

The setup was activated by different current-mode input signals and its tran-
sient behavior was recorded. Here, we report the results for two representative input
waveforms. In the first, the current was varied from 1 mA upto 2.5 mA as rising
triangular bursts as shown in Fig. 3(a). In the second, repeated bursts of fixed am-
plitude triangular waveforms (amplitude of 3.5 mA) in the positive and negative
direction were given. This is as shown in Fig. 3(b). For all our inputs, the time
period of one triangular waveform is 200 ms to ensure a slowly varying signal.

We found that the devices exhibit three distinct behaviors: cohering action, multi-
stable memristive behavior, and bistable resistive random access memory (RAM)
type behavior apart from the usual rectifying behavior.

These results are for Galena crystal in contact with a phosphorous bronze wire.
Similar qualitative results were observed for a wide class of crystals like carborun-
dum, iron pyrite, etc. and metals including iron filing, aluminum, Ni, etc. [15]. The
memristive properties are also observed if the semiconducting metal is replaced by
a metal, say iron. Such a metal-metal setup comprised the coherer.

3 Terminology

The behavior of our device is non-linear in the V–I plane. In such case, the term
resistance is only loosely defined since the value of resistance changes at each point
on the V–I curve. To dispel any ambiguity, we define the following terms to explain
our results. We define Non-linear DC resistance, R(I), as the resistance at a given
DC current input calculated as the ratio of the DC voltage and DC current at that
point, assuming the steady-state voltage response is DC. As shown in Fig. 5(a), this
is the slope of the line which joins the given point to origin [7].
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Fig. 4 Setup used to generate the input current waveforms described in Fig. 3

Fig. 5 Non-linear DC Resistance R(I). For a non-volatile memristor, the DC V–I curve must be
a multi-valued function of I which nevertheless must pass through the origin. Here, we assume a
hypothetical case where the DC V–I curve is double-valued and can be modeled by 2 curves, as
depicted in (b)

Whenever we refer to an increase or decrease in Non-linear DC resistance, we
imply its change as a function of the DC input current values. This is depicted in
Fig. 5(b). Curve 2 has a lower Non-linear DC resistance than curve 1, since the
Non-linear DC resistance is either equal or less at all points in the given current
range.

In the “dual case” one can also define Non-linear DC conductance, G(V ), as
the conductance at a given voltage input calculated as the ratio of the DC current
and DC voltage at that point. Whenever we refer to an increase or decrease in Non-
linear conductance, we imply its change across present values. This is depicted in
Fig. 6(b). Curve 2 has a lower non-linear DC conductance than curve 1. In this paper
we will be focusing on the Non-linear DC resistance, R(I), terminology since our
input signal is current.
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Fig. 6 Non-linear DC Conductance G(V )

We define average resistance as the mean of the Non-linear DC resistance over a
range of input currents. The idea of average resistance is similar to what is loosely
stated in literature as the resistance of a non-linear system. For instance, when it is
stated that the resistance of diode is lower for positive input and higher for negative
input, it actually refers to average resistance. To be strictly correct, we would use
the new average resistance definition to explain our results. Whenever we provide
the quantitative value of average resistance, we shall state the range of currents it
was averaged upon.

4 Experimental Results

The device can be programmed into two possible states: firstly, touching the wire
on the “hot” spot3 on the crystal leads to rectification and the other, where the de-
vice is touched at places other than hotspots. The following observations are more
dominant when the device is set at non-hotspots. The memristor behavior becomes
feeble (but not non-existent) at hotspots where rectification takes place. This could
be one reason why the memristive properties of cat’s whiskers were not discovered
to date.

4.1 Cohering Action

For any input current leading to a voltage below a specific threshold voltage, Vth,
the devices exhibit a high non-linear DC resistance.

3Hotspots are found by the following process. The device is either connected to an oscilloscope
or a radio receiver circuit. Then the point of contact between the crystal and wire is changed till
a diode-like characteristics is observed. The point(s) on the crystal where rectification is observed
are hotspots. Finding hotspots is generally a time consuming task for non-experts [14].
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Fig. 7 Device input current
and output voltage. (a) Input
Current vs. Time and
(b) Voltage across memristor
vs. Time. It is observed that
the maximum voltage across
the device does not cross a
threshold voltage, Vth. Here
A1, A2, A3 and P1, P2 and P3
denotes the time interval cited
in the text. It is color coded to
demonstrate the Multistable
Memristive behavior of the
device

At a current higher than Ith, corresponding to a voltage Vth, the average resis-
tance of the device falls (refer P1 transition in Fig. 8). In our experiment, Ith had a
value of 0.3 mA, whereas Vth was around 3.2 V.4 Once the device takes this new
state, it maintains the said non-linear DC resistance (Curve A1) on excitation by
current values below Ith as well.

4.2 Multistable Memristive Behavior

Once in cohered state, the device exhibits a state-dependent non-linear DC re-
sistance, the state variable being the maximum current (Imax), i.e. Rt(I ) =
f ([Imax]0−t ). Here f ([Imax]0−t ) is defined as the maximum current that the de-
vice has experienced in the time period 0 to t.

As the device is exposed to pulses of subsequently larger peak current (refer
Figs. 7 and 8) which shows the behavior for different time intervals, P1 to P3 and A1
to A3),5 it sets itself to new lower non-linear DC resistance values. The resistance
curve remains non-linear, nonetheless. The maximum voltage across the device re-
mains practically constant at Vth. This behavior is akin to that of a diode, but unlike
a diode the device remembers its changed resistance when taken to lower voltage

4These values may change according to the metal, the contact, pressure, etc.
5Note that the non-linear DC resistance changes appreciably only when the maximum current
through the device has changed. This can be seen through color correspondence, where each color
shows a new stable non-linear DC resistance-state and the transitions are marked by the first pulse
of higher amplitude: P1, P2 and P3 being the time interval where these pulses are applied. In case
the maximum current passed through the device does not change, the non-linear DC resistance
feebly oscillates around the same value, as seen in the time-interval of A1, A2 and A3. Furthermore,
we have observed that the non-linear DC resistance remains fixed even when the amplitude of the
pulse is decreased, since the maximum current has not changed.
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Fig. 8 Device behavior as a
state-dependent resistance:
Current-Voltage Plot. It is
observed that the maximum
voltage across the device does
not cross a threshold voltage,
Vth

Table 2 Average resistance
and nonlinear DC resistance
for various regions in
Multistable Memristive
behavior of Cat’s whisker

Region Average
resistance R

Nonlinear DC
resistance (I = 0.5 mA)

A1 9.2 K 6 K

A2 7.3 K 4.6 K

A3 6.3 K 4.2 K

levels. For input current pulses of same or lower amplitude than the maximum cur-
rent experienced, the device shows hysteresis loops around the already-achieved
resistance value, with small oscillations.

The average resistance values and the non-linear DC resistance (at I = 0.5 mA)
for curves A1, A2 and A3 are presented in Table 2. The average resistance values
have been averaged over a current range of I = 0.1 mA to 0.5 mA. One clearly
observes here that both these values decrease with changing Imax . We stress that
our terminology of “average resistance” is not a new concept or phenomenon. It is
introduced for the convenience of discussion.

4.3 Bistable Resistive RAM /Memristive Mode

When activated by any bipolar current input (i.e. current takes both positive and
negative values in each cycle), the device gets programmed into one state in the
positive cycle, and a different state in the negative cycle (refer Fig. 9).6 It keeps os-
cillating between these two stable states, forming the famous eight-shaped pinched

6Whereas triangle current pulse is symmetrical with respect to center axis shown in Fig. 9, voltage
response during that time interval is not symmetrical. This causes hysteresis loop. We refer to
different stable V–I characteristics as different states of the device.
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Fig. 9 Bistable memristive
behavior (a) Input current vs.
time, (b) Voltage across
device versus time

Fig. 10 Bistable memristive
behavior Input current vs
Voltage across device. One
clearly observes pinched
hysteresis loop for cat’s
whisker

hysteresis loop in its V–I characteristics (refer Fig. 10).7 Figure 11(a)–(d) shows
the complete cyclic behavior of pinched hysteresis loop. It has been established that
“If it is pinched, it is memristor”. Pinched hysteresis loop is the fingerprint of a
memristor [8, 10].

The average resistance values and the non-linear DC resistance (at current mag-
nitude of 0.5 mA) for curves A1. . . A6 are presented in Table 3. These values have
been averaged over a current magnitude range of I = 0.1 mA to 3.5 mA.

Our observations further imply that the average resistance of the device is a func-
tion of the magnitude of Imax for either directions of current, but with a quantita-
tively different state-map. This can be mathematically stated as:

7It is evident by looking at regions depicted by A0 to A6 that the change in resistance happens
at the first pulse of the transition. One may also note that these observations show recovery of
resistance to a higher non-linear DC resistance: A4 resistance is higher than A5 resistance.



The Detectors Used in the First Radios Were Memristors 63

Fig. 11 Bistable memristive behavior Pinched Hysteresis Loop. (a) The plot between voltage and
current when during A0–A2 time interval. (b) The plot between voltage and current when during
A0–A3 time interval. Here A0, A1 and A2 in (a) and (b) are identical. It can be easily seen that
pinched hysteresis loop is being formed. (c) Pinched hysteresis loop during A0–A4 time interval.
(d) Pinched hysteresis loop during A0–A5 time interval. Note that (c) and (d) are identical since
A5 and A1 are identical. These results clearly establish the memristive behavior of Cat’s whisker

Table 3 Average resistance
and nonlinear DC resistance
for various regions in Bistable
Memristive behavior of Cat’s
whisker

Region Average
resistance R

Nonlinear DC resistance
(|I | = 0.5 mA)

A0 3.2 K 6 K

A1 3.6 K 4.6 K

A2 1.7 K 2.6 K

A3 3.0 K 5.2 K

A4 3.4 K 6.0 K

A5 2.8 K 4.6 K

A6 1.6 K 2.3 K

Let

Rp1 = f
(
magnitude

([Imax+]0−t

))= I1, (1)

Rn1 = f
(
magnitude

([Imax−]0−t

))= I1, ⇒ (2)

Rp1 �=Rn1 (3)

where Rp1 is the average resistance of the device when activated by a maximum
current of I1 in positive direction, and Rn1 is the average resistance when activated
by a maximum current of I1 in the negative direction. f (magnitude([Imax+]0−t ))
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implies the maximum current the device has experienced between time= 0 and
time= t .

A detailed circuit theoretic model for the non-linear DC resistance for the said
memristor can also be achieved using the scheme presented recently by Chua [9].
Such a model is beyond the scope of the present discussion and will be treated in a
separate publication.

5 Discussion

We show that devices as simple as metal-metal or metal-semiconductor point-
contact, as in the famously known setup of coherer or cat’s whisker, shows mem-
ristive properties. The famous pinched hysteresis curve between the voltage-current
characteristics, which is the fingerprint of a memristor, is visible in the current set
of experiments. We have demonstrated that by using various stimuli with different
maximum amplitudes on either side, the device can be programmed to function in
multiple stable resistance-states. When used as a resistive memory, the memory can
be read in the memory state by providing an excitation of small amplitude (refer
Sect. 4.1). This fulfills the conditions of Chua’s definition of memristor [8], and
qualifies the century-old cat’s whisker (more generally coherer) as a canonical im-
plementation of a memristor. Cat’s whisker intrigued the science of that era as much
as memristor is exciting the scientists of the present day [21].

There are certain differences between the behavior of our memristor and other
present day memristors. Unlike Williams et al. memristor [22], they do not be-
have as a charge-flux based memristor. Irrespective of the increase or decrease of
flux, their resistance does not change till the maximum current or current polarity
changes. Of various memristors currently being studied, our devices, especially co-
herers, have similarities in behavior [16, 18] and construction [17]. However, none
of these recent memristors have reported dependence on Imax .

Also, the point worth noting is that the observations are more dominant when the
device is configured in the non-rectification mode. The memristor behavior becomes
feeble (but not always non-existent) at hotspots where rectification takes place. As
the main application of cat’s whisker has been to rectify the signal and it shows
feeble memristive behavior at that junction, this could be one reason why the mem-
ristive properties of Cat’s whiskers were not discovered to date. Even though the
memristor has only a feeble effect in optimal radio operation, one must note that the
composite “cat whisker-crystal” 2-terminal device is a memristor because its inter-
nal physical mechanism, though not well-understood, is certainly “state-dependent”,
and hence is memristive [8].

By demonstrating the memristive properties of cat’s whisker the present work not
only fills an important gap in the study of switching devices, but also brings them
into the realm of immediate practical use and implementation. Understanding the
physical mechanism of the memristive behavior in this new class of device serves
as an interesting case study for scientists.
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Fig. 12 Calculating Average
Resistance and Non-linear
DC Resistance. We stress
here that we introduce the
names “average resistance”
and “states” merely to
improve the clarity of our
exposition. They are not new
technical names or concepts

Acknowledgements This paper is supported in part by AFOSR grant no. FA9550-10-1-0290
and mLabs.

Appendix

5.1 Detailed Method to Find Average Resistance

Refer to Fig. 12 (a reproduction of Fig. 10). Here we will describe how to calculate
the average resistance for the given curve during the time interval A1 for current
range I1 (0.1 mA) to In (3.5 mA).

For input current I1, at point P1, the voltage is V1. Here, the non-linear DC
resistance is r1 (V1/I1), the inverse of the slope of the line segment joining P1 to
origin. Similarly, at current In, the non-linear DC resistance is rn. For any current
between I1 and In, the non-linear DC resistance is similarly defined, as shown in
the figure.

To calculate the average resistance, the non-linear DC resistance is measured at
regular time interval starting from point P1 to Pn. The average of these values is the
average resistance. Mathematically this is equivalent to:

Ravg =
i=n∑

i=1

Ri/n, where Ri = Vi(t = ti )/Ii(t = ti ),

here ti = tp1 + time interval ∗ (i − 1).
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Memristor, Hodgkin-Huxley, and Edge of Chaos

Leon Chua

Abstract From a pedagogical point of view, the memristor is defined in this tuto-
rial as any 2-terminal device obeying a state-dependent Ohm’s law. This tutorial also
shows that from an experimental point of view, the memristor can be defined as any
2-terminal device that exhibits the fingerprints of “pinched” hysteresis loops in the
v–i plane. It also shows that memristors endowed with a continuum of equilibrium
states can be used as non-volatile analog memories. This tutorial shows that mem-
ristors span a much broader vista of complex phenomena and potential applications
in many fields, including neurobiology. In particular, this tutorial presents toy mem-
ristors that can mimic the classic habituation and LTP learning phenomena. It also
shows that sodium and potassium ion-channel memristors are the key to generating
the action potential in the Hodgkin-Huxley equations, and that they are the key to
resolving several unresolved anomalies associated with the Hodgkin-Huxley equa-
tions. This tutorial ends with an amazing new result derived from the new principle
of local activity, which uncovers a minuscule life-enabling Goldilocks zone, dubbed
the edge of chaos, where complex phenomena, including creativity and intelligence,
may emerge. From an information processing perspective, this tutorial shows that
synapses are locally-passive memristors, and that neurons are made of locally-active
memristors.

1 Introduction

Memristor is a 2-terminal electrical circuit element that has attracted immense
worldwide interests from both industry and academia ever since an operational de-
vice was reported in 2008 [1] by a team of scientists from the hp Information and
Quantum Systems Lab, headed by Stanley Williams. An acronym for memory resis-
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tor, the memristor was postulated in 1971 [2] but has received little attention even
though a working device made from op amps and discrete nonlinear resistors had
been built and demonstrated in [2], because it is bulky and requires a power supply.
In contrast, the hp memristor is a scalable passive nano device that can be used as a
non-volatile memory that could someday replace flash memories and DRAMs.

From a circuit-theoretic perspective, the memristor can be derived from an ax-
iomatic approach and considered logically as the fourth basic circuit element [3–6].

In addition to serving as nonvolatile memories, memristors are in fact the right
components for building brain-like machines. Our goal in this tutorial is to explain
and illustrate, via memristor toy examples, how synapses are memristors, and why
the classic Hodgkin-Huxley axon circuit model is made of memristors.

2 Definition, Symbol, and Fingerprints

2.1 Memristor Is Defined by a State-Dependent Ohm’s Law

For pedagogical reasons, any 2-terminal black box (Fig. 1a) with 2 electrical termi-
nals is called a memristor if it obeys the following state-dependent Ohm’s law

Current-Controlled state-dependent Ohm’s Law:

v =R(x)i (1a)

State Equations:

dx
dt

= f(x, i) (1b)

if the current i is the input, or

Voltage-Controlled state-dependent Ohm’s Law:

i =G(x)v (2a)

State Equations:

dx
dt

= g(x, v) (2b)

if the voltage v is the input.
The scalars R(x) in (1a) and G(x) in (2a) are called the memristance (acronym

for memory resistance) and the memductance (acronym for memory conductance),
respectively. The unit of the memristance R(x) is the Ohm (Ω). The unit of the
memductance G(x) is the Siemens (S).

The state vector x = (x1, x2, . . . , xn) has n≥ 1 components x1, x2, . . . , xn, called
state variables. They represent internal physical parameters, such as temperature,
pressure, impurity concentration, chemical moiety, etc., and may not depend on any
external variables, such as the voltage or current associated with another device.
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Fig. 1 (a) A 2-terminal
device with external voltage v
and external current i defined
with the associated reference
voltage polarity and current
direction (b) symbol of
memristor

To avoid pathological situations, we assume R(x) and G(x) are piecewise-
continuous functions of x [7, 8], and that f(x, i) and g(x, v) are Lipschitz functions
[7, 8].

2.1.1 Example 1: Discharge Tube [9]

Consider the following equations of a current-controlled memristor describing a
discharge tube in [9, 10]:

State-dependent Ohm’s law:

v =
(

F

n

)
i (3a)

State Equation:

dn

dt
=−βn+ α

(
F

n

)
i2 (3b)

where α, β and F are device constants depending on the dimensions of the tube and
gas fillings, and n is the internal state variable. Here we can identify the memris-
tance

R(n)= F

n
(3c)

Figure 2a shows the steady-state (periodic) voltage solution v(t) of (3b) calcu-
lated in [11] with the input current i(t)= I sin(ωt), where I = 1 mA, along with the
state variable n(t) and the time-varying memristance R(t). The loci plotted in the v

versus i plane in Fig. 2b consists of a double-valued hysteresis loop which passes
through the origin, henceforth called a pinched hysteresis loop. The memristance R

versus i loci is also a doubled-valued hysteresis loop (Fig. 2b).

2.1.2 Example 2: Thermistor [12]

Consider the following equations of a voltage-controlled memristor describing a
thermistor in [10, 12]:
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Fig. 2 (a) Waveforms of
input current i(t)= I sin(ωt),
voltage v(t), state variable
n(t), and memristance R(t)

of the discharge tube and
(b) pinched hysteresis loop
plotted in the v versus i plane
and the corresponding
double-valued R versus i

memristance hysteresis loop.
The parameters used for
simulations are α = 0.1,
F = 1, B = 0.1,
ω = 0.063 rad/s and
I = 1 mA
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State-dependent Ohm’s law:

i = (R0e
β( 1

T
− 1

T0
))−1

v (4a)

State Equation:

dT

dt
= δ

C
(T0 − T )+ G

C
v2 (4b)

where T is the state variable (absolute temperature), R0 is the resistance at the am-
bient temperature T0, C is the heat capacitance, δ is the dissipation constant, and β

is a material specific constant. Here we can identify the memductance

G(T )= (R0e
β( 1

T
− 1

T0
))−1 (4c)

Figure 3a shows the steady-state (periodic) current solution i(t) of (4b) calcu-
lated in [11] with the input voltage v(t)=E sin(ωt), where E = 1 V, along with the
state variable T (t) and the time-varying memductance G(t). The loci plotted in the
i versus v plane in Fig. 3b consists of a double-valued pinched hysteresis loop. The
memductance G versus v loci is also a double-valued hysteresis loop (Fig. 3b).

2.2 If It’s Pinched It’s a Memristor

The preceding examples are illustration of the following generic memristor charac-
teristics:

2.2.1 Memristor Fingerprints [11]

The v–i loci of a memristor driven by any periodic current source, or voltage source,
which spans both positive and negative values over each period, is always a pinched
hysteresis loop passing through the origin. The area bounding each sub-loop de-
forms as the frequency, or the amplitude, of the input waveform changes. In par-
ticular, at DC (ω → 0) the v–i loci shrinks to a DC V–I characteristic, which may
be multi-valued, but always includes the origin (v, i)= (0,0). Likewise, as the fre-
quency ω increases the lobe area shrinks to a linear function.1

It is important to understand that the above characterization of the memristor is
not a model because its associated pinched hysteresis loops are not unique but vary
with the input waveforms, as well as the amplitude and frequency. The significance
of the above characterization is that it identifies any device that exhibits a pinched
hysteresis loop over any bipolar periodic testing input signals as a memristor! Indeed

1For a generalized memristor defined by v = R(x, i)i, or i = G(x, v)v, the v–i loci tends to a
single-valued nonlinear function as ω →∞ [13].
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Fig. 3 (a) Waveforms of
input voltage
v(t)=E sin(ωt), current i(t),
state variable (temperature)
T (t), and memductance G(t)

of a thermistor (b) pinched
hysteresis loop plotted in the
i versus v plane and the
corresponding double-valued
G versus v memductance
hysteretic loop. The
parameters used for
simulations are R0 = 100,
T0 = 300, C = 0.1, δ = 0.1,
β = 5× 105 and
ω = 0.377 rad/s

many such pinched hysteresis loops had been published in numerous journals during
the past decades and have been misidentified as something else. We now know they
are memristors [14].
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2.3 Ideal Memristor

Consider the ideal case where f(x, i)= i and g(x, v)= v in the state equations (1b)
and (2b), respectively; namely,

dx

dt
= i (1b′)

dx

dt
= v (2b′)

Integrating both sides of (1b′) and (2b′), respectively, we obtain

x(t)=
∫ t

−∞
i(τ )dτ � q(t) (5a)

x(t)=
∫ t

−∞
v(τ)dτ � ϕ(t) (5b)

Substituting (5a) and (5b) for x in (1a) and (2a), respectively and integrating both
sides, we obtain

ϕ(t) �
∫ t

−∞
v(τ)dτ =

∫ t

−∞
R
(
q(τ)

)dq(τ)

dτ
dτ

=
∫ q(t)

q(−∞)

R(q)dq � ϕ̂
(
q(t)

)
(6a)

q(t) �
∫ t

−∞
i(τ )dτ =

∫ t

−∞
G
(
ϕ(τ)

)dϕ(τ)

dτ
dτ

=
∫ ϕ(t)

ϕ(−∞)

G(ϕ)dϕ � q̂
(
ϕ(t)

)
(6b)

Equations (6a) and (6b) show that in the degenerate special scalar case defined
by (1b′) and (2b′), the two equations (1a) and (1b) (resp., (2a) and (2b)) defining
a current-controlled (resp., voltage-controlled) memristor are equivalent to a single
equation:

ϕ = ϕ̂(q) (7a)

q = q̂(ϕ) (7b)

Equations (7a), (7b) are precisely the 4th constitutive relationship shown in Fig. 4
defining, via an axiomatic approach, the fourth circuit element dubbed the memris-
tor.

We have adopted the symbols “q” and “ϕ” in (5a), (5b) and dubbed them
“charge” and “flux”, respectively, in keeping with tradition. In fact, they are mere
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Fig. 4 The ideal memristor
is defined by a constitutive
relation between the flux
ϕ(t) �

∫ t

−∞ v(τ)dτ and the

charge q(t) �
∫ t

−∞ i(τ )dτ

symbols and names defined axiomatically that need not have any physical signifi-
cance.

Since real-world physical devices obeying the ideal constitutive relation (7a) or
(7b) are rather rare, we believe that most memristive devices [10] will be modeled
by either (1a) and (1b), or (2a) and (2b). For economy and efficiency of terminol-
ogy, we will henceforth refer to all such devices as memristors,2 and call the 4th
circuit element defined in Fig. 4 as an ideal memristor on the rare occasions where
a distinction is needed.

3 When Is a Memristor Non-volatile?

Most memristors are volatile in the sense that after the power is turn-off, the de-
vice reverts to a fixed memristance (resp., memductance) state. However, an ideal
memristor is non-volatile and remembers its most recent memristance (resp., mem-
ductance) state when the power is shut off. To understand this non-volatile memory
mechanism, consider a typical ideal memristor characterized by the q = q̂(ϕ) curve
shown in Fig. 5. Let us assume, without loss of generality, that ϕ(t0) � ϕ0 = 0 at
t = t0 so that the memristor is operating at q = 0 at time t = t0when a Δ-second
voltage pulse vs(t) is applied across the memristor. The current i(t) entering the
memristor corresponding to the square voltage pulse shown in the upper left corner

2We will use the term generalized memristor to refer to the most general case defined in [10],
where the memristance (resp., memductance) R(x, i, t) (resp., G(x, v, t)) may depend also on the
input current i (resp., voltage v) and the time t .
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Fig. 5 The operating point P remains invariant after power is off [15], i.e. vs(t)= 0 and i = 0

of Fig. 5 is given by

i(t)= dq(t)

dt
= dq̂(ϕ)

dϕ︸ ︷︷ ︸
G(ϕ)

dϕ(t)

dt︸ ︷︷ ︸
v

=G
(
ϕ(t)

)
v(t) (8)

It follows that

i(t) =G(0) · 0 = 0, t ≤ t0

=G(0) ·E, t = t+0
=G(ϕ(t)) ·E, t+0 ≤ t ≤ t0 +Δ

=G(ϕP ) · 0 = 0, t ≥ t0 +Δ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9)

where ϕ(t) is the saturated ramp waveform shown in the lower left of Fig. 5, and
G(ϕ(t)) is the slope of the q versus ϕ curve at ϕ = ϕ(t). Hence i(t) = 0 when-
ever v(t)= 0, and no information is retained before and after the application of the
voltage pulse, assuming that we are coding the binary state “0” and “1” by the mag-
nitude of the voltage v (“low voltage” or “high voltage”, respectively). However, if
we code the low memductance G(0) at the origin in Fig. 5 as binary state “0” and
the high memductance G(ϕP ) at P , where ϕ =EΔ � ϕP , as binary state “1”, then
the memristor has remembered its memductance for all times t ≥ t0 +Δ even long
after the voltage pulse had elapsed.

Moreover, observe that the ideal memristor in Fig. 5 is not only a non-volatile
discrete binary memory, it can function even as an analog memory because the value
of the memductance at any point along the q versus ϕ curve is distinct from all other
points. In other words, an ideal memristor with a strictly monotonically-increasing
q versus ϕ constitutive relation can store any memductance value represented by
the continuously tunable slope along the q versus ϕ curve. We will see in Sect. 4
that this non-volatile continuum of memductances is precisely the property required
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for learning by tuning the “weight” of a synapse. But what characteristics must a
non-ideal memristor possess in order to exhibit the “non-volatile memory” property
endowed in all ideal memristors? The answer is given by the following theorem
[14, 15].

Theorem 1 (Non-volatile memory criteria) A memristor described by (1a), (1b)
(resp., (2a), (2b)) has a continuum of non-volatile memory states if, and only if,

f(x, i)= 0 whenever i = 0 for all x ∈R
n (10a)

resp.,

g(x, v)= 0 whenever v = 0 for all x ∈R
n (10b)

Proof It follows from

dx
dt

= f(x,0)= 0
(

resp.,
dx
dt

= g(x,0)= 0
)

for all x ∈R
n,

that any state x ∈R
n is an equilibrium state of any memristor satisfying (10a) (resp.,

(10b)) when the power is turn-off, i.e. when i = 0 (resp., v = 0).
As a trivial application observe that for an ideal memristor, we have, by defini-

tion,

dx
dt

= f(x, i)= i = 0 whenever i = 0 for all q ∈R
1 (11a)

resp.,

dx
dt

= g(x, v)= v = 0 whenever v = 0 for all ϕ ∈R
1 (11b)

Hence the non-volatile memory criteria (10a) and (10b) are satisfied trivially, im-
plying all ideal memristors are non-volatile memories. �

4 Synapses Are Memristors

4.1 Learning with Memristors: Habituation

Eric Kandel was awarded the Nobel Prize in medicine and physiology in 2000 for
uncovering the molecular basis of memory. In the Nobel lecture Kandel delivered at
the Karolinska Institute on December 8, he flashed on the screen the picture of a sea
snail, dubbed Aplysia Californica, with a Nobel Prize medal draped around its neck
(Fig. 6), in recognition of the crucial role the Aplysia’s synapses had in providing
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Fig. 6 Aplysia with a Nobel
Prize medal

Kandel with the key to understanding the simplest form of learning; namely, habit-
uation [16]. All of us use habituation everyday to help us learn not to attend or re-
spond to irrelevant stimuli. The Aplysia is an invertebrate endowed with a retractable
gill and tube-like extension, called the siphon, which are delicate organs that can be
easily damaged. Consequently, when there are signs of danger, the Aplysia would
retract its gill and siphon inside a protective mantle shelf. This is called the gill-
withdrawal reflex, which displays habituation after repeated presentation of a stim-
ulus, such as a periodic squirt of a stream of water jet, or a periodic gentle touch of
a soft calligraphy brush, which was what Kandel used in his classic experiments on
the Aplysia. In such experiments, sensory information (action potential) from the
siphon travels along a nerve until it enters a region of the Aplysia nervous system
called the abdominal ganglion [17]. Here the information is distributed to motor
neurons, some of which in turn generate pulse-like electrical voltage signals and
travel via nerves to the muscles that produce gill withdrawal, whose withdrawing
rate depends on the strength of the motor signals. One of the motor neurons that
receives direct monosynaptic sensory input from the siphon is identified in the neu-
rophysiology literature as L7, and this cell innervates the muscles that produce gill
withdrawal.

In a series of such carefully designed experiments, Kandel had observed that re-
peated stimulations of the siphons skin leads to progressively less contraction of
the gill-withdrawal muscles, which resulted from a corresponding weakening sig-
nals, as depicted in the top row of Fig. 7a for stimulus number 1, 2, 5, 10, and 15.
The corresponding “action potentials” which emerges from the sensory neuron on
the siphon skin is shown in the bottom. Observe that the amplitude of the action
potentials remains undiminished. How then does the motor neurons innervating the
gill-withdrawal muscle learn the diminishing degree of danger and respond accord-
ingly with a corresponding series of motor signals of diminishing strength? In other
words, how does the relevant synapse learn to reduce its synaptic weight which
mirrors the diminishing motor signal strength shown in Fig. 7a?
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Fig. 7 (a) A sample of 5
identical action potentials
nos. 1, 2, 5, 10, and 15
(bottom) recorded by Kandel,
along with the corresponding
motor response signals of
diminishing strength recorded
at the motor neuron
(identified by L7G) (top)
(b) An ideal memristor with
its convex piecewise-linear q

vs. ϕ curve consisting of 15
equally-spaced linear
segments of uniformly
decreasing slopes. In
particular the slope is equal to
G= 2 at segment 1 and
G= 1

8 at segment 15 (c) The
waveform of the excitation
voltage source v(t) consists
of a square wave of 10-Volt
amplitude and 5-second
duration. The corresponding
memristor current response
i(t) shown in the top row
consists of a pulse train of
diminishing pulse amplitudes

We now present in Fig. 7b a “toy” memristor circuit consisting of an ideal
memristor endowed with a monotonically-increasing piecewise-linear q versus ϕ

constitution relation q = q̂(ϕ) with diminishing slopes. Since i = G(ϕk)v at seg-
ment k, where G(ϕk) is the memductance evaluated at ϕ = ϕk at segment k, it
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follows that3 ϕ(t) = ∫ t

0 v(τ)dτ for t ≥ 0 is a monotonically-increasing step-wise
staircase signal, resulting in a corresponding monotonically-decreasing memduc-
tance

G(tk)= dq̂(ϕ)

dϕ

∣∣∣∣
ϕ=ϕ(tk)

(12)

Since the amplitude of the voltage pulse in the bottom of Fig. 7c is fixed at
10 Volts, the corresponding memristor current pulses must mirror the decreasing
memductance G(tk)=slope of the q − ϕ curve at segment K as depicted in the top
row of Fig. 7c. For the readers convenience, we have highlighted the memristor
current response i(t) at t = 0, 10s, 40s, 90s, and 140s, respectively, (labelled as
pulse no. 1, 2, 5, 10 and 15) with the same color as the 5 sampled motor signals
depicted in the top row of Fig. 7a. Note the striking qualitative resemblance between
the motor signal response in Fig. 7a and the memristor current response in Fig. 7c.
It follows that the ideal memristor defined in Fig. 7b is capable of the simplest form
of learning; namely habituation [16, 17].

4.2 Learning with Memristors: LTP

In 1973, just two years after the memristor was postulated [2], Timothy Bliss and
Terje Lomo had discovered that a brief high-frequency electrical stimulation of an
excitatory pathway to the hippocampus produced a long-lasting enhancement in the
strength of the stimulated synapses [17–19]. This phenomenon is now known as
long-term potentiation, or LTP. This memory phenomenon has attracted a lot of
interest because it appears that plasticity at many synapses in the cerebral cortex
may be governed by the same Hebbian-like “learning rules” and might use the same
mechanism. We will show the LTP phenomenon can be emulated by the same “toy”
memristor circuit in Fig. 7b, albeit with a “concave” q versus ϕ memristor constitu-
tive relation. It follows that the LTP phenomenon can be considered as a “biological
memristor”.

The LTP phenomenon discovered by Bliss and Lomo can be summarized in the
simplified experimental set-up shown in Fig. 8 where a square voltage pulse x1(t)

is applied to the Schaffer collateral synapse on the CA1 pyramidal neurons in brain
slice preparations,4 labelled simply by the yellow Hippocampus box in Fig. 8. The
response is measured by the EPSP signal at the postsynaptic CA1 neuron [19]. This
initial part of the experiment is depicted in Fig. 8 with the red switch contact con-
necting the voltage source x1(t) at switch position 1© directly to the input of the
Hippocampus neuron. The output y(t) of the Hippocampus neuron in this case is

3Here we assume “zero” initial state, i.e. ϕ(0)= 0. Hence ϕ(t)= ∫ t

−∞ v(τ)dτ = ∫ t

0 v(τ)dτ .
4The original Bliss-Lomo experiment was carried out at the perforant path synapses on the dentate
gyrus.
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Fig. 8 Simplified schematic diagram depicting the classic Bliss-Lomo experimental set-up leading
to the LTP phenomenon

represented by the “weak” red square pulse with amplitude B. The crux of the Bliss-
Lomo experiment is to “prime” the Hippocampus neuron with a brief burst of high-
frequency stimulation (typically 50–100 stimuli at a rate of about 100 Hz) called
tetanus in biophysical parlance. This priming process is executed in the schematic
diagram of Fig. 8 by first moving the switching contact to position 2©, thereby con-
necting the blue tetanus voltage pulse train to the input of the Hippocampus neuron.
Shortly after this priming procedure is implemented, Bliss and Lomo then applied
the same red input square pulse in Fig. 8 to the input of the Hippocampus neuron
by flipping the red switch contact to position 1©, whereupon they were stunned to
observe a much stronger response at the output of the Hippocampus neuron, as de-
picted by the much stronger output voltage pulse with an amplitude C � B . In other
words, the tetanus has caused a modification of the stimulated synapse so it has be-
come more effective. In modern language, the LTP phenomenon can be interpreted
as a form of Hebbian learning where a neuron can tune its weight after repeated
excitations and store its optimized value for long-term memory.

We will now demonstrate the LTP phenomenon can be emulated by the mem-
ristor circuit shown in Fig. 9a with the q vs. ϕ constitutive relation defined by the
2-segment piecewise-linear curve shown in Fig. 9b. For pedagogical reasons, we
have chosen the numbers indicated in the figure to simplify calculation. In this ide-
alized example, the memristor is equivalent to a 2 Ohm resistor (corresponding to
a 0.5 Siemens memductance) so long as ϕ(t) ≤ 10 Webers. It drops to a 1 Ohm
resistor when ϕ(t) > 10 Webers. Applying the 5-Volt square voltage pulse (Fig. 9c)
across the memristor in Fig. 9a results in the relatively “weak” 2.5-Ampere current
response shown in Fig. 9d, assuming ϕ(0) = 0. If, however, we apply first the red
5-Volt pulse train shown in Fig. 9e across the memristor, with the same initial state
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Fig. 9 A toy memristor circuit which can mimic the LTP phenomenon described in Fig. 8

ϕ(0) = 0, we would obtain the monotonically-increasing blue staircase waveform
ϕ(t) shown in Fig. 9f. Note that ϕ(t) > 10 Webers for t > 3.8 seconds. In other
words, after applying a tetanus pulse train with more than 10 pulses, the memristor
in Fig. 9a changes its resistance from 2 Ohms to 1 Ohm, thereby doubling the cur-
rent amplitude to 5 Amperes, as shown in Fig. 9g, when the same red 5-Volt square
voltage pulse in Fig. 9c is applied.

Finally observe that if we double the amplitude of the tetanus pulse train in
Fig. 9e, while decreasing the pulse width from 0.2 seconds to 0.1 seconds, we would
obtain exactly the same current response shown in Fig. 9g. It is quite remarkable that
the “pulse amplitude” and “pulse width” tradeoff behavior predicted from our toy
memristor circuit in Fig. 9a was also found to occur in laboratory LTP experiments
[19]!

5 Hodgkin-Huxley Axon Is Made of Memristors

5.1 Anomalies of the Hodgkin-Huxley Axon Circuit Model

The Hodgkin-Huxley electrical circuit model (Fig. 10a) of the squid giant axon
membrane and its associated Hodgkin-Huxley equations (Fig. 10b) has stood the
test of time and has served as a classic reference [20] in neurophysiology and brain
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Fig. 10 (a) The original
Hodgkin-Huxley circuit
model, reproduced from [20],
(b) Hodgkin-Huxley
equations

science research for over 70 years.5 The squid was chosen by Hodgkin-Huxley be-
cause they are endowed with enormous axons, the largest of them in a large Atlantic
squid (Loligo pealii) being as much as one millimeter in diameter (Fig. 11a). The
Hodgkin-Huxley equations were derived strictly by empirical methods, and there-
fore did not have a sound circuit-theoretic foundation. In spite of its great success
in emulating the action potential, there are three anomalies that had remained unre-
solved until recently [21, 22].

5.1.1 Anomaly 1

The first anomaly is concerned with the two circuit elements labeled RK and RNa

in Fig. 10a which Hodgkin and Huxley had identified as time-varying potassium
and sodium conductances, respectively. The anomaly arises from the fact that the
time variations of GK = 1

RK
and GNa = 1

RNa
can not be specified a priori, but

5Hodgkin and Huxley were awarded the 1961 Nobel Prize in Physiology for this seminal contri-
bution.
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Fig. 11 Hodgkin-Huxley Axon. (a) Memristive Hodgkin-Huxley Circuit model of the giant axon
(center) of North Atlantic squid Loligo (right) (b) potassium ion-channel memristor and its
pinched hysteresis loops (c) sodium ion-channel memristor and its pinched hysteresis loops

rather must be calculated numerically from empirically-derived nonlinear differ-
ential equations, thereby violating the fundamental circuit-theoretic concept of a
time-varying circuit element [23, 24], where all time-varying parameters must be
prescribed as an explicit function of time. We have resolved this anomaly in [21, 22]
by showing the two elements RK and RNa in Fig. 10a are in fact memristors as
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Fig. 12 A quotation from
page 78 of [25]

shown in Fig. 11a. In particular Hodgkin-Huxley’s time-varying potassium conduc-
tance GK is a voltage-controlled memristor associated with one state variable “n”,
dubbed the potassium gate-activation variable whose associated state equation is
given in Fig. 11b. Similarly, Hodgkin-Huxley’s time-varying sodium conductance
GNa is a voltage-controlled memristor associated with two state variables “m” and
“h” dubbed the sodium gate-activation and inactivation variable, respectively, whose
associated state equations are given in Fig. 11c. To confirm that both GK and GNa

in the memristive Hodgkin-Huxley model in Fig. 11a are memristors, we show two
pinch hysteresis loops corresponding to two frequencies f1 = 100 Hz for GK and
500 Hz for GNa and f2 = 1.5 KHz for both GK and GNa, when the input voltage is
a sine wave with amplitude A= 50 mV.

Moreover, we show these hysteresis loops degenerate into a straight line whose
slope depends on f for f ≥ 10 KHz [11].6 All of these pinched hysteresis loops
therefore pass the fingerprint test for memristors, as prescribed in Sect. 2.

5.1.2 Anomaly 2

Both Hodgkin and Cole [25], and many other well-known physiologists, have mea-
sured the small-signal impedance Z(iω) and admittance Y(iω) of the squid giant
axon membrane, at various DC bias (operating points) and found that over certain
range of frequencies, and DC bias, the axon impedance exhibits a gigantic induc-
tance exceeding several Henries. Since such inductors would call for winding a very
long copper wire around iron cores weighing several Kilos, and would create a huge
magnetic field, it is an inexplicable mystery! To understand the conundrum and be-
wilderment created by this anomaly, we reproduce a sentence in Fig. 12 from page
78 of the classic book [25] by Kenneth Cole, one of the most distinguished physiol-
ogists during the Hodgkin-Huxley era.

5.1.3 Anomaly 3

Both Hodgkin and Cole [25] had also measured the large-signal static V–I charac-
teristic curve of the squid giant axon, and found that it resembles the DC V–I curve

6We caution the readers that these pinched hysteresis loops are different from those shown in Fig. 4
of [4], which were calculated with EK = 0, and ENa = 0, respectively, in the state equations given
in Figs. 11b and 11c. We take this opportunity to alert the readers of [21] that the pinched hysteresis
loops in Figs. 11, 12, 17 and 18 are calculated with EK = 0 and ENa = 0.
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Fig. 13 A cartoon
dramatizing the futile search
for non-existing diodes,
inductors, and their
associated magnetic fields in
the brain during the
Hodgkin-Huxley era

of vacuum tube diodes (i.e. rectifiers). But how can neurons behave like vacuum
tube diodes? Many physiologists were endlessly perplexed by both anomaly 2 and
anomaly 3, searching in vain for the missing inductors and diodes depicted in the
cartoon in Fig. 13, which was drawn to dramatize the plights during the Hodgkin-
Huxley era. In Sects. 5.2.2 and 5.2.3, we will resolve both anomaly 2 and anomaly
3 by analyzing the memristive Hodgkin-Huxley model in Fig. 11a, obtained by sub-
stituting Hodgkin-Huxley’s misidentified time-varying potassium and sodium con-
ductances with a time-invariant potassium memristor, and a time-invariant sodium
memristor, respectively. Hodgkin-Huxley’s blunder was caused by their erroneous
classification of RK and RNa in Fig. 10a as time-varying circuit elements, when in
fact they are time-invariant, because no device parameters in Figs. 11b and 11c vary
with time.

5.2 Deriving the DC V –I Characteristic of the Hodgkin-Huxley
Axon

The set of all steady state (i.e., di
dt
= 0 and dv

dt
= 0) DC current solutions I (resp.,

DC voltage solutions V ) corresponding to all admissible7 DC voltage sources (resp.,

7For certain ideal 2-terminal circuit elements [23, 24], only a DC voltage source (resp., current
source) restricted to a limited range of terminal voltages (resp., currents) is admissible. For ex-
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Fig. 14 (a) DC VNa–INa Curve of sodium Ion- Channel Memristor (b) VK–IK Curve of potas-
sium Ion- Channel Memristor (c) sodium ion-channel memristor small-signal equivalent circuit at
equilibrium point vNa(Q) (d) potassium ion-channel memristor small-signal equivalent circuit at
equilibrium point vK(Q)

DC current sources) applied across a 2-terminal device is called the device’s DC
V –I characteristic.

5.2.1 Example: DC VK–IK Curve of Potassium Memristor

To derive the DC VK–IK characteristic of the potassium memristor, we assign all
admissible values of vK ∈R

1 to the function f (n, vK) defined in Fig. 11b and solve
numerically for the solution n = n̂(VK) of f (n,VK) = 0, and then substituting it
into iK =GK(n)vK to obtain the DC VK–IK curve IK =GK(n̂(VK))VK shown in
Fig. 14b. Note the part of the curve with a negative slope is printed in red.

ample, for an ideal diode [23, 24], only a non-positive voltage source (resp., non-negative current
source) is allowed (by the definition v = 0, i ≥ 0, and i = 0, v ≤ 0 of an ideal diode) to be con-
nected across the ideal diode, in order to avoid the pathological situation where the circuit does not
have a solution!
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5.2.2 Example: DC VNa–INa Curve of Sodium Memristor

To derive the DC VNa–INa characteristic of the sodium memristor, we assign all ad-
missible values of vNa ∈R

1 to the two functions fm(m,vNa)and fh(h, vNa) defined
in Fig. 11c, and solve numerically for the solutions m = m̂(VNa) of fm(m,VNa) =
0, and h = ĥ(VNa) of fh(h,VNa) = 0, and then substituting them into iNa =
GNa(m,h)vNa to obtain the DC VNa–INa curve INa = GNa(m̂(VNa), ĥ(VNa))VNa

shown in Fig. 14a. Note the part of the curve with a negative slope is printed in
red.

5.2.3 DC V –I Curve of Hodgkin-Huxley Axon

To derive the DC V –I curve of the Hodgkin-Huxley axon, we delete the mem-
brane capacitor CM in Fig. 11a and add the three currents INa, IK , and ILas a
function of V = VNa–ENa, V = VK +EK , and V = VL +EL, respectively, where
ENa = 115 mV, EK = 12 mV, and EL =−10.613 mV are given in [20]. By align-
ing the V = 0 vertical axis, we can use the graphical construction method depicted
in Fig. 15 to obtain the DC V –I curve shown in the bottom of Fig. 15. This DC
V –I curve resembles the V –I curve of a vacuum tube diode (rectifier), as reported
by Cole and others [25].8 Hence we have resolved Anomaly 3 by deriving the DC
V –I curve explicitly, which use the DC VK–IK curve of the potassium memris-
tor in Fig. 14b, and the DC VNa–INa curve of the sodium memristor in Fig. 14a
respectively.

5.3 Deriving the Small-Signal Admittance of the Hodgkin-Huxley
Axon

Applying standard linear circuit theory, we can derive a small-signal equivalent
circuit about each DC operating point Q of the potassium memristor, and the sodium
memristor, as shown in Figs. 14d, and 14c, respectively [21]. The parameter value of
each circuit element in Fig. 14 is given by an explicit formula in [21], as a function
of the DC potassium memristor voltage VK and sodium memristor voltage VNa,
respectively, at the operating point Q. The small-signal equivalent circuit of the
Hodgkin-Huxley axon at any DC voltage V = VQ is simply obtained by replacing
the potassium memristor GK and battery EK in Fig. 16a by the potassium memristor
small-signal equivalent circuit in Fig. 14d, and by replacing the sodium memristor
GNa and battery ENa in Fig. 16a by the sodium memristor small-signal equivalent

8Our reference voltage polarity for V and current direction for I follow Hodgkin-Huxley’s 1952
paper [20], which are opposite to the prevailing reference convention. The corresponding DC V –I

curve in conventional reference polarity and direction is obtained by rotating the V –I curve in
Fig. 15 by 180◦ degrees.
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Fig. 15 Graphical procedure
[23] for deriving the DC
Vm−= Im curve. Each point
in the lower graph is obtained
by adding the three
component currents located
on each dotted projection
line. For details, see [22]

circuit in Fig. 14c, as shown in Fig. 16b, where we have combined the three parallel
resistors GL, G2(K)= 1

R2(K)
, and G3(Na)= 1

R3(Na)
into an equivalent resistor with

conductance GT =GL +G2(K)+G3(Na) [21].
The admittance9 evaluated at the DC current Iext at the DC operating (equilib-

rium) point Q of the small-signal equivalent circuit in Fig. 16b is given by

Y(s; Iext ) �
L{δi(t)}
L{δv(t)} (13)

Y(s; Iext )= b4s
4 + b3s

3 + b2s
2 + b1s + b0

a3s3 + a2s2 + a1s + a0
(14)

where s = σ + iω is the complex frequency.
The parameters {a0, a1, a2, a3;b0, b1, b2, b3, b4} are calculated from explicit for-

mulas derived in [21]. Observe that the DC independent variable Iext in (13) and
(14) is a DC current source I = Iext , where the subscript “ext” is our code for “ex-

9In view of the parallel network topology of Fig. 16b, it is more convenient to analyze the admit-

tance Y (s) � 1
Z(s)

instead of the impedance Z(s). The independent small-signal variable in this
case is δv(t).
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Fig. 16 (a) Memristive Hodgkin-Huxley model (b) small-signal Hodgkin-Huxley model about a
DC equilibrium point Q at (V , I )= (VQ, Iext )

ternal”. In other words, I = Iext denotes an externally applied DC current source.
By substituting s = iω in (14), we can calculate the admittance

Y(iω; Iext )= ReY(iω; Iext )+ i ImY(iω; Iext ) (15)

due to a sinusoidal input signal at any angular frequency ω = 2πf . We can calculate
the value of an equivalent inductance L(ω) by the formula

L(ω)= −1

ω[ImY(iω; Iext )] (16)

that would give the same imaginary value ImY(iω; Iext ) at any DC equilibrium
point (VQ, Iext ), as shown in Fig. 17, with (VQ, Iext )= (0,0). Note the inductance
L(ω) > 0 because ImY(iω; Iext ) < 0 over the frequency range 0 ≤ f ≤ 50 Hz. Ob-
serve that the equivalent inductance predicted by the Hodgkin-Huxley axon model
exceeds 21.329 Henries, which is consistent with the experimentally measured val-
ues reported by Hodgkin, Cole and others. We have therefore resolved Anomaly
2 by showing the potassium and sodium memristors are the source of such huge
inductances! No gigantic iron-core inductors are needed at all.

6 Neurons Are Poised Near the Edge of Chaos

6.1 Eigenvalues of Hodgkin-Huxley Axon Are Zeros of Y(s)

The Hodgkin-Huxley Equations have so far been studied via numerical integrations.
No analytical results have been derived to date. Our analysis via the scalar admit-
tance function Y(s) as a function of the complex variable “s” is the first rigor-
ous analysis of the Hodgkin-Huxley equations without involving any approxima-
tions. To understand the complex bifurcation phenomena exhibited by the Hodgkin-
Huxley equations, we must calculate the 4 eigenvalues of the Jacobian matrix as-
sociated with the Hodgkin-Huxley equations (Fig. 10) at each external DC current
I = Iext .
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Fig. 17 Small-signal
inductance predicted from the
Hodgkin-Huxley axon model
at rest (Vm = 0 mV, Iext = 0)

The Jacobian matrix of the Hodgkin-Huxley equations is a 4 × 4 matrix involv-
ing many nonlinearities. Calculating the 4 eigenvalues of the Jacobian matrix is a
formidable task which has discouraged researchers from undertaking a concerted
effort to analyze the global nonlinear dynamics and rich bifurcation phenomena
of the Hodgkin-Huxley equations. The small-signal equivalent circuit of the potas-
sium memristor and the sodium memristor has enabled us to derive the admit-
tance Y(s; Iext ) of the Hodgkin-Huxley small-signal memristive circuit model in
Fig. 16(b). Our next theorem is a major breakthrough because it allows us to under-
take a rigorous global nonlinear analysis of the Hodgkin-Huxley equations via the
eigenvalues associated with its small-signal equivalent circuit.

Theorem 2 (Fast eigenvalue calculation algorithm [22]) The eigenvalues of the
Hodgkin-Huxley Jacobian matrix are identical to the zeros of the admittance, i.e.
the solution of the scalar polynomial equation.

b4s
4 + b3s

3 + b2s
2 + b1s + b0 = 0 (17)

6.2 Action Potential Originates Near the Edge of Chaos

The action potential generated from the Hodgkin-Huxley equations is obtained by
numerical simulations. Although some explanations via the influx and outflow of
sodium and potassium ions through the axon membrane provides an intuitively plau-
sible mechanism for the emergence of an action potential when certain threshold
membrane voltage is exceeded, no one really knows how the action potential is gen-
erated from a rigorous nonlinear dynamics perspective, until now. In a recent paper
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Fig. 18 The 2-dimensional
surface ReY (iω;Vm) plotted
as a function of ω and the DC
axon membrane voltage
Vm(Iext ). The area enclosed
inside the white contour
represents the region in the
(ω− Vm) plane, where
ReY (iω;Vm) < 0

[22],10 it was shown that the action potential emerges near the edge of chaos, which
represents a very tiny subset of the local activity parameter regime of the Hodgkin-
Huxley axon [22]. The theory of local activity and its “pearl”, the edge of chaos
[26–28], is a deep mathematical theory for explaining rigorously the emergence of
complex phenomena [29, 30], including the mechanism responsible for the emer-
gence of the action potential. In the context of this tutorial, we summarize the main
mathematical criteria for edge of chaos as follow.

Theorem 3 (Hodgkin-Huxley edge of chaos criteria) The Hodgkin-Huxley neuron
under synaptic input Iext is on the edge of chaos if, and only if,

1. All zeros zk(Iext ) of Y(s; Iext ) are in the open left half-plane, i.e. Re zk(Iexit ) <

0, k = 1,2,3,4
2. ReY(iω; Iext ) < 0 for at least one frequency ω = ω0.

Note that, luckily, the above two mathematical conditions requiring the deriva-
tion of the admittance Y(iω; Iext ) and its zeros have already been achieved in (14)
and Theorem 2. In particular the region bounded inside the white closed contour
in Fig. 18 is precisely the local activity domain of the Hodgkin-Huxley equations.
Since complex phenomena, such as the emergence of an action potential, can only

10We take this opportunity to alert the readers of [22] of consistently repeated errata in Figs. 14–26,
and Fig. 35, where the unit of ω should be rad/ms, and not kHz. This error also occurs in the text
on pp. 26–30.
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Fig. 19 The red area along
with the white tips constitute
the locally-active domain of
the Hodgkin-Huxley
equations. The white tips
(drawn in enhanced scale) is
the edge of chaos regime. The
blue seas covers the
locally-passive regions

occur inside the locally-active-regime of the Hodgkin-Huxley axon, we end this
tutorial with a “zoom” diagram in Fig. 19 which shows the locally-active regime
in red, and the much smaller white tips at the end of the 2 mirror-symmetric is-
lands where the edge of chaos regime is located. The blue seas represent the locally-
passive regime of the Hodgkin-Huxley equations where, except for a very small area
adjacent to the “white” edge of chaos domain, no complex phenomena can emerge.
A careful analysis of the range of external DC current Iext , or its equivalent DC
axon membrane voltage Vm, which satisfies condition 2 of Theorem 3 shows that
the edge of chaos regime of the Hodgkin-Huxley axon is a tiny subset of the local
activity domain; namely,

Edge of Chaos Regime

−5.34305 mV ≤ V ≤−4.577443 mV

−9.77003 µA ≤ Iext ≤−7.8293 µA
(18)

Observe that |ΔV | < 1 mV and |ΔIext | < 2 µA represent a very tiny tunable
parameter range (less than 1 mV and 2 µA). Extensive computer simulations had
confirmed that action potential emerges either on, or nearby the above edge of chaos
regime. It is truly remarkable that life exists within such a tiny parameter domain,
spanned by less than 1 millivolt and 2 microamperes! It is even more gratifying
that our edge of chaos theory [27, 28] is precise enough to identify this minuscule
life-enabling Goldilocks zone.

7 How Did I Connect Memristor to Hodgkin-Huxley?

After searching in vain for two years for an electrical device that would mimic the
behavior of the memristor [2], I started looking for non-electrical devices when
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I came across an inspiring memoir from biology, entitled Membranes, Ions, and
Impulses by Kenneth Cole [25], who had been shocked by the huge inductances
which he, Hodgkin, and others, had measured from biological membranes, and had
been searching in vain for several years for an analogous non-biological device. In
his candid memoir, Cole had cited the thermistor as an electrical device that seems
to exhibit a similar anomalous impedance.

Since I was very familiar with the thermistor, and had read some years back a lit-
tle gem by Francis [9] who had suggested that discharge tubes behave qualitatively
like thermistors, it suddenly dawned upon me that these two devices, as well as the
memristor, had one common property; namely, they all obey Ohm’s law, except that
their resistance depends on a state variable; namely, charge in the case of the mem-
ristor, temperature in the case of the thermistor, and ionization state in the case of
the discharge tube. It became obvious that they are all generalized memristors!

Almost immediately afterward, I found myself chewing up Francis’ book [9]
and was flabbergasted to discover that the v–i loci of all types of discharge tubes
presented in this little gem had all passed through the origin. They are all pinched
hysteresis loops!

It took me only 2 months in 1973 to develop my theory of the generalized mem-
ristor as presented in Parts I and II of [10]. But in order to illustrate my theory of
the generalized memristor, I needed to exhibit an explicit set of memristor equations
which could reproduce any family of pinched hysteresis loops in the v–i plane. This
task took Dr. S.M. Kang two years to work out for his Ph.D. thesis, and a condensed
version of which finally saw its light of day as Part III of [10].
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Why Are Memristor and Memistor Different
Devices?

Shyam Prasad Adhikari and Hyongsuk Kim

Abstract This paper clarifies why the “memristor” is fundamentally different from
a 3-terminal device with a similarly-sounding name called the “memistor”. It is
shown that the memristor is a basic 2-terminal circuit element based on classic non-
linear circuit theory but the memistor is an ad hoc 3-terminal devise for one specific
application. The memistor is difficult to predict its behavior when it is connected
with other circuit elements.

1 Introduction

In the early 1970’s, Leon Chua of UC Berkeley presented a logical and scientific
basis for the existence of a new two-terminal device called the memristor (a contrac-
tion of memory resistor) characterized by a relationship between the charge and the
flux linkage [1]. The memristor exhibited some peculiar behavior different from that
exhibited by resistors, inductors or capacitors, and it was introduced as the fourth
basic circuit element. Though a physical memristor device was not discovered then,
many unique applications beyond the realm of RLC circuits alone were envisioned.
It was only recently when Stanley Williams group from Hewlett Packard (HP) built
a nano-scale TiO2 device [2], and provided a physical explanation and proved ana-
lytically that the HP device is in fact a memristor, and that many other devices have
since been identified also as memristors [3] thereby opening up possibilities for
unique applications such as artificial synapses and ultra-dense non-volatile memo-
ries.

On the other hand, Widrow and Hoff had developed a three-terminal device
called the memistor for use in artificial neural networks [4]. Although both Widrow’s
memistor and Chua’s memristor can emulate synapses, these two devices are funda-
mentally different as will be explained later in this paper. In particular, a memistor

S.P. Adhikari · H. Kim (B)
Division of Electronics Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756,
Republic of Korea
e-mail: hskim@jbnu.ac.kr

S.P. Adhikari
e-mail: all.shyam@gmail.com

A. Adamatzky, L. Chua (eds.), Memristor Networks,
DOI 10.1007/978-3-319-02630-5_6,
© Springer International Publishing Switzerland 2014

95

mailto:hskim@jbnu.ac.kr
mailto:all.shyam@gmail.com
http://dx.doi.org/10.1007/978-3-319-02630-5_6


96 S.P. Adhikari and H. Kim

has 3 electrical terminals, whereas a memristor has only 2. Moreover, [5] has shown
that a memistor can be built using only 2 memristors implying that the memistor is
an ad hoc device that can be derived from the memristor. In fact, the memistor is an
ad hoc gadget developed for emulating synapses, and not as a circuit element that
can be connected with an arbitrary external circuit for general applications.

This paper is organized as follows: Sect. 2 is an introductory section and de-
scribes the memristor and the memistor, and the fundamental differences between
these two devices. The memristor-based memistor is described in Sect. 3. Section 4
describes, with examples, why Widrow’s memistor is not well-posed, and more dis-
tinctions between the memristor and memistor are discussed in Sect. 5. Some con-
cluding remarks are provided in Sect. 6.

2 Memristor and Memistor are Different

2.1 Memristor

Memristor (memory resistor) is a two-terminal circuit element that exhibits a
“pinched” hysteretic relationship [3] between current and voltage. Memristor is a
nonlinear device satisfying Ohm’s law with a time-varying resistance R(t) whose
value at any time T depends on the entire current waveform i(t), t ≤ T . In partic-
ular, the resistance of a memristor depends on the time integral of the memristor’s
current or voltage waveform. For example, the resistance (memristance) of the HP
memristor increases when current flows in one direction and decreases when the
direction of flow is reversed. When no current is flowing through the memristor, it
retains the last resistance it had.

The existence of the “memristor” as the fourth basic circuit element was pre-
dicted from theory by Leon Chua in 1971 [1]. The prediction was based on symme-
try and a missing relationship between an independent pair of the four fundamental
circuit variables, namely; current (i), voltage (v), charge (q), and flux linkage (ϕ).
The three basic circuit elements, resistor, inductor and capacitor are defined by a
relationship between v and i, ϕ and i, and q and v, respectively, but the relation-
ship between q and ϕ was missing. For the sake of symmetry and completeness,
the memristor was postulated in [1] as the fourth basic two-terminal circuit element
characterized by a relationship between ϕ and q , as shown in Fig. 1.

For a charge-controlled memristor defined by

ϕ = ϕ̂(q) (1)

we have

v =M(q)i (2)

where

M(q)= dϕ̂(q)

dq
(3)
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Fig. 1 The four fundamental
circuit elements: resistor,
capacitor, inductor and
memristor, defined using the
four fundamental circuit
variables current (i),
voltage (v), charge (q), and
flux linkage (ϕ)

Fig. 2 Nonlinear function
defining a memristor, where
q̂(·) is the inverse function
of ϕ̂(·)

is called the memristance (contraction of memory resistance).
Thus, the memristance M(q) at q = qQ of a memristor can be interpreted as the

slope at an operating point Q (qQ,ϕQ) on the ϕ–q curve, and has the same unit
(Ohm) as the resistance, in view of Ohm’s law. Since R =M(qQ) is not a constant,
but depends on the “past history” of i(t), it is called the memristance. If the ϕ–q

curve is non-linear, as shown in Fig. 2, the memristance will vary with the operating
point Q. The memristance of a memristor can be controlled by applying a voltage
signal v(t) across the memristor, such that Q has the co-ordinate (qQ,ϕQ) shown
in Fig. 2.

Memristors exhibit a hysteretic relationship between current and voltage. When
a sinusoidal input voltage, or current, A sin(ωt) or any periodic bipolar waveform,
is applied to a memristor, the v–i curve exhibits a pinched hysteresis loop whose
shape varies with the frequency ω. This “pinched” characteristic is the “fingerprint”
of memristors [3]. Consequently, any device that does not exhibit a pinched hys-
teresis loop in the v–i plane when driven by a periodic bipolar voltage, or current
waveform, is not a memristor. The hysteresis loop of a passive memristor is con-
fined to the first and the third quadrant of the v–i plane. The shape of the pinched
hysteresis loop changes with the amplitude and frequency of the periodic input. As
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Fig. 3 Pinched hysteresis
loop exhibited by a memristor
when a sinusoidal input
A sin(2πf t) is applied. The
shape of the loop depends
upon the amplitude A and
frequency f of the applied
sinusoid. In contrast, we will
see in Sect. 3 that the v–i

curve of a memistor consists
of a straight line with a fixed
slope, independent of the
frequency of the applied
sinusoid. The memistor
therefore fails the “pinched
hysteresis loop” fingerprint
test for memristors

the frequency of the input signal increases, the loop shrinks, as shown in Fig. 3, and
tends to a straight line as the frequency ω tends to infinity.

2.2 Memistor

Memistor (a resistor with memory) is a three-terminal device in which the resistance
between two terminals is programmed by the current flowing in the third terminal
[4]. Unlike transistors, the resistance between two terminals of a memistor depends
upon the time integral of the current in the third terminal. In particular the resistance
of Widrow’s memistor is a linear function of the charge flowing from the third ter-
minal. Although the resistance of Widrow’s memistor is increased when the flow of
current in the third control (programming) terminal is in one direction and decreased
when the direction of flow is reversed, and retains the last resistance when no current
flows through the control (programming) terminal, there is no hysteresis in the v–i

relationship, let alone the “pinched” fingerprint, associated with any change in di-
rection of the programming current in the third terminal.

The memistor is a gadget developed for use in an artificial neural network called
the ADALINE (ADAptive LINEar) neuron by Widrow and Hoff in 1960. The first
memistor developed by Widrow and Hoff was a chemical memistor, as shown in
Fig. 4. The phenomenon of electroplating was used to control the resistance across
the 2 terminals of an ordinary pencil lead, electroplated with copper, via a third
copper terminal immersed in a copper sulphate-sulfuric acid bath. The thickness T

of the deposited copper on the pencil lead is given by Eq. (4)

T = Mw

nFAD

∫
Idt (4)
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Fig. 4 Widrow’s memistor consists of 3 terminals. Terminals 1–2 obeys Ohms law and
V1–2 = Ri1–2, where R is a constant for t ≥ t0, if i3(t) = 0, t ≥ t0. Terminal 3 is used to pro-
gram the resistance R between terminals 1–2. The relationship between i3 and the other terminal
variables such as V1–2, V2–3, V3–1, i1–2 etc; is not specified in [4]. This “missing” characterization
makes it impossible to predict the memistor’s behavior when it is connected to an arbitrary external
circuit environment

where Mw is the atomic weight of the deposited metal, n is the moles of electrons
required to reduce one mole of the given metal, F is the Faraday constant, A is the
area of the deposit, D is the density of the metal, and

∫
Idt is the total charge used

in the deposition.
The thickness of the electroplated copper and hence the resistance between ter-

minals 1–2 is a function of the time integral of current flowing through the third
programming terminal 3 and not the instantaneous current flowing into terminal
1–2. The resistance R1–2 between terminals 1–2 can be programmed with a di-
rect current applied via terminal 3, and the programmed resistance is sensed non-
destructively by passing an alternating current i1–2. It follows from the above “elec-
troplating” mechanism that the resistance R1–2 can only be changed by applying a
voltage, or current, at a different terminal. Moreover, Widrow’s memistor is a linear
device because the resistance R1–2 remains unchanged regardless of the magni-
tude of the voltage across terminals 1–2, and consequently when its value is sensed
with an alternating current, while open circuiting (floating) the control terminal 3,
no hysteresis in the v–i relationship will occur. This proves that Widrow’s memis-
tor is not a memristor, which must exhibit a “pinched hysteresis loop” in the v–i

plane when driven by any periodic “dual polarity” alternating current, or voltage,
and whose hysteretic loci changes with the frequency ω of the sensing signal [3, 5].

3 Memristor-Based Memistor

3.1 Two Back-to-Back Series-Connected Memristors

Recently it was shown that the Widrow’s memistor can be realized by connecting
two HP memristors, as shown in Fig. 5. Since the memistor can be built using two
memristors, and since the memristor cannot be built using 2-terminal resistors, ca-
pacitors, and inductors [1], it follows that the memristor is a fundamental circuit
element, whereas the memistor is only a derived element [6].
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Fig. 5 Widrow memistor realized by connecting two identical HP memristors M1 and M2 con-
nected in a back-to-back series configuration with a common bottom electrode 3. The resistance
between terminals 1–2 (when terminal 3 is open circuited) can be varied by applying a program-
ming voltage at terminal 3 with terminals 1 and 2 grounded. The resistance can be measured with
a sensing signal applied to terminals 1–2 while open circuiting (floating) terminal 3

Two HP TiO2 memristors [2], M1 and M2, are connected to a common program-
ming electrode 3, and the top two electrodes 1 and 2 are used to access the variable
resistance. The resistance of the device can be varied by applying a programming
signal at the common electrode 3. When a negative voltage signal is applied across
terminal 3 and ground, with terminals 1–2 grounded, the memristance of both HP
memristors decreases. The overall resistance between terminals 1–2 of the two back-
to-back series-connected HP memristors (when terminal 3 is open circuited) also de-
creases. Similarly, when a positive voltage is applied at terminal 3, the memristance
of both the HP memristors increases. Hence, the total resistance between terminals 1
and 2 also increases. In this way the resistance of the memistor can be programmed
by applying an appropriate input voltage signal at the third programming terminal.
Simulation results of memistor programming using two TiO2 memristors with low
resistance value Ron = 116 
, high resistance value Roff = 16 K
, thickness of the
sandwiched TiO2 layer D = 10 nm, and dopant mobility μv = 10−14 m2 V−1 S−1

are shown in Fig. 6. The initial values of the memristance M1 and M2 are 8 K


each and the programming voltage amplitude is 1 V. A desired value of the resis-
tance can be programmed in the memistor by controlling the width of the voltage
input at the third terminal.

The resistance between terminals 1–2 is read out by applying a sensing pulse
of magnitude 1 mV and duration 1 ms. The total resistance between terminals 1–2
of the memistor remains constant even when the readout signal is applied due to
the complementary action of the two identical memristors. This follows from the
observation that the two memristors M1 and M2 are connected in series but with
opposite polarity. Hence, there is an equal drift in each memristor but in opposite
directions. So the net drift in the memristance between terminals 1–2 is zero and the
total memristance remains constant, as shown in Fig. 7.
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Fig. 6 Memistor
programming: variation of
current i1(t)=−i2(t),
memristance M1(t)=M2(t),
and total memristance
M(t)=M1(t)+M2(t)

between the terminals 1–2
when a programming voltage
V3(t)= 1 V is applied to
terminal 3, while keeping
terminals 1 and 2 grounded

3.2 Charge vs. Flux Relationship of the Composite Device with
Two Back-to-Back Series-Connected Memristors

Let us assume that the initial states of the two memristors M1 and M2 after pro-
gramming are (M01, ϕ01) and (M02, ϕ02) respectively. Then, the flux as a function
of charge for memristor M1 is given from [7] by,

ϕ1(t)=Roff

{
q1(t)

[
1+ w01

D

(
Ron

Roff
− 1

)]
− μvRon

2D2

(
1− Ron

Roff

)
q1(t)

2
}
+ ϕ01,

−Qmaxn1 ≤ q1(t)≤Qmaxp1

(5)

where, w is the thickness of the doped area in the TiO2 memristor, Qmaxpi =
D2

μvRon
(1− w0i

D
) for positive polarity and Qmaxni = D2

μvRon

w0i

D
for negative polarity.
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Fig. 7 Memistor readout: Drift in memristance of M1 and M2 when a readout pulse of amplitude
V1–2 = 1 V and duration 1 ms is applied between terminals 1–2 while open circuiting (floating)
terminal 3. Although M1 = M2, ϕ01 = ϕ02 and q01 = q02 in the programming scheme specified
above, for sake of generality let us pick 2 different initial operating points for the 2 memristors in
Fig. 5; namely, let us pick, arbitrarily, the following initial values: M1 = 9805 
, ϕ01 = 0.554 Wb
and M2 = 4513 
, ϕ02 = 0.76 Wb respectively. The results shows the total resistance between
terminals 1 and 2 remains constant for multiple readouts even though there is a drift in the mem-
ristance in the individual memristors

Similarly, the flux for memristor M2 is given by,

ϕ2(t)=Roff

{
q2(t)

[
1+ w02

D

(
Ron

Roff
− 1

)]
− μvRon

2D2

(
1− Ron

Roff

)
q2(t)

2
}
+ ϕ02,

−Qmaxn2 ≤ q2(t)≤Qmaxp2

(6)

For the two memristors (where v1 = ϕ̇1, v2 = ϕ̇2, i1 = q̇1, and i2 = q̇2 in Fig. 5)
in series the composite flux is given by,

ϕc(t)= ϕc1(t)+ ϕc2(t) (7)

where ϕ̇c = ϕ̇1–2 = V1–2, qc = q1, ϕc1 = ϕ1, and ϕc2 =−ϕ2, qc1 = q1, qc2 =−q2

in Fig. 5.
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Assuming that the polarity of the composite device is the same as that of M1,
then the polarity of the composite device is opposite to that of M2. If charge q(t) is
injected to the composite device, it acts as a negative charge in M2. Thus,

q2(t)=−q(t) (8)

and Eq. (6) can be written as

ϕ2(t)=Roff

{
−q(t)

[
1+ w02

D

(
Ron

Roff
−1

)]
− μvRon

2D2

(
1− Ron

Roff

)
q(t)2

}
+ϕ02 (9)

Also, the flux ϕ2(t) contributes to the composite memristor in an opposite direction.
Thus,

ϕc2(t)=−ϕ2(t)

=Roff

{
q(t)

[
1+ w02

D

(
Ron

Roff
− 1

)]
+ μvRon

2D2

(
1− Ron

Roff

)
q(t)2

}
− ϕ02

(10)

The flux ϕc2(t) in Eq. (10) is the transformed expression of the flux of M2 in
the composite form. The lower part of Fig. 8 shows the flux ϕc2(t) where initial
states are taken as M02 = 10043 
, ϕ02 =−0.538 Wb, q02 =−3.97 × 10−5 C. In
contrast, in case of M1, both the signs of flux and charge are identical to that of the
composite device. Therefore, ϕc1(t) is given by

ϕc1(t)= ϕ1(t)

=Roff

{
q(t)

[
1+ w01

D

(
Ron

Roff
− 1

)]
− μvRon

2D2

(
1− Ron

Roff

)
q(t)2

}
+ ϕ01

(11)

where q1(t) in Eq. (5) is replaced by q(t). The composite portion of the flux graph
of M1, ϕc1(t), is as shown in the upper part of Fig. 8. In the graph, the initial state of
M1 is taken as, M01 = 10043 
, ϕ01 = 0.538 Wb, q01 = 3.97 × 10−5 C. Plugging
Eqs. (10) and (11) into Eq. (7), we obtain

ϕc(t)=Roff

{
q(t)

[
1+ w01

D

(
Ron

Roff
− 1

)]
− μvRon

2D2

(
1− Ron

Roff

)
q(t)2

}
+ ϕ0

+Roff

{
q(t)

[
1+ w02

D

(
Ron

Roff
− 1

)]
+ μvRon

2D2

(
1− Ron

Roff

)
q(t)2

}
− ϕ0

= 2Roff q(t)

[
1+ w0

D

(
Ron

Roff
− 1

)]
(12)

where −min{Qmaxn1,Qmaxp2} ≤ q(t) ≤ min{Qmaxp1,Qmaxn2} and w01 = w02 =
w0, since M1 = M2. The expression in Eq. (12) confirms with the result obtained



104 S.P. Adhikari and H. Kim

Fig. 8 Flux versus charge curve for a composite device with two identical TiO2 memristors with
Ron = 116 
, Roff = 16 K
, D = 10 nm and μv = 10−14 m2 V−1 S−1 connected back-to-back in
series. The initial states of the two memristors from the viewpoint of terminal 1 of the compos-
ite device are (M01 = 10043 
, ϕ01 = 0.538 Wb, q01 = 3.97 × 10−5 C) and (M02 = 10043 
,
ϕ02 =−0.538 Wb, q02 =−3.97 × 10−5 C). The charge axis is the input charge to the composite
device and does not represent the charge of the individual memristors. The charge of the individual
memristors corresponding to the flux is obtained by adding its corresponding initial charge to the
horizontal-axis value of the charge

graphically by adding the upper and lower curves as shown in Fig. 8. Furthermore,
the memristance of the composite memristor can be obtained by differentiating
Eq. (12) with respect to q(t) as

dϕc(t)

dq(t)
= 2

{
Roff

[
1+ w0

D

(
Ron

Roff
− 1

)]}
= 2M0; (13)

where, −min{Qmaxn1,Qmaxp2} ≤ q(t) ≤ min{Qmaxp1,Qmaxn2} and M0 =
Roff [1+ w0

D
( Ron
Roff

− 1)].
Equation (13) demonstrates the fact that the composite memristor exhibits a con-

stant resistance in the range of [−min{Qmaxn1,Qmaxp2} ≤ q(t) ≤ min{Qmaxp1,

Qmaxn2}] and it emulates terminals 1–2 of a memistor over this range.
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Fig. 9 Definition of 4
variables of Widrow’s
memistor

4 Widrow’s Memistor Is Not Well-Posed

An n-terminal device, or circuit element is said to be “well posed” if, and only if, it
has sufficient information to predict (via KCL or KVL) the current and voltage asso-
ciated with all n terminals of the device when the device is connected or imbedded to
an arbitrary external circuit. To characterize and model a well-posed three-terminal
device, 2 set of relationships involving 2 sets of variables chosen from

1. i1, v1,
di1
dt

, dv1
dt

,
∫ t

−∞ i1dt ,
∫ t

−∞ v1dt, . . ., higher order derivatives and/or integrals
of v1 and i1 for terminals 1-3, and

2. i2, v2,
di2
dt

, dv2
dt

,
∫ t

−∞ i2dt,
∫ t

−∞ v2dt, . . ., higher order derivatives and/or integrals
of v2 and i2 for terminals 2-3, must be specified [8, 9].

Figure 9 shows the three terminals of Widrow’s memistor, where terminal 2 is
chosen-without loss of generality- as the common third terminal, va and ia are de-
fined as the voltage and current between terminals 1 and 2, and vb and ib denote the
voltage and the current between terminals 3 and 2 respectively.

For the Widrow memistor to be “well posed” two sets of relationships involving
two sets of variables must be given. However, Widrow [4] had specified only one
relationship; namely,

Relationship 1

va =R(qb)ia (14)

where, qb =
∫ t

−∞ ib(τ )dτ .

We need a second equation to specify how the current ib and the voltage vb are
related to each other, and/or va , ia and possibly their time derivatives and integrals;
namely

Relationship 2

f

(
ib, vb, ia, va,

dib

dt
,
dvb

dt
, . . . ,

∫ t

∞
ibdt,

∫ t

−∞
vbdt, . . .

)
= 0 (15)
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Fig. 10 To predict the
waveforms of ia(t), ib(t),
va(t) and vb(t) in this circuit,
for a specified input across
terminals 1–2, it is necessary,
to specify a second
relationship involving vb(t),
ib(t) and possibly other
variables

This second relationship may involve one or more of the variables indicated in
the general case, the precise specification depends on the internal physical mecha-
nisms inside the device. Since Widrow did not specify Relationship 2, the device is
not well-posed, i.e. the model is incomplete. The HP back-to-back series-connected
arrangement of two memristors is well posed, but it is only one of many possible
realization of a memistor.

There are many different possible ways in which the Relationship 2 can be spec-
ified for a hypothetical memistor. Following are some examples:

Let us consider the memistor circuit with a voltage source vs(t) applied via a
10 
 resistor as shown in Fig. 10. The waveforms of the 4 memistor variables va ,
ia , vb, and ib in Fig. 9 will depend on the constitutive relation across terminals 2–3,
even if we assume the same “memistor” constitutive relation va = R(qb)ia across
terminals 1–2, and driven by the same input current source, or voltage source, across
terminals 1–2.

In the following examples, the constitutive relation between terminals 1–2 is
given by Eq. (14).

Example 1

vb = 0 (16)

In this example the second constitutive relation is just an “internal” device rela-
tionship modeled by a short circuit, and hence in this case, ib depends only on the
external circuit; namely,

ib = vs(t)

10
(17)

Hence,

qb(t)= 1

10

∫ t

−∞
vs(t)dt = 1

10

∫ t

0
A sin(ωt)dt, t ≥ 0 (18)

Example 2

ib = 0 (19)
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In this example, the second constitutive relation is just an “internal” device re-
lationship modeled by an open circuit, and hence ib = 0, t ≥ 0, regardless of the
external circuit. Hence,

qb(t)= qb(0)+
∫ t

0
(0)dt = qb(0), t ≥ 0 (20)

Example 3

vb =Rbib (21)

In this example, the second constitutive relation between terminals 3 and 2 is
just an “internal” device relationship modeled by an Rb Ohm resistor. For example,
suppose

vb = 40ib (22)

then,

ib(t)= vs(t)

40+ 10
= vs(t)

50
, t ≥ 0 (23)

It follows that

qb(t)= 1

50

∫ t

−∞
vs(t)dt = qb(0)+ 1

50

∫ t

0
A sin(ωt)dt, t ≥ 0 (24)

Example 4

vb = Lb

dib

dt
(25)

In this example, the second constitutive relation is just a hypothetical “internal”
device relationship modeled by an inductor. For example, suppose

vb = 2
dib

dt
(26)

then,

vs(t)= 10ib + 2
dib

dt
(27)

Let ib(t) = f (t) be the solution of the differential equation (27) with ib(0) = 0.
Then,

qb(t)= qb(0)+
∫ t

0
f (t)dt, t ≥ 0 (28)

Note that Eq. (25) may have no relationship at all with Widrow’s gadget. But since
Widrow did not specify a second relationship, it is impossible to predict the current
ib(t) when Widrow’s memistor is connected to the external power supply shown in
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Fig. 11 A hypothetical
model of the second
constitutive relationship
between terminals 2 and 3
(internal to the device) of
Widrow’s memistor. The
resistor on the left is defined
by Eq. (14)

Fig. 10. Note that since different specifications of the second relationship will give
different ib(t), Widrow’s memistor is not well posed.

Example 5

vb = va + 40ib (29)

This second hypothetical constitutive relation describing the internal physical
mechanism inside the 3-terminal memistor can be modeled as in Fig. 11. Assuming
a voltage source va = g(t), t ≥ 0 is applied across terminals 1–2, we obtain, upon
substituting vb = vs(t)− 10ib from Fig. 10,

ib = 1

40
(vb − va)

= 1

40

(
vs(t)− 10ib − g(t)

)
, t ≥ 0 (30)

Solving Eq. (30) for ib(t), we obtain

ib(t)= 1

50

(
A sin(ωt)− g(t)

)
, t ≥ 0 (31)

qb(t)= qb(0)+ 1

50

∫ t

0

(
A sin(ωt)− g(t)

)
dt, t ≥ 0 (32)

Example 6

vb = va + 40ib (same as Example 5) (33)

Assuming a current source ia = h(t) is applied across terminal 1–2, then

vb =R(qb)h(t)+ 40ib

=−10ib + vs(t) (34)

R(qb)h(t)+ 50ib = vs(t)=A sin(ωt), t ≥ 0 (35)
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Since,
dqb

dt
= ib

dqb(t)

dt
+ R(qb)

50
h(t)= 1

50
A sin(ωt), t ≥ 0 (36)

In this case, we must solve the nonlinear differential equation (36), with initial
charge qb(0), for qb(t), t ≥ 0 to obtain

va(t)=R
(
qb(t)

)
h(t), t ≥ 0 (37)

The preceding examples illustrate why the second constitutive relation across
terminals 2–3 must be specified to predict the solution waveforms, for arbitrary ex-
ternal circuit interconnections. The charge qb in R(qb) for a memistor is the charge
associated with the current ib entering the terminal 3 of Widrow’s 3-terminal memis-
tor. In this sense, Widrow’s memistor is incomplete and not “well posed”.

In contrast, the memristor, being a 2-terminal element, does not need a second
constitutive relation. This is another illustration showing why Widrow’s memistor
is not a memristor, since for a memristor, va = R(qa)ia is uniquely defined when
the waveform of ia is given as a function of time. This is because qa is the charge
associated with the current ia entering terminal 1 of the 2-terminal memristor.

Finally, note that none of the second hypothetical constitutive relation specified
above would qualify Widrow’s 3-terminal memistor as a basic n-terminal circuit
element from nonlinear circuit theory [9, 10].

5 More Distinctions Between Memistor and Memristor

An ideal memristor [1] can be easily generalized to a broader class of nonlinear
dynamical systems called memristive devices [3, 5], whereas the memistor has no
such generalizations. The current and voltage relationship in a memristive device is
defined by

v = [M(x1, x2, . . . , xn)
]
i (38)

where M is the memristance, xi ’s are the state variables, and v and i are the voltage
and current, respectively; of the 2-terminal device. The state variables of a memris-
tive device are internal variables associated with the device material and its physical
operating mechanism, and can not be influenced by any external voltage or current
applied to a third terminal [1]. But in Widrow’s memistor, if the thickness of plating
is considered to be a state variable, then it is influenced by the integral of the current
in the third (control) terminal, which makes it different from a memristor.

The two-terminal structure of a memristor bears a close resemblance to a bio-
logical synapse and can be used to emulate STDP (Spike Time Dependent Plastic-
ity) [11], an important synaptic modification rule for competitive Hebbian learning,
whereas the three terminals of a memistor make it unsuitable for realizing this learn-
ing rule in hardware.
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Fig. 12 Potentiometer analog of Widrow’s memistor. The gear box is programmed via an external
third terminal (not shown) to emulate the resistance R(qb) across terminals 1–2 where qb is the
time integral of ib(t) at terminal 3

It has also been shown analytically that two-element memristive circuits made
of a passive linear inductor in parallel with a passive memristor, or an active mem-
ristive device, can be described explicitly by a Hamiltonian equation [12]. More-
over, an active memristive device has been shown to generate complex dynamics,
such as chaos [13], and are essential components for understanding the circuit-
theoretic phenomenon of the “time-varying” sodium conductance, and the potas-
sium conductance in the classic Hodgin-Huxley nerve membrane model [5, 14].
None of the above unique nonlinear circuit dynamics can be emulated with memis-
tors.

Memistor is a linear device irrespective of the frequency of operation, whereas a
memristor is a non-linear device (except at infinite frequency ω →∞ ) which ex-
hibits a frequency-dependent pinched hysteresis loop. This feature of the memristor
where the resistance varies under low frequency excitation but remains relatively
unchanged at much higher frequencies has been utilized in memristor-based passive
electromagnetic switches [15], whereas the memistor has no such capability since it
does not exhibit a frequency-dependent resistance.

As a matter of fact, Widrow’s memistor is conceptually equivalent to the two
terminals of the potentiometer shown in Fig. 12, where the third controlling terminal
is just a “gear box” coupled to the rotating shaft of the potentiometer, where the
gear box is programmed to emulate R(qb), via a third electrical terminal where an
external programming voltage v3 = vb(t), or programming current i3 = ib(t), can
be applied. Such a gadget clearly bears no resemblance to a memristor.
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6 Conclusion

Widrow’s memistor is not a memristor because:

1. The memistor is a three-terminal device that is not well-posed, whereas the mem-
ristor is a two-terminal circuit element.

2. The input v–i characteristic of a memistor across terminal 1–2 when driven by
a sinusoidal voltage is not a pinched hysteresis loop- which is the signature of a
memristor.

3. Even if we can derive a second relationship which gives a realistic model of
the internal device characteristic (i.e., the metallic sources immersed in a copper
sulphate- sulfuric acid bath) inside terminal 3 of Widrow’s memistor, thereby
making it a well-posed circuit model, the memistor nevertheless has very limited
applications because terminal 1–2 of Widrow’s memistor is equivalent to a lin-
ear positive resistance for any “programmed” charge at terminal 3. In particular,
unlike “locally-active” memristive devices, such as thermistor, and the Sodium
memristive device in the Hodgin-Huxley model [5], it is impossible to build an
amplifier, a flip flop, or an oscillator using only resistors, inductors, capacitors,
batteries, and memistors.

4. The behavior across terminals 1–2 of Widrow’s memistor can be built with 2
memristors, so it is not a “basic” circuit element, whereas it is impossible to build
a memristor using only 2-terminal resistors, inductors, capacitors and Widrow’s
3-terminal memistors.

5. Unlike the memristor, there is no logical circuit-theoretical definition and foun-
dation for Widrow’s memistor. In particular, Widrow’s memistor can not be clas-
sified as a fundamental 3-terminal circuit element from nonlinear circuit theory
[9, 10], regardless of what hypothetical constitutive relation one postulates for
the third terminal.

6. The memistor is an ad hoc gadget invented for only one purpose; namely to
emulate a synapse. In contrast, the memristor is defined from first principles, via
an axiomatic approach involving the four fundamental circuit variables v, i, q

and ϕ, and is applicable for many other signal processing applications.
7. The memistor is analogous to a potentiometer with a “programmable” control

knob serving as the third terminal.
8. No one with an elementary understanding of circuit theory would regard

Widrow’s memistor as a “circuit element”, because it is not well posed. Like
the potentiometer, it is just a gadget [16].
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Synapse as a Memristor

Weiran Cai and Ronald Tetzlaff

Abstract The memristor, the fourth fundamental electric element, was conceptu-
ally proposed by L. Chua in 1971 and was found in laboratory late in 2008. Recently
a special type of memristor was considered to be able to mimic the behavior of neu-
ral synapses. In particular, attributed to the long-term memory of weight changes,
the memristor can reproduce the spike-timing-dependent plasticity (STDP) proto-
col of a synapse, displaying a synaptic modification related to the time interval of
pre- and post-synaptic spikes. Not limited to it, we found that the memristor with
adaptive thresholds can even mimic higher-order behavior of synapses, realizing the
well-known suppression principle of Froemke. This type of memristor can actually
express both long-term and short-term plasticities in synapses, which are responsi-
ble for the excitation level and the refractory time, respectively. The corresponding
dynamical process is governed by a set of ordinary differential equations. Interest-
ingly, the Froemke’s model and our memristor-like model, based on two completely
different mechanisms, are found to be quantitatively equivalent. In this chapter we
would like to provide this new perspective of looking at synaptic dynamics.

1 Introduction

Memristors seem to have been existing in the nervous system for long time. In 1952,
Hodgkin and Huxley proposed a compact circuit for modeling the nerve axon mem-
brane [1], including two nonlinear electric conductances, a capacitance and a linear
leakage resistance. The two nonlinear conductances are used to describe the behav-
ior of the potassium and sodium channels in the lipid bilayer of the axon. These two
elements are unusual from the existing electric elements, which exhibit a history-
dependence. It was not until Chua proposed the concept of memristor in 1971 that
their identities were determined: the two axon channels are memristors [2, 3]! Neu-
rons are consist of axons and dendrites (possessing similar properties of axons) and
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interconnected with junctions, known as synapses. While axons/dendrites are re-
sponsible for transmitting signals, synapses are terminals for controlling the signals.
Axons and synapses are history-dependent. A natural question would then be posed:
is the synapse also memristive?

Recently, an important memristor-based model for the spike-timing-dependent
plasticity (STDP) in neuronal communication was proposed [4, 5], answering pos-
itively to the above question. The STDP rule is known as one of the fundamental
rules of learning and memory in the brain, which explains how synapses in the ner-
vous system adapt to the surrounding environment [6–9]. It is pointed out in [4]
that the long-term plasticity of the synapse can also be expressed by a memristor,
attributed to its long-term memory of state-variable (weight). The model provides a
completely new way in modeling the synapse, differed from the existing behavioral
model of Gerstner.

This is however not the whole story. Biological evidence has shown that the na-
ture of the synapse is both long-term plasticity and short-term plasticity. In this chap-
ter, we will propose an advanced memristive synapse model, which realizes both
types of plasticity. Our model is an embodiment of the well known Froemke’s prin-
ciple for the synapse. In the following sections, we will first review Gerstner’s pair-
based STDP rule, as the starting point, and Lineares’ memristive synapse model.
We will then introduce our memristive synapse model as a realization of Froemke’s
principle, and prove its quantitative equivalence to his suppression model. In the dis-
cussion section, we will try to address certain relation of our model to the concept
of short-term plasticity, from which the mechanism of adaptive thresholds used in
our model is originated.

2 How do Neurons Work?

The brain cortex is known to be marvelously efficient. A human brain, containing
1011 neurons and 1015 synapses, consumes 20 W on average. Even a brain of a
lower vertebrate excels the ultimate computer cluster of the time. A simulated mouse
cortex on Blue Gene L based on Von-Neumann architecture, containing 8 × 104

virtual neurons and 5 × 1010 virtual synapses, consuming 40 kW at the speed of
1 GHz, is however still 10 times slower than a real mouse. The fact is that the
individual real neurons are as slow as 10 Hz locally. It is the parallel architecture
of computing and the dynamics related to neural encoding and decoding that makes
the miracle.

2.1 Synapse: Bridge for Neurons

Neurons are specific cells comprising the major component of a biological cognitive
system. Through a large range, signals in the form of spikes, known as the action
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potentials, propagate down the membrane of neural fibers in a network with a high
interconnectivity to perform a style of parallel computation. Each neuron branches
out two types of such fibers: axons and dendrites. Relatively long fibers branching
out from a neuron, in a number of several hundred for each, are named as axons.
Each axon makes connections with shorter fibers of other neurons, named as den-
drites, which are in a much greater number. In fact, the contact between an axon
and a dendrite is separated with a tiny cleft of around 20 nm, known as the synapse,
which are responsible for controlling the signal traffic between the pre- and post-
synaptic neurons. Instead of a constant conjunction, the synapse acts as an adaptive
controller, depending on the history of the traffic in both directions. This adaptation
in a large spatio-temporal scale is believed to be the origin of learning and memory
in the brain. A pioneering work in this regard was done by the Canadian psycholo-
gist Hebb, who proposed a conjecture for the learning process in 1949 [10]:

When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

The Hebbian rule tried to explain the synaptic modification in a sense of causality.
A biologically confirmable embodiment of this rule was, however, proposed by Ger-
stner till 1996 [6]. His theory suggested that relative timing of pre- and postsynaptic
action potentials is critical in determining synaptic modification. The above adap-
tation process is actually a spike-timing-dependent plasticity (STDP) : presynaptic
spikes that precede postsynaptic action potentials produce long-term potentiation
(LTP) , and presynaptic spikes that follow postsynaptic action potentials produce
long-term depression (LTD), as illustrated in Fig. 1. The STDP rule agrees with the
Hebbian rule and hence is an expression of causality in the nervous system. Confir-
mation of the relation between the timing of spikes and synaptic modification was
thereafter made in experiments [11, 12].

2.2 Gerstner’s Pair-Based STDP Model

The pair-based STDP model, proposed by Gerstner, et al., in 1996, is mostly con-
sidered as the first stage in the study of STDP, which considers pairs of pre- and
postsynaptic action potentials as independent contributing units to synaptic modi-
fication. This model considers the long-term plasticity in the synapse. Spikes are
here shaped as δ functions, as in the usual treatment in computational neuroscience.
The change of the synaptic weight Δw depends on the arriving time of presynaptic
spikes t

f
pre (f = 1, 2, 3, . . . ,N counts the presynaptic spikes) and of postsynaptic

spikes tnpost (n = 1, 2, 3, . . . ,M counts the postsynaptic spikes). The total weight
change induced by a protocol with pairs of pre- and postsynaptic spikes is then given
by the sum of all the independent contributions

Δw =
N∑

f=1

M∑

n=1

W
(
tnpost − t

f
pre

)
(1)
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Fig. 1 Schematic of
spike-timing-dependent
plasticity. The STDP function
expresses the change of
synaptic weight as a function
of the relative timing of pre-
and postsynaptic spikes. The
circles are experimental
recordings, and the solid
curve is a fitting STDP
function (from [11])

where W(x) denotes a STDP update function. A typically chosen STDP function
W(x), the contribution from one single pair, is piecewise exponential

W(x)=
{

A+e−x/τ+ for x > 0
−A−ex/τ− for x < 0

(2)

the parameters of which can be fitted by experimental data. The synaptic modifi-
cation is plotted in Fig. 1. Noticeably this is a purely empirical model. The model,
however, does not explain the origin of the form of the STDP function, which is
imposed empirically. We will address this problem in the next section when we
introduce the memristive model.

3 Memristor Acting as a Synapse

Is the synapse memristive? Let’s consider what the mathematical form of the mem-
ristor implies. Some of the properties can actually be outlined here: 1. work as a pas-
sive element (like a resistor); 2. history-dependent (depends on the state-variable);
3. polarized element (current direction cares); 4. frequency-dependent (time deriva-
tive of the state variable). All these properties exist in a synapse!

3.1 Linares’ Pair-Based Memristive STDP Model

Indeed, the first memristive synaptic model was established based on such an anal-
ogy between the nonvolatility in the memristor and the long-term plasticity of the
synaptic weight. In the following, we will consider the asynchronous memristive
STDP model proposed by Linares, et al. [4]. The essence of this memristive STDP
model is a specific type of memristor with two thresholds. The emphasis lies on
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Fig. 2 Linares’ STDP model. Plots are modified from [4]. (a) Analogy between a synapse and
a memristor. (b) The piecewise rate function f of the synaptic modification and its first order
approximation for small Δv ± vth0. (c) Demonstration of the pair-based model for the pre-post
case (LTP). (d) The predicted STDP update function

two factors: the shape of action potential (non-δ function) and the thresholds de-
termining the synaptic modification. The model assumes that the functionality of
a synapse can be modeled as a memristor with two thresholds, as demonstrated in
Fig. 2. The synapse is supposed to possess a memristance, which is a function of
the intrinsic physical state variable of the memristor. We can suppose here that the
memristance is linearly controlled by its state variable w, i.e., R(w)= kR(w+w0).
The modification rate of the state variable is governed by a nonlinear function f :

dw

dt
=−f

(
w,Δv(t)

)
(3)

where Δv(t) is the voltage across the memristor, which is analogous to the differ-
ence between the post- and presynaptic action potentials

Δv(t)= vpos(t)− vpre(t) (4)
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The minus sign in Eq. (3) is for the excitatory synapse, which means that the weight
decreases when the pre-synaptic action potential arrives in advance of the post-
synaptic action potential (vice versa for the inhibitory synapse).

The action potentials vpre/pos are chosen to have the form of piecewise exponen-
tial functions, as shown in Fig. 2(b) (see [4] for the definitions of parameters)

spk(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A+
mp

et/τp−e−t
+
ail

/τp

1−e−t
+
ail

/τp
if − tp < t < 0

−A−
mp

e−t/τm−e−t
−
ail

/τm

1−e−t
−
ail

/τm
if 0 < t < tm

0 otherwise

(5)

The function f in [4] is chosen to be an piecewise function solely of the voltage
difference

f (Δv)=
{

I0 sign(Δv)(e|Δv|/v0 − evth/v0) if |Δv|> vth

0 otherwise
(6)

Thus, the memristance (synpatic weight) can be modified only if the voltage across
the memristor (synapse) exceeds the thresholds. By integrating Eq. (3), we have the
total change in the state variable of the memristor

Δw(Δt)=
∫

Δt

f
(
Δv(t)

)
dt (7)

where Δt is a time span of integration around the arrival of the spikes.
With these facilities, the STDP update function can be plotted by fitting to the

experimental records [4, 11]. One should note that, unlike in Gerstner’s model, the
STDP update function is not imposed empirically in this model, but produced as
a result of the thresholded memristance and the piecewise exponential action po-
tentials. This result is based on the common property in the synapse and in the
memristor: the long-term plasticity. To this point, we can say that the synapse is
memristive! However, biological synapses behave in a more complicated way, in-
volving both long-term and short-term plasticity. In the following section, we will
consider a higher order behavior in the synapse and try to find a memristor which
acts as a more real synapse.

3.2 Froemke’s Triplet-Based STDP Model

Do the spike pairs really contribute independently to the total synaptic modifica-
tion, as predicted by Gertner’s model? The fact is that although Gerstner’s pair-
based STDP rule predicts synaptic change successfully for a pair of spikes, it fails
to predict the case for a triplet of spikes. The contributions of spike pairs are not
independent. A triplet of spikes can be a combination of either 2 pre- and 1 postsy-
naptic spikes (the ‘2/1’ case) or 1 pre- and 2 postsynaptic spikes (the ‘1/2’ case).
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Fig. 3 The suppressed synaptic efficacy in the suppression model for triplet STDP rule of Froemke
and Dan (adapted from [13]). The presynaptic spike efficacy εi is suppressed by the preceding
presynaptic spike at ti−1

According to Gerstner’s model, the net synaptic modification due to a triplet of
spikes should be predicted as the sum of two pairs of spikes, e.g., for the pre-post-
pre case, the synaptic modification should be sum of the changes from the pre-post
pair, related to the time interval Δt1 = tpost − tpre,1, and from the post-pre pair,
related to the time interval Δt2 = tpost − tpre,2. However, Froemke and Dan discov-
ered from experiments that the two spike pairs do not contribute independently to
synaptic modification [13]. The first spike pair plays a dominant role in the synaptic
modification, and the contribution of the second pair is strongly suppressed by the
presence of the preceding postsynaptic spike. Only when the time interval of the
first pair is sufficiently large, the synaptic modification induced by the triplet could
be mainly predicted by the second pair. We call this conclusion as the principle of
suppression.

Froemke and Dan proposed a suppression model, which is a realization of the
principle of suppression. It assumes that each spike has an ‘efficacy’. The contribu-
tion of each pre/post spike pair depends not only on the interval between the pair,
but also on the spike efficacy, which is suppressed by the preceding spike in each
neuron (also suppose the spikes have a form of δ function). The spike efficacy is
reduced to zero immediately after the preceding spike, and recovers exponentially
towards one (see Fig. 3). Quantitatively, each pre- and postsynaptic spike is assigned
an efficacy, which depends only on the interval from the preceding spike in the same
neuron:

εi = 1− e−(ti−ti−1)/τs (8)

where εi is the efficacy of the ith spike, ti and ti−1 are the timings of the ith and
i− 1th spike, respectively, and τs is the suppression time constant. The contribution
of each pre-post spike pair to synaptic modification is estimated as

wij = ε
pre
i ε

post
j F (Δtij ) (9)

where wij is the synpatic modification due to the ith presynaptic spike and the j th
postsynaptic spike, ε

pre
i and ε

post
j are the efficacies of the two spikes, respectively,

and Δtij is the interval between the two spikes, t
post
j − t

pre
i . The function F is the
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synaptic modification for an isolated spike pair:

F(Δt)=
{

A+e−Δt/τ+ if Δt > 0
−A−eΔt/τ− if Δt < 0

(10)

where A+/− is the scaling factor, τ is the time constant. F is actually the pair-
based STDP function. With these definitions, the synaptic modification for a triplet
of spikes can be correctly predicted, which is in good accordance with experimental
results. As pointed out in [13], suppression during synaptic modification may have
a relation with short-term plasticity in the synapse.

3.3 Conflict with the Triplet Rule

Linares’ model, the pair-based memristive STDP model, is incompatible with the
triplet STDP protocol, since it is based on Gerstner’s model. Actually, the mem-
ristance (synaptic weight) is additive with such choice of function f (whereas the
synaptic efficacy is multiplicative). This implies that the total change of memris-
tance is simply the sum of independent changes in all time intervals, with each
consisting change depending only on Δv(t). It has an intuitive geometric implica-
tion. To the first order of Eq. (6), the function f (Δv) is a piecewise linear function
of Δv (the dashed line in Fig. 2(c))

f
(
Δv(t)

)≈ I0

v0

([
Δv(t)− vth

]
+ + [Δv(t)+ vth

]
−
)

(11)

where the notation [· · · ]± stands for the half-wave rectification functions

[z]± =
{

z if z≥ (≤)0
0 otherwise

(12)

Hence, for small extra voltage over the thresholds [Δv(t) − vth]+ and [Δv(t) +
vth]−, by integrating Eq. (7), the total change of memristance can be viewed as the
net area enveloped by the curve Δv(t) and the thresholds, multiplied by a factor
kRI0/v0

ΔR ∝ALTD −ALTP (13)

where ALTP ≡ ∫
Δt
[Δv(t)− vth]+dt and ALTD ≡− ∫

Δt
[Δv(t)+ vth]−dt .

With the property of additivity, let us consider the synaptic modification corre-
sponding to a triplet of spikes, involving two pre-synaptic and one post-synpatic
spikes (the 2/1 case). According to Linares’ model, the total change of the memris-
tance is the sum of an LTP produced by the pre-post pair and an LTD produced by
the post-pre pair (see Fig. 4). As a special case, when the time interval between the
first pair is equal to that of the second pair, the netto change of memristance sums
to zero. This prediction is not in accordance with the principle of suppression we
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Fig. 4 The synaptic
modification predicted by
Linares’ STDP model (the
pre-post-pre case).
(a) Pre-synaptic spikes
vpre(t): it is assumed that the
first spike turns to the second
spike abruptly at the presence
of the second spike;
(b) post-synaptic spike
vpost (t); (c) the voltage
difference function
Δv(t)= vpost (t)− vpre(t).
The parameters for the spike
function spk(t) are chosen as
follows: A+

mp = 1, A−
mp = 0.5,

t+ail = 2.5 ms, t−ail = 37.5 ms,
τp = 3 ms, τm = 40 ms, the
time intervals Δt1 = 10 ms,
Δt2 = 10 ms, and the
threshold vth0 = 1

introduced in the previous section. In this pre-post-pre case, the synaptic modifica-
tion should mainly express as LTP, and especially, should be negative for the above
special case of equal intervals (Δt1 = Δt2). The discordance implies that Linares’
model needs a modification to be compatible with the triplet STDP rule.

4 Memristor Acting as a More Real Synapse

Short term plasticity, addressed by Froemke, is expressed by a virtual spike efficacy
in his model. The concept solved the incompatibility problem for the case of triplet
spikes. However, the spikes should by themselves just be electric signals and how
could they possess certain efficacy? One would expect that this adaptation occurs
rather in the synapse than in the spikes. We propose a memristive STDP model to
realize the principle of suppression for the triplet rule by introducing a mechanism
of adaptive thresholds.

4.1 Memristive STDP Model with Adaptive Thresholds

We introduce adaptation process in the synapse itself [14]. In this model, the type
memristor with two thresholds is still adopted. However, the thresholds are not sup-
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Fig. 5 The mechanism of the
memristive STDP model with
adaptive thresholds. The LTD
area is suppressed by the
raised threshold vLTD

th (t),
which changes proportionally
to the extent of the preceding
LTP and returns exponentially
to the resting value −vth0.
The suppression hence
depends on the preceding LTP
and the time interval between
the LTD and the LTP. The
function Δv(t) is arbitrarily
chosen for explanation

posed to be rigid, but can vary according to the synaptic modification. Specifically,
we denote the positive threshold as the LTP threshold vLTP

th (t), and the negative
threshold as the LTD threshold vLTD

th (t), both as functions of time. It is supposed
that the magnitude of the LTD threshold rises by the presence of an LTP, while
the LTP threshold rises by the presence of an LTD. Both thresholds restore ex-
ponentially to the resting values in the absence of any LTP or LTD. The synaptic
modification is then controlled not only by Δv(t) but also critically by the actual
value of the threshold vLTP

th (t) or vLTD
th (t). In this way, an LTP suppresses the fol-

lowing LTD to a certain extent by raising the LTD threshold, while an LTD sup-
presses the following LTP in the same manner, as demonstrated in Fig. 5. This
dynamical process can be described by the following ordinary differential equa-
tions:

dvLTP
th

dt
= 1

τLTP
th

(−vLTP
th (t)+ vth0

)+ kPD

[
dw

dt

]

+
(14)

dvLTD
th

dt
= 1

τLTD
th

(−vLTD
th (t)− vth0

)+ kDP

[
dw

dt

]

−
(15)

with the update equation for the synaptic weight

τw

dw

dt
=−[Δv(t)− vLTP

th (t)
]
+ − [Δv(t)− vLTD

th (t)
]
− (16)

where ±vth0 denotes the resting LTP and LTD thresholds, respectively; τLTP
th and

τLTD
th are the restoring time constants for the two thresholds. The changing rates

of the thresholds are supposed to be linearly dependent on dw/dt with factors
kPD and kDP (both positive). Hence, by integration, the change in vLTP

th or vLTD
th

is proportional to the change of w, i.e., Δv
LTP(D)
th ∝ Δw, as we have wanted:
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Fig. 6 Suppression by the adaptive thresholds in the 2/1 triplet spikes for different time inter-
vals. t2 is fixed at 10 ms, while t1 is chosen at 25 ms (a), 21.2 ms (b), 19 ms (c) and 10 ms (d),
respectively. Black lines: Δv(t); blue solid: vLTP

th (t) and vLTD
th (t); blue dashed: ±vth0. Four typ-

ical suppression levels are shown: light, moderate, heavy and complete suppression, which are
produced by extra voltages ordered as δvLTP

(a) < δvLTP
(b) < δvLTP

(c) < δvLTP
(d) . The net synaptic modifi-

cation is depression for (a), null for (b) and potentiation for (c) and (d). The parameters are chosen
as: τLTP

th = τLTD
th = 25 ms, kPD = kDP = 10 ms−1

larger synaptic modification will cause larger variation in the threshold. For sim-
plicity and geometric intuition, a linear synaptic update equation is used in Eq.
(16).

For a triplet of spikes, e.g., in the pre-post-pre case, the first pair (pre-post) pro-
duces a positive extra voltage δvLTP(t)≡Δv(t)− vLTP

th (t). This LTP raises the LTD
threshold vLTD

th (t), so that the LTD caused by the second pair (post-pre) is sup-
pressed by the raised threshold. Hence, the LTP caused by the first pair expresses
dominantly in synaptic modification for triplet spikes.

The numerical simulation result is plotted in Fig. 6 for typical cases. An extreme
case occurs when the raised threshold vLTD

th (t) grows beyond Δv(t) so that it pro-
duces no LTD. Similar process occurs in the post-pre-post case, which causes LTD
dominantly. The net potentiation and depression regions are plotted in Fig. 7 by nu-
merical simulations with chosen parameters. It exhibits accordance with Froemke’s
experimental records and the prediction by the suppression model. The critical
dashed lines are boundaries between LTP and LTD, corresponding to null synap-
tic modification or geometrically, cancellation of LTP area by LTD area. Only when
Δt1 is sufficiently large, the net synaptic modification can be predicted by the sec-
ond pai aloner, because the LTD threshold is raised to a too low level to suppress the
following LTD. The boundary at large Δt1 and Δt2 approaches the asymptotic line
with a slope of −1, due to the fact that the LTP and LTD are independently additive,
out of the time range of suppression.
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Fig. 7 Synaptic modifications for triplet spikes from experimental records and prediction of mod-
els. (a) Froemke’s experimental data and prediction from the suppression model for ‘1/2’ (left) and
‘2/1’ (right) triplets. Red symbols: potentiation; blue symbols: depression. Circles: normal ACSF
(artificial cerebrospinal fluid); triangles: high divalent ACSF with bicuculline. Dashed lines are the
borders between potentiation and depression predicted by the suppression model. (b) The regions
for potentiation and depression predicted by the memristive model with adaptive thresholds for
‘1/2’ (left) and ‘2/1’ (right) triplets. Dashed lines are the borders between LTD and LTP by the
model. All the axes are plotted in logarithmic scale. The parameters are chosen as in Fig. 6

4.2 Quantitative Equivalency of the Models

The proposed model differs from Froemke’s model in the mechanism, but they both
realize the suppression principle. The following comparison proves that they are
equivalent quantitatively. For our model, we estimate the suppression level on the
second pair quantitatively (taking the pre-post-pre case for example). As we ex-
plained above, the change of the LTD threshold caused by an LTP, denoted as
ΔvLTD

th , is approximately proportional to the change of the synaptic weight Δw,
which is a function of the time interval of the first pair Δt1. If the piecewise ex-
ponential spike function spk(t) is adopted as in Eq. (5), the STDP update function
Δw(Δt) can be estimated in a piecewise exponential form (see Fig. 2(d))

Δw(Δt)=
{
−a+e−Δt/τ+ if Δt > 0
a−eΔt/τ− if Δt < 0

(17)

Thus the total change of the LTD threshold integrated during the LTP is proportional
to Δt1 exponentially

ΔvLTD
th ∝Δw(Δt1)=−a+e−Δt1/τ

+
(18)
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Thereafter, the LTD threshold restores exponentially to the resting value, which is
described by

vLTD
th (t)− (−vth0)=ΔvLTD

th e−Δt ′/τLTD
th ∝−e−(Δt1/τ

++Δt ′/τLTD
th ) (19)

where Δt ′ denotes the time difference t − tpost . Suppose that the time span of the
extra voltage δvLTD(t) ≡ Δv(t) − vLTD

th (t) is narrow (a sharp peak), the amount
of LTD is only proportional to the extra voltage at the time tpre,2 = Δt1 + Δt2 in
Eq. (19), so we have

ΔwLTD ∝ −δvLTD(tpre,2)≡−Δv(tpre,2)+ vLTD
th (tpre,2)

= −[Δv(Δt1 +Δt2)− (−vth0)
]− S(Δt1,Δt2) (20)

with

S(Δt1,Δt2)= Spe−(Δt1/τ
++Δt2/τ

LTD
th )

The term −[Δv(Δt1 +Δt2)− (−vth0)] in the right-hand-side of Eq. (20) is propor-
tional to the amount of LTD according to the pair-based memristive model, and the
second term S(Δt1,Δt2) gives the suppression on the LTD according to this model.
The suppression amount is determined by both Δt1 and Δt2.

Interestingly, this exponential dependence on the two time intervals agrees with
Froemke’s suppression model. According to the suppression model defined in Eqs.
(8)–(10), in the pre-post-pre case, the LTD corresponding to the second pair is

ΔwLTD = ε
pre

2 ε
post

1 F(Δt2)

= [1− e−(Δt1+Δt2)/τs
] ·A−eΔt2/τ−

= F(Δt2)− S̃(Δt1,Δt2) (21)

with

S̃(Δt1,Δt2)=A−e−(Δt1/τs+Δt2/τ
′
s )

where τ ′s ≡ τsτ−/(τ− − τs). The first term F(Δt2) in Eq. (21) is the LTD according
to the pair-based model, and the second term S̃(Δt1,Δt2) gives the amount of sup-
pression on the LTD according to the suppression model. The suppression amounts
S and S̃ are exponentially dependent on the two time intervals Δt1 and Δt2 in both
models. Hence, our memristive model and Froemke’s suppression model are equiv-
alent in this sense. It provides another expression of the suppression principle for the
triplet STDP rule. However, the difference from the suppression model is that the
memristive model imposes suppression on the following LTD or LTP caused by the
adaptation process in the synapse, instead of directly on the spikes. And as another
merit, the memristive model points out the origin of the STDP update function, the
shape of the action potentials and the thresholds, whereas in the suppression model
an ad hoc piecewise exponential STDP function is imposed.
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Fig. 8 Variable thresholds in
the biological synapse: (a) the
probability of release of
neurotransmitters Prel and
(b) the probability of the
postsynaptic channel opening
Ps (from [9])

5 Short-Term Plasticity Revisited

We are not intended to identify specific biological quantities for the variable thresh-
olds in this model, but certain relations may be addressed. Since STDP depends on
NMDA receptor activation or glutamate bound for presynaptic events, and on the
rise in the voltage-dependent influx Ca2+ concentration level and NMDA channels
for postsynaptic events, the variable thresholds are correlated with the probability
of release of neurotransmitters Prel and the probability of the postsynaptic channel
opening Ps (see Fig. 8). Both of the two probabilities reveal short-term plasticity by
exhibiting a rapid rise to a high level and restoring exponentially to the resting value
[9]. The short-term plasticity, pointed out by Froemke and Dan in [13], has now
been expressed by the adaptive thresholds in our model (compare to the trajectories
of the thresholds in Fig. 5).

We would argue that synapses with gap junctions may be regarded as a more
direct correspondance to the memristive model [9, 15]. Gap junction is an electri-
cally conductive link between two abutting neurons that is formed at a narrow gap
between the pre- and postsynaptic. Especially, like the memristor, current carried
by ions could travel in either direction through this type of synapse. The gap junc-
tion produces a synaptic current proportional to the difference between the pre- and
post-synaptic membrane potentials, which possesses a memristive nature. The vari-
able thresholds may hence be determined directly by inner electric properties of the
synapse.

What is the common point shared by these advanced STDP models, including
Froemke’s synaptic efficacy model, our adaptive threshold model and also the sec-
ond order memristive model proposed by Pershin and Di Ventra [16]? All these
models consider both long-term plasticity and short-term plasticity. The latter de-
termines the refractory time after spiking, and is responsible for producing specific
dynamics in the nervous system. The ubiquity of the existence of refractory time in
biological mechanisms is simply due to the fact that organisms need a duration of
time to recover from the release of energy or discharging and to prepare for the suc-
ceeding event. In Froemke’s model, the refractory time is expressed by the synaptic
efficacy, while this time is expressed by the restoring time of the thresholds in our
model. In the second-order memristive model in [16], the refractory time is realized
by the second state variable of the memristive system. Their formulation reads as
follows:
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i = x−1Δv (22)

ẋ = γ
[
θ(Δṽ − 1)θ(ỹ − 1)+ θ(−Δṽ − 1)θ(−ỹ − 1)

]
y (23)

ẏ = τ−1[−Δv θ(Δṽ − 1)θ(1− ỹ)−Δv θ(−Δṽ − 1)θ(ỹ + 1)− y
]

(24)

where x and y are the first and second state variables, respectively. The memristance
can change when y decays but is greater than a threshold yt . The variable y excited
by a certain polarity of the voltage Δv applied to the memristive system cannot
be reexcited by a pulse of opposite polarity if |y| ≥ yt . This introduced a refrac-
tory time that forbids an immediate change in the memristance (synaptic weight) in
the opposite direction, which shares a common spirit of our model that raises the
opposite threshold temporarily.

The latter two models based on memristive systems are very promising for the
use in the memristive neural networks since additional hardware is largely saved.
But such memristive systems need to be developed. At the current time, memris-
tor emulators, as used in [17, 18], can be regarded as a kind of straightforward
implementation. However, our model gives a clear physical meaning about the de-
vice to be implemented. The necessary property of such a memristor is controllable
thresholds, which can be changed with external electric signals. This can possibly
be realized based on an existing type of memristor or on a new physical mechanism.
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Memristors and Memristive Devices
for Neuromorphic Computing

Patrick Sheridan and Wei Lu

Abstract Memristors are an important emerging technology for memory and neu-
romorphic computing applications. In this chapter, we review the fundamentals of
the memistor framework developed by Leon Chuan nearly 40 years ago, and exam-
ine resistive switching phenomena as the quintessential example of physical mem-
ristive systems. A special focus is given to the hardware emulation of biological
synapses using memristors and groundbreaking results in the field are reviewed. Fu-
ture research directions with spiking neural networks are outlined and the exciting
prospect of emergent behavior in memristor networks is discussed.

1 Introduction

The exponential growth in computing power over the past half century has revo-
lutionized nearly every aspect of society from communication to medicine. This
impact has largely been fueled by the continued shrinking of transistors that con-
trol the flow of information in computing hardware. However, this trend is increas-
ingly challenged by the technological limits related to device nonidealities, power
consumption and the ability of traditional hardware designs to tackle the data del-
uge and massively parallel requirements of today’s computing tasks. Going beyond
Moore’s Law, which has guided the doubling of transistor counts approximately
every two years, novel nanoelectronic technologies offer not only a possibility of
continued transistor scaling with decreased size and power consumption, but also
new computing paradigms like neuromorphic designs, which take inspiration from
the incredible computing power of the brain.

In this chapter, we will review the mathematical underpinnings of the memristor
and more generally, memristive systems in order to better understand the frame-
work in which resistive switching phenomena is best understood. We then discuss
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two classes of material systems that display continuously tunable, analog memris-
tive behavior, focusing particularly on anion (e.g. O−

2 or oxygen vacancy) based
devices. Potential uses for memristive devices are discussed and key experimen-
tal results are presented that demonstrate the core concepts in emulating biological
computing/learning rules for neuromorphic applications. Two important network ar-
chitectures are reviewed to understand how memristors can be interfaced with con-
ventional systems. Finally, emergent and self-organizing behaviors on the network
level that suggest a radical paradigm shift in computing are reviewed.

2 Mathematical Definition

2.1 Memristor—Strict Definition

The memristor—a portmanteau of memory and resistor—was conceptualized in
1971 by Leon Chua [1], who noticed that, while there were circuit elements relating
voltage and current, charge and voltage, and current and magnetic flux—namely the
resistor, capacitor, and inductor, respectively—there was no circuit primitive relat-
ing charge and magnetic flux. Chua termed this hypothetical element the memristor
and described it mathematically as:1

dφ(q)

dq
=M(q) (1)

dq

dt
= I (t) (2)

where

φ is the magnetic flux, q is the electric charge, and I (t) is the current
M is called the incremental memristance

Although it remains experimentally challenging to find a device that fits this linear
memristor description, the central concept—that the device resistance is determined
by an internal state variable (in this case q) which is not solely governed by the
instantaneous inputs (voltage or current) but rather evolves according to a dynamic
rate equation (Eq. (2))—allows the development of the unified memristive systems
framework. Nearly 40 years later, this framework was found to be able to explain
various resistive switching phenomena [2, 3]. It now provides a robust mathematical
foundation for the understanding, design, and application of memristive devices.

1The equation listed is for a charge-controlled memristor; [1] includes a definition for flux-
controlled memristors as well.
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2.2 Memristive Systems

A few years after Chua’s original publication, the concepts of memristors were gen-
eralized to describe an expanded class of devices known as memristive systems by
Chua and Kang [4]. Rather than being restricted to a single state-variable and a
linear, flux or charge-driven equation, the concept of memristive systems provides
a much more generalized framework to describe any physical system that is gov-
erned by an (or a set of) internal state-variable(s), �s (denoted as a vector). So the
input-output relation can be written as

�y(t)= g(�s, �u, t)�u(t) (3)

while the rate equations can be written as

d�s
dt

= f
(�s, �u(t), t

)
(4)

where

�u(t) represents some input (e.g. voltage) to the system, and
�y(t) represents the output (e.g. current).

A key characteristic of the memristive systems is that the internal state variable, �s,
cannot normally be determined directly from the instaneous inputs. Rather, only the
dynamic rate equation (4), of the state variable can be determined. While superfi-
cially simple, by choosing the proper dynamic rate equation (4) (which depends only
on the current state, the instantaneous input—and not previous inputs, and possibly
the time), and the input-output relation (3), systems described by this framework can
exhibit complex, hysteretic behaviors that were only explained phenomenologically
previously.

It has now been accepted that all resistive switching devices [5] can be modeled
in the memristive system framework by choosing the right state variable and input-
output and rate equations. This allows for an intuitive understanding of the switching
dynamics and the ability to predict the evolution of the state variable as well as a
straightforward way to develop device models for circuit-level simulation programs
such as SPICE. Following the spirit of [4] and for convenience purposes, we will use
the name “memristor” to represent the generalized memristive systems throughout
the discussion.

3 Material Systems

Resistive switching systems can be characterized by the physical phenomena that
give rise to their memristive behavior and can be broadly categorized as unipolar
and bipolar, depending on the voltage polarity of the set and reset processes. While
there are many interesting results and applications in both categories, in the interest
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Fig. 1 Example of single memristive device formed at the intersection of two nanowire elec-
trodes. (a) TEM image showing conductive filaments in nanoscale gap between electrodes (scale
bar is 200 nm) [14]. (b) Current-voltage hysteresis loop, characteristic of memristor devices [2].
(c) Schematic of device used to emulate biological synapse [15]

of space, this chapter focuses on bipolar memristive devices where resistive switch-
ing is driven by electrical inputs (although sometimes facilitated by heat as well)
[6]. In such devices, the resistive switching effect can be explained by the forma-
tion/dissolution of a conducting region inside an otherwise insulating medium, and
the state variable is typically the size (e.g. area or length) of the conducting region.
Below we discuss two different types of devices where the conducting regions are
formed by the injection and accumulation of cations (e.g. metal ions) and anions
(e.g. oxygen ions or oxygen vacancies in a metal oxide), respectively.

3.1 Cation Migration

Under the influence of a strong electric field (on the order of 107 V/cm) metal atoms
can be ionized and become mobile within an insulating material. This forms the
basis of operation for memristors based on cation (metal ion) migration. The de-
vice structure used in these memristors is typically that of a metal-insulator-metal
(MIM) or metal-insulator-semiconductor (MIS) stack as shown in Fig. 1. The insu-
lating material serves to isolate the top and bottom electrodes when the device is in
the OFF, or high-resistance, state and can be composed of many materials, notably
chalcogenides [7, 8], SiO2 [9], HfO2 [10], ZrO2 [11], or amorphous-Si [12, 13].
When sufficient voltage is applied to the top active metal electrode, metal ions can
be disassociated and migrate into the insulating matrix and eventually form a con-
ductive path that electrically connects the two electrodes either through a physical
conductive bridge, or by narrowing the gap enough to allow electron tunneling.

Devices based on metal ion migration typically require an initial forming step as
well as higher programming voltages because of the relatively high energy barriers
that must be overcome to cause ionization and ion movement [8, 16]. In operation,
the devices often exhibit digital behavior with abrupt resistance changes. Digital
switching is often advantageous for conventional memory applications; such devices
are termed conductive-bridge random access memory (CBRAM) [17]. However, by
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careful material engineering (e.g. by doping an amorphous Si film with Ag atoms),
incremental analog switching, which is more useful for neuromorphic application
has also been obtained [18].

3.2 Anion Migration

In transition metal oxides, the mobility of oxygen vacancies (missing oxygen atoms,
analogous to ‘holes’ in semiconductor electronics) can be much higher than that of
the metal ions, so the resistive switching can be dominated by anion migration in
such materials. In this case, an active metal electrode is no longer necessary and
in fact should be avoided. Like the metal ion migration based devices, a MIM or
MIS structure is used with the insulating material typically a transition-metal oxide
such as TiO2, WO3, HfO2, or Ta2O5, among many others [2, 18–20]. These mate-
rials often contain structural defects where an oxygen atom is not available to bond
with the metal, formed either during deposition or through an electroforming pro-
cess. Materials with a significant number of defects are denoted using an ‘x’ in the
chemical formula, HfO2−x, for example. The redistribution of the oxygen vacancies
changes the local conductivity of the film [18], and creates the conduction channels
in the oxide.

Similar to the cation migration based devices, both abrupt digital switching and
incremental analog switching devices can be obtained in the anion migration based
devices as seen in Fig. 2. However, given that the oxygen vacancies are ‘intrinsic’
to the film, which eliminates the harsh forming process, and that the activation en-
ergy for anion migration is typically lower than that for cations, controlled analog
switching is more easily obtained in anion migration based devices which makes
them well suited for memristor-based neurmorphic systems.

3.3 Modeling

All resistive switching devices can be modeled by mapping the physical processes
that underpin their operation to the memristive framework set out in Eqs. (3), (4)
[4]. The key is in identifying a state variable that accurately captures the important
aspects of the system and then describing its dynamic, time evolution in response
to the memristor’s inputs. The first use of the memristive framework to describe
resistive switching appeared in [2], characterizing the behavior of TiO2 devices.
Here, the memristor was composed of two adjacent regions, doped and undoped
with oxygen vacancies, with a movable boundary between the regions while keep-
ing the overall film thickness fixed as shown in Fig. 3(a). This was modeled as
two resistors, R1,R2, connected in series, with R1 < R2 where R1 represents the
resistance of the doped region and R2, the undoped region. The state variable, w,
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Fig. 3 (a) Schematic device model of doping-modulated device, (b) modeled as two series resis-
tors. (c) Time dependent voltage-current relationship. Reprinted with permission from [2]

represents the length of the doped region. The governing equations for the system
are given as:

v(t)=
(

RON
w(t)

D
+ROFF

(
1− w(t)

D

))
i(t) (5)

dw(t)

dt
= μv

RON

D
i(t) (6)

where:

v(t) and i(t) are the voltage and current, respectively
RON and ROFF are respectively the doped and undoped resistances
D is total device length, and μv is the voltage dependent vacancy mobility

Although the original HP model successfully linked the resistive switching phe-
nomena with the memristor model and captures many key features such as the
pinched-hysteresis and frequency dependence, the two-resistor-in-series model is
too simplified and did not quantitatively capture the switching behavior well. In
particular, for metal-oxide memristors based on anion migration, evidence suggests
that the incremental conductance increase is caused by the increase of the conduc-
tion region area, rather than its length and an improved model based on conduction
region area is given in [23]. Because of the relatively high mobility of oxygen vacan-
cies in transition metal oxides, it is easy for vacancies to traverse the oxide, and thus,
many conductive paths are formed in parallel. In aggregate, this can be viewed as a
conductive region with variable width (or equivalently, area or number of conduc-
tion paths, Fig. 4). This is essentially modeled as two resistors in parallel (Fig. 4(b)),
one with a high conductance representing the oxygen vacancy-rich region, and the
other a low conductance for the oxygen vacancy-poor region, with the state variable
representing the relative width of the vacancy-rich region:

i(t)= (1−w)α
(
1− exp

(−βv(t)
))+wγ sinh

(
δv(t)

)
(7)
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Fig. 4 Model of conductive path width modulation. (a) Schematic and (b) model showing par-
allel conductive paths [23]. (c) Simulated programming using positive (black) and negative (red)
pulses [24]

dw

dt
= λ sinh

(
ηv(t)

)
(8)

where

w is the state variable
α,β, γ, δ, λ, η are fitting parameters

Note here the conduction region growth rate, λ sinh(ηv(t)), does not depends on the
state variable itself due to the parallel growth nature, in contrast with the length-
growth model. Additionally, a decay term, −w

τ
, can be introduced to the dynamic

equation (8) to account for the spontaneous decay of the conduction region (e.g. due
to diffusion), so Eq. (8) can be written as

dw

dt
= λ sinh

(
ηv(t)

)− w

τ
(9)

This spontaneous decay term causes the state variable to lose its state and can
be naturally used to emulate short-term memory in biological systems, as will be
discussed in Sect. 4.2.2

4 Synaptic Plasticity

The two-terminal nature of memristor devices and their ability to change conduc-
tance when stimulated with voltage pulses and evolve into states based on input
history make them almost ideal electronic analogues of biological synapses. In ad-
dition, memristors can be readily implemented in a crossbar architecture, which
offers the adaptivity, high density, and large connectivity needed for neuromorphic
applications [25]. While memristors can be used to store a static weight as an ana-
log resistance value in, for example, conventional artificial neural networks, anionic
based devices offer more complex internal dynamics that can be used to implement
different bio-mimicking learning rules as well. Therefore, in the following section,
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following a brief overview of synaptic weight storage in memristor memories, we
will focus primarily on spiking neural networks, which are more efficient than non-
spiking networks and whose incorporation of time allows the model to naturally
make use of the rich internal dynamics found in vacancy based devices.

4.1 Memristors as Weight Storage

A key feature of neural networks is the ability to compute with memory, where
computation is distributed and performed with localized memory storage. Mem-
ristor memory arrays, with the ability to provide high density, random access and
analog storage, can be integrated locally with computing elements thus providing
the most flexibility in network learning algorithms. In this context, the memristive
array behaves like a conventional memory: weight values are calculated outside of
the array and then programmed to the correct addresses; the weights are then re-
trieved when needed by the algorithm. If the cells have a natural decay, the weight
values must be periodically refreshed in a manner similar to DRAM. The benefit to
this approach is its flexibility as virtually all existing neural network algorithms can
be implemented with the right design. For example both local and non-local learn-
ing algorithms, such as the popular backpropagation of error, can be implemented
in a straightforward way. The approach, however, does not take full advantage of
the high connectivity, or internal dynamics offered by these devices.

4.2 Synapse Emulation

A more elegant but challenging approach to memristor-based neuromorphic systems
is to use memristors to directly implement the learning rules. In general, biologically
plausible network operation requires that the learning rules use only information
that is local to the synapse. For example, in spiking neural networks, the weight
update algorithms should depend only on the firing times and rates of the pre- and
post-synaptic neurons and internal synaptic variables. The idea, known as the Hebb
Postulate, after Donald Hebb [26], is commonly summarized as ‘cells that fire to-
gether, wire together.’ The results are attractive from a circuit integration standpoint
since it limits the length of signal routing for parameter calculations and precludes
the need for global clock distribution.

A general model for localized spiking neuronal plasticity is given by [27]:

d

dt
wji(t)= a0 + a1Si(t)+ a2Sj (t)+ a3Si(t)S̄j (t)+ a4S̄i (t)Sj (t) (10)

where:

wji is the synaptic weight between neuron i and neuron j
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Sk(t) is the spike train of the k’th neuron (given as a sum of time-delayed Dirac
deltas)

S̄k(t) is the low-pass filtered version of Sk(t)

The particular choices of the constants a0, . . ., a4 determine whether the network
exhibits Hebbian or anti-Hebbian learning, memory decay, facilitation/inhibition,
etc. It should be noted that these could also be functions of wji in order to implement
long-term potentiation/depression, or other complex behaviors.

4.2.1 Spike Timing Dependent Plasticity

One prominent example of a biologically plausible learning rule is that of spike
timing dependent plasticity (STDP). This Hebbian-derived learning rule specifies
that the synaptic efficacy is increased when a pre-synaptic neuron spikes before a
post-synaptic neuron, while the efficacy is decreased if, in the reverse situation, the
pre-synaptic neuron spikes after the post-synaptic neuron. Furthermore, the closer
in time the two spikes, the greater the change as seen in Fig. 5.

Using a common exponentially decaying STDP model, the change in synaptic
strength for a single pair of pulses can be calculated with the following equation,
given by [28]:

Δwij =
{

A+ exp(−Δt/τ+) if Δt > 0

A− exp(−Δt/τ−) if Δt < 0
(11)

where

Δwij is the amount by which weight wij is changed
Δt = tpost − tpre , the delay between the post- and pre-synaptic neuron firing
A+,A−, τ+, andτ− are fixed parameters, with A+ ≥ 0 and A− ≤ 0

STDP has been demonstrated in memristive systems using carefully designed pulse
patterns to effect the proper conductance change [29]. In general, pulses are sent
from the pre- and post-synaptic neurons to both terminals of the memristor. The
pulses are of such an amplitude that, arriving alone, each will have minimal effect
on the state of the memristor; arriving together, however, their overlap in time will
cause a measurable change. The task is then to design circuitry that converts the
relative timing of the pre- and post-synaptic spikes into pulses, modulating either
the pulse width or pulse shape, to create an overlap which changes the memristor
to different conductance states. Additionally, in order for this approach to work,
the memristance change needs to be nonlinear in voltage, i.e. exhibit a threshold
effect. This non-linear behavior is indeed typical in experimentally demonstrated
memristor devices, as the ion motion is, to first order, exponentially dependent on
the applied electric field, as seen from Eq. (8) To convert the relative timing in-
formation into different pulse shapes, an approach like the one shown in Fig. 6 is
typically used [30, 31], which shows the pre- and post-synaptic pulses as well as the
resultant waveform as seen by the memristor. The relative timing between the pulses
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Fig. 5 Demonstration of
STDP in WOx (a), and rat
hippocampal neurons (b).
Here ΔSpike Timing =
tpre − tpost . Reprinted with
permission from [15] which
sourced (b) from Bi G.Q.,
Poo M.M., J. Neurosci.
18(24) (1998) and (b, inset)
from Kaech S., Banker G.,
Nat. Protoc. 1(5) (2006)

determines the polarity and degree of overlap, and thus the direction and magnitude
of the conductance change. By choosing different pulse shape designs, previous
work has investigated the implementation of different types of STDP rules includ-
ing complementary-square, triangle, and exponentially decaying wavelets [25, 31].

4.2.2 Short-Term Plasticity

Beyond first-order changes in their conductance in response to an applied external
signal, some memristor devices exhibit complex internal dynamics that demonstrate
interesting and potentially useful behaviors that occur on a shorter timescale. Ag2S
and WO3 memristors, for example, have been shown capable of reproducing short-
term dynamic responses known as short-term plasticity [32, 33].

In biological systems, short-term plasticity, both potentiation and depression,
usually occurs on the timescale of milliseconds, in contrast to the more permanent
changes associated with long-term potentiation and depression where the effects can
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Fig. 6 Example waveforms implementing STDP on a memristive element. (a) The first and sec-
ond rows show pulses emitted by pre- and postsynaptic neurons, respectively, while the third row
shows the combined voltage signal seen by the memristor. The dotted line represents a threshold
beyond which the memristor changes its state significantly. Potentiation results when the presynap-
tic neuron fires before the postsynaptic neuron, while depression occurs in the reverse situation.
(b) Effect of waveform shape on weight change (ξ(ΔT )) Reprinted with permission from [31]

range on the order of minutes, days, or even years, in the case of long-term mem-
ory. Specific examples of dynamic responses involving short-term plasticity include
post-tetanic potentiation and paired-pulse facilitation [33]. The general concept in
both examples is that, given a series of closely grouped pre-synaptic pulses (even
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Fig. 7 Dynamic synapse responses. (a) Rate dependent plasticity and (b) paired pulse program-
ming. Adapted with permission from [33]

just two, in the paired-pulse case), the pulses occurring later in the group have a
greater effect on the post-synaptic potential than do early pulses. Figure 7 shows
this experimentally; latter pulses deliver more current to the post-synaptic neuron
than earlier pulses. This is commonly measured as the ratio of the post-synaptic
neuron’s response to a latter pulse over the its response to an earlier pulse. Though
more often reported as an increase in the post-synaptic neuron’s firing probability
(a ratio greater than one), post-tetanic and paired-pulse depression have also been
observed.

In biology, short-term plasticity strongly affects learning effects. For example,
if the information is conveyed by the mean spike rate, the influences of short-term
plasticity is found to critically depend on the range of spike frequencies.

The key to implementing dynamic synapses in neuromorphic hardware is in iden-
tifying material systems that have a natural weight decay mechanism. In oxygen
vacancy based memristors, the decay results from the spontaneous diffusion of va-
cancies in the absence of an applied voltage. This has the effect of dissolving the
conductive channels and the redistribution of vacancies within the insulating ma-
trix. This effect can be modeled with the inclusion of a decay term in the mem-
ristive equations, as shown in Eq. (9). In general, if a0 in Eq. (10) is negative, the
memristive synapse gradually loses its programmed state.

Both facilitation and inhibition can be obtained in memristors exhibiting short-
term plasticity. Facilitation emerges as a competition between the decaying weight
and increase in synaptic strength as a result of repeated programming. Therefore,
synaptic efficacy will exhibit a frequency dependence with higher frequency spike
trains having a greater effect on post-synaptic membrane potential than lower fre-
quency trains, even when the number of spikes is constant, as shown in Fig. 7.
Inhibition can be demonstrated in some material systems if the undisturbed state of
the memristor is not the lowest conductance state. In this case, negatively biased
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spikes will decrease the conductance of the device, while diffusion will bring the
conductance back to an intermediate level.

4.2.3 Long-Term Potentiation and Depression

An obvious problem with synaptic decay is that the neural network will eventu-
ally forget what it has learned from the training phase. Fortunately, both biological
and memristive systems can transition from the short-term plasticity effects dis-
cussed in the previous section, to a long term regime known as long-term potentia-
tion/depression (LTP/LTD) so useful information can be stored more permanently in
the network. In oxygen vacancy based materials, this phenomenon is attributed to an
accumulation of oxygen vacancies to a level such that diffusive decay is less effec-
tive as migrating vacancies are likely to enter other conductive channels so outdiffu-
sion from different channels is effectively balanced out [33]. Figure 8 demonstrates
that as the device becomes more programmed (as a function of the number and fre-
quency of input pulses), the decay time-constant increases and thus the device will
lose its state more slowly.

5 Hardware Topology

5.1 Crossbar Architecture

To realize the benefits of memristor devices, ideally they will be implemented in the
crossbar array architecture which offers high density, random access and large con-
nectivity, as shown in Fig. 9. The configuration offers the highest packing density—
4F 2 where F is the minimum feature size—and can be fabricated over underlying
circuity to save space. Further, the regular pattern lends itself to novel fabrication
techniques such as nanoimprint lithography [34] or self-organization using diblock
copolymers [35].

The topology of the crossbar is particularly well suited to feed-forward artificial
neural networks. The network can be mapped into hardware by connecting an input
neuron at each top electrode (horizontal lines in Fig. 9) and an output neuron at each
bottom electrode (vertical lines in Fig. 9). In this configuration, each input neuron is
individually connected to every output neuron, with each connection implemented
as a memristive element. The memristors regulate the connection between the neu-
rons, serving as the synapses in the network.

One challenge for implementing the crossbar configuration is the leakage current
around devices in the high-resistance state; this is known as the sneak-path problem
as shown in Fig. 9(b). Given a crossbar array of devices, suppose a high-resistance
memristor, device A, is to be measured by applying a voltage across the device and
measuring the current. Undesirably, an additional current is able to flow through
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Fig. 8 Transition from short term to long term memory. (a) Frequency dependence of filament
strengthening in Ag2Smemristor, schematic shown in inset [32]. (b) Retention readings after a
variable number (N) programming pulses; data scaled by initial read current. (c) Intrinsic decay
constant, τ , versus stimulation number resulting from structural changes (inset). Adapted with
permission from [33]

Fig. 9 (a) Crossbar array. Each memristor forms a synapse between a pre- and postsynaptic neuron
[15]. (b) Sneak path problem in crossbar and (c) electrical equivalent. Desired current path shown
in green, while sneak path shown in red [37]

devices having low-resistance in the interconnected passive array; (one such possi-
ble path is highlighted in Fig. 9(b)). This additional current can yield an erroneous
measurement of the state of A. Possible solutions to the sneak-path problem include
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a selection device to block current in the reverse direction [36], complementary de-
vice configurations [37], current nonlinearity [38, 39], and various read schemes
[8, 40]. It should be noted that the sneak path problem worsens with increased ar-
ray size and the problem is more severe for analog arrays where different resistance
values need to be read out accurately (digital memory arrays can tolerate small read
margins more easily).

5.2 Hybrid Memristor/CMOS Circuitry

Memristors can be integrated directly on top of traditional complementary metal ox-
ide semiconductor (CMOS) technologies and connected through vias in an approach
known at CMOL [41], shown in Fig. 10(a), (b). By building up, rather than out, the
circuit footprint is reduced while at the same time shortening signal path lengths,
which, by decreasing capacitance, reduces power consumption and increases oper-
ating speed. Furthermore, using this approach allows for smaller arrays which can be
tiled while minimizing the amount of external decoding circuitry needed [41, 42].
Using smaller arrays partially alleviates sneak path problem because it limits the
possible number of parallel sneak paths that can form while also increasing read
margins by limiting sources of off-state leakage current. Prototype hybrid memris-
tor/CMOS circuits have been demonstrated successfully (Fig. 10(c), (d)) for mem-
ory and logic [34, 43], although multi-layer stacks with distributed interconnect pins
remain to be developed.

5.3 Emergent Behavior

Under certain conditions, even a network consisting of simple elements interacting
through a set of limited rules can display complex and interesting behaviors; the re-
sults are said to emerge from the network. The behavior is typically visible only at a
macroscale and is often hard to predict from the microscale interactions. Emergence
is found often in natural systems with the brain being a leading example. The coop-
erative actions of the brain’s billions of neurons, each acting locally, self-coordinate
to produce the complex range of behaviors observable in organisms.

The synaptic emulation capabilities of memristors make them an ideal platform
to implement neuromorphic systems that exhibit emergent behavior. In particular,
simulation studies have shown the use of memristive devices in self organizing maps
[45], associative memories [46], and cellular automata [47]. Using a broad defini-
tion, these examples demonstrate emergence through the self-coordinated efforts
of many devices using simple rules like STDP, and are able to produce complex
behavior that is ‘more than the sum of its constituent parts’ in an undirected way.

Emergence evolves out of responses to the rules of microscale interactions as
well as macroscale pressures exerted from the network. Requirements like sparsity
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Fig. 10 CMOL integration of nanoscale devices on top of CMOS. Schematic (a) cross-sectional
and (b) top view with underlying CMOS addressing [41]. Physical realizations in (c) TiO2 [44]
and (d) Ag/a-Si [43] (5 µm scale bar) material systems

[48], homeostasis [45], or competition and interference [49], coupled with the right
interactions, can create an environment such that the network will tend to evolve to
a useful or desired state. By defining an energy or error function, network evolution
can often be cast as an optimization problem.

The advent of so-called ‘third generation’ neural networks, those that incorpo-
rate neuron spike timing in an integral manner, promise to greatly increase the com-
puting power of neural networks, especially for temporal processing problems like
audition or motion analysis. Dynamic synapses, whose state and behavior is defined
by more than a single-valued weight, are thought to be an essential part of these
networks. Using oxygen vacancy based memristors with complex internal dynamics
that mimic the behavior of biological synapses offers a way to realize the computing
power of the brain in low power, emergent manner. However, though great strides
have been made in simulation [45, 47, 50], demonstrating emergent behaviors in
memristor-based neural networks remains to be realized and will likely become the
next milestone in memristor research.

Going forward, a key challenge is identifying applications that can benefit from
the added realism that dynamic synapses provide. Earlier work has demonstrated
that networks using dynamic synapses are more computationally powerful than net-
works with static (changing slowly and only during learning) weights [51], but adop-
tion has been slow for several reasons. Networks with complex synaptic behavior
are harder to train because there are more tunable parameters per synapse. Dynamic
synapses often incorporate several variables, modeling Ca+ dynamics, for example,
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each with an associated decay time-constant. While [52] has shown how gradient
descent can be used to tune these parameters, it is not yet clear how to do this is in a
biologically plausible manner. Since synapses are far more numerous than neurons
in a neural network, calculating synaptic dynamics also drastically increases the
amount of computation required to simulate a network on conventional computing
resources.

6 Conclusion

Memristors are an important emerging technology that will have a strong impact
on future computing development, both at the device, circuit, and architectural lev-
els. In this chapter, we have reviewed the mathematical principles of memristors
in general and then focused on anion migration-based devices as an example of
experimentally-demonstrated devices. This is followed by a discussion of the in-
teresting, synapse-like behaviors that arise from the internal dynamics of material
systems displaying analog behavior.

The further development of memristor technologies for conventional applica-
tions driven by an obvious market need, like non-volatile memory, will in turn aid
novel architecture research. Improvements in device performance in key metrics like
switching time, power consumption, on-off ratios, and retention will make neuro-
morphic design easier and more amenable to conventional analysis. On the other
hand, research for memory applications may tend to overlook the unique advan-
tages offered by material systems with intrinsic internal decay for applications like
dynamic synapses. Nonetheless, continued interest in bio-inspired computing will
likely make resistive switching technologies an important area of research during
the next decade.

We believe memristor-based neuromorphic computing is well positioned to rev-
olutionize computer architectures and the way we handle non-traditional computing
problems. Emergent behavior suggests a way forward in artificial intelligence de-
sign where, taking inspiration from the brain, neural networks are self-organized
with massively parallel processing and orders of magnitude greater connectivity
than is possible with traditional transistor technology alone. Progress will be made
through collaborative efforts of neuroscientists, network theorists, material scien-
tists, electrical and computer engineers, and computer scientists to bring together
diverse fields for gains in computing and neuromodeling.
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Bio-inspired Neural Networks

Andy Thomas and Christian Kaltschmidt

Abstract We describe a biological network and the principal mechanisms that are
responsible for learning and memory. We start with a description of the morphology
of these networks and their components, such as neurons and synapses. Then, we
will identify crucial components of the information processing, such as ion flux and
the induced mechanisms, e.g., long-term potentiation and depression. Next, we will
compare the behaviour of a memristive system with the mechanisms identified in
biological systems and present corresponding experiments and a few simulations.
Finally, we will present more abstract ways of using memristors to solve complex
problems.

1 Introduction

Memristors have attracted great interest for a variety of applications in recent years.
An obvious use would be as a memory device [17, 50, 52] or, more ambitiously,
a reconfigurable logic device [10, 11, 64, 88, 89]. However, the most interesting
implementation of memristive devices is neuromorphic computing.

Neuromorphic computing aims to use biological mechanisms operating within
the brain as a blueprint to construct novel computer architectures. Carver Mead
built the foundation of this field and proposed large-scale adaptive analogue systems
because of their robustness as well as good power efficiency [61]. The efficiency of
these systems is particularly promising, as shown in Table 1.

Despite its power efficiency and robustness, some tasks are very challenging for
the human brain, e.g., solving coupled differential equations. However, it is very
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Table 1 Comparison of the power consumption of three different ‘technologies’ [73]. A biological
neuron draws less power and consumes less area than a digital computer or silicon neuron

Digital computer Silicon neuron Biological neuron

Energy consumption (J/spike) 10−5 10−8 10−11

Size (µm2) 108 3× 103 10

easy to find a solution for this problem with the help of a von-Neumann/Zuse com-
puter [85, 92]. However, some tasks are also difficult for a state-of-the-art computer
system, e.g., driving a car through traffic in Rome. Therefore, a novel, fundamen-
tally different computer system would be useful. These systems would be based on
more brain-like principles and could excel at certain tasks. In particular, the new
computer system could have implemented parallel analogue processing.

2 Biological Mechanisms

In the following sections, we describe a biological network and the principal mech-
anisms that are responsible for learning and memory. We start with a description
of the morphology of these networks and their components, such as neurons and
synapses. Then, we will identify crucial components of the information process-
ing, such as ion flux and the induced mechanisms, e.g., long-term potentiation and
depression. Next, we will compare the behaviour of a memristive system with the
mechanisms identified in biological systems and present corresponding experiments
and a few simulations. Finally, we will present more abstract ways of using mem-
ristors to solve complex problems.

2.1 Connectome (Wires and Neurons)

One aspect of the complexity of nervous systems is their intricate morphology, par-
ticularly the interconnectivity of their neuronal processing elements. Neural con-
nectivity patterns have long attracted the attention of neuroanatomists and are now
the focus of large-scale projects such as the human connectome project [84]. Re-
searchers hope to unravel neuronal connections to understand personality. Two
methods have been used: measuring neuronal parameters such as axon diameters in
vivo by nuclear magnetic resonance (NMR) or reconstruction of connections from
serial sections magnified by electron microscopy.

2.2 Synapses (Resistance and Biochemistry)

Synapses are the ends of the connections within the nervous system. There are two
types of synapses: chemical synapses, which use neurotransmitters, and electrical
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Fig. 1 Neuron in a schematic view: Dendrites (input, via post-synaptic sites) are on the left; the
long cable is called the axon and ends with a pre-synapse

synapses, which provide direct electrical coupling to the synapsed cell. Neurons
are very polarised cells, with long (µm to m) and thin (in the range of 100 nm)
extensions (Fig. 1).

In a cable model, the neuronal extensions would be axons and dendrites origi-
nating from the neurons. At the end of these cables, chemical synapses could be
formed. The underlying biochemistry involves neurotransmitter-gated ion channels.
The neurotransmitters are stored in synaptic vesicles (see Fig. 2) from which they
are released into the synaptic cleft. This special type of connection has a direction
of use. Input is sensed mainly via the dendrites, and output is transmitted via the
axon. Depolarisation in the form of ion flux (e.g., sodium ions) travels from the
soma along the axon to its endpoint, the pre-synapse.

Vesicles are stored within this pre-synapse region that contain neurotransmitters,
such as glutamate for excitatory, positively acting neurons. When a neuron fires, it
generates action potentials, which can be detected as spikes with a height of several
tens of millivolts. These potentials ultimately lead to vesicle fusion and neurotrans-
mitter release, which diffuse out into the synaptic cleft. The neurotransmitter can
then interact with a receptor at the postsynaptic side. Many of these neurotransmit-
ter receptors are ligand-gated ion channels. Thus, the release of a transmitter leads
to ion flux from the extracellular site to the post-synapse. Numerous biochemical
feedback mechanisms operate on the synapse.

Activation of the gene expression programme via transcription factors ultimately
leads to long-lasting changes that are thought to be responsible for memory for-
mation. Analogous to computer memory, transcription factors activate specific ad-
dresses at the genome. The genes at these addresses could function to initiate further
gene expression programmes, such as a subprogramme. Alternatively, gene products
could be directly involved in memory formation by directing the growth of new con-
nections. For example, NF-kappa B activation is necessary for the growth of an axon
in vitro and in vivo [36].
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Fig. 2 Details of a chemical synapse. Neurotransmitters such as glutamate (Glu) are stored in
synaptic vesicles at the pre-synapse, which is located at the end of an axon. An axon can form more
than one synapse; these additional synapses are omitted for the sake of simplicity. When an action
potential travels through the axon towards the synapse, vesicle release results in the diffusion of
neurotransmitters within the synaptic cleft. These neurotransmitters can interact with neurotrans-
mitter receptors such as the NMDA receptor (grey rectangle), which opens a selective ion channel,
in this case, for calcium ions. During learning, long-term potentiation of the synapse activates this
calcium signalling, which in turn activates kinases. These activate transcription factors such as
CREB and NF-kappaB [41, 53, 59]

In addition to calcium, the post-synaptic glutamate receptors are permissive for
sodium ions, which generate a membrane potential. Thus, the influx of ions (e.g.,
sodium ions) can lead to the propagation of a changed membrane potential (see
charge propagation section below). In a reductionist view, synapses can be viewed
as resistors with tuneable resistance (memristors).

2.3 Charge Propagation and Re-amplification (Ion Flux)

Charge propagation in neurons can be described by the Hodgkin-Huxley (H-H) the-
ory of the action potential. Hodgkin and Huxley were the first to record an action
potential using squid axons. Using fine glass electrodes, they recorded potentials
within the squid axon, which was facilitated by the large size of these axons (ap-
proximately 1 mm in diameter) [34].

An action potential is described as a short voltage change from negative mem-
brane potential to positive values, followed by a rapid return to the base level (see
Fig. 3). This action potential is elicited when the potentials at the post-synapses
(e.g., dendrites) reach a given threshold.

Signal flows from the dendrites to the cell body to a region at which an axon
initiates (axon hillock, see Fig. 1). There are at least two types of electrical signals
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Fig. 3 Action potential recorded by Hodgkin and Huxley from a squid axon. Note the rapid de-
polarisation from approximately −40 mV to approximately +40 mV and the rapid decline with
an overshooting baseline. The time marks on the lower part of the image are two milliseconds.
Adapted by permission from Macmillan Publishers Ltd: Nature [34], copyright 1939

in the neuron: graded potentials and all-or-none action potentials. Graded potentials
travel short distances, are additive, and degrade with distance from the point of
origin. Action potentials can self-regenerate and thus do not degrade as they travel
down an excitable cell surface and are not additive. Voltage-gated sodium channels
are responsible for this property of action potentials.

The cell body and dendrites lack voltage-gated sodium channels, and thus, they
have only graded post-synaptic potentials. Because they have the potential for many
synapses, their effects can be cumulative (graded potentials are additive). If the sig-
nal is strong enough when it reaches the axon hillock, voltage-gated sodium chan-
nels are opened, initiating an action potential that travels faithfully down the axon.
If the signal is not strong enough to open these channels, the signal dies. Hodgkin
and Huxley deduced that the first phase of the action potential is a rapid inward cur-
rent of Na+ ions. This phase is followed by a slower outward current of K+ ions.
Furthermore, they concluded that the membrane had a selective permeability for
both ions and presented their data in a quantitative model (see below). Most spiking
models continue to use H-H equations.

More recently, Erwin Neher and Bert Sakmann (Nobel Prize in Physiology and
Medicine, 1991) developed the patch clamp technique, which allows the measure-
ment of pA ion flux through single channels. However, the model presented here
and the H-H equations are over-simplifications of the real situation in a neuron. One
can think of a neuron as a machine that performs computations at the subcellular
level. Thus, the dynamics of spiking activity and the interaction of electric charges
provide further levels of information processing. During the generation of an action
potential, electric charges that locally interact perform computations at a molecular
level within active neurons. A refined model of computation incorporates physical
interactions, which could develop during spikes (both axonal and dendritic), inter-
nal molecular processes, and the effects of neurotransmitters and generated electric
fields, which provide a continuous form of communication. Therefore, some scien-
tists consider the computation developed by electric interactions and that “memo-
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ries” could be stored within densities of electric charges in molecular structures; see
Aur et al. for more discussion [3].

2.4 Two Protypes of Neurons: Excitatory (Glutamatergic) and
Inhibitory (GABAergic) Neurons

There are many types of neurons, which can be characterised by their positions,
e.g., sensory neurons, which are the first neurons in a neuronal layer. Furthermore,
interneurons are neurons that connect to other neurons (the most frequent type).
Finally, motoneurons, which activate the muscles, can be considered the last layer
in a given network. Neurons can be classified by transmitter types. Initially, it was
thought that one transmitter is used for each neuron, but it is now known that some
neurons contain more than one transmitter. Embryonic stem cells can differentiate
into two major neuronal cell types [80]: activating (excitatory) neurons, which use
glutamate as a transmitter, and repressing (inhibitory) neurons, which use gamma
amino butyric acid (GABA) as a transmitter. Excitatory neurons can release gluta-
mate, which elicits an excitatory postsynaptic potential (EPSP). This is counteracted
by the action of the inhibitory neuron, which could induce an inhibitory postsynap-
tic potential (IPSP) [29]. The postsynaptic potentials are characterised by the po-
tentials of different ions: Na+ for EPSP and the counteracting Cl− for IPSP. In a
simple view, one part of neural computation occurs at the synapse, where a posi-
tively charged EPSP might be summed for the induction of an action potential.

2.5 Long-Term Potentiation

Long-term potentiation describes the process of a long-lasting change in the synap-
tic plasticity caused by stimulation of an excitatory pathway in, e.g., the hippocam-
pus. The NMDA receptor (see Fig. 2) at the post-synapse seems to play a critical role
in this process. In 1973, Bliss, Lømo and Gardner-Medwin reported on this process
in anaesthetised [9] as well as unanaesthetised rabbits [8]. Long-term potentiation is
believed to be responsible for storing information in the biological neural network,
i.e., for (part of) the memory function [7, 28, 63]. Figure 4(b) depicts an example
of this process [60]. The stimulus generates a long-lasting change in the efficiency
of the synaptic transmission. This change follows three characteristics, identified by
Bliss and Collingridge [7]: cooperativity, associativity, and input-specificity:

Input-specificity is the most obvious quality and will also be present in any ar-
tificial system. If a stimulus is sent through a fibre that is part of a network, only
the active pathway will be potentiated, and the plasticity of the other pathways will
remain the same [2, 54]. This effect is reproduced in Table 2. The active pathway
is potentiated to approximately 350 %, while the control pathway remains roughly
constant. The same behaviour will be observed in an artificial system as dictated
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Table 2 Population spike amplitude of an active as well as a control pathway before and after
stimulation. The amplitude was probed after 5, 10, and 15 minutes. Up to 17 matched-pair ex-
periments were performed. Adapted by permission from Macmillan Publishers Ltd: Nature [54],
copyright 1977

Post tetanus (min) Pre 5 10 15

Tetanised pathway (%) 100 390 380 332

Control pathway (%) 100 74 67 73

Fig. 4 Response to low- and
high-intensity spike trains
delivered after 10 min.
(a) The low-intensity train
(250 µV, 30 µs, 128
repetitions at 500 Hz) caused
a quickly decaying effect.
(b) The high-intensity train
(250 µV, 255 µs, 16
repetitions at 100 Hz) gives
rise to a long-lasting
response. Reprinted from
Brain research [60], with
permission from Elsevier

by general causality. The morphology/topology of the network is determined by the
electrical connections, and only the parts in which a current flows can be modified
by that current.

Cooperativity designates an intensity threshold to initiate the long-lasting re-
sponse in the synaptic pathway [60]. This response is depicted in Fig. 4. Two spike
trains with a spike amplitude of 250 µV are delivered to a biological system. One
train consists of spikes with a width of 30 µs (low intensity, Fig. 4(a)); the other
train is made of 255-µs spikes (high intensity, Fig. 4(b)). The response to the high-
intensity train is long-lasting, while the response to the low-intensity train decays
quickly, although the initial increase is approximately of the same amplitude. The
high-intensity train consists of fewer spikes (16) than the low-intensity train (128).
In a biological system, the exact response to a given spike train is a complex function
of parameters such as spike amplitude and width as well as repetition and repetition
rate [56].

The intensity threshold discussed in the preceding paragraph does not consider
two sub-threshold signals in the same channel. An example is illustrated in Fig. 5.
After four control measurements, a weak tetanus (spike train) arrives but does not
lead to LTP. The same is still true for a strong tetanus. We can only observe LTP if
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Fig. 5 Associative long-term
potentiation: Neither the
weak tetanus W nor the
strong tetanus S alone lead to
LTP. Only W+S combined
induce a long-lasting
response. Copyright (1983)
National Academy of
Sciences, USA [5]

both tetani are applied at the same time. This behaviour is called associative long-
term potentiation [51].

2.6 Long-Term Depression

We have seen in the last paragraph, that we can increase the synaptic plasticity
by stimulation of the excitatory pathways; thus, the opposite process should also
be possible, i.e., a decrease in the synaptic plasticity. This response is shown in
Fig. 6 by Goda and Stevens, which is similar to Fig. 4(b). The connection strength
is changed after the arrival of the stimulus. The plasticity increased in the case of
LTP (Fig. 4(b)) and decreased in the case of LTD (Fig. 6); thus, we could say that
LTD is the antagonist of LTP.

The process of adjusting the synaptic plasticity in a (biological) neural network
is generally associated with learning and memory [12, 30, 44]. In this context,
Manahan-Vaughan and Braunewell performed experiments in which a punchboard
with specific hole patterns was presented to rats, which revealed that exploratory
learning is connected to LTD [57]. Experiments by Ge et al. also indicate the impor-
tance of LTD in the learning process [32]. Two different LTD-suppressing agents
disturbed the spatial memory consolidation, while the LTP-blocking GluN2A an-
tagonist had no effect.

The described responses were observed at the single-neuron level, i.e., one neu-
ron connected to another single neuron. Other processes, such as long-term and
short-term memory and data retention in general, might not be explainable by inves-
tigating single neurons and their connections. For an overview on data retention in
humans, please refer to Rubin and Wenzel [74, 75]. Gene expression is particularly
important for memory processes in hour-lasting LTP and is activated by calcium-
ion-activated transcription factors (see the description of synapses above).
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Fig. 6 Long-term depression in hippocampal neurons. Low-frequency stimulation
(900 pulses@5 Hz) results in a long-lasting depression. Reprinted from Neuron [33], with
permission from Elsevier

Fig. 7 STDP: The EPSC
amplitude change is plotted
against the time difference of
the post- and the presynaptic
spike. Positive differences
potentiate, while negative
differences depress. Adapted
by permission from
Macmillan Publishers Ltd:
Nature [15], copyright 2007

2.7 Spike-Time-Dependent Plasticity

To understand the change in synaptic plasticity, we must identify a so-called learn-
ing rule. This learning rule determines when the connection strength is increased
and in which case the connection strength is decreased. The learning rule is a cru-
cial component of a neural network. In this context, Bi and Poo investigated the
plasticity change in interconnected neurons by analysing the timing of spikes [6].
They compared the spike timing of the pre- and postsynaptic neurons and plotted
the plasticity change vs. the time difference. The results of a similar experiment by
Cassenaer and Laurent are depicted in Fig. 7 [15].

We will examine three distinct examples to understand the meaning of Fig. 7.
First, we assume a postsynaptic spike a few moments after the arrival of the presy-
naptic spike, i.e., a positive spike timing. The postsynaptic spike was likely induced
(at least partly) by the presynaptic spike, and the plasticity is potentiated. Now, we
presume the opposite case: a negative spike timing, which translates into a post-
synaptic spike preceding the presynaptic spike. In this case, the postsynaptic spike



160 A. Thomas and C. Kaltschmidt

cannot be caused by the presynaptic spike, and the plasticity is depressed. Finally,
we cannot draw a conclusion if the two spikes occur more than a few milliseconds
apart. This overall behaviour is called spike-time-dependent plasticity (STDP) and
functions as a causality detector.

Spike-time-dependent plasticity is not the only possible learning rule, and STDP
alone might not be sufficient to implement a learning algorithm [78]. For more in-
formation, please refer to, e.g., Fusi et al. [31] or Carpenter et al. [14]. However, in
short, we could describe the requirements for a neural network [81]:

1. Neurons are connected to each other via synapses.
2. The neurons exhibit excitatory and inhibitory inputs and integrate the incoming

signals. They generate a spike once a threshold is reached, which also zeroes the
integration.

3. The synapses express long-term depression (LTD), long-term potentiation (LTP)
and spike-timing-dependent plasticity (STDP).

3 Implementations Using Memristive Systems and Conventional
Electronics

If we think about memristors in the context of artificial neural networks, we have
to consider the functionality of the memristor. Which part of the network will be
emulated by the use of memristors? The basic functionality of a neuron can be easily
mimicked by an electronic circuit, i.e., the integration of incoming signals until a
certain threshold is exceeded and a pulse is generated. However, the adjustment of
the synaptic plasticity according to particular learning rules can only be achieved
by employing many (100–400) transistors. Consequently, we present the use of a
memristor as an elaborated synapse.

3.1 (Leaky) Integrate and Fire Model

Before we turn to the memristors, we briefly recapitulate the functionality of the
(leaky) integrate-and-fire model. Investigations of information processing in a bi-
ological neural network date back more than 100 years, to research pioneered by
Louis Lapicque (1866–1952) [48, 49]. Thus, his model is known as Lapicque’s
model as well as the voltage threshold model: The information is transported via
short voltage pulses known as spikes. The incoming spikes are integrated in the
neuron, and the neuron releases an outgoing spike once a certain threshold is ex-
ceeded, which also zeroes the integrator. This model has been improved over the
last 100 years and is now known as the integrate-and-fire model [39, 42, 79, 82].

This basic behaviour can be reproduced by a simple electronic circuit, which
is depicted in Fig. 8 [43]. A capacitor is used to integrate the incoming signals.
Then, as an example, a 1-bit analogue-digital converter can be used to fire the spike
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Fig. 8 A basic
integrate-and-fire circuit
consists of a capacitor that
integrates the incoming
signals and a voltage
threshold detector that
produces the output spike and
discharges the capacitor

and close the switch. A possible implementation would be an oversampled ΔΣ-
modulator [4, 86]. Furthermore, the model circuit can be modified to mimic the
biological behaviour even more closely. A leakage current through the membrane
can be reproduced by a resistor connected in parallel to the capacitor, which is then
called a leaky integrate-and-fire model.

Because the described behaviour of the neuron can easily be achieved with con-
ventional electronics, we focus on the use of a memristor as a synapse in the follow-
ing sections of this chapter.

3.2 Long-Term Depression and Potentiation

In this section, we will examine the electronic implementations of long-term poten-
tiation and depression. The memristive system is generally used to provide synap-
tic functionality. The change in conductivity can naturally be associated with the
change in synaptic plasticity in a biological system.

We investigated the resistance change in metal-insulator-metal (MIM) junctions
with an insulator thickness of approximately 1 nm [45, 46]. These devices can also
be prepared with two ferromagnetic electrodes (FIF) and exhibit tunnel magnetore-
sistance [62]. This is a mature technology that is used in read heads of hard disk
drives [55] or in prototypes of magnetic random access memory [76] and can be
prepared on an industrial scale on 300 mm wafers [87]. Two conductance traces of
memristive magnetic tunnel junctions are shown in Fig. 9.

We observe long-term depression as well as long-term potentiation in our junc-
tions depending on the polarity of the delivered voltage pulse. Subsequent pulses
lead to a subsequent change in the resistance until an upper or lower limit of 6–
10 % is reached, while more recent experiments promise larger changes in opti-
mised materials. However, a general limitation of varying magnitude is present in
all experimental implementations of memristive systems.

The next example is research by Jo et al. [40], who used CMOS neurons in
two tiers: postsynaptic and presynaptic neurons, which also resulted in a global
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Fig. 9 Long-term
potentiation and long-term
depression in memristive
magnetic tunnel junctions.
The positive and negative
voltage pulses are delivered
after 4 min to induce LTP and
LTD, respectively

clock signal. The neurons were connected in a cross-bar geometry, i.e., every neu-
ron in the pre-tier was connected to every neuron in the post-tier through an indi-
vidual memristor. This arrangement also means that the synaptic plasticity can be
adjusted individually for every connection. The adjustment was performed using
programming voltage pulses, which were potentiating (3.2 V, 300 µs) or depress-
ing (3.2 V, 300 µs). They observed a continuous increase in conductivity, sending
approximately 100 potentiating pulses, followed by a continuous decrease in the
conductivity, which was caused by 100 decreasing pulses.

A similar experiment was conducted by Chang et al. [16]. They used tungsten
oxide as the functional layer in a device and explained the memristive operation by
the migration of oxygen vacancies at the tungsten-oxide/electrode interface. They
further presented a SPICE model to examine the results quantitatively. Other mate-
rial combinations are also possible, e.g., Cu2O was used by Choi et al. [18] to realise
LTP, LTD and STDP, which combines depression and potentiation following a par-
ticular learning rule and leads to spike-time-dependent plasticity, which is presented
in the next section.

3.3 Spike-Time-Dependent Plasticity

The idea to implement the STDP learning rule by the use of memristors devel-
oped immediately after interest in memristors was renewed. In 2008, Greg Snider
suggested that STDP could be realised by using memristive nanodevices to emu-
late synapses [78]. This continued an earlier work by the same author [77]. The
synapses were combined with CMOS-based neurons to obtain a neuromorphic cir-
cuit, and two electronic circuit symbols were used to indicate the neuron as well as
the synapse (Fig. 10). The same symbols are used throughout this chapter.

Snider’s approach is based on large-scale adaptive analogue systems and uses a
global clock signal, i.e., it is a synchronous implementation. Afifi et al. returned to
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Fig. 10 The circuit symbols
for a neuron with excitatory
and inhibitory inputs and the
circuit symbol for a
(memristive) synapse

Fig. 11
Spike-time-dependent
plasticity in magnetic tunnel
junctions

the idea to use STDP in artificial neural networks but suggested a system without
a global clock signal, i.e., an asynchronous approach [1], which matches a biolog-
ical system more closely. In the described case, an artificial neural network was
realised using the CMOL platform [83]. CMOL is a crossbar-based CMOS archi-
tecture, and established integrate-and-fire neurons were used (see Sect. 3.1 on the
integrate-and-fire model) [37, 38, 66]. A special spike form was essential for this
particular realisation of the STDP learning rule, although the implementation was
robust against variations of the ideal shape of the spikes.

We also observed STDP (Fig. 11) in our magnetic tunnel junctions [47], the po-
tentiation and depression of which are depicted in Fig. 9. The observed behaviour
is equivalent to that presented in Fig. 7, although the time scale is different: A sim-
ple two terminal device exhibits partial synaptic functionality. Thus, the described
experiment and other experiments by Jo et al. [40], Chang et al. [16] and Choi et
al. [18] are very promising for the future application of memristive systems in more
complex neural networks that are robust against component variability and degrada-
tion [61]. Consequently, we will introduce more complex systems in the following
paragraphs, starting with Pavlov’s dog, which is arguably the smallest system ex-
hibiting intelligent behaviour.

3.4 Pavlov’s Dog

Before we place everything in the context of neural networks, we will repeat the
main features of Pavlov’s experiment [68]: when food is presented to a dog, the
dog salivates. This is an unconditioned reflex. If a bell sound is played to the same
dog, no salivation occurs. Next, the bell is played every time the food is given. With
time, the bell becomes a conditioned reflex and leads to salivation, even if presented
by itself. The 1904 Nobel Prize in physiology or medicine was awarded to Ivan
Petrovich Pavlov
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Fig. 12 Basic electronic
circuit mimicking the
behaviour of Pavlov’s dog
with only five functional
components, as proposed by
Pershin and DiVentra. The
output at position 4 depends
on the input signals and the
plasticity of the two synapses

Fig. 13 The signals at the
positions 1 to 4 as indicated
in Fig. 12. First, the plasticity
of the second synapse is low
and suppresses the bell signal,
which is changed after the
learning period in which both
inputs are on at the same time

in recognition of his work on the physiology of digestion, through which knowledge on
vital aspects of the subject has been transformed and enlarged [67].

There is a very elegant experiment to demonstrate one important function of the
brain—associative memory—with just five functional components in an electrical
circuit: two synapses and three neurons. It was described in 2010 by Pershin and
DiVentra, who simulated the memristive behaviour using microcontrollers [69, 70].
The principal circuit diagram is depicted in Fig. 12.

Two input neurons are connected via two synapses to an output neuron. The data
are taken at four distinct parts in the circuit: (1) after the food neuron, signalling if
food is present; (2) at the bell neuron output, signalling if the bell is played; (3) at the
input of the salivation neuron but behind the synapses connecting the input neurons;
and (4) at the output of the salivation neuron, indicating if salivation occurs. Now,
we can observe the previously described behaviour of the actual dog if we examine
the signals at the indicated positions in the circuit. This response is illustrated in
Fig. 13.

First, we present the food and play the bell alternatively. The food induces a large
response signal at position 3, while the bell signal is suppressed. The behaviour
changes after a learning phase. In this phase, the food and bell are presented si-
multaneously. Subsequently, the synaptic plasticity changes according to the STDP
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Fig. 14 The axon model of
Hodgkin and Huxley consists
of several dissipatively
coupled hh-cells. Each cell is
composed of a capacitor
representing the membrane
capacitance, the sodium and
potassium channels and
additional leakage

learning rule. Now, even the bell input signal alone is sufficient to trigger a response,
i.e., salivation.

The connection between the bell and salivation can also be unlearned if the food
is presented without the bell several times. This effect can also be simulated using
the presented mechanisms, as demonstrated by Cantley et al. in 2012 using SPICE
(UC Berkeley, CA, USA) and MATLAB (Natick, MA, USA) [13]. A similar exper-
iment was performed by Ziegler et al. [91].

In the next section, we would like to introduce another key system in biology,
namely the Hodgkin-Huxley model and its relation to memristors as proposed by
Chua [21, 23, 24].

3.5 Hodgkin-Huxley Model

Before we present the connection of memristive systems to the Hodgkin-Huxley
model, we will introduce the model itself. The Hodgkin-Huxley model was devel-
oped by Alan Lloyd Hodgkin and Andrew Fielding Huxley, who shared the Nobel
prize in 1963 with Sir John Carew Eccles

for their discoveries concerning the ionic mechanisms involved in excitation and inhibition
in the peripheral and central portions of the nerve cell membrane [35].

The Hodgkin-Huxley model describes how a spike is initiated and conducted
through neural connections. Originally, they chose a giant squid for their studies
because of the large size of its axons. The diameter of the axon used to expel water
for locomotion is approximately 1 mm [90]. The Hodgkin-Huxley model is an elec-
trical circuit model that explains how the membrane potentials are conducted from
one cell to another cell through the axon, whose size facilitates the connection of
probes to measure the electrical potentials. Figure 14 depicts the principal electrical
circuit of the Hodgkin-Huxley model.

There are a total of four channels in the model, and we will describe Fig. 14
from left to right. The first channel corresponds to the membrane capacity and is
represented by a single capacitor. The next two channels represent the sodium and
potassium ions and can each be described as an electrical voltage and a variable
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Fig. 15 A modified axon
model with two memristors
replacing the variable
resistors of the sodium (2nd
order memristor) and
potassium (1st order
memristor) channels

resistor. The last channel is symbolised by a resistor and a third voltage source,
which corresponds to a leakage channel. In total, the external current and the circuit
lead to differential equations and, finally, to the Hodgkin-Huxley equations [35].

The axon can now be described as chains of Hodgkin-Huxley cells (hh-cells)
in which each cell is dissipatively coupled to the neighbouring cells. The dissipa-
tive coupling follows (in an approximation) standard diffusion equations and can be
modelled quantitatively [20].

In the Hodgkin-Huxley-model, the values of the circuit elements such as re-
sistances and capacitances are determined experimentally, and these resistances in
the potassium and sodium channels are time-varying resistances, i.e., the resistance
changes with time but not as a function of time, which is a general assumption in
basic circuit theory [19, 22, 23]. Another observation also puzzled researchers: the
squid axon exhibits inductive reactance in some experiments [25, 27, 58], which
was considered implausible [26].

In 2012, Chua proposed a modified Hodgkin-Huxley model to reconcile the para-
dox of the positive reactance and the missing magnetic fields due to the inductance.
This model replaces the two variable resistors in the potassium and sodium channel
with first- and second-order memristors, respectively. The modified circuit is shown
in Fig. 15 [23, 24].

3.6 Complex Problem Solving Using Memristors

There are more complex challenges that can be solved with the help of memristive
systems. Maze solving is an example that is not based on mimicking synaptic func-
tionality. A maze is a tour puzzle, i.e., a complex arrangement of pathways in which
the correct path must be found, e.g., the shortest path to enter and exit the maze.
Mazes have fascinated people since ancient times; the famous Cretan labyrinth is
described by Homer in the Iliad (Please note that we do not distinguish between
mazes and labyrinths in this chapter).

The primitive biological organism Physarum polycephalum can solve a maze in
which food has been placed at the entrance and exit. The maze solving was presented
by Nakagaki et al. in 2000 [65] and is illustrated in Fig. 16.
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Fig. 16 (a) The P. polycephalum was shaped into the form of a maze. There are 2× 2 possible so-
lutions: α1 (41 mm); α2 (33 mm); β1 (44 mm); and β2 (45 mm); all ±1 mm. (b) After 8 hours, the
organism selected the shortest path between the exit and entry points marked with food. Adapted
by permission from Macmillan Publishers Ltd: Nature [65], copyright 2000

Fig. 17 (a) A part of a simple maze in 2 dimensions with grey, solid walls and red, broken, possible
pathways. (b) An overlay of the memristor/switch checkerboard pattern and the pathways. (c) The
switches are on for possible pathways and off otherwise. Image redrawn from Pershin et al. [71]

First, the slime mould was cut into pieces and assembled in the shape of the
desired maze. The mould merged into a single piece while maintaining its shape
because plastic pieces of the desired shape were put on a food source (agar) and
the mould avoided the plastic. Next, the start and end points were marked with
agar blocks. The organism could then choose between 4 routes to reach both food
sources: (α1, β1),(α2, β1),(α2, β1), and (α2, β2). After 8 hours, the mould changed
its shape to that of a single tube connecting the two agar blocks via the shortest
possible path (α2, β1).

Pershin et al. used Physarum polycephalum as inspiration to solve problems
with the help of memristors [71, 72]. Here, we will examine their interesting maze-
solving scheme [71], as depicted in Fig. 17.

First, we examine the delineation of a given maze with memristors. The maze
and the possible pathways are shown in Fig. 17(a). The maze is superimposed on a
head-to-head and tail-to-tail checkerboard pattern of memristors in Fig. 17(b). Each
memristor is connected to the others via a switch at the ‘backside’. To encode the
pattern, the switch is closed for possible pathways and closed for blocked passages.
This leads to a configuration of memristors as illustrated in Fig. 17(c). A complete
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maze is prepared in the same way, and a voltage is applied across the entrance and
exit points of the maze to solve it. The solution is determined by a read-out of each
of the memristor resistances (all switches are put in the off state). The network
finds the shortest path, which is given by the lowest resistances, as well as all other
solutions. The resistance for each path is proportional to its length. The network has
no external clock and finds all of the solutions in parallel in one ‘step’, although
the additional read-out requires subsequent resistance measurements. It is a nice
example of a large-scale adaptive analogue system.

4 Conclusion and Outlook

In this chapter, we presented some bio-inspired neural networks that directly mimic
mechanisms such as long-term potentiation and spike-time-dependent plasticity and
more abstract processes such as associative memory. All of the presented work can
be implemented on a hardware level, which is a complementary approach to simula-
tions of the same mechanisms. In the future, more complex hardware implementa-
tions might be advantageous to a software approach because of the low energy con-
sumption, robustness and parallel processing capability. In all presented systems,
memristors were considered as the main functional element. Memristors have been
the focus of attention because a simple two-terminal device already exhibits par-
tial synaptic functionality and consequently promises good scalability. Other future
applications might include assistance systems or the tracking of robotic movement
with imperfect ‘muscles’ (motors).
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Abstract The self-organization of dynamical structures in complex natural systems
is associated with an intrinsic capacity for computation. Beginning from the context
of modern trends in neuromorphic engineering, this work introduces an effort to-
ward the construction of purpose-built dynamical systems. Known as atomic switch
networks (ASN), these systems consist of highly interconnected, physically recur-
rent networks of inorganic synapses (atomic switches). By combining the advan-
tages of controlled design with those of self-organization, the functional topology
of ASNs has been shown to produce emergent system-wide dynamics and a diverse
set of complex behaviors with striking similarity to those observed in many natural
systems including biological neural networks and assemblies. Numerical model-
ing and experimental investigations of their operational characteristics and intrinsic
dynamical properties have facilitated progress toward implementation in neuromor-
phic reservoir computing. These achievements demonstrate the utility of ASNs as a
uniquely scalable physical platform capable of exploring the dynamical interface of
complexity, neuroscience, and engineering.
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1 Introduction

Networks are universal [15, 40]. At all known scales of space and time, complex
patterns emerge from the dynamic relationships between basic building blocks [35,
123]. Whether random or ordered, static or dynamic, or somewhere in between,
natural systems can be described as networks. These networks, which by defini-
tion are open and correlated, have garnered substantial inquiry into their structure,
function, and evolution. When considering networks that describe the behavior of
the natural world, particular classes of complex topologies tend to predominate,
such as those with non-trivial connectivity termed either ‘small world’ or ‘scale
free’ [14, 142, 144]. Complex topology alone however does not beget complex
behavior. To date, research in the field of complex networks has largely focused
on either the dynamical aspects of network topology or the dynamical processes
generated from fixed, non-adaptive networks [22, 49, 52]. Concomitantly, the per-
petual interplay between structure and function is known throughout the natural
world [113, 123]. While it is common for scientific inquiry to begin either from a
phenomenological or reductionist approach [21, 24], a restricted view of any com-
plex system by definition fails to capture essential aspects of the structure. This is es-
pecially true for nonlinear dynamical systems, where feedback and memory effects
can amplify seemingly minor perturbations into large-scale changes of behavior.

Complex networks are inextricably linked to self-organization as a consequence
of interactions amongst their constituent parts [40, 96, 114], which not only produce
emergent correlations, patterns, and dynamical properties [7, 34, 35, 135] but also
render these systems adaptive and evolutionary [49, 52]. One great mystery of hu-
mankind is how a self-organized collection of relatively simple, nonlinear dynamical
elements known as the brain demonstrates such extraordinary efficiency in topol-
ogy [25], energy consumption [137] and capacity to integrate, segregate, and pro-
cess information [2, 130, 136]. Extensive efforts to describe the structural [68, 118]
and functional [18, 38, 43, 69, 92, 129] properties of the brain have exposed its com-
plex, dynamical nature [29, 44, 116, 117]. Of particular interest are those properties
considered emergent in that they belong to the system collectively rather than to
any isolated element of it [51]. For example, consciousness has been posited as an
emergent property of the brain, arising from nonlinear interactions between micro-
scopic components (neurons, synapses) throughout a hierarchy of brain structures
which produce macroscopic patterns of activity associated with conscious percep-
tion [29, 107, 128]. Accordingly, these patterns of activity have been analyzed in
great detail to understand their causal relationship with emergent, system-level func-
tions. A recurring theme in these patterns is the presence of scale-free, power-law
distributions such as the distribution of spatially and temporally correlated electric
spiking activity known as neuronal ‘avalanches’ [19].

For historical reasons, these observations of scale-free behavior are associated
with the concept of criticality. Referring generally to states where the correlation
length diverges, as during continuous phase transitions, critical systems represent an
interdisciplinary nexus combining research ranging from superconductivity to cos-
mology [12, 66, 132]. Systems exhibiting power-law behaviors have characteristic
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critical exponents associated with general classes of interactions [120]. Experimen-
tal determination of critical exponents provides an important link between theory
and observation, which is especially crucial when investigating dynamic networks
with complex topologies [41]. The behavior of such complex systems are difficult
to quantify, leaving a great deal to be inferred from simulations and models, in-
cluding basic questions as to which measureable physical quantities contain useful
information about the system [33, 126]. Despite the inherent challenges of char-
acterizing critical systems, extraordinary interest in the spatiotemporal properties of
brain activity has promulgated entirely new areas of research into the scaling laws of
neuronal dynamics [28, 29, 37, 53, 72, 81, 103], where the patterns of critical activ-
ity known as neuronal avalanches can be viewed as representing maximal efficiency
for information transmission and computation [19].

The concept of the brain as a computer has been part of the modern scientific
landscape for over fifty years following the path laid out by early researchers in cy-
bernetics [147] and Turing’s pioneering work [134]. This path has led to new fields
of research including artificial intelligence, neural networks, and neuromorphic en-
gineering [58, 90, 91, 106]. Connections between computation and the brain have
been studied extensively using artificial neural networks (ANN) [59]. Inspired by bi-
ological neural networks, ANNs consist of ‘neuron’ nodes connected by ‘synapses’
of variable strength and can be trained to perform a given task through algorith-
mic modification of the synaptic weights. A desired input-output relationship can
be generated for a known set of examples, after which the ANN can be used to
process unknown inputs. This general framework spans a vast parameter space:
network size, network topology, neuron activity thresholds, update rules, training
algorithms, etc., in which each independent task potentially has a unique optimal
configuration [57]. ANN research is consequently diverse, with some efforts fo-
cusing on designing biologically plausible networks and determining their general
properties (e.g. critical exponents), while others create and optimize ANN models
to efficiently perform specific, high-level tasks such as pattern classification, time
series prediction or nonlinear control [16, 152].

Some features of biological neural networks, such as their recurrent connectiv-
ity, are not readily implemented in ANNs. Recurrent neural network models are
problematic due to the presence of coupled feedback, which complicates the up-
date rules and destabilizes standard training algorithms [9, 77, 148]. These technical
difficulties have motivated the development of a new approach to recurrent neural
networks [83], termed reservoir computing (RC) [64, 86, 121]. The RC framework
starts with a complex recurrent network of nonlinear elements and that serves a kind
of filter that dynamically maps low-dimensional input signals to a high-dimensional
representation: the state of the reservoir. The recurrent reservoir does not need to
be trained in order to perform a useful task. Instead, linear classifiers external to
the reservoir can be trained to correlate the observed reservoir response to task in-
puts with the desired task output. A sufficiently complex reservoir should be able to
perform any computation, significantly outperforming conventional algorithms for
certain classes of problems [84, 109, 139]. Though simulation of recurrent reser-
voirs remains the norm, it is also possible to build one. Any device built to emulate
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the brain, with nonlinear functional elements possessing memory-dependent activa-
tion thresholds connected recurrently in a complex network, should be usable as a
hardware reservoir. The potential advantages of a hardware approach are quite clear
since device physics will instantly produce the entire reservoir response, which a
simulation will always need time to calculate.

Complex systems continue to inspire intense scientific inquiry, largely due to
their capacity to confound rigorous examination. To comprehend and harness the
dynamical properties of complex networks necessitates a new frame of reference:
one that explores the interface of mechanistic insight and observed behavior [70].
Exponential trends in the accessibility of quantitative data, availability of statisti-
cal methods, and capacity for computational analysis make the present a time like
no other to embrace such an ambitious endeavor [48, 88]. In this chapter, we have
set out to describe the context, motivation, approach, and progress in efforts to de-
sign and implement a physical system capable of generating the class of dynamical
properties found in complex networks, specifically the mammalian brain. By pro-
viding a brief background on the history, recent developments, and new directions in
neuromorphic engineering in Sect. 2, we lay a foundation for the concept of generat-
ing a dynamical neuromorphic system known as ASNs using highly interconnected
networks of inorganic synapses (atomic switches). Fabricated through a nanoarchi-
tectonic approach blending traditional top-down microfabrication with bottom-up
self-organization, these physical devices have been specifically designed to capture
emergent, network-level functionality. ASNs enable fundamental examinations of
complex systems as well as applications in neuromorphic computing. Section 3 de-
scribes recent progress in extending basic numerical modeling of individual atomic
switches to examine their emergent properties when embedded in a complex net-
work through simulation. The results of this study are compared to and validated by
our experimental results throughout the subsequent sections. Discussion of the oper-
ational device characteristics (activation, memristance, and plasticity) and emergent
properties (recurrent dynamics, harmonic generation, and criticality) provided in
Sect. 4 generates the basis for efforts to harness system dynamics toward poten-
tial applications in memory, learning, and neuromorphic computation described in
Sect. 5. Finally, we provide our perspectives and outlook for future developments.

2 Emergence of a Complex Neuromorphic Architecture

Modern computers can be functionally described as highly optimized Turing ma-
chines [134] operating in the Von Neumann paradigm [140]. Although impressive
engineering achievements in complementary metal-oxide semiconductor (CMOS)
technology have enabled nearly exponential increases in processing power and
data storage, this approach remains subject to well-documented fundamental lim-
its [45, 85]. Computational architectures produced in CMOS consume orders of
magnitude more space and energy than intelligent biological systems such as the
human brain [141]. In addition, their capacity for processing of multiple/distributed
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data sets in real-time is limited at best. Originally proposed by Carver Mead over
twenty years ago [91], the concept of designing biologically inspired systems for
information processing that could be realized in silicon-based CMOS technology
launched an entirely new field of research now known as neuromorphic engineer-
ing.

Since the early days of neuromorphic engineering, and in conjunction with ad-
vances in high-performance supercomputing, a myriad of implementations have
built upon very-large scale integration (VLSI) and/or parallel integration of neu-
romorphic components, circuits, and devices. The goal of such efforts revolved
around the design and construction of purpose-built systems largely optimized
for the execution of particular algorithmic operations or pre-defined symbol pro-
cessing tasks [39, 60, 62, 80, 119, 124, 131, 133]. Innovative hardware designs
have shown marked improvements in the density, flexibility, and performance
of neuromorphic circuits. This has enabled the modeling of biologically rele-
vant spiking neural networks at a fraction of the expense (time and energy) as
compared to their simulation-based counterparts carried out on traditional hard-
ware [3, 61, 104, 108, 119]. Extensions of these efforts to generate and simulate
multi-scale systematic maps of functional connectivity in the mammalian brain,
known as the connectome, have achieved a reasonable level of success consider-
ing the task complexity [6, 17, 38, 69, 88, 93, 115].

Despite substantial progress toward wafer-scale integration of neuromorphic
hardware, divergent views on the significance of connectionist approaches to neu-
roscience persist [94, 138]. There remains a basic gap between using neuromorphic
computing systems to simulate neurobiological function and the ability to harness
the essential nonlinear dynamics that enable processing, computation, and storage
of information in the natural cognitive systems. Within the past year, two highly
ambitious large-scale, international projects have been announced that represent
large-scale international collaborations which attempt to address these aspects of
next-generation neuromorphic computing systems: the Human Brain Project [89]
and BRAIN Initiative [4, 5]. These endeavors seek new fundamental insights into
how the brain ‘computes’ by considering structural and functional characteristics
that may represent the architectural basis of a new computational paradigm.

2.1 Inorganic Synapses

Recent focus in next-generation neuromorphic hardware [62, 67] has sought to di-
versify the efforts of beyond-CMOS technology [63] or the development of neu-
ronal circuitry [87, 91] toward emulating the operational behaviors of biological
synapses, which are the key players in mediating signaling within the vast network
of neurons that underlies cognition. Various concepts of ‘synthetic synapses’ have
been demonstrated or modeled which display long and short-term potentiation (LTP
and STP respectively), long-term depression (LTD), spike timing dependent plas-
ticity (STDP), and other neuroscientific phenomena [23, 26, 27, 31, 55, 56, 71, 74,
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Fig. 1 Memory behaviors of an atomic switch. Resistance switching and memory effects in an
Ag|Ag2S|Ag atomic switch stems from (a) the increased mobility (μv) and migration of Ag cations
under the influence of an externally applied electric field in simulation. (b) Sparse pulsing causes
cation reduction at the cathode to form a conductive Ag filament which quickly redissolves in the
absence of bias, and is observed as short term memory (STM). (c) Intensive pulsing (note time
axes) can cause a long term filament formation (LTM) due to any combination of (1) formation
of multiple filaments, (2) thicker, more stable filaments, or (3) forcing cations to irreversibly cross
grain boundaries unless the electric field is reversed. Thus, atomic switches may operate between
ON and OFF states, where the ON state has a slow (LTM) or fast (STM) decay time constant

75, 97, 102, 110, 119, 153]. Realization of the nanoscale memristor [32, 105, 125]
has thrust this class of two-terminal circuit elements into the limelight for applica-
tions in high-density data storage and computation [151] due to their fundamental
property, termed ‘memristance’. Defined as a relationship between charge and flux,
memristance imparts these nanoscale elements with a capacity for both volatile and
non-volatile memory capacity.

One member of this class of memristive systems is known as the atomic
switch [127]. Generally comprised of a metal-insulator-metal (MIM) junction,
atomic switches have been shown to clearly demonstrate quantized multi-state
switching as well as input-dependent memory analogous to the short- and long-term
memory observed in biological synapses [55, 95, 97, 98].

Atomic switches come in several forms, varying in the makeup of the electrodes,
insulating/interfacial region, and number of terminals. In all cases, atomic switches
represent a class of electroionic resistive switches known to operate through forma-
tion and annihilation of metallic filaments across an insulating gap. In particular, the
most well-known Ag|Ag2S system functions due to: (i) a bias-catalyzed phase tran-
sition between monoclinic acanthite (α) and body centered cubic argentite (β) Ag2S
and (ii) concurrent formation/dissolution of metallic filaments across the insulating
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gap [149] as seen in Fig. 1. Application of a bias voltage induces the formation
of nanoscale channels of conducting Ag2S across the interface through conversion
of the α-Ag2S matrix to the β-Ag2S phase with high ionic mobility. This transition
produces a weakly memristive or ‘soft’ switching behavior prior to the electrochem-
ical formation of metallic Ag filaments. Removal of the applied bias voltage allows
the metallic filament dissolve, restoring the thermodynamically favored, stoichio-
metrically balanced equilibrium state of Ag2S, thereby returning the atomic switch
to its initial high resistance ‘OFF’ state.

Sustained application of bias voltage generates increased flux across the inter-
face, driving migration of mobile silver cations toward the cathode where they are
reduced to Ag. This process results in the formation of a highly conductive nanowire
junction, the completion of which produces a strong transition to a low resistance
‘ON’ state. Completion and dissolution of nanowire filaments causes large, sudden
changes in conductivity, a strongly memristive behavior also called ‘hard’ switch-
ing. Reversing the polarity of the applied bias can oxidize the metallic Ag filament,
producing mobile cations and shifting the switch back toward the weakly memris-
tive regime. Under repetitive bipolar voltage stimulation, filaments continually form
and dissolve resulting in memristive switching characterized by frequency depen-
dent, pinched hysteresis conductance loops. Continued application of unipolar volt-
age stimulation reduces additional silver cations, causing both thickening of existing
filaments with time and the formation of additional filaments. These processes have
been shown to combine with the effect of grain boundaries within the Ag2S to alter
the decay time from the ‘ON’ to ‘OFF’ states. Large and/or quickly repeated stim-
ulation can cause Ag+ to migrate across grain boundaries, which then amount to a
barrier against equilibration once the bias is removed, slowing the rate of conductiv-
ity decrease. These changes in volatility have been interpreted as memory analogues
to the classic Atkinson and Schiffrin multi-store model of memory where sufficient
rehearsal shifts stored information from short- to long-term memory [55, 97, 98].

2.2 The Growth of a Concept

Neuromorphic device implementations involving synthetic synapses with nanoscale
dimensions are typically achieved in hybrid-CMOS/molecular CMOS [79, 82, 133,
153] architectures optimized for applications in memory and data storage. They em-
ploy either passive or active matrix crossbar-type arrays of isolated 2- and 3-terminal
elements. Arrays of this type can be readily interfaced with standard CMOS circuits,
allowing each synaptic element to be addressed individually in a programmatic fash-
ion. As in the case of traditional CMOS, these configurations are designed to elim-
inate unwanted cross-talk by preventing the coupling of individual active units to
either the environment or cross-talk to other device components. While the theoret-
ical limits of modern lithographic fabrication methods are somewhat known, limits
imposed by the functional materials themselves, e.g. gate dielectrics used to pre-
vent leakage currents and inter-device electron tunneling, must be considered in the
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Fig. 2 Top-down meets bottom-up in approaches to device fabrication. Crossbar arrays prepared
using top-down lithographic methods (a) provide independently addressable atomic switches in a
highly controlled architecture. Random networks of fractals, dendrites and nanowires prepared by
bottom-up self-organization (c) provide a complex interconnected network but with little control
over topology. A blend of top-down lithography to form the basic device architecture with bot-
tom-up self-organization through diffusion-limited electroless deposition (b) generates a designer
architecture with complex topology

scaling limits of modern devices [143]. Thus, the development of high-density ar-
chitectures remains at the mercy of not only the so-called ‘cost of wiring’ limit but
also the fundamental limitations of designing a system that relies on functional units
operating in isolation.

Atomic switches are no exception. Starting from their original form, which used
the tip of a scanning tunneling microscope to form and dissolve the metallic filament
across a controlled gap of nanometer dimensions, a diverse collection of operational
devices have now been demonstrated using both 2- and 3-terminal configurations.
While tremendous progress has been made in this effort, such highly controllable
architectures (as seen in Fig. 2a) are not complex networks with respect to either
physical interconnectivity or dynamical properties. They can only serve to emulate
or simulate complex networks by implementing designer algorithms. However, un-
foreseen discoveries sometimes open doors to exciting new concepts.

Ongoing efforts to increase device density by reducing the inter-component
spacing revealed interesting operational characteristics in some specific cases that
prompted new ways of thinking about possible neuromorphic device architectures.
Specifically, coupling between adjacent atomic switch junctions sharing a common
ionic conducting layer indicated what appeared to be a competition for available
metal cations between the switching junctions. These results suggested that the ef-
fects of local electroionic coupling might be applied in new device architectures that
exploit the non-trivial outcomes of interconnectivity commonly seen in complex
systems. What was needed was a feasible method for producing complex, highly
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interconnected networks of atomic switch interfaces that allowed individual units to
couple and interact recurrently. What was needed was a physical analogue to this
nanoarchitectonic concept [101].

Fabrication of such networks with nanoscale dimensions is not scalable from
a practical and economic viewpoint using traditional lithographic methods. Fortu-
nately, a large number of innovative, bottom-up approaches to nanofabrication based
on rational design and self-organization of functional materials have been developed
in recent years. Electrochemical deposition in particular has proven to be a versa-
tile technique for the production of metallic nanostructures ranging from coatings
to nanotubes. Given the makeup of the synaptic atomic switch (Ag|Ag2S|X where
X represents a metal), an interest in exploiting self-organization, and a wealth of
scientific literature on the generation of complex structures through the spontaneous
electroless deposition of silver, early attempts to produce the ASN architecture fo-
cused on a purely bottom-up approach. Random dispersion of copper microspheres
were used as seeds for a solution-phase galvanic replacement reaction with AgNO3,
generating dendritic silver micro- and nanostructures under diffusion limited re-
action conditions. Subsequent functionalization of the network via reaction with
gaseous sulfur was found to produce operational memristive switching devices with
this simple benchtop protocol [112].

While refining this bottom-up approach, an unexpected observation led to a fun-
damental insight into the electroless deposition process and a new idea for opti-
mizing the device fabrication process. Electroless deposition of silver from random
dispersions of Cu microspheres produced not only the expected fractal and den-
dritic structures previously reported for identical process conditions using bulk Cu,
but also interconnected nanowire networks extending over macroscopic distances
as seen in Fig. 2c. Parametric examination using both dispersed microspheres and
lithographically patterned Cu grids revealed a previously unreported morphological
transition in the electroless deposition process as a function of the Cu seed size.
At a given AgNO3 concentration, larger Cu seeds consumed the available silver
cations faster than diffusion replaced them, causing Mullins-Sekerka instabilities to
form and propagate along the growth front, shaping the deposit into the familiar
self-similar dendritic morphology [11]. For seeds smaller than the critical size, lo-
cal crystalline anisotropy dominated the growth process, producing nanowires as the
growth front advanced into the bulk solution fast enough to avoid Ag+ depletion and
dampen nascent instabilities. The pitch/spacing of the seeds themselves also showed
a marked effect on both the density and apparent connectivity of the self-organized
network structure as seen in Fig. 2b. These observed dependencies represent an im-
portant fundamental insight into nonequilibrium growth processes and provide new
control parameters for the directed assembly of metallic nanostructures with specific
morphology toward the goal of generating a complex, designer networks of inter-
connected metallic nanostructures. Functionalization of these optimized nanowire
architectures has resulted in ASNs composed of more than 108 individual inorganic
synapses/cm2 and drastic improvements in operational device yield [10, 122].

Developments in network and device design have continued to focus on com-
bining top-down lithographic patterning with bottom-up self-organization to cre-
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ate a fabrication scheme that maximizes the benefit of each approach. By extend-
ing this methodology, one can envision the design and fabrication of increasingly
complex, hierarchical network architectures. In addition, the device architecture is
readily scalable to the limits of current lithographic processing methods commonly
used in VLSI microfabrication on 300 mm silicon wafers. Most recently, distributed
electrode arrays similar to those used in experimental neuroscience to examine the
electrical activity of neural cultures and cortical slices have been embedded in ASN
device architectures. These electrodes provide the requisite capacity to probe the
system using real-time electrical inputs and outputs with spatial specificity, enabling
more detailed analysis of system dynamics.

2.3 Dynamical Circuits

Neuromorphic design strives to build the same adaptive, learning capacity found in
biological neural networks into an electronic device. However, establishing specific
connections between patterns of electrical activity and brain function is a difficult
task. Indeed, there is as yet no Rosetta Stone of cognition. To construct a device ca-
pable of learning in a physical sense, the neuromorphic engineer must study general
features of neuronal structure in order to determine which properties are essential.
These features are believed to include at least synaptic plasticity, allowing physical
reconfiguration of the network to enable functional differentiation and the devel-
opment of hierarchical structures [1]. These hierarchies include recurrent amplify-
ing loops [42] and feedforward transmission subassemblies [47], which all possess
correlated memory distributed throughout the dynamically coupled synapses [50].
Therefore, it can be inferred that learning capacity is connected to dynamic activity
within the brain. Specifically, a near-critical or ‘edge of chaos’ operational regime
has been associated with the fast, correlated response to stimulation necessary for
computation [76] and learning [20, 78]. Periodic oscillations in the magnitude of
activity push the network back and forth across the critical-subcritical boundary,
moving through and modifying an attractor landscape that appears to constitute an
associative memory and action-generating mechanism [46, 49, 52, 73, 145, 146].
One possible explanation of this tendency for a complex dynamical system to re-
main near a critical state arises from the theory of self-organized criticality [13].
This construct proposes that a system of coupled elements with nonlinear thresh-
olds, when subjected to slow energetic driving with respect to fast internal relaxation
dynamics, will self-organize towards the critical, i.e. maximally correlated state.

Individual atomic switches demonstrate a range of nonlinear responses to input
signals, including both short- and long-term memory. As in biological synaptic junc-
tions, electric potentials drive ion transport coupled to thresholds triggering electro-
chemical reactions. The range of function available in a single switch gives them
a technological utility in configurations where both switch terminals are directly
controlled as seen in Fig. 2a. However, another class of function emerges, shown
in Fig. 3, when atomic switches are massively interconnected as seen in Fig. 2b.
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Fig. 3 Spectral Density: Results of Networking. Comparisons of the power spectrum of a simu-
lated ASN network with simulation of a single, isolated atomic switch with identical parameters.
The isolated atomic switch (red) shows a power spectrum dominated by white noise in contrast
with a single element within network (blue) showing 1/f γ power-law scaling. This demonstrates
that elements in a network operate in a fundamentally different environment than isolated elements

The power spectral density of a single switch is white noise when isolated (red
line), which changes to a 1/f γ (γ ≈ 2) power-law distribution when connected
inside a network (blue line), indicating long-range correlations in switching activ-
ity. These correlations are fundamentally due to networking: an input bias which
produces no frequency dependence in the activity of any given switch causes corre-
lated activity in amongst all switches in the network. This is an example of a basic
self-organizing trend in dynamical circuits possessing local Hebbian-style plastic-
ity, enabling the strengthening of connections between correlated elements until the
activity of a single node becomes indicative of the global dynamics. Ultimately,
the network dynamics approach the ‘edge of chaos’ where global measurements of
current response have demonstrated that ASNs operate in a critical regime, tran-
sitioning between macroscopic metastable states [54, 59] governed by power-law
statistics [122].

These system-level similarities between ASNs and biological neural networks
are interesting for studying the connection between concepts of computing and
observations of brain activity. The aspiring neuromorphic engineer faces a fur-
ther question: is the utility of a dynamical circuit expected to exceed the techni-
cal difficulties of designing a device that can capture that utility? At present, it is
inevitable that dynamical circuits must be interfaced with more conventional elec-
tronics to produce and observe signals, and the challenge of creating some useful
degree of control without excessively constricting the range of dynamic behavior
is formidable. However, the incentives are palpable. Such systems would provide
adaptability and learning at a rate determined by device physics, not algorithmic
complexity. They would possess associative memory and are able to both classify
and discerning important elements from confusing contexts. More practically, with
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high-speed operation and with low power consumption, all these qualities are po-
tentially available from dynamical circuits operating in a critical or near-critical
regime. From a technical perspective, the fact that the device fabrication process
uses a bottom-up self-assembly approach to form the smallest features and create
the architectural complexity in a manner that is readily scalable is a strong draw,
especially as conventional device design struggles with the limits of miniaturiza-
tion. At its core, the effort is based on the notion that technology we now possess is
sufficient to harness the higher order utility that emerges when nonlinear functional
elements are connected in complex dynamical circuits.

3 Modelling and Simulation of Atomic Switches: From Nodes
to Networks

Despite substantial experimental study into the operational characteristics of atomic
switches, they have received little attention from the perspective of modeling and
simulation. The particular case of resistive switches and memristors involving a
lack of junction asymmetry relative to the nature of the constituent metal electrodes
prompted recent efforts to augment the standard memristive equations with addi-
tional terms that reflect the well characterized properties of individual Ag|Ag2S|Ag
atomic switches [111]. Grounded upon physical observations, the simulation ini-
tially reconstructs an idealistic single switch whose memristive behavior stem from
a gapless-type atomic switch. The length of the Ag filament was selected as the
state variable for memristive elements and represented as w(t) ∈ [0,w0], where w0
represents the junctions gap size. The voltage across each atomic switch junction is
given by:

V (t)=
[
Ron

w(t)

w0
+Roff

(
1− w(t)

w0

)]
I (t) (1)

Here, Ron and Roff are the resistance values for the ON/OFF states and I (t)

the current across the interface. The rate of change in filament length can then be
modeled according to:

dw(t)

dt
=
[
μv

Ron

w0
I (t)

]
Ω − τ

(
w(t)−w0

)+ η(t) (2)

where μv is the ionic mobility. The window function, given by:

Ω = w(t)(w0 −w(t))

w2
0

(3)

was included in (2) to account for the properties of those elements with state vari-
ables at the extreme limits due to ionic drift [7, 34, 35, 99, 125, 135]. The term
[μv

Ron

w0
I (t)]Ω provided the dependence of the filament growth rate on electronic
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flux, while τ(w(t) − w0) represented a term related to filament dissolution due to
the thermodynamic stability of the high resistance state. As a complement to the
ionic mobility equation, a stochastic term noise term η(t) defined as:

η = αΔw(t) (4)

determined the growth rate of nanowire filament dimensions, Δw(t) being the
change in filament length at time t and served to account for fluctuations in the
density of available silver ions. Finally, a flux base dissolution term allowed the
filament to spontaneously reduce back to its original state. This modified state equa-
tion has successfully modeled all the fundamental properties of an individual atomic
switch (nonlinear hysteretic switching) as well synaptic properties such as STM and
LTM seen in Fig. 1. In concert with substantial experimental investigations, effec-
tive modeling of the atomic switch provided a basis for further exploration of the
underlying physics that render these devices an extremely attractive physical imple-
mentation of a biological construct.

At present, little is known regarding to the consequences of embedding memris-
tive elements within an interconnected network architecture [99]. In this sense, the
present volume is timely! To explore this concept through a merger of theory and
experiment, a numerical simulation was constructed for the purpose of investigating
network dynamics utilizing the well-documented physics of single atomic switches
and known network topology of the ASN. The simulation scaled the system to net-
work size and embedded atomic switches in a topology with features consistent
with the known ASN architecture. Such physical networks were grown from spa-
tially distributed nucleation sites in a lattice network. This method of construction
allowed for the spontaneous construction of switches into a small-world topology.
Connections occurring with their nearest neighboring nucleation sites were predom-
inant as switches were more likely to connect to those grown from nearby. These
networks exhibited characteristics of a random network with long wires extending
across the entire topology connecting distant nodes.

Connectivity in the simulation was modeled similarly using an approach of
bottom-up construction. Starting with a lattice of nodes, switches were assigned
randomly with priority given to connecting neighboring nodes while long-range
connections were assigned according to a distribution for a given network. Near-
est neighbors were defined as nodes being exactly one unit length of a primitive
cell away in the lattice while long-range connections could span the entire network.
Normalizing the total number of connections allowed for direct comparison and
classification of various network topologies. Physical parameters such as ionic mo-
bility, Ron/Roff ratio, and average gap size were chosen according to experimental
literature values [55, 97, 98] shown in Table 1, leaving only the network size and
wiring density as free parameters.

Reproduction of behaviors observed in single atomic switches, i.e. memristive
behavior, short- and long-term memory, and device activation served to validate the
ASN simulation. In addition, the simulation faithfully reproduced the various emer-
gent properties specific to the ASN architecture. These efforts allow for the study of
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Table 1 Parameters used in the simulation were tested over ranges that are physically relevant
to the Atomic Switch Network system: total gap width w0; ionic mobility μv of Ag+ in Ag2S;
Ron/Roff is the ratio of resistances at w = 0 and w = w0; τ is the filament dissolution time
constant; α modulates the level of noise in the w(t) term with each time step; and N is the total
number of connections

w0 (nm) μv (m2 s−1 V−1) Ron/Roff τ (s−1) α N

Avg: 5 0.5× 10−12 Ave: 10−1 to 10−3 1 to 103 Avg: 0 50 to 400

σ : 0–40 % σ : 0–40 % σ : 0–30 %

of Δw(t)

the internal dynamics of ASNs where it would otherwise have been impractical in
experiment.

4 Characterization of the Atomic Switch Network

The physical production of such self-organized, complex network architectures, de-
spite being an achievement, is not the final goal. Rather, it provides an opportunity
to probe the characteristics of an intentionally designed complex system in hopes of
harnessing its dynamical properties. To this end, substantial effort has been made to
elucidate the physical mechanisms underlying operation of ASNs through a combi-
nation of experiment and simulation, the results of which have shown ASNs to retain
the adaptive plasticity and memory of their component atomic switches while ex-
hibiting emergent properties such as criticality and spontaneous switching between
discrete metastable resistance states.

4.1 Device Activation

Similar to the electroforming step observed in individual memristive elements [142,
150], ASNs must undergo an activation process before they display memristive and
emergent behaviors [10, 111, 122]. Freshly fabricated ASNs are essentially col-
lections of corroded silver nanowires, since the Ag2S interfaces are in their low-
temperature insulating phase and function as nearly ohmic resistors. Bias voltage
sweeps of the virgin-state networks devices exhibited weak memristive/soft switch-
ing behavior as silver cations begin to migrate into the junctions, characterized by
pinched hysteresis current-voltage curves with a small Ron/Roff ratio and a smooth
transition between the two states (Fig. 4a). Continued application of bias voltage
produced an abrupt, nearly discontinuous jump to a state of higher conductance
(Fig. 4b). Repeated stimulation with bipolar bias voltage sweeps produced strong
memristive/hard switching behavior, typified by abrupt switching between two dis-
tinct resistance states (Fig. 4c). While the parameters such as threshold voltage and
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Fig. 4 Understanding Activation. Simulations of device activation using a 10 × 10 network un-
der a triangle wave bias of +/−2 V at 10 Hz confirmed previously reported experimental results
where (a) an initial weakly memristive switching(α = 10 %) repeats indefinitely until (b) a transi-
tion in behavior from weak (blue, α = 10 %) to strong (red, α = 0 %) switching occurs. Strongly
memristive switching (c) persists indefinitely with α = 0 %. Associated internal network connec-
tivity maps (a′)–(c′) clearly reveal conductive pathways in the soft switching, transitional, and hard
switching state as denoted by link color, with warmer color (red) corresponding to higher conduc-
tivity. The soft switching state (a′) comprises a network of low conductance switches, whereas a
single dominating pathway is responsible for the high current through the system in the transitional
state (b′). The hard switching regime (c′) follows, where the dominant pathway is no longer present
and more distributed connections with increased conductance are observed

the Ron/Roff ratio varied from device to device due to inherent variability in self-
assembled fabrication, the qualitative transition from weak to strong memristive
behavior is a general property of the ASN.

This observed phase transition has been theoretically predicted in simulations of
memristor networks [99] and was reproduced in ASN simulations [111]. The tran-
sition from soft to hard switching resulted from the emergence of distinct spatial
patterns of individual hard and soft switching elements (Fig. 4a′). The initial weakly
memristive state was characterized by a large fraction of soft switching junctions.
As net flux through the network increased, connections became increasingly polar-
ized and conductive. Continued stimulation eventually caused the formation of a
percolative pathway comprised of conductive, hard switching elements path across
the simulated network (Fig. 4b′). Completion of this pathway results in a dramatic
change in conductance associated with the activated state and a concurrent shift
from weak to strong memristive behavior. Subsequent hard switching was observed
following the destruction of this highly conductive pathway, as strongly memristive
elements were redistributed throughout the network, increasing the probability that
connecting a given link would create an equivalent highly conductive path (Fig. 4c′).
This is an example of a dynamical self-organization process: different ASNs can
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have very different initial conditions, yet the basic features of their functional units
and network topology cause similar patterns of behavior to emerge during activation
and subsequent operation.

Based on experimental and simulation results, a description of physical processes
in the ASN was formulated to describe the activation process based on the two
mechanisms described in Sect. 2.1: a bias-catalyzed phase transition of Ag2S and
the subsequent Ag filament formation. A weakly memristive effect is caused pri-
marily by a distribution of phase-transition driven atomic switches, with a small
fraction of filamentary driven switches. As overall conduction and the fraction of
hard switching elements increases, the electric field intensifies across the remaining
soft switching junctions, encouraging further filament formation. Network response
changes from weak to strong memristive behavior when a percolative pathway of
hard switching junctions forms across the network. Having undergone this transi-
tion, the continuously swept network operates as a hard switching memristor, since
only a few local switching events are required to reconnect an equivalent path.

4.2 Memristive Properties

Following activation, ASN devices were tested to determine if their fundamental
memristive properties were retained in a network configuration. Properties such as
frequency dependent hysteresis and variable threshold voltages would confirm the
existence of atomic switches, validate the self assembly fabrication process, and also
draw attention to the interesting behavior of atomic switches in a network environ-
ment. ASN devices stimulated with repeated bipolar triangle wave bias showed a
decrease in the switching threshold voltage needed to reach the low resistance state
during consecutive sweeps. In individual switches, this behavior has been attributed
to a progressive decrease in gap width whereby the silver ions are not provided suf-
ficient time to fully re-dissolve into the insulator, leaving the filaments progressively
more intact until the fundamental limit, where switching involves the migration of a
single atom to complete or break the filament [127]. It is hypothesized that a similar
process occurs in the percolative pathway which affects the entire network’s con-
ductance. Additionally, the frequency dependent switching expected for memristive
systems was observed as seen in Fig. 5, whereby stimulation at increased frequency
diminishes the degree of pinched hysteresis, resulting in ohmic I-V behavior at very
high frequency [68, 125]. Higher input frequency offers charge carriers less time
to migrate, produces more frequent reversal of direction, and causes them to sim-
ply fluctuate about their equilibrium point. In contrast, lower frequency stimulation
provides sufficient time for cation migration that is sufficient not only to complete a
conductive filament but to also thicken it and further increase conductance. In ASN
devices, conductance has been seen to subtly decrease over an input bias frequency
range of 1–20 Hz from 1.01 mS at 1 Hz to 0.57 mS at 20 Hz, suggesting that these
mechanisms also mediated network device behavior [112].

Frequency dependent behavior was observed alongside changes in the Ron/Roff

ratio. Occasionally during application of AC bias, devices fail to switch resistance
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Fig. 5 Frequency dependent
hysteresis. Investigation of
ASN device operation by
current-voltage spectroscopy
confirmed robust hysteretic
switching. As expected for a
hard-switching memristive
device, there is a dependence
of the ON state resistance
with respect to frequency,
where increased hysteresis
was associated with lower
frequency sweeps

states, instead remaining in the OFF state for the duration of a complete voltage
sweep. To quantify this behavior, a ‘switching event’ has been defined as a voltage
sweep that produced a minimum current output threshold. The abundance of switch-
ing events measured as the device was stimulated repeatedly for 60 second trials at
1, 5, 10, 20, or 50 Hz decreased with increasing frequency of applied bias, in qualita-
tive agreement with the expected trend of ohmic behavior at higher input frequency.
A mechanistic explanation of this frequency dependent behavior must consider the
order parameter of gap widths in the context of a network, where individual MIM
junctions interact in a complex manner. At relatively low input frequencies, repeat-
able switching was dominated by abrupt transitions between two primary resistance
states governed by the reformation or breakage of a completed pathway extending
across the network. It is therefore inferred from ‘switching event’ results that at high
frequency, cation migration is restricted, and there is progressively less time for a
percolative pathway to completely form. Thus, the frequency dependent behavior
in a network setting results not only from the thickness of Ag filaments in the per-
colative pathway, but also by the likelihood of forming a complete pathway in the
timespan of a single sweep.

4.3 Network Plasticity

A general objective in designing a functional device platform included a direct in-
terface the between memory/logic elements embedded in ASN architecture and ex-
ternally controlled input/output contact electrodes allowing for neuromorphic data
processing. After verifying the fundamental properties of atomic switches in the
network setting, it was essential to understand how these external contact electrodes
might be used to influence the network collectively in a manner useful for data pro-
cessing.
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Fig. 6 Independent
Switching. Resistance values
across two spatially
overlapping channels, A (red)
and B (black), are plotted
with a representative
schematic of channel
positions as insets. Applied
voltage pulses across
channels A and B produce
distinct switching events,
independently inducing low
resistance values and
enabling selective activation
of regions within the ASN

While the dense, recurrent connectivity of ASNs has been shown to distribute
switching activity throughout the network [122], the brain also exploits a capacity to
form subassemblies within its neuronal network for rapid signal propagation [47].
To explore the potential formation of such feedforward assemblies through alter-
ation of the input signal, an experiment was designed to investigate how network
behavior changed as spatially overlapping regions were independently stimulated.
In the current device configuration, ASNs can only be electrically probed using
the macroscopic interface electrodes. It was therefore essential to confirm that these
electrodes could be effectively coupled to local ensembles of atomic switches within
particular spatial region of the network. As shown in Fig. 6, application of super-
threshold voltage pulses (±3 V, 1 s) across different electrode pairs induced large al-
terations (Ron/Roff ratio < 30) in conductivity. Further, controlled switching across
different regions of the network can take advantage of the inherent memory capabil-
ities of the component atomic switches, whereby the two functionally independent
but spatially overlapping regions of the network could act as a simple 2-bit memory
storage device.

Monitoring the conductance of all other electrode combinations throughout the
stimulation regimen revealed dynamic patterns of activity in regions free from inten-
tional manipulation. The coexistence of localized changes in network connectivity
alongside complex system-wide correlations suggest a capability for autonomous,
higher-dimensional information processing through formation of specialized func-
tional regions. The recurrent structure and memory capacity of the ASN device pro-
vides operational conditions where the functional connectivity of the network itself
is both dynamic and self-organized.
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4.4 Emergent Properties—Harmonic Generation

The dynamical structures within ASNs produce behaviors distinct from those ob-
served in single atomic switches. Following investigations into their general mem-
ristive behavior, experiments were performed to examine such emergent behaviors.
The nonlinear response of resistive switches to charge flow can result in higher
harmonic generation (HHG) for periodic input signals. Theoretical studies of mem-
ristor networks have indicated that the magnitude of HHG is strongly correlated
to the fraction of network links exhibiting hard switching behavior, rising sharply
once that fraction exceeds the percolation threshold [99]. This suggests HHG can be
used as a quantitative measure of functional connectivity in network devices, a char-
acteristic that is challenging to measure directly in a substantive fashion. Through
experimental methods and numerical simulation, the potential for HHG in ASN de-
vices has been examined as shown in Fig. 7. Specifically, HHG was observed to be
substantially greater in functionalized ASN devices (Fig. 7b) as compared to unsul-
furized Ag nanowire networks (Fig. 7a). The ratio of higher harmonic amplitudes
relative to the fundamental also increased with applied input bias [10], likely due to
an increase in the number of atomic switch junctions operating in the hard switching
regime as seen in Fig. 7c (inset). The distribution of junction parameters (thickness,
gap widths, etc.) resulting from the self-organized fabrication scheme inherently
produces a similar distribution of threshold voltages across the network. These re-
sults indicated that increased bias stimulation served to activate additional atomic
switch junctions within the network.

While the lithographic component of the fabrication scheme for ASNs provides
some degree of control over network density, numerical simulation allows direct
control and variation of network connectivity in order to explore the effects of den-
sity and topology on HHG. Simulations showed the bias magnitude required for sig-
nificant HHG generation to decrease in denser networks, as increased coupling mag-
nifies nonlinear threshold effects [111]. At increased network density, local clusters
of atomic switches can form recurrent structures with enhanced sensitivity to smaller
bias voltages, producing large, high frequency fluctuations. While initially explored
to confirm the distributed nature of device activity and its mediation by interac-
tions between interconnected atomic switches, measurement and analysis of HHG
in ASNs has proven additionally useful as a quantitative probe into the functional
connectivity of these complex devices, and will serve to guide the ongoing opti-
mization of designer network topologies for desired operational characteristics and
targeted applications.

4.5 Emergent Properties—Criticality

The presence of recurrent loops and dynamics within ASNs lead to behaviors dis-
tinct from that observed in single atomic switches. A clear example of such an emer-
gent property is demonstrated in the persistent fluctuations in network conductivity
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Fig. 7 Harmonic generation. Logarithmic plots of the Fourier transformed current outputs from
AC sinusoidally driven (2 V) ASNs are shown for an (a) unsulfurized and (b) sulfurized device.
Higher harmonic generation was observed for the sulfurized device suggesting increased activity.
(c) Relative intensities of the first 3 harmonics above the 1st harmonic are plotted with respect to
input amplitude for a simulated ASN. A sudden increase suggesting activation is seen at 5 V. Inset
shows experimental data for comparison. (d) Plotting the sum of the intensities of these harmonics
with respect to input amplitude for different network densities revealed a marked shift to lower
input bias as density of connections/complexity of the network increased, allowing it to be more
readily activated

observed in response to constant DC bias. In the case of a single switch under sim-
ilar stimulation, conductivity would increase monotonically in initially quantized
steps until reaching a maximum value determined by the conductivity of a com-
pleted silver filament. However, the current response of network devices has been
observed to fluctuate for days under constant applied voltage, with fluctuation mag-
nitudes on the order of the mean value [10]. This characteristic clearly illustrates
how complex network connectivity inherently resists localized positive feedback
of a kind that would lead to the creation of a dominant high conductivity pathway
between the biased electrodes. The formation of a single filament does not simply
lead to an increased potential drop across the next junction in a serial chain. Rather,
it redistributes voltage across many recurrent connections that can ultimately pro-



Neuromorphic Atomic Switch Networks 193

Fig. 8 Spatiotemporal correlations. Logarithmic plot of power spectral density indicate a pow-
er-law behavior that may lead to a critical regime of activity. Unsulfurized, purely ohmic devices
such as the control (grey) do not exhibit critical behavior while device (black) and simulation (blue)
corroboratively illustrate an emergent network dynamic due to interconnected nonlinear elements

duce a net decrease in network conductivity. The magnitude of these fluctuations is
larger than any observed stochastic or random telegraph noise in an isolated con-
ductive filament, meaning that switching behavior is correlated by network struc-
ture.

Comparing the Fourier transforms of the current response for an unsulfurized
silver nanowire network with that of a functionalized device, as shown in Fig. 8,
demonstrated how the formation of atomic switch junctions expands the degree of
correlation in conductivity fluctuations, leading to 1/f -like behavior across the en-
tire sampled range. In contrast, the power spectrum of the control device spectrum
flattens to white noise along with some high energy, high frequency components at-
tributed to arcing between neighboring wires. The presence of increasing dynamic
correlations suggested potential value in analyzing the system for critical behavior.
By collecting time series data on the overall network current response, measured
at a single (grounded) electrode, the extent of spatial correlation remained unde-
termined. Therefore, the analysis was focused on temporal features. Operation of
ASN devices using voltage pulses produced output time traces (Fig. 9a) with char-
acteristic plateaus, referred to as metastable conductance states, interrupted by high
frequency fluctuations [122]. The duration of these metastable states was found to
follow power-law statistics on timescales from sub-ms (intra-pulse) to seconds (tens
of consecutive pulses) with a critical exponent of ∼1.8, as seen in Fig. 9b–c.

Interestingly, similar temporal correlations were not observed under DC bias,
suggesting that a mechanism akin to SOC is involved, where the evolution into a
critical state requires a separation of timescales between the slow external driving
force and fast internal relaxation. When local dynamics contain nonlinear thresh-
olds, the interplay of slow driving with fast relaxation causes the system to be-
come increasingly correlated until it reaches a critical state. Given sufficient sep-
aration of time scales, an energetic balance will emerge at all the coupled inter-
faces such that the correlation length approaches the system size. This behavior has
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Fig. 9 Power-law scaling of temporal metastability. Representative examples of network current
response during application of sub-threshold pulsed bias (2 V) stimulation demonstrates the ex-
istence of both increased and decreased conductivity during a single pulse (a) where breaks in
the time axis correspond to the period between pulses (90 ms). Network reconfiguration events
and temporally metastable conductive states are repeatedly observed. Temporal correlation of
metastable states observed during pulsed stimulation demonstrated power-law scaling (a ≈ 1.8)
for residence time both within a single 10 ms pulse (b) and over 2.5 s during extended periods of
pulsed stimulation (c)

been observed in devices fabricated from both Cu microsphere dispersions (frac-
tals) as well as lithographically patterned Cu posts (nanowires), showing that a dis-
tinctly scale-free (fractal) physical architecture is not a prerequisite for scale-free
functional network behavior. Observation of critical dynamics in the ASN provides
a purpose-built experimental platform for precise examinations of criticality and
its potential applicability in the fields of neuroscience and neuromorphic computa-
tion.

5 Harnessing System Dynamics

Moving beyond efforts to characterize their fundamental operation, specific classes
of experimental implementations have been designed and executed which exploit
the emergent dynamical properties of ASNs as introduced in Sect. 2.3 and described
in detail here.
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5.1 Resistance Control

While individual atomic switches have well-defined memory properties, examina-
tions of network plasticity during the multichannel switching experiment (Sect. 4.2)
indicated that functional memory might be evoked in the collective behavior of the
device using stimulation in the form of an external bias voltage. A well-developed
protocol for adjustable network resistance would be invaluable as the basis for in-
formation storage. Further, a survey of neuromorphic computing literature quickly
reveals various models that utilize continually adjustable weights as a means to con-
trol dynamics and implement training through punishment and/or reward. If suc-
cessfully executed, an adjustable network resistance protocol could serve to train
targeted network regions to a particular resistance state, thereby opening the door to
a multitude of neural network models that could be applied or adapted to harness the
functional properties of the ASN. Unfortunately, the density of elements in the ASN
makes controlling them individually impossible. To address this, an experiment re-
ferred herein as ‘resistance control’ was devised to evoke goal-specific behavior in
response to external stimuli, namely using stimulation in the form of voltage pulses
to drive the collective network resistance to an arbitrary target value.

The overarching purpose of the resistance control experiment was to first train a
portion of the network to a particular resistance value, and then observe the sub-
sequent decay to a thermodynamically stable state. This process was conducted
by means of an iterative two-step cycle using the distributed electrode arrays de-
scribed in Sect. 2.2. First, an electrode was chosen at random, as represented by A
in Fig. 10a. The resistance between A and every other electrode was measured using
a sub-threshold pulse (10 ms, 200 mV), and then used to calculate as a single global
resistance for all connections as though they were resistors in parallel. Selection of
a target resistance was entirely arbitrary. Second, a larger ‘training’ pulse (100 ms,
>200 mV) was applied across the first electrode and another randomly selected
electrode, denoted as B in Fig. 10b. All subsequent training pulses would be applied
across these two electrodes. Following the first training pulse, the parallel resistance
was calculated again, and the next training pulse was modified by polarity and/or
magnitude based on whether or not the network resistance improved with respect to
the target. Once the target was achieved, the training pulses ceased and the network
was continually measured until the network resistance diverged to a thermodynam-
ically stable value. This iterative training/convergence/divergence process was used
to successfully train ASN devices using pulses in the range of +/−10 V. Network
resistances could be altered with arbitrary precision (<0.5 % error) over a range
from 200 
 to 20,000,000 
. Training times varied widely from 1 s to 5 min or
more, and target resistance states were maintained from 0.5 s to over 1 min.

While individual tests of the training/convergence/divergence process shown
schematically in Fig. 11a provided proof of concept, repeating this process thou-
sands of times yielded other interesting results. As the device cycled through
trained and untrained states, close examination revealed that although the same
global resistance state can be achieved multiple times, its composition was the re-
sult of one of several equivalent but markedly different microstates. Further, re-
peated training of an electrode pair has been seen to decrease the time required
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Fig. 10 Resistance-control experiment. The resistance optimization experiment repeats in a cycle
where a stimulus pulse is administered between electrodes A and B (b). Using 200 mV pulses, the
resistance (c) of electrode A is measured with every other electrode to monitor network reconfigura-
tions (a). An automated algorithm determines if there was improvement or regression and modifies
the next stimulus pulse accordingly, ending when the goal resistance is met, as determined by the
fitness function (d)

for convergence, indicating a capacity of long-term memory. While the time a
device maintains a target resistance value (dwell time) was not observed to in-
crease after repeated training, dwell times tended to be longer at lower target re-
sistance values as shown in Fig. 11b. This behavior is expected due to the dom-
ination of stable filament formation at lower resistance values, rather than the
less thermodynamically stable α/β phase transition regime. The relationship of
dwell time versus the probability of a given dwell time also followed a power-
law distribution seen in Fig. 11c, where the slope varied as a function of target
resistance. Collectively, these effects point toward the utility of long and short-
term memories, which could be intentionally maximized by choosing a resistance
state. Practically speaking, the resistance control experiment offers a way to con-
sistently place the device into a particular resistance state, allowing for more repro-
ducible activation or initialization of the network prior to performing other experi-
ments.
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Fig. 11 Memory capacity. Assessing memory in ASNs through the resistance control experiment
(a) employed both convergence times to a target and dwell times in a given state following training.
(b) Dwell times clearly increase with decreased target resistance, e.g. increased metallization of
the network and (c) power-law relationship for dwell time mimics that of the previously reported
temporal metastable states, corresponding to specific network configurations

Based on the long times required to converge to resistance values, we may
conclude that ASNs are inefficient as a ReRAM (resistive random access mem-
ory) device, or as a neural network with adjustable ‘weights/resistances’. How-
ever, this experiment shows that the LTM/STM mechanisms are observable
in the network setting and can be selectively emphasized by varying the re-
sistance during operation. An exciting implication of these results is that the
power-law distributions of dwell times can be interpreted as a temporally longer
term manifestation of the metastable state power-law relationship, indicating
that ASNs might display learning behavior in a critical regime [30, 36, 122,
140].
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5.2 Reservoir Computing

Based on the knowledge gained from previous experiments, it was determined that
an immediate use for ASNs lies in reservoir computing [122], where a dynamical
neural-like network serves as a processing unit for solving complex systems [84].
As computational tasks become increasingly difficult, a computational paradigm
with the ability to adapt and creatively solve complex systems is necessary. Works
in machine-learning attempt to emulate the brain’s topology of integrating neurons
with random connections to understand how it does computation, specifically in
RC. Unlike current computation models of explicitly programmable algorithms, RC
relies on systems operating in a regime where they are able to ‘learn’ through expe-
rience, circumventing the need for intelligent programming. Echo State Networks
(ESN) [65] and Liquid State Machines (LSM) [86] offer two distinct architectures
for reservoir computation. While a brief introduction to RC will be provided here, a
thorough survey of reservoir methods can be readily found in scientific literature.

Generally, RC utilizes a randomly connected network, dubbed the ‘reservoir’ or
‘kernel’, composed of coupled neurons with a topology based upon a specific neu-
ral network. Signals propagate through the network and are preferentially directed
towards neurons with the greatest connective strength. A neuron integrates incom-
ing signals via a prescribed transfer function f, and distributes the new signal to its
outgoing connections, thereby allowing the signal to percolate throughout the net-
work. Output neurons assigned during initialization constitute the global signal of
the network, which is used to construct the desired output. Schematically, the global
signal is fed to a layer of multipliers whose coefficients are determined by linear re-
gression, then superimposed to construct the desired output. These coefficients are
initially trained in a period of controlled trial runs then maintained for the duration
of the set task. After the system is properly trained using sample tasks, the coeffi-
cients are fixed such that the system retains the knowledge and experience for future
tasks. RC is both a simple and elegant construction that avoids the need for control
over programmable elements within the recurrent network. Network performance is
determined by its connectivity and the distribution of strong and weak connections,
which are global on the macroscopic scale. Operational regimes are thus classified
by the kernel’s statistical characteristics and global parameters, focusing on emer-
gent qualities of the network instead of individual elements. Reservoir methods are
simple to execute and do not require subtle control of internal network dynamics,
making it an appealing route to begin using neuromorphic devices to perform com-
putational tasks. Despite these relative advantages, minimal progress has been made
in the physical implementation of RC methods [8, 100].

Architectures for ASNs, fractals and otherwise, have been studied exten-
sively [11] showing a level of control ideal for reservoir computation [122]. As
explained in Sect. 2.2, connectivity and density of ASNs can be readily controlled
by the size of the nucleation sites. Various operating regimes defined by network
topology may be accessed during device fabrication in this method and further spe-
cialized in resistance control training as explained in Sect. 5.1. The robust nature
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Fig. 12 Reservoir Computing. Schematic representation of RC. An input signal is used to ex-
cite the reservoir, which transforms the signal into higher dimensional waveforms. The activity
is measured at different reservoir locations, known as linear readouts. The desired output is then
constructed by using a linear combination of actual readout data using a weight matrix [Wi ]

of complex critical systems does not require control over individual elements, mak-
ing ASNs an ideal system for RC implementation. Preliminary results for RC’s
waveform generation task, a prerequisite for reservoir computation, revealed that
embedded atomic switches have an emergent network behavior suitable for effi-
cient kernel design in RC [111]. Performance dependencies on measurable global
parameters such as higher harmonic generation were shown as potential metrics to
investigate the controversies of exactly why specific reservoirs served as efficient
kernels while others did not.

Standard implementation of the waveform generation task follows a simple three-
step process as shown in Fig. 12. First, an input signal is used to drive the kernel into
an active state. Next, the global output signal is collected and recorded from vari-
ous readout nodes assigned during task initialization. Finally, the individual readout
signals are used as basis vectors to construct the desired signal using least-squared
linear regression. The steps are further separated into two phases of training and
testing. A training period teaches the kernel using sample inputs and desired out-
puts, analogous to a student using an exam with solutions to study. During this time,
the coefficients to be used in constructing the desired signal are calculated using
least-squared linear regression and recorded. Performance is measured during the
testing phase, where the actual scientific question is passed to the kernel. The three-
steps are repeated using coefficients calculated during the training period for the
construction of the signal. Using the student analogy, a student studies for an exam
using sample questions and is subsequently tested on the actual exam. The gen-
eral performance can then be measured by mean squared error, which quantifies the
differences between the target and the generated waveforms:

MSE = ΣPn=1(ytarget tn −Σm
i=1WiVi(tn))

2

P
(5)

where ytarget is the target waveform, W i are the weight coefficients to be trained, V i

is the signal at readout i, m total number of readouts, tn are the discreet time indices,
P total time indexes.

In the waveform generation task, the RC paradigm utilizes the reservoir’s ability
to project the input signal into a higher dimensional representation space, thereby



200 A.Z. Stieg et al.

Fig. 13 Performance of the waveform generation task Quantified by mean-squared error, RC per-
formance using a simulated ASN network was seen to vary with input voltage amplitude. (a) Peri-
ods of high relative intensity in the 2nd harmonic correlated (b) with high performance (low MSE)
for generating double frequency sine whereas there was low performance in generating triangle
and square waves

allowing for spatial temporal decomposition and reconstruction of the input signal
into an arbitrary waveform. The network’s complex, recurrent connections charac-
terize its mathematical dimensionality, controlled by physical size and density of
connections. However, exactly how the kernel decomposes the signal is controlled
by the distribution of strong and weak connections as well as the overall topology.
A solely reductionist or phenomenological viewpoint is insufficient to understand
the emergent behavior of the overall network, which requires new metrics of kernel
quality.

Simulation and hardware implementation of the RC waveform generation
task have been conducted using the ASN platform in the aforementioned proce-
dure [111]. The signal was defined to be the voltage with the external input as a
sinusoidal voltage signal and voltage time traces were taken at the readout nodes
in simulation and readout electrodes in device. Simulation efforts clarified the im-
portance of the kernel’s higher dimensional representation space in waveform gen-
eration. Variations in the amplitude of the input signal profoundly affected perfor-
mance (Fig. 13a) in generating triangle, square, and higher frequency sinusoidal
waveforms. The abrupt change in performance during construction of the higher
frequency sinusoidal waveform was attributed to a sudden redistribution of higher
harmonics. Loss in performance during higher frequency sinusoidal wave genera-
tion coincided exactly with a reduction in relative harmonic intensity of the same
frequency (Fig. 13b). Conversely, kernel performance increased as the harmonic
distribution shifted towards a higher range of frequencies.

Comparable results were seen in experimental implementations. Again, the dis-
tribution of higher harmonics described in Sect. 4.4 was shifted towards the higher
frequencies at increased input gain (Fig. 7c inset). The redistribution of higher har-
monics occurred at considerably lower voltage and progressed more continuously
with respect to voltage. These trends were attributed to magnification of nonlinear
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Table 2 RC Task Performance Comparison. Typical mean-squared error values for simulated and
hardware ASNs in performing the waveform generation task. Values highlight each system’s rela-
tive task difficulty, rating cosine wave generation the most difficult task for simulation and triangle
wave generation most difficult for ASN device. RC implemented using the ASN device outper-
forms simulation in all cases

Waveform task Simulation Experiment

Cosine (ωo) 0.2633 0.0028

Square (ωo) 0.0467 0.0451

Triangle (ωo) 0.1132 0.1071

Sine (2ωo) 0.0959 0.0910

effects resulting from a wider range of threshold voltages and higher interconnect
densities in physical devices. Performance of the waveform generation task for ASN
devices was compared with that achieved in simulation as shown in Table 2. Sim-
ilarities in performance for most tasks re-confirm the validity of the simulation as
a scaled down model of the ASN device. ASN devices performed each task with
relative ease, including those requiring high frequency contributions to reservoir
dynamics. In contrast, a marked difference in performance was observed for the co-
sine generation task, which requires a 90◦ phase shift transformation. The improved
performance in the ASN device relative to simulation was attributed to coupling
effects within its highly recurrent architecture as well as the contribution of stray
capacitance, a parameter not included in the simulation.

It is evident that further implementation of ASN networks as kernels for RC will
require continued investigation of higher harmonics, as well as other high-order pa-
rameters that utilize its recurrent topology. At its core, the RC paradigm utilizes
a reservoir’s ability to project the signal into high-dimension representation space
thereby enabling the reservoir to decompose it into manageable elements and per-
form any mathematical operation. A joint effort of simulation and experiment is
thus crucial to elucidate the complex mapping of synthetic synapses in neuromor-
phic devices such as ASNs. Preliminary results quickly showed the ASN as ideally
suited for RC implementation and higher harmonic generation as a useful metric to
characterize reservoir quality.

6 Conclusions and Outlook

Through a consideration of complex networks, self-organization, and emergent phe-
nomena in natural systems, we have set out to lay a foundation for the use of dynam-
ical systems as physical platforms for the implementation of emerging paradigms
in neuromorphic computation and information processing. A brief presentation of
historical developments in the fields of neuromorphic engineering and bioinspired
computation set the stage for an introduction to recent developments in synaptic
electronics using CMOS architectures. Building on these developments, we have
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described our recent efforts to leverage the advantages of structural control with
those of self-organization through a nanoarchitectonic approach that have resulted
in massively interconnected networks containing functional atomic switch elements
at a density of 108 synthetic synapses/cm2. These ASNs have structural characteris-
tics similar to the biological neuropil, a synaptically rich connectivity matrix in the
neocortex.

However, structural complexity alone is insufficient to produce complex behav-
ior. As a purpose-built system designed specifically to generate emergent dynam-
ical properties similar to those found in biological brains and neuronal networks,
the operational characteristics of ASN devices were explored through simulation
and experiment. Simulation efforts involving augmentation of the standard memris-
tive equations with terms specific to the known properties of the Ag|Ag2S atomic
switch have provided the capacity to not only examine the operational dependen-
cies of individual elements on meaningful physical parameters, but to also explore
the consequences of embedding atomic switches in a network setting. Validation of
the numerical model and its extension to network architectures facilitates a synergy
between experiment and theory in the characterization of device operation and the
implementation of specific tasks.

Fundamental characterization of ASN device operation has confirmed various
properties associated with atomic switches and other memristive systems, includ-
ing but not limited to a requisite forming step and frequency-dependent hysteretic
switching. Simulation of the forming step has provided direct insight into the na-
ture of a theoretically predicted and experimentally observed transition between to
distinct operational regimes, namely soft/hard switching. Simulated network con-
nectivity maps of the activation process and subsequent hard/switching regime have
confirmed prior indications of distributed network conductance through a collection
of dynamically interacting elements. In addition, the complex structural and func-
tional topology of ASNs has been shown to indeed produce a diversity of complex
behaviors, ranging from distributed memory function to emergent critical dynam-
ics similar to that found in both MRI/EEG of biological brains and multi-electrode
array (MEA) studies of neuronal populations.

While one could imagine a broad repertoire of operations for such a complex,
dynamical system, a sequence of two specific implementations has been described
in order to illuminate the potential applicability of ASNs. Attempts to exploit the
dynamical properties of ASNs have demonstrated a capacity to utilize controlled
network plasticity in the implementation of various neural network learning models.
Observations of power-law scaling in the residence (dwell) time of ‘learned’ states
has additional implications for new approaches to learning using critical states. Fur-
ther, the ‘fading memory’ property of the learned state has been implicated as an
essential component for applications of reservoir computing. Initial progress in the
use of ASNs as nonlinear reservoirs capable of task performance in the RC paradigm
has been shown through simulation and experimental implementation of a bench-
mark task known as waveform generation. These recent efforts and associated re-
sults hold great promise for future application of the ASN as a physical platform for
RC. Of particular interest are the speed, density, and scalability of the ASN, which
in concert serve to overcome major hurdles in the RC paradigm.
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The ability to generate synthetic device architectures comprising functional non-
linear elements such as atomic switches and other memristive systems will continue
to foster an expansion of inquiry into the dynamics of complex networks, allow-
ing for new capabilities and opportunities. Explorations that reside at the interface
of complexity, nonlinear dynamics, neuroscience and engineering undoubtedly pro-
vide a vast arena for fundamental and applied research. Moreover, such interdisci-
plinary approaches represent an important step forward in our quest to understand
nature’s networks, including the ever-elusive human brain. Moving forward, efforts
to leverage the promise of atomic switch networks as a neuromorphic platform will
certainly included more advanced applications in memory and learning. In addition,
the functional diversity demonstrated to date has strong implications for using the
ASN as a universal approximator of dynamical systems, not only as a physical de-
vice for information processing and computation but also as a scalable experimental
platform for investigating theoretical constructs of complexity and neuroscience.
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Spike-Timing-Dependent-Plasticity
with Memristors

T. Serrano-Gotarredona, T. Masquelier, and B. Linares-Barranco

Abstract (This chapter is reprints material from Zamarreño-Ramos et al. in Front.
Neurosci. 5:26, 2011 and Serrano-Gotarredona et al. in Front. Neurosci. 7:02, 2013,
with permission.) Here we present a very exciting overlap between emergent nano
technology and neuroscience, which has been discovered by neuromorphic engi-
neers. Specifically, we are linking one type of memristor nano technology devices
to the biological synaptic update rule known as Spike-Time-Dependent-Plasticity
found in real biological synapses. Understanding this link allows neuromorphic
engineers to develop circuit architectures that use this type of memristors to ar-
tificially emulate parts of the visual cortex. We focus on the type of memristors
referred to as voltage or flux driven memristors and focus our discussions on be-
havioral macro models for such devices. The implementations result in fully asyn-
chronous architectures with neurons sending their action potentials not only for-
wards but also backwards. One critical aspect is to use neurons that generate spikes
of specific shapes. We will see how by changing the shapes of the neuron action
potential spikes we can tune and manipulate the STDP learning rules for both ex-
citatory and inhibitory synapses. We will see how neurons and memristors can be
interconnected to achieve large scale spiking learning systems, that follow a type
of multiplicative STDP learning rule. We will briefly extend the architectures to
use three-terminal transistors with similar memristive behavior. We will illustrate
how a V1 visual cortex layer can be assembled and how it is capable of learning
to extract orientations from visual data coming from a real artificial CMOS spiking
retina observing real life scenes. Finally, we will discuss limitations of currently
available memristors. The results presented are based on behavioral simulations and
do not take into account non-idealities of devices and interconnects. The aim here is
to present, in a tutorial manner, an initial framework for the possible development
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of fully asynchronous STDP learning neuromorphic architectures exploiting two or
three terminal memristive type devices. (A Supplemental Material compressed zip
file containing all files used for the simulations can be downloaded from http://www.
frontiersin.org/neuromorphic_engineering/10.3389/fnins.2011.00026/abstract.)

1 Introduction

Neuromorphic engineering [3] is a new interdisciplinary discipline that takes in-
spiration from biology, physics, mathematics, computer science and engineering to
design artificial neural systems, such as vision systems, head-eye systems, auditory
processors, and autonomous robots, the physical architecture and design principles
of which are based on those of biological nervous systems. The term neuromorphic
was coined by Carver Mead, in the late 1980s [4] to describe very-large-scale in-
tegration (VLSI) systems containing electronic analog circuits that mimic neuro-
biological architectures present in the nervous system. In recent times the term
neuromorphic has been used to describe both analog, digital or mixed-mode ana-
log/digital VLSI systems that implement models of neural systems (for perception,
motor control, or sensory processing) and also software algorithms. A key aspect of
neuromorphic design is understanding how the morphology of individual neurons,
circuits, and overall architectures creates desirable computations, affects how infor-
mation is represented, influences robustness to damage, incorporates learning and
development, and facilitates evolutionary change.

It is obvious that interdisciplinary research broadens our view of particular prob-
lems yielding fresh and possibly unexpected insights. This is the case of neuro-
morphic engineering, where technology and neuroscience cross-fertilize each other.
One example of this is the recent impact of fabricated memristor devices [5–8],
postulated since 1971 [9–11], thanks to research in nanotechnology electronics. An-
other is the mechanism known as Spike-Time-Dependent-Plasticity (STDP) [12–26]
which describes a neuronal synaptic learning mechanism that refines the traditional
Hebbian synaptic plasticity proposed in 1949 [27]. These are very different subjects
from relatively unrelated disciplines (nanotechnology, biology, and computer sci-
ence), which have nevertheless recently been drawn together by researchers in neu-
romorphic engineering [1, 2, 28–30]. STDP was originally postulated as a family of
computer learning algorithms [12], and is being used by the machine intelligence
and computational neuroscience community [17–26]. At the same time its biologi-
cal and physiological foundations have been reasonably well established during the
past decade [31–38]. If memristance and STDP can be related, then (a) recent dis-
coveries in nanophysics and nanoelectronic principles may shed new light on the
intricate molecular and physiological mechanisms behind STDP in neuroscience,
and (b) new neuromorphic-like computers built out of nanotechnology memristive
devices could incorporate biological STDP mechanisms, yielding a new genera-
tion of self-adaptive ultra-high-dense intelligent machines. Here we explain how by
combining memristance models with the electrical wave signals of neural impulses
(spikes) converging from pre- and post-synaptic neurons into a synaptic junction,

http://www.frontiersin.org/neuromorphic_engineering/10.3389/{fnins}.2011.00026/abstract
http://www.frontiersin.org/neuromorphic_engineering/10.3389/{fnins}.2011.00026/abstract
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STDP behavior emerges naturally [30]. This helps us to understand how neural and
memristance parameters modulate STDP, and may offer new insights to neurophysi-
ologists searching for the ultimate physiological mechanisms responsible for STDP
in biological synapses. At the same time, it also provides a direct means of in-
corporating STDP learning mechanisms into a new generation of nanotechnology
computers employing memristors. Here we focus on this second aspect.

2 STDP

Spike-time-dependent plasticity (STDP) is a family of learning mechanisms origi-
nally postulated in the context of artificial machine learning algorithms (or compu-
tational neuroscience), exploiting spike-based computations (as in brains) with great
emphasis on the relative timings of spikes. Gerstner started to report the first spike
timing dependent learning algorithms [12, 13] in 1993. STDP has been shown to
be better than Hebbian correlation-based plasticity at explaining cortical phenom-
ena[25, 26], and has been proven successful in learning hidden spiking patterns [22]
or performing competitive spike pattern learning [23]. Astonishingly, experimen-
tal evidence of STDP has been reported by neuroscience groups during the past
decade[31–38], so today we can state that the physiological existence of STDP has
been reasonably well established.1

However, the full implications of the molecular and electro-chemical principles
behind STDP are still under debate [39]. Before describing STDP mathematically,
let us first explain how neurons interchange information and what the synaptic con-
nections are.

Figure 1 illustrates two neurons connected by a synapse. The pre-synaptic neuron
is sending a pre-synaptic spike Vmem-pre(t) through one of its axons to the synaptic
junction. Neural spikes are membrane voltages from the outside of the cellular mem-
brane Vpre+ with respect to the inside Vpre− . Thus Vmem-pre = Vpre+–Vpre− and
Vmem-pos = Vpos+–Vpos− . The “large” membrane voltages during a spike (in the
order of a hundred mV ) cause a variety of selective molecular membrane channels
to open and close allowing many ionic and molecular substances to flow, or prevent-
ing them from flowing through the membrane. At the same time, synaptic vesicles
inside the pre-synaptic cell containing “packages” of neurotransmitters fuse with
the membrane in such a way that these “packages” are released into the synaptic
cleft (the inter cellular space between both neurons at the synaptic junction). Neu-
rotransmitters are collected in part by the post-synaptic membrane, contributing to a
change in its membrane conductivity. The cumulative effect of pre-synaptic spikes
(coming from this or other pre-synaptic neurons) will eventually trigger the gener-
ation of a new spike at the post-synaptic neuron. Each synapse is characterized by
a “synaptic strength” (or weight) w which determines the efficacy of a pre-synaptic

1For a historical overview on how STDP research evolved independently among computational
and experimentalist groups, please refer to the last paragraph in [14].
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Fig. 1 Illustration of synaptic action. (a) A synapse is where a pre-synaptic neuron “connects”
with a post-synaptic neuron. The pre-synaptic neuron sends an action potential Vmem-pre traveling
through one of its axons to the synapse. The cumulative effect of many pre-synaptic action po-
tentials, generates a post-synaptic action potential at the membrane of the post-synaptic neuron,
which propagates through all the neuron’s terminations. (b) Detail of synaptic junction. The cell
membrane has many membrane channels of varying nature which open and close with changes in
the membrane voltage. During a pre-synaptic action potential vesicles containing neurotransmitters
are released into the synaptic cleft

Fig. 2 Membrane voltage
waveforms. Pre- and
post-synaptic membrane
voltages for the situations of
positive ΔT (a) and negative
ΔT (b). Voltage vMR is the
difference between the
post-synaptic membrane
voltage Vmem-pos and the
pre-synaptic membrane
voltage Vmem-pre

spike in contributing to this cumulative action at the post-synaptic neuron. This
weight w could well be interpreted as the size and/or number of neurotransmitter
packages released during a pre-synaptic spike. However, for our analyses, we will
interpret w more generally as some kind of structural parameter of the synapse (like
the amount of one or more metabolic substances) that directly controls the efficacy
of this synapse per spike. The synaptic weight w is considered to be non-volatile and
analog in nature, but it changes in time as a function of the spiking activity of pre-
and post-synaptic neurons. This phenomenon was originally observed and reported
in 1949 by Hebb, who introduced his Hebbian learning postulate [27]: “When an
axon of cell A is near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased”. Tradition-
ally, this has been described by computational neuroscientists and machine learning
computer engineers as producing an increment in synaptic weight Δw proportional
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Fig. 3 (a) Experimentally measured STDP function ξ(ΔT ) on biological synapses (data from Bi
and Poo [32, 33]). (b) Ideal STDP update function used in computational models of STDP synaptic
learning. (c) Anti-STDP learning function for inhibitory STDP synapses

Fig. 4 Other STDP functions reported in literature, such as (a) square boxes simplification [18, 19,
46], (b) central-only potentiation [44], (c) square boxes simplification of central-only potentiation
[41–44]

to the product of the mean firing rates of pre- and post-synaptic neurons. STDP is
a refinement of this 1949 rule which takes into account the precise relative timing
of individual pre- and post-synaptic spikes, and not their average rates over time.
In STDP the change in synaptic weight Δw is expressed as a function of the time
difference between the post-synaptic spike at tpos and the pre-synaptic spike at tpre

(see Fig. 2). Specifically, as is shown in Fig. 3, Δw = ξ(ΔT ), with ΔT = tpos− tpre.
The shape of the STDP function ξ can be interpolated from experimental data from
Bi and Poo as shown in Fig. 3(a) [33]. For positive ΔT (that is to say, the pre-
synaptic spike has a highly relevant role in producing the post-synaptic spike) there
will be a potentiation of synaptic weight Δw > 0, which will be stronger as |ΔT |
reduces. For negative ΔT (that is to say, the pre-synaptic spike is highly irrelevant
for the generation of the post-synaptic spike), there will be a depression of synap-
tic weight Δw < 0, which will be stronger as |ΔT | reduces. Bi and Poo concluded
that they had observed an asymmetric critical window for ΔT of about ±40–80 ms
for synaptic modification to take place. Mathematically, this ξ(ΔT ) STDP learning
function is described by computational neuroscientists as

ξ(ΔT )=
{

a+e−ΔT/τ+ if ΔT > 0
−a−eΔT/τ− if ΔT < 0

(1)

Other STDP functions, like those shown in Fig. 4, have been used by computational
neuroscientists, as well as observed in biological experimental [45].
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2.1 STDP Versus Anti-STDP

The STDP learning functions ξ(ΔT ) as defined in Figs. 3(a), (b) and 4 are use-
ful for synapses with positive weights. In these cases, weight w is strengthened if
it is increased (Δw > 0) when ΔT > 0, and vice versa. However, if the weight is
negative (w < 0), as in some inhibitory synapse implementations, the STDP learn-
ing functions in Figs. 3(b) and 4 are not appropriate because an increase in weight
(Δw > 0) would weaken the strength of the synapse, and vice versa. For negative
weight synapses an STDP learning function with a shape similar to that shown in
Fig. 3(c) [40] is required. In this case, the synapse is strengthened by decreasing its
weight (Δw < 0), which should happen for ΔT > 0. Let us call this an Anti-STDP
synaptic update or learning function. Other more exotic shapes for ξ(ΔT ) are also
possible, as we will discuss later in Sects. 4.1 and 5.1.

2.2 Additive Versus Multiplicative STDP

Most of the present day literature on STDP presents a learning function ξ which de-
pends on ΔT but not on the actual weight value w. This type of weight-independent
STDP learning rule is usually known as “additive STDP”. Additive STDP requires
the weight values to be bounded to an interval because weights will stabilize at one
of their boundary values [46, 47].

On the other hand, in multiplicative STDP (mSTDP) [46–48] the learning func-
tion is also a function of the actual weight value ξm(w,ΔT ). Furthermore, there
usually appears a weight dependent factor which multiplies the original additive
STDP learning function ξa , and which may generally be different for the positive
(ΔT > 0) and negative (ΔT < 0) sides

ξm(w,ΔT )= F
(
w, sign(ΔT )

)
ξa(ΔT ) (2)

In mSTDP weights can stabilize to intermediate values inside the boundary defini-
tions. Thus, it is often not even necessary to enforce boundary conditions for the
weight values [46]. As we will see later in Sects. 4.2 and 4.3, present day memris-
tors can result in either additive or quadratic (multiplicative) STDP depending on
whether their operation is better described by a “moving wall” model or a “filament
creation annihilation” model.

3 Memristance

Memristance was postulated in 1971 by Chua [9] based on circuit theoretical rea-
sonings. According to circuit theoretical fundamentals, there are four basic electrical
quantities [11]: (1) voltage difference between two terminals “v”, (2) current flow-
ing through into a device terminal “i”, (3) charge flowing through a device terminal
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Fig. 5 Description of the four canonical two-terminal devices. (a) A resistor is defined by a static
relationship between a device’s voltage and current. (b) A capacitor is defined by a static rela-
tionship between a device’s charge and voltage. (c) An inductor is defined by a static relationship
between a device’s current and flux. (d) And a memristor is defined by a static relationship between
a device’s charge and flux

or integral of current q = ∫ i(τ )dτ , and (4) flux or integral of voltage φ = ∫ v(τ)dτ .
A two-terminal device is said to be canonical [11] if either two of the four basic elec-
trical quantities are related by a static2 relationship, as shown in Fig. 5. A resistor
has a static relationship between terminal voltage v and device current i, as shown
in Fig. 5(a). A capacitor shows a static relationship between charge q and voltage v,
as shown in Fig. 5(b). An inductor has a static relationship between its current i and
flux φ, as shown in Fig. 5(c). These three devices have been very well known since
the origins of Electronics and Electricity. However, there are other possibilities for
combining the four basic electrical quantities: (q, i), (v,φ), and (q,φ). Ignoring
the combinations of a quantity with its time derivative leaves us with one single ad-
ditional possibility: (q,φ). This reasoning led Chua to postulate the existence of a
fourth basic two-terminal element, which he called the Memristor. The memristor
would show a static relationship between charge q and flux φ, as shown in Fig. 5(d).
If the q vs. φ relationship is linear, the memristor degenerates into a linear resistor.
Memristors behave as resistances in which the resistance changes through some of
the basic electrical quantities, and is somehow memorized. The simple concept of
memristance as defined in Fig. 5(d) can be extended to refer to any device exhibit-
ing resistive behavior whose resistance can change through some of the four basic
electrical quantities, but at the same time exhibiting memory for that resistance. In
that case, more elaborate mathematical descriptions are required [10].

Memristance has recently been demonstrated (with extraordinary impact among
the research community) in nanoscale two-terminal devices, such as certain
titanium-dioxide [5, 6] and amorphous Silicon [8] cross-point switches. However,
memristive devices were reported earlier by other groups [49, 50]. Memristance
arises naturally in nanoscale devices because small voltages can yield enormous
electric fields that produce the motion of charged atomic or molecular species,
changing structural properties of a device (such as its doping profile) while it oper-
ates. Memristors are asymmetric two-terminal passive devices. Consequently, their

2By ‘static’ we mean it is not altered by changes of the above electrical quantities, or by their
history, integrals, derivatives, etc. These ‘static’ curves can, however, be time-varying if the change
is caused by an external agent. For example, a motor driven potentiometer would have a ‘static’
i/v curve that is time varying.
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Fig. 6 (a) Memristor asymmetric symbols. (b) Memristor nonlinear weight update function with
exponential growth and thresholding. (c) Memristor saturation function for limiting range of weight

circuit symbol must indicate somehow their polarity. Figure 6(a) shows two possible
symbols. Here we will consider one particular subset of memristors described by
[28, 29]

iMR = g(w,vMR)vMR (3)

ẇ = f (w,vMR) (4)

where w is some physical (structural) parameter, iMR is the current through the de-
vice, vMR the voltage drop across it, and g is its (nonlinear) conductance. Since the
change of structural parameter w is driven by voltage vMR , we say this memristor
is voltage (or flux) driven. The group at the Michigan University claims to have
fabricated a memristor of this kind [7, 8]. If function f () in Eq. (4) is driven by
memristor current iMR , then we say the memristor is current (or charge) driven. The
HP group tends to model their memristor as one of this type [5, 6].

In memristive nanoscale devices, function f may describe ionic drift under elec-
tric fields. Although this may conceivably be modeled by a linear dependence of f

with voltage vMR [5], it is clear that in reality such dependence is more likely to
grow exponentially and/or include a threshold barrier vth [7]. For our discussions,
let us assume the following dependence

f (vMR) = Io sign(vMR)
[
e|vMR |/vo − evth/vo

]
if |vMR|> vth (5)

f (vMR) = 0 otherwise (6)

where Io and vo are parameters which may or may not depend on w. This shape of
f is shown in Fig. 6(b). Many other mathematical formulations can be used [10].
In order to relate memristance to biological STDP, as will be done in Sect. 4, we
need a voltage/flux controlled memristor with thresholding behavior, exponential
behavior beyond threshold, and bidirectional behavior (i.e. to be able to increment
and decrement w). Since a memristor has polarity, as indicated in Fig. 6(a), we need
to establish a criterion to assign one of the terminals as the positive terminal. The
criterion adopted to assign polarity is that if a sufficiently large positive voltage vMR

is applied to the memristor (i.e. larger than its positive threshold), it will increase its
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Fig. 7 (a) Memristor
“moving wall” model.
(b) Simple macro model
circuit for electrical
simulations

conductance. Otherwise, if a sufficiently large negative voltage vMR is applied (i.e.
increasing beyond its negative threshold), it will decrease its conductance.

3.1 Memristor Moving-Wall Macro Model for Two-Terminal
Devices

A macro model of a device is a behavioral model made of circuit elements (ideal
or not) that describes its behavior. Some circuit simulators allow a device to be
defined mathematically using for example AHDL or Verilog-A circuit description
languages. However, if the device can be described with a macro model circuit, this
will have some advantages.3 (1) First, it uses already built-in components providing
faster simulations; (2) second, as it is made of circuit elements it gives (analog) cir-
cuit designers a richer intuitive insight into how it works and performs, and how to
improve it for specific goals; (3) it is very intuitive when adding parasitic compo-
nents (resistors and capacitors) to aid in the convergence of the simulator’s internal
algorithms; (4) and if care is taken to keep the operating voltages and currents of
internal nodes to the levels the simulator expects from conventional circuits, simu-
lations converge easier and faster.

Some reported memristors (as in [53–56]) adhere better to the “moving wall
model” (see Figs. 7(a) and 9(b)), where the wall position w separates two different
resistive regions in series, and moves depending on device current or voltage. A cir-
cuit macro model that implements Eqs. (3)–(6) is shown in Fig. 7(b). It comprises
a controlled resistor in which resistance R is controlled linearly by internal state
voltage w, R(w)= kR × (w+wo). Voltage w represents the “structural” parameter
of the wall position, which is bounded to [0,L] [51, 52]. Component NOTA is a
nonlinear differential-input voltage-controlled current-source (transconductor), also
known as nonlinear OTA (Operational Transconductance Amplifier) which provides
an output current ig(vMR)= f (vMR) controlled by input differential voltage vMR ,
as given in Eqs. (5)–(6) and Fig. 6(b). Nonlinear element gsat is a nonlinear resistor

3Note that our aim in providing a macro model circuit is to have a means of simulating large num-
ber of memristors efficiently in a circuit simulator, and hence take advantage of its computational
efficiency and ease of use. Our aim is not to provide a means of building physical circuits out of
such macro models (as Chua did in the past using mutator circuits [9]). A direct physical circuit re-
alization of Fig. 7(b) would result, for example, in leaks of the memory value w due to unavoidable
current leak paths in parallel with the capacitor.
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Fig. 8 Memristor simulations using the macro model. Left, i/v curves obtained. Right, depen-
dence of memristor time varying resistance with memristor voltage

with a shape as shown in Fig. 6(c), which limits the range of the resistance R(w) to
[Rmin,Rmax], thus keeping w inside its natural boundary [0,L]. Consequently, the
macro model circuit in Fig. 7 is mathematically described by

vMR = R(w)iMR (7)

R(w) = kR × (w +wo) (8)

CMRẇ = ig(vMR)− isat (w) (9)

Parameter kR scales between the voltage domain range of w (usually within a
few volts, for proper simulator convergence) and the resistance domain range of
R which can be as high as hundreds of Mega-ohms [7, 8]. Figure 8 shows the sim-
ulation results of a memristor connected in series with a 5 M
 resistance stimu-
lated with a 2 V sinusoid of decreasing frequency from 5 KHz to 0 Hz in 26 cy-
cles. Maximum and minimum memristor resistance limits were Rmax = 100 M


and Rmin = 10 M
, symmetric threshold voltages were |vth| = 1 V, the exponen-
tial f (vMR) was characterized by Io = 10 µA, vo = 0.1 V, vth = 1 V, and the
other macromodel parameters were wmax = 10 V, wmin =−10 V, k−1

R = 222 µA,
wo = 12.2 V, and CMR = 10 mF.

3.2 Memristor Filament Model for Two-Terminal Devices

The previous moving wall model can approximate phenomena like migration of
oxygen ions [53] and vacancies [54], the lowering of Schottky barrier heights by
trapped charge carriers at interfacial states [55], and the phase-change in some PCM
(phase change materials) devices [56].

However, resistive switching effects in dielectric-based devices have normally
been assumed to be caused by conducting filament formation across the electrodes,
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Fig. 9 (a) Memristor asymmetric symbols. (b) Moving wall model memristor operating as two
variable resistors in series. (c) Illustration of filament formation/annihilation model describing
memristor operation as two variable resistances in parallel

although the understanding and modeling of these phenomena remains controver-
sial. As a matter of fact, some researchers are observing the formation and anni-
hilation of nanoscale width conducting filaments in memristors [57, 58]. Precise
modeling of this phenomenon is still under research [59]. However, let us here pro-
pose the following very simplified view to approximate this physical mechanism.
Figure 9(c) illustrates schematically a memristor with several conducting filaments
between the two electrodes. The number of filaments or their cross-sectional area
would increase or decrease with memristor operation. Let us call now w the total
cross sectional area of the effective conducting filaments at a given instant in time,
and S the total cross section area of the memristor. The filaments present high con-
ductivity (low resistivity), while the bulk presents much lower conductivity (high
resistivity). All formed parallel filaments behave as one effective resistance of low
resistance, while the rest of the bulk behaves as another higher resistivity resistor.
Therefore, now the memristor behaves as two variable resistors in parallel. Conse-
quently, its total conductance (inverse of resistance) could be described as

G=GON
w

S
+GOFF

(
1− w

S

)
(10)

where GON is the conductance per effective cross section area of the filaments,
and GOFF is the conductance per effective cross section area of the filament-less
bulk material. Parameter w would change from 0 to wmax , the maximum possible
effective cross section area of total conducting filaments (wmax ≤ S).

This changing cross section description not only approximates filament forma-
tion/annihilation phenomena, but also some other gradual cross section area varia-
tions observed in some phase-change or ferroelectric-domains-based materials [60].

As we will highlight later in Sect. 4, whether a memristor is better described
by the moving wall model or the filament formation/annihilation model, impacts
severely on the resulting type of STDP learning mechanism. The latter yields an
additive type of STDP, while the former results in a quadratic type STDP. Note that
a memristor can be either voltage/flux or current/charge driven, independently of
whether it is a “wall” or a “filament” memristor.
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Fig. 10 (a) Details of
membrane voltage action
potential, as by Eq. (11).
(b) Reversed version

4 Relation Between STDP and Memristance

How can STDP be related to memristance? The key is to consider carefully the
shape of the electric neural spikes [30]. The exact shape of neural spikes, usually
called “action potentials” among neuroscientists, is difficult to measure precisely
since the experimental setup influences strongly. Furthermore, different action po-
tential shapes have been recorded for different types of neurons, although in general
they all display a certain resemblance. For our discussion it suffices to assume a
generic action potential shape with the following properties (see Fig. 10(a)). During
spike on-set, which happens during a time t+ail , membrane voltage increases expo-
nentially to a positive peak amplitude A+

mp . After this, it changes quickly to a peak
negative amplitude −A−

mp and returns smoothly to its resting potential during a time

t−ail . A shape of the type shown in Fig. 10(a) can be expressed mathematically, for
example, as

spk(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A+
mp

e
t/τ

+
ail−e

−t
+
ail

/τ
+
ail

1−e
−t

+
ail

/τ
+
ail

if − t+ail < t < 0

−A−
mp

e
−t/τ

−
ail−e

−t
−
ail

/τ
−
ail

1−e
−t

−
ail

/τ
−
ail

if 0 < t < t−ail

0 ×otherwise

(11)

Parameters τ+ail and τ−ail control the curvature of the on-set and off-set sides of
the action potential.

Consider the case of pre- and post-synaptic neurons in Fig. 1 being of the same
type, and thus generating the same action potential shape, spk(t) of Eq. (11), when
they fire. Axons and dendrites operate as transmission lines, so it is reasonable to
expect some attenuation when the spikes arrive at the respective synapses. Let αpre

be the attenuation for the pre-synaptic spike Vmem-pre(t) = αpre spk(t − tpre), and
αpos for the post-synaptic spike Vmem-pos(t)= αpos spk(t− tpos). When both spikes
are simultaneously present at the two cell membranes of the synapse, then chan-
nels on both membranes are open. Consequently, in principle, it makes sense to
assume that during such time there could be a path for substances in the inside of
one cell to move directly to the inside of the other cell and vice versa. Furthermore,
let us assume now that such motion of substances obeys a memristive law similar
to those described by Eqs. (3)–(6). This means, that we would have a two-terminal
memristive device between the inner sides of the two cells; more specifically, be-
tween Vpos− and Vpre− in Fig. 1(b). Consequently, the memristor voltage would be
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vMR = Vpre−–Vpos− . On the other hand, since the outside nodes of both membranes
Vpos+ and Vpre+ are very close together, both voltages will be approximately equal,
yielding

vMR

(
t ′
)≈ Vmem-pos

(
t ′
)− Vmem-pre

(
t ′
)= αpos spk

(
t ′ − tpos

)− αpre spk
(
t ′ − tpre

)

(12)
A simple change of variables t = t ′ − tpos and recalling that ΔT = tpos − tpre,

results in

vMR(t,Δt)= αpos spk(t)− αpre spk(t +Δt) (13)

This memristor voltage vMR is shown in Fig. 2 for the cases of ΔT being posi-
tive or negative. According to Eqs. (5)–(6), memristive update will take place only
if vMR exceeds threshold vth, as indicated by the red shaded area in Fig. 2. As we
postulated earlier, during this memristive update some amount of synaptic structural
substance(s) Δw would be interchanged between the two sides of the synapse. The
amount of substance Δw will ultimately affect the synaptic strength of this synapse.
If this amount of synaptic structural substance interchanged between the two synap-
tic terminations obeys a memristive law as in Eqs. (3)–(6), then from Eq. (4)

Δw(ΔT )=
∫

f
(
vMR(t,ΔT )

)
dt = ξ(ΔT ) (14)

which is the red area of the shaded regions in Fig. 2, previously amplified exponen-
tially through function f () of Eqs. (5)–(6). Positive areas (above vth, when ΔT > 0)
yield increments for w (Δw > 0), while negative areas (below −vth, when ΔT < 0)
result in decrements for w (Δw < 0). As |ΔT | approaches zero, the peak of the red
area in vMR is higher. Since this peak is amplified exponentially, the contribution
for incrementing/decrementing w will be more pronounced as |ΔT | is reduced. The
resulting function Δw(ΔT ), computed using the memristor model through Eq. (14)
is shown in Fig. 3(b). It imitates the behavior of the STDP function ξ obtained by
Bi and Poo from physiological experiments, which is shown in Fig. 3(a). For this
numerical computation we used the following parameters: αpos = 1, αpre = 0.9,
vth =Amp+ = 1, Amp− = 0.25, vo = 1/7, tail+ = 5 ms, tail− = 75 ms, τ+ = 40 ms,
τ− = 3 ms. Making αpos �= αpre breaks the symmetry of function ξ(ΔT ), and mak-
ing them very different removes one of the branches in ξ(ΔT ). It is possible to have
more freedom to achieve a desired shape for ξ(ΔT ) by setting αpos = αpre = 1, but
instead shaping the spikes traveling forwards and backwards independently. Also,
note that for ΔT values very close to zero Δw(ΔT ) is approximately linear and
crosses the origin. This is because as ΔT approaches zero, vMR approaches zero
for any t (see Eq. (13)).

This result shows that a memristive type of mechanism could be behind the bio-
logical STDP phenomenon.
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4.1 Influence of Action Potential Shape

The shape of the action potential function spk(t) strongly influences the shape of the
resulting STDP function ξ(ΔT ). As an illustration, Fig. 11 shows how for several
shapes of action potentials (“spikes”) different STDP learning functions ξ(ΔT ) are
obtained. For example, if the exponential shape (a1) degenerates into a triangular
type of shape (c1), then the central region of ξ(ΔT ) will display a smoother transi-
tion from the negative peak to the positive peak (c2). Note that this would weaken
learning for cases with small |ΔT |. Making the positive peak of the spike smaller
than the negative peak, makes the negative branch for ξ(ΔT ) stronger than the pos-
itive branch. If the action potential is substituted by a rectangular shape signal (d1),
then the central region becomes linear and a saturation effect might occur (d2). If
the rectangular spike is made more symmetric, then ξ(ΔT ) degenerates into a tri-
angular type of shape, which is very different from the original biological STDP
learning function. In general, to obtain a biological-like STDP learning function a
narrow short positive pulse of large amplitude and a longer relaxing slowly decreas-
ing negative tail are required (a1, b1, c1, d1). However, from a computational point
of view, it might be more interesting to massage the shape of the “spikes” and tune
the STDP learning function as desired.

Figure 11(e1) shows a symmetric spike which results in a symmetric STDP learn-
ing function (e2). Inverting the forward spike in Fig. 11(f1) with respect to the back-
ward one also results in a symmetric STDP learning function (see Fig. 11(f2)). By
using different shapes for the forward and backward spikes, as in Fig. 11(g1), one
can obtain the STDP learning function (g2), as in Fig. 4(c). If, instead, we use the
shapes in Fig. 11(h1), we obtain Fig. 11(h2), which is the time limited version of
Fig. 11(g2).

4.2 Wall Model Memristors Implement a Multiplicative Type
of STDP

Memristors described by a “moving wall model” implement a multiplicative type
of STDP. The reason is because, according to Eq. (14), the structural parameter
updates Δw(ΔT ) follow an additive type of STDP rule, independent of w. Pa-
rameter w is the memristor “wall” position separating the low and high resistivity
regions (see Fig. 7(a)). According to Eq. (8), the memristor instantaneous resis-
tance R(w) is linear with w. Consequently, the memristive STDP resistance update
ΔR(ΔT ) = kR ×Δw(ΔT ) = kRξ(ΔT ) will follow an additive STDP update rule
as well, independent of the actual value of R. However, as we will see in the next
Section, when memristors (or resistors) are used as synapses in a neural circuit, the
synaptic strength of such synapses is proportional to their conductance G = 1/R,
because as conductance increases more current will be delivered to the post-synaptic
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neuron. Consequently, synaptic strength update is given by

ΔG(ΔT )=−ΔR(ΔT )

R2
=−G2kRξ(ΔT ) (15)

which is quadratically proportional to the actual conductance. Such memristors will
therefore yield larger update steps for high conductances, but smaller steps for low
conductances. This suggests that, before training, weights (conductances) should be
initialized to rather high values, so that as learning progresses the updates tend to
become smaller.

Note that the fact that memristors implement a multiplicative type of STDP de-
rives from the fact that the wall position w is linear with resistance, and thus in-
versely proportional to synaptic strength. Consequently, we should expect mSTDP
also from synchronous STDP realizations, using either current or voltage driven
memristors, as the update would also be weight dependent. On the other hand, we
have assumed that function f () in Eqs. (5), (6), (14) does not depend on w. In prac-
tice, there might exist such dependence, and if true, the resulting mSTDP learning
function might deviate from the one discussed here.

4.3 Filament Model Memristors Implement Additive STDP

When the memristor physics is better represented by the inter-electrode filament
formation/annihilation model, then synaptic update would change parameter w of
Eq. (10), which is now directly proportional to memristor conductance (synaptic
strength),

ΔG(ΔT )= GON

S
Δw(ΔT )= γ ξ(ΔT ) (16)

where γ is a constant. Therefore, synaptic update would be independent of actual
weight (conductance) and the resulting STDP update rule is said to be of additive
type. Note that Eqs. (11)–(14) and the resulting functions ξ(ΔT ) in Fig. 11 are
common for both “wall” and “filament” models.

5 Connecting Memristors with Spiking Neurons
for Asynchronous STDP Learning

Synchronous memristive STDP learning architectures were proposed by Snider
[28, 29], assuming voltage/flux driven memristors, and recently demonstrated by
the group at Michigan University [7]. In that proposal each neural spike is mapped
into a sequence of precisely spaced fixed amplitude digital pulses which must main-
tain global synchronization to separate the integration phase of neural activity from
the synaptic weight update phase. This global synchronization requirement imposes
severe difficulties when the system scales up to very large sizes.
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Fig. 12 Proposal of LIF
neuron circuit
implementation for
memristance compatible
STDP fully-asynchronous
learning system

On the other hand, from the discussions in previous Sections, we present an al-
ternative approach which is fully asynchronous [30]. Consequently, no global syn-
chronizations will be required nor global separations into neuron-integration phases
and synapse-learning phases, making this approach attractive for scaling up to very
large numbers of neurons and synapses.

We first need a neural circuit that integrates spikes until a threshold is reached.
At that moment, it should provide a spike of the desired shape. A possible schematic
diagram for a leaky integrate-and-fire (LIF) neuron block is shown in Fig. 12. The
neurons need to include a current summing and sinking input terminal so that in the
absence of spike output the integral of input current spike signals can be computed,
while maintaining the input node tied to a fixed voltage. This can be done by using
a lossy integrator with a clamped voltage input. The output of this accumulated
integral Vint is compared against a reference VREF . If this reference is reached,
the comparator output will trigger a spike generation circuit, which provides the
output spike of the neuron. During spike generation, the integration capacitor is
charged to refractory voltage Vref r , while the input opamp is configured as a voltage
buffer, thus copying the spike waveform to the neuron input node. An attenuated
version of the post-synaptic neural voltage αposVpos(t) is thus made available to
the synaptic memristors connected to this neuron input. Another attenuated version
of the spike is fed forward to the output of the neuron Vpre(t)= αpre spk(t). During
the whole time of the spike (typically in the order of 20–100 ms) the neuron is not
integrating (computationally inactive). This time is also called “refractory time”.
During the absence of spike output, the spike generation circuit provides a constant
voltage Vrest .

For the Spike Circuit in Fig. 12 an analog circuit can be devised that generates
a specific action potential shape with some tunable parameters [61]. However, for
STDP experiments it is more desirable to allow for full programmability of arbi-
trarily shaped action potentials. Since all neurons should have the same spike shape
(at least all neurons of a part of a whole system), one interesting option is to have
a circuit at the chip periphery broadcasting digital samples of the action potentials
at different phases to all neurons. The spike generation circuits would then capture
the closest phase, delay it properly, and through a local, compact digital-to-analog
converter provide the programmed action potential.

For the synapses, it is possible to fabricate very high density memristor crossbar
structures [5, 6] which connect to the neural layers, as shown in Fig. 13(a). Neurons
generate action potentials with a shape similar to those given in Fig. 10. Note that
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Fig. 13 Two possible interconnection schemes between memristors and neurons for STDP learn-
ing

the positive terminals of the memristors connect to the pre-synaptic neurons. This
way, when ΔT > 0 the memristors see a negative voltage beyond threshold and their
resistance (inverse of synaptic strength) will decrease. Alternatively, the same result
can be obtained by having the neurons generate an inverted spike action potential
(as in Fig. 10(c)) but connecting the memristors with opposite polarity, as shown in
Fig. 13(b).

In an excitatory synapse a pre-synaptic action potential spike should produce
an increment in the neuron integral, i.e., make the integrator output voltage Vint

approach VREF (see Fig. 12). During neuronal spike integration a neuron simply
accumulates the contributions of incoming spikes on its integrator. All synapses
connected to its input node do not experiment any weight update and operate as
resistances of constant value. This is guaranteed by making the action potential
peaks lower than the threshold value vth in Fig. 6. In order to have a constant positive
resistance contribute a net positive charge packet during each incoming pre-synaptic
spike, the net area under the spike waveform (see Fig. 10) should be positive. For
the particular case of parameter selection that results in the action potential shapes
in Fig. 10, it turns out that the spike in Fig. 10(a) presents a net negative area while
the spike in Fig. 10(b) presents a net positive area. Consequently, using spikes with
the shape and parameters as in Fig. 10(a) results in synapses delivering net negative
charges, while using spikes with the shape and parameters as in Fig. 10(b) results
in synapses delivering net positive charges. If neurons are set such that VREF >

Vrest , the incoming net negative charge packets make the integrator output Vint

approach VREF . In this case synapses delivering net negative charge packets operate
as excitatory synapses. On the contrary, if neurons are set such that VREF < Vrest

then synapses delivering net positive charge packets operate as excitatory synapses.
The arrangement shown in Fig. 13(a), which uses spikes as in Fig. 10(a), therefore
results in excitatory synapses delivering net negative charge packets if VREF > Vrest .
On the other hand, for Fig. 13(b) which uses spikes as in Fig. 10(b), synapses are
excitatory, delivering net positive charge packets if VREF < Vint .

Interestingly, the strength of STDP learning can be modulated by changing the
amplitudes (or shapes) of the electric spikes in time. This would allow the imple-
mention of faster learning at the beginning of a learning process, and progressively
slow learning down as the system stores acquired knowledge, or even turn it off
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Fig. 14 Small feed forward
memristive array simulated
behaviorally with Cadence
Spectre

completely after some time. This is a very desired feature for STDP machine learn-
ing systems [62].

This way of interconnecting memristors with neurons as in Figs. 12 and 13 avoids
cross-coupling of spikes between rows and columns, because all lines are driven by
(ideal) voltage sources. Using this arrangement with the memristor macro model of
Fig. 7 we performed intensive behavioral simulations in Cadence-Spectre to test the
concept on the 4× 4 feed forward array shown in Fig. 14. Note that the neuron used
(shown in the inset) is a particular case of the one in Fig. 12 with Vref r = Vrest = 0
(spike resting potential) and R =∞. The results are shown in Fig. 15. Only the
first 2 column synapses are stimulated, with 200 ms period spikes (of 45 ms dura-
tion) with a 25 ms relative delay between the two columns. As can be seen, only
the synapses at the first two columns change their resistance, while those on the
other two columns do not, confirming the correct operation of STDP without any
crosstalk between columns or rows. This demonstrates that this architecture can be
scaled up to arbitrary size, at least conceptually. Practical considerations that could
limit maximum size are mainly fan-out of neurons, interconnect delays, and para-
sitic crosstalk. Note that in Fig. 15 memristor resistances do not always converge
to their extreme values Rmin or Rmax (as in additive STDP) but that some of them
(R12,R21,R31,R34) have converged to intermediate values (as is characteristic for
multiplicative STDP).

5.1 STDP Variations

Standard STDP aims to implement the synaptic learning functions of the shape
shown in Fig. 3(b). In the case of synapses with negative weights anti-STDP learn-
ing functions similar to the one shown in Fig. 3(c) need to be implemented. This
is achieved with memristors by simply changing their polarity. Figure 16 shows
how neurons and memristors can be interconnected to achieve anti-STDP learning.
Memristors are reversed with respect to the cases in Fig. 13. Note that now, for anti-
STDP, when ΔT > 0 the memristors see a positive vMR voltage beyond threshold
(which will produce an increase in resistance and a decrease in synaptic strength),
while for ΔT < 0 they see a negative voltage beyond threshold (which will produce
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Fig. 15 Evolution of weights (resistances) in a 4×4 feed forward memristive perceptron network.
The bottom trace shows the weights of memristors in the third and fourth column. The other traces
show the evolution of weights in the two columns furthest to the left. Traces are grouped pair-wise
with synapses in the same row, and with identical initial conditions
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Fig. 16 Memristor connections for anti-STDP learning. (a) Using positive action potentials with
negative net waveform area as in Fig. 10(a) resulting in synapses delivering net negative charge
packets. (b) Using inverted action potentials with positive net waveform area as in Fig. 10(b)
resulting in synapses delivering net positive charge packets

Fig. 17 Arrangement where neurons send back the inverted spike sent forward. (a) Feed forward
Crossbar Example, (b) Spike shapes used, (c) and resulting STDP resistance update function

a synaptic strength increment). Memristors are physically positive resistances (of
time varying values). Whether memristors act as excitatory or inhibitory synapses is
determined by the combination of (1) net area under the action potential waveform
(i.e. sign of net charge sent to the post-synaptic neuron) and (2) whether VREF is
above or below Vrest , as mentioned in the discussion around Fig. 13.

Another twist in STDP variations is obtained by having the neurons send back
an inverted version of the spike sent forward, as shown in Fig. 17(a). In this case,
it is possible to have the resulting STDP learning function show a positive learning
window around ΔT = 0 with positive increments for both positive and negative
values of ΔT close to zero. Beyond a specific value of |ΔT | there are decrements
in the weights (Δw < 0), for both positive and negative sides of ΔT . This is shown
in Fig. 17(c). This type of learning is useful under some circumstances [62].

6 Address Event Representation (AER)

AER (Address-Event-Representation) is a well established technology among neu-
romorphic engineers. AER was originally proposed twenty years ago in Mead’s Cal-
tech research lab [63, 64]. For over ten years AER sensory systems were reported by
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Fig. 18 Illustration of AER point-to-point communication link concept

only a handful of research groups, examples being Lazzaro’s [65] and Johns Hop-
kins University [66] pioneering work on audition, or Boahen’s early developments
on retinas [67, 68]. However, during these years some basic progress was made.
A better understanding of asynchronous design [69, 70] leading to robust unarbi-
trated [71] and arbitrated [72, 73] asynchronous event readout, combined with the
availability of user-friendly FPGA external support for interfacing and new submi-
cron technologies allowing complex pixels in reduced areas, heralded a new trend in
AER bio-inspired Spiking Sensor developments. Since 2003 many researchers have
embraced this trend. AER has been used fundamentally in vision (retina) sensors,
for purposes such as simple light intensity to frequency transformations [74, 75],
time-to-first-spike coding [76, 77], foveated sensors [78], spatial contrast [79–82],
temporal contrast [74, 83–86], motion sensing and computation, [67], and combined
spatial and temporal contrast sensing [87, 88]. AER has also been used for auditory
systems [65, 66, 89–91], competition and winner-takes-all networks [92, 93], and
even for systems distributed over wireless networks [94].

But AER has also been employed for post-sensing event-driven processing, em-
ulating biological cortical structures. Venier developed AER convolutional filters
with elliptic-like kernels [95] while Choi reported more sophisticated Gabor-like
filters [96]. In 1999 Serrano reported an AER architecture [97] that would allow
more generic kernels, although with some geometric symmetry restrictions. In 2006
the same group started to report working AER Convolution chips with arbitrary
shape programmable kernels of size up to 32× 32 [98–100].

Figure 18 explains the basic idea behind a point-to-point AER link. An emitter
chip (or module) includes an array of neurons generating spikes. Each neuron is
assigned an address, such as its (x, y) coordinate within the array. Neurons gener-
ate spikes at low frequency (10–1000 Hz), and these are arbitrated and put on an
inter-chip (or inter-module) high-speed asynchronous AER bus. The AER bus is
a multi-bit (either parallel, serial, or mixed) bus which transmits the addresses of
the emitting neurons. Typical delays for transmitting Address Events between AER
chips range from about 30 ns [81] to 1 µs [85] per event for parallel AER, and have
been reported down to 24 ns per event for serial AER with potential to go as low
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as 8 ns per event [101]. These addresses are received, read, and decoded by the re-
ceiver chip (or module) and sent to the corresponding destination neuron or neurons.
Figure 18 illustrates a point-to-point AER link with a single emitter and a single re-
ceiver. The use of AER splitters and mergers [102] allows extension to one-to-many,
many-to-one, or many-to-many AER links. Inserting AER mappers [102] allows co-
ordinate transformations (rotations, translations, etc.) to be performed while address
events travel between modules. Current research is looking at how large numbers of
AER convolutional modules can be combined through independent and multiple
AER links to build high speed object and texture recognition systems [103–105].

7 Building a Self-learning Visual Cortex with Memristors and
STDP-Ready AER Hardware

In previous Sections we have shown how to interconnect memristors with spiking
neurons to achieve STDP learning systems. We have illustrated this with a very spe-
cific topology, a feed forward crossbar structure (Figs. 13, 16, and 17), where all
neurons in one layer connect to all neurons in the next layer. However, the method-
ology is not restricted to this specific spatial topology, and can be extended to any
generic neural network topology. In this Section we will apply those same concepts
to a topology representing the first processing layer of the visual cortex, namely
layer V1. We will first explain the V1 layer topology we will use, show how to build
it physically, then we will describe the training data we will use from a real artifi-
cial AER retina, and finally we will show the receptive fields formed through STDP
learning in the artificial memristive V1 layer with this training data. The biological
V1 visual cortex layer is known to be sensitive to specific orientations [106]. We
will show how such orientation sensitive receptive fields arise naturally when build-
ing an artificial memristive V1 layer with STDP learning and stimulated with real
spiking data obtained with an artificial AER motion sensitive retina.

The spontaneous formation of orientation sensitive receptive fields through
STDP learning has already been reported by other researchers [17, 28]. In those
works static luminance images were used for training. Pixel intensities were coded
into spikes through some kind of computational transformation: either a stochastic
rate coding scheme [28], or a rank-order coding scheme [17]. Here we directly use
the continuous AER output stream of events produced by a real motion sensitive
retina CMOS sensor.

7.1 Topology of V1 Visual Cortex Layer and Physical Realization

The simplified V1 topology we want to emulate can be explained with the help of
Fig. 19(a). The retina sends spikes to the V1 cortex layer through synaptic connec-
tions. The V1 layer is structured in a number of “Feature Maps”. We can think of
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Fig. 19 (a) Projection Field
Topology of V1 layer in
Visual Cortex. (b) Hybrid
CMOS-memristor
arrangement with CMOL
style tilted lines

the retina as an array of “pixels”, each with coordinate (x, y). Let us assume each
“Feature Map” in V1 replicates the same coordinates (x, y), so that each pixel in
the retina has a corresponding pixel in each “Feature Map” with the same coordi-
nate. Each pixel (xc, yc) in a “Feature Map” receives inputs not only from pixel
(xc, yc) in the retina, but also from all neighbors within a spatial neighborhood
(xc + xr , yc + yr). Alternatively, we may say that each pixel in the retina (xc, yc)

connects to a Projection Field of pixels (xc + xr , yc + yr) in each of the Feature
Maps. Thus, projection fields include a number of synaptic connections, so that the
spikes produced by one pixel in the retina are sent to the pixels of the projection
field in each feature map. Feature maps operate as feature extractors. Specifically,
the feature maps in V1 detect the presence of oriented edges at specific orientations
and scales [106].

The physical implementation of one such Feature Map with AER CMOS neu-
rons and a layer of memristor crossbar structure on top is shown in Fig. 19(b) [29].
The lower CMOS contains the array of neurons (or pixels) of one V1 Feature Map.
Each neuron has coordinate (x, y), as its corresponding retina pixel. Address Event
spikes of coordinate (x, y) coming from the retina are sent to pixel (x, y) in the
Feature Map. This neuron then sends out a spike of the desired shape (for exam-
ple, as in Fig. 10) through its output node. In Fig. 19(b) each neuron has an output
node (green) and an input node (red). The output node connects to a nano wire tilted
slightly with respect to the CMOS tile (as in CMOL [107]), so that it does not inter-
sect with any other neuron output node in the CMOS tile. This nano wire has many
others in parallel, each connecting to one neuron output node. Perpendicular to all
these nano wires there are other nano wires (at a different altitude), each connecting
to the input node of one neuron. The two sets of perpendicular nano wires form a
“sandwich” with a separation layer formed by memristive material. This way, at the
intersection of each perpendicular nano wire there is a memristor. For example, in
Fig. 19(b) neuron 1 output node connects to the vertical pink nano wire, while neu-
ron 2 input node connects to the horizontal pink nano wire. The synaptic memristor
connecting neuron 1 output to neuron 2 input is at the intersection of the two nano
wires (blue circle). The vertical pink nano wire (neuron 1 output) has memristive in-
tersections with all horizontal nano wires. Consequently, neuron 1 output connects
to all other neuron inputs. In the same manner, all neuron output nodes connect to all
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Fig. 20 Illustration of Temporal Derivative Retina Outputs. (a) Events produced by a rotating
black disk with a white dot, represented in (x, y, t) coordinates. (b) Events collected during 20 ms
when observing two people walking

neuron input nodes. For projection field based topologies, each neuron output does
not connect to all other neuron inputs. Instead, connectivity is limited to a given
spatial neighborhood. This is achieved by having nano wires of limited length (in-
stead of one reaching over the full CMOS array). For square projection fields of size
10 k = 1002, for example, each nano wire has to be extended to 50 cells on each
side.

Below we present some simulation results from training a set of such AER Fea-
ture Maps with real stimuli coming from a temporal derivative AER retina watching
life scenes. First, we briefly explain the AER temporal derivative retina and what
kind of spikes it produces. We then describe how we used this data to stimulate a set
of AER hybrid CMOS-memristor Feature Maps and what kind of selectivity these
Feature Maps developed.

7.2 AER Temporal Difference Retina

We will use the spiking data obtained from an AER Temporal Difference Retina
chip [74, 84–86] to train an artificial V1 STDP visual cortex layer. The retina has
an array of 128 × 128 pixels. Each pixel (x, y) has a photo sensor that provides
a continuous photo current Iph(x, y) plus a circuitry that generates a signed spike
every time its photo current changes by a given relative amount |ΔIph/Iph|> Cth.
Figure 20(a) shows the output events produced by the retina when observing a dot
rotating at 400 Hz. Blue dots represent positive events (going from dark to bright)
and red dots represent negative events (going from bright to dark). The address
events collected during 7 ms are plotted in (x, y, t) coordinates. Figure 20(b) shows
the events collected during 20 ms when observing two people walking. White pixels
correspond to positive events (ΔIph/Iph > 0), while black pixels to negative events
(ΔIph/Iph < 0).
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Fig. 21 Topology used for
testing STDP on V1-like
Network

7.3 STDP Training Results of V1 Layer

In this Section we will analyse the learning behavior a hybrid CMOS-memristive
(wall model) V1-like system when it is trained through STDP using the architec-
tural and circuital principles outlined throughout the Chapter and using real stimuli
obtained from a 128 × 128 pixel AER temporal derivative retina. Specifically, we
used a 521 sec recording with 20.5 million events showing scenes observed when
driving in a car [108]. We used a simplified network structure to simulate and see
what kind of receptive fields would naturally arise. The network structure is shown
in Fig. 21. From the retina visual field of 128 × 128 pixels we cropped 324 non-
overlapping patches of 7× 7 pixels each, and concatenated all these events sequen-
tially making a recording of 324 × 521 = 168804 sec (47 hours) with 19.6 million
events. This concatenation was used for one training epoch, and we required a total
of 5 epochs to observe convergence in the learned weights. The events from each
patch are separated into two additional 7×7 fields depending on the event sign. The
activity of these two subfields is projected onto 32 neurons.4 Consequently, there are
32× 2× 7× 7 trainable weights. Weights are always positive. Each of the 32 neu-
rons inhibits the other neurons through lateral inhibitory connections, as in Ref. [23].
Each neuron is as shown in Fig. 12, with a leak and a refractory voltage. Inhibitory
lateral connections have fixed weights, while the weights of the feed forward con-
nections follow STDP learning. Weights were initialized either to random values,
or to maximum values. The STDP learning functions were such that the ratio of the
negative side area over the positive side area was (see Eq. (1)) a−τ−/a+τ+ = 1.25,

4Compared to the arrangement in Fig. 19(a), each of the 32 neurons in Fig. 21 represents one of
the Feature Maps in Fig. 19(a). Consequently, to implement the full V1 structure physically, each
neuron with all its 7× 7 input synapses in Fig. 21 has to be “cloned” in a 128× 128 array.
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meaning that STDP was biased towards depression. The time constant for the pos-
itive side was τ+ = 13.6 ms, while that of the negative side was τ− = 15.2 ms,
and there is a central linear region for |ΔT | < 0.5 ms. Memristor resistances were
bounded to the interval Rmin = 10 M
, Rmax = 100 M
. We simulated this system
theoretically in several ways: (1) by solving the differential equations of biological
integrate-and-fire neurons via an Euler method with a time step update of 0.1 ms,
using the Brian simulator [109] and a conventional additive STDP learning rule;
(2) by using a dedicated event based simulator adapted from Ref. [23] implement-
ing the quadratic STDP learning rule of the memristors and the neuron dynamics
corresponding to the circuit in Fig. 10 with spikes as in Fig. 8; and (3) by simulat-
ing a simplified event driven matlab code with instantaneous neuron dynamics (but
including a non-instantaneous leak) and with quadratic multiplicative STDP. In all
cases, receptive fields became clearly orientation selective. The resulting receptive
fields are biased to vertical edges, similar to the visual input stimuli we have used
for this experiment.

Figure 22 shows the evolution of the receptive fields when using the dedicated
event based simulator (case (2) in previous paragraph). We see the receptive fields of
the 32 neurons, where the positive and negative weights are grouped together in the
same 7 × 7 square by assigning ‘white’ to positive weights and ‘black’ to negative
weights. The central gray color means zero weight. As can be seen, there is a clear
tendency for the receptive fields to become orientation selective.

It is worth mentioning that the type of continuous processing involved here dif-
fers from time-to-first-spike (or rank order) coding schemes, where a stimulus on-
set provides a reference time [17–21]. It also differs from Phase-of-Firing coding,
where the peak of a population activity oscillation is used as a reference time [24].
Here there is no oscillation, nor stimulus onset, nor any reference time, but a con-
tinuous flow of spikes, and yet STDP is able to pick patterns that are consistently
present in the training data, confirming previous results [22]. Future work, however,
will evaluate the use of periodic resets in the AER retina, leading to time-to-first-
spike coding with respect to those resets.

We also simulated the network in Spectre using the memristor macro model in
Sect. 3.1, but for 16 neurons only. However, electrical circuit simulation was very
slow. Simulating for just one of the 324 input patches (with about 154 K events)
took 559 ksec CPU time (6.5 days) running on a SUN Fire X2200 M2 Linux cluster
with dual cores at 2.2 GHz and 4 GB RAM. In this case we could only verify that
the initial evolution of weights was similar to those of the software programs. The
obtained results are shown in Fig. 23.

For the circuit simulations we used the topology and spike shapes shown in5

Fig. 24. There are two input memristor arrays, one for the positive and one for the
negative subfields in Fig. 21. The backward spikes are attenuated by αpos = 0.97.
The output neurons forward spikes are rectified and sent back through non-trainable

5This topology and these spike shapes also correspond to the theoretical simulations of case (2) and
Fig. 22. The only difference between the two cases is in the number of neurons used: 32 neurons
for the theoretical simulations, and 16 neurons for the circuit simulations.
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Fig. 22 Evolution of
7× 7 pixel Receptive Fields
through unsupervised STDP
training with AER retina data
observing life scenes.
Weights are shown at
different stages of training:
initial random weights, after
half a training epoch, after
one training epoch, and after
five training epochs

fixed value resistors Rinh = 2 M
 to implement the lateral inhibitory connec-
tions. The parameters used for the memristors are wmax = 10 V, wmin = −10 V,
CMR = 50 mF, Rmin = 8 M
, Rmax = 100 M
, k−1

R = 217 nA, wo = 11.74 V,
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Fig. 23 Receptive fields weight distribution of memristor conductances after training for one patch
out of 324 of one epoch, obtained through spectre circuit simulations

Fig. 24 Circuit Topology and Spike Shape used for the Spectre electrical circuit simulation of the
simplified V1 network

Io = 10 µA, vo = 0.1 V, vth = 1 V, and for the neuron R = 1 M
, C = 19.2 nF,
Vref r = 0.625 V, VREF = 1 V. With these memristor parameters and the spike
shapes in Fig. 24 we were able to characterize the STDP learning function of the
memristors and adjust them to the learning function in the event based simulation
(case (2) above). Figure 25 shows the STDP learning function characterized through
electrical spectre simulations (blue dots) to match the ideal function used in the the-
oretical simulations (red circles).

At this point we would like to highlight an important difference between the
memristor-based network of integrate-and-fire neurons with STDP synapses pre-
sented here, and an equivalent network as used normally among neurocomputational
researchers (see the integrate-and fire neuron model in [110]). In this latter case, the
evolution of membrane voltage following an input spike at tspk is as if the spike
injects a current Ispk(t > tspk) = Ime−(t−tspk)/τspk at node Vpos in Fig. 12. Parame-
ters Im and τspk defining this spike contribution are independent of the parameters
a+, a−, τ+, τ− in Eq. (1) used to characterize the STDP learning function. How-
ever, in case of the memristor implementation, each spike injects a current at node
Vpos in Fig. 12 proportional to the spike waveform delivered by the neurons. Since
this waveform also determines the shape of the STDP learning function, it turns out
that there is now a strong dependency between the parameters defining the evolu-
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Fig. 25 Spectre
characterization of STDP
learning function of
memristors. Blue dots are
results obtained from Spectre
electrical circuit simulations.
Red circles correspond to the
theoretical target function
used in the theoretical
behavioral simulations

tion of the membrane voltage and those defining the STDP learning function. They
are no longer independent and it is consequently more difficult to adjust all true
independent parameters properly for a desired behavior.

8 Practical Limitations, Realistic Sizes, Pitches, Density,
Crosstalk and Power Considerations

Nanoscale memristor technology is still quite incipient and no realistic large scale
systems have been reported at the time of writing (as far as we know). However, we
can estimate an orientative scale and density of what may realistically be achieved
in the near future, and the main limitations which may be encountered in a real
physical implementation.

Regarding the wiring density of synaptic memristors, a pitch of 100 nm is con-
servatively realistic for present day technologies [111, 112], while the near future
might bring us closer to 10 nm [113]. Assuming wafer scale dies of 100 nm pitch 2D
memristor arrays capable of interfacing reliably with lower CMOS become available
some time soon, this would result in a synaptic density of 1010 synapses per cm2.

In the brain, the number of synapses per neuron is about 103 to 104. If we want
to maintain the 104 ratio, we would need to fabricate CMOS neurons with a pitch
of 10 µm, resulting in 106 neurons per cm2. Such neuron sizes are quite realistic for
present day nanometer scale CMOS (45 nm or 32 nm), given the complexity of the
neurons needed.

Another problem is that of resistance value ranges of the memristors’ Rmin

(synapse ON) and Rmax (synapse OFF). Reported memristors present resistance
values from the kΩ range up to the MΩ range [6–8]. The memristor resistance
value range affects the performance, reliability, crosstalk and power dissipation of a
full large scale system. For example, it affects the driving capability of the neurons
and their power consumption. If one neuron needs to drive 104 synapses of aver-
age value 1 M
 to an average 1 V level, it has to be able to provide an average
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current of 10 mA during a spike (of say 20 ms), delivering 10 mW per spike. If
there are 106 neurons per cm2 each firing at an average of 10 Hz (which is similar
to biological neurons), the synapses would dissipate a power of about 2 kW. The
neurons would need at least the same power, presumably more. It is obvious that
such a structure would melt quickly. The resistance range needs to be increased by
a minimum factor of 100, so that minimum resistances are at least 100 M
, or even
larger. As pitches are lowered, resistances would need to increase quadratically with
pitch decrease, to maintain the power limitation. Another option would be to scale
down voltage, but there is not much range. Even our 1 V maximum voltage assump-
tion is quite optimistic for available present day memristors, which tend to operate
between 2–10 V [6–8]. Also, we have always assumed so far that voltage sources
driving memristor terminals behave as ideal voltage sources, or at least, that the out-
put resistance of such voltage sources is negligible compared to the total resistance
they have to drive. Again, this will be achieved more easily if memristors present
rather high resistance values. If driving voltage sources are no longer so ideal, then
there will be crosstalk between lines. For example, if a spike is sent to a column
then the voltage on all rows would change slightly. The consequence of this is that
part of the charge provided by the incoming spike will be lost through non desired
synapses and the impact of the spike on the target neurons will be weaker. During
learning, the situation is less severe because for STDP update the memristor voltage
has to exceed the learning threshold (vth in Eq. (5)). The effect of having non-ideal
voltage sources is that the terminal voltage difference on the memristors needing
synaptic update would be slightly less than in the ideal situation and learning would
be weaker than expected ideally. However, having non-ideal voltage sources would
not induce STDP update in undesired synapses. Another issue related to crosstalk is
parasitic capacitive crosstalk between lines, which can be more pronounced as pitch
and line distances decrease.

Also, one highly critical aspect which needs to be evaluated is the influence of
component mismatches. Nano scale devices suffer from high mismatch in general.
Consequently, we should expect nano scale memristors too to suffer from great pa-
rameter variations from one to another. It is true that they will operate as adaptive
devices that will learn their functionality hopefully compensating for (some) mis-
matches. However, their learning and adaptation rules will also suffer from mis-
match, making some synapses learn faster than others, or in slightly different fash-
ions. In any case, the main sources of mismatch in memristor devices still need to
be identified, and then their influence in the overall system learning behavior eval-
uated. However, to undertake such an initiative, we first need ready access to large
arrays of reliable memristors fabricated in a stable and repeatable manner.

In general, an important issue is precise memristor modeling. Throughout this
Chapter we have assumed an idealized voltage-driven memristor macro model. This
is useful to devise possible system architectures to achieve a desired functionality,
such as STDP learning. However, to estimate realistic performance figures of re-
sulting systems, it will be necessary to include non-ideal effects, both of the mem-
ristors and companion CMOS circuits. No high order effects have been modeled,
such as those related to noise, mismatch, and other memristor non-idealities not yet
reported.
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9 Conclusions

We have shown that STDP learning can be induced by the voltage/flux driven for-
mulation of a memristor device. We have used this formulation to develop fully
asynchronous circuit architectures capable of performing STDP, by having neurons
send their spikes not only forward but also backwards. We have seen that the STDP
learning rule induced this way can be additive or quadratic, depending on the nature
of the memristor. We have shown how the shape of spikes is critical to achieve and
modulate a specific STDP learning function. We have provided a memristor macro
model for simulating arrays of memristors efficiently in circuit simulators. Finally,
we have studied an emulation of the V1 visual cortex capable of self-learning how
to extract orientations from spiking inputs provided by a real physical AER spiking
retina fabricated in CMOS. At the end we have also discussed possible limitations
of present day memristors.

The presented results are ideal extrapolations based on behavioral simulations.
As memristor devices are further developed and non-ideal effects become known,
the impact of non-idealities in the presented architectures and methods can be fur-
ther assessed. Future work has to evolve towards more realistic memristor models
and improved memristor devices, specially devices with much higher resistivities.
One critical property that memristors need to provide for efficient STDP and non-
volatility is the central dead-zone in Fig. 6(b), which the already reported mem-
ristor from Michigan University [8] seems to present. Another issue relates to the
quadratic type of multiplicative STDP followed by the presented devices and archi-
tectures. This is a quite unusual form of STDP, which needs to be further investi-
gated from a theoretical point of view. In general, there might be stability issues
with generic STDP when used in complex biological models [114, 115]. Similarly,
since the presented approach allows the shape of the neural spikes, and therefore the
shape of the STDP learning curves to be changed in time, further theoretical studies
are required to incorporate time varying STDP learning functions for speeding up,
stabilizing, or in general improving learning performance.
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Abstract A novel memristor bridge circuit which is able to perform zero, nega-
tive and positive synaptic weightings in neuron cells is proposed. It is composed
of four memristors and three transistors for weighting operation and voltage-to-
current conversion, respectively. It is compact as it can be fabricated in nano me-
ter scale. It is power efficient since it operates in pulse-based. Its input terminals
are utilized commonly for applying both weight programming and weight process-
ing signals via time sharing. By programming on each memristor of the memris-
tor bridge circuit, the signed weighting values can be set on the memristor bridge
synapses. The features of proposed architecture are investigated via various simula-
tions.
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1 Introduction

It is known that the human brain contains more than 100 billion neurons and
each neuron has more than 20,000 synapses [1]. Efficient circuit implementation
of synapses, therefore, is very important to build a brain-like machine. However,
due to the lack of proper device to implement the synapses, research in this area
has only limited success. Among them, the cellular neural network (CNN) [2–8]
is known as one of successful approaches. However, even for the case of the CNN,
more efficient and smaller devices for implementing its final goal, a brain-like visual
computer, are needed.

Recently, the Stanley Williams group [9] has built a nano-scale TiO2 device
which is a nonvolatile and exhibits synaptic characteristics [10–13]. The memory
application of the TiO2 had been reported earlier in [14], but without any expla-
nation on the physical nature of the device. The fundamental contribution by the
Williams group is that they were the first to recognize their TiO2 resistive switches
is in fact a memristor, over a limited operating range, and that it can be modeled as
a memristive device [15] in general. The memristor was postulated by Leon Chua
in 1971 as the fourth basic element of electrical circuits [16] and later the concept
was generalized to a class of dynamical devices (systems) called memristive de-
vice [15]. A common fingerprint of both the memristor, and the memristive device
is their pinched hysteresis loops in the current vs. voltage plane, under sinusoidal
excitations, or under any bipolar sine wave-like excitations, which is the unique
qualitative phenomena that are absent from that of a resistor, inductor, and capacitor
[15]. Due to these phenomena, the resistance depends upon the past history of input
current or voltage, which enables this device to function as a non-volatile memory.

Many scientists have investigated the memristor for possible applications in ana-
log [17, 18] and digital information processing [19, 20]. Others have applied mem-
ristive devices for memory and logic applications [21–23].

Also, the great potential for exploiting the memristor for neural network applica-
tions had been claimed by many scientists [9, 15, 24], and [25]. Analog signal stor-
ing capability of the memristor is very important for this research area. Recently, Jo
et al., [24] and Kund et al., [26] built memristors using Ag and Si in a sandwiched
layer and reported their performances as analog memories. Also, Snider had pre-
sented a memristor-based self-organized network employing dedicated connections
for inhibitory (negative) weighting [25].

In this paper, a general structure to implement synapses efficiently using mem-
ristors is addressed. Specifically, we propose a memristor-based synapse consisting
of a four-memristor bridge circuit, and three transistors. Strong (large and wide)
pulses are used for programming the synaptic weights, while weak (small or nar-
row) pulses having negligible effects on the memristor operating point are used as
processing input signals.

The operating mechanism of our memristor-bridge weighting circuit is derived
analytically and illustrated by computer simulations. The synaptic weight program-
ming capability of the memristor bridge is demonstrated by implementing two well-
known CNN templates using the TiO2 memristor model.
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In Sect. 2, we review the principle of the memristor and the TiO2 memristor
model. Our memristor bridge synapse is introduced in Sect. 3. The programming
characteristics of our memristor bridge neuron are analyzed in Sect. 4. Simulation
results and conclusions are given in Sects. 5 and 6, respectively.

2 Memristors and Memristive Devices

In the memristive device, the current and voltage relationship can be defined by

v = [M(x1, x2, . . . , xn)
]
i (1)

where M of memristance and the xi ’s are state variables,1 v and i are voltage and
current, respectively. The state variables x1, x2, . . . , xn are defined by “n” differen-
tial equations where n≥ 1, called the associated state equations, as follow:

dxk

dt
= fk[x1, x2, . . . , xn, i], k = 1,2, . . . ,m (2)

Specifically, if the device possesses only a single variable x and it is a function
of only the charge q , the device is called “ideal memristor” or simply “memristor”.
In this sense, the memristor [16] is a subset of memristive devices [15].

One of the “ideal memristor” is defined [27] by

v(t)=R(t)i(t)= dϕ

dt
· dt

dq
i(t) (3)

where ϕ(t) and q(t) denote the flux and charge, respectively, at time t . Thus, the
resistance can be interpreted as the slope at the operating point q = qQ at time t on
the memristor ϕ–q curve. If the ϕ–q curve is nonlinear; the resistance will vary with
the operating point.

Since the flux ϕ is defined by ϕ(t)= ∫ t

−∞ v(τ)dτ , the resistance of the memris-
tor, called the memristance M , can be controlled by applying a voltage or current
signal across the memristor, where

R =M = dϕ

dq

∣∣∣∣
(qQ,ϕQ)

(4)

In the TiO2 memristor, a thin titanium dioxide (TiO2) layer and a thin oxygen-
poor titanium dioxide (TiO2−x) layer are sandwiched between two platinum elec-
trodes. The TiO2 layer and the TiO2−x layer are referred to as un-doped, and doped
layers, respectively. When a voltage or current is applied to the device, the dividing
line between the TiO2 and TiO2−x layers shifts as a function of the applied voltage
or current. As a result, the resistance between the two electrodes is altered.

1At least one state variable must appear explicitly in the definition of the memristance.
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Let D and w denote the thickness of the sandwiched area and the doped area
(oxygen deficient area) in the TiO2 memristor, respectively, and let RON and ROFF

denote the resistances at high and low dopant concentration areas, respectively.
Then, the relation between the voltage and the current in (3) is given by

v(t)=
(

RON
w(t)

D
+ROFF

(
1− w(t)

D

))
i(t) (5)

where w(t)/D is the state variable x defined in (2). In TiO2 memristor [9], the state
variable w is defined as a function of current i as

dw(t)

dt
= μV

RON

D
i(t) (6)

where μv is the dopant mobility. This model is called a linear drift model since the
velocity of the width is linearly proportional to the current.

The relationship between the flux and the charge of the TiO2 memristor is given
by [9]

ϕ(t)=Roff

{
q(t)

[
1+ w0

D

(
RON

ROFF
− 1

)]
− μvRON

2D2

(
1− RON

ROFF

)
q(t)2

}
+ ϕ0 (7)

From (4) and (7), we obtain

M = dϕ

dq
=Roff

{[
1+ w0

D

(
RON

ROFF
− 1

)]
− μvRON

D2

(
1− RON

ROFF

)
q(t)

}
(8)

Observe that the memristance in (8) is a linear function of the charge q(t), where
the theoretical range of the ϕ, q and M of the TiO2 memristor are ϕ = [0,0.804]We-
ber, q = [0,1 × 10−4] Coulomb and M = [16,0.1] K
, respectively for the range
w = [0,D].

Differently from the linear drift model described above, nonlinear phenomenon
appears often at the boundaries of nano-scale devices; with even the small voltage
applied across nanometer devices, a large electric field is produced and therefore, the
ion boundary position is moved in a non-linear fashion in nano-scale devices [11].

Several different types of nonlinear memristor models have been investigated
[11, 28]. One of them is the window model in which the state equation is multiplied
by window function Fp(w), namely

dw(t)

dt
= μV

RON

D
i(t)Fp(w) (9)

where p is an integer parameter and Fp(w) is defined by

Fp(w)= 1−
(

2
w

D
− 1

)2p

(10)
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Fig. 1 Relationship between
memristance versus charge
for the linear and the
nonlinear models [11] of
TiO2 memristors. As the
integer p increases, the
graphs tend to the linear
model

This is called the nonlinear drift model or memristive model. Fig. 1 shows the
graphs of the memristance vs charge of the linear and nonlinear models of mem-
ristors. As the number p becomes smaller, the nonlinearity increases. On the other
hand, as the integer p increases, the model tends to the linear model.

3 Synaptic Multiplication via Memristor Bridge

Our memristor bridge synapse is a Wheatstone bridge-like circuit consisting of four
identical memristors with the polarities indicated in Fig. 2. When a positive or a
negative, strong pulse Vin(t) is applied at the input, the memristance of each mem-
ristor is increased or decreased depending upon its polarity. For instance, when a
positive pulse is applied as input, the memristances of M1 and M4 (whose polarities
are forward-biased) will decrease. On the other hand, the memristances of M2 and
M3 (whose polarities are reverse-biased) will increase. It follows that the voltage
VA at node A (with respect to ground) becomes larger than the voltage VB at node
B for a positive input signal pulse. In this case, the circuit produces a positive output
voltage Vout representing a positive synaptic weight.

On the other hand, when a negative strong pulse is applied, the memristances are
varied in the opposite direction and the voltage at node B becomes larger than that at
node A. In this case, the circuit produces a negative output voltage Vout representing
a negative synaptic weight.

3.1 Weighting of Input Signals via the Memristor Bridge

Suppose an input signal voltage vin is applied to the memristor bridge circuit in
Fig. 2 at time t . The input voltage will be divided via the well-known “voltage-
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Fig. 2 Memristor bridge
circuit. The synaptic weight is
programmable by varying the
input voltage vin. The
weighting (multiplication) of
the input signal is also
performed in this circuit

divider formula” as follows

vM1 = M1

M1 +M2
vin (11a)

vM2 = M2

M1 +M2
vin = vA (11b)

vM3 = M3

M3 +M4
vin (11c)

vM4 = M4

M3 +M4
vin = vB (11d)

where M1, M2, M3, and M4 denote the corresponding memristances of the memris-
tors at time t , in Fig. 2. Note that the voltage divider formula for memristors is the
same as that for resistors.

The output voltage Vout of the memristor bridge circuit is equal to the voltage
difference between terminal A and terminal B; namely,

vout = vA − vB =
(

M2

M1 +M2
− M4

M3 +M4

)
vin (12)

Equation (12) can be rewritten as a relationship

vout =ψ × vin (13)

between a synaptic weight ψ and a synaptic input signal vin where

ψ = M2

M1 +M2
− M4

M3 +M4
(14)

Equations (13) and (14) define the synaptic weighting operation in the memristor
bridge. Since the memristor bridge acts like a linear resistor network during short
time intervals, the weighting operation is almost linear. The detailed analysis of the
linearity in the synaptic weight programming will be carried out in the next section.

In contrast to our memristor bridge weighing (multiplication) circuit, multipli-
cation in a typical analog multiplication circuit [7, 8] is usually implemented with
at least eight transistors operating in a nonlinear and hence power-hungry regime.
Therefore, significant nonlinearity is unavoidable in multiplication processing with
conventional CMOS transistor circuits.
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Fig. 3 Memristor bridge
synaptic circuit. The
memristor bridge on the left
performs the weighting
operation while the
differential amplifier on the
right performs the voltage to
current conversion

4 Memristor-Bridge Neuron

Each neuron must add a set of weighted input signals from diverse sources. This
is implemented in our memristor bridge neuron via summing input signals with
current mode circuits. The differential amplifier with three transistors in Fig. 3 is
the voltage-to-current converter which functions as a current source.

Figure 4 shows the complete circuit of our memristor-bridge neuron with mul-
tiple input synapses. All positive terminals of the input synapses are connected to-
gether, as are the negative terminals. The circuit at the bottom right of Fig. 4 is the
cell biasing circuit that provides the DC bias voltage for the output.

The active load at the top of Fig. 4 is shared among all input synaptic circuits. The
sum of all synaptic input signal currents appears at the output and is converted back
to a voltage signal via a memristor load which operates at 7.2 k
. The transistor
circuit as well as the memristor circuit operates based on voltage pulses, which
enables the circuit to save power greatly.

Our memristor-bridge neuron can be used for any kind of neural networks, in-
cluding cellular neural networks (CNN).

5 Weight Programming in Memristor Bridge Synapses

The synaptic weight processing introduced in the previous section was performed
with very small or narrow pulses so that its effect on the change in memristance
was negligible. In contrast, the pulses for synaptic weight programming must be
strong (relatively large and wide) enough to change the charge operating point of
the memristor.

When a positive programming pulse Vin is applied to the memristor bridge circuit
in Fig. 2, the memristances M2 and M3 increase while the memristances M1 and M4
decrease. On the other hand, when a negative pulse Vin is applied, the memristances
M2 and M3 decrease while M1 and M4 increase.
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Fig. 4 Complete schematic of our memristor-bridge neuron. The synaptic circuits are located at
the left bottom and the cell biasing circuit is at the right bottom. The current mirror at the top acts
as an active load that is shared by all synapses

It follows that if the synaptic weight ψ is larger than 0, namely,

M2

M1 +M2
− M4

M3 +M4
> 0 (15)

Our memristor bridge circuit represents as a positive synaptic weight. Rearrang-
ing (15), the condition for positive synaptic weight is as follow:

Positive Synaptic Weight; if
M2

M1
>

M4

M3

Similarly, the conditions for negative weight, or zero synaptic weight, are given,
respectively, as follow:

Negative Synaptic Weight; if
M2

M1
<

M4

M3

Zero Synaptic Weight; if
M2

M1
= M4

M3

The state when the output is zero is henceforth called the balanced state. At the
balanced state, the synaptic weight is zero.

Note that the synaptic weight programming signal and the synaptic input signal
vin for processing share the same input terminal in Fig. 2. The two different kinds
of signals are discriminated by being assigned at different time slots. Very narrow
pulses with negligible effect on memristance changes are used for input signals,
while very strong pulses are used for programming synaptic weights.
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6 Simulation

Computer simulations of our memristor bridge neuron in Fig. 3 were performed
using the TiO2 memristor model [9], where the initial doped-width of w0 is as-
sumed to be either 0.1D when q = 0 and ϕ = 0, or 0.9D when ϕ = 0.64 Weber and
q = 8 × 10−5 Coulomb, which corresponds to the physically possible maximum
(14.41 K
) and minimum (1.69 K
) memristances as in [9], respectively. Linear-
ity in the synaptic weight programming of our memristor bridge synapses and the
synaptic weight processing resulting from synaptic input signals were investigated
via computer simulations. In addition, the feasibility of using our memristor bridge
for implementing CNN templates has been examined.

The width of the synaptic weight processing pulse must be sufficiently narrow
so that the memristances will not be affected. The simulations for the synaptic
weight programming and the synaptic weight processing can be performed sepa-
rately. For synaptic weight programming, the memristance variations are computed
every 4× 10−4 sec after application of a strong synaptic weight programming pulse.
Each branch current in Fig. 2 is computed and during every 4× 10−4 sec, followed
by an update of all memristor charges. The charges are then used to compute the
current memristance values via (8) of the TiO2 memristor model.

After the memristance programming is completed, the memristors in the bridge
circuit are replaced with resistors having identical resistances for the subsequent
SPICE simulation. Synaptic weight processing of the combined resistor-CMOS cir-
cuit was performed using SPICE.

Two types of rectangular voltage pulses were used; for synaptic weight program-
ming, we used pulses with fixed amplitude of 1 V and varying widths. For synaptic
weight processing, pulses with a fixed width of 5 ns and varying amplitudes ranged
[−1.28,1.28] V were used.

6.1 Linearity in Synaptic Weight Programming

Simulations to demonstrate the linearity in programming our memristor-bridge cir-
cuit have been performed. Figure 5(a) shows the changes in the memristances
M1(t), M2(t), M3(t) and M4(t) as a function of time, obtained via computer
simulations of the memristor bridge circuit in Fig. 2 with initial memristances,
M1(0) = M4(0) = 14.41 K
, M2(0) = M3(0) = 1.69 K
. Figure 5(b) is the
corresponding weight computed with the memristance values in Fig. 5(a) us-
ing (14). As shown in the figures, these numerically computed memristances in
Fig. 5(a) and the corresponding weight in Fig. 5(b) are all very linear. In con-
trast, when the same voltage pulse as in Fig. 5 is applied to a non-bridge memris-
tor circuit in parallel connection as shown in Fig. 6(a), the memristance changes
are quite nonlinear as in Fig. 6(b). This reveals the fact that the linearity of
Fig. 5 comes from the complementary connection of our memristor bridge cir-
cuit.
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Fig. 5 Time variations of
M1(t), M2(t), M3(t), M4(t),
and ψ(t)with our memristor
bridge circuit when a wide
pulse is applied. The linear
memristor model is assumed.
The initial memristances are
M1(0)=M4(0)= 14.41 K
,
and M2(0)=M3(0)=
1.69 K
. (a) M1(t), M2(t),
M3(t), and M4(t) (b) weight
ψ(t)

The effect of the nonlinearity of memristor models to the performance of our
memristor bridge circuit has also been investigated. Figure 7(b) shows the change
of the memristances when the same simulation as in Fig. 5(a) is performed with
the parallel memristor circuit as Fig. 6(a), where the nonlinear model of (10) with
p = 1 is employed. The memristance changes as functions of time are highly non-
linear. In contrast, Fig. 7(a) shows the results with our memristor bridge circuit
employing the nonlinear memristor model with p = 1 which is used for Fig. 7(b).
Observe from this figure that the nonlinearity is reduced significantly. The graphs
around the center are almost linear though some nonlinear regions can be seen at
the end of the curves. Since weighting operations are performed only in the lin-
ear region at the center as indicated with a box, such nonlinear regions can also be
avoided.

Since a similar linearity exhibited in a linear model can be obtained from a non-
linear model with our memristor bridge circuit when it is operated at the center
area, all further simulations in this paper are performed only with the linear model
to avoid redundancy.

6.2 Synaptic Weight (Multiplication) Processing

Simulations of synaptic weight (multiplication) processing were also performed.
When an input signal is applied across the input terminal of the memristor-bridge
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Fig. 6 Nonlinear variations
of memristances about time
when two linear memristors
M1 and M2 are connected in
parallel with opposite
polarities. (a) two memristors
connected in parallel, (b) time
variations of memristances
(Initial memristances
M1(0)= 14.41 K
,
M2(0)= 1.69 K
 are
assumed)

circuit, synaptic weighting is performed by a weighting factor created by the mem-
ristor bridge circuit. Simulations of the synaptic weight processing were performed
in our memristor-bridge neuron with nine synaptic inputs. Various input signals
were applied to a single synapse, while zero volts were applied to the remaining
eight synapses. Figure 8(b) shows the linearity of the relationship between the in-
put voltages, and the memristor bridge neuron output voltage, for various synaptic
weights of the proposed circuit. To compare this result with the performance of a
conventional multiplication circuit, the performance of the conventional multiplica-
tion (synaptic weight) circuit employed in the CNN [7, 8] is shown in Fig. 8(a). Note
that the linearity of our memristor-based synaptic weighting is superior to that of the
conventional multiplication circuit. The linearity of our memristor bridge synaptic
circuit is due to the linear voltage assignment at the memristors and the operation
at the center of the memristor dynamic range. The superiority of our memristor
bridge circuit is demonstrated more clearly when the graph of Fig. 8 is redrawn
with respect to the graph of output current variation ratio versus the synaptic weight
change. The input voltage is fixed at 1 V. As seen in the Fig. 9, the current incre-
ment ratio of the conventional multiplier changes by almost 80 % over the synaptic
weight range of [−0.1,0.1] while that of our memristor bridge circuit is almost
constant.
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Fig. 7 Time variations of
M1(t), M2(t) when the
nonlinear model of
memristors p = 1 are
employed. (a) improved
linearity with the proposed
memristor bridge circuit
(b) nonlinear variation of the
memristances when
memristors are connected in
parallel as in Fig. 6(a). Note
that the time taken between
(a) and (b) is different since
the memristors in (a) are
connected in series, while
(b) are connected in parallel

6.3 Applications

Our memristor bridge neuron was used to implement a two-dimensional (2-D) im-
age processing task. The basic architecture [7] of a feed forward CNN with zero A
template was designed using our memristor bridge synapses as template elements.
The circuit has nine synaptic inputs representing the B template and one bias volt-
age representing the threshold. The average template, and the Laplacian template,
as shown in Fig. 10, were tested with our memristor bridge neurons. Note that Z is a
bias template of the CNN and zero for the both cases. For the average template, the
circuit of the CNN cells was simulated via SPICE, and the simulation with the input
image (size: 16×16) in Fig. 11(a) was performed. The images shown in Figs. 11(b)
and (c) are the results obtained by using the CNN software, and by using memristor
bridge synapses, respectively. Also, our simulation of the Laplacian template was
performed using the input image (size: 59 × 59) in Fig. 12(a). The images shown
in Figs. 12(b) and (c) are results obtained by using the CNN software, and by using
memristor bridge synapses, respectively. Although image processing using circuits
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Fig. 8 Comparison of
synaptic weight
(multiplication) performance
between (a) conventional
multiplication circuit in [7, 8]
and (b) memristor bridge
synaptic circuit

Fig. 9 Comparison of Fig. 8
with respect to the output
current increment ratio versus
the synaptic weight when the
input is fixed at 1 V

in general has poorer performances than that obtained from CNN software, the re-
sult obtained from memristor bridge synapses is very close to the result obtained
from CNN software: the average pixel difference between the results with the CNN
simulator and that of the proposed circuit 0.89 % and 0.86 % for Figs. 11 and 12,
respectively.

Circuit size is also the benefit of memristor bridge synapses. Since, the size of the
memristor is projected to be less than 5 nm [9], the total size of the four memristors
for each synapse would be much smaller than using CMOS transistors.

Ignoring the space occupied by memristors, a comparison of the number of re-
quired transistors between a memristor bridge neuron and a conventional CNN cell
is shown in Table 1, where a full CNN cell with 18 synapses was assumed to be im-
plemented. As Table 1 shows, a bridge synaptic implementation requires less than
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Fig. 10 CNN templates tested for image processing with memristor bridge synapses (a) Average
template (b) Laplacian template

Fig. 11 Comparison of image processing performance using the average template. (a) Input im-
age, (b) Processing implemented with CNN software (c) Processing implemented with memristor
bridge synapses representing B template

Fig. 12 Comparison of image processing performance using the Laplacian template. (a) Input
image, (b) Processing implemented with CNN software. (c) Processing with memristor bridge
synapses representing the B-template

Table 1 Comparison of the number of transistors needed to implement our memristor-based neu-
ron and a conventional CNN cell [7, 8]

Memristor Bridge neuron Conventional CNN cell [7, 8]

Number of Transistors for a neuron 61 140

half of the number of transistors in a conventional CNN cell implementation. The
size reduction would be even more impressive for implementing larger “N × N

CNN templates”, where N ≥ 3.
Another benefit of our circuit comes from small power consumption due to the

pulse-based operation of our memristor synapse. Figure 13 shows the variations of
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Fig. 13 Variations of the
output voltage and the instant
power consumption of our
memristor bridge synapse
circuit when all the signal
input voltages and current
source biasing voltages in
Fig. 4 are given in pulse form

output voltage and instant power consumption when input voltage pulse (1 V, 5 ns,)
and current source biasing pulse Vb ranged [−3.3,−2.4] are presented at all the
inputs of memristor bridge synapses and their current source biasing transistors,
respectively. All the synaptic weights are programmed with 0.01. The periods and
widths of the input signal pulses and those of current source biasing pulses are
all identical. Observe that correct output voltages could be obtained if the output
voltage is sampled after 2 ns from the time when a current source biasing voltage
pulse Vb is given. Also, observe that the power consumption occurs during only the
pulse width period. This fact shows the evidence of power saving with the proposed
circuit though the average power consumption depends upon the frequency that the
pulses are given to the circuit.

7 Conclusion

In this paper, we proposed a memristor bridge synaptic circuit for analog weighting
and signal processing applications that could significantly outperform conventional
approaches with respect to size and power consumption.

Our memristor bridge circuit is composed of four identical memristors. A weight
programming was performed by applying strong positive or negative input pulses
with the pulse width varying over the range [0, 1 ms] at amplitude of 1 V.
The weight processing was performed on input signals ranging over the range
[−1.28 V,1.28 V]. Circuit simulation in which the TiO2 memristor model is em-
ployed showed that our memristor synapse exhibits excellent linearity over both
positive and negative weight ranges.

A neuron based on memristor bridge synapses was also proposed. All synapses
were combined with an active load circuit and all the output of synapses were
summed in current mode. The performance of memristor bridge synapses was inves-
tigated via two CNN templates (average template and Laplacian template). Circuit
simulations using SPICE showed processing results that were very close to the ideal
result obtained via software processing.
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Finally, we remark that the two words “memristor” and “memristive device” are
models, just as all other equations describing other devices, e.g., the “Ebers-Moll
equations” of transistors are models. Since the term “memristor” as defined in 1971,
and the term “memristive device “ as defined in 1976 , share the same fingerprints,
namely, a pinched hysteresis loop (under bipolar sine-wave like excitations) whose
area shrinks with frequency, a unique circuit phenomenon completely different from
the other three basic circuit elements (resistor, inductor, capacitor), Chua has pro-
posed recently in [27] that there is no need to use two different words for the new
family devices that behaves similarly. Hence, he proposed to use only one word
(memristor) for both “memristor circa 1971”, and “memristor circa 1976”, to avoid
clutter. In the few occasions where one may wish to refer to the “memristor circa
1971” specifically, Chua had suggested to simply add the adjective “ideal” to “mem-
ristor”, namely, “ideal” memristor.
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Cellular Nonlinear Networks with Memristor
Synapses

Fernando Corinto, Alon Ascoli, Young-Su Kim, and Kyeong-Sik Min

Abstract Cellular Nonlinear/Nanoscale Networks (CNNs) that can provide parallel
processing in massive scale are known to be suitable for neuromorphic applications
such as vision systems. In CNNs, synaptic weights can be calculated by digital or
analog multiplications. Though conventional CMOS digital circuits can be used in
calculating these multiplications for CNN applications, they occupy very large area
and consume a large amount of power, especially when multiplications should be
calculated in parallel in massive scale. On the other hand, analog circuits seem to
be very attractive for calculating multiplications for CNN applications. One possi-
ble approach is to multiply the input current by the programmable resistance of a
memristor before applying the resulting voltage to a differential pair for the final
voltage-to-current conversion. In this chapter we introduce some analog circuits for
CNN applications that use the resistance of a memristor in calculating multiplica-
tions. In addition we discuss memristor models and some practical problems in CNN
circuits that should be resolved using analog memristor-based implementations.

1 Introduction

The current-controlled ideal memristor is a passive bipole linking charge q(t) and
flux ϕ(t) through a nonlinear relation, i.e. ϕ(t) = ϕ(q(t)). It follows that voltage
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v(t) depends upon current i(t) through

v(t)= dϕ(t)

dt
= dϕ(q(t))

dq

dq(t)

dt
=M

(
q(t)

)
i(t), (1)

where M(q) = dϕ(q)
dq

is the memristance (i.e. memory-resistance) of the bipole, i.e
the resistance of the memristor depends upon the time history of the current flowed
through it. This explains the memory capability of the memristor, theoretically en-
visioned by Chua in 1971 [1] and later classified by Chua and Kang in 1976 as the
simplest element from a large class of nonlinear dynamical systems endowed with
memristance, the so called memristive systems [2].

In [2] a memristive system (or memristor system1) is a nonlinear dynamical two–
terminal circuit element defined by the following differential-algebraic system of
equations:

dx(t)

dt
= f
(
x(t), u(t)

)
, (2)

y(t) = g
(
x(t), u(t)

)
u(t), (3)

where2 x ∈ R
n is the state, u ∈ R refers to the input, y ∈ R describes the output,

f(x, u) : Rn ×R→ R
n stands for the state evolution function, while g(x, u) : Rn ×

R→ R, denotes the memductance (memristance) if input u is in voltage (current)
form.

Since 2008, when its existence at the nano-scale was certified at Hewlett-Packard
(HP) Labs [3], the memristor has attracted a strong interest from both industry and
academia for its central role in the set up of novel integrated circuit (IC) archi-
tectures, especially in the design of high-density non-volatile memories [4], pro-
grammable analog circuitry [5], neuromorphic systems [6], and logic gates ([7, 8]).

Several applications of memristors such as memory, analog circuits, digital cir-
cuits, etc. have been intensively studied. Among these applications, neural network
circuits with memristors can be considered very promising, because memristors can
be used in synaptic circuits emulating the excitation-dependent change in synaptic
coupling factors in neuronal networks.

One of key advantages of neural network systems is that massive parallelism can
be more easily implementable thus the energy efficiency in neural network systems
can be better than in conventional von Neumann systems that have been a theoreti-
cal ground of high-speed digital systems since over fifty years [9]. In addition, the
Cellular Nonlinear/Nanoscale Network (CNN) paradigm [10–14] permits to over-
come limits of VLSI neural network implementations. In CNNs local connectivity is
realized by means of synapses whose weights are multiplied in the digital or analog
domain by external excitations to produce signals to be transferred to neighboring

1In the following memristive systems are referred to as memristor systems, whereas the term ideal
memristor is used for systems described by (1).
2For the sake of brevity the explicit time dependency is dropped where it is not strictly necessary.
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cells. Though conventional CMOS digital multiplier circuits can be used in CNN
applications, they occupy considerable layout area and consume large amount of
power, especially when multiplications should be conducted in parallel in massive
scale. Recently, new and simple analog multiplication circuits were developed by
H. Kim et al. [15, 16], where the input signal currents are multiplied by the pro-
grammable resistances of memristors.

This chapter aims at introducing analog circuits for CNN applications that use
memristance in calculating multiplications. The development of innovative strate-
gies for the design of memristor-based CNNs (and general–purpose electronic sys-
tems as well) requires the development of circuital and mathematical memristor
models and their implementation into a software package for computer aided inte-
grated circuit design.

Several mathematical models ([3, 6, 17–22], to name but a few) for the memristor
nano-structures were proposed in the literature. A good model should be as general
as possible, i.e. it should be able to capture the memristor dynamics of a large num-
ber of nano-films. In this respect the Boundary Condition Memristor (BCM) model,
recently-introduced in [20], was developed so as to meet this generality require-
ment. In fact the distinctive feature of the BCM model is the adaptability of the
nano-device behavior at boundaries. In particular, the model makes use of adapt-
able3 threshold voltages vth0 and vth1, respectively defining4 the magnitude of the
limit value the input voltage (i.e. the voltage drop across the memristance) needs to
cross after its negative-to-positive and positive-to-negative sign reversal before the
memristor state may be released from its lower and upper bound.

It is straightforward to establish an optimization procedure, which, on the basis of
observed data, sets the most suitable values for threshold voltages, i.e. those values,
let us identify them as v∗th0 and v∗th1, minimizing the mean squared error between
observed and modeled data. This enables the BCM to stand out over other models
available in the literature for the larger number of detectable dynamics, despite the
extreme simplicity of the window function embedded into the state equation (when
the state variable lies within its two bounds its time evolution is governed by the
basic linear dopant drift model [3]). It is noteworthy that the class of detectable dy-
namics include not only all the behaviors observed in the HP memristor [3], but also
phenomena exhibited by various other nano-structures where memristor behavior
arises from distinct physical mechanisms ([25–28]). In order to enable the BCM
model to support various neural learning rules, we recently developed a generalized
version [29]—the so called Generalized Boundary Condition Memristor (GBCM)

3Note that by defining a time evolution rule for the threshold voltages, it was recently demonstrated
[23] that an adaptable threshold voltage-based version of the memristor model from [6] may ex-
plain the Suppression Principle [24] of the Spike-Timing-Dependent-Plasticity (STDP) Rule [6],
which may occur in the case of triplet spikes.
4Throughout the paper, unless stated otherwise and without loss of generality, we assume that the
doped layer is spatially located to the left of the un-doped layer along the horizontal extension of
the nano-film [20], and in this case we assign a value of +1 to the memristor polarity coefficient η

(see Eq. (6)).
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model—in which the activation threshold property characterizing the boundary be-
havior in the original BCM model [20] is extended to the whole admissible range
of the state variable, thus allowing the modulation of the rate of evolution of the
memristor dynamics in sub- and supra-activation threshold regimes.

In this chapter, we introduce some analog circuits for CNN applications that
use memristance in calculating multiplications. In addition, we discuss memris-
tor models and some practical image processing tasks which may be performed
in memristor–based CNNs.

2 Brief Review of Memristor Models

Various memristor circuit models have been proposed in the literature. A large num-
ber of models assumes that the control waveform is in current form (the voltage
v-current i relationship is expressed by (1)), views the memristance as the series be-
tween two variable resistances, associated with the insulating and conductive layers
of the nano-film, and sets the width w of the conductive layer, normalized with re-
spect to the entire length D of the device, as the state x = w

D
∈ [0,1] of the system.

The linear drift model from Williams [3], where the time derivative of the state is
proportional to the input waveform in current form, is valid under the assumption of
low electric fields, and does not take into account the boundary behavior.

In the nonlinear drift models from [17, 18] and [30] the rate of change of the
state is proportional to the product between the input waveform in current form
and a window function accounting for nonlinear dynamical behavior and imposing
suitable boundary conditions.

In Joglekar’s model [17] the window function is defined as fJ (x) = 1 − (2x −
1)2p (p ∈ Z+). Such window describes the suppression of dopant drift close to the
extremities, but is not vertically scalable (i.e. its maximum value may not be up- or
down-shifted) and introduces the so-called “terminal-state problem” [30], since if
the state is at either of its two bounds it may not leave it for any subsequent time
instant. Note that for p = 1 Joglekar’s window is a scaled (by a factor of 4) version
of yet another window previously derived by Strukov in [3], i.e. fS(x)= x(1 − x).
Benderli [31] presented a circuit realization of Strukov’s model [3], in which the
terminal-state problem was resolved through the use of comparators and logic gates
allowing the emulation of the state clipping at or release from either bound.

In Biolek’s model the window function depends on both state x and input current
i, being defined as fB(x, i) = 1 − (x − stp(−i))2p , where stp(x) = 1 for x ≥ 0
and 0 otherwise (p ∈ Z+). Such window resolves the “terminal-state problem”, but
has limited scalability (in particular, its maximum value may not exceed +1 [30]).
PSpice implementations of Joglekar’s and Biolek’s models are reported in [18].

In the versatile model proposed by Prodomakis [30] the window function
fP (x) = j (1 − ((x − 0.5)2 − 0.75)p) has two control parameters j and p lying
in R+ and is vertically scalable, i.e. 0 ≤ max{fP (x)} � 1. A PSpice version of
such model may be easily derived by modifying the PSpice code [32] file available
in [18].
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Another model endowed with a PSpice circuit implementation was developed by
Cserey [33]. In this model the state evolution function in Strukov’s model [3] was
augmented with an additive state-dependent linear term to resolve the “terminal-
state problem”.

One of the finest mathematical descriptions of memristor behavior is credited to
Shin and Kang [19], which proposed a general model where the control waveform
may be in either current or voltage form and the state is defined as the memristance.
Their model, from which the charge-flux relationship of the memristor under mod-
eling may be easily extracted, may be suitably tuned through the introduction of a
window function depending on the memristor charge.

Kavehei [34] proposed a memristor model based upon the specification of a
piecewise-linear charge q-flux ϕ relationship. Its PSpice implementation is based
on Chua’s [1] first circuit realization of a memristor through a type-1 memristor-
resistor mutator.

An interesting model was presented in [35] to explain the memristor behavior of
nanoparticle assemblies.

The nonlinear dependence of the time derivative of the state on the input signal
is taken into account in Lehtonen’s model [36], inspired by the experimental work
from [37], where the current is related to the voltage by means of a rectifying ex-
ponential function in the off state (as in a diode) and of a sinh function in the on
state (typical of electron tunneling). This model, where the control waveform is in
voltage form, was implemented in PSpice to describe the neighborhood connections
among CNNs ([10, 11, 38]).

An even more nonlinear function of the input governs the state equation in the
voltage-controlled model from Poikonen [39], which studied the transition between
non-programming and programming phases in memristor devices.

In the memristor emulator circuit from [40], used as basic building block of a 4-
memristor bridge synapse for neuromorphic applications, the memristance, modeled
by the input impedance of an operational amplifier, is made proportional to the time
integral of the memristor current by constraining the voltage at one of the input
terminals of the amplifier to be the analogue multiplication between the voltage
across a resistor, proportional to the memristor current, and the voltage across a
capacitor, proportional to the time integral of the memristor current.

In [41] Strukov and Williams demonstrated the exponential relationship between
drift velocity and local electric field. Since this discovery a number of models have
been introduced to support threshold-activated state dynamics.

Among them, one which merits mention, is the physics-based Pickett’s model
from [21], in which the dependency of the rate of change of the state on the current-
form input is strongly nonlinear. In such model the memristor is seen as the series
between a low resistance associated with the conductive layer of the nano-film and
Simmons’ electron tunneling barrier [42], whose width is chosen as the system state.
A PSpice version of Pickett’s model was presented in [43].

More recently Kvatinski developed a simplified version of Pickett’s model [21]
and named it as ThrEshold Adaptive Memristor (TEAM) model [22]. In such model
for input current magnitude below a certain adaptable threshold no state change
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occurs, otherwise the state evolution rule may be tuned to the memristor element
under modeling through specification of an appropriate set of control parameters
and of suitable window and memristance functions. The PSpice architecture of the
TEAM model is similar to the one originally presented in [19].

Another activation-type state model, where the state variable expresses the mem-
ristance and the control signal is in voltage form, embedded in the PSpice software
program [44], enabled the reproduction of the adaptive behavior of a unicellular
organism named amoeba through a simple memristor-based oscillator [45].

Another interesting model with threshold-activated state dynamics was proposed
in [46] to explain Spike-Timing-Dependent-Plasticity (STDP) in neural synapses.

Most of these mathematical models have been classified in [47]. Another insight-
ful discussion on the models available in the literature was recently published in
[48], where a novel model inspired from Simmons’ electron tunneling theory [42],
endowed with programming threshold capability and PSpice circuit implementa-
tion, was also proposed.

The Boundary Condition Memristor (BCM) model is a simple yet accurate
boundary condition-based mathematical model for memristor nano-structures made
up of two layers with different conductivity levels, whose longitudinal extensions
depend on the time history of the input. In comparison with the classical BCM
model [20], the generalized version [29] is augmented with threshold-activated state
dynamics [41].

Recently, in [49], assuming Pickett’s model [21] as reference for comparison,
various memristor models, including Biolek’s, the TEAM and the BCM models,
were first compared on the basis of the ability to reproduce (after an optimization
process) the dynamics of the reference model in a particular simulation scenario,
and secondly employed in a couple of memristor-based circuits to investigate the
variance in the nonlinear dynamical behaviors they give rise to. The latter study
revealed the model-dependency of the dynamics of memristor-based circuits, and
thus raised a warning against a blind faith in the memristor models. The results of
this investigation point out the necessity to develop an ad-hoc mathematical model
for each physical memristor so as to explore its full potential and unfold its unique
properties.

Section 2.1 briefly summarizes the recently proposed GBCM model and its
PSpice-based circuit [29] (the PSpice emulator of the classical BCM is reported
in [50]).

2.1 GBCM Model and Its Circuit Implementation

Let Ron and Roff stand for the on and off resistances of a memristor nano-film. The
memristor state variable x is chosen as the length w(t) of the conductive layer of
the nano-film normalized with respect to the entire longitudinal extension D of the
nano-film (i.e. x = w(t)

D
∈ [0,1]). Denoting memristor current and voltage as i and v



Cellular Nonlinear Networks with Memristor Synapses 273

respectively, the state-dependent input-output algebraic relationship of the GBCM
model is expressed by

i(t)=W
(
x(t)

)
v(t), (4)

where W(x(t)) describes the state-dependent memductance, expressed by

W
(
x(t)

)= GonGoff

Gon −ΔGx(t)
, (5)

with Gon =R−1
on , Goff =R−1

off , while ΔG=Gon −Goff .
The state equation of the GBCM model is defined as

dx(t)

dt
= η k W

(
x(t)

)
v(t) f

(
x(t), η v(t), vth0, vth1, vt1, vt2, a, b

)
, (6)

where k ∈ R is a constant depending on physical properties of the memristor (its
dimensions are C−1), η ∈ {−1,+1} is a coefficient denoting the polarity of the
nano-device, while f (x(t), η v(t), vth0, vth1, a, b) ∈ {0, a, b}, a switching window
function specifying boundary behavior and state evolution rates in sub- and supra-
threshold regimes [41], is expressed as

f (x, η v, vth0, vth1, vt0, vt1, a, b)=
⎧
⎨

⎩

b if C1 or C2 holds,
0 if C3 or C4 holds,
a if C5 holds ,

(7)

where tunable conditions Cn (n = 1,2,3,4,5) are mathematically described by

C1 =
{(

x(t) ∈ (0,1) and
((

ηv(t) > vt0
)

or
(
ηv(t) <−vt1

)))}
,

C2 =
{(

x(t)= 0 and ηv(t) > vth0
)

or
(
x(t)= 1 and ηv(t) <−vth1

)}
,

C3 =
{
x(t)= 0 and ηv(t)≤ vth0

}
,

C4 =
{
x(t)= 1 and ηv(t)≥−vth1

}
,

C5 =
{(

x(t) ∈ (0,1) and
((

ηv(t)≤ vt0
)

and
(
ηv(t)≥−vt1

)))}
,

where vth0 ∈R+, vth1 ∈R+ represent the input thresholds at boundaries, vt0 ∈R+,
vt1 ∈ R+ define the state activation thresholds, (vt0 ≤ vth0 and vt1 ≤ vth1), while
a and b are constants modulating the state evolution rate under sub- and supra-
threshold excitation (b ∈R+, a ∈R0,+, a < b).

The PSpice implementation of the GBCM model, based on voltage-controlled
voltage-switches, is reported in [29].

Note that it is possible to develop a more realistic implementation of the PSpice
circuit from [29] by implementing the voltage-controlled voltage switches with suit-
able combinations of Complementary-Metal-Oxide-Semiconductor (CMOS) tran-
sistors.
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3 Memristor Synaptic Weighting Circuits for Neuromorphic
Applications

Classical Von Neumann architectures are known to be great in number crunching,
nevertheless, they struggle with tasks like face recognition, real-time navigation
control, object segmentation and depth perception. The parallelism can be realized
by memristor cross-point array that can be stacked layer by layer as 3-dimensional
structure. S.H. Jo et al. recently developed the synapse programming circuit that
mimics Spike Timing Dependent Plasticity (STDP) using the digital pulse genera-
tor circuits and memristor array [51]. According to the generated pulse sequence,
the synaptic weight that is stored at a cross-point memristor cell can be programmed
to raise or lower its value in accord with the STDP rule for neuron-to-neuron inter-
actions.

Physical implementations of neural networks exploit local connections among
the cells, i.e. they are based on the Cellular Nonlinear/Nanoscale Networks (CNNs)
architecture [10–14], where synaptic weights are multiplied in the digital or analog
domain by external excitations to produce signals to be transferred to neighboring
neuronal cells. Though the conventional CMOS digital multiplier circuits can be
used in CNN applications, they occupy considerable layout area and consume a
large amount of power, especially when multiplications should be conducted in par-
allel in massive scale. Recently, new and simple analog multiplication circuits were
developed by H. Kim et al. [15, 16], where the input signal currents are multiplied
by the programmable resistances of memristors. We can think in this multiplication
that the input current acts as a multiplicand and the programmable memristance can
be regarded a multiplier.

Figure 1 shows the memristor-based synaptic weighting circuit that was proposed
for CNN applications by H. Kim et al [16]. The circuit is composed of nine weight-
ing circuits, nine differential pairs, and one shared current mirror among nine cir-
cuits. In Fig. 1, IIN1 means the input current to the first weighting circuit. Similarly,
IIN2 is the input current to the second one. MS1, MS2, MS3, MS4 are memristors that
act as the control switches to change polarity of multiplication. In this paper, MS is
called the switching memristor to distinguish it from the weighting memristor, MW .
If MS1 and MS4 are Low Resistance State (LRS) and MS2 and MS3 are High Re-
sistance State (HRS), the polarity of multiplication is plus. When MS1 and MS4 are
HRS and MS2 and MS3 are LRS, the polarity becomes minus. After the polarity is
decided, IIN1 is applied to MW1 that represents the synaptic weight. It means that
IIN1 is multiplied by MW1 thus we can obtain VA1B1 (= VA1–VB1) that corresponds
to the multiplication result. VA1B1 that is the differential input is applied to the gates
of MN1 and MN2 and it is converted to the output current that is delivered to the load
resistor, RL. This analog multiplication can be done easily by the voltage-current re-
lationship of memristors. In Fig. 1, nine multiplications can be done in parallel and
the output currents of nine multiplications that are obtained at the same moment can
be added using the shared current mirror, as shown in Fig. 1. Here, nine weighting
circuits with nine MW s are connected to nine differential pairs, respectively. If we
look at the second weighting circuit and differential pair, IIN2 goes through MW2 to
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Fig. 1 The conventional synaptic weighting circuit proposed in [16] with the memristor weighting
circuits and the differential pairs. This circuit has nine memristor weighting circuits, nine differen-
tial pairs, and one shared current mirror. Here VBB is a negative voltage lower than GND

make a voltage drop between VA2 and VB2. The second multiplication result as large
as VA2B2 (= VA2–VB2) is applied to the gates of MN4 and MN5. VA2B2 is converted
to the output current to be added to the first output current from VA1B1 using the
shared current mirror. Similarly, more multiplications can be done simultaneously
and their output currents can be added by merging the differential-pair circuits and
sharing the current mirror that has MP 1 and MP 2, as shown in Fig. 1. MN3 and MN6

are the tail current biasing circuit that is connected to VBB. Here VBB should be a
negative voltage that is lower than 0 V. VBIAS is a biasing voltage to the gates of MN3

and MN6. The simple analog multiplication circuit of Fig. 1 is very useful in CNN
applications due to the fact that using memristors can make the multiplication cir-
cuit much simpler than not only the conventional digital multiplication circuits but
also analog multiplication circuits [15, 16]. However, the accuracy of analog multi-
plication is affected by an offset at the output voltage, VOUT . And, a negative VOUT

that should be generated by the on-chip voltage generator circuit is very prone to be
fluctuated by supply noise, etc. For the on-chip voltage generator, we have to use
a negative charge pump circuit that needs high-voltage devices that can add more
complexity to process technology. One more problem in Fig. 1 can happen when
the multiplier coefficient is zero. The multiplier coefficient that is programmed by
the weighting memristance, MW1, cannot be decreased to zero but as low as LRS. If
we compare the switching memristance MS1 with the weighting memristance MW1

in the case where the multiplier coefficient is supposed to be 0, both of them have
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LRS. Hence, the multiplication result by MW1 = LRS is very different from our
expectation that assumes MW1 = 0 
.

In the next part, another synaptic weighting circuit that is more advanced to mit-
igate the problems that are mentioned just earlier is shown. The synaptic circuit has
Common-Mode Feed Back (CMFB) circuit that can minimize the offset at VOUT and
does not use any negative voltage. Moreover, the zero-multiplier-coefficient prob-
lem that is caused by the fact that LRS is larger than 0 
 can be eliminated. The
detailed analysis about how much the multiplication accuracy can be affected by
process-VDD-temperature variations in memristors is also given in this chapter.

3.1 Synaptic Weighting Circuit

Figure 2(a) shows the synaptic weighting circuit that has one shared current mirror,
nine weighting circuits with memristors, nine differential pairs, and the common-
mode feedback circuit. Here the common-mode feedback circuit is used to minimize
the offset at the output voltage. The shared current mirror is used to add the results
of nine multiplications. Each of multiplication is done by each weighting circuit us-
ing the voltage-current relationship of memristor. The result of multiplication, for
example,VA1–VB1 for the first weighting circuit in Fig. 2(a) is applied to the first
differential pair to be converted to the output current. In the weighting circuit, MS1,
MS2, MS3, and MS4 are the switching memristors that can decide the multiplication
polarity. MW1 is the weighting memristor whose memristance can be programmed
according to the multiplier coefficient. S1 and S2 are used to solve a problem that
is caused by zero multiplier coefficient. As mentioned earlier, the weighting mem-
ristor, MW1 cannot be programmed to 0 
. In Fig. 2(a), S1 is open and S2 is short
when the multiplier coefficient is zero. By doing so, VA1 and VB1 become equal and
the output current can be zero.

Figure 2(b) indicates that small amounts of current can flow through MS2 and
MS3, though MS2 and MS3 are as large as HRS. Though these I2 and I4 are much
smaller than I1, I3, and I5, they can affect VA1B1 that is the multiplication result
of IIN1 × MW1. Because of this small amount of current in I2 and I4, multipli-
cation accuracy can be degraded severely. To avoid the accuracy degradation in
multiplication, we have to tune the weighting memristance, MW ’s very precisely.
Figure 2(c) shows the relationship of VA1B1 with the weighting memristance, MW1,
when IIN1 = 10 µA. For the multiplier coefficient = 1, VA1B1 should be 10 mV that
corresponds to a voltage drop at MW1 = 1.02 K
. This value 1.02 k
 was obtained
by CADENCE SPECTRE simulation. Similarly, VA1B1 as large as 80 mV can be
obtained by MW1 = 9.55 k
, for the multiplier coefficient = 8.

One more thing to note in Fig. 2(a) is that we do not use the negative voltage,
VBB that is used in Fig. 1. Instead of the negative VBB, VDD/2 is used at the minus
terminal of RL, as shown in Fig. 2(a). VOUT is kept by VDD/2 by the common-
mode feedback circuit when the input current is 0 A. It means that the offset voltage
at VOUT can be 0 V. For the plus polarity of multiplication, if the input current is
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Fig. 2 (a) The proposed synaptic weighting circuit that includes the common-mode feedback
circuit to minimize the output offset and the modified memristor weighting circuit to solve the
problem of zero multiplying coefficient. This circuit has nine memristor weighting circuits, nine
differential pairs, one shared current mirror, and one common-mode feedback circuit. Here the
weighting circuit with MW1 is corresponding to multiplier coefficient, a1, in the CNN template.
The weighting circuit with MW2 is for the multiplication with a2 in the template. Similarly, we can
say that the other seven memristors from MW3 to MW9 are representing the seven multiplications
with multiplier coefficients from a3 to a9. (b) The weighting circuit with four switching memris-
tors and one weighting memristors. (c) The programmed weighting memristance, MW1 vs. VA1B1
(= VA1–VB1), as shown in (b)

higher than 0 A, the output current is going into RL to make VOUT higher than
VDD/2. If the input current is lower than 0 A, the output current is coming out from
RL thus VOUT becomes lower than VDD/2. The dynamic range of VOUT is decided
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Fig. 3 Comparison of the
synaptic weighting circuit
between with the
Common-Mode Feed Back
(CMFB) and without it
(a) VOUT simulation with
different process corners and
temperatures (b) VOUT/VDD
simulation with different
process corners, different
temperatures, and different
VDDs

by RL and IOUT . For good accuracy in multiplication, VOUT should be linear in the
dynamic range of VOUT with respect to the input current.

Now, let us see how the common-mode feedback circuit works in Fig. 1(a). Here
the gate of MN6 is biased by VBIAS that is made by the common-mode feedback
circuit. The feedback is composed of the comparator, G1 and the differential pair
that has MN1 and MN2. On the top of differential pair, the current mirror of MP 1
and MP 2 is placed. MN3 is the current sink. Here the differential-pair inputs that are
connected to the gates of MN1 and MN2 are biased by not a differential signal but
a common-mode input. The common-mode input, VCMI is externally biased as high
as VDD/2. G1 compares VCMI and VCMO thus it controls VBIAS to make VCMI and
VCMO equal. The gate voltage of MN3, VBIAS is also connected to the gate of MN6
and MN9 to minimize the offset at the output voltage, VOUT .

To know how much effective the common-mode feedback circuit in Fig. 2(a)
is, we compared VOUT without the common-mode feedback circuit and with it in
Figs. 3(a) and (b). Here, we assumed various process corners, supply voltages, and
temperatures. As mentioned, the goal of the common-mode feedback circuit is to
keep VOUT by VDD/2 when the input current is zero or the multiplier coefficient is
zero, regardless of process-VDD-temperature variations. First, in Fig. 3(a), we sim-
ulated VOUT for different process corners and different temperatures. The simulated
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corners are FS, FF, TT, SS, and SF. Here, FS means that PMOS SPICE parameters
are from the fast corner and NMOS parameters are from the slow corner. Similarly,
SF is the case that PMOS and NMOS are at the slow corner and the fast corner,
respectively. SS means that both PMOS and NMOS are slow and FF is that both
PMOS and NMOS are fast. TT means that PMOS and NMOS are at the typical
condition that means their performance is the same with the average value. Three
different temperatures are −25 ◦C, 27 ◦C, and 75 ◦C in Fig. 3(a), respectively. The
synaptic weighting circuit without the feedback shows different VOUT values for
different process corners and temperatures. However, the proposed circuit with the
common-mode feedback does not allow VOUT to move away from VDD/2, when the
input current is 0 A or the multiplier coefficient is zero. This fixed VOUT means that
the offset voltage at VOUT can be zero. By having almost the zero offset voltage, the
accuracy of analog multiplication can be improved compared with the conventional
circuit without the common-mode feedback. Figure 3(b) shows the VOUT simulation
with varying VDD. Though VDD varies between 1.0 V and 1.4 V, VOUT is fixed by
VDD/2, regardless of VDD variation, as shown in Fig. 3(b).

3.2 Simulations

For simulating memristors, we used the simplest memristor model (based on the
linear drift diffusion) described by the following equation (see also [3, 52])5

v(t) = RX(t)i(t)

=
(

RLRS
w(t)

D
+RHRS

(
1− w(t)

D

))
i(t),

=
(

RLRS
q(t)

QCRIT
+RHRS

(
1− q(t)

QCRIT

))
i(t) (8)

where

w(t)

D
= μv

RSET

D2
q(t)= q(t)

QCRIT

and

QCRIT = D2

μvRSET

In (8), w(t) is the effective width of nano-scale memristors and D is the max-
imum drift distance for w(t), RX(t) represents memristance, RLRS and RHRS are
Low Resistance State and High Resistance Stats, respectively, and μv is the dopant
mobility, QCRIT means an amount of critical charge to the HRS-to-LRS transition.
When q(t) reaches the value of QCRIT , RX(t) is changed to RLRS from RHRS

5Nonlinear memristors models, including the GBCM model, will be considered in the forthcoming
publications.
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Fig. 4 (a) Current and voltage waveforms of a memristor when a nonlinear function of a sinusoidal
voltage is applied to the memristor. The sinusoidal frequency is 20 MHz and the amplitude is 1.0
V [52]. (b) The current-voltage relationship shows that the memristance changes between RHRS
and RLRS . Here, QCRIT , RLRS , and RHRS are 3 pC, 100 
, and 100 k
, respectively [52]

Figure 4(a) shows the current and voltage waveforms of memristor when a non-
linear function of a sinusoidal voltage is applied to the memristor [52]. The sinu-
soidal frequency is 20 MHz and the amplitude is 1.0 V [52]. In Fig. 4(a), we can
know that the memristor current-voltage relationship shows that the memristance
changes according to the charge flux through the memristor. Figure 4(b) shows
typical butter-fly curves of memristor that indicate memristance changes with the
applied current and voltage [52]. For simulating CMOS circuits, we used SPICE
parameters from SAMSUNG 0.13-µm process with VDD = 1.2 V.

Figure 5(a) and (b) show how much linear IOUT and VOUT are with respect to
IIN . IOUT and VOUT are the results of analog multiplication, where the input signal,
IIN , is multiplied by the multiplier coefficient that is programmed by the weighting
memristance in Fig. 2(a). Here, the input current, IIN , varies from 0 A to 10 µA.
The multiplier coefficient can be programmed from −8 to +8 including 0, as shown
in Figs. 5(a) and (b). The polarity is decided by the switching memristors of MS1,
MS2, MS3, and MS4 in Fig. 2(a). In the simulation, MS1 and MS4 are 100 
, MS2
and MS3 are 100 k
. IOUT and VOUT show good linearity with IIN from 0 µA to
10 µA that indicates the multiplication accuracy can be good. The dynamic range of
IOUT is decided between −30 µA and +30 µA. In the simulation, the load resistance
is 5.3 k
 thus VOUT can be varied from 0.45 V to 0.75 V. If we increase the load
resistance, the dynamic range of VOUT can be increased larger than 0.3 V.

The linearity of IOUT and VOUT can be affected by the variations of memristance.
It is well know that memristors are very susceptible to process-VDD-temperature
variations that prevent memristors from being widely used instead of the current
DRAM and FLASH memories. In Fig. 6, we analyzed that how much the varia-
tions affect the linearity of VOUT . In Fig. 6, we defined two parameters to estimate
the variation effect on the linearity of VOUT . They are the Integral Non-Linearity
(INL) and the Differential Non-Linearity (DNL), respectively. First, INL is defined
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Fig. 5 The simulated
(a) IOUT and (b) VOUT with
IIN from 0 µA to 10 µA for
the multiplier coefficients that
are changed from −8 to +8.
Here VOUT and IOUT are the
output voltage and current in
Fig. 2(a), respectively. In the
simulation, MS1 and MS4 are
100 
, MS2 and MS3 are
100 k


as below.

INL = VOUT,k − VREF,k

VREF,k

(9)

In Eq. (9), VOUT,k is the VOUT value that is obtained by the circuit simulation using
Fig. 2(a), for the kth input current. The input current is given by k × 1 µA. For
example, the input current for k = 1 is 1 µA. If k is 10, the input current for k = 10
becomes as large as 10 µA. VREF,k means the ideal reference value of VOUT for the
kth input current. Similarly, we can define DNL by Eq. (10).

DNL = VOUT,k − VOUT,k−1 − (VREF,k − VREF,k−1)

VREF,k

(10)

Here we assumed that the nominal LRS and HRS are 100 
 and 100 k
, respec-
tively. The LRS and HRS with variations can be expressed with LRS = 100 
+ΔL

and HRS = 100 K
 + ΔH . ΔL and ΔH represent the percentage variations of
LRS and HRS, respectively. In Figs. 6(a) and (b), we compared 5 cases of ΔL and
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Fig. 6 The (a) INL and (b) DNL with LRS = 100 
+ΔL and HRS = 100 k
+ΔH are sim-
ulated for ΔL=±10 % and ΔH =±10 %. The (c) INL and (d) DNL with LRS = 100 
+ΔL

and HRS = 100 k
+ΔH are simulated for ΔL =±20 % and ΔH =±20 %. The (e) INL and
(f) DNL with LRS = 100 
+ΔL and HRS = 100 k
+ΔH are simulated for ΔL=±30 % and
ΔH =±30 %
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Fig. 7 (a) The Average
template for CNN
applications [15] (b) the
comparison of IOUT between
the direct calculation and the
circuit simulation for the
three input vectors

ΔH variations. They are (ΔL= 0 %, ΔH = 0 %), (ΔL=−10 %, ΔH =−10 %),
(ΔL=−10 %, ΔH =+10 %), (ΔL=+10 %, ΔH =−10 %), and (ΔL=+10 %,
ΔH =+10 %). Similarly, in Figs. 6(c) and (d), ΔL and ΔH are given by ±20 %.
In Figs. 6(e) and (f), ΔL and ΔH become as large as ±30 %. In the worst case of
ΔL and ΔH variations as large as ±30 %, we can know that both INL and DNL
remain always below 6.3 %.

Simulations of synaptic weighting circuit in Fig. 2(a) were performed for two
CNN templates of the Average template and Laplacian template, respectively [15].
Figure 7(a) shows the Average template with nine multiplier coefficients. Each mul-
tiplier coefficient is implemented by the weighting circuit with memristors, as shown
in Fig. 2(a). In Fig. 7(b), we showed the multiplication results of IOUT that were sim-
ulated by the CADENCE SPECTRE circuit simulator, when we varied IIN from 0
µA to 10 µA. The solid line represents the reference values of IOUT that are calcu-
lated by direct multiplication using the multiplier coefficients of the Average tem-
plate in Fig. 7(a). Comparing the circuit simulation with the direct calculation tells
us that the discrepancy is less than 6.8 % in the worst case. In Fig. 7(b), we tested
three cases of input vectors that are shown ’Input #1’, ’Input #2’, and ’Input #3’,
respectively.

Figure 8(a) shows the nine multiplier coefficients in the Laplacian template. Sim-
ilarly, with Fig. 8(b), we applied three input vectors to the Laplacian template. With
reference to Fig. 8(b), the worst discrepancy between the circuit simulation and di-
rect calculation is lower than 3.2 %.

Figure 9(a) shows the original image data which has 60× 60 pixels. Figure 9(b)
is the image data which is mathematically calculated with Average Template in
Fig. 7(a). Here the calculation is done by MATLAB. Figure 9(c) and (d) are the
simulated image with Average Template, where the memristor weighting circuits
are programmed according to the multiplier coefficients that are defined in Average
Template, as shown in Fig. 7(a). Here the circuit simulation is done by CADENCE
SPECTRE tool [53]. For Fig. 9(c), the process corner is at SF and CMFB circuit
in Fig. 2(a) is not used. Here we can know that the output voltages of the synaptic
weighting circuits in Fig. 9(c) can have large amounts of offset voltage because
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Fig. 8 (a) The Laplacian
template for CNN
applications [15] (b) the
comparison of IOUT between
the direct calculation and the
circuit simulation for the
three input vectors

they are not compensated by CMFB circuit. As a result, the simulated image seems
much lighter than the calculated [54] image data in Fig. 9(b) that is obtained by
MATLAB simulation. On the contrary, Fig. 9(d) shows the simulated image that is
much similar with the calculated image in Fig. 9(b), though the process corner is
also at SF. The difference between Figs. 9(c) and (d) comes from CMFB circuit. In
Fig. 9(d), CMFB circuit is used to compensate the offset voltages that may happen
at the output nodes due to the process, temperature, and VDD corners. In Fig. 9(e),
the process corner is at FS and CMFB circuit is not used here. Similarly to Fig. 9(c)
with SF corner, Fig. 9(e) with FS corner also shows large amounts of offset voltage
at the output nodes. However, the offset voltages due to FS corner have opposite
polarity to the Fig. 9(c), thereby the image in Fig. 9(e) seems much darker than the
calculated image in Fig. 9(b). Figure 9(f) has very similar image with Fig. 9(b). This
is because the offset voltages due to FS corner can be compensated by CMFB circuit
that is used in Fig. 2(b).

Figure 10(a) shows the original image data which has 60 × 60 pixels that is the
same with Fig. 9(a). Figure 10(b) is the image data which is calculated with Av-
erage Template in Fig. 8(a). Here Fig. 10(b) is obtained by MATLAB simulation.
Figure 10(c) and (d) are the simulated image with Laplacian Template, where the
memristor weighting circuits are programmed according to the multiplier coeffi-
cients in Laplacian Template that is defined in Fig. 8(a). Here the circuit simulation
is done by CADENCE SPECTRE tool. For Fig. 10(c), the process corner is at SF
and CMFB circuit is not used. Here we can know that the output voltages of the
synaptic weighting circuits in Fig. 10(c) can have large amounts of offset voltage
because they are not compensated by CMFB circuit. As a result, the simulated im-
age seems much lighter than Fig. 10(b) that is the image calculated by MATLAB.
On the contrary, Fig. 10(d) shows the simulated image that is much similar with the
calculated image in Fig. 9(b), though the process corner is also at SF. The different
between Figs. 10(c) and (d) comes from CMFB circuit. In Fig. 10(d), CMFB circuit
is used to compensate the offset voltages that may happen at the output nodes due
to the process corners. Figures 10(e) and (f) show the simulated images for the FS
corner without and with CMFB circuit respectively. The advantage of using a circuit
for output offset minimization is obvious
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Fig. 9 (a) The original image with 60 × 60 pixels (b) the image that is calculated with Average
Template by MATLAB simulation (c) the simulated image with Average Template by CADENCE
SPECTRE circuit simulator (SF corner and without CMFB circuit) (d) the simulated image with
Average Template by CADENCE SPECTRE circuit simulator (SF corner and with CMFB circuit)
(e) the simulated image with Average Template by CADENCE SPECTRE circuit simulator (FS
corner and without CMFB circuit) (f) the simulated image with Average Template by CADENCE
SPECTRE circuit simulator (FS corner and with CMFB circuit)

Figure 11(a) shows the original image data which has 60 × 60 pixels that is the
same with Figs. 9(a) and 10(a). Figure 11(b) is the MATLAB image data which
is calculated with Laplacian Template in Fig. 8(a). Figures 11(c) and (d) are the
simulated image with Laplacian Template, where the memristor weighting circuits
are programmed according to the multiplier coefficients in Laplacian Template. For
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Fig. 10 (a) The original image with 60× 60 pixels (b) the image calculated with Laplacian Tem-
plate by MATLAB (c) the simulated image with Laplacian Template by CADENCE SPECTRE
circuit simulator (SF corner and without CMFB circuit) (d) the simulated image with Laplacian
Template by CADENCE SPECTRE circuit simulator (SF corner and with CMFB circuit) (e) the
simulated image with Laplacian Template by CADENCE SPECTRE circuit simulator (FS cor-
ner and without CMFB circuit) (f) the simulated image with Laplacian Template by CADENCE
SPECTRE circuit simulator (FS corner and with CMFB circuit)

Fig. 11(c), we did not use the precise tuning circuit to program weighting coeffi-
cients. In Fig. 11(c), we can know that multiplier coefficients in Laplacian Template
are not so accurate because they are not programmed by the precise tuning circuit.
As a result, Fig. 11(c) seems very different from the MATLAB calculated image
in Fig. 11(b). On the contrary, Fig. 11(d) shows the simulated image that is much
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Fig. 11 (a) The original image with 60× 60 pixels (b) the image calculated with Laplacian Tem-
plate by MATLAB simulation (c) the simulated image with Laplacian Template by CADENCE
SPECTRE circuit simulator (without the precise tuning circuit of weighing coefficients) (d) the
simulated image with Laplacian Template by CADENCE SPECTRE circuit simulator (with the
precise tuning circuit of weighting coefficients)

similar with the calculated image in Fig. 11(b). The accurate image in Fig. 11(d) is
due to that the precise tuning circuit is used to program the weighting coefficients
of Laplacian Template.

4 Conclusions

After a brief review of the memristor models available in the literature, this paper
describes the PSpice-based implementation of the Generalized Boundary Condition
Memristor (GBCM) model, which stands out over other models [17, 18] thanks to
the adaptability of the boundary behavior and to the tunability of the state evolution
rate in sub- and supra-threshold regimes. Reference [29] contains a couple of case
studies where the use of the PSpice emulator, which is inspired to the circuit from
Batas and Fiedler [55], sheds light into the synapse-alike behavior [56] of the mem-
ristor. More in general, such circuit may be of great help to researchers willing to
investigate in the user-friendly PSpice environment the unique memristor features
[57] and the extraordinary opportunities [58] this nano-device offers in integrated
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circuit design. Further, besides PSpice implementations of physical memristor mod-
els (such as the one proposed here for the GBCM model), there are a number of
memristor emulators [59, 60] which may also be of added value for future research
into non-conventional memristor [61]-based architectures [62].

The second part of the paper introduces the synaptic weighting circuits that could
perform analog multiplication for CNN applications. The common-mode feedback
circuit was used in the weighting circuits to minimize offset voltages that can be
found at the output nodes. The multiplication accuracy of synaptic weighting cir-
cuits can be degraded because HRS is not infinitely large and LRS is not as small
as 0 
 in real memristors. To maximize the multiplication accuracy, two MOSFET
switches were added to the memristor weighting circuits and the weighting memris-
tance should be programmed very precisely considering the leakage current through
HRS. Variations in memristance were analyzed to estimate the effect on accuracy
of analog multiplication. Finally, Average and Laplacian Templates were tested and
verified for both input vectors and input images by the circuit simulation using the
memristor weighting circuits.
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Evolving Memristive Neural Networks

Gerard David Howard, Larry Bull, Ben De Lacy Costello, Ella Gale,
and Andrew Adamatzky

Abstract Of the many network representations in which memristors can be mod-
elled, neural networks are perhaps the most enticing as they open the possibility for
neuromorphic computing—biologically-inspired brainlike information processing
in hardware. Memristors are analogous to biological synapses; both feature non-
volatile resistance, charge-dependent plastic response to activity, and can provide
adaptive learning when coupled with a Hebbian mechanism. In this chapter, various
types of memristors are deployed as synapses in spiking networks.

Biological information processing implies autonomous learning control—
a neuro-evolutionary approach provides this functionality and is used to search for
beneficial network topologies. The main focus of this work extends the remit of the
evolutionary algorithm to alter the conductance profiles of individual memristors,
creating networks of heterogeneous variable synapses. These variable memristor
networks are tested against networks of benchmark synapses in a robotic pathfinding
scenario. Experimental findings conclude that the variable synapses bestow more
behavioural degrees of freedom to the networks, allowing them to outperform the
comparative synapse types.

1 Introduction

Memristors [4] partially comprise a class of devices known as Resistive Memories
(RMs [49]), which harness one of several mechanisms—including ionic/electronic
transport [45], spintronics [48], and magnetoresistance [28]—to realise hardware
memory where the device exhibits a charge-dependent nonvolatile resistance some-
where between the device’s lowest (Ron) and highest (Roff) possible resistances.
Flow of charge through the device induces a resistance alteration; typically current
flowing in one direction increases resistance, with the inverse being true for current
flowing in the opposite direction. In this study we focus on memristors, which per-
mit continuous resistance alteration, and another type of Resistive Memory called a
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Resistive Switching Memory (RSM, [49]) which gives a strictly bi-state switching
between Ron and Roff.

Much recent research has focused on adaptive networks of RMs, where adap-
tivity implies the autonomous generation of self-organised learning architectures—
a powerful motif, especially given the opportunity to realise such designs at the
nanoscale using dense, highly-connected networks of physical devices. In terms
of a single memristive node, adaptivity allows the device to dynamically recon-
figure it’s output based on the history of activity that it has experienced [11] via a
Hebbian [16] process. Scaling up to the level of the network, adaptivity may arise
through input-output autocorellation of some external stimuli, plus the aforemen-
tioned Hebbian process, exploiting the chance physical makeup of a disorganised
network of devices [9]. Another prospective approach harnesses an Genetic Algo-
rithm (GA) [17]—a stochastic search algorithm—to discover beneficial network
topologies. Previous studies have evolved various network representations using
groups of single memristors [22], memristive logic gates [20], and memristors as
synapses in Spiking Neural Networks (SNN, e.g. [15]) [21, 23], a process termed
neuroevolution [12].

The main contribution of this chapter extends the traditional remit of the neuro-
evolutionary mechanism from topology-only search to alter the conductance profiles
of individual synapses, creating a variable RM. As the conductance profile of the
RM is responsible for its behaviour, variable RMs can potentially impart a variety
of adaptive behaviours to the networks. Our hypothesis is that the additional degrees
of functional freedom afforded to the variable RM networks can be harnessed by
the evolutionary process to outperform a number of benchmark memristive network
types. A simulated robotics navigation task is selected for this purpose. We note
that, as the RM models used are based on the characterisation of physical devices,
any evolved designs have the potential to be deployed in hardware as task-optimal
subsystems of larger architectures.

1.1 Content Overview

The remainder of this chapter is ordered as follows: Sect. 2 introduces background
research. Section 3 details the system. Section 4 describes the GA. Section 5 pro-
vides details on the variable RMs. Section 5.2 provides experimental results and the
chapter concludes with a discussion and presentation of future research directions
in Sect. 6.

2 Background

Although any connectionist network representation is implicitly amenable to evo-
lutionary techniques, the evolution of memristive neural networks is prominently
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promising as it paves the way to the realisation of neuromorphic (NM) systems [31].
Neuromorphic computing is a biologically-inspired paradigm that aims to emu-
late brain-like functionality in hardware by distributing processing and memory
across the entire architecture. A typical proposed neuromorphic system involves
a collection of Complimentary Metal-Oxide Semiconductor units which function as
neurons, connected by a mesh of synapse-mimicing memristors. Such an arrange-
ment aims to exploit the physical properties of the memristor (nanoscale fabrication,
nonvolatile state, implicit synapse-like functionality) to enable highly parallel, low-
power, bio-inspired processing. A Hebbian mechanism harnesses the computational
power of this configuration by allowing the RM synapses to alter their weights in a
flexible manner during the lifetime of the network, depending on the temporal acti-
vation of the neurons they are connected to. In this chapter we demonstrate a pro-
totype NM system that combines memristive synapses (both memristor and RSM)
and a neuroevolutionary model to automatically create task-specific networks.

2.1 Spiking Networks

Spiking Neural Networks (SNNs) present a phenomenological model of neural ac-
tivity in the brain. In an SNN, a network of neurons are linked via unidirectional,
weighted connections. Each neuron has a measure of excitation, or membrane po-
tential and communicates via the voltage spike, or action potential. A neuron spikes
when it’s membrane potential exceeds some threshold, which typically requires a
cluster of incoming spikes arriving within a short time period. A spike emitted from
a neuron is received by all connected postsynaptic neurons.

As the membrane potential may be considered a form of memory, such net-
works are able to produce temporally dynamic activation patterns, potentially pro-
viding increased computing power [29, 40] when considering temporal problems
(e.g. robotics, time series) compared to stateless network models, such as the Multi
Layer Perceptron (MLP) [39]. Two well-known formal SNN implementations are
the Leaky Integrate and Fire model [15] and the Spike Response Model [15]. Neuro-
evolution involves the use of evolutionary techniques to alter the topology and/or
weights of neural networks [12]. The literature also covers evolution of networks
purely for robotics tasks [34]—such as the test problem used in this chapter.

2.2 Resistive Memory Synapses

Resistive memories are a broad class of devices that display nonvolatile state (resis-
tance), which can be varied by applying an appropriate charge to the device. They
typically consist of two electrodes separated by an insulating layer—it is the resis-
tance of this insulating layer which varies depending on charge. Numerous Resistive
Memories have been previously manufactured from a plethora of materials [3]. Re-
sistive Switching Memories are predominantly metal oxides (HfO2, Cu2O, ZnO,
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Fig. 1 (a) Incomplete
filament formation
(memristor)—as there are no
complete filaments, ionic
conductivity gives rise to
(b) Generalised HP
memristor I–V curve
(c) Complete filament
formation (RSM); dark lines
show complete filaments
(d) Generalised RSM I–V
curve, dashed line showing a
possible current compliance.
The steeper gradient is the
LRS, the shallower is the
HRS

ZrO2, TiO2). Memristor materials are more varied and include conductive poly-
mers [10], metal silicides [25], and crystalline oxides [7] in addition to certain metal
oxides.

A popular theory [49] states that disparities between the two resistance profiles
(memristive and RSM) are the result of the presence or absence of conductive fil-
aments (pathways through the insulator that permit expedient electron flow) in the
substrate. In our taxonomy, memristors (Fig. 1(a)) do not form complete filaments,
giving rise to the characteristic nonlinear I–V curves of these devices as other mech-
anisms (such as ionic conductivity) play a more prominent role in electron transport
(Fig. 1(b)). RSMs are able to form complete filaments (Fig. 1(c)) which connect the
two electrodes, resulting in ohmic I–V profiles (Fig. 1(d)). We note that this distinc-
tion is not universal (e.g. under specific conditions an RSM may act like memristor,
and vice versa).

2.2.1 Memristors

The memristor is a class of RM theoretically characterized by Chua [4] which has
recently enjoyed a resurgence of interest from the research community after being
manufactured at the nano scale by HP labs [44]. Memristors are the fourth fun-
damental circuit element, joining the capacitor, inductor and resistor. Figure 1(d)
shows a typical I–V resistance profile for the HP device (termed a hysteresis loop).
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As filaments are not formed, ionic conductivity alone gives rise to the nonlinear
I–V curve seen in Fig. 1(d). A classic model of the HP memristor involves modelling
the device as two variable resistors Ron and Roff. The instantaneous resistance of
the device can be attributed to proportional contributions of Ron (which is doped
with oxygen vacancies (charge carriers) and therefore has low resistance) and Roff

(which displays higher resistance). Charge flowing through the memristor in a given
direction causes the oxygen vacancies to migrate in that direction. This moves the
boundary between Ron and Roff, thus modifying their proportional contribution to
the total device resistance.

Formally, a memristor is a passive two-terminal electronic device that is de-
scribed by the relation between the device terminal voltage, v, terminal current,
i (which is related to the charge q transferred onto the device), and magnetic flux,
ϕ, as Eq. (1) shows. Resistance can be made to increase or decrease depending on
the polarity of the voltage. The nonvolatile resistance, M , is a nonlinear function of
the charge—see Eq. (2).

v =M(q)i (1)

M(q)= dϕ(q)/dq (2)

Previous applications of memristors within neural paradigms are ubiquitous:
Titanium dioxide memristors [44] have been used as the constituent elements of
nanoscale neural crossbars [41], and silver silicide memristors have been shown to
function in neural architectures [25]. Other successful applications include the mod-
elling of learning in amoeba [35], as well as pattern recognition by crossbar circuits
for robotic control [33]. In particular, Mouttet [33] highlights the attractive prospect
of applying evolutionary computation techniques directly to memristive hardware,
as memristors can simultaneously perform the functions of both processor and mem-
ory.

2.2.2 Resistive Switching Memories

RSMs typically comprise an ion-conducting insulator which is sandwiched between
two metal electrodes. RSMs are a bistable resistive switch; pulsing with a voltage
over some threshold transfers the device from an initial Low Resistance State (LRS)
to a High Resistance State (HRS). Successive voltage pulses (in SNN terminology,
spikes) can switch between these states by successively forming and breaking fila-
ments in the insulator—see Figs. 1(c), (d). RSMs follow Eqs. (1) and (2), under the
proviso that M is now a linear function of charge. RSMs operate under voltage of a
single polarity. Examples of RSMs are confined to binary operation, e.g. as Resis-
tive Random Access Memory [3, 18]. It should be noted that neural implementations
exist [50].
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2.3 Synaptic Plasticity

Hebbian learning [16] is thought to account for adaptation and learning in the brain
through a process whereby “neurons that fire together, wire together”—or more
technically in the event that a presynaptic neuron causes a postsynaptic neuron to
fire, the synaptic strength between those two neurons is increased so that such an
event is more likely to happen in the future. Such a mechanism allows for input-
dependent, self-organising activity.

Spike Time dependent Plasticity (STDP) [26] was originally formulated as a way
of implementing Hebbian learning within artificial neural networks. It has been pos-
tulated that a memristance-like mechanism affects synaptic weights in biological
neural networks [27], based on similarities between memristive equations and their
neural counterparts. More recently, it has been proposed that the axon itself may be
comprised of a chain of memristors [5]. This raises the possibility that biological
neural processing may be intrinsically memristive in nature, although such research
is outside the scope of this study.

The notion that varied plastic behaviours could be combined in a single net-
work is an attractive one from a computing perspective, as more functional degrees
of freedom may be afforded to the synapses. Integration of neuroevolution with
heterogeneous neuromodulation rules has been investigated [43], and has been ex-
tended to robot controllers [8]. Increased behavioural diversity (and high-quality
pathfinding in the latter case) is reported. Probabilistic spike emission which is gov-
erned by modulatory Hebbian rules has also been investigated [30]. The authors
show a biologically-plausible mechanism capable of computing with short spike
trains where the population of synapses display heterogeneous probabilities of trans-
mitting/blocking a spike. A nodes-only encoding scheme has been presented [46],
where synapses are affected by four versions of the Hebb rule to generate on-
line path-finding behaviour from initially random actions. Synaptic weights are not
evolved; instead evolution is performed on the rules which govern how synapses
react to STDP. High adaptability to new environments is evidenced, however as
synaptic weights are not directly modelled, and all synapses at a given node dis-
play homogeneous STDP behaviour, it is unclear how to transition such a scheme
to memristive/hardware implementations.

Typically when implementing STDP with RMs, a bidirectional voltage spike
is emitted by a neuron whose membrane potential exceeds some threshold (see
Sect. 3.1). This spike can be approximated by either a continuous [2, 27] or discrete.
References [25, 42] waveform through time, which is transmitted to all synapses that
the neuron is connected to (presynaptic or postsynaptic). In the case of memristors,
if the instantaneous voltage across a synapse surpasses some threshold—typically
when the waveforms sufficiently overlap—the conductance of the synapse alters.
For RSMs, multiple consecutive voltage spikes of a given polarity within a short
time frame are required to switch the device from one resistance state to the other.
Note that this removes the element of biological realism from RSM STDP whilst
providing a fast-switching binary behaviour.
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Memristive STDP has been shown [21] to vary the behaviour of a network during
a trial, as well as a way to mitigate device variations that are currently intrinsic
to hardware memristor implementations [36]. Previous research has compared the
evolution of networks of HP, PEO-PANI, LIN, and GA synapse types [21]; the main
findings were:

• Memristive STDP enabled the generation of highly fit solutions (statistically fitter
than networks using non-plastic connections).

• The evolutionary algorithm assigned roles to the synapses based on their STDP
behaviours (HP memristors were statistically more frequently connected to an
inhibitory neuron, PEO-PANI were statistically more frequently attached to an
excitatory neuron).

• Self-adaptive search parameters were found to be context-sensitive (statistically
significant inter-parameter variances), and beneficial to the evolution of the net-
works.

In this study we use these synapse types as benchmarks, and extend the concept
of memristive STDP by allowing for variable RMs (memristors and RSMs) whereby
the effect that STDP has on the synapse can be tailored by evolution to suit it’s role
within the network.

A long-term goal of this research is the creation of adaptive hardware neural
networks. Creating hardware RM synapses that match their simulated counterparts
is likely to be a difficult obstacle to overcome. However, there are a number of
possible methods to achieve this transition.

Part of the equation expressing the “physical properties” of the titanium dioxide
memristor [44] is encapsulated in the variable β by Howard et al. [21] in Eq. (3)
below.

β = γ v/D2 (3)

Here, γ v is the mobility of oxygen vacancies and D is the device thickness in
nanometres. To create variable RM synapses, we allow the value of the physical
properties parameter to vary.

Firstly, we note that the sizes of D given for current memristor models predict
a scale that is small enough to permit sufficient synaptic density for neuromorphic
hardware implementations—equivalent to that found in the human brain. Further-
more, Eq. (3) allows us to predict that highly variable synapses will be produceable
at the required scales. Note that a small D will provide a higher behavioural vari-
ance; in other words, the smaller the scale of the devices, the more variable they will
be. A benefit of the “physical properties” parameter is that, by matching simulated
prediction to experimental observation, the properties of a memristor corresponding
to a given β can be calculated and used as a metric for the selection of suitable de-
vice size, synthesis method, and material selection. RSMs could be categorised in
the same way, based on their switching voltage sensitivities to create “best-fit” hard-
ware networks based on simulated results. Creating an accurate predictive model
from simulation to reality is unlikely to be a trivial process, however.
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A more detailed memristor model [13] (with some experimental verification [14])
indicates that varying the electrode size also affects memristance—potentially pro-
viding another way of achieving variable RMs via tweaking the electrode size with-
out having to alter the properties of the insulator.

A final method of varying the STDP response of an RM involves irradiation by
an ion beam [47]. Simulations of irradiated titanium dioxide memristors (and hence
titanium dioxide RSMs) were found to possess a reduced resistance in the doped
region (Ron), as well as lower oxygen vacancy mobility (γ v). Bombardment of spe-
cific synapses could therefore alter their β values in an online manner, although
the precise method of targetted radiation delivery would depend upon the physical
structure of the network. The main advantage of this approach is online behaviour
modification, e.g. as a form of intrinsic hardware evolution.

In summary, we have shown RMs to be suitable synapse candidates, and intro-
duced STDP as a means to achieving learning within RM spiking networks. Fur-
thermore, we provide evidence showing the potential for evolutionary approaches
to design variable memristive neural networks, and shown how we might create
such networks in hardware.

3 The System

The system consists of a population of SNNs which are evaluated on a robotics test
problem, and altered via GA operation which is detailed in Sect. 4. To introduce the
terminology to be used throughout this paper: each experiment lasts for 1000 evolu-
tionary generations; each generation involves two new networks being created and
evaluated on the test problem (a trial). Each trial consists of 4000 timesteps, which
begin with the reading of sensory information and calculation of action, and end
with the agent performing that action. Every timestep consists of 21 steps of SNN
processing, at the end of which the action is calculated. The state of the system was
sampled every 20 generations and used to create the results. Results were averaged
over 30 experimental repeats.

3.1 Neural Control Architecture

We base our SNN implementation on the Leaky Integrate and Fire [15] model.
Neurons can be stimulated either by an external current or by connections from
presynaptic neurons. Each neuron has a membrane potential, y, where y >0, which
slowly degrades over time. As spikes are received by the neuron, the value of y is
increased in the case of an excitatory spike, or decreased if the spike is inhibitory.
If y surpasses a positive threshold, θy, the neuron spikes and transmits an action
potential to every neuron to which it is presynaptic, with strength relative to the
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Fig. 2 (a) A typical SNN architecture. In the hidden layer, white neurons denote excitatory neu-
rons and black neurons signify inhibitory neurons. (b) Khepera sensory arrangement. Three light
sensors and 3 IR sensors share positions 0, 2, and 5 and form the network input. Two bump sensors,
B1 and B2, are shown attached at 45 degree angles to the front-left and front-right of the robot

connection weight between those two neurons. The neuron then resets its mem-
brane potential to zero. The membrane potential of a neuron at time t is given in
Eq. (4). Equation (5) shows the reset formula.

y(t + 1)= y(t)+ (I + a − by(t)
)

(4)

If (y > θy)y = c (5)

Here, y(t) is the membrane potential at time t , I is the input current to the neu-
ron, a is a positive constant, b is the degradation (leak) constant and c is the reset
membrane potential of the neuron. A model of temporal delays is used so that,
in the hidden layer only, a spike sent to a neuron not immediately neighbouring
the sending neuron is received x steps after it is sent, where x is the number of
neurons between the sending neuron and receiving neuron. SNN parameters are
initial hidden layer nodes = 9, a = 0.3, b = 0.05, c = 0.0, cini = 0.5, θy = 1.0,
output window size = 21. A sample network is provided in Fig. 2(a).

The SNNs were used to control a simulated Khepera II robot with 8 light sen-
sors and 8 distance sensors. At each timestep (64 ms in simulation time), the agent
sampled its light sensors, whose values ranged from 8 (fully illuminated) to 500
(no light) and IR distance sensors, whose response values ranged from 0 (no object
detected) to 1023 (object very close). All sensor readings were scaled to the range
[0,1] (0 being unactivated, 1 being highly activated) before being input to the SNN.
Six sensors comprised the input state for the SNN, three IR and three light sensors
at positions 0, 2, and 5 as shown in Fig. 2(b). Additionally, two bump sensors were
added to the front-left and front-right of the agent to prevent it from becoming stuck
against an object. If either bump sensor was activated, an interrupt was sent causing
the agent to reverse 10 cm and the agent to be penalised by 10 timesteps. Movement
values and sensory update delays were constrained by accurate modelling of physi-
cal Khepera agent. Sensory noise was added based on Webots Khepera data; ±2 %
noise for IR sensors and ±10 % noise for light sensors, all randomly sampled from
a uniform distribution. Wheel slippage was also included (10 % chance). The spike
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trains of the output neurons were discretised into high or low activated (high activa-
tion if more than half of the 21 SNN processing steps generated a spike at the neu-
ron, low otherwise). Three actions were possible: forward, (maximum movement on
both left and right wheels, high activation of both output neurons) and continuous
turns to both the left (high activation on the first output neuron, low on the second)
and right (low activation on the first output neuron, high on the second)—caused by
halving the left/right motor outputs respectively.

3.2 Benchmark Synapses

The functionality of the SNN depends on the type of synapse used. Here we describe
the equations governing the two comparitive memristor synapses (HP and PEO-
PANI), the linear device and the constant connection—details on creating variable
RMs are given in Sects. 4.3.1 and 4.3.2. These synapse types serve as a means of
comparison to the variable devices that will be introduced later.

3.2.1 HP Memristor

The HP memristor is comprised of thin-film Titanium Dioxide (TiO2) and oxygen-
depleted Titanium Dioxide (TiO(2−x)), which have different resistances. The bound-
ary between the two compounds moves in response to the charge on the memristor,
which in turn alters the resistance of the device. To allow for future self-adaptation,
memristance equations are refactored from the original, as given in [44].

In the following equations, W is the scaled weight (conductance) of the connec-
tion, G is the unscaled weight of the connection, M is the memristance, sf 1 and
sf 2 are scale factors, Roff is the resistance of the TiO2, Ron is the resistance of the
TiO(2−x) , q is the charge on the device, qmin is the minimum allowed charge, and β

encompasses the physical properties of the device. The original profiles, used for the
benchmark memristors, are recreated using a rescaled β = 1, Ron = 0.01, Roff = 1,
qmin = 0.0098.

sf 1 = 0.99
/(

1−
(

1

−RoffRonβqmin +Roff

))
(6)

sf 2 = 1
/(−RoffRonβ(Ron −Roff)

−RonRoffβ +Roff
sf 1

)
− 1 (7)

q =
(

1

−RoffRonβ

)(
1

sf 1(W + sf 2)
−Roff

)
(8)

M =−RoffRonβq +Roff (9)
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G= 1

M
(10)

W =Gsf 1 − sf 2 (11)

3.2.2 PEO-PANI Memristor

The polyethyleneoxide-polyaniline (PEO-PANI) memristor consists of layers of
PANI, onto which Li+-doped PEO is added [10]. We have phenomenologically
recreated the performance characteristics of the PEO-PANI memristor in terms of
the HP memristor, creating a memristance curve similar to that seen in [10]. Two
additional parameters, Gqmin and Gqmax , are the values of G when q is at its min-
imum (qmin) and maximum (qmax) values respectively. As with the HP equations,
β = 1 will produce the original PEO-PANI profile.

qmax = (Ron −Roff)/−RonRoffβ (12)

Gqmin = 1/(−RoffRonβqmin −Ron)+Ron (13)

Gqmax = 1/(−RoffRonβqmax −Ron)+Ron (14)

The two scale factors are recalculated in Eqs. (15) and (16). Following this q

(Eq. (17)) and M (Eq. (18)) are calculated, then G is calculated as in Eq. (10), and
W as in Eq. (11).

sf 1 = 0.99/(Gqmax −Gqmin) (15)

sf 2 = (Gqmin sf 1)− 0.01 (16)

q =
(

1

−RoffRonβ

)(
1

((W + sf 2)/sf 1)−Ron
+Ron

)
(17)

M = (−RoffRonβq −Ron)+ (1/Ron) (18)

3.2.3 Linear Device

This hypothetical benchmark device provides linear behaviour so that each STDP
event affects synaptic weighting equally. It is included to contrast the nonlinearity
of the memristive conductance profiles whilst still providing gradual weight change
under STDP. The connection weight of the device, W , is given in Eq. (19). Here, L

is the number of STDP steps it takes to linearly increase W from Roff to Ron.

W =W + (1/L) (19)
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3.2.4 Constant Connection

The constant connection presents a static horizontal resistance profile similar to a
resistor. The conductance of the connection is set random-uniformly in the range
[0,1] during initialisation and may be altered during application of the GA, but
is unaffected by STDP and therefore constant during a trial. We use the constant
connection as a static (e.g. non-switching) RSM, whose evolution is tailored via
selection of appropriate weight selection rather than switching between two fixed
weights.

3.3 STDP Implementation

In Sect. 2.3 a number of STDP implementations were reviewed. As our SNNs oper-
ate under discrete time quanta, we have elected to use discrete-time stepwise wave-
forms [25, 42]. Each neuron in the network is augmented with a “last spike time”
variable LS, which is initially 0. When a neuron spikes, this value is set to some pos-
itive number—in this case 3. At the end of each of the 21 steps that make up a single
timestep, each RSM is analysed by summating the LS values of its presynaptic and
postsynaptic neurons. Following this, each LS value is decremented to a minimum
of 0, creating a discrete stepwise waveform through time.

For memristors, all synapse weights are initially 0.5, and can vary in-trial via
STDP. If the LS value exceeds some positive threshold θLS, memristance of the
synapse occurs (see Fig. 3(a)). Whether the connection increases or decreases de-
pends on which neuron has the highest LS value, providing pre- to postsynaptic
temporal coincidence. If the LS values are identical, STDP does not occur as one
spike cannot be said to have directly caused the other. Each STDP event either in-
creases or decreases q by Δq as detailed in Eq. (20), which is then used to calculate
memristor weight as detailed in Sects. 3.2.1, 3.2.2.

Δq = (qmax − qmin)/L (20)

From Fig. 4, we see that the values of β and W can have a pronounced effect on
the functionality of the synapse—both HP and PEO-PANI synapses display larger
ΔW per STDP event when β is a low number and either W > 0.1 (for HP synapses),
or W < 0.9 (for PEO-PANI synapses).

To extend the concept of STDP to RSMs, we augment each synapse with pa-
rameters Sn, which represents the sensitivity of the device to voltage buildup (in
the form of repeated STDP spikes), and Sc, which tracks the number of consecu-
tive STDP events the synapse has experienced. All synapses are initially in the Low
Resistance State (W = 0.9). At each step we check every synapse as before, incre-
menting Sc if an STDP event occurs at the synapse and decrementing Sc if no STDP
event occurs at that step. If Sn = Sc, the RSM switches to the High Resistance State
(W = 0.1) and Sc is reset to 0. The RSM can switch back and forth between the
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Fig. 3 Showing a positive STDP event for a memristor. A presynaptic voltage spike is received
at time t − 1, with a postsynaptic voltage spike at time t . Combined, the voltage surpasses θLS,
increasing the conductivity of the device. (b) If the memristor is replaced by an RSM, consecutive
voltage spikes (l.h.s Sn = 3, r.h.s Sn = 4) serve to push the voltage past a threshold, causing a
switch. Dashed lines show the derived voltage threshold. Voltage spikes are decremented at each
subsequent time step
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Fig. 4 Displaying resistance profiles attained with different values of β when fully charging a
memristor. Here the x axis shows 1000 positive STDP events assuming L = 1000. Static HP and
PEO-PANI memristors have β = 1

LRS and HRS during a trial. Note that the polarity of the voltage spike in RSM
networks is always the same, regardless of the coincidence of presynaptic and post-
synaptic spikes across the device. Figure 3(b) shows how this mechanism compares
to regular STDP.

During a trial, the majority of RM synapses will have their weights altered via
STDP. After a trial, every RM synapse is reset to its original weight of 0.5 (memris-
tor) or 0.9 (RSM).

4 Genetic Algorithm

Having described the component parts of our networks, we now detail the imple-
mentation of the steady-state GA that acts on them. In our GA, two parents are
selected fitness-proportionately, mutated, and used to create two offspring. We use
only mutation to explore weight space; crossover is omitted as sufficient solution
space exploration can be obtained via a combination of self-adaptive weight and
topology mutations; a view that is reinforced in the literature [38]. The offspring are
inserted into the population and two networks with the lowest fitness deleted.

The onus of this GA is on adaptivity, which justified when the application area
of neuromorphic computing is considered—brainlike systems must be able to au-
tonomously adapt to a changing environment and adjust their learning accordingly.
This potentially allows increased structural stability in highly fit networks whilst
enabling less useful networks to vary more strongly per GA application. Mechanis-
tically, self-adaptation also permits the use of self-repair/self-modification, wherein
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the GA is able to (i) in a stable environment, lower mutation rates to enable home-
ostatis or provide incremental, gradual improvements or (ii) when the environment
rapidly changes, or part of the network fails, increase learning rates to more quickly
adapt to these new conditions. When coupled with neuroevolution, the effect is to
tailor the evolution of the network to the complexity of the environment explicitly,
e.g. each network controls its own architecture autonomously in terms of (i) amount
of mutation that takes place in a given network at a given time (ii) adapting the
hidden-layer topology of the neural networks to reflect the complexity of the prob-
lem considered by the network [24]. This mechanism was first used with SNNs by
Howard [19]. We note that benefits of this approach will be more pronounced when
dynamically controlling hardware implementations—this will be the topic of future
research.

4.1 Self-adaptive Mutation

We utilise self-adaptive mutation rates as with Evolutionary Strategies [37]—to dy-
namically control the frequency and magnitude of mutation events taking place in
each network. This potentially allows increased structural stability in highly fit net-
works whilst allowing less fit networks to vary more strongly per GA application.
Here, the μ (0 < μ ≤ 1) value (rate of mutation per allele) of each network is ini-
tialized uniformly randomly in the range [0,0.25]. During a GA cycle, a parent’s μ

value is modified as in Eq. (21), the offspring then adopts this new μ, and mutates
itself by this value, before being inserted into the population.

μ→ μ expN(0,1) (21)

Only non-memristive networks can alter their connection weights via the GA.
Connection weights in this case are initially set during network creation, node ad-
dition, and connection addition randomly uniformly in the range [0,1]. Memristive
network connections are always set to 0.5, and cannot be mutated from this value.
This aims to force the memristive networks to harness the plasticity of their connec-
tions during a trial to successfully solve the problem.

4.2 Topology Mechanisms

Given the desire for adaptive solutions, it would be useful if appropriate network
structure is allowed to develop until some task-dependent required level of comput-
ing power is attained. In our system, each network has a varying number of hidden
layer neurons (initially 9, and always > 0). Additional neurons can be added or re-
moved from the single hidden layer based on two new self-adaptive parameters, ψ

(0 < ψ ≤ 1) and ω (0 < ω ≤ 1). Here, ψ is the probability of performing neuron
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addition/removal and ω is the probability of adding a neuron; removal occurs with
probability 1−ω. Both have initial values taken from a random uniform distribution,
with ranges [0,0.5] for ψ and [0,1] for ω. Offspring networks have their parents ψ

and ω values modified using Eq. (21) as with μ, with neuron addition/removal tak-
ing part after mutation. Added nodes are initially excitatory with 50 % probability,
otherwise they are inhibitory.

Automatic feature selection is a method of reducing the dimensionality of the
data input to a process by using computational techniques to select and operate ex-
clusively on a subset of inputs taken from the entire set. Feature selection in neural
networks can disable synaptic (traditionally input) connections [6]. In this paper
we allow each connection to be individually enabled/disabled, a mechanism termed
“Connection Selection”. During a GA cycle a connection can be enabled or disabled
based on a new self-adaptive parameter τ (which is initialized and self-adapted in
the same manner as μ and ψ ). If a connection is enabled for a non-memristive net-
work, its connection weight is randomly initialised uniformly in the range [0,1],
memristive connections are always set to 0.5. During a node addition event, new
connections are set probabilistically, with P = 0.5 of the connection being enabled.
Connection selection is particularly important to the memristive networks. As they
cannot alter connection weights via the GA, variance induced in network connec-
tivity patterns plays a large role in the generation of STDP in the networks. Like-
wise, RSM networks rely on Connection Selection to generate synchronised synap-
tic excitations/inhibitions, which allow the network to generate appropriate output
actions.

4.3 GA Control of Variable Synapses

The STDP responses of the variable RM synapses are governed by the self-adaptive
parameter ι, which is initialised and self-adapted as with μ. Whereas memristive
STDP can be viewed as a form of in-trial context-sensitive weight mutation, as
shown in Fig. 4, RSM STDP is more akin to context-sensitive connection selection
(Fig. 5).

4.3.1 Variable Memristor

To allow the memristive profiles to change, we self-adapt β , which is derived from
the physical characteristics of the device (e.g., device thickness, mobility of ions,
etc.). The self-adaptive memristor profiles are allowed to range from HP-like to
PEO-PANI-like profiles, each of which are governed by different equations, outlined
in Sects. 3.2.1, 3.2.2. Because of this, we augment each memristor with a type,
which is set to either 0 and 1 on memristor initialisation, with P = 0.5 of each
type being selected based on a uniform distribution. β is then initialised randomly
uniformly in the range [βmin, βmax]. If type = 0, the refactored HP equations are
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Fig. 5 Showing the resistance profile for an RSM with varying θLS when supplied with constant
STDP for 20 time steps

used to calculate the profile of the device; otherwise the PEO-PANI equations are
used. Satisfaction of ι during a GA application modifies β by ±0–10 % of the total
range of β . If a memristor’s new value of β surpasses a threshold βmax, the type
of the memristor is switched and a new β calculated as Δβ − βmax. In this way, a
smooth transition between the different profile types is achieved.

4.3.2 Variable RSM

The variable Sn represents the voltage threshold of the device, that is the number
of consecutive STDP events required to cause a switch in the RSM (see Fig. 3(b)).
A lower Sn represents increased sensitivity to voltage spikes and enables more ex-
pedient switching dynamics—see Fig. 5. On synapse initialisation, the integer Sn

is selected uniform-randomly in the range [SnMIN, SnMAX], so that a minimum of
SnMIN consecutive STDP events are required to cause a switch. Satisfaction of ι dur-
ing a GA cycle alters Sn by ±1 of its current value, constrained to the range [SnMIN,
SnMAX] as before.

5 Experimentation

In the following experiment we gauge the impact of both variable RMs, comparing
to benchmark systems comprised of static HP and PEO-PANI memristors, linear
devices and constant connections (nonswitching RSMs). We refer to the various net-
work types as follows: variable memristor = MEM, variable RSM = RSM, static
HP memristor = HP, static PEO-PANI memristor = PEO, linear device = LIN,
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Fig. 6 The test environment.
The agent begins in the
lower-left and must reach a
light source (circle) in the
upper-right,
circumnavigating the central
obstacle. An example agent
path is shown (dotted line)

constant-connection network = GA. The experiment was repeated 30 times, the
statistics recorded were the averages of these 30 runs. All experiments had a popu-
lation size of 100 networks and were evolved for 1000 generations, with a maximum
of 4000 timesteps per trial. Every 20 trials, the current state of the system was stored
and used to create the results that follow.

SNN parameters were initial hidden layer nodes = 9, a = 0.3, b = 0.05, c = 0.0,
cini = 0.5, θy = 1.0 , output window size = 21, LS = 3, θLS = 4 . In memristive
networks, all connections were memristive with L = 1000. Memristor parameters
were Ron = 0.01, Roff = 1, static β=1, βmin = 1, βmaxHP = 100, βmaxPEO-PANI =
100 qmin = 0.0098. RSM parameters were SnMIN = 2, SnMAX = 6.

To facilitate useful comparisons, we defined a notion of “performance”. As the
start location was tightly constrained, we say the performance of the system is equal
to the first trial in which the goal state is found, so that a lower value indicated higher
performance. This measure allowed us to perform t-tests to compare the respective
performances of the four systems. In the following tables, “Performance” was the
average performance as outlined above. “High fitness” refers to the average fitness
of the highest-fitness network in each run. “Neurons” were the average final con-
nected neurons per network in the population and “Connectivity” was the average
percentage of enabled connections in the population.

5.1 Test Environment

Our chosen robotics simulator was the Webots platform [32], a test bed that is popu-
lar amongst the research community. The environment was modelled as an enclosed
(walled) arena with coordinates ranging from [−1,1] in both x and y directions;
the boundary walls had height z = 0.15. A three-dimensional box was placed cen-
trally, with vertices on “ground level” at (x = −0.4, y = −0.4), (−0.4, 0.4), (0.4,
0.4), and (0.4, −0.4), and raised to a height of z = 0.15. A light source, modelled
on a 15 Watt bulb, was placed at the top-right hand corner of the arena (x = 1,
y = 1). The agent initially faces North, and its initial start position was constrained
to the range x + y < −1.5. The agent must traverse the environment and approach
the light source to receive reward. The environment is shown in Fig. 6. When the
agent reached the goal state (where x + y > 1.6), the responsible network received
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Table 1 Detailing averages and standard deviations for common parameters of MEM, RSM, HP,
PEO, LIN, and GA systems on the test problem

Synapse Perf High fit Avg fit Nodes Conns (%)

MEM 38.4 (72.2) 11468 (345) 11171 (497) 16.71 (0.47) 50.52 (3.8)

RSM 2.9 (6.2) 11712 (364) 11280 (571) 16.67 (0.49) 48.53 (4.01)

HP 526.1 (992.4) 10660 (2280) 9477 (3333) 16.68 (1.74) 49.22 (9.61)

PEO 17 (34.6) 11581 (303) 11454 (319) 17.05 (0.1) 48.86 (4.63)

LIN 14.7 (32.5) 11363 (398) 11058 (728) 16.89 (0.54) 51.06 (4.06)

GA 77.6 (130.0) 11420 (423) 11402 (277) 17.10 (0.7) 48.24 (5.58)

a constant fitness bonus of 2500, which was added to the fitness function f outlined
in (22). The denominator in the equation expresses the difference between the posi-
tion of the goal state (1.6) and the current agent position (ax and ay ), and st is the
number of timesteps taken to solve. The minimum value of this function is capped
so that f > 0. The fitness of an agent is calculated at the end of every timestep, with
the highest attained value of f during the trial kept as the fitness value for that net-
work. Optimal performance gives f = 11800, which corresponds to 700 timesteps
from start to goal state with no collisions.

f = (1/
(
1.6− (|ax + ay |)

))× 1000− st (22)

5.2 Results

5.2.1 Performance

Averages and standard deviations for all network types are given in Table 1. T-
tests, given in Tables 2 and 3, show a number of promising results. RSM net-
works had higher “performance” than all other network types with the exception of
LIN (p < 0.05). MEM networks achieved higher “performance” than HP networks
(p < 0.05) but trailed behind RSM networks. This indicates that variable RSMs
are more forgiving in terms of network composition when inducing goal-finding
behaviour in the networks. RSM networks also possessed significantly higher fit-
ness solutions than HP, LIN, GA and MEM networks (p < 0.05), via the ability to
rapidly vary synaptic weighting in addition to the three action generation mecha-
nisms outlined in Sect. 5.2.2. All other network types relied on numerous repeated
STDP events of a particular polarity to provide large increases in weight, whereas
the RSM could switch back and forth multiple times in a short number of time steps
e.g. more expedient binary switching allows for additional freedom in possible gen-
erated behaviours.

Figure 7(a) shows that MEM/RSM networks are at least competitive with (and
usually superior to) all other network types in terms of performance and final fitness.
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Table 2 Detailing performance t-test results (p values) for common parameters comparing MEM
networks to all other network types in the experiment

vs. Performance High fit Nodes Conn. ψ ω τ

RSM 0.012 0.014 0.7 0.047 0.949 0.008 <0.001

HP 0.012 0.016 0.919 0.462 0.939 0.115 0.08

PEO 0.173 0.165 0.001 0.189 0.112 0.094 0.461

LIN 0.119 0.301 0.295 0.566 0.001 0.039 0.882

GA 0.196 0.61 0.009 0.076 0.004 0.064 0.542

Table 3 Detailing performance t-test results (p values) for common parameters comparing RSM
networks to all other network types in the experiment

vs. Performance High fit Nodes Conn. ψ ω τ

HP 0.007 0.02 0.975 0.698 0.975 0.415 <0.001

PEO 0.041 0.118 0.001 0.761 0.187 0.55 <0.001

LIN 0.067 0.002 0.202 0.019 0.003 0.184 <0.001

GA 0.004 0.014 0.01 0.820 0.023 0.336 <0.001

This is an encouraging result considering the increased search/behaviour space the
SA discovery component has to deal with, especially in the case of MEM networks
and β , as it indicates that the variable RM induces no significant performance over-
head. MEM networks comprised less nodes than the best static memristor (PEO)
(p < 0.05), and RSM networks comprised less neurons than their static counterpart
GA networks (p < 0.05), see Fig. 7(c). A possible explanation is that the higher de-
grees of freedom afforded to the variable synapse imparts increased computational
power and allowing for a more compact representation. RSM networks were also
had significantly sparser connectivity patterns than MEM networks—see Fig. 7(d).
This provides some insight into how the functionality of the two devices differ:
both provide a compact neural representation, however only RSM networks cou-
ple this with a compact synaptic representation. In the case of MEM networks,
denser synaptic topologies are required as more of the computational power of
the network being embodied in the synapse itself (a notion echoed in recent lit-
erature [1]). Comparing a single MEM synapse to a single RSM synapse, we note
that the MEM device is capable of more complex, history-dependent temporal be-
haviour. However the RSM network as a whole overcomes this via arrangements of
simpler devices and synchronised LRS/HRS switching in conjunction with excita-
tory/inhibitory neural spikes.

Considering possible hardware implementations, CMOS neurons are larger and
more complex than the synapses that connect them. As neuron numbers are more
likely to be a constraint, a reduction in neurons despite increased connectivity (e.g.
in the case of MEM networks) can be said to be beneficial.
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Fig. 7 Average (a) highest
fitness (b) mean fitness
(c) connected hidden layer
nodes (d) enabled
connections for the
experiment
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Fig. 8 Showing STDP
activity in the best RSM
network (a) before (b) during
(c) after turn. In the hidden
layer, light coloured neurons
are excitatory and dark
neurons are inhibitory

5.2.2 Behaviour

In solving the test problem, two general high-fitness strategies were employed by
the MEM and RSM networks. The first involved a chain of “forwards” actions,
a number of “turn right” actions as the agent circumvented the obstacle, and finished
with successive “forwards” actions until the goal state was reached. The second
strategy was a mirror of the first, but passing below the obstacle and turning left. In
either case, STDP was harnessed to turn the agent. HP-governed MEM profiles were
found to quickly reduce spike weights incoming to the left (right) motor, causing
perturbation of calculated action during turn by bringing that motor below the “high
activated” threshold. PEO-PANI-governed MEM profiles to the same motor were
used to swiftly increase the level of spiking activity (usually in response to a light
sensor surpassing some threshold) until a “forwards” action was calculated after the
turn was completed.

RSM networks used the rapid-switching ability of the synapse in three main ways
(i) to perform additional “connection selection” in-trial e.g. to switch a synapse to
a given state and leave it there (ii) as (i) but varying the connectivity map of the
network multiple times based on the sensory input (iii) in the creation of weight
oscillators in the network, whereby the firing on the neurons and switching of the
synapses synchronised through time to generate appropriate output actions from a
subgroup of neurons. In the latter case, the input state was found to perturb both
the firing pattern of the neurons and weight-switching pattern of the synapses to
generate e.g. turning actions when required. Use of STDP by the best RSM network
is shown in Fig. 8.
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Table 4 Detailing averages and standard deviations for common mutation parameters of MEM,
RSM, HP, PEO, LIN and GA systems on the test problem

μ ψ ω τ ι

MEM NA 0.072 (0.02) 0.085 (0.03) 0.011 (0.01) 0.023 (0.02)

RSM NA 0.071 (0.03) 0.105 (0.02) 0.014 (0.01) 0.033 (0.02)

HP NA 0.073 (0.04) 0.122 (0.11) 0.022 (0.03) NA

PEO NA 0.062 (0.02) 0.113 (0.07) 0.01 (0.01) NA

LIN NA 0.055 (0.02) 0.139 (0.11) 0.01 (0.01) NA

GA 0.018 (0.01) 0.056 (0.03) 0.122 (0.09) 0.011 (0.01) NA

5.2.3 Self-adaptive Parameters

Self-adaptive parameter results can be seen in Table 4 and Figs. 9(a)–(d); μ was
not compared as it was only used in GA networks. Tables 2 and 3 reveal that
MEM and RSM networks had statistically higher ψ (see Fig. 9(a))—which gov-
erned the frequency of neuron addition/removal events—than LIN and GA networks
(p < 0.05). Combined with the fact that both RSM and MEM networks had lower
ω (see Fig. 9(b))—which governed the rate of neuron addition—than the other net-
work types, this allowed the networks more opportunities (ψ ) to remove neurons
from their networks (ω) and accounts for RSM and MEM networks having few
neurons per network. We also note that RSM networks possessed statistically dif-
ferent τ (rate of Connection Selection) than other network types (p < 0.05 in all
cases). Between MEM and RSM networks, ι (the rate of altering the variable com-
ponent of the synapse) was statistically higher for RSM networks (p < 0.05, see
also Fig. 9(d)), highlighting how the two synapse types differ in functionality.

5.2.4 Evolution of β/Sn

MEM As β varied between 1–101 in the case of variable HP-governed profiles
and 1–100 in the case of variable PEO-PANI-governed profiles, the total range of β

was 199, where a value between 1–101 was considered a HP-governed profile and
anything >101 a PEO-PANI-governed profile. Analysis of the MEM networks re-
vealed that the connections to the motor on the side that made the turn evolved less
linear profiles, allowing for quicker action switching behaviour. In addition, connec-
tions between the input and hidden layer had a lower average maximum (145.98 vs.
150.11) and higher average minimum (50.945 vs. 27.533) than those between the
hidden and output layer. This suggests that connections to motors in general were
evolutionarily preferred to have more nonlinear, strongly varying conductance pro-
files. Connections in both of these areas had higher average maximum and lower
average minimum β values than connections within the hidden layer (116.16 and
84.1 respectively), suggesting that more steady behaviour was preferred there.
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Fig. 9 Average (a) ψ (b) ω

(c) τ (d) ι for the experiment
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RSM The numbers of connections belonging to each Sn within the networks were
approximately even (all p > 0.05). Some differences were observed regarding the
specific placement of synapses—for example, more sensitive (Sn = 2 or 3) synapses
were frequently found connected to IR sensors, with Sn = 3 or 4 the most common
synapse connected to light sensors. This suggests that fast-switching synapses are
required to immediately generate activity within the network. IR sensors have lower
Sn than light sensors as they trigger only when near obstacles and so must be able
to quickly switch to perturb network output and avoid the obstacle. Synapses were
more frequently connected to light sensors than IR sensors, reinforcing the idea that
light sensors were responsible for maintaining activity within the network, which
was then modified (frequently by IR sensors, but also via light sensors exceeding
some threshold) to alter behaviour as required. Due to the differing implementa-
tion of STDP for RSM networks, no significant differences were observed with
respect to the type of neuron (excitatory or inhibitory) the synapses were presynap-
tic/postsynaptic to (p-values range from 0.11–0.76).

STDP Here we average the best network per run rather than average all networks.
Synaptic weights in MEM networks are seen to generally rise (Fig. 10(a)). Higher
MEM weights are eventually achieved by the facilitating PEO-PANI-governed
profiles—see Fig. 10(a) after 400 time steps. RSM networks experience a gradual
drop in weight due to being initialised in the LRS (Fig. 11(a)), the most pronounced
of which coincides with an increase in switching activity. Both network types pos-
sess statistically similar (p > 0.05) average synaptic weight after 500 timesteps.

STDP is used in different ways by the two network types. In MEM networks,
PEO-governed profiles experience statistically more positive STDP and statistically
less negative STDP (both p < 0.05) than HP-governed profiles. These findings seem
to concur with previous work [21] in which static PEO memristors were found to be
more suited to facilitating (conducting) weight through the network (with the oppo-
site being true for HP memristors). As a result, the evolutionary process harnessed
the differing profiles by placing PEO memristors where they would receive the most
positive STDP, etc.

In contrast to MEM networks, RSM networks experience a gradual increase in
rate of STDP throughout the lifetime of the network. A distinct increase in STDP
rate can be seen at time step 120 in Fig. 11(a), which corresponds to the time at
which the network must make the agent turn around the obstacle. Figure 11(b) pro-
vides a more detailed view of the contribution to this jump in activity by each Sn.
With the exception of Sn = 5–Sn = 6, all Sn are experience statistically different
amounts of switching (p < 0.05). Lower Sn synapses are also present more variable
STDP profiles. Overall, less total STDP events occur in RSM networks than MEM
networks, presumably because (i) consecutive STDP events are more difficult to at-
tain (ii) each switch can have a more dramatic effect on the activity of the network.

In summary, both MEM and RSM networks show evidence that the evolutionary
mechanism differentiates between, and exploits, the differing resistance profiles and
STDP behaviours of the synapses.
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Fig. 10 (a) average synaptic
weight (b) average positive
STDP (c) average negative
STDP per profile type in the
MEM networks



Evolving Memristive Neural Networks 319

Fig. 11 (a) average synaptic
weight/average switch
frequency (b) average switch
frequency per Sn in the RSM
networks

6 Conclusions

In this study we have analysed two types of variable RM synapse and compared to
static RMs and benchmark connections in a simulated robotics environment. Our
hypothesis was that the additional degrees of functional freedom afforded to the
variable RMs allowed them to outperform these other synapses in key areas. Nu-
merous findings supported this hypothesis, including (i) variable memristors having
more expedient goal-finding behaviour than HP networks (ii) variable RSMs hav-
ing significantly better “Performance” than PEO and GA networks, as well as better
quality solutions than HP, LIN and GA networks (iii) both variable synapses pro-
viding a more compact network representation than PEO and GA networks.

These findings suggest that self-adaptation of the characteristic resistance pro-
file of both variable RMs is harnessed by the evolutionary process to provide vari-
able plastic networks with more implicit degrees of freedom than the other net-
work types. Variable plasticity was harnessed via STDP to achieve more expedient
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goal-finding behaviour, higher quality solutions, and reduced topological complex-
ity when compared to certain other network types. Importantly, the need to explore
additional search space (especially in the case of β) was found to be non-disruptive
(and in most cases beneficial) with respect to network performance, whilst providing
a more flexible synaptic representation.

The inclusion of self-adaptive mutation parameters with a neuro-evolutionary
approach is likely to be necessary for the autonomous emergence of NM processing
units. This study presents a candidate implementation that allows for the formation
of such (task-specific) neural groupings.

Results enforce the view that this kind of approach may be utilised to guide
the synthesis requirements of functional memristor/RSM hardware systems. Trials
on different task types may provide insights into the optimal composition of such
systems on a per-task basis.

Possible future research directions include hardware and mixed-media imple-
mentations, provided the two RM types can be integrated into the same circuit ar-
chitecture. The main benefit of memristive STDP over other STDP implementations
lies in hardware realisation, as the history-dependent weight of the synapse is stored
in the nonvolatile physical state of the device and thus does not require simulation.
Similarly, RSM state is nonvolatile. Titanium dioxide additionally allows for mem-
ristive behaviour and binary switching to be elicited from the same material. As well
as providing more functional degrees of freedom to the synapse, evolution could
control switching between the behaviours to autonomously create task-optimal NM
subarchitectures, as well as online synaptic transformations via targetted irradiation
for self-repair or self-modification.

Acknowledgements This work was funded by EPSRC grant number EP/H014381/1.

References

1. Abbott, L., Regehr, W.: Synaptic computation. Nature 431, 796–803 (2004)
2. Afifi, A., Ayatollahi, A., Raissi, F.: Stdp implementation using memristive nanodevice in

cmos-nano neuromorphic networks. IEICE Electron. Express 6(3), 148–153 (2009)
3. Akinaga, B.H., Shima, H.: Resistive random access memory (reram) based on metal oxides.

Proc. IEEE 98(12), 2237–2251 (2010)
4. Chua, L.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–

519 (1971). doi:10.1109/TCT.1971.1083337
5. Chua, L., Sbitnev, V., Kim, H.: Hodgkin Huxley axon is made of memristors. Int. J. Bifurc.

Chaos 22(03), 1230011 (2012)
6. Dolan, C.P., Dyer, M.G.: Toward the evolution of symbols. In: Grefenstette, J.J. (ed.) Genetic

Algorithms and Their Applications (ICGA’87), pp. 123–131. Erlbaum, Hillsdale (1987)
7. Doolittle, W., Calley, W., Henderson, W.: Complementary oxide memristor technology fa-

cilitating both inhibitory and excitatory synapses for potential neuromorphic computing ap-
plications. In: Semiconductor Device Research Symposium, 2009. ISDRS’09. International,
pp. 1–2 (2009)

8. Durr, P., Mattiussi, C., Soltoggio, A., Floreano, D.: Evolvability of neuromodulated learning
for robots. In: Proceedings of the 2008 ECSIS Symposium on Learning and Adaptive Behavior
in Robotic Systems, pp. 41–46. IEEE Computer Society, Los Alamitos (2008)

http://dx.doi.org/10.1109/TCT.1971.1083337


Evolving Memristive Neural Networks 321

9. Erokhin, V.: On the learning of stochastic networks of organic memristive devices. Int. J.
Unconv. Comput. 9(3–4), 303–310 (2013)

10. Erokhin, V., Fontana, M.P.: Electrochemically controlled polymeric device: a memristor (and
more) found two years ago (2008). arXiv:0807.0333

11. Erokhin, V., Howard, G.D., Adamatzky, A.: Organic memristor devices for logic elements
with memory. Int. J. Bifurc. Chaos 22(11) (2012)

12. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol.
Intell. 1, 47–62 (2008)

13. Gale, E.: The memory-conservation model of memristance. In: Heber, J., Schlom, D., Tokura,
Y., Waser, R., Wutting, M. (eds.) Technical Digest of Frontiers in Electronic Materials. Nature
Conferences, pp. 538–539. Wiley VCH, New York (2012)

14. Gale, E., de Lacy Costello, B., Adamatzky, A.: The effect of electrode size on memristor
properties: an experimental and theoretical study. In: International Conference in Electronics
Design, Systems and Applications (ICEDSA 2012) (2012, in press)

15. Gerstner, W., Kistler, W.: Spiking Neuron Models—Single Neurons, Populations, Plasticity.
Cambridge University Press, Cambridge (2002)

16. Hebb, D.O.: The Organisation of Behavior. Wiley, New York (1949)
17. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor (1975)
18. Hosoi, Y., Tamai, Y., Ohnishi, T., Ishihara, K., Shibuya, T., Inoue, Y., Yamazaki, S., Nakano,

T., Ohnishi, S., Awaya, N., et al.: High speed unipolar switching resistance ram (rram) tech-
nology. Int. Electron Devices Meet. 1, 1–4 (2006)

19. Howard, G.D.: Constructivist and spiking neural learning classifier systems. PhD thesis, Uni-
versity of the West of England (2010)

20. Howard, G.D., Bull, L., Adamatzky, A.: Cartesian genetic programming for memristive logic
circuits. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) Proceedings
of the 15th European Conference on Genetic Programming, EuroGP 2012. LNCS, vol. 7244,
pp. 37–48. Springer, Malaga (2012)

21. Howard, G., Gale, E., Bull, L., de Lacy Costello, B., Adamatzky, A.: Evolution of plastic
learning in spiking networks via memristive connections. IEEE Trans. Evol. Comput. 16(5),
711–729 (2012)

22. Howard, G.D., Bull, L., Costello, B.D.L., Adamatzky, A., Erokhin, V.: Creating unorganised
machines from memristors. Int. J. Appl. Math. Inf. Sci. (2013, in press)

23. Howard, G.D., Bull, L., Costello, B.D.L., Gale, E., Adamatzky, A.: Evolving spiking networks
with variable resistive memories. Evol. Comput. (2013, in press)

24. Hurst, J., Bull, L.: A neural learning classifier system with self-adaptive constructivism for
mobile robot control. Artif. Life 12(3), 353–380 (2006)

25. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor
device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

26. Kistler, W.M.: Spike-timing dependent synaptic plasticity: a phenomenological framework.
Biol. Cybern. 87(5–6), 416–427 (2002)

27. Linares-Barranco, B., Serrano-Gotarredona, T.: Memristance can explain spike-time-
dependent-plasticity in neural synapses. Nature Precedings (2009)

28. Liu, S., Wu, N., Ignatiev, A.: Electric-pulse-induced reversible resistance change effect in
magnetoresistive films. Appl. Phys. Lett. 76(19), 2749–2751 (2000)

29. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neu-
ral Netw. 10, 1659–1671 (1996)

30. Maass, W., Zador, A.M.: Dynamic stochastic synapses as computational units. Neural Com-
put. 11(4), 903–917 (1999)

31. Mead, C.: Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)
32. Michel, O.: Webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1),

39–42 (2004)
33. Mouttet, B.: Memristor pattern recognition circuit architecture for robotics. In: Proceedings of

the 2nd International Multi-Conference on Engineering and Technological Innovation II, pp.

http://arxiv.org/abs/arXiv:0807.0333


322 G.D. Howard et al.

65–70 (2009)
34. Nolfi, S., Floriano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)
35. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys.

Rev. A 80(2), 021926 (2009). doi:10.1103/PhysRevE.80.021926
36. Querlioz, D., Bichler, O., Gamrat, C.: Simulation of a memristor-based spiking neural network

immune to device variations. In: Proceedings of the 2011 International Joint Conference on
Neural Networks (IJCNN), pp. 1775–1781. IEEE Press, San Jose (2011)

37. Rechenberg, I.: Evolutionsstrategie: optimierung technischer systeme nach prinzipien der bi-
ologischen evolution. Frommann-Holzboog (1973)

38. Rocha, M., Cortez, P., Neves, J.: Evolutionary neural network learning. In: Progress in Artifi-
cial Intelligence. Lecture Notes in Computer Science, vol. 2902, pp. 24–28. Springer, Berlin
(2003)

39. Rumelhart, D., McClelland, J.: Parallel Distributed Processing, vols. 1 & 2. MIT Press, Cam-
bridge (1986)

40. Saggie-Wexler, K., Keinan, A., Ruppin, E.: Neural processing of counting in evolved spiking
and McCulloch-Pitts agents. Artif. Life 12(1), 1–16 (2006)

41. Snider, G.: Computing with hysteretic resistor crossbars. Appl. Phys. A 80, 1165–1172 (2005)
42. Snider, G.: Spike-timing-dependent learning in memristive nanodevices. In: IEEE Interna-

tional Symposium on Nanoscale Architectures, 2008. NANOARCH 2008, pp. 85–92 (2008).
doi:10.1109/NANOARCH.2008.4585796

43. Soltoggio, A.: Neural plasticity and minimal topologies for reward-based learning. In: Pro-
ceedings of the 2008 8th International Conference on Hybrid Intelligent Systems, pp. 637–
642. IEEE Computer Society, Washington (2008)

44. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found.
Nature 453, 80–83 (2008)

45. Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model
of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)

46. Urzelai, J., Floreano, D.: Evolution of adaptive synapses: robots with fast adaptive behavior
in new environments. Evol. Comput. 9, 495–524 (2001)

47. Vujisic, M., Stankovic, K., Marianovic, N., Osmokrovic, P.: Simulated effects of proton and
ion beam irradiation on titanium dioxide memristors. IEEE Trans. Nucl. Sci. 57(4), 1798–1804
(2010)

48. Wang, X., Chen, Y.: Spintronic memristor devices and application. In: Proceedings of the
Conference on Design, Automation and Test in Europe, European Design and Automation
Association, pp. 667–672 (2010)

49. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–
840 (2007)

50. Xia, G., Tang, Z., Li, Y., Wang, J.: A binary Hopfield neural network with hysteresis for large
crossbar packet-switches. Neurocomputing 67, 417–425 (2005)

http://dx.doi.org/10.1103/PhysRevE.80.021926
http://dx.doi.org/10.1109/NANOARCH.2008.4585796


Behavior of Multiple Memristor Circuits

Ram Kaji Budhathoki, Maheshwar P. Sah, Shyam Prasad Adhikari,
Hyongsuk Kim, and Leon Chua

Abstract Memristor is a new circuit element defined by a state-dependent Ohm’s
law between the memristor voltage and current. It has recently been successfully
built, however, its electrical characteristics are not fully known yet. Like other cir-
cuit elements R, L and C, there could have various configurations of multiple mem-
ristors including serial and parallel connections in a variety of applications. When
input voltage/current is supplied to a circuit with multiple memristors, behavior of
the device becomes complicated and is difficult to predict. In this chapter, composite
characteristics of the serial and parallel connections of memristors are investigated
using both linear and nonlinear models. Also, the behavior of individual memris-
tor is formulated mathematically and a general computation method of composite
memristance for multiple memristor circuits of diverse configurations is proposed.

1 Introduction

In 1971, Leon O. Chua postulated the memristor as the fourth basic circuit element
[1], based on a nonlinear relationship between charge and flux. Chua and Kang later
extended the idea of memristors to memristive systems and devices in 1976 [2].

R.K. Budhathoki · M.P. Sah · S.P. Adhikari · H. Kim (B)
Intelligent Robots Research Center, Division of Electronics and Information Engineering,
Chonbuk National University, Jeonju 561-756, Republic of Korea
e-mail: hskim@jbnu.ac.kr

R.K. Budhathoki
e-mail: ramkaji@gmail.com

M.P. Sah
e-mail: maheshwarsah@hotmail.com

S.P. Adhikari
e-mail: all.shyam@gmail.com

L. Chua
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,
CA 94720 USA
e-mail: chua@eecs.berkeley.edu

A. Adamatzky, L. Chua (eds.), Memristor Networks,
DOI 10.1007/978-3-319-02630-5_15,
© Springer International Publishing Switzerland 2014

323

mailto:hskim@jbnu.ac.kr
mailto:ramkaji@gmail.com
mailto:maheshwarsah@hotmail.com
mailto:all.shyam@gmail.com
mailto:chua@eecs.berkeley.edu
http://dx.doi.org/10.1007/978-3-319-02630-5_15


324 R.K. Budhathoki et al.

Memristor relates charge q and magnetic flux ϕ in a circuit. Memristance (resis-
tance of memristor) M can be controlled by applying a voltage or a current signal
across the memristor, where R =M(q)= dϕ/dq . When a sinusoidal, or any bipo-
lar periodic signal that assumes both positive and negative values, is applied to the
memristor, it exhibits a hysteresis loop in the v–i plane which is pinched at the
origin. This pinched hysteresis loop is considered as a fingerprint of the memristor
[3, 4]. The area of the pinched hysteresis loop decreases with the frequency ω of the
input signal, and tends to a straight line as ω →∞, for all bipolar periodic signals
and for all valid initial conditions.

An actual physical memristor was realized as a TiO2 nano-component by re-
searchers at HP in 2008 [5]. It consists of two layer thin film (size D = 10 nm) of
TiO2, sandwiched between platinum contacts. One of the TiO2 layer is doped with
oxygen vacancies and acts like a semiconductor, whereas another undoped layer
acts as a resistor. The total memristance is a sum of the resistances of the doped and
undoped regions.

Characteristics of memristor are reviewed, and a mathematical and a SPICE
model are provided by several research groups ([6–9]). Its emulators and macro
models have been proposed ([10–12]). Also, the behavior of memristor-capacitor,
memristor-inductor and memristor-capacitor-inductor circuits is presented [13].

When multiple memristors are connected together, the behavior of the composite
device becomes complicated, and is difficult to predict, due to the polarity dependent
nonlinear variation of memristance of individual memristors. So it is vital to under-
stand the characteristics and behavior, when memristors are connected in different
topologies.

If two memristors with opposite polarities are combined together, the nonlinear-
ity of memristance is reduced dramatically due to the complementary action of two
memristors. Kim et al. presented an efficient weighting circuit for artificial neural
networks by building a memristor-based bridge structure [14, 15]. M.P. Sah et al.
implemented bridge synaptic circuit with the memristor emulator [16]. E. Linn et
al. reported a fabrication result of complementary resistive switch (CRS) consisting
of two back-to-back (antiserial) memristive elements for the construction of large
passive crossbar arrays by solving the sneak path problem [17]. Later, the CRS ar-
chitecture has been further investigated via an analytical approach [18].

T. Liu et al. also reported the i–v characteristics of antiparallel resistive switches
(APRS) that strongly depend on the parameters of the individual switches [19].

In the previous works, the principles of the composite behaviors of the multiple
memristor circuits are not fully explained. Aiming to explain such behavior ana-
lytically, the relationship among flux, charge and memristance of diverse composite
memristors are investigated, using both linear and nonlinear models, and simulations
of the memristors’ characteristics are presented in this chapter. The voltage-current
(v–i) graphs for different connections, and the variations of overall memristance,
are also analyzed.

Rest of the chapter is organized as follows. In Sect. 2, the basic principle and the
mathematical model of the titanium dioxide memristor is introduced considering
both the linear and nonlinear model. In Sect. 3, the stable and transient composite



Behavior of Multiple Memristor Circuits 325

memristance state of memristors is discussed. In Sect. 4, series configurations of
memristors with two different polarities are discussed. Similarly in Sect. 5, parallel
configurations of memristors with two different polarities are discussed. In Sect. 6,
simulation results of the composite flux and composite memristance of the single,
series and parallel connections of memristors, for both linear and nonlinear models,
are presented. Concluding remarks are presented in Sect. 7, followed by References.

2 Single Memristor Circuit

The constitutive relation of a memristor is defined by a nonlinear algebraic relation
between its charge q and its flux ϕ, namely,

ϕ = ϕ̂(q) (1)

where, charge is defined as the integral of current,

q(t) �
∫ t

−∞
i(τ )dτ (2)

and flux is defined as the integral of voltage,

ϕ(t)�
∫ t

−∞
v(τ)dτ (3)

Taking the derivative on both sides of Eq. (1), we obtain

dϕ

dt
= dϕ̂(q)

dq
· dq

dt
. (4)

It leads to

v(t)= dϕ̂(q)

dq
i(t)≡M(q)i(t) (5)

where, M(q) is a charge controlled memristance, defined as,

M(q)= dϕ̂(q)

dq

∣∣∣∣
q=qQ

. (6)

From Eq. (6), M(q) can be interpreted as the slope at an operating point q = qQ at
time t on the memristor ϕ–q curve. Since the memristance depends on the operating
point q = qQ and q = qQ remains fixed when v(t)= 0 and i(t)= 0, the device can
be used as nonvolatile memory. Thus, the resistance M(q) is called the memristance,
an acronym for memory resistance.
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Fig. 1 (a) TiO2 Memristor of length D. (b) Memristor symbol

2.1 Linear Model

Figure 1(a) shows the structure of the TiO2 memristor, and the symbol of a mem-
ristor is shown in Fig. 1(b), where the negative end is labeled black. In the TiO2

memristor, a thin undoped titanium dioxide (TiO2) layer and a thin oxygen-deficient
doped titanium dioxide (TiO2−x) layer are sandwiched between two platinum elec-
trodes. When a voltage (or current) is applied to the device, the width of the TiO2

and TiO2−x layer changes as a function of the applied voltage (or current). As a
result, the resistance between the two electrodes is altered.

Let D and w denote the thickness of the sandwiched area and the doped area
(oxygen deficient area) in the TiO2 memristor, respectively, and let RON and ROFF

denote the resistances at high (w/D = 0) and low dopant (w/D = 1) concentration
areas, respectively.

Then, the voltage current relationship is given as,

v(t)=
(

RON
w(t)

D
+ROFF

(
1− w(t)

D

))
i(t) (7)

and the state variable w is defined by,

dw(t)

dt
= μv

RON

D
i(t) (8)

where, μv is the dopant mobility. This model is called a linear drift model, as the
drift of the state variable (w) is linearly proportional to the current. Integrating (8)
on both sides, we obtain,

w(t)= μv

RON

D

∫ t

0
i(τ )dτ +w0. (9)

It follows from (7) that the memristance M(t) can be expressed as,

M(t)=RON
w(t)

D
+ROFF

(
1− w(t)

D

)
. (10)
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Substituting (9) into (10), we get

M(t)=
{
ROFF

(
1−μv

RON

D2

(
1− RON

ROFF

)∫ t

0
i(τ )dτ

)
+ w0ROFF

D

(
RON

ROFF
− 1

)}
.

(11)
As memristance is defined in terms of flux and charge in (6), integrating both sides
of (11) yields,

ϕ(t)=ROFF

[
q(t)

(
1+ w0

D

(
RON

ROFF
− 1

))
−μv

RON

2D2

(
1− RON

ROFF

)
q(t)2

]
(12)

where, ϕ(t) and q(t) denote the flux and charge, respectively, at time t . Thus, the
memristance can be interpreted as the slope at the operating point q = qQ at time
t on the memristor ϕ–q curve. If the ϕ–q curve is nonlinear, the memristance will
vary with the operating point. From (12), we obtain

M = dϕ

dq
=ROFF

{[
1+ w0

D

(
RON

ROFF
− 1

)]
−μv

RON

D2

(
1− RON

ROFF

)
q(t)

}
(13)

From (13), we see that the memristance is a linear function of the charge q(t), where
the theoretical range of ϕ, q and M of the TiO2 memristor are ϕ = [0,0.805] We-
ber, q = [0,1 × 10−4] Coulomb and M = [16,0.1] K
, respectively for the range
w = [0,D], when μv = 10−10 cm2/V s and D = 10 nm. From (7) and (11), the
relationship between the memristor voltage and current is given by,

v(t)=
{
ROFF

(
1−μv

RON

D2

(
1− RON

ROFF

)∫ t

0
i(τ )dτ

)

+ w0ROFF

D

(
RON

ROFF
− 1

)}
i(t) (14)

2.2 Nonlinear Model

The linear-drift model describes many of the salient features of a memristor. How-
ever, it does not take into account the boundary effects. Qualitatively the boundary
between the doped and undoped regions moves with speed μv in the bulk of the
memristor, but that speed is strongly suppressed when it approaches either edge
w ∼ 0 or w ∼D. The nonlinear phenomena often appear at the boundaries of nano
scale devices. With even the small voltage applied across nanometer devices, a large
electric field is produced and therefore, the ion boundary moves in a nonlinear fash-
ion in nanoscale devices [13]. This nonlinear phenomenon can be modeled by mul-
tiplying the right side of (8) by a window function Fp(w), namely,

dw(t)

dt
= μv

RON

D
i(t)Fp(w) (15)
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where p is a parameter whose value is a positive integer. As the integer p increases,
the model tends to a linear model. This is called the nonlinear drift model (or non-
linear model). Several nonlinear memristor models with different window functions
have been proposed. One reasonable window function is defined by [13],

Fp(w)= 1−
(

2
w

D
− 1

)2p

(16)

It is difficult to find the solution satisfying both (15) and (16) analytically. However,
w(t) can be computed numerically as,

w(t +Δt)= μv

RON

D

(
1−

(
2
w

D
− 1

)2p)
Δq +w(t) (17)

where Δq is the charge increment fed to the memristor during the time interval Δt

and computed by integrating the input current as,

Δq =
∫

I (t)dt = IΔt (18)

Substituting the value of w from (17) in (8), we get

M ≈ RON

D
w0

(
1− ROFF

RON

)
+ RON

D
KΔq × Fp(w)

(
1− ROFF

RON

)
(19)

The current voltage relationship can be obtained as,

v(t)=
{

RON

D
w0

(
1− ROFF

RON

)
+ RON

D
KΔq × Fp(w)

(
1− ROFF

RON

)}
i(t) (20)

3 Transient and Stable State of Composite Memristance

The flux or charge in a memristor is accumulated only within a given range of
flux or charge where the thickness w/D does not approach 0 and 1. If exter-
nal voltage or current is applied additionally to a memristor when the state of
flux or charge of a memristor is outside of this region, they overflow without be-
ing accumulated as the memristor state. Computing the composite behavior of
a circuit with multiple memristors is not easy when the state of some memris-
tors in a circuit is in the operational range while that of others is out of the
range.

For the analytical explanation of the behavior as a function of the applied volt-
age or current, we propose a method in which the operation of a memristor at the
outside of this boundary is explained with the shifting of the flux or charge function
by the amount of overflowed flux or charge. Figure 2(a) describes a concept that the
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Fig. 2 Composite
memristance of a multiple
memristor circuit in
(a) transient state, and
(b) stable state of composite
memristance

overflow phenomena can be formulated as the function shift when the accumulated
flux curve is expressed as a function of the integration of externally applied current,
where the curve is shifted to the left or right direction on the horizontal axis when-
ever the externally applied flux or charge exits from the max or the min threshold,
respectively, as in Fig. 2(a).

Being associated with such shifting behavior, a multiple memristor circuit works
in very complicated manner. Figure 2(a) shows flux curves of two memristors,
whose initial fluxes ϕ1(0) and ϕ2(0) are not identical. In the figure, the flux ϕ2

below qMIN
OV is not accumulated, and similarly the flux ϕ1 is not accumulated above

qMAX
OV . Therefore, the range in which the composite flux of this memristor connec-

tion can be computed is [qMIN
OV , qMAX

OV ], where the operation ranges of two mem-
ristors are overlapped. We call this range the composite memristance range, in
which the multiple memristors act like a single memristor with a composite be-
havior.

When the accumulated charge
∫ t

0 i(τ )dτ goes out of this range, the whole flux
curve shifts along the charge axis. For example, when the externally applied charge
exceeds qMAX

OV , the whole curve ϕ1 moves to the right direction of Fig. 2(a), by the
amount of excess charge. On the other hand, when the externally applied charge
goes below qMIN

OV , the whole curve ϕ2 moves to the left direction of Fig. 2(a), by
the integration of the charge below qMIN

OV . In any of these cases, the overlapped area
of the two curves expands, and so does the composite memristance range. This is
called the transient state of a composite memristor circuit.

With the repeated expanding of the composite memristance range, due to
the repeated exiting of this boundary, two curves will eventually arrive at a
fully overlapped state, as in Fig. 2(b). Once two curves come to have a fully
overlapped memristive range, the curves move concurrently. As a result, the
composite flux curve does not vary anymore. Henceforth, the memristor circuits
acts as a single memristor. We call this a stable state of composite memris-
tance.

Since any multiple memristor circuit will eventually reach this stable state of
composite memristance, we assume that all memristor circuits in the following sec-
tions are at this stable state.
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Fig. 3 A circuit with two
memristors connected in
series with same polarities

4 Composite Memristance of Serially Connected Memristors

4.1 Serial Memristor Circuit with the Same Polarities

When a voltage input is applied to two serially connected memristors with the po-
larity as shown in Fig. 3, the input voltage gets distributed across each memristor
according to Kirchhoff’s Voltage Law. In this type of serial connection, the mem-
ristive effect is retained, as the doped regions in both the memristors either shrink
or expand simultaneously, depending upon the polarity of the applied input voltage.
Applying KVL in Fig. 3,

V1−2 = iM1 + iM2 = V1 + V2 (21)

where, V1 and V2 are voltages across M1 and M2 generated by the common cur-
rent i. Integrating both sides of (21),

∫
V1−2dt =

∫
V1dt +

∫
V2dt. (22)

From (3), (22) can be expressed as

ϕc(t)= ϕ1(t)+ ϕ2(t) (23)

where, ϕc(t) is the total composite flux computed by integrating the voltage V1−2,
and ϕ1(t) and ϕ2(t) are the flux across M1 and M2 computed by integrating V1

and V2, respectively. From Eq. (23) we see that the composite flux of a serially
connected memristor with similar polarity is computed via a simple arithmetic sum
of the individual fluxes.

Note that the sign of the flux for each memristor is different, depending upon
its polarity; when the polarity of a memristor is the same as that of the predefined
reference polarity, i.e. polarity of the composite device, the sign of the individual
flux is positive, and vice versa. Therefore, the signs of both flux and charge of M1

and M2 in Fig. 3 are identical to that of the reference.
Let us assume that the initial states of the two memristors M1 and M2 are

(M1(0), ϕ1(0), q1(0)) and (M2(0), ϕ2(0), q2(0)), respectively, then the flux ϕ1(t)
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for the memristor M1 can be written as a function of charge q1(t), as

ϕ1(t)=Roff

{
q1(t)

[
1+ w01

D

(
Ron

Roff
− 1

)]
− μvRon

2D2

(
1− Ron

Roff

)
q1(t)

2
}
+ ϕ1(0)

−Qmaxn1 ≤ q1(t)≤Qmaxp1

(24)

where, Qmaxpi = D2

μvRon
(1 − w0i

D
) for positive polarity, and Qmaxni = D2

μvRon

w0i

D
for

negative polarity. Similarly, the flux of M2, ϕ2(t), can be written as a function of
charge q2(t), as

ϕ2(t)=Roff

{
q2(t)

[
1+ w02

D

(
Ron

Roff
− 1

)]
− μvRon

2D2

(
1− Ron

Roff

)
q2(t)

2
}
+ ϕ2(0).

−Qmaxn2 ≤ q2(t)≤Qmaxp2

(25)

Since the same amount of charge q(t) is injected into each memristor in the serially
connected memristor circuit, the composite flux is the simple sum of the individual
fluxes. When the two memristors are assumed to be identical, and they are in the
stable composite memristance state, as discussed in Sect. 3, the composite flux from
(23) can be computed as,

ϕc(t)= 2Roff

{
q(t)

[
1+ w0

D

(
Ron

Roff
− 1

)]
− μvRon

2D2

(
1− Ron

Roff

)
q(t)2

}
+ 2ϕ2(0)

(26)
where, −min{Qmaxn1,Qmaxp2} ≤ q(t)≤ min{Qmaxp1,Qmaxn2} and w01 =w02 =
w0, since M1 =M2.

Furthermore, the memristance of the composite memristor can be obtained by
differentiating (26) with respect to q(t), as

Mc = dϕc(t)

dq(t)
= 2Roff

{[
1+ w0

D

(
Ron

Roff
− 1

)]
− μvRon

D2

(
1− Ron

Roff

)
q(t)

}

−min{Qmaxn1,Qmaxp2} ≤ q(t)≤ min{Qmaxp1,Qmaxn2}
(27)

From (27), we see that the composite memristor exhibits memristance in the range
of −min{Qmaxn1,Qmaxp2} ≤ q(t) ≤ min{Qmaxp1,Qmaxn2} and acts like a single
memristor in that range.

4.2 Serial Memristor Circuit with the Opposite Polarities

When a positive voltage (or current) signal is applied to a circuit with two mem-
ristors connected in series, but with opposite polarities, as shown in Fig. 4, then
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Fig. 4 Memristor circuit
with two memristors
connected back to back in
series

the memristance of M1 decreases, whereas the memristance of M2 increases. As a
result, the composite memristance becomes constant, due to their complementary
action. In this case also, the flux arithmetic of (23) can be applied, to obtain the flux
for the composite device.

Let us assume that the polarity of M1 is the same as that of the predefined refer-
ence polarity, and the polarity of M2 is opposite to that of the reference. If charge
q(t) is injected into the positive terminal of the composite device, it acts as positive
charge for M1, whereas it acts as negative charge for M2. Thus,

q2(t)=−q(t) (28)

Similarly, the sign of flux ϕ2(t) is opposite to the reference, i.e. ϕc2(t) = −ϕ2(t).
The composite flux ϕc2(t) can be written as a function of charge q(t),

ϕc2(t)=Roff

{
q(t)

[
1+ w02

D

(
Ron

Roff
− 1

)]
+ μvRon

2D2

(
1− Ron

Roff

)
q(t)2

}
− ϕ2(0).

(29)
In contrast, in the case of M1, the signs of both flux and charge are identical

to that of the composite memristor. From (24), ϕc1(t) is given as, ϕc1(t) = ϕ1(t).
Therefore, ϕc1(t) can be written as,

ϕc1(t)=Roff

{
q(t)

[
1+ w01

D

(
Ron

Roff
− 1

)]
− μvRon

2D2

(
1− Ron

Roff

)
q(t)2

}
+ ϕ1(0)

(30)
where, q1(t) in (24) is replaced by q(t), and ϕc1(t) is the converted flux of ϕ1(t) in
terms of composite flux. The total flux ϕc(t) is the sum of ϕc1(t) and ϕc2(t). When
two memristors are assumed to be identical, and they are in the stable composite
memristance state, as discussed in Sect. 3, the flux of the composite memristor be-
comes

ϕc(t)= 2Roff q(t)

[
1+ w0

D

(
Ron

Roff
− 1

)]
(31)

where −min{Qmaxn1,Qmaxp2} ≤ q(t) ≤ min{Qmaxp1,Qmaxn2} and w01 = w02 =
w0. Furthermore, the memristance of the composite memristor can be obtained by
differentiating (31) with respect to q(t), as

Mc = dϕc(t)

dq(t)
= 2

{
Roff

[
1+ w0

D

(
Ron

Roff
− 1

)]}
= 2M0;

−min{Qmaxn1,Qmaxp2} ≤ q(t)≤ min{Qmaxp1,Qmaxn2}
(32)
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Fig. 5 Two memristors M1
and M2 connected in parallel
with the same polarity

where, Mc is the composite memristance, and

M0 =Roff

[
1+ w0

D

(
Ron

Roff
− 1

)]
.

Note that Mc in (32) is constant, since all the related parameters for M0 are constant.
We can see that the composite memristor exhibits a resistive behavior, in the range
of

[−min{Qmaxn1,Qmaxp2} ≤ q(t)≤ min{Qmaxp1,Qmaxn2}
]
.

5 Composite Memristance of Parallel Memristors

5.1 Parallel Memristor Circuit with Identical Polarities

When two memristors are connected in parallel with the same polarities as shown
in Fig. 5, voltage across both the memristors are equal. According to Kirchhoff’s
Current Law, the total (composite) input current is the sum of the individual currents,
i.e.

i = i1 + i2 (33)

Integrating (33), we obtain

qc(t)= qc1(t)+ qc2(t) (34)

where qc(t) is the total charge injected into the circuit, qc1(t) and qc2(t) are the
converted expressions of q1(t) and q2(t), respectively, relative to the predefined
reference.

The composite flux remains constant, as the memristors connected in parallel
share a common voltage. Note that the composite flux is computed by the integration
of the common voltage across the parallel memristor circuits. The expression for
charge of M1 and M2 can be obtained by rearranging Eqs. (24) and (25),

qc1(t)= QoRo1

ΔR

(
1−

√

1− 2ΔR

QoR
2
o1

(ϕc1)

)
+ q1(0) ϕmin ≤ ϕc1 ≤ ϕmax (35)
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Fig. 6 Two memristors M1
and M2 connected in parallel
with opposite polarity

qc2(t)= QoRo2

ΔR

(
1−

√

1− 2ΔR

QoR
2
o2

(ϕc2)

)
+ q2(0) ϕmin ≤ ϕc2 ≤ ϕmax (36)

where, ΔR = ROFF − RON and Qo = D2/μvRon. The value of ϕmin and ϕmax are
[0,0.805] and [−0.805,0] for positive and negative polarity, respectively.

When two memristors are assumed to be identical, and they are in the stable com-
posite memristance state, as discussed in Sect. 3, the charge qc(t) of the composite
device is computed from (34) as,

qc(t)= 2QoRo

ΔR

(
1−

√(
1− 2ΔRϕ(t)

QoR2
o

))
+ qc(0). (37)

Differentiating (37) with respect to ϕ, we obtain

dqc(t)

dϕ(t)
= 2

Ro

√
1− 2ΔR(ϕ(t))

QoR2
o

. (38)

Hence, the composite memristance is given by the

Mc(t)= dϕ(t)

dqc(t)

= Ro

2

√

1− 2ΔR(ϕ)

QoR2
o

= M1

2
= M2

2
(39)

where, M1 =M2 =Ro

√
1− 2ΔR(ϕ)

QoR2
o

.

We can conclude that the charge of the composite device is the sum of the indi-
vidual charges of M1 and M2. In addition, the computation of the composite mem-
ristance can be performed in the same way, as that for ordinary parallel resistors.

5.2 Parallel Memristor Circuit with Opposite Polarities

When an input current (or voltage) signal is applied to a memristor circuit connected
in parallel, but with opposite polarities, as shown in Fig. 6, the memristance of each
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memristor changes in opposite direction to that of the other, depending upon their
respective polarities.

For the parallel memristor circuit shown in Fig. 6, the signs of charges are dif-
ferent from the circuit shown in Fig. 5. Assuming that the polarity of M1 is same
as that of the composite device, the polarity of M2 is opposite. Then, from (35) and
(36),

qc1(t)= QoRo1

ΔR

(
1−

√

1− 2ΔR

QoR
2
o1

(ϕc1)

)
+ q1(0) (40)

qc2(t)=−QoRo2

ΔR

(
1−

√

1+ 2ΔR

QoR
2
o2

(ϕc2)

)
− q2(0) (41)

Plugging (40) and (41) into Eq. (34), we obtain the composite charge of the circuit
in Fig. 6, as

qc(t)= QoRo1

ΔR

(
1−

√

1− 2ΔR

QoR
2
o1

(ϕ)

)
+ q1(0)

− QoRo2

ΔR

(
1−

√

1+ 2ΔR

QoR
2
o2

(ϕ)

)
− q2(0) (42)

Differentiating (42) with respect to ϕ, where ϕ = ϕc1 = ϕc2

dqc(t)

dϕ(t)
= 1

Mc(t)
= 1

Ro1

√
1− 2ΔR(ϕc1)

QoR
2
o1

+ 1

Ro2

√
1+ 2ΔR(ϕc2)

QoR
2
o2

= 1

M1
+ 1

M2
(43)

6 Simulation Results

6.1 Linear Model

The simulations in this section are based on the TiO2 memristor model, where
RON = 100 
, ROFF = 16 K
, D = 10 nm and μv = 10−14 m2 V−1 S−1. When
a sinusoidal input signal v(t) = Vm sin(ωt), is applied to a single memristor with
positive polarity, the memristance decreases from its initial value, and when the
polarity of the memristor is reversed, memristance increases. The range of memris-
tance depends on the value of RON and ROFF. The memristance can be interpreted as
the slope at the operating point q = qQ at time t on the flux curve of the memristor
as shown in Fig. 7.
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Fig. 7 Flux vs. charge curve
(Blue color) and Memristance
vs. charge curve (Red color)
for a single decrement type
memristor. The initial state of
the memristor is
(M(0)= 15890 
,
ϕ(0)= 0 Wb, q(0)= 0)

Fig. 8 Current vs. voltage
graph for individual
memristors, and that of the
composite memristor at ω = 5

Figures 8 and 9 show the simulation results for the serially connected mem-
ristors, with the polarities as shown in Fig. 3. It is assumed that the composite
memristance is in stable state as discussed in the Sect. 3, which is the assump-
tion applied to all cases of circuits afterwards. The initial states of the mem-
ristors are (M1(0) = 11250 
, ϕ1(0) = 0.395 Wb, q1(0) = 2.9 × 10−5 C) and
(M2(0)= 11250 
, ϕ2(0)= 0.395 Wb, q2(0)= 2.9 × 10−5 C). When a sinusoidal
voltage signal v(t)=A sin(ωt) with ω = 5 rad/s is applied to the input terminal, the
applied voltage is distributed across each memristor equally at any instant of time.

As the memristors are connected in series, equal current flows through both mem-
ristors. In consequence, the behaviors of both memristors are identical, as shown in
the red graph of Fig. 8. The composite memristance measured across the terminals 1
and 2 of Fig. 3 is the sum of the individual memristances. Therefore, the slope of the
pinched loop of the composite memristor is half of that of the individual memristor,
as shown in the blue pinched loop of Fig. 8. If the number of memristors in series
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Fig. 9 (a) Flux versus charge
graph, and (b) Memristance
vs. charge for a composite
device with two identical
memristors in series, with the
polarities shown in Fig. 3

is increased, the slope of the pinched hysteresis loop of the composite device will
decrease.

The flux (ϕ) vs. charge (q) graph for this series connection is shown in Fig. 9(a),
where the slope (= dϕ/dq) at each point on the graph gives the memristance at
that instant. Note that instead of the integration of externally applied current, the
horizontal axis of the flux curve is drawn with the charge which is stored in a mem-
ristor, since flux can be defined in the stable memristance state as a fixed function of
charge, regardless of the integration of the input charge. The slope of the ϕ–q curve
of the composite memristor (blue graph) is two times steeper than that of the ϕ–q

curve of individual memristors (red color).
The memristance vs. charge curve of the serially connected memristors with the

same polarities is shown in Fig. 9(b), where the memristance of the composite mem-
ristor is twice as big as that of the individual memristors.
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Fig. 10 Current vs. voltage
graph of individual
memristors and composite
memristor, for the circuit in
Fig. 4, at ω = 5

The resultant current-voltage curve for the circuit in Fig. 4 is shown in Fig. 10,
where the initial state of the memristors M1 and M2 are (M1(0)= 15900 
, ϕ1(0)=
0 Wb, q1(0) = 0 C) and (M2(0) = 116 
, ϕ2(0) = −0.80 Wb, q2(0) = −9.5 ×
10−5 C), respectively. In contrast to the identical polarity case in Fig. 8, the i–v

curves of the two memristors M1 and M2 are composed of two separate loops,
though their initial state is identical. This phenomenon is caused from the opposite
polarities of the two back-to-back connected memristors; while memristance of M1
increases, the memristrance of M2 decreases, and vice versa.

Figure 11(a) shows the detailed flux ϕ(t) and charge q(t) relationships of the
composite memristor. The upper and lower graphs of Fig. 11(a) are those of ϕc1(t)

in (30) and ϕc2(t) in Eq. (29) respectively, where ϕc1(0) and ϕc2(0) are the initial
fluxes of M1 and M2, respectively. Since the initial memristances of memristors M1
and M2 are 15,900 
 and 116 
 respectively, the corresponding initial flux ϕc1(0)

for M1 is positive, whereas the initial flux ϕc2(0) for M2 is negative. Note that the
negative sign of the initial flux comes from the conversion of ϕc2(0), in terms of the
composite memristance, as described in (29). When positive charge is applied to the
circuit in Fig. 4, the magnitude of ϕc1(t) increases, whereas that of ϕc2(t)decreases,
as shown in Fig. 11(a). Once ϕc2(t) reaches zero, the variation of ϕc2(t)stops, due
to the physical limit of the memristor. Meanwhile, ϕc1(t) increases further, until it
reaches its physical limit. When the states of both the memristors are within the
region of non zero flux, the two memristors act complementarily, and the composite
flux is a linear function of charge, as shown in Fig. 11(a). The same phenomenon
takes place when the negative voltage (or current) signal is applied to the circuit,
as shown in Fig. 4, resulting in the linearly-varying composite flux as a function of
charge, in the direction of negative charge.

Figure 11(b) shows the resultant memristance graph for the circuit of Fig. 4.
Observe that the composite memristance corresponding to the linear region of
Fig. 11(a) is constant.

Simulations conducted for the circuit in Fig. 5, with M1(0) = M2(0) = 11,
250 
, are shown in Fig. 12. Since the value of voltage and current are the same
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Fig. 11 (a) Flux versus
charge graphs, and
(b) Memristance vs. charge
for a composite device with
two identical memristors
connected back-to-back in
series

for each memristor, the pinched loops are identical for the two memristors. How-
ever, the pinched loop of the composite device is steeper than that of the individual
memristors, as the composite memristance is smaller than that of the individual
memristance. The flux axis is composite flux of the device and does not represent
the flux of the individual memristors.

The flux vs. charge relationship of the composite device is shown in Fig. 13(a),
where the initial states of the memristors are (M1(0)= 11250 
, ϕ1(0)= 0.395 Wb,
q1(0) = 2.9 × 10−5 C) and (M2(0) = 11250 
, ϕ2(0) = 0.395 Wb, q2(0) =
2.9 × 10−5 C), respectively. The composite charge is calculated by adding the
charge in individual memristors, whereas the composite flux remains the same as
that of a single memristor. It follows that the variation of charge in parallel mem-
ristors with the same polarity increases as the number of parallel memristors is in-
creased, while the flux remains constant. Figure 13(b) shows the memrisance vs.
flux curve, where M1(0), M2(0) are the initial memristance of M1 and M2, respec-
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Fig. 12 Current vs. voltage
graph for memristors
connected in parallel, with the
same polarity at ω = 5

tively. Observe that the composite memristance is half of the individual memris-
tance.

The current vs. voltage curve for the parallel memristor M1 and M2 with oppo-
site polarities is shown in Fig. 14. Although the initial states of the two memristors
are the same, they exhibit two different shapes of pinched hysteresis loops. While a
positive signal is applied, the memristance of M2 increases, so the current through
the M2 decreases, as shown in the graph in Fig. 14 (green graph), whereas the mem-
ristance of M1 decreases, so the current through it increases, as shown in the red
graph in Fig. 14. The pinched loop for the composite device is shown in blue in
Fig. 14.

Figure 15(a) shows the flux vs. charge relationship of the composite device.
The upper and lower graphs of Fig. 15(a) are those of qc1(t) and qc2(t), respec-
tively, where qc1(0) and qc2(0) are the initial charges of M1 and M2 respec-
tively. Since the initial memristance of both memristors are equal at 11,250 


the corresponding initial charge qc1(t) for M1 is positive, while qc2(t) for M2

is negative. Note that the sign of charge for a memristor depends upon its po-
larity; it is positive for a memristor with the same polarity as that of the pre-
defined reference polarity, and vice versa. When a positive voltage is applied
at the memristor circuit, as shown in Fig. 6, the positive charge of the mem-
ristor M1 increases, while the negative charge of M2 decreases, as shown in
Fig. 15(a).

As a result, the composite charge, which is computed as the sum of individual
charges, is small, since the signs of individual charges are opposite. The resultant
charge vs. flux curve is shown in blue in Fig. 15(a). The resultant memristance
graph for the circuit of Fig. 6 is shown in Fig. 15(b). Observe that the composite
memristance varies gently in the middle, corresponding to the near linear region of
Fig. 15(a).
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Fig. 13 (a) Charge vs. flux
curve, and (b) Memristance
vs. flux curve for a composite
device with two identical
memristors, connected in
parallel with the same
polarity

6.2 Nonlinear Model

Simulations for the nonlinear model of the memristor were also carried out. The
parameters used for these simulations were the same as those of the above linear
model. Also, the value of the initial memristance is the same as that of the linear
model in each case. Figure 16(a) shows the flux versus charge graphs of nonlin-
ear model of a single memristor. We can see that the value of the flux increases as
the value of p decreases for a fixed charge. Figure 16(b) shows the graphs of the
memristance versus charge of the linear and nonlinear models. As the number p

becomes smaller, the nonlinearity increases. At the middle regions of the curves,
the increment rate of the memristance with respect to the charge, dM/dq , is con-
stant. This fact shows that the memristance can be calculated linearly at the middle
region regardless of the value of p (degree of nonlinearity).
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Fig. 14 Current vs. Voltage
for memristors connected in
parallel, with opposite
polarity at ω = 5

Fig. 15 (a) Charge vs. flux
curve, and (b) Memristance
vs. flux for a composite
device with two memristors,
connected in parallel with
opposite polarity
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Fig. 16 (a) Flux vs. charge
curve (b) Memristance vs.
charge curve for the linear
and nonlinear model of
memristor. The initial state of
the memristor is
(M(0)= 15890 
,
ϕ(0)= 0 Wb, q(0)= 0 C)

Figure 17(a) shows the flux vs. charge graph for the memristors connected in
series with identical polarities using the nonlinear model of the memristor. We see
that the behavior of both memristors is identical and the composite flux (blue color)
is two times larger than that of the individual memristor (red color). The value of p

for this simulation was 1 which is regarded as a highly non-linear model.
The memristance vs. charge curve of the two serially connected memristors with

nonlinear model are shown in Fig. 17(b). In contrast to the linear model of the mem-
ristor, the memristance vs. charge curve is nonlinear. It is seen that the composite
memristance (blue color) is two times of the individual memristance (red color).

The flux ϕ(t)and charge q(t) relationships of the series back to back connected
memristors with nonlinear model are shown in Fig. 18(a). The upper and lower
graphs of Fig. 18(a) are those of ϕc1(t) and ϕc2(t) respectively, where ϕc1(0) and
ϕc2(0) are the initial fluxes of M1 and M2, respectively. The varying rates of in-
dividual fluxes ϕc1(t) and ϕc2(t) are quite different as expected. However, their
composite memristance is nearly linear. As a result, the variation of the composite
memristance is less than 2.5 K
 which is equivalent to only 16% of the variation of
individual memristor as shown in Fig. 18(b).
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Fig. 17 (a) Flux versus
charge graph, and
(b) Memristance vs. charge
for a series nonlinear
memristor (p = 1)

connection with identical
polarities

The simulations for parallel circuits of nonlinear memristors were also con-
ducted. The first simulation was for parallel connection of nonlinear memristor
(p = 1) with identical polarities. The flux vs. charge relationship of the parallel
memristor circuit with nonlinear model is shown in Fig. 19(a). The flux curves are
relatively linear at low state of flux and charge values, but abruptly become highly
nonlinear at high values of flux and charge. The memristance vs. flux curve is shown
in Fig. 19(b), where M1(0) and M2(0) are the initial memristance of M1 and M2,
respectively. Observe that the memristance variation is very small at its maximum
value unlike that of linear models.

Figure 20(a) shows the flux vs. charge relationship of a parallel nonlinear mem-
ristor circuit with opposite polarities. The upper and lower graphs of Fig. 20(a) are
those of qc1(t) and qc2(t), where qc1(0) and qc2(0) are the initial charges of M1
and M2, respectively. When a positive voltage is applied at the memristor circuit,
as shown in Fig. 6, the positive charge of the memristor M1 increases, while the
magnitude of negative charge of M2 decreases, as shown in Fig. 20(a). As a re-
sult, the composite charge, which is computed as the sum of individual charges,
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Fig. 18 (a) Flux versus
charge graph, and
(b) Memristance vs. charge
graph for a series nonlinear
memristor (p = 1)

connection with opposite
polarities

increases. The resultant memristance graph for the circuit of Fig. 6 is shown in
Fig. 20(b), where the composite memristance varies gently in the middle. Observe
that the memristance variation in the middle of the parallel nonlinear memristors
with opposite memristors is smaller than that of the linear counterpart in Fig. 15(b).

6.3 Memristance Variance

The electrical characteristics of memristors can vary depending upon material char-
acteristic and fabrication process. Especially, process variations may cause the de-
viation of the actual electrical behavior of memristors from the original design and
result in the malfunction of the device. Process variations exist in three-dimension of
the thin film memristor result in the cross section area and thickness variation [20].
Therefore, we have to distinguish the different impacts on the memristor brought
by these process variations. However, the thickness variation is not as much as the
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Fig. 19 (a) Charge versus
flux graph, and
(b) Memristance vs. flux
graph for a parallel nonlinear
memristor (p = 1)

connection with identical
polarities

cross section area variation, we investigated the memristance variation impact on
the composite memristance with respect to area as in [20]. The relationship between
net input flux and composite memristance of parallel memristors with opposite po-
larity are shown in Fig. 21. We can see that the negative variation of cross section
area increases memristance while positive variation leads to the decrement of mem-
ristance, The change in memristance is almost same as that of area within the range
in Fig. 21. Though the test was conducted only for the parallel memristors with
opposite polarities, similar effect can be expected for all other configurations of
connections.

7 Conclusion

The composite behavior of series and parallel memristor circuits are analyzed, and
their computer simulations are carried out using the linear and the nonlinear model
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Fig. 20 (a) Charge versus
flux graph, and
(b) Memristance vs. flux
graph for a parallel nonlinear
memristor (p = 1)

connection with opposite
polarities

Fig. 21 Effect of cross
section area variation on
composite memristance of the
two memristors connected in
parallel with opposite polarity

of memristors. It is assumed that all memristor circuits operate at a stable composite
memristance state, in which the composite flux curve does not vary and the memris-
tor circuits act as a single memristive system, regardless of input current or voltage.
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In serially-connected memristors, the composite flux is computed via a simple
arithmetic sum of the individual memristor fluxes, where the sign of the individual
flux is changed, depending upon the corresponding memristor polarity. The flux vs.
charge curve of the serially connected memristors with the same polarities becomes
more nonlinear, and the resultant composite memristance increases for the same
amount of input charge.

On the contrary, the flux vs. charge curve of the serially connected memristors
with opposite polarities becomes linear, due to the complementary action of the
back-to-back series connected memristors, and the resultant composite memristance
is constant as long as none of the memristors in the composite device is operating at
the boundary.

In parallel memristors, the total charge of the multiple memristor circuit can be
calculated by summing the charge in each memristor. The sign of each charge is
given depending upon the polarity of the corresponding memristor. In the case of
the parallel memristor circuit with the same polarities, the composite charge is the
multiple of the single memristor charge, while the flux remains constant. In contrast,
the charge vs. flux curve of parallel memristor circuit with the opposite polarities
becomes more linear than that of a single memristor, and the resultant composite
memristance changes gently.

The same simulations as the above series and parallel circuits have been con-
ducted with nonlinear memristor models as well. The composite memristance curve
with two memristors of identical polarities has simply the double and the half of the
single memristor for series and parallel configurations, respectively. However, the
composite memristances of memristors with opposite polarities are non-trivial. The
memristance graph with series connection and opposite polarities is nearly constant
even for the circuit with highly nonlinear memristor models. In case of parallel con-
nection, memristance change in the middle of operation region is even gentler than
that of linear memristor case.

The results of this study can be utilized in future studies, for analyzing the char-
acteristics of combined memristor circuits.
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A Memristor-Based Chaotic System
with Boundary Conditions

Xiaofang Hu, Guanrong Chen, Shukai Duan, and Gang Feng

Abstract This chapter proposes and studies a memristor-based chaotic system,
which is constructed by incorporating a memristor into the canonical Chen oscillator
with boundary conditions. Specifically, charge-controlled and flux-controlled mem-
ristor models with appropriate boundary conditions are introduced and the relation
between the charge through and the flux across the memristor is derived. The rich
and interesting dynamical behaviors of the memristive system are demonstrated. In
particular, chaos in the system is verified by conventional means of, for instance, the
Lyapunov exponent spectrum, observation of chaotic attractors, as well as basic bi-
furcation analysis. Finally, a basic analog circuit implementation of the memristive
chaotic system based on PSPICE is presented.

1 Introduction

Memristor, theoretically postulated by Chua in 1971 [1] and physically developed
by William and his team at HP labs in 2008 [2], has received increasing attention
from both academic as well as industrial communities. In particular, its theoretical
model has been studied extensively in the field of nonlinear science [3, 4] and its
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physical implementation is now attracting more and more interests from material
science [5, 6].

A memristor is defined by the relationship between the flux and the charge of a
basic circuitry, featuring a pinched hysteresis loop in the current-voltage plane under
a sine-like controlling current or voltage source. Today, memristor has been found to
have promising potentials for many technological applications [7–13]. Because of
the continuously variable resistance and zero-power message storage, memristor is
believed to be a competitive candidate for the next-generation non-volatile semicon-
ductor memory [7–9]. Furthermore, since the memristor-resistance is varied in re-
sponse to the charge through the device, which exhibits a striking resemblance to bi-
ological synapse, memristor has been strongly recommended for artificial synapses
in neural networks [10]. Today, novel implementation of a chaotic oscillator consist-
ing of memristive elements has also become a new paradigm in nonlinear circuits
[11–13].

The past three decades have witnessed a swift progress and development in theo-
retical research and physical realizations of various chaos generators [12–14]. How-
ever, due to the technical difficulty in physically implementing the chaos generators
that are expected to exhibit more complicated chaotic behaviors, the application of
chaotic oscillators has been limited in industry. Memristor, with nanoscale size and
prominent nonlinear characteristics, can significantly contribute to this traditional
research filed. Noticeably, Itoh, Muthuswamy and Chua proposed several Chua-
circuit-based chaotic oscillators by replacing Chua’s diode with a more general
memristor having a similar odd-symmetric charge-flux characteristic, or a memris-
tive system [11, 12]. Spurred by this seminal work, many research efforts have been
devoted to various memristive chaotic systems, including system design, physical
implementation and dynamics analysis [13, 15]. Recently, a few chaotic oscillators
constituted by HP memristors have also been constructed [16].

This chapter proposes and investigates a new chaotic system based on the canon-
ical Chen oscillator using the HP memristor. First, the theoretical models and the
constructive charge-flux relationship of the memristor are derived. Then, a new
chaotic system using the memristor is proposed, with its dynamical behaviors ana-
lyzed systematically. In the following, Sect. 2 presents the HP memristor, including
the theoretical charge-controlled model, flux-controlled model and the charge-flux
relation; Sect. 3 introduces the new memristive chaotic system, with calculations of
Lyapunov exponent spectrum, Lyapunov dimension and power spectrum. Section 4
provides further analysis on its various chaotic attractors and bifurcations. A basic
analog circuit implementation of the memristive chaotic system and SPICE simula-
tions of the chaotic attractor are presented in Sect. 5. Finally, conclusions are drawn
in Sect. 6.

2 The HP Memristor Model with Boundary Conditions

The HP memristor is made up of two titanium dioxide layers sandwiched between
two platinum electrodes. One titanium dioxide (TiO2−X) layer misses some oxygen
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molecules, exhibiting high conductivity. The other layer is pure TiO2 with high
resistivity. The two layers’ sizes are w and D−w, respectively. The total resistance
of the memristor is constituted by the two materials’ resistance. When a current
flows through the device from the conductive TiO2−X region, the interface between
the two materials shifts toward the insulating TiO2 region, and as a result, the overall
resistance of the memristor decreases. Oppositely, a current flowing out of the device
near the TiO2−X region causes an increase in the memristor’s resistance. When the
external excitation goes off, the interface between the two regions freezes. Thus the
resistance retains its last value and this is why the device is called a memory resistor,
i.e., memristor.

Memristance (short name for memristor-resistance) M is defined via the consti-
tutive relationship of the flux versus the charge and obeys Ohm’s law. So, based on
the chain rule, one gets

v(t)= dϕ

dt
= dϕ

dq
· dq

dt
=M(t)i(t) (1)

Memristance is given by

M(t)=ROFF + (RON −ROFF)
w(t)

D
, (2)

where ROFF and RON are the limit memristances for w(t) = 0 and w(t) = D, re-
spectively.

In the form of the normalized conductive layer size, x(t) (i.e., x(t)=w(t)/D),the
drift velocity satisfies

dx(t)

dt
= μνMon

D2
i(t)f

(
x(t)

)
, (3)

where μν is the average mobility per m2 s−1 V−1, and f (x) denotes a window func-
tion of the form

f
(
x(t)

)= stp
(
x(t)

) · stp
(
1− x(t)

)

stp(x)=
{

1, x ≥ 0

0, x < 0

(4)

thus this window function considers the boundary conditions, i.e., 0 ≤w(t)≤D.
Integrating (3) yields

x(t)= x(0)+ μνMon

D2
q(t) (5)

Equation (2) can be rewritten as

M(t)=R0 + kq(t) (6)

where R0 = ROFF + (RON − ROFF)x(0) is the initial memristance with constant
k = (RON −ROFF)μνRON/D2.
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Note that the memristance is governed by the charge (or flux) through the device,
which works normally for M ∈ [RON ROFF]; beyond this range its nonlinearity
degenerates to be linear. Specifically,

ROFF −R0

k
≤ q(t)≤ RON −R0

k
(7)

Let qlow = (ROFF − R0)/k and qhigh = (RON − R0)/k, a charge-controlled
memristor model with appropriate boundary conditions is derived as follows

M(t)=

⎧
⎪⎨

⎪⎩

ROFF, q(t)≤ qlow

R0 + kq(t), qlow < q(t) < qhigh

RON, q(t)≥ qhigh

(8)

Assuming that the external excitation is applied at time t = 0, since memristor
is not an energy storage element, then q(0) = 0. Integrating (1), one can get the
relation between the flux across and the charge through the device [13].

ϕ(t)=

⎧
⎪⎨

⎪⎩

ROFFq(t)− (ROFF−R0)
2

2k
, q(t)≤ qlow

k
2q2(t)+R0q(t), qlow < q(t) < qhigh

RONq(t)− (RON−R0)
2

2k
, q(t)≥ qhigh

(9)

Letting c1 = − (ROFF−R0)
2

2k
, c2 = − (RON−R0)

2

2k
, and expressing the charge q(t)

with the flux ϕ(t), one can obtain the constitutive relation of the memristor.

q(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ(t)−c1
ROFF

, ϕ(t)≤ ϕlow√
2kϕ(t)+(R0)

2−R0
k

, ϕlow < ϕ(t) < ϕhigh

ϕ(t)−c2
RON

, ϕ(t)≥ ϕhigh

(10)

In the above, ϕlow = R2
OFF−R2

0
2k

and ϕhigh = R2
ON−R2

0
2k

.
Substituting (10) into (8), we get a theoretical flux-controlled model of the mem-

ristor given by

M(t)=

⎧
⎪⎨

⎪⎩

ROFF, ϕ(t)≤ ϕlow√
2kϕ(t)+ (R0)2, ϕlow < ϕ(t) < ϕhigh

RON, ϕ(t)≥ ϕhigh

(11)

Several simulations have been carried out on software Matlab to observe the typi-
cal properties of the memristor. Figure 1(left) shows the proposed window function.
Figure 1(right) denotes the pinched hysteresis current-voltage loop finger print of
the memristor subject to a sinusoidal voltage bias.

Figure 2 depicts the nonlinear relation of the charge versus the flux. Observe that
within a bigger range of the flux, the curve tends to be a piecewise-linear approxima-
tion of the global charge-flux characteristic (on the left), while the locally nonlinear



A Memristor-Based Chaotic System with Boundary Conditions 355

Fig. 1 Window function
(left) and Hysteresis loop in
I–V plane (right)

property is illustrated on the right. The memristor model parameters are chosen to
be typical values: ROFF = 20 k
, RON = 100 
, R0 = 16 k
, D = 10 nm, and
μν = 10−14 m2 s−1 V−1, which will be used in all the following simulations.

Here, it is worth mentioning that there exist different scales between the pa-
rameters of the memristive element with a nanometer structure and the parameters
determining the nonlinear circuit. Such scaling operations are often necessary [16],
which is a common issue for almost all the hybrid canonical electric and nanome-
ter memristive elements in circuit design, and will be further discussed in the next
section.

3 A New Memristive Chaotic System

Applying the charge-flux characteristics of a memristor as a state feedback inserting
into the canonical Chen system [14], we obtain a novel memristive chaotic system,
as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = a(y − x)+ bv

ẏ = cx − xz+ dy

ż= xy − z

v̇ = y − 103 · 10f (−|x|)
(12)

where x, y, z and v are the state variables of the system with initial condition set
to [0, 0, 0, 1]; a, b, c and d are constant parameters; the term f (−|x|) denotes the
charge of the memristor given in (10), precisely expressed by

f
(−|x|)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−c1
ROFF

, x ≤ ϕlow,
√

2kx+R2
0−R0

k
, ϕlow < x < 0,

√
−2kx+R2

0−R0

k
, 0 ≤ x <−ϕlow,

−x−c1
ROFF

, x ≥−ϕlow

(13)
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Fig. 2 Charge-flux characteristics

Fig. 3 Phase portrait of system (12)

Recall that for a dynamical system, if has a real solution, then this solution xe

is an equilibrium of the system [17]. For this memristive system codified by (12),
there is only one equilibrium (0, 0, 0, 0) which is unstable.

One typical set of parameter values of the system with which the system can
generate chaotic dynamics are: a = 15, b = 7, c = 3 and d = 10.5. Matlab ode45
solver was used to solve the system equations, with numerical simulations carried
out from tstart = 0 s, tstart = 1000 s. To avoid transitory effects, the data used for
illustration of the chaotic attractor refers to the time interval [900 s, 1000 s]. A three-
dimension and three two-dimension projections of the chaotic attractor are shown
in Fig. 3. Besides, the corresponding time-domain waveforms of the four dynamical
states x(t), y(t), z(t) and v(t) are illustrated in Fig. 4. Figure 5 depicts Fast Fourier
Transform (FFT), or power spectrum, of state x(t), which is continuous.
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Fig. 4 Time evolution of states x(t), y(t), z(t) and v(t) of the memristive chaotic system

Fig. 5 Power spectrum of
state x(t)

The standard QR method is used to compute the Lyapunov exponents of this
system, again on Matlab, with t = 20000 s (tf inal = 2000 and step = 0.1). The
exponent spectrum is presented in Fig. 6, and part of the spectrum is enlarged in
the inset. The finial values of the Lyapunov exponents are: l1 = 0.386, l2 = 0.002,
l3 =−1.389 and l4 =−4.450.

Recall that the Lyapunov dimension is defined by

dL = j +
∑i=j

i=1 li

|lj+1| (14)
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Fig. 6 Orbits of Lyapunov
exponents of system (12)

where j is the maximum integer satisfying

i=j∑

i=1

li ≥ 0,

i=j+1∑

i=1

li ≤ 0 (15)

The Lyapunov dimension of the system (12) is calculated: dL = 2 + (l1 +
l2)/|l3| = 2.279, which is fraction.

4 Chaotic Attractor and Its Bifurcation Analysis

A large number of computer simulations have been carried out to verify and demon-
strate that the proposed memristive chaotic system exhibits complex dynamical be-
haviors. Due to space limitation, only a few representative results are presented and
discussed here.

Keep a = 15, b = 7 and c = 3 unchanged. For different values of d , Fig. 7(a)
shows a period-1 orbit when d = 11.50, (b) a period-2 orbit when d = 11.34,
(c) a multiple periodic orbit when d = 10.86, and (d) a chaotic attractor when
d = 10.74, successively.

Next, further investigation on bifurcation versus parameter d of the new system
is shown on top of Fig. 8, with the corresponding Lyapunov exponent spectrum
shown on the bottom. Note that since the fourth Lyapunov exponent is always about
l4 =−4.5, which is kind of big as compared with the others, it is omitted from the
figure for better view of the other exponents.

So far, several numerical calculations and simulations have demonstrated the ba-
sic and interesting dynamical behaviors of the memristive system. Nevertheless,
more possible scenarios are worth being further investigated in the future.

In the next section, an analog circuit implementation of the memristive system is
presented for the flux-controlled SPICE memristor model on software OrCAD.
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Fig. 7 Projections of various attractors of system (12) for different values of d , in which (a), (b),
(c) and (d) are period-1, period-2, multiple periodic orbit, and chaotic attractor when d = 11.50,
d = 11.34, d = 10.86 and d = 10.74, successively

5 Analog Implementation and SPICE Simulations of the Chaotic
Attractor

The new system may be implemented by means of an electronic circuit. An analog
implementation, which realizes the memristive chaotic system, is shown in Fig. 9. It
consists of four channels which perform the integrations of the four variables. Oper-
ational amplifiers, multipliers, diodes, linear capacitors and resistors are employed
to realize the addition, reverse proportional amplification, multiplication, as well as
integration and absolute operations. The operational amplifiers are all of LM675
type, which are powered with VCC =+30 V and VEE =−30 V. The multipliers are
both MULT type. The voltages at the nodes labeled X, Y , Z and V correspond to
the four states of the system formulated in (12).

The operational amplifiers U1 and U2 are employed to implement the following
formulas

vU1 =−
(
−R4

R1
vX + R4

R2
vV + R4

R3
vY

)
(16)

vX =− 1

R5C1

∫
vU1dt =

∫ (
− R4

R5C1R1
vX+ R4

R5C1R2
vV + R4

R5C1R3
vY

)
dt (17)
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Fig. 8 Bifurcation diagram
and Lyapunov exponent
spectrum versus parameter d

Or equivalently,

v̇X =− R4

R5C1R1
vX + R4

R5C1R2
vV + R4

R5C1R3
vY (18)

Comparing with (12), by setting R1 =R3 = 700 
, R2 = 1.5 k
, R4 = 10.5 k
,
R5 = 1 M
 and C1 = 1 uF, it leads to ẋ = 15(y − x)+ 7v.

The operational amplifiers U3 associated with R6 = R7 = 1 k
 realizes the
reverse proportion operation, yielding vU3 = −vX . The multiplier MULT1 imple-
ments the term vXvZ . Similarly, the following formulas are realized by using the
operational amplifiers U4 and U5

vU4 =−
(
−R11

R8
vX + R11

R9
vXvZ + R11

R10
vY

)
(19)

vY =− 1

R12C2

∫
vU4dt = 1

R12C2

∫ (
−R11

R8
vX − R11

R9
vXvZ + R11

R10
vY

)
dt (20)

Or equivalently,

v̇Y = 1

R12C2

(
R11

R8
vX − R11

R9
vXvZ + R11

R10
vY

)
(21)

Set R8 = 7 k
, R9 = R11 = 21 k
, R10 = 2 k
, R12 = 1 M
 and C2 = 1 uF.
Then, (21) is in line with ẏ = 3x − xz+ 10.5y. The multiplier MULT12 is used to
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Fig. 9 Analog SPICE implementation of the memristive chaotic system

obtain vXvY , and U6 implements

vU6 =−
(
−R15

R14
vZ + R15

R13
vXvY

)
(22)

where the term −vZ is the output of the operational amplifiers U8, with R17 =
R18 = 1 k
. The operational amplifier U7 is an integrator which realizes

vZ =− 1

R16C3

∫
vU6dt = 1

R16C3

∫ (
−R15

R14
vZ + R15

R13
vXvY

)
dt (23)

It follows that

v̇Z = 1

R16C3

(
−R15

R14
vZ + R15

R13
vXvY

)
(24)

where the related resistors and capacitor are set as:R13 =R14 =R15 = 1 k
, R16 =
1 M
 and C3 = 1 uF.

The operational amplifiers U9 and U10 are utilized to generate the absolute value
of state x(t), where two D120NQ045 diode models are used. The output voltage of
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Fig. 10 Projections of the chaotic attractor generated from the analog SPICE chaotic circuit

U10 is given by

vU10 =
{

(
R20R25
R19R23

− R20
R22

)vX, vX ≥ 0

−R25
R22

vX, vX < 0
(25)

The voltage vU10 |vX| subject to R19 = R20 = R22 = R25 = 1 k
, R23 = 500 
,
and the matched resistors are set to be R21 = R19//R20 = 500 
 and R24 =
R23//R22//R25 = 250 
. Through U11, it is possible to get vU11 = −R27

R26
vU10 =−|vX| if R26 =R27 = 1 k
.

The voltage vU11 is input to the flux terminal of the structured SPICE model of
the flux-controlled memristor. The charge of the memristor is then input to the U12.
The memristor can implement the function f (·) in (13) with the aforementioned
parameter values.

When R28 = R30 = 1 k
 and R29 = R31 = 100 k
, two cascading opera-
tional amplifiers, U12 and U13, implement the gain 10,000 where each ampli-
fies 100 times of the charge of the memristor. Then, the output of U13 satisfies
vU13 = R31R29

R30R28
f (−|vX|) = 10000f (−|vX|). U14 is a reverse proportional amplifier

providing, vU14 = −10000f (−|vX|) with R32 = R33 = 1 k
. Finally, the opera-
tional amplifiers U15 and U16 realize the following formulas

vU15 =−
(

R36

R34
vU14 +

R36

R35
vY

)
=−

(
−R36

R34
10000f (−|vX|)+ R36

R35
vY

)
(26)

vV =− 1

R37C4

∫
vU15dt = 1

R37C4

∫ (
−R36

R34
10000f (−|vX|)+ R36

R35
vY

)
dt (27)

Setting R34 = R35 = R36 = 1 k
, R37 = 1 M
 and C4 = 1 uF, one gets v̇V =
−10000f (−|vX|)+ vY .

The SPICE simulation time interval was ranged from 0 sec to 500 sec, and the
maximum step size was set to 0.01 sec. Figure 10 shows the phase portraits of
the analog realization of the memristive chaotic system. Noticeably, there exists
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a difference between the numerical simulation and the circuit simulation, which
probably comes from the direction implementation of the two product terms xy

and xz. Nevertheless, the simulation results have already demonstrated the chaotic
behavior of the proposed memristive system, thus the constructed analog circuit can
provide a reference for the circuit implementation of this kind of memristor-based
chaotic system.

6 Conclusions

This chapter has reviewed the charge-controlled and flux-controlled HP memris-
tor models, which take boundary conditions of operation into consideration. Then,
based on the canonical Chen system and taking advantage of the nonlinear construc-
tive relation between the charge and the flux of the HP memristor, a novel memris-
tive chaotic oscillator has been constructed. A large number of computer simula-
tions have been performed, including the Lyapunov exponent spectrum, Lyapunov
dimension, power spectrum, and bifurcation diagram, demonstrating the complex
chaotic dynamics of the new memristive system. In addition, an analog circuit re-
alization of the memristive system and the corresponding SPICE simulations have
been presented.

The finding of this study suggests that chaos can be generated by using the typical
HP memristor rather than a general memristive system. It is believed [18] that mem-
ristors have promising potentials in constructing new chaotic circuits and systems
towards more practical applications.
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Spiking in Memristor Networks

Ella Gale, Ben de Lacy Costello, and Andrew Adamatzky

Abstract Memristors have been suggested for the use as artificial synapses and
have performed well in this role in simulations with artificial spiking neurons. We
will show that real world memristors natively spike and describe the properties of
these spikes. A network of purely memristors should not show any behaviour in
addition to that expected from a single memristor. Networks of 2 and 3 memristor
combinations were investigated. We demonstrate that, if the memristors are wired
together with opposing polarity, oscillations and bursting spikes emerge. We com-
pare two types of memristors, ‘filamentary’ and standard memristors (which are
closer to Chua’s theoretical memristors), and found that standard memristors do not
exhibit these rich behaviours if they are wired with the same polarity. We propose
that these oscillations and spikes may be similar phenomenon to brainwaves and
neural spike trains and suggest that these behaviours can be used to perform brain-
like computation.

1 Introduction

Memristors are non-linear resistors that possess a memory. They were first predicted
to exist in 1971 [1] and were formally discovered in a device in 2008 [2] although
other experimentally fabricated memristor devices had been made before, see for
example [3–5]. After that first paper to relate the memristor theory with a real world
device [2], excitement abounded over their use for computer memory (alongside
ReRAM) and neuromorphic computing, as well as suggestions that they might be
more energy efficient and resilient.
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Memristor-based computer memory has not yet become popular, despite expec-
tations. The reason for this may be because memristor memory is slower to switch
that current generation computer memory. In our opinion, a more exciting use for
the technology is in brain-like or neuromorphic computers. Neurons are believed to
be both the seat of memory and the processor of the brain. Memristors, by combin-
ing memory with processing, offer a tantalising glimpse of devices which could do
the same.

Neuromorphic computing is the concept of using computer components to mimic
biological neural architectures, primarily the mammalian brain. Research has been
done into using memristors as synapses [6], combining memristors and spiking neu-
rons in simulations (see for example [7]) and even whether synapses are memris-
tive [8] (not as unlikely as it seems as flowing blood [9], sweat ducts [10] and slime
mould [11] have been shown to be memristive). Further investigations into neurons
have revealed that the Hodgkin-Huxley circuit model of how neurons pass signals
along their axons can be updated with memristors to offer a model more grounded
in electronic engineering theory [12, 13].

In this chapter we will outline our research into spiking memristor networks.
We have found that memristors spike in response to a change in voltage. These
spikes bear a striking resemblance to neuronal spikes and thus could offer a route
to neuromorphic computers. Furthermore, memristor spikes are faster than memris-
tor switching and could offer a route to a memristor processor that could be more
commercially viable than memristor memory. We shall first describe the qualities of
the spikes and then investigate what spiking properties simple memristor networks
possess.

2 Single Memristor Spiking Properties

We shall start by undertaking a thorough investigation of the current spikes seen in
single memristors, before demonstrating how to deal with them theoretically.

2.1 Properties of Memristor Spikes

Memristors come in two flavours, charge-controlled (left) and flux-controlled (right)
as shown below in Eq. (1) where q is the charge, ϕ, is the magnetic flux, M is the
memristance and W is the memductance (inverse memristance) [1]

V (t)=M
(
q(t)

)
I (t), I (t)=W

(
ϕ(t)

)
V (t). (1)

For a charge-controlled memristor we would input a current, I , and measure the
voltage, V . Biological neurons may be described as charge-controlled because it
is the movement of ions that causes the change in voltage giving rise to a voltage
spike. Our memristors are flux-controlled and a change in voltage causes a spike
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Fig. 1 (a) current spikes recorded from a memristor subjected to the voltage square wave in (b).
The spike heights are highly repeaTab. and qualitatively resemble neuronal spikes

in the current. Thus, creation of a neuromorphic computer with memristors will be
using the complimentary effect to the one utilized by nature, in that memristors have
voltage-change-caused current spikes and neurons have current-change-caused volt-
age spikes. That both types of spikes have a similar form arises from the similarity in
the underlying electromagnetics, in that circuits can considered as being constructed
with either a voltage source or a current source.

Our memristors are flexible sol-gel titanium dioxide gel layers sandwiched be-
tween aluminium electrodes [14, 15] and they show a distinctive large spike that
occurs when the voltage is changed. The experiments reported here were carried
out with a Keithley 2400 sourcemeter sourcing voltage. There are no spikes in the
voltage profiles, (see Fig. 1b) and no current spikes are seen when the same ex-
periment was performed on a resistor. It has been suggested that these spikes are
capacitance; however the time-scale is too long. The spikes have been reported by
other groups in their memristors (see for example, [16]), however they are usually
overlooked or attributed to artifacts arising from the experimental set-up or not re-
ported at all (many researchers only report the I–V curves to demonstrate that they
have a memristor). However, the current spike is an equilibrating process that is re-
sponsible for the frequency dependence of the I–V curves. In Fig. 1 each voltage
step had 40 time-steps (≈3.3 s) to allow the device to equilibrate. If the voltage is
scanned quicker than this, the device has not equilibrated and the measured current
is higher than the equilibration current. Thus, a faster switching time increases the
size of the hysteresis of the I–V loop. This effect increases with frequency until it
reaches the limit where the voltage frequency is too fast for the memristor to relax
at all and the I–V curve just traces out the maximal spike currents for each voltage.

These current spikes can be seen whenever a voltage change occurs across the
memristor. Unlike some neuronal spikes, the source voltage does not need to spike,
a step will do. The current spikes are highly reproducible. For the experiment shown
in Fig. 1 (10 pairs of positive to negative switches), the standard deviation was
0.0729 % of the mean for the negative voltages (where n = 10) and 0.1192 % of
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Fig. 2 (a) the current spike responses for 5 successive runs up and then down the voltage staircase
shown in (b). The runs are coloured and overlap. The spikes are highly reproducible on successive
runs

the positive voltages (where n = 9, due to incomplete recording of the first spike).
For the repeated spikes in Fig. 2 (3 repeats each of both positive and negative ramps,
as shown in Fig. 2) the largest difference between the spike current repeats was only
3.06 × 10−9 A and only 2.33 × 10−10 A for the equilibrated current—both taken
from the positive side as it has a larger hysteresis than the negative side.

The direction of the current spikes is related to the change in voltage, not its sign,
so a change from a positive voltage to zero (turning the voltage source off) gives a
negative spike and vice versa for a negative voltage to zero. The spike current still
flows for a short while after the voltage source has been turned off. This lag is a
general thing and has been recorded in several different devices. In different devices
the spikes are the same shape and seem to be following similar dynamics. The spike
current is proportional to the equilibrated current. Intriguingly, spike shape closely
resembles that of Bi and Poo’s experimentally observed STDP function [17] and
thus could be used to perform a similar function.

2.2 A Mathematical Description of Experimentally-Measured
Spikes

Figure 4 shows the I–t response of a single spike to a voltage step like that shown
in Fig. 3. The current spikes are roughly the same shape, and thus we can make
some statements about the nature of the current spikes in memristors, which should
also relate to the voltage spike in neurons. As shown in Fig. 4, there is a steady-
state current, i∞, a spike current i0 and a transition between the two which is a
time-dependent transient i(t). We don’t currently know if the i(t) is dependent on
i0 or not. We do know that i0 is related to i∞. Until a thorough experimental study
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Fig. 3 An example of a
voltage step as applied to a
memristor in an experiment
(this is the same form but a
different time response as the
one applied to the memristor
measured in Fig. 4)

Fig. 4 An example response
spike. Red dashed line: τ50;
orange dotted line τ90; green
dot-dashed τ95; blue dotted
τ99. Horizontal purple
dot-dashed line is i∞ and the
spike height is i0

is undertaken, we shall assume that i(t) is not dependent on i0 as this is what the
experimental evidence seems to suggest.

Thus, the time-dependent current response, I (t), is assumed to be of the form:

I (t)= i∞ + i(t) (2)

where i0 < i(t) < 0.
The current response to the voltage is thus:

ΔI = V

R(T )
. (3)

The time taken to get to i(t)= 0 is the equilibration lifetime which we shall call
τ , and this lifetime is the short-term memory of the memristor and relates to its dy-
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Fig. 5 The resistance profile
for the memristor subjected to
the voltage in Fig. 3 as
calculated from the source
voltage and measured current

namical properties; from longer time spike studies with our devices, we know that τ

is approximately 3.3 s. We shall define the concept of the equilibration frequency as
the ‘frequency’ associated with changing a discretized triangular voltage waveform
such that each voltage step n lasts for τ seconds.

We know that

qe =
∫

I (t)dt. (4)

thus, the total measured charge in a memristor spike is

Δqspike =
∫ τ

t=0
i(t)dt + i∞τ. (5)

This number includes all the charge-carrying species in the system. Knowledge of
this number may help us elucidate the mechanism of the spikes. For our example
system shown in Fig. 4, we have an i0 of 1.37× 10−8 A, an i∞ of 2.40× 10−10 A,
with the τ50 of 0.56 s and an τ90 of 0.84 s, which shows how quick the fall off is
(and τ95 of 1.13 s and τ99 of 2.34 s, as drawn in Fig. 4). The resistance profile for
the memristor subject to a voltage step as shown in Fig. 3 is shown in Fig. 5. This
is approximately a straight-line which is interesting as it is not required to be by
memristor theory and tells us that the spike current response depends on a quantity
in the system that is varying with linearly time.

2.3 Theoretical Model of Single Spikes

Here we demonstrate how the experimentally-measured memristor spikes can be
described with our theoretical model.
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2.3.1 The Memory-Conservation Model

The memory-conservation model of memristance [18] is a recently announced the-
oretical model that relates real world q and ϕ to Chua’s constitutive equations and
has been successful in modeling our memristors [19]. The memory-conservation
theory has the concept of a memory property, the physical or chemical attribute of
the device that holds the memory of the device. In titanium dioxide (and many oth-
ers) it is related to the number of the oxygen vacancies. The presence of oxygen
vacancies allows the creation of a doped form of titanium dioxide TiO2−x which is
more conducting than the un-doped (TiO2) form. The memory-conservation theory
requires that we calculate the memristance from the point of view of the memory
property, i.e. the ions.

The memory-conservation model consists of sum of two components: the mem-
ory function, Me , and conservation function, Rc , both of which are resistances de-
pendent on the motion of the memory property, q(t) and thus time-dependent. The
memory function has a fitting parameter cm within the model to account for the
conversion between the material’s resistance as for an oxygen vacancy to that for an
electron. The conservation function has the fitting parameter cc which accounts for
the resistivity of the undoped material, ρoff, which may not be the same as the bulk
titanium dioxide. Ron is the final fitting parameter and relates to the resistivity of the
doped material, which is the memristor in the equilibrated state and any resistance
in the wires. The fitted equation is

I (t)= V

Ron
− V

ccRc(t)− cmMe(t)
. (6)

2.3.2 Fitting the Memory-Conservation Model to the Spikes

As Figs. 6 and 7 show, the memory-conservation model fits these spikes quite well
and much better than an exponential fit. For the positive spike, cM = 3.83 × 106,
cc = 1.76 × 106 and V/Ron = 2.97 × 10−9, with a summed square of residuals
of 1.61 × 10−17. For the negative spike, cM = 1.06 × 106, cc = 1.86 × 10−6 and
V/Ron = −3.16 × 10−9, with a summed square of residuals of 1.63 × 10−17. For
the exponential fit, I (t) = Aeλt , and A = 3.96, λ = −19.5 with a summed square
of residuals of 2.43× 10−15. The exponential fit could be fit to either the short time
spike or the long time tail but not both, the short term spike fit goes erroneously to
zero and the long-term spike fit grossly over-estimates the size of the spike. Fur-
thermore, there is no experimental justification for using an exponential fit, unlike
the memory-conservation fit. This model can be utilized to perform simulations of
memristor spiking networks to test out possible neuromorphic architectures.

2.3.3 What Is the Mechanism?

The memory property of these memristors is the oxygen ions, specifically the va-
cancies caused by their absence which are usually viewed as positive holes in a
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Fig. 6 A longer-term spike
response fit by the
memory-conservation theory.
The memory-conservation
theory fits the experimental
data well, the best result
fitting the data with an
exponential is added as a
comparison. Blue dots:
experimental data, red line:
memory-conservation fit,
green line: exponential fit to
the spike

Fig. 7 A longer-term
negative spike, demonstrating
that the negative spikes are fit
equally well by the
memory-conservation theory.
Blue dots: experimental data,
red line:
memory-conservation fit

semi-conducting material. We suspect that the motion of these ions is behind both
the spikes and the memristance as we postulate that the two are the same phe-
nomena. The current that flows at t = 0 s may be the ionic current, which would
have a greater inertia, and thus takes longer to stop compared to the electrons,
which may explain the cause of the memristor’s hysteresis. This current flow can
also explain the open-loop memristors (suggested by Pershin and di Ventra [20]
to explain experimental results such as [21] which are similar to ones seen in our
labs and others’). The spike shape would then be the result of the equilibrating
of the ionic current to a change in voltage. We expect that the timescale and dy-
namics of the spikes will relate to the frequency effects seen in memristors. How-
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Fig. 8 A single memristor
response. The voltage
(+0.4 V) is turned on at
t = 0 s, causing a positive
current spike, and turned off
at 1064 s, which causes a
negative current spike. These
current spikes are a feature of
memristance

ever, there is much further experimental work to be done to prove this mecha-
nism.

2.3.4 Single Memristor Circuits

The current response of a typical memristor to constant voltage is given in Figs. 6
and 7. For this experiment the memristor was taken to the test voltage at 0 seconds
and the current recorded as the memristor ‘equilibrated’. This was done for two
voltages, +1 V and −1 V. There is asymmetry in the spike responses as the mem-
ristors are asymmetric. This asymmetry arises from the way the memristors are
made, the bottom electrodes are deposited in vacuum and then the Ti(OH)4(sol) →
TiO2(gel) reaction happens on top of them. The top electrodes are later deposited
onto the reacted gel. It seems likely that the local environment around the Al-gel
layer boundary is not exactly the same at both ends. For this reason, the devices are
always tested the same way round (source to the bottom electrode) and a slightly
larger hysteresis loop is seen in the positive voltage part of the curve compared to
the negative voltage part.

When voltage is changed we expect a current spike, as this has been seen in
all our tests [22] and this is the D.C. action of memristors (forthcoming paper).
For the long time experiments shown later in this paper, the single memristor re-
sponse is shown in Fig. 8. The spike from the original voltage switch occurs at
the start, and then negative spike at 1000 timesteps that results from the change
from +0.4 V → 0 V can be clearly seen. The signal from the middle section is
blown up in Fig. 9 to show the quality of the noise; there are no oscillations or large
spikes (the spike at the end is the switching spike of the voltage source being turned
off).
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Fig. 9 A close up of the I–t

plot in Fig. 8 to show the
character of the noise from a
single memristor

2.4 The Memory-Conservation Theory as Applied to Memristor
Spikes

Theoretically, the voltage step is a discontinuous function and the voltage changes
from voltage A, VA, to voltage B, VB , in an infinitesimal, i.e. ΔV = VB→VA

δt
, δt → 0.

Experimentally this is not the case of course, but the response time-scale of the
memristor is long enough that we needn’t worry about this approximation.

Thus to elucidate what happens to the memristor during a current spike, and how
the final current i∞ is determined, we take differences of the memory-conservation
theory. We shall assume our device is a TiO2 memristor, with oxygen vacancies
acting as the memory property [1].

As a reaction to the voltage step, we get a current spike, Δi, which can be ex-
pressed as a volume current within the device as ΔJ as given by:

Δ �J =
{

ΔqvμvL

vol
,0,0

}
(7)

for vacancies moving in the +x direction where qv is the charge in that volume due
to the vacancies, μv is the ion mobility of vacancies and L is the average electric
field causing the movement of the vacancies and vol is the volume full of moving
ions.

The Chua memristance as experienced by the ions is:

ΔMq

(
Δqv(t)

)=UXμvΔPk

(
Δqv(t)

)
, (8)

where we have gathered up the constants and explicitly included Pk’s dependence
on qv .

Equation (8) can be considered as three separate parts:

1. U , the universal constants: μ0
4π

.
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2. X, the experimental constants: DEL.
3. the material variable: μvPk , this includes the physical dimensions of the doped

part of the device and the drift speed of the dopants.

Writing out the differences explicitly for Eq. (8) we end up with:

M(B)=M(A)+UXμv

[
Pk(qB)− Pk(qA)

]
, (9)

which allows us to calculate how the final Chua memristance from knowledge of the
peak and final currents. The Chua memristance is written for the vacancy charge, so
to put it into the standard format for the electronic current we need to scale it thus:

RM = CMM, (10)

where RM is the electronic resistance of the doped part of the memristor and CM is
a fitting coefficient.

2.5 Conservation Function

The memory-conservation model describes a memristor by being the sum of the
memory and conservation functions (both written for the electrons) and this then
gives us the following expression for the change in time-varying resistance, R(t), as
measured after a change from VA → VB as:

ΔR(t) = cmM(A)+Rcon(A)+ ρoffD

EF

+ cMUXμv

[
pk

(
qB(t)

)− pk

(
qA(tT )

)]

− Lρoffμv[qB(t)− qA(tT )]
E2F 2vd

, (11)

This equation has two parts:

1. S, the time-invariant part, which is: cmM(A)+Rcon(A)+ ρoffD
EF

2. Y , the time variant part: cMUXμv[pk(qB(t))−pk(qA(tT ))]−Lρoffμv[qB(t)−qA(tT )]
E2F 2vd

,

the last two terms which are both dependent on q .
In the above Eq. (11) highlights a few subtleties of the model. pk and q are

time-dependent and thus change after the voltage step from VA → VB . If we ask the
question what the difference will be between the equilibrated current at VA and that
at VB , ΔRA∞→B∞ Eq. (11) collapses to:

ΔR = cmM(A)+Rcon(A)+ ρoffD

EF

+ cMUXμv

[
pk

(
qB(τ)

)− pk

(
qA(τ)

)]
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− Lρoffμv[qB(τ)− qA(τ)]
E2F 2vd

,

which is time invariant and allows us to predict the value of the equilibrated current
after a voltage step from the equilibrated current from the step before.

What if there was previous step in which the device did not equilibrate to i∞?
This would happen if the voltage was changed quicker than τ , i.e. T where T < τ .
The qA(tT ) is not qA(τ) and thus needs to be shifted by its value as a proportion
of τ . As an example, if we sped the voltage ramps up to 90 % of the equilibration
frequency, qA would be qA(τ90) and the length of a time step would be τ90. At
first glance it might appear that this would merely modulate the starting point for
qB(t), which, at times under t < τ , this would be time dependent. But there is the
interaction between qB(t) and qA(tT ), the memristor hasn’t finished responding to
VA and that response should be mixed in with VB , further complicating predictive
efforts.

3 Constructionist Approach to Memristor Networks

The relation between memristors and neuromorphic computing dates back to 1976
when Chua and Kang expanded the idea of the memristor to a memristive system
(which has two state variables rather than one as for a memristor) and suggested
that the Hodgkin-Huxley model of the nerve axon could be improved by in incorpo-
rating memristors in place of the non-linear time dependent resistors [23]: an idea
that wasn’t theoretically demonstrated until 2012 [12, 13]. Meanwhile the scientific
community has concentrated on the idea of using memristors as synapses rather than
axons: simulations have shown that memristive connections could be used to repro-
duce spike-time dependent plasticity [8] (the process by which synapses adjust their
connection weight to implement Hebbian learning [24]) and even implemented as
synapses in evolved spiking networks simulations [7]. As discussed in the first half
of this chapter, our memristors (and other group’s) possess the ability to spike. Thus
we decided to investigate whether memristors could replicate neuronal architecture
and produce dynamics associated with neurons, such as brainwaves or spike trains.

When assembling multi-memristor systems in the laboratory, it is sensible to first
ask which circuits are being designed by theorists and tested by simulationists for
use with memristors, and overwhelmingly they investigate the Chua circuit. The
original Chua circuit [25] was created to demonstrate that chaos was a real phenom-
ena (not merely due to rounding errors in the computer simulations) and it has been
suggested [13] that neurons are poised at the edge of chaos, so, it is worth investi-
gating chaotic dynamics (and the related field of complexity) if we are interested in
making circuits for neuromorphic computing.

There have been a plethora of different versions of and alterations to the Chua cir-
cuit, as summarized in [26], but the simplest version built [27] consists of one induc-
tor, one resistor, two capacitors and a component called Chua’s diode: a non-linear
circuit element usually fabricated from several other circuit components including
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op amps. Itoh and Chua were the first to replace Chua’s diode with a memristor [28];
they worked with the concept of an active memristor (a memristor is a passive de-
vice, but a circuit of a negative resistance and memristor can be viewed as an active
memristor). There have been many papers since detailing the rich behaviour and
chaotic properties of Chua circuits containing memristors (e.g. [29–31] and [32]).
These contain simulations which use Chua’s equations [1] for the perfect theoreti-
cal memristor and electronic experiments which replace the memristor with a circuit
equivalent, presumably due to the difficulty in obtaining an actual memristor to use.

An important step forward in the direction of real world functionality was Bus-
carino’s paper [33] where Chua’s diode in Chua’s circuit was modelled using
Strukov et al.’s phenomenological model [2] which is based on real world measur-
ables and relates to a real memristor. The resulting simulation demonstrated chaotic
behaviour [33]. This paper used a pair of Strukov memristors connected in anti-
parallel to give a symmetrical I–V curve as a replacement for Chua’s diode. They
then used a voltage frequency that took the memristor to its limits (i.e. maximum
and minimum resistance) to introduce asymmetry and richer behaviour. However,
from this data it is not known whether the chaotic behaviour they observed in their
simulations arose from the memristors themselves or from the interactions of the
errors in the model, which (even with windowing functions) is weakest at the edges
of the memristor.

A recent experimental result of a possible neuromorphic building block was the
Hewlett-Packard (HP) ‘neuristor’: a circuit consisting of two memristors and two
capacitors (and a load resistor) which gives ‘brainwave’-like dynamics from a con-
stant voltage source [34]. This circuit also had the memristors in anti-parallel.

Another area of interest is how few components a chaotic circuit can be made
with. A recent paper [35] suggested that the simplest circuit capable of producing
chaos could be made with three components: a capacitor, an inductor and a mem-
ristor. Thus, circuits involving memristors, capacitors and inductors look likely to
product interesting dynamics.

Furthermore, according to Chua [1] the linear combination of memristors in a
circuit with only one input and one output to that circuit is indistinguishable from
a memristor with a memristance value calculable by standard series and parallel
resistor adding rules (‘A 1-port containing only memristors is equivalent to a mem-
ristor’ [1]), i.e. the memristors add up in series and in parallel similarly to resistors,
which would suggest that a circuit made up of only memristors would be a trivial
circuit with the same behaviour as a single memristor.

However, due to our observation of the memristor spikes, we decided to test
whether circuits consisting of only real-world memristors would give rise to rich
behaviour, rendering the complications of including capacitors or op amps unneces-
sary.

Therefore we investigated the effects of interacting memristors using real world
memristors. By using real world memristors we are able to make use of the memris-
tor’s actual behaviour, whereas theoretical models of the memristor are less useful
in this regard. We shall investigate how pairs of memristors interact and test the as-
sertion that two memristors in series (or parallel) addressed only by their joint one
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port entry (i.e. there is one wire coming out and going in to that part of the circuit)
are indistinguishable from a single memristor. We will look at several different three
memristor circuits.

3.1 Methodology

Here we outline the types of memristors we manufacture, the constructed circuits
and experimental details.

3.1.1 Memristor Types: Curved and Triangular Switching Behaviours

Our memristors show two characteristic behaviours: A: ‘curved’ pinched hysteresis
curves and B: ‘triangular’ pinched hysteresis curves, as previously observed [36]
and shown in Fig. 10. The type A memristors can be modelled by the standard
memory-conservation theory and are thus close to Chua’s theoretical memristor [1].
Type B memristors have an ohmic high conduction state as evidenced by a straight-
line on the I–V graph. We suspect that the ‘triangular’ type B memristors switch via
the formation and breaking of conducting filaments and the addition of a conducting
filament to the memory-conservation theory of memristance [19] models this situa-
tion well. The memristors used in this work were classified based on observed I–V

curves and all further results are experimental, not simulated.

3.1.2 Memristor Circuits Tested

The tested circuits are presented in Table 1. From the literature and our own intu-
ition, we expected that two memristors in anti-parallel configuration would be the
most likely 2-memristor circuit to exhibit rich dynamics, see experiment no. 4 in Ta-
ble 1. For this reason, we decided to count the number of anti-parallel interactions
in the 3-memristor circuits and also take note of memristors wired up with opposite
polarity in a series circuit (anti-series), which is experiment 2 in Table 1.

3.1.3 Experimental Details

All experiments were performed with a Keithley 2400 Sourcemeter. For most the
I–t curves, the memristor circuits were taken to +0.4 V for 1000 timesteps or
1.06 s, the voltage source was then switched to 0 V and data gathered for a fur-
ther 100 timesteps. To investigate whether a slow changing voltage had an effect,
a sinusoidal voltage of 1600 timesteps of 2 s was used. In all experiments voltages
were kept very low to avoid the creation of filaments via Joule heating which would
lead to filamentary memristors switching into lower resistance states.
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Fig. 10 Examples of the two different types of memristors: (a) experimental curved memristor,
(b) experimental filamentary memristor, (c) theoretical curved type memristor, (d) theoretical fila-
mentary memristor

3.2 Two Memristor Circuit Results

The results for the 2-memristor circuits, numbers 2–5 in Table 1, are presented here.

3.2.1 Type A (Curved) Memristors in 2-Memristor Circuits

Using type A memristors in series (as in Fig. 13 gave an I–V profile similar to that
for one memristor (compare with Fig. 8) other than an unexpected spike near the
end. However, putting two memristors in ‘anti-series’ as in Table 1 gave the odd re-
sults of increased noise and several spiking events, as shown in Fig. 11. The effect of
anti-polarity series interactions is this richer behaviour. Similarly, the 2-memristor
parallel interactions, as shown Figs. 14 and 5 show more noise and spiking events.
Note that only the two memristors in series show the expected spike at the start and
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Table 1 Constructed
experiments. Anti-parallel
memristor interactions are
represented by ‘p’,
anti-polarity series memristor
interactions are represented
by ‘s’

when the voltage is switched off (as was seen for a single memristor), therefore only
circuit 3 can be considered equivalent of a single memristor 1-port.

3.2.2 Type B (Triangular) Memristors in 2-Memristor Circuits

Figure 12 shows the results from the constructions of circuits 2, 3, 4 and 5 with
filamentary memristors. These circuits show a richer behaviour with the emergence
of oscillatory type behaviour in circuits, 2, 3 and 5. Filamentary memristors in a
series (circuit 3) do not act like single memristors. Also, in some cases the filaments
partially connect, as seen in Fig. 12c.
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Fig. 11 Results for type A memristors: (a) two A memristors in series, opposite direction, circuit
2 in Table 1, (b) two type A memristors in series, same direction, circuit 3 in Table 1, (c) two type
A memristors in anti-parallel, circuit 4 in Table 1 and (d) two type A memristors in parallel, circuit
5 in Table 1

3.3 Three Memristor Circuit Results

The most interesting results were obtained with circuit 7 (see Table 1) which has
two memristors wired up in anti-polarity series and one memristor in parallel to
this sub-circuit. This gives the circuit two anti-polarity interactions of two different
types, one in series and one in parallel, and this seems to give the circuit a richer
non-linear dynamics compared to circuit 6 (see Table 1) where the memristors are
all wired up with the same polarity.

3.3.1 Type B (Triangular) 3-Memristor Circuits

A dynamical system can exhibit chaotic behaviour if it has at least three state vari-
ables, so we chose to create a circuit with three memristors, which gives us the
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Fig. 12 Results for type B (triangular) memristors: (a) Two B memristors in series, opposite direc-
tion, circuit 2 in Table 1, (b). Two B memristors in series, same direction, circuit 3 in Table 1, (c).
Two B memristors in anti-parallel, circuit 4 in Table 1 and (d). two B memristors in parallel, circuit
5 in Table 1

Fig. 13 A three memristor
circuit with two opposite
polarity interactions and one
same polarity interaction

following three separate state variables, the current through the circuit, and the volt-
age across two of the memristors (the third being determined by the other two in
a system kept at a constant voltage). In order to maximise the antiparallel interac-
tions of the circuit, the memristors were wired up, two in series in reversed order,
with one in parallel to the two in series as shown in Fig. 13. It was thought that the
memristors would spike with the change of voltage and this would cause a change
in resistance within a single memristor, which, with this circuit set-up would lead to
a voltage change across the other memristors and thus further spikes. We used type
B memristors for this circuit.
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Fig. 14 The current response
for the three memristor circuit
shown in Fig. 13. There
seems to be an oscillatory
behaviour as well as periods
of spiking that resembles
spike-trains in neural
networks

Fig. 15 Another typical I–t

profile for the circuit shown
in Fig. 13

Typical results for this circuit are given in Fig. 14. Comparing this with the ex-
pected curve in Fig. 8 for one memristor shown in Fig. 8, we can see differences. The
large spike at the start has vanished, as has the one at the end. We see oscillations
in the base line, with spontaneous spiking overlaid over the top. Figure 15 shows a
later run where we see sections of oscillations of different frequency. Several runs of
this circuit were done to see if there was a repetition in the spiking pattern and thus
if the circuits were following long-term periodic dynamics, this was not the case.

We attempted to effect this oscillation by running a very slow I–V curve, the
results of which are shown in Fig. 16 (the whole data is for one period). This does not
show the expected response for a single memristor, or any change in the ‘baseline’
as a result of the changing voltage. The expected spikes from the one memristor
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Fig. 16 An I–t curve for a
very slow sinusoidally
varying voltage

circuit have been suppressed or delayed. The frequency of the baseline oscillations
seems more regular than for the constant voltage.

3.3.2 Type A 3-Memristor Circuits

Do these results mean that multi-memristors circuits do not combine as expected?
Not necessarily. We decided to repeat the tests with three type A memristors which
are closer to the theoretical perfect Chua memristors (type A from paper [37]). We
specifically chose three memristors that had similar looking I–V curves that oper-
ated over a similar current range to try and decrease the compositional complexity
of the circuit.

Figure 17a shows the same memristors wired up as circuit 7, and the output
current looks like a single memristor. For the type A memristors, we found that three
memristors in a circuit wired up with the same polarity (i.e. as in circuit 6) behave
qualitatively just like one memristor. For this circuit, we see occasional switching
events with a decay, see Fig. 17b, which strongly suggests that the more event rich
behaviour seen in the other memristor systems are to do with interacting switching
spikes.

4 Conclusion

Single memristors exhibit current spiking behaviour when subjected to voltage
ramps. This behaviour is quicker than the switching measured over a pinched hys-
teresis curve and reproducible, and thus offers interesting technological applica-
tions. These spikes are well-modelled by the memory-conservation theory of mem-
ristance, showing further successes of that theory.
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Fig. 17 Results for type A memristors: (a) three memristors in circuit 7, (b) three memristors in
circuit 6

Using both type B (those thought to be filamentary) and type A (those closer to
Chua’s theory) memristors, 2 and 3 memristor networks have been investigated. If
we use type A memristors, the assertion that circuits containing only memristors is
equivalent to a single memristor seems to be true, which is sensible as they are the
closest to the theoretical ideal. Intriguingly, this is not the case with type B mem-
ristors. This suggests that circuits of mixed types of memristors may be enough to
make rich behaviour, possibly even a version of the Chua circuit using only mem-
ristors.

The emergence of oscillatory dynamics is interesting and shows that a capac-
itor is not necessarily needed to create such dynamics. The oscillations could be
explained by time-delayed spike interactions within the circuit or interacting oscil-
lators created by the movement of ions (the memory property) around the dynamic
equilibrium point.

This work suggests that the chaotic dynamics seen in [33] and the oscillatory
dynamics seen in [34] could be due to the sub-circuit of two anti-parallel mem-
ristors and suggests that their results are experimentally verifiable and not due to
weaknesses in the model.

The next step is to quantify these oscillations and attempt to test whether the
circuits shown here are exhibiting chaotic dynamics or not. We are also exploring
the concepts of compositional complexity which were dealt with in a qualitative
sense.

It is possible that the oscillations are an emergent network property, similar in
causal nature to brain waves and thus could be used as models for spiking neu-
ronal systems (including both neural nets and biological brains). The clusters of
spikes may be stochastic or chaotic in origin: further work is needed to deter-
mine this. However they arise, it may be possible to use them as a control sys-
tem.
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Organic Memristive Devices and Neuromorphic
Circuits

Victor Erokhin

Abstract Bio-inspired computational systems must be based on elements, involved,
similarly to the brain, in both memorizing and processing of the information. This
paper is dedicated to organic memristive devices—elements that were designed and
constructed for mimicking the most important properties of synapses, responsible
for Hebbian type of learning. We will consider the architecture of the device and its
properties, as well as circuits and networks with adaptive features.

1 Introduction

There is a significant difference in the architecture of the computers and the brain: in
the computer the memory and the processor are different devices. The information
in this case plays a rather passive role—it can be recorded, accessed, cancelled, but
it does not vary connections and properties of the processor. In the brain, instead,
the same elements are used for both memorizing and processing of the information.
Such architecture is responsible for the possibility of learning of the system at a
hardware level. The information plays an active role in this case. It is not only mem-
orized, but it varies connections within processor, what makes it more effective for
the resolving of similar tasks in the future.

Nervous system and brain are composed from neurons. Each neuron has several
dendrites bringing input signals to the neuron. In addition, for each neuron there is
a single axon that provides a further propagation of the signal, when the sum of the
inputs overcomes a certain threshold value. Synapse is a very important element of
the nervous system. It is a contact point of an axon of one neuron with a dendrite of
the other one. An important property of synapses is the possibility to vary the weight
function of the signal transmission according to its previous functioning. Such prop-
erty is a key feature for so-called Hebbian or synaptic learning. The Hebbian rule
states [23]:
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When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

Considering the electronic circuits, this rule can be considered in the follow-
ing way. The system must be composed from nonlinear elements connected by a
complicated system of wires. The contact points of these wires must increase their
conductivity with the frequency and/or duration of their involvement into the forma-
tion of signal transfer pathways. In this case learning will mean the formation and
the reinforcement of some possible signal pathways and the inhibition of the other
ones.

Thus, if our purpose is the realization of a bio-mimicking computational sys-
tem, we need to have special electronic elements with properties similar to those of
synapses.

Even if the properties of neurons and synapses were reproduced with traditional
electronic compounds, it seems very perspective to consider another element—
memristor, that has recently attracted an explosive attention of numerous research
groups. This element was theoretically predicted by Leon Chua in 1971 considering
symmetry of electronic [8]. The very important property of the element is the de-
pendence of its resistance on the time integral of the passed current. Later, the term
“memristive devices” was introduced [9]. This property is rather similar to that of
synapses, described by the Hebbian role: the conductivity depends on the history of
the memristor previous functioning. The explosive growth of the activity in the field
of memristors started in 2008 after the paper, stating the experimental realization of
the memristor [31]. The device was realized from a thin TiO2 film. The variation of
its conductivity was attributed to a drift of oxygen vacancies in the applied external
electric field, gradually shifting the relative contributions of the zones with higher
and lover conductivities.

The most of the current works in the field of memristors are connected to the
metal oxide materials. In this chapter we will not consider these devices. The review
of such works can be found in [26].

The aim of this chapter is to describe an organic memristive device that was de-
signed and realized for the artificial reproduction of essential properties of synapse.
The device must serve as a key element in circuits allowing Hebbian type of learn-
ing [18]. As it was constructed for mimicking synapses, its properties are anisotropic
with respect to the applied voltage and the direction of the current flow in a contrary
to the “classic” memristors, described by L. Chua and observed in the most of inor-
ganic devices [26] .

2 Architecture and Properties of Organic Memristive Devices

Polyaniline (PANI) is an essential material of the organic memristive devices. Its
conductivity can be varied significantly when PANI is in reduced (insulating) and
oxidized (conducting) states [25]. Figure 1 illustrates reactions occurring in PANI.



Organic Memristive Devices and Neuromorphic Circuits 391

Fig. 1 Interconversions among the various intrinsic oxidation states and protonated/deprotonated
states in polyaniline. Reprinted with permission from [25], E.T. Kang et al. in Progr. Polym. Sci.
23:277–324 (1998). Copyright 1998, Elsevier

Emeraldin base form of PANI is an insulator and it becomes conducting
(emeraldin salt) after doping (usually by acid treatment). Being doped, PANI varies
its conductivity in a reversible way according to the redox state, that can be con-
trolled electrochemically by the application of the external voltage. Right part of the
Fig. 1 illustrates these transformations.

The organic memristive devices are prepared in the following way. Thin film of
PANI in the emeraldine base form is deposited onto solid insulating substrates with
two evaporated metal electrodes by modified Langmuir-Blodgett (LB) technique
[13]. LB method allows to form layers with nm resolution what is very important
for the organic memristive devices as their working principle implies the diffusion
of the metal ions.

The other important component of the device is the medium suitable for the redox
reactions. For these reasons, a narrow line of solid electrolyte is deposited in the
central part of PANI layer, as it is shown in Fig. 2.

Solid electrolyte line was formed from a polyethylene oxide (PEO) doped with
lithium salt. The choice of lithium is determined by the necessity to have its diffu-
sion in a solid state phase. Usually, LiClO4 was used for doping.

Two electrodes, connected to the PANI film are called “source” and “drain”,
similarly to the field effect transistor. In order to have a reference potential, a silver
wire was connected to the solid electrolyte. This electrode is called “gate” or “ref-
erence electrode”. For mimicking synapse properties, the element must have only
two terminals. Therefore, the reference electrode is directly connected to the source
electrode, that is usually maintained at a ground potential level.

It is possible to distinguish two types of current that give their contribution to the
total current passing through the device. We can measure experimentally the ionic
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Fig. 2 Photo (a) and
simplified scheme (b) of the
organic memristive device.
Reprinted with permission
from [13], V. Erokhin et al. in
J. Appl. Phys. 97:064501
(2005). Copyright 2005.
American Institute of Physics

current in the circuit of reference electrode, and the total current, that is a sum of
ionic current, mentioned above, and electronic current in PANI active layer, that
is measured in the circuit of the drain electrode. However, in order to understand
better the device working principle, it is more convenient to consider dependences
of ionic and electronic (total minus ionic) currents on the cyclically applied voltage.
Cyclic voltage-current characteristics for electronic (a) and ionic (b) currents are
shown in Fig. 3. The measurements are usually performed in the following way.
Measurements were started at 0 V applied voltage. Then, it is increased with a fixed
step in the voltage (usually 0.1 V). After the application of the voltage, the system
was equilibrated for fixed time interval (usually—one minute) before readout of the
current value. Variation of this time interval results in the variation of the shape
of the hysteresis loop [22], as it was also observed for inorganic memristors [26].
Maximum applied voltage must not exceed 1.5 V in order to prevent irreversible
overoxidation of PANI.

As it was mentioned above, the measurements start from 0 V. Initial increase
of the applied voltage result in the low current values—PANI is in the reduced in-
sulating state. At about +0.5 V we can see a significant increase of the electronic
conductivity, what is also accompanied by the appearance of the positive peak in
the characteristics for the ionic current. PANI is transferred into oxidized conduct-
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Fig. 3 Cyclic voltage-current characteristics for electronic (a) and ionic (b) currents of organic
memristive device (empty rhombuses—increase of the voltage, filled squares—decrease of the volt-
age). Reprinted with permission from [13], V. Erokhin et al. in J. Appl. Phys. 97:064501 (2005).
Copyright 2005. American Institute of Physics

Fig. 4 Temporal variation of the current in organic memristive device at fixed applied voltage of
+0.6 V (a) and −0.2 V (b). Reprinted with permission from [13], V. Erokhin et al. in J. Appl.
Phys. 97:064501 (2005). Copyright 2005. American Institute of Physics

ing state. In the most of experiments the max applied positive voltage was +1.2 V
in order to avoid the overoxidation, mentioned above. After reaching this value, the
voltage was decreased with the same step. The device remains in a conducting state
before the applied voltage is diminished till +0.1 V. At this value, PANI is trans-
ferred into reduced insulating state, what is also confirmed by the presence of the
negative peak in the characteristics for the ionic current. The whole negative branch
of the characteristics corresponds to the low conductivity of the device.

However, for the realization of bio-inspired systems capable to learning, it seems
even more important the behaviour of the device at a constant bias voltage. These
dependences for positive (a) and negative (b) voltages are shown in Fig. 4. In the
case of positive bias, the applied potential must be higher than the oxidation one.
Usually, it is significantly higher than the oxidizing potential, as the applied voltage
is distributed on the whole PANI channel length, while the active zone (PANI-PEO
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contact) is in the centre of the organic memristor. In the case of the negative bias any
potential will result in the diminishing of the conductivity as the reduction potential
has a small positive value.

The curve in Fig. 4b makes directly a basis for the possibility to Hebbian type
of unsupervised learning. Let us consider the system composed from such devices.
Preferential signal pathways will be established by elements, the strength of which
will increase with the frequency and/or the duration of their involvement into the
signal transfer process. The dependence shown in Fig. 4b is also very important. On
the one hand, if the system composed from organic memristive devices will operate
at a positive bias for a rather long time, all components of the circuit will reach their
saturated conducting state. No learning will be possible anymore. However, if we
will provide a periodic short-term application of negative voltage between all input-
output pairs of electrodes, we will be able to prevent the system from the saturation.
On the other hand, this dependence establishes a basis for the possibility of so-
called supervised learning. It implies the external action of a “teacher”. In fact, if
the system, during unsupervised learning, will establish some connections between
inputs and outputs, that are a priori wrong, it will be enough just to apply negative
voltage between chosen pairs of electrodes and the signal pathway between them
will be suppressed.

Qualitatively, the observed difference in the kinetics for the conductivity varia-
tion for positive and negative applied voltages can be explained considering that in
the case of the negative bias the whole active zone is under the reduction poten-
tial, while in the case on the positive bias only the part of the active zone, closer to
the drain electrode, is at a oxidation potential. Thus, in a case of negative potential
PANI in the active zone is reduced in the same time, while in a case of positive
potential we have a gradual displacement of the conducting zone boundary in the
direction from drain to source. Quantitatively, the experimental data were explained
by the developed model, calculating temporal behaviour of the potential distribution
profiles along the length of the active zone, where PANI is in a contact with solid
electrolyte [30].

The conductivity variation in the organic memristive device can be described by
the following formula:

PANI+ : Cl− + Li+ + e− ↔ PANI+ LiCl

When conducting, PANI chain is protonated (positive) what demands the pres-
ence of the counter-ion (Cl-) for the maintaining of the electrical neutrality of the
molecule. When reduced, lithium enters the PANI and associates with chlorine. Di-
rect detection of the Li ions motion between the PANI active layer and the solid
electrolyte was first demonstrated using microRaman spectroscopy [2] and, then,
confirmed by X-ray fluorescence measurements using synchrotron radiation for the
excitation [3]. These measurements allowed to state that the conductivity of the or-
ganic memristive device is a function of the passed ionic charge (time integral of the
ionic current).

From this point of view, the suggested device has also some similarities with
a memistor—an element introduced by Widrow [32] for construction of adaptive
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Fig. 5 Association of the
object with the presence of
two properties (shape and
color)

circuits with memory. According to the definition: Like the transistor, the memistor
is a 3-terminal element. The conductance between two of the terminals is controlled
by the time integral of the current in the third, rather than its instantaneous value
as in the transistor.

Finally, our device is also similar to a mnemotrix—an essential element of
Valentino Braitenberg mental experiment, developed for the explanation of learn-
ing in the brain [7]

. . . we buy a role of special wire, called Mnemotrix, which has the following interesting
property: its resistance is at first very high and stays high unless the two components that
it connects are at the same time traversed by an electric current. When this happens, the
resistance of Mnemotrix decreases and remains low for a while . . .

3 Logic Elements with Memory

Brain does not use Boolean logic. The same must be done also for bio-inspired
computational systems. The output of logic gates must depend not only on the actual
configurations of input signals, but also on the history of their utilization.

For the illustration let us consider AND element with memory (MAND). Other
logic gates with memory, such as MOR (OR with memory) and MNOT (NOT with
memory) were also realized and their properties can be described similarly to the
MAND gate [21]. In the case of living beings, the function of the AND element can
be considered as the association of an object with the presence of two important
properties. For example: the orange (fruit) can be associated with a color (orange)
and a shape (spherical) as it is shown in Fig. 5.

However, for living beings the presence of these two stimuli will not immediately
result in such association. The individual must learn that the association is correct.
As more frequently these properties are present with the confirmation of correctness
by the taste, for example, as the output signal value will be increased from 0 to 1
value. Moreover, if it will happen a wrong association, the value of the output signal
will be decreased (if the system is equipped with adequate feedback, similar to taste
in nature).

The architecture of the MAND element, based on the organic memristive device
is shown in Fig. 6a.

The MAND element contains two inputs, one output and an organic memristive
devices as a key basic element, allowing memory. External voltages are used as
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Fig. 6 Scheme of the
MAND element (a).
Temporal dependence of the
output current of MAND
element (upper) and voltages
applied to the first and second
inputs (b). Reprinted with
permission from [21]
V. Erokhin et al. in Int. J.
Bifurc. Chaos 22:1250283
(2012). Copyright 2012,
World Scientific Publishing
Company

input signals, while the output is a current value. The other two elements in the
circuit in Fig. 6a are: a summator, that provides a sum of the applied voltages; and
a divider—this element divide the resultant voltage by a factor of 2. Thus, when
only one input voltage is applied, after the division it will be not enough to vary the
conductivity of the memristive device.

In order to have similar values of input and output signals, comparable also with
those applicable to MOR and MNOT elements, the values of input voltages were
chosen to be enough for transferring the organic memristive device into the con-
ducting state (+0.6 V).

Experimental results of the variation of MAND conductivity in time together
with dependences of the voltages, applied to the first and second input electrodes,
are shown in Fig. 6b.

Figure 6b demonstrates that the application of individual signals to the first or the
second input does not vary the state of the output current (small linear increase of
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Fig. 7 Scheme of the
modified organic memristor
device for its use as an
oscillator. Reprinted with
permission from [15],
V. Erokhin et al. in J. Phys.
Condens. Matter 19:205111
(2007). Copyright 2007, IOP
Publishing Ltd

the value). The application of both input signals results in the gradual increase of the
memristive device conductivity. If necessary, the MAND element can be easily reset
to the initial sate by the application of a negative potential to any input electrode.

4 Oscillating Element

An essential property of any living being is a capacity to produce rhythmic oscil-
lations of signals even in not variable environmental conditions, as it was stated by
E. Schrödinger: “Living matter evades the decay to equilibrium” [27].

Each living system contains in its neural system a neurone (or group of neurones)
that, once been activated, produces rather long sequences of spikes.

For the bio-inspired computational systems we also need to foresee such kind of
elements. These elements will act, for example, as clock generator analogs, provid-
ing a frequency references for all computations.

Memristors were considered as perspective candidates for the oscillator realiza-
tion [24]. It is interesting to note that the organic memristive device can be easily
transferred into an oscillator. For this reason it is enough just to insert an element,
capable for the charge accumulation, into the circuit of the reference electrode, as it
is schematically shown in Fig. 7 [15].

The simplest realization of such configuration can be done by attaching an ex-
ternal capacitor in the circuit of the reference electrode. If one wants to avoid the
utilization of the external elements, it is possible to make a reference electrode from
the material, capable to the charge accumulation. Experimentally observed temporal
dependences of the output current at fixed applied voltages are shown in Fig. 8 [15].

It is to note that the phases of ionic and total currents in the organic memristive
devices are shifted in phase.

If one does not want to connect additional external devices to the system, there
is the other possibility to have current oscillations. In this case, the reference elec-
trode must be realized from a special material, capable for charge accumulation
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Fig. 8 Temporal
dependences of the output
current at fixed applied
voltage for the organic
memristive device, when the
reference electrode was
realized from highly oriented
pyrolytic graphite (a) and
where an external capacitor
was connected into the
reference electrode
circuit (b). Reprinted with
permission from [15],
V. Erokhin et al. in J. Phys.
Condens. Matter 19:205111
(2007). Copyright 2007, IOP
Publishing Ltd

[16]. In our experiments, we have taken highly oriented pyrolytic graphite, as it
is well known its capability to accumulate Li+ ions due to the possibility of their
intercalation between the planes of the crystal lattice of this material.

The observed characteristics were explained qualitatively using the already men-
tioned model, taking into account kinetics of all processes occurring in the device
[30]. It is interesting to note that the observed phenomenon cab be also qualitatively
explained using the approach, describing Belousov-Zhabotinsky reaction [33], men-
tioned also in [15].

5 Circuits with Adaptive and Neuromorphic Properties

Supervised [10, 16] and unsupervised learning [28] have been demonstrated in artifi-
cial systems by realizing several deterministic circuits, based on organic memristive
devices. Even if we present here mainly the results obtained in the DC mode, similar
results were obtained when the input signals were performed in a pulse mode [29].

The simplest neuromorphic circuit was realized with one organic memristive de-
vice [28], and it has demonstrated the possibility of unsupervised learning. The cir-
cuit for supervised learning was composed from 8 memristive devices [16]. Applica-
tion of the appropriate training procedure resulted in the formation of electrical con-
nections between pre-determined pairs of input-output electrodes. Let us consider
now one example of memristive device-based neuromorphic circuits that demon-
strates directly the possibility to mimic artificially synapse properties of living be-
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Fig. 9 Model of the part of the nervous system of pond snail Lymnaea stagnalis responsible for
learning during feeding. Arrows indicate the position of synapses. Reprinted with permission from
[19], V. Erokhin et al. in BioNanoScience 1:24 (2011). Copyright 2011, Springer Science+Business
Media, LLC

ings. This example illustrates the electronic reproduction of a part of the nervous
system of a simple animal, responsible for its learning.

The model of the part of the nervous system of the Pond snail Lymnaea stagnalis,
responsible for learning of the animal during its feeding that was developed basing
on the experimental data obtained with a system of implanted microelectrodes, was
already available [1]. Therefore, it was taken as a biological benchmark for our
experiments. Learning in this case means the association of an initially neutral stim-
ulus with the presence of food (similarly to the famous Pavlov’s dog; however, the
snail is much easy to reproduce artificially (even at the level of the architecture), as
the model already exists). In this case of learning of the snail, two stimuli must be
applied to the system: initially neutral stimulus (mechanical touching of its lips) and
the presence of food (sugar). Touching the lips with the sugar result in the fact that
after the successive touching without sugar, the animal begins to open its mouth and
start the digesting process.

The scheme of the part of the nervous system, responsible for such learning, is
shown in Fig. 9 [19].

As it is clear from the Fig. 9, the architecture of the model is rather simple and
it allows the direct reproduction using organic memristive devices in positions of
synapses [19].

Therefore, the architecture, presented in Fig. 9 was taken as the starting point for
the artificial reproduction with memristive devices. Scheme of the electronic circuit,
reproducing the model and results of its experimental testing are shown in Fig. 10.

We have realized and tested two circuits. The first one was based on one organic
memristive device, while the other one, similarly to the described model, included
two memristive devices. Both circuits have two inputs: one of the inputs corresponds
to the initially neutral touching stimulus and the other one corresponds to the stimu-
lus, representing the presence of the food. The system has also one output electrode.
If we consider that the learning procedure was successful when the system will be
able to perform some execution function (supplying the power to the motor, rep-
resenting the mouth opening, for example), the value of the output signal must be
higher than a certain threshold level (the value of the threshold can be varied and
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Fig. 10 Scheme of one- (a) and two- (c) memristor-based circuits, mimicking learning of the
pond snail; (c) and (d) are experimental results, measured on these schemes. Reprinted with per-
mission from [19], V. Erokhin et al. in BioNanoScience 1:24 (2011). Copyright 2011, Springer
Science+Business Media, LLC

pre-defined). Thus, if the learning was successful, the mouth of the snail will be
opened even in the presence of the touching-mimicking stimulus only.

Let us first consider a one-memristor device circuit shown in Fig. 10a. Touching-
mimicking (neutral) signal is applied to the input 1. Initially, it results in the rather
low value of the output current, shown in Fig. 10c. The signal, mimicking the pres-
ence of the food, is applied to the second input. During the “LEARNING” period
(Fig. 10), both signals are applied to the circuit. We have chosen their values in such
a way, that only their sum can result in the variation of the memristive device con-
ductivity. After the end of the “LEARNING” phase, we have applied again only one
input signal, corresponding to the touching (neutral) stimulus. As it is clear from
Fig. 10c, the learning in this configuration was successful. After the simultaneous
application of “touching” and “presence of food” stimuli, the resultant current for
the successive application of the “touching” stimulus only was increase for about
50 %.

In the second phase of the experiment, we have realized a circuit based on two
memristive devices (Fig. 10b) The architecture of this circuit was very similar to
that of the model, represented in Fig. 9. Organic memristive devices are exactly in
the position of synapses. Input and output signals are rather similar to the previous
case, shown in Fig. 10a. However, the values of the input voltages (about +0.6 V)
were chosen in such a way, that they are enough to transfer only one organic mem-
ristive device into a conducting state. Similarly to the previously described case of
the one organic memristive device circuit, we have applied initially only a signal
to a input 1, corresponding to a neutral touching-mimicking stimulus. In this case,
the applied voltage is distributed between both memristive devices and, therefore,
is not enough to transfer any of them into the oxidized conducting state. As a re-



Organic Memristive Devices and Neuromorphic Circuits 401

sult, we can observe a rather low value of the output current (Fig. 10d). During the
“LEARNING” phase, both signals (“touching” and “food presence”) are applied.
The situation in this case is very different: the input 2 voltage is applied to the one
memristive device only. Thus, its value is enough now for the transferring it into
a conducting oxidized state. When the transformation was done, the input 1 volt-
age is mainly distributed onto the second memristive device and can transfer it into
the conducting oxidized state. After the finishing of the “LEARNING” phase, the
successive application of an input 1 only (neutral “touching-mimicking” stimulus)
results in the 5-times increase of the output current (both of DC off-set and AC
amplitude), as it is shown in Fig. 10d.

The described experiments have successfully demonstrated that the organic
memristive device can be really considered as an artificial electronic analog, mim-
icking main properties of biological synapses. Reproduction of the architecture of
the part of the simple animal nervous system has resulted in the mimicking of learn-
ing capabilities at the level of hardware adaptations.

6 Stochastic Fibrillar and Self-assembled Networks

Even if, as it was shown above, the approach, connected to the fabrication of de-
terministic electrical circuits, based on organic memristive devices, allow to mimic
some properties of elements of the nervous system [18], it does not permit high level
of the integration of synapse analogs (about 10 in power of 14 in the brain). There-
fore, further motion in the direction of mimicking of other simple brain properties
will demand the consideration of alternative approaches. In particular, the brain has
3D organization with the existence of connections between rather distant neurones.
Current planar technology cannot provide the possibilities for making it. Thus, it is
necessary to develop other approaches based on bio-inspired bottom-up technolo-
gies, including self-assembling and phase separation.

The first attempt was done by performing the architectures, where the stochastic
3D networks were based on the statistically distributed connections of conducting
and ionic elements using polymer fibers [14], forming free-standing networks.

In our case, the attempt to form fibers by electro-spinning turned out to be not
very successful: it was possible to form PEO fibers, but not those of PANI. There-
fore, the alternative approach was developed, using the capability of PEO to form
fibrillar structures in vacuum chamber. Initially, fibers of polyethylene oxide were
formed by vacuum treatment of its concentrated viscous solution. Then, these fiber
structures were used as templates for the formation of PANI fibrillar systems over
it, done by placing the solution of PANI over PEO fibers with the successive vac-
uum treatment. The optical microscopy image of the resultant structure is shown in
Fig. 11.

As we already know from the consideration of the single discrete device, it is
necessary to have a junction of the conducting polymer (PANI) and solid elec-
trolyte (PEO) in order to realize the architecture of the organic memristive device.
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Fig. 11 Optical image of
PEO-PANI fiber structure.
Reprinted with permission
from [14], V. Erokhin et al. in
Soft Matter 2:870 (2006).
Copyright 2006, The Royal
Society of Chemistry

Fig. 12 Organic memristor
based on statistically
distributed structure of PANI
and PEO fibers. Reprinted
with permission from [12],
V. Erokhin et al. in
J. Comput. Theor. Nanosci.
8:313–330 (2011). Copyright
2011, American Scientific
Publishers

Therefore, the main idea of the formation of the fibrillar structure was to organize
a stochastic crossing between PEO and PANI fibers that form structures, similar to
the architecture of the deterministically formed devices. In order to check whether
this hypothesis works, the fibrillar structure was deposited between two planar metal
electrodes, and a silver wire was placed in it before the vacuum treatment. Scheme
of the realized structure and its electrical connection to the power supply and mea-
suring devices is shown in Fig. 12.

Cyclic voltage-current characteristics, measured on these structures in the way,
similar to that used for the deterministic stand-along organic memristive devices, re-
vealed rectifying behaviour, that confirm the formation of desired crossing of fibers
of two different materials.

Unfortunately, the properties of such structures were found to be very unstable.
Only few cycles of voltage-current characteristics turned out to be possible to mea-
sure. Then, we have observed a significant decrease of the device conductivity. Fi-
nally, in about 40–60 minutes the device stopped working. However, this behaviour
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Fig. 13 SEM image of the
polymer fibers formed on
porous support SEM image of
the polymer fibers formed on
porous support. Reprinted
with permission from [17],
V. Erokhin et al. in Nano
Commun. Netw. 1:108–117
(2010). Copyright 2010,
Elsevier

is not strange for the sample of such type. The degradation of the sample was at-
tributed to the free-standing nature of these structures. Passed current resulted in
heating of fibers, their deformation and, finally, complete destruction. Several ap-
proaches were carried out for improving the stability. In particular, porous materials
were used as supports for making a rigid “skeleton” for these soft structures [17]—
the approach that is widely used in the nature. SEM image of the fibrillar structure,
formed on porous matrix, is shown in the Fig. 13.

The mentioned approach turned out to be perspective and has allowed to improve
the stability of the stochastic systems, based on the fibers of required polymers.
However, our efforts were re-distributed because the other approach was found to be
even better. This second approach was based on self-assembling of specially synthe-
sized copolymers, allowing phase separation that were then used for the formation
PANI layers with associated gold nanoparticle.

The mentioned approach had demanded a synthesis of several specially designed
compounds and methods of their assembling into networks, having structure and
properties similar to those of the fibrillar systems. In this case the active layer was
more complicated with respect to the devices, reported above. Gold nanoparticles
were added to the PANI films. The reason of the adding of these particles was to
perform a threshold function, somehow similar to the function of the neuron body:
to allow the entrance of the signal but to perform a certain barrier for its exit [10].
Such property was realized due to a significant difference of work functions of gold
and PANI.

Several types of gold nanoparticles with different terminal-groups used for their
stabilization were tested. The best results were obtained when gold nanoparticles
were stabilized by 2-mercaptoethanesulfonic acid. The end-group not only stabilizes
the structure of the particles, but it acts also as an additional doping agent, stabilizing
the conductivity properties of PANI [5]. SEM images of networks of such gold
nanoparticles wires are shown in Fig. 14.
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Fig. 14 SEM images of
2-mercaptoethanesulfonic
acid stabilized gold
nanoparticles. Reprinted with
permission from [5],
T. Berzina et al. in Synth.
Met. 161:1408–1413 (2011).
Copyright 2011, Elsevier

Deposition of the PANI/gold nanoparticles composite layers was done using
modified Langmuir-Blodgett technique [4]. As it was already mentioned, LB films
provide nm resolution in the thickness.

The other essential component of the 3D stochastic network is a block-
copolymer, allowing phase separation during self-assembling. In our experiments
we have synthetized and used a new block copolymer - poly(styrene sulfonic acid)-
b-poly-(ethylene oxide)-b-poly(styrene sulfonic acid) (PSS-b-PEO-b-PSS) [20].

The schematic representation of the experimental sample is shown in Fig. 15a.
Four Cr electrodes were deposited onto a glass (or any other insulating mate-

rial) support by thermal evaporation. Films of the composite material, containing
alternating layers of PANI/gold nanoparticles composite and block copolymer, were
deposited on this support and patterned in order to make connections between two
pairs of diagonal electrodes in a crossed configuration. A ring made from adhesive
Kapton layer (36 microns thick) was placed over the crossed area and PEO gel con-
taining Li+ and H+ ions was deposited within the area restricted by the ring. Three
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Fig. 15 Scheme of the system used for the learning experiments (a) and typical cyclic voltage–cur-
rent characteristics for ionic (b) and electronic (c) conductivity measured between each input–out-
put pair. Maximum (at about +0.5 V) and minimum (at about +0.1 V) of the ionic current corre-
spond to the oxidation and reduction potentials of PANI, respectively. As a result, the increase or
decrease of electronic conductivity is observed. The presence of hysteresis indicates the memory
effect in the system. Reprinted with permission from [20], V. Erokhin et al. in J. Mater. Chem.
22:22881–22887 (2012). Copyright 2012, The Royal Society of Chemistry

silver wires, acting as reference electrodes, were placed in a contact with the PEO
gel, whereas the latter in-turn isolated the wires from the active layer. The area was
protected by Kapton film in order to prevent the system from the degradation.

The formation of the phase-separated structure was confirmed by optical mi-
croscopy and SEM imaging. The images are shown in Figs. 16a and 16b respec-
tively.

Before studying the performance of the network as a whole, we have done the
tests whether the conductivity variations between each pairs of input-output elec-
trodes are similar to those, observed for deterministically fabricated organic mem-
ristive devices. The typical cyclic voltage-current characteristics for the ionic and
electronic currents are shown in Figs. 15b and 15c respectively with the indication
of the voltage variation direction.

Such phase-separated architecture of the realized network was expected to pro-
vide the formation of multiple possible signal pathways between both pairs of metal
electrodes, realized by the stochastic connections of PANI areas with solid elec-
trolyte zones that are also separated by the insulator areas. Conductivity variation
will occur in the junctions of the contact of PANI chains with areas of solid elec-
trolyte after the application of the appropriate voltage values. In particular, if PANI
in the contact with electrolyte is in the conducting state and a negative potential is
applied, it will be transferred into the reduced insulating state. Instead, if it was in
the insulating state and a positive potential, higher than the oxidation potential is
applied, we will observe a gradual transformation of PANI into the oxidized con-
ducting state.
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Fig. 16 Optical (a) and SEM (b) images of the cast film prepared from the composite material.
Reprinted with permission from [20], V. Erokhin et al. in J. Mater. Chem. 22:22881–22887 (2012).
Copyright 2012, The Royal Society of Chemistry

The aim of the performed experiments was to induce a high conductivity between
one pair of input-output electrodes, on the one hand, and to suppress the conductivity
between the other pair of electrodes, on the other hand.

We have applied two types of training algorithms to the system shown in Fig. 15a:
simultaneous and sequential ones.

In the first case (simultaneous training of both pairs of electrodes), reinforcing
and inhibiting voltages were applied simultaneously to the two different pairs of
electrodes. After the training, the state of the conductivity between different pairs
of electrodes was checked applying a positive voltage with the value that cannot
vary the state of the conductivity of the induced signal pathways (+0.3 V). As a
result, it was observed that the ratio of the conductivity between pairs of electrodes
where the reinforcing and inhibiting potentials were applied was about one order of
magnitude. During the second stage of the simultaneous training, the situation was
inverted: the reinforcing potential was applied between the pair of electrodes with
previously inhibited conductivity and the inhibiting potential was applied between
the pair where the conductivity was reinforced. The test measurements, performed
similarly to the measurements during the first stage, revealed that the second training
was also successful. It was possible to invert the conductivity state between the
electrode pairs. The final ratio of the conductivities was also about one order of
magnitude.

In the case of the sequential training the procedure was the following one. Ini-
tially, the reinforcing voltage was applied between one pair of electrodes, while no
voltage was applied between the other one. Then, the inhibiting voltage was applied
between the second pair of electrodes, while no voltage was applied to the first one.
Test measurements, performed as in the case of simultaneous training, revealed that
the conductivity ratio between reinforced and inhibited signal pathways was about
two orders of magnitude in this case.
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Fig. 17 Schematic representation of the stochastic network after “adult” (left) and “baby” (right)
learning. Reprinted with permission from [11] V. Erokhin et al. in Int. J. Unconv. Comput.
22:1250283 (2013). Copyright 2013, Old Sity Publishing, Inc.

Similarly to the case of simultaneous training experiment, second sequential
training was applied to the stochastic system, tending to invert the conductivity
state of the already formed signal pathways. However, in this case it was found
to be impossible: we have observed only small variation of the conductivity for both
channels. Moreover, if the system was leaved without the application of the external
potentials, it relaxed itself to the conductivity state reached after the application of
the first training.

Making the comparison with the behaviour of living beings, we can conclude
that the two observed situations were rather similar to the so-called “adult” and
“baby” learning (the last one can be also called—imprinting). In the first case sev-
eral external stimuli were simultaneously applied to the network. Such algorithm
results in the dynamic equilibrium between the formation and the inhibition of sig-
nal pathways. There is a “cross-talk” of stochastically distributed memristive de-
vices [6]. In the second case, instead, when single long-term stimulus is applied to a
stochastic network, it results in the formation of stable configurations of signal path-
ways (channels) and potential distribution maps due to the charge trapping in gold
nanoparticles. Such stable configuration is acting against successive action of ex-
ternal stimuli and is responsible for the long-term memory. Qualitative explanation
of the observed behaviours can be found in [11]. The formation of the connections
within the stochastic network was explained by the variation of the “spaghetti” color,
representing the areas of PANI in a contact with solid electrolyte. The scheme, illus-
trating the difference between the states of the system after the “adult” and “baby”
learning is shown in Fig. 17.

The reinforcing of the signal pathways in this case was done between two elec-
trodes, shown as forks (only forks are used in Italy for eating spaghetti), while the
signal pathways between “spoon” electrodes were inhibited.
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“Adult” learning results in the formation of few single preferential pathways be-
tween “fork” electrodes, while there is a partial suppression of the conductivity near
the “spoon” electrodes. Instead, in the case of “baby” learning (imprinting), stable
channels, including multiple signal pathways, are formed between “fork” electrodes.

In other words, the “adult” learning can be compared with the behaviour of for-
eigners in Italy: looking around they begin to eat spaghetti with forks. However, if
their stay was rather short, they will begin to eat spaghetti with spoons when they
will come back to their countries. The formed connections within the brain are not
stable and can be easily varied in the varied environmental conditions.

In the case of “baby” learning (imprinting) the situation is very different. Italian
children in the childhood learn that spaghetti can be eaten with forks only and not
with spoons. Application of the training algorithms to the fresh stochastic network
without already formed connections result in the formation of stable configurations
that are preserved for the practically whole life period and tending to relax to the
pre-formed configuration of the connections even if the environmental stimuli are
changed.

7 Conclusion

Bio-inspired computing systems must integrate processing and memorizing of the
information within the same devices. It demands the utilization of new types of
electronic compounds: their electrical properties must depend on the history of their
involvement into the formation of signal transfer pathways.

We have considered in this chapter the organic memristive device. This element
was designed and constructed for mimicking synapse properties for its successive
utilization in circuits allowing Hebbian (or synaptic) type of learning. Some prop-
erties of the organic memristive devices, such as hysteresis loop and dependence of
the conductivity on the ionic compound of the passed charge, are rather similar to
the “classic” memristors. However, it has also some differences, such as anisotropy
of the conductivity upon the polarity of the applied voltage. This last feature is very
important for mimicking the synapse properties as there is a strong anisotropy of
the signal propagation in the nervous system. On the other hand, the described de-
vice has properties of the mnemotrix of V. Braitenberg,—key element of the mental
experiment, describing learning processes in the nervous system.

Several important characteristics of the device, presented in this chapter, have
demonstrated the possibility of the realization of artificial electronic circuits, mim-
icking some functions of the parts of nervous system of real animals (pond snail).
The possibility of the utilization of organic memristive as key elements for the real-
ization of variable logic gates (fuzzy logic) has been also demonstrated. Such logic
gates work in such a way that the output signal depends not only on the actual con-
figuration of the input signal values but also on the “history” of its involvement into
the information processing.

Just small variations of the device architecture are required for the possibility
of the generation of auto-oscillations in the fixed environmental conditions (biased
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voltage). Such property is a characteristic feature of the living beings and it is very
important for all types of the computational systems.

Very interesting properties were registered by the construction and study of the
stochastic networks, fabricated by self-assembling of polymeric and nanoparticulate
compounds. These features are somehow similar to the learning of the living beings.
Application of different training algorithms can result in the long-term (imprinting)
associations or in the short-term (every day learning) formation of the preferential
signal pathways. In addition, we have observed a “cross-talk” of elements in the
network even in the absence of the external stimuli [6, 20]. We can predict at least
two possible applications of the deterministic and/or stochastic systems, described
in this chapter.

On the one hand, they can constitute a key part of the “brain” of robotic sys-
tems: being adequately combined with traditional electronic devices, transferring
the signals form sensors (optical, acoustic, mechanical, etc.) to adequate values for
application to the network and providing necessary offset and feedback values, it
will be possible to attribute “personal features” to each robot for working along
or in the group. It will also allow “learning” and adaptations of properties as the
reaction to the variable environmental conditions.

On the other hand, the stochastic network can be considered as a very useful tool
for making model hardware experiments for the study of processes in the brain. In
fact, it will be possible to study the reaction of the system to the variations of the
external stimuli at different stages of the system learning. In this respect, it seems
important the fact that the variation of the conductivity results also in the varia-
tion of color of signal pathways composed from PANI. This property will be used
for studying not only the final state of the conductivity between input and output
electrodes, but also reinforcement and inhibition of the signal pathways inside the
network.
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Memristive in Situ Computing

Omid Kavehei, Efstratios Skafidas, and Kamran Eshraghian

Abstract The missing link between a nonlinear circuit element that is able to self-
adjust its conductance according to the history of applied voltage/current and phys-
ical realizations of two-terminal oxide-based resistive memory was discovered in
early 2008, and has since been intensively studied. This class of memory elements
is called memristive devices, which includes resistive random access memories
(RRAM), phase change memories (PCM) and spin-transfer torque magnetoresistive
memories (STT-MRAM). Memristive devices are mostly CMOS and fab friendly,
and promise simpler architecture, higher scalability and stackability (3D), good se-
lectivity, relatively low-power consumption, high endurance and retention, fast op-
eration by utilizing parallelism, and the most important of all, the ability to merge
logic and memory. A significantly wide range of resistive switching materials can be
categorized under three main redox-related effects, electrochemical metalization ef-
fects (ECM), valency change memory effect (VCM) and thermochemical memory
effects (TCM). Although, the behavior of these resistive memories can be mod-
eled using high-level finite-state machines (FSMs), the underlying switching mech-
anisms is yet to be fully understood. Despite the lack of comprehensive understand-
ing of the switching behavior, their application in memory and computing has been
constantly improved. These devices can be programmed to exhibit multi-level cell
(MLC) and binary cell behavior, thus analog and digital memories can be exists in
one device depends on programming. In this chapter, we highlight some of the in
situ computational capability of memristive devices.

O. Kavehei (B) · E. Skafidas
Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University
of Melbourne, Parkville, Australia
e-mail: omid.kavehei@unimelb.edu.au

E. Skafidas
e-mail: sskaf@unimelb.edu.au

E. Skafidas
National ICT Australia (NICTA), Victoria Research Laboratory, Melbourne, VIC 3010, Australia

K. Eshraghian
iDataMap Corporation, Perth, Australia
e-mail: keshraghian@idatamap.com

A. Adamatzky, L. Chua (eds.), Memristor Networks,
DOI 10.1007/978-3-319-02630-5_19,
© Springer International Publishing Switzerland 2014

413

mailto:omid.kavehei@unimelb.edu.au
mailto:sskaf@unimelb.edu.au
mailto:keshraghian@idatamap.com
http://dx.doi.org/10.1007/978-3-319-02630-5_19


414 O. Kavehei et al.

1 Introduction

The connection between an existing mathematical foundation for memristive de-
vices, described in [7], and a nanoscale memory system, reported in [41], has cre-
ated a lot of attention and accelerated activities toward the next disruptive innovation
in computer architecture and computing [50]. The memristive devices category in-
cludes resistive switches as long as they meet the “memristive devices and systems”
criteria that is outlined in [8]. A voltage-controlled memristive device with only
one state variable (memristor), w, can be described using the following system of
equations,

{
I =G(h,V ) · V
dh
dt

= f (h,V ),
(1)

where dh/dt describes ionic motion, or filament elongation rate, using function
f (·), for ECM (cation) and VCM (anion) systems. In both systems, h is bounded to
two extreme values 0 < h < L, where the simplest definition for L is the thickness
of resistive switching material, or the active layer, namely between 3 nm and 30 nm.
The G(·) function represents the device conductance, and I and V are current and
voltage, respectively. For simplicity, the state variable, h, can be normalized, 0 <

x(= h/L)< 1.
Material system of ECM and VCM devices consists of an anode electrode that

supports oxidation, a cathode electrode that supports reduction, and a resistive
switching material. The conductive electrodes are used to facilitate reduction and
oxidation (redox). Recent study in [44] shows that ideal memristor is still a hypo-
thetical element and, interestingly, STT-MRAMs have the closest behavior to an
ideal memristor. There are, therefore, some doubts about the HP’s “ideal” memris-
tor [41] from the electrochemistry point of view. The currently available memristive
devices can be considered as ‘voltaic cells’ that, under equilibrium, derives electri-
cal energy from spontaneous reduction and oxidation reaction taking place within
the cell.

The deviation of ECM and VCM behavior from the criteria specifying mem-
ristive devices and systems, is caused by chemical potential gradients generating
an electromotive force (emf), hence violating the current-voltage zero-crossing re-
quirement of memristive systems. This creates non-equilibrium high conductance
and low conductance states that may affect device operation and retention of resis-
tances.

An extended modeling approach is required to compensate for such non-ideality.
In [44], the device was considered as a memristive element with two state variables,
h and cion, where cion is the ion concentration. The emf depends on the ion concen-
tration and the current is a linear sum of the electronic current and the ionic current.
Therefore, the nanobattery effects should be taken into account during the simula-
tion. Our experiments show that such emf contribution is around Vcell = 5 mV, thus
negligible, in a Ag/TiOx /ITO system [17], and a more than 20 mV in a Pt/TiOx /Pt
system, as shown in Fig. 1b. All experiments are carried out using a Keithley Semi-
conductor Characterization System (4200-SCS).
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Fig. 1 (a) Experimental result of Ag/TiOx /ITO memristive system using a pulse measurement
unit instrument with asymmetric positive and negative voltage magnitudes and pulse-widths (in-
set). Each loop shows 25 experiments, electrode area is 1 × 10−4 cm2 and rise/fall sweep rate
is 46 m V s−1). (b) Shows the non-zero crossing of Ag/TiOx /ITO (main) and Pt/TiOx /Pt systems
(inset). In a simplest form, Area1 and Area2 are highlighted as represent the electric power for the
memristive device under test, P = IV

Given the definition and the characteristics of memristive devices, this chapter
discusses potentials of these devices in computing and highlights their in situ com-
puting capability. The aim is to highlight their alternative solution for beyond von
Neumann model, such as cognitive computing. The classical von Neumann machine
suffers from a large sequential processing load due to the existence of the separation
between memory and logic [2]. In contrast, cognitive computing introduces a more
efficient implementation but not necessarily low-power. Software techniques are
also power hungry. A very first application of resistive memories for cognitive com-
puting was proposed by S.R. Ovshinsky base on ovonic memories (chalcogenide
memory materials), which are better known as phase change memories (PCM) [31].
Ovonic threshold switches are fast and relatively small [11, 30], however, resistance
drift is a big problem for them to behave as a nonvolatile analog memory. This decay
can also be seen, in a much limited form, in ECM and VCM systems [9, 15, 39].

It has been experimentally proven—in small scale—that memristive devices are
able to carry out logic operations [4], hence a possible option for implementing a
tighter coupling between memory and logic. Owing to the multi-stable state memory
property and the relatively long term decay, they are also able to encode synaptic-
like weights [14]. Other possibilities for cognitive computing domain have been
reported in [33, 38, 39, 53].

1.1 Uncertainty Mitigation for Cycle-to-Cycle Switching

One of the pronounced differences between CMOS and resistive switching tech-
nologies is the cycle-to-cycle variation; something that was not a significant issue
in CMOS technology. The amount of cycle-to-cycle resistance variation has been
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Fig. 2 Resistance
measurements between
50 mV and 200 mV of the
current-voltage curve in
Fig. 1a. Four measurement
points per cycle (two
measurements per resistance
state per cycle). Resistance
ratio demonstrates a
RHRS/RLRS ≈ 3

constantly reported as significant [22]. Here we suggest that device (thin-film) char-
acterization techniques can be used to mitigate such variation.

An interesting result of an appropriate device characterization is to determine
voltage (or current) magnitudes as well as applied pulse-widths that result less vari-
ation in low and high state resistances (RLRS and RHRS) values. The result in this
case is an asymmetric voltage pulse that is shown in Fig. 1a (inset) with −0.85 V
and 0.53 V. A four-point resistance measurement between 50 mV and 200 mV per
current-voltage loop (each loop represents a cycle) is shown in Fig. 2. As expected
from the theory, the device behavior can be controlled using combination of voltage
and time.

In this case, with this assumption that the barrier wall (filament tip) displacement
for SET and RESET switching are the similar and the RLRS is not hugely smaller
than RHRS (as shown in Fig. 2), one could argue that in the both scenarios an equal
amount of ‘work’ should be put into the system to minimize the uncertainty. We
adjusted the positive and negative pulse-widths (in Fig. 1a, inset) to compensate
for the difference between Area1 and Area2 (in Fig. 1a), and balance the work for
positive (Wpos = Area1× tpos,pulse) and negative pulses (Wneg = Area2× tneg,pulse).
According to our characterization, the ratio of the positive pulse-width over the
negative pulse-width should be in the vicinity of 2.3, which is about Area2/Area1.

2 Device Dynamics

To measure the function f (·) in Eq. (1), several time-domain experiments for I and
V are required. According to our measurements, a sinh(·) like behavior explains dy-
namics of the device. The sinh(·) term defines the dependency of velocity, dh/dt , as
a function of the effective applied electric field that has been described as an ionic
crystal behavior in the presence of an external field [26, 27]. An additional term
highlights the dependency of the current conductance, Gt , to the previous conduc-
tance state, Gt−1. This describes the relationship of long-term potentiation (LTP)



Memristive in Situ Computing 417

Fig. 3 Change in the
conductance of a memristive
device under three different
DC voltages. We perform
4096 points measurements
over 212 s

and long-term depression (LTD) in memristive devices as a function of their initial
states.

The LTP and LTD are strong functions of the device’s asymmetrical charac-
teristics. Bipolar device’s (e.g. ECM systems) current-voltage characteristic usu-
ally shows a certain asymmetry in the absolute value of the threshold voltages
and filament growth/reduction rate (ΔG). This asymmetry can be engineered us-
ing different electrodes and/or during electroforming process [13, 51]. We perform
4096 points measurement over an execution time of 212 seconds, using a source-
measurement unit instrument, at three different dc voltages to highlight the voltage-
switching time relationship in the memristive systems.

We use a nonlinear form function, y(h), to define dh/dt as a function of h based
on Fig. 3 in [35]. The y(h) function then should be multiplied by the sinh(·). The
conductance behavior as a function of h is also shown in Fig. 2 of [17]. Due to the
asymmetric behavior of h→ 0 and h→ L [35], we have used two different y(h) to
achieve a more accurate modeling [17, 18, 35]. The state variable equation then can
be defined as

dh

dt
= y(h) sinh(υV )+D(h), (2)

where υ is voltage coefficient and the function D(h) represents the decay term. The
decay term has a negative exponential form with a relatively long decay [6, 29].
The first term of Eq. (2), represents a voltage dependent and highly nonlinear part,
which makes high-speed digital computing possible. This property originated from
the fact that resistance modulation inside the metal-oxide occurs via electron-ion
interactions. This term would create some problems for learning applications.

The nonlinear behavior produces a threshold-like region that voltages below that
a certain point does not change the conductance significantly. Considering the fact
that, device’s conductance, G, can be tuned by a series of voltage pulses with ap-
propriate pulse-width (pulse-rate modulation or pulse-width modulation). Applying
a voltage around the threshold slightly changes h depends on the pulse-width (nor-
mally a few µs for low voltages). It is observed that such voltage cannot change
the state if the duration is in the orders of ns. However, slightly increase in the ap-
plied voltage increases the speed by orders of magnitude, which makes nanosecond
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(digital) switching possible. Therefore, a series of few µs pulses with an appropriate
pulse shape and voltage magnitude can be used to implement an analog memory
device that is able to mimic individual ion channel of a synapse.

The analog memory behavior can be engineered either by applying appropriate
voltage/current signals or device fabrication for specific type of desired behavior.
Unfortunately, there is yet no systematic approach to manage and monitor the qual-
ity and performance of devices. Therefore, there is an international race to modu-
larize, parameterize and ultimately uniformize of fabrication processes, modeling
approaches and switching mechanisms.

3 Analog in Situ Computing

3.1 Muti-stable State

Using a source measurement unit instrument, another experiment was performed
on the Ag/TiOx /ITO memristive system under 0.5 V to −0.5 V sweeps as shown
in Fig. 4b. We intentionally removed the voltage sweep from −0.5 V to 0.5 V to
create a net movement toward higher conductances. Repeating the experiments for
more than 5000 measurement points causes a significant reduction in resistance. The
resistance in Fig. 4b is calculated for all V and I points. The solid red line shows the
slop of reduction in resistance. Figure 4a demonstrates the current-voltage curves of
the system.

We consider that changes in the concentration gradient of majority charge car-
riers (electrons and anions/cations) are responsible for the switching phenomenon,
having a perfect switching characteristics would require a perfect charge balance. In
the absence of such balance, as a direct consequence of the discussion in Sect. 1.1,
applying a positive and negative voltages for the same amount of time, to the de-
vice under test, causes a net movement toward either OFF state (RHRS) or ON state
(RLRS). In this case, initial state of the device is close to RHRS, therefore, if time of
the positive voltage ramp, tpos,ramp, and time of the negative voltage ramp, tneg,ramp,
are equal, Wneg < Wpos, because I(V=−0.5) < I(V=0.5), and we observe a well con-
trolled net movement toward higher conductance.

Considering Fig. 1a, other ways to achieve a controlled analog memory behav-
ior apart from pulse-width and pulse-frequency modulation [19, 20], is to either
increase the sweep rate of the applied triangular voltage or apply a current compli-
ance with a maximum allowable current flow, which is much less than the required
current for RESET (switch to RHRS) or SET (switch to RLRS) process. In circuit
design terms, a current limiter can be an accurately biased series transistor.

3.2 Plasticity and Learning

Spike timing-dependent plasticity (STDP) is a form of Hebbian learning in which
plasticity is induced by temporal correlations between pre- and post-synaptic spik-
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Fig. 4 Memristive analog behavior in Ag/TiOx /ITO system. The experiments were performed at
room temperature in dark. (a) sinh(·)-like current-voltage curves. (b) voltage, current and resis-
tance of the device for more than 5000 measurement points

ing neurons [5, 10, 40]. Connections can be drawn between memristive devices and
biological synaptic update rule, such as STDP [12, 14, 16, 24]. This can be achieved
by collecting data from a memristive device based on the arrival time difference, Δt ,
between pre- and post-synaptic spikes. Mathematically, if Δt = t

post
j − t

pre
j then the

STDP weight modification rule can be defined as a linear summation of exponential
functions,

wij = u(−Δt)A+e−Δt/τ+ − u(Δt)A−eΔt/τ− , (3)

where u(z) = 1 if z < 0 and u(z) = 0 if z > 0, and A+, A−, τ+, and τ− are fitting
parameters to model the experimentally determined STDP points. This can be in-
terpreted as an specific form of exponential expression of Eq. (2). It is also shown
that BCM (Bienenstock, Cooper, and Munro) [3] learning rule follows directly from
STDP when uncorrelated or weakly correlated Poisson spike trains [10] are used.
Therefore, it is expected that both STDP and SRDP (spike rate-dependent plasticity)
can be implemented with memristive devices [23].

The results are shown in Fig. 5a, which shows how the device under test weight
(resistance) changes as a function of Δt . The intermediate states vanish after a cer-
tain decay duration whereas a significantly higher potentiation (x → 1) will be kept
as a long term memory [6, 23, 29]. The results in Fig. 5, partially highlight that the
memristive network follows the competitive learning behavior, reported in [40].

The collected information is then used as stimuli for a network of 1 × 1000
memristive devices are connected to one neuron being implemented and pre- and
post-synaptic spikes shape is the same as [53], then this network implements the
competitive Hebbian learning [40]. Initial states have been shown in Fig. 5c in red.
Intentionally, a Gaussian distribution has been employed for the memristors’ ini-
tial state values. After running the simulation for 35 minutes, the network results
in a population distribution of weights similar to a previously published competitive
Hebbian learning [40]. The additive, multiplicative and log (log-STDP) features of a
memristive network strictly depends on the device and its nonlinearity parameters.
Figure 5b demonstrates a Poissonian ISI distribution. There are several relatively
large scale implementation of cognitive computing structures based on nanoelec-
tronics, which can be found in [42, 52].
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Fig. 5 Memristor, plasticity, and competitive learning. (a) Dots illustrate experimental data and
the solid (red) line shows the fitting STDP rule. We exclude devices that reach lowest and highest
conductances, because they add no extra information to our analysis. (b) A Poisson distributed
inter-spike interval (ISI) for 1 × 1000 devices (synapse) connected to one neuron, inset in (c).
(c) Illustrates simulation results of such network

It is important to note that unless appropriate design parameters, such as total
required current for device programming, leakage currents, resistance decay, over-
head programming and sensing circuitry, etc are taken into account, a hybrid mem-
ristive/CMOS cognitive computing system does not necessarily make an energy ef-
ficient system.

It worth to emphasize that the above mentioned evidence [44] regarding funda-
mental facts of electrochemistry of the memristive devices, allows a different point
of view toward memristive devices. It indicates that it is plausible to expect that such
devices are capable of mimicking galvanic effects in biology or vice versa.

3.3 Programmable Analog Circuits

Although plasticity plays an important role for adaptation and development, net-
works with fixed synaptic weight pattern should be studied as well. One of the
challenges for the memristive emerging technologies is to integrate learning and
unlearning hardware as part of a neural computational platform. Since memristive
devices possess a threshold-like behavior, usually very low-voltage operations do
not change their initial state. This fact helps developing programmable analog com-
puting circuits [1, 28, 32].

Here, we introduce the use of a memristive array for implementing a multipli-
cation of inputs and their internal state, h, which is a representation of the device
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Fig. 6 Multiply-accumulate module. (a) Shows a single row of multiply elements (memristors),
Ini ·wi . (b) Demonstrates simulation results for two memristors, M1 and M2. In this simulation,
memristor M2 programmed at x = 0.5, which is equivalent to (RHRS +RLRS)/2. Then memristor
M1 changes its resistance from RLRS to RHRS in three steps. Each step is a simulation that is shown
with different colours. Blue for RM1 =RLRS, green for RM1 close to (RHRS+RLRS)/2, and red for
RM1 close to RHRS. The summing amplifier can be replaced by any threshold module for different
applications

conductance. Figure 6a illustrates a single row of the array and Fig. 6b shows its
simulation results for two elements, M1 and M2, connected to two inputs, In1 and
In2. In this case, we first applied a voltage pulse to M1 to read its conductance, then
a pulse to M2 for the same reason. When two voltage pulses are simultaneously
applied to M1 and M2, accumulation operation can be clearly observed.

4 Digital in Situ Computing

The existence of the sharp switching threshold, functional uniformity, intermediate
state initialization, and most importantly state decay creates several problems that
can be eliminated or compensated for by using the device as a binary switch [34, 45].
Other than the possibilities that the switch creates for cognitive computing, such
as stochastic learning based on binary weighted synapses, implementing Boolean
operations are also very interesting part of the current mainstream research on ‘More
than Moore’ technologies [46].

Memristive devices have shown in situ computing in a digital form as well. While
such capability is described in [4], here our focus is on a novel type of memristive
devices, complementary resistive switch (CRS).

4.1 Complementary Resistive Switch: Diodeless Nanocrossbars

Although, memristive devices have introduced new possibilities and they are well
adapted in the crossbar architecture, the inherent parasitic current paths (sneak cur-
rent paths) between neighboring cells of an addressed cell impose limitations on the
array scalability [18, 21, 25]. A possible solution is to build a diode or a transis-
tor in series with the device. Therefore, more current requirements for the RESET
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Fig. 7 CRS device structure and logical definition of each combination. (a) demonstrates all op-
erational states, (b) illustrates the crossbar view, and (c) shows CRS functionality

and SET process means larger series diode or transistor. Using transistors also adds
other scalability issues due to the fact that transistors are not very well stackable and
the application of diodes imposes a high drive current limiting the use of such array
in an ultra-low-power applications.

Linn et al. [25] introduced a new paradigm by exploiting two anti-serially con-
nected bipolar memristive devices. The structure is similar to a memistor (note the
missing “r”) with a control gate as the middle electrode [43, 48, 49]. A (digital)
CRS uses a combination of a HRS (H) and a LRS (L) to encode logic “0” and logic
“1”. Consequently, the overall resistance of such device is always around HRS, re-
sulting in significant reduction in the parasitic current paths through neighboring
devices. Figure 7a summaries the CRS states. If p and q indicate resistances of the
memristors M1 and M2, respectively, four different states can be observed. For ex-
ample, p/q ← L/H indicates that LRS is written in p (device M1) and HRS in q

(device M2). Combinations L/H and H/L for p and q represent logic “1” and logic
“0”, respectively. Note that the H/H state only occurs once in a fresh device. Ac-
cording to Fig. 7c any transition between the states occurs if the applied voltage
exceed the SET thresholds, Vth,S1 or Vth,S2 and the device’s initial state supports
the transition. Possible state transitions are shown in Table 1, where p′/q ′ shows
the next state, p/q illustrates the initial state, and output is a current pulse or spike.
These outputs enable us to have two different read-out mechanisms, logic→ON or
logic→ logic.

The transitions in Table 1 can be defined using material implication logic [4,
37]. It has been proven that the implication operation and FALSE operation are a
complete set for logical operations [47]. This logical operation results in change of
q depending on the state of p (or vise versa), known as p IMP q , ‘p implies q’
or ‘if p then q’. Therefore, if we represent p NIMP q it means ‘p not implies q’,
Table 1 (i), for example, represents q ← H and we say the conditions (initial p/q

and ΔV ) not implies q .
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Table 1 State transitions in a CRS

p/q ΔV = VIA − VIB p′/q ′ Output

(i) “1” Vth,S1 < ΔV < Vth,R1 ON Pulse

(ii) “1” Vth,R1 < ΔV “0” Spike

iii) “0” Vth,R2 < ΔV < Vth,S2 ON Pulse

(iv) “0” ΔV < Vth,R2 “1” Spike

(v) ON Vth,R1 < ΔV “0” –

(vi) ON ΔV < Vth,R2 “1” –

4.2 CRS-Based Boolean Operations

In [16], we introduce CRS-based logical operation and PLA (programmable logic
array) that works with the two transitions, logic→ logic and logic→ON, but we
only present it with the later transition. The idea is to charge a bit-line in a crossbar
array, and applying inputs to its word lines. The inherent implication property of
the device causes a change under certain conditions that we have already discussed.
In [37], AND and NOR operations are proposed using the logic→ logic transition
and current spike read-out process. This method is very dependent on the current
spike which occurs by a transient ON state between two logic states. In their imple-
mentation, two combinations have been evaluated out of two possible combinations
for two CRS devices. Assume voltage, ΔV , is applied across a CRS device that is
exceeded its RESET threshold, in this situation this device changes its stored logic,
D, if D is a certain logic depends on the signature of ΔV . Furthermore, if two CRS
devices are connected together, that intermediate point can be connected to either
ground or power supply to generate NOR/AND gate. That is the reason that no more
possible state can be assumed using such approach.

In Fig. 8a, the output is initially charged and it is discharged depends on D and
In. In Fig. 8b complementary of signal X is applied to the device. Obviously, more
operations can be done sequentially and they require one (or several) initialization
but this is a drawback for all of the available Boolean logic operations reported
in [4, 37]. Pull-up (charge) voltage is enough to push a device to its ON state and
not writing a logic, Vth,S < Vpu < Vth,R. NOT function can be also implemented
using a single CRS if D stores (the data) A and X = 0, F =A. Here we remove the
outputs’ complementary signals, AND and NOR. The yellow highlights show the
OR-plane and the rest are in the AND-plane.

In [16], two comprehensive forms of building logical gates were introduced. The
first form, allows storing one or more inputs as device state and the second method
does not. Figure 8 illustrates how CRS works as an implementation of a not im-
plication, NIMP, operation and how NAND and OR operations can be implemented
using a single CRS device. Figure 8e and f follow similar phenomenon but in a form
of a PLA. The idea is to have a logic→ON transition in the OR-plane whenever
an output product term is addressed. From the NIMP operation, we know that if the
applied inputs are part of the output product terms, that bit-line does not discharged
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Fig. 8 CRS-based logic gate structures. (a) D represents stored data, X is an input, and Rpu is pul-
l-up resistor. (b) Shows how a not implication, NIMP, can be implemented. Here q ′ ←D NIMP X.
(c) Two inputs NAND gate is implemented by storing one input as device state and another one as
an actual input. (d) Similar to NAND but complementary of D stored in the CRS and X is applied
as an input. (e) and (f) are PLA implementation of the two logic gates

Table 2 CRS-based logic
implementation with two
inputs and two CRSs,
F =D1 ·D2 +D1 ·X2 +
D2 ·X1 +X1 ·X2

D1 D2 X1 X2 Function

A A 0 B A ·B (AND)

A A 0 B A+B (NOR)

A A B B A⊕B (XOR)

A A B B A�B (XNOR)

so there will be enough voltage across the output CRS device with stored logic “1”
(greens) to turn to ON and conduct significantly more current to charge the output
signal load.

In the case of using differential voltage pairs, Vpu =−Vpd = 1.4 V was selected
as 2.8 V is the READ voltage (in Fig. 7), where Vpu and Vpd are pull-up and pull-
down voltages. Here we applied Vpu = 2.8 V and Vpd = 0 V, so we used 0.25 µm
CMOS transistors in our CMOS domain. Therefore, equivalent input voltage for
logics “1” is 2.8 V and for logics “0” is 0 V. The pull-up and pull-down resistors,
Rpu and Rpd, are both equal to RLRS

√
2(r + 1), where r = RHRS/RLRS [18]. The

used peripheral CMOS circuitries can be found in [36]. The sense amplifier was
designed for voltage sensitivity more than 100 mV.

Assuming we have two inputs, X1 and X2, and two CRS devices, D1 and D2,
connected to these inputs and a charged bit-line. A number of functions can be im-
plemented by writing F =D1 ·X1 +D2 ·X2, hence, F =D1 ·D2 +D1 ·X2 +D2 ·
X1 + X1 · X2. The first term, D1D2, indicates that if both CRSs store “0” TRUE
(F = 1) is implemented. Some other function that is implemented using this config-
uration are shown in Table 2. Figure 9 (a) illustrates simulation of a two input NAND
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Fig. 9 CRS-based logic gate simulations. (a) A 2-input NAND gate (Fig. 8 (c)) simulation. In this
style, we are allowed to store one input as the CRS state. (b) A 3-input XOR (SUM) function, im-
plemented in a PLA structure. In both cases, (a) and (b), dashed red line show worst-case low and
high output voltages that are sent to sense amplifiers. Due to limited space, complementary output,
XNOR, is not shown. Initialization in (b) means, the array should be initialized before the next
logical operation and this is the main reason that the first approach (in (a)) is a far more efficient
implementation in terms of both hardware and number of steps. No initialization is required in (a),
because ‘writing D’ effectively means writing one of the input’s logic into the device

function. The most significant advantage of this method is that the initialization step
(step 1) which is writing data into CRS arrays and not a simple refreshing cycle.
While in a PLA structure, Fig. 9(b), the initialization is a refreshing cycle. Fur-
thermore, in computer arithmetic operations signals arrive with relative delays, like
SUM results and CARRY output, that can be used in parallel with the programming
of CRS arrays. In [21], we demonstrate a CRS-based content addressable memory,
which promises an entirely passive implementation of a content addressable mem-
ory array (excluding sensing and addressing circuitry).
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Memory Effects in Multi-terminal Solid State
Devices and Their Applications

Davide Sacchetto, Pierre-Emmanuel Gaillardon, Yusuf Leblebici,
and Giovanni De Micheli

Abstract We give a general overview on Silicon nanowire-based multi-terminal
memristive devices. The functionality of the devices can be used for logic, mem-
ory and sensing applications. It is shown that three- and four- terminal memris-
tive devices can be used for both logic and memory applications. In particular,
Schottky-barrier silicon nanowire FETs are very interesting devices due to their
CMOS-compatibility and ease of fabrication.

1 Introduction

The main source of the CMOS success lies in the exponential increase of device
density that the silicon industry kept true for more than 40 years reducing the unit
cost of integrated circuits. Recently, the pace of scaling has been slowing down due
to approaching fundamental limits at the device level. While the paradigm of scaling
is still alive, researchers are striving to follow Moore’s law by focusing on new ma-
terials, new device structures and new state variables. The basic building block for
circuits has always been the four-terminal planar transistor but new versions of the
MOSFET structure such as the double-gate FET, the FinFET, the gate-all-around
nanowire FET can be found in commercial products. Due to the natural limita-
tions of materials, future nano-scale circuits will have to exploit more efficient ways
for computation and memory storage. One possible scenario envisages an end of
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Fig. 1 (a) Parallel nanowire two-terminal memristive devices. (b) Crossbar array consisting of
memristive cross-points (two-terminal). (c) Gate controlled three-terminal nanowire memristive
device. (d) Double-gate four-terminal nanowire memristive devices

charge-based technologies, after which computation will rely on alternative, more
power efficient state variable manipulation. A long list of fundamental state vari-
ables other than charge includes the spin, phase, multipole orientation, mechanical
position, polarity, orbital symmetry, magnetic flux quanta, molecular configuration,
and other quantum states [1]. Technologies using new state variables would have
to be implemented within a completely new technological platform, and cannot be
seen as CMOS-compatible alternatives.

The recent realization of devices by Stanley Williams and his team [2] gave new
push to solid state research for logic and memory applications. For instance, ultra-
dense crossbar memristive memory arrays can be made thanks to the compactness of
the two terminal junction. Complementary logic based on two-terminal memristive
devices (see Fig. 1a) or ultra-dense crossbar arrays with memristive cross-points
(see Fig. 1b) can dramatically improve device density up to 1011 bits per square
centimetre [3]. Moreover, the use of memristive effects as new state variables for
computation can be exploited to build new types of functional devices with three-
or four-terminals (see Figs. 1c and 1d, respectively).

The physical realization of the memristor, whose behavior was postulated by
Leon Chua [4] and generalized by Chua and Kang [5] for memristive devices and
systems, offers a completely new set of possibilities for logic operations [6]. It is
worth noting that, a generalized model for memristive systems can be implemented
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under DC, small signal and sinusoidal excitation [5]. The implications of such mod-
eling is linked with the observation of memristive functionalities over a broad range
of technologies based on nanoelectronic and nanoionic behaviors.

The content of this chapter is organized as follows. First, a generalization of
memristive devices is given (Sect. 2), including resistive RAMs, two-terminal de-
vices with memory and multi-terminal memristive devices. Applications of resistive
RAMs are discussed for application, such as standalone memory (Sect. 3.1), FPGAs
(Sect. 3.2) and programmable TSVs (Sect. 3.3). Then, a discussion on the applica-
tions multi-terminal memristive devices is given in Sect. 4. Finally, we draw the
conclusions.

2 Generalization of the Memristive Devices

In this section we survey the generalization of memristive theory, which is mainly
a mathematical description of memory effects that can be experimentally observed
in several electronic devices. The memristive functionality is not a unique property
of two-terminal passive devices but mainly a memory effect related to internal state
variable changes. For instance, the memristive functionality can also arise from a de-
layed switching response of a Zener diode [7]. As described by Di Ventra et al. [8],
the memory effects in nanoscaled devices can be generalized for resistance, capac-
itance and inductance to their time dependent and non-linear responses. If u(t) and
y(t) are two complementary constitutive circuit variables, denoting the input and
the output of the system, respectively, and x is a n-order vector of internal state
variables, the existance of a nth order u-controlled memory element as that defined
by:

{
y(t)= g(x,u, t)u(t)

ẋ = f (x,u, t)
(1)

where g is a generalized system response and f is a continuous n-dimensional vec-
tor function. As described in [8], the relation between current and voltage defines a
memristive system, while the relation between charge and voltage defines a memca-
pacitive system and the flux-current relation defines a meminductive system. Equa-
tions (1) can be further generalized for cases where the internal state is described
by a continuous function or functions instead of discrete variables as well as cases
for which the internal state variables follow a stochastic differential equation rather
than a deterministic one. In the next sections, we review some of the two-terminal
passive devices that can be modeled as memristive. The memristive functionality is
seen as arising from different physical mechanism for different device classes. Thus,
three- and four-terminal devices that show memristive functionality can be used for
electrical control signals (either voltage or current). It is important to remember that
a device showing a “pure” flux-charge relationship has not been found yet. Con-
versely, internal state variables can provide a stimulus response that can be modeled
as memristive, thus adding more degrees of freedom for circuit designers.
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Fig. 2 The “hissing of the electric arc” as presented to the Institution of Electrical Engineers in
1899 by Hertha Ayrton. Reprinted from [10]

2.1 Resistive RAMs

A mathematical definition of two-terminal passive mem-resistive devices has been
formulated by Chua and based on this interpretation a mem-resistive device would
present three fingerprints:

• pinched hysteresis loop in the i(t)–v(t) plane;
• passive: i = 0 when v = 0;
• frequency dependence with the input signal u(t)

However, many electronic devices that were previously classified as “memristors”
or as “memristive devices and systems” have been recently re-classified as their ac-
tual behavior requires an extension of the memristive theory [9]. Nevertheless, by
looking at these three fingerprints, it has been recently reported that mem-resistive
behavior has been noticed in several electric devices in the past two centuries [10].
More specifically, a predominance of mem-resistive behavior seems to be linked
with an electric discharge phenomenon, and as such it is believed that the first mem-
ristor was actually found in 1899 by Herta Ayrton (see Fig. 2). Later on the solid-
state realization of devices by Stanley Williams and his team [2] which showed
mem-resistive fingerprints gave new push to research on nano-scaled mem-resistive
devices. It has been stated that the mem-resistive “fingerprints criteria” are satis-
fied by several resistive switching materials, and as such it becomes clear that the
mathematical formulation of memristors and memristive devices does not necessar-
ily link to a specific physical phenomenon. Considering resistive switching materi-
als, a classification based on physical phenomena has been provided by Waser (see
Fig. 3) [11].

Two-terminal memristive devices can be based on metal/oxide switches (one ex-
ample is the Pt/TiO2/Pt sandwich shown in Fig. 4), such as for SiOx [12], HfO2 [13],
CuO [14], NiO [15], ZnO [16], Al2O3 [17], VO2 [18], SrTiO3 [19]. These de-
vices behave as solid-state electrochemical switches, whose resistance is defined
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Fig. 3 A classification of
resistive switching devices
depending on the underlying
physical mechanisms as
provided by Waser [11]

Fig. 4 Resistive switching
through I–V sweeps for
planar Pt/TiO2/Pt [23]. The
inset shows the Pt/TiO2/Pt
ReRAM sandwich layer on
top of an insulated substate
with the two terminal
electrical contacts

by a metallic filament formation mechanism related to the solid-state redox reac-
tions stimulated by the polarity of the applied electric field [20]. One example is the
CuO-based ReRAM of Dong et al. [14] (see Fig. 5), that shows repeatable resistive
switching at very low voltages.

The well known TiO2-based ReRAM [21, 22] seems to be based on a different
mechanism, which is attributed to the vacancy/dopant diffusion in the oxide layer.
The re-distribution of oxygen vacancies into the TiO2 depends on the polarity of the
applied voltage, and it causes the switching between a semiconductor state into a
metallic one. Typical ReRAM functionality of the TiO2-based ReRAM is shown in
Fig. 4 [23] and Fig. 6 [21], with the resistivity switching by 5 orders of magnitude.

Another type of two-terminal memristive device is the phase change (PC)
RAM [24]. The main switching mechanism is based on phase transition between an
amorphous and a crystalline type due to Joule heating effects controlled by a voltage
pulse. For instance, Si nanowires can be engineered such that melting and solidifi-
cation processes can be iterated, thus giving rise to alternate resistance states [25].

Another class is based on polymers [26]. Several memristive switches can be
build by inter-posing a bio-molecule layer with properties ranging from molecule-
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Fig. 5 Switching mechanism
of a CuO-based ReRAM.
Reprinted from [14]

Fig. 6 Pinched hysteresis
loop from a Pt/TiO2/Pt
memristive junction.
Reprinted from [21]

dependent switching, such as rotaxanes [3], or more in general on inter-locked
molecules [27] but also on molecule-independent switching, where a filament for-
mation mechanism through the molecular layer is involved [28].

A fifth class belongs to spintronics [29]. The spin-transfer induced domain wall
motion in a spin valve structure is by nature a memristive effect and is confirmed
by some recently published results [30]. Moreover, Pershin et al. demonstrated that
electron-spin polarization controlled by the external voltage applied to a spintronic
device (see Fig. 7), acts as a state variable that can be modeled as memristance [31].

In all these devices the amplitude and frequency of the input signal contribute in
the formation of a so called pinched hysteresis loop, whose salient feature is its zero
crossing property [5], which is critical for ultra low power operation.



Memory Effects in Multi-terminal Solid State Devices and Their Applications 435

Fig. 7 Unipolar I–V

simulation for a
semiconductor spintronic
system. Reprinted from [31]

2.2 Mem-Capacitive Switching Devices

As per two-terminal memristive devices, two-terminal mem-capacitive devices can
be based on several mechanisms. A classification has been given by Pershin et
al. [8], and it is divided mainly in two categories: geometrical and permittivity-
related memcapacitors.

An example of mem-capacitive switching device based on geometrical effects
consists of a capacitor with a movable plate, whose movement depends on the ap-
plied electric field [32]. One such device would be a capacitor having one of the
electrodes being elastic. If a voltage pulse is applied across the capacitor, the elastic
plate moves towards the other electrode, in response of the electric field, thus mod-
ifying its capacitance. One possible realization of the geometrical mem-capacitor
can be obtained from a Nano Electro Mechanical System (NEMS) resonator con-
figuration. Such devices can be, for instance, fabricated with a CMOS compatible
process flow on SOI substrates. As depicted in Fig. 8, a NEMS device consisting of
a suspended SiNW and Al metal electrodes can be utilized as a geometrical-effect
memcapacitor. In this device, the SiNW in the middle is utilized as an elastic elec-
trode [33]. It is worth mentioning that the NEMS resonator can also be utilized as
resistive switching device, but this does not represents a case of two-terminal mem-
ristive device because its pinched hysteresis loop does not depend on the frequency
of actuation, as it results on the absolute value of the DC signal (see Fig. 9).

A second example is a device whose permittivity modifies upon the application
of a voltage bias. A memcapacitor proposed by Di Ventra et al [34], consists of
a parallel plate capacitor with additional floating plates in between, separated by
dielectrics. The internal charge can move between the different plates and its polar-
ization can screen the electric field applied at the external plates. This way, based
on the distribution of the charges in the polarized plates, a memcapacitive behavior
is obtained [34].

Another memcapacitive device has been demonstrated with a III–V diode and
high-κ dielectrics [35].
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Fig. 8 NEMS resonator consisting of a SiNW and two Al side-electrodes. A two-terminal mem-
capacitor configuration can be obtained by using the elastic SiNW and either one of the Al pads as
the electrodes. Reprinted from [33]

Fig. 9 Resistive switching
characteristic of SiNW
NEMS [33]. The hysteresis
arise from the var-der-Walls
forces that retain the SiNW at
pull-out. Since the hysteresis
does not depends on the
actuation frequency, this
resistive switching
mechanism cannot be
considered as memristive

2.3 Mem-Inductive Switching Devices

Similarly to the mem-capactive devices, geometrical effects [36] and permeability-
related effects [37] can lead to an inductive system showing memory, thus forming
a mem-inductive device. Several properties, including mechanical, electrical, mag-
netic and thermal were discussed by Pershin et al. [8] as possible mechanisms that
can be exploited in a mem-inductive system.

2.4 Three-Terminal Memristive Devices

The new concept of three-terminal memristive device is presented in terms of mem-
ristive functionality for logic and memory applications.

Examples of three-terminal memristive devices are the electrochemical or-
ganic memristor [39], the solid-electrolyte nanometer switch [40], the ferroelectric
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Fig. 10 Categorization of FETs with memristive functionalities: (a) Conventional FET. (b) FET
with memristive gate dielectric. (c) Gated memristor (memristive channel). (d) Gated memristor
with memristive dielectric

FET [41], non passivated transistor devices (here cite the non-passivated CNT and
graphene transistors), Carbon Nanotube and/or graphene transistors and the ambipo-
lar Si nanowire Schottky barrier FET [42, 43].

A classification of three-terminal memristive devices can be based from the gen-
eral concept of the FET structure (see Fig. 10a) in which memristive functional-
ity can be inserted either by engineering the gate dielectric or by gating a mem-
ristive channel. For instance, trap charging dielectric layers inserted between the
channel and the gate fall into the category of FET with capacitive memory storage
(Fig. 10b). One example in this category can be the flash memory for which the trap
charging into the gate dielectric influences the transconductance state of the chan-
nel [44]. Thus a first category that exploits the operation of writing/erasing cycles
into the gate dielectric will be a generalization of the flash memory concept, for
which volatility of the charges that are injected into the trap charging layer can be
tuned accordingly to a desired frequency response. Such a device has been recently
demonstrated by Ziegler et al. [44] by using a FLASH transistor in a two-terminal
configuration. As depicted in Fig. 11, the device can be operated such that a bipo-
lar resistive switching behavior is measured and non-volatility is a consequence of
trap-charging into the floating gate.

Another memristive functionality is linked with charging/decharging mecha-
nisms into the gate dielectric. We measure Ids for constant Vds = 1 V while sweep-
ing Vgs back and forth between −5 V and +5 V (see Fig. 12d). The devices are not
annealed, and the source is connected to the substrate. This measurement is repeated
for different integration times; which is a parameter of the measurement set-up that
can be set by the operator; and it represents the time over which the measurement is
repeated and averaged. The Ids–Vgs curves show an ambipolar behavior, meaning a
large current conductance under either high and low gate bias. This is mainly due to
the utilization of a silicide (NiSi) having a work function value that falls within the
silicon bandgap, and to the utilization of a lightly doped silicon. On the other hand,
the Ids–Vgs curves have a hysteretic behavior that suggests the hypothesis of charge
trapping at the semiconductor/oxide interface of the MOS capacitor, as well as the
existence of interface states at the metal/semiconductor junction. Both ambipolarity
and hysteresis depend on the integration time (see Fig. 12). When Vgs reaches +5 V
in forward mode, the electrons experience a maximum probability of charges being
trapped in the gate oxide, which is enhanced when the integration time is longer.
Due to the electron trapping at the gate oxide, the channel operates in accumulation
mode, with a lower conductance state for positive Vgs, than in the inversion mode
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Fig. 11 Two-terminal memristive configuration of a FLASH memory cell. Depending on the po-
larity of the applied voltage, trap charging dynamics of electrons to and from the floating gate and
dielectric is responsible of the hysteresis. Reprinted from [44]

Fig. 12 Hysteretic dependence with the measurement (sweep time) duration, the hysteresis win-
dow closes by reducing the measurement time: (a) 256 sec (b) 64 sec (c) 16 sec (d) 4 sec
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Fig. 13 Cyclic voltage
measurement showing
bistable memristive behavior.
Reprinted from [39]

for negative Vgs. Sweeping Vgs back to negative values, reduces the amount of elec-
trons trapped and the device operates in inversion mode, which restores the higher
conductance state.

The threshold at which this high conductance state is reached depends on the in-
tegration time. The hysteresis window is larger when the integration time is shorter,
because the charges have less time to be trapped and detrapped. In the case of a
very short integration time the charges cannot be completely trapped and the lower
conductance state is not reached (see Fig. 12).

Another example can be the zero-capacitor RAM (ZRAM) and the twin-transistor
RAM (TTRAM), which rely on floating body effects in SOI transistor to provide a
volatile hysteresis effect [45, 46].

A second category is the one of the gated memristor (Fig. 10c). A few examples
are the electrochemical organic memristor [39] (see Fig. 13), the bio-memristive
nanowire [38] and the solid-electrolyte nanometer switch [40]. In the electrochem-
ical organic memristor the gate potential is represented by the potential of the bath,
which is used to transfer positively charged Rb+ ions into a polyaniline (PANI)
layer [47]. The conductivity change can be iterated by switching the polarity of the
bath potential, thus giving rise to a unipolar Ids–Vds curve that can be modeled as a
memristor. In this case the device can be set into either memristive or diode func-
tionality. Similarly, a novel method for bio-sensing that has been recently proposed
exploits the memristive effect to detect low concentration of bio-molecules [38].
The device consists of a NiSi/Si/NiSi nanowire structure coated with antibody layer
(see Fig. 14a) shows memristive behavior. The hysteresis loop of this device has
been demonstrated for detection of low concentrations of bio-molecules (antigen)
in a dry environment (see Fig. 14b). Conversely, the three-terminal solid-state elec-
trolyte nanometer switch shows a typical bistable resistance state but using 100
times less current than standard two terminal operation [48]. This device is based
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Fig. 14 (a) Suspended
functionalized Si nanowire
with NiSi extremities. The
functionalized layer is
capable of trapping antigen
molecules which in turn
affects the memristive
hysteresis behavior, giving a
new method for
bio-sensing [38].
(b) A typical memristive
hysteresis is observed; the
blue curve (1) is measured
after drying the sample from
de-ionized water. The red
curve (2) is measured after
dipping in 5 pM antigen
solution and drying. The
measured ΔVds is
proportional to the
concentration of antigen [38]

Fig. 15 Controlled filament
formation of the
three-terminal nanobridge
device. Reprinted from [48]

on controlling the filament formation mechanism using the voltage of a gate termi-
nal (see Fig. 15).

The ambipolar SB FET with SiNW channel reported in [49] (see Fig. 10d), falls
in both categories of gated memristor and trap charging dielectric, as it shows dy-
namic trap charging mechanisms at the Schottky junctions and in the gate dielectric
insulator. The result depicted in Fig. 16 shows a hysteretic behavior that is reminis-
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Fig. 16 Ids–Vds characteristic showing the trapping/detrapping of charges at the metal/
semiconductor junction. The device channel consists of 10 SiNW in parallel. The forward sweep
curve has a symmetrical correspondence with the reverse sweep curve, showing the respective
Schottky barrier modulation. A current ratio of about 50 is found at either Vds = ±1 V. This be-
havior is typical of two-terminal memristive devices for ReRAM applications

cent of a two-terminal monolithic memristive device [50]. The hysteresis reflects the
fact that the Ids–Vds curve for forward Vds sweep is not identical to the same curve
for backwards Vds sweep. It can be attributed to the presence of interface states
at the metal/semiconductor junctions as reported in literature for Schottky diodes
[51]. First, two-terminal measurements are performed. The drain-source current Ids

is measured vs. the drain-source voltage Vds at constant Vgs = 5 V . The device is
equivalent to two back-to-back Schottky diodes. The two diodes operate in opposite
regimes: for negative Vds, the source-to-channel diode is reversely biased while the
drain-to-channel diode is forward biased. For positive Vds both diodes invert their
respective bias conditions. In either case, Ids is limited by the current flowing in the
reverse-biased diode. The reverse current of a metal-insulator-semiconductor diode
has been observed to be very sensitive to charge trapping at the metal/semiconductor
interface [17]. The large current value in the range of mA is most likely due to the
large parallel parasitic structure in the bulk. In an ideal Schottky diode, the current
is given by:

I = IS · e−φBq/kT
(
eV q/kT − 1

)
(2)

with I and V the diode current and voltage respectively, φB the Schottky barrier, k

the Boltzmann constant, q the elementary charge and T the absolute temperature.
From the measured hysteretic behavior, it seems that the diode curve is modified as
follows:

I = IS · e−φBq/kT
(
e(V−V0(V ))q/kT − 1

)
(3)
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Fig. 17 (a) Schematic cross-section of a dual gate device with NiSi source and drain regions on
SOI substrate. (b) A 20 µm long SiNW with 2 parallel GAA polysilicon gates having 4 µm gate
lengths. (c) A FIB cut cross-section image showing the SiNW channel surrounded by a 500 nm
polysilicon top gate

with V0 a built-in voltage at the Schottky contact that is positive for a positive V

sweep and negative for a negative V sweep.

2.5 Four-Terminal Memristive Devices

Memristive functionality can be seen as state variable that can be used for more ex-
pressive logic gates [6]. For instance, the memristive behavior reported in Sect. 2.4
for the SB SiNW FETs can be tuned by operating on the polarity of the gate voltage.
This type of behavior is linked with the double conductance, for holes and electrons.
As described in [52] for SB carbon-nanotube (CNT) FETS, the ambipolarity can be
controlled by using an additional control gate, such that it blocks one type of carrier
conductance. Following this principle, four-terminal memristive SB SiNW FETs
can be built (see Fig. 17). In the following, two modes of operation are reported, de-
pending on the nature of the controlling signal applied at the Si nanowire channel.

2.5.1 Voltage-Controlled 4-T Memristive Device

A voltage-controlled four-terminal memristive Schottky barrier SiNW FET is ob-
tained by using a dual gate configuration such that one of the two gate is controlling
a portion of the channel that is between the source/drain contacts and the main gate.
This configuration is exploited to control the ambipolarity imbalance, such as for
CNT FETs [52]. Since the back-gate voltage modifies the ambipolar conductance,
this fact can be used in ambipolar memristive devices to limit the current levels for
one of the carriers. A fixed back-gate voltage Vbg = +5 V (see Fig. 18a) leads to
imbalanced bistable hysteresis loops under different Vgs voltages. By applying a
negative Vbg = −5 V this imbalance is toggled to the negative side of the charac-
teristics, giving a complementary effect (Fig. 18b). Finally, a Vbg = 0 V (Fig. 18c)
levels off the conductances of electrons and holes, giving a fairly symmetric hys-
teresis.
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Fig. 18 (a) Controlled
memristance for fixed top and
back gate voltages
Vbg =+5 V. (b) Controlled
memristance for fixed top and
back gate voltages
Vbg =−5 V. (c) Controlled
memristance for fixed top and
back gate voltages Vbg = 0 V

2.5.2 Current-Controlled 4-T Memristive Devices

A current-controlled version of the four-terminal memristive Schottky barrier SiNW
FET is obtained by using a current Ids bias instead of a Vds. The output voltage is



444 D. Sacchetto et al.

Fig. 19 Current-controlled
memristive Schottky barrier
SiNW FET hysteresis loop

then compared with Vgs (Fig. 19). The obtained hysteresis can be used as a latch
device, whose position in the Vout–Vin plane can be adjusted by using a different
value of the current bias. A similar behavior has been exploited with three-terminal
Schottky-barrier polysilicon nanowire FETs circuits to build a new logic family
based on precharge and evaluation scheme [53]. Moreover, a similar scheme has
been demonstrated for DRAM type of memory [54] and for pA current and tem-
perature detection [55]. Similarly, SB Si nanowire transistors fabricated with a low
termal budget process and biased in current-controlled mode shows a similar hys-
teresis. Moreover, polycrystalline SiNWs SB FETs can give an hysteretic transfer
characteristic (Fig. 20) very similar to the one reported for crystalline SiNW SB
FETs fabricated with a low thermal budget process [56]. As it is shown in Fig. 20
the maximum output voltage in the transfer characteristics increases with the Ids bias
current. From Figs. 20a–20c the sweep time is reduced. Similarly to what was dis-
cussed for the three terminal SB SiNW FET memristive device, the sweeping time
impacts on the amount of charge that traps at the gate oxide/channel interface, thus
influencing the conductance state of the nanowire channel. A faster sweeping time
outbalances the charge trapping/detrapping mechanism, resulting in lower output
voltages (see Figs. 20a, 20b compared with Fig. 20c).

3 Applications of Resistive RAMs

3.1 Standalone Memories

Future deeply scaled circuits will see their performances limited by the physical lim-
itations of the materials. To keep pushing the performance of computation and the
density of storage, the microelectronics industry envisages using more efficient state
variable than the electronic charge. In this sense, the memristor is an attractive can-
didate for both computation and memory, thanks to its programmable resistive state.
When considering the Resistive RAM (ReRAM) memories, which can be classified
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Fig. 20 V out voltages for
increasing with I ds current
bias. In all the figures I ds bias
values are 100 fA, 300 fA and
500 fA. Notice the output
voltage hysteresis narrows for
increasing frequency sweep:
(a) 24 sec (b) 6 sec (c) 0.5 sec
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Fig. 21 (a) 3D cross-point
ReRAM concept with
fence-like Top Electrode (TE)
shape. (b) Lateral
cross-section view of
Pt/TaOx/CrOy/Cr/Cu
cross-point ReRAM device.
The fence-like TE enables
better scalability of the
cross-point device thanks to a
reduction of the intense
electric field distribution at
the corners

as memristors, excellent scalability and programming time can be obtained if com-
pared to traditional Flash, which make ReRAMs suitable candidates for standalone
memory applications.

In this section, a ReRAM technology demonstrating a Multi-Level (ML) forming-
free Pt/TaOx/CrOy/Cr/Cu crossbars built with low thermal budget ≤200 ◦C is
discussed. The devices show excellent scalability down to 2.5× 109 bit/cm2 with
device half-pitch of 100 nm with projections of practical storage density of up to
1012 bit/cm2 at the 10 nm technology node [57].

3.1.1 Fabrication

The basic device concept is a ReRAM consisting of 2 metal lines crossing orthog-
onally and a transition metal oxide stack in between (see Fig. 21a). Moreover, the
shape of the Top Electrode (TE) has been fabricated such that corners are smoothed
(Fig. 21b). This feature reduces the fringing field intensity at the wire ends, thus
improving both reliability and scalability of the devices. Two different ReRAM
(Pt/TaOx/CrOy/Cr/Cu and Al/TiO2/Al with the Bottom Electrode/Transition Ox-
ide/Top Electrode order) stacks have been built and compared in terms of perfor-
mance. Both stacks have forming-free property and as such they do not require
special forming steps to form the devices. This is a considerable advantage for ac-
tual implementation on chip. Several devices have been built in a passive crossbar
array fashion as explained in the following text. Si bulk wafers are first isolated by
depositing 100 nm thick Al2O3 with Atomic Layer Deposition (ALD) (Fig. 22a).
Then, PMMA bi-layers are patterned with e-beam lithography as lift-off masks for
10 nm/80 nm Pt Bottom Electrodes (BE) deposition (Fig. 22b). In the next step, a
second lift-off mask is defined and 15 nm TaOx oxide layer (Fig. 22c) is deposited
by sputtering from a Ta2O5 target with increasing RF power in Ar/O2 atmosphere
(Fig. 22e). Finally, 50 nm/100 nm thick Cr/Cu bi-layers TE are deposited by e-
beam evaporation (Fig. 22d). For Al/TiO2/Al devices, the Al electrodes are de-
posited with e-beam evaporation while 10 nm thick TiO2 is deposited by ALD. In
Figs. 23a and 23b SEM images of 100 nm wide BE lines and 64 bit passive cross-
bar are shown, respectively. In Fig. 23c, a 3D reconstructed AFM profile is shown.
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Fig. 22 Process Flow. (a) Insulated Si substrate; (b) Pt bottom electrode lift-off; (c) TaOx sput-
tering deposition; (d) TE lift-off (e) Sputtering parameters of TaOx, with increasing RF power and
constant 3 sccm/15 sccm Ar/O2 flows

About 250 individual Pt/TaOx/CrOy/Cr cross-points for area sizes varying from
100 nm × 100 nm to 1 µm× 1 µm, and 64 bit crossbars with half-pitch varying
from 100 nm× 100 nm to 500 nm× 500 nm are built on the same sample following
the proposed fabrication steps. In Figs. 24a and 24b, a tilted SEM view, and a 3D
reconstructed AFM profile of a cross-point device with fence-like TE are shown,
respectively.
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Fig. 23 Top SEM view of:
(a) bottom electrode lines;
(b) complete 64 bit crossbar
array of devices with 100 nm
half-pitch; (c) reconstructed
3D image from AFM profile

3.1.2 Electrical Characterization

Electrical measurements are carried out with an Agilent B1500 semiconductor de-
vice analyzer. Pulse mode sweeps with pulses of 500 µs demonstrate forming-
free Bipolar Resistive Switching (BRS) for Pt/TaOx/CrOy/Cr/Cu (Fig. 25a). The
BRS is obtained for a voltage range of less than 1 V with pristine ON state in
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Fig. 24 Pt/TaOx/CrOy/Cr/Cu cross-point device with 900 nm × 900 nm cross-point area.
(a) Tilted SEM image view. Notice the fence-like structures at the edges of the TE line. (b) Re-
constructed 3D AFM image of the pristine cross-point device. Average roughness on TE is
σ ≈ 42.6 nm

Fig. 25 (a) Typical I–V characteristic of the Pt/TaOx/CrOy/Cr/Cu ReRAM cell showing re-
sistance ratio of 104. Notice very low VSET =+0.8 V and VRESET = −1 V. After fabrica-
tion the devices are forming-free and in the ON state. (b) Typical I–V characteristic of the
Al/TiO2/Al ReRAM cell after forming with VSET =−1 V and VRESET =+0.8 V. Inset shows
VFORMING =−3.4 V

the same range of the Low Resistance State (LRS). This is an important advan-
tage compared with non forming-free ReRAM devices, because the forming oper-
ation requires higher voltages. A forming voltage of −3.4 V has indeed been nec-
essary for the Al/TiO2/Al (Fig. 25b), that then show similar performance as the
Pt/TaOx/CrOy/Cr/Cu devices. In Table I structural and electrical parameters of the
different cells are reported.
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Fig. 26 (a) X-ray diffraction
pattern on a Si wafer
demonstrating amorphous
TaOx/CrOy. The peaks are
related to the presence of Cu
and Cr metal layers on top of
the TaOx/CrOy. The Si peak
comes from the substrate and
it has been utilized for the
calibration of the X-ray
diffractometer. (b) XPS depth
profile analysis showing the
presence of both Cr and Ta in
oxidized states. Both
Ta2O5−δ andTaO2−γ are
present, with more conductive
TaO2−γ close to the Pt BE
and mixture of TaO2−γ and
CrOy at the Cr/Cu TE

3.1.3 Discussion

Material characterization has been carried out to understand the pristine ON state of
the Pt/TaOx/CrOy/Cr/Cu device. The X-ray diffraction pattern of Fig. 26a shows
peaks from the TE and the Si substrate. The absence of any Ta2O5 or TaO2 peaks
indicates that the material is in amorphous state, due to the low deposition tempera-
ture. The visible peaks are related to the presence of Cu and Cr metal layers on top
of the TaOx/CrOy. The Si peak comes from the substrate and it has been utilized for
the calibration of the X-ray diffractometer. The pristine ON state excludes the con-
ductive filament mechanism and observing the double logarithmic plot of the I–V

curve (Fig. 27a), quasi-Ohmic regimes with slopes ≈1 are obtained for regions far
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Fig. 27 (a) The
log(I)–log(V) plot of
Pt/TaOx/CrOy/Cr/Cu shows
typical trap-controlled
conduction of
Space-Charge-Limited-Con-
duction (SCLC) before SET.
In the SET region, the slope
is about 25 and it is indication
of gradual distribution of
defects. (b) The
log(I)–log(V) plot of the
Al/TiO2/Al shows typical
trap-controlled conduction of
SCLC with quadratic V

dependence before SET
condition, thus following
Child’s law dependence. In
the SET region, the slope is
about 50, and it is indication
of an abrupt distribution of
defects

from the SET condition. Typical trap-assisted Space-Charge-Limited-Conduction
(SCLC) is observed close to the SET condition. The SCLC conduction is also ob-
served for Al/TiO2/Al devices (Fig. 27b) whose slopes indicate a more abrupt dis-
tribution of trap density, which can be related to the different deposition methods. In
both devices, the resistive switching mechanism can be attributed to Redox reaction
linked with the motion of oxygen-vacancies [58, 59]. Moreover, structural modifi-
cation is observed from the roughness profile of Pt/TaOx/CrOy/Cr/Cu cross-point
after 100 cycles. As shown in Figs. 28a and 28b, the Pt/TaOx/CrOy/Cr/Cu average
roughness (Ra) measured above the TE broadens. The Ra changes from a pristine
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Fig. 28 Average roughness
profiles for TaOx
cross-points: (a) σ ≈ 42.6 nm
after fabrication;
(b) σ ≈ 56.3 nm after
100 cycles. The broadening is
attributed to the structural
change induced by the motion
of oxygen-vacancies upon
cycling

100 nm variation into a 200 nm broad window, indicating structural modification
by the motion of oxygen vacancies upon switching. In addition, XPS-depth analysis
(Fig. 26b) confirms that Ta2O5−δ and TaO2−γ phases are present, with more con-
ductive TaO2−γ close to the Pt BE and mixture of TaO2−γ and CrOy at the Cr/Cu
TE that is consistent with the Redox switching mechanism.

3.1.4 High Density Multi-valued Crossbars

Several resistance levels of Pt/TaOx/CrOy/Cr/Cu devices can be programmed. As
shown in Fig. 29a, four levels of resistance (encoding 2 bits) are found within a
4 orders of magnitude range. A larger resistance window of 1 bit is found for
Al/TiO2/Al devices, which show a LRS around 30 
 and a High Resistance
State (HRS) at 1 M
 within 2 orders of magnitude variation (see Fig. 29b).
The Al/TiO2/Al show stable LRS and HRS in a large VREAD voltage range
(Fig. 30a). The Pt/TaOx/CrOy/Cr/Cu devices demonstrate excellent scalability, as
the HRS/LRS ratio improves for smaller device sizes (Fig. 30b). For instance, 2 bit
can be written in a Pt/TaOx/CrOy/Cr/Cu by using shorter SET pulses in order to
program the cell in one of the stable Intermediate Resistance (IR) states. An exam-
ple of 2 bit storage using LRS, HRS and 2 IRs is demonstrated in Fig. 31, each level
is separated of about one order of magnitude from each other for various VREAD.
The devices could be easily assembled into dense 2.5× 109 bit/cm2 passive cross-
bar arrays whose storage density improves to 1010 bit/cm2 thanks to ML capability
of Pt/TaOx/CrOy/Cr ReRAMs.
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Fig. 29 (a) Cumulative
probability of Low Resistance
State (LRS), Intermediate
Resistance states 1 (IR1) and
2 (IR2) and High Resistance
State (HRS) for
Pt/TaOx/CrOy/Cr devices
are shown. The LRS, IR1 and
IR2 are obtained by using
SET pulses of 2 ms, 1 ms and
500 µs at 1 V, respectively.
The HRS is obtained with a
500 µs RESET pulse at −1 V.
(b) Cumulative probability of
LRS and HRS for
Al/TiO2/Al devices are
shown. The LRS and the HRS
are obtained by using SET
and RESET pulses of 500 µs
at −1 V and +1 V,
respectively

3.1.5 Summary

Bipolar Resistive Switching Pt/TaOx/CrOy/Cr/Cu and Al/TiO2/Al devices built
with thermal budget ≤200 ◦C have been fabricated and characterized. Very large
storage density of TaOx/CrOy-based ReRAMs is demonstrated up to 1010 bit/cm2

thanks to the excellent scalability of the fence-like top electrode lines.

3.2 Generic Memory Structure (GMS) for Non-volatile FPGAs

While a lot of research effort targets high density ReRAM-based standalone mem-
ories [60], the focus of this work is the usage of ReRAMs for FPGAs. The reason
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Fig. 30 (a) LRS and HRS
resistance distributions for
increasing VREAD of the
Al/TiO2/Al cell. The 104

resistance ratio is constant
over a large range of reading
voltage. (b) Measured HRS
and LRS values for the
Pt/TaOx/CrOy/Cr cell
devices with different
cross-point area
demonstrating excellent
scalability, indicating local
switching at the nanoscale

behind this choice is that in reconfigurable logic, up to 40 % of the area is dedi-
cated to the storage of configuration signals [61]. Traditionally, the configuration
data is serially loaded in SRAM cells, distributed throughout the circuit [62]. As
a consequence, power up of the circuit is limited by the slow serial configuration.
To overpass SRAM volatility and loading time issue, Flash NVM have been pro-
posed [63]. Nevertheless, the use of an hybrid CMOS-Flash technology results in
high fabrication costs. Conversely, ReRAMs are fabricated within the Back-End-
of-the-Line (BEoL) metal lines, moving the configuration memory to the top of the
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Fig. 31 Resistance
distributions for multi-value
storages vs. increasing VREAD
of the Pt/TaOx/CrOy/Cr cell.
The HRS, IR2, IR1, LRS are
encoded in 2 bit

chip and reducing the area utilization [64]. Similarly, the ReRAM cells can be uti-
lized in combination with TSVs, enabling 3-D stacked FPGA architectures [23]. In
this section, we propose a complete proof of concept of an ReRAM-based Generic
Memristive Structure (GMS) circuit for FPGAs from technology development to
architectural evaluation. The main idea is to replace the pass-transistors in SRAM-
based FPGAs by ReRAMs. Hence, the ReRAMs store the information in their re-
sistive states and can be either used to route signals through low resistive paths, or
to isolate them by means of high-resistive paths. Such a functionality is envisaged
either to build routing Multiplexers (MUXs) or configuration nodes. In order to keep
the programming complexity in the same range of SRAM-based FPGAs, we pro-
pose an efficient methodology based on the inherent GMS complementary program-
ming. The proposed methodology, with GMS-based complementary programming
has been validated by electrical measurements on a fabricated device.

3.2.1 BEoL Integration of ReRAMs

As per the previous section, ReRAMs can be fabricated within the BEoL processing.
Hence, it is possible to fabricate them between two metal layers (e.g. in between
Metal 1 and Metal 2). Because of the BRS of the ReRAMs of this study, depending
on the forming polarity, either the Metal 1 or the Metal 2 terminal can be utilized
as the positive electrode of the memory, giving two possible configurations (see
Fig. 32).

3.2.2 Device Description

In the GMS, two ReRAMs are interconnected as shown in Fig. 33a. The positive ter-
minal of the top memory is connected to the negative terminal of the bottom mem-
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Fig. 32 Cross sectional schematic showing the integration of a ReRAM integrated between the M1
and M2 interconnection levels in the BEoL. (a) The bottom electrode is thus directly connected to
a MOSFET selector (bottom) forming a 1-Transistor 1-Resistor (1T1R) memory node. (b) ReRAM
polarity selection by physical design

ory. This arrangement enables complementary programming of the two ReRAMs
composing a GMS. We call the concurrent programming of the GMS a complemen-
tary programming operation. A similar programming scheme was previously used
for low power crossbars [65]. Figure 33b illustrates the programming of the top
path (i.e. left to right arrow in the programming graph shown in Fig. 33d). R1 and
R2 are switched simultaneously to ROFF and to RON respectively. This operation is
achieved by grounding the common right terminal and biasing the left terminal to
V th (which corresponds to the SET voltage −V th for R1 and to the RESET voltage
+V th for R2). The programming of the bottom path (see Fig. 33c) is obtained by in-
verting the V th and the GND (which corresponds to the RESET voltage for R1 and
to the SET voltage for R2). In addition to speed up the programming operation, due
to the complementary scheme, only two voltages are needed (GND and V th). The
complementary programming operation has been validated by electrical measure-
ments, while the MUX performances have been extracted by electrical simulations.
Figure 34 depicts the resistance values of R1 and R2 of an GMS-based MUX21. Re-
sistances are read at VREAD =+0.1 V. After a preliminary forming step, R1 and R2

are set to RON. The devices are then read for 10 cycles, showing a stable non-volatile
resistance. Hence R1 and R2 are switched using the complementary programming
operation. During the first writing operation SET and RESET events are induced
on R2 and R1, respectively (see Fig. 33c) by applying a voltage pulse for 500 µs.
After reading the resistance values for another 10 cycles, again validating the non-
volatility of the resistance states, a second complementary switching operation is
performed. Now the resistance states of R1 and R2 are complementary switching,
as seen in the reading sequence of Fig. 34. As can be noticed the resistance values
of R1 and R2 do not exactly match. This is due to the different ReRAM geometries
and to the large variability of the cells utilized for the demonstrator. Nevertheless,
improved variability of one order of magnitude has been demonstrated for ReRAM
prototypes fabricated with industrial methods [66].
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Fig. 33 GMS
complementary
programming. (a) Two BRS
resistive RAMs are in series
connected after forming.
(b) When Vth is applied, R1
switches ON, while R2
switches OFF. (c) When −Vth
is applied, R1 switches OFF,
while R2 switches ON.
(d) Graph representation of
the complementary switching
operation

3.2.3 GMS Memory Node

In this section, we present an elementary circuit used to move most of the config-
uration part of reprogrammable circuits to the back-end, reducing their impact on
front-end occupancy. Such a memory node is dedicated to drive LUT inputs. The
memory node is based on a unique GMS node and provides intrinsically the re-
tained information as a voltage level. Furthermore, it shall allow a layout efficient
line sharing.

The basic memory node is presented in Fig. 35c. The circuit consists of 2
ReRAMs connected in a voltage divider configuration between 2 fixed voltage lines
(LA and LB). The memories are used in a complementary manner, in order to im-
prove reliability. Reliability is required as far as the output is not restored by an
inverter for compactness purpose. The output is designed to place a fixed voltage on
a conventional standard cell input. Read operations are intrinsic with the structure,
while programming is an external operation to perform on the cell.
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Fig. 34 Complementary
switching operation for the
ReRAM-based GMS

3.2.4 Read Operation

A voltage divider is used in this topology to intrinsically realize the conversion from
a bit of data stored in the variable resistance to voltage level. Figure 35b presents a
configuration example where the node stores a ‘1’. Voltage lines LA and LB are con-
nected to Vss and Vdd, respectively. For example, consider that the resistive memory
R1, connected to the Vdd line, is configured to the low resistivity state. The other
memory R2, connected to Vss, is in the high resistivity state. As a consequence, a
voltage divider is configured and the output node is charged close to the voltage of
the branch with a high conductivity.

3.2.5 Write Operation

Figure 35c presents the programming phase of the node. First, the lines LA and LB

are disconnected from the power lines and connected to the programming signals.
The programming signals are chosen according to the GMS programming scheme.
Figure 36 presents the programming circuits required to program an array of GMS-
based configuration memories. To provide individual access, each GMS has its own
selection transistor. Thus, the different lines can be shared in a standalone-memory-
type architecture, yielding an efficient layout strategy. The different modes and pro-
gramming signals are selected by line-driving multiplexers.
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Fig. 35 GMS
complementary
programming: (a) Two
in-series connected BRS
RAMs forming a voltage
divider between 2 metal lines,
LA, LB. (b) Voltage
distribution to program a
logic 1 into the GMS cell.
(c) Voltage distribution to
program a logic 0 into the
GMS cell

Fig. 36 Complementary
switching operation for the
ReRAM-based GMS

3.2.6 Summary

This section introduced a novel design, called GMS, based on resistive memories,
designed to replace traditional routing resources in reconfigurable logic circuits. Re-
sistive RAM memories combined into a complementary switching GMS cells were
used to reduce the footprint and to improve the electrical performances of the data
path. The GMS cell can also be used to replace standalone memories, leading to
more compact LUTs and steering logic, due to the BEoL integration of ReRAMs.
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Thanks to ReRAMs, the area and the delay are reduced by 7 % and 58 % respec-
tively due to the compactness and the low on-resistance of ReRAMs.

3.3 Resistive Programmable TSVs

In this section, BEoL technology for 3D interconnects is addressed, as the intercon-
nect delay is a limiting factor of semiconductor system integration. In this respect,
there is a steadily increasing interest in three-dimensional (3D) wafer/chip stacking
solutions utilizing Through Silicon Vias (TSVs) [1] as well as in reconfigurable inter-
connect fabrics. The discussed BEoL demonstrate the co-integration of TSVs with
ReRAM stacks, offering a new path for re-programmable 3D chip routing. More-
over, the authors report on several device schemes that show different write/erase
voltage windows, suggesting a new way for programmable 3D chip interconnects.
the fabrication and characterization of titanium dioxide (TiO2)-based resistive RAM
(ReRAM) co-integration with 380 µm-height Cu Through Silicon Via (TSV) arrays
for programmable 3D interconnects is discussed. Non-volatile resistive switching of
Pt/TiO2/Pt thin films are first characterized with resistance ratio up to 5 orders of
magnitude. Then co-integration of Pt/TiO2/Pt or Pt/TiO2 memory cells on 140 µm
and 60 µm diameter Cu TSV are fabricated. Repeatable non-volatile bipolar switch-
ing of the ReRAM cells are demonstrated for different structures.

3.3.1 Planar ReRAM Devices

First, high resistivity p-type (NA ≈ 1015 atoms/cm2) bulk-Si wafers are prepared
by 500 nm thermal oxidation in H2O atmosphere. Then the deposition of the re-
sistive switching materials is performed by sputtering of Pt/TiO2/Pt layers with
270 nm/80 nm/270 nm thicknesses. A conceptual picture is shown in Fig. 37a. The
top electrode area of 100 µm by 100 µm squares were patterned by standard lithog-
raphy and etched by ion milling technique. The etching step reveal the bottom Pt
electrode, which can be now accessed for electrical measurements.

3.3.2 TSV Devices

The resistive switching materials were integrated with TSVs producing two different
devices:

• 140 µm TSV diameter in 380 µm thick wafer, using Pt/TiO2/Pt memory stack
• 60 µm TSV diameter in 380 µm thick wafer, using Cu/TiO2/Pt memory stack.

The relatively thin wafer is needed due to TSV aspect ratio limitation.

The TSVs are fabricated using the same process in both cases. A standard optical
lithography is used to define the TSV openings. The lithographic step is followed by
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Fig. 37 (a) Concept image
of planar ReRAM made of
Pt/TiO2/Pt stack.
(b) Concept image of the
ReRAM-TSV using
Pt/TiO2/Pt programmable
fuse. (c) Concept image of
the ReRAM-TSV using
Cu/TiO2/Pt programmable
fuse

through wafer etch, RCA wafer cleaning and thermal oxidation in water atmosphere
to grow a 3 µm thick oxide. A 750 nm thick Cu layer is sputtered on the backside of
the wafer and the TSVs are filled using Cu electroplating. At this step the seed layer
remains on the back of the wafer and the TSV create a positive topography on the
front side.

3.3.3 TSV with Pt/TiO2/Pt ReRAM

For the first type of devices, once the TSVs are fabricated the front side of
the wafer is processed with Chemical Mechanical Polishing (CMP) technique
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Fig. 38 (a) Equivalent
electrical schematic of the
TSV with ReRAM memory
elements (denoted by the
switch and the “ideal”
memory element M).
(b) Reconstructed 3D
photograph of the
TSV–Cu/TiO2/Pt device
stack. The die is cleaved to
reveal the TSV and the
ReRAM stack deposited on
top

to form a flat surface. The Pt/TiO2/Pt stack is sputtered with layer thicknesses
270 nm/80 nm/270 nm accordingly. A concept picture of the fabricated structure
can be seen in Fig. 37b.

3.3.4 TSV with Cu/TiO2/Pt ReRAM

For the second type of devices the wafer is polished using CMP on both sides to
remove the seed layer and to planarize the surfaces. The Cu was then cleaned using
a NH4 : H2SO4 etching solution at room temperature for 10 minutes. Then the wafer
was loaded into a vacuumed sputtering chamber and a TiO2/Pt layer was deposited
with thicknesses of 80 nm and 270 nm respectively. The Cu of the TSV is acting as
the bottom electrode of the ReRAM (see Fig. 37c). Equivalent electrical schematics
and the photograph of the devices in a cleaved substrate are shown in Figs. 38a
and 38b, respectively.

3.3.5 Electrical Characterization

Electrical measurements were carried out with an HP4156A semiconductor param-
eter analyzer and cascade probe station in dark conditions. For electrical contacts,
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standard tungsten needles with 15 µm apex diameter were placed on the top elec-
trode area very softly, since a dependence of the switching with needle pressure has
been observed, similarly to the observation of local pressure modulated conductance
with AFM tips [21]. Then double I–V DC sweeps have been used to investigate the
resistive switching behavior. In all the cases, bipolar switching mechanism with dif-
ferent write/erase window and resistance states has been observed. The measured
electrical parameters are summarized in Table 1.

3.3.6 Planar ReRAM Devices

First the planar Pt/TiO2/Pt are characterized and it showed stable and repeatable
bipolar switching behavior between 10 
 and 1 M
 read or measured at +1 V (see
Fig. 39a). Originally the devices are in the high resistance state (HRS). By sweeping
from negative to positive voltages the devices hold the HRS until a SET transition
to a low resistance state (LRS) occurs at +1.8 V. After the SET event, the voltage
sweep continues until +2 V and then move backward toward negative voltage re-
gion. When −1.3 V is reached, the device is RESET to the original HRS state. An
HRS to LRS ratio of about 5 orders of magnitude is read at +0.5 V.

3.3.7 TSV–Pt/TiO2/Pt Devices

Next, TSV–Pt/TiO2/Pt with the same layer thicknesses are measured, showing re-
sistance switching below ± 1V (see Fig. 39b). This voltage reduction is attributed to
a larger surface roughness of the films deposited on the TSVs, which would lead to
a denser electric field at the hillocks as well as to surface states acting as dopants for
the TiO2 [67]. Similar to the planar ReRAM case, the devices are originally in the
HRS, and bipolar resistive switching is obtained. Nevertheless, the SET condition is
found to be only +0.6 V, while the RESET voltage is measured at −0.5 V. Using a
reading voltage of +0.2 V, an HRS of 2 M
 and a LRS of 666 
, with resistance
ratio of 3000 are measured.

3.3.8 TSV–Cu/TiO2/Pt Devices

Since the programming voltages also depend on the current density that can flow
into the switching element, a different approach that limits the current flux is inves-
tigated. As the electrode material influences the Schottky barrier contact with the
TiO2 layer [68, 69], that is a n-type semiconductor, an alternative device is obtained
by depositing TiO2 and Pt directly on top of the Cu–TSV. Thus, thanks to a larger
Schottky barrier height at the Cu–TiO2 interface, a larger programming window is
obtained (Fig. 39c). The SET and RESET voltage positions are now reversed with
respect to the other devices, as the Cu has been used as the top electrode. A HRS of
500 M
 and LRS of 5 k
 are read at +1 V.
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Table 1 Obtained ReRAM electrical parameters for the different devices

Device VSET VRESET HRS LRS RRATIO VREAD

Planar Pt/TiO2/Pt +1.8 V −1.3 V 10 M
 10 
 105 +1 V

TSV–Pt/TiO2/Pt +0.6 V −0.5 V 2 M
 666 
 3003 +0.2 V

TSV–Cu/TiO2/Pt −4.2 V +5 V 500 M
 5 
 105 +1 V

Fig. 39 (a) Resistive switching through I–V sweeps for planar Pt/TiO2/Pt. (b) Resistive switch-
ing through I–V sweeps using TSV–Pt/TiO2/Pt programmable fuse. (c) Resistive switching
through I–V sweeps using TSV–Cu/TiO2/Pt programmable fuse

3.3.9 Summary

In this study, Pt/TiO2/Pt obtained by standard sputtering techniques on oxidized
Si wafers showed stable bipolar resistive switching without the need of a forming
step and with LRS to HRS resistance ratio up to 5 orders of magnitude. The device
is successfully integrated on top of 140 µm and 60 µm TSV arrays either in the
full Pt/TiO2/Pt stack or using the Cu as the top electrode, demonstrating different
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write/erase voltage windows. The co-integration of ReRAM stacks with TSVs is
envisaged as a new and compact solution for programmable/reconfigurable 3D chip
interconnects.

4 Applications of Multi-terminal Memristive Devices

Multi-terminal memristive devices can be exploited by their additional functionality.
For instance, the amplification of the filament formation in the atomic switch [40]
is used to improve writing time and to reduce power consumption during switch-
ing phases. Recently, the authors demonstrated the use of three-terminal memris-
tive Si nanowires for bio-molecule detection in dry environment [38]. More specifi-
cally, in [38] the third terminal is represented by an organic functionalization layer
that wraps the Si nanowire all-around. Another example can be the use of a four-
terminal GAA SB Si nanowire FETs for low current and temperature sensing, as
demonstrated by the authors [55]. Regarding logic/memory applications, the inte-
gration of a three-terminal memristive device realized with Schottky-barrier polysil-
icon nanowire FETs demonstrated the concept of using this devices for new logic
families and hybrid logic/memory gates [53]. For instance in [53], the three-terminal
configuration can be used to compute basic digital functions, such as NAND, NOR
and flip-flop by using a precharge-evaluation phase scheme. Another application
for the three-terminal SB polysilicon nanowire transistors can be the design of a
circuit cell reproducing an hysteretical negative differential resistance [54]. In thin-
polysilicon grain SB FETs, the hysteresis can arise from the granularity of the chan-
nel. In Sect. 2.4, it is shown that a similar hysteresis can also be obtained indepen-
dently on the phase state of the Si nanowire channel. Similarly, the same structure
can exploit the functionality of an additional gate to tune the polarity of a SB SiNW
FET, thus giving even more functionality (as discussed in Sect. 2.4). A very high
expressive power architecture can be made of four-terminal memristive devices ar-
ranged in a crossbar implementation that exploits the high-density of the SiNW
arrays.

4.1 Neuromorphic Circuits

The non-volatile property of the two-terminal memristive devices has a tremendous
potential for neuromorphic circuits, in particular forming artificial synapses follow-
ing the Hebbian rule of learning based on Spike-Rate Dependent Plasticity (SRDP)
as well as new building elements for hybrid CMOS/memristor circuits. For instance,
when considering the perceptron model of the neuron (see Fig. 40), the weighted
connections of the inputs to the summation element can be modeled with the prop-
erties of non-volatile memristive devices.

With this respect, the Hudgkin-Huxley model, can be mathematically described
by first order differential equations. More specifically, Chua and Kang demonstrated
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Fig. 40 Perceptron model of
a neuron. Input signals xi are
weighted by programming
each weight wi and then
summed. The output signal
will be an activation function
that depends on the
summation

that the H–H model of the potassium channel can be identified as a first-order time
invariant voltage-controlled memristive one-port and that the sodium channel can
be described as a second-order time invariant voltage-controlled memristive one-
port. Since this representation is compatible with the mathematical representation
of memristive devices, it is noteworthy to notice that memristive devices based cir-
cuits can be built to emulate the behavior of biological systems, in this particular
case emulating the potassium and sodium channels of the neurons. One example is
an energy-efficient memristor-based integrate and fire neuron circuit which exploit
the bistability of a ReRAM to model both the short time spike event and the re-
fractory period [70]. Another example is the use of the analog programmability of
the ReRAM devices that can be used to emulate the weighted connections of the
perceptron model.

4.2 Current and Temperature Sensor

This section reports on the fabrication and characterization of a pA current and
temperature sensing device with ultra-low power consumption based on a Schot-
tky barrier silicon nanowire transistor. Thermionic and trap-assisted tunneling cur-
rent conduction mechanisms are identified and discussed on the base of the de-
vice sensitivity upon current and temperature biasing. In particular, very low current
sensing properties are confirmed also with previously reported polysilicon-channel
nanowire Schottky barrier transistors. demonstrating that these devices are suitable
for temperature and current sensing applications. Moreover, the process flow com-
patibility for both sensing and logic applications makes these devices suitable for
heterogeneous integration. A range of device operation conditions are investigated,
showing how an ambipolar device can be used for different applications, the only
requirement being the biasing condition.

The Ids–Vgs dependence with T is mainly attributed to the Ith, however T also
influences the Itunnel since hotter carriers pass through a narrower Schottky barrier,
leading to an increasing current level [51]. The IOFF current is increasing exponen-
tially with temperature and its main contribution is a thermionic emission compo-
nent. A different behavior has been observed for the ION current. Increasing the
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temperature makes the ION current to decrease until the temperature reaches 55 ◦C
and then it rise exponentially with linear increase of T . At lower temperatures tun-
neling and trap-assisted tunneling are more important than thermionic emission.
Rising T up to 70 ◦C makes the charges trapped into the gate oxide to un-trap, re-
ducing the Itunnel component. A different behavior is observed for the ION currents
for 70 ◦C ≤ T ≤ 115 ◦C. In this range, the ION exponentially increases with T . This
effect is evidence of two main current components, for which the ION changes from
a tunneling to a thermionic emission dominated regime. A set of Ids–Vgs curves
(Fig. 41a) taken at different temperatures at constant Vds = 100 mV and Vbg = 5 V
are used to extrapolate the Arrhenius plot (Fig. 41c). The constant Vbg = 5 V is
used to set the device operation more favorable for electron conductance at low Vgs.
Constant subthreshold swings ≈ 110 mV/dec are observed independently from the
temperature (see Fig. 41b). Low negative Vgs voltages ranging from −1 V to 0 V
show an almost linear slope with inverse of temperature and can be correlated to
a thermionic-emission regime. However, for this Vgs range the current level is on
the order of fAs, which is comparable to the background noise, and it cannot be
used to extrapolate the Schottky barrier height. Another distinct regime is observed
for−0.3 V ≤ Vgs ≤−0.5 V, for which the slopes are greatly affected by tunneling.
This regime shows a dominant tunneling component for the two lowest tempera-
tures. Finally, an exponential dependence with T is observed again for Vgs ≥ 0 V
with the exception of the lower temperature. All these regimes demonstrate that the
current in our device is mainly thermionic for ≥70 ◦C and that the tunneling contri-
bution is trap assisted. The slopes from the Arrhenius plot are then used to extract
the effective Schottky barrier height φBeff with the activation energy Ea method. As
shown in inset A of Fig. 41d, an average effective barrier height Ea ≈ 450± 5 meV
is found over a large range of Vgs ≥ 0.2 V. However, these values cannot be taken
as Schottky barrier height since in this regime the device has both tunneling and
thermionic components. As suggested by Svensson et al. [71], a better evaluation of
the Schottky barrier height can be taken at the maximum of Ea for low current levels.
As shown in the inset B of Fig. 41d, this maximum corresponds to Vgs =−0.45 V
and gives a φBeff = 525 meV, confirming the mid-gap Schottky barrier height.

4.2.1 Current Sensing

Current biasing the devices with a constant Ids current makes the device to behave
as a pseudo-inverter configuration with hysteretic transfer function. Thanks to the
ambipolarity, the Vout-Vin curves shift linearly with the applied current bias. For
instance in Fig. 42a, low pA current levels can be either read from the high-to-
low or the low-to-high transition voltage with sensitivities of 17 mV/pA. A similar
biasing scheme for polysilicon nanowires has been previously characterized by the
authors show a similar trend. In Fig. 42b, forward and reverse threshold voltages for
currents between 100 fA and 500 fA show a linear increase with current (adapted
from [72]).
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Fig. 41 (a) Effect of the temperature on the Ids–Vgs at Vds = 100 mV (b) Subthreshold swings
associated with the Ids–Vgs. Very low swing minima are measured at 100 ◦C and 115 ◦C close
to threshold voltages. Notice the voltage shift with temperature increase and the extremely low
minima of 40 mV/dec for the highest temperature. (c) Arrhenius plot for different Vgs values
showing both thermionic emission and tunneling mechanisms. The linear decreasing slopes are
associated with thermionic emission regimes. (d) Extracted Ea over a large range of Vgs. Inset A
shows constant Ea ≈ 450± 5 meV. Inset B shows a maximum at 525 meV which is taken as the
value of the effective Schottky barrier height

4.2.2 Temperature Sensing

Another application is temperature sensing. Upon application of increasing tem-
perature of operation, the hysteresis window observed in pseudo-inverter biasing
scheme shrinks. The crystalline Si nanowire Schottky barrier FET shows different
sensitivities at different temperature regimes, depending on which mechanism dom-
inates the conductance. Since the hysteresis is attributed to the storage of charges
in either gate oxide and/or at the Schottky barrier junctions [49], an increased hys-
teresis window is expected for the lowest temperatures. The highest sensitivity of
40 mV/◦C is found in the T range around 40 ◦C at which the trap tunneling mech-
anisms dominates. For temperatures higher than 55 ◦C the sensitivity tends to satu-
rate according to the dominance of thermionic current contribution, leading to lower
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Fig. 42 (a) Measured
input-output transfer
characteristics of a hysteretic
inverter based on a single Si
nanowire FET with low
current bias, showing
current-dependent thresholds.
(b) Forward and reverse
threshold voltages for
polysilicon Schottky barrier
FETs under constant current
biasing from 100 fA up to
500 fA (adapted from
Ref. [72])

sensitivity of 10 mV/◦C. In Fig. 43 the hysteresis window shrinks for increasing T

when 70 ◦C ≤ T ≤ 100 ◦C.

5 Conclusions

A general overview on multi-terminal memristive devices is reported. The function-
ality of the devices can be used for logic, memory and sensing applications. Ultra-
dense memristive ReRAMs crossbar arrays can be used for ultra-dense non-volatile
memory storage. It was shown that three- and four-terminal memristive devices can
be used for both logic and memory applications. In particular, Schottky-barrier sil-
icon nanowire FETs are very interesting devices due to their CMOS-compatibility
and ease of fabrication. Disruptive applications exploiting the high expressive power
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Fig. 43 The hysteresis
window shrinks with
increasing temperature.
Within this T range, the
temperature sensitivity of
10 mV/◦C is related with the
thermionic current regime

of four-terminal memristive devices arranged in crossbar arrays are foreseen as a
significant advance in the electronic computation.
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Memristor-Based Addition and Multiplication

K’Andrea Bickerstaff and Earl E. Swartzlander Jr.

Abstract This chapter describes strategies for performing basic addition and mul-
tiplication in memristor-based structures. An overview of both analog and digital
approaches for addition and multiplication is presented. Examples of memristor-
based designs of ripple carry adders and array multipliers are shown.

1 Introduction

In 1971, Chua [3] presented the theoretical basis for a passive two-terminal circuit
device that he called a “memristor,” (a contraction of memory and resistor). By his
models, the memristor would form a fourth basic circuit element, along with the
resistor, the inductor, and the capacitor. At any given time, the memristor behaves
like a conventional resistor, with the difference that its resistance depends on the
past history of the current passing through it. The memristor, with memristance
M , conforms to the fundamental relationship between magnetic flux, ϕ, and charge
q : dϕ = M(q)dq . Since M is a function of q, the memristor is a nonlinear circuit
element with hysteretic current-voltage behavior.

In 2008, researchers at HP Labs realized the memristor in nanoscale titanium
dioxide crosspoint switches [10]. Having shown the existence of memristors in the
lab, the question becomes “What applications could memristors have?” Research is
advancing quickly to develop memristors as non-volatile memory, called Resistive
RAM (ReRAM), to potentially replace DRAM and Flash memory [6]. Jo, et al.
show possible applications in artificial intelligence using memristors as synapses in
neuromorphic circuits [4].

This chapter is an expanded version of [1], reprinted with permission.
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Fig. 1 Memristor crossbar
array

This chapter examines the usage of memristors to perform arithmetic addition
and multiplication. Section 2 gives an overview of previously proposed methods
for performing arithmetic with memristors. Section 3 discusses the use of the “ma-
terial implication” operation implemented with memristors to realize fundamental
Boolean logic functions. In Sects. 4–7, the material implication technique is used
to create a full adder, a ripple carry adder, a carry lookahead adder and an array
multiplier. Finally Sect. 8 offers conclusions.

2 Previous Research

In the literature, arithmetic operations have been proposed using the memristor as
(1) a switch, (2) an analog memory, and (3) interconnect. This section provides a
brief summary.

2.1 Memristor Switch Logic

In the first approach, a memristor may be programmed to be either ON or OFF; that
is, a low resistance, conducting state (ON) or a high resistance, non-conducting state
(OFF). Arrays of memristor switches can be constructed by layering memristive
material between vertical and horizontal nanowires.

Analog arithmetic processors can be constructed with memristor crossbar arrays
and control and sensing logic [7]. Figure 1 shows a simplified example of addition
using a memristor crossbar array. In the 3 by 4 array on the left, the switches that are
conducting (ON) are indicated by a dot at the crosspoint. Each row wire includes
a weighting resistor in order to assign the appropriate bit significance to the rows
current contribution. In this example the most significant bit is in the top row and
the least significant bit is in the bottom row.

For example, consider adding three binary numbers: 0010, 0011, and 0100.
Columns 1, 2, and 3 of the crossbar are programmed with 0010, 0011, and 0100,
respectively, with the 1’s mapped to crosspoints. An input voltage, Vin, is ap-
plied to the columns of interest. In column 1, the one ON switch contributes
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Fig. 2 Analog
memory/computing unit
(from [5])

Vin/(4R) to the output current. The two conducting switches in column 2 contribute
(Vin/(8R)+Vin/(4R)) to the output current. The one conducting switch in column
3 contributes Vin/(2R) to the output current. The total output current of the cross-
bar array sums to 9Vin/(8R). The analog-to-digital converter with a resolution of
Vin/(8R) produces the final digital sum of 1001. Although the crosspoint array and
analog summing can be fast, the need for an analog-to-digital converter (which is
large, slow and consumes significant power) is a drawback.

2.2 Memristors as Analog Memory

Another approach to memristor-based analog arithmetic relies on the ability to pro-
gram memristors to intermediate conducting states. Laiho and Lehtonen [5] present
memristors as analog memories used for arithmetic computing. The schematic of an
analog memory/computing unit is shown in Fig. 2 [5].

The analog memory/computing unit can be used to (1) copy the conductance
of one memristor to another memristor, and (2) write the sum of multiple mem-
ory conductances into one memristor. These operations are done by the successive
application of programming and monitoring cycles until the summing node of the
operational-amplifier IN reaches the target level. When node IN reaches the tar-
get level, the voltage across the capacitor provides the control signal, ct, for the
switches.

An “analog memory” is defined as a connected pair of memristors, as shown by
m1 and m4 of Fig. 2. This memristor pairing allows for the representation of both
positive and negative values. The conductance of the top memristor, gmt , of the
pair is always programmed to half the conductance range. The conductance of the
bottom memristor, gmb , may be programmed within the full conductance range. If
gmb < gmt then the value of the analog memory is negative. If gmb > gmt then the
value of the analog memory is positive. Using analog memories, addition as well as
inversion (i.e., multiplication by −1) can be performed.
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Fig. 3 Addition using three
analog memories

Figure 3 shows the addition of the contents of two analog memories, with the
sum stored in a third analog memory. Assuming relative conductance values rang-
ing from 0 to 1, the conductances of m1, m2, and m3 are all programmed to 0.5
and the conductances of m4 and m5 are 0.2 and 1 respectively. Analog memories
1 and 2 form the numbers −0.3 and 0.5. With cyclical programming and monitor-
ing, the conductance of m6 moves from an initial value of 0 to 0.3 and the third
analog memory holds the value of −0.2. Each completed computation session us-
ing, analog memories, yields an output value that is inverted. Multiplication by −1
produces a final value of 0.2. To invert the value of memory 3 and store the result
in memory 2, the conductance of m5 is initialized to 0 and the voltage inputs to
memory 1 would be set to high impedance. Once the programming and monitoring
cycles complete, the conductance of m5 would be 0.7 and the value of memory 2 is
equal to 0.2. This technique is potentially fast, but it generates an analog result that
is limited in precision. If a digital result is needed, an analog-to-digital converter
would need to be added at a significant cost in speed, area, and power consump-
tion.

2.3 Memristor Interconnect over CMOS

The third approach uses memristors as the programmable interconnect for CMOS
logic. Xia, et al. report the implementation of the first memristor-CMOS hybrid
circuits [11]. Memristor crossbar arrays are fabricated directly over CMOS logic
devices. Using an array of vias, the memristor layer is electrically connected to the
CMOS layer. Simulation results indicate that the FPGA-like hybrid CMOS inte-
grated circuits benefit from significantly increased logic density without power or
speed degradation [11]. This memistor-CMOS technology may be used to realize
the same types of arithmetic circuits that are developed in CMOS/FPGA technol-
ogy.
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Fig. 4 (a) Basic implication
circuit and (b) truth table for
IMP operation

Fig. 5 Idealized memristive
electrical characteristics
(from [2])

3 Logic Operations via Material Implication

Borghetti, et al. [2] use memristive switches to demonstrate the use of the mate-
rial implication (IMP logic operation) to realize fundamental Boolean operations.
The basic material implication circuit, shown in Fig. 4a, consists of two memristors,
P and Q, which are connected using a horizontal nanowire to a load resistor, RL.
The P and Q devices are formed by vertical nanowires crossing over a layer of
memristive switching material and the horizontal nanowire. Drivers are used to set
each device to logic 1 or logic 0. By applying a negative voltage, VSET , the mem-
ristive switch is placed in a low-resistance state (logic 1). Similarly, the application
of a positive voltage, VCLEAR, places the device in a high-resistance state (logic 0).
An additional negative voltage, VCOND, is also needed for the implication operation,
where |VCOND|< |VSET |.

For operations, the notation p ← x indicates that the state of switch P (the logic
value p) is changed to x when P is pulsed by VSET , VCLEAR, or VCOND. Figure 5
from [2] shows the relationships among VSET , VCLEAR, and VCOND and the state of
the memristive switch being considered ‘open’ (logic 0) and ‘closed’ (logic 1).

The IMP operation is given by q ← p IMPq . The state of switch Q is changed
by simultaneously applying a VSET pulse to Q and a VCOND pulse to switch P . It
is the interaction of the two pulses through P , Q, and RL, that produce changes in
the logical state of the switch Q depending on the existing values of p and q . Note
that the IMP operation leaves p unchanged, but may change q . Figure 4b) shows
the truth table for q ′ ← p IMPq .
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Fig. 6 Implication circuit for
performing a NAND
operation

Fig. 7 Steps for performing
a NAND operation via
implication

Fig. 8 Full adder

Implication may be used to realize all fundamental logic functions [2]. Figure 6
shows the implication circuit with three memristive switches P , Q, and S to per-
form a NAND operation, s ← p NANDq . Figure 7 shows the three steps needed to
execute the NAND. During Steps 2 and 3, the VSET and VCOND pulses are applied
simultaneously. The IMP operation changes the logic state of the S switch while
leaving p and q unchanged.

4 A Memristor Full Adder

The full adder is the basic building block of most arithmetic circuits. It adds three
binary inputs to generate a sum output and a carry output. Figure 8 shows the gate
level schematic of a full adder. This full adder is implemented using two 2-input
XOR gates, two AND gates, and an OR gate.
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Table 1 Boolean operations
implemented via material
implication

Operation Implementation Devices
(area)

p NANDq = p IMP (q IMP 0) 3

p ANDq = (p IMP (q IMP 0)) IMP 0 4

p NORq = ((p IMP 0) IMPq) IMP 0 4

p ORq = (p IMP 0) IMPq 3

p XORq = (p IMPq) IMP ((q IMPp) IMP 0) 3

NOTp = p IMP 0 2

Table 2 Counts of IMP
operations and devices for
Boolean logic

Operation IMP Operations
(latency)

Devices
(area)

s ← p NANDq 2 3

s ← p ANDq 3 4

s ← p NORq 5 6

s ← p ORq 4 6

s ← p XORq 8 7

s ← NOTp 1 2

4.1 Full Adder Realized via Material Implication

The supplementary information of [2] shows how the 16 binary operations of two
variables are realized through the material implication operation. Table 1 shows
several important logic functions used for forming basic arithmetic circuits such as
half adders, full adders, etc., and the respective implication operations to implement
them. The number of memristive devices is based on the assumption that the uncon-
ditional operation of s ← 0 is done in the first step of the process; that is, a device
will not be cleared in subsequent steps.

Note that the Boolean logic operations listed in Table 1 are performed on two
logic values p and q . For the XOR operation, the original logic states p and q

are lost during the implication process. In fact, it is not clear that (p IMPq) and
(q IMPp) could be performed either in parallel or serially without first copying the
logic states p and q to additional memristive switches. Also, since the output of
an IMP operation may be needed as an input to multiple subsequent IMP opera-
tions, it is probably best to retain a copy of the original logic value. A copy of
a logic value of device P to device K can be made by executing two inversions,
k ← (p IMP 0) IMP 0. Taking into account the possible need for copying one or
both of the primary input logic values, the number of memristive devices (a mea-
sure of the circuit complexity) increases as shown in Table 2. This table also shows
the number of sequential IMP operations, which is a measure of the latency.

Figure 9 shows the full adder function performed using material implication
primitive operations. Initially, “input” memristors are set or cleared to the appropri-
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Fig. 9 Full adder via
material implication

ate logic state to represent x and y. Also at this time, additional memristive devices
are cleared to provide “0” logic values as needed. Using separate memristive circuit
arrays, it is possible to compute the first XOR operation and the first AND opera-
tion in parallel. The first XOR operation takes 8 implication cycles. The first AND
operation completes after 3 cycles. This early output of the first AND operation,
relative to the first XOR operation, can be used to begin the processing of the OR
operation. Two implication cycles of the OR operation can be performed in the same
circuit array as the first AND. Thus, instead of taking 4 cycles, the OR operation is
effectively reduced to 2 cycles.

Figure 10 details the implication cycles required to realize a full adder. By using
separate memristor circuit arrays in parallel, time must be taken to sense the out-
put logic states of the current stage and set the appropriate logic states of the input
memristors of the next stage. This assumes that both the setting/clearing of memris-
tive switches and the sensing of the logic states of memristive switches take 1 cycle
each. Therefore, for the intermediate stages, sensing and setting logic states takes 2
cycles. Assuming that the inputs X, Y , and Cin are available at the same time, for
a full adder via material implication, the sum, S, is produced in 19 cycles and the
carry, Cout , in 18 cycles. Note that in cycles 6 and 7 a copy of the first AND’s output
state, k, is made to device G, indicated by the logic state g. This copy, g, is needed
in order to maintain an original logic value of k, otherwise k would be clobbered
at cycle 18 of the OR. Without a copy, device K would provide at different cycles
the output logic state for both the first AND as well as the OR. Depending on the
application, this reuse of device K may be an efficient implementation. Otherwise,
copies in devices K and G may facilitate pipelined calculations.

5 A Memristor Ripple Carry Adder

Figure 11 shows the block diagram of a traditional 4-input ripple carry adder. It is
called a ripple carry adder because a carry generated at a given stage passes to the
next more significant stage, where it may produce a carry that passes to the next
stage, etc. It is a bit like dropping a pebble into a lake which produces waves that
ripple outward.
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Fig. 10 Implication cycles for a full adder

Fig. 11 4-Input ripple carry
adder

5.1 A Ripple Carry Adder Realized via Material Implication

The first and second full adders, producing Sum0 and Sum1 by material implication,
are shown in Fig. 12. As indicated in Sect. 4, Sum0 is generated in 19 cycles and
Cout0 in 18 cycles. Since the generation of the Cout0 takes significantly longer than
the 8 cycles of the first XOR operation, one implication cycle of the 2nd AND op-
eration can be performed early. This reduces the 2nd AND operation from 3 cycles
to 2 cycles.

Table 3 lists the number of implication cycles needed to generate each of the
sums and carries for the 4-input ripple carry adder. The most significant sum, Sum3,
is created in 44 cycles and the most significant carry, Cout3, in 42 cycles. In general,
the delay to the most significant sum bit, SumN−1, of an N -bit ripple carry adder of
this type is:

Delay(SumN−1)= 12+ 8×N (1)

The delay to the most significant carry output CoutN−1 is:

Delay(CoutN−1)= 10+ 8×N (2)
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Fig. 12 First and second full adders of a ripple carry adder

Table 3 Count of IMP
cycles to produce sum and
carry outputs for a 4-bit ripple
carry adder

Cout3 Sum3 Cout2 Sum2 Cout1 Sum1 Cout0 Sum0

42 44 34 36 26 28 18 19

6 A Memristor Carry Lookahead Adder

Shaltoot and Madian [9] produce two types of carry lookahead adders using the ma-
terial implication logic listed in Table 1. The first is a conventional carry lookahead
adder with outputs based on creating propagation and generation terms for inputs
A and B . At the ith stage, the sum, Si , and carry, Ci+1, are calculated based on
propagate, Pi , and generate, Gi , signals:

Pi =Ai ⊕Bi

Gi =AiBi

Si = Ci ⊕ Pi

Ci+1 =Gi + PiCi

(3)

The second adder realization is based on a simplified carry lookahead adder de-
sign proposed by Pai and Chen [8]. Based on close examination of gate delays and
simulation data, Pai and Chen propose gate level modifications that optimize criti-
cal path delays. In this design, the sum, Si , and carry, Ci+1, are calculated based on
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Table 4 Count of IMP cycles to produce sum and carry outputs for various 4-bit adders

Cout3 Sum3 Cout2 Sum2 Cout1 Sum1 Cout0 Sum0

RCA 42 44 34 36 26 28 18 19

CLA 31 38 28 33 23 27 17 19

SimCLA 25 32 22 29 19 25 15 19

propagate, Pi , and negated generate, Gi , signals:

Pi =Ai ⊕Bi

Gi =AiBi

Si = Ci ⊕ Pi

Ci+1 =Gi PiCi

(4)

The simplified carry lookahead adder takes advantage of the faster NAND gate.
Using the implication process, a NAND gate takes 2 IMP operations versus AND,
OR, and NOR gates that require 3, 4, or 5 IMP operations, respectively. Therefore,
opportunities to express circuits in terms of NAND gates with limited or no intro-
duction of additional inverter stages will result in improved performance. Table 4
reports the number of implication cycles for Shaltoot and Madrian’s 4-bit conven-
tional and simplified carry lookahead adders, CLA and SimCLA, respectively. Also
listed in Table 4 are the results for the ripple carry adder. Both carry lookahead adder
implementations show improved performance over the ripple carry adder. The sim-
plified carry lookahead adder outputs the most significant sum and carry bits 6 IMP
operations faster than the conventional carry lookahead adder.

7 A Memristor Array Multiplier

The schematic for a 6 by 6 array multiplier is shown in Fig. 13. It has 7 rows and
6 columns of cells. The top row and left column consist of 2 input AND gates. The
second row consists of half adders that are formed using one XOR operation and
one AND operation. Most of the remaining cells have one AND operation and a full
adder. The primary x and y inputs of the full adders in the third, fourth, fifth, and
sixth rows arrive from the associated AND gate and the sum output of the adder
directly above it in the previous row. The carry in, Cin arrives from an adder one
column to the left and one row above. Assuming the inputs a and b are applied at the
same time, the Cin signals to each full adder will be the earliest of each full adder
input x, y, and Cin. The shortest delay path for each full adder will be Cin to Sum.

The bottom row of the array multiplier is a 5 input ripple carry adder. The first
adder (on the right) is a half adder. The full adders forming the ripple carry adder,
indicated in gray, have different input configurations in comparison to the upper
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Fig. 13 6 by 6 array multiplier

array full adders. The primary x and y inputs of these full adders arrive from the sum
output of the adder immediately above and the carry out from the adder immediately
above and one column to the left. The Cin arrives from the adder to the immediate
right of each adder. This provides the shortest delay path within the full adder to the
slow carries that ripple from one full adder to the next.

Assuming inputs a and b are applied at the same time, the final product is pro-
duced by material implication in 127 cycles. Table 5 lists the number of cycles
needed to generate each bit of the product of the 6 by 6 array multiplier.

The array multiplier can be expanded to accommodate inputs of any size. As the
input word size is increased, additional rows (like the third, fourth, and fifth rows of
Fig. 13) and additional columns (like the third, fourth, and fifth columns of Fig. 13)
are added. As shown for a 6 by 6 multiplier in Table 5, each additional row increases
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Table 5 Count of cycles to product bits for the 6 by 6 array multiplier

P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

125 127 119 111 103 93 83 65 47 29 14 4

the delay by 18 and each column increases the delay by 8. The delay of an N by N

multiplier for N ≥ 4 is given by:

Delay(N by N Multiplier)= (26×N)− 29 (5)

Thus, the delay of an array multiplier realized with memristive implication oper-
ations is proportional to the input word size. This is similar to the delay of CMOS
array multipliers, although the proportionality constant is much larger.

8 Conclusions

This chapter has described techniques for performing arithmetic operations using
memristors. Using memristors as switches in crossbar arrays is limited by (1) the in-
terfacing and precision of the analog-to-digital converter and (2) the potential feed-
back paths within the array. Using memristors as an analog memory/computing unit
depends on the accuracy of programming memristor conductance.

This chapter has shown that the material implication primitive operation can
be used to perform addition and multiplication. Memristive implication operations
were used to generate ripple carry adders, carry lookahead adders and array multi-
pliers. These techniques could be used to create other types of adders and multipliers
as wells as other arithmetic functions. The overhead both in terms of the operational
delay (i.e., the number of clock cycles) and the programming complexity for the
control, sensing and setting logic seems high. On the other hand memristors should
achieve very high clock rates and logic density thus, offering an attractive alternative
to CMOS.
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Memristor Emulators

Dalibor Biolek

Abstract There are three possible stages of exploring the memristor as the fourth
fundamental circuit element: 1. Generation of the model, 2. Simulation of the ele-
ment behavior with the aid of the model, and 3. Hardware emulation of the mem-
ristor. This Chapter deals with the third stage, describing circuit ideas of memristor
emulators for practical laboratory experiments.

1 Memristor Emulator Requirements

Computer-aided modeling and simulation of memristors belong to important tools
for researching general attributes of these fundamental elements. They also provide
an important feedback for verifying the validity of theoretical theorems. The sim-
ulation can be invaluable for finding answers to questions such as “. . . what would
happen if . . . ” or, in other words, for studying the explored object via revealing its
responses to changes in its parameters or in the structure of its model.

The laboratory experiments with memristors as truly existing objects is the next
logical step. However, the unavailability of samples for common experiments has re-
sulted in developing quite a number of hardware emulators of memristors and other
mem-systems [1–15]. A more detailed analysis of such circuits leads to the knowl-
edge that the purpose of some of them is to mimic the behavior of the TiO2 memris-
tor from [16]. Note that the simple model of the TiO2 memristor is represented by
the linear dependence of its memristance on the charge passing through or, in other
words, by the quadratic dependence of the flux on the charge. Then the TiO2 mem-
ristor is only one of many kinds of memristor whose constitutive relations (CRs)
can be shaped almost in an arbitrary way. The above emulators cannot then be used
for mimicking memristors with other types of the CR, the binary-state memristors
being an example.

In addition, other required parameters and behavior of the developed emulator
should be made clear prior to designing and producing it.
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As the first step, it should be considered if the purpose is to emulate the memristor
as a hypothetic element or a generalized memristive system with its real proper-
ties (for example the TiO2 memristive system with nonlinear boundary phenom-
ena including the problem of “fixing the limiting states” [17], or the “threshold-
voltage” memristive systems for CNN emulation [18]). Most of the published analog
emulators serve for the demonstration of the basic fingerprints (particularly the
pinched hysteresis loop, PHL) of the memristor as a fundamental circuit element
[19]. Nevertheless, as noted above, these emulators mostly mimic the simple TiO2
memristor [16]. For some emulators, the memristance/memductance dependence on
the charge/flux is not defined clearly via the nonlinearity of the utilized principle of
the simulation or it is not specified [2–4]. The memristor emulator in [5] exhibits
the quadratic memductance/flux dependence. Attempts at the emulation of more
complicated memristive systems, especially for neuromorphic applications, have
been performed with digital emulators [6]. In contrast to analog emulators, they
provide the software modification of the characteristics of the emulated system.

It is also important whether the grounded or the floating two-terminal device
is the aim of the emulation. Most of the published circuits emulate the grounded
memristors. It is quite sufficient if only the given element is emulated and excited
by grounded signal source. However, such emulators are of no value if the emulated
element were to be connected as floating into a more complicated circuit. The float-
ing memristor can be emulated most conveniently via a floating two-terminal de-
vice with variable resistance, for example the digital potentiometer [6] or the light-
dependent resistor (LDR) as a part of the optocoupler [3, 4]. However, a drawback of
the optocoupler consists in the poorly defined and problematically adjustable depen-
dence of resistance on the state variable. In addition, this resistance slowly fluctu-
ates owing to light history. Another method of implementing the floating memristive
port consists in the use of an independent, preferably battery-type power supply of
the emulator [7, 8]. Some other methods, particularly those which utilize the bipolar
outputs of the active elements [9] can cause unacceptable errors.

Since non-volatility is a key feature of the memristor, it is useful to ask how much
the emulator should embody this attribute. Paradoxically, non-volatility is not very
important for experiments and demonstrations whose lengths of duration are short
in comparison with the time constant of the implemented memory (the integrator).
The non-volatility can be accomplished via digital emulator.

As regards the analog emulator, the key role is played by the internal integra-
tor, mostly implemented on the basis of operational amplifiers (OpAmps) [2], cur-
rent conveyors [9–11], or classical current sources, charging the capacitors [12].
The input offset modifies intransigently the integrator output. On the other hand,
the well-known method of offset reduction modifies the low-frequency behavior of
the OpAmp-based integrators, i.e. at such frequencies where the memristor exhibits
its well-known PHL. Quite a small deflection from the ideal 90-degree phase shift
between the input and output signals of the integrator, caused by applying a big
shunting resistor in parallel to the integrating capacitor, can cause an unpleasant
modification of the PHL of the emulated memristor. This characteristic is also sen-
sitive to parasitic voltage offsets. As a result, the PHL may not cross the v–i ori-
gin and it does not exhibit the odd-symmetry property. The internal integrators of
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the emulators must thus be designed carefully in order to minimize the offset and
drift. Accurate operational and instrumentation amplifiers, appropriate for the con-
struction of accurate integrators, are usually slow. However, it need not be a problem
if the emulator is designed such that the desired memristor behavior (pinched hys-
teresis) is emulated just for low frequencies of the exciting signal. The possibility of
adjusting the initial conditions, i.e. the initial state of the memristor memory, which
can affect the emulator behavior is also an important feature.

Note that the offset and drift issue must be solved also for digital emulators,
which contain the analog interface [13].

A concrete implementation of the emulator will also depend on whether or not the
equipment will be used as an autonomous two-terminal device with in-built batteries
[7, 8]. If yes, then the low-power low-voltage design [14] and the simplest possible
circuitry are required.

2 Analog Emulators of the Memristor

The very first attempt at analogue emulation of the memristor comes from Chua’s
introductory paper [19]. The so-called M–R, M–L, and M–C mutators, described
here, transform the non-linear resistor, capacitor, or inductor into the memristor.
This transformation preserves the shape of the non-linear characteristic of the R,
L, or C-type element, which is transformed into the corresponding charge-flux con-
stitutive relation of the memristor. It is shown in [19] that each mutator can be of
two types, depending on whether the independent/dependent variable in the origi-
nal non-linear characteristic is transformed into independent/dependent variable of
the constitutive relation of the memristor. Each type can be then implemented in two
ways on the basis of various interconnections of controlled sources. The M–R mu-
tator of type 1, realization 1, is then selected in [19] for a circuit implementation
which consists of two operational amplifiers, 14 transistors, and a number of pas-
sive components (see Fig. 1).

The rather complicated schematic is given by the level of the IC industry in the
1970s. Otherwise such a concept of the emulator is very useful: The emulated device
has all the memristor fingerprints since it is based on the definition of the memristor
constitutive relation (CR). This CR is defined via the CR of a nonlinear resistor (or
inductor or capacitor) connected to the corresponding port of the mutator. From this
point of view, the emulator is easy to re-configure: The CR of the emulated mem-
ristor can be modified by replacing or “re-programming” the external two-terminal
device. The disadvantage of the emulator from [19], i.e. the impossibility of a direct
emulation of the floating memristor, can be overcome via the well-known circuit
ideas (see Fig. 11 in Sect. 4 as an example).

The emulator published in [2] is based on a simple principle illustrated in Fig. 2.
The voltage across the memristive port is sensed by the integrator, and its output
voltage controls the conductance GM , i.e. the memductance of the emulated mem-
ristor. It follows from the more detailed schematic in [2] that a JFET with a properly
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Fig. 1 Mutator which transforms nonlinear resistor connected to Port 2 into memristor emulated
on Port 1. Adapted from [19]

Fig. 2 Simplified schematic
of the memristor
emulator [2]. Reprinted with
permission from [2]. ©2011,
John Wiley and Sons

adjusted operating point serves as this variable resistor. The emulator also contains
the level converter at the input, the integrator, the circuit for setting the operating
point of JFET, the transistor current-to-voltage converter, and the block for a final
arrangement of the output voltage. The application is thus optimized for evaluat-
ing the pair of signals via a two-channel oscilloscope, namely the voltage which
excites the memristor and the voltage which corresponds to the memristor current.
Note that this emulator is not suitable for its integration into more complicated cir-
cuits as a two-terminal device. As a second drawback, the dependence of the mem-
ductance on the state variable is governed by the nonlinear characteristics of the
transistor, and it can be modified only in a limited way via adjusting the operating
point.

It is obvious from Fig. 2 that this emulator operates on the basis of the general
model of the memristor in Fig. 3a: the excitation variable u, the voltage in this case,
is integrated into the native state variable x. Then the memductance is determined
via the block g, which represents the dependence of the memductance on this state
variable. The memductance together with the voltage specify the output variable y,
which is now the memristor current.
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Fig. 3 Models of general memristor based on Parameter vs. State Map (PSM) g(x) and state
equation dx/dt = u (a), and Constitutive Relation (CR) yI = F(uI ) (b), where y = g(x) u, u, y,
and x are excitation variable, response, and state variable, yI and uI are time-domain integrals of
the quantities y and u. For current-controlled memristor, u is current, y is voltage, and x is charge.
For voltage-controlled memristor, u is voltage, y is current, and x is flux

The emulator in Fig. 4, published in [5], does not suffer from the above draw-
back. Its topology, containing the analog multipliers, ensures that the memductance
of the emulated memristor is dependent on the flux ϕ, i.e. the integral of voltage
v1, according to the equation GM = (a + bϕ2), where a < 0, b > 0 are real co-
efficients, dependent on resistances R1 to R5 [5]. The emulation of other types of
the characteristics is possible only after modifying the circuit. For example, omitting
the multiplier U2 and interconnecting the output v15 of the integrator and the in-
put y1 of the multiplier U3 yield linear, not quadratic memductance-on-flux depen-
dence. A similar emulator based on the analog multiplier was described in [15].

Another look at Fig. 4 reveals the following: the port voltage v1 is integrated
into the voltage v15. The remaining circuitry transfers this voltage v15, according to
a concrete formula, into the current im, flowing through the emulated port. From this
point of view, it is again a memristor model according to the general block diagram
in Fig. 3a. In contrast to the emulator from Fig. 2, the current is not “computed”
via a nonlinear resistor but is accomplished by the circuit containing multipliers and
the amplifier U4. Using this circuit, we can adjust the prescribed dependence of
the memductance on the integral of voltage.

The emulator in Fig. 5 was proposed in [3, 4]. The memristive port is emulated by
the light-dependent resistor (LDR), which is a part of the optocoupler. The internal
LED is excited from the integrator, which transfers the port voltage of the emulated
memristor into the flux. The bias point of LED is set by an appropriate voltage
Voff set . This circuit idea enables a simple emulation of the floating two-terminal
device: the differential input of the integrator would be connected in parallel to
the LDR. However, this possibility is not mentioned in [3, 4]. The drawback is
the same as in the emulator from [2]: the impossibility of selecting a required type
of the PSM (parameter vs. state map). This emulator probably suffers from another
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Fig. 4 Schematic of
memristor emulator [5],
containing integrator, analog
multipliers, and v–i converter.
Reprinted with permission
from [5]. ©2010, World
Scientific Publishing Co.

Fig. 5 Simplified schematic
of memristor emulator
(Adapted from [3] Wang et
al., 2012), utilizing
optocoupler

drawback: the resistivity of LDR depends not only on the instantaneous value of
the LED current but it is governed by more complex inertial processes. That is why
this circuit probably emulates not a memristor but a more complex higher-order
element from Chua’s table [20, 22].

The so-called incremental and decremental memristor emulators are proposed in
[12]. The principle is illustrated in Figs. 6a and 6b. If the voltage vx in Fig. 6a is
derived from the voltage vin or current iin, then the input resistance of the circuit
will be modified according to the principle of voltage bootstrap. If the voltage vx is
dependent on the time-domain integral of current iin, i.e. on the charge, denoted qC

in Fig. 6a, then the “boosted” element RS is seen from the viewpoint of input port as
a charge-controlled resistor. The following formula is true for the circuit in Fig. 6a:

vin =RSiin + vx =
(

RS + RT

C
qC

)
iin. (1)
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Fig. 6 Simplified schematic
of memristor emulator of
(a) incremental,
(b) decremental type.
Adapted from [12]

The inverter in the circuit in Fig. 6b causes a sign modification of the second
term within the braces in (1):

vin =RSiin + vx =
(

RS − RT

C
qC

)
iin. (2)

The emulators in Figs. 6a and 6b are of the so-called incremental and decremen-
tal types. A comparison of Eq. (2) and the mathematical description of the TiO2
memristor [16, 17] reveals that the decremental emulator (2) is suitable for the emu-
lation of TiO2 memristor with linear dopant drift, i.e. with the consideration of ideal
rectangular window and on the assumption that the memristor will never pass into
any of its boundary states. The pair of emulators in Fig. 6 can mimic an identical
TiO2 memristor but with mutually interconnected terminals.

In [12], the above emulators are generalized to the so-called expandable architec-
ture, which enables, by means of a special interconnection of emulators, implement-
ing serial, parallel, and hybrid connections of more memristors. Details are given in
[12] and [21]. It is obvious that such a principle can be also used for the emulation of
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Fig. 7 Detailed schematic of
memristor emulator from [10]
(Biolek et al., 2011),
operating on the principle of a
mutator which transforms
non-linear i–v characteristic
of resistor R into a
similar-in-shape charge-flux
characteristic of emulated
memristor

more complicated interconnections of two-terminal devices of various types, even
if the authors do not mention it.

The circuit complexity and the sensitivity to the matching errors of internal con-
trolled current sources appear as a certain drawback of such emulators. The final
two-terminal device, emulated on the principle of expandable architecture, is al-
ways grounded. The application is limited to linear dependence of the memristance
on the charge. On the other hand, Fig. 6 brings an interesting circuit idea, circum-
venting the problem of the emulation of floating components.

The emulator in Fig. 7 works on the principle of a mutator which transforms
the non-linear characteristic iR = G(vR) of resistor R, connected between the out-
put of transimpedance OpAmp (TOA) No. 2 and the virtual ground of amplifier
No. 3, into a similar-in-shape charge-flux characteristic of a memristor, emulated on
the port vM–iM .

A more detailed analysis of the schematic in Fig. 7 results in the conclusion that
it implements the mutator in Fig. 1 from [19] via present-day integrated circuits.
The operation of such a mutator can be explained starting from the general model
of the memristor in Fig. 3b: The exciting quantity u, the voltage in this case, is
integrated and then transformed via a non-linear block F , which represents the con-
stitutive relation of the memristor, and the output signal of this block is differenti-
ated in order to get the output quantity y, which is the memristor current. Amplifier
No. 2 together with Ri and Ci form the integrator of the voltage vM with time
constants RiCi . Its output voltage is also the voltage across the nonlinear resis-
tor R. The current flowing through this resistor is converted to voltage via amplifier
No. 3 with the feedback resistor Rd . This voltage is then converted to the current
iC = iM by the differentiating-type converter, consisting of amplifier No. 1 and ca-
pacitor Cd . In this way, the current through the memristive port is proportional to
the time-derivative of the current through the nonlinear resistor with the proportion-
ality coefficient RdCd . The integral of the current iM—the charge of the emulated
memristor—is directly proportional to the resistor current iR with the proportional-
ity constant RdCd , and the integral of memristor voltage—the flux—is proportional
to the resistor voltage vR with the proportionality coefficient RiCi . The circuit em-
ulates a memristor with the memristance

Rin = dϕ

dq
= RiCi

RdCd

dvR

diR
= RiCi

RdCd

Rdif (3)

where Rdif is the differential resistance of nonlinear resistor R.
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It follows from Eq. (3) that the ratio of the integration and differentiation time
constants is equal to the ratio of the emulated memristance and the differential re-
sistance of the resistor. It is useful to propose the integration constant with regard to
the frequency range where we plan to study the hysteresis effects in the i–v char-
acteristic of emulated memristor. The integrator gain is unity for the frequency of
exciting voltage

f = 1

2πRiCi

. (4)

Then the nonlinear resistor R is excited by a voltage with the same amplitude as
vM . Increasing this frequency will cause a decrease in the voltage swing on the re-
sistor, and the nonlinear phenomena, including the pinched hysteresis loop, will
gradually diminish.

For example, let us propose both time constants equal to ca 1.6 ms. With 100 Hz
sinusoidal voltage, having the nominal swing �V = Vmax − Vmin, the nonlinear
resistor will be excited with the same voltage swing. Note that its v–i nonlinear
characteristic is transformed into the ϕ–q characteristic of the emulated memristor.
Then we can expect that the hysteresis effects will diminish for frequencies above
100 Hz, depending on the bias point of the resistor and on the shape of its v–i

characteristic around this point.
The emulator in Fig. 7 represents one of several possible implementations of

the classical M–R (memristor-resistor) mutators from the original paper [19] by
means of up-to-date electronic components. It is simpler than the mutator from
Fig. 1, while it embodies all its advantages. It does not provide the emulation of
floating memristor but it can be accomplished, for example, via autonomous battery-
type power supplies (see Fig. 11). Other versions of such mutators are described
in [11, 14]. Various circuit implementations with up-to-date integrated circuits are
possible, for example with transimpedance OpAmps (with the benefit of circuit sim-
plicity) or with precise OpAmps or instrumentation amplifiers (offset and drift min-
imization, or low-power low-voltage design).

3 Digital and Hybrid Emulators of Memristors

The digital emulator of general memristive systems with a simplified schematic
in Fig. 8 was introduced in [6]. The memristive port is represented by a digital
potentiometer, whose resistance is set via a microcontroller. The port voltage is
sensed using an analog-to-digital converter (ADC). The microcontroller provides
the solution of state equation and computes the memristance from the state vec-
tor.

The digital potentiometer is a good choice for emulating floating two-terminal
devices. This concept is useful for emulating not only memristors but also more
general memristive systems. However, it cannot be used for mimicking other non-
memristive devices. Such a disadvantage can be overcome by the emulator in
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Fig. 8 Emulator employing
digital potentiometer [6]
(Pershin and Di Ventra, 2009)

Fig. 9, for the first time published in [13]. The authors called it “memulator” be-
cause of its ability to emulate general mem-systems including memristive, memca-
pacitive, and meminductive devices. It can be easily shown that, in principle, the
memulator can mimic an arbitrary higher-order element from Chua’s periodical ta-
ble [22].

The memulator is based on the knowledge that, if the current i flowing through
a two-terminal device can be determined from the device voltage v (via a device
model), then such a device can be modeled by a source of current i which is con-
trolled by the voltage v. Similarly, if the terminal voltage v of a two-terminal device
can be determined from the device current i, then such a device can be modeled by
a source of voltage v which is controlled by the current i.

This approach avoids the use of digital potentiometer in the emulator in Fig. 8.
The type of the emulated device is then determined by a program. For the emulator
in Fig. 9a, the terminal voltage v is sensed via the analog-to-digital converter (ADC),
the current is computed in the microcontroller unit (MCU), and the result, after
digital-to-analog conversion (DAC) serves to adjust the controlled current source.
For the emulator in Fig. 9b, the current is sensed instead of the voltage, and then it
is converted to input voltage for the ADC via auxiliary resistor R. After AD conver-
sion, MCU computes the corresponding voltage, which is set via the DAC output as
the terminal voltage of the controlled source.

Note that, in addition to the microcontroller and the ADC and DAC blocks,
the memulator must be completed by auxiliary analog circuitries, namely by
the controlled current source for version (a) and the controlled voltage source plus
the circuit for current sensing and current-to-voltage conversion for version (b). That
is why this emulator is called “hybrid”. Details are given in [13].
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Fig. 9 Simplified schematics of hybrid emulator, employing controlled (a) current, (b) voltage
source [13]. Reprinted with permission from [13]. ©2012, John Wiley and Sons

4 Future Possible Trends in Memristor Emulation

As far as the emulation of memristor—the fourth fundamental electrical element—
is concerned, it is useful to develop such emulators that start from the memristor
constitutive relation (CR) or the parameter vs. state map (PSM).

It was shown in Sect. 2 that most of the hitherto published emulators are based
on the general block diagrams in Fig. 3. Those which enable a flexible configuration
of the required CR or PMS are particularly appreciated. Emulators with a fixed-type
characteristics cannot be utilized universally. This is the case of all analog emulators
from Sect. 2, with the exception of mutators.

Universality is a key feature of digital and hybrid emulators. Emulators employ-
ing digital potentiometers (DP) are useful for mimicking the floating memristors.
Certain problems can appear with the offset and drift of analog subcircuits as well
as with a low number of bits of DP, which is the source of the quantization noise. It
can be also problematic to make such emulators behave as autonomous two-terminal
devices with internal batteries, since low-power design of digital emulators is not as
easy as for the analog domain [6, 8, 14].

Let us analyze possible trends in designing universal analog emulators, based on
the models in Figs. 3.

A general model of the memristor from Fig. 3b is shown at the head of Table 1.
All possible combinations of the circuit quantities u, uI , yI , and y in terms of volt-
ages (v) and currents (i) are drawn out below. For the voltage-controlled memristor
(VCMR), the quantities u and y must be voltage and current. The current-controlled
memristor (CCMR) is the opposite case. It is indicated in the column “schemat-
ics” that VCMR may be implemented via a controlled current source. The type of
the control results from the sequence in which blocks of the type of integrator, non-
linear function F , and differentiator are arranged. The columns uI and yI contain all
the possible combinations of voltages and currents by which these quantities can be
represented within the emulator. Eight different methods of memristor implementa-
tion are behind this specification.

The green-coded lines in the Table 1 show cases when one of the circuit quanti-
ties in the pair uI and yI (input and output of the nonlinear block F ) is represented
by voltage and one by current. Then the block F can be easily implemented as a
resistor with nonlinear v–i characteristic. Such an emulator can be regarded as a
mutator which transforms this resistor into a memristor. Four ways of implementing
such mutators follow from Table 1. For example, the first line in Table 1 for VCMR
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Table 1 Possible ways of circuit implementation of memristor according to model from Fig. 3b

Table 2 Two types and four basic realizations of M–R mutator [10]. Table style is adopted from
[19]

describes an implementation where the voltage exciting the memristor is integrated
in the form of a voltage (the quantity uI ), this voltage is converted via nonlinear
resistor to current (the quantity yI ), and the current is transformed by the differen-
tiating cell into the output quantity (the memristor current). In terms of the mutator
concept from Chua’s original paper [19], it is the M–R (memristor-resistor) mutator
of type 1 realization 1 with its source-level schematic in Table 2. The coefficients
kx and ky in the schematic diagrams denote time constants of the integrator and
differentiator [10, 11]. The third line in Table 1 for VCMR corresponds to the M–R



Memristor Emulators 499

Fig. 10 Example of circuit
implementation of Type 1
Realization 1 M–R mutator
employing accurate OpAmps
[8] (Biolek, 2012)

mutator of type 2 realization 2 in Table 2. The first and third lines in Table 1 are then
presented in Table 2 by mutators of type 2 realization 1 and type 1 realization 2.

The controlled sources from Table 2 can be implemented in several ways. A con-
crete mutator (type and realization) should be selected with regard to an easy imple-
mentation of given controlled sources by concrete integrated circuits. For OpAmps,
the integrating and differentiating cells are more easily implemented with volt-
age and not current outputs. Then the designer will probably prefer the mutator
of type 2 realization 1. Such a mutator needs to sense the current iM flowing
through the memristive port for controlling the differentiator. The sensing of current
can be accomplished with the help of current conveyors, which are parts of tran-
simpedance OpAmps (AD844 being a typical commercial representative). However,
these OpAmps are not manufactured as low-power low-offset ICs. The final choice
of a proper mutator thus also depends on the designer’s experience.

Analyzing again the mutator from Fig. 7, it is obvious that it is an M–R mutator
of type 1 realization 1. It is shown in [11] that the transimpedance OpAmp (TOA) is
the active block suitable for implementing all the versions of the controlled sources
from Table 2. Concrete TOA-based schematics of all mutators from Table 2 are
designed therein. Low-power accurate emulators can be made either by assembling
TOAs from appropriate classical OpAmps [14] or by synthesizing the mutators from
Table 2 directly from these OpAmps. The latter approach is illustrated in Fig. 10
[8]. The type 1 realization 1 M–R mutator is implemented via four accurate auto-
zeroing low-offset OpAmps. The voltage vRM of the memristive port is sensed by
the buffer X4 and conveyed to the integrator consisting of the OpAmp X2, Ri and
Ci . The integrator output voltage is copied by the buffer X1 into the resistive port.
The current iR through this port is converted to a voltage drop on resistor Ry , and
this voltage is processed by a differential-input differentiating voltage-to-current
converter, formed by X3, Cd , Ra and Rx .

The low power dissipation of the mutator in Fig. 10 and the low supply voltages
for internal rail-rail OpAmps enable implementing the floating memristor emula-
tor with in-built batteries according to Fig. 11. This circuit is interconnected with
the remainder of the application circuit only via the memristive port. In this way,
a full-value emulation of the floating component is assured (see bottom left image).
The bottom-right image introduces another mutator implementation which is a part
of the universal building kit of the so-called incremental mutators [8] for emulating
arbitrary higher-order elements from Chua’s periodical table [22].
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Fig. 11 Possible implementation of floating mutator employing independent power supply: Em-
ulator as two-terminal equipment with in-built batteries (bottom left) [7]; universal mutator with
internal power supply which is derived from USB powering (bottom right) [8]

It is obvious from Table 1 that, in addition to mutators, another four possible
implementations of memristor emulators also exist, which are based on the gen-
eral model in Fig. 3b. The transforming block F , which determines the shape of
the CR of emulated memristor, can be made up using a nonlinear voltage-voltage
or current-current converter. It should be carefully considered which is preferable
for a concrete constitutive relation: the synthesis of one of these converters or of
a nonlinear resistor.

The emulators from Table 1 require a differentiating cell which can be a source
of potential problems and unstable behavior. The memristor model in Fig. 3a does
not use this cell. The block which generates the output quantity y from the input
quantity u and from the parameter g can be implemented either by a resistor with
variable resistance/conductance (see Table 3) or by a source which is controlled
from the output of analog multiplier (see Table 4).

For a successful implementation according to Table 3, it is crucial to design
a resistor whose resistance is electronically controllable according to a prescribed
algorithm. An interesting implementation of this kind can be the emulator with
piece-wise-constant memristance vs. state map for memristor switching memory.
The variable resistor can be made up via switching a set of fixed linear resis-
tors. The particular switches can be controlled by simple comparator-based cir-
cuits which implement the block g() and are driven from the integrator output.
The emulator in Fig. 4 is an example of the VCMR emulators from Table 4. Most
of the commercial analog multipliers, available on the market, have voltage in-
puts and, with a few exceptions, also voltage outputs. Then it is necessary to in-
clude the appropriate voltage-current converters into the emulator. More specifi-
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Table 3 Possible variants of memristor circuit implementation based on controlled resistor, ac-
cording to model in Fig. 3a

Table 4 Possible variants of multiplier-based memristor circuit implementations according to
model in Fig. 3a
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cally, the voltage-current converter should be included at the multiplier output for
VCMR and the current-voltage converter at the bottom input of the multiplier for
CCMR emulator.

5 Conclusions

This Chapter illustrates the usefulness of the modeling procedure from Fig. 3 for
designing the memristor emulators. Several hitherto published circuits are ana-
lyzed. In addition to digital and hybrid emulators, simple analog emulators, en-
abling an easy modification of the constitutive relation (CR) or Parameter vs. State
Map (PSM) of the emulated memristors, are found to be interesting and promis-
ing, particularly those based on mutators. Important challenges of future research
are low-power low-voltage emulators of true floating memristors and higher-order
elements from Chua’s periodical table [22].
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Modeling Memristor-Based Circuit Networks
on Crossbar Architectures

Ioannis Vourkas and Georgios C. Sirakoulis

Abstract Over 30 years ago Leon Chua proposed the existence of a new class of
passive circuit elements, which he called memristors and memristive devices. The
unique electrical characteristics associated with them, along with the advantages of
crossbar structures, have the potential to revolutionize computing architectures. Be-
ing associated with the totally nonlinear behavior of individual memristive elements,
circuits of multiple memristors may work in very complicated way, quite difficult to
predict, due to the polarity-dependent nonlinear variation in the memory resistance
(memristance) of individual memristors. A well defined and effective memristor
model for circuit design combined with a design paradigm which exploits the com-
posite behavior of memristive elements, based on well understood underlying logic
design principles, would certainly accelerate research on nanoscale circuits and sys-
tems. Towards this goal, we explore the dynamics of regular network geometries
containing only memristive devices and present a memristor crossbar circuit design
paradigm in which memristors are modeled using the quantum mechanical phe-
nomenon of tunneling. We use this circuit model to test various logic circuit designs
capable of universal computation, and finally, we develop and present a novel design
paradigm for memristor-based crossbar circuits.

1 Introduction

Memristor was originally proposed in 1971 by the nonlinear circuit theorist Leon
Chua [1]. The memristor is a fourth class of electrical circuit element, joining the
resistor, the capacitor, and the inductor and exhibits its unique properties primarily
at the nanoscale [2, 3].

Currently, the version of the titanium dioxide (TiO2) substrate memristor by
Hewlett Packard (HP) [3] is the most generally recognized memristor type. It is
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based on two thin-layer TiO2 films. The bottom layer acts as an insulator whereas
the top film layer acts as a conductor via oxygen vacancies in the titanium dioxide
(TiO2 changes its resistance in the presence of oxygen). Voltage increment moves
the oxygen vacancies from the top layer towards the bottom layer, thus changing its
resistance. As an ac voltage is applied to the terminals of the device, the current-
voltage (I–V ) curve shows a pinched hysteresis loop that passes through the origin.
Around the origin the device acts as a traditional resistor (linear region). Never-
theless, until nowadays there has been no direct connection between a model and
the memristor physical properties, except for a simple physical model proposed by
Strukov et al. [3]. An appropriate descriptive model will not only lead to a better un-
derstanding of its behavior, but will also result to a better exploitation of its unique
properties. Currently, there is a growing variety of systems that exhibit memristive
behavior, as academia and industry keep on with their research and prototyping.
However, while most of the research has focused on the properties of these single
devices, very little is known about their response when they are organized into net-
works. When multiple memristors are connected to each other, the overall behavior
of the devices becomes complicated and is difficult to predict.

To access the memristive properties, memristors are placed at the intersection of
crossbar nanowires so that a charge can be passed through them [2]. Many proposed
architectures for nanoscale electronics have focused on the crossbar architecture be-
cause of its fabrication simplicity and of the inherent redundancy which supports
defect tolerance [3–5]. The crossbar architecture can be used to compute logic func-
tions based on the placement of specific device switches at the wire junctions and
on their state. Currently, known disadvantages of crossbar-based designs compared
to CMOS technology are mainly due to the device choice used to implement the
switches. Configurable nanoscale memristors in a crossbar [6–8], where memristors
are simply used as two-state switches, would provide a more powerful foundation
for nanoelectronic computation. It would also offer considerable flexibility to sys-
tem architects and would enhance the toolkit of circuit designers.

In this chapter we focus on memristor device modeling and on the architec-
tural perspectives that arise from circuits with configurable memristors, studying the
composite characteristics of memristive elements connected in regular parallel and
serial configurations. We analyze the characteristics of complex memristor circuits
and conduct simulations in order to investigate the relationships among the single
devices, using a proper memristor circuit model which is based on the effective tun-
neling distance modulation [9, 10]. Depending on their orientation (polarity), their
initial condition and their internal properties, which are summarized in the actual
values of the parameters of the model, their overall response turns up totally non-
trivial. We also show how composite memristive systems can be efficiently built out
of individual memristive devices, presenting different electrical characteristics from
their structural elements for several considered input signals. Finally, we exploit
the threshold-dependent nonlinear memristive behavior and elaborate the presented
memristive networks to propose a novel CMOS-like [5] circuit design paradigm
comprising memristive elements. Based on the proposed memristor model, we built
a crossbar circuit simulator using the Java programming language [11], and used
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it to simulate the equivalent circuits of the universal digital logic gates set (NOT,
NAND, NOR) as well as more complex circuits (AND-OR-INVERT function, Half
Adder), which altogether make possible the design and implementation of any dig-
ital logic circuit.

2 Application Potential of Memristor Based Circuits

In this section, the potential of memristor-based crossbar circuits is discussed. A se-
ries of technical specifications regarding performance metrics found in the literature
are summarized and presented. Such experimental information forms a ground basis
for future establishment and practical use of emerging nanotechnologies, verifying
their potentiality and also further motivating the study of new design paradigms and
future applications.

In their work, Stan et al. [12] point out that molecular electronics have a lot
of potential to enable electronic functionality to continue scaling beyond the end of
CMOS. Specifically, in Table I of their work, potential moletronic circuit approaches
are compared with predictions made in the ITRS [13] for the end of the CMOS
roadmap, in terms of speed, power, and density. The table compares footprint, en-
ergy/transition, delay, power density, and compute density, taking into account only
high-performance CMOS. It can be seen that crossbar-based circuits show clear
potential for superiority in area, as well as in energy consumption, but not yet in
performance. Furthermore, as long as the cost of building CMOS chips continues to
follow an exponential law with time, it is pointed out that it is reasonable to expect
that molecular chips will be less expensive to build, since chemical self-assembly is
used to build the devices, rather than many, very precise lithography steps.

Moreover, Jo et al. [14] investigate two terminal amorphous-silicon (a-Si) based
resistive switches. These devices are found to exhibit a number of desirable per-
formance metrics in terms of speed (<50 ns programming time), and endurance
(>105 cycles), which make them suitable for high-performance memory and logic
applications based on conventional or emerging hybrid nano/CMOS architectures.
Kim et al. in [15] demonstrate a high-density, fully-operational hybrid cross-
bar/CMOS system which utilizes a memristor-based crossbar array. The structure of
the studied device consists of an a-Si layer acting as the switching medium. A 50 nm
half pitch was achieved through electron beam lithography and yielded an equiva-
lent data storage density of 10 Gbits/cm2 when storing one bit per memory cell.
In addition, Lu et al. in [16] review the recent progress on the development of two
terminal resistive devices and report on a number of promising performance metrics
shown by devices based on solid state electrolytes like a-Si. Specifically, resistance
switching speed of <10 ns and endurance of >108 cycles are mentioned, whereas
data retention of >10 years at 85 ◦C and nominal energy consumption per opera-
tion in the subpicojoule range have also been reported [17–20]. Some of the recent
advances of binary metal-oxide resistive switching devices reported in the literature
are summarized in Table 4 of [21].
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Also, Ebong and Mazumder [22] analyze the feasibility of memristor memories
and introduce an adaptive read, write, and erase method. The power metrics are
compared to flash memory technology, and the memristor-based memory exhibits
an energy per bit consumption about one tenth of that of flash when programming,
comparable to flash when erasing, and about one fourth of flash when reading. The
aforementioned results are summarized in Table I of [22]. Also, Eshraghian et al. in
[23] provide a new approach towards the design and modeling of memristor-based
content addressable memory (CAM). Emerging memory devices and technologies
are discussed, and a range of performance parameters and salient features of char-
acteristic emerging technologies for memories can be found in Table II of [23].
The memristor-based crossbar architecture is shown to be highly scalable [24] and
promising for ultra-high density memories [25]. Notably, a memristor with mini-
mum feature sizes of 10 and 3 nm yields 250 Gb/cm2 and 2.5 Tb/cm2, respectively.

It is worth to mention that in 2010, almost two years after their first memristor
announcement (their device comprised a 50 nm titanium dioxide film and exhibited
ion mobility of 10−10 cm2/(Vs)), HP Labs also declared that they had practical
memristors working at 1 ns (≈1 GHz) switching times and 3 nm by 3 nm sizes,
with an impressive electron/hole mobility of 1 m/s [26]. These statistics forespeak
well for the future of the technology and memristors could easily rival the current
sub-25 nm flash memory technology.

3 Memristor Device Modeling

3.1 Related Work

The HP Laboratories group in their first memristor implementation announcement
[3], along with experimental device examples, suggested a coupled variable-resistor
model for memristors. Ever since, this model was improved by Joklegar and Wolf
[27], whereas several papers by HP [28, 29] report on further developments of re-
sistance switching theory for TiO2 devices. Di Ventra et al. [30] suggested a simple
threshold-type model of memristive systems [31] and employed it in programmable
analog circuits [32, 33]. Liu et al. [34] proposed a material-oriented methodology to
control resistance switching behavior of oxide-based resistive switches, based on a
unified physical model [35] where formation of conducting filaments (CFs) is due
to the generation of new oxygen vacancies by ionizing oxygen ions from the lat-
tice under voltage bias. Furthermore, approximated SPICE memristor models have
been proposed and tested with promising simulation results [36]. However, little
work has been done towards memristor modeling, whereas various implementation
paradigms are continually being proposed combining nano/CMOS [7], reconfig-
urable architectures and memristors [37, 38], resulting in hybrid implementations
[39, 40], that could have a profound effect on integrated circuit performance.
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Fig. 1 Equivalent circuit of
the coupled ohmic-tunneling
variable-resistor model; L is
the width of undoped dioxide
layer (tunnel barrier width)

3.2 A Novel Memristor Circuit Model

We describe here an alternative solution for modeling memristors, recently pro-
posed by the present authors [10], explaining the devices memristive behavior by
investigating the occurrence of quantum tunneling [9]. The equivalent circuit of the
proposed model is depicted in Fig. 1. It is a threshold-type switching model of a
two-terminal voltage-controlled electrical device that exhibits memristive behavior
[31], and it is described by the following expressions:

I (t)=G(L, t)VM(t), (1)

L̇= f (VM, t), (2)

L is the single state variable of the system which in our model is the tunnel barrier
width (thickness of the free of oxygen vacancies dioxide layer), with the electrical
current transport process being limited primarily by tunneling through it. Also, G

is the device’s conductance and VM is the applied ac voltage. The time derivative
of the state variable in (2) is interpreted as the speed of movement of the barrier
between the two layers, due to the applied voltage bias.

We suggest the coupled ohmic-tunneling variable-resistor equivalent circuit of
Fig. 1, where we consider an ohmic variable-resistor R and a tunneling variable-
resistor Rt connected in series. R represents the resistance of the doped dioxide
layer and Rt represents the tunneling resistance of the undoped layer of the device.
The doped layer acts as a conductor, whereas the undoped layer is a pure insulator.
There is therefore a significant difference between the actual values of their resis-
tances, with Rt � R, which is the reason why our proposed model concentrates
mainly on the Rt .

Tunneling resistance Rt is expected to be proportional to the tunnel barrier width
L, given the fact that the larger the barrier width, the higher the resulting resistance
should be. Also, its value is anticipated to change according to the movement of
the boundary between the two materials because of the transport of oxygen defi-
ciencies under positive or negative ac voltage. Thus, any mathematical formulation
for Rt could include at least a fitting parameter which would bound the effect of the
device’s varying geometry on the actual concentration of the oxygen vacancies in ei-
ther of the sides (doped/undoped) of the TiO2 film. Furthermore, according to Schiff
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[9], Rt is inversely proportional to the product of the voltage-dependent tunneling
transmission coefficient, denoted here as T0, and the electron effective density of
states, defined here as Neff , whereas it is exponentially proportional to the tunnel
barrier width L. Therefore, its particular mathematical formulation is:

Rt(VM)= 1

Neff

× e2×kV ML

T0,VM

(3)

The voltage dependence of (3), due to the presence of the voltage-dependent pa-
rameters T0 and k, can be translated into a corresponding variation of the tunnel
barrier width L; therefore it can be passed to a new voltage-dependent parameter
LVM,t with no significant error implication. In our model, we defined Rt to be de-
scribed by the following equation, whose graphical representation is demonstrated
in Fig. 2(d):

Rt(LV M, t)= fo

e2×LV M,t

LV M, t
(4)

Equation (4) gives the devices resistance (memristance) for a certain restricted range
of the state variable L. All unknown material-specific and geometrical issues are
contained into the model-fitting constant parameter f0, whose value has been de-
termined by comparison with experimental results [3]. The qualitative agreement of
(3) and (4) verifies our assumption for the exponential dependence of the tunneling
resistance on the tunnel barrier width.

In addition, the tunnel barrier width is expected to vary within a restricted valid
range, based on the assumption that the switching rate of L is small (fast) below
(above) a threshold voltage Vth. A heuristic equation L(VM, t) that qualitatively
gives the expected response of the tunnel barrier width as a function of time t and
applied voltage VM is given below, whereas the corresponding graph is shown in
Fig. 2(c):

L(VM, t)= L0

(
1− m

r(VM, t)

)
(5)

L0 is the maximum value that L can attain. The term in parenthesis of (5), which
contains a voltage-dependent function r(VM, t) and a fitting constant parameter m,
determines the boundaries of the barrier width. The function r(VM, t), incorporates
the assumption for the expected different switching rate of L based on the applied
voltage bias discussed above. Particularly, the time derivative of r(VM, t) is given
by the following equation:

ṙ(VM, t)= a × VM + Vth

c+ |VM + Vth| , VM ∈ [−V0,−Vth)

ṙ(VM, t)= b× VM, VM ∈ [−Vth,+Vth]

ṙ(VM, t)= a × VM − Vth

c+ |VM − Vth| , VM ∈ (+Vth,+V0]

(6)
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Fig. 2 (a) A comparison of the normalized I–V characteristics obtained from a memristor under
ac voltage given by the equation V (t)= V0 sin(ωt), with V0 = 4 V and threshold voltage Vth = 2 V.
The models’ results are from: the discussed here model (black), the model in [3] including a pro-
posed modified window function from [27] (blue), and the model in [30] (red). (b) Graphical
representation of (6). In the region [−V0,−Vth) the graph (black) follows the green sigmoid func-
tion, whereas in the region (Vth,V0] it follows the red one. (c) Response of the state variable L

according to (5), and (d) the device memristance Rt given by (4) for a restricted range of the state
variable L

Several thresholds can be programmed by tuning the shaping parameters of
r(VM, t), namely a, b, and c. Equation (6) comprises one-parameter sigmoid func-
tions for the regions above Vth (first and last leg), whereas a linear relation of the
applied voltage is used for the region below Vth. a, b, and c are fitting constants that
define the slope and the magnitude of (6), with a � b and 0 < c < 1. A different set
of values for the parameters a, b, c,m defines a different set of boundaries for the
tunnel barrier width in (5). Setting b equal to zero imposes a hard switching behav-
ior, i.e. there is no state change in the memristor unless a certain voltage threshold is
exceeded. The graphical representation of (6) is shown in Fig. 2(b), where the two
sigmoid functions were also included separately to facilitate visual correspondence.
It is obvious that in the region [−V0,−Vth) the graph (black line) follows the green
sigmoid graph, whereas in the region (Vth,V0] follows the red graph. r(VM, t) is
the most important parameter because it defines both the device dynamics and the
corresponding state. Its value is monitored at each time step and maintained within a
valid defined range; i.e. in cases when r < rmin or r > rmax , it is set equal to rmin or
rmax , respectively. As a consequence, the device memristance is correspondingly set
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to RON or ROFF . Equations (5) and (6) bound the fundamental switching dynamics
in TiO2-based memristive devices, correlating the tunnel barrier width L with the
applied voltage VM . However, several memristor devices have been proposed using
different material structures, so the resistance switching mechanism is not always
due to the change in thickness of a specific material layer. Our model has the po-
tential to describe memristive functionality in a more generalized way if the state
variable is normalized between 0 and 1. This can be done by dividing L(VM, t)

with L0 and by multiplying with the same term the exponent and denominator of
(4). Therefore, when L(VM, t) ≈ 0 the memristor device is in the most conductive
state, and the least conductive state occurs when L(VM, t)≈ 1. This change in state
variable represents a generalization of the model so that it can represent more types
of memristive devices.

3.3 Verification of the Proposed Model

Figure 2(a) demonstrates a comparison of the normalized I–V hysteretic curves
obtained from a memristor under ac voltage bias, between our model and two
published device models [27, 30]. The results of our model exhibit the expected
“bow tie” shape, and apparently correspond qualitatively to the other models’ sim-
ulation results, as well as to the experimental I–V curve shown in [3]. In order
to illustrate the versatility of our model, we present in Fig. 3 the I–V and M–V

(M-Memristance) characteristics as calculated by the presented here model and the
model proposed by Joglekar and Wolf [27]. This model is an extension of the linear
ionic drift as described by HP [3], where a particular window function is incorpo-
rated to illustrate nonlinearities in ionic transport. In order to obtain a fairer compari-
son, where it applies we use the same parameters for both models. In specific, we use
an 8 V peak-to-peak triangular voltage pulse of period T1 = 2.6 s and T2 = 5.5 s to
simulate memristors with total width L0,1 = 3 nm and L0,2 = 5 nm, respectively. We
consider a ROFF/RON ratio of 10, a dopant mobility of 3× 10−8 m2/(Vs) [23] and
we set the exponent variable of the corresponding window function p = 2 [27]. Fig-
ure 3 summarizes the simulation results for both the first (a, b) and the second (c, d)

memristor. In each simulation we set our model’s parameters {a, b, c, f0,m, |Vth|}
to the values {1000, 50, 0.1, 86.49, 56.06, 1.7 V} and {350, 20, 0.1, 2.67, 29.97,
1.5 V}, respectively. In both cases our model delivers satisfying quantitative results
which coincide with the results from the published model. The small difference in
the maximum observed currents is attributed to the slightly different moments when
the maximum memristance is achieved, particularly shown in Fig. 3(b), (d).

Moreover, Pickett et al. in [41] report on experimental results from the appli-
cation of a dynamical testing protocol applied to a set of TiO2-based memristive
devices. Through analysis of the switching dynamics that arise from ionic motion
in the devices, it is concluded that electronic conduction in these devices is domi-
nated by an effective tunneling barrier width that varies with time under the applied
voltage. Thus, the switching effect is primarily attributed to an effective tunneling
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Fig. 3 Calculated I–V (a), (c) and M–V (b), (d) characteristic responses of memristors with
L0,1 = 3 nm and L0,2 = 5 nm, for a 8 V peak-to-peak triangular voltage pulse of period
T1 = 2.6 s and T2 = 5.5 s, respectively, according to the presented here model and the model
of Joglekar & Wolf [27]. Our model successfully reproduces the characteristic responses by set-
ting {a, b, c, f0,m, |Vth|} to the values {1000, 50, 0.1, 86.49, 56.06, 1.7 V} and {350, 20, 0.1, 2.67,
29.97, 1.5 V}, correspondingly

distance modulation, which supports our initial assumptions. Therefore, although
the switching behavior is definitely complex, it has been showed that it is well rep-
resented in our model. Compared to other published models, like the HP’s model
[3], our proposed model provides intuition into these strongly nonlinear dynamical
systems, comprising simple and well understood equations and avoiding the use of
restrictive material-specific parameters [3, 41]. Different value-sets for all fitting pa-
rameters, namely {a, b, c, f0,m}, provide the capability of simulating TiO2-based
memristive devices with different physical structures and geometries. In addition,
our model offers the option for different threshold voltages to be applied to the ON
and OFF switching cases respectively, in order to simulate asymmetric dynamical
behavior during each case. The programmable thresholds provide the possibility of
having different thresholds based on the polarity of the applied voltage. This fea-
ture is required to provide a better fit to available characterization data, since it has
been experimentally verified that both the state variable motion and the threshold
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voltages are not equivalent in both directions, i.e. when being forward or reversely
biased. Although symmetric behavior is presented here as the default option, various
tunneling distance change rates could be attributed to the interaction of the external
applied field, the internal field of the concentrated vacancies, and the diffusion, all
acting in the same or in the opposite directions according to the applied voltage
bias [41].

4 Dynamics of Memristors in Regular Network Connections

The composite behavior of circuits comprising memristors connected in a serial or
a parallel manner is analyzed in this section. Being associated with the totally non-
linear behavior of individual memristive elements, circuits of multiple memristors
may work in very complicated way, quite difficult to predict, due to the polarity-
dependent nonlinear variation in the memory resistance (memristance) of individual
memristors. Here we explore the dynamics of regular network geometries contain-
ing only memristive devices. We particularly focus on one-dimensional memristive
networks with all the devices connected in series or in parallel. Depending on their
internal state, their polarity and the device-specific properties represented by the val-
ues of the parameters of the model, even such simple compositions of memristors
can prove to respond in a much unexpected manner. We employ the model summa-
rized earlier in Sect. 3 and conduct our circuit simulations, with all differential equa-
tions numerically solved using a 4th order Runge-Kutta integration method, as it is
implemented in [11]. Figure 4 illustrates the response of a single memristor under
ac voltage bias according to our model. Model parameter values are used as given in
{a, b, c,m,fo,Lo, |Vth|} = {5× 103,0,0.1,82,310,5,1 V} and the resulting resis-
tance ratio is ROFF/RON ≈ 102 with ROFF ≈ 200 K
 and RON ≈ 2 K
. We note
here that, the equations of the model are written in such a way that when {a, b}> 0
then a positive (negative) voltage applied to the top terminal with respect to the
bottom terminal, denoted by the black thick line (see Fig. 5 for the corresponding
schematic), always tends to increase (decrease) the memristance. The characteris-
tics demonstrated in Fig. 4 will serve as a reference when studying the composite
memristive behavior of multiple devices.

4.1 Memristors Connected in Series

Considering a single memristive device as a structural element, we here analyze
the behavior of circuit branches with more than one device connected in series.
Starting from the smallest configuration, i.e. that which consists of two devices,
Figs. 5 and 6(a) present the set of three different possible polarities which the mem-
ristors will likely have. More specifically, Fig. 5 presents the simulation results
for the composite response of a pair of memristors with the same polarity con-
nected in series, under ac triangular applied voltage. Three possible combinations
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Fig. 4 Memristor model response to a 3 V and 0.5 Hz triangular applied voltage. Model param-
eters values are used as given in {a, b, c,m, fo,Lo, |V th|} = {5 × 103,0,0.1,82,310,5,1 V} and
the resulting resistance ratio is ROFF/RON ≈ 102 with ROFF ≈ 200 K
 and RON ≈ 2 K
. (a) The
applied voltage as function of simulation time. (b) The current-voltage hysteretic characteristic of
the memristor. (c) The device memristance as function of time, and (d) as function of the applied
voltage at the terminals of the device

of their initial states are examined, namely the cases (using the following notation
to define the placement of the devices as upper/lower) OFF/OFF, OFF/ON, and
ON/ON, when both devices are forward polarized. For all initial state configurations
we study the following characteristics: current-voltage (Im–Vm), total resistance-
voltage (RTOTAL–Vm), current-time (Im–t), and total resistance-time (RTOTAL, t),
where total resistance (i.e. memristance) is the sum of the individual memristances
in the circuit branch.

From Fig. 5(a) one can understand that, when employing devices with identi-
cal properties (i.e. equal memristance ratios, switching rates and threshold volt-
ages), if they are placed with the same individual polarity (here both forward po-
larized), then their overall behavior resembles that of a single memristor whose
properties combine the properties of the individual elements. In each situation the
connected elements form a voltage divider circuit; thus in the case of being ini-
tialized as OFF/OFF, since the devices are absolutely identical, the corresponding
voltage drop at each device during the simulation is equal and hence both elements
switch from OFF to ON simultaneously when the corresponding voltage at their
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Fig. 5 Simulation results for two memristive elements connected in series with the same polarity
when both (a) forward biased or (b) reversely biased
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Fig. 6 Simulation results for (a) two or (b) more than two memristive elements connected in series
with opposite polarities

terminals exceeds their threshold value. Therefore, the resulting threshold of the
composite device is the sum of the individual thresholds and the composite mem-
ristance ranges in the interval [2 ×RON,2 ×ROFF]; both devices are toggled from
OFF to ON and vice versa when the total applied voltage exceeds |2 V| and the
lobes of the composite hysteretic I–V result smaller, mostly because of the doubled
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RON value. However, depending each time on the different initial states of the indi-
vidual elements, the applied voltage will either affect their state or it will leave the
memristors unaffected, resulting in complicated and polarity-dependent nonlinear
behavior. For example, in the case of being initialized as OFF/ON, during the first
positive half of the voltage sweep the upper device normally changes its state but
this time this happens much sooner and at a lower voltage compared to the previous
example. This is due to the high difference between the extreme memristance values
which has as a consequence almost the entire applied voltage to correspond to the
element which is found at the OFF state; therefore it faster exceeds the threshold
value. However, the lower device is not affected at all. It is already found in the ON
state, thus under a positive voltage bias it is kept unaffected. Afterwards, during the
negative part of the voltage sweep, both devices change from ON to OFF simultane-
ously. Finally, when initialized as ON/ON, both devices are unaffected by a positive
bias (the I–V graph is linear, resembling that of a typical resistor), but normally
change to OFF/OFF with a negative voltage of appropriate magnitude.

Figure 5(b) presents the simulation results when the devices are both reversely
polarized. Depending on their initial state, individual memristors either change or
remain unaffected during the applied voltage sweep. In the OFF/OFF case, both de-
vices are unaffected during the positive half of the ac voltage sweep, consequently
a very low current can be observed until the voltage exceeds −2 V when both el-
ements are switched simultaneously. This behavior is similar to that of the last ex-
ample of Fig. 5(a), only that this time the gradient of the graph is much smaller.
In the OFF/ON case in the positive half, given that a reversed bias is applied to
the lower device it should have switched from ON to OFF as expected. However,
the high memristance ratio of two orders of magnitude results in a very small cor-
responding voltage drop at this device (consequence of the voltage divider) which
never exceeds the threshold value, thus the total resistance is unaffected. Higher
selected amplitudes for the applied voltage would have successfully switched this
specific element. The final example, where the two devices are initialized in the
ON/ON combination, evidently constitutes the opposite case of the first example of
Fig. 5(a); thus the overall behavior is that of a composite and reversely polarized
memristor.

Figure 6 summarizes the simulation results for two or more than two memris-
tors, this time connected in series while having opposite polarities, studied for a
triangular ac applied voltage. We will note that opposite polarities along with dif-
ferent initial states cause highly nontrivial composite responses to the applied volt-
ages. Three possible combinations of the initial states of the individual elements
are examined. When studying the behavior of circuit branches comprising only two
elements in Fig. 6(a), the same voltage pulse with Fig. 5 is used and the devices
are found at the following initial states: OFF/OFF, OFF/ON, and ON/ON. From
the content of Figs. 4 and 5 it was figured out that single memristors with opposite
polarities present a flipped I–V characteristic and generally demonstrate reversed
behavior to the applied signals; in brief, a positive applied voltage tends to switch a
forward polarized (reversely polarized) device from OFF to ON (from ON to OFF).
Therefore, during a single period of the applied ac voltage, the devices will be likely
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changing their states in a reciprocal way. In the first case where the devices are ini-
tialized as OFF/OFF, the positive applied voltage aims to switch the upper device
from OFF to ON, whereas the lower placed device will remain where it is. However,
during the switching process, the lower the memristance of the upper device gets,
the smaller the corresponding voltage drop in the formed voltage divider becomes,
thus the switching is never completed and this can be noted in both the I–V and the
RTOTAL–t graphs. Next, the negative voltage sweep tends to change to lower device
from OFF to ON and the upper device from its last intermediate state to the OFF
state, where it was at the beginning of the simulation. The spike-like change of the
total memristance is due to the fact that, first the lower device begins its switch-
ing because its higher resistance has as a consequence the major part of the total
applied voltage amplitude to correspond to this device. Nevertheless, likewise hap-
pened with the positive voltage sweep, during the switching the resistance of the
lower element falls enough so that the voltage drop that corresponds to the upper
device exceeds the voltage threshold and, as a result, restores it to the OFF state.
Thereupon, the voltage drop at the terminals of the lower device never reach again
its threshold and thus the total memristance is maintained unaffected until the end
of the voltage sweep.

As far as the second possible configuration is concerned, we have the individual
elements connected in an antiserial manner and initialized in the states OFF/ON,
making the well-known complementary resistive switch (CRS) [42] which was pro-
posed as a possible solution to the current sneak-path problem of large passive cross-
bar memory arrays. In the CRS concept, a memory cell is formed by two bipolar
memristive elements, vertically stacked in an antiserial configuration on top of each
other. The first feature that appears from the CRS simulation is a perfectly sym-
metric I–V curve out of an asymmetric memristor I–V curve. We here illustrate a
typical I–V behavior of a simulated CRS switch after preprogramming the individ-
ual devices into the aforementioned state prior to further processing. First a positive
voltage is applied creating the necessary conditions to either change the state of the
lower placed device to OFF or to change the state of the upper element to ON. As
it can be seen in the corresponding graph, when voltage reaches a particular point,
the state of the upper device changes first and the current rises to very high values
until the other device finally switches to the OFF state. At this point, the initial state
configuration OFF/ON of the CRS has been flipped to ON/OFF. Next, the flipped
CRS exhibits an ohmic behavior until the voltage reaches a specific negative value,
when the lower placed element first changes to the ON state. As the negative voltage
sweep continues, the upper device is also flipped and the CRS continues exhibiting
again ohmic behavior until the end of the voltage sweep. In the resulting I–V char-
acteristic of the CRS the current is linear with the voltage except in two finite voltage
intervals. In the final example the devices are both initialized in the low memristance
state, i.e. ON/ON. Therefore, in the positive part of the sweep the upper device is
unaffected and only the lower device is switched, whereas during the rest of the ac
sweep the composite behavior is the same with the previously studied case, so at the
end of simulation the devices are found at the OFF/ON combination.

Up to this point we have thoroughly examined the dynamic behavior of cir-
cuit branches comprising at most two devices in serial or antiserial configurations.
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However, appropriate functionality of memristive elements when they are combined
and/or introduced to larger circuits proves quite intriguing and it has been also ex-
plored here. In Fig. 6(b) we employ more devices (in particular we consider series
of six or ten devices) while appropriately adjusting the voltage amplitude to finally
examine their overall response when: (1) three out of six (i.e. half of them) devices
are found forward polarized and in the OFF state and the other three are reversely
polarized and found in the ON state, (2) four out of six devices are forward polar-
ized in the OFF state and the other two are reversely polarized in ON state, and
(3) five out of ten (i.e. half of them) devices are found forward polarized and the rest
are reversely polarized, when all being arbitrarily initialized at intermediate states
within the interval [ON, OFF]. The response of the first circuit resembles abso-
lutely that of the CRS demonstrated before, with the only difference that the two
high-conduction intervals are dragged horizontally in the V -axis. Here the transi-
tion begins when the applied voltage exceeds the resulting accumulated threshold
value of the devices with the same polarity. Also, since the total RON of the branch
is here three times larger, the highest measured current is found smaller but this
difference is infinitesimal and can hardly be detected in the provided graphs be-
cause of the high ROFF/RON ratio. This is a good example showing how groups
of individual devices can be effectively combined to deliver composite structures
that produce combinatorial complex behavior. Likewise, when having most of the
devices forward polarized and initialized as OFF, we see that we can selectively
widen and shorten specific lobes and dominate the duration of the high-conduction
intervals at will, maintaining the same operation. It is worth noticing that the total
resistance, after the voltage sweep is completed, always returns to its initial state,
thus the examined device combinations guarantee stable function.

In the final case of our study concerning in-series connected memristors invokes
the arbitrary initialization of the devices according to the uniform distribution, to
any possible intermediate memristance within the interval [RON,ROFF]. We em-
ploy ten devices to increase the total complexity and the variety of possible re-
sistance switching events, with half of them forward and half reversely polarized,
whereas we correspondingly increase the applied voltage amplitude to make sure
that it will initiate various switching events. The actual initialization is not shown
here but the amount of switching events can be easily noted from the correspond-
ing memristance characteristics. The value of the total memristance at the end of
the voltage sweep cannot be foreseen and can take any intermediate value between
n×RON and n×ROFF , where n is the number of employed elements. Furthermore,
after conducting multiple similar simulations, we noted that the resulting I–V is
always very similar to the presented one, where the current graph can hardly deviate
significantly, presenting always a predominating gradient.

4.2 Memristors Connected in Parallel

Once again, considering a single memristive device as a structural element, we an-
alyze the behavior of circuit branches with more than one device connected, this
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Fig. 7 Simulation results for two memristive elements connected in parallel with the same polarity
when both (a) forward biased or (b) reversely biased

time in parallel. Starting from the smallest configuration which consists of two de-
vices, Figs. 7 and 8(a) present the set of three different possible polarities which the
memristors will likely have. More specifically, we are interested in the composite
response of a pair of memristors with the same polarity, connected in parallel, under
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ac triangular applied voltage and examine the same three possible combinations of
their initial states, as we did before for the in-series configuration. In this case, since
the same voltage is simultaneously applied to all memristors, we do not expect to
notice any shift in the threshold voltages that dominate the composite behavior of
the memristive combinations, compared to the response of the individual elements.
However, unlike the series connection, in the parallel connection the lower resis-
tance values (RON) will dominate the total resistance of each branch.

In the first case of Fig. 7(a), both devices switch simultaneously from the OFF
to the ON state and vice versa, and the resulting I–V resembles that of the sin-
gle memristor of Fig. 4, only that this time the maximum current is doubled be-
cause the total memristance when both devices are found at the ON state is RON/2
(RON ‖ RON). Therefore, it can be concluded that by connecting identical mem-
ristors with the same polarity in parallel, we reproduce the individual memristive
behavior and achieve higher total current values. Of course, the higher achieved
value for the composite memristance is also lower, but the difference in the current
can be hardly noticed because of the high enough selected resistance ratio. In the
second case, the influence of having one of the two devices initialized at the ON
state can be observed. The initial total memristance is very low and during the posi-
tive voltage sweep the device already found at the ON state is not affected, whereas
the memristor initially set to the OFF state switches its state as soon as the applied
voltage exceeds its threshold. Their composite response during the negative sweep
is the same with the previous example of Fig. 7 with both devices switching their
states simultaneously to the OFF state. In the last case of Fig. 7, both devices are
unaffected by the positive part of the voltage sweep, whereas during the negative
part they repeat the aforementioned behavior.

In Fig. 7(b) we examine the composite response of a pair of reversely polarized
memristors for the same three scenarios of initial configuration and the simulation
results illustrate a very similar composite behavior to the one described before. More
specifically, the first case resembles the last case of Fig. 7(a), only that this time
during the positive voltage sweep the devices remain unaffected at the OFF state
and simultaneously switch to the ON state with a negative applied voltage. In the
second case again only one device changes its state, resulting in a verisimilar I–V

with the corresponding case of Fig. 7(a), whereas the last case is exactly the same
with the first one of the forward polarized devices, with the only difference that the
composite device functions in the opposite way.

Having already noticed that identical memristors (or groups of memristors) with
opposite polarities can deliver symmetric individual (composite) behavior, it is of
great interest to explore their composite response when such devices are connected
together. Therefore we next examine the total response of groups of two or more
than two devices with anti-parallel configurations. In Fig. 8(a) we investigate the be-
havior of the smallest configuration which consists of only two devices. Compared
to Fig. 7, we notice a significant difference in the overall composite memristance
switching; during the simulation and in all demonstrated cases the memristance is
kept at low values except for certain intervals which are denoted by spike-like transi-
tions. This is because, as we have concluded before, devices with opposite polarities
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Fig. 8 Simulation results for (a) two or (b) more than two memristive elements connected in
parallel with opposite polarities

have opposite switching characteristics; each time a voltage is applied one of the de-
vices tends to switch to the OFF state and the other to the ON state, respectively.
Hence, there will almost always be a device at the ON state, dominating this way
the total memristance. It can be seen that, except for the first example where both
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devices are initially set to the OFF state, the OFF/OFF combination is then found
again only as an intermediate state during the state transitions of the devices. Of
course, proper selection of the threshold voltages will either broaden or shorten the
period of duration of the OFF/OFF combination. The most characteristic case of the
ones presented in this figure is the second one, where we have a forward polarized
device initialized as OFF and a reversely polarized device initialized as ON, giving
an anti-parallel resistive switch (ARS) [43]. The resulting I–V characteristic looks
like a truncated Ohm’s law; the current is linear with the voltage exclusive of two
finite voltage intervals. This behavior is opposite to the I–V characteristic of the
complementary resistive switch (CRS) which we described in Fig. 6(a).

Nevertheless, although only a pair of memristor devices was used to illustrate
functionality of ARS combinations, the same principles apply for more than two
simultaneously connected devices. Depending on their polarity, each time a volt-
age is applied, the memristors will change their state or they won’t be affected at
all. The only practical difference lies in the magnitude of the total current observed
which depends on the instant combination of the memristances. In Fig. 8(b) we ex-
plore the composite response of larger groups of memristive elements connected in
parallel. Likewise in Fig. 6(b), in the first case we again employ six devices where
half of them are forward polarized at the OFF state and the rest are reversely po-
larized and initialized at the ON state. It can be observed that the resulting graphs
resemble those of the aforementioned ARS combination consisting of two mem-
ristive elements. The only difference lies in the measured currents which in this
case are larger, as a consequence of the submultiple limits of the composite mem-
ristance values. Therefore we can conclude that by introducing more devices to the
ARS configuration while maintaining equal the number of forward and reversely
polarized devices, we can reproduce the ARS function but with higher currents and
smaller composite resistance ratio. In the second case of Fig. 8(b) we notice how we
can create multiple dominating gradients in the I–V characteristic by choosing a
different distribution between the forward and the reversely polarized elements. We
again employ six devices in total with four of them being forward polarized in the
OFF state and the other two reversely polarized in ON state. It can be seen that the
finite voltage intervals when all devices are found at the OFF state are maintained.
However, the initial and the final gradients of the current before and after the afore-
mentioned intervals result different. In the last example of our case study, we employ
ten devices with half of them forward polarized and the rest reversely polarized, but
this time all being arbitrarily initialized at intermediate states within the range [ON,
OFF]. Here we notice that during the first voltage sweep, although the initial state
of each device is arbitrary, the circuit branch settles to a particular state close to the
lowest possible memristance and then, during the negative voltage sweep, continues
functioning normally as a ARS, resembling the previously described behavior but
with even higher currents and smaller overall memristance ratio due to the higher
number of employed devices.

Up to now we have highlighted the most important characteristics of the com-
posite behavior of memristors when organized in simple one-dimensional networks.
In the following section we discuss how the particular ARS operation of multiple
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Fig. 9 CMOS VLSI design
method compared to
CMOS-like nanoscale design
with appropriately polarized
memristors replacing FETs in
the corresponding pMOS and
nMOS areas

memristors can be effectively elaborated and incorporated in a CMOS-like circuit
design paradigm for the creation of complementary logic in circuits with memris-
tors, implemented in the nano-crossbar geometry.

5 Circuit Design Paradigm

5.1 Implementation of the Universal Digital Logic Gates

In this section we summarize a novel design paradigm for circuits with memristors,
which is based on well-known logic design principles for the CMOS Very Large
Scale Integration (VLSI) technology and invokes the anti-parallel resistance switch-
ing (ARS) notion.

We present the implementation of the equivalent circuit of the universal digital
logic gate set. According to CMOS VLSI design theory, for every logic function
F(x) implementation there is a specific formation for the Field Effect Transistors
(FETs) circuit. In particular, p-type FETs are located in the upper part of the design
plane, implementing the F(x′), whereas the n-type FETs are located in the lower
part, implementing the F ′(x), with the circuit output always taken from between
these two parts. Figure 9 depicts the above description and also shows that appro-
priately polarized memristors can be used to replace existing FETs, maintaining the
well understood CMOS-like design methodology [5]. This equivalence is mostly
based on the fact that each memristor is considered to be a two-state switch, allow-
ing or preventing the current flow in a circuit branch. It should be mentioned that
in every circuit design presented throughout this work, the memristor devices are
deliberately shown as three-terminal devices to facilitate comparison with CMOS
circuits. In fact, memristors are two-terminal devices and each input signal in the
circuit is applied to the particular set of crossbar nanowires which form the junction
where the specific memristor is located. Thus, during programming state, applying
an input signal simultaneously to all the devices found in a horizontal circuit line
corresponds to the application of an appropriate voltage (positive or negative) to the
crossbar nanowires which will affect the internal state of the memristor devices.
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More specifically, we use forward polarized memristors (FPMs) in the n-MOS
area and reversely polarized memristors (RPMs) in the p-MOS area. Also, for the
input signals we use conventional notation; namely, we represent logic “1” with
positive voltage bias and logic “0” with negative voltage bias on the memristor ter-
minals. The RPMs, corresponding to p-type FETs, are initially found in the ROFF

state. Thus a negative voltage changes their state from ROFF to RON , whereas a pos-
itive voltage either restores their state from RON to ROFF or lets them unchanged
in ROFF . On the contrary, the FPMs which correspond to n-type FETs, are initially
found in the RON state. So, a negative sinusoidal voltage changes their state from
RON to ROFF , though a positive sinusoidal voltage either restores their state from
ROFF to RON or lets them unchanged in RON correspondingly.

For every logic function, the final circuit consists of an equivalent ohmic re-
sistance for the upper and another one for the lower part of the CMOS-like im-
plementation respectively. Therefore the output voltage VOUT is always a frac-
tion of the Vdd (voltage divider), with voltage values close to Vdd correspond-
ing to logic “1” and values close to zero (Gnd) corresponding to logic “0”. Fig-
ure 10 demonstrates the actual circuit implementation of the universal digital logic
gates with memristors, whose functionality we explain taking for example the IN-
VERTER (NOT gate). At its initial state, before any applied input, it is VOUT =
Vdd × RON/(RON +ROFF) � Vdd . After appropriate positive input voltage (logic
“1”) the memristors maintain their state, thus we have the same VOUT . However,
with a negative input voltage (logic “0”) the previous state of the memristors is
changed, so we have VOUT = Vdd × ROFF/(RON +ROFF) ≈ Vdd . Afterwards, ev-
ery time a positive input is applied to the gate following the application of a negative
one, the state of the memristors is restored to their initial state. Consequently, VOUT

changes as expected for any input variation. Likewise, the proposed paradigm works
correctly for the rest of the universal digital logic gates, making the design of every
digital logic circuit possible.

5.2 Crossbar Circuit Simulator

In order to effectively simulate circuits with memristors on crossbar architectures
[4, 5], we built a crossbar circuit simulator which utilizes the memristor device
model presented earlier in this work, using the Java programming language [11].
The simulator has been properly constructed in order to facilitate the circuit design
following the proposed design paradigm, which is based on the CMOS VLSI theory.
Snider et al. in [5] presented an approach to building nanoscale computing elements
on mosaics of crossbars of configurable FETs and switches, which comprise a set of
complementary arrays, i.e. pairs of nFET and pFET arrays supporting a CMOS-like
design methodology. Inspired from their particular work and their concept of a fun-
damental crossbar-based building block, we adopted the basic geometrical features
of the proposed logic block, which we then extensively transformed, proposing here
our approach to building nanoscale compute fabrics out of configurable memristor
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Fig. 10 CMOS-like nanoscale circuit design of the universal digital logic gate set utilizing FPMs
and RPMs instead of FETs

switches. Particularly, we maintained the sharp geometry of the array-based archi-
tecture and considered appropriately polarized memristor devices to replace nFETs
and pFETs.

More specifically, our simulator incorporates a practical user-friendly interface,
which comprises a basic logic block (LB) that facilitates the creation of logic with
the use of memristor arrays, shown in Fig. 11. The horizontal and vertical lines
represent nanowires, with the horizontal lines in one plane and the vertical wires
in another. The nanowires are divided into different quadrants of adjustable dimen-
sions, each quadrant possessing different electrical properties due to the nature of
the nanowire types in the quadrant and the chemical properties of the interlayer used
in that region. The dark gray rectangles at the top represent structures that supply
power and ground to the array. The small circles represent connections between the
structures in the two different planes. The leftmost vertical wires are electrically
connected to the Vdd power supply whereas the rightmost vertical wires are elec-
trically connected to the ground. The quadrants at the bottom of the LB represent
configurable routing switches; i.e. each junction is normally open, but can be elec-
trically configured to be closed (a low impedance path). In the pink quadrant each
junction can be configured to be an RPM, with the configuration input implemented
with the horizontal wire and the poles of the device implemented with the vertical
wire. In the same way, each of the blue quadrant junctions can be configured to be
an FPM.

Every logic function can be implemented in a straightforward manner by de-
composing it into two sets of minterms (one set for the RPMs and another for the
FPMs), and by selective configuration of junctions in each of the quadrants. For
sum-of-products function representations, each product term is implemented with a
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Fig. 11 Basic logic block of
the crossbar simulator for
circuits with memristors. It
comprises two horizontal
metal wires for power supply
(Vdd and Gnd), p(q)

horizontal metal wires for
inputs (outputs), and
n= n1 + n2 vertical
nanowires. On the right, the
most compact
implementation for the set of
universal digital logic gates is
presented, where yellow dots
denote currently configured
memristors and routing
switches

single vertical chain of memristors and the final sum is created by wired-ORing the
existing products. A particular input signal may be brought in on any of the horizon-
tal nanowires in the top main two quadrants and it applies to all of the configured
memristors found in the same horizontal line. Correspondingly, an output signal
may be driven out on any of the horizontal nanowires in the bottom quadrants, on
either side of the array, limited only by the ability to allocate junctions within the
array to implement the computation function.

5.3 Simulation of Memristor-Based Crossbar Circuits

In this section we demonstrate the results of the simulations conducted using our
simulator environment, which utilizes the coupled ohmic-tunneling variable-resistor
circuit model for memristors described earlier in Sect. 3. We have successfully sim-
ulated the universal digital logic gates, as well as a half adder (HA) and an AND-
OR-INVERT function implementation, which are powerful enough to implement
universal computation. In our simulations we defined the value margin of L be-
tween 1 and 4 nm, and also used a 4 V ac voltage amplitude, getting a satisfactory
ROFF/RON ratio of approximately two orders of magnitude. All differential equa-
tions are numerically solved using a 4th order Runge-Kutta integration method, as
it is implemented in [11].

Figure 12 shows the output response of a NAND and a NOR logic gate for the
corresponding input signals, both implemented with memristors under the CMOS-
like design paradigm proposed earlier in Sect. 5. All possible input combinations
are presented, starting with the pair (A,B) = (0,0) and finishing with the same
signal values. This is done on purpose in order to demonstrate that the circuit always
returns to its initial state. The output voltages should be considered after an input
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Fig. 12 Output response of a
NAND (middle graph) and a
NOR (lower graph) digital
logic gate implemented with
memristors, for all possible
input variations (upper
graph) of signals A (red) and
B (green), with Vdd = 2 V

signal completes its transition; i.e. in the deliberately left wide time gap between
consecutive input signal variations.

Figure 13 shows the LB configuration and the circuit design diagram of a HA,
under the proposed design paradigm. On the LB figure, red color is used to distin-
guish the circuit part which corresponds to the Carry and green for the part of the
Sum circuit respectively, with the inverted signals driven from the outside. Also, the
output response for Sum and Carry, which proves the correct functionality of the cir-
cuit, is also presented. The simulation begins with the combination (A,B)= (0,0)

and finishes also with the same signal values. This time attention should be paid
to the output graph after each inverted signal completes its transition. Furthermore,
Fig. 14 demonstrates the circuit diagram for the implementation of an AND-OR-
INVERT function, namely F = (AB +CD)′, along with the output response for all
of the sixteen different input signal combinations. The output graph is successfully
confirmed by the function’s truth table, also given in Fig. 14.

5.4 Performance Evaluation of Memristor-Based Circuits

Nanowire crossbar is considered one of the most promising circuit solutions for
nanoelectronics having many favorable properties, including its periodic geome-
try and the very compact definition of devices and interconnects, facilitating large
scale fabrication and ultra high device density. We next analyze how logic circuits
implemented in memristor-based crossbars will perform especially in comparison
with MOSFET logic circuits. Evaluation is done with three basic circuit properties,
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Fig. 13 (a) The LB configuration and (b) the circuit diagram for the design of a half adder (HA).
(c) Output response of Sum (green) and Carry (red) for all possible input variations of signals A

(red) and B (blue)

namely area, operation frequency (delay) and energy. Ultra high cross-point density
is the major advantage of nanowire crossbar. The generic memristor-based crossbar
considered here consists of two horizontal metal wires for power supply (Vdd and
Gnd), p(q) horizontal metal wires for inputs (outputs), and n = n1 + n2 vertical
nanowires, where n1 and n2 is the number of nanowires in each of the orthogonal
arrays where RPMs and FPMs are located. If f is the half pitch (minimum feature
size) of the process technology, the area of a memristor at a cross-point is estimated
as small as 4f 2 [44]. Considering all pitches equal for simplicity reasons, i.e. hori-
zontal power line pitch, input/output line pitch and nanowire pitch, the area of any
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Fig. 14 (a) Truth table of the logic function F = (AB +CD)′ and (b) the circuit diagram for its
implementation. (c) Output response for all input variations of signals A (red), B (green), C (blue)
and D (magenta)

circuit is calculated as follows:

Area(p, q,n1, n2)= (p + q + 1)× (n1 + n2)× 4f 2 (7)

For example, the set of parameters {p,q,n1, n2} for the crossbar implemen-
tation of NAND and NOR universal logic gates shown in Fig. 11 is {2,1,2,1}
and {2,1,1,2}, respectively. Thus, the corresponding area for both of the logic
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gates is 48f 2, which is only the 16 % of a four-transistor MOSFET gate’s area
of 300f 2 [45].

In order to estimate the operating frequency of the presented here memristor-
based circuits, we need the time required to change the state of a memristor (write)
from 0 to 1 and 1 to 0, which is directly connected to a voltage source. This time
(Tw) was previously derived in [46] and is given by the following equation:

Tw = L2
0 × β

2×μV × Vm

(8)

β is the achieved resistance ratio of ROFF/RON , L0 is the thickness of a mem-
ristor, Vm is the magnitude of the applied voltage and μv is the mobility of oxy-
gen vacancy dopants. According to this equation, the write time of a memristor
is a function of physical parameters of the device and increases with increase in
L0 and β and decreases with increase in the applied voltage. The time required to
read the state of a single memristor is not needed for our logic circuits. Introduc-
ing in (8) the set of parameters’ values considered in our simulations for the pre-
sented circuits, utilizing a dopant mobility value also used in [23], namely the set
{L0, β,Vm,μv} = {5 nm,100,4 V,3 × 10−8 m2/(Vs)}, results in a memristor ac-
cess time Tw of 10.4 ns. Such a delay is relevant with measured values for switching
speed reported in the literature, although higher (lower) dopant mobility can lead to
lower (higher) delays respectively. The instantaneous current of the memristor i(t)

while writing one or zero depends on the memristor resistance at that instance of
time (RL) and on the applied voltage (Vm). The energy dissipated during access
time in each cross-point device can therefore be calculated as:

Ew =
∫ Tw

0
Vm × i(t)d(t) (9)

According to data reported in recent literature listed earlier in Sect. 2, mea-
sured values for switching speed and energy dissipation per operation for mem-
ristors can reach <10 ns and <6 pJ, respectively. Thus, in terms of area and energy
consumption, memristor-based circuits are very competitive, delivering also com-
parable speed with conventional MOSFET-based circuits.

6 Conclusions

This chapter underlines the architectural perspectives that arise from networks of
configurable memristors implemented in nano-crossbar platforms. More specifi-
cally, a novel circuit model for memristors, which explains the devices memristive
behavior by investigating the occurrence of quantum tunneling, and a CMOS-like
circuit design paradigm for circuits with memristors, which emerged from the com-
posite behavior of networks of multiple memristors, were presented. We proved the
fine application of both by demonstrating the results of various simulations con-
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ducted with a properly built crossbar circuit simulator. This work applies well to
nowadays technology trends on nanoscale circuits and systems and motivates for
further experimental investigation on issues concerning power consumption, op-
erating speed and circuit reliability. Detailed study related to application of this
work to many emerging applications of memristors, concerning non-conventional
computational and logic circuits, nonvolatile memories, neuromorphic computing
and reconfigurable analog/digital circuits will be also part of our future investiga-
tion.
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Computing Shortest Paths in 2D and 3D
Memristive Networks

Zhanyou Ye, Shi Hong Marcus Wu, and Themistoklis Prodromakis

Abstract Global optimisation problems in networks often require shortest path
length computations to determine the most efficient route. The simplest and most
common problem with a shortest path solution is perhaps that of a traditional
labyrinth or maze with a single entrance and exit. Many techniques and algorithms
have been derived to solve mazes, which often tend to be computationally demand-
ing, especially as the size of maze and number of paths increase. In addition, they
are not suitable for performing multiple shortest path computations in mazes with
multiple entrance and exit points. Mazes have been proposed to be solved using
memristive networks and in this paper we extend the idea to show how networks of
memristive elements can be utilised to solve multiple shortest paths in a single net-
work. We also show simulations using memristive circuit elements that demonstrate
shortest path computations in both 2D and 3D networks, which could have potential
applications in various fields.

1 Introduction

Many combinatorial optimisation problems in graph theory [17], such as the Trav-
elling Salesman Problem, involve deriving the shortest path within networks [29].
Applications of such computations include optimising routing protocols [8], trans-
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portation models [21] and recurrent neural networks [11]. Perhaps the simplest
shortest path problem is a traditional maze, where one has to determine the path
to the exit of a labyrinth whilst only given the entrance point. However, when there
are a larger number of pathways in a maze, this increases the number of solutions.
Out of these possible pathways, finding the shortest or least-cost one may not nec-
essarily be straightforward. Many mathematical algorithms have been proposed to
solve mazes, such as random mouse or mathematical search algorithms [9, 18]. Such
algorithms derive solutions in a sequential fashion, thus solution times can increase
exponentially in complex networks.

There are also many innovative methods prescribed to solve mazes using biolog-
ical and chemical systems, such as amoeboid organisms [19, 20], chemotaxis [28]
and chemotactic droplets [16]. However, such methods also suffer from increased
time complexity when maze sizes increase. The problem is further exacerbated with
the introduction of multiple users to a network, such as a traffic optimisation prob-
lem where multiple cars would like to find the shortest travelling path in order to
avoid congestion in the network. In this paper, we propose using networks of mem-
ristive elements to perform multiple shortest path computations in a given network.

The memristor, short for memory resistor, is a passive two-terminal circuit el-
ement capable of altering its resistance based on the input and remember its past
dynamics [2]. After the device was postulated by L. Chua, a generalised concept of
the memristor was further proposed by Chua and Kang [3], defined as

v =R(x)i (1)

dx

dt
= f (x, i) (2)

where v represents the voltage, i represents the current and R(x) denotes the instan-
taneous resistance of the device that changes based on its internal state variable, x

[24]. Memristance signatures are also observed in various dissipative systems that
support discharge phenomena, such as discharge lamps and biological ion channels
[22, 26]. Since its implementation by Strukov et al. [32], the solid-state memristor
has been proposed to be of use in various applications such as memory storage [15]
and neuromorphic implementations [13, 31].

Memristor networks—several memristors connected in the form of an array—
have been postulated to be able to perform complex cortical computing functions
[31]. Pershin and Di Ventra have also demonstrated that abstract mazes can be
solved in a parallel fashion using memristive networks, a termed coined as analog
parallelism. They have also shown that all solutions in the maze can be determined
and the results are separated in order of path length [23].

In the rest of the paper, we exploit the plasticity of 2D and 3D memristive net-
works for extrapolating various shortest path solutions via simulations in PSPICE.
Our study initiates by deciphering the fundamentals of the network to derive shortest
path solutions to a given maze in 2D. We then expand this concept to exhibit how a
memristive grid can be used to perform multiple shortest path computations in a net-
work involving several users; the example here is London’s Tube Network. Lastly,
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we show how multiple shortest path problems can be solved using 3D memristive
networks.

2 Methodology

The maze or network must first be mapped onto a regular memristive grid. The rep-
resentative memristive grid is then implemented in MATLAB and the corresponding
circuit simulations are performed using PSPICE. Entrance/Exit or Start/End nodes
for the circuit simulation are represented by a 1 V DC Voltage source and Ground
respectively.

2.1 Memristive Components

In 1971, the memristor was predicted theoretically by L. Chua in his seminal paper
[2] but it remained a theoretical abstraction until researchers at Hewlett Packard
(HP) Laboratories discovered similar properties while fabricating crossbar-type
nano-devices in 2008 [32, 33]. The memristor was postulated based on a mathe-
matical relationship between charge q and magnetic flux ϕ : dϕ = Mdq , where M

denotes the memristance, which has the same units as resistance (
) and is defined
as the resistance across the memristor. By taking the time integrals of q and ϕ, the
non-linear relationship between voltage and current across the memristor is estab-
lished:

v(t)=M(q) ∗ i(t) (3)

In Eq. (3), v(t) is the applied bias, i(t) is the current flowing through the memristor
and M(q) is the charge-dependent memristance. The simplest abstraction of the
memristor is that of a time-dependent resistor [14]:

M(t)= W(t)

D
∗RON +

(
1− W(t)

D

)
∗ROFF (4)

2.2 Memristive Fuse

However, when devices are used in memristive networks for shortest path computa-
tions, polarity dependence is not desirable since the direction of current flow cannot
always be determined.

It was previously proposed that by connecting two memristors with opposing
polarities [12], the non-linear relationships between time integrals of voltage and
current can be preserved without any polarity dependence. This new combination of
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Fig. 1 Two memristors
connected with opposite
polarities to form a
Memristive Fuse [10]

devices is termed the memristive fuse [10], shown in Fig. 1, and is used as the pri-
mary memristive device in all the networks in the following simulations. Since the
fuse is made of two ideal memristors connected in series, the total initial resistance
of the overall device is twice the initial resistance of a single memristor (2RINIT ).

2.3 SPICE Simulations

All the memristive networks are simulated using Biolek’s Memristor SPICE Model
[1] with Prodromakis’ non-linear kinetics dopant model [25]. Details about the
models can be found in the corresponding references. Throughout this study, the
memristor parameters within the SPICE model were defined as follows: Initial
Width W0 = 5 × 10−9 m, Active-Core Thickness D = 10 × 10−9 m, ON Resis-
tance RON = 100 
, OFF Resistance ROFF = 16 k
, Net Resistance at t = 0
RINIT = 1000 
, Mobility μ= 1× 10−14 m2 s−1 V−1.

3 Shortest Path Solution of Mazes Using 2D Memristive
Networks

The first simulation shows the varying conductance paths in a memristive network,
which correspond to the various solutions to a simple shortest path computation.
A simple memristive network is first constructed from a combination of memristive
fuses and resistors. Throughout this work we refer to the points where devices are
connected together as nodes, while we refer to a branch in the case it comprises one
or more devices between two nodes. In Fig. 2, a simple maze is illustrated using a
4×4 memristive network. The paths of the maze are simulated using 12 memristive
fuses (labelled M1–M12) and 2 M
 resistors are used to represent the blocked
conductance paths. A 1 V DC Voltage Source and Ground are placed at the nodes
corresponding to the entrance and exit of the maze respectively.

The memristive network is simulated for 35 s and the results are shown in Figs. 3
and 4. For each device, the change in memristance ΔM is determined by taking
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Fig. 2 4× 4 Memristive
Network consisting of
Memristive Fuses and
Resistors

the difference between the ‘resistance’ across each branch and the initial resistance
(2RINIT ), which is calculated via:

ΔMk =
∣∣∣∣
VX − VY

IXY

∣∣∣∣− 2RINIT (5)

x and y are the nodes connecting each branch and k is the device number. Figure 3
illustrates the transient response of ΔM for devices M4, M5 and M6 against time.
This change shows how the devices in different paths respond to the input voltage
due to the variance in current amplitudes flowing through them. Figure 4 shows
the temporal evolution of memristance of all 12 devices in the network for time in-
stances 1 s, 5 s, 10 s and 30 s. For better visualisation of the change in memristance,
ΔM for each device was translated to a linear colour scale of 0–64, where 0 corre-
sponds to zero ΔM and 64 represents the maximum ΔM observed throughout the
duration of the simulation.

We first analyse the memristance change of the devices between three branches:
Branch 1 (nodes 6 and 14), Branch 2 (nodes 7 and 15) and Branch 3 (nodes 8
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Fig. 3 Plot of Memristance Change (Devices M4, M5 and M6) for time period 0–35 s

Fig. 4 Spatiotemporal plot depicting ΔM of all Memristive Elements at varying times: (a) 1 s,
(b) 5 s, (c) 10 s, (d) 30 s. The colour bar on the right show the corresponding ΔMvalues

and 16). Kirchoff’s Current Law states:

Iin =
n∑

i=1

Ii (6)

n refers to the number of branches at the particular node. Applying the formula at
nodes 14 and 15, the following relationship regarding the overall current flow across
all three branches can be deduced: IB3 < IB2 < IB1.
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A larger current flow across a memristor will result in higher rate of change
of memristance of the device. Assuming that very little current flows through the
2 M
 resistors in the grid network, this implies that the ΔM of the devices in all
three branches after a short time period will have a similar relationship to that of
the total initial current flow across the branches: refer to the change in memristance
across devices M4, M5 and M6, shown in Fig. 3 respectively. An increase in the
memristance across the devices in Branch 1 will in turn channel more current to
Branches 2 and 3. After a stipulated simulation time, all the memristive devices in
the network will reach the high resistive state (ROFF).

It can be observed that the shortest path in a maze will exhibit a larger change in
memristance over a single period. For the simple maze in Fig. 2, Branch 1 is clearly
the shortest path, and the corresponding length of the other two paths (Branch 2
followed by 3) can be identified by comparing ΔM of all devices. We also note the
limit of the simulation where all devices reach the high resistive state (ROFF) and
the paths are no longer distinguishable by measuring ΔM . Based on the argument
that discharge-phenomena support memristive signatures [26], we have reviewed
numerous reports on unconventional computation via discharge mechanisms; the
most prominent one being [27]. The maze, shown in Fig. 5a, is reproduced by Reyes
et al. [27], where the solution is determined using an analog computation method via
glow discharge in microfluidic chips (Fig. 5b). The maze is first mapped onto a 15×
15 memristive grid and the red and blue lines of the grid overlapped onto the maze
represent memristive fuses and 2 M
 resistors respectively, as shown in Fig. 5c.
A 1 V DC Voltage Source and Ground are placed at the entrance and exit nodes
respectively. Spatiotemporal representation of the change in memristance ΔM of
the memristive devices are shown in Figs. 5d, 5e and 5f for the times 2 s, 6 s and 10 s
respectively, and the shortest path solution is shown to be identical when compared
with the solution derived using microfluidic chips.

This case verifies that the solution to a maze can indeed be determined by map-
ping it to a memristive grid and placing the source and ground at the entrance/exit
nodes. At the same time, this example proves the concomitantly argument presented
in [26]: discharge phenomena manifest memristive signatures. By exploiting the
analog computations facilitated by Kirchoff’s Current Law and that current follows
the shortest path to ground, the shortest conductance path will exhibit the largest
ΔM . In addition, the altered devices will stay at their given resistive states even
after the source and ground nodes have been removed.

In this example, the memristive network converged to a possible solution to the
maze after a simulation time of approximately 6–10 s. Nonetheless, this approach
is clearly amenable to the use of larger biasing potentials that will in turn speed
up the solution. It is interesting to compare this to other mathematical search algo-
rithms performed by a micro-mouse robot; a robot searching for the shortest path in
a 16× 16 unit square maze using either Dijkstra’s [6] or Flood-Fill algorithms typi-
cally requires 100 s of seconds to accomplish similar tasks [18, 30]. Although actual
memristive hardware implementations may yield different solution times from soft-
ware simulation results, this comparison gives us a scale of the improvements in
time complexity by utilising such memristive networks.



544 Z. Ye et al.

F
ig

.5
M

az
e

(a
)

an
d

So
lu

tio
n

(b
)

sh
ow

n
by

R
ey

es
et

al
.[

27
].

(c
)

M
ap

pi
ng

of
M

az
e

to
a

15
×

15
M

em
ri

st
iv

e
G

ri
d.

So
lu

tio
ns

to
m

az
e

sh
ow

n
by

si
m

ul
at

io
ns

af
te

r
2

s
(d

),
6

s
(e

)
an

d
10

s
(f

)



Computing Shortest Paths in 2D and 3D Memristive Networks 545

4 Multiple Shortest Path Computations Using 2D Memristive
Networks

So far, we have seen the computation of shortest paths for mazes with fixed entrance
and exit points. In this section, we further elaborate on the possibility of concurrently
solving multiple shortest paths within a same network via an example of travellers
determining the shortest path on London’s Tube Network. Zone 1 of London’s Tube
Map, shown in Fig. 6a, is first mapped onto an 18×20 memristive grid, as illustrated
in Fig. 6b. Similarly, the red and blue lines on the grid represent memristive fuses
and 2 M
 resistors respectively. The mapping is an approximation of the actual
distances and time taken between the tube stations and solely for the demonstration
of shortest path computations between stations.

One of the limitations of performing simulations using 2D memristive grids is
that each centre node and corner node can accommodate a maximum of four and
two paths passing through them respectively. While investigating the Tube Network
application, this limitation in paths per node is insufficient for representing some
stations such as Green Park, which has six lines going in and out of the station.
Hence, in order to increase the number of possible paths through each node without
increasing the dimensional space of the network, a 1 
 resistor is hereby used to
link two neighbouring nodes to increase the node size. These extensions are shown
as black lines in Fig. 6b and they signify that the two nodes are now effectively the
same station. In this scenario, the voltage drop across the resistor is assumed to be
negligible since the corresponding resistance is three orders of magnitude smaller
than the initial resistance RINIT of the memristors used in the circuit. All starting and
destination nodes in the memristive network are simulated using 1 V DC Voltage
Sources and Ground.

We first show the shortest path computation in the Tube network for a single trav-
eller wishing to get from Gloucester Road Station to Warren Street Station. Figure 7
shows the corresponding results of the network for the times 3 s, 7 s and 10 s and the
shortest path is accurately determined by observing the spatiotemporal plot of ΔM

for all the memristive devices in the network. Moreover, we demonstrate how the
memristive network computes shortest paths for three travellers, namely Travellers
A, B and C in the tube network concurrently. In the first scenario, all three travellers
wish to get to the same destination, Holborn from their respective starting stations:
A—Paddington, B—Gloucester Road and C—London Bridge. At the circuit level
implementation of the memristive network, this translates to three 1 V DC sources
at the starting nodes and a single ground placed at the node representing Holborn
station. The shortest paths of the three travellers will be termed PA, PB and PC

respectively and are shown in the memristive network in Fig. 8.
By comparing the relative ΔM on the spatiotemporal plot shown in Fig. 8, we

note that there are two possible shortest paths solutions, PA1 and PA2 . The number
of memristive elements (N ) for the two solutions are NA1 = 19 and NA2 = 20, as
shown in Fig. 8. As the memristive network size increases, the average N increases
as well. If the difference in path lengths, (N1−N2)�Nx (where x = 1 or 2), it will
be increasingly difficult to distinguish between two shortest paths using ΔM of the
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Fig. 6 Zone 1 of London’s Tube Network (a) is mapped onto an 18× 20 Memristive Grid (b)

devices as 〈ΔMP 1〉 ≈ 〈ΔMP 2〉, where 〈ΔMP 1〉 and 〈ΔMP 2〉 are the average ΔM of
the memristive devices in paths 1 and 2 respectively. In the second scenario however,
shown in Fig. 9, Travellers A, B and C all have different start and end stations:
Traveller A wishes to get from Gloucester Road to Paddington, Traveller B from
Hyde Park Corner to Holborn and Traveller C from London Bridge to Old Street. It
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Fig. 7 Traveller A heading from Gloucester Road to Warren Street Station. The respective posi-
tions of nodes are shown on the network in (a). Solution to the network shown by simulations after
3 s (b), 7 s (c) and 10 s (d)

is noted that all computed paths are unique solutions; there are no overlapping paths
between the travellers.

Due to the use of voltage sources at the starting node of the route, the shortest
path computed for one traveller will not pass through the starting point of another.
This is shown in another example, when Travellers A and B travel from Gloucester
Road and Notting Hill Gate to Paddington respectively. As seen from the shortest
path computations presented in Fig. 10, the path computed by the memristive net-
work for Traveller A does not pass through Notting Hill Gate station although that
path has a lower N value. In the circuit implementation, both station nodes are at
high voltage potential, hence resulting in a negligible amount of current flow be-
tween them. Even after 10 s, the measured ΔM of the devices between the two
nodes is approximately only 2 
. The shortest path for Traveller A will essentially
be the next alternative path, as marked out by the red arrow in Fig. 10.

This series of cases exhibit that multiple shortest path computations can be per-
formed based on the overall change in memristance due to the current flows in a
single 2D memristive network. This has been demonstrated using London’s Tube
Network, where the shortest paths of three travellers are determined concurrently
using a single network. If other known shortest path algorithms such as Dijkstra’s
[6] were used in this example, routes for the three travellers will have to be deter-
mined independently, which increases the time complexity of computation by an
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Fig. 8 Travellers A, B and C heading from Paddington, Gloucester Road and London Bridge
Stations to Holborn Station. The respective positions of nodes are shown on the network in (a).
Solution to the network shown by simulations after 1 s (b), 5 s (c) and 10 s (d). Black arrows
shown in (d) indicate the two paths for Traveller A (Paddington to Holborn)

order of the number of travellers there are in a network. By computing the shortest
paths in a parallel manner by solving a series of Kirchoff’s Current Law equations,
the memristive grid is able to compute all shortest paths in a single step. In addi-
tion, all the solutions are shown over a fixed time period regardless of the number
of travellers in the network.

5 Shortest Path Computations Using 3D Memristive Networks

The limitations using 2D networks are fewer input and output paths per node, in
addition to the relatively low spatial resolution that can be achieved. For example,
if all the lines in London’s Tube Network (Zones 1–5) were to be mapped onto
a single memristive network, it will be more accurately performed in 3D, where
an additional layer can accommodate overlapping lines in the Tube network. In this
section, we describe the computation of shortest paths by employing 3D grids, using
a simple maze constructed in a 4×4×3 3D memristive network with two entrances
and a single exit. The paths for the maze, represented using memristive fuses in
the corresponding circuit are shown in Fig. 11a as light blue lines, while all static
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Fig. 9 Travellers A, B and C on three routes: Gloucester Road to Paddington, Hyde Park Corner
to Holborn and London Bridge to Warren Street. The respective positions of nodes are shown on
the network in (a). Solution to the network shown by simulations after 1 s (b), 5 s (c) and 10 s (d)

resistive elements are represented by thin black lines. The corresponding circuit is
exploited in a similar manner to the pre-discussed scenarios. The two shortest path
solutions of the maze, shown in Figs. 11b, 11c and 11d, are clearly depicted by
monitoring the ΔM of all memristive devices.

A 3D network can also be viewed as several 2D arrays stacked onto each other,
with the addition of linking elements between the layers. We compare the time com-
plexity of solving a 3D maze if any random mouse algorithm is used [18]. Assuming
that the number of vertices and paths in each layer remain the same, the total time
complexity for the random mouse method will increase by an order of the number
of 2D arrays, including the number of interconnecting paths.

This computation method via 3D memristive networks has been proven to be
simple to execute and does not require long computation times. Current shortest path
algorithms such as Dijkstra’s [6] and Floyd-Warshall’s [7] have time complexities
of O(V 2) and O(V 3) respectively where V is the number of vertices (nodes) [5]. In
comparison to the employed memristive network, the best theoretical estimate for a
linear system is the Coppersmith Winograd algorithm [4, 23] which is described as
O(n2.376) where n is the number of edges in a network. However, it is noted that a
memristive network implemented in hardware only has a single overall computation
step in order to determine the shortest paths in the network [23]. This makes it
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Fig. 10 Travellers A and B heading from Gloucester Road and Notting Hill Gate to Paddington
Station. The respective positions of nodes are shown on the network in (a). Solution to the network
shown by simulations after 1 s (b), 5 s (c) and 10 s (d). The red arrow shown in (d) indicates the
alternate path for Traveller A

more efficient than the algorithms listed above, before even considering multiple
computations in a single network.

6 Conclusion

Paths of an existing network can be mapped on a memristive network using a series
of memristive devices and resistors. By exploiting the analog computations per-
formed by solving Kirchoff’s Current Laws in a parallel manner [23], memristive
networks have been shown to be capable of computing shortest paths in a given
maze, leveraging on the dynamic adjustment of their intrinsic conductance. This
computation method has also been extended to show how multiple computations
can be performed. Furthermore, this concurrent solution method can also be ex-
ploited to include 3D spaces, where shortest paths through stacks of 2D arrays can
be efficiently determined by performing a single step via employing distinct volt-
age sources and ground terminals to the entrances and exits of the network. Such
networks, if implemented in hardware, have great application prospects and can be
used to solve many optimisation problems in various fields.
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Fig. 11 Maze shown in a 4 × 4 × 3 Memristive Network. Paths of the maze highlighted in light
blue (a), with entrances and exits indicated by 1 V and Ground respectively. Solution to the network
shown by simulations after 1 s (b), 5 s (c) and 10 s (d)
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Computing Image and Motion with 3-D
Memristive Grids

Chuan Kai Kenneth Lim, A. Gelencser, and T. Prodromakis

Abstract In this paper, we first present a biorealistic model for the first part of
early vision processing by incorporating memristive nanodevices. The architecture
of the proposed network is based on the organisation and functioning of the Outer
Plexiform Layer (OPL) and Inner Plexiform Layer (IPL) in the vertebrate retina.
The non-linear and adaptive response of memristive devices make them excellent
building blocks for realizing complex synaptic- like architectures that are common
in the human retina. We particularly show how that hexagonal memristive grids can
be employed for faithfully emulating the smoothing effect occurring in the OPL to
enhance the dynamic range of the system. A memristor-based thresholding scheme
is employed for detecting the edges of grayscale images, while evaluating the pro-
posed system’s adaptability to different lighting conditions and fault tolerance ca-
pacity. We then extend our work to computing relative motion of objects, which is
an important navigation task that vertebrates routinely perform by relying on inher-
ently unreliable biological cells in the retina. Here, a novel memristive thresholding
scheme that facilitates the detection of moving edges is introduced. In addition,
a double-layered 3-D memristive network is employed for modeling the motion
computations that take place in both the OPL and IPL that enables the detection
of on-center and off-center transient responses. Applying the transient detection
results, it is shown that it is possible to generate an estimation of the speed and
direction a moving object.
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1 Introduction

Over the past years, the performance and efficiency of biological systems has
inspired many researchers and engineers, giving birth to the emerging fields of
biomimetics [49] and bio-inspiration [62].The human retina is anything but a sim-
ple passive relay station, as it pre-processes and compresses all sensed information
through an immensely complex neuronal network that on average contains 4.6 mil-
lion cones, 92 million rods [21] and 1 million ganglion cells [20]. If we take into
account the remaining bipolar, horizontal and amacrine cells and the fact that they
are highly interconnected we get a parallel network of grand complexity. This com-
plexity is further elucidated in recent studies where evidence is provided that at least
ten parallel signals arise from a single visual point [53] and we get a much more
accurate view from the functioning of the vertebrate retina. In fact it is nowadays
believed that although biological systems are based on relatively primitive elements,
it is this naturally occurring interconnection complexity that facilitates higher order
functioning.

In our work, we demonstrate the potential of emerging nanoscale elements as
synapse emulators for mimicking complex biological functions. We specifically fo-
cus on the connection of the sensory and consecutive system of the retina, which
is the first and common step in the visual information flow. These connections take
place on the OPL in the vertebrate retina; they form a highly dynamic system that
enables the smoothing of optical inputs and thus catalyzes the enhancement of the
retina’s dynamic range, while the different parallel channels emerge after this point.
Our approach alleviates these issues by employing the latest biological knowledge
[53], and an emerging nanoscale device that is used as a more adequate synapse
emulator [2], the memristor. This device exhibits a highly non-linear dynamic be-
haviour, which along its infinitesimal dimensions serves as an excellent building
block for facilitating practical realisations of the highly complex synaptic networks
constituting the OPL. We further expand this approach by utilising a memristive-
based thresholding scheme for performing edge-detection. Finally, we demonstrate
that this platform exhibits similar attributes to naturally occurring systems such as
noise resilience, self-adaptation and fault tolerance.

Computing motion is essential for performing many daily tasks that also find
applications in machine vision [13, 22], industrial automation [37, 43, 55, 58] and
robotics [15, 29]. Traffic engineers and transport authorities require motion compu-
tation and object tracking in order to implement effective intelligent transportation
systems [44, 59]. For the defense industry, the ability to track mobile enemy targets
[11] and control unmanned vehicles [56] is critical. The tracking of cell movements
is also recently shown to play an important role in medical diagnostic procedures
[12, 51]. While in the field of communications, combining motion estimation and
tracking with predictive coding can allow for significant reduction in transmission
bandwidth [48].

By utilizing parallel networks and hierarchical structures, biological systems are
able to perform motion computation very efficiently [64]. In comparison, conven-
tional motion computation systems typically utilize charged-coupled device (CCD)
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cameras and digital processors that result in time-sequential computations. As a
result, large processing power is required to ensure that these serial computations
can be performed in real time. In recent years, the need for physically smaller and
more power efficient devices has driven research into neuromorphic [45, 63]and
biomimetic systems [7], which are largely inspired by the parallelization naturally
found in biological systems.

One of the first biomimetic motion computation systems was implemented by a
team lead by Carver Mead in Caltech [14, 30]. By modeling the optical flow via a
network of analog resistive devices, this approach was shown to be able to compute
an estimate of the optical flow. Over the past two decades, various other biomimetic
approaches to motion computation have been implemented in CMOS technology
[1, 4, 9, 10, 16, 23, 26, 30, 33, 34, 38, 46, 47, 68].

Perhaps, the most prominent implementation is a 128 × 128 asynchronous tem-
poral contrast silicon retina developed by Delbruck [38]. This system makes use of
address-event representation (AER) [41]; inspired by the way neurons utilise spiking
events for communication. Essentially, the AER approach allows the transmission
of only the local changes caused by movement in a scene, instead of transmitting at
a fixed frame rate. This increases the computational efficiency of the chip, enabling
it to perform over an impressive dynamic range of more than 120 dB with a low
power consumption of 23 mW.

Another notable implementation is Visio1 [9], a retinomorphic chip with parallel
pathways that mimics the OPL and IPL. Subthreshold current-mode circuits are used
to model the autofeedback characteristics of horizontal cells (for spatial filtering)
and the loop-gain modulation of amacrine cells (for adapting temporal filtering to
motion). Detection of edges moving in one direction or the other is made possible
by aVLSI implementation of ganglion cells that respond to motion in a quadrature
sequence.

The recent discovery of practical memristive devices [67] has opened the op-
tion of improving on these CMOS motion sensors. It has been shown in [25] that
memristor-MOS technology (MMOST) is capable of outperforming CMOS imple-
mentations in terms of power and size. Furthermore, the non-linear and adaptive
response of memristors allow them to serve as excellent building blocks for the
practical realisation of complex synaptic connections [5, 57]. Our group has previ-
ously demonstrated that memristive grids have a great potential for modeling certain
aspects of early vision processing, which takes place in the OPL [27].

Here, we describe a novel approach, distinct from the current implementations,
that allows for motion computation based on memristive networks, by extending
our results in [27]. A novel memristive thresholding scheme is utilized for enabling
the tracking of moving objects within a scene. Also, a biomimetic model of both
the OPL and IPL are described that facilitates the detection of ON and OFF center
transient responses. In turn, we investigate the directional and speed computation
capacity of our approach. Finally, we demonstrate that this platform can operate in
a fault tolerant manner and can adapt to distinct lighting conditions, similarly to
biological counterparts.
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Fig. 1 Conceptual representation of the mammalian retina. To avoid confusion, only five major
cell types are depicted with the main interconnection between them organised across the seven
different layers. The visual information flows through the retina via bipolar cells and travels to the
thalamus via the axons of ganglion cells. Lateral interconnections also exist between the bipolar
and horizontal cells in the outer plexiform layer (OPL) and the bipolar and amacrine cells in the
inner plexiform layer (IPL)

2 Background

2.1 Vertebrate’s Retina: Architecture and Cells

In order to perform any form of biomimicry, it is necessary to comprehend the archi-
tectural and functioning features of the leveraging biological system. This section
serves as a brief unqualified introduction of the retina and is not meant to be a thor-
ough review. More in depth information can be found in [24, 52, 65]. A simplified
drawing showing the different layers of the human retina is shown in Fig. 1.

There are 5 main types of retina cells (photoreceptor cells, bipolar cells, hor-
izontal cells, amacrine cells and ganglion cells) laid along two major layers: the
Outer Plexiform layer (OPL) and the Inner Plexiform layer (IPL). The photorecep-
tors (rods and cones) receive visual stimuli from the outside world. The outputs of
the photoreceptor cells form synaptic connections with bipolar cells and horizontal
cells. The horizontal cells are interneurons that form lateral local connections. The
bipolar cells connect the OPL, comprising of horizontal and photoreceptor cells,
to the IPL containing the amacrine cells and ganglion cells. Similar to horizontal
cells, amacrine cells mediate synaptic lateral interactions between bipolar cells and
ganglion cells in the IPL.

The photoreceptor cells essentially act as transducing elements, transforming the
incident light stimuli into electrical signals. The magnitude of voltage change in the
cells membrane is proportional to the logarithm of the intensity of light [26]. Hor-
izontal cells form synaptic connections between photoreceptors and bipolar cells.
Via the horizontal cells, lateral connections with neighbouring groups of photore-
ceptors and bipolar cells are made. These can be conceived as being a resistive layer
spanning the OPL, with the architecture allowing dynamic range adjustments.
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Fig. 2 The OPL architecture is illustrated in (a) with ON and OFF bipolar cells contracted for
simplicity. In the OPL the photoreceptor, horizontal and bipolar cells are interconnected through
so called triads. The horizontal cells are interlinked through gap junctions, forming an extended
lateral network. (b) A triad from the OPL is formed by cone pedicle, ON and OFF bipolar cell
dendrites and horizontal cell dendrites or axons

The output of a bipolar cell depends on the difference between the voltage at
the photoreceptor it is connected to and the voltage at neighbouring photorecep-
tors, through the indirect connection via the horizontal cells. There are 2 kinds of
bipolar cells. The ON-cells that respond to the onset of light and the OFF-cells that
respond to the cessation of light. The photoreceptor, horizontal and bipolar cells do
not generate action potential, instead, computation is performed via the flow of de-
polarization potentials. On the contrary, amacrine and ganglion cells in the IPL do
generate spikes. Amacrine cells give transient light responses to either ON stimulus,
OFF stimulus or both. Amacrine cells can be classified into sustained and transient
cells. Sustained amacrine cells obtain inputs from the bipolar cells that are not inhib-
ited by other amacrine cells. The response of sustained amacrine cells then inhibits
bipolar terminals in the narrow field region, causing those terminals to respond tran-
siently. Essentially, this network of amacrine cells forms a high pass filter of the
bipolar signal that facilitates the detection of moving edges [36].

Ganglion cells carry the output of the retina to the optical nerve, which leads to
the visual cortex in the brain. Of the different types of ganglion cells, the direction-
ally selective (DS) ganglion cells play a huge role in motion detection. There are
three identified types of DS ganglion cells, namely ON/OFF DS ganglion cells, ON
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DS ganglion cells and OFF DS ganglion cells. ON/OFF DS ganglion cells perform
the function of local motion detectors.

2.2 Mathematical Model of Memristors

The derivation of the mathematical memristor model employed here is largely
guided by [66]. A memristive system was defined by Chua and Kang [18], following
the original 1971 definition of the ideal memristor [17], as:

v =R(x)i (1)

dx

dt
= f (x, i) (2)

This implies that the resistance R(x) depends on an internal state x of the device
while the time derivative of the internal state x is a function of x and i. The first
physical model was conceived of a solid-state implementation by Strukov et al. [61],
where x is proportional to charge q flowing through it. In the device, the magnitude
of R can be modified reversibly between a highly conductive state Ron and a highly
resistive state Roff , by modulating x:

R(x)= x(t)Ron +
(
1− x(t)

)
Roff (3)

x(t) is restricted to the interval [0,1] and the time derivative of x(t) is proportional
to the current, as shown:

dx

dt
= Ron

β
i(t) (4)

Substituting Eqs. (3) and (4) into (1) we obtain:

v(t)= β
{
x(t)+ r

[
1− x(t)

]}dx(t)

dt
(5)

where r =Roff /Ron is the resistance ratio and β has a dimension of magnetic flux.
Moreover, since ϕ = ∫ vdt , and by using x dx

dt
= 1

2
d
dt

x2, it is possible to integrate
both sides of Eq. (5) to obtain:

ϕ = β

[
− r − 1

2
x2 + rx + c

]
(6)

where c is a constant of integration determined by the initial conditions of x. This
equation shows that flux is a quadratic function of the charge as x is proportional to
q , hence, the non-linear relationship [54, 67].

Solid-state TiO2 memristors implementations typically comprise two metal con-
tacts that encompass a TiO2 active core of thickness D. An external bias across the
device causes charge to flow through the device. This causes a drifting of dopants
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resulting in the movement of the boundary between the two regions. By defining
w(t) as the coordinates of this boundary and μv as the average ion mobility, Eq. (4)
becomes:

1

D

dw(t)

dt
= μv

Ron

D2
i(t) (7)

and by integrating both sides, we obtain:

dw(t)

D
= μv

Ron

D2
q(t) (8)

It is observed that x(t) = w(t)/D corresponds to the normalized width of the Ron

region while β =D2/μv . Setting c to zero in Eq. (6) and substituting Eq. (8):

ϕ =−Ronμv

2D2

(
Ron

Roff

− 1

)
q2 +Roff q (9)

Assuming that Roff �Ron, the memristance of the device is obtained as:

M(q)= dϕ

dt
=Roff

(
1− Ronμv

D2
q

)
(10)

Furthermore, as mentioned in [61], there are significant non-linearities in ionic
transport, especially in the thin film edges at the boundary, which can be modeled
by a window function,f (x), on the right hand side of Eq. (7), giving:

dx(t)

dt
= ki(t)f (x), k = μv

Ron

D2
, x(t)= w(t)

D
(11)

2.3 Optical Flow

The estimation of the direction and speed of a pixel in a sequence of image can be
obtained from the optical flow; the approximation of local motion in an image by
computing local spatial and temporal derivatives in a given sequence of frames. For
a 2D picture, the optical flow indicates the speed and direction in which each pixel
in an image moves between frames. The computation of optical flow is based on
spatio-temporal intensity variations in brightness patterns. In this work we assume
that all intensity variations are due to the motion of an object. In general, the optical
flow and the velocity of an object are different. As explained in [6], a perfectly
featureless rotating sphere has a non-zero velocity component, but it will not give
rise to any optical flow. Whereas, a shadow moving across the same sphere, which is
now stationary, will produce an optical flow that is non-zero, although its velocity is
zero. Nonetheless, apart from these situations, the computed optical flow is a good
indication of the velocity of the moving object, provided a strong enough gradient
between the moving object and its background exists. This is generally true for
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most natural scenes and it is assumed to be true for all input stimuli employed in
this work.

2D Motion Constrain Equation Assuming I (x, y, t) is the intensity of a bright-
ness pattern at specific pixel located at coordinates (x, y) in the image at time t , and
if this brightness pattern moves by (δx, δy) within a timeframe δt , the intensity at
the corresponding pixel will be I (x + δx, y + δy, t + δt). Since this is essentially
the same brightness pattern, it can be modeled as:

I (x, y, t)= I (x + δx, y + δy, t + δt) (12)

And by employing a Taylor expansion about the point (x, y, t), this reads:

I (x + δx, y + δy, t + δt)= I (x, y, t)+ ∂I

∂x
δx + ∂I

∂y
δy + ∂I

∂t
δt +H.O.T . (13)

By comparing Eqs. (12) and (13), it can be derived that ∂I
∂x

δx + ∂I
∂y

δy + ∂I
∂t

δt = 0

and ∂I
∂x

δI
δt
+ ∂I

∂y
δy
δt
+ ∂I

∂t
δt
δt
= 0 and eventually,

∂I

∂x
v + ∂I

∂y
u+ ∂I

∂t
= 0 (14)

This can be written more compactly as

(Ix, Iy) · (v,u)=−It =∇I · −→v (15)

∇I refers to the spatial intensity gradient and −→v refers to the optical flow at pixel
(x, y) at time t .

Equation (15) has 2 unknowns, which as explained in [3, 6] stem from the aper-
ture problem. Insufficient information is available to measure the full image veloc-
ity, and only the component perpendicular to the edge or along the spatial gradient
can be measured. In other words, a point in an image sequence only provides one
independent image measurement whereas the velocity field has two components,
forming an ill-posed problem.

Smoothness Assumption In order to solve this ill-posed problem, a second con-
strain is therefore required. Horn and Schunck [6] combined the 2D motion con-
strain together with a global smoothness term, such the final velocity field −→v is one
which minimizes:

E(u,v) =
∫ ∫

(Ix + Iy + It )
2

+ λ

[(
∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2]
dxdy (16)

The first term implies that the solution should be as close as possible to the mea-
sured data while the second term imposes a smoothness constrain on the solution.
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The smoothness constrain derives from the fact that, apart from at specific disconti-
nuities, adjacent points on an object have similar velocity and the brightness pattern
varies smoothly almost everywhere. The magnitude of λ determines the importance
of minimizing the smoothness term. With high Signal to Noise Ratio (SNR), the
importance of the first term increases and λ will be small. In contrast, if the data is
unreliable, λ will be larger, emphasizing the importance of the smoothness term.

Equation (16) shows that E(u,v) is quadratic in the unknowns u and v. From
standard variation calculus it can be shown that the corresponding Euler-Lagrange
equations are linear in u and v:

I 2
x u+ IxIyv − λ∇2u+ IxIt = 0

IxIyu+ I 2
y v − λ∇2v + IyIt = 0

(17)

This results into two linear equations describing every point, which essentially cap-
ture the necessary components for calculating optical flow.

3 Biomimetic Outer Plexiform Layer

Instead of explicitly modeling in the neurons in the OPL, our work focus on the
synaptic interconnections of such neurons and how these adapt to different stim-
uli for inherently performing smoothing and edge detection. Any visual input is
captured via photoreceptors cells in the retina. As this is out of the scope of our
work, we opted not to emulate the exact functioning of these receptors but, rather,
the effect in translating any light stimuli into an appropriate current bias. We this
represent the cells’ signaling with equivalent voltage sources to bias the underlying
memristive network. Clearly, this approach is only applicable for colourless image
inputs.

As illustrated in Fig. 3, every voltage source connects via a resistor to a discrete
node of an hexagonal memristive network. The value of this resistance is compa-
rable to the initial memristive states (1 k
), since the smaller this resistance is the
larger the current in the underlying node will be. It therefore serves as a control
parameter of the time evolution of our system. These nodes are essentially represen-
tations of the triads comprising the OPL [35], with the memristive fuses employed
for emulating the synaptic interconnects of the horizontal cell network. In a similar
manner to Fig. 2(b), single memristors were used to emulate the bipolar cells’ den-
drites, while the biasing provided by the voltage sources and their series resistors
resemble the activity occurring at the cone pedicles.

Here we have ascertained an hexagonal topology for complying with the biolog-
ical counterpart system. Every node within the grid is linked with six neighbouring
nodes through memristive fuses. This approach is essentially similar to the one em-
ployed by Carver Mead in [30] with our system being distinct in that we employed
non-linear memristive devices instead of linear resistors. This option facilitates the
proposed model with an inherent local Gaussian filtering functioning to any input
image.
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Fig. 3 Close view of a single node of the proposed grid. Voltage sources and serial resistors are
representations of the output signals of photoreceptors, when subjected to an optical stimulus.
Every node establishes a triad through hexagonally interconnected memristive fuses for imitating
the dendrites or axons of horizontal cells, one memristor that represents the dendrite of bipolar
cells, while the bias sources and resistors at the input stage denote the cone pedicle

Fig. 4 Simulated
photoreceptor depolarisation
due to distinct grayscale
levels

Typical resting potential of neuron cells is −65 mV, with the photoreceptors rest-
ing membrane potential being about −40 mV. When some light stimulus is present,
these cells use the absorbed photons energy to hyperpolarise their inherent mem-
brane potential, i.e. light intensity of an optical stimulus will cause photoreceptor
cells to hyperpolarise in relation to the light intensity. On the other hand a dark in-
tensity will have an opposing effect, causing the cells to depolarise, as illustrated in
Fig. 4.

In this approach the stimulating potential resulting from photoreceptor cells be-
ing either hyperpolarised or depolarised was modulated arbitrarily through the em-
ployed voltage sources Vp(i, j). Every pixel of an input image was represented with
a corresponding voltage level, as depicted in the inset of Fig. 4. The pixel intensity
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of all stimuli was set on a 16-level grayscale, where value 0 represent the highest
possible light intensity and 15 corresponds to a dark current. Thus, all optical inputs
were transcribed into a 2D vector of biasing voltages that through a serial resistor
establish the OPL’s stimulating currents. In a similar manner, the recorded potentials
of the memristive OPL nodes are monitored as the network is adjusting the corre-
sponding memristive weights and is transcribed back to matching pixel intensities,
for obtaining some meaningful data. We should note here that as the employed de-
polarisation potentials are in the mV range, these will provoke a relatively slow state
modulation of the memristive network. In consequence, the system evolvement is
better observed in the time period of a few seconds rather in milliseconds, which
however can be adjusted by modifying the stimuli amplitudes.

3.1 Smoothing and Local Gaussian Filtering

Most of the existing edge detection schemes demonstrate various issues when the
optical input is distorted [42]. To address these, Gaussian filtering was proposed for
suppressing noise through the smoothing (blurring) of the image. A one dimensional
Gaussian function can be described as:

g(x)= 1√
2πσ

e
− x2

2σ2 (18)

where x and y are the distance from the origin and σ is the standard deviation of the
Gaussian distribution, which could also be expanded into two-dimensions through:

g(x, y)= 1

2πσ 2
e
− x2+y2

2σ2 (19)

Nevertheless, a uniform Gaussian blur across the whole image can cause the dis-
placement of edges, the vanishing of less intense edges along with the creation of
edge artefacts [19, 40]. The occurrence of this effect however is diminishable, in
the case of local Gaussian filtering [28]. In our approach, memristive dynamics are
employed for achieving this performance intrinsically. The filtering variance is dy-
namically adapting to the local variance of the image and the smoothing alleviates
any non-uniformities. The amplitude of the current flowing through any memris-
tive fuse in the OPL depends on the weighted sum of the current flow through the
neighbouring cells. If the potential difference between adjacent nodes is high, then
the current flow gets higher; if the difference is however low, then the current flow
is significantly less. In other words, a clear edge on the input image causes a big
intensity gradient and consequently a faster memristance modulation. Such mem-
ristive fuses drift towards a higher resistive state faster than the neighbouring cells
and the lateral current flow from the high pixel gradient essentially diminishes. Con-
sequently, the edge is preserved while the smoothing effect is vigorously decreased.
On the other hand, if the contrast between adjacent pixels is low, the corresponding
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Fig. 5 Demonstration of local Gaussian filtering with our proposed OPL model. (a) is the original
input image, (b) is the extrapolated smoothed version of (a) after t = 30 sec. (c) is a distorted
version of (a) and the corresponding smoothed output after t=30sec is shown in (d). (e) is the
accentuated intensity mismatch between the smoothed outputs with and without distortion

memristance change will be significantly slower. In this case, this particular mem-
ristive fuse will allow a larger lateral current flow and thus the resulting image will
be more homogeneous over this area. Hence, small intensity variations on an im-
age tend to smooth out, meaning that added noise is also annihilated, proving the
feasibility of the proposed memristive-based local Gaussian filtering.

This is particularly demonstrated through the examples depicted in Figs. 5(a)
and 5(c), with Fig. 5(a) being the original input image and Fig. 5(c) a distorted
version of the original image with additive white noise with a Gaussian distribution
(μ = 0 and σ = 0.3). In both cases the smoothing caused by this network after
t = 30 seconds is illustrated in Figs. 5(b) and 5(d) respectively. These figures depict
the static voltages measured at the OPL’s nodes after being transcribed back to the
corresponding grayscale intensities in accordance with the scale shown in the inset
of Fig. 4. By observation, the two figures do not show any considerable difference
and this was quantified in terms of grade intensity mismatch to be approximately
3 %, as shown in Fig. 5(e). In both cases, the smoothed versions preserved the main
edges, while wherever there was an insignificant intensity gradient or small intensity
variation caused by the addition of noise, the system smoothed this out.

3.2 Edge Detection

The intensity contrast between adjacent pixels imposes the biasing of the underlying
memristive fuses with corresponding potential differences and as such an edge can
easily be detected by monitoring the outgoing current flow at the OPL nodes. In the
counterpart biological system, this information is conveyed through the dendrites of
ON/OFF bipolar cells to the IPL. It is important to mention that this edge detection
phenomenon is a part of the early vision processing, while the main output of the
edge information occurs later in the retina. Here, we utilize two approaches: (1) we
employ single memristors in the output stage of the OPL to facilitate a resistive
thresholding scheme and (2) we monitor the state variance of the OPL memristive
fuses.
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Fig. 6 Detection of the edges of the utilized input image shown in (a). Edge-detection
was achieved via: (b) a bipolar threshold scheme at the output of the OPL nodes with
600 
 ≤ MT ≤ 2 k
 and (c) a thresholding scheme at the memristive fuses with MT = 1.6 k
.
These results are compared against conventional edge-detection algorithms: (d) Prewitt, (e) So-
beland (f) Canny

At any given time, the relative memristance change, both in the memristive
fuses and the single devices, is a measure of the current flowing through these
devices. As the system evolves, the devices associated with nodes that are ex-
posed to large potentials, i.e. in neighbouring pixels at an edge, will drift towards
lower conductive states at a rate set by the overlying intensity contrast. By mon-
itoring the transient memristance change of the devices in the OPL output nodes,
we associate appropriate thresholding values for defining clear edges. All devices
falling between these thresholds will thus indicate the existence of an edge. In
the case where Fig. 6(a) is the source image and the threshold is bounded within
600 
 ≤ MT ≤ 2 k
, the detected edges will correspond to what is shown in
Fig. 6(b). Clearly, these thresholds could be manually adjusted for attaining more or
less edge details.

In the second approach, a more elaborate thresholding scheme involves the mon-
itoring of the states of all memristive fuses associated with a node. If at least three
devices are exceeding a preset threshold, this particular node is then denoted as an
edge pixel. Figure 6(c) illustrates the edges as detected through this approach for
a MT = 1.6 k
. Figures 5(a) and 5(c) are respectively used to bias the memristive
network. Additionally, as a figure of merit, Figs. 6(d), 6(e) and 6(f) illustrate the
edges detected by employing conventional algorithms, specifically: Prewitt, Sobel
and Canny.

Similarly, this method was also exploited with a rubic cube image, as shown in
Fig. 7(a), with the memristive threshold being set at MT = 3 k
. In this example, the
smoothing process has caused some distortion on the inhibited pattern of the front
sides of the cube, as this is erroneously considered as noise due to the small contrast
difference existing between these single-pixel lines and their background. As a result
this pattern tends to be smoothed out, as illustrated in Fig. 7(b). Nevertheless, our
model manages to distinguish the main edges of the cube, as well as the finer edges
that are inhibited on the top side of the cube. This is clearly illustrated in Fig. 7(c),
where it appears to attain clearer edges when compared against the conventional
edge detectors Prewitt, Sobel and Canny, which results are correspondingly shown
in Figs. 7(d), 7(e) and 7(f).
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Fig. 7 Detection of the edges of the utilised input image shown in (a) and the corresponding
smoothed output after t = 30 sec is shown in (b). Edge-detection was achieved by applying a
thresholding scheme with MT = 3 k
, shown in (c). This result is also compared against conven-
tional edge-detection algorithms: (d) Prewitt, (e) Sobel and (f) Canny

3.3 Adaptation to Light Conditions

The vertebrate retina is capable of self-adapting to maintain the retinal response
to visual objects approximately the same when the level of illumination changes.
Here we demonstrate that our model behaves in a similar manner to its biologi-
cal counterpart when subjected with distinct light conditions. Figures 8(b) and 8(c)
demonstrate that the proposed memristive network is capable of detecting the edges
inhibited in the original image despite the two-times light variance in the original
figure. In these examples we have manually adjusted the memristive threshold for
achieving similar edge detection to the original system. When the image is brighter,
the difference between a contour’s pixels will be relatively higher, meaning that
there will be more current flowing through the memristive devices that correspond
to this edge, thus their state will be altered in a faster manner. In this case, match-
ing the edge-detection performance of our system, as shown previously in Fig. 7(c),
necessitates the use of a higher memristance threshold of MTL = 6.35 k
.

On the other hand, when the image has a darker tone, the contrast between the
pixels defining an edge will be less significant. In consequence, smaller potentials
are established across the corresponding memristive fuses and their state will change
at a slower manner. Likewise, a lower memristance threshold of MTD = 1.2 k
 is
required to achieve a similar performance to Fig. 7(c). Clearly, a lower threshold
implies that more memristive fuses will exceed this threshold at any given time,
justifying the detection of thicker edges as illustrated in Fig. 8(e). Supplementary
videos S.6a and S.6b illustrate the transients of Figs. 8(b) and 8(e) respectively.

Since the relative contrast in the pixels of a “light” and “dark” tone image will
be rather similar with that in the original image, if one maintains the same threshold
(MT = 3 k
) for both light conditions, the proposed system can in principle detect
the same edges as previously showed in Fig. 7(c) (t = 30 sec). However, in the
case of a lighter environment the system will converge to a similar solution after
t = 21.8 sec, as shown in Fig. 8(c), while in the case of a darker environment the
system will require double the time (t = 44.7 sec) to converge into a similar solution
(Fig. 8(f)).
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Fig. 8 Evaluation of the memristive platform against distinct light conditions. (a) and (d) are
representations of the employed input image (Fig. 7(a)) in brighter and lighter tones. The detected
edges for both conditions are illustrated in (b) and (e) when corresponding memristive thresholds
are utilized MTL = 6.35 k
 and MTD = 1.2 k
. While (c) and (f) are the corresponding results
when MTL = 3 k
 is the same for both cases, after the system has evolved for tL = 21.8 sec and
tD = 44.7 sec

3.4 Fault Tolerance

Biological systems depend on rather primitive elements whose properties often vary
randomly. Yet, nature is capable of performing highly complex functions in a very
reliable manner by employing redundancy. Similarly, solid-state devices and par-
ticularly memristive devices of deep submicron dimensions demonstrate a very
poor yield. Given the fact that memristors are a disruptive technology, reliability
and robustness of the devices becomes a significant burden. In this view, we ex-
tend our investigation on the effect defective devices could potentially have in our
model.

We consider that for a 100 % yield, all memristive fuses are reliably set with
RON = 100 
, ROFF = 16 k
 and Rinit = 200 
. In order to test the robustness of
our system we model different yields, by assigning erratic initial states to a number
of randomly selected memristive elements. This means that the conductance of these
memristive elements differs from the normal one. When a device is considered as
faulty, its RON could vary from 50 % to 400 % compared to the ideal scenario.
Similarly, ROFF may be varied from 62.5 % to 125 % and Rinit could take any value
from 50 % up to 4000 % when compared with the ideal values. Figure 9 shows two
circuit maps, where 25 % (Fig. 9(a)) and 50 % (Fig. 9(b)) of the total memristors
in the network were randomly affected. The employed colour mapping corresponds
to the randomly distributed initial states Minit with green hexagons marking the
unaffected devices and red and blue the affected ones.
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Fig. 9 Test conditions for evaluating the fault tolerance capacity of this model. Shown is the
distribution of memristive elements whose initial state (Minit) was altered by (a) 25 % and (b) 50 %
of the total memristors in the network

When the same optical conditions are applied as in Fig. 7(a), the OPL will pro-
duce a smoothed equivalent as shown in Fig. 10(a). When however the network’s
yield is set to 75 % and 50 %, the memristive grid acquires an uneven initial weight
distribution that produces the smoothed versions shown in Figs. 10(b) and 10(c)
respectively. The relative difference between the flawless and the affected mem-
ristive fuses are shown on Figs. 10(d) and 10(e) respectively. We can observe that
the smoothing of the image will decrease, because of the high number of defective
memristors. Yet, our edge detection method still holds and is capable of detect-
ing most of the correct edges. Supplementary videos S.7a and S.7b demonstrate
the time evolution of the network that causes the smoothing, while S.7c and S.7d
illustrates dynamically the edges as detected for a yield of 75 % and 50 % respec-
tively.

Regardless the low yield values we tested for, the proposed hexagonal memris-
tive network appears to be proficient in detecting the inhibited edges effectively.
However, when the same conditions are employed in a rectangular memristive ar-
chitecture, the results are not as encouraging as in the hexagonal topology. Be-
sides the geometrical advantage that allows more unit cells to be tessellated per
unit area, the hexagonal topology bares two extra interconnections per node, en-
hancing the system’s redundancy. Therefore, the local averaging occurs with two
more spatial partners, accounting for the introduced faults in the devices’ character-
istics.

Although we have demonstrated the potential of using memristive networks for
mimicking the retina dynamics, physical implementations can be rather challenging,
requiring the employment of complex interconnection schemes [39, 60] that could
impose challenging processing (eg.: the use of 3D CMOS). In turn, we are certain
that this demanding interfacing scheme could also hinder the devices reliability,
which is why we are investigating the effect of low yields on the overall system
performance.
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Fig. 10 Smoothing and edge
detection performance for
varying memristor yield.
(a) Ideal scenario, (b) 75 %
yield and (c) 50 % yield.
(d) and (e) show the
accentuated difference
between the ideal and
randomly affected networks.
The corresponding detected
edges are illustrated in
(f), (g) and (h) for yields of
100 %, 75 % and 50 %

4 Detecting Moving Edges with Memristive Grids

We have previously presented a retinomorphic OPL, which modeled the synap-
tic interconnections between horizontal, bipolar and photoreceptor cells. Any light
stimulus is translated into an appropriate voltage source to bias the underlying
hexagonal memristive network via a series resistor. It was shown that the net-
work was able to perform a local Gaussian filtering function similar to the bi-
ological counterpart, as well as edge detection via a memristor-based threshold-
ing scheme. Nodes corresponding to edge pixels have large potential difference
between neighbouring nodes due to the overlying intensity contrast at these pix-
els. From Eq. (10), the change in the memristance of the memristive fuse is pro-
portional to the current flowing from that edge node to a neighbouring node.
Therefore, by monitoring the state variance of memristive fuses associated with
a node, edge detection can be performed. Here, we extend our work [27] by per-
forming detection of edges of moving objects from a video, investigating how
a memristive network can be used to detect moving edges from a sequence of
frames.
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Fig. 11 (a) The sequence of the input frames is shown. A specific pixel in the video, marked by a
Red X is indicated in each of the frames. The time between consecutive frames, Tf , is the inverse
of the framerate. (b) The pixel intensity of each frame is shown and this corresponds to an input
voltage stimulus, which is applied to the respective node in the memristive grid

4.1 Simulation Methods

The employed video input stimulus is a 80 × 70 pixel, 0.6 s segment of the video
“traffic.mju”, which can be found in the Matlab Image Processing Toolbox [31]. At
a frame rate of 15 fps, this corresponds to 9 frames, shown as a montage in Fig. 11a.
Changes only occur at interval of the frame period (1/15 s), and within this period
the voltage stimulus at each pixel is a constant. This is modeled with a piecewise-
linear voltage source at each node corresponding to a pixel.

Figure 11(b) describes how a single pixel in the video is converted into a voltage
stimulus. In each gray scale frame, the intensity of each pixel is uniformly quantized
into 256 levels, where 0 represents the absolute black and 255 represents white. Each
pixel is therefore represented by an integer from 0–255. Since the maximum voltage
input into each of the voltage input node in the memristive grid is set to 40 mV, if
the quantised intensity of a pixel is represented by X, the stimulus to its respective
voltage input node is X∗40/255 mV. This operation is performed for each of the
pixel in each of the consecutive frames. The input voltage stimulus into a specific
node corresponding to a pixel is then set to the piece-wise-linear combination of this
quantised voltage level.

MATLAB was employed to implement the netlist for the hexagonal memristive
network and to convert the input frames into equivalent biasing voltage stimulus.
The generated netlist is then imported into HSPICE to perform the necessary circuit
simulations on the constructed system. Memristive devices were simulated with Bi-
olek’s model [8], with the following parameter settings: Ron = 100 
 Roff = 16 k


Rinit = 200 
. In addition, the Prodromakis’s windowing function [50] was em-
ployed to take into account the non-linear dopant kinetics of the memristive ele-
ments. The results from the HSPICE simulations were then imported back to MAT-
LAB for further analysis.
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Fig. 12 (a) Evolution of the smoothed input stimulus. (b) Simulation of a sequence of images
with the edge detection algorithm from [27]. Notice that edges were detected successfully only for
the first 2 frames

4.2 Detection of Moving Edges via Memristive State Thresholding

The circuit was simulated for the input stimulus shown in Fig. 11(a). Edge detection
was performed for each time step of the simulation, using the algorithm described
in [27]. The results are shown in Fig. 12(b) where the edges are marked by a white
pixel.

We notice that the memristance based thresholding scheme described in [27] was
able to pick up the edges in the first 2 frames. However, for the rest of the frames,
it seems like that edges were being picked up randomly. This is caused by the fact
that the memristors used for the simulations are non-volatile and they do not reset or
change before the next input frame is being simulated. Hence, even when the next
frame is being simulated, the past memristance changes are still present, causing the
results to be corrupted. In the following section, we address this issue by incorporat-
ing a novel memristive thresholding scheme that is applicable for detecting moving
edges.

4.3 Edge Detection Based on Monitoring the Memristance
Modulation Rate

To overcome the problem presented previously, we need to be able to separate the
change in memristance corresponding to moving edges in the next frame from the
changes in memristance corresponding to edges in the current frame. The proposed
solution exploits the tracking of the temporal derivative of the memristance of the
six memristive fuses connected to each node.

Following Eq. (10), the change in memristance is proportional to the current
flowing through the device, which is dependent on the potential difference across
the device. Since each memristive fuse links adjacent nodes, the potential difference
across it will be proportional to the intensity difference between the two nodes. If a
node is an edge, there will be a strong intensity gradient with its neighbouring nodes.
This results in a large rate of change of memristance for the associated memristive
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Fig. 13 (a) Evolution of the smoothed input stimulus. (b) Moving edge detection by tracking the
temporal derivative of the memristance of the fuses associated to each node

fuses. Hence, by monitoring this rate of change, we are able to determine if a node
corresponds to an edge pixel.

In a sequence of moving images, once the edge of the object moves away from
a node, that particular node will cease to have a strong intensity gradient with its
neighbouring nodes. Consequently, the temporal derivative of the memristance of
the associated memristive nodes will no longer be high and hence the node will not
be denoted as an edge. Figure 13 presents results that demonstrate our approach.
A node is denoted as an edge pixel if the rate of memristance change of two or
more memristive fuse associated with that node exceeds a predetermined threshold.
Each edge pixel is denoted by a black pixel, superimposed on a white background.
It is observed that the moving edges can now be successfully detected for the entire
sequence of images.

4.4 Adaptation to Varying Lighting Conditions

Similar to [27], we evaluated the proposed algorithm against distinct luminance lev-
els. Figure 14 demonstrates that even when the brightness level was halved, the
moving edges were still detected successfully. The moving edge detection results
under the two different lighting conditions were compared pixel by pixel and the
average mismatch between these two cases was found to be 4.22 %. This is illus-
trated in Fig. 14(c), where each white pixel corresponds to a mismatch.

4.5 Memristance Variability Tolerance

The memristive network was tested to determine how tolerant it was to potential
defects in the network. To simulate this, defect memristors were artificially intro-
duced. Instead of simulating a circuit with all uniformly initialised memristors (i.e.
Ron = 100 
 Roff = 16 k
 Rinit = 200 
), we now initialise a percentage of
the memristors randomly. These “defected” memristors will be initialised randomly
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Fig. 14 (a) Evolution of the smoothed input stimulus. (b) Moving edge detection with input stim-
ulus of half the original brightness. (c) Illustrates the accentuated mismatch between moving edge
detection under normal lighting condition and under half the original brightness

Fig. 15 (a) Evolution of the smoothed input stimulus. (b) Moving edge detection with artificially
simulated faults of 50 %. (c) Moving edge detection with artificially simulated faults of 80 %

with Ron = 50 
–100 
 in increments of 10 
, Roff = 10 k
–20 k
 in incre-
ments of 0.5 k
, Rinit as a multiple (2–20) of the new Ron. The simulation results
for 50 % defects and 80 % defects are respectively shown in Figs. 15(b) and 15(c).

The memristive network appears to be rather robust to faults, even when 80 % of
the devices were initialised randomly. The results presented in Fig. 15 demonstrates
that the proposed system was still able to perform the detection of moving edges
reliably. This is largely attributed to the fact that there are inherent redundancies in
the network, as each node is interconnected to 6 neighbouring nodes. This is par-
ticularly important as the fabrication yield of memristive devices is relatively poor
given that the memristors’ technological readiness is rather low. The scalability of
memristive technology indeed opens the possibility of achieving reliability through
redundancy.
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5 Double Layered Memristive Network

In the previous section, it was demonstrated that by employing the proposed thresh-
olding scheme, memristive networks were able to perform moving edge detection,
even with artificially simulated faults and at varying luminance levels. At the same
time, this implementation is able to achieve local Gaussian filtering with a lower
complexity as compared to other systems [27] and has been shown to perform better
than resistive grids for edge preserving smoothing [32]. However, with this imple-
mentation, full optical flow computation is still not quite possible, as we have not yet
obtained enough information from the sequence of moving images. The derivation
of optical flow (in Sect. 2.3) shows that Eq. (17) has to be solved in order to obtain
the required optical flow. This requires both the spatial derivatives and the temporal
derivatives at each pixel but our current implementation only provides us the spatial
derivative (i.e. through the rate of change of memristance of memristive fuses). In
this section, we present a 3D memristive grid that facilitates the computation of the
temporal derivative.

5.1 Biomimetic OPL and IPL

From the results in the previous section, we note that a second memristive layer is
required to model the amacrine cells within the IPL of the retina that are respon-
sible for generating the transient responses. Our model does not explicitly emulate
the functioning of the neurons in the IPL, but rather the synaptic interconnections
between them. In order to generate the transient responses, a delay of the input
stimulus is required, and this is introduced by the delayed version of the input in the
second layer.

The 3D network, part of which is illustrated in Fig. 16, consists of 2 hexagonal
memristive layers interconnected with memristive fuses at each node. The current
signal is applied to layer 1, which is responsible for computing the edges from the
sequence of frames. Whereas, in layer 2, a delayed version of each frame is used, en-
abling the computation of the temporal derivative at each node via the memristance
changes in the interconnecting memristive fuses.

Each connecting memristive fuse is made up of two individual memristors. We
label the two memristor in each memristor fuse as Connecting Memristor 1 (cM1)
and Connecting Memristor 2 (cM2), where cM1 is the memristor closer to layer 1
and cM2 is the one closer to layer 2.

When an object in the input stimulus is completely stationary, it implies that the
pixels corresponding to that object remains the same for the current frame n and
the delayed frame (n− 1). Consequently, the spatial voltage input (representing this
object) to each layer will be identical and both ends of all connecting memristors are
at equipotential. No current would thus flow and there will be no observable change
in memristance.

Conversely, when an object in the input stimulus moves, the pixels corresponding
to that object will move. This means that the current frame n is slightly different
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Fig. 16 Illustration of a
section of the proposed 3D
hexagonal memristive
network model. Each node
corresponding to a specific
pixel is connected in a
hexagonal manner to 6
neighbouring nodes via
memristive fuses. The
network consists of two
interconnected layers. The
current signal is applied to
Layer 1 while a delayed
signal of 1 frame is applied to
layer 2. Each pixel in the
input frame is converted into
a piecewise-linear voltage
value, which is then applied
through a resistor to the
memristive grid. For clarity,
only two of these biasing
connections are shown

from the delayed frame (n− 1), reflecting this movement. Consider the case where
a black box moves to the right by 2 pixels on a white background, as shown in
Fig. 17(a). It can be observed that the rightmost and leftmost black edges of the box
will be moving by 2 pixels to the right. Comparing with frame (n − 1), the black
box in frame n will be a shifted version by 2 pixels to the right. Hence, there will be
a potential difference between the nodes corresponding to the new rightmost black
edge (in frame n) and the old leftmost black edge (in frame (n − 1)). At the new
rightmost black edge, there will be a higher potential at layer 2 compared to layer 1.
This causes a current flow through the connecting memristor fuse in from layer 2 to
layer 1. Therefore, it is expected that the memristance cM2 will be increasing while
the memristance of cM1 will be decreasing. Whereas for the old leftmost black
edge, there will be a higher potential at layer 1 compared to layer 2. A current will
flow from layer 1 to layer 2 causing the memristance of cM1 to increase and cM2
to decrease.

Therefore, by monitoring the memristance changes in each memristor of each
connecting memristor fuse, it is possible to determine the movement of the edges.
For a dark object moving on a light background, decreasing cM1 and increasing
cM2 corresponds to an appearing edge while increasing cM1 and an decrease of
cM2 corresponds to a disappearing edge. This is similar to the on-center response
in the retina. On the other hand, for a light object moving on a dark background,
increasing cM1 and decreasing cM2 corresponds to an appearing edge while de-
creasing cM1 and increasing cM2 corresponds to a disappearing edge. This is
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Fig. 17 (a) Evolution of input stimulus: A black box moving to the right at a rate of 2 pixels per
frame from frame 1 to frame 5, and 1 pixels per frame from frame 6 to frame 15. (b) Simula-
tion result of moving edge detection. (c) OFF-center transient detection results from monitoring
the connecting memristive fuses. (d) ON-center transient detection results from monitoring the
connecting memristive fuses

similar to the off-center response of the retina. Essentially, the response of these
connecting memristors captures the response of the transient amacrine cells in the
retina.

With a delayed version of the input into the second layer of memristive net-
work, it is possible to derive the temporal derivative between consecutive frames.
The temporal derivative between corresponding pixels in consecutive frames is in-
herently computed as changes in memristance of the memristors within the con-
necting memristive fuse. By combining the temporal derivative information with
the spatial derivative information obtained from the hexagonal memristive net-
work, it will be possible to separate moving objects from stationary objects. Es-
sentially the hexagonal grid is performing computation of the sustained response
while the connecting memristors are responsible for computing the transient re-
sponse.

5.2 Emulating Transient Detection

Simple Inputs As an initial proof of how the above-mentioned motion computa-
tion can be done with the double-layered memristive network, two simple simula-
tions were performed. Each of the simulation input stimulus consists of a 1 s, 15 fps,
17× 30 pixels video clip.

The first simulation, illustrated in Fig. 17, involves a black box moving across
a white background. From frame 1 to frame 5, the box is moving to the right at a
rate of 2 pixels per frame and from frame 6 to frame 15, the box continues moving
to the right at a slower rate of 1 pixel per frame. Since the moving object is dark
compared to the surrounding, the on-center transient response (Fig. 17(d)) is zero,
which is expected. In the off-center transient response (Fig. 17(c)), the light grey
pixel corresponds to the appearing edge, while the dark pixel corresponds to disap-
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pearing edges. We see that the model is capable of monitoring the movement of the
edges, while the speed of this movement can be derived from the thickness of the
transient edges.

Our second example is similar to the first except for the fact that instead of a
black box moving across a white background, a white box is now moving across
a black background. In this case, the off-center transient response is zero and all
the transient response is due to the on-center transient response. Here, the dark grey
pixels correspond to an appearing edge while the light grey pixels correspond to a
disappearing edge.

Complex Inputs The simulation was extended to a more complex input, which
involves the first two frames of the traffic video stimulus shown in Fig. 11(a). Only
twp frames were simulated as the simulation of more frames are rather compu-
tationally intensive. The frame size used in this simulation was 80 × 70 pixel.
This results in a circuit with 22400 nodes, 38602 memristive fuses, 11200 re-
sistors and 11200 varying voltage sources. Even when running on a HP Z820
workstation with two 8-core Intel Xeon 2 Ghz processor and 64 GB of RAM,
the simulation environment (HSPICE) is incompetent in solving more extended
cases.

The input stimulus, shown in Fig. 18(a) consists of 2 frames. Frame 2 is over-
laid on Frame 1, and for clarity, is shifted slightly to the right and it has purple
colour saturation. From Frame 1 to Frame 2, it can be observed that the 2 white
cars have moved slightly forward down the road, while the black car has almost
moved off the image. The simulation was performed for 1 frame period of 1/15 s.
By monitoring the memristance changes of the memristors within the connecting
fuse, the results are shown on Figs. 18(c) and 18(d) are obtained. From Fig. 18(b),
we do not consider the effects of the on-center or off-center response. The lighter
grey dots correspond to decreasing cM1 and increasing cM2 while the darker grey
dots corresponds to the increasing cM1 and decreasing cM2. This result shows
the computation of transient response, where only moving objects were picked
up.

In order to accurately compute the direction and speed of the object, it is nec-
essary to separate the movement of dark edges from the movement of light edges.
Essentially, the on-center response and the off-center response have to be distin-
guished. This can be done by splitting the result in acquired in Fig. 18(b) based on
the intensity of the input stimulus to each pixel. The off-center response is shown
in Fig. 18(c), where only the transient response due to a moving dark object/edge
is shown. The darker dots correspond to a disappearing dark edge while the lighter
dots correspond to an appearing dark edge. Similarly, the on-center response, show-
ing the transient response due to a moving light object/edge is shown in Fig. 18(d).
The darker dots now correspond to an appearing light edge while the lighter dots
correspond to a disappearing light edge.
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Fig. 18 Simulation of 2
frames from a video of traffic
on a highway. (a) Input
stimulus consists of 2 frames.
Frame 2 is overlaid on
Frame 1, and for clarity, it is
shifted slightly to the right
and it has purple colour
saturation (b) Transient
detection (c) OFF-Center
response (d) ON-center
response

5.3 Directional and Speed Detection

Given the output from the transient detection, it is possible to use a 1-layer hexag-
onal memristive grid to compute the direction and speed of the moving object. The
results from the transient detection shown in Figs. 18(c) and 18(d) can be used as
the input stimuli. To demonstrate this, the memristive grid was biased based on the
off-center response from Fig. 18(d). The darker pixels will correspond to a positive
voltage source into the memristive network while the lighter pixels will correspond
to a ground. Figure 19(a) illustrates the 80 × 70 pixel hexagonal memristive grid
where the voltage sources and ground are marked by “×” and “◦” respectively. The
rate of memristance changes of all interconnecting fuses are monitored and they are
drawn in Fig. 19(a) with a value dependent colour variation. Since it is expected
that the current will take the shortest path from the source to the ground, the rate
of memristance changes of the fuses will provide an indication of the direction and
flow of the current. At each of the moving edge pixel, an estimate of the optical
flow can be computed by the vectorial sum of the rate of memristance change of
the 6 interconnecting fuses. Figures 19(b) and 19(c) respectively show the results of
this computation for Inset (a) and Inset (b) of Fig. 19(a). Our method provides local
optical flow estimates at the brightness edges, and as illustrated in Figs. 19(b) and
19(c), was able to correctly determine that both cars were moving downwards.
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Fig. 19 (a) Results
illustrating the rate of
memristance change of fuses
within the 80× 70 pixel
network. Each memristive
fuse is plotted with a color
corresponding to the rate at
which it’s memristance
changes. (b) Illustrates the
optical flow estimate from
Inset (a). (c) Illustrates the
optical flow estimate from
inset (b)

6 Conclusion

We first presented a biorealistic model of the OPL of the vertebrate retina which
mimics early vision processing and then extended our proposed system for mo-
tion computation. Our proposed system is based on an hexagonal memristive grid
implementation and it leverages on the scalability and non-linearity of memristors
for emulating both the OPL and IPL of a vertebrate’s retina. This implementation
assists in minimising the overall complexity of other previously reported systems,
while at the same time it achieves a local Gaussian filtering that facilitates an adap-
tive smoothing of both distorted and undistorted optical stimuli. Moreover, it was
demonstrated that edge detection can be achieved by means of a simple memristor
thresholding scheme implemented at the OPL’s nodes outputs as well as through the
collective evaluation of states of the memristive elements per node. Both smooth-
ing and edge detection were assessed against distinct light conditions and it was
shown that the proposed platform behaves in a similar manner as its biological
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counterpart. Finally, with yield being considered a very important aspect in deep
sub-micron technologies and particularly practical memristive implementations, we
have demonstrated that the proposed bio-inspired OPL model can effectively man-
age a relatively large variation in the devices’ properties. Next, a novel memristive
thresholding scheme was introduced to allow the detection of moving edges. The
parallel processing nature of the proposed memristive network offers great potential
in minimizing the computation and power requirements of conventional motion de-
tection systems. In addition, a double-layered memristive network was constructed
to enable to detection of ON-center and OFF-center transient responses. Applying
the transient detection results into a 1-D memristive network, it was then shown that
it is possible to generate an estimate of the speed and direction of the moving object.
This study serves as a good proof of concept that memristive networks have indeed
great potential in performing motion computation effectively and efficiently.

Acknowledgements The authors wish to acknowledge the financial support of the CHIST-ERA
ERAnet EPSRC EP/J00801X/1 and EP/K017829/1.

References

1. Baccus, S.A., Olveczky, B.P., Manu, M., Meister, M.: A retinal circuit that computes object
motion. J. Neurosci. 28(27), 6807–6817 (2008)

2. Barranco, B.L., Gotarredona, T.S., Mesa, L.A.C., Carrasco, J.A.P., Ramos, C.Z., Masquelier,
T.: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning vi-
sual cortex. Front. Neurosci. 5 (2011)

3. Barron, J.L., Thacker, N.A.: Tutorial: computing 2d and 3d optical flow. In: Tina Memo
(2005)

4. Benson, R.G., Delbruck, T.: Direction selective silicon retina that uses null inhibition. In:
Advances in Neural Information Processing Systems, vol. 4, pp. 756–763. Morgan Kaufmann,
San Mateo (1991)

5. Bernabe Linares-Barranco, Serrano-Gotarredona, T., Camuñas-Mesa, L.A., Perez-Carrasco,
J.A., Zamarreño-Ramos, C., Masquelier, T.: On spike-timing-dependent-plasticity, memristive
devices, and building a self-learning visual cortex. Front. Neurosci. 5(26) (2011)

6. Horn, B.K.P., Schunck, B.G.: In: Determining Optical Flow (1981)
7. Bhushan, B.: Biomimetics: lessons from nature—an overview. Philos. Trans. R. Soc. A, Math.

Phys. Eng. Sci. 367(1893), 1445–1486 (2009)
8. Biolek, Z., Biolek, D., Biolkova, V.: Spice model of memristor with nonlinear dopant drift.

Radioengineering 18, 210–214 (2009)
9. Boahen, K.: A retinomorphic chip with parallel pathways: encoding INCREASING, ON, DE-

CREASING, and OFF visual signals. Analog Integr. Circuits Signal Process. 30(2), 121–135
(2002)

10. Borst, A.: Fly vision: moving into the motion detection circuit. Curr. Biol. 21(24), R990–
R992 (2011). CI: Copyright (c) 2011; JID: 9107782; CON: Curr Biol. 2011 Dec 20; 21(24),
2077–2084. PMID: 22137471; ppublish

11. Canals, R., Roussel, A., Famechon, J.L., Treuillet, S.: A biprocessor-oriented vision-based
target tracking system. IEEE Trans. Ind. Electron. 49(2), 500–506 (2002)

12. Capson, D.W., Maludzinski, R.A., Feuerstein, I.A.: Microcomputer-based interactive tracking
of blood cells at biomaterial surfaces. IEEE Trans. Biomed. Eng. 36(8), 860–864 (1989)

13. Carsten Steger, Ulrich, M., Wiedemann, C.: Machine Vision Algorithms and Applications
(2008)



Computing Image and Motion with 3-D Memristive Grids 581

14. Carver, M.: Analog VLSI and Neural Systems. Addison-Wesley, Boston (1989)
15. chii Liu, S., Usseglio-Viretta, A.: Visuo-motor fly-like responses of a robot using avlsi motion-

sensitive chips. In: 2nd Int. ICSC Symp. Neural Comput, pp. 23–26 (2000)
16. Chiu, C.-F., Wu, C.-Y.: Design of cmos elementary-motion-flow-selective image detector us-

ing the bjt-based silicon retina. In: Proceedings of 1997 IEEE International Symposium on
Circuits and Systems, 1997. ISCAS’97, vol. 1, pp. 717–720 (1997)

17. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519
(1971)

18. Chua, L., Mo Kang, S.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)
19. Clark, J.J.: Authenticating edges produced by zero-crossing algorithms. IEEE Trans. Pattern

Anal. Mach. Intell. 11(1) (1989)
20. Curcio, C.A., Allen, K.A.: Topography of ganglion cells in human retina. J. Comp. Neurol.

300(1), 5–25 (1990)
21. Curcio, C.A., Sloan, K.R., Kalina, R.E., Hendrickson, A.E.: Human photoreceptor topogra-

phy. J. Comp. Neurol. 292(4), 497–523 (1990)
22. Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities. Morgan Kaufmann, San

Francisco (2004)
23. Delbruck, T.: Silicon retina with correlation-based, velocity-tuned pixels. IEEE Trans. Neural

Netw. 4(3), 529–541 (1993)
24. Dowling, J.E.: The Retina—An Approachable Part of the Brain. The Belknap Press of Harvard

University Press, Cambridge (1987)
25. Ebong, I.E., Mazumder, P.: Cmos and memristor-based neural network design for position

detection. Proc. IEEE 100(6), 2050–2060 (2012)
26. Eeckman, F.H., Colvin, M.E., Axelrod, T.S.: A retina-like model for motion detection. In:

International Joint Conference on Neural Networks, 1989. IJCNN, vol. 2, pp. 247–249 (1989)
27. Gelencsér, A., Prodromakis, T., Toumazou, C., Roska, T.: Biomimetic model of the outer

plexiform layer by incorporating memristive devices. Phys. Rev. E 85, 041918 (2012)
28. Gomez, G.: Local smoothness in terms of variance: the adaptive Gaussian filter, pp. 815–824

(2000)
29. Huber, S.A., Franz, M.O., Bülthoff, H.H.: On robots and flies: modeling the visual orientation

behavior of flies. Robot. Auton. Syst. 29, 227–242 (1999)
30. Hutchinson, J., Koch, C., Luo, J., Mead, C.: Computing motion using analog and binary resis-

tive networks. Computer 21(3), 52–63 (1988)
31. Inc The MathWorks. MATLAB Image Processing Toolbox—User’s Guide R2012b. The Math-

Works, Inc, 3 Apple Hill Drive, Natick, MA 01760-2098 (2012)
32. Jiang, F., Shi, B.E.: The memristive grid outperforms the resistive grid for edge preserving

smoothing. In: European Conference on Circuit Theory and Design, 2009. ECCTD 2009,
pp. 181–184 (2009)

33. Kameda, S., Yagi, T.: Calculating direction of motion with sustained and transient responses
of silicon retina. In: SICE 2002. Proceedings of the 41st SICE Annual Conference, vol. 3,
pp. 1853–1858 (2002)

34. Kameda, S., Yagi, T.: A silicon retina system that calculates direction of motion. In: Proceed-
ings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS’03, vol. 4,
pp. IV-792–IV-795 (2003)

35. Kolb, H.: Organization of the outer plexiform layer of the primate retina: electron microscopy
of Golgi impregnated cells. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 258(823), 261–283
(1970)

36. Lee, J.W., Chae, S.P., Kim, M.N., Kim, S.Y., Cho, J.H.: A moving detectable retina model
considering the mechanism of an amacrine cell for vision. In: IEEE International Symposium
on Industrial Electronics, 2001. Proceedings. ISIE 2001, vol. 1, pp. 106–109 (2001)

37. Li, H., Chung Lin, J.: Using fuzzy logic to detect dimple defects of polished wafer surfaces.
IEEE Trans. Ind. Appl. 30(2), 317–323 (1994)

38. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 times 128 120 db 15 s latency asynchronous
temporal contrast vision sensor. IEEE J. Solid-State Circuits 43(2), 566–576 (2008)



582 C.K.K. Lim et al.

39. Likharev, K.K., Mayr, A., Muckra, I., Türel, O.: Crossnets: high-performance neuromorphic
architectures for cmol circuits. Ann. N.Y. Acad. Sci. 1006(1), 146–163 (2003)

40. Lu, Y., Jain, R.C.: Behavior of edges in scale space. IEEE Trans. Pattern Anal. Mach. Intell.
11(4), 337–356 (1989)

41. Mahowald, M.: An Analog VLSI System for Stereoscopic Vision. Kluwer Academic, Norwell
(1994)

42. Maini, R., Aggarwal, Dr.H.: Study and comparison of various image edge detection tech-
niques. Int. J. Image Process. 3(1), 1–12 (2009)

43. Malamas, E.N., Petrakis, E.G.M., Zervakis, M., Petit, L., didier Legat, J.: A survey on indus-
trial vision systems, applications and tools. Image Vis. Comput. 21, 171–188 (2003)

44. Masaki, I.: Machine-vision systems for intelligent transportation systems. IEEE Intell. Syst.
Appl. 13(6), 24–31 (1998)

45. Mead, C.: Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)
46. Meitzler, R.C., Strohbehn, K., Andreou, A.G.: A silicon retina for 2-d position and motion

computation. In: EEE International Symposium on Circuits and Systems, 1995. ISCAS’95.
vol. 3, pp. 2096–2099 (1995)

47. Mhani, A., Bouvier, G., Herault, J.: A contrast and motion-sensitive silicon retina. In: Solid-
State Circuits Conference, 1995. ESSCIRC’95. Twenty-First European, pp. 326–329 (1995)

48. Netravali, A.N.: Motion: computation, synthesis and applications. In: The Sixteenth Confer-
ence of Electrical and Electronics Engineers in Israel, pp. 1–18 (1989)

49. Prodromakis, T., Bhushan, B.: Encyclopedia of Nanotechnology: Biomimetic Products.
Springer, Berlin (2012)

50. Prodromakis, T., Pin Peh, B., Papavassiliou, C., Toumazou, C.: A versatile memristor model
with nonlinear dopant kinetics. IEEE Trans. Electron Devices 58(9), 3099–3105 (2011)

51. Ray, N., Acton, S.T., Ley, K.: Tracking leukocytes in vivo with shape and size constrained
active contours. IEEE Trans. Med. Imaging 21(10), 1222–1235 (2002)

52. Regan, D.: Human Perception of Objects. Sinauer, Sunderland (2000)
53. Roska, B., Werblin, F.: Vertical interactions across ten parallel, stacked representations in the

mammalian retina. Nature 410, 583–587 (2001)
54. Salaoru, I., Prodromakis, T., Khiat, A., Toumazou, C.: Resistive switching of oxygen enhanced

tio[sub 2] thin-film devices. Appl. Phys. Lett. 102(1), 013506 (2013)
55. Sanz, J.L.C., Petkovic, D.: Machine vision algorithms for automated inspection thin-film disk

heads. IEEE Trans. Pattern Anal. Mach. Intell. 10(6), 830–848 (1988)
56. Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Visually guided landing of an unmanned

aerial vehicle. IEEE Trans. Robot. Autom. 19(3), 371–380 (2003)
57. Serrano-Gotarredona Timothe Masquelier, T., Prodromakis, T., Indiveri, G., Linares-Barranco,

B.: Stdp and stdp variations with memristors for spiking neuromorphic learning systems.
Front. Neurosci. 7(2) (2013)

58. Shafarenko, L., Petrou, M., Kittler, J.: Automatic watershed segmentation of randomly tex-
tured color images. Trans. Img. Proc. 6(11), 1530–1544 (1997)

59. Sotelo, M.A., Rodriguez, F.J., Magdalena, L.: Virtuous: vision-based road transportation for
unmanned operation on urban-like scenarios. IEEE Trans. Intell. Transp. Syst. 5(2), 69–83
(2004)

60. Strukov, D.B., Likharev, K.K.: Cmol fpga: a reconfigurable architecture for hybrid digital
circuits with two-terminal nanodevices. Nanotechnology 16(6), 888 (2005)

61. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found.
Nature 453(7191), 80–83 (2008)

62. Toumazou, C.: Bio-inspired technologies. Ingenia 37 (2008)
63. Turel, Ö., Lee, J.H., Ma, X., Likharev, K.K.: Neuromorphic architectures for nanoelectronic

circuits: research articles. Int. J. Circuit Theory Appl. 32(5), 277–302 (2004)
64. Ullman, S.: Analysis of visual motion by biological and computer systems. Computer 14(8),

57–69 (1981)
65. Wandell, B.A.: In: Foundation of Vision. Sinauer, Sunderland (1955)



Computing Image and Motion with 3-D Memristive Grids 583

66. Wang, F.Y.: Memristor for introductory physics. arXiv:0808.0286; Provided by the SAO/
NASA Astrophysics Data System

67. Williams, R.: How we found the missing memristor. IEEE Spectr. 45(12), 28–35 (2008)
68. Yang, W.-C., Lin, L.-J., Chiueh, H., Wu, C.-Y.: A cmos bio-inspired 2-d motion direction sen-

sor based on a direction computation method derived from the directionally selective ganglion
cells in the retina. IEEE Sens. J. 11(12), 3341–3351 (2011)

http://arxiv.org/abs/arXiv:0808.0286


Solid-State Memcapacitors
and Their Applications

Jacek Flak and Jonne K. Poikonen

Abstract This chapter introduces the concept of a memcapacitor, and reviews dif-
ferent approaches to its physical realization. Also, practical constraints for their us-
age are assessed. Because of their compatibility with traditional circuit integration
technologies, two approaches are particularly interesting: the ferroelectric capaci-
tor and the memcapacitor constructed by appending metal-insulator-metal (MIM)
capacitor with a memristive switching layer. Ferroelectric capacitors have already
been in use for many years so the properties of this technology are relatively well
researched. The MIM-memristor hybrid structure can take advantage of the vital
research on memristive memories. With sufficiently large ratio of the OFF and ON
resistances of a memristive material, the compound structure behaves as a mem-
capacitive system. Finally, the potential of memcapacitors for memory and logic
applications as well as for artificial neural networks are discussed.

1 Introduction

After the memristor was proposed as the fourth basic element [5], the research
was continued resulting in a systematic arrangement of circuit elements (including
higher order nonlinear components) in form of a concise periodic table and a four-
element torus [6]. Naturally, the characteristics of other possible components have
been investigated and the concept of two new memory elements, i.e., memcapacitor
(abbreviated from memory capacitor) and meminductor (abbreviated from mem-
ory inductor) appeared in 2008 [7]. Memristors, memcapacitors and meminductors
have been categorized as sub-classes of the memristive, memcapacitive and me-
minductive systems, respectively [9]. Figure 1 presents the system of fundamental
passive circuit elements with and without memory, which extends the four elements
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Fig. 1 Fundamental passive
elements with and without
memory

arrangement presented in [24] by adding the memcapacitor and meminductor. Mem-
capacitance CM correlates the magnetic flux ϕ with the time integral of electronic
charge σ , while meminductance LM provides a relationship between the charge q

and the time integral of flux ρ. Circuit elements with even higher order dynamics
are yet to be defined, and whether their solid-state implementations are possible
remains to be seen.

The memcapacitive systems can be divided into voltage- and charge-controlled.
The voltage-controlled memcapacitive system is defined by

q(t) = CM(x,VC, t)VC(t) (1)

ẋ = f (x,VC, t) (2)

where q(t) is the charge stored on the memcapacitor at the time t , VC(t) is the
corresponding voltage, and CM denotes the memcapacitance dependent on the state
of the system x. For the n-th order system, x becomes a vector of n state variables
(x = [x1, x2, . . . , xn]). Equation (2) describes the dependence of the state of memca-
pacitive system x on its own history. Similarly, the charge-controlled memcapacitive
system is defined by

VC(t) = C−1
M (x, q, t) q(t) (3)

ẋ = f (x, q, t) (4)

where C−1
M stands for the inverse memcapacitance.
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Fig. 2 Pinched hysteresis
loop of a memcapacitive
system [9]. The area of each
shade region corresponds to
the amount of energy
added/removed in that
half-period. For the marked
loop direction, U1 is negative
and U2 is positive

From the above system definitions a subclass of memcapacitor devices can be
derived. For the case of voltage-controlled memcapacitors, Eqs. (1) and (2) can be
written as

q(t)= CM

[∫ t

t0

VC(τ)dτ

]
VC(t) (5)

and for the charge-controlled memcapacitors, Eqs. (3) and (4) yield

VC(t)= C−1
M

[∫ t

t0

q(τ)dτ

]
q(t) (6)

Analogically to I–V characteristics of memristors, memcapacitors exhibit a
pinched hysteresis loop in the relationship between the control and output parame-
ter. For voltage-controlled devices, the q(t) = f [VC(t)] characteristic may look as
sketched in Fig. 2.

2 Physical Realizations of a Memcapacitor

The theoretical circuit elements can have multiple alternative physical realizations
(vide ceramic, electrolytic, and MEMS capacitors). For instance, all types of re-
sistance switching memories (exhibiting the pinched hysteresis loop) have recently
been classified as memristors [8].

According to the theory, memcapacitor is a lossless component because it has
no resistance [7]. Therefore, it could theoretically be used for a zero-power non-
volatile memory. However, just as in the case of all circuit elements, the physical re-
alizations will certainly have some nonidealities leading to energy losses. Not many
physical device concepts have been proposed yet, although the nonvolatile capac-
itance changes have been observed in, e.g., ferroelectric materials, nanopores [13]
and certain diode structures [25].
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Fig. 3 Basic structure of a
parallel-plate capacitor with
electrode plates overlap area
A and distance between the
plates d

Fig. 4 Memcapacitor with
elastic membrane

For simplicity, a parallel-plate capacitor shown in Fig. 3 will be considered as
a basis for the following hardware realizations. The capacitance value of such a
structure is given as:

C = Aε0εr

d
(7)

where C is the capacitance value, A is the overlap area of the electrode plates,
ε0 is the vacuum permittivity (physical constant, ε0 ≈ 8.854 × 10−12 F/m), εr is
the relative permittivity of a dielectric material (dielectric constant), and d is the
distance between the electrodes. In this case, the change of capacitance value can be
induced either by a modification of the device geometry and/or dimensions (A, d)
or by the modulation of the material permittivity (εr ).

2.1 Capacitor with Elastic Membrane Electrode

One concept of a memcapacitive device relies on replacing one electrode of a
parallel-plate capacitor with a strained elastic membrane [16] as shown in Fig. 4.
Such a system has two equilibrium positions corresponding to stable high and low
capacitance configurations. Actually, this structure could be classified as a micro-
electromechanical system (MEMS) rather than a classical solid-state device. Nev-
ertheless, it could possibly be integrated with electronics on the same chip or as a
two-chip stack.

As a result of a strained membrane forming one of the electrodes, and thus a
nonuniform distance between the plates across the structure, this approach may suf-
fer from poorly defined capacitance. For instance, creating a model of this device
that would account for the capacitance scaling with respect to the plate area may be
challenging. However, the structure can be modified, so that a stiff top electrode is
used in combination with flexible anchors as shown in Fig. 5.
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Fig. 5 Modified structure of
a memcapacitor with moving
electrode plate

Fig. 6 Solid-state
memcapacitor with
multilayered structure

2.2 Capacitor with Multiple Metal and Insulator Layers

Another approach to the hardware realization of memcapacitor relies on a solid-state
structure formed by multiple metal and dielectric layers embedded within a regular
parallel-plate capacitor [17]. The simplest version with only two inner metal layers
is shown in Fig. 6. The capacitance changes result from charge tunneling between
the inner metal layers (distance δ � d). The dependence of the tunneling current
on the applied voltage is highly nonlinear, therefore providing a natural threshold
between programming (high-voltage pulses) and sensing (low voltages) the state
of the device. Within certain ranges of the electric field, such a structure exhibits
hysteretic charge-voltage and capacitance-voltage characteristics. This structure can
easily be fabricated using traditional methods for deposition of consecutive layers
with lithographically defined lateral dimensions.

2.3 Ferroelectric Capacitor

Crystalline dielectric materials can exhibit spontaneous electrical polarization,
caused by the displacement of positively and negatively charged ions with respect to
each other within the material. In ferroelectric materials the direction of this sponta-
neous polarization can be reoriented by applying an external electric field. Figure 7
shows the hysteretic relationship between the voltage applied to a ferroelectric ma-
terial and the polarization, P . Because the programmable polarization leads to a
nonvolatile capacitive memory effect, ferroelectric materials exhibit memcapacitive
behavior.

Typically, the ferroelectric capacitor has a structure of metal-insulator-metal
(MIM) capacitor, in which the insulating layer is formed by ferroelectric material
(e.g., Pb(Zr1−xTix )O3 or BaTiO3), as illustrated in Fig. 8. When a voltage pulse is



590 J. Flak and J.K. Poikonen

Fig. 7 Hysteretic
relationship between the
polarization in ferroelectric
materials and the applied
voltage. The remanent
polarization states (+Pr and
−Pr ) represent the stored “0”
and “1”. ΔPS denotes the
reversal of polarization
detected as an additional
switching charge ΔQS

Fig. 8 Structure of a
ferroelectric capacitor. Ed

denotes the electric field of an
antiferroelectric interface
layer, which is a result from
defects and interface effects
in the ferroelectric material

applied to such a capacitor, a current flow occurs, which depends on the initial polar-
ization of the device (i.e., the previously stored binary state). If the applied pulse has
the same polarity, the current flow simply corresponds to charging the capacitor. If
an opposite polarity voltage pulse is applied, an additional charge ΔQS is required
to reverse the direction of the polarization, leading to a larger current flow through
the device. The difference between these two signals is used to determine the state
stored on the device. This procedure (conditional reversal of the polarization) natu-
rally makes the readout process destructive [3].

2.4 Capacitor Appended with Memristive Layer

A solid-state memcapacitive device can also be composed by stacking a traditional
MIM capacitor and a memristor as shown in Fig. 9(a). In the high resistance state,
the memristive material such as transition metal oxide (e.g., TiO2 or HfO2) can
be regarded as a dielectric. On the other hand, when programmed to a low resis-
tance state, it behaves as an ohmic contact with finite resistance. Such a structure
could benefit from fabrication techniques being developed for memristive arrays.
An analogous memcapacitor structure has also been proposed by HP Labs [4, 19].
Moreover, it may be possible to omit the inner metal electrode and assume the con-
duction to stop at the edge of the stable dielectric, as shown in Fig. 9(b). Such a
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Fig. 9 Physical structures of
a solid-state memcapacitor
based on capacitor appended
by memristive layer: (a) basic
stack of a memristor and
MIM capacitor, and
(b) structure without the inner
electrode

structure has been considered by Micron Technology [18]. In this way, the fabri-
cation process can be simplified (reduced number of masks). However, without the
inner metal layer, the high capacitance value may not be well defined. Unless the
contact interface between the oxides is highly conductive, the area of the inner elec-
trode will depend on the uniformity of the resistance changes across the device. It
may turn out to be a significant problem in case of devices with switching dynamics
based on the formation and rupture of local conducting filaments [21]. The structure
containing the inner metal electrode is inherently immune to this issue.

This type of a memcapacitor in either high or low capacitance state can be rep-
resented by the corresponding simple circuit equivalents, shown in Fig. 10. When
the memristor’s off-resistance RM_OFF →∞, the capacitive component dominates
its impedance in the high resistance state, so that the RM_OFF could be neglected.
In such a case, the memcapacitor structure can be treated as a serial connection
of two capacitors with the total capacitance value CM = CMR · CC/(CMR + CC).
Analogically, when the memristor is programmed to low resistance state and its
RM_ON → 0, the memcapacitance value can be approximated as CM = CC . In prac-
tice, however, a designer should account for the resistive components, especially
when targeting analog applications. For instance, in a dense crossbar architecture,
the capacitance of a memristive layer programmed to high resistance state may well
be on order of femtofarads. Assuming the RM_OFF in the range of megohms, the
CMR would be discharged with time constant τMR = CMR · RM_OFF , i.e., within
nanoseconds. Therefore, the material to be used for the memristive layer of a mem-
capacitor should allow for maximal resistance ratio (preferably, �106), so that
the resistive components could be neglected. At the same time, it should exhibit
as high as possible dielectric constant to achieve large capacitance within a small
area. Meeting these two requirements simultaneously may prove difficult. For ex-
ample, TiO2 may reach εr = 150 but typically, the TiO2-based memristors show a
resistance ratio limited to 104 [12]. On the other hand, a GeOx -based devices with
RM_OFF/RM_ON = 109 have been reported [20], but the germanium oxides have
significantly lower dielectric constant (εr ≈ 10).
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Fig. 10 Circuit equivalents
of the memristor-based
memcapacitor programmed to
(a) low and (b) high
capacitance values,
respectively

2.4.1 Programming of the Memristor-Capacitor Hybrid

If the inner metal electrode is extending outside the device (resulting in a 3-terminal
structure), the programming voltage can be applied between the top and inner elec-
trode (see Fig. 9(a)). However, the access to the inner electrode would limit the
possible scaling. Moreover, in case of dense nanowire fabrics, the overall capac-
itance of such a device could significantly be altered by the stray capacitance of
the additional programming connection, which should be considered in the circuit
design and layout.

Alternatively, the programming pulses can be applied between the top and bottom
electrodes. Changing the capacitance value from low to high (i.e., switching the
memristive layer from RM_OFF to RM_ON ) is still relatively straightforward. With
sufficiently large amplitude of the programming voltage VP , the voltage across the
memristive layer (neglecting the influence of RM_OFF)

VMR ≈ VP ·CMR

CMR +CC

(8)

will exceed the memristor switching threshold. On the other hand, changing the
capacitance value from high to low is more complicated, because the current flow
through the device (CC and RM_ON ) needs to be large enough to cause the reverse
switching of the memristor resistance from RM_ON to RM_OFF . Since a capacitor
in series inherently imposes a high-pass filtering, it presents a smaller impedance
for rapidly rising edge of a voltage pulse. Therefore, the programming signals with
shapes as shown in Fig. 11 are proposed. Generating such waveforms would require
a dedicated complex control electronics, which could be shared by many (or even
all) memcapacitive devices in the system. This scheme could possibly be applied to
the both memcapacitor structures of Fig. 9.

Figure 12 presents the AC simulation waveforms of the memcapacitor equivalent
circuit with CC = CMR = 5 fF and RM varying from 100 G
 to 1 
. When the volt-
age at the inner electrode drops to 1.5 V, the resistive component becomes negligible
and the structure behaves as a capacitive voltage divider. Interestingly, the minimum
value of RM_ON should not be below 1 k
, because an extremely high frequency
would be required for the programming pulses to switch the memcapacitor to low
capacitance state (i.e., switch the memristive layer from RM_ON to RM_OFF).
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Fig. 11 Example of programming voltage waveforms for memcapacitor made of MIM capaci-
tor and memristor stack (assuming bipolar-switching memristor). The amplitude of programming
pulses VP is significantly higher than the amplitude of processed signals VS

3 Applications of Memcapacitors

3.1 Device Models

The concept of a memcapacitor is relatively new, and thus its modeling is not very
advanced yet. Usually, derivatives of the state equation defining the element are
used to qualitatively assess its behavior or certain properties. However, the models
proposed in [1] and [2] already allow for simulating electronic circuits with memca-
pacitors using standard CAD software. These models are generic and can further be
extended or parametrized to more realistically reflect a specific implementation and
its technology parameters. Moreover, these models can be utilized in continuous-
time simulations, in which the intermediate processing results are supposed to affect
the value of a memcapacitance—a case not possible with the simple (static) circuit
equivalents of Fig. 10.

3.2 Memory

Memristors are often projected to replace the flash-type devices in future generations
of nonvolatile memories and memcapacitors could serve this purpose as well. Actu-
ally, the ferroelectric memcapacitors have already been on the market since 1990’s.
Due to the nonvolatile polarization and the lack of any DC current for operation,
ferroelectric capacitors lend themselves naturally to low-power embedded memory
applications. The technology development has resulted in a very long retention time
(>10 years), unlimited endurance and an access time under 50 ns [23]. However,
scaling of the ferroelectric random access memory (FeRAM) imposes a challenge as
the typical one-transistor and one-capacitor (1T1C) configuration (shown in Fig. 13)
has not been able to keep up with the rapid downscaling of CMOS technology,
due to the area required by the separate Fe-capacitor. A denser memcapacitor-based
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Fig. 12 AC simulations of the MIM-memristor hybrid memcapacitor showing the frequency de-
pendence of the inner electrode potential on the memristor resistance value, when a 3 V signal is
applied between the top and bottom electrodes (see Figs. 9(a) and 10)

memory could be obtained with a 1T-configuration, in which the memcapacitor is
replacing the gate dielectric of a MOS transistor. Such a structure has already been
proposed in form of ferroelectric field-effect transistor (FeFET), shown in Fig. 14.
However, the interface between the ferroelectric material in the gate stack and the
underlying Si device leads to disturbances in transistor parameters and decreased
retention time [23]. To overcome this problem, one can apply an insulating buffer
layer between the Fe-material and silicon, creating a Metal-Ferroelectric-Insulator-
Silicon (MFIS) capacitor. This improves the performance but naturally also leads to
a thicker gate stack, possibly requiring more area to achieve the same capacitance.
Recently, a new FeFET device, based on a Si-doped HfO2 gate dielectric with a
thickness of <10 nm was reported [15]. HfO2, due to its higher relative permittiv-
ity, is often replacing SiO2 for gate dielectric in modern deep sub-micron CMOS
technologies. This is an important observation because the process and material
compatibility with downscaling CMOS structures would significantly increase the
desirability of memcapacitors as nonvolatile memory contender. Also, the memca-
pacitors based on memristive materials have been proposed for the gate dielectric of
a MOSFET [18], but its experimental verification has not yet been reported.
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Fig. 13 1T1C FeRAM cell
schematics and the cross
section of its structure with
marked bit line (BL), word
line (WL), and plate line (PL)

Fig. 14 Different structures
of the ferroelectric field-effect
transistor (FeFET)

Memcapacitors can be used for memory applications in two ways. First, only
the memcapacitance value is used to store the data and thus a single bit of infor-
mation is stored in each device. This mode of operation resembles the use of mem-
ristors for nonvolatile memory arrays. However, the achievable density of a mem-
capacitive matrices (in either 1T1C or even 1T configuration) will not likely be as
high as the memristive nanowire crossbar nets. The second approach is to use the
charge stored on a memcapacitor for information coding. In such a case, a single
memcapacitor can have three distinguished states. Namely, discharged capacitance
(QMC = 0), and charged capacitance programmed to either “small” (QMC = QS )
or “large” (QMC =QL) value. Each of these cases can be assigned a separate logic
level, e.g., LO, MID, and HI, respectively. In this way, the array of memcapacitors
can effectively store more data than when relying on capacitance value only. Table 1
shows how two memcapacitors can be used to represent nine different values. How-
ever, in this method the memory is rather volatile. Moreover, with downscaling the
memcapacitor plate dimensions, the requirements imposed on the sensing amplifier
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Table 1 Data storage density
of two triple-valued symbols
achievable with two
memcapacitors

QMC1 QMC2

LO LO

LO MID

LO HI

MID LO

MID MID

MID HI

HI LO

HI MID

HI HI

may limit the application to local cache-type memories (moderate capacity, short
retention times).

The ability to store three distinctive logic values on a single device also indi-
cates a potential for memcapacitors to be used in multiple-valued logic circuits.
Multiple-valued logic repeatedly attracts researchers’ attention because of its po-
tential to provide a high function density with lower connectivity requirements and
lower power consumption than classical binary logic. Alternatively, memcapacitors
could also replace the standard capacitors in capacitive threshold logic (CTL) gates
providing an additional degree of freedom in circuit design. A generic design style
based on CTL gates for synthesis of multiple-valued functions has already been
demonstrated [22].

3.3 Tunable Analog and Neuromorphic Circuits

A device with programmable capacitance is also very attractive for tunable analog
circuits and system calibration schemes. For instance, memcapacitors could replace
varactors and capacitor banks or complement them for increased tuning accuracy.
On the other hand, the frequency-dependent behavior of the MIM-memristor hy-
brid (indicated in Fig. 12) may be utilized for filters and/or oscillator applications.
However, its resistive components will naturally limit the achievable quality factors.

Another opportunity to exploit the potential of a memcapacitor is to embed it
into the gate stack of a MOSFET in the same way it is done for FeFET, leading to a
transistor with threshold voltage programmable in non-volatile manner. Such a de-
vice may prove useful for a wide range of analog circuits, including amplifiers,
comparators, etc. The inherent tunability may also be utilized for implementing
learning algorithms in neuromorphic circuits. Recently, a spike-timing-dependent
synaptic plasticity (STDP) mechanism has been demonstrated with a device resem-
bling FeFET structure, in which the conductivity of a ZnO-based transistor channel
is controlled through a ferroelectric gate [26]. The advantage of this approach over
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Fig. 15 McCulloch and Pitts
neuron model. The output (Y )
is activated whenever the sum
of Wi -weighted input signals
(ini ) exceeds the applied
threshold (Th)

the standard memristor implementations of STDP is that the learning can be per-
formed simultaneously with signal processing (and not in separate phases), which
is the case in biological nervous systems, and thus may bring us a step closer to a
brain-like processor.

3.4 CNN Cell with Memcapacitors

Apart from memory for data and/or program storage, memcapacitors can be used for
synaptic connections between the cells of cellular neural/nanoscale network (CNN)
as well as for setting the neuron activation threshold [10]. The proposed cell imple-
ments the McCulloch-Pitts neuron model, shown in Fig. 15, with activation function
taking form of a step function:

VY = f (VX)=
{

VDD, VX ≥ VDD/2,

0, VX < VDD/2,
(9)

where voltages VY and VX represent the neuron output and state, respectively. The
proposed cell structure, presented in Fig. 16, has been derived from the floating-
gate neuron structure [11]. For full functionality, the cell needs to include also local
memories and the transient mask circuitry (not shown for clarity). The single-bit
weight programmability [14] makes it versatile enough to perform all binary image
processing either directly or through multi-step algorithms, and the application of
memcapacitors to the synaptic connections further extends the cell capabilities.

Each synapse consists of a single memcapacitance CM and three switches. The
switch controlled by the template coefficient ABi,j is used to enable the given
synapse to influence the cell state VX , while the start signal initiates the process-
ing. Switches pr_si,j are used for connecting the memcapacitor to the programming
voltages Vpr1 and Vpr2. Since higher amplitude pulses are usually required for pro-
gramming, it is necessary to separate the memcapacitors from the rest of circuitry
during the programming phase. The ABi,j and the start-driven switches can serve
this purpose. Since the output voltage VY is provided by the cell output buffer (a rela-
tively strong driver) it can be used directly for the neighborhood inputs. This enables
the synapse to have either a positive (VY = VDD) or a negative (VY = 0) contribution
to the cell state. The logical contribution to the cell state from each synapse is:

Si,j = ABi,j · (CM/Cu) · (Vyi,j /VDD) (10)
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Fig. 16 CNN cell utilizing memcapacitors for synapses and activation threshold

Table 2 Truth table of the
binary-programmable
memcapacitive synapses

a×= do not care

ABi,j CM Vyi,j Si,j

0 ×a ×a 0

1 Cu 0 −1

1 Cu VDD +1

1 2Cu 0 −2

1 2Cu VDD +2

where Cu denotes an unity capacitance. Assuming that in the low capacitance state
CM = Cu and in the high capacitance state CM = 2Cu, Si,j ∈ [−2,−1,0,+1,+2].
The possible combinations are collected into a truth table of a memcapacitive
synapse (Table 2).

The threshold control structure consists of two pull-down paths, each containing
a memcapacitor and four switches. Additionally, the gate capacitance of the buffer’s
first stage is designed so that it forms a capacitive path corresponding to a threshold
of 0.5 (Cth=0.5 = 0.5Cu) shown with a dashed line in Fig. 16. Control signals th_1
and th_2 are used to enable the corresponding path, and thus adding to the threshold
value. The switches driven by signals pr_t1 and pr_t2 are used for programming
the memcapacitance values. Assuming again that CM may take value of either Cu

or 2Cu (as in the case of synapses), the overall threshold can be set to 0.5, 1.5, 2.5,
3.5, or 4.5, although, a threshold larger than 3.5 is not required in the binary pro-
gramming scheme of the 8-connected network [14]. Nevertheless, it may be useful
for processing some more complex templates.

The proposed CNN cell structure having nine synapses (for a fully connected
first order neighborhood, the indices i, j ∈ [−1,0,+1] and S0,0 represents self-
feedback) has been designed for 0.35 µm CMOS technology and simulated using
the circuit equivalents of Fig. 10 for modeling the memcapacitors (configurations
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Fig. 17 Simulation waveforms of the state (red lines) and output (blue lines) voltages with thresh-
old set to 0.5, 1.5, 2.5, and 3.5, respectively

kept constant during each simulation run). The basic perceptron operation has been
verified through transient simulations with RM_OFF = 100 M
, RM_ON = 1 
,
CC = CMR = 80 fF (Cu = 40 fF), VDD = 3 V and an arbitrary time step of 1 ns,
as shown in Fig. 17. For each threshold value (0.5, 1.5, 2.5, and 3.5), the nine
synapses (with Si,j = +1) are being consecutively switched on. The neuron out-
put is activated each time the sum of inputs exceeds the programmed threshold
value.

The transient simulation results presented in Fig. 18 show the ability of the pro-
posed cell to deal with the negative synapse contributions. Namely, the synapse
activated as the second one has Vyi,j = 0 and CM = 2Cu, and thus its contribution
to the cell state S2 =−2. Additionally, in the case (b) shown on the right hand side,
the fourth activated synapse has S4 =+2 and the fifth synapse contributes S5 =−1.
Therefore, this waveform proves the proper operation of the cell with the synapse
contributions of all possible values.
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Fig. 18 The cell state (red lines) and output (blue lines) voltages with (a) Th = 0.5 and S2 =−2,
and (b) Th = 3.5, S2 = −2, S4 = +2, S5 = −1. The contribution of all the other synapses are
Si =+1

4 Conclusions

Solid-state memcapacitor is a very promising emerging nanodevice, for which a
broad application range from nonvolatile memories to tunable analog circuits can
be envisioned and neural hardware implementations have already been proposed.
When applied to capacitively coupled cellular nanoscale networks for synaptic con-
nections and threshold control, the cell capabilities extend beyond the functionality
provided by the binary-programming scheme. Moreover, embedding the memca-
pacitor into gate stack of a MOSFET enables implementions of learning algorithms
in the way that allows for learning and processing to be conducted concurrently.

Different technologies and structures can be used to realize memcapacitive de-
vices. Especially promising approaches are the ferroelectric capacitors and the
memristor-based components, because of their compatibility with CMOS integra-
tion technologies.

It can be expected that the research on physical realizations of memcapacitors as
well as circuit designs benefiting from those devices will soon gain a momentum, in
similar way as it happened for memristors.

Acknowledgements This work was funded by the Academy of Finland under grants 140108
and 140290.
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Memristive Stateful Logic

Eero Lehtonen, Jussi H. Poikonen, and Mika Laiho

Abstract Memristive stateful logic refers to a form of computational logic in which
memristors both store logic values and perform logical operations on these values.
We present a generalized form of memristive stateful logic and define the logic
operations realizable in this form. We also consider the CMOS circuitry required
for reliable implementation of memristive stateful logic. Furthermore, synthesis of
arbitrary Boolean functions and the parallelization of stateful logic to memristive
crossbars is presented.

1 Introduction

Stateful logic refers to a form of computational logic in which the same devices both
store logic values and perform logical operations. Implication logic was proposed
as a specific realization of stateful logic for memristors by Phil Kuekes in a talk pre-
sented at the first Memristor and Memristive Systems Symposium at University of
California, Berkeley in 2008 [5]. In this form of logic, values of Boolean variables
are represented as memristances, and the stateful logic operation is realized sim-
ply by programming the state of a memristor conditionally to the state of another
memristor. The programming of memristors is realized by driving the memristors
with conditional and programming voltages, for example by using auxiliary CMOS
circuitry.

In 2010, Borghetti et al. [1] published measurements of material implication op-
erations performed using memristive switches, and demonstrated the computation
of the logical NAND operation as a sequence of two implication operations between

E. Lehtonen (B) · M. Laiho
BID Technology, University of Turku, Turku, Finland
e-mail: elleht@utu.fi

M. Laiho
e-mail: mlaiho@utu.fi

J.H. Poikonen
Department of Communications and Networking, Aalto University, Espoo, Finland
e-mail: jussi.poikonen@aalto.fi

A. Adamatzky, L. Chua (eds.), Memristor Networks,
DOI 10.1007/978-3-319-02630-5_27,
© Springer International Publishing Switzerland 2014

603

mailto:elleht@utu.fi
mailto:mlaiho@utu.fi
mailto:jussi.poikonen@aalto.fi
http://dx.doi.org/10.1007/978-3-319-02630-5_27


604 E. Lehtonen et al.

two input memristors and an output memristor. In [10] we proved that any Boolean
function with N inputs can be synthesized using N + 2 memristors—N memristors
are needed to store the values of the inputs, and two auxiliary memristors are used
for computation.

Material implication is not the only stateful logic operation which can be real-
ized using conditional programming of memristors. In [4] it was shown how logical
AND can be computed directly as a stateful logic operation. In [12] we considered a
stateful logic operation called converse nonimplication, and showed that if rectify-
ing memristors are used, this operation can be implemented with very simple CMOS
circuitry even when the computing is performed within a memristive crossbar array.
The fourth possible stateful logic operation that uses the computing scheme pro-
posed by Kuekes is the logical OR. All of these operations will be discussed in
more detail in the rest of this chapter.

Memristive stateful logic is sequential, and requires multiple elementary opera-
tions to synthesize a given Boolean function. Therefore minimization of the lengths
of computational sequences is a significant task, and is considered for example
in [12, 17]. Furthermore, parallelization of stateful logic computations within a
memristive crossbar is discussed in [4, 12].

Using memristors for logic processing is an active area of research. Proposed
methods that are closely related to the stateful logic considered in this chapter in-
clude for example the memristor programming scheme presented in [15, 19], where
the memristors are directly driven with voltages representing logical values instead
of using input memristors to store these values. Another approach closely related to
stateful logic, called memristor ratioed logic, is presented in [7]. Briefly, the idea
there is to use antiserially connected memristors to dynamically switch into a state
that corresponds to a given logical function of the input voltages. In literature there
exists also a variety of different logic computation approaches that use memristors
as synaptic elements. Such approaches include the wired-OR logic in [21], and the
memristive threshold logic in [18].

In Sect. 2 we present the different memristive stateful logic operations attained
from a generalization of the circuit proposed in [5]. We describe various ways of
synthesizing Boolean functions with memristive stateful logic in Sect. 3. Parallel
stateful logic in memristive crossbars is considered in Sect. 4. We present conclud-
ing remarks and our views on the future development of memristive stateful logic in
Sect. 5.

We define the memristor as a voltage controlled two-terminal bistable linear
device having the on-resistance RON and the off-resistance ROFF, where ROFF
is assumed to be much larger than RON. Correspondingly we say that a mem-
ristor is either in a conducting (1) or a nonconducting (0) state. A memristor is
programmed to state 1 by applying across it a voltage larger than a threshold
voltage VTH; correspondingly applying a voltage more negative than −VTH
programs the memristor to state 0. We do not explicitly consider the duration
of a programming operation, and assume that programming voltages are held
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Fig. 1 Hysteresis curves of the memristor models used in this chapter. Left: Linear bipolar model.
Right: Linear rectifying model

across memristors long enough to ensure full switching between states. When
the voltage across a memristor is between −VTH and VTH, the state of the de-
vice is assumed to remain unchanged. In the left inset of Fig. 1 the hysteresis
loop corresponding to this memristor model is depicted.

We also consider the use of rectifying memristors [3] for stateful logic.
A simplified linear model of the rectifying memristor is depicted in the right
inset of Fig. 1. This device is programmed to state 0 identically to the non-
rectifying model, that is, by applying a voltage smaller than −VTH across
it, although negative current through the device is negligible. A physical ex-
planation to why the rectification of current takes place at the same voltage
polarity as switching to state 0 is given in [3]. In short, applying a small nega-
tive voltage partially retracts the ions forming the conducting channel within a
memristor thus increasing its resistance substantially; this effect is undone by
applying a small positive voltage across the device. The fact that the rectifi-
cation takes place at the same voltage polarity as switching to nonconducting
state affects the availability of some stateful logic operations, as is discussed
in Sect. 2.1.

Note that the assumption of linear devices is made here to simplify anal-
ysis; effects of nonlinear I-V characteristics on the operation of memristive
stateful logic are discussed for example in [1, 20].

2 Basic Memristive Stateful Logic Operations

Kuekes [5] proposed in 2008 that the circuit depicted in Fig. 2 would enable memris-
tive stateful logic. The value of the series resistance R0 is chosen between RON and
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Fig. 2 Stateful memristor
logic. The resulting state of
m2 depends on its previous
state and the state of m1. The
state of m1 remains
unchanged during the
operation

ROFF; in the following we assume R0 =√
RONROFF, so that R0/RON = ROFF/R0.

The reason for using the series resistor R0 is to realize a voltage division across the
memristors and R0 so that the voltage on the horizontal wire depends on the con-
ductance states of the memristors. The optimal choice of R0 depends for example
on whether or not the considered memristors are linear or rectifying, and on the
number of inputs per stateful operation; more detailed discussion about this topic
can be found in [4, 6].

This stateful logic circuit is operated as follows. The memristor m1 is driven
with the conditional voltage vcond whose magnitude is smaller than the switching
threshold voltage of the memristor, |vcond|< VTH. The memristor m2 is driven with
a programming voltage vset, whose value depends on the chosen stateful logic op-
eration. Since the voltage across m2 depends on the state of m1 and on the voltage
vcond, it follows that the programming of m2 is performed conditionally to the state
of m1. Furthermore, it is assumed that during the stateful logic operation the voltage
across m1 stays small enough to keep its state unchanged.

In the following subsection we generalize this concept of memristive stateful
logic to multiple inputs and multiple outputs, and continue in the rest of the section
to consider all possible combinations of polarities for the conditional and program-
ming voltages, and the resulting logical operations.

2.1 Generalized Stateful Logic

Let us consider the memristive circuit depicted in Fig. 3. This circuit, used here for
demonstrating generalized stateful logic, consists of two input memristors, m1 and
m2, and two output memristors, m4 and m5; generally the number of allowed inputs
and outputs can be larger and depends on the physical parameters of the circuit,
for example on the resistance ratio ROFF/RON. Memristor m3 does not participate
in the depicted operation, which is realized by setting its driver to high impedance
state HZ. The stateful logic operation S performed by this circuit is determined by
the polarities and magnitudes of the voltages vcond and vset. For circuit topologies
of the form depicted in Fig. 3 we define the generalized stateful logic operation on
input memristors mi1, . . . ,mik and output memristors mo1, . . . ,mol as one which
fulfills the following conditions:
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Fig. 3 A generalized stateful logic operation S yielding m4 = S(OR(m1,m2),m4) and
m5 = S(OR(m1,m2),m5). Memristor m3 does not participate into this stateful logic operation,
and therefore its driver is set to a high impedance state. V0 refers to the stabilized voltage on the
horizontal wire, which depends on the states of the input memristors, here m1 and m2

1. The states of input memristors do not change during the operation.
2. Voltage V0 on the horizontal wire is close to ground if all the input memristors

are in state 0. Otherwise V0 is close to vcond. In particular, V0 depends only on
the states of the input memristors and not on the states of the output memristors.

3. The states of output memristors may change depending on their initial states and
the voltage difference between vset and V0.

Assuming these conditions are fulfilled, the states of output memristors after the
stateful logic operation S satisfy

moj := S
(
OR(mi1, . . . ,mik),moj

) ∀j = 1, . . . , l. (1)

Note that the maximum number of inputs depends on the resistance ratio ROFF/RON,
since the sum of currents through input memristors in state 0 should be significantly
smaller than the current through a single input memristor in state 1.

In practice, fulfilling condition 2 above requires special attention. Care must be
taken that the resistance ratios ROFF/R0 and R0/RON are large enough so that the
voltage on the horizontal wire essentially represents the OR-function of the states of
the input memristors. It should also be noted that current flowing through the output
memristors affects voltage V0. The general solution to this problem is to measure
the effect of the input currents on V0, and then maintain the resulting voltage during
the programming of the output memristors. This can be simply achieved by ensur-
ing that there is sufficient capacitance on the horizontal wire, which is precharged
by the currents flowing through the input memristors. In this case it is necessary
that the programming time of the memristors is shorter than the RC time constant
associated with the horizontal wire. Another solution is to apply a dedicated CMOS
keeper circuit which maintains voltage V0 during the programming of the output
memristors. Keeper circuits are discussed in detail in Sect. 2.2.

Both of the outlined solutions to maintaining voltage V0 have drawbacks. A sub-
stantial capacitance slows the operation of the circuit, while application of keeper
circuits increases the CMOS area overhead. Moreover, relatively large currents may
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Fig. 4 A keeper circuit may
be necessary to ensure the
correct operation of stateful
logic. This subcircuit should
be used to replace the series
resistance R0 in Figs. 2 and 3

flow through the output memristors that are in state 1, which increases power con-
sumption.

With the converse nonimplication operation described in Sect. 2.3.2, a third so-
lution to maintaining voltage V0 exists. Namely, by assuming rectifying memristors
as described in Sect. 1, currents flowing through the output memristors can be sup-
pressed. Since in this operation vcond > 0 and vset < 0, rectifying memristors allow
current to be passed only through input memristors. Therefore converse nonimplica-
tion realized with rectifying memristors does not require a large capacitance on the
horizontal wire, or additional CMOS keeper circuitry. However, a limitation with
rectifying memristors is that the stateful AND and stateful OR operations speci-
fied in Sects. 2.3.3 and 2.3.4 are not directly available, since for these vcond < 0.
Moreover, multi-output operation is available only for converse nonimplication if
no substantial capacitance exists on the horizontal wire and no keeper circuitry is
used. A keeper circuit allowing the realization of all of the stateful logic operations
with rectifying memristors is presented in the following subsection.

2.2 Keeper Circuits

As described above, auxiliary CMOS subcircuits can be used to maintain the voltage
on the horizontal wire during the programming of the output memristors. These
circuits are used to replace the series resistance R0 in Fig. 3. When keeper circuits
are used, the stateful logic operation is divided into two phases. In the first phase
only the input memristors are driven, and the logical OR of their states is measured
and stored in the keeper circuit. During the second phase the output memristors
are driven with voltage vset, and the keeper circuit is used to maintain the voltage
on the horizontal wire at a value determined by the states of the input memristors.
The use of keeper circuits brings memristive stateful logic closer to threshold logic
described in [18]. The main difference is that here memristors are not only used as
synapses, but also programmed conditionally according to the result of the threshold
operation.

Originally presented in [8], the keeper circuit depicted in Fig. 4 is designed for
implementing the material implication operation. In the first phase the input mem-
ristors are driven with vcond, and the voltage across R0 yields the logical OR of the
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Fig. 5 A keeper circuit that enables all stateful logic operations also with rectifying memristors.
In the first phase, the input memristors are driven with positive voltage |vcond| regardless of the
chosen stateful logic operation, and in the second phase the horizontal wire is driven to either
ground or to vcond (which can be also negative) depending on the result obtained in the first phase

states of the input memristors. In the second phase the signal KEEP is used to acti-
vate the inverter circuit. If each input memristor is in state 0, the inverter drives the
gate of the NMOS transistor high, providing a pull-down path to ground. Otherwise
the voltage on the horizontal wire is at least vcond, which in the case of the material
implication operation prevents any programming of output memristors. Notice that
when using this keeper circuit, the input memristors are driven in both phases.

The more complex keeper circuit depicted in Fig. 5 allows the realization of all
four stateful logic operations described in Sect. 2.3. The main functional difference
between this circuit and the one depicted in Fig. 4 is that here the horizontal wire is
actively maintained either at ground or at vcond depending on the states of the input
memristors. In the first phase, the control signals READ and PROG are driven high
and low, respectively, and the input memristors are driven with a positive voltage
|vcond|. The result of the OR of the input memristors is then stored in latch D. In
the second phase the control signals READ and PROG are driven low and high,
respectively, the output memristors are driven with vset, and the drivers of the in-
put memristors are set to high impedance. Depending on the result obtained in the
first phase, the horizontal wire is driven either to ground or to vcond, whose polarity
depends on the chosen stateful logic operation. This keeper circuit can be used to en-
able all stateful logic operations with rectifying memristors, as the input memristors
are driven always with a positive voltage.

Parallelization of stateful logic operations in a memristive crossbar topology may
require specific keeper circuits to prevent the formation of undesired current paths.
This topic is discussed in more detail in Sect. 4, where a keeper circuit for parallel
stateful logic is depicted in Fig. 8.

2.3 Stateful Logic Operations

In the following we list the stateful logic operations resulting from different choices
of the voltages vcond and vset.
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Table 1 The truth tables of
the material implication and
converse nonimplication
operations. Note that
p → q ≡ OR(¬p,q) and
p � q ≡ AND(¬p,q)

p q p → q p � q

0 0 1 0

0 1 1 1

1 0 0 0

1 1 1 0

2.3.1 Material Implication

Let the conditional voltage 0 < vcond < VTH and the programming voltage vset >

VTH be chosen such that

vset − vcond < VTH. (2)

Then output memristor moj is programmed from state 0 to state 1 if and only if
OR(mi1, . . . ,mik)= 0, resulting in

moj := OR(mi1, . . . ,mik)→moj

= OR
(¬OR(mi1, . . . ,mik),moj

)

= NAND
(
OR(mi1, . . . ,mik),¬moj

)
, (3)

where → denotes the logical operation called material implication whose truth table
is presented in Table 1. In the case of a single input and a single output memristor,
this is the stateful logic operation presented by Kuekes in [5].

2.3.2 Converse Nonimplication

Let 0 < vcond < VTH, −VTH < vset < 0, and vset − vcond <−VTH. Output memristor
moj is programmed from state 1 to state 0 if and only if OR(mi1, . . . ,mik) = 1.
The truth table of this operation, called converse nonimplication and denoted by the
symbol �, is also given in Table 1. The resulting state of moj equals

moj := OR(mi1, . . . ,mik) � moj

= AND
(¬OR(mi1, . . . ,mik),moj

)

= AND(¬mi1, . . . ,¬mik,moj ). (4)

As noted in the previous subsection and originally proposed in [12], converse non-
implication with multiple inputs and multiple outputs can be realized without sub-
stantial capacitance on the horizontal wire or additional CMOS keeper circuitry, if
rectifying memristors are used.
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2.3.3 Stateful AND

Let the programming and conditional voltages both be negative,

−VTH < vcond < 0,

vset <−VTH, and vset − vcond >−VTH.

Now moj is programmed from state 1 to state 0 if and only if OR(mi1, . . . ,mik)= 0
and thus the resulting state of moj is

moj := AND
(
OR(mi1, . . . ,mik),moj

)
. (5)

This stateful logic operation was first proposed for memristors in [4].

2.3.4 Stateful OR

The fourth possible choice of amplitudes and polarities of vcond and vset for a stateful
logic operation satisfies −VTH < vcond < 0 and 0 < vset < VTH with the constraint
vset − vcond > VTH. In this case moj is programmed from state 0 to state 1 if and
only if OR(mi1, . . . ,mik)= 1 and thus the resulting state of moj is

moj := OR(mi1, . . . ,mik,moj ). (6)

2.4 Remarks

Changing the polarities, or rotating by 180 degrees, the memristors in Fig. 3 does
not yield any new stateful logic operations. Indeed, the result of such a change is the
same as if the voltage polarities of vcond and vset were reversed. For example, if the
polarities of all memristors are reversed, the voltages specified above for material
implication yield the stateful AND operation.

For the logical synthesis methods discussed in the following section it is useful
to note that {→,0} and {�,1} are functionally complete sets of Boolean operators,
meaning that if memristors can be programmed to state 0 or 1 at will, both im-
plication and converse nonimplication are alone sufficient to compute any Boolean
function. This is not the case for stateful AND or stateful OR, which also require
the negation operation to be functionally complete. Negation can be achieved for
example by performing the material implication to 0, or converse nonimplication to
1, as ¬p ≡ p → 0 and ¬p ≡ p � 1.
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Fig. 6 Complementary
representation of input
variables. This figure is
adapted from [11]

3 Synthesis of Boolean Functions

In this section we consider synthesis of Boolean functions using memristive state-
ful logic operations. By synthesis we mean determining a fixed sequence of stateful
logic operations that yields the correct output for the target Boolean function for all
values of input variables. In addition to the presented stateful logic operations, we
assume that memristors can be programmed to state 0 or state 1 and that program-
ming to a given state can be performed on any number of memristors in parallel.

3.1 Definitions

Let us consider the type of circuit topology depicted in Fig. 3. To synthesize a
Boolean function f : {0,1}N → {0,1}, we divide the memristors in the circuit to
three sets which we denote as input memristors pi , auxiliary memristors ai , and
result memristors ri . The states of the input memristors correspond to the values of
the variables of the function and are not allowed to change during computation. The
auxiliary memristors are used for the computation and for storing intermediate re-
sults. After the sequence of stateful operations used for synthesizing the function is
performed, the result memristors should hold the value of the function as their states.
Note that auxiliary and result memristors correspond to the output memristors dis-
cussed in the previous section. Either one or two result memristors are required per
function, depending on whether or not a complementary representation of variables
is used.

In complementary representation two memristors are reserved for each input
and output variable: one which holds the value of the variable and another which
holds its negation. We denote the memristors corresponding to the negated vari-
ables by ¬pi , resulting in the input memristor set {p1,¬p1, . . . , pN,¬pN }, as
is illustrated in Fig. 6. The set of result memristors becomes {r1, r2}, and when
computing Boolean function f , the result memristors will be programmed to
r1 = f (p1 . . . , pN) and r2 = ¬r1. Complementary representation allows for a di-
rect way to synthesize a Boolean function based on logical normal forms, as will be
seen in the following.
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To simplify the notations in this chapter, the symbol pi is used to denote an input
memristor and its state, and a Boolean input variable and its value. Similarly ai and
ri denote auxiliary and result memristors, and their states.

3.2 Synthesis Using the Conjunctive Normal Form

It is well known that any Boolean function f : {0,1}N → {0,1} can be written in
the conjunctive normal form

f ≡ AND(o1, . . . , om), (7)

where each oi is an OR-clause containing input variables or their negations.
The most straightforward way of synthesizing f is by using complementary rep-

resentation and the stateful AND operation, by performing the following sequence
of stateful operations:

r1, r2 := 1

r1 := AND(o1, r1)

...

r1 := AND(om, r1)

r2 := r1 � r2.

In the first step, r1 and r2 are simultaneously programmed to conducting state. In
the subsequent m steps, the stateful AND operation given in (5) is used to aggregate
the OR-clauses oi to r1. Note that complementary representation is here necessary
to ensure direct availability of the OR-clauses, which may contain also negated vari-
ables. The final step above is necessary to maintain complementary representation.

It is also possible to synthesize f based on the conjunctive normal form by using
the stateful material implication operation (3). In this case, we write f in the form

f ≡ NAND(o1, . . . , oh), (8)

where oi are again OR-clauses. Note however that these clauses are not the same as
those contained in the conjunctive normal form (7) for f , as the form (8) is obtained
from the conjunctive normal form of ¬f . Now f is synthesized as

r1, r2 := 0

r1 := o1 → r1

...

r1 := oh → r1
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r2 := r1 → r2.

In this case r1 and r2 are initialized to nonconducting state, the following h steps
aggregate the OR-clauses to the NAND expression maintained in r1, and finally ¬r1

is stored to r2.
Since there are 2N values in the truth table of f , the conjunctive normal form

of f or the conjunctive normal form of ¬f contains at most 2N−1 OR-clauses.
In complementary representation it is immaterial whether f or ¬f is synthesized,
since both are represented in the output memristors. Therefore with both of the
two synthesis methods discussed above, computation of f requires at most 2N−1 +
2 operations. Naturally, standard optimization methods for the conjunctive normal
form can be used to shorten the sequence of stateful operations needed to synthesize
a given function.

A third way of synthesizing f based on the conjunctive normal form uses the
stateful converse nonimplication operation (4). In this case it is necessary to use aux-
iliary memristors ai , or to perform several computation steps for each OR-clause in
the conjunctive normal form, as is demonstrated in the following. When m auxiliary
memristors are used, the computation of f —given again in the conjunctive normal
form (7)—proceeds as follows:

r1, r2, a1, . . . , am := 1

a1 := o1 � a1

...

am := om � am

r1 := OR(a1, . . . , am) � r1

r2 := r1 � r2.

Without auxiliary memristors the computational sequence is

r1, r2 := 1

r2 := o1 � r2, r1 := r2 � r1, r2 := 1

...

r2 := om � r2, r1 := r2 � r1, r2 := 1

r2 := r1 � r2.

As can be seen, in this case each OR-clause oi requires two converse nonimplication
operations and one unconditional programming of memristor r2 to state 1.
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3.3 Synthesis Without Complementary Representation of Variables

As described above, in complementary representation each Boolean variable re-
quires two memristors. In practice such a redundant representation may be unde-
sired, and therefore it is important to consider synthesis methods which use only a
single memristor per Boolean variable. A trivial method is to use a set of auxiliary
memristors, wherein the negated values of the input variables are stored before ap-
plying one of the above described synthesis methods. This strategy might be useful
when the number of memristors per horizontal wire is large, but only a small subset
of them is used in any given Boolean function.

Another solution, which uses only one auxiliary memristor and one result mem-
ristor, is obtained using the recursive form presented in [10]. This form contains
only OR-clauses of positive, or non-negated, Boolean variables. More precisely, it
can be shown that any Boolean function f can be written in the form

f ≡ (σ1 →
(
σ2 → . . .

(
σm−1 → σαm

m

)αm−1 . . .
)α2
)α1, (9)

where αi ∈ {0,1} for all i = 1, . . . ,m, the notation p1 = p, p0 = ¬p is assumed,
and the terms σi are OR–clauses of positive input variables of the form

σi = OR(pi1,pi2, . . . , pik).

The number of OR-clauses m in the above is at most 2N , where N is the num-
ber of input variables of f . Details of synthesizing a given Boolean function using
this recursive form and optimization methods for reducing m are presented in [17].
Notice that (9) can be realized using only stateful material implication operations,
since negation is obtained as p → 0 ≡¬p.

3.4 Remarks

Originally, synthesis methods for stateful logic were proposed only for single-input
single-output material implication operation, for example in [1, 9]. These methods
are inefficient and require large numbers of steps to synthesize a given function. For
example, in [9] the three-input parity function was synthesized by a sequence of
approximately 50 stateful logic and unconditional programming operations. In con-
trast to this, by using the conjunctive normal form method described above for ma-
terial implication, the same function was synthesized using only five stateful logic
operations in [11].

As an example of memristive stateful logic, let us consider a circuit similar to the
one depicted in Fig. 3, with 9 memristors p1, p2, r1, r2, . . ., r7. We assume that the
result memristors ri are all initially in state 0. Our goal is to perform a sequence of
stateful logic steps after which the result memristors’ states equal

r1 =¬p1, r2 =¬p2, r3 = XOR(p1,p2), r4 =¬r3,
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r5 = AND(p1,p2), r6 =¬r5, r7 = NOR(p1,p2).

These functions are synthesized according to (8) by performing the following six
material implication operations:

r1 := p1 → r1,

r2 := p2 → r2,

r4, r6, r7 := OR(p1,p2)→ r4, r6, r7

r3, r6 := OR(p1, r2)→ r3, r6

r3, r6 := OR(p2, r1)→ r3, r6

r4, r5 := OR(r1, r2)→ r4, r5.

In the sequence above, the first two steps simply copy the negations of p1 and p2 to
r1 and r2, respectively, and the final four steps are generalized implication operations
with multiple inputs and multiple outputs used to synthesize the functions related
to ri , where i = 3, . . . ,7. Notice that in total seven functions are synthesized in six
steps, as the synthesis is performed on multiple functions simultaneously.

4 Stateful Logic Within a Memristive Crossbar

A possible application of memristive stateful logic is to realize computation within
memristive random-access memory. A possible circuit topology for such a memory
is the memristive crossbar, which consists of perpendicular nanowires, where mem-
ristors are located at each crossing of the wires. In a CMOL-type memory architec-
ture [14] the nanowires are driven by CMOS cells located beneath the crossbar. It
has been proposed for example in [1, 4, 16]—and more thoroughly analyzed in the
case of a crossbar consisting of rectifying memristors in [12]—that this topology
allows also the realization of vectorized stateful logic operations when the CMOS
cells are modified appropriately.

An example of a memristive crossbar is depicted in Fig. 7. A potential problem
with such a crossbar structure is that undesired sneak current paths may form when
the drivers of some rows or columns are set to high impedance state HZ. As men-
tioned in Sect. 2.1, this state is used to select which memristors do not participate
in a given stateful operation. Since memristive stateful logic operations are based
essentially on measuring the current flowing through the input memristors, the cor-
rect operation of stateful logic is disturbed by sneak current paths. In the following,
memristors located in the crossings of a vertical wire and the horizontal wires are
said to form a column. Likewise, a row of memristors refers to memristors located
between a horizontal wire and the vertical wires in a crossbar.
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Fig. 7 Parallel stateful memristor logic within a crossbar. The depicted configuration performs a
stateful logic operation in parallel on all rows over the second and third memristors from the left.
This may cause an undesired current path, indicated here by a dotted line, through the wires whose
drivers are set to high impedance state. Note that drivers of the horizontal wires must be set to high
impedance state to allow stateful operations to be performed row-wise

4.1 Preventing Sneak Current Paths

There are several ways of preventing sneak current paths from forming in a mem-
ristive crossbar, such as driving all wires in the crossbar, that is, not allowing high
impedance states in drivers [13], and the use of rectifying memristors [3]. In the
following we consider these solutions and discuss how they can be used to facilitate
stateful logic operations within a crossbar.

4.1.1 Non-rectifying Memristors

Let us consider a memristive crossbar consisting of non-rectifying memristors. We
first concentrate on the realization of a column-wise stateful operation, that is, a
bitwise vector operation between columns of memristors in this crossbar. For this,
vertical wires participating in the stateful logic operation are driven with voltages
vcond and vset. The goal is to have the stateful operation be performed in parallel on
all the rows participating in this operation, and to leave the states of the memristors
on non-participating rows unchanged.

To prevent sneak current paths from forming, an advanced keeper circuit such
as the one depicted in Fig. 8 can be used. As described in Sect. 2.2, the stateful
logic operation is divided into two phases. In the first phase, signals READ and
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Fig. 8 An active keeper
subcircuit that can be used for
crossbars with non-rectifying
memristors, replacing the
series resistor R0. To reduce
CMOS area overhead, it may
be beneficial to add switches
to this circuitry so that a
single keeper can be shared
by a horizontal and a vertical
wire

PROG are set high and low respectively. The currents flowing through the input
memristors are measured by the inverting operational amplifier and the comparator,
while the voltage on the horizontal wire is kept at virtual ground. The incoming
currents are compared to a threshold voltage Vth in order to determine if any of
the input memristors are in state 1. As with the keeper depicted in Fig. 5, the input
memristors can be driven with a positive voltage |vcond|, regardless of the chosen
stateful logic operation. The result of the current measurement is written to the D-
flip-flop. Since all the horizontal wires are kept at ground potential, the vertical
wires not participating in this phase can also be driven to ground, thus preventing
any sneak currents from forming.

In the second phase READ and PROG are set low and high respectively, and the
horizontal wires participating in the stateful operation are driven either to ground
or to vcond depending on the result of the first phase. If a horizontal wire does not
participate in this operation, it should be driven unconditionally either to ground or
to vcond, depending on the stateful logic operation, in order to prevent the memristors
connected to it from being programmed. For simplicity, the logic required to achieve
this is omitted from the circuit depicted in Fig. 8. The wires corresponding to the
output memristor columns are driven with vset.

Row-wise operations are performed similarly, the only difference being that the
keeper circuits should be connected to vertical wires, while horizontal wires are
driven to vcond and vset, or to ground in the case of non-participating wires. One
keeper circuit is sufficient to control a pair of horizontal and vertical wires, since a
stateful logic operation is performed either on a row or on a column of memristors.
The main drawback of using the considered keeper circuit is the increased CMOS
area overhead due to the required analog circuitry.

4.1.2 Rectifying Memristors

A more area-efficient solution to avoid undesired sneak current paths is to use rec-
tifying memristors to allow currents to flow only in one direction in the memristive
crossbar. As mentioned in Sect. 2.1, the drawback with this scheme is that only
positive (negative) conditional voltages can be used for column-wise (row-wise)
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operations. This makes it impossible to realize the stateful AND and OR operations
without using a keeper circuit such as the one depicted in Fig. 5. Notice that this
keeper circuit is comprised of digital components, and therefore consumes signifi-
cantly less CMOS area than the analog keeper circuit depicted in Fig. 8. However,
as noted in Sect. 2.3.2, if only the converse nonimplication operation is used, then
no keeper circuit is required.

Using rectifying memristors, column-wise operations can be performed as de-
scribed in Sect. 2.1. As noted in [12], in row-wise operations it is necessary to
reverse the polarities of the conditional and programming voltages, assuming that
the ground voltage equals 0 V. When rectifying memristors are used, the input wires
not participating in a stateful operation can be left floating, while the not partici-
pating output wires should be driven unconditionally either to vcond or to ground,
depending on the chosen stateful logic operation.

4.2 Example on Stateful Logic Within a Memristive Crossbar

In [12] it was demonstrated that when using rectifying memristors and general-
ized implication and converse nonimplication operations, any Boolean function
f : {0,1}N → {0,1} can be synthesized within a 2N × N memristive crossbar as
a sequence of approximately 2N stateful operations. This is achieved by a compu-
tation that emulates the operation of a programmable logic array. In the following
we show how the addition of two N -bit binary numbers can be performed using
generalized stateful logic within a memristive crossbar.

Suppose that the binary numbers to be added together are represented by the
states of the memristors on the first two rows of the crossbar, and that initially all
other memristors are in state 0. For example, when adding together numbers 101
and 1110, the memristors in the crossbar should be initialized according to the first
array in (10).

p1 0 0 1 0 1

p2 0 1 1 1 0

r1 0 0 0 0 0

r2 0 0 0 0 0

r3 0 0 0 0 0

r4 0 0 0 0 0

r5 0 0 0 0 0

r6 0 0 0 0 0

r7 0 0 0 0 0

r8 0 0 0 0 0

6!→

p1 0 0 1 0 1

p2 0 1 1 1 0

r1 =¬p1 1 1 0 1 0

r2 =¬p2 1 0 0 0 1

r3 = XOR(p1,p2) 0 1 0 1 1

r4 =¬r3 1 0 1 0 0

r5 = AND(p1,p2) 0 0 1 0 0

r6 =¬r5 1 1 0 1 1

r7 = NOR(p1,p2) 1 0 0 0 0

r8 0 0 0 0 0

10!→

p1 0 0 1 0 1

p2 0 1 1 1 0

r1 1 1 0 1 0

r2 1 0 0 0 1

r3 0 1 0 1 1

r4 1 0 1 0 0

r5 0 0 1 0 0

r6 1 1 0 1 1

r7 = ci 1 0 0 1 1

r8 0 0 0 0 0

(10)

Let us then perform the six implication operations described in the example of
Sect. 2.4 to the rows r1 to r7. As a result, the memristors’ states should correspond
to the second array in (10).
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Next, the negation of the carry bits corresponding to the sum of rows p1 and p2
will be computed on the row r7. For this we note that the negation of the ith carry
bit ci satisfies

ci = (p1 ∧ p2)i ∧
(
ci−1 ∨ (p1 ∨ p2)i

)
, (11)

where ∨ and ∧ denote the logical OR and AND operations, respectively, and x

denotes the negation of x. Since c0 = 0, it follows that c1 = (p1 ∧ p2). The state of
the last memristor on row r6 should be copied as the state of the last memristor on
row r7; this can be achieved by resetting the memristor on row r7 and performing
the stateful OR operation. In this example the first negated carry bit equals c1 = 1.

Using (11), the second negated carry bit is then computed as a sequence of state-
ful logic operations. Assuming that the stateful OR is available, this is achieved
simply by an OR operation between the last and second-to-last memristor of row
r7 followed by the converse nonimplication operation between the second-to-last
memristors on rows r5 and r7. Continuing this process iteratively all the negated
carry bits can be computed; the resulting state of the memristive crossbar used in
this example is given in the third array of (10). In total 10 stateful operations are
required to reach this state from the state represented in the second array of (10).

However, the carry bits must be shifted by one step to the left so that they can be
used in the binary addition. This is why their negations were computed; to shift the
carry bits one must perform a sequence of resetting the memristors’ states to 0 and
then performing the implication operation, which negates the states. For example,
to shift the value of the second memristor on row r7 one step to the left, one first
resets the first memristor on row r7 to state 0, and then performs the implication op-
eration from the second memristor to the first one. This process is iterated for all the
memristors on row r7, and takes 9 operations to reach the configuration represented
in the first array of (12).

The final steps of the computation consist of copying the negation of row r7 to r8
in a single material implication operation, of resetting the row r1, and of computing
the XOR of rows r3 and r7 using complementary representation. In the end, the sum
of p1 and p2 is stored as the states of memristors on row r1. These steps are depicted
in (12).

9!→

p1 0 0 1 0 1

p2 0 1 1 1 0

r1 1 1 0 1 0

r2 1 0 0 0 1

r3 0 1 0 1 1

r4 1 0 1 0 0

r5 0 0 1 0 0

r6 1 1 0 1 1

r7 = ci−1 1 1 0 0 0

r8 0 0 0 0 0

2!→

p1 0 0 1 0 1

p2 0 1 1 1 0

r1 0 0 0 0 0

r2 1 0 0 0 1

r3 0 1 0 1 1

r4 1 0 1 0 0

r5 0 0 1 0 0

r6 1 1 0 1 1

r7 = ci−1 1 1 0 0 0

r8 =¬r7 0 0 1 1 1

2!→

p1 0 0 1 0 1

p2 0 1 1 1 0

r1 = p1 + p2 1 0 0 1 1

r2 1 0 0 0 1

r3 0 1 0 1 1

r4 1 0 1 0 0

r5 0 0 1 0 0

r6 1 1 0 1 1

r7 = ci−1 1 1 0 0 0

r8 =¬r7 0 0 1 1 1
(12)
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5 Concluding Remarks

The previous example is representative of the advantages and disadvantages of
memristive stateful logic. On one hand, bitwise vector operations are readily avail-
able and can be performed simultaneously on many rows or columns of memristors
in the crossbar. On the other hand, the time complexity of a simple shift operation
is linear in the number of memristors on a given row.

Many vector operations would become easier and faster to implement if the wires
in the crossbar could be divided at will into independent segments, on which state-
ful operations could be performed simultaneously. For example, the left shift of an
arbitrarily long vector could be performed as a sequence of eight converse non-
implication operations and a reset operation as follows. Suppose that part of the
memristive crossbar is configured as in the first array of (13).

· · · p1 p2 p3 p4 p5 · · ·
· · · 1 1 1 1 1 · · ·
· · · 1 1 1 1 1 · · ·
· · · 1 1 1 1 1 · · ·

2!→
· · · p1 p2 p3 p4 p5 · · ·
· · · ¬p1 1 ¬p3 1 ¬p5 · · ·
· · · 1 ¬p2 1 ¬p4 1 · · ·
· · · 1 1 1 1 1 · · ·

!→
· · · p1 p2 p3 p4 p5 · · ·
· · · ¬p1 p3 ¬p3 p5 ¬p5 · · ·
· · · 1 ¬p2 1 ¬p4 1 · · ·
· · · 1 1 1 1 1 · · ·

!→
· · · p1 p2 p3 p4 p5 · · ·
· · · ¬p1 p3 ¬p3 p5 ¬p5 · · ·
· · · p2 ¬p2 p4 ¬p4 p6 · · ·
· · · 1 1 1 1 1 · · ·

2!→
· · · p1 p2 p3 p4 p5 · · ·
· · · ¬p1 p3 ¬p3 p5 ¬p5 · · ·
· · · p2 ¬p2 p4 ¬p4 p6 · · ·
· · · ¬p2 ¬p3 ¬p4 ¬p5 ¬p6 · · ·

2!→
· · · p2 p3 p4 p5 p6 · · ·
· · · ¬p1 p3 ¬p3 p5 ¬p5 · · ·
· · · p2 ¬p2 p4 ¬p4 p6 · · ·
· · · ¬p2 ¬p3 ¬p4 ¬p5 ¬p6 · · ·

(13)

First, two converse nonimplication operations are used to copy every second negated
value on row 1 to rows 2 and 3. In the next two steps the array is vertically divided
into segments of two memristors, and within each segment a converse nonimplica-
tion operation is performed to the left. This division is depicted in (13) by vertical
lines. During this division it is important to be able to choose which rows partic-
ipate in the converse nonimplication operation, so that the shift operation is only
performed on desired rows.

After the operations requiring division of the array, two converse nonimplication
operations are used to copy the negated and shifted variables onto row 4. Finally, all
memristors on row 1 are set to state 1, and a converse nonimplication operation is
performed from row 4 to row 1. As a result, row 1 has been shifted by one step to
the left.

The above demonstrates the benefit of being able to divide the wires of a memris-
tive crossbar into independent segments. In [4] such division is achieved by adding
a CMOS switch between every crossing of horizontal and vertical wires, but such
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a solution unavoidably decreases the available density of the crossbar. A better so-
lution in terms of density might be to use nanowire FETs such as those described
in [2]. To preserve as much density as possible, no keeper circuits should be used for
the individual segments. Instead, the crossbar should contain rectifying memristors,
and converse nonimplication should be used as the stateful operation.

Acknowledgements This work was funded by the Academy of Finland (253596, 258831,
264914).
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Reaction-Diffusion Media with Excitable
Oregonators Coupled by Memristors

Tetsuya Asai

Abstract This chapter presents dynamic behaviors of a new reaction-diffusion-
type excitable medium, where the diffusion coefficient is represented by memris-
tive dynamics. The medium consists of an array of excitable Oregonators, and each
Oregonator is locally coupled with other Oregonators via memristors, which were
claimed to be the fourth circuit element exhibiting a relationship between flux φ

and charge q. By using the medium, this chapter exhibits that (i) the memristor con-
ductances are modulated by the excitable waves and controlled the velocity of the
waves, depending on the memristor’s polarity, and (ii) nonuniform spatial patterns
are generated depending on the initial condition of Oregonator’s state, memristor
polarity and stimulation.

1 Introduction

Semiconductor reaction-diffusion (RD) large-scale integrated circuits (LSIs) imple-
menting RD dynamics have been proposed in the literature [1]. These LSIs, so-
called reaction-diffusion chips, were mostly designed by digital, analog, or mixed-
signal complementary-metal-oxide-semiconductor (CMOS) circuits of cellular neu-
ral networks (CNNs) or cellular automata (CA). Electrical cell circuits, which mimic
reactions of chemical substances, were designed to implement several CA and CNN
models of RD systems [2–6], as well as fundamental RD equations [7–10]. Each cell
is arranged on a two-dimensional (2-D) square or a hexagonal grid and is connected
to adjacent cells through coupling devices that mimic 2-D spatial diffusion of chem-
ical substances, and indeed transmit the cell’s state to its neighboring cells, as in
conventional CAs. For instance, an analog-digital hybrid RD chip [3] was designed
for emulating a conventional CA model for Belousov-Zhabotinsky (BZ) reactions
[11]. A full-digital RD processor [4] was also designed on the basis of a multiple-
valued CA model, called excitable lattices [12]. An analog cell circuit was also
designed to be equivalent to spatial-discrete Turing RD systems [8]. A full-analog
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RD chip that emulates BZ reactions has also been designed and fabricated [7]. Fur-
thermore, blueprints of non-CMOS RD chips have been designed, for example, a
single-electron RD device [13]. The author and the colleagues previously proposed
an RD device based on minority-carrier transport in semiconductor devices [14].
The point of the idea was to simulate chemical diffusion with minority-carrier dif-
fusion in semiconductors and autocatalytic chemical reactions with carrier multi-
plication in p–n–p–n negative resistance diodes. Using CMOS and non-CMOS RD
circuits enables us to simulate a variety of autocatalytic reactions and open up a
variety of application fields for RD devices.

In this chapter, a new RD-based excitable medium is presented, keeping in mind
its hardware implementation. Recently, the so-called “memristors,” originally in-
troduced by Leon Chua in 1971 [15] and claimed to be the fourth circuit element
exhibiting a relationship between flux φ and charge q , have again been spotlighted
since Strukov et al. presented equivalent physical examples [16]. Although the pre-
sented device was a bipolar resistive RAM that did not “directly” exhibit a relation-
ship between φ and q , the device behaved as a non-volatile resistor whose resistance
was continuously controlled by the amount of the charge flow (current). Here, the
following question arises: “What happens if one replaces resistors for diffusion in
analog RD LSIs with memristors?” This is the primary purpose of the investiga-
tion presented in this chapter. Through extensive numerical simulations, this chap-
ter exhibits that (i) the memristor’s conductances are modulated by excitable waves
propagating on the memristor, depending on the memristor’s polarity; (ii) velocity
of the excitable wave propagation is thus modulated by the change of memristor
conductance, and the degree of the modulation is inversely proportional to the time
constant of the memristor’s model, and (iii) nonuniform spatial patterns are gener-
ated depending on the initial condition of Oregonator’s state, memristor polarity and
stimulation.

In the following sections, an excitable RD model with memristors are introduced,
and the spatiotemporal behaviors of 1-D and 2-D RD models are shown through
extensive numerical simulations.

2 The Model

A general model of memristors is explained in terms of memristance M(q) [15]. In
this chapter, a simplified (and very comprehensive) memristor model is used. The
dynamics are represented by

i = g(w)v,
dw

dt
= i (1)

where v represents the voltage across the memristor; i, the current of the memristor;
w, the nominal internal state of the memristor and corresponds to the charge flow
of the memristor, and g(w), the monotonically increasing function with increasing
w [16]. This model implies that positive (or negative) i (current flow) increases (or
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Fig. 1 Memristor symbols
and polarity definition where
Δg represents temporal
differences of memristor’s
conductance

decreases) w, which results in an increase (or decrease) in the memristor conduc-
tance g(w). Figure 1 illustrates these aspects of memristors, where Δg corresponds
to dw/dt and hence dg(w)/dt . In the followings, we integrate these dynamics into
a general RD model.

A general 1-D reaction-diffusion system is described by

∂u(x)

∂t
= gu∇2u(x)+ fu

[
u(x), v(x)

]

∂v(x)

∂t
= gv∇2v(x)+ fv

[
u(x), v(x)

]
(2)

where u(x) and v(x) denote the concentrations of two different chemical species at
spatial position x; gu,v , the diffusion coefficients; and fu,v(·), the reaction model.
Here, we employ Oregonators [17] for the reaction model; i.e.,

fu

[
u(x), v(x)

] = u(x)
[
1− u(x)

]− av(x)
u(x)− b

b+ u(x)

fv

[
u(x), v(x)

] = u(x)− v(x)

where a and b denote the reaction parameters. Depending on the reaction param-
eters, the Oregonator exhibits limit-cycle oscillations and excitatory behaviors. In
this chapter, we consider the excitable properties only (gv = 0 only), which means
the Oregonator is stable as long as an external stimulus is not applied. In the model,
three types of reaction states are defined at one Oregonator, namely, inactive, ac-
tive, and refractory states. When the Oregonator is inactive, it is easily activated by
an external stimulus, following which it changes to the refractory state. During the
refractory state, the Oregonator cannot be activated even if an external stimulus is
applied. Although gu is constant in general RD models, one may be more interested
in a system where gu is locally modified by the potential gradient of u(x).

When u(x) and v(x) are represented by voltages on the RD hardware, the gra-
dient (diffusion terms in the RD model) is represented by linear resistors [7]. For
example, if one discretizes Eq. (2) spatially as

dui

dt
= gu · (ui−1 − ui)+ gu · (ui+1 − ui)

Δx2
+ fu(·)

where i is the spatial index, and Δx the discrete step in space, terms gu · (ui−1 −ui)

and gu · (ui+1 − ui) represent current flowing into the ith node from the (i − 1)th
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Fig. 2 Electrical representation of RD system whose diffusive resistors are replaced with mem-
ristors. Memristor’s polarity is defined by coefficient η1 in Eq. (4); e.g., polarity coefficient of
memristor between ui−1 and ui is set at η1 = 1 in this figure

and (i + 1)th nodes via two resistors whose conductance is represented by gu. The
spatial Laplacian ∇2 in Eq. (2) can be approximated as

∇2u(x)= ui−1 + ui+1 − 2ui

Δx2
.

Here, let us introduce the memristor model described by Eq. (1); in this model, the
resistors are replaced with memristors. The resulting point dynamics are given as

dui

dt
= gu(w

l
i)(ui−1 − ui)+ gu(w

r
i )(ui+1 − ui)

Δx2
+ fu(·)

dvi

dt
= fv(·)

where gu(·) denotes the monotonically increasing function defined by

gu

(
w

l,r
i

)= gmin + (gmax − gmin) · 1

1+ e−βw
l,r
i

(3)

where β denotes the gain; gmin and gmax denote the minimum and maximum cou-
pling strengths, respectively, and w

l,r
i denote the variables for determining the cou-

pling strength of the ith Oregonator (l: leftward, r : rightward). Finally, the following
memristive dynamics for w

l,r
i are introduced as

τ
dw

l,r
i

dt
= gu

(
w

l,r
i

) · η1 · (ui−1,i+1 − ui) (4)

where the right-hand side represents the current of the memristors in Eq. (1), and
η1 denotes the polarity coefficient (η1 = +1 : wl

i , η1 = −1 : wr
i ). Now one may

notice that the model above corresponds to an electrical RD system consisting of
Oregonators whose diffusive resistors are replaced with memristors (Fig. 2).
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Fig. 3 Dynamics of
memristor’s conductances
when two Oregonators are
coupled by memristors with
η1 = 1 (a) and η1 =−1 (b);
(c) increased memristor’s
conductance as time with
setups of (a) η1 = 1;
(d) dynamics of u1 in
(b) where u1 is initially
activated by u0, however,
since memristor’s
conductance is decreased as
time with this setups (b)
(η1 =−1), u1 becomes
inactive as time

3 Dynamic Behaviors of Memristor RD Model

This section exhibits dynamic behaviors of memristor RD model. Memristor’s
common parameters in Eq. (3) and their values used in this section are: β = 1,
gmin = 10−4, and gmax = 10−1.

3.1 1-D Reaction-Diffusion Medium with Memristors

First, let us see behaviors of a basic model shown in Fig. 3(a). One side of the
boundary was stimulated by a periodic pulse sequence, and the conductance of the
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Fig. 4 Spatio-temporal behaviors of 1D RD model consisting of 100 Oregonators where each
Oregonator was coupled by resistors (a) and memristors (b). Without memristive effects, excited
waves emerged from both side collided at center (a), whereas waves collided at non center position
when memristive couplings were introduced (b)

memristor was measured. The initial conductance of the memristor was set at zero.
Figure 3(c) shows the simulated results. The conductance was increased consider-
ably during the onset of the input pulse, which resulted in a small increase in the
conductance. One may roughly estimate Δg per single pulse as 0.17 mS/pulse. Fig-
ure 3(b) shows the opposite simulation setup. In this simulation, the polarity of the
memristor was inverted; therefore, one can expect the conductance to be decreased
by the input pulses. The initial conductance was chosen such that stimulations to u0
could cause chain excitation on u1 via the memristor. Figure 3(d) shows the tem-
poral responses of u1. The stimulus was initially applied (u1 was excited), but was
terminated because of the decrease in the conductance. It should be noted that in
both models of Figs. 3(a) and (b), the boundary condition is Neumann boundary
condition.

Figure 4(a) shows the simulation results of a 1-D medium with 100 Oregonators
without memristive effects. Excitable wave propagation on the medium is apparent.
Both boundaries were simultaneously stimulated, and the waves collided at the cen-
ter position (following which they disappeared). When the memristive effects were
introduced, given that the coupling strength gu(w

l,r
i ) is modified by the direction

of wave propagation, the results were different from those shown in Fig. 4(a). Fig-
ure 4(b) shows the simulation results of a 1-D medium consisting of 100 Oregona-
tors with memristive effects, where the velocity of each excitable wave was different
depending on the direction of wave propagation, which resulted in wave collision at
a position other than the center (following which the waves disappeared). Excitable
waves moving rightward (in the figure) increased w

l,r
i of the memristors under the

wave, whereas the leftward waves decreased w
l,r
i under the wave, as a result of the

polarity of memristors shown in Fig. 1.
A very interesting nonlinear behavior, emergence of stationary spiral patterns,

has been found on the 1-D memristive medium. In the simulations, 100 Oregonators
were connected by memristors with a cyclic boundary condition. All the memris-
tors had the same polarity. After stimulating one node (the 58th node in simulation
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Fig. 5 Spatial pattern
formation on 1-D excitable
media with memristors under
cyclic boundary condition

results shown in Fig. 5), an excitable wave propagated on the medium in a cyclic-
looping manner. In the initial stimulation, wave propagation was controlled to be
unidirectional by setting appropriate refractory states of the Oregonators. The initial
conductance of the memristors was set at gmin. Figure 5 shows the time courses
of all the nodes (ui ) where the magnitudes are represented by gray-scale tones.
Spatial (nonuniform) patterns developed over time. Surprisingly, the developed pat-
terns were periodic, like Turing patterns, and they reached equilibrium at around
2× 104 s.

3.2 2-D Reaction-Diffusion Medium with Memristors

Now let us see dynamic behaviors of 2-D memristive medium. In the following
simulations, a 2-D memristive medium with 100 × 100 Oregonators was introduced
with a cyclic boundary condition.

For the 2-D RD medium, an additional memristive dynamics for w
up,d
i for up-

ward and downward connections are introduced:

τ
dw

up,d
i

dt
= gu

(
w

up,d
i

) · η2 · (ui−1,i+1 − ui), (5)

where w
up,d
i denotes the variables for determining the coupling strength of the ith

Oregonator (up: upward, d: downward); and η2, the polarity coefficient (η2 =+1 :
w

up
i , η2 =−1 :wd

i ). In the following simulations, one may assume both the polarity
coefficients η1 in Eq. (4) and η2 to be -1.

The initial state of all the Oregonators was set to be inactive state. After stim-
ulating the center node, the excitable waves propagated outwards, resulting in the
generation of patterns of ocean surface waves. Figure 6 shows the time courses of all
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Fig. 6 Ocean-surface-wave
patterns on 2-D media with
memristors. Although the
center was stimulated, wave
propagated asymmetrically
due to memristive effect with
same polarity over the
medium

the nodes (ui,j ) (ui,j = 0: white, ui,j = 1: black). The velocity of waves propagation
was deferred depending on the direction of the wave propagation. According to the
polarity of the memristors (η1, η2 =−1), the conductance of the memristors shown
on the right-hand side and below would increase whereas the conductance of those
shown on the left-hand side or above would decrease; therefore, one can expect the
waves to collide at the left-hand side and upward. Figure 7 shows the conductance
of all the nodes, where the magnitudes are represented by gray-scale tones. These
results were plotted when the conductance condition was stable given that the con-
ductance changes considerably when the wave is propagating. Even after the waves
propagated 10 times, the change in conductance was still small, after the waves
propagated over that 20 times at the position where the waves generated at the be-
ginning and collided, the memristor conductance changed considerably (Fig. 7(a)).
Figure 7(b) shows the conductance of all the nodes over a sufficient time period.

Then, instead of extraneous stimulus, the initial stimulation was changed by con-
trolling the states of the Oregonators. In Fig. 8, the values of ui,j are represented
on a gray scale (ui,j = 0: white, ui,j = 1: black). Several Oregonators next to the
inactive Oregonators were initially set in a refractory state (down side of the black
bar in the top-left snapshot in Fig. 8). The inactive Oregonators next to the black
bar were suppressed by the adjacent Oregonators in the refractory state (Oregona-
tors in black bar). When the inactive Oregonators were in an active or inactive state,
the wave rotated inwards, which resulted in the generation of clockwise and coun-
terclockwise spiral patterns. Depending on the direction of wave propagation, the
velocity of the rightward and downward waves was faster than that of the leftward
and upward waves, given that η1 in Eq. (4) and η2 = −1 in Eq. (5) are both -1.
Over time, the initial position of the generated waves, is moved to the lower right.
Figure 9 shows the conductance of all the nodes, where the magnitudes are repre-
sented by gray-scale tones. It should be noted that these results were plotted when
then conductance of some memristors was still unstable. Figure 9(b) shows the con-
ductance of all the nodes over a sufficient time period, indicating global history of
non-random movements of wave cores.

4 Conclusion

A new reaction-diffusion-based excitable medium that employed memristors to rep-
resent diffusion coupling was introduced. Through extensive numerical simulations,
the following things were demonstrated:
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Fig. 7 Conductance map of memristors for 2-D media for ocean-surface-wave patterns; (a) early
and (b) late maps

Fig. 8 Clockwise and
counterclockwise spiral
patterns on 2-D media with
memristors

• The memristor’s conductances are modulated by excitable waves propagating on
the memristor, depending on the memristor’s polarity.

• Velocity of the excitable wave propagation is thus modulated by the change of
memristor conductance, and the degree of the modulation is inversely propor-
tional to the time constant of the memristor’s model.
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Fig. 9 Conductance maps of memristors for 2-D media for clockwise and counterclockwise spiral
patterns; (a) early, and (b) late maps

• Nonuniform spatial patterns are generated depending on the initial condition of
Oregonator’s state, memristor polarity and stimulation.

Among the demonstrated behaviors, the nonuniform spatial-pattern generation
would be applied to investigation on detecting global motion of excitable waves
because the memristors accumulated the directions of waves on the media, which
resulted in detecting majority of wave directions at every spatial point. Therefore if
one has proper (non-memristive) RD media and a 2-D array of memristors without
any reaction circuit, and the point dynamics of the RD media are given to the mem-
ristor array, one may detect the global motions of the RD media. This application
is not limited in the analysis of RD systems, but the idea can be transferred to an-
alyzing much more complex systems like brain networks, social networks, and so
on.
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Autowaves in a Lattice of Memristor-Based Cells

Viet-Thanh Pham, Arturo Buscarino, Mattia Frasca, and Luigi Fortuna

Abstract In this Chapter, a Cellular Neural/Nonlinear Network (CNN) made of
memristor-based cells is introduced. The Memristive CNN consists of identical
cells, each containing a memristor, an inductor and a capacitor. We show how the
Memristive CNN is able to generate autowaves. We investigate then an FPGA-based
implementation of it and related experimental results confirming the capabilities of
the system to generate autowaves. This shows that memristor can be used not only
as a fundamental block of new chaotic circuits, but also to build complex systems
made of interacting memristor-based elementary cells. In such systems many com-
plex phenomena may take place like the autowave propagation discussed in this
Chapter and thus feasible hardware emulators allowing an experimental investiga-
tion of systems based on electrical analogues of memristor devices are required. In
this Chapter such a platform has been realized by using an FPGA-based approach
which also has the further advantage of being flexible and easily adaptable to the
study of other memristor-based complex systems.

1 Introduction

The discovery of a nanoscale memristor [1, 2] in 2008, that is, a device that was only
theoretically postulated in 1971 [3], paved the way to an almost totally new research
field, focused to the search of components whose behavior can be well represented
by memristors or memristive systems, to the design of new devices with memris-
tive characteristics and to the investigation of possible applications, ranging from
biological models [4] to adaptive filters [5] and programmable analog integrated
circuits [6, 7]. The potential applications of memristive systems lead to one series
of questions, to which this book tries to give an answer. How complex systems made
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by interacting memristor-based circuits can be constructed? What kind of complex
behavior do exhibit networks made of memristors? What can be the added value of
using this component in a network of many interacting units?

In this Chapter, we discuss a specific aspect of such questions, that is, the possi-
bility of observing autowave propagation phenomena in a lattice of memristive cells.
To do this, we use the formalism of Cellular Neural/Nonlinear Networks (CNNs),
and we study memristive CNNs (MCNNs), namely a CNN made of cells including
memristors. We show that in fact autowaves can be generated with the proposed
model. We discuss numerical results and experimental ones, based on an implemen-
tation of the model with FPGA.

The choice of using the CNN architecture as underlying formalism is motivated
by the generality of the CNN approach, which has been successfully demonstrated
as a paradigm for complexity, from image [8] and real-time signal processing [9] to
implementation of chaotic circuits [10, 11], emulation of partial differential equa-
tions, and investigation of complex phenomena in the space such as autowaves
[12, 13], spiral waves [14] or Turing patterns [15].

The classical CNN configuration includes a number of cells which consist of
linear capacitors, linear resistors, linear and nonlinear voltage-controlled current
sources and independent sources. In this Chapter we introduce the fourth element
in CNN cells and we refer to this architecture as MCNN. In previous works [16],
a cellular automaton and a discrete-time CNN (DTCNN) using nonlinear passive
memristors were designed: one noticeable feature of memristive DTCNN was the
multitasking, since memristive DTCNN were shown to be able to perform more
than one functions of the memristor cellular automaton at the same time. Another
work combining memristors and CNNs refers to the use of standard CNNs to imple-
ment memristive analogue circuits which then can be utilized as basic cells to realize
chaotic circuits [17]. In another work [18], the role of memristors in implementing
programmable connections of the cells was investigated.

The MCNN, discussed in this Chapter, follows a process of generalization which
starts from the invention/discovery of the memristor leading to a new paradigm in
which four components are at the basis of any electrical circuit, continues with the
use of this novel component to design new dynamical, eventually chaotic, circuits
and then goes in the direction of using these novel dynamical circuits based on
memristors to define new CNN architectures with general features.

This Chapter is organized as follows. We present the model of a continuous-
time CNN with memristive cells in Sect. 2. Section 3 illustrates through simula-
tion results that the MCNN generates waves satisfying the classical properties of
autowaves. Section 4 discusses the FPGA based implementation and experimental
results. Conclusions are given in the last Section.

2 MCNN Model

Although, at the beginning, CNNs were made of first-order cells [19], their general-
ization to arrays of more complex cells (the cell itself can be a complex circuit, e.g.,
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Fig. 1 The memristive cell

a Chua’s circuit) allowed difficult computational problems to be reformulated natu-
rally by CNN. These CNN arrays have been examined for the generation of Turing
patterns and various autowaves [20], where CNNs were used to approximate partial
differential equations, especially reaction-diffusion equations. In our case, we adopt
this formalism to explore complexity through memristive CNN. Therefore, we first
describe the memristive cell used and then the overall configuration of the MCNN
investigated.

In their work, Itoh and Chua introduced a gallery of different memristive os-
cillators [21]. Some of these oscillators are also able to display chaotic dynamics.
Among the oscillators introduced in [21], to construct the basic cell used in our in-
vestigation, we choose a simple one, the so-called memristor-based Chua oscillator
with a flux controlled memristor. The circuit of the cell is illustrated in Fig. 1, where
it can be observed that the cell includes three elements: an inductor, a capacitor, and
an active memristor. The active memristor consists of a negative conductance (−G)
and a passive memristor in parallel.

The dynamical equations of the cell are derived by applying Kirchhoff’s circuit
laws:

⎧
⎨

⎩

Cv̇ =−i −W(ϕ)v +Gv,

Li̇ = v,

ϕ̇ = v,

(1)

where v, i, and ϕ are voltage of the capacitor, current over inductor, and flux, re-
spectively. The memristor is characterized by the memductance

W(ϕ)= dq(ϕ)

dϕ
=
{

a |ϕ|< 1,

b |ϕ|> 1,
(2)

where q(ϕ) is a piecewise-linear function described by

q(ϕ)= bϕ + 0.5(a − b)
(|ϕ + 1| − |ϕ − 1|). (3)

By introducing the new variables x = v, y = i, z = ϕ and parameters α = 1/C,
β = 1/L, and γ =G, Eqs. (1) can be transformed into the following dimensionless
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Fig. 2 Waveform of signal x when the parameters are chosen as (a) α = 2, γ = 0.3 , β = 1,
a = 0.1, and b = 0.5, (b) α = 10, γ = 0.3 , β = 0.01, a = 0.1, and b = 0.5

equations:

⎧
⎨

⎩

ẋ = α(−y −W(z)x + γ x),

ẏ = βx,

ż= x,

(4)

When the parameters are chosen such as α = 2, γ = 0.3 , β = 1, a = 0.1, and
b = 0.5, Eqs. (4) exhibit the periodical signal shown in Fig. 2(a). However, in or-
der to get the autowaves, Eqs. (4) should be characterized by a slow-fast dynam-
ics [14], [22]. In the slow regime, the state of the limit cycle remains at a con-
stant value for a considerably long period of time τst . After this long period, the
state returns rapidly in a significantly short period of time τex , where τex � τst .
By choosing appropriate parameters e.g., α = 10, γ = 0.3, β = 0.01, a = 0.1, and
b = 0.5, our memristive cell satisfies this requirement. The waveform of the sig-
nal (variable x(t)) is shown in Fig. 2(b), in which the slow-fast dynamics is clearly
evident.

Starting from the basic cell in Eqs. (1), the MCNN is constructed as shown in
Fig. 3, by connecting each cell to four identical cells, called neighbours, through
four linear resistors. As the result, a reaction-diffusion process is emulated.

From Fig. 3 the dynamical (dimensionless) equations of the MCNN are derived:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi,j = α(−yi,j −W(zi,j )xi,j + γ xi,j )

+D(xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4xi,j ),

ẏi,j = βxi,j ,

żi,j = xi,j ,

(5)

where the diffusion coefficient D is constant.
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Fig. 3 Schematic illustration of the MCNN

3 Simulation Results

According to [12], the autowaves have some noticeable properties: the amplitude
and shape of the autowave do not change during propagation; autowaves do not
exhibit reflection or interference; annihilation occurs when two waves collides. In
this Section, simulation results are reported to illustrate the principal features of
autowaves in the MCNN.

A 50 × 50 MCNN with zero-flux boundary conditions has been simulated. Here,
the diffusion coefficient was fixed to D = 0.51. We used the following initial con-
ditions: xi,j (0)= yi,j (0)= zi,j (0)= 0, where 1 ≤ i, j ≤ 50, except xi,2(0)= 1.5 in
Fig. 4, x25,25(0)= 1.5 in Fig. 5, and xi,2(0)= xi,49(0)= 1.5 in Fig. 6.

An autowave has been observed moving with the same shape, from the left-hand
side to the right-hand side of the MCNN, as shown in Fig. 4. Unlike classical waves
whose amplitude attenuates rapidly with the distance, the shape of autowave remains
unchanged. In Fig. 5 an example of an autowave propagating from the centre of the
lattice is shown.

Figure 6 represents two autowaves propagating from the left-hand side and the
right-hand side as an effect of the initial conditions considered. The two waves move
with the same velocity, finally annihilate each other when the two wavefronts col-
lide. The major characteristics of autowaves were therefore observed in the MCNN,
thus showing the effectiveness of the introduced structure to generate autowaves. It
is worth to notice that autowaves are generated with a very simple basic cell con-
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Fig. 4 An autowave propagating from the left-hand side to the right-hand side of a MCNN

Fig. 5 Formation of an
autowave from the centre of
the MCNN

sisting of three components and, in view of the considerations in [23], in principle,
even a simpler cell (consisting of either a capacitor or an inductor and an active
memristor) can be used.
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Fig. 6 Annihilation of two
colliding autowaves,
travelling from the left-hand
side and the right-hand side

4 FPGA-Based Implementation of the MCNN

In this Section, we discuss how to implement the MCNN by using Field Pro-
grammable Gate Arrays (FPGA). Our system consists of a FPGA development
board connected to a monitor and allows us to emulate autowave propagation in an
efficient way. Experimental results showing the feasibility of FPGA-based approach
to implement MCNN are also discussed.

The first step for the FPGA-based implementation is to obtain a discrete model of
the MCNN. A discrete-time version of Eqs. (5) is obtained by applying the fourth-
order Runge-Kutta integration method [24] as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi,j (k + 1)= xi,j (k)

+ h
6 (k1x;i,j + 2k2x;i,j + 2k3x;i,j + k4x;i,j ),

yi,j (k + 1)= yi,j (k)

+ h
6 (k1y;i,j + 2k2y;i,j + 2k3y;i,j + k4y;i,j ),

zi,j (k + 1)= zi,j (k)

+ h
6 (k1z;i,j + 2k2z;i,j + 2k3z;i,j + k4z;i,j ),

(6)

where knx;i,j , kny;i,j and knz;i,j (n= 1,2,3) are evaluated as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k1x;i,j = α(−yi,j (k)+ γ xi,j (k)−W(zi,j (k))xi,j (k))

+D(xi−1,j (k)+ xi+1,j (k)+ xi,j−1(k)

+ xi,j+1(k)− 4xi,j (k)),

k1y;i,j = βxi,j (k),

k1z;i,j = xi,j (k),
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2x;i,j = α[−yi,j (k)− h
2 k1y;i,j + γ (xi,j (k)+ h

2 k1x;i,j )
−W(zi,j (k)+ h

2 k1z;i,j )(xi,j (k)+ h
2 k1x;i,j )]

+D[xi−1,j (k)+ h
2 k1x;i−1,j + xi+1,j (k)

+ h
2 k1x;i+1,j + xi,j−1(k)+ h

2 k1x;i,j−1 + xi,j+1(k)

+ h
2 k1x;i,j+1 − 4(xi,j (k)+ h

2 k1x;i,j )],
k2y;i,j = β(xi,j (k)+ h

2 k1x;i,j ),
k2z;i,j = xi,j (k)+ h

2 k1x;i,j ,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k3x;i,j = α[−yi,j (k)− h
2 k2y;i,j + γ (xi,j (k)+ h

2 k2x;i,j )
−W(zi,j (k)+ h

2 k2z;i,j )(xi,j (k)+ h
2 k2x;i,j )]

+D[xi−1,j (k)+ h
2 k2x;i−1,j + xi+1,j (k)

+ h
2 k2x;i+1,j + xi,j−1(k)+ h

2 k2x;i,j−1 + xi,j+1(k)

+ h
2 k2x;i,j+1 − 4(xi,j (k)+ h

2 k2x;i,j )],
k3y;i,j = β(xi,j (k)+ h

2 k2x;i,j ),
k3z;i,j = xi,j (k)+ h

2 k2x;i,j ,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k4x;i,j = α[−yi,j (k)− hk3y;i,j + γ (xi,j (k)+ hk3x;i,j )
−W(zi,j (k)+ hk3z;i,j )(xi,j (k)+ hk3x;i,j )]
+D[xi−1,j (k)+ hk3x;i−1,j + xi+1,j (k)

+ hk3x;i+1,j + xi,j−1(k)+ hk3x;i,j−1 + xi,j+1(k)

+ hk3x;i,j+1 − 4(xi,j (k)+ hk3x;i,j )],
k4y;i,j = β(xi,j (k)+ hk3x;i,j ),
k4z;i,j = xi,j (k)+ hk3x;i,j ,

and h= 0.004.
Using the model in Eqs. (6), the MCNN can be implemented in an FPGA-based

system with the block diagram shown in Fig. 7. The core of system is the “calcu-
lation and control block” which computes the integration of Eqs. (6), displays the
results on a monitor and controls the interface with the RAM memory. The RAM
memory is an IS42S16400 high-speed synchronous dynamic RAM. It is an external
memory provided on the development board and used to store the state variables of
the memristive cells.

The whole system consists of an Altera DE2 development board and a monitor.
The DE2 board includes a Cyclone II EP2C35F672C6 FPGA chip in a 672-pin
package and provides other hardware resources to connect to other external devices.
The DE2 board is connected to the monitor through a VGA DAC (10-bit high-
speed triple DACs) with VGA-out connector. The calculation and control block,
RAM driver block, and monitor driver block are programmed on FPGA chip by
using VHDL. Firstly, the calculation and control block based on Altera’s Nios II
processor emulates the MCNN by integrating Eqs. (6) for a time step. After that, the
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Fig. 7 Block diagram of the
whole system based on an
FPGA

result is stored in the RAM and displayed on the monitor. The outputs of the FPGA
system as shown in the monitor are then captured by a camera. Some examples of
the autowaves generated by this system are shown in Figs. 8, 9, and 10. These figures
are intended to demonstrate that the generated waves have the main properties of the
autowaves.

In Fig. 8 an autowave front moving from the left-hand side to the right-hand
side of the MCNN can be observed. When one point at the centre of the MCNN is
active, an autowave propagating in the medium forming a spatio-temporal pattern
with a circular shape appears as in Fig. 9.

Figure 10 shows two autowaves propagating from the left-hand side and the right-
hand side. The two waves move with the same velocity, and annihilate each other
when the two wavefronts collide.

Fig. 8 Autowave propagation from the left-hand side to the right-hand side of the MCNN
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Fig. 9 Autowave formation starts from the centre of MCNN

Fig. 10 Annihilation of two colliding autowaves
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Memristor Cellular Automata and Memristor
Discrete-Time Cellular Neural Networks

Makoto Itoh and Leon Chua

Abstract In this paper, we design a cellular automaton and a discrete-time cellular
neural network (DTCNN) using nonlinear passive memristors. They can perform
a number of applications, such as logical operations, image processing operations,
complex behaviors, higher brain functions, etc. By modifying the characteristics of
nonlinear memristors, the memristor DTCNN can perform almost all functions of
memristor cellular automaton. Furthermore, it can perform more than one function
at the same time, that is, it allows multitasking.

1 Introduction

Recently, a team led by R. Stanley Williams from the Hewlett-Packard Company
announced the fabrication of a nanometer-size memristor, a contraction for mem-
ory resistor [15], which was postulated in [1, 4]. This passive electronic device has
generated unprecedented worldwide interests because of its potential applications
[12, 16] in next generation computers and powerful brain-like “neural” computers.
One immediate application offers an enabling low-cost technology for nonvolatile
memories where future computers would turn on instantly without the usual ‘boot-
ing time”, currently required in all personal computers. Another important applica-
tion is the construction of artificial neural networks [14].

Cellular automaton [17] is a modeling and simulation tool in computer science,
mathematics, physics, chemistry, biology, etc. It consists of a grid of cells, where
each cell has a finite number of states. Every cell has the same rule for updat-
ing, based on the states of neighboring cells. Cellular automata can exhibit many
emergent phenomena; such as fractals, chaos, randomness, auto waves, etc. Many
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one-dimensional cellular automata can be classified empirically into one of the four
qualitative classes: homogeneous state, stable or periodic structures, chaotic pat-
tern, and complex localized structures, sometimes long-lived [17]. Thus, cellular
automata can explain how simple rules can generate complex results [3, 17].

Recently, Wolfman’s fundamental research was further developed and extended
by Leon O. Chua from the perspective of neural networks [3]. In this cellular au-
tomaton, the dynamics of the universal neuron is defined by a nonlinear differ-
ence equation (or a differential equation), having one or two nested absolute-value
functions, and eight adjustable parameters. The universal neuron can generate all
possible rules of one-dimensional cellular automata by adjusting these parameters.

Cellular Neural Network (CNN) [2, 5] is a dynamic nonlinear system defined by
coupling only identical simple dynamical systems, called cells, located within a pre-
scribed sphere of influence, such as nearest neighbors. Because of its simplicity, and
ease for chip (hardware) implementation, CNN has found numerous applications in
Image and Video Signal Processing, Robotic and Biological Visions, and Higher
Brain Functions. It is a well-known fact that for many brainlike computations, the
CNN universal chip [2, 5] is far superior to any equivalent DSP implementation by
at least three orders of magnitude in either speed, power, or area. The CNN has the
ability to mimic high level brain functions. Many well-known visual illusions have
been simulated by CNN image processing [2, 5, 7, 8, 10].

In this paper, we design a cellular automaton and a cellular neural network using
nonlinear passive memristors. We first propose a basic memristor cell, which can
perform logical operations: “AND”, “OR”, “XOR”, and “XNOR”. We next design
a memristor cellular automaton by adding some circuit elements to the basic cell,
and we show that the memristor cellular automaton can exhibit some complex be-
haviors, and also perform image processing applications. We next design a memris-
tor discrete-time cellular neural network (memristor DTCNN), which can perform
many image processing operations and higher brain functions. We also show that
by modifying the characteristics of memristors, the memristor DTCNN can perform
almost all functions of memristor cellular automaton. Furthermore, it can perform
more than one functions at the same time. Thus it allows multitasking.

2 Cellular Automata

A one-dimensional cellular automaton consists of a row of cells and a set of rules.
Each cell can be in one of two states—black or white. Each cell has three neigh-
bors (counting itself), so there are 23 = 8 possible patterns for a neighborhood, and
there are 28 = 256 possible rules. Consider the rules defining the following cellular
automaton:

1. if all three of these cells are white, then the new state of the cell will be white.
2. if all three of the cells are black, then the new state of the cell will also be white.
3. in any other case, the new state of the cell will be black.
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Below is the table defining this rule.

Rule 126

current pattern 111 110 101 100 011 010 001 000

new state for center cell 0 1 1 1 1 1 1 0
(1)

Here, the symbols “1” and “0” denote “black” and “white”, respectively. For exam-
ple, if three adjacent cells currently have the pattern 100 (left cell is black, middle
and right cells are white), then the middle cell will become 1 (black) on the next
time step. Since 126 is written “01111110” in binary representation, the above rule
is referred to as “rule 126”.

Let us rewrite the truth table of rule 126 in terms of its equivalent decimal repre-
sentations.

Rule 126

(xi−1(t), xi(t), xi+1(t)) 111 110 101 100 011 010 001 000

w = xi−1(t) • 22 + xi(t) • 21 + xi+1(t) • 20 7 6 5 4 3 2 1 0

xi(t + 1) 0 1 1 1 1 1 1 0

(2)

where xi(t) denotes a state variable of cell “i” at the discrete-time t . Note that each
cell “i” is coupled only to its left neighbor cell (i − 1), and right neighbor cell
(i + 1). From this table, we obtain the relation

xi(t + 1)=
{

0 if w = 0,7,

1 if w = 1,2,3,4,5,6,
(3)

where

w
$= xi−1(t) • 22 + xi(t) • 21 + xi+1(t) • 20. (4)

Observe that Rule 126 can be generated by the difference equation

xi(t + 1)= u
(∣∣w(w − 7)

∣∣)=
{

0 if w = 0,7,

1 if w = 1,2,3,4,5,6,
(5)

where u(x) is a unit step function defined by

u(x)=

⎧
⎪⎨

⎪⎩

1, x > 0,

0, x = 0,

0, x < 0.

(6)

In this paper, u(x) is defined as a piecewise constant function satisfying u(0)= 0
(see Fig. 1).
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Fig. 1 The unit step function
u(x) satisfying u(0)= 0

Rule 126 can also be generated by the distinct but equivalent difference equation

xi(t + 1)= u
(|w|)− u

(|w| − 6
)
, (7)

or

xi(t + 1)= u
(

floor
(|w|))− u

(
floor

(|w|)− 6
)
, (8)

where floor(x) indicates the largest integer not greater than x (see Fig. 2). We use
the floor function to design memristor cellular automata in the latter section.

3 Cellular Neural Networks

Cellular Neural Network (CNN) [2, 5] is a dynamic nonlinear system defined by
coupling only identical simple dynamical systems, called cells, located within a pre-
scribed sphere of influence, such as nearest neighbors. The dynamics of a standard
cellular neural network with a neighborhood of radius r are governed by a system
of n=MN differential equations

dxij

dt
=−γ xij +

∑

k,l∈Nij

(ak,lykl + bk,lukl)+ zij ,

(i, j) ∈ {1, . . . ,M} × {1, . . . ,N} (9)

where Nij denotes the r-neighborhood of cell Cij , and akl, bkl , and zij denote the
feedback, control and threshold template parameters, respectively. The matrices
A = [akl] and B = [bkl] are referred to as the feedback template A and the feed-
forward (input) template B , respectively. The output yij and the state xij of each
cell are usually related via the piecewise-linear saturation function

yij = f (xij )= 1

2

(|xij + 1| − |xij − 1|). (10)
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Fig. 2 The floor function floor(x)

If we restrict the neighborhood radius of every cell to 1, assume that zij is the
same for the whole network, and set γ = 1 for the sake of simplicity, the template
{A,B, z} is fully specified by 19 parameters, which are the elements of two 3 × 3
matrices A and B , namely

A=
a−1,−1 a−1,0 a−1,1
a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1

, B =
b−1,−1 b−1,0 b−1,1
b0,−1 b0,0 b0,1
b1,−1 b1,0 b1,1

, (11)

and a real number z.
Approximating the time derivate of Eq. (9) by the formula

dxij

dt
= xij (t +Δt)− xij (t)

Δt
, (12)

we obtain

xij (t +Δt)− xij (t)

Δt
=−γ xij (t)+

∑

k,l∈Nij

(ak,lykl(t)+ bk,lukl)+ zij ,

(i, j) ∈ {1, . . . ,M} × {1, . . . ,N} (13)
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Fig. 3 A charge-controlled
memristor (left).
A flux-controlled memristor
(right)

If we set Δt = 1, we would obtain

xij (t + 1)= cxij (t)+
∑

k,l∈Nij

(
ak,lykl(t)+ bk,lukl

)+ zij , (14)

where c � 1 − γ . By setting c = 0 (that is, γ = 1), we obtain the discrete-time
recursive equation

xij (t + 1)=
∑

k,l∈Nij

(
ak,lykl(t)+ bk,lukl

)+ zij , (15)

where t = 0,1,2, . . . and

yij (t)= f
(
xij (t)

)= 1

2

(∣∣xij (t)+ 1
∣∣− ∣∣xij (t)− 1

∣∣). (16)

Equation (15) is called the discrete-time CNN (DTCNN) [5], and it can be trans-
formed into the form

yij (t + 1)= f

( ∑

k,l∈Nij

(
ak,lykl(t)+ bk,lukl

)+ zij

)
. (17)

4 Memristor

Memristor [1, 4] in Fig. 3 is a passive 2-terminal electronic device which is de-
scribed by a nonlinear constitutive relation

v =M(q)i or i =W(ϕ)v, (18)

between the device terminal voltage v and the terminal current i. The two nonlinear
functions M(q) and W(ϕ), called the memristance and memductance, respectively,
are defined by

M(q) � dϕ(q)

dq
and W(ϕ) � dq(ϕ)

dϕ
, (19)

representing the slope of scalar functions

ϕ = ϕ(q) and q = q(ϕ), (20)
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Fig. 4 The constitutive relation of a monotone-increasing piecewise-linear memristor: (left)
charge-controlled memristor, (right) flux-controlled memristor

respectively, called the memristor constitutive relation (see Fig. 4).
The fundamental relation between q and i (resp. ϕ and v) is given by

i = dq

dt

(
resp. v = dϕ

dt

)
(21)

A memristor characterized by a differentiable q–ϕ (resp. ϕ–q) characteristic
curve is passive if, and only if, its small-signal memristance M(q) (resp. small-
signal memductance W(ϕ)) is non-negative; i.e.,

M(q)= dϕ(q)

dq
≥ 0

(
resp.W(ϕ)= dq(ϕ)

dϕ
≥ 0

)
(22)

(see [1]). In this paper, we call them “memristance” and “memductance” for short.
Since the instantaneous power dissipated by the above memristor is given by

p(t)=M
(
q(t)

)
i(t)2 ≥ 0, (23)

or

p(t)=W
(
ϕ(t)

)
v(t)2 ≥ 0, (24)

the energy flow into the memristor from time t0 to t satisfies

∫ t

t0

p(τ)dτ ≥ 0, (25)

for all t ≥ t0. Thus, the memristor is passive.
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Note that the memristor was generalized to memristive systems in [4]. These
systems are being developed for application in nanoelectronic memories, computer
logic, neuromorphic computer architectures, and chaotic oscillators [9, 14].

5 Memristor Cell

The memristor cellular automaton we propose in this paper consists of an M ×N

rectangular array of memristor cells C(i, j) with Cartesian coordinate (i, j), i =
1,2, . . . ,M , j = 1,2, . . . ,N . All cells and their interconnections are assumed to be
identical.

5.1 Basic Cell

A basic memristor cell C(i, j) consists of a passive memristor and a switch as shown
in Fig. 5. A current pulse generator provides a pulse wave Ip to memristors and
switches in all memristor cells. A pulse wave Ip consists of positive-negative paired
current pulses. A switch is turned on when (and only when) a positive current pulse
is applied to the cell as shown in Fig. 5. A switching frequency f is given by

f = 1

T
, (26)

where T is a period of the pulse wave.
Referring to Eq. (18), we obtain the cell output yij (t)

yij (t)=
{

v(t)=M(q(t))× Ip(t), Ip > 0,

0, Ip < 0.
(27)

Therefore, if we apply a positive current pulse Ip(t) with a height of 1 and a width
of 1 into the memristor, that is,

Ip(t)= 1,

q(t)=
∫ t

0
Ip(t)dt =

∫ t

0
1dt = t,

⎫
⎬

⎭
(28)

for 0 ≤ t ≤ 1, we would obtain

v(t)=M
(
q(t)

)× Ip(t)=M
(
q(t)

)× 1 =M
(
q(t)

)
. (29)

Thus, we can measure (read) the memristance M(q(t)) from the voltage v(t) across
the memristor by applying a positive current pulse Ip(t) to the cell. Note that neg-
ative current pulses in Fig. 5 are used to discharge the memristor (that is, to reset
the charge of the memristor), which is stored in the memristor by positive current
pulses. If the negative current pulses are not applied to the cell, the charge of the
memristor continues to increase as shown in Fig. 6.



Memristor Cellular Automata and Memristor Discrete-Time Cellular Neural 657

Fig. 5 A basic memristor cell C(i, j) which consists of a memristor and a switch (top). A current
pulse generator provides a current pulse wave (Ip) to a memristor and a switch. The pulse wave Ip

consists of positive-negative paired current pulses (middle). A switch is turned on when (and only
when) a positive current pulse is applied to the cell (bottom)

5.2 Logical Operations

In order to realize logical operations, we consider a memristor cell with an input
as shown in Fig. 7. The characteristic of the memristor is illustrated in Fig. 8. The
input current uij is applied to the cell by a voltage-controlled current source, whose
output current has the same value as the controlled voltage uij . In this case, each
cell C(i, j) works independently, since there are no inputs from neighbors.

We next study the response of the cell C(i, j) when the input uij in Fig. 9 is
applied to the cell. The input pulse uij consists of positive-negative paired pulses.
The negative pulses are used to discharge the memristor, which is stored in the
memristor by the positive input pulses. Note the following (see Fig. 9):

1. Positive input pulses must be applied to the cell before a read pulse Ip is applied
to the cell.

2. Negative input pulses must be applied to the cell after a read pulse Ip is applied
to the cell.
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Fig. 6 Switching sequence
for a current pulse and a
charge q of the memristor.
(a) A current pulse Ip

consists of positive-negative
paired current pulses. (b) The
switch is turned on when (and
only when) a positive current
pulse is applied. (c) The
negative current pulse
discharges the memristor.
(d) The charge of the
memristor continues to
increase if the negative
current pulses are not applied
to the cell

The memristance M(q) illustrated in Fig. 8 is defined by

M(q)=
{

1, 1 ≤ q ≤ 2,

0, else.
(30)
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Fig. 7 A memristor cell
C(i, j) with an input uij

(a voltage-controlled current
source). A diamond-shape
symbol denotes a
voltage-controlled current
source, whose output current
has the same value as the
controlled voltage uij

From Eqs. (27)–(30), the cell output yij is given by

yij =
{

1, 1 ≤ qij ≤ 2 and Ip > 0,

0, else.
(31)

If the charge qij satisfies the condition: 1 ≤ qij ≤ 2 and Ip > 0, then the cell gen-
erates the output pulse (see Fig. 9). Hence, if we apply the input uij corresponding
to the sequence “11”, “01”, “00”, and “10” to the cell, we would obtain the output
sequence “0”, “1”, “0”, and “1”, respectively. That is, we obtain the table:

input “11” “01” “00” “10”

output 0 1 0 1
(32)

Thus, this cell performs the logical operation “XOR”, which is defined by the fol-
lowing truth table:

Fig. 8 A passive charge-controlled memristor (top). A memristance M(q) (bottom left) and a q–ϕ

characteristic curve of a passive charge-controlled memristor (bottom right) are illustrated
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Fig. 9 XOR operation. Time sequences of the current pulse Ip , input uij , charge qij , and cell
output yij are illustrated from top to bottom. The cell generates an output pulse when 1 ≤ qij ≤ 2
and Ip = 1

XOR
uij yij

0 0 0
0 1 1
1 0 1
1 1 0

(33)
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Fig. 10 Memristance M(q) for the logical operations AND, OR, XOR and XNOR

Similarly, the memristance M(q) illustrated in Fig. 10 can perform the logical
operations “AND”, “OR”, and “XNOR”, which are defined by the following truth
tables:

AND
uij yij

0 0 0
0 1 0
1 0 0
1 1 1

OR
uij yij

0 0 0
0 1 1
1 0 1
1 1 1

XNOR
uij yij

0 0 1
0 1 0
1 0 0
1 1 1

(34)

Compare the time sequences of the XOR operation and the AND operation in
Figs. 9 and 11. Observe that the only difference between them is the “output se-
quence”.

The memristance M(q) for the logical operations “AND”, “OR”, “XOR” and
“XNOR” can be described by the following even functions:

Operation M(q)

AND u(|q| − 2)

OR u(|q| − 1)

XOR u(|q| − 1)− u(|q| − 2)

XNOR 1− u(|q| − 1)− u(|q| − 2)

(35)

Note that there are many distinct but equivalent memristances, which can perform
the same logical operations. For example, if we define the memristance Mi(q)
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Fig. 11 AND operation. Time sequences of the current pulse Ip , input uij , charge qij , and cell
output yij are illustrated from top to bottom. The cell generates an output pulse when qij ≥ 2 and
Ip = 1

M0(q)=
{

1, |q|< 1,

0, else,

M1(q)=
{

1, 1 ≤ |q|< 2,

0, else, (36)
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Fig. 12 Characteristic of
memristances Mi(q)

(i = 1,2,3). The
memristance M0(q)+M2(q)

can perform the XNOR
operation

M2(q) =
{

1, 2 ≤ |q|< 3,

0, else,

...

Mi(q) =
{

1, i ≤ q < i + 1,

0, else,

the memristance for the logical operation XNOR is given by M0(q) + M2(q) as
shown in Fig. 12.

Similarly, the memristances for the logical operations “AND”, “OR”, and “XOR”
are given by the table:
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Fig. 13 A circuit consisting
of memristors and switches

Operation Memristance

AND M2(q)

OR M1(q)+M2(q)

XOR M1(q)

XNOR M0(q)+M2(q)

(37)

5.3 Series Connection of Memristors

Consider the circuit of Fig. 13, which consists of memristors and switches. If two
memristors with memristance M0(q) and M2(q) are connected in series as shown
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Fig. 14 A circuit realizing the memristance M0(q)+M2(q)

in Fig. 14, then we have

v =M0(q)i +M2(q)i = (M0(q)+M2(q)
)
i. (38)

Thus, two series memristors are equivalent to a single memristor whose memris-
tance is the sum of memristances, that is, M0(q) + M2(q). It follows that these
series memristors can perform the XNOR operation. We also realize many kinds of
memristances by using the circuit in Fig. 13.

5.4 Asynchronous Inputs

Consider the memristor cell with asynchronous inputs from only eight nearest
neighbors as shown in Fig. 15. The weighting coefficients bk,l (k, l ∈ {−1,0,1})
are usually listed as entries in the following table:

B �
b−1,−1 b−1,0 b−1,1
b0,−1 b0,0 b0,1
b1,−1 b1,0 b1,1

(39)

Assume that the memristor cell satisfies the conditions:

1. Only two inputs ui,j and ui−1,j are available.
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Fig. 15 A memristor cell
C(i, j) with asynchronous
inputs from eight neighbor
cells. Weighting coefficients
bk,l (k, l ∈ {−1,0,1}) are
some constants

2. Effective weighting coefficients bk,l are equal to 1. Thus, the weighting coeffi-
cients bk,l can be written as

B =
b−1,−1 b−1,0 b−1,1
b0,−1 b0,0 b0,1
b1,−1 b1,0 b1,1

=
0 0 0
1 1 0
0 0 0

(40)

3. The memristance M(q) is defined by Eq. (30), that is,

M(q)=
{

1, 1 ≤ q ≤ 2,

0, else.

Then, by applying the two asynchronous input sequence (the input ui−1,j precedes
the input ui,j ):

ui,j 1 1 0 0
ui−1,j 1 0 0 1

(41)

to this cell, we obtain the output sequence:

yi,j 0 1 0 1 (42)

as shown in Fig. 16.
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Fig. 16 Time sequences of the memristor cell with two inputs uij and ui−1j . The pulse sequences
of inputs uij and ui−1j indicate the inputs “1100” and “1001”, respectively. The cell generates an
output pulse when 1 ≤ qij ≤ 2 and Ip = 1. Thus, we get the output sequence “0101”
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That is, we have the following table:

ui,j 1 1 0 0
ui−1,j 1 0 0 1

yi,j 0 1 0 1
(43)

It can realize the truth table of XOR:

XOR
ui,j ui−1,j yij

0 0 0
0 1 1
1 0 1
1 1 0

(44)

Observe from Fig. 16 that inputs ui,j and ui−1,j have different time-frames, which
provide timing information.1 Therefore, the inputs are not necessarily applied to the
cell simultaneously.

6 Memristor Cellular Automaton

We propose a memristor cellular automaton in Fig. 17, which is quite similar to
the realization of a cellular neural network (CNN) cel [2, 5]. A memristor cel-
lular automaton consists of a memristor cell C(i, j), a current pulse generator, a
signal generator, and voltage-controlled current sources denoted by a pink-colored
diamond-shape symbol. A signal generator provides the signal zij (t) satisfying the
equation

zij (t)= yij (t − T )− yij (t − 2T + 1), (45)

where yij (t−T ) and −yij (t−2T +1) corresponds to a positive pulse and a negative
pulse in Fig. 18, respectively.

A negative pulse is used to reset the charge of the memristor, stored by a positive
pulse. The charge qij (t) stored in the memristor during the period [nT ,nT + Δt]
(n= 1,2, . . .) is given by

qij (nT +Δt)=
∑

k,l∈(−1,0,1)

ak,lzi+k,j+l (nT )+Δt

=
∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)+Δt, (46)

1A time-frame is used to identify a start and end of a set of current pulses.
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Fig. 17 A memristor cellular automaton cell, which consists of a memristor cell C(i, j) (light
green), a current pulse generator (salmon pink), a signal generator (medium purple), and voltage–
controlled current sources denoted by a diamond-shape symbol (pink)

where 0 < Δt < 1. The last term Δt indicates the charge stored by a positive current
pulse (see Fig. 6). Thus, from Eqs. (27) and (29), we have the relation

yij (nT +Δt)=

⎧
⎪⎨

⎪⎩

M(qij (nT +Δt))

=M(
∑

k,l∈(−1,0,1) ak,lyi+k,j+l ((n− 1)T )+Δt), Ip > 0,

0, Ip < 0.

(47)
We assume that M(qij (nT +Δt)) does not change for 0 < Δt < 1 (that is, the time
period when a read pulse is applied to a memristor cell).

6.1 Rule 126 Memristor Cellular Automaton

Consider a cellular automaton, which consists of a one-dimensional array of cells
C(i). The local rule 126 was defined by
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Fig. 18 Time sequences of the memristor cellular automaton. The current pulse Ip , output yij of
cell C(i, j), and output zij of the signal generator are illustrated from top to bottom

Rule 126

1∑

k=−1

yi+k((n− 1)T ) • 21−k 7 6 5 4 3 2 1 0

new state of center cell: yi(nT ) 0 1 1 1 1 1 1 0

(48)

where yi(nT ) denotes a state variable of cell “C(i)” at the discrete-time nT . Ap-
plying Eq. (8) to Eq. (47), we can obtain the difference equation:

yi(nT +Δt)= u

(
floor

(∣∣∣∣
∑

k∈(−1,0,1)

akyi+k

(
(n− 1)T

)+Δt

∣∣∣∣

))

− u

(
floor

(∣∣∣∣
∑

k∈(−1,0,1)

akyi+k

(
(n− 1)T

)+Δt

∣∣∣∣− 6

))
, (49)
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Fig. 19 Evolution of a rule
126 memristor cellular
automaton

where Ip > 0, and the weighting coefficients ak and the memristance M(q) are
given by

A � a−1 a0 a1 = 4 2 1 , (50)

and

M(q)= u
(

floor
(|q|))− u

(
floor

(|q|)− 6
)
, (51)

respectively. The memristance M(q) can also be written as

M(q)=
6∑

i=1

Mi(q)=
{

0, if q = 0,7,

1, else,
(52)

where Mi(q) was defined by Eq. (36). Since we apply a positive current pulse to the
cell in order to read the memristance M(q) (thus, the charge q(t) is increased by a
positive current pulse), the floor functions are inserted into Eq. (51).

The evolution of Eq. (49) is illustrated in Fig. 19, where the two states “1” and
“0” are colored “red” and “blue”, respectively.2

2All evolution images and processed images in this paper are not obtained by the real memristor
cellular automaton circuits, but by computer simulations.
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Since the output yi((n− 1)T +Δt) does not change for 0 < Δt < 1, we obtain

yi

(
(n− 1)T +Δt

)= yij

(
(n− 1)T

)
, (53)

and

floor

(∣∣∣∣
∑

k∈(−1,0,1)

akyi+k

(
(n− 1)T

)+Δt

∣∣∣∣

)

= floor

(∣∣
∣∣

∑

k,l∈(−1,0,1)

akyi+k

(
(n− 1)T

)
∣∣
∣∣

)

= floor

(∣∣∣∣
∑

kl∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T +Δt

)
∣∣∣∣

)

= floor

(∣∣∣
∣
∑

k∈(−1,0,1)

akyi+k(τn−1)

∣∣∣
∣

)
, (54)

where 0 < Δt < 1 and τn � nT + Δt . Since all state variables yij and weighting
coefficients ak,l are non-negative integers, the floor functions and absolute functions
can be removed from Eq. (49). Thus, we have the equivalent difference equation for
rule 126:

yi(τn)= u

( ∑

k∈(−1,0,1)

akyi+k(τn−1)

)

− u

( ∑

k∈(−1,0,1)

akyi+k(τn−1)− 6

)
, (55)

or

yi(τn)=
6∑

i=1

Mi

( ∑

k∈(−1,0,1)

akyi+k(τn−1)

)
. (56)

6.2 Sierpinski Memristor Cellular Automaton

In a multistate memristor cellular automaton, each cell has one out of m possi-
ble states represented by numbers 0,1,2, . . . ,m − 1. For example, a 4-state (or
4-color) Sierpinski cellular automaton can generate Pascal’s triangle and has four
states {0,1,2,3} [13]. The rule for this cellular automaton can be written as fol-
lows:
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Rule of a 4-state Sierpinski cellular automaton

yi−1((n− 1)T ) yi((n− 1)T ) yi−1((n− 1)T )+ yi((n− 1)T ) yi(nT )

0 0 0 0
0 1 1 1
0 2 2 2
0 3 3 3
1 0 1 1
1 1 2 2
1 2 3 3
1 3 4 0
2 0 2 2
2 1 3 3
2 2 4 0
2 3 5 1
3 0 3 3
3 1 4 0
3 2 5 1
3 3 6 2

(57)

The memristance and the difference equation which can generate this rule are given
by

M(q)= floor
(|q|) (mod 4), (58)

and

yi(nT +Δt)= floor

(∣∣∣∣
∑

k∈(−1,0,1)

akyi+k

(
(n− 1)T

)+Δt

∣∣∣∣

)
(mod 4), (59)

respectively, where m (mod 4) is the remainder, on division of m by 4, and the
weighting coefficient matrix A= [ak,l] is given by

A= a−1 a0 a1 = 1 1 0 . (60)

Evolutions of Eq. (59) is illustrated in Fig. 20. We used the following palette for
the state of cells:

Color palette
state 0 1 2 3
color orange blue red green

(61)

Since all state variables yij and weighting coefficients ak,l are non-negative integers,
Eq. (59) can be transformed into an equivalent difference equation

yi(τn)=
∑

k∈(−1,0,1)

akyi+k(τn−1) (mod 4), (62)

where τn � nT +Δt .
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Fig. 20 Evolution of a 4-state Sierpinski memristor cellular automaton

6.3 Totalistic Two-Dimensional Memristor Cellular Automaton

A totalistic cellular automaton is a special class of cellular automata in which the
rules depend on the total values of cells in a neighborhood. The evolution of a to-
talistic cellular automaton can be described by a table specifying the state of the
neighbors (counting itself). Each of the cells can be in one of two states; black (cell
value 1) or white (cell value 0). If each cell has nine neighbors (counting itself),
there are 10 possible patterns for a neighborhood, and there are 210 = 1024 possible
rules [13].

Consider the following totalistic rules for the two-dimensional cellular automa-
ton with 9-neighbor cells:

Rule 797

1∑

k=−1

1∑

m=−1

yi+k,j+m((n− 1)T ) 9 8 7 6 5 4 3 2 1 0

new state of center cell: yij (nT ) 1 1 0 0 0 1 1 1 0 1

(63)

Since 797 is written “1100011101” in binary representation, the above rule is re-
ferred to as “rule 797”. The memristance and the difference equation which can
generate this rule are given by
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Fig. 21 Evolution of a rule
797 two-dimensional cellular
automaton

M(q)=M0(q)+M2(q)+M3(q)+M4(q)+M8(q)+M9(q)

=
{

1, if q = 0,2,3,4,8,9

0, if q = 1,5,6,7,
(64)

and

yij (nT +Δt)=M

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)+Δt

)
, (65)

respectively, and the weighting coefficient matrix A= [ak,l] is given by

A=
a−1,−1 a−1,0 a−1,1
a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1

=
1 1 1
1 1 1
1 1 1

. (66)

Our computer simulation of the totalistic cellular automaton is shown in Fig. 21,
where the two states “1” and “0” are colored “yellow” and “blue”, respectively. Ob-
serve that it has a complex pattern. Since all state variables yij and weighting coeffi-
cients ak,l are non-negative integers, Eq. (59) can be transformed into an equivalent
difference equation

yij (τn)=M

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)

)
, (67)

where τn � nT +Δt .
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6.4 Horizontal Hole Detection Memristor Cellular Automaton

Horizontal hole detection cellular automaton detects the number of horizontal holes
from each horizontal row of a binary image. A string of adjacent white pixels in a
horizontal row is called a horizontal hole if each end is terminated at least one black
pixel [2]. The rule for this cellular automaton can be written as follows:

Rule of a horizontal hole detection cellular automaton

yi−1,j ((n− 1)T ) yi,j ((n− 1)T ) yi+1,j ((n− 1)T ) w yi,j (nT )

0 0 0 0 0
0 0 1 1 0
0 1 0 2 1
0 1 1 3 0
1 0 0 4 1
1 0 1 5 0
1 1 0 6 1
1 1 1 7 1

(68)

where ‘1” and “0” in the rule table denote “black” and “white”, respectively, and

w = yi−1,j

(
(n− 1)T

) • 22 + yi,j

(
(n− 1)T

) • 21 + yi+1,j

(
(n− 1)T

) • 20. (69)

The memristance and the difference equation which can generate this rule are given
by

M(q) = M2(q)+M4(q)+M6(q)+M7(q)

=
{

1, q = 2,4,6,7,

0, q = 0,1,3,5,

(70)

and

yij (nT +Δt)=M

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)+Δt

)
, (71)

respectively, where the weighting coefficient matrix A= [ak,l] is given by

A=
a−1,−1 a−1,0 a−1,1
a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1

=
0 0 0
4 2 1
0 0 0

. (72)

Our computer simulation of the horizontal hole detection cellular automaton is
shown in Fig. 22. Observe that the horizontal holes are detected by this cellular
automaton. Similarly, the weighting coefficient matrix A = [ak,l] for vertical hole
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Fig. 22 A horizontal hole detection memristor cellular automaton. Initial state images and pro-
cessed images are illustrated from left to right. The number of horizontal holes is indicated by the
number of vertical lines on the right images

detection is given by

A=
a−1,−1 a−1,0 a−1,1
a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1

=
0 4 0
0 2 0
0 1 0

. (73)

Since all state variables yij and weighting coefficients ak,l are non-negative inte-
gers, Eq. (71) can be transformed into an equivalent difference equation

yij (τn)=M

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)+Δt

)
, (74)

where τn � nT +Δt .
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6.5 Edge Detection Memristor Cellular Automaton

An edge is a jump in intensity from one pixel to the next. Define the rule of the edge
detection as follows [11]:

1. if the number of black cells is equal to 6, 7, or 8, then the new state of the cell
will be black.

2. in any other case, the new state of the cell will be white.

The truth table defining the above edge detection can be written as follows:

Rule of Edge Detection

1∑

k=−1

1∑

m=−1

yi+k,j+m((n− 1)T ) 9 8 7 6 5 4 3 2 1 0

new state of center cell: yij (nT ) 0 1 1 1 0 0 0 0 0 0

(75)

where yij (nT ) has two states {0,1}, and “1” and “0” in the rule table denote “black”
and “white” of the binary image, respectively. Here, we assumed that there are a few
white cells in the neighborhood of an edge. The memristance which can generate
the local rule for edge detection is given by

M(q)=M6(q)+M7(q)+M8(q)=
{

0, q = 0,1,2,3,4,5,9,

1, q = 6,7,8,
(76)

or

M(q)= u
(

floor
(|q|)− 5

)− u
(

floor
(|q|)− 8

)
. (77)

The difference equation is given by

yij (nT +Δt)= u

(
floor

∣∣∣∣
∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)+Δt

∣∣∣∣− 5

)

− u

(
floor

∣∣
∣∣

∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)+Δt

∣∣
∣∣− 8

)
, (78)

where the weighting coefficient matrix A= [ak,l] is given by

A=
1 1 1
1 1 1
1 1 1

. (79)

Our computer simulation of the edge detection cellular automaton is shown in
Fig. 23. Observe that the edges of objects are extracted by this cellular automaton.
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Fig. 23 An edge detection memristor cellular automaton. Initial state images and detected edge
images are illustrated from left to right

Since all state variables yij and weighting coefficients ak,l are non-negative inte-
gers, Eq. (78) can be transformed into an equivalent difference equation

yij (τn)= u

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)− 5

)

− u

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)− 8

)
, (80)

or

yij (τn)=
8∑

i=6

Mi

( ∑

k,l∈(−1,0,1)

ak,l yi+k,j+l(τn−1)

)
, (81)

where τn � nT +Δt .
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6.6 Erosion

The basic erosion operator erodes away the boundaries of black pixels in binary
images. Define the rule of the erosion operation as follows [11]:

1. if all cells are black, then the new state of the cell will be black.
2. in any other case, the new state of the cell will be white.

The truth table can be written as follows:

Rule of Erosion

1∑

k=−1

1∑

m=−1

yi+k,j+m((n− 1)T ) 9 8 7 6 5 4 3 2 1 0

new state of center cell: yij (nT ) 1 0 0 0 0 0 0 0 0 0

(82)

where yij (nT ) has two states {0,1}, and“1” and “0” in the rule table denote “black”
and “white”, respectively. The memristance and the difference equation which can
generate the local rule for erosion are given by

M(q)= u
(

floor
(|q|)− 9

)=
{

1, if |q| ≥ 9,

0, else,
(83)

and

yij (nT +Δt)= u

(
floor

∣∣∣∣
∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)+Δt

∣∣∣∣− 9

)
, (84)

respectively, where the weighting coefficient matrix A= [ak,l] is given by

A=
1 1 1
1 1 1
1 1 1

. (85)

Our computer simulation of the erosion cellular automaton is shown in Fig. 24.
Observe that the boundaries of black pixels in binary images are peeled off by this
cellular automaton. Since all state variables yij and weighting coefficients ak,l are
non-negative integers, Eq. (84) can be transformed into an equivalent difference
equation

yij (τn)= u

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)− 9

)
, (86)

where τn � nT +Δt .
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Fig. 24 An erosion memristor cellular automaton. Initial state images and erosion images are
illustrated from left to right

6.7 Dilation

The basic dilation operation enlarges the areas of black pixels at their borders in
binary images. Define the rule of totalistic dilation as follows [11]:

1. if all cells are white, then the new state of the cell will be white.
2. in any other case, the new state of the cell will be black.

The truth table can be written as follows:

Rule of Dilation

1∑

k=−1

1∑

m=−1

yi+k,j+m((n− 1)T ) 9 8 7 6 5 4 3 2 1 0

new state of center cell: yij (nT ) 1 1 1 1 1 1 1 1 1 0

(87)
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where yij (nT ) has two states {0,1}, and “1” and “0” in the rule table denote “black”
and “white”, respectively. The memristance and the difference equation which can
generate the local rule for dilation are given by

M(q)= u
(

floor
(|q|))=

{
1, if |q| ≥ 1,

0, else,
(88)

and

yij (nT +Δt)= u

(
floor

∣∣∣∣
∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)+Δt

∣∣∣∣

)
, (89)

respectively, where the weighting coefficient matrix A= [ak,l] is given by

A=
1 1 1
1 1 1
1 1 1

. (90)

Our computer simulation of the dilation cellular automaton is shown in Fig. 25.
Observe that the areas of black pixels at their borders in binary images are enlarged
by this cellular automaton. Since all state variables yij and weighting coefficients
ak,l are non-negative integers, Eq. (89) can be transformed into an equivalent differ-
ence equation

yij (τn)= u

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)

)
, (91)

where τn � nT +Δt .

6.8 Laplacian Memristor Cellular Automaton

Consider the Laplacian cellular automaton with eight neighbors [11], whose local
rule is given by

Rule of Laplacian Cellular Automaton

w 8 7 · · · 2 1 0 −1 −2 · · · −7 −8

new state of center cell: yij (nT ) 0 0 0 0 0 1 1 1 1 1 1

(92)

where yij (nT ) has two states {0,1}, “1” and “0” in the rule table denote “black”
and “white” in the binary image, respectively, and we set

w �
(

1∑

k=−1

1∑

m=−1

yi+k,j+m

(
(n− 1)T

)
)

− 9yi,j

(
(n− 1)T

)
. (93)
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Fig. 25 A dilation memristor cellular automaton. Initial state images and dilation images are il-
lustrated from left to right

The memristance and the difference equation which can generate the rule for Lapla-
cian cellular automaton are given by

M(q)= 1− u
(

floor(q)
)=
{

1, if q < 1,

0, else,
(94)

and

yij (nT +Δt)= 1− u

(
floor

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)+Δt

))
, (95)

respectively, where the weighting coefficient matrix A= [ak,l] is given by

A=
1 1 1
1 −8 1
1 1 1

. (96)
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Fig. 26 A Laplacian memristor cellular automaton. Initial state images and processed images are
illustrated from left to right

In this case, the memristance M(q) is not an even function. Our computer simu-
lation of the Laplacian memristor cellular automaton is shown in Fig. 26. Observe
that the edges of objects are extracted by this cellular automaton. Note that Eq. (95)
can be transformed into an equivalent difference equation

yij (τn)= 1− u

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l(τn−1)

)
, (97)

where τn � nT +Δt .

6.9 Sharpening Filter Memristor Cellular Automaton

Sharpening filters are used to enhance the edges of objects. It is well known that
weighting coefficient matrix A= [ak,l] for a sharpening filter is given by
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Fig. 27 A sharpening filter memristor cellular automaton. Initial state grayscale images and pro-
cessed images are illustrated from left to right. The output binary image is superimposed on a
grayscale image

A=
−1 −1 −1
−1 9 −1
−1 −1 −1

. (98)

Consider the difference equation

yij (nT +Δt)= u

(
floor

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)− c+Δt

))
, (99)

where c is a constant.
Our computer simulation of the sharpening filter cellular automaton for c = 30 is

shown in Fig. 27. Observe that the edges of objects are enhanced. In this simulation,
the levels of a grayscale image range from 0 (black) to 255 (white), and the output
binary image is superimposed on a given grayscale image. Note that Eq. (99) can be



686 M. Itoh and L. Chua

transformed into an equivalent difference equation

yij (τn)= u

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)− c

)
, (100)

where τn � nT +Δt and c is an integer.

6.10 Noise Removal Memristor Cellular Automaton

Noise removal is a fundamental problem in image analysis. Let us remove the Gaus-
sian noise3 via the majority rule. The truth table can be written as follows [11]:

Rule of noise removal

1∑

k=−1

1∑

m=−1

yi+k,j+m((n− 1)T ) 9 8 7 6 5 4 3 2 1 0

new state of center cell: yij (nT ) 1 1 1 1 1 0 0 0 0 0

(101)

where yij (nT ) has two states {0,1}, and “1” and “0” in the rule table denote “black”
and “white”, respectively.

The memristance which can generate this rule is given by

M(q)=
9∑

5

Mi(q)=
{

1, if q = 5,6,7,8,9,

0, else,
(102)

or

M(q)= u
(

floor
(|q| − 4

))
. (103)

Thus, the difference equation is given by

yi,j (nT +Δt)=
9∑

5

Mi

( ∑

k,l∈(−1,0,1)

yi+k,j+m

(
(n− 1)T

)+Δt

)
, (104)

or

yi,j (nT +Δt)= u

(
floor

(∣∣∣∣
∑

k,l∈(−1,0,1)

yi+k,j+m

(
(n− 1)T

)+Δt

∣∣∣∣− 4

))
, (105)

3Gaussian noise has a probability density function of the normal distribution (Gaussian distribu-
tion).



Memristor Cellular Automata and Memristor Discrete-Time Cellular Neural 687

Fig. 28 A noise removal memristor cellular automaton. Binary images, Gaussian noise images
(noise level 2 %), and noise removed images are illustrated from left to right

where 0 < Δt < 1 and the weighting coefficient matrix A= [ak,l] is given by

A=
1 1 1
1 1 1
1 1 1

. (106)

Our computer simulation of the noise removal memristor cellular automaton is
shown in Fig. 28. Observe that the noise is removed by this cellular automaton.

Since all state variables yij and weighting coefficients ak,l are non-negative inte-
gers, Eqs. (105) and (104) can be transformed into equivalent difference equations

yij (τn)= u

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)− 4

)
, (107)

and

yij (τn)=
9∑

l=5

Ml

( ∑

k,l∈(−1,0,1)

yi+k,j+m(τn−1)

)
, (108)

respectively, where τn � nT +Δt and 0 < Δt < 1.
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6.11 Inverse Half-Toning Memristor Cellular Automaton

Inverse half-toning is used to convert a binary image into a grayscale image. The
weighting coefficient matrix A = [ak,l], the memristance M(q), and the difference
equation for the inverse half-toning are given by

A=
1 1 1
1 1 1
1 1 1

, (109)

M(q)= floor
(
28|q|), (110)

and

yij (nT +Δt)= floor

(
28

∣∣∣∣
∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)
∣∣∣∣+Δt

)
, (111)

respectively.4

Our computer simulation of Eq. (111) is shown in Fig. 29. Observe that given
binary images are converted into grayscale images (10-gradations).5

Since all state variables yij and weighting coefficients ak,l are non-negative inte-
gers, Eq. (111) can be transformed into an equivalent difference equation

yij (τn)= floor

(
28

∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)

)
, (112)

where τn � nT +Δt .

7 Memristor Cellular Automaton with Inputs

Consider memristor cellular automata shown in Figs. 30 and 31. Their dynamics are
given by

yij (nT )=M

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)

+
∑

k,l∈(−1,0,1)

bk,lui+k,j+l

(
(n− 1)T

)+Δt

)
, (113)

4We can obtain Eqs. (110 ) and (111 ) using the approximation: floor( 255
9 |q|)≈ floor(28|q|).

510-gradations: {0,28,56,84,112,140,168,196,224,252} levels.
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Fig. 29 Inverse half-toning memristor cellular automaton. Initial state binary images (left) are
converted into 10-gradations grayscale images (right)

and

yij (nT )=M

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)+Δt

)

+
∑

k,l∈(−1,0,1)

bk,lui+k,j+l

(
(n− 1)T

)
, (114)

respectively, where M(q) denotes the memristance. Since they have an input term,
Eqs. (113) and (114) have a more generalized form than Eq. (47).

Consider next Eq. (49) with a random binary noise input r(τn−1):

yij (τn)= u

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)+ r(τn−1)

)
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Fig. 30 A memristor cellular automaton, which consists of a memristor cell C(i, j) (light green),
a current pulse generator (salmon pink), a signal generator (medium purple), and voltage-controlled
current sources for inputs (light blue) and outputs (pink)

− u

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)+ r(τn−1)− 6

)
, (115)

where r(τn−1) ∈ {0,1}. The above equation may be considered to be a special case
of Eq. (113), if we set

M(q)= (floor
(|q|))− u

(
floor

(|q|)− 6
)
, (116)

and

bk,lui+k,j+l

(
(n− 1)T

)=
{

r((n− 1)T ) if (k, l)= (0,0),

0 else.
(117)

Observe that it has complex behavior as shown in Fig. 32.

8 Memristor Discrete-Time Cellular Neural Network

Consider the memristor cell shown in Fig. 33. The dynamics of the cell C(i, j) is
given by
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Fig. 31 A memristor cellular automaton, which consists of a memristor cell C(i, j) (light green),
a current pulse generator (salmon pink), a signal generator (medium purple), a voltage-controlled
voltage source for inputs (violet), and voltage-controlled current sources for outputs (pink)

Fig. 32 Evolution of a rule
126 memristor cellular
automaton with a random
binary noise
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Fig. 33 A memristor discrete-time cellular neural network (DTCNN), which consists of a mem-
ristor cell C(i, j) (light green), a current pulse generator (salmon pink), a signal generator (medium
purple), and voltage-controlled current sources for inputs (light blue), outputs (pink), and a thresh-
old (chocolate)

yij (nT )=M

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)

+
∑

k,l∈(−1,0,1)

bk,lui+k,j+l

(
(n− 1)T

)+wij +Δt

)
, (118)

where 0 < Δt < 1.
In this cell, a new voltage-controlled current source for a threshold wij is con-

nected to the cell C(i, j) of Fig. 31. Thus, the difference between Eq. (113) and
Eq. (118) is a threshold parameter wij . If we assume that

M(q)= u
(

floor(q)
)
, (119)

and all state variables yij and weighting coefficients ak,l , bk,l , and wij are integers,
we would obtain the equation of a memristor discrete-time cellular neural network
(Memristor DTCNN)

yij (τn)= u

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)+
∑

k,l∈(−1,0,1)

bk,lui+k,j+l (τn−1)+wij

)
,

(120)
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where ak,l, bk,l , and wij denote the feedback, control, and threshold template pa-
rameters, respectively. The matrices A= [ak,l] and B = [bk,l] are referred to as the
feedback template A and the feedforward (input) template B , respectively. If we
assume that wij is the same for the whole network, the template {A,B,w} is fully
specified by 19 parameters, which are the elements of two 3× 3 matrices A, B , and
a real number w, namely

A=
a−1,−1 a−1,0 a−1,1
a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1

, B =
b−1,−1 b−1,0 b−1,1
b0,−1 b0,0 b0,1
b1,−1 b1,0 b1,1

, w = const.

(121)
We remark that CNN and DTCNN can have the output state 1 or −1, however,

the memristor DTCNN (120) have the output state 1 or 0. Thus, we may have to
modify or adjust CNN templates, which are designed for the output state 1 or −1
[2, 5, 8–10].

We next show the relationship between the memristor DTCNN and the memristor
cellular automata. The dynamics of DTCNN was given by

yij (nT )=M

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)

+
∑

k,l∈(−1,0,1)

bk,lui+k,j+l

(
(n− 1)T

)+wij +Δt

)
, (122)

If we set wij = 0, then we obtain the dynamics of the memristor cellular automata

yij (nT )=M

( ∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)

+
∑

k,l∈(−1,0,1)

bk,lui+k,j+l

(
(n− 1)T

)+Δt

)
, (123)

Thus, the memristor DTCNN can perform all applications of the memristor cellular
automata by modifying the memristance M(q).

8.1 Dilation

The dilation operation enlarges the areas of black pixels at their borders in binary
images. Define the template of the dilation operation as follows:
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Fig. 34 Dilation memristor DTCNN. Boundaries of black pixels are enlarged. Input images and
output images are illustrated from left to right

A=
0 0 0
0 0 0
0 0 0

, B =
1 1 1
1 1 1
1 1 1

, w = 0 . (124)

Our computer simulation of the dilation operation is shown in Fig. 34. Observe
that the boundaries of black pixels in binary images are enlarged. Compare the two
templates (90) and (124), the two memristances (88) and (119), and Figs. 25 and 34.

8.2 Erosion

The erosion operator erodes away the boundaries of black pixels in binary images.
Define the template of the erosion operation as follows:
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Fig. 35 Erosion memristor DTCNN. Boundaries of black pixels are peeled off. Input images and
output images are illustrated from left to right

A=
0 0 0
0 0 0
0 0 0

, B =
1 1 1
1 1 1
1 1 1

, w = −8 . (125)

Our computer simulation of the erosion operation is shown in Fig. 35. Observe
that the boundaries of black pixels in binary images are peeled off. Compare the two
templates (85) and (125), the two memristances (83) and (119), and Figs. 24 and 35.

8.3 Edge Detection

The edge detection operator extracts edges of objects in a given binary image. Define
the template of the edge operation as follows:
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Fig. 36 Edges detection memristor DTCNN. Edge of objects are extracted. Input images and
output images are illustrated from left to right

A=
0 0 0
0 0 0
0 0 0

, B =
1 1 1
1 −8 1
1 1 1

, w = 0 . (126)

Our computer simulation of the edge detection is shown in Fig. 36. Observe that
edges of objects in a binary image are detected. Compare the two templates (78) and
(126), the two memristances (76) and (119), and Figs. 23 and 36.

8.4 Right Edge Detection

The right edge detection operator extracts right edges of all binary objects which
are at least two-pixels wide along the horizontal direction in a given binary image.
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Fig. 37 Right and left edges detection memristor DTCNN. Right edges and left edges in binary
images are detected. Input images, output images of right edge detection, and output images of left
edge detection are illustrated from left to right

Define the template of the right edge operation as follows:

A=
0 0 0
0 0 0
0 0 0

, B =
0 0 0
1 1 −1
0 0 0

, w = −1 . (127)

Similarly, we can define the template of the right edge detection as follows:

A=
0 0 0
0 0 0
0 0 0

, B =
0 0 0
−1 1 1
0 0 0

, w = −1 . (128)

Our computer simulation of the right edge and left edge detection is shown in
Fig. 37. Observe that right and left edges in binary images are detected.

8.5 Face-Vase Illusion

The face-vase illusion operator simulates the well-known visual illusion where the
input image is perceived either as two symmetric faces, or as a vase, depending on
the initial thought or attention, which is simulated by specifying a small patch of
black pixels inside the object to be picked out. Define the template of the face-vase
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Fig. 38 Face-vase illusion memristor DTCNN. Complicated region is picked out by specifying
a small patch of black pixels inside the object. Input images, initial states and output images are
illustrated from left to right

illusion as follows:

A=
0 1 0
1 4 1
0 1 0

, B =
0 0 0
0 −6 0
0 0 0

, w = 0 . (129)

Our computer simulation of the face-vase illusion is shown in Fig. 38. Observe
that the complicated region is picked out by specifying a small patch of black pixels
inside the object.
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Fig. 39 Shadow projection memristor DTCNN. Shadow of all objects in a binary image is pro-
jected onto the left from the right. Input images and output images are illustrated from left to right

8.6 Shadow Projection

The shadow projection operator projects onto the left the shadow of all objects in
a binary image from the right. Define the template of the shadow projection as fol-
lows:

A=
0 0 0
1 1 0
0 0 0

, B =
0 0 0
0 0 0
0 0 0

, w = 0 . (130)

Our computer simulation of the shadow projection is shown in Fig. 39. Observe
that the shadow of all objects in a binary image is projected onto the left from the
right.
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8.7 Line Detection

Line detection is a fundamental problem in image analysis. Define the template of
the horizontal line and vertical line detections as follows:

A=
0 0 0
0 0 0
0 0 0

, B =
−1 −1 −1
2 2 2
−1 −1 −1

, w = 0 . (131)

and

A=
0 0 0
0 0 0
0 0 0

, B =
−1 2 −1
−1 2 −1
−1 2 −1

, w = 0 . (132)

respectively.
Our computer simulation of the line detection is shown in Fig. 40. Observe that

the horizontal and vertical lines are detected.

8.8 Selected Objects Extraction

Selected objects extraction operator extracts an object marked by a binary input
image. Define the template of the selected objects extraction as follows:

A=
0 1 0
1 4 1
0 1 0

, B =
0 0 0
0 8 0
0 0 0

, w = −8 . (133)

Our computer simulation of the selected objects extraction is shown in Fig. 41.
Observe that some selected objects marked by a rectangle are extracted.

8.9 Filled Contour Extraction

Filled contour extraction operator extracts an object which contains a boundary and
which is marked by a binary input image. Furthermore, they are completely filled
inside the interior of closed curves. Define the template of the selected objects ex-
traction as follows:

A=
0 1 0
1 0 1
0 1 0

, B =
0 0 0
0 2 0
0 0 0

, w = −3 . (134)

Our computer simulation of the filled contour extraction is shown in Fig. 42. Ob-
serve that all objects marked by a rectangle are extracted and the interior of all
closed curves are filled with black pixels.
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Fig. 40 Line detection memristor DTCNN. An initial state, a detected horizontal line image, and
a detected vertical line image are illustrated from left to right

8.10 Horizontal Hole and Vertical Hole Detection

Horizontal (resp. vertical) hole detection operator detects horizontal (resp. vertical)
holes. Define the template of the horizontal hole detection and vertical hole detection
as follows:

A=
0 0 0
2 2 −3
0 0 0

, B =
0 0 0
0 0 0
0 0 0

, w = 0 . (135)

and

A=
0 2 0
0 2 0
0 −3 0

, B =
0 0 0
0 0 0
0 0 0

, w = 0 . (136)
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Fig. 41 Selected objects extraction memristor DTCNN. Some selected objects marked by a rect-
angle are extracted. Input images, initial state images, and output images are illustrated from left
to right

Fig. 42 Filled contour extraction memristor DTCNN. The regions which contain a boundary and
which are marked by rectangles are extracted, while completely filling the interior of all closed
curves. Input images, initial state images and output images are illustrated from left to right

Our computer simulation of the horizontal hole and the vertical hole detection
is shown in Fig. 43. Observe that the horizontal holes and the vertical holes are
detected by these templates.
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Fig. 43 A horizontal hole and vertical hole detection memristor DTCNN. The number of vertical
lines (resp. horizontal lines) in the output images indicates the number of horizontal holes (resp.
vertical holes). An initial state and output images for a horizontal hole and vertical hole detection
are illustrated from left to right

9 Advanced Memristor DTCNN

Consider the memristor DTCNN cell shown in Figs. 44 and 45. If we apply a pos-
itive current pulse Ip with a height of 1 and a width of 1 into the memristor, we
would obtain

v1(t) = Mx(q)Ip(t)=Mx(q(t))× 1 =Mx(q(t))= xij (t),

v2(t) = My(q)Ip(t)=My(q(t))× 1 =My(q(t))= yij (t),

}
(137)

A signal generator provides the two signals zij (t) and pij (t) satisfying the equations

zij (t)= yij (t − T )− yij (t − 2T + 1), (138)

and

pij (t)= xij (t − T )− xij (t − 2T + 1), (139)
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Fig. 44 A memristor cell C(i, j), which consists of two memristors and a switch (top). It has
two outputs xij and yij + xij . A current pulse generator provides a current pulse wave (Ip) to
memristors and switches. Switches are turned on when (and only when) a positive current pulse is
applied to the cell

respectively. If we assume that the memristance Mx(q) satisfies

Mx(q)= floor
(|q|), (140)

the charge qij (t) stored in the memristor during the period [nT ,nT + Δt] (n =
1,2, . . .) is given by

qij (nT +Δt)= cxij

(
(n− 1)T

)+
∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)

+
∑

k,l∈(−1,0,1)

bk,lui+k,j+l

(
(n− 1)T

)+wij +Δt, (141)

where 0 < Δt < 1 and

xij (nT ) = Mx(qij (nT ))= floor(|qij (nT )|),
yij (nT ) = My(qij (nT )).

}

(142)

The last term Δt in Eq. (141) indicates the charge stored by a positive current read
pulse6 (see Fig. 6). The characteristic of the memristance My(q) will be given later.

6During the period [nT ,nT + Δt], a positive current read pulse Ip with a height of 1 is applied
into the memristor.
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Fig. 45 A memristor DTCNN cell, which consists of a memristor cell C(i, j) (yellow), a current
pulse generator (salmon pink), a signal generator (medium purple), and voltage-controlled cur-
rent sources for inputs (light blue), a cell state (light green), cell outputs (pink), and a threshold
(chocolate)

For the sake of simplicity, assume that all state variables xij , yij and weighting co-
efficients akl , bkl , wij , and c are non-negative integers. Then, by applying Eq. (142)
to Eq. (141), we obtain the equation

xij (nT +Δt)= floor
(∣∣qij (nT +Δt)

∣∣)

= floor

(∣∣∣
∣cxij

(
(n− 1)T

)+
∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)

+
∑

k,l∈(−1,0,1)

bk,lui+k,j+l

(
(n− 1)T

)+wij +Δt

∣∣∣∣

)

= cxij

(
(n− 1)T

)+
∑

k,l∈(−1,0,1)

ak,lyi+k,j+l

(
(n− 1)T

)

+
∑

k,l∈(−1,0,1)

bk,lui+k,j+l

(
(n− 1)T

)+wij , (143)

which is equivalent to a DTCNN equation
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xij (τn)= cxij (τn−1)+
∑

k,l∈(−1,0,1)

ak,lyi+k,j+l (τn−1)

+
∑

k,l∈(−1,0,1)

bk,lui+k,j+l (τn−1)+wij , (144)

where τn � nT +Δt . If we assume that wij is the same for the whole network, the
template {A,B,w, c} is fully specified by 20 parameters, which are the elements of
two 3× 3 matrices A, B , and real numbers w, c, namely,

A=
a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1

, B =
b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1

,

w = w0 , c = c0 .

(145)

where w0 and c0 are constants.

9.1 Sandpile Cellular Automaton

The sandpile model is defined on a grid. Each grid point is associated with the height
of a sandpile, which is defined below a limiting value. With each time interval, the
height at one of the points increases. If a height exceeds the limiting value, the sand
must be moved to nearby points until the height at all points are once again below
the limiting value. The random placement of sand at a particular point may have no
effect, or it may cause a cascading reaction that will affect every point on the grid.7

Let us define the rule of sandpile cellular automaton as follows:

1. Each cell has an integer state chosen between 0 and 7 for a von Neumann neigh-
bors (a diamond-shaped neighborhood).

2. The number of neighbors having states larger than 3 is added to the middle cell.
3. In case the center cell is itself in a state larger than 3, the new state is reduced

by 4.

The truth table of the sandpile can be written as follows:

Rule of Sandpile

xij (τn−1) 7 6 5 4 3 2 1 0

xij (τn) ξ + 3 ξ + 2 ξ + 1 w ξ + 3 ξ + 2 ξ + 1 ξ

(146)

where ξ denotes the number of neighbors which have states larger than 3.

7For more details, see “Bak-Tang-Wiesenfeld sandpile” in Wikipedia, the free encyclopedia.
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The above rule can be generated by the difference equation [11]

xi,j (τn)= xi,j (τn−1)+ yi−1,j (τn−1)+ yi,j−1(τn−1)

+ yi,j+1(τn−1)+ yi+1,j (τn−1)− 4yi,j (τn−1), (147)

where

yij =My(xij ),

My(q)=
7∑

i=4

Mi(q)=
{

0 if q = 1,2,3,

1 if q = 4,5,6,7.

⎫
⎪⎪⎬

⎪⎪⎭
(148)

Thus, the template of the sandpile DTCNN is given by

A=
0 1 0
1 −4 1
0 1 0

, B =
0 0 0
0 0 0
0 0 0

, w = 0 , c = 1 . (149)

The evolution of the sandpile DTCNN is illustrated in Fig. 46, in which we used
the following palette for the state of cells.

Color palette
state 0 1 2 3 4 5 6 7
color white orange yellow red blue blue blue blue

(150)

9.2 Game of Life

Game of Life is a two-dimensional cellular automaton. Each cell has one of two
possible states, live (cell value 1) or dead (cell value 0). Each cell interacts with
eight neighbors. The Game of Life proceeds according to the rule [6]:

1. Survivals. Any live cell with two or three live neighbors survives in the next
generation.

2. Deaths. Any live cell with four or more live neighbors dies (is removed) from
overpopulation. Every cell with one neighbor or none dies from isolation.

3. Births. Any dead cell with exactly three live neighbors comes to life.

The truth table defining the Game of Life is as follows:

Game of Life

sum of live neighbors 8 7 6 5 4 3 2 1 0

new state of center cell: xij (t + 1) 0 0 0 0 0 1 ∗ 0 0

(151)

The symbol ∗ means no change in the next generation. The rules of the Game of
Life can be generated from the difference equation [11]

xij (t + 1)=M3(ξ)+M2(ξ)xij (t), (152)
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Fig. 46 Evolution of the sandpile DTCNN for t = 100 (left) and t = 902 (right) from a random
initial pattern. A cascade process sets in (blue points spread on the grid) until all state values are
below the threshold (right)

where

ξ �
(

1∑

k=−1

1∑

m=−1

xi+k,j+m(t)

)

− xij (t). (153)

Consider next the memristor cell in Fig. 47. Define the memristance

Ma = Mx(q)= floor(|q|),
Mb = M2(q),

Mc = M3(q).

⎫
⎬

⎭
(154)

If we apply a positive current pulse Ip with a height of 1 and a width of 1 into the
memristor, we would obtain

v1 = Ma(q)Ip =Mx(q)= xij ,

v2 = Mb(q)Ip =M2(q)= yij ,

v3 = Mc(q)Ip =M3(q)= rij ,

⎫
⎬

⎭
(155)

where v1, v2, v3,Ma(q),Mb(q), and Mc(q) are illustrated in Fig. 47.
Thus, Eq. (152) can be realized by replacing the memristor cell in Fig. 44 with

the one in Fig. 47, and providing the following signal from the signal generator

zij (t)=M3(q(t − T ))+M2(q(t − T ))xij (t − T )

−M3(q(t − 2T + 1))−M2(q(t − 2T + 1))xij (t − 2T + 1)

= rij (t − T )+ yij (t − T )xij (t − T )

− rij (t − 2T + 1)− yij (t − 2T + 1)xij (t − 2T + 1). (156)
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Fig. 47 A memristor cell C(i, j), which consists of three memristors and a switch (top). It has
three outputs xij , yij + xij , and rij + yij + xij . A current pulse generator provides a current pulse
wave (Ip) to memristors and switches. Switches are turned on when (and only when) a positive
current pulse is applied to the cell

In this case, the template of the Game of Life DTCNN is given by

A=
1 1 1
1 0 1
1 1 1

, B =
0 0 0
0 0 0
0 0 0

, w = 0 , c = 0 . (157)

Our computer simulation of a Game of Life is shown in Fig. 48.

9.3 Multitasking Capability

The basic erosion operator erodes away the boundaries of black pixels in binary
images. The truth table can be written as follows [11]:

Rule of Totalistic Erosion

1∑

k=−1

1∑

m=−1

xi+k,j+m(τn−1) 9 8 7 6 5 4 3 2 1 0

new state of center cell: xij (τn) 1 0 0 0 0 0 0 0 0 0

(158)
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Fig. 48 Evolution of the Game of Life for 50 steps (left) and 100 steps (right) from a random
initial pattern

where “1” and “0” in the rule table denote “black” and “white”, respectively. The
above rule can be generated from the difference equation

xij (τn)=M9

( ∑

k,l∈(−1,0,1)

ak,lxi+k,j+l (τn−1)

)
. (159)

The basic dilation operation enlarges the areas of black pixels at their borders in
binary images. The truth table can be written as follows [11]:

Rule of Totalistic Dilation

1∑

k=−1

1∑

m=−1

xi+k,j+m(τn−1) 9 8 7 6 5 4 3 2 1 0

new state of center cell: xij (τn) 1 1 1 1 1 1 1 1 1 0

(160)

where “1” and “0” in the rule table denote “black” and “white”, respectively. The
above rule can be generated from the difference equation

xij (τn)= 1−M0

( ∑

k,l∈(−1,0,1)

ak,lxi+k,j+l(τn−1)

)
. (161)

The truth table defining the edge detection was written as follows:

Rule of Edge Detection

1∑

k=−1

1∑

m=−1

xi+k,j+m(τn−1) 9 8 7 6 5 4 3 2 1 0

new state of center cell: xij (τn) 0 1 1 1 0 0 0 0 0 0

(162)
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Fig. 49 Multitasking
capability of a memristor
cellular automaton. Binary
images can be transformed
into erosion images, dilation
images, edge detection
images, and half-toning
images (illustrated from top
to bottom) simultaneously
with one operation

Here, we assumed that there are a few white cells in the neighborhood of edge. The
above rule can be generated from the difference equation

xij (τn)=
8∑

i=6

Mi

( ∑

k,l∈(−1,0,1)

ak,l xi+k,j+l (τn−1)

)
. (163)
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Consider again the memristor cell in Fig. 47. Define the memristance

Ma = M9(q),

Mb = 1−M0(q),

Mc = M6(q)+M7(q)+M8(q),

⎫
⎬

⎭
(164)

which correspond to erosion, dilation and edge detection operations. Then, the
DTCNN can perform an erosion operation, a dilation operation and an edge de-
tection operation simultaneously with one operation. Furthermore, if we connect
the memristor with the memristance

M(q)= floor
(
28|q|), (165)

in series, it can also perform a half-toning operation simultaneously.
In this case, the template of the multitasking DTCNN is given by

A=
1 1 1
1 1 1
1 1 1

, B =
0 0 0
0 0 0
0 0 0

, w = 0 , c = 0 . (166)

Our computer simulation of a multitasking operation is shown in Fig. 49.

10 Conclusion

In this paper, we have proposed the memristor cellular automaton and the memristor
discrete-time cellular neural network, which can perform some logical operations,
image processing operations and complex behaviors. There are many possible gen-
eralizations of these systems, which will be presented elsewhere.
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multistable behavior, 60
network, 538
STDP model

Linares’ model, 116
model with adaptive thresholds, 121
Pershin and Di Ventra’s model, 126

system, 188, 202, 488
Memristive CNNs (MCNNs), 638
Memristive device, 16, 110

spin-transfer torque magnetoresistive
memory, 413

Memristive logic gates, 294
Memristor, 1, 16, 95, 293, 505, 626

anti-parallel, 522
anti-parallel resistive switch, 524
anti-serial, 519
bridge, 254

neuron, 257
circuit, 505, 507
complementary resistive switch, 519
constitutive relation, 26
crossbar architecture, 506
emulator, 324
forward polarized memristors, 526
HP model, 505
I–V curve, 506
memristor resistance, 532
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Memristor (cont.)
model, 269, 505
networks, 505, 514
neuromorphic computing, 533
parallel connected, 521
performance, 529
polarity, 348
quantum tunneling, 509
resistance ratio, 532
reversely polarized memristors, 526
serially connected, 514
simulator, 526
spice, 270
threshold dependence, 506
threshold type model, 509
titanium dioxide (TiO2), 505
tunnel barrier width, 510
two-terminal voltage-controlled electrical

device, 509
unconventional computing, 533

Memristor applications, 634
Memristor model, 626
Memristor-based circuits, see memristor
Memulator, 496
Metal

oxide, 295
silicide, 296

Microcontroller, 495
Mnemotrix, 395
Morphology, 181
Motion constrain equation

optical flow, 560
Moving edge detection, 569
Moving wall

model, 224
Multi layer perceptron, 295
Multiplication, 269, 473
Multiplier, 491
Mutator, 489

N
Nanoarchitectonic, 176, 181, 202, 203
Nanoscale devices, 327
Nanowire, 179
Networks, 638
Neural network, 650
Neuristor, 377
Neuromorphic, 488

engineering, 212
Neuromorphic system, 295
Neuron, 114, 152

action potential, 115
axon, 115
dendrite, 115

excitatory, 156
gap junction, 126
inhibitory, 156
inter-, 156
moto-, 156
sensory, 156
synapse, 115

Neurone, 397
Neurotransmitter, 153, 155
NF-kappaB, 153
NMDA, 156
Noise removal, 686
Non-volatility, 488
Nonlinear circuit, 17
Nonlinear circuit theory, 2
Nonlinear DC resistance, 61, 63
Nonlinear drift model, 328
Nonuniform spatial patterns, 632
Nonvolatile resistance, 297

O
Ohm’s law, 22
OpAmp, 488
Operational amplifier, 488
OPL

retina, 556
Optical flow, 559
Oregonator, 627
Oxygen vacancy, 133

P
P. polycephalum, 166
PANI, 390
Parallel memristor circuits, 333
Passive memristor, 27
Pavlov’s dog, 163
PEO-PANI, 303
Percolation threshold, 191
Phase transition, 178, 187, 188, 196
Pinched hysteresis, 54
Pinched hysteresis loop, 1, 17, 25, 324, 488
Pinching, 25
Plasticity

synaptic, 161
Point contact, 54
Polyaniline, 390
Polyethylene oxide, 391
Polyethyleneoxide-polyaniline, 303
Potential

action, 154, 155
graded, 154, 155
membrane, 153, 154

Potentiation
long-term, 156, 157, 161
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Power spectral density, 183, 193
Programming language, 506

JAVA, 526
user-friendly interface, 527

Projection field, 234
Pyrolytic graphite, 398

R
Reaction-diffusion chip, 625
Recurrent networks, 173
Redox reaction, 414
Reference polarity, 332
Refractory time, 227
Reservoir computing, 173, 175, 198, 199, 202
Resistance, 2

average, 55
Resistive memory, 293
Resistive programmable TSVs, 460
Resistive RAM, 626
Resistive random access memory, 297
Resistive switching, 413

anion, 418
cation, 418
charge balance, 418
concentration gradient, 418
electrochemical metalization effect, 413
memory, 294
thermochemical memory effect, 413
valency change memory effect, 413

Resistive switching materials, 432
Retina, 554
Ripple carry adder, 473
Rule 126, 652

S
Self-organized criticality, 182
Shadow projection, 699
Sharpening filter, 684
Short term memory, 178, 185, 197
Sierpinski memristor cellular automaton, 674
Sigma-delta-modulator, 160
Sinusoidal voltage, 336
Smoothness assumption

optical flow, 560
Sneak path, 142, 143
SPICE, 359
Spike, 153, 155, 367
Spike time dependent plasticity, 115, 138, 159,

162, 164, 213, 298
Froemke’s model, 119
Gerstner’s model, 115
long-term depression (LTD), 115
long-term potentiation (LTP), 115
principle of suppression, 119

refractory time, 126
short-term plasticity, 126
spike efficacy, 119
update function, 116

Spiking neural networks, 294
Stable

state, 324
State variable, 131, 133, 326, 414

analog memory behavior, 418
decay term, 417
filament elongation rate, 414
highly nonlinear, 417
ion concentration, 414
pulse-rate modulation, 417, 418
pulse-width modulation, 417, 418
resistance drift, 415
resistance modulation, 417
synaptic dynamics, 418

Stateful logic
within a memristive crossbar, 616

Stateful logic operations, 605
STDP, 159, 162, 164, 213

additive, 216, 226, 229
Anti-, 216
asynchronous, 226
learning function, 215
multiplicative, 216, 226, 229
multiplicative variations, 229

Supervised learning, 398
Switches, 506
Synapse, 152, 272, 295, 399

chemical, 152
cleft, 153
electrical, 152
plasticity, 156, 158–160, 162, 164
post-, 153–155, 159, 161, 162
pre-, 153, 159, 161, 162
vesicle, 153

Synapses, 95
Synaptic weight, 257

T
Template

average, 283
Laplacian, 283

Thermistor, 69, 111
Three-terminal device, 105
Three-terminal memristive devices, 437
Time-varying conductances, 10
TiO2 film, 390
Titanium dioxide, 297, 367
Tour puzzle, 166
Transient

state, 324



720 Index

Tunnel junction, 161, 163
Turing Machine, 176

U
Universal neuron, 650
Unsupervised learning, 394

V
V–I curve, 57
Variable memristor, 308
Voltage threshold model, 160

Voltage-controlled memristor, 69
Von Neumann

bottleneck, 415
paradigm, 176

W
Weighting circuit, 324
Widrow’s memistor, 99

X
XNOR, 665
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