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The objective of this text is to serve as a cornerstone for the learning of logic design,
digital system design, and computer design by a broad audience of readers. This fifth
edition marks the continued evolution of the text contents. Beginning as an adap-
tation of a previous book by the first author in 1997 it continues to offer a unique
combination of logic design and computer design principles with a strong hardware
emphasis. Over the years, the text has followed industry trends by adding new mater-
ial such as hardware description languages, removing or de-emphasizing material of
declining importance, and revising material to track changes in computer technology
and computer-aided design.

NEew 1O THIS EDITION

The fifth edition reflects changes in technology and design practice that require com-
puter system designers to work at higher levels of abstraction and manage larger
ranges of complexity than they have in the past. The level of abstraction at which
logic, digital systems, and computers are designed has moved well beyond the level
at which these topics are typically taught. The goal in updating the text is to more
effectively bridge the gap between existing pedagogy and practice in the design of
computer systems, particularly at the logic level. At the same time, the new edition
maintains an organization that should permit instructors to tailor the degree of tech-
nology coverage to suit both electrical and computer engineering and computer sci-
ence audiences. The primary changes to this edition include:

e Chapter 1 has been updated to include a discussion of the layers of abstractions
in computing systems and their role in digital design, as well as an overview of
the digital design process. Chapter 1 also has new material on alphanumeric
codes for internationalization.

e The textbook introduces hardware description languages (HDLs) earlier, start-
ing in Chapter 2. HDL descriptions of circuits are presented alongside logic sche-
matics and state diagrams throughout the chapters on combinational and
sequential logic design to indicate the growing importance of HDLs in contem-
porary digital system design practice. The material on propagation delay, which is
a first-order design constraint in digital systems, has been moved into Chapter 2.

e Chapter 3 combines the functional block material from the old Chapter 3 and
the arithmetic blocks from the old Chapter 4 to present a set of commonly

xii [
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occurring combinational logic functional blocks. HDL models of the func-
tional blocks are presented throughout the chapter. Chapter 3 introduces the
concept of hierarchical design.

e Sequential circuits appear in Chapter 4, which includes both the description of
design processes from the old Chapter 5, and the material on sequential circuit
timing, synchronization of inputs, and metastability from the old Chapter 6.
The description of JK and T flip-flops has been removed from the textbook
and moved to the online Companion Website.

e Chapter 5 describes topics related to the implementation of digital hardware,
including design of complementary metal-oxide (CMOS) gates and program-
mable logic. In addition to much of the material from the old Chapter 6,
Chapter 5 now includes a brief discussion of the effect of testing and verifica-
tion on the cost of a design. Since many courses employing this text have lab
exercises based upon field programmable gate arrays (FPGAs), the descrip-
tion of FPGA s has been expanded, using a simple, generic FPGA architecture
to explain the basic programmable elements that appear in many commer-
cially available FPGA families.

¢ The remaining chapters, which cover computer design, have been updated to
reflect changes in the state-of-the art since the previous edition appeared.
Notable changes include moving the material on high-impedance buffers from
the old Chapter 2 to the bus transfer section of Chapter 6 and adding a discus-
sion of how procedure call and return instructions can be used to implement
function calls in high level languages in Chapter 9.

Offering integrated coverage of both digital and computer design, this edition
of Logic and Computer Design Fundamentals features a strong emphasis on fun-
damentals underlying contemporary design. Understanding of the material is sup-
ported by clear explanations and a progressive development of examples ranging
from simple combinational applications to a CISC architecture built upon a RISC
core. A thorough coverage of traditional topics is combined with attention to com-
puter-aided design, problem formulation, solution verification, and the building of
problem-solving skills. Flexibility is provided for selective coverage of logic design,
digital system design, and computer design topics, and for coverage of hardware
description languages (none, VHDL, or Verilog®).

With these revisions, Chapters 1 through 4 of the book treat logic design,
Chapters 5 through 7 deal with digital systems design, and Chapters 8 through 12
focus on computer design. This arrangement provides solid digital system design
fundamentals while accomplishing a gradual, bottom-up development of funda-
mentals for use in top-down computer design in later chapters. Summaries of the
topics covered in each chapter follow.

Logic Design

Chapter 1, Digital Systems and Information, introduces digital computers, com-
puter systems abstraction layers, embedded systems, and information representation
including number systems, arithmetic, and codes.
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Chapter 2, Combinational Logic Circuits, deals with gate circuits and their
types and basic ideas for their design and cost optimization. Concepts include Bool-
ean algebra, algebraic and Karnaugh-map optimization, propagation delay, and gate-
level hardware description language models using structural and dataflow models in
both VHDL and Verilog.

Chapter 3, Combinational Logic Design, begins with an overview of a con-
temporary logic design process. The details of steps of the design process including
problem formulation, logic optimization, technology mapping to NAND and NOR
gates, and verification are covered for combinational logic design examples. In addi-
tion, the chapter covers the functions and building blocks of combinational design
including enabling and input-fixing, decoding, encoding, code conversion, selecting,
distributing, addition, subtraction, incrementing, decrementing, filling, extension and
shifting, and their implementations. The chapter includes VHDL and Verilog models
for many of the logic blocks.

Chapter 4, Sequential Circuits, covers sequential circuit analysis and design.
Latches and edge-triggered flip-flops are covered with emphasis on the D type.
Emphasis is placed on state machine diagram and state table formulation. A com-
plete design process for sequential circuits including specification, formulation, state
assignment, flip-flop input and output equation determination, optimization, technol-
ogy mapping, and verification is developed. A graphical state machine diagram model
that represents sequential circuits too complex to model with a conventional state
diagram is presented and illustrated by two real world examples. The chapter includes
VHDL and Verilog descriptions of a flip-flop and a sequential circuit, introducing
procedural behavioral VHDL and Verilog language constructs as well as test benches
for verification. The chapter concludes by presenting delay and timing for sequential
circuits, as well as synchronization of asynchronous inputs and metastability.

Digital Systems Design

Chapter 5, Digital Hardware Implementation, presents topics focusing on various
aspects of underlying technology including the MOS transistor and CMOS circuits,
and programmable logic technologies. Programmable logic covers read-only memo-
ries, programmable logic arrays, programmable array logic, and field programmable
gate arrays (FPGAs). The chapter includes examples using a simple FPGA architec-
ture to illustrate many of the programmable elements that appear in more complex,
commercially available FPGA hardware.

Chapter 6, Registers and Register Transfers, covers registers and their applica-
tions. Shift register and counter design are based on the combination of flip-flops
with functions and implementations introduced in Chapters 3 and 4. Only the ripple
counter is introduced as a totally new concept. Register transfers are considered
for both parallel and serial designs and time—space trade-offs are discussed. A sec-
tion focuses on register cell design for multifunction registers that perform multiple
operations. A process for the integrated design of datapaths and control units using
register transfer statements and state machine diagrams is introduced and illustrated
by two real world examples. Verilog and VHDL descriptions of selected register
types are introduced.
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Chapter 7, Memory Basics, introduces static random access memory (SRAM)
and dynamic random access memory (DRAM), and basic memory systems. It also
describes briefly various distinct types of DRAM:s.

Computer design

Chapter 8, Computer Design Basics, covers register files, function units, datapaths,
and two simple computers: a single-cycle computer and a multiple-cycle computer.
The focus is on datapath and control unit design formulation concepts applied to
implementing specified instructions and instruction sets in single-cycle and multiple-
cycle designs.

Chapter 9, Instruction Set Architecture, introduces many facets of instruc-
tion set architecture. It deals with address count, addressing modes, architectures,
and the types of instructions and presents floating-point number representation
and operations. Program control architecture is presented including procedure
calls and interrupts.

Chapter 10, RISC and CISC Processors, covers high-performance processor
concepts including a pipelined RISC processor and a CISC processor. The CISC
processor, by using microcoded hardware added to a modification of the RISC
processor, permits execution of the CISC instruction set using the RISC pipeline,
an approach used in contemporary CISC processors. Also, sections describe high-
performance CPU concepts and architecture innovations including two examples
of multiple CPU microprocessors.

Chapter 11, Input—-Output and Communication, deals with data transfer
between the CPU and memory, input—output interfaces and peripheral devices. Dis-
cussions of a keyboard, a Liquid Crystal Display (LCD) screen, and a hard drive as
peripherals are included, and a keyboard interface is illustrated. Other topics range
from serial communication, including the Universal Serial Bus (USB), to interrupt
system implementation.

Chapter 12, Memory Systems, focuses on memory hierarchies. The concept of
locality of reference is introduced and illustrated by consideration of the cache/main
memory and main memory/hard drive relationships. An overview of cache design
parameters is provided. The treatment of memory management focuses on paging
and a translation lookaside buffer supporting virtual memory.

In addition to the text itself, a Companion Website and an Instructor’s Man-
ual are provided. Companion Website (www.pearsonhighered.com/mano) content
includes the following: 1) reading supplements including material deleted from prior
editions, 2) VHDL and Verilog source files for all examples, 3) links to computer-
aided design tools for FPGA design and HDL simulation, 4) solutions for about
one-third of all text chapter problems, 5) errata, 6) PowerPoint® slides for Chapters 1
through 8, 7) projection originals for complex figures and tables from the text, and
8) site news sections for students and instructors pointing out new material, updates,
and corrections. Instructors are encouraged to periodically check the instructor’s site
news so that they are aware of site changes. Instructor’s Manual content includes
suggestions for use of the book and all problem solutions. Online access to this man-
ual is available from Pearson to instructors at academic institutions who adopt the
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book for classroom use. The suggestions for use provide important detailed informa-
tion for navigating the text to fit with various course syllabi.

Because of its broad coverage of both logic and computer design, this book
serves several different objectives in sophomore through junior level courses. Chapters
1 through 9 with selected sections omitted, provide an overview of hardware for com-
puter science, computer engineering, electrical engineering, or engineering students in
general in a single semester course. Chapters 1 through 4 possibly with selected parts
of 5 through 7 give a basic introduction to logic design, which can be completed in a
single quarter for electrical and computer engineering students. Covering Chapters
1 through 7 in a semester provides a stronger, more contemporary logic design treat-
ment. The entire book, covered in two quarters, provides the basics of logic and com-
puter design for computer engineering and science students. Coverage of the entire
book with appropriate supplementary material or a laboratory component can fill a
two-semester sequence in logic design and computer architecture. Due to its moder-
ately paced treatment of a wide range of topics, the book is ideal for self-study by engi-
neers and computer scientists. Finally, all of these various objectives can also benefit
from use of reading supplements provided on the Companion Website.

The authors would like to acknowledge the instructors whose input contributed
to the previous edition of the text and whose influence is still apparent in the current
edition, particularly Professor Bharat Bhuva, Vanderbilt University; Professor Donald
Hung, San Jose State University; and Professors Katherine Compton, Mikko Lipasti,
Kewal Saluja, and Leon Shohet, and Faculty Associate Michael Morrow, ECE, Uni-
versity of Wisconsin, Madison. We appreciate corrections to the previous editions pro-
vided by both instructors and students, most notably, those from Professor Douglas
De Boer of Dordt College. In getting ready to prepare to think about getting started
to commence planning to begin working on the fifth edition, I received valuable feed-
back on the fourth edition from Patrick Schaumont and Cameron Patterson at Virginia
Tech, and Mark Smith at the Royal Institute of Technology (KTH) in Stockholm, Swe-
den. I also benefited from many discussions with Kristie Cooper and Jason Thweatt
at Virginia Tech about using the fourth edition in the updated version of our depart-
ment’s Introduction to Computer Engineering course. I would also like to express
my appreciation to the folks at Pearson for their hard work on this new edition. In
particular, I would like to thank Andrew Gilfillan for choosing me to be the new third
author and for his help in planning the new edition; Julie Bai for her deft handling of
the transition after Andrew moved to another job, and for her guidance, support, and
invaluable feedback on the manuscript; Pavithra Jayapaul for her help in text produc-
tion and her patience in dealing with my delays (especially in writing this preface!);
and Scott Disanno and Shylaja Gattupalli for their guidance and care in producing the
text. Special thanks go to Morris Mano and Charles Kime for their efforts in writing
the previous editions of this book. It is an honor and a privilege to have been chosen as
their successor. Finally, I would like to thank Karen, Guthrie, and Eli for their patience
and support while I was writing, especially for keeping our mutt Charley away from
this laptop so that he didn’t eat the keys like he did with its short-lived predecessor.

Tom MARTIN
Blacksburg, Virginia
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DI1GITAL SYSTEMS
AND INFORMATION

for computations with discrete numeric elements called digits (the Latin word for

fingers)—hence the term digital computer. The use of “digital” spread from the
computer to logic circuits and other systems that use discrete elements of information,
giving us the terms digital circuits and digital systems. The term logic is applied to circuits
that operate on a set of just two elements with values True (1) and False (0). Since
computers are based on logic circuits, they operate on patterns of elements from these
two-valued sets, which are used to represent, among other things, the decimal digits.
Today, the term “digital circuits” is viewed as synonymous with the term “logic circuits.”

The general-purpose digital computer is a digital system that can follow a stored
sequence of instructions, called a program, that operates on data. The user can specify
and change the program or the data according to specific needs. As a result of this
flexibility, general-purpose digital computers can perform a variety of information-
processing tasks, ranging over a very wide spectrum of applications. This makes the
digital computer a highly general and very flexible digital system. Also, due to its
generality, complexity, and widespread use, the computer provides an ideal vehicle for
learning the concepts, methods, and tools of digital system design. To this end, we use
the exploded pictorial diagram of a computer of the class commonly referred to as a PC
(personal computer) given on the opposite page. We employ this generic computer to
highlight the significance of the material covered and its relationship to the overall
system. A bit later in this chapter, we will discuss the various major components of the
generic computer and see how they relate to a block diagram commonly used to
represent a computer. We then describe the concept of layers of abstraction in digital
system design, which enables us to manage the complexity of designing and
programming computers constructed using billions of transistors. Otherwise, the
remainder of the chapter focuses on the digital systems in our daily lives and introduces
approaches for representing information in digital circuits and systems.

This book deals with logic circuits and digital computers. Early computers were used
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1-1 INFORMATION REPRESENTATION

Digital systems store, move, and process information. The information represents a
broad range of phenomena from the physical and man-made world. The physical
world is characterized by parameters such as weight, temperature, pressure, velocity,
flow, and sound intensity and frequency. Most physical parameters are continuous,
typically capable of taking on all possible values over a defined range. In contrast, in
the man-made world, parameters can be discrete in nature, such as business records
using words, quantities, and currencies, taking on values from an alphabet, the inte-
gers, or units of currency, respectively. In general, information systems must be able
to represent both continuous and discrete information. Suppose that temperature,
which is continuous, is measured by a sensor and converted to an electrical voltage,
which is likewise continuous. We refer to such a continuous voltage as an analog
signal, which is one possible way to represent temperature. But, it is also possible
to represent temperature by an electrical voltage that takes on discrete values that
occupy only a finite number of values over a range, for example, corresponding to
integer degrees centigrade between —40 and +119. We refer to such a voltage as a
digital signal. Alternatively, we can represent the discrete values by multiple voltage
signals, each taking on a discrete value. At the extreme, each signal can be viewed as
having only two discrete values, with multiple signals representing a large number of
discrete values. For example, each of the 160 values just mentioned for temperature
can be represented by a particular combination of eight two-valued signals. The sig-
nals in most present-day electronic digital systems use just two discrete values and
are therefore said to be binary.The two discrete values used are often called 0 and 1,
the digits for the binary number system.

We typically represent the two discrete values by ranges of voltage values
called HIGH and LOW. Output and input voltage ranges are illustrated in
Figure 1-1(a). The HIGH output voltage value ranges between 0.9 and 1.1 volts, and
the LOW output voltage value between —0.1 and 0.1 volts. The high input range
allows 0.6 to 1.1 volts to be recognized as a HIGH, and the low input range allows

Voltage (Volts)

OUTPUT INPUT 101
HIGH — 1.0 —
0.9 — HGH 07
— 0.6 0.0 ———Time
L 04 (b) Time-dependent voltage
1
0.1 - LOW
LOW 00 -
Volts
0 Time
(a) Example voltage ranges (c) Binary model of time-dependent voltage
0 FIGURE 1-1

Examples of Voltage Ranges and Waveforms for Binary Signals
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—0.1 to 0.4 volts to be recognized as a LOW. The fact that the input ranges are wider
than the output ranges allows the circuits to function correctly in spite of variations
in their behavior and undesirable “noise” voltages that may be added to or sub-
tracted from the outputs.

We give the output and input voltage ranges a number of different names.
Among these are HIGH (H) and LOW (L), TRUE (T) and FALSE (F), and 1 and 0.
It is natural to associate the higher voltage ranges with HIGH or H, and the lower
voltage ranges with LOW or L. For TRUE and 1 and FALSE and 0, however, there is
achoice. TRUE and 1 can be associated with either the higher or lower voltage range
and FALSE and 0 with the other range. Unless otherwise indicated, we assume that
TRUE and 1 are associated with the higher of the voltage ranges, H, and the FALSE
and 0 are associated with the lower of the voltage ranges, L. This particular conven-
tion is called positive logic.

It is interesting to note that the values of voltages for a digital circuit in
Figure 1-1(a) are still continuous, ranging from —0.1 to +1.1 volts. Thus, the voltage
is actually analog! The actual voltages values for the output of a very high-speed
digital circuit are plotted versus time in Figure 1-1(b). Such a plot is referred to as a
waveform. The interpretation of the voltage as binary is based on a model using
voltage ranges to represent discrete values 0 and 1 on the inputs and the outputs.
The application of such a model, which redefines all voltage above 0.5V as 1 and
below 0.5V as 0 in Figure 1-1(b), gives the waveform in Figure 1-1(c). The output
has now been interpreted as binary, having only discrete values 1 and 0, with the
actual voltage values removed. We note that digital circuits, made up of electronic
devices called transistors, are designed to cause the outputs to occupy the two dis-
tinct output voltage ranges for 1 (H) and 0 (L) in Figure 1-1, whenever the outputs
are not changing. In contrast, analog circuits are designed to have their outputs
take on continuous values over their range, whether changing or not.

Since 0 and 1 are associated with the binary number system, they are the pre-
ferred names for the signal ranges. A binary digit is called a bit. Information is
represented in digital computers by groups of bits. By using various coding tech-
niques, groups of bits can be made to represent not only binary numbers, but also
other groups of discrete symbols. Groups of bits, properly arranged, can even
specify to the computer the program instructions to be executed and the data to be
processed.

Why is binary used? In contrast to the situation in Figure 1-1, consider a sys-
tem with 10 values representing the decimal digits. In such a system, the voltages
available—say, 0 to 1.0 volts—could be divided into 10 ranges, each of length
0.1 volt. A circuit would provide an output voltage within each of these 10 ranges.
An input of a circuit would need to determine in which of the 10 ranges an applied
voltage lies. If we wish to allow for noise on the voltages, then output voltage
might be permitted to range over less than 0.05 volt for a given digit representa-
tion, and boundaries between inputs could vary by less than 0.05 volt. This would
require complex and costly electronic circuits, and the output still could be dis-
turbed by small “noise” voltages or small variations in the circuits occurring
during their manufacture or use. As a consequence, the use of such multivalued
circuits is very limited. Instead, binary circuits are used in which correct circuit
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operation can be achieved with significant variations in values of the two output
voltages and the two input ranges. The resulting transistor circuit with an output
that is either HIGH or LOW is simple, easy to design, and extremely reliable. In
addition, this use of binary values makes the results calculated repeatable in the
sense that the same set of input values to a calculation always gives exactly the
same set of outputs. This is not necessarily the case for multivalued or analog cir-
cuits, in which noise voltages and small variations due to manufacture or circuit
aging can cause results to differ at different times.

The Digital Computer

A block diagram of a digital computer is shown in Figure 1-2. The memory stores
programs as well as input, output, and intermediate data. The datapath performs
arithmetic and other data-processing operations as specified by the program. The
control unit supervises the flow of information between the various units. A data-
path, when combined with the control unit, forms a component referred to as a cen-
tral processing unit,or CPU.

The program and data prepared by the user are transferred into memory by
means of an input device such as a keyboard. An output device, such as an LCD (lig-
uid crystal display), displays the results of the computations and presents them to the
user. A digital computer can accommodate many different input and output devices,
such as DVD drives, USB flash drives, scanners, and printers. These devices use digi-
tal logic circuits, but often include analog electronic circuits, optical sensors, LCDs,
and electromechanical components.

The control unit in the CPU retrieves the instructions, one by one, from the
program stored in the memory. For each instruction, the control unit manipulates the
datapath to execute the operation specified by the instruction. Both program and
data are stored in memory. A digital computer can perform arithmetic computations,
manipulate strings of alphabetic characters, and be programmed to make decisions
based on internal and external conditions.

Memory
. Control
CPU Unit Datapath
Input/Output
[0 FIGURE 1-2

Block Diagram of a Digital Computer
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Beyond the Computer

In terms of world impact, computers, such as the PC, are not the end of the story.
Smaller, often less powerful, single-chip computers called microcomputers or micro-
controllers, or special-purpose computers called digital signal processors (DSPs)
actually are more prevalent in our lives. These computers are parts of everyday prod-
ucts and their presence is often not apparent. As a consequence of being integral
parts of other products and often enclosed within them, they are called embedded
systems. A generic block diagram of an embedded system is shown in Figure 1-3.
Central to the system is the microcomputer (or its equivalent). It has many of the
characteristics of the PC, but differs in the sense that its software programs are often
permanently stored to provide only the functions required for the product. This soft-
ware, which is critical to the operation of the product, is an integral part of the em-
bedded system and referred to as embedded software. Also, the human interface of
the microcomputer can be very limited or nonexistent. The larger information-
storage components such as a hard drive and compact disk or DVD drive frequently
are not present. The microcomputer contains some memory; if additional memory is
needed, it can be added externally.

With the exception of the external memory, the hardware connected to the
embedded microcomputer in Figure 1-3 interfaces with the product and/or the out-
side world. The input devices transform inputs from the product or outside world
into electrical signals, and the output devices transform electrical signals into out-
puts to the product or outside world. The input and output devices are of two types,
those which use analog signals and those which use digital signals. Examples of digi-
tal input devices include a limit switch which is closed or open depending on whether
a force is applied to it and a keypad having ten decimal integer buttons. Examples of

Block Diagram of an Embedded System

Analog Signal
Input Devices | J | A-to-D |5 »| D-to-A || Conditioning
and Signal Converters Converters and Digital
Conditioning Output Devices

Microcomputer,
Microcontroller,
or Digital Signal
Digital Processor Signal
Input Devices Conditioning
and Signal and Digital
Conditioning Output Devices
y 4
External
Memory
[0 FIGURE 1-3
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analog input devices include a thermistor which changes its electrical resistance in
response to the temperature and a crystal which produces a charge (and a corre-
sponding voltage) in response to the pressure applied. Typically, electrical or elec-
tronic circuitry is required to “condition” the signal so that it can be read by the
embedded system. Examples of digital output devices include relays (switches that
are opened or closed by applied voltages), a stepper motor that responds to applied
voltage pulses, or an LED digital display. Examples of analog output devices include
a loudspeaker and a panel meter with a dial. The dial position is controlled by the
interaction of the magnetic fields of a permanent magnet and an electromagnet
driven by the voltage applied to the meter.

Next, we illustrate embedded systems by considering a temperature measure-
ment performed by using a wireless weather station. In addition, this example also
illustrates analog and digital signals, including conversion between the signal types.

EXAMPLE 1-1 Temperature Measurement and Display

A wireless weather station measures a number of weather parameters at an outdoor
site and transmits them for display to an indoor base station. Its operation can be
illustrated by considering the temperature measurement illustrated in Figure 1-4
with reference to the block diagram in Figure 1-3. Two embedded microprocessors
are used, one in the outdoor site and the other in the indoor base station.

The temperature at the outdoor site ranges continuously from —40°F to
+115°F. Temperature values over one 24-hour period are plotted as a function of
time in Figure 1-4(a). This temperature is measured by a sensor consisting of a therm-
istor (a resistance that varies with temperature) with a fixed current applied by an
electronic circuit. This sensor provides an analog voltage that is proportional to the
temperature. Using signal conditioning, this voltage is changed to a continuous volt-
age ranging between 0 and 15 volts, as shown in Figure 1-4(b).

The analog voltage is sampled at a rate of once per hour (a very slow sampling
rate used just for illustration), as shown by the dots in Figure 1-4(b). Each value sam-
pled is applied to an analog-to-digital (A/D) converter, as in Figure 1-3, which replaces
the value with a digital number written in binary and having decimal values between
0 and 15, as shown in Figure 1-4(c). A binary number can be interpreted in decimal
by multiplying the bits from left to right times the respective weights, 8, 4, 2, and 1,
and adding the resulting values. For example, 0101 can be interpreted as
0X8+1X4+0X2+1X1=5.Inthe process of conversion, the value of the
temperature is quantized from an infinite number of values to just 16 values.
Examining the correspondence between the temperature in Figure 1-4(a) and the volt-
age in Figure 1-4(b), we find that the typical digital value of temperature represents an
actual temperature range up to 5 degrees above or below the digital value. For exam-
ple, the analog temperature range between —25 and —15 degrees is represented by the
digital temperature value of —20 degrees. This discrepancy between the actual tem-
perature and the digital temperature is called the quantization error.In order to obtain
greater precision, we would need to increase the number of bits beyond four in the
output of the A/D converter. The hardware components for sensing, signal condition-
ing, and A/D conversion are shown in the upper left corner of Figure 1-3.
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Next, the digital value passes through the microcomputer to a wireless trans-
mitter as a digital output device in the lower right corner of Figure 1-3. The digital
value is transmitted to a wireless receiver, which is a digital input device in the base
station. The digital value enters the microcomputer at the base station, where calcu-
lations may be performed to adjust its value based on thermistor properties. The
resulting value is to be displayed with an analog meter shown in Figure 1-4(f) as the
output device. In order to support this display, the digital value is converted to an
analog value by a digital-to-analog converter, giving the quantized, discrete voltage
levels shown in Figure 1-4(d). Signal conditioning, such as processing of the output
by a low-pass analog filter, is applied to give the continuous signal in Figure 1-4(e).
This signal is applied to the analog voltage display, which has been labeled with the
corresponding temperature values shown for five selected points over the 24-hour
period in Figure 1-4(f). [

You might ask: “How many embedded systems are there in my current living
environment?” Do you have a cell phone? An iPod™? An Xbox™? A digital cam-
era? A microwave oven? An automobile? All of these are embedded systems. In
fact, a late-model automobile can contain more than 50 microcontrollers, each con-
trolling a distinct embedded system, such as the engine control unit (ECU), auto-
matic braking system (ABS), and stability control unit (SCU). Further, a significant
proportion of these embedded systems communicate with each other through a
CAN (controller area network). A more recently developed automotive network,
called FlexRay, provides high-speed, reliable communication for safety-critical tasks
such as braking-by-wire and steering-by-wire, eliminating primary dependence on
mechanical and hydraulic linkages and enhancing the potential for additional safety
features such as collision avoidance. Table 1-1 lists examples of embedded systems
classified by application area.

Considering the widespread use of personal computers and embedded sys-
tems, digital systems have a major impact on our lives, an impact that is not often
fully appreciated. Digital systems play central roles in our medical diagnosis and
treatment, in our educational institutions and workplaces, in moving from place to
place, in our homes, in interacting with others, and in just having fun! The complexity
of many of these systems requires considerable care at many levels of design abstrac-
tion to make the systems work. Thanks to the invention of the transistor and the
integrated circuit and to the ingenuity and perseverance of millions of engineers and
programmers, they indeed work and usually work well. In the remainder of this text,
we take you on a journey that reveals how digital systems work and provide a
detailed look at how to design digital systems and computers.

More on the Generic Computer

At this point, we will briefly discuss the generic computer and relate its various parts
to the block diagram in Figure 1-2. At the lower left of the diagram at the beginning
of this chapter is the heart of the computer, an integrated circuit called the processor.
Modern processors such as this one are quite complex and consist of tens to hun-
dreds of millions of transistors. The processor contains four functional modules: the
CPU, the FPU, the MMU, and the internal cache.
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Application Area

Product

Banking, commerce and

Copiers, FAX machines, UPC scanners, vending

manufacturing machines, automatic teller machines, automated
warehouses, industrial robots, 3D printers
Communication Wireless access points, network routers, satellites

Games and toys Video games, handheld games, talking stuffed toys

Home appliances Digital alarm clocks, conventional and microwave
ovens, dishwashers

Media CD players, DVD players, flat panel TVs, digital
cameras, digital video cameras

Medical equipment Pacemakers, incubators, magnetic resonance

imaging

Personal Digital watches, MP3 players, smart phones,

wearable fitness trackers

Transportation and navigation Electronic engine controls, traffic light controllers,

aircraft flight controls, global positioning systems

We have already discussed the CPU. The FPU (floating-point unit) is some-
what like the CPU, except that its datapath and control unit are specifically designed
to perform floating-point operations. In essence, these operations process informa-
tion represented in the form of scientific notation (e.g., 1.234 X 107), permitting the
generic computer to handle very large and very small numbers. The CPU and the
FPU, in relation to Figure 1-2, each contain a datapath and a control unit.

The MMU is the memory management unit. The MMU plus the internal cache
and the separate blocks near the bottom of the computer labeled “External Cache”
and “RAM?” (random-access memory) are all part of the memory in Figure 1-2. The
two caches are special kinds of memory that allow the CPU and FPU to get at the
data to be processed much faster than with RAM alone. RAM is what is most com-
monly referred to as memory. As its main function, the MMU causes the memory
that appears to be available to the CPU to be much, much larger than the actual size
of the RAM. This is accomplished by data transfers between the RAM and the hard
drive shown at the top of the drawing of the generic computer. So the hard drive,
which we discuss later as an input/output device, conceptually appears as a part of
both the memory and input/output.

The connection paths shown between the processor, memory, and external
cache are the pathways between integrated circuits. These are typically implemented
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as fine copper conductors on a printed circuit board. The connection paths below the
bus interface are referred to as the processor bus. The connections above the bus
interface are the input/output (I/O) bus. The processor bus and the I/O bus attached
to the bus interface carry data having different numbers of bits and have different
ways of controlling the movement of data. They may also operate at different speeds.
The bus interface hardware handles these differences so that data can be communi-
cated between the two buses.

All of the remaining structures in the generic computer are considered part
of I/O in Figure 1-2. In terms of sheer physical volume, these structures dominate.
In order to enter information into the computer, a keyboard is provided. In order
to view output in the form of text or graphics, a graphics adapter card and LCD
(liquid crystal display) screen are provided. The hard drive, discussed previously, is
an electromechanical magnetic storage device. It stores large quantities of infor-
mation in the form of magnetic flux on spinning disks coated with magnetic mate-
rials. In order to control the hard drive and transfer information to and from it, a
drive controller is used. The keyboard, graphics adapter card, and drive controller
card are all attached to the I/O bus. This allows these devices to communicate
through the bus interface with the CPU and other circuitry connected to the pro-
cessor buses.

1-2 ABSTRACTION LAYERS IN COMPUTER SYSTEMS DESIGN

As described by Moggridge, design is the process of understanding all the relevant
constraints for a problem and arriving at a solution that balances those constraints.
In computer systems, typical constraints include functionality, speed, cost, power,
area, and reliability. At the time that this text is being written in 2014, leading edge
integrated circuits have billions of transistors —designing such a circuit one transistor
at a time is impractical. To manage that complexity, computer systems design is
typically performed in a “top down” approach, where the system is specified at a high
level and then the design is decomposed into successively smaller blocks until a
block is simple enough that it can be implemented. These blocks are then connected
together to make the full system. The generic computer described in the previous
section is a good example of blocks connected together to make a full system. This
book begins with smaller blocks and then moves toward putting them together into
larger, more complex blocks.

A fundamental aspect of the computer systems design process is the concept of
“layers of abstraction.” Computer systems such as the generic computer can be
viewed at several layers of abstraction from circuits to algorithms, with each higher
layer of abstraction hiding the details and complexity of the layer below. Abstraction
removes unnecessary implementation details about a component in the system so
that a designer can focus on the aspects of the component that matter for the prob-
lem being solved. For example, when we write a computer program to add two vari-
ables and store the result in a third variable, we focus on the programming language
constructs used to declare the variables and describe the addition operation. But
when the program executes, what really happens is that electrical charge is moved
around by transistors and stored in capacitive layers to represent the bits of data and
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O FIGURE 1-5
Typical Layers of Abstraction in Modern Computer Systems

control signals necessary to perform the addition and store the result. It would be
difficult to write programs if we had to directly describe the flow of electricity for
individual bits. Instead, the details of controlling them are managed by several layers
of abstractions that transform the program into a series of more detailed representa-
tions that eventually control the flow of electrical charges that implement the
computation.

Figure 1-5 shows the typical layers of abstraction in contemporary computing
systems. At the top of the abstraction layers, algorithms describe a series of steps that
lead to a solution. These algorithms are then implemented as a program in a high-
level programming language such as C++, Python, or Java. When the program is run-
ning, it shares computing resources with other programs under the control of an
operating system. Both the operating system and the program are composed of
sequences of instructions that are particular to the processor running them; the set of
instructions and the registers (internal data memory) available to the programmer
are known as the instruction set architecture. The processor hardware is a particular
implementation of the instruction set architecture, referred to as the microarchitec-
ture; manufacturers very often make several different microarchitectures that exe-
cute the same instruction set. A microarchitecture can be described as underlying
sequences of transfers of data between registers. These register transfers can be
decomposed into logic operations on sets of bits performed by logic gates, which are
electronic circuits implemented with transistors or other physical devices that con-
trol the flow of electrons.

An important feature of abstraction is that lower layers of abstraction can usu-
ally be modified without changing the layers above them. For example, a program
written in C++ can be compiled on any computer system with a C++ compiler and
then executed. As another example, an executable program for the Intel™ x86
instruction set architecture can run on any microarchitecture (implementation) of
that architecture, whether that implementation is from Intel™ or AMD. Consequently,
abstraction allows us to continue to use solutions at higher layers of abstraction even
when the underlying implementations have changed.

This book is mainly concerned with the layers of abstraction from logic gates
up to operating systems, focusing on the design of the hardware up to the interface
between the hardware and the software. By understanding the interactions of the
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layers of abstraction, we can choose the proper layer of abstraction on which to con-
centrate for a given design, ignoring unnecessary details and optimizing the aspects
of the system that are likely to have the most impact on achieving the proper balance
of constraints for a successful design. Oftentimes, the higher layers of abstraction
have the potential for much more improvement in the design than can be found at
the lower layers. For example, it might be possible to re-design a hardware circuit for
multiplying two numbers so that it runs 20-50% faster than the original, but it might
be possible to have much bigger impact on the speed of the overall circuit if the algo-
rithm is modified to not use multiplication at all. As technology has progressed and
computer systems have become more complex, the design effort has shifted to higher
layers of abstraction and, at the lower layers, much of the design process has been
automated. Effectively using the automated processes requires an understanding of
the fundamentals of design at those layers of abstraction.

An Overview of the Digital Design Process

The design of a digital computer system starts from the specification of the problem
and culminates in representation of the system that can be implemented. The design
process typically involves repeatedly transforming a representation of the system at
one layer of abstraction to a representation at the next lower level of abstraction, for
example, transforming register transfers into logic gates, which are in turn trans-
formed into transistor circuits.

While the particular details of the design process depend upon the layer of
abstraction, the procedure generally involves specifying the behavior of the system,
generating an optimized solution, and then verifying that the solution meets the spec-
ification both in terms of functionality and in terms of design constraints such as speed
and cost. As a concrete example of the procedure, the following steps are the design
procedure for combinational digital circuits that Chapters 2 and 3 will introduce:

1. Specification: Write a specification for the behavior of the circuit, if one is not
already available.

2. Formulation: Derive the truth table or initial Boolean equations that define
the required logical relationships between inputs and outputs.

3. Optimization: Apply two-level and multiple-level optimization to minimize
the number of logic gates required. Draw a logic diagram or provide a netlist
for the resulting circuit using logic gates.

4. Technology Mapping: Transform the logic diagram or netlist to a new diagram
or netlist using the available implementation technology.

5. Verification: Verify the correctness of the final design.

For digital circuits, the specification can take a variety of forms, such as text or a
description in a hardware description language (HDL), and should include the respec-
tive symbols or names for the inputs and outputs. Formulation converts the specifica-
tion into forms that can be optimized. These forms are typically truth tables or Boolean
expressions. It is important that verbal specifications be interpreted correctly when
formulating truth tables or expressions. Often the specifications are incomplete, and
any wrong interpretation may result in an incorrect truth table or expression.
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Optimization can be performed by any of a number available methods, such as
algebraic manipulation, the Karnaugh map method, which will be introduced in
Chapter 2, or computer-based optimization programs. In a particular application,
specific criteria serve as a guide for choosing the optimization method. A practical
design must consider constraints such as the cost of the gates used, maximum allow-
able propagation time of a signal through the circuit, and limitations on the fan-out
of each gate. This is complicated by the fact that gate costs, gate delays, and fan-out
limits are not known until the technology mapping stage. As a consequence, it is dif-
ficult to make a general statement about what constitutes an acceptable end result
for optimization. It may be necessary to repeat optimization and technology map-
ping multiple times, repeatedly refining the circuit so that it has the specified behav-
ior while meeting the specified constraints.

This brief overview of the digital design process provides a road map for the
remainder of the book. The generic computer consists mainly of an interconnection
of digital modules. To understand the operation of each module, we need a basic
knowledge of digital systems and their general behavior. Chapters 1 through 5 of this
book deal with logic design of digital circuits in general. Chapters 4 and 6 discuss the
primary components of a digital system, their operation, and their design. The opera-
tional characteristics of RAM are explained in Chapter 7 Datapath and control for
simple computers are introduced in Chapter 8. Chapters 9 through 12 present the
basics of computer design. Typical instructions employed in computer instruction-set
architectures are presented in Chapter 9. The architecture and design of CPUs are
examined in Chapter 10. Input and output devices and the various ways that a CPU
can communicate with them are discussed in Chapter 11. Finally, memory hierarchy
concepts related to the caches and MMU are introduced in Chapter 12.

To guide the reader through this material and to keep in mind the “forest” as
we carefully examine many of the “trees,” accompanying discussion appears in a
blue box at the beginning of each chapter. Each discussion introduces the topics in
the chapter and ties them to the associated components in the generic computer dia-
gram at the start of this chapter. At the completion of our journey, we will have cov-
ered most of the various modules of the computer and will have gained an
understanding of the fundamentals that underlie both its function and design.

1-3 NUMBER SYSTEMS

Earlier, we mentioned that a digital computer manipulates discrete elements of in-
formation and that all information in the computer is represented in binary form.
Operands used for calculations may be expressed in the binary number system or in
the decimal system by means of a binary code. The letters of the alphabet are also
converted into a binary code. The remainder of this chapter introduces the binary
number system, binary arithmetic, and selected binary codes as a basis for further
study in the succeeding chapters. In relation to the generic computer, this material is
very important and spans all of the components, excepting some in I/O that involve
mechanical operations and analog (as contrasted with digital) electronics.

The decimal number system is employed in everyday arithmetic to represent
numbers by strings of digits. Depending on its position in the string, each digit has an
associated value of an integer raised to the power of 10. For example, the decimal
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number 724.5 is interpreted to represent 7 hundreds plus 2 tens plus 4 units plus 5
tenths. The hundreds, tens, units, and tenths are powers of 10 implied by the position
of the digits. The value of the number is computed as follows:

7245 =7 X102 +2 %X 10" + 4 x 10° + 5 x 107!

The convention is to write only the digits and infer the corresponding powers
of 10 from their positions. In general, a decimal number with 7 digits to the left of the
decimal point and m digits to the right of the decimal point is represented by a string
of coefficients:

Ap Ay AYAGALA . Ay A,

Each coefficient A; is one of 10 digits (0, 1, 2, 3,4,5,6,7,8,9). The subscript value i
gives the position of the coefficient and, hence, the weight 10° by which the coeffi-
cient must be multiplied.

The decimal number system is said to be of base or radix 10, because the coeffi-
cients are multiplied by powers of 10 and the system uses 10 distinct digits. In gen-
eral, a number in base r contains r digits, 0, 1,2, .. ., r 1 and is expressed as a power
series in r with the general form

An,lr"ﬂ + An,27n72 + ... +A1r1+ A()ro
A AL A T AT

When the number is expressed in positional notation, only the coefficients and the
radix point are written down:

Ap 1 Apy e AYAg AL Ay i Ayt Ay

w”»

In general, the “.” is called the radix point. A, _; is referred to as the most signifi-
cant digit (msd) and A_,, as the least significant digit (Isd) of the number. Note
that if m = 0, the Isd is A_y = Ay. To distinguish between numbers of different
bases, it is customary to enclose the coefficients in parentheses and place a sub-
script after the right parenthesis to indicate the base of the number. However,
when the context makes the base obvious, it is not necessary to use parentheses.
The following illustrates a base 5 number with » = 3 and m = 1 and its conver-
sion to decimal:

(3124)s =3 x5 + 1 x 58 + 2 x5 +4 x5!

Note that for all the numbers without the base designated, the arithmetic is
performed with decimal numbers. Note also that the base 5 system uses only five
digits, and, therefore, the values of the coefficients in a number can be only 0, 1,2, 3,
and 4 when expressed in that system.

An alternative method for conversion to base 10 that reduces the number of
operations is based on a factored form of the power series:

(...((A,,,lr + Anfz)r + (A,,,3)r +...+ Al)r + AO
+ (Aq+ AL+ A+ (A + (A + A,mr*l)r*l)r*l...)fl)rfl)fl
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For the example above,

(G124)s=(3X 5 + 1) X5) +2+4x5"
=16 X5+ 2+ 0.8 = (82.8)

In addition to decimal, three number systems are used in computer work:
binary, octal, and hexadecimal. These are base 2, base 8, and base 16 number systems,
respectively.

Binary Numbers

The binary number system is a base 2 system with two digits: 0 and 1. A binary num-
ber such as 11010.11 is expressed with a string of 1s and Os and, possibly, a binary
point. The decimal equivalent of a binary number can be found by expanding the
number into a power series with a base of 2. For example,

(11010), =1 X 2 + 1 x 22 + 0 x 22+ 1 x 21 + 0 x 2° = (26)y,

As noted earlier, the digits in a binary number are called bits. When a bit is equal
to 0, it does not contribute to the sum during the conversion. Therefore, the conver-
sion to decimal can be obtained by adding the numbers with powers of two corre-
sponding to the bits that are equal to 1. For example,

(110101.11), = 32 + 16 + 4 + 1 + 0.5 + 0.25 = (53.75),

The first 24 numbers obtained from 2 to the power of n are listed in Table 1-2.
In digital systems, we refer to 2!% as K (kilo), 2 as M (mega), 2*° as G (giga), and 2*°
as T (tera). Thus,

4K = 22 x 219 = 212 = 4096 and 16M = 2% x 220 = 2% = 16,777,216

This convention does not necessarily apply in all cases, with more conventional usage
of K,M, G,and T as 10%, 10, 10° and 10'2, respectively, sometimes applied as well. So
caution is necessary in interpreting and using this notation.

The conversion of a decimal number to binary can be easily achieved by a
method that successively subtracts powers of two from the decimal number. To

[J TABLE 1-2
Powers of Two

n 2" n 2n n 2"

0 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 10 1,024 18 262,144
3 8 11 2,048 19 524,288
4 16 12 4,096 20 1,048,576
5 32 13 8,192 21 2,097152
6 64 14 16,384 22 4,194,304
7 128 15 32,768 23 8,388,608
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convert the decimal number N to binary, first find the greatest number that is a
power of two (see Table 1-2) and that, subtracted from N, produces a positive differ-
ence. Let the difference be designated N;. Now find the greatest number that is a
power of two and that, subtracted from N;, produces a positive difference N,.
Continue this procedure until the difference is zero. In this way, the decimal number
is converted to its powers-of-two components. The equivalent binary number is
obtained from the coefficients of a power series that forms the sum of the compo-
nents. 1s appear in the binary number in the positions for which terms appear in the
power series, and Os appear in all other positions. This method is demonstrated by
the conversion of decimal 625 to binary as follows:

625 — 512 = 113 = N; 512 = 2°
113 -64 = 49 = N, 64 = 2°
49 —32 =17 = Ny 32 =2
17-16=1=N, 16 =24
1-1=0=N; 1 =2

(625)19 = 27 + 26 + 25 + 2% + 29 = (1001110001),

Octal and Hexadecimal Numbers

As previously mentioned, all computers and digital systems use the binary represen-
tation. The octal (base 8) and hexadecimal (base 16) systems are useful for repre-
senting binary quantities indirectly because their bases are powers of two. Since
27 = 8 and 2* = 16, each octal digit corresponds to three binary digits and each
hexadecimal digit corresponds to four binary digits.

The more compact representation of binary numbers in either octal or
hexadecimal is much more convenient for people than using bit strings in binary
that are three or four times as long. Thus, most computer manuals use either
octal or hexadecimal numbers to specify binary quantities. A group of 15 bits, for
example, can be represented in the octal system with only five digits. A group of
16 bits can be represented in hexadecimal with four digits. The choice between
an octal and a hexadecimal representation of binary numbers is arbitrary,
although hexadecimal tends to win out, since bits often appear in strings of size
divisible by four.

The octal number system is the base 8 system with digits 0,1,2,3,4,5,6,and 7
An example of an octal number is 127.4. To determine its equivalent decimal value,
we expand the number in a power series with a base of 8:

(1274)g =1 x 8 +2 X 8 +7x 8 + 4 x 8! = (87.5),

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to use the first r digits from the decimal system, starting with 0,
to represent the coefficients in a base r system when r is less than 10. The letters of
the alphabet are used to supplement the digits when r is 10 or more. The hexadeci-
mal number system is a base 16 system with the first 10 digits borrowed from the
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[J TABLE 1-3
Numbers with Different Bases

Decimal Binary Octal Hexadecimal
(base 10) (base2) (base8) (base 16)

00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

decimal system and the letters A, B, C, D, E, and F used for the values 10, 11, 12, 13,
14, and 15, respectively. An example of a hexadecimal number is

(B65F);s = 11 X 16° + 6 X 16> + 5 X 16! + 15 X 16° = (46687)

The first 16 numbers in the decimal, binary, octal, and hexadecimal number
systems are listed in Table 1-3. Note that the sequence of binary numbers follows a
prescribed pattern. The least significant bit alternates between 0 and 1, the second
significant bit between two Os and two 1s, the third significant bit between four Os
and four 1s, and the most significant bit between eight Os and eight 1s.

The conversion from binary to octal is easily accomplished by partitioning the
binary number into groups of three bits each, starting from the binary point and pro-
ceeding to the left and to the right. The corresponding octal digit is then assigned to
each group. The following example illustrates the procedure:

(010 110 001 101 011. 111 100 000 110), = (26153.7406)

The corresponding octal digit for each group of three bits is obtained from the first
eight entries in Table 1-3. To make the total count of bits a multiple of three, Os can be
added on the left of the string of bits to the left of the binary point. More importantly,
Os must be added on the right of the string of bits to the right of the binary point to
make the number of bits a multiple of three and obtain the correct octal result.

Conversion from binary to hexadecimal is similar, except that the binary num-
ber is divided into groups of four digits, starting at the binary point. The previous
binary number is converted to hexadecimal as follows:

(0010 1100 0110 1011. 1111 0000 0110), = (2C6B.F06)4



20 [0 CHAPTER 1/ DIGITAL SYSTEMS AND INFORMATION

The corresponding hexadecimal digit for each group of four bits is obtained by refer-
ence to Table 1-3.

Conversion from octal or hexadecimal to binary is done by reversing the pro-
cedure just performed. Each octal digit is converted to a 3-bit binary equivalent, and
extra Os are deleted. Similarly, each hexadecimal digit is converted to its 4-bit binary
equivalent. This is illustrated in the following examples:

(673.12)g = 110 111 011. 001 010
(3A6.C)6 = 0011 1010 0110. 1100

(110111011.00101),
(1110100110.11),

Number Ranges

In digital computers, the range of numbers that can be represented is based on the
number of bits available in the hardware structures that store and process informa-
tion. The number of bits in these structures is most frequently a power of two, such as
8,16, 32, and 64. Since the numbers of bits is fixed by the structures, the addition of
leading or trailing zeros to represent numbers is necessary, and the range of numbers
that can be represented is also fixed.

For example, for a computer processing 16-bit unsigned integers, the number
537 is represented as 0000001000011001. The range of integers that can be handled
by this representation is from 0 to 216 — 1, that is, from 0 to 65,535. If the same com-
puter is processing 16-bit unsigned fractions with the binary point to the left of the
most significant digit, then the number 0.375 is represented by 0.0110000000000000.
The range of fractions that can be represented is from 0 to (2! — 1)/2%, or from 0.0
t0 0.9999847412.

In later chapters, we will deal with fixed-bit representations and ranges for
binary signed numbers and floating-point numbers. In both of these cases, some bits
are used to represent information other than simple integer or fraction values.

1-4 ARITHMETIC OPERATIONS

Arithmetic operations with numbers in base r follow the same rules as for decimal
numbers. However, when a base other than the familiar base 10 is used, one must be
careful to use only r allowable digits and perform all computations with base r digits.
Examples of the addition of two binary numbers are as follows (note the names of
the operands for addition):

Carries: 00000 101100
Augend: 01100 10110
Addend: +10001 +10111
Sum: 11101 101101

The sum of two binary numbers is calculated following the same rules as for decimal
numbers, except that the sum digit in any position can be only 1 or 0. Also, a carry in
binary occurs if the sum in any bit position is greater than 1. (A carry in decimal
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occurs if the sum in any digit position is greater than 9.) Any carry obtained in a
given position is added to the bits in the column one significant position higher. In
the first example, since all of the carries are 0, the sum bits are simply the sum of the
augend and addend bits. In the second example, the sum of the bits in the second
column from the right is 2, giving a sum bit of 0 and a carry bit of 1 (2 = 2 + 0). The
carry bit is added with the 1s in the third position, giving a sum of 3, which produces
asumbitof 1 andacarryof1 (3 =2 + 1).

The following are examples of the subtraction of two binary numbers; as with
addition, note the names of the operands:

Borrows: 00000 00110 00110
Minuend: 10110 10110 10011 11110
Subtrahend: —10010 —10011 —11110 ><—10011
Difference: 00100 00011 —-01011

The rules for subtraction are the same as in decimal, except that a borrow into
a given column adds 2 to the minuend bit. (A borrow in the decimal system adds 10
to the minuend digit.) In the first example shown, no borrows occur, so the differ-
ence bits are simply the minuend bits minus the subtrahend bits. In the second exam-
ple, in the right position, the subtrahend bit is 1 with the minuend bit 0, so it is
necessary to borrow from the second position as shown. This gives a difference bit in
the first position of 1 (2 + 0 — 1 = 1). In the second position, the borrow is sub-
tracted, so a borrow is again necessary. Recall that, in the event that the subtrahend
is larger than the minuend, we subtract the minuend from the subtrahend and give
the result a minus sign. This is the case in the third example, in which this interchange
of the two operands is shown.

The final operation to be illustrated is binary multiplication, which is quite simple.
The multiplier digits are always 1 or 0. Therefore, the partial products are equal either to
the multiplicand or to 0. Multiplication is illustrated by the following example:

Multiplicand: 1011
Multiplier: X 101
1011
0000
1011
Product: 110111

Arithmetic operations with octal, hexadecimal, or any other base r system will
normally require the formulation of tables from which one obtains sums and prod-
ucts of two digits in that base. An easier alternative for adding two numbers in base r
is to convert each pair of digits in a column to decimal, add the digits in decimal, and
then convert the result to the corresponding sum and carry in the base r system.
Since addition is done in decimal, we can rely on our memories for obtaining the
entries from the familiar decimal addition table. The sequence of steps for adding
the two hexadecimal numbers 59F and E46 is shown in Example 1-2.
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EXAMPLE 1-2 Hexadecimal Addition
Perform the addition (59F )5 + (E46)4:

Hexadecimal Equivalent Decimal Calculation
1 1
59F 5 |Carry 15 Carry
E46 14 4 6
13E5 119=16+3 14=E 21=16+5

The equivalent decimal calculation columns on the right show the mental reasoning
that must be carried out to produce each digit of the hexadecimal sum. Instead of
adding F + 6 in hexadecimal, we add the equivalent decimals, 15 + 6 = 21. We
then convert back to hexadecimal by noting that 21 = 16 + 5. This gives a sum digit
of 5 and a carry of 1 to the next higher-order column of digits. The other two columns
are added in a similar fashion. |

In general, the multiplication of two base r numbers can be accomplished by
doing all the arithmetic operations in decimal and converting intermediate results
one at a time. This is illustrated in the multiplication of two octal numbers shown in
Example 1-3.

EXAMPLE 1-3 Octal Multiplication
Perform the multiplication (762)g X (45)s:

Octal Octal Decimal Octal
762 5X2 = 10=8+2 =12
45 SX6+1 = 31=24+7=37

4672 SXT7+3 = 38=32+6=46

3710 4 X2 = 8= 8+0=10

43772 4X6+1 = 25=24+1=31

4XT7+3 = 31=24+7=37

Shown on the right are the mental calculations for each pair of octal digits. The octal
digits 0 through 7 have the same value as their corresponding decimal digits. The
multiplication of two octal digits plus a carry, derived from the calculation on
the previous line, is done in decimal, and the result is then converted back to octal.
The left digit of the two-digit octal result gives the carry that must be added to the
digit product on the next line. The blue digits from the octal results of the decimal
calculations are copied to the octal partial products on the left. For example,
(5 X 2)s = (12)g. The left digit, 1, is the carry to be added to the product (5 X 6)g,
and the blue least significant digit, 2, is the corresponding digit of the octal partial
product. When there is no digit product to which the carry can be added, the carry is
written directly into the octal partial product, as in the case of the 4 in 46. |
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Conversion from Decimal to Other Bases

We convert a number in base r to decimal by expanding it in a power series and add-
ing all the terms, as shown previously. We now present a general procedure for the
operation of converting a decimal number to a number in base r that is the reverse of
the alternative expansion to base 10 on page 16. If the number includes a radix point,
we need to separate the number into an integer part and a fraction part, since the
two parts must be converted differently. The conversion of a decimal integer to a
number in base r is done by dividing the number and all successive quotients by r
and accumulating the remainders. This procedure is best explained by example.

EXAMPLE 1-4 Conversion of Decimal Integers to Octal

Convert decimal 153 to octal:

The conversion is to base 8. First, 153 is divided by 8 to give a quotient of 19 and a
remainder of 1, as shown in blue. Then 19 is divided by 8 to give a quotient of 2 and a
remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of 2.
The coefficients of the desired octal number are obtained from the remainders:

153/8 = 19 + 1/8 Remainder = 1 Least significant digit
19/8 =2 + 3/8 =3
2/8=0 + 2/8 =2 Most significant digit
(153)19 = (231)s u

Note in Example 1-4 that the remainders are read from last to first, as indicated
by the arrow, to obtain the converted number. The quotients are divided by r until
the result is 0. We also can use this procedure to convert decimal integers to binary,
as shown in Example 1-5. In this case, the base of the converted number is 2, and
therefore, all the divisions must be done by 2.

EXAMPLE 1-5 Conversion of Decimal Integers to Binary

Convert decimal 41 to binary:

4172 =20+ 172 Remainder = 1 A  Least significant digit
20/2 = 10 =0

1012 =5 =0

52 =2+1/2 =1

22 =1 =0

12=0+172 =1 Most significant digit

(41);p = (101001),

Of course, the decimal number could be converted by the sum of powers of two:

(1) = 32 + 8 + 1 = (101001), =
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The conversion of a decimal fraction to base r is accomplished by a method
similar to that used for integers, except that multiplication by r is used instead of
division, and integers are accumulated instead of remainders. Again, the method is
best explained by example.

Example 1-6 Conversion of Decimal Fractions to Binary
Convert decimal 0.6875 to binary:

First, 0.6875 is multiplied by 2 to give an integer and a fraction. The new fraction is mul-
tiplied by 2 to give a new integer and a new fraction. This process is continued until the
fractional part equals O or until there are enough digits to give sufficient accuracy. The
coefficients of the binary number are obtained from the integers as follows:

0.6875 X 2 = 1.3750 Integer = 1 Most significant digit

0.3750 X 2 = 0.7500 =0

0.7500 X 2 = 1.5000 =1

0.5000 X 2 = 1.0000 =1 Least significant digit
(0.6875)19 = (0.1011), [

Note in the foregoing example that the integers are read from first to last, as
indicated by the arrow, to obtain the converted number. In the example, a finite num-
ber of digits appear in the converted number. The process of multiplying fractions by
r does not necessarily end with zero, so we must decide how many digits of the frac-
tion to use from the conversion. Also, remember that the multiplications are by num-
ber r. Therefore, to convert a decimal fraction to octal, we must multiply the fractions
by 8, as shown in Example 1-7

EXAMPLE 1-7 Conversion of Decimal Fractions to Octal

Convert decimal 0.513 to a three-digit octal fraction:

0.513 X 8 = 4.104 Integer = 4 Most significant digit

0.104 x 8 = 0.832 =0
0.832 X 8 = 6.656 =6
0.565 X 8 = 5.248 =5 Least significant digit

The answer, to three significant figures, is obtained from the integer digits. Note that
the last integer digit, 5,1s used for rounding in base 8 of the second-to-the-last digit, 6,
to obtain

The conversion of decimal numbers with both integer and fractional parts is
done by converting each part separately and then combining the two answers. Using
the results of Example 1-4 and Example 1-7, we obtain

(153.513);y = (231.407)g
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1-5 DEeciMAL CODES

The binary number system is the most natural one for a computer, but people are ac-
customed to the decimal system. One way to resolve this difference is to convert deci-
mal numbers to binary, perform all arithmetic calculations in binary, and then convert
the binary results back to decimal. This method requires that we store the decimal
numbers in the computer in such a way that they can be converted to binary. Since the
computer can accept only binary values, we must represent the decimal digits by a
code that contains 1s and 0Os. It is also possible to perform the arithmetic operations
directly with decimal numbers when they are stored in the computer in coded form.

An n-bit binary code is a group of n bits that assume up to 2" distinct combina-
tions of 1s and 0s, with each combination representing one element of the set being
coded. A set of four elements can be coded with a 2-bit binary code, with each ele-
ment assigned one of the following bit combinations: 00,01, 10, 11. A set of 8 elements
requires a 3-bit code, and a set of 16 elements requires a 4-bit code. The bit combina-
tions of an n-bit code can be determined from the count in binary from 0 to 2" — 1.
Each element must be assigned a unique binary bit combination, and no two ele-
ments can have the same value; otherwise, the code assignment is ambiguous.

A binary code will have some unassigned bit combinations if the number of
elements in the set is not a power of 2. The ten decimal digits form such a set. A
binary code that distinguishes among ten elements must contain at least four bits,
but six out of the 16 possible combinations will remain unassigned. Numerous differ-
ent binary codes can be obtained by arranging four bits into 10 distinct combina-
tions. The code most commonly used for the decimal digits is the straightforward
binary assignment listed in Table 1-4. This is called binary-coded decimal and is com-
monly referred to as BCD. Other decimal codes are possible but not commonly used.

Table 1-4 gives a 4-bit code for each decimal digit. A number with » decimal dig-
its will require 4n bits in BCD. Thus, decimal 396 is represented in BCD with 12 bits as

0011 1001 0110

with each group of four bits representing one decimal digit. A decimal number in
BCD is the same as its equivalent binary number only when the number is between

[0 TABLE 1-4
Binary-Coded Decimal (BCD)

Decimal BCD
Symbol Digit
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
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0 and 9, inclusive. A BCD number greater than 10 has a representation different
from its equivalent binary number, even though both contain 1s and 0s. Moreover,
the binary combinations 1010 through 1111 are not used and have no meaning in the
BCD code.

Consider decimal 185 and its corresponding value in BCD and binary:

(185),y = (0001 1000 0101)gep = (10111001),

The BCD value has 12 bits, but the equivalent binary number needs only 8 bits. It is
obvious that a BCD number needs more bits than its equivalent binary value.
However, BCD representation of decimal numbers is still important, because com-
puter input and output data used by most people needs to be in the decimal system.
BCD numbers are decimal numbers and not binary numbers, even though they are
represented using bits. The only difference between a decimal and a BCD number is
that decimals are written with the symbols 0, 1,2, ..., 9, and BCD numbers use the
binary codes 0000,0001,0010, ...,1001.

1-6 AvrLrPHANUMERIC CODES

Many applications of digital computers require the handling of data consisting not
only of numbers, but also of letters. For instance, an insurance company with thou-
sands of policyholders uses a computer to process its files. To represent the names
and other pertinent information, it is necessary to formulate a binary code for the
letters of the alphabet. In addition, the same binary code must represent numerals
and special characters such as $. Any alphanumeric character set for English is a set
of elements that includes the ten decimal digits, the 26 letters of the alphabet, and
several (more than three) special characters. If only capital letters are included, we
need a binary code of at least six bits, and if both uppercase letters and lowercase
letters are included, we need a binary code of at least seven bits. Binary codes play
an important role in digital computers. The codes must be in binary because comput-
ers can handle only 1s and Os. Note that binary encoding merely changes the sym-
bols, not the meaning of the elements of information being encoded.

ASCII Character Code

The standard binary code for the alphanumeric characters is called ASCII (Ameri-
can Standard Code for Information Interchange). It uses seven bits to code 128 char-
acters, as shown in Table 1-5. The seven bits of the code are designated by B, through
B, with B, being the most significant bit. Note that the most significant three bits of
the code determine the column of the table and the least significant four bits the row
of the table. The letter A, for example, is represented in ASCII as 1000001 (column
100, row 0001). The ASCII code contains 94 characters that can be printed and 34
nonprinting characters used for various control functions. The printing characters
consist of the 26 uppercase letters, the 26 lowercase letters, the 10 numerals, and 32
special printable characters such as %, @, and $.

The 34 control characters are designated in the ASCII table with abbreviated
names. They are listed again below the table with their full functional names. The
control characters are used for routing data and arranging the printed text into a
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[0 TABLE 1-5
American Standard Code for Information Interchange (ASCII)

B,B,B,
B,B,B,B, 000 001 010 011 100 101 110 m
0000 NULL DLE SP 0 @ P . p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 ! 2 B R b r
0011 ETX DC3 # 3 C S C S
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F A\ f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN ( 8 H X h X
1001 HT EM ) 9 1 Y i y
1010 LF SUB * : J Z j zZ
1011 VT ESC + ; K [ k {
1100 FF FS s < L \ 1 |
1101 CR GS - = M ] m }
1110 SO RS . > N A n ~
1111 SI uUsS / ? O _ 0 DEL
Control Characters
NULL NULL DLE Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK  Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End of transmission block
BS Backspace CAN  Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
SI Shift in (SN Unit separator
SP Space DEL  Delete

prescribed format. There are three types of control characters: format effectors,
information separators, and communication control characters. Format effectors are
characters that control the layout of printing. They include the familiar typewriter
controls such as backspace (BS), horizontal tabulation (HT), and carriage return
(CR). Information separators are used to separate the data into divisions—for
example, paragraphs and pages. They include characters such as record separator
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(RS) and file separator (FS). The communication control characters are used during
the transmission of text from one location to the other. Examples of communication
control characters are STX (start of text) and ETX (end of text), which are used to
frame a text message transmitted via communication wires.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a
single unit called a byte. Therefore, ASCII characters most often are stored one per
byte, with the most significant bit set to 0. The extra bit is sometimes used for specific
purposes, depending on the application. For example, some printers recognize an
additional 128 8-bit characters, with the most significant bit set to 1. These characters
enable the printer to produce additional symbols, such as those from the Greek
alphabet or characters with accent marks as used in languages other than English.

Adapting computing systems to different world regions and languages is
known as internationalization or localization. One of the major aspects of localiza-
tion is providing characters for the alphabets and scripts for various languages.
ASCII was developed for the English alphabet but, even extending it to 8-bits, it is
unable to support other alphabets and scripts that are commonly used around the
world. Over the years, many different character sets were created to represent the
scripts used in various languages, as well as special technical and mathematical sym-
bols used by various professions. These character sets were incompatible with each
other, for example, by using the same number for different characters or by using
different numbers for the same character.

Unicode was developed as an industry standard for providing a common repre-
sentation of symbols and ideographs for the most of the world’s languages. By provid-
ing a standard representation that covers characters from many different languages,
Unicode removes the need to convert between different character sets and eliminates
the conflicts that arise from using the same numbers for different character sets.
Unicode provides a unique number called a code point for each character, as well as a
unique name. A common notation for referring to a code point is the characters “U+”
followed by the four to six hexadecimal digits of the code point. For example, U+0030
is the character “0’) named Digit Zero. The first 128 code points of Unicode, from
U+0000 to U+007F, correspond to the ASCII characters. Unicode currently sup-
ports over a million code points from a hundred scripts worldwide.

There are several standard encodings of the code points that range from 8 to
32 bits (1 to 4 bytes). For example, UTF-8 (UCS Transformation Format, where
UCS stands for Universal Character Set) is a variable-length encoding that uses
from 1 to 4 bytes for each code point, UTF-16 is a variable-length encoding that
uses either 2 or 4 bytes for each code point, while UTF-32 is a fixed-length that
uses 4 bytes for every code point. Table 1-6 shows the formats used by UTF-8. The
x’s in the right column are the bits from the code point being encoded, with the
least significant bit of the code point placed in the right-most bit of the UTF-8
encoding. As shown in the table, the first 128 code points are encoded with a single
byte, which provides compatibility between ASCII and UTF-8. Thus a file or char-
acter string that contains only ASCII characters will be the same in both ASCII
and UTF-8.

In UTF-8, the number of bytes in a multi-byte sequence is indicated by the
number of leading ones in the first byte. Valid encodings must use the least number
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[0 TABLE 1-6
UTF-8 Encoding for Unicode Code Points

UTF-8 encoding (binary, where bit
positions with x are the bits of the code
Code point range (hexadecimal) | point value)

U-+0000 0000 to U+0000 007F OXXXXXXX

U-+0000 0080 to U+0000 07FF 110xxxxx 10XXXXXX

U-+0000 0800 to U+0000 FFFF | 1110xxxx 10xxxxxX 10XXXXXX

U+0001 0000 to U+0010 FFFF | 11110xxx 10xxxxxx 10xxxxxX 10XXXXXX

of bytes necessary for a given code point. For example, any of the first 128 code
points, which correspond to ASCII, must be encoded using only one byte rather
using one of the longer sequences and padding the code point with Os on the left. To
illustrate the UTF-8 encoding, consider a couple of examples. The code point
U+0054, Latin capital letter T, “T? is in the range of U+0000 0000 to U+0000 007F,
so it would be encoded with one byte with a value of (01010100),. The code point
U+00B1, plus-minus sign, “+” is in the range of U+0000 0080 to U+0000 O7FFF,
so it would be encoded with two bytes with a value of (11000010 10110001),.

Parity Bit

To detect errors in data communication and processing, an additional bit is some-
times added to a binary code word to define its parity. A parity bit is the extra bit in-
cluded to make the total number of 1s in the resulting code word either even or odd.
Consider the following two characters and their even and odd parity:

With Even Parity With Odd Parity
1000001 01000001 11000001
1010100 11010100 01010100

In each case, we use the extra bit in the most significant position of the code to produce
an even number of 1s in the code for even parity or an odd number of 1s in the code for
odd parity. In general, one parity or the other is adopted, with even parity being more
common. Parity may be used with binary numbers as well as with codes, including
ASCII for characters, and the parity bit may be placed in any fixed position in the code.

'EXAMPLE 1-8 Error Detection and Correction for ASCII Transmission

~ The parity bit is helpful in detecting errors during the transmission of information
from one location to another. Assuming that even parity is used, the simplest case is
handled as follows— An even (or odd) parity bit is generated at the sending end for
all 7-bit ASCII characters—the 8-bit characters that include parity bits are transmit-
ted to their destination. The parity of each character is then checked at the receiving
end; if the parity of the received character is not even (odd), it means that at least
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one bit has changed its value during the transmission. This method detects one, three,
or any odd number of errors in each character transmitted. An even number of er-
rors is undetected. Other error-detection codes, some of which are based on addi-
tional parity bits, may be needed to take care of an even number of errors. What is
done after an error is detected depends on the particular application. One possibility
is to request retransmission of the message on the assumption that the error was ran-
dom and will not occur again. Thus, if the receiver detects a parity error, it sends back
a NAK (negative acknowledge) control character consisting of the even-parity eight
bits, 10010101, from Table 1-5 on page 27 If no error is detected, the receiver sends
back an ACK (acknowledge) control character, 00000110. The sending end will
respond to a NAK by transmitting the message again, until the correct parity is
received. If, after a number of attempts, the transmission is still in error, an indication
of a malfunction in the transmission path is given. |

1-7 Gray CODES

As we count up or down using binary codes, the number of bits that change from one
binary value to the next varies. This is illustrated by the binary code for the octal dig-
its on the left in Table 1-7. As we count from 000 up to 111 and “roll over” to 000, the
number of bits that change between the binary values ranges from 1 to 3.

For many applications, multiple bit changes as the circuit counts is not a prob-
lem. There are applications, however, in which a change of more than one bit when
counting up or down can cause serious problems. One such problem is illustrated by
an optical shaft-angle encoder shown in Figure 1-6(a). The encoder is a disk attached
to a rotating shaft for measurement of the rotational position of the shaft. The disk
contains areas that are clear for binary 1 and opaque for binary 0. An illumination
source is placed on one side of the disk, and optical sensors, one for each of the bits
to be encoded, are placed on the other side of the disk. When a clear region lies

[0 TABLE 1-7

Gray Code
Binary Bit Gray Bit
Code Changes Code Changes
000 000
001 1 001 1
010 2 011 1
011 1 010 1
100 3 110 1
101 1 111 1
110 2 101 1
111 1 100 1
000 3 000 1
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(a) Binary code for positions 0 through 7 (b) Gray code for positions 0 through 7

[0 FIGURE 1-6
Optical Shaft-Angle Encoder

between the source and a sensor, the sensor responds to the light with a binary 1 out-
put. When an opaque region lies between the source and the sensor, the sensor
responds to the dark with a binary 0.

The rotating shaft, however, can be in any angular position. For example, sup-
pose that the shaft and disk are positioned so that the sensors lie right at the bound-
ary between 011 and 100. In this case, sensors in positions B,, B;, and B, have the
light partially blocked. In such a situation, it is unclear whether the three sensors will
see light or dark. As a consequence, each sensor may produce either a 1 or a 0. Thus,
the resulting encoded binary number for a value between 3 and 4 may be 000, 001,
010,011, 100, 101, 110, or 111. Either 011 or 100 will be satisfactory in this case, but
the other six values are clearly erroneous!

To see the solution to this problem, notice that in those cases in which only a
single bit changes when going from one value to the next or previous value, this
problem cannot occur. For example, if the sensors lie on the boundary between 2 and
3, the resulting code is either 010 or 011, either of which is satisfactory. If we change
the encoding of the values 0 through 7 such that only one bit value changes as we
count up or down (including rollover from 7 to 0), then the encoding will be satisfac-
tory for all positions. A code having the property that only one bit at a time changes
between codes during counting is a Gray code named for Frank Gray, who patented
its use for shaft encoders in 1953. There are multiple Gray codes for any set of n con-
secutive integers, with n even.

A specific Gray code for the octal digits, called a binary reflected Gray code,
appears on the right in Table 1-7 Note that the counting order for binary codes is now
000,001,011,010,110,111,101, 100, and 000. If we want binary codes for processing,
then we can build a digital circuit or use software that converts these codes to binary
before they are used in further processing of the information.

Figure 1-6(b) shows the optical shaft-angle encoder using the Gray code from
Table 1-7 Note that any two segments on the disk adjacent to each other have only
one region that is clear for one and opaque for the other.

The optical shaft encoder illustrates one use of the Gray code concept. There
are many other similar uses in which a physical variable, such as position or voltage,
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has a continuous range of values that is converted to a digital representation. A quite
different use of Gray codes appears in low-power CMOS (Complementary Metal
Oxide Semiconductor) logic circuits that count up or down. In CMOS, power is con-
sumed only when a bit changes. For the example codes given in Table 1-7 with contin-
uous counting (either up or down), there are 14 bit changes for binary counting for
every eight bit changes for Gray code counting. Thus, the power consumed at the
counter outputs for the Gray code counter is only 57 percent of that consumed at the
binary counter outputs.

A Gray code for a counting sequence of n binary code words (n must be even)
can be constructed by replacing each of the first n/2 numbers in the sequence with a
code word consisting of 0 followed by the even parity for each bit of the binary code
word and the bit to its left. For example, for the binary code word 0100, the Gray
code word is 0, parity(0, 1), parity(1, 0), parity(0,0) = 0110. Next, take the
sequence of numbers formed and copy it in reverse order with the leftmost 0
replaced by a 1. This new sequence provides the Gray code words for the second n/2
of the original n code words. For example, for BCD codes, the first five Gray code
words are 0000,0001,0011,0010, and 0110. Reversing the order of these codes and
replacing the leftmost 0 with a 1, we obtain 1110, 1010, 1011, 1001, and 1000 for the
last five Gray codes. For the special cases in which the original binary codes are 0
through 2" — 1, each Gray code word may be formed directly from the correspond-
ing binary code word by copying its leftmost bit and then replacing each of the
remaining bits with the even parity of the bit of the number and the bit to its left.

1-8 CHAPTER SUMMARY

In this chapter, we introduced digital systems and digital computers and showed why
such systems use signals having only two values. We briefly introduced the structure
of the stored-program digital computer and showed how computers can be applied
to a broad range of specialized applications by using embedded systems. We then
related the computer structure to a representative example of a personal computer
(PC). We also described the concept of layers of abstraction for managing the com-
plexity of designing a computer system built from millions of transistors, as well as
outlining the basic design procedure for digital circuits.

Number-system concepts, including base (radix) and radix point, were pre-
sented. Because of their correspondence to two-valued signals, binary numbers were
discussed in detail. Octal (base 8) and hexadecimal (base 16) were also emphasized,
since they are useful as shorthand notation for binary. Arithmetic operations in bases
other than base 10 and the conversion of numbers from one base to another were
covered. Because of the predominance of decimal in normal use, Binary-Coded
Decimal (BCD) was treated. The representation of information in the form of char-
acters instead of numbers by means of the ASCII code for the English alphabet was
presented. Unicode, a standard for providing characters for languages worldwide,
was described. The parity bit was presented as a technique for error detection, and
the Gray code, which is critical to selected applications, was defined.

In subsequent chapters, we treat the representation of signed numbers and
floating-point numbers. Although these topics fit well with the topics in this chapter,
they are difficult to motivate without associating them with the hardware used to
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implement the operations performed on them. Thus, we delay their presentation
until we examine the associated hardware.
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PROBLEMS

('/ \') The plus (+) indicates a more advanced problem, and the asterisk (*) indicates that
a solution is available on the Companion Website for the text.

1-1. This problem concerns wind measurements made by the wireless weather
station illustrated in Example 1-1. The wind-speed measurement uses a
rotating anemometer connected by a shaft to an enclosed disk that is one-half
clear and one-half black. There is a light above and a photodiode below the
disk in the enclosure. The photodiode produces a 3 V signal when exposed to
light and a 0 V signal when not exposed to light. (a) Sketch the relative
appearance of voltage waveforms produced by this sensor (1) when the wind
is calm, (2) when the wind is 10 mph, and (3) when the wind is 100 mph.
(b) Explain verbally what information the microcomputer must have
available and the tasks it must perform to convert the voltage waveforms
produced into a binary number representing wind speed in miles per hour.

1-2. Using the scheme in Example 1-1, find the discrete, quantized value of voltage
and the binary code for each of the following Fahrenheit temperatures:
—34, +31,+77,and +108.

1-3. *List the binary, octal, and hexadecimal numbers from 16 to 31.

1-4. What is the exact number of bits in a memory that contains (a) 128K bits;
(b) 32M bits; (¢) 8G bits?

1-5. How many bits are in 1 Tb? [Hint: Depending on the tool used to calculate
this, you may need to use a trick to get the exact result. Note that
229 = 1,000,000, + d, where d is the difference between 22° and 1,000,000,
and that 1T = (1,000,000,, + ). Expand the equation for 1T into a sum-of-
products form, insert the value of d, find the three products, and then find
their sum. ]

1-6. What is the decimal equivalent of the largest binary integer that can be
obtained with (a) 11 bits and (b) 25 bits?
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1-7.

1-8.
1-9.

1-10.

1-11.

1-12.

1-13.

1-14.

1-15.

1-16.

*Convert the following binary numbers to decimal: 1001101, 1010011.101,
and 10101110.1001.

Convert the following decimal numbers to binary: 187 891, 2014, and 20486.

*Convert the following numbers from the given base to the other three bases
listed in the table:

Decimal Binary Octal Hexadecimal
369.3125 ? ? ?

? 10111101.101 ? ?

? ? 326.5 ?

? ? ? F3C7A

*Convert the following decimal numbers to the indicated bases, using the
methods of Examples 1-4 on page 23 and 1-7 on page 24:

(a) 7562.45 to octal  (b) 1938.257 to hexadecimal (c) 175.175 to binary.

*Perform the following conversion by using base 2 instead of base 10 as the
intermediate base for the conversion:

(a) (673.6)g to hexadecimal (b) (E7C.B)6to octal (¢) (310.2), to octal

Perform the following binary multiplications:
(a) 1010 X 1100 (b) 0110 X 1001 (c) 1111001 X 011101

+Division is composed of multiplications and subtractions. Perform the binary
division 1010110 =+ 101 to obtain a quotient and remainder.

A limited number system uses base 12. There are at most four integer digits.
The weights of the digits are 12°, 122, 12, and 1. Special names are given to the
weights as follows: 12 = 1 dozen, 12> = 1 gross,and 12° = 1 great gross.

(a) How many beverage cans are in 6 great gross + 8 gross + 7 dozen + 47?

(b) Find the representation in base 12 for 7569, beverage cans.
Considerable evidence suggests that base 20 has historically been used for
number systems in a number of cultures.

(a) Write the digits for a base 20 system, using an extension of the same
digit representation scheme employed for hexadecimal.

(b) Convert (2014);4 to base 20. (¢) Convert (BCI.G),, to decimal.

*In each of the following cases, determine the radix r:
(a) (BEE), = (2699)1p  (b) (365), = (194)y0



1-17.

1-18.
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The following calculation was performed by a particular breed of unusually
intelligent chicken. If the radix r used by the chicken corresponds to its total
number of toes, how many toes does the chicken have on each foot?

(B4, + (24),) x (21), = (1480),

*Find the binary representations for each of the following BCD numbers:
(a) 0100 100001100111 (b) 00110111 1000.0111 0101

*Represent the decimal numbers 715 and 354 in BCD.

*Internally in the computer, with few exceptions, all numerical computation
is done using binary numbers. Input, however, often uses ASCII, which is
formed by appending 011 to the left of a BCD code. Thus, an algorithm that
directly converts a BCD integer to a binary integer is very useful. Here is one
such algorithm:

1. Draw lines between the 4-bit decades in the BCD number.

2. Move the BCD number one bit to the right.

3. Subtract 0011 from each BCD decade containing a binary value > 0111.
4

. Repeat steps 2 and 3 until the leftmost 1 in the BCD number has been
moved out of the least significant decade position.
5. Read the binary result to the right of the least significant BCD decade.

(a) Execute the algorithm for the BCD number 0111 1000.

(b) Execute the algorithm for the BCD number 0011 1001 0111.
Internally in a computer, with few exceptions, all computation is done using
binary numbers. Output, however, often uses ASCII, which is formed by
appending 011 to the left of a BCD code. Thus, an algorithm that directly

converts a binary integer to a BCD integer is very useful. Here is one such
algorithm:

1. Draw lines to bound the expected BCD decades to the left of the binary
number.

2. Move the binary number one bit to the left.
3. Add 0011 to each BCD decade containing a binary value > 0100.

4. Repeat steps 2 and 3 until the last bit in the binary number has been
moved into the least significant BCD decade position.

5. Read the BCD result.

(a) Execute the algorithm for the binary number 1111000.
(b) Execute the algorithm for the binary number 01110010111.
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1-22.

1-23.

1-24.

1-25.

1-26.

1-27.

1-28.
1-29.

1-30.

What bit position in an ASCII code must be complemented to change the
ASCII letter represented from uppercase to lowercase and vice versa?

Write your full name in ASCII, using an 8-bit code: (a) with the leftmost bit
always 0 and (b) with the leftmost bit selected to produce even parity. Include
a space between names and a period after the middle initial.

Decode the following ASCII code: 1000111 1101111 0100000 1000011
1100001 1110010 1100100 1101001 1101110 110001 1101100 1110011
0100001.

*Show the bit configuration that represents the decimal number 255 in:
(a) binary, (b) BCD, (¢) ASCII, and (d) ASCII with odd parity.

Encode the following Unicode code points in UTF-8. Show the binary and
hexadecimal value for each encoding: (a) U-+0040, (b) U+00A2, (¢) U+20AC,
and (d) U+1F6B2

(a) List the 6-bit binary number equivalents for 32 through 47 with a parity
bit added in the rightmost position, giving odd parity to the overall 7-bit
numbers. (b) Repeat for even parity.

Using the procedure given in Section 1-7, find the hexadecimal Gray code.

This problem concerns wind measurements made by the wireless weather
station in Example 1-1. The wind direction is to be measured with a disk
encoder like the one shown in Figure 1-6(b). (a) Assuming that the code 000
corresponds to N, list the Gray code values for each of the directions, S, E, W,
NW, NE, SW, and SE. (b) Explain why the Gray code you have assigned
avoids the reporting of major errors in wind direction.

+What is the percentage of power consumed for continuous counting (either
up or down but not both) at the outputs of a binary Gray code counter (with
all 2" code words used) compared to a binary counter as a function of the
number of bits, n,in the two counters?



COMBINATIONAL
Locic CIRCUITS

logic gates and various means of representing the input/output relationships of

logic circuits. In addition, we will learn the mathematical techniques for designing
circuits from these gates and learn how to design cost-effective circuits. These
techniques, which are fundamental to the design of almost all digital circuits, are based
on Boolean algebra. One aspect of design is to avoid unnecessary circuitry and excess
cost, a goal accomplished by a technique called optimization. Karnaugh maps provide
a graphic method for enhancing understanding of logic design and optimization and
solving small optimization problems for “two-level” circuits. Karnaugh maps, while
applicable only to simple circuits, have much in common with advanced techniques that
are used to create much more complex circuits. Another design constraint for logic is
propagation delay, the amount of time that it takes for a change on the input of gate to
result in a change on the output. Having completed our coverage of combinational
optimization, we introduce the VHDL and Verilog hardware description languages
(HDLs) for combinational circuits. The role of HDLs in digital design is discussed along
with one of the primarily applications of HDLs as the input to automated synthesis tools.
Coverage of general concepts and modeling of combinational circuits using VHDL and
Verilog follows.

In terms of the digital design process and abstraction layers from Chapter 1, we
will begin with the logic gate abstraction layer. There are two types of logic circuits,
combinational and sequential. In a combinational circuit, the circuit output depends
only upon the present inputs, whereas in a sequential circuit, the output depends upon
present inputs as well as the sequence of past inputs. This chapter deals with
combinational logic circuits and presents several methods for describing the input and
output relationships of combinational logic gates, including Boolean equations, truth
tables, schematics, and HDL. The chapter then describes manual methods of
optimizing combinational logic circuits to reduce the number of logic gates that are
required. While these manual optimization methods are only practical for small circuits

In this chapter, we will begin our study of logic and computer design by describing

0o 37
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and only for optimizing gate count, they illustrate one of the constraints involved in
designing combinational logic. The methods also have many aspects in common with
methods that are used on much larger circuits and other types of constraints.

2-1 BiNnaARrY Locic AND GATES

Digital circuits are hardware components that manipulate binary information. The cir-
cuits are implemented using transistors and interconnections in complex semi-conductor
devices called integrated circuits. Each basic circuit is referred to as a logic gate. For sim-
plicity in design, we model the transistor-based electronic circuits as logic gates. Thus, the
designer need not be concerned with the internal electronics of the individual gates, but
only with their external logic properties. Each gate performs a specific logical operation.
The outputs of gates are applied to the inputs of other gates to form a digital circuit.

In order to describe the operational properties of digital circuits, we need to
introduce a mathematical notation that specifies the operation of each gate and that
can be used to analyze and design circuits. This binary logic system is one of a class of
mathematical systems generally called Boolean algebras (after the English mathemati-
cian George Boole, who in 1854 published a book introducing the mathematical theory
of logic). The specific Boolean algebra we will study is used to describe the interconnec-
tion of digital gates and to design logic circuits through the manipulation of Boolean
expressions. We first introduce the concept of binary logic and show its relationship to
digital gates and binary signals. We then present the properties of the Boolean algebra,
together with other concepts and methods useful in designing logic circuits.

Binary Logic

Binary logic deals with binary variables, which take on two discrete values, and with
the operations of mathematical logic applied to these variables. The two values the
variables take may be called by different names, as mentioned in Section 1-1, but for
our purpose, it is convenient to think in terms of binary values and assign 1 or 0 to
each variable. In the first part of this book, variables are designated by letters of the
alphabet,such as A, B, C, X, Y,and Z. Later this notation will be expanded to include
strings of letters, numbers, and special characters. Associated with the binary vari-
ables are three basic logical operations called AND, OR, and NOT:

1. AND. This operation is represented by a dot or by the absence of an operator.
For example, Z = X - Y or Z = XY is read “Z is equal to X AND Y.” The
logical operation AND is interpreted to mean that Z = 1l ifand onlyif X = 1
and Y = 1—otherwise Z = 0. (Remember that X, Y, and Z are binary vari-
ables and can be equal to only 1 or 0.)

2. OR. This operation is represented by a plus symbol. For example,Z = X + Y
isread “Zis equal to X OR Y,”meaning that Z = 1if X = lorif Y = 1,orif
both X =landY = 1. Z = 0Oifandonlyif X = Oand Y = 0.

3. NOT. This operation is represented by a bar over the variable. For example,
Z = X isread “Z is equal to NOT X,” meaning that Z is what X is not. In other
words,if X = 1, then Z = 0—butif X = 0, then Z = 1. The NOT operation is
also referred to as the complement operation, since it changesa 1 toOand a0 to 1.
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Binary logic resembles binary arithmetic, and the operations AND and OR
have similarities to multiplication and addition, respectively. This is why the symbols
used for AND and OR are the same as those used for multiplication and addition.
However, binary logic should not be confused with binary arithmetic. One should
realize that an arithmetic variable designates a number that may consist of many
digits, whereas a logic variable is always either a 1 or a 0. The following equations
define the logical OR operation:

0+0=0
0+1=1
1+0=1
1+1=1

These resemble binary addition, except for the last operation. In binary logic, we
have 1 + 1 = 1 (read “one OR one is equal to one”), but in binary arithmetic, we
have 1 + 1 = 10 (read “one plus one is equal to two”). To avoid ambiguity, the sym-
bol V issometimes used for the OR operation instead of the + symbol. But as long
as arithmetic and logic operations are not mixed, each can use the + symbol with its
own independent meaning.

The next equations define the logical AND operation:

0-0=0
0-1=0
1:0=0
1-1=1

This operation is identical to binary multiplication, provided that we use only a single
bit. Alternative symbols to the - for AND and + for OR, are symbols A and V,respec-
tively, that represent conjunctive and disjunctive operations in propositional calculus.
For each combination of the values of binary variables such as X and Y, there is
a value of Z specified by the definition of the logical operation. The definitions may
be listed in compact form in a truth table. A truth table for an operation is a table of
combinations of the binary variables showing the relationship between the values
that the variables take on and the values of the result of the operation. The truth
tables for the operations AND, OR, and NOT are shown in Table 2-1. The tables list

[0 TABLE 2-1
Truth Tables for the Three Basic Logical Operations

AND OR NOT

X Y Z=X-Y X Y Z=X+Y X Z=X

0
r 1o

_—— 0 O
_0 = O
-0 O O
—_—_ 0 O
_— 0 = O
[ )
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all possible combinations of values for two variables and the results of the operation.
They clearly demonstrate the definition of the three operations.

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to pro-
duce an output signal. Electrical signals such as voltages or currents exist throughout
a digital system in either of two recognizable values. Voltage-operated circuits re-
spond to two separate voltage ranges that represent a binary variable equal to logic 1
or logic 0, as illustrated in Figure 2-1. The input terminals of logic gates accept binary
signals within the allowable range and respond at the output terminals with binary
signals that fall within a specified range. The intermediate regions between the
allowed ranges in the figure are crossed only during changes from 1 to 0 or from 0 to
1. These changes are called transitions, and the intermediate regions are called the
transition regions.

The graphics symbols used to designate the three types of gates— AND, OR,
and NOT —are shown in Figure 2-1(a). The gates are electronic circuits that produce
the equivalents of logic-1 and logic-0 output signals in accordance with their respec-
tive truth tables if the equivalents of logic-1 and logic-0 input signals are applied. The
two input signals X and Y to the AND and OR gates take on one of four possible
combinations: 00, 01, 10, or 11. These input signals are shown as timing diagrams in

X— X =
Z=X-Y Z=X+Y X Z=X
Y — Y

AND gate OR gate NOT gate or
inverter

(a) Graphic symbols

o [T
wor xvlo o o1
on xevlo [T 1 1]

(NOT) X 1 1 0 0

(b) Timing diagram
—>tle—

(AND) X-Y—l 0 0 o0 | 1

(c) AND timing diagram with gate delay 75

O FIGURE 2-1
Digital Logic Gates
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Figure 2-1(b), together with the timing diagrams for the corresponding output signal
for each type of gate. The horizontal axis of a timing diagram represents time, and
the vertical axis shows a signal as it changes between the two possible voltage levels.
The low level represents logic 0 and the high level represents logic 1. The AND gate
responds with a logic-1 output signal when both input signals are logic 1. The OR
gate responds with a logic-1 output signal if either input signal is logic 1. The NOT
gate is more commonly referred to as an inverter. The reason for this name is appar-
ent from the response in the timing diagram. The output logic signal is an inverted
version of input logic signal X.

In addition to its function, each gate has another very important property
called gate delay, the length of time it takes for an input change to result in the corre-
sponding output change. Depending on the technology used to implement the gate,
the length of time may depend on which of the inputs are changing. For example, for
the AND gate shown in Figure 2-1(a), with both inputs equal to 1, the gate delay
when input B changes to 0 may be longer than the gate delay when the input A
changes to 0. Also, the gate delay when the output is changing from 0 to 1 may be
longer than when the output is changing from 1 to 0, or vice versa. In the simplified
model introduced here, these variations are ignored and the gate delay is assumed to
have a single value, f;. This value may be different for each gate type, number of
inputs, and the underlying technology and circuit design of the gate. In Figure 2-1(c),
the output of the AND gate is shown taking into consideration the AND gate delay,
tg. A change in the output waveform is shifted #; time units later compared to the
change in input X or Y that causes it. When gates are attached together to form logic
circuits, the delays down each path from an input to an output add together. In
Section 2-7, we will revisit gate delay and consider a more accurate model.

AND and OR gates may have more than two inputs. An AND gate with three
inputs and an OR gate with six inputs are shown in Figure 2-2. The three-input AND
gate responds with a logic-1 output if all three inputs are logic 1. The output is logic 0
if any input is logic 0. The six-input OR gate responds with a logic 1 if any input is
logic 1;its output becomes a logic 0 only when all inputs are logic 0.

Since Boolean functions are expressed in terms of AND, OR, and NOT opera-
tions, it is a straightforward procedure to implement a Boolean function with AND,
OR, and NOT gates. We find, however, that the possibility of considering gates with
other logic operations is of considerable practical interest. Factors to be taken into
consideration when constructing other types of gates are the feasibility and econ-
omy of implementing the gate with electronic components, the ability of the gate to
implement Boolean functions alone or in conjunction with other gates, and the con-
venience of representing gate functions that are frequently used. In this section, we

A — A
B—}F=ABC B G=A+B+C+D+E+F
(a) Three-input AND gate E (b) Six-input OR gate
F
0 FIGURE 2-2

Gates with More than Two Inputs
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introduce these other gate types, which are used throughout the rest of the text.
Specific techniques for incorporating these gate types in circuits are given in
Section 3-2.

The graphics symbols and truth tables of the most commonly used logic-gate
types are shown in Figure 2-3. Although the gates in Figure 2-3 are shown with just
two binary input variables, X and Y, and one output binary variable, F, with the
exception of the inverter, all may have more than two inputs. The distinctively shaped
symbols shown, as well as rectangular symbols not shown, are specified in detail in
the Institute of Electrical and Electronics Engineers’ (IEEE) Standard Graphic
Symbols for Logic Functions (IEEE Standard 91-1984). The AND, OR, and NOT
gates were defined previously. The NOT circuit inverts the logic sense of a binary
signal to produce the complement operation. Recall that this circuit is typically
called an inverter rather than a NOT gate. The small circle at the output of the
graphic symbol of an inverter is formally called a negation indicator and designates
the logical complement. We informally refer to the negation indicator as a “bubble.”

The NAND gate represents the complement of the AND operation, and the
NOR gate represents the complement of the OR operation. Their respective names
are abbreviations of NOT-AND and NOT-OR, respectively. The graphics symbols
for the NAND gate and NOR gate consist of an AND symbol and an OR symbol,
respectively, with a bubble on the output, denoting the complement operation. In
contemporary integrated circuit technology, NAND and NOR gates are the natural
primitive gate functions for the simplest and fastest electronic circuits. If we consider
the inverter as a degenerate version of NAND and NOR gates with just one input,
NAND gates alone or NOR gates alone can implement any Boolean function. Thus,
these gate types are much more widely used than AND and OR gates in actual logic
circuits. As a consequence, actual circuit implementations are often done in terms of
these gate types.

A gate type that alone can be used to implement all possible Boolean func-
tions is called a universal gate and is said to be “functionally complete.” To show that
the NAND gate is a universal gate, we need only show that the logical operations of
AND, OR, and NOT can be obtained with NAND gates only. This is done in Figure 2-4.
The complement operation obtained from a one-input NAND gate corresponds to a
NOT gate. In fact, the one-input NAND is an invalid symbol and is replaced by the
NOT symbol, as shown in the figure. The AND operation requires a NAND gate fol-
lowed by a NOT gate. The NOT inverts the output of the NAND, giving an AND
operation as the result. The OR operation is achieved using a NAND gate with
NOTs on each input. As will be detailed in Section 2-2, when DeMorgan’s theorem is
applied, the inversions cancel, and an OR function results.

Two other gates that are commonly used are the exclusive-OR (XOR) and
exclusive-NOR (XNOR) gates, which will be described in more detail in Section 2-6.
The XOR gate shown in Figure 2-3 is similar to the OR gate, but excludes (has the
value 0 for) the combination with both X and Y equal to 1. The graphics symbol for
the XOR gate is similar to that for the OR gate, except for the additional curved line
on the inputs. The exclusive-OR has the special symbol @ to designate its operation.
The exclusive-NOR is the complement of the exclusive-OR, as indicated by the
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Name Distinctive-Shape Algebraic Truth

Graphics Symbol Equation Table

XY|F

X — 000

AND N F F=XY 010

10/]0

1111

XY|F

X 0 0

OR " F F=X+Y 011

101

1111

X|F

NOT = 1

(inverter) X |> F F=& 01

110

XY|F

X — o 001

NAND v }F F=X-Y 0111

101

1110

XY|F

001

X 010

NOR F F=X+Y 10lo
Y

1110

XY|F

Exclusive-OR X F F = XY + XY 00]0

(XOR) Y =X®Y 01]1

101

1110

XY|F

Exclusive-NOR X F F = XY + XY 001

(XNOR) Y 010

=X®Y 10/0

1101

OO0 FIGURE 2-3

Commonly Used Logic Gates
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NOT X 4@—fx~[>oi X
X — fr——
AND e [>C XY = XY
Y

o
OR :}:—XY=X+Y
Y—[>o—’_

[0 FIGURE 2-4
Logical Operations with NAND Gates

bubble at the output of its graphics symbol. These gates indicate whether their two
inputs are equal (XNOR) or not equal (XOR) to each other.

HDL Representations of Gates

While schematics using the basic logic gates are sufficient for describing small circuits,
they are impractical for designing more complex digital systems. In contemporary
computer systems design, HDL has become intrinsic to the design process. Conse-
quently, we introduce HDLs early in the text. Initially, we justify such languages by
describing their uses. We will then briefly discuss VHDL and Verilog®, the most pop-
ular of these languages. At the end of this chapter and in Chapters 3 and 4, we will
introduce them both in detail, although, in any given course, we expect that only one
of them will be covered.

HDLs resemble programming languages, but are specifically oriented to
describing hardware structures and behavior. They differ markedly from typical pro-
gramming languages in that they represent extensive parallel operation, whereas
most programming languages represent serial operation. An obvious use for an
HDL is to provide an alternative to schematics. When a language is used in this fash-
ion, it is referred to as a structural description, in which the language describes an
interconnection of components. Such a structural description, referred to as a netlist,
can be used as input to logic simulation just as a schematic is used. For this applica-
tion, models for each of the primitive blocks are required. If an HDL is used, then
these models can also be written in the HDL, providing a more uniform, portable
representation for simulation input. Our use of HDLs in this chapter will be mainly
limited to structural models. But as we will show later in the book, HDLs can repre-
sent much more than low-level behavior. In contemporary digital design, HDL mod-
els at a high level of abstraction can be automatically synthesized into optimized,
working hardware.

To provide an initial introduction to HDLs, we start with features aimed at rep-
resenting structural models. Table 2-2 shows the built-in Verilog primitives for the
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[0 TABLE 2-2

Verilog Primitives for Combinational Logic Gates
Gate primitive Example instance
and and (F, X, Y);
or or (F, X, Y);
not not (F, Y);
nand nand (F, X, Y);
nor nor (F, X, Y);
Xor xor (F, X, Y);
XNOor xnor (F, X, Y);
[0 TABLE 2-3

VHDL Predefined Logic Operators
VHDL logic operator Example
not F <= not X;
and F <= X and Y;
or F <= X or Y;
nand F <= X nand Y;
nor F <= X nor Y;
XO0r F <= X xor Y;
Xnor F <= X xnor Y;

common logic gates from Figure 2-3. Each primitive declaration includes a list of
signals that are its inputs and output. The first signal in the list is the output of the
gate, and the remaining signals are the inputs. For the not gate, there can be only
one input, but for the other gates, there can be two or more inputs. In Verilog, the
gate primitives can be connected together to create structural models of logic cir-
cuits. VHDL does not have built-in logic gate primitives, but it does have logic oper-
ators that can be used to model the basic combinational gates, shown in Table 2-3.
Verilog also has logic operators that can be used to model the basic combinational
gates, shown in Table 2-4. Chapters 3 and 4 will show the necessary details to create
fully simulation-ready models using these gate primitives and logic operators, but
the reason for describing them at this point is to show that the HDLs provide an
alternative for representing logic circuits. For small circuits, describing the input/out-
put relationships with logic functions, truth tables, or schematics might be clear and
feasible, but for larger, more complex circuits, HDLs are often more appropriate.

2-2 BOOLEAN ALGEBRA

The Boolean algebra we present is an algebra dealing with binary variables and logic
operations. The variables are designated by letters of the alphabet, and the three
basic logic operations are AND, OR,and NOT (complementation). A Boolean expres-
sion is an algebraic expression formed by using binary variables, the constants 0 and 1,
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] TABLE 2-4
Verilog Bitwise Logic Operators

Verilog operator
symbol Operator function Example

~ Bitwise not
Bitwise and
Bitwise or
Bitwise xor
~N, N~ Bitwise xnor

> — &
L I B B B |
Il

the logic operation symbols, and parentheses. A Boolean function can be described
by a Boolean equation consisting of a binary variable identifying the function fol-
lowed by an equals sign and a Boolean expression. Optionally, the function identifier
is followed by parentheses enclosing a list of the function variables separated by com-
mas. A single-output Boolean function is a mapping from each of the possible combi-
nations of values 0 and 1 on the function variables to value 0 or 1. A multiple-output
Boolean function is a mapping from each of the possible combinations of values 0 and
1 on the function variables to combinations of 0 and 1 on the function outputs.

{ » EXAMPLE 2-1 Boolean Function Example-Power Windows

= Consider an example Boolean equation representing electrical or electronic logic
for control of the lowering of the driver’s power window in a car.

L(D,X,A) = DX + A

The window is raised or lowered by a motor driving a lever mechanism connected to
the window. The function L = 1 means that the window motor is powered up to turn
in the direction that lowers the window. L = 0 means the window motor is not pow-
ered up to turn in this direction. D is an output produced by pushing a panel switch
on the inside of the driver’s door. With D = 1, the lowering of the driver’s window is
requested, and with D = 0, this action is not requested. X is the output of a mechan-
ical limit switch. X = 1 if the window is at a limit—in this case, in the fully down
position. X = 0 if the window is not at its limit—i.e., not in the fully down position.
A = 1 indicates automatic lowering of the window until it is in the fully down posi-
tion. A is a signal generated by timing logic from D and X. Whenever D has been 1
for at least one-half second, A becomes 1 and remains at 1 until X = 1.If D = 1 for
less than one-half second, A = 0. Thus, if the driver requests that the window be
lowered for one-half second or longer, the window is to be lowered automatically to
the fully down position.

The two parts of the expression, DX and A, are called terms of the expression
for L. The function L is equal to 1 if term DX is equal to 1 or if term A is equal to 1.
Otherwise, L is equal to 0. The complement operation dictates that if X = 1, then
X = 0.Therefore, we cansay that L = 1if D = 1,and X = Oorif A = 1. So what
does the equation for L say if interpreted in words? It says that the window will be
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lowered if the window is not fully lowered (X = 0) and the switch D is being pushed
(D = 1) or if the window is to be lowered automatically to fully down position
(A=1). |

A Boolean equation expresses the logical relationship between binary vari-
ables. It is evaluated by determining the binary value of the expression for all
possible combinations of values for the variables. A Boolean function can be repre-
sented by a truth table. A truth table for a function is a list of all combinations of 1s
and Os that can be assigned to the binary variables and a list that shows the value of
the function for each binary combination. The truth tables for the logic operations
given in Table 2-1 are special cases of truth tables for functions. The number of rows
in a truth table is 2", where # is the number of variables in the function. The binary
combinations for the truth table are the n-bit binary numbers that correspond to
counting in decimal from 0 through 2" — 1. Table 2-5 shows the truth table for the
function L = DX + A. There are eight possible binary combinations that assign
bits to the three variables D, X, and A. The column labeled L contains either 0 or 1
for each of these combinations. The table shows that the function L is equal to 1 if
D = 1land X = Oorif A = 1. Otherwise, the function L is equal to 0.

An algebraic expression for a Boolean function can be transformed into a cir-
cuit diagram composed of logic gates that implements the function. The logic circuit
diagram for function L is shown in Figure 2-5, with the equivalent Verilog and VHDL
models for the circuit shown in Figures 2-6 and 2-7 An inverter on input X generates
the complement, X. An AND gate operates on X and D, and an OR gate combines
DX and A. In logic circuit diagrams, the variables of the function F are taken as the
inputs of the circuit, and the binary variable F is taken as the output of the circuit. If
the circuit has a single output, F'is a single output function. If the circuit has multiple

[0 TABLE 2-5
Truth Table for the Function L = DX + A

D X A L
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

D—

X —DO—D:D— L

A

OO0 FIGURE 2-5 -
Logic Circuit Diagram for L = DX + A
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module fig2_5 (L, D, X, A);
input D, X, A;
output L;
wire X_n, t2;

not (X_n, X);

and (t2, D, X_n);

or (L, t2, RB);
endmodule

O FIGURE 2-6
Verilog Model for the Logic Circuit of Figure 2-5

library ieee, lcdf_vhdl;
use ieee.std_logic_1164.all,
lcdf_vhdl. func_prims.all;
entity fig2_5 is

port (L: out std_logic;

D, X, A: in std_logic);
end fig2_5;

architecture structural of fig2_5 is
component NOT1
port(inl: in std_logic;
outl: out std_logic);
end component;
component AND2
port(inl, in2: in std_logic;
outl: out std_logic);
end component;
component OR2
port(inl, in2: in std_logic;
outl: out std_logic);
end component;
signal X_n, t2: std_logic;

begin
g0: NOT1 port map(X, X_n);
gl: AND2 port map(D, X_n, t2);
g3: OR2 port map(t2, A, L);
end structural;

[0 FIGURE 2-7
VHDL Model for the Logic Circuit of Figure 2-5
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outputs, function F is a multiple output function with multiple variables and equa-
tions required to represent its outputs. Circuit gates are interconnected by wires that
carry logic signals. Logic circuits of this type are called combinational logic circuits,
since the variables are “combined” by the logical operations. This is in contrast to the
sequential logic to be treated in Chapter 4, in which variables are stored over time as
well as being combined.

There is only one way that a Boolean function can be represented in a truth
table. However, when the function is in algebraic equation form, it can be expressed
in a variety of ways. The particular expression used to represent the function dictates
the interconnection of gates in the logic circuit diagram. By manipulating a Boolean
expression according to Boolean algebraic rules, it is often possible to obtain a sim-
pler expression for the same function. This simpler expression reduces both the
number of gates in the circuit and the numbers of inputs to the gates. To see how this
is done, we must first study the basic rules of Boolean algebra.

Basic Identities of Boolean Algebra

Table 2-6 lists the most basic identities of Boolean algebra. The notation is simplified
by omitting the symbol for AND whenever doing so does not lead to confusion. The
first nine identities show the relationship between a single variable X, its comple-
ment X, and the binary constants 0 and 1. The next five identities, 10 through 14, have
counterparts in ordinary algebra. The last three, 15 through 17 do not apply in ordi-
nary algebra, but are useful in manipulating Boolean expressions.

The basic rules listed in the table have been arranged into two columns that
demonstrate the property of duality of Boolean algebra. The dual of an algebraic
expression is obtained by interchanging OR and AND operations and replacing 1s
by Os and Os by 1s. An equation in one column of the table can be obtained from the
corresponding equation in the other column by taking the dual of the expressions on
both sides of the equals sign. For example, relation 2 is the dual of relation 1 because
the OR has been replaced by an AND and the 0 by 1. It is important to note that
most of the time the dual of an expression is not equal to the original expression, so
that an expression usually cannot be replaced by its dual.

[0 TABLE 2-6
Basic Identities of Boolean Algebra

L X+0=X 2. X-1=X

3. X+1=1 4. X-0=0

50 X+X=X 6. X- X=X

7. X+X=1 8. X-X=0

9. X=X
10. X+Y=Y+X 11. XY =YX Commutative
12. X+(Y+2)=X+Y)+Z 13. X(YZ) = (XY)Z Associative
4. X(Y+2Z)=XY + XZ 15. X+ YZ=(X+ Y)X + Z) Distributive

6. X+vY=X-Y 17 X-Y=X+7Y DeMorgan’s
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The nine identities involving a single variable can be easily verified by substi-
tuting each of the two possible values for X. For example, to show that X + 0 = X,
let X = O0toobtain 0 + 0 = 0,and thenlet X = 1to obtain 1 + 0 = 1. Both equa-
tions are true according to the definition of the OR logic operation. Any expression
can be substituted for the variable X in all the Boolean equations listed in the table.
Thus, by identity 3 and with X = AB + C, we obtain

AB+C+1=1

Note that identity 9 states that double complementation restores the variable to its
original value. Thus,if X = 0,then X = 1 and X = 0 = X.

Identities 10 and 11, the commutative laws, state that the order in which the
variables are written will not affect the result when using the OR and AND opera-
tions. Identities 12 and 13, the associative laws, state that the result of applying an
operation over three variables is independent of the order that is taken, and there-
fore, the parentheses can be removed altogether, as follows:

X+(Y+2)=X+VN+Z=X+Y+Z
X(YZ) = (XY)Z = XYZ

These two laws and the first distributive law, identity 14, are well known from ordi-
nary algebra, so they should not pose any difficulty. The second distributive law,
given by identity 15, is the dual of the ordinary distributive law and does not hold in
ordinary algebra. As illustrated previously, each variable in an identity can be
replaced by a Boolean expression, and the identity still holds. Thus, consider the
expression (A + B) (A + CD). Letting X = A,Y = B,and Z = CD, and apply-
ing the second distributive law, we obtain

(A+ B)A + CD)=A+ BCD
The last two identities in Table 2-6,
X+Y=X:-YandX-Y=X+Y

are referred to as DeMorgan’s theorem. This is a very important theorem and is used
to obtain the complement of an expression and of the corresponding function.
DeMorgan’s theorem can be illustrated by means of truth tables that assign all the
possible binary values to X and Y. Table 2-7 shows two truth tables that verify the

[0 TABLE 2-7
Truth Tables to Verify DeMorgan’s Theorem

x|
<
>
</

@X Y X+Y X+Y b) X Y

0 0
0 0
1 1
1 1

o = O
_ O = O
S O = o=
S = O =
oS O O =

0
1
1
1

[ N
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first part of DeMorgan’s theorem. In (a), we evaluate X + Y for all possible values
of X and Y. This is done by first evaluating X + Y and then taking its complement.
In (b), we evaluate X and Y and then AND them together. The result is the same for
the four binary combinations of X and Y, which verifies the identity of the equation.

Note the order in which the operations are performed when evaluating an
expression. In part (b) of the table, the complement over a single variable is evalu-
ated first, followed by the AND operation, just as in ordinary algebra with multipli-
cation and addition. In part (a), the OR operation is evaluated first. Then, noting that
the complement over an expression such as X + Y is considered as specifying NOT
(X + Y), we evaluate the expression within the parentheses and take the comple-
ment of the result. It is customary to exclude the parentheses when complementing
an expression, since a bar over the entire expression joins it together. Thus, (X + Y)
is expressed as X + Y when designating the complement of X + Y.

DeMorgan’s theorem can be extended to three or more variables. The general
DeMorgan’s theorem can be expressed as

X1+X2+ +Xn:yly2"'yn
XleXn:X/]'f'Yz"f‘ +Yn

Observe that the logic operation changes from OR to AND or from AND to OR. In
addition, the complement is removed from the entire expression and placed instead
over each variable. For example,

BCD

I
AN

A+B+C+D

Algebraic Manipulation

Boolean algebra is a useful tool for simplifying digital circuits. Consider, for example,
the Boolean function represented by

F=XYZ+ XYZ + XZ

The implementation of this equation with logic gates is shown in Figure 2-8(a). Input
variables X and Z are complemented with inverters to obtain X and Z. The three
terms in the expression are implemented with three AND gates. The OR gate forms
the logical OR of the terms. Now consider a simplification of the expression for F by
applying some of the identities listed in Table 2-6:

F=XYZ+ XYZ + XZ
—XY(Z+7Z) + XZ by identity 14
=XY:1+ XZ by identity 7
= XY + XZ by identity 2

The expression is reduced to only two terms and can be implemented with
gates as shown in Figure 2-8(b). It is obvious that the circuit in (b) is simpler than the
one in (a) yet, both implement the same function. It is possible to use a truth table to
verify that the two implementations are equivalent. This is shown in Table 2-8. As
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(a) F=XYZ + XYZ + XZ

P

(b) F=XY + XZ

OO0 FIGURE 2-8
Implementation of Boolean Function with Gates

[0 TABLE 2-8
Truth Table for Boolean Function

X Y Zz (@) F (b)F
0 0 0 0 0
0 0 1 0 0
0 1 0 1 1
0 1 1 1 1
1 0 0 0 0
1 0 1 1 1
1 1 0 0 0
1 1 1 1 1

expressed in Figure 2-8(a), the function is equalto 1if X = 0, Y = 1,and Z = 1;if
X =0,Y = 1,and Z = 0;orif X and Z are both 1. This produces the four 1s for Fin
part (a) of the table. As expressed in Figure 2-8(b), the function is equal to 1 if X = 0
and Y = lorif X = 1 and Z = 1. This produces the same four 1s in part (b) of the
table. Since both expressions produce the same truth table, they are equivalent.
Therefore, the two circuits have the same output for all possible binary combinations
of the three input variables. Each circuit implements the same function, but the one
with fewer gates and/or fewer gate inputs is preferable because it requires fewer
components.

When a Boolean equation is implemented with logic gates, each term requires
a gate, and each variable within the term designates an input to the gate. We define a
literal as a single variable within a term that may or may not be complemented. The
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expression for the function in Figure 2-8(a) has three terms and eight literals; the one
in Figure 2-8(b) has two terms and four literals. By reducing the number of terms, the
number of literals, or both in a Boolean expression, it is often possible to obtain a
simpler circuit. Boolean algebra is applied to reduce an expression for the purpose
of obtaining a simpler circuit. For highly complex functions, finding the best expres-
sion based on counts of terms and literals is very difficult, even by the use of com-
puter programs. Certain methods, however, for reducing expressions are often
included in computer tools for synthesizing logic circuits. These methods can obtain
good, if not the best, solutions. The only manual method for the general case is a cut-
and-try procedure employing the basic relations and other manipulations that
become familiar with use. The following examples use identities from Table 2-6 to
illustrate a few of the possibilities:

LX+XY=X-1+XY=X1+Y)=X-1=X
2. XY +XY=X(Y+Y)=X1=X
X+XY=X+X)X+YV)=1-(X+Y)=X+Y

Note that the intermediate steps X = X -1 and X-1 = X are often omitted because
of their rudimentary nature. The relationship 1 + Y = 1 is useful for eliminating
redundant terms, as is done with the term XY in this same equation. The relation
Y + Y = 1 is useful for combining two terms, as is done in equation 2. The two
terms being combined must be identical except for one variable, and that variable
must be complemented in one term and not complemented in the other. Equation 3
is simplified by means of the second distributive law (identity 15 in Table 2-6). The
following are three more examples of simplifying Boolean expressions:

4 XX+Y)=XX+XY=X+XY=X1+Y)=X:1=X
5 X+Y)X+Y)=X+YY=X+0=X
6. XX+Y)=XX+XY=0+ XY =XY

The six equalities represented by the initial and final expressions are theorems of
Boolean algebra proved by the application of the identities from Table 2-6. These
theorems can be used along with the identities in Table 2-6 to prove additional
results and to assist in performing simplification.

Theorems 4 through 6 are the duals of equations 1 through 3. Remember that
the dual of an expression is obtained by changing AND to OR and OR to AND
throughout (and 1s to Os and Os to 1s if they appear in the expression). The duality
principle of Boolean algebra states that a Boolean equation remains valid if we take
the dual of the expressions on both sides of the equals sign. Therefore, equations 4, 5,
and 6 can be obtained by taking the dual of equations 1,2, and 3, respectively.

Along with the results just given in equations 1 through 6, the following con-
sensus theorem is useful when simplifying Boolean expressions:

XY +XZ+YZ=XY+XZ

The theorem shows that the third term, YZ, is redundant and can be eliminated.
Note that Y and Z are associated with X and X in the first two terms and appear
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together in the term that is eliminated. The proof of the consensus theorem is
obtained by first ANDing YZ with (X + X) = 1 and proceeds as follows:

XY +XZ+YZ=XY+XZ+YZ(X + X)
=XY+ XZ+ XYZ+ XYZ
=XY+ XYZ+ XZ+ XYZ
=XY(1+2)+XZ1 +Y)
= XY + XZ

The dual of the consensus theorem is
X+YVX+2)(Y+2) =X+ VX + 2)

The following example shows how the consensus theorem can be applied in
manipulating a Boolean expression:

(A+ B)(A+ C)=AA + AC+ AB + BC
= AC + AB + BC
= AC + AB
Note that AA = 0 and 0 + AC = AC. The redundant term eliminated in the last
step by the consensus theorem is BC.
Complement of a Function

The complement representation for a function F, F, is obtained from an interchange
of 1s to Os and Os to 1s for the values of F in the truth table. The complement of a
function can be derived algebraically by applying DeMorgan’s theorem. The gener-
alized form of this theorem states that the complement of an expression is obtained
by interchanging AND and OR operations and complementing each variable and
constant, as shown in Example 2-2.

EXAMPLE 2-2 Complementing Functions

Find the complement of each of the functions represented by the equations
Fi,=XYZ+ XYZ and F, = X(YZ + YZ). Applying DeMorgan’s theorem as
many times as necessary, we obtain the complements as follows:

Fi=XYZ + XYZ = (XYZ) - (XYZ)
=X+Y+2)(X+Y+2Z)
FE=X(YZ +YZ) = X+(YZ+YZ)

=X+YZ-YZ
=X+ (Y+ 2)(Y + 2)

A simpler method for deriving the complement of a function is to take the dual
of the function equation and complement each literal. This method follows from the
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generalization of DeMorgan’s theorem. Remember that the dual of an expression is
obtained by interchanging AND and OR operations and 1s and 0s. To avoid confu-
sion in handling complex functions, adding parentheses around terms before taking
the dual is helpful, as illustrated in the next example. |

EXAMPLE 2-3 Complementing Functions by Using Duals

Find the complements of the functions in Example 2-2 by taking the duals of their
equations and complementing each literal.
We begin with

Fi = XYZ + XYZ = (XYZ) + (XYZ2)

The dual of Fj is
X+Y+2)(X+Y+2)
Complementing each literal, we have
X+Y+2)(X+Y+2) =F

Now,

F, = X(YZ+ YZ) = X(YZ) + (YZ))
The dual of F, is

X+ XY+ 2)(Y+ 2

Complementing each literal yields

X+Y+2)(Y+Z) = F u

2-3 STANDARD FORMS

A Boolean function expressed algebraically can be written in a variety of ways. There
are, however, specific ways of writing algebraic equations that are considered to
be standard forms. The standard forms facilitate the simplification procedures for
Boolean expressions and, in some cases, may result in more desirable expressions for
implementing logic circuits.

The standard forms contain product terms and sum terms. An example of a
product term is XYZ. This is a logical product consisting of an AND operation
among three literals. An example of a sum termis X + Y + Z.This is a logical sum
consisting of an OR operation among the literals. In Boolean algebra, the words
“product” and “sum” do not imply arithmetic operations—instead, they specify the
logical operations AND and OR, respectively.

Minterms and Maxterms

A truth table defines a Boolean function. An algebraic expression for the function
can be derived from the table by finding a logical sum of product terms for which the
function assumes the binary value 1. A product term in which all the variables appear
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exactly once, either complemented or uncomplemented, is called a minterm. Its
characteristic property is that it represents exactly one combination of binary
variable values in the truth table. It has the value 1 for that combination and 0 for all
others. There are 2" distinct minterms for n variables. The four minterms for the two
variables X and Y are XY, XY, XY, and XY. The eight minterms for the three vari-
ables X, Y, and Z are listed in Table 2-9. The binary numbers from 000 to 111 are
listed under the variables. For each binary combination, there is a related minterm.
Each minterm is a product term of exactly # literals, where 7 is the number of vari-
ables. In this example,n = 3. A literal is a complemented variable if the correspond-
ing bit of the related binary combination is 0 and is an uncomplemented variable if it
is 1. A symbol m;, for each minterm is also shown in the table, where the subscript j
denotes the decimal equivalent of the binary combination corresponding to the min-
term. This list of minterms for any given n variables can be formed in a similar man-
ner from a list of the binary numbers from 0 through 2"—1. In addition, the truth
table for each minterm is given in the right half of the table. These truth tables clear-
ly show that each minterm is 1 for the corresponding binary combination and 0 for
all other combinations. Such truth tables will be helpful later in using minterms to
form Boolean expressions.

A sum term that contains all the variables in complemented or uncomple-
mented form is called a maxterm. Again, it is possible to formulate 2" maxterms with
n variables. The eight maxterms for three variables are listed in Table 2-10. Each
maxterm is a logical sum of the three variables, with each variable being comple-
mented if the corresponding bit of the binary number is 1 and uncomplemented if it
is 0. The symbol for a maxterm is M, where j denotes the decimal equivalent of the
binary combination corresponding to the maxterm. In the right half of the table,
the truth table for each maxterm is given. Note that the value of the maxterm is O for
the corresponding combination and 1 for all other combinations. It is now clear
where the terms “minterm” and “maxterm” come from: a minterm is a function, not
equal to 0, having the minimum number of 1s in its truth table; a maxterm is a func-
tion, not equal to 1, having the maximum of 1s in its truth table. Note from Table 2-9

[0 TABLE 2-9
Minterms for Three Variables
Product

X Y Z Term Symbolm; m m, m, m, m, m, m,
0 0 0 XYz m, 1 0 0 0 0 0 0 0
0 0 1 XYz m, 0 1 0 0 0 0 0 0
0 1 0 Xyz m, 0 0 1 0 0 0 0 0
0 1 1 XYz m, 0 0 0 1 0 0 0 0
1 0 0 Xxyz m, 0 0 0 0 1 0 0 0
1 0 1 XYz  m 0 0 0 0 0 1 0 0
1 1 0 Xxyz m 0 0 0 0 0 0 1 0
1 1 1 XYZ m 0 0 0 0 0 0 0 1

<
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and Table 2-10 that a minterm and maxterm with the same subscript are the comple-
ments of each other; thatis, M; = m;and m; = M;. For example, for j = 3, we have

My=X+Y+Z+ =XYZ = mj

A Boolean function can be represented algebraically from a given truth table
by forming the logical sum of all the minterms that produce a 1 in the function.
This expression is called a sum of minterms. Consider the Boolean function F in
Table 2-11(a). The function is equal to 1 for each of the following binary combinations
of the variables X, Y, and Z : 000,010, 101 and 111. These combinations correspond
to minterms 0,2, 5, and 7 By examining Table 2-11 and the truth tables for these min-
terms in Table 2-9, it is evident that the function F can be expressed algebraically as
the logical sum of the stated minterms:

F=XYZ+ XYZ+ XYZ + XYZ =my + my, + ms + my
This can be further abbreviated by listing only the decimal subscripts of the minterms:
F(X,Y,Z) = 3m(0,2,5,7)

[J TABLE 2-10
Maxterms for Three Variables

X Y z SumTerm Symbol M, M; M, M; M; M; My, M,
0 0 0 X+Y+Z M, o 1 1 1 1 1 1 1
0 0 1 Xx+Y+Z M, t o 1 1 1 1 1 1
0 1 0 X+Y+z M, tr 1 o0 1 1 1 1 1
0 1 1 X+Y+Z M, 1t 1 1 o 1 1 1 1
1 0 0 X+Y+7Z M, 1 1 1 1 0 1 1 1
0 1 X+Y+Z Ms 1 1 1 1 1 0 1 1
11 0 X+Y+2Z M 1 1 1 1 1 1 0 1
1 1 1 X+Y+2Z M, tr 1 1 1 1 1 1 0
[0 TABLE 2-11
Boolean Functions of Three Variables
@ X Y z F F b)) X Y z E
0 0 0 1 0 0 0 0 1
0 0 1 0 1 0 0 1 1
0 1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 1 0
1 0 0 0 1 1 0 0 1
1 0 1 1 0 1 0 1 1
1 1 0 0 1 1 1 0 0
1 1 1 1 0 1 1 1 0
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The symbol 3 stands for the logical sum (Boolean OR) of the minterms. The num-
bers following it represent the minterms of the function. The letters in parentheses
following F form a list of the variables in the order taken when the minterms are
converted to product terms.

Now consider the complement of a Boolean function. The binary values of F in
Table 2-11(a) are obtained by changing 1s to Os and Os to 1s in the values of F. Taking
the logical sum of minterms of F, we obtain

FX)YZ)=XYZ+ XYZ+ XYZ + XYZ = my + ms + my + mg
or, in abbreviated form,
FX,Y,Z) =3m(1,3,4,6)

Note that the minterm numbers for F are the ones missing from the list of the min-
term numbers of /2 We now take the complement of F to obtain F:

F = ny + ms + ny + meg = E'm3'm4'm6
- M1°M3°M4'M6 (Since% - Ml)
=X+Y+2D)X+Y+2)X+Y+2)(X+Y + 2)

This shows the procedure for expressing a Boolean function as a product of max-
terms.The abbreviated form for this product is

F(X,Y,Z) =1IM(1,3,4,6)

where the symbol IT denotes the logical product (Boolean AND) of the maxterms
whose numbers are listed in parentheses. Note that the decimal numbers included in
the product of maxterms will always be the same as the minterm list of the comple-
mented function, such as (1, 3,4, 6) in the foregoing example. Maxterms are seldom
used directly when dealing with Boolean functions, since we can always replace them
with the minterm list of F.

The following is a summary of the most important properties of minterms:

1. There are 2" minterms for » Boolean variables. These minterms can be generat-
ed from the binary numbers from 0 to 2" — 1.

2. Any Boolean function can be expressed as a logical sum of minterms.

3. The complement of a function contains those minterms not included in the
original function.

4. A function that includes all the 2" minterms is equal to logic 1.

A function that is not in the sum-of-minterms form can be converted to that form by
means of a truth table, since the truth table always specifies the minterms of the
function. Consider, for example, the Boolean function

E=Y+XZ

The expression is not in sum-of-minterms form, because each term does not contain all
three variables X, Y, and Z. The truth table for this function is listed in Table 2-11(b).
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From the table, we obtain the minterms of the function:
EX,Y,Z) = 3m(0,1,2,4,5)
The minterms for the complement of E are given by
E(X,Y,Z) = Im(3,6,7)

Note that the total number of minterms in E and E is equal to eight, since the func-
tion has three variables, and three variables produce a total of eight minterms. With
four variables, there will be a total of 16 minterms, and for two variables, there will be
four minterms. An example of a function that includes all the minterms is

G(X,Y) = 3m(0,1,2,3) = 1

Since G is a function of two variables and contains all four minterms, it is always
equal to logic 1.

Sum of Products

The sum-of-minterms form is a standard algebraic expression that is obtained direct-
ly from a truth table. The expression so obtained contains the maximum number of
literals in each term and usually has more product terms than necessary. This is be-
cause, by definition, each minterm must include all the variables of the function,
complemented or uncomplemented. Once the sum of minterms is obtained from the
truth table, the next step is to try to simplify the expression to see whether it is
possible to reduce the number of product terms and the number of literals in the
terms. The result is a simplified expression in sum-of-products form. This is an alter-
native standard form of expression that contains product terms with up to # literals.
An example of a Boolean function expressed as a sum of products is

F=Y+ XYZ + XY

The expression has three product terms, the first with one literal, the second with
three literals, and the third with two literals.

The logic diagram for a sum-of-products form consists of a group of AND gates
followed by a single OR gate, as shown in Figure 2-9. Each product term requires an
AND gate, except for a term with a single literal. The logical sum is formed with an
OR gate that has single literals and the outputs of the AND gates as inputs. Often,

Y

—\ .
z—1 —L

X_

Y—D—

[0 FIGURE 2-9
Sum-of-Products Implementation
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we assumed that the input variables are directly available in their complemented
and uncomplemented forms, so inverters are not included in the diagram. The AND
gates followed by the OR gate form a circuit configuration referred to as a two-level
implementation or two-level circuit.

If an expression is not in sum-of-products-form, it can be converted to the stan-
dard form by means of the distributive laws. Consider the expression

F=AB + C(D + E)

This is not in sum-of-products form, because the term D + FE is part of a product,
not a single literal. The expression can be converted to a sum of products by applying
the appropriate distributive law as follows:

F=AB + C(D + E)y=AB + CD + CE

The function Fis implemented in a nonstandard form in Figure 2-10(a). This requires
two AND gates and two OR gates. There are three levels of gating in the circuit. F'is
implemented in sum-of-products form in Figure 2-10(b). This circuit requires three
AND gates and an OR gate and uses two levels of gating. The decision as to whether
to use a two-level or multiple-level (three levels or more) implementation is com-
plex. Among the issues involved are the number of gates, number of gate inputs, and
the amount of delay between the time the input values are set and the time the
resulting output values appear. Two-level implementations are the natural form for
certain implementation technologies, as we will see in Chapter 5.

Product of Sums

Another standard form of expressing Boolean functions algebraically is the product
of sums. This form is obtained by forming a logical product of sum terms. Each logi-
cal sum term may have any number of distinct literals. An example of a function ex-
pressed in product-of-sums form is

F=XY+2)(X+Y+2Z)

This expression has sum terms of one, two, and three literals. The sum terms perform
an OR operation, and the product is an AND operation.

A—:
A B
B— C_'—\ _r\
C D__/ _L/
D Cc—
E E— | —

(a) AB + C(D + E) (b) AB + CD + CE

OO0 FIGURE 2-10
Three-Level and Two-Level Implementation
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—Oo—=D

—) >

O FIGURE 2-11
Product-of-Sums Implementation
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The gate structure of the product-of-sums expression consists of a group of OR
gates for the sum terms (except for a single literal term), followed by an AND gate.
This is shown in Figure 2-11 for the preceding function £ As with the sum of prod-
ucts, this standard type of expression results in a two-level gating structure.

2-4 Two-LEVEL CircuiT OPTIMIZATION

The complexity of a logic circuit that implements a Boolean function is directly relat-
ed to the algebraic expression from which the function is implemented. Although the
truth-table representation of a function is unique, when expressed algebraically, the
function appears in many different forms. Boolean expressions may be simplified by
algebraic manipulation, as discussed in Section 2-2. However, this procedure of sim-
plification is awkward, because it lacks specific rules to predict each succeeding step
in the manipulative process and it is difficult to determine whether the simplest ex-
pression has been achieved. By contrast, the map method provides a straightforward
procedure for optimizing Boolean functions of up to four variables. Maps for five and
six variables can be drawn as well, but are more cumbersome to use. The map is also
known as the Karnaugh map, or K-map. The map is a diagram made up of squares,
with each square representing one row of a truth table, or correspondingly, one mint-
erm of a single output function. Since any Boolean function can be expressed as a
sum of minterms, it follows that a Boolean function is recognized graphically in the
map by those squares for which the function has value 1, or correspondingly, whose
minterms are included in the function. From a more complex view, the map presents a
visual diagram of all possible ways a function may be expressed in a standard form.
Among these ways are the optimum sum-of-products standard forms for the func-
tion. The optimized expressions produced by the map are always in sum-of-products
or product-of-sums form. Thus, maps handle optimization for two-level implementa-
tions, but do not apply directly to possible simpler implementations for the general
case with three or more levels. Initially, this section covers sum-of-products optimiza-
tion and, later, applies it to performing product-of-sums optimization.

Cost Criteria

In the prior section, counting literals and terms was mentioned as a way of measuring
the simplicity of a logic circuit. We introduce two cost criteria to formalize this concept.
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The first criterion is literal cost, the number of literal appearances in a Boolean
expression corresponding exactly to the logic diagram. For example, for the circuits
in Figure 2-10, the corresponding Boolean expressions are

F=AB + C(D + E) and F= AB + CD + CE

There are five literal appearances in the first equation and six in the second, so the
first equation is the simplest in terms of literal cost. Literal cost has the advantage
that it is very simple to evaluate by counting literal appearances. It does not, how-
ever, represent circuit complexity accurately in all cases, even for the comparison of
different implementations of the same logic function. The following Boolean equa-
tions, both for function G, illustrate this situation:

G = ABCD + ABCD and G= (A + B)(B + O)(C + D)(D + A)

The implementations represented by these equations both have a literal cost of
eight. But, the first equation has two terms and the second has four. This suggests
that the first equation has a lower cost than the second.

To capture the difference illustrated, we define gate-input cost as the number of
inputs to the gates in the implementation corresponding exactly to the given equa-
tion or equations. This cost can be determined easily from the logic diagram by sim-
ply counting the total number of inputs to the gates in the logic diagram. For
sum-of-products or product-of-sums equations, it can be found from the equation by
finding the sum of

1. all literal appearances,

2. the number of terms excluding terms that consist only of a single literal, and,
optionally,

3. the number of distinct complemented single literals.

In (1), all gate inputs from outside the circuit are represented. In (2), all gate inputs
within the circuit, except for those to inverters, are represented and in (3), inverters
needed to complement the input variables are counted in the event that comple-
mented input variables are not provided. For the two preceding equations, excluding
the count from (3), the respective gate-input countsare 8 + 2 = 10and 8 + 4 = 12.
Including the count from (3), that of input inverters, the respective counts are 14 and
16. So the first equation for G has a lower gate-input cost, even though the literal
costs are equal.

Gate-input cost is currently a good measure for contemporary logic imple-
mentations, since it is proportional to the number of transistors and wires used in
implementing a logic circuit. Representation of gate inputs becomes particularly
important in measuring cost for circuits with more than two levels. Typically, as the
number of levels increases, literal cost represents a smaller proportion of the actual
circuit cost, since more and more gates have no inputs from outside the circuit itself.
On the Companion Website, we introduce complex gate types for which evaluation
of the gate-input cost from an equation is invalid, since the correspondence between
the AND, OR, and NOT operations in the equation and the gates in the circuit can
no longer be established. In such cases, as well as for equation forms more complex
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than sum-of-products and product-of-sums, the gate-input count must be deter-
mined directly from the implementation.

Regardless of the cost criteria used, we see later that the simplest expression is
not necessarily unique. It is sometimes possible to find two or more expressions that
satisfy the cost criterion applied. In that case, either solution is satisfactory from the
cost standpoint.

Map Structures

We will consider maps for two, three, and four variables as shown in Figure 2-12. The
number of squares in each map is equal to the number of minterms in the corre-
sponding function. In our discussion of minterms, we defined a minterm m; to go with
the row of the truth table with i in binary as the variable values. This use of i to

Y
X\o 1 X{oT
ol o] 1 0| XY | XY

X
|12 |13 15 | 14
w
wf, 8| 9 | 11 ]fw0
XZ Z

(e) ()

OO0 FIGURE 2-12
Map Structures
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represent the minterm m, is carried over to the cells of the maps, each of which corre-
sponds to a minterm. For two, three, and four variables, there are 4, 8, and 16 squares,
respectively. Each of the maps is labeled in two ways: 1) with variables at the upper
left for the columns and the rows and with a binary combination of those variables for
each column and each row, and 2) with single variable labels at the edges of the map
applied by a bracket to single or double rows and columns. Each location of a variable
label aligns with the region of the map for which the variable has value 1. The region
for which the variable has value 0 is implicitly labeled with the complement of the
variable. Only one of these two schemes is required to completely label a map, but
both are shown to allow selection of the one that works best for a given user.

Beginning with the binary combination scheme, we note that the binary combi-
nations across the top and down the left side of a map take the form of a Gray code
as introduced in Section 1-7 The use of the Gray code is appropriate because it rep-
resents the adjacency of binary combinations and of the corresponding minterms
that is the foundation of K-maps. Two binary combinations are said to be adjacent if
they differ in the value of exactly one variable. Two product terms (including min-
terms) are adjacent if they differ in one and only one literal which appears uncom-
plemented in one and complemented in the other. For example, the combinations
(X,Y,Z) = 011 and 010 are adjacent, since they differ only in the value of
variable Z. Further, the minterms XYZ and XYZ are adjacent, since they have
identical literal appearances except for Z, which appears uncomplemented and com-
plemented. The reason for the use of a Gray code on K-maps is that any two squares
which share a common edge correspond to a pair of adjacent binary combinations
and adjacent minterms. This correspondence can be used to perform simplification
of product terms for a given function on a K-map. This simplification is based on the
Boolean algebraic theorem:

AB + AB=A
Applying this to the example with A = XY and B = Z,
(XY)Z + (XV)Z = XY

Looking at the K-map in Figure 2-12(c), we see that the two corresponding squares
are located at (X,Y,Z) = 011 (3) and 010 (2), which are in row 0 and columns 11
and 10, respectively. Note that these two squares are adjacent (share an edge) and
can be combined, as indicated by the black rectangle in Figure 2-12(c). This rectangle
on the K-map contains both 0 and 1 for Z, and so no longer depends on Z, and can be
read off as XY. This demonstrates that whenever we have two squares sharing edges
that are minterms of a function, these squares can be combined to form a product
term with one less variable.

For the 3- and 4-variable K-maps, there is one more issue to be addressed with
respect to the adjacency concept. For a 3-variable K-map, suppose we consider the
minterms 0 and 2 in Figure 2-12(c). These two minterms do not share an edge, and
hence do not appear to be adjacent. However, these two minterms are X Y Z and
X Y Z, which by definition are adjacent. In order to recognize this adjacency on the
K-map, we need to consider the left and right borders of the map to be a shared edge.
Geometrically, this can be accomplished by forming a cylinder from the map so that
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the squares touching the left and right borders actually have a shared edge! A view
of this cylinder appears in Figure 2-12(d). Here minterms m and m, share an edge
and, from the K-map, are adjacent. Likewise, m, and m, share an edge on the K-map
and are adjacent. The two rectangles resulting from these adjacencies are shown in
Figure 2-12(c) and 2-12(d) in blue.

The 4-variable K-map in Figure 2-12(e) can likewise be formed into a cylinder.
This demonstrates four adjacencies, m, and m,, m4 and mg, my, and m4, and mg and
myo. The minterms m, and mg, WX Y Z and W XY Z, are adjacent, suggesting that
the top border of the map should be a shared edge with the bottom border. This can
be accomplished by taking the cylinder formed from the map and bending it, joining
these two borders. This results in the torus (doughnut shape) in Figure 2-12(f). The
additional resulting adjacencies identifiable on the map are m and m,, m, and m,,,
and m,and m .

Unfortunately, the cylinder and the torus are not convenient to use, but they
can help us remember the locations of shared edges. These edges are at the left and
right border pair for the flat 3-variable map and at the left and right border pair and
the top and bottom border pair for 4-variable K-maps, respectively. The use of flat
maps will require the use of pairs of split rectangles lying across the border pairs.

One final detail is the placing of a given function F on a map. Suppose that the
function F'is given as a truth table with the row designated by decimal i correspond-
ing to the binary input values equivalent to i. Based on the binary combinations on
the left and top edges of the K-map combined in order, we can designate each cell
of the map by the same i. This will permit easy transfer of the 0 and 1 values of F
from the truth table onto the K-map.The values of i for this purpose are shown on the
three maps in Figure 2-12. It is a good idea to determine how to fill in the values of i
quickly by noting the order of the values of i in a row depends on the Gray code value
order for the columns and the ordering of the rows of i values depends on the Gray code
value order for the rows. For example, for the 4-variable map, the rows-of-columns
order of the i valuesis:0,1,3,2,4,5,76,12,13,15,14,8,9,11, 10. The rows-of-columns
order of the i values for 2-variable and 3-variable maps are the first four values and
the first eight values from this sequence. These values can also be used for sum of
minterm expressions defined using the abbreviated X notation. Note that the posi-
tioning of the i values is dependent upon the placement of the variables in order
from lower left side to middle right side to right top and middle bottom for a
4-variable map. For 2- and 3-variable maps, the order is the same with the nonexis-
tent “middle” positions skipped. Any variation from this ordering will give a differ-
ent map structure.

Two-Variable Maps

There are four basic steps for using a K-map. Initially, we present each of these steps
using a 2-variable function F(A, B) as an example.

The first step is to enter the function on the K-map. The function may be in
the form of a truth table, the 2m shorthand notation for a sum of minterms, or a
sum-of-products expression. The truth table for F(A, B) is given in Table 2-12. For
each row in which the function F has value 1, the values of A and B can be read to
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[0 TABLE 2-12
Two-Variable Function F(A, B)
A B F
0 0 1
0 1 1
1 0 0
1 1 1

determine where to place a 1 on the map. For example, the function has value 1 for
the combination A = 0 and B = 0. Thus, a 1 is placed in the upper left square of
the K-map in Figure 2-13(a) corresponding to A = 0 and B = 0. This operation is
repeated for rows (0, 1) and (1, 1) in the truth table to complete the entry of Fin the
map.

If the decimal subscripts for the minterms have been added to the truth table
and entered on the map as discussed previously, a much faster approach to entering
the function on the map is available. The subscripts for the minterms of the function
are those corresponding to the rows for which the function is a 1. So a 1 is simply
entered in squares 0, 1, and 3 of the K-map. For these two entry methods, as well as
others, we assume that each remaining square contains a 0, but do not actually enter
0Os in the K-map.

The 3m notation for F in the truth table is F(A, B) = 2m(0, 1, 3), which can
be entered on the K-map simply by placing 1 in each of the squares 0, 1, and 3.
Alternatively, a sum-of-products expression such as F = A + AB can be given as a
specification. This can be converted to minterms and entered on the K-map. More
simply, the region of the K-map corresponding to each of the product terms can be
identified and filled with 1s. Since A B is a minterm, we can simply place a 1 in square
3.For A, we note that the region is that identified as “not” A on the K-map and con-
sists of squares 0 and 1. So A can be entered by placing a 1 in each of these two
squares. In general, this last process becomes easier once we have mastered the con-
cept of rectangles on a K-map, as discussed next.

The second step is to identify collections of squares on the map representing
product terms to be considered for the simplified expression. We call such objects
rectangles, since their shape is that of a rectangle (including, of course, a square).

(a) (b)

[0 FIGURE 2-13
Two-Variable K-Map Examples
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Rectangles that correspond to product terms are restricted to contain numbers of
squares that are powers of 2,such as 1, 2,4, and 8. Also, this implies that the length of
a side of any rectangle is a power of 2. Our goal is to find the fewest such rectangles
that include or cover all of the squares marked with 1s. This will give the fewest
product terms and the least input cost for summing the product terms. Any rectangle
we are planning to use should be as large as possible in order to include as many 1s
as possible. Also, a larger rectangle gives a lower input cost for the corresponding
product term.

For the example, there are two largest rectangles. One consists of squares 1 and
0, the other of squares 3 and 1. Squares 1 and 0 correspond to minterms AB and A B,
which can be combined to form rectangle A. Squares 3 and 1 correspond to min-
terms AB and AB, which can be combined to form rectangle B.

The third step is to determine if any of the rectangles we have generated is not
needed to cover all of the 1s on the K-map. In the example, we can see that rectangle
A is required to cover minterm 0 and rectangle B is required to cover minterm 3. In
general, a rectangle is not required if it can be deleted and all of the 1s on the map
are covered by the remaining rectangles. If there are choices as to which rectangle of
two having unequal size to remove, the largest one should remain.

The final step is to read off the sum-of-products expression, determining the
corresponding product terms for the required rectangles in the map. In the example,
we can read off the corresponding product terms by using the rectangles shown and
the variable labels on the map boundary as A and B, respectively. This gives a sum-
of-products expression for F as:

EXAMPLE 2-4 Another 2-Variable Map Example
The function G(A, B) = %m(1,2) is shown on the 2-variable K-map in Figure

2-13(b). Looking at the map, we find the two rectangles are simply the minterms 1 and
2.From the map, |

G(A,B) = AB + AB

From Figure 2-13(a) and 2-13(b), we find that 2-variable maps contain:
(1) 1 X 1 rectangles which correspond to minterms and (2) 2 X 1 rectangles consist-
ing of a pair of adjacent minterms. A 1 X 1 rectangle can appear on any square of
the map and a 2 X 1 rectangle can appear either horizontally or vertically on the
map, each in one of two positions. Note that a 2 X 2 rectangle covers the entire map
and corresponds to the function F = 1.

Three-Variable Maps

We introduce simplification on 3-variable maps by using two examples followed by a
discussion of the new concepts involved beyond those required for 2-variable maps.
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Three-Variable K-Maps for Examples 2-5 through 2-7

EXAMPLE 2-5 Three-Variable Map Simplification 1
Simplify the Boolean function
F(A,B,C) = 2m(0,1,2,3,4,5)

This function has been entered on the K-map shown in Figure 2-14(a), where squares
0 through 5 are marked with 1s. In the map, the two largest rectangles each enclose
four squares containing 1s. Note that two squares, 0 and 1, lie in both of the rectan-
gles. Since these two rectangles include all of the 1s in the map and neither can be
removed, the logical sum of the corresponding two product terms gives the opti-
mized expression for F:

F=A+B
To illustrate algebraically how a 4 X 4 rectangle such as B arises, consider the two
adjacent black rectangles AB and A B connected by two pairs of adjacent minterms.

These can be corgbined based on the theorem XY + XY = X with X = B and
Y = A to obtain B. [ |

EXAMPLE 2-6 Three-Variable Map Simplification 2

Simplify the Boolean function
G(A,B,C) = 2m(0,2,4,5,6)

This function has been entered on the K-map shown in Figure 2-14(b), where squares
listed are marked with 1s. In some cases, two squares in the map are adjacent and
form a rectangle of size two, even though they do not touch each other. For example,
in Figure 2-14(b) and 2-12(d), m, is adjacent to m, because the minterms differ by
one variable. This can be readily verified algebraically:

my+ my=ABC + ABC = AC(B + B) = AC

This rectangle is represented in black in Figure 2-14(b) and in blue in Figure 2-12(d)
on a cylinder where the adjacency relationship is apparent. Likewise, a rectangle is
shown in both figures for squares 4 and 6 which corresponds to AC. From the prior
example, it is apparent that these two rectangles can be combined to give a larger
rectangle C which covers squares 0,2, 4, and 6. An additional rectangle is required to
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cover square 5.The largest such rectangle covers squares 4 and 5. It can be read from
the K-map as A B.The resulting simplified function is

G(A,B)= AB+ C =

From Figures 2-14(a) and 2-14(b), we find that 3-variable maps can contain all
of the rectangles contained in a 2-variable map plus: (1) 2 X 2 rectangles, (2) 1 X 4
rectangles, (3) 2 X 1 “split rectangles” at the left and right edges, and a 2 X 2 split
rectangle at the left and right edges. Note that a 2 X 4 rectangle covers the entire
map and corresponds to the function G = 1.

EXAMPLE 2-7 Three-Variable Map Simplification 3

Simplify the Boolean function
H(A,B,C) = Zm(1,3,4,5,6)

This function has been entered on the K-map shown in Figure 2-14(c), where squares
listed are marked with 1s. In this example, we intentionally set the goal of finding all
of the largest rectangles in order to emphasize step 3 of simplification, which has not
been a significant step in earlier examples. Progressing from the upper center, we
find the rectangles corresponding to the following pairs of squares: (3,1), (1,5),(5,4),
(4, 6). Can any of these rectangles be removed and still have all squares covered?
Since only (3, 1) covers 3, it cannot be removed. The same holds for (4, 6) which cov-
ers square 6. After these are included, the only square that remains uncovered is 5,
which permits either (1,5) or (5,4), but not both, to be removed. Assuming that (5,4)
remains, the result can be read from the map as

H(A,B,C) = AC + AB + AC m

EXAMPLE 2-8 Four-Variable Map Simplification 1

Simplify the Boolean function
F(A,B,C,D) = 2m(0,1,2,4,5,6,8,9, 10, 12, 13)

The minterms of the function are marked with 1s in the K-map shown in Figure 2-15.
Eight squares in the two left columns are combined to form a rectangle for the one
literal term, C. The remaining three 1s cannot be combined to give a single simplified
product term —rather, they must be combined as two split 2 X 2 rectangles. The top
two 1s on the right are combined with the top two 1s on the left to give the term A D.
Note again that it is permissible to use the same square more than once. We are now
left with a square marked with a 1 in the fourth row and fourth column (minterm
1010). Instead of taking this square alone, which will give a term with four literals, we
combine it with squares already used to form a rectangle of four squares on the four
corners, giving the term B D. This rectangle is represented in Figure 2-15 and in
Figure 2-12(e) on a torus, where the adjacency relationships between the four
squares are apparent. The optimized expression is the logical sum of the three terms:

F=C+ AD + BD [
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Four-Variable K-Map for Example 2-8

EXAMPLE 2-9 Four-Variable Map Simplification 2

Simplify the Boolean function
G(A,B,C,D) = ACD + AD+ BC+ CD + ABD

This function has four variables: A, B, C, and D. It is expressed in a fairly complex
sum-of-products form. In order to enter G on a K-map, we will actually enter the
regions corresponding to the product terms onto the map, fill the regions with 1s,and
then copy the 1s onto a new map for solution. The area in the map covered by the
function is shown in Figure 2-16(a). A C D places 1s on squares 0 and 4. AD adds 1s
to squares 1, 3,5, and 7 BC adds new 1s to squares 2, 10, and 11. CD adds a new 1 to
square 15 and A B D adds the final 1 to square 8. The resulting function

G(A,B,C,D) = Sm(0,1,2,3,4,5,7,8,10, 11, 15)

is placed on the map in Figure 2-16(b). It is a good idea to check if the 4-corner rect-
angle B D is present and required. It is present, is required to cover square 8, and also
covers squares 0, 2, and 10. With these squares covered, it is easy to see that just two

C
10

(a) K-map for original function G (b) K-map for simplified function G

[0 FIGURE 2-16
Four-Variable K-Map for Example 2-9
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rectangles, A C and CD, cover all of the remaining uncovered squares. We can read
off the resulting function as:

G=BD+AC+ CD

Note that this function is much simpler than the original sum-of-products given. M

2-5 MaAr MANIPULATION

When combining squares in a map, it is necessary to ensure that all the minterms of
the function are included. At the same time, we need to minimize the number of
terms in the optimized function by avoiding any redundant terms whose minterms
are already included in other terms. In this section, we consider a procedure that as-
sists in the recognition of useful patterns in the map. Other topics to be covered are
the optimization of products of sums and the optimization of incompletely specified
functions.

Essential Prime Implicants

The procedure for combining squares in a map may be made more systematic if we
introduce the terms “implicant,” “prime implicant,” and “essential prime implicant.”
A product term is an implicant of a function if the function has the value 1 for all
minterms of the product term. Clearly, all rectangles on a map made up of squares
containing 1s correspond to implicants. If the removal of any literal from an impli-
cant P results in a product term that is not an implicant of the function, then P is a
prime implicant. On a map for an n-variable function, the set of prime implicants
corresponds to the set of all rectangles made up of 2™ squares containing 1s
(m = 0,1, ..., n), with each rectangle containing as many squares as possible.

If a minterm of a function is included in only one prime implicant, that prime
implicant is said to be essential. Thus, if a square containing a 1 is in only one rectangle
representing a prime implicant, then that prime implicant is essential. In Figure 2-14(c),
the terms A C and A C are essential prime implicants, and the terms A B and B C are
nonessential prime implicants.

The prime implicants of a function can be obtained from a map of the function
as all possible maximum collections of 2”* squares containing 1s (m = 0,1, ..., n)
that constitute rectangles. This means that a single 1 on a map represents a prime
implicant if it is not adjacent to any other 1s. Two adjacent 1s form a rectangle repre-
senting a prime implicant, provided that they are not within a rectangle of four or
more squares containing 1s. Four 1s form a rectangle representing a prime implicant
if they are not within a rectangle of eight or more squares containing 1s, and so on.
Each essential prime implicant contains at least one square that is not contained in
any other prime implicant.

The systematic procedure for finding the optimized expression from the map
requires that we first determine all prime implicants. Then, the optimized expression
is obtained from the logical sum of all the essential prime implicants, plus other
prime implicants needed to include remaining minterms not included in the essen-
tial prime implicants. This procedure will be clarified by examples.
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EXAMPLE 2-10 Simplification Using Prime Implicants

Consider the map of Figure 2-17 There are three ways that we can combine four
squares into rectangles. The product terms obtained from these combinations are the
prime implicants of the function, A D, BD and A B.The terms A D and B D are es-
sential prime implicants, but A B is not essential. This is because minterms 1 and 3
are included only in the term A D, and minterms 12 and 14 are included only in the
term B D. But minterms 4, 5, 6, and 7 are each included in two prime implicants, one
of which is A B, so the term A B is not an essential prime implicant. In fact, once the
essential prime implicants are chosen, the term A B is not needed, because all the
minterms are already included in the two essential prime implicants. The optimized
expression for the function of Figure 2-17 is

F=AD+ BD |

EXAMPLE 2-11 Simplification Via Essential and Nonessential Prime Implicants

A second example is shown in Figure 2-18. The function plotted in part (a) has seven
minterms. If we try to combine squares, we will find that there are six prime impli-
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(a) Plotting the minterms (b) Essential prime implicants

[0 FIGURE 2-18
Simplification with Prime Implicants in Example 2-11
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cants. In order to obtain a minimum number of terms for the function, we must first
determine the prime implicants that are essential. As shown in blue in part (b) of the
figure, the function has four essential prime implicants. The product term A BCD is
essential because it is the only prime implicant that includes minterm 0. Similarly,
the product terms BCD, ABC, and A BC are essential prime implicants because
they are the only ones that include minterms 5,12, and 10, respectively. Minterm 15 is
included in two nonessential prime implicants. The optimized expression for the
function consists of the logical sum of the four essential prime implicants and one

prime implicant that includes minterm 15:

ACD
F=ABCD + BCD + ABC + ABC + or
ABD ]

The identification of essential prime implicants in the map provides an additional
tool which shows the terms that must absolutely appear in every sum-of-products
expression for a function and provides a partial structure for a more systematic
method for choosing patterns of prime implicants.

Nonessential Prime Implicants

Beyond using all essential prime implicants, the following rule can be applied to in-
clude the remaining minterms of the function in nonessential prime implicants:

Selection Rule: Minimize the overlap among prime implicants as much as
possible. In particular, in the final solution, make sure that each prime implicant
selected includes at least one minterm not included in any other prime implicant
selected.

In most cases, this results in a simplified, although not necessarily optimum,
sum-of-products expression. The use of the selection rule is illustrated in the next
example.

EXAMPLE 2-12 Simplifying a Function Using the Selection Rule

Find a simplified sum-of-products form for (0, 1,2,4,5,10,11, 13, 15).

The map for Fis given in Figure 2-19, with all prime implicants shown. A C is
the only essential prime implicant. Using the preceding selection rule, we can choose
the remaining prime implicants for the sum-of-products form in the order indicated
by the numbers. Note how the prime implicants 1 and 2 are selected in order to
include minterms without overlapping. Prime implicant 3 (A B D) and prime impli-
cant B C D both include the one remaining minterm 0010, and prime implicant 3 is
arbitrarily selected to include the minterm and complete the sum-of-products

expression:
F(A,B,C,D) = AC+ ABD + ABC+ ABD

The prime implicants not used are shown in black in Figure 2-19. |
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Product-of-Sums Optimization

The optimized Boolean functions derived from the maps in all of the previous exam-
ples were expressed in sum-of-products form. With only minor modification, the
product-of-sums form can be obtained.

The procedure for obtaining an optimized expression in product-of-sums form
follows from the properties of Boolean functions. The 1s placed in the squares of the
map represent the minterms of the function. The minterms not included in the func-
tion belong to the complement of the function. From this, we see that the comple-
ment of a function is represented in the map by the squares not marked by 1s. If we
mark the empty squares with Os and combine them into valid rectangles, we obtain
an optimized expression of the complement of the function, F. We then take the
complement of F to obtain F as a product of sums. This is done by taking the dual
and complementing each literal, as in Example 2-13.

EXAMPLE 2-13 Simplifying a Product-of-Sums Form
Simplify the following Boolean function in product-of-sums form:
F(A,B,C,D) = 3m(0,1,2,5,8,9,10)

The 1s marked in the map of Figure 2-20 represent the minterms of the function. The
squares marked with Os represent the minterms not included in F and therefore
denote the complement of £ Combining the squares marked with Os, we obtain the
optimized complemented function

F= AB+ CD + BD

Taking the dual and complementing each literal gives the complement of F. This is F
in product-of-sums form:

F=(A+ B)(C + D)B + D) m
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The previous example shows the procedure for obtaining the product-of-sums
optimization when the function is originally expressed as a sum of minterms. The
procedure is also valid when the function is originally expressed as a product of max-
terms or a product of sums. Remember that the maxterm numbers are the same as
the minterm numbers of the complemented function, so Os are entered in the map
for the maxterms or for the complement of the function. To enter a function
expressed as a product of sums into the map, we take the complement of the func-
tion and, from it, find the squares to be marked with Os. For example, the function

F=(A+ B+ C)(B+ D)
can be plotted in the map by first obtaining its complement,
F= ABC + BD
and then marking Os in the squares representing the minterms of F. The remaining
squares are marked with 1s. Then, combining the 1s gives the optimized expression
in sum-of-products form. Combining the 0s and then complementing gives the opti-

mized expression in product-of-sums form. Thus, for any function plotted on the
map, we can derive the optimized function in either one of the two standard forms.

Don’t-Care Conditions

The minterms of a Boolean function specify all combinations of variable values for
which the function is equal to 1. The function is assumed to be equal to O for the rest of
the minterms. This assumption, however, is not always valid, since there are applica-
tions in which the function is not specified for certain variable value combinations.
There are two cases in which this occurs. In the first case, the input combinations never
occur. As an example, the four-bit binary code for the decimal digits has six combina-
tions that are not used and not expected to occur. In the second case, the input combi-
nations are expected to occur, but we do not care what the outputs are in response to
these combinations. In both cases, the outputs are said to be unspecified for the input
combinations. Functions that have unspecified outputs for some input combinations
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are called incompletely specified functions. In most applications, we simply do not care
what value is assumed by the function for the unspecified minterms. For this reason, it
is customary to call the unspecified minterms of a function don’t-care conditions. These
conditions can be used on a map to provide further simplification of the function.

It should be realized that a don’t-care minterm cannot be marked with a 1 on
the map, because that would require that the function always be a 1 for such a min-
term. Likewise, putting a 0 in the square requires the function to be 0. To distinguish
the don’t-care condition from 1s and Os, an X is used. Thus, an X inside a square in the
map indicates that we do not care whether the value of 0 or 1 is assigned to the func-
tion for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’t-care
minterms may be used. When simplifying function F using the 1s, we can choose to
include those don’t-care minterms that give the simplest prime implicants
for £ When simplifying function F using the Os, we can choose to include those don’t-
care minterms that give the simplest prime implicants for F, irrespective of those
included in the prime implicants for £ In both cases, whether or not the don’t-care
minterms are included in the terms in the final expression is irrelevant. The handling
of don’t-care conditions is illustrated in the next example.

EXAMPLE 2-14 Simplification with Don’t-Care Conditions

To clarify the procedure for handling the don’t-care conditions, consider the follow-
ing incompletely specified function F that has three don’t-care minterms d:

F(A,B,C,D) = Sm(1,3,7, 11, 15)
d(A, B, C,D) = 3m(0,2,5)

The minterms of F are the variable combinations that make the function equal to 1.
The minterms of d are the don’t-care minterms. The map optimization is shown in
Figure 2-21. The minterms of F are marked by 1s, those of d are marked by Xs, and
the remaining squares are filled with Os. To get the simplified function in sum-of-
products form, we must include all five 1s in the map, but we may or may not include
any of the Xs, depending on what yields the simplest expression for the function. The
term CD includes the four minterms in the third column. The remaining minterm in
square 0001 can be combined with square 0011 to give a three-literal term. However,
by including one or two adjacent Xs, we can combine four squares into a rectangle to
give a two-literal term. In part (a) of the figure, don’t-care minterms 0 and 2 are
included with the 1s, which results in the simplified function

F=CD+ AB

In part (b), don’t-care minterm 5 is included with the 1s, and the simplified function
now is

F=CD+ AD

The two expressions represent two functions that are algebraically unequal. Both
include the specified minterms of the original incompletely specified function, but
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Example with Don’t-Care Conditions

each includes different don’t-care minterms. As far as the incompletely specified
function is concerned, both expressions are acceptable. The only difference is in the
value of F for the unspecified minterms.

It is also possible to obtain an optimized product-of-sums expression for the
function of Figure 2-21. In this case, the way to combine the Os is to include don’t-care
minterms 0 and 2 with the Os, giving the optimized complemented function

F=D+ AC
Taking the complement of F gives the optimized expression in product-of-sums
form:

F=D(A + C) L

The foregoing example shows that the don’t-care minterms in the map are initially
considered as representing both 0 and 1. The 0 or 1 value that is eventually assigned
depends on the optimization process. Due to this process, the optimized function will
have a 0 or 1 value for each minterm of the original function, including those that
were initially don’t cares. Thus, although the outputs in the initial specification may
contain Xs, the outputs in a particular implementation of the specification are only Os
and 1s.

More Optimization This supplement gives a procedure for selecting prime im-
plicants that guarantees an optimum solution. In addition, it presents a symbolic
method for performing prime-implicant generation and a tabular method for prime-
implicant selection. The supplement also discusses how finding the true two-level
optimum solution for large circuits is impractical due to the difficulty of generating
all of the prime implicants and selecting from a large number of possible prime-
implicant solutions. The supplement describes a computer algorithm that general-
ly achieves near-optimum two-level solutions for large circuits much more quickly
than using the optimum approach.
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2-6 ExXcLUSIVE-OR OPERATOR AND GATES

In addition to the exclusive-OR gate shown in Figure 2-3, there is an exclusive-OR
operator with its own algebraic identities. The exclusive-OR (XOR), denoted by @ ,
is a logical operation that performs the function

X@Y = XY + XY

It is equal to 1 if exactly one input variable is equal to 1. The exclusive-NOR, also
known as the equivalence, is the complement of the exclusive-OR and is expressed
by the function

XOY=XY+XY

Itis equal to 1 if both X and Y are equal to 1 or if both are equal to 0. The two func-
tions can be shown to be the complement of each other, either by means of a truth
table or, as follows, by algebraic manipulation:

XOY=XY+XY=X+YVX+Y)=XY + XY
The following identities apply to the exclusive-OR operation:
XP0=X X®l=X
X®X=0 X®X=1
X@Y=X0Y XOY=X®Y

Any of these identities can be verified by using a truth table or by replacing
the @ operation by its equivalent Boolean expression. It can also be shown that the
exclusive-OR operation is both commutative and associative —that is,

A@DB=B®A
ADB)DC=ADBDCO)=ABBDC

This means that the two inputs to an exclusive-OR gate can be interchanged without
affecting the operation. It also means that we can evaluate a 3-variable exclusive-OR
operation in any order, and for this reason, exclusive-ORs with three or more vari-
ables can be expressed without parentheses.

A two-input exclusive-OR function may be constructed with conventional
gates. Two NOT gates, two AND gates, and an OR gate are used. The associativity of
the exclusive-OR operator suggests the possibility of exclusive-OR gates with more
than two inputs. The exclusive-OR concept for more than two variables, however, is
replaced by the odd function to be discussed next. Thus, there is no symbol for
exclusive-OR for more than two inputs. By duality, the exclusive-NOR is replaced
by the even function and has no symbol for more than two inputs.

Odd Function

The exclusive-OR operation with three or more variables can be converted into an
ordinary Boolean function by replacing the @ symbol with its equivalent Boolean
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expression. In particular, the 3-variable case can be converted to a Boolean expres-
sion as follows:

XOYDZ=XY+XY)Z+ (XY +XY)Z
=XYZ+ XYZ+XYZ+ XYZ

The Boolean expression clearly indicates that the 3-variable exclusive-OR is equal
to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Hence,
whereas in the 2-variable function only one variable need be equal to 1, with three or
more variables an odd number of variables must be equal to 1. As a consequence, the
multiple-variable exclusive-OR operation is defined as the odd function. In fact,
strictly speaking, this is the correct name for the @ operation with three or more
variables; the name “exclusive-OR” is applicable to the case with only two variables.

The definition of the odd function can be clarified by plotting the function on a
map. Figure 2-22(a) shows the map for the 3-variable odd function. The four min-
terms of the function differ from each other in at least two literals and hence cannot
be adjacent on the map. These minterms are said to be distance two from each other.
The odd function is identified from the four minterms whose binary values have an
odd number of 1s. The 4-variable case is shown in Figure 2-22(b). The eight minterms
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Multiple-Input Odd Functions
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marked with 1s in the map constitute the odd function. Note the characteristic pat-
tern of the distance between the 1s in the map. It should be mentioned that the min-
terms not marked with 1s in the map have an even number of 1s and constitute the
complement of the odd function, called the even function. The odd function is imple-
mented by means of two-input exclusive-OR gates, as shown in Figure 2-23. The
even function is obtained by replacing the output gate with an exclusive-NOR gate.

2-7 GATE PROPAGATION DELAY

As mentioned in Section 2-1, an important property of logic gates is propagation
delay. Propagation delay is the time required for a change in value of a signal to
propagate from input to output. The operating speed of a circuit is inversely related
to the longest propagation delays through the gates of the circuit. The operating
speed of a circuit is usually a critical design constraint. In many cases, operating
speed can be the most important design constraint.

The determination of propagation delay is illustrated in Figure 2-24. Three
propagation delay parameters are defined. The high-to-low propagation time t,, is
the delay measured from the reference voltage on the input IN to the reference volt-
age on the output OUT, with the output voltage going from H to L. The reference
voltage we are using is the 50 percent point, halfway between the minimum and the
maximum values of the voltage signals; other reference voltages may be used,
depending on the logic family. The low-to-high propagation time t, . is the delay
measured from the reference voltage on the input voltage IN to the reference volt-
age on the output voltage OUT, with the output voltage going from L to H. We
define the propagation delay 1, as the maximum of these two delays. The reason we
have chosen the maximum value is that we will be most concerned with finding the
longest time for a signal to propagate from inputs to outputs. Otherwise, the defini-
tions given for ¢ may be inconsistent, depending on the use of the data.
Manufacturers usually specify the maximum and typical values for both ¢, and 7,
or for ¢ for their products.

Two different models, transport delay and inertial delay, are employed in mod-
eling gates during simulation. For transport delay, the change in an output in response
to the change of an input occurs after a specified propagation delay. Inertial delay is
similar to transport delay, except that if the input changes cause the output to change
twice in an interval less than the rejection time, then the first of the two output
changes does not occur. The rejection time is a specified value no larger than the
propagation delay and is often equal to the propagation delay. An AND gate mod-
eled with both a transport delay and an inertial delay is illustrated in Figure 2-25.To
help visualize the delay behavior, we have also given the AND output with no delay.
A colored bar on this waveform shows a 2 ns propagation delay time after each input
change, and a smaller black bar shows a rejection time of 1 ns. The output modeled
with the transport delay is identical to that for no delay, except that it is shifted to the
right by 2 ns. For the inertial delay, the waveform is likewise shifted. To define the
waveform for the delayed output, we will call each change in a waveform an edge. To
determine whether a particular edge appears in the ID output, it must be determined
whether a second edge occurs in the ND output before the end of the rejection time
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Propagation Delay for an Inverter

for the edge in question, and whether the edge will result in a change in the ID out-
put. Since edge b occurs before the end of the rejection time for edge a in the ND
output, edge a does not appear in the ID output. Since edge b does not change the
state of ID, it is ignored. Since edge d occurs at the rejection time after edge c in the
ND output, edge ¢ does appear. Edge e, however, occurs within the rejection time
after edge d, so edge d does not appear. Since edge ¢ appeared and edge d did not
appear, edge e does not cause a change.

Next, we want to consider further the components that make up the gate delay
within a circuit environment. The gate itself has some fixed inherent delay. Because it
represents capacitance driven, however, the actual fan-out of the gate, in terms of
standard loads, discussed in Chapter 5, also affects the propagation delay of the gate.
But depending upon the loading of the gate by the inputs of the logic attached to its
output, the overall delay of the gate may be significantly larger than the inherent
gate delay. Thus, a simple expression for propagation delay can be given by a formula
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Examples of Behavior of Transport and Inertial Delays
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or table that considers a fixed delay plus a delay per standard load times the number
of standard loads driven by the output as shown in the example that follows.

EXAMPLE 2-15 Calculation of Gate Delay Based on Fan-Out

A 4-input NAND gate output is attached to the inputs of the following gates with
the given number of standard loads representing their inputs:

4-input NOR gate —0.80 standard load

3-input NAND gate—1.00 standard load, and

inverter —1.00 standard load.
The formula for the delay of the 4-input NAND gate is

ta = 0.07 + 0.021 X SLns

where SL is the sum of the standard loads driven by the gate.
Ignoring the wiring delay, the delay projected for the NAND gate as loaded is

tha = 0.07 + 0.021 X (0.80 + 1.00 + 1.00) = 0.129 ns

In modern high-speed circuits, the portion of the gate delay due to wiring capaci-
tance is often significant. While ignoring such delay is unwise, it is difficult to evalu-
ate, since it depends on the layout of the wires in the integrated circuit. Nevertheless,
since we do not have this information or a method to obtain a good estimate of it, we
ignore this delay component here. |

2-8 HDLs OVERVIEW

Designing complex systems and integrated circuits would not be feasible without the
use of computer-aided design (CAD) tools. Schematic capture tools support the
drawing of blocks and interconnections at all levels of the hierarchy. At the level of
primitives and functional blocks, libraries of graphics symbols are provided. Schematic
capture tools support the construction of a hierarchy by permitting the generation of
symbols for hierarchical blocks and the replication of symbols for reuse.

The primitive blocks and the functional block symbols from libraries have
associated models that allow the behavior and the timing of the hierarchical blocks
and the entire circuit to be verified. This verification is performed by applying inputs
to the blocks or circuit and using a logic simulator to determine the outputs.

The primitive blocks from libraries can also have associated data, such as phys-
ical area information and delay parameters, that can be used by logic synthesizers to
optimize designs being generated automatically from HDL specifications.

As we briefly described in Section 2-1, while schematics and Boolean equa-
tions are adequate for small circuits, HDLs have become crucial to the modern
design process required for developing large, complex circuits. HDLs resemble soft-
ware programming languages, but they have particular features to describe hard-
ware structures and behavior. They differ from typical programming languages by
representing the parallel operations performed by hardware, whereas most pro-
gramming languages represent serial operations.
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As we will show in the remainder of this chapter and in Chapters 3 and 4, the
power of an HDL becomes more apparent when it is used to represent more than
just schematic information. It can represent Boolean equations, truth tables, and
complex operations such as arithmetic. Thus, in top-down design, a very high-level
description of an entire system can be precisely specified using an HDL. As a part of
the design process, this high-level description can then be refined and partitioned
into lower-level descriptions. Ultimately, a final description in terms of primitive
components and functional blocks can be obtained as the result of the design pro-
cess. Note that all of these descriptions can be simulated. Since they represent the
same system in terms of function, but not necessarily timing, they should respond by
giving the same logic values for the same applied inputs. This vital simulation prop-
erty supports design verification and is one of the principal reasons for the use of
HDLs.

A final major reason for increased use of HDLs is logic synthesis. An HDL
description of a system can be written at an intermediate level referred to as a regis-
ter transfer language (RTL) level. A logic synthesis tool with an accompanying
library of components can convert such a description into an interconnection of
primitive components that implements the circuit. This replacement of the manual
logic design process makes the design of complex logic much more efficient. Logic
synthesis transforms an RTL description of a circuit in an HDL into an optimized
netlist representing storage elements and combinational logic. The optimizations
involved are more complex than those presented previously in this chapter, but they
share many of the same underlying concepts. Subsequent to logic optimization, this
netlist may be transformed by using physical design tools into an actual integrated
circuit layout or field programmable gate array (FPGA). The logic synthesis tool
takes care of a large portion of the details of a design and allows designers to explore
the trade-offs between design constraints that are essential to advanced designs.

Currently, VHDL and Verilog are widely used, standard hardware design lan-
guages. The language standards are defined, approved, and published by the Institute
of Electrical and Electronics Engineers (IEEE). All implementations of these lan-
guages must obey their respective standard. This standardization gives HDLs
another advantage over schematics. HDLs are portable across computer-aided
design tools, whereas schematic capture tools are typically unique to a particular
vendor. In addition to the standard languages, a number of major companies have
their own internal languages, often developed long before the standard languages
and incorporating features unique to their particular products.

Regardless of the HDL, a typical procedure is used in employing an HDL
description as simulation input. The steps in the procedure are analysis, elaboration,
and initialization, followed finally by the simulation. Analysis and elaboration are
typically performed by a compiler similar to those for programming languages.
Analysis checks the description for violations of the syntax and semantic rules for
the HDL and produces an intermediate representation of the design. Elaboration
traverses the design hierarchy represented by the description; in this process, the
design hierarchy is flattened to an interconnection of modules that are described
only by their behaviors. The end result of the analysis and elaboration performed by
the compiler is a simulation model of the original HDL description. This model is
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then passed to the simulator for execution. Initialization sets all of the variables in
the simulation model to specified or default values. Simulation executes the simula-
tion model in either batch or interactive mode with inputs specified by the user.

Because fairly complex hardware can be described efficiently in an HDL, a
special HDL structure called a testbench may be used. The testbench is a description
that includes the design to be tested, typically referred to as the Device Under Test
(DUT). The testbench describes a collection of hardware and software functions
that apply inputs to the DUT and analyze the outputs for correctness. This approach
bypasses the need to provide separate inputs to the simulator and to analyze, often
manually, the simulator outputs. Construction of a testbench provides a uniform ver-
ification mechanism that can be used at multiple levels in the top-down design pro-
cess for verification of correct function of the design.

Logic Synthesis

As indicated earlier, the availability of logic synthesis tools is one of the driving forc-
es behind the growing use of HDLs. Logic synthesis transforms an RTL description
of a circuit in an HDL into an optimized netlist representing storage elements and
combinational logic. Subsequently, this netlist may be transformed by using physical
design tools into an actual integrated circuit layout. This layout serves as the basis for
integrated circuit manufacture. The logic synthesis tool takes care of a large portion
of the details of a design and allows exploration of the cost/performance trade-offs
essential to advanced designs.

Figure 2-26 shows a simple high-level flow of the steps involved in logic syn-
thesis. The user provides an HDL description of the circuit to be designed as well as

HDL Description Electronic, Speed, Technology
of Circuit and Area Constraints Library

!

Translation

!

Intermediate
Representation

!

Preoptimization —> Optimization —~ Technology Mapping

[0 FIGURE 2-26
High-Level Flow for Logic Synthesis Tool
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various constraints or bounds on the design. Electrical constraints include allow-
able gate fan-outs and output loading restrictions. Area and speed constraints direct
the optimization steps of the synthesis. Area constraints typically give the maxi-
mum permissible area that a circuit is allowed to occupy within the integrated
circuit.

Alternatively, a general directive may be given which specifies that area is to
be minimized. Speed constraints are typically maximum allowable values for the
delay on various paths in the circuit. Alternatively, a general directive may be
given to maximize speed. Area and speed both translate into the cost of a circuit.
A fast circuit will typically have larger area and thus cost more to manufacture. A
circuit that need not operate fast can be optimized for area, and, relatively speak-
ing, costs less to manufacture. In some sophisticated synthesis tools, power con-
sumption can also be used as a constraint. Additional information used by a
synthesis tool is a technology library that describes the primitive blocks available
for use in the netlist as well as their physical parameters necessary for delay com-
putations. The latter information is essential in meeting constraints and perform-
ing optimization.

The first major step in the synthesis process in Figure 2-26 is a translation of the
HDL description into an intermediate form. The translation result may be an inter-
connection of generic gates and storage elements, not taken from the technology
library. It may also be in an alternate form that represents clusters of logic and the
interconnections between the clusters.

The second major step in the synthesis process is optimization. A preoptimiza-
tion step may be used to simplify the intermediate form. For example, logic that is
identical in the intermediate form may be shared. Next is the optimization, in which
the intermediate form is processed to attempt to meet the constraints specified.
Typically, two-level and multiple-level optimization are performed. Optimization is
followed by technology mapping, which replaces AND gates, OR gates, and inverters
with gates from the technology library. In order to evaluate area and speed parame-
ters associated with these gates, additional information from the technology library
is used. In sophisticated synthesis tools, further optimization may be applied during
technology mapping in order to improve the likelihood of meeting the constraints
on the design. Optimization can be a very complex, time-consuming process for large
circuits. Many optimization passes may be necessary to achieve the desired results or
to demonstrate that constraints are difficult, if not impossible, to meet. The designer
may need to modify the constraints or the HDL in order to achieve a satisfactory
design. Modification of the HDL may include manual design of some portions of the
logic in order to achieve the design goals.

The output of the optimization/technology mapping processes is typically a
netlist corresponding to a schematic diagram made up of storage elements, gates,
and other combinational logic functional blocks. This output serves as input to phys-
ical design tools that physically place the logic elements and route the interconnec-
tions between them to produce the layout of the circuit for manufacture. In the case
of programmable parts, such as field-programmable gate arrays as discussed in
Chapter 5, an analog to the physical design tools produces the binary information
used to program the logic within the parts.
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[0 FIGURE 2-27
Gate level schematic for a two-bit greater-than comparator circuit

2-9 HDL REePRESENTATIONS—VHDL

Since an HDL is used for describing and designing hardware, it is very important to
keep the underlying hardware in mind as you write in the language. This is particularly
critical if your language description is to be synthesized. For example, if you ignore the
hardware that will be generated, it is very easy to specify a large complex gate structure
by using an inefficient HDL description when a much simpler structure using only a few
gates is all that is needed. For this reason, we initially emphasize description of detailed
hardware with VHDL, and proceed to more abstract, higher-level descriptions later.

Selected examples in this chapter are useful for introducing VHDL as an alter-
native means for representing detailed digital circuits. Initially, we show structural
VHDL descriptions that replace the schematic for the two-bit greater-than compar-
ator circuit given in Figure 2-27 This example illustrates many of the fundamental
concepts of VHDL. We then present higher-level behavioral VHDL descriptions for
these circuits that further illustrate fundamental VHDL concepts.

EXAMPLE 2-16 Structural VHDL for a Two-Bit Greater-Than Comparator
Circuit

Figure 2-28 shows a VHDL description for the two-bit greater-than comparator cir-
cuit from Figure 2-27 This example will be used to demonstrate a number of general
VHDL features as well as structural description of circuits.

The text between two dashes —- and the end of the line is interpreted as a com-
ment. So the description in Figure 2-28 begins with a two-line comment identifying
the description and its relationship to Figure 2-27 To assist in discussion of this
description, comments providing line numbers have been added on the right. As a
language, VHDL has a syntax that describes precisely the valid constructs that can
be used in the language. This example will illustrate many aspects of the syntax. In
particular, note the use of semicolons, commas, and colons in the description.

Initially, we skip lines 3 and 4 of the description to focus on the overall structure.
Line 6 begins the declaration of an entity, which is the fundamental unit of a VHDL
design. In VHDL, just as for a symbol in a schematic, we need to give the design a
name and to define its inputs and outputs. This is the function of the entity declaration.
Entity and is are keywords in VHDL. Keywords, which we show in bold type, have
a special meaning and cannot be used to name objects such as entities, inputs, outputs
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-- Two-bit greater-than circuit : Structural VHDL Description
-- (See Figure 2-27 for logic diagram)

library ieee, lcdf_vhdl;

use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all;

entity comparator_greater_than_structural is
port (A: in std_logic_vector(l downto 0);
B: in std_logic_vector (1l downto 0);
A_greater_than_B: out std_logic);
end comparator_greater_than_structural;

architecture structural of comparator_greater_than_structural is

component NOT1
port(inl: in std_logic;
outl: out std_logic);
end component;
component AND2
port(inl, in2: in std_logic;
outl: out std_logic);
end component;
component AND3
port(inl, in2, in3: in std_logic;
outl: out std_logic);
end component;
component OR3
port(inl, in2, in3 : in std_logic;
outl: out std_logic);
end component;
signal Bl_n, BO_n, and0O_out, andl_out, and2_out: std_logic;
begin
inv_0: NOT1 port map (inl => B(0), outl => BO_n);
inv_1: NOT1 port map (B(1l), Bl_n);
and_0: AND2 port map (A(l), Bl_n, andO_out);
and_1: AND3 port map (A(1l), A(0), BO_n, andl_out);
and_2: AND3 port map (A(0), Bl_n, BO_n, and2_out);
or0: OR3 port map (and0O_out,andl_out,and2_out, A_greater_than_B);
end structural;

[0 FIGURE 2-28
Structural VHDL Description of Two-Bit Greater-Than Comparator Circuit
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or signals. Statement entity comparator_greater_than_structural is
declares that a design exists with the name comparator_greater_than_struc-
tural. VHDL is case insensitive (i.e., names and keywords are not distinguished by
the use of uppercase or lowercase letters). COMPARATOR greater_ than_
Structural is the same as comparator_ Greater_than_structural and
comparator_greater_than_Structural.

Next, a port declaration in lines 7 through 9 is used to define the inputs and out-
puts just as we would do for a symbol in a schematic. For the example design, there are
two input signals: A and B. The fact that these are inputs is denoted by the mode in.
Likewise,A_greater_than_Bis denoted as an output by the mode out.In VHDL is
a strongly typed language, so the type of the inputs and output must be declared. In the
case of the output, the type is std_1logic, which represents standard logic. This type
declaration specifies the values that may appear on the inputs and the outputs, as well as
the operations that may be applied to the signals. Standard logic, among its nine values,
includes the usual binary values 0 and 1 and two additional values X and U. X represents
an unknown value, U an uninitalized value. We have chosen to use standard logic, which
includes these values, since these values are used by typical simulation tools.

The inputs A and B illustrate another VHDL concept, std_logic_vectors.
The inputs are each two bits wide, so they are specified as type std_logic_vector
instead of individual std_1ogic signals. In specifying vectors, we use an index. Since
A consists of two input signals numbered 0 and 1, with 1 being the most significant
(leftmost) bit, the index for A is 1 down to 0. The components of this vector are A (1)
and A (0) . B likewise consists of two signals numbered 1 and 0, so its index is also 1
down to 0. Beginning at line 32, note how the signals within std_logic_vectors
are referred to by giving the signal name and the index in parentheses. Also, if one
wishes to have the larger index for a vector appear last, VHDL uses a somewhat dif-
ferent notational approach. For example, signal N: std_logic_vector (0
to 3) defines the first (leftmost) bit in signal N as N (0) and the last (rightmost) sig-
nal in N as N (3). It is also possible to refer to subvectors (e.g., N(1 to 2),which
referstoN (1) and N (2), would be the center two signals in N).

In order to use the types std_logic and std_logic_vector,itis necessary
to define the values and the operations. For convenience, a package consisting of pre-
compiled VHDL code is employed. Packages are usually stored in a directory referred
to as a library, which is shared by some or all of the tool users. For std_logic, the
basic package is ieee.std_logic_1164.This package defines the values and basic
logic operators for types std_ulogic and std_logic.In order touse std_logic,
we include line 3 to call up the 1ibrary of packages called ieee and include line 4
containing ieee.std_logic_1164.all to indicate we want to use all of the
package std_logic_1164 from the ieee library. An additional library, 1cdf_vhdl,
contains a package called func_prims made up of basic logic gates, latches, and flip-
flops described using VHDL, of which we use all. Library 1cdf_wvhdl is available in
ASCII for copying from the Companion Website for the text. Note that the statements
in lines 3 and 4 are tied to the entity that follows. If another entity is included in the
same file, which also uses type std_logic and the elements from func_prims, the
library and use statements must be repeated prior to that entity declaration.
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The entity declaration ends with keyword end followed by the entity name. Thus
far, we have discussed the equivalent of a schematic symbol in VHDL for the circuit.

StrucTurRAL DEscripTioN  Next, we want to specify the function of the circuit. A par-
ticular representation of the function of an entity is called the architecture of the
entity. Thus, the contents of line 12 declare a VHDL architecture named structural
for the entity comparator_greater_than_structural to exist. The details of
the architecture follow. In this case, we use a structural description that is equivalent
to the schematic for the circuit given in Figure 2-27.

First, we declare the gate types we are going to use as components of our
description in lines 15 through 29. Since we are building this architecture from gates,
we declare an inverter called NOT1, a 2-input AND gate called AND2, a 3-input AND
gate called AND3, and a 3-input OR gate called OR3 as components. These gate types
are VHDL descriptions in package func_prims that contain the entity and archi-
tecture for each of the gates. The name and the port declaration for a component
must be identical to those for the underlying entity. For NOT1, port gives the input
name inl and the output name outl. The component declaration for AND2 gives
input names inl and in2, and output name outl. Similarly, the component
declarations for AND3 and OR3 give input names inl, in2, and in3, and output
name outl.

Next, before specifying the interconnection of the gates, which is equivalent to a
circuit netlist, we must name all of the nets in the circuit. The inputs and outputs already
have names. The internal nets are the outputs of the two inverters and of the three AND
gates in Figure 2-27 These output nets are declared as signals of type std_logic. Not_B1
and not_BO are the signals for the two inverter outputs and and0_out, andl_out,
and and2_out are the signals for the three AND gate outputs. Likewise, all of the
inputs and outputs declared as ports are signals. In VHDL, there are both signals and
variables. Variables are evaluated instantaneously. In contrast, signals are evaluated at
some future point in time. This time may be physical time, such as 2 ns from the current
time, or may be what is called delfa time, in which a signal is evaluated one delta time
from the current time. Delta time is viewed as an infinitesimal amount of time. Some
time delay in evaluation of signals is essential to the internal operation of the typical
digital simulator and, of course, based on the delay of gates, is realistic in performing
simulations of circuits. For simplicity, we will typically be simulating circuits for correct
function, not for performance or delay problems. For such functional simulation, it is
easiest to let the delays default to delta times. Thus, no delay will be explicit in our
VHDL descriptions of circuits, although delays may appear in test benches.

Following the declaration of the internal signals, the main body of the architec-
ture starts with the keyword begin. The circuit described consists of two inverters,
one 2-input AND gate, two 3-input AND gates, and one 3-input OR gate. Line 32
gives the label inv_0 to the first inverter and indicates that the inverter is compo-
nent NOT1.Next is a port map, which maps the input and output of the inverter to
the signals to which they are connected. This particular form of port map uses =>
with the port of the gate on the left and the signal to which it is connected on the
right. For example, the input of inverter inv_0is B (0) and the outputis not_BRO0.
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Lines 33 through 37 give the remaining five gates and the signals connected to
their inputs and outputs. These five gates use an alternative method to specify the
port maps for the logic gates. Instead of explicitly giving the component input and
output names, we assume that these names are in the port map in the same order as
given for the component. We can then implicitly specify the signals attached to these
names by listing the signals in same order as the names. For example, in line 33,B (1)
is connected to the input and not_B1 is connected to the output. The architecture is
completed with the keyword end followed by its name structural. |

DatarLow Description A dataflow description describes a circuit in terms of func-
tion rather than structure and is made up of concurrent assignment statements or
their equivalent. Concurrent assignment statements are executed concurrently (i.e.,
in parallel) whenever one of the values on the right-hand side of the statement
changes. For example, whenever a change occurs in a value on the right-hand side of
a Boolean equation, the left-hand side is evaluated. The use of dataflow descriptions
made up of Boolean equations is illustrated in Example 2-17

EXAMPLE 2-17 Dataflow VHDL for a Two-Bit Greater-Than Comparator
Circuit

Figure 2-29 shows a dataflow VHDL description for the two-bit greater-than com-
parator circuit from Figure 2-27 This example will be used to demonstrate a dataflow
description made up of Boolean equations. The library, use, and entity statements

-- Two-bit greater-than circuit : Dataflow VHDL Description - 1
-- (See Figure 2-27 for logic diagram) -- 2
library ieee; -- 3
use ieee.std_logic_1164.all; -- 4
-- 5

entity comparator_greater_ than_dataflow is -- 6
port (A: in std_logic_vector(l downto 0); - 7
B: in std_logic_vector (1l downto O0); -- 8
A_greater_than_B: out std_logic); -- 9
end comparator_greater_than_dataflow; -- 10
-- 11

architecture dataflow of comparator_greater_than_dataflow is -- 12
signal Bl_n, BO_n, andO_out, andl_out, and2_out: std_logic; -- 13
begin -- 14
Bl _n <= not B(1l); -- 15
BO_n <= not B(0); -- 16
andO_out <= A(l) and Bl_n; -— 17
andl_out <= A(1) and A(0) and BO_n; -- 18
and2_out <= A(0) and Bl_n and BO_n; -- 19
A_greater_than_ B <= and0_out or andl_out or and2_out; -- 20
end dataflow; -- 21

[0 FIGURE 2-29
Dataflow VHDL Description of Two-Bit Greater-Than Comparator Circuit
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are identical to those in Figure 2-28, so they are not repeated here. The dataflow
description begins in line 15.The signals B0_n and B1_n are defined by signal assign-
ments that apply the not operation to the input signal B (0) and B (1), respectively.
Inline 17B1_n and A (1) are combined with an and operator to form and0_out.
The signals and1l_out,and2_out,and A_greater_than_B are similarly defined
in lines 18 through 20, with A_greater_than_B using the or operator. Note
that this dataflow description is much simpler than the structural description in
Figure 2-28.

The order of execution of the assignment statements does not depend upon
the order of their appearance in the model description, but rather on the order of
changes of signals on the right-hand side of the assignment statements. Thus the
description in Figure 2-29 would have exactly the same behavior even if the assign-
ment statements were listed in some other order, e.g., if line 15 and line 20 were
interchanged. |

BenavioraL Description  Dataflow models using concurrent assignments are con-
sidered to be behavioral descriptions, because they describe the function of the cir-
cuit without describing its structure. As will be shown in Chapter 4, VHDL also pro-
vides ways to describe behavior using statements that execute sequentially within
a process, known as algorithmic modeling. But even with dataflow modeling using
concurrent assignments, VHDL provides ways to describe circuits more abstractly
than the logic level.

EXAMPLE 2-18 VHDL for a Two-Bit Greater-Than Comparator Using
When-Else

In Figure 2-30, instead of using Boolean equation-like statements in the architecture
to describe the multiplexer, we use a when-else statement. This model of the circuit

-- Two-bit greater-than circuit : Conditional VHDL Description -—- 1
-- using when-else(See Figure 2-27 for logic diagram) -- 2
library ieee; -- 3
use ieee.std_logic_1164.all; -- 4
-- 5

entity comparator_greater_than_behavioral is -- 6
port (A: in std_logic_vector(l downto 0); -— 7
B: in std_logic_vector (1l downto 0); -- 8
A_greater_than_B: out std_logic); -- 9
end comparator_greater_ than behavioral; -- 10
-- 11

architecture when_else of comparator_greater_than_behavioral is -—- 12
begin -- 13
A_greater_than_B <= '1l' when (A > B) else -- 14
'0'; -- 15

end when_else; -- 16

[0 FIGURE 2-30
Dataflow VHDL Description of Two-Bit Greater-Than Comparator Using When-Else
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describes the behavior of the circuit (i.e., the output is a 1 when A > B and 0
otherwise) using the desired mathematical operation of the circuit rather than Bool-
ean logic. Whenever either A or B changes, the when condition is re-evaluated and
the value is assigned accordingly. |

Example 2-19 VHDL for a Two-Bit Greater-Than Comparator Using With-Select

With-select is a variation on when-else as illustrated for the model shown in
Figure 2-31. The expression, the value of which is to be used for the decision, fol-
lows with and precedes select. The values for the expression that causes the
alternative assignments then follow when with each of the assignment-value pairs
separated by commas. In the example, A is the signal, the value of which deter-
mines the value selected for A_greater_than_B. For this example, A is used to
select a function of B that represents the proper output. When A = “00,” 0 is as-
signed to the output because the function is 0 for all combinations of B. When

-- Two-bit greater-than circuit : Conditional VHDL Description -- 1
-- using with-select(See Figure 2-27 for logic diagram) - 2
library ieee; -- 3
use ieee.std_logic_1164.all, ieee.std_logic_unsigned .all; -- 4
-- 5

entity comparator_greater_ than_behavioral2 is -- 6
port (A: in std_logic_vector(l downto 0); -— 7
B: in std_logic_vector(l downto 0); -- 8
A_greater_than B: out std_logic); - 9
end comparator_greater_than_behavioral2; -- 10
-- 11

architecture with _select of comparator_greater_ than_behavioral2 is -- 12
begin -- 13
with A select -- 14
A _greater_than B <= '0' when "00", -- 15
B(0) nor B(l) when "O1", -- 16

not B(1) when "10", -- 17

B(0) nand B(l) when "11", -- 18

'X' when others; -- 19

end with_select; -- 20

OO0 FIGURE 2-31
Conditional Dataflow VHDL Description of Two-Bit Greater-Than Comparator Using
With-Select



2-9 / HDL Representations—VHDL [1 93

A = “01,” the output should only be 1 when B = “00,” which is the NOR
function of the two bits of B. When A = “10,” the output is a 1 when B(1) is 0
and 0 when B(1) is 1, so the function assigned is the inverse of B(1). When
A = “11,” the outputis a1 except for when B = “11,” which is the NAND func-
tion of the two bits of B. Finally, ‘X’ is assigned to the output when others,
where others represents the standard logic combinations not already specified,
i.e., when one of the bits of A is neither a O nor a 1, such as U.

This example is somewhat contrived for this particular circuit, resulting in a
description that is less straightforward than the previous versions. However, this
example illustrates an approach with the conditional operator that is often useful
when a set of conditions is used to select between several functions. We will see
examples of these types of selection circuits in later chapters, particularly in
Chapter 3 with multiplexers and Chapter 6 with register transfers.

Note that when-else permits decisions on multiple distinct signals. For example,
a model could have a first when conditioned on one signal, with another when in the
else part that is conditioned on a different signal, and so on. In contrast, the with-
select can depend on only a single Boolean condition (e.g., either the first signal or
the second one, but not both). Also, for typical synthesis tools, when-else usually
results in a more complex logical structure than with-select because when-else
depends upon multiple conditions. |

TestBENCHES ~ As briefly described in Section 2-8, a testbench is an HDL model
whose purpose is to test another model, often called the Device Under Test
(DUT), by applying stimuli to the inputs. More complex testbenches will also
analyze the output of the DUT for correctness. Figure 2-32 shows a simple
VHDL testbench for the structural two-bit greater-than comparator circuit.
The testbench has several aspects that are common to testbenches. First, the en-
tity declaration does not have any input or output ports (lines 5-6). Second,
the architecture for the testbench declares the component for the DUT (lines
11-15) and then instantiates the DUT (line 17). The architecture also declares
the signals that will be connected to the inputs and outputs of the DUT (lines
9-10). Finally, the architecture applies combinations of inputs to the DUT to
test it under various conditions (lines 18-29). The input values are applied us-
ing a process named tb, where a process is a block of statements that are ex-
ecuted sequentially. The tb process in this testbench starts at the beginning of
the simulation, and assigns values to the inputs of the DUT, waiting 10 ns of
simulation time between assignments, and then halting by waiting forever. The
process in this example uses only a few combinations of inputs for the sake of
clarity, although it does test all three conditions for the relationship between A
and B (A < B,A = B,and A > B). Processes will be described in more detail
in Chapter 4, where a richer set of sequential statements that can be used in a
process will be introduced.

This completes our introduction to VHDL for combinational circuits. We will
continue with more on VHDL by presenting additional features of the language to
describe more complex circuits in Chapters 3 and 4.
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-- Testbench for VHDL two-bit greater-than comparator - 1
library ieee; -— 2
use ieee.std_logic_1164.all, ieee.std_logic_unsigned.all; -- 3
-— 4

entity greater_testbench is -- 5
end greater_testbench; -- 6
- 17

architecture testbench of greater_testbench is -- 8
signal A, B: std_logic_vector (1 downto O0); -- 9
signal struct_out: std_logic; -- 10
component comparator_greater_than structural is -- 11
port (A: in std_logic_vector(l downto 0); -—- 12

B: in std_logic_vector(l downto 0); -- 13
A_greater_than B: out std_logic); -- 14
end component; -- 15
begin -- 16
ul: comparator_greater_than structural port map(A,B, struct_out); -- 17
tb: process -- 18
begin -- 19
A <= "10"; -- 20
B <= "00"; -- 21
wait for 10 ns; -- 22
B <= "01"; -- 23
wait for 10 ns; -- 24
B <= "10"; -- 25
wait for 10 ns; -- 26
B <= "11"; -- 27
wait; -- halt the process -- 28
end process; -- 29
end testbench; -- 30

[0 FIGURE 2-32
Testbench for the Structural Model of the Two-Bit Greater-Than Comparator

2-10 HDL REPRESENTATIONS—VERILOG

Since an HDL is used for describing and designing hardware, it is very important
to keep the underlying hardware in mind as you write in the language. This is par-
ticularly critical if your language description is to be synthesized. For example, if
you ignore the hardware that will be generated, it is very easy to specify a large
complex gate structure by using an inefficient HDL description, when a much
simpler structure using only a few gates is all that is needed. For this reason, ini-
tially, we emphasize describing detailed hardware with Verilog, and finishing with
more abstract, higher-level descriptions.

Selected examples in this chapter are useful for introducing Verilog as
an alternative means for representing detailed digital circuits. First, we show a
structural Verilog description in Figure 2-33 that replaces the schematic for the
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// Two-bit greater-than circuit: Verilog structural model // 1
// See Figure 2-27 for logic diagram // 2
module comparator_greater_than_structural (A, B, A_greater_than_B); // 3
input [1:0] A, B; // 4
output A_greater_than_B; // 5
wire BO_n, Bl_n, and0O_out, andl_out, and2_out; // 6
not /)
inv0(BO_n, B[0]), invl1(Bl_n, B[11); // 8
and // 9
and0 (and0_out, A[1], Bl_n), // 10
andl (andl_out, A[1], A[O0], BO_n), // 11
and2 (and2_out, A[0], Bl_n, BO_n); // 12

or // 13
or0(A_greater_than_B, and0O_out, andl_out, and2_out); // 14
endmodule // 15

[0 FIGURE 2-33
Structural Verilog Description of Two-Bit Greater-Than Circuit

two-bit greater-than comparator. This example illustrates many of the funda-
mental concepts of Verilog. We then present higher-level behavioral Verilog
descriptions for these circuits that further illustrate Verilog concepts.

EXAMPLE 2-20 Structural Verilog for a Two-Bit Greater-Than Circuit

The Verilog description for the two-bit greater-than circuit from Figure 2-27 is given
in Figure 2-33. This description will be used to introduce a number of general Verilog
features, as well as to illustrate structural circuit description.

The text between two slashes / / and the end of a line as shown in lines 1 and
2 of Figure 2-33 is interpreted as a comment. For multiline comments, there is an
alternative notation using a / and *:

/* Two-bit greater-than circuit: Verilog structural model
See Figure 2-27 for logic diagram */

To assist in discussion of the Verilog description, comments providing line
numbers have been added on the right. As a language, Verilog has a syntax that
describes precisely the valid constructs that can be used in the language. This
example will illustrate many aspects of the syntax. In particular, note the use of
commas and colons in the description. Commas (, ) are typically used to sepa-
rate elements of a list and semicolons (;) are used to terminate Verilog
statements.

Line 3 begins the declaration of a module, which is the fundamental building
block of a Verilog design. The remainder of the description defines the module,
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ending in line 15 with endmodule. Note that there is no ; after endmodule. Just as
for a symbol in a schematic, we need to give the design a name and to define its
inputs and outputs. This is the function of the module statement in line 3 and the
input and output declarations that follow. The words module, input, and output
are keywords in Verilog. Keywords, which we show in bold type, have a special mean-
ing and cannot be used as names of objects such as modules, inputs, outputs, or wires.
The statement module comparator_greater_than_structural declares
that a design or design part exists with the name comparator_greater_than_
structural.Further, Verilog names are case sensitive (i.e.,names are distinguished
by the use of uppercase or lowercase letters). COMPARATOR_greater_than_
Structural, Comparator_greater_than_structural, and comparator_
greater_than_Structural are all distinct names.

Just as we would do for a symbol in a schematic, we give the names of the
decoder inputs and outputs in the module statement. Next, an input declaration is
used to define which of the names in the module statement are inputs. For the
example design, there are two input signals, A and B. The fact that these are inputs is
denoted by the keyword input. Similarly, an output declaration is used to define the
output. The signal A_greater_than_B is denoted as an output by the keyword
output.

Inputs and outputs as well as other binary signal types in Verilog can take on
one of four values. The two obvious values are 0 and 1. Added are x to represent
unknown values and z to represent high-impedance values on the outputs of 3-state
logic. Verilog also has strength values that, when combined with the four values
given, provide 120 possible signal states. Strength values are used in electronic circuit
modeling, however, so will not be considered here.

The inputs A and B also illustrate the Verilog concept of a vector. In line 4,
instead of specifying A and B as single bit wires, they are specified as multiple-bit
wires called vectors. The bits of a vector are named by a range of integers. This range
is given by maximum and minimum values. By specifying these two values, we spec-
ify the width of the vector and the names of each of its bits. The line input [1:0]
A, B indicates that A and B are each a vector with a width of two, with the most
significant (leftmost) bit numbered 1 and least significant (rightmost) bit numbered
0. The components of A are A[1] and A[0]. Once a vector has been declared, then
the entire vector or its subcomponents can be referenced. For example, A refers to
the two bits of A, and A[1] refers to the most significant bit of A. These types of
references are used in specifying the output and inputs in instances of the gates in
lines 8 and lines 9 through 12. Also, Verilog permits the larger index for a vector to
appear last. For example, input [0:3] N defines an input port N as a vector with
four bits, where the most significant (leftmost) bit is numbered 0 and the least signif-
icant (rightmost) bit is numbered 3.
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StrucTurAL DEescripTion  Next, we want to specify the function of the decoder. In
this case, we use a structural description that is equivalent to the circuit schematic
given in Figure 2-27 Note that the schematic is made up of gates. Verilog provides 14
primitive gates as keywords. Of these, we are interested in eight for now: buf, not,
and, or, nand, nor, xor, and xnor. buf and not have single inputs, and all other
gate types may have from two to any integer number of inputs. buf is a buffer, which
has the function z = x, with x as the input and z as the output. It is as an amplifier
of electronic signals that can be used to provide greater fan-out or smaller delays.
xor is the exclusive-OR gate and xnor is the exclusive-NOR gate, the complement
of the exclusive-OR. In our example, we will use just three gate types, not, and, and
or as shown in lines 7 through 14 of Figure 2-33.

Before specifying the interconnection of the gates, which is the same as a cir-
cuit netlist, we need to name all of the nets in the circuit. The inputs and outputs
already have names. The internal nets are the outputs of the two inverters and of the
three AND gates in Figure 2-27 In line 6, these nets are declared as wires by use of
the keyword wire. Names BO_n and B1_n are used for the inverter outputs and
and0_out,andl_out,and and2_out for the outputs of the AND gates. In Verilog,
wire is the default net type. Notably, input and output ports have the default
type wire.

Following the declaration of the internal signals, the circuit described contains
two inverters, one 2-input AND gate, two 3-input AND gates, and one 3-input OR
gate. A statement consists of a gate type followed by a list of instances of that gate
type separated by commas. Each instance consists of a gate name and, enclosed in
parentheses, the gate output and inputs separated by commas, with the output given
first. The first statement begins on line 7 with the not gate type. Following is inverter
inv0 with BO_n as the output and BO as the input. To complete the statement, inv1l
is similarly described. Lines 9 through 14 give the remaining four gates and the sig-
nals connected to their outputs and inputs, respectively. For example, in line 12, an
instance of a 3-input AND gate named and?2 is defined. It has output and2_out and
inputs A[0], B1_n, and BO_n. The module is completed with the keyword
endmodule. |

DatarLow DescripTion A dataflow description describes a circuit in terms of func-
tion rather than structure and is made up of concurrent assignment statements or
their equivalent. Concurrent assignment statements are executed concurrently (i.e.,
in parallel) whenever one of the values on the right-hand side of the statement
changes. For example, whenever a change occurs in a value on the right-hand side of
a Boolean equation, the left-hand side is evaluated. The use of dataflow descriptions
made up of Boolean equations is illustrated in Example 2-21.
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EXAMPLE 2-21 Dataflow Verilog for a Two-Bit Greater-Than Comparator

In Figure 2-34, a dataflow Verilog description is given for the two-bit greater-than
comparator. This particular dataflow description uses the assignment statement con-
sisting of the keyword assign followed, in this case, by a Boolean equation. In such
equations, we use the bitwise Boolean operators given in Table 2-4. In line 7 of
Figure 2-34,B1_n s assigned the inverse of B [ 1] using the ~ operator. Inline 9,A[1]
and B1_n are ANDed together with an & operator. This AND combination is as-
signed to the output and0_out. The wires andl_out and and2_out are similarly
defined in lines 10 and 11. The output A_greater_than_B is assigned using the
OR operator | on wires and0_out,and1_out,and and2_out on line 12.

The order of execution of the assignment statements does not depend upon
the order of their appearance in the model description, but rather on the order of
changes of signals on the right-hand side of the assignment statements. Thus the
description in Figure 2-34 would have exactly the same behavior even if the assign-
ment statements were listed in some other order, e.g., if lines 7 and 12 were

interchanged. u
// Two-bit greater-than circuit: Dataflow model /71
// See Figure 2-27 for logic diagram // 2
module comparator_greater_than_dataflow(A, B, A_greater_ than_B); // 3
input [1:0] A, B; // 4
output A_greater_than_B; // 5
wire Bl_n, BO_n, and0O_out, andl_out, and2_out; // 6
assign Bl_n = ~B[1]; /7
assign BO_n = ~B[0]; // 8
assign and0_out = A[1l] & Bl_n; // 9
assign andl_out = A[1] & A[0] & BO_n; // 10
assign and2_out = A[0] & Bl_n & BO_n; // 11
assign A_greater_than_B = and0_out | andl_out | and2_out; // 12
endmodule // 13

[0 FIGURE 2-34
Dataflow Verilog Description of Two-Bit Greater-Than Comparator

BenavioraL DescripTion  Dataflow models using concurrent assignments are consid-
ered to be behavioral descriptions, because they describe the function of the circuit
without describing its structure. As will be shown in Chapter 4, Verilog also pro-
vides ways to describe behavior using statements that execute sequentially within
a process, known as algorithmic modeling. But even with dataflow modeling using
concurrent assignments, Verilog provides ways to describe circuits at levels higher
than the logic level.
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EXAMPLE 2-22 Verilog for a Two-Bit Greater-Than Comparator Using
Conditional Operator

The description in Figure 2-35 implements the circuit’s function by using a condi-
tional operator ?: in line 6. If the logical value within the parentheses before the ? is
true, then the value before the : is assigned to signal that is the target of the assign-
ment, in this case, A_greater_ than_B. If the logical value is false, then the value
after the : is assigned. The value 1’ b1 represents a constant. The first 1 specifies that
the constant contains one digit, ’ b that the constant is given in binary, and 1 gives
the constant value. In this case, if the condition A > B is true, then A_greater_
than_Bis assigned the value 1’ b1;otherwise,A_greater_than_Bis assigned the

value 1’ b0. |
// Two-bit greater-than circuit: Conditional model // 1
// See Figure 2-27 for logic diagram // 2
module comparator_greater_than_conditional2 (A, B, A_greater_than_B); // 3
input [1:0] A, B; // 4
output A_greater_than_B; // 5
assign A_greater_than B = (A > B)? 1'bl : // 6
1'b0; /71
endmodule // 8

O FIGURE 2-35
Conditional Dataflow Verilog Description of Two-Bit Greater-Than Circuit

EXAMPLE 2-23 Verilog for a Two-Bit Greater-Than Circuit Using
Behavioral Model

As a more extended example of the conditional operator, another form of dataflow
description using a conditional operator is shown in Figure 2-36. The logical equality
operator is denoted by =. Suppose we consider condition 2 = 2'b00. 2’b00
represents a constant. The 2 specifies that the constant contains two digits, b that the
constant is given in binary, and 00 gives the constant value. Thus, the expression has
value true if vector A is equal to 00; otherwise, it is false. If the expression is true,
then 1’/ b0 is assigned to A_greater_than_B. If the expression is false, then the
next expression containing a ? is evaluated, and so on. In this case, for a condition to
be evaluated, all conditions preceding it must evaluate to false. If none of the deci-
sions evaluate to true, then the default value 1’bx is assigned to A_greater_
than_B. Recall that default value x represents unknown.

This example is somewhat contrived for this particular circuit, resulting in a
description that is less straightforward than the previous versions. However, this
example illustrates an approach with the conditional operator that is often useful
when a set of conditions is used to select between several functions. We will see
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// Two-bit greater-than circuit: Conditional model // 1
// See Figure 2-27 for logic diagram /]2
module comparator_greater_than_conditional (A, B, A_greater_than_B); // 3
input [1:0] A, B; // 4

output A_greater_than_B; // 5

assign A_greater_than_B = (A == 2'b00)? 1'b0 : // 6

(A == 2'b01)? ~(B[1]IB[0]): /17

(A == 2'b10)? ~B[1] : // 8

(A == 2'b11)? ~(B[1]&B[0]): /79

1'bx; // 10

endmodule // 11

OO0 FIGURE 2-36
Conditional Dataflow Verilog Description of Two-Bit Greater-Than Circuit
Using Combinations

examples of these types of selection circuits in later chapters, particularly in
Chapter 3 with multiplexers and Chapter 6 with register transfers. |

EXAMPLE 2-24 Verilog for a Two-Bit Greater-Than Circuit Using a Behavioral
Description

As a final example of the two-bit greater-than circuit, Figure 2-37 is a description
that describes the behavior of the circuit at a much higher level of abstraction than
Boolean equations. This description simply uses single statement with the > mathe-
matical operator to implement the desired function. |

TesteencHes As briefly described in Section 2-8, a testbench is an HDL model
whose purpose is to test another model, often called the Device Under Test (DUT),
by applying stimuli to the inputs. More complex testbenches will also analyze the out-
put of the DUT for correctness. Figure 2-38 shows a simple Verilog testbench for the
structural two-bit greater-than comparator circuit. The testbench has several aspects
that are common to testbenches. First, the module declaration does not have any

// Two-bit greater-than circuit: Behavioral model // 1
// See Figure 2-27 for logic diagram // 2
module comparator_greater_than_behavioral (A, B, A_greater_than_B); // 3
input [1:0] A, B; // 4
output A_greater_than_B; // 5
assign A_greater_than_ B = A > B; // 6
endmodule /]

O FIGURE 2-37
Behavioral Verilog Description of Two-Bit Greater-Than Circuit
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// Testbench for Verilog two-bit greater-than comparator // 1
module comparator_ testbench_verilog() ; // 2
reg [1:0] A, B; // 3
wire struct_out; // 4
comparator_greater_than structural Ul (A, B, struct_out); // 5
initial // 6
begin /)
A = 2'p10; // 8

B = 2'b00; // 9
#10; // 10

B = 2'b01; // 11
#10; // 12

B = 2'b1l0; // 13
#10; // 14

B = 2"bll; // 15
end // 16
endmodule // 17

[0 FIGURE 2-38
Testbench for the Structural Model of the Two-Bit Greater-Than Comparator

input or output ports (line 2). Second, the testbench declares the registers (variables)
and wires that will be connected to the inputs and outputs of the DUT (lines 3-4) and
instantiates the DUT (line 5). Finally, the testbench applies combinations of inputs to
the DUT to test it under various conditions (lines 6-16). The input values are applied
using a process, which is a block of statements that are executed sequentially. Because
the values for A and B are assigned as variables in a process rather than with continuous
assignments, A and B must be declared as type reg rather than as type wire (line 3).
The process in this testbench runs once at the beginning of the simulation because of
the keyword initial (line 6), and assigns values to the inputs of the DUT, waiting
10 time units of simulation time between assignments. In Verilog, delays are specified
with a number sign (#) followed by a real number. The process in this example uses
only a few combinations of inputs for the sake of clarity, although it does test all three
conditions for the relationship between A and B(A < B, A = B,and A > B).Pro-
cesses will be described in more detail in Chapter 4, where a richer set of sequential
statements that can be used in a process will be introduced.

This completes our introduction to Verilog for combinational circuits. We will
continue with more on Verilog by presenting additional features of the language for
describing more complex circuits in Chapters 3 and 4.

2-11 CHAPTER SUMMARY

The logic operations AND, OR, and NOT define the input/output relationships of logic
components called gates, from which digital systems are implemented. A Boolean
algebra defined in terms of these operations provides a tool for manipulating Boolean
functions in designing digital logic circuits. Minterm and maxterm standard
forms correspond directly to truth tables for functions. These standard forms can be
manipulated into sum-of-products and product-of-sums forms, which correspond to
two-level gate circuits. Two cost measures to be minimized in optimizing a circuit are
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the number of input literals to the circuit and the total number of inputs to the gates
in the circuit. K-maps with two to four variables are an effective alternative to alge-
braic manipulation in optimizing small circuits. These maps can be used to optimize
sum-of-products forms, product-of-sums forms, and incompletely specified functions
with don’t-care conditions.

The primitive operations AND and OR are not directly implemented by prim-
itive logic elements in the most popular logic family. Thus, NAND and NOR primi-
tives that implement these families were introduced and used to implement circuits.
A more complex primitive, the exclusive-OR, and its complement, the exclusive-
NOR, were presented along with their mathematical properties.

Gate propagation delays were discussed. Propagation delay determines the
speed of the overall digital circuit, and thus is a major design constraint.

Finally, the chapter provided a general introduction to HDLs and introduced
two languages, VHDL and Verilog. Combinational circuits were used to illustrate
structural and behavioral level descriptions for the two languages.
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PROBLEMS

/' The plus (+) indicates a more advanced problem and the asterisk (*) indicates that
a solution is available on the Companion Website for the text.
2-1. *Demonstrate by means of truth tables the validity of the following identities:
(a) DeMorgan’s theorem for three variables: XYZ = X + Y + Z
(b) The second distributive law: X + YZ = (X + Y)(X + Z)
XY+ YZ+XZ=XY+YZ+XZ
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*Prove the identity of each of the following Boolean equations, using
algebraic manipulation:

@XY+XY+XY=X+Y

(b)AB + BC + AB+ BC =1

@Y+ XZ+XY=X+Y+2Z
WDXY+YZ+XZ+XY+YZ=XY+XZ+YZ

+Prove the identity of each of the following Boolean equations, using
algebraic manipulation:

(a) ABC + BCD + BC+ CD =B + CD

b)WY + WYZ + WXZ + WXY = WY + WXZ + XYZ + XYZ
()AD+AB+CD+BC=(A+B+C+D)A+B+C+D)
+Given that A - B=0 and A + B = 1, use algebraic manipulation to
prove that

A+C)-(A+B)-B+C)=B-C

+A specific Boolean algebra with just two elements 0 and 1 has been used in
this chapter. Other Boolean algebras can be defined with more than two
elements by using elements that correspond to binary strings. These algebras
form the mathematical foundation for bitwise logical operations that we will
study in Chapter 6. Suppose that the strings are each a nibble (half of a byte)
of four bits. Then there are 2%, or 16, elements in the algebra, where an
element / is the four-bit nibble in binary corresponding to / in decimal. Based
on bitwise application of the two-element Boolean algebra, define each of the
following for the new algebra so that the Boolean identities hold:

(a) The OR operation A + B for any two elements A and B

(b) The AND operation A - B for any two elements A and B

(¢) The element that acts as the 0 for the algebra

(d) The element that acts as the 1 for the algebra

(e) For any element A, the element A.

Simplify the following Boolean expressions to expressions containing a
minimum number of literals:

(a) AC + ABC + BC

b)(A+B+C) - ABC

(¢c) ABC + AC

(d)ABD + ACD + BD

(e) (A + B)(A + C)(ABC)

*Reduce the following Boolean expressions to the indicated number of literals:
(a) XY + XYZ + XY to three literals

(b) X + Y(Z + X + Z) to two literals
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2-11.

2-12.
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(¢) WX(Z + YZ) + X(W + WYZ) to one literal
(d) (AB + AB)(CD + CD) + AC to four literals

Using DeMorgan’s theorem, express the function
F=ABC+ AC + AB

(a) with onlyOR and complement operations.

(b) with only AND and complement operations.

(c) with only NAND and complement operations.
*Find the complement of the following expressions:
(a) AB + AB

®) (VW + X)Y + Z

QO WXYZ+YZ)+ WX(Y + Z2)(Y + Z)
d(A+B+CO(AB+ O)(A+ BO)

*QObtain the truth table of the following functions, and express each function
in sum-of-minterms and product-of-maxterms form:
(a) (XY + 2)(Y + X2)

() (A + B)(B + O)

() WXY + WXZ + WXZ + YZ

For the Boolean functions £ and F, as given in the following truth table:

X Y Z E F
0 0 0 0 1
0 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 1 0
1 1 1 0 1

(a) List the minterms and maxterms of each function.

(b) List the minterms of E and F

(c¢) List the mintermsof £ + Fand E - F.

(d) Express E and F in sum-of-minterms algebraic form.

(e) Simplify E and F to expressions with a minimum of literals.

*Convert the following expressions into sum-of-products and product-of-
sums forms:

(a) (AB + C)(B + CD)
b) X + X(X + Y)Y + Z)
(¢) (A + BC + CD)(B + EF)



2-13.

2-14.

2-15.

2-16.

2-17.

2-18.

2-19.

2-20.

Problems [ 105

Draw the logic diagram for the following Boolean expressions. The diagram
should correspond exactly to the equation. Assume that the complements of
the inputs are not available.

(@) ABC + AB + AC

b)) X(YZ + YZ) + W(Y + XZ)

(¢) AC(B + D) + AC(B + D) + BC(A + D)

Optimize the following Boolean functions by means of a 3-variable map:
(a) F(X,Y,Z) = 2m(2,3,4,7)

(b) F(X,Y,Z) = 2m(0,4,5,6)

(¢) F(A,B,C) = 3m(0,2,4,6,7)

(d) F(A,B,C) = 2m(0,1,3,4,6,7)

*Optimize the following Boolean expressions using a map:
@XZ+YZ+ XYZ

(b) AB + BC + ABC

(¢) AB + AC + BC + ABC

Optimize the following Boolean functions by means of a 4-variable map:
(a) F(A,B,C,D) = 2m(0,2,4,5,8,10,11,15)

(b) F(A,B,C,D) = 2m(0,1,2,4,5,6,10,11)

(c) FW,X,Y,Z) = 2m(0,2,4,7,8,10,12,13)

Optimize the following Boolean functions, using a map:

(@) FW,X,Y,Z) = 3m(0,1,2,4,78,10,12)

(b) F(A,B,C,D) = 2m(1,4,5,6,10,11,12,13,15)

*Find the minterms of the following expressions by first plotting each
expression on a map:

(@) XY + XZ + XYZ

b)) XZ + WXY + WXY + WYZ + WYZ

(¢) BD + ABD + ABC

*Find all the prime implicants for the following Boolean functions, and
determine which are essential:

(@) FW,X,Y,Z) = 2m(0,2,5,7 8,10,12,13,14,15)

() F(A,B,C,D) = 2m(0,2,3,5,7 8,10,11,14,15)

(¢) F(A,B,C,D) = 3m(1,3,4,5,9,10,11,12,13,14,15)

Optimize the following Boolean functions by finding all prime implicants and
essential prime implicants and applying the selection rule:

(a) F(A,B,C,D) = 2m(1,5,6,7 11,12,13,15)

(b) (W, X, Y, Z) >m (0,1,2,3,4,5,10,11,13,15)

() AW, X,Y,Z) >m (0,1,2,5,7,8,10,12,14,15)
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2-22.

2-23.

2-24.

2-25.

2-26.

2-27.

2-28.

2-29.
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Optimize the following Boolean functions in product-of-sums form:

(@) W, X,Y,Z) = 3m(0,1,2,8,10,12,14,15)

(b) F(A,B,C,D) = 1M (0,2,6,7 8,9,10,12,14,15)

*Qptimize the following expressions in (1) sum-of-products and (2) product-
of-sums forms:

(a) AC + BD + ACD + ABCD
®b)(A+B+D)A+B+C)(A+B+D)B+C+ D)

(¢)(A+ B+ D)A +D)A+B+D)A+B+C+D)

Optimize the following functions into (1) sum-of-products and (2) product-
of-sums forms:

(a) F(A,B,C,D) = 3m (2,3,5,7,8,10,12,13)

(b)) FW, X, Y, Z) = 1IM (5,12,13,14)

Optimize the following Boolean functions F together with the don’t-care
conditions d:

(a) F(A,B,C) =3m (2,4,7),d(A,B,C) = Zm (0,1, 5, 6)

(b) F(A,B,C,D) = 2m (2,5,6,13,15),d(A,B,C,D) = 3m (0,4,8,10,11)
(¢) FW,X,Y,Z) = 2m(1,2,4,10,13),d(W, X, Y, Z) = EZm (5,7, 11, 14)
*Optimize the following Boolean functions F together with the don’t-care

conditions d. Find all prime implicants and essential prime implicants, and
apply the selection rule.

(a) F(A,B,C) = 3m (3,5,6),d(A,B,C) = Zm (0,7)
M) FW, X,Y,Z) = Sm(0,2,4,5,8,14,15), dW, X, Y, Z)= Sm(7,10,13)
(¢) F(A,B,C,D) = Sm (4,6,7,8,12,15),

d(A,B,C,D) = Sm (2,3,5,10,11,14)
Optimize the following Boolean functions F together with the don’t-care
conditions d in (1) sum-of-products and (2) product-of-sums form:

(@ FW,X,Y,Z) =3m(5,6,11,12),
dW,X,Y,Z) = Sm(0,1,2,9,10, 14, 15)

(b) F(A,B,C,D) = Ilm (3,4,6, 11, 12, 14),
d(A,B,C,D) = 2m (0,1,2,7,8,9,10)
*Prove that the dual of the exclusive-OR is also its complement.

Implement the following Boolean function with exclusive-OR and AND
gates, using a minimum number of gate inputs:

F(A,B,C,D) = ABCD + AD + AD
*The NOR gates in Figure 2-39 have propagation delay 7,4 = 0.073 ns and

the inverter has a propagation delay 7,y = 0.048 ns. What is the propagation
delay of the longest path through the circuit?
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A
B
A F
B
E
C
D
[0 FIGURE 2-39
Circuit for Problem 2-29
(I) i 2I 3I éll 5I é % Time (ns)
[0 FIGURE 2-40
Waveform for Problem 2-30
2-30. The waveform in Figure 2-40 is applied to an inverter. Find the output of the

2-31.

2-32.

inverter, assuming that

(a) It has no delay.

(b) It has a transport delay of 0.06 ns.

(¢) It has an inertial delay of 0.06 ns with a rejection time of 0.04 ns.

Assume that 7,4 is the average of tpyy, and tp . Find the delay from each input
to the output in Figure 2-41 by

(a) Finding fpyy; and fpp i for each path, assuming #py;. = 0.20 ns and
tpry = 0.36 ns for each gate. From these values, find 7,4 for each path.

(b) Using 7,4 = 0.28 ns for each gate.
(¢) Compare your answers from parts (a) and (b) and discuss any
differences.

The rejection time for inertial delays is required to be less than or equal to the
propagation delay. In terms of the discussion of the example in Figure 2-25,
why is this condition necessary to determine the delayed output?
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—~ ,_Doip

C
D

oc]

al®

0 FIGURE 2-41
Circuit for Problem 2-31
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2-33. +For a given gate, tpyy;, = 0.05 ns and fp; y = 0.10 ns. Suppose that an inertial
delay model is to be developed from this information for typical gate-delay
behavior.

(a) Assuming a positive output pulse (LHL), what would the propagation
delay and rejection time be?

(b) Discuss the applicability of the parameters in (a) assuming a negative
output pulse (HLH).

All HDL files for circuits referred to in the remaining problems are available
in ASCII form for simulation and editing on the Companion Website for the
text. A VHDL or Verilog compiler/simulator is necessary for the problems or
portions of problems requesting simulation. Descriptions can still be written,
however, for many problems without using compilation or simulation.

-- Combinational Circuit 1: Structural VHDL Description
library ieee, lcdf_vhdl;
use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all;
entity comb_ckt_1 is
port(xl, x2, x3, x4 : in std_logic;
f : out std_logic);
end comb_ckt_1;

architecture structural_1 of comb_ckt 1 is
component NOT1
port(inl: in std_logic;
outl: out std_logic);
end component;
component AND2
port(inl, in2 : in std_logic;
outl: out std_logic);
end component;
component OR3
port(inl, in2, in3 : in std_logic;
outl: out std_logic);
end component;
signal nl, n2, n3, n4, n5, n6 : std_logic;
begin
g0: NOT1 port map (inl => x1, outl => nl);
gl: NOT1l port map (inl => n3, outl => n4);
g2: AND2 port map (inl => x2, in2 => nl,
outl => n2);
g3: AND2 port map (inl => x2, in2 => x3,
outl => n3);
g4: AND2 port map (inl => x3, in2 => x4,
outl => nb);
g5: AND2 port map (inl => x1, in2 => n4,
outl => n6);
g6: OR3 port map (inl => n2, in2 => nb,
in3 => n6, outl => f);
end structural_1;

[0 FIGURE 2-42
VHDL for Problem 2-34
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*Find a logic diagram that corresponds to the VHDL structural description in
Figure 2-42. Note that complemented inputs are not available.

Using Figure 2-28 as a framework, write a structural VHDL description of the
circuit in Figure 2-43. Replace X, Y, and Z with X (2:0). Consult package
func_prims in library 1cdf_vhdl for information on the various gate
components. Compile func_prims and your VHDL model, and simulate
your VHDL model for all eight possible input combinations to verify your
description’s correctness.

o -
L

B

[0 FIGURE 2-43
Circuit for Problem 2-35,2-38,2-41, and 2-43

Using Figure 2-28 as a framework, write a structural VHDL description of the
circuit in Figure 2-44. Consult package func_prims in library 1cdf_vhdl
for information on the various gate components. Compile func_prims and
your VHDL model, and simulate your VHDL model for all 16 possible input
combinations to verify your description’s correctness.

Find a logic diagram representing minimum two-level logic needed to
implement the VHDL dataflow description in Figure 2-45. Note that
complemented inputs are available.

*Write a dataflow VHDL description for the circuit in Figure 2-43 by using
the Boolean equation for the output £

*Find a logic diagram that corresponds to the Verilog structural description in
Figure 2-46. Note that complemented inputs are not available.

oo Sy
D Lo

A ) > '

[J FIGURE 2-44
Circuit for Problems 2-36 and 2-40
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-- Combinational Circuit 2: Dataflow VHDL Description
library ieee;
use ieee.std_logic_1164.all;
entity comb_ckt_2 is
port(a, b, ¢, d, a_n, b_n, c_n, d . n: in std_logic;
f, g : out std_logic);
-- an, b_n, . . . are complements of a, b, . . . , respectively.

end comb_ckt_2;
architecture dataflow_1 of comb_ckt_2 is
begin
f <= b and (a or (a_n and c¢)) or (b_n and c and d_n);
g <= b and (c or (a_n and c_n) or (c_n and d_n));
end dataflow_1;

0 FIGURE 2-45
VHDL for Problem 2-37

// Combinational Circuit 1: Structural Verilog Description
module comb_ckt_1(x1, x2, x3, x4, f);

input x1, x2, x3, x4;

output f;

wire nl, n2, n3, n4, n5, né6;

not
go(nl, x1),
gl (n4, n3);
and

g2 (n2, x2, nl),
g3(n3, x2, x3),
g4 (n5, x3, x4),);
g5(n6, x1, n4),);
or
g6 (f, n2, n5, no6),
endmodule

[0 FIGURE 2-46
Verilog for Problems 2-39 and 2-41

2-40. Using Figure 2-33 as a framework, write a structural Verilog description of
the circuit in Figure 2-44. Compile and simulate your Verilog model for all 16
possible input combinations to verify your description’s correctness.

2-41. Using Figure 2-46 as a framework, write a structural Verilog description of
the circuit in Figure 2-43. Replace X, Y, and Z with input
[2:0] X. Compile and simulate your Verilog model for all eight possible
input combinations to verify your description’s correctness.
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2-42. Find a logic diagram representing minimum 2-level logic needed to
implement the Verilog dataflow description in Figure 2-47 Note that
complemented inputs are available.

2-43. *Write a dataflow Verilog description for the circuit in Figure 2-43 by using
the Boolean equation for the output F and using Figure 2-34 as a model.

// Combinational Circuit 2: Dataflow Verilog Description

module comb_ckt_1 (a, b, ¢, d, a_n, b_n, c_n, d_n, £, g);

// a_n, b_n, . . . are complements of a, b, . . . , respectively.
input a, b, ¢, d, a_n, b_n, c_n, d_n;
output f, g;

assign £f = b & (a |(a_n & c)) | (b_n & c & d_n);
assign g = b & (¢ | (a_n & c_n) | (c_n & d_n));
endmodule

O FIGURE 2-47
Verilog for Problem 242
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COMBINATIONAL
LoGgic DESIGN

chapter begins by describing a hierarchical approach to design, where the desired

functionality is broken into smaller, less complex pieces that can be designed
individually and then connected together to form the final circuit. We learn about a
number of common functions and the corresponding fundamental circuits that are very
useful in designing larger digital circuits. The fundamental, reusable circuits, which we
call functional blocks, implement functions of a single variable, decoders, encoders,
code converters, and multiplexers. The chapter then covers a special class of functional
blocks that perform arithmetic operations. It introduces the concept of iterative circuits
made up of arrays of combinational cells and describes blocks designed as iterative
arrays for performing addition, covering both addition and subtraction. The simplicity of
these arithmetic circuits comes from using complement representations for numbers
and complement-based arithmetic. We also introduce circuit contraction, which permits
us to design new functional blocks from existing ones. Contraction involves application
of value fixing to the inputs of existing blocks and simplification of the resulting circuits.
These circuits perform operations such as incrementing a number, decrementing a
number, or multiplying a number by a constant. Many of these new functional blocks will
be used to construct sequential functional blocks in Chapter 6.

The various concepts in this chapter are pervasive in the design of the generic
computer in the diagram at the beginning of Chapter 1. Combinational logic is a
mainstay in all of the digital components. Multiplexers are very important for selecting
data in the processor, in memory, and on I/O boards. Decoders are used for selecting
boards attached to the input—output bus and to decode instructions to determine the
operations performed in the processor. Encoders are used in a number of components,
such as the keyboard. Functional blocks are widely used, so concepts from this chapter
apply across all of the digital components of the generic computer, including memories.
In the generic computer diagram at the beginning of Chapter 1, adders, adder-subtractors,

In this chapter, we continue our study of the design of combinational circuits. The

O 113
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and other arithmetic circuits are used in the processor. Incrementers and decrementers
are used widely in other components as well, so concepts from this chapter apply
across most components of the generic computer.

3-1 BEeGINNING HIERARCHICAL DESIGN
As briefly described in Chapter 1, the procedure for designing a digital system is to:
1. specify the desired behavior,

2. formulate the relationship between the inputs and outputs of the system, usu-
ally in terms of Boolean equations or a truth table,

3. optimize the representation of the logical behavior to minimize the number of
logic gates required, as illustrated by the Karnaugh map procedure introduced
in Chapter 2,

4. map the optimized logic to the available implementation technology, such as the
logic gates from Chapter 2 or the functional blocks described in this chapter, and

5. verify the correctness of the final design in meeting the specifications.

The focus in this chapter is on the first four steps of the design procedure for com-
binational logic, from specifying the system to mapping the logic to the available imple-
mentation technology. But in actual design practice, the last step of verifying the
correctness of the design typically is a considerable part of the effort creating the design.
While an in-depth treatment of verification is beyond the scope of an introductory text
such as this one, we should keep in mind that making sure that the design meets the
specification is an important step that is often a bottleneck in the product design cycle.
Small designs can be verified manually by finding the Boolean logic equations for the
design and confirming that the truth table for them matches the specification. Larger
designs are verified using simulation as well as more advanced techniques. If the circuit
does not meet its specification, then it is incorrect. As a consequence, verification plays a
vital role in preventing incorrect circuit designs from being manufactured and used.

For complex digital systems, rather than applying the design process above to the
whole system, a typical method for designing them is to use a “divide-and-conquer”
approach called hierarchical design. The resulting related symbols and schematics
constitute a hierarchy representing the circuit designed. In order to deal with circuit
complexity, the circuit is broken up into pieces we call blocks, and the above design pro-
cedure is used to design the blocks. The blocks are then interconnected to form the cir-
cuit. The functions of these blocks and their interfaces are carefully defined, so that the
circuit formed by interconnecting the blocks obeys the initial circuit specification. If a
block is still too large and complex to be designed as a single entity, it can be broken into
smaller blocks. This process can be repeated as necessary. Note that since we are work-
ing primarily with logic circuits, we use the term “circuit” in this discussion, but the ideas
apply equally well to the “systems” covered in later chapters.

Example 3-1 illustrates a very simple use of hierarchical design to “divide and
conquer” a circuit that has eight inputs. This number of inputs makes the truth table
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cumbersome and K-maps impossible. Thus, direct application of the basic combina-
tional design approach, as used in Chapter 2, is difficult.

» EXAMPLE 3-1 Design of a 4-Bit Equality Comparator

SpPECIFICATION:  An equality comparator is a circuit that compares two binary vectors
to determine whether they are equal or not. The inputs to this specific circuit consist
of two vectors: A(3:0) and B(3:0). Vector A consists of four bits, A(3), A(2), A(1),and
A(0), with A(3) as the most significant bit. Vector B has a similar description with B
replaced by A.The output of the circuit is a single-bit variable E. Output E is equal to
1 if vectors A and B are equal and equal to 0 if vectors A and B are unequal.

Formuration:  The formulation attempts to bypass the use of a truth table due to
its size. In order for A and B to be equal, the bit values in each of the respective
positions, 3 down to 0, of A and B must be equal. If all of the bit positions for A and
B contain equal values in every position, then £ = 1—otherwise, £ = 0. Intuitively,
we can see from this formulation of the problem that the circuit can be developed as
a simple 2-level hierarchy with the complete circuit at the top level and five circuits
at the bottom level. Since comparison of a bit from A and the corresponding bit from
B must be done in each of the bit positions, we can decompose the problem into four
1-bit comparison circuits MX and an additional circuit ME that combines the four
comparison-circuit outputs to obtain E. A logic diagram of the hierarchy showing
the interconnection of the five blocks is shown in Figure 3-1(a).

Ao No
By MX
A MX Ny
B
MEfF—E

Ay MX N,
B>
A N

S Vg
B3

(a)

Aj
No
N2
MX N3 ME
B;
(b) (c)
[0 FIGURE 3-1

Hierarchical Diagram for a 4-Bit Equality Comparator
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Orptivization:  For bit position i, we define the circuit output N; to be 0 if A; and B;
have the same values and N; = 1 if A; and B; have different values. Thus, the MX
circuit can be described by the equation

Ni - EB, + AiEi

which has the circuit diagram shown in Figure 3-1(b). By using hierarchy, we can
employ four copies of this circuit, one for each of the four bits of A and B. Output
E = 1 only if all of the N; values are 0. This can be described by the equation

E:N0+N1+N2+N3

and has the diagram given in Figure 3-1(c). Both of the circuits given are optimum
two-level circuits. These two circuit diagrams plus the block diagram in Figure 3-1(a)
represent the hierarchical design of the circuit. The actual circuit is obtained by
replacing the respective blocks in Figure 3-1(a) by copies of the two circuits shown in
Figures 3-1(b) and (c).

The structure of the hierarchy for the 4-bit equality comparator can be repre-
sented without the interconnections by starting with the top block for the overall
circuit and, below each block, connecting those blocks or primitives from which the
block is constructed. Using this representation, the hierarchy for the 4-bit equality
comparator circuit is shown in Figure 3-2(a). Note that the resulting structure has the
form of a tree with the root at the top. The “leaves” of the tree are the gates, in this
case 21 of them. In order to provide a more compact representation of the hierarchy,
we can reuse blocks, as shown in Figure 3-2(b). This diagram corresponds to blocks
used in Figure 3-1, with only one copy of each distinct block shown. These diagrams
and the circuits in Figure 3-1 are helpful in illustrating a number of useful concepts
associated with hierarchies and hierarchical blocks. ]

First of all, a hierarchy reduces the complexity required to represent the sche-
matic diagram of a circuit. For example, in Figure 3-2(a), 21 gates appear. This means
that if the circuit were designed directly in terms of gates, the schematic for the

4-input 4-input
equality comparator equality comarator
MX MX MX MX ME MX ME

(a) (b)

[0 FIGURE 3-2
Diagrams Representing the Structure of the Hierarchy for Figure 3-1
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circuit would consist of 21 interconnected gate symbols, in contrast to just 11 sym-
bols used to describe the circuit implementation as a hierarchy in Figure 3-1. Thus, a
hierarchy gives a simplified representation of a complex circuit.

Second, the hierarchy ends at a set of “leaves” in Figure 3-2. In this case, the
leaves consist of AND gates, OR gates, inverters, and a NOR gate. Since the gates
are electronic circuits, and we are interested here only in designing the logic, these
gates are commonly called primitive blocks. These are predefined rudimentary blocks
that have a symbol, but no logic schematic. In general, more complex structures that
likewise have symbols, but no logic schematics, are also predefined blocks. Instead of
schematics, their function can be defined by a program or description that can serve
as a model. For example, in the hierarchy depicted in Figure 3-1, the MX blocks
could have been considered as predefined exclusive-OR gates consisting of elec-
tronic circuits. In such a case, the diagram describing the internal logic for MX exclu-
sive-OR blocks in Figure 3-1(b) would not be necessary. The hierarchical
representations in Figure 3-1(b) and 3-2(a) would then end with the exclusive-OR
blocks. In any hierarchy, the “leaves” consist of predefined blocks, some of which
may be primitives.

A third very important property that results from hierarchical design is the
reuse of blocks, as illustrated in Figures 3-2(a) and (b). In part (a), there are four
copies of the 2-input MX block. In part (b), there is only one copy of the 2-input MX
block. This represents the fact that the designer has to design only one 2-input
MX block and can use this design four times in the 4-bit equality comparator circuit.
In general, suppose that at various levels of a hierarchy, the blocks used are carefully
defined in such a manner that many of them are identical. A prerequisite for being
able to achieve this goal is a fundamental property of the circuit called regularity. A
regular circuit has a function that permits it to be constructed from copies of a rea-
sonably small set of distinct blocks. An irregular circuit has a function with no such
property. Clearly the regularity for any given function is a matter of degree. For a
given repeated block, only one design is necessary. This design can be used every-
where the block is required. The appearance of a block within a design is called an
instance of the block and its use is called an instantiation. The block is reusable in the
sense that it can be used in multiple places in the circuit design and, possibly, in
the design of other circuits as well. This concept greatly reduces the design effort
required for complex circuits. Note that, in the implementation of the actual circuit,
separate hardware has to be provided for each instance of the block, as represented
in Figure 3-2(a). The reuse, as represented in Figure 3-2(b), is confined to the sche-
matics that need to be designed, not to the actual hardware implementation. The
ratio of the number of primitives in the final circuit to the total number of blocks in a
hierarchical diagram including primitives is a measure of regularity. A larger ratio
represents higher regularity; for example, for the 4-bit comparator as in Figure 3-1,
this ratio is 21/11.

A complex digital system may contain millions of interconnected gates. A sin-
gle very-large-scale integrated (VLSI) processor circuit often contains hundreds of
millions of gates. With such complexity, the interconnected gates appear to be an
incomprehensible maze. Such complex systems or circuits are not designed manually
simply by interconnecting gates one at a time.
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In this chapter we focus on predefined, reusable blocks that typically lie at the
lower levels of logic design hierarchies. These are blocks of intermediate size that
provide basic functions used in digital design. They allow designers to do much of
the design process above the primitive block, i.e., gate level. We refer to these partic-
ular blocks as functional blocks. Thus, a functional block is a predefined collection of
interconnected gates. Many of these functional blocks have been available for
decades as medium-scale integrated (MSI) circuits that were interconnected to form
larger circuits or systems. Similar blocks are now, in computer-aided design tool
libraries, used for designing larger integrated circuits. These functional blocks pro-
vide a catalog of digital components that are widely used in the design and imple-
mentation of integrated circuits for computers and digital systems.

3-2 TECHNOLOGY MAPPING

Before we begin our discussion of functional blocks, it will be helpful if we first dis-
cuss technology mapping, where a logic diagram or netlist is transformed into a new
diagram or netlist using available technology components. In this section, we intro-
duce NAND and NOR gate cells and consider mapping AND, OR, NOT descrip-
tions to one or the other of these two technologies. In currently available transistor
technologies, NAND and NOR gates are smaller and faster than AND and OR
gates. As we described in Chapter 2, the NAND and NOR functions are both func-
tionally complete, so any Boolean function can be implemented using only one or
the other. Later in this chapter, we will show how to implement logic functions by
mapping them onto more complex functional blocks. In Chapter 5, technology map-
ping to programmable implementation technologies is covered.

Apvancep TechinoLoGgy Mapping  Technology mapping using collections of cell types
/" including multiple gate types is covered in this supplement on the Companion Web
Site for the text.

A NAND technology consists of a collection of cell types, each of which
includes a NAND gate with a fixed number of inputs. The cells have numerous prop-
erties, as described in Chapter 5. Because of these properties, there may be more
than one cell type with a given number of inputs 7. For simplicity, we will assume that
there are four cell types, based on the number of inputs, n, for n = 1, 2, 3, and 4. We
will call these four cell types Inverter (n = 1), 2NAND, 3NAND, and 4NAND,
respectively.

A convenient way to implement a Boolean function with NAND gates is to
begin with the optimized logic diagram of the circuit consisting of AND and OR
gates and inverters. Next, the function is converted to NAND logic by converting the
logic diagram to NAND gates and inverters. The same conversion applies for NOR
gate cells.

Given an optimized circuit that consists of AND gates, OR gates, and inverters,
the following procedure produces a circuit using NAND (or NOR) gates with unre-
stricted gate fan-in:

1. Replace each AND and OR gate with the NAND (NOR) gate and inverter
equivalent circuits shown in Figures 3-3(a) and (b).
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2. Cancel all inverter pairs.

3. Without changing the logic function, (a) “push” all inverters lying between
(i) either a circuit input or a driving NAND (NOR) gate output and (ii) the
driven NAND (NOR) gate inputs toward the driven NAND (NOR) gate in-
puts. Cancel pairs of inverters in series whenever possible during this step.
(b) Replace inverters in parallel with a single inverter that drives all of the
outputs of the parallel inverters. (c) Repeat (a) and (b) until there is at most
one inverter between the circuit input or driving NAND (NOR) gate output
and the attached NAND (NOR) gate inputs.

In Figure 3-3(c), the rule for pushing an inverter through a “dot” is illustrated.
The inverter on the input line to the dot is replaced with inverters on each of the

—_ .

—_—

ik

(a) Mapping to NAND gates

R

—_—

:

(b) Mapping to NOR gates

Do

(c) Pushing an inverter through a “dot”

oo

(d) Canceling inverter pairs

7

[0 FIGURE 3-3
Mapping of AND Gates, OR Gates, and Inverters to
NAND Gates, NOR Gates, and Inverters
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output lines from the dot. The cancelation of pairs of inverters in Figure 3-3(d) is
based on the Boolean algebraic identity

X=X

The next example illustrates this procedure for NAND gates.

EXAMPLE 3-2 Implementation with NAND Gates
Implement the following optimized function with NAND gates:

F=AB+ (AB)C + (AB)D + E

The AND, OR,inverter implementation is given in Figure 3-4(a). In Figure 3-4(b),
step 1 of the procedure has been applied, replacing each AND gate and OR gate
with its equivalent circuit using NAND gates and inverters from Figure 3-3(a).
Labels appear on dots and inverters to assist in the explanation. In step 2, the inverter
pairs (1, 2) and (3, 4), cancel, giving direct connections between the corresponding
NAND gates in Figure 3-4(d). As shown in Figure 3-4(c), inverter 5 is pushed through
X and cancels with inverters 6 and 7, respectively. This gives direct connections
between the corresponding NAND gates in Figure 3-4(d). No further steps can be
applied, since inverters 8 and 9 cannot be paired with other inverters and must
remain in the final mapped circuit in Figure 3-4(d). The next example illustrates this
procedure for NOR gates.

s )

(a)

(© (d)

OO0 FIGURE 34
Solution to Example 3-2 [ |
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EXAMPLE 3-3 Implementation with NOR Gates

Implement the same optimized Boolean function used in Example 3-2 with NOR
gates:

F=AB+ (AB)C + (AB)D + E

The AND, OR,inverter implementation is given in Figure 3-5(a). In Figure 3-5(b),
step 1 of the procedure has been applied, replacing each AND gate and OR gate with
its equivalent circuit using NOR gates and inverters from Figure 3-3(b). Labels appear
on dots and inverters to assist in the explanation. In step 2, inverter 1 can be pushed
through dot X to cancel with inverters 2 and 3, respectively. The pair of inverters on the
D input line cancel as well. The single inverters on input lines A, B, and C and output
line F must remain, giving the final mapped circuit that appears in Figure 3-5(c).

D)

A—] D

E
B JR—

(b)
¢ F
D
E
(©)
[0 FIGURE 3-5
Solution to Example 3-3 |

In Example 3-2 the gate-input cost of the mapped circuit is 12, and in Example
3-3 the gate-input cost is 14, so the NAND implementation is less costly. Also, the
NAND implementation involves a maximum of three gates in series while the NOR
implementation has a maximum of five gates in series. With equal gate delays
assumed, the shorter series of gates in the NAND circuit gives a maximum delay
from an input change to a corresponding output change about 0.6 times as long as
that for the NOR circuit. So, in this particular case, the NAND circuit is superior to
the NOR circuit in both cost and delay.
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The result of a technology mapping is clearly influenced by the initial circuit or
equation forms prior to mapping. For example, mapping to NANDs for a circuit
with an OR gate at the output produces a NAND gate at the output. Mapping to
NORs for the same circuit produces an inverter driven by a NOR gate at the output.
Because of these results, the sum of products is viewed as more natural for NANDs
and the product of sums, which eliminates the output inverter, as more natural for
NORs. Nevertheless, the choice should be based on which form gives the best over-
all implementation in terms of whatever optimization criteria are being applied. M

3-3 ComMBINATIONAL FUuNcTIONAL BLOCKS

Earlier, we defined and illustrated combinational circuits and their design. In this
section, we define specific combinational functions and corresponding combinational
circuits, referred to as functional blocks. In some cases, we will go through the design
process for obtaining a circuit from the function, while in other cases, we will simply
present the function and an implementation of it. These functions have special impor-
tance in digital design. In the past, the functional blocks were manufactured as small-
and medium-scale integrated circuits. Today, in very-large-scale integrated (VLSI)
circuits, functional blocks are used to design circuits with many such blocks. Combina-
tional functions and their implementations are fundamental to the understanding of
VLSI circuits. By using a hierarchy, we typically construct circuits as instances of these
functions or the associated functional blocks as well as logic design at the gate level.

Large-scale and very-large-scale integrated circuits are almost always sequen-
tial circuits, as detailed beginning in Chapter 4. The functions and functional blocks
discussed in this chapter are combinational. However, they are often combined with
storage elements to form sequential circuits, as shown in Figure 3-6. Inputs to the
combinational circuit can come from both the external environment and the storage
elements. Outputs from the combinational circuit go to both the external environ-
ment and the storage elements. In later chapters, we use the combinational functions
and blocks defined here, with storage elements to form sequential circuits that per-
form very useful functions. Further, the functions and blocks defined here serve as a
basis for describing and understanding both combinational and sequential circuits
using hardware description languages.

3-4 RuUDIMENTARY LocGic FUNCTIONS

Value fixing, transferring, inverting, and enabling are among the most elementary of
combinational logic functions. The first two operations, value fixing and transferring,
do not involve any Boolean operators. They use only variables and constants. As a

Inputs —— Outputs
Coml?ina'tional Next
circuit state Storage Present
elements state
0 FIGURE 3-6

Block Diagram of a Sequential Circuit
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[0 TABLE 3-1
Functions of One Variable

X F=0 F=X F=X F=1

0 0 0 1 1
0 1 0 1

consequence, logic gates are not involved in the implementation of these operations.
Inverting involves only one logic gate per variable, and enabling involves one or two
logic gates per variable.

Value-Fixing, Transferring, and Inverting

If a single-bit function depends on a single variable X, four different functions are
possible. Table 3-1 gives the truth tables for these functions. The first and last col-
umns of the table assign either constant value 0 or constant value 1 to the function,
thus performing value fixing. In the second column, the function is simply the input
variable X, thus transferring X from input to output. In the third column, the func-
tion is X, thus inverting input X to become output X.

The implementations for these four functions are given in Figure 3-7. Value fix-
ing is implemented by connecting a constant 0 or constant 1 to output F, as shown in
Figure 3-7(a). Figure 3-7(b) shows alternative representations used in logic schemat-
ics. For the positive logic convention, constant 0 is represented by the electrical
ground symbol and constant 1 by a power-supply voltage symbol. The latter symbol
is labeled with either V¢ or Vpp. Transferring is implemented by a simple wire con-
necting X to F as in Figure 3-7(c). Finally, inverting is represented by an inverter
which forms F = X from input X, as shown in Figure 3-7(d).

Multiple-Bit Functions

The functions defined so far can be applied to multiple bits on a bitwise basis. We can
think of these multiple-bit functions as vectors of single-bit functions. For example,
suppose that we have four functions, F, F,, F|, and F,, that make up a four-bit func-
tion F. We can order the four functions with F; as the most significant bit and F| the

Ve or Vpp

(a) (b) (d)

[0 FIGURE 3-7
Implementation of Functions of a Single Variable X
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0 F3 0 2
1 F, 1 N, . 4y 2L
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- _ 0 ©
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@) ®) 4 310 F(G),F(1:0)
F
(d)
O FIGURE 3-8

Implementation of Multibit Rudimentary Functions

least significant bit, providing the vector F = (£, B, F, Fy). Suppose that F consists
of rudimentary functions F; = 0, F, = 1, F; = A,and F, = A. Then we can write F
as the vector (0,1, A, A). ForA = 0, F = (0,1,0,1)andfor A = 1, F = (0,1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F'—for
example, F, and F,. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F,, F, F,at a destination. Note that since F,, F|, and F| are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a specific tool, the
documentation should be consulted.

Value fixing, transferring, and inverting have a variety of applications in logic
design. Value fixing involves replacing one or more variables with constant values
1 and 0. Value fixing may be permanent or temporary. In permanent value fixing,
the value can never be changed. In temporary value fixing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of fixed and temporary value fixing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by fixing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
specifies that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the
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lecture hall. H (house lights) is 1 for the house lights on and 0 for the house lights off.
The light control for house lights can be programmed to be in one of three modes,
M, M, or M, defined as:

M : Either switch P or switch R turns the house lights on and off.
M : Only the podium switch P turns the house lights on and off.
M,: Only the rear switch R turns the house lights on and off.

The Solution: The truth tables for H(P, R) as a function of programming modes M,
M, and M, are given in Table 3-2. The functions for M, and M, are straightforward,
but the function for M needs more thought. This function must permit the changing
of one out of the two switches P or R to change the output. A parity function has this
property, and the parity function for two inputs is the exclusive OR, the function en-
tered into Table 3-2 for M. The goal is to find a circuit that will implement the three
programming modes and provide the output H(P, R).

The circuit chosen for a value-fixing implementation is shown in Figure 3-9(a);
later in this chapter, this standard circuit is referred to as a 4-to-1 multiplexer. A
condensed truth table is given for this circuit in Figure 3-9(b). P and R are input vari-
ables, as are / through /,. Values 0 and 1 can be assigned to I through 7, depending
upon the desired function for each mode. Note that H is actually a function of six
variables, giving a fully expanded truth table containing 64 rows and seven columns.
But, by putting /, through Z, in the output column, we considerably reduce the size of
the table. The equation for the output H for this truth table is

H(P,R, 1,1}, 1,,1;) = PRI, + PRI, + PRI, + PRI,

By fixing the values of I through I, we can implement any function H(P, R).
As shown in Table 3-2, we can implement the function for M, H = PR + PR by
using Iy = 0,1, = 1,1, = 1, and I3 = 0. We can implement the function for M,
H =P by using I,=0,1; =0, =1, and I35 =1, and M,, H= R by using
Iy =0,1; = 1,1, = 0, and I3 = 1. Any one of these functions can be implemented
permanently, or all can be implemented temporarily by fixing I, = 0,and using /,, 1,,
and I, as variables with values as assigned above for each of the three modes. The
final circuit with I, = 0 and the programming table after /, has been fixed at 0 are
shown in Figures 3-9(c) and (d), respectively.

[0 TABLE 3-2
Function Implementation by Value Fixing

Mode: Mg M, M,

P R H = PR + PR H=P H=R

—_—_0 O
—_—0 = O
_ -0 O
—_—0 = O

O = =0
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0 FIGURE 3-9
Implementation of Three Functions by Using Value Fixing |

Enabling

In general, enabling permits an input signal to pass through to an output. In addition to
replacing the input signal with the Hi-Z state, which will be discussed in Section 6-8,
disabling also can replace the input signal with a fixed output value, either 0 or 1. The
additional input signal, often called ENABLE or EN, s required to determine whether
the output is enabled or not. For example, if EN is 1, the input X reaches the output
(enabled), but if EN is 0, the output is fixed at 0 (disabled). For this case, with the dis-
abled value at 0, the input signal is ANDed with the EN signal, as shown in Figure 3-
10(a). If the disabled value is 1, then the input signal X is ORed with the complement of
the EN signal, as shown in Figure 3-10(b). In this case, if EN = 1, a 0 is applied to the
OR gate, and the input X on the other OR gate, input reaches the output,butif EN = 0
,a 1is applied to the OR gate, which blocks the passage of input X to the output. It is
also possible for each of the circuits in Figure 3-10 to be modified to invert the EN input,
so that EN = 0 enables X to reach the output and EN = 1 blocks X.
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X_
EN ) F

[0 FIGURE 3-10
Enabling Circuits

» EXAMPLE 3-5 Car Electrical Control Using Enabling

The Problem: In most automobiles, the lights, radio, and power windows operate
only if the ignition switch is turned on. In this case, the ignition switch acts as an “en-
abling” signal. Suppose that we model this automotive subsystem using the follow-
ing variables and definitions:

Ignition switch /G: Value 0 if off and value 1 if on

Light switch LS: Value 0 if off and value 1 if on

Radio switch RS: Value 0 if off and value 1 if on

Power window switch WS: Value 0 if off and value 1 if on
Lights L: Value 0 if off and value 1 if on

Radio R: Value 0 if off and value 1 if on

Power windows W: Value 0 if off and value 1 if on

The Solution: Table 3-3 contains the condensed truth table for the operation
of this automobile subsystem. Note that when the ignition switch IS is off (0), all of
the controlled accessories are off (0) regardless of their switch settings. This is indi-
cated by the first row of the table. With the use of Xs, this condensed truth table
with just nine rows represents the same information as the usual 16-row truth table.
Whereas Xs in output columns represent don’t-care conditions, Xs in input

[0 TABLE 3-3
Truth Table For Enabling Application
Input Accessory
Switches Control
IS LS RS WS L R W
0 X X X 0 0 O
1 0 0 O 0 0 O
1 0o 0 1 0o 0 1
1 0 1 0 0 1 0
1 0 1 1 0o 1 1
1 1 0 0 1 0 O
1 1 0 1 1 0 1
1 1 1 0 1 1 0
1T 1 1 1 1 1 1
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O FIGURE 3-11
Car Electrical Control Using Enabling

columns are used to represent product terms that are not minterms. For example,
0XXX represents the product term IS. Just as with minterms, each variable is com-
plemented if the corresponding bit in the input combination from the table is 0 and
is not complemented if the bit is 1. If the corresponding bit in the input combina-
tion is an X, then the variable does not appear in the product term. When the igni-
tion switch IS is on (1), then the accessories are controlled by their respective
switches. When IS is off (0), all accessories are off. So IS replaces the normal values
of the outputs L, R, and W with a fixed value 0 and meets the definition of an
ENABLE signal. The resulting circuit is given in Figure 3-11. |

3-5 DEcoODING

In digital computers, discrete quantities of information are represented by binary
codes. An n-bit binary code is capable of representing up to 2" distinct elements of
coded information. Decoding is the conversion of an n-bit input code to an m-bit
output code with n = m = 2", such that each valid input code word produces a
unique output code. Decoding is performed by a decoder, a combinational circuit
with an n-bit binary code applied to its inputs and an m-bit binary code appearing
at the outputs. The decoder may have unused bit combinations on its inputs for
which no corresponding m-bit code appears at the outputs. Among all of the spe-
cialized functions defined here, decoding is the most important, since this function
and the corresponding functional blocks are incorporated into many of the other
functions and functional blocks defined here.

In this section, the functional blocks that implement decoding are called
n—to—m-line decoders, where m = 2". Their purpose is to generate the 2" (or fewer)
minterms from the » input variables. Forn = 1 and m = 2, we obtain the 1-to-2-line
decoding function with input A and outputs D, and D,. The truth table for this
decoding function is given in Figure 3-12(a). If A = 0, then Dy = 1 and D; = 0.
If A =1, then Dy = 0 and D, = 1. From this truth table, D, = A and D, = A,
giving the circuit shown in Figure 3-12(b).

A second decoding function for n = 2 and m = 4 with the truth table given in
Figure 3-13(a) better illustrates the general nature of decoders. This table has 2-vari-
able minterms as its outputs, with each row containing one output value equal to 1
and three output values equal to 0. Output D; is equal to 1 whenever the two input
values on A and A are the binary code for the number i. As a consequence, the
circuit implements the four possible minterms of two variables, one minterm for
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D, D, _
—[>0—DO=A
1 0

(a) (b)

[J FIGURE 3-12
A 1-to-2-Line Decoder

=] >

each output. In the logic diagram in Figure 3-13(b), each minterm is implemented by
a 2-input AND gate. These AND gates are connected to two 1-to-2-line decoders,
one for each of the lines driving the AND gate inputs.

Large decoders can be constructed by simply implementing each minterm
function using a single AND gate with more inputs. Unfortunately, as decoders
become larger, this approach gives a high gate-input cost. In this section, we give
a procedure that uses design hierarchy and collections of AND gates to con-
struct any decoder with » inputs and 2" outputs. The resulting decoder has the
same or a lower gate-input cost than the one constructed by simply enlarging each
AND gate.

To construct a 3—to-8-line decoder (n = 3), we can use a 2-to—4-line decoder
and a 1-to-2-line decoder feeding eight 2-input AND gates to form the minterms.
Hierarchically, the 2—to—4-line decoder can be implemented using two 1-to—2-line
decoders feeding four 2-input AND gates, as observed in Figure 3-13. The resulting
structure is shown in Figure 3-14.

The general procedure is as follows:

1. Letk = n.

2. If kis even,divide k by 2 to obtain k/2. Use 2 AND gates driven by two decod-
ers of output size 2%/2.If k is odd, obtain (k + 1)/2 and (k — 1)/2. Use 2* AND

[J FIGURE 3-13
A 2-to—4-Line Decoder



130 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN
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[J FIGURE 3-14
A 3-to-8-Line Decoder

gates driven by a decoder of output size 2**"? and a decoder of output size
k=112,

3. For each decoder resulting from step 2, repeat step 2 with k equal to the values
obtained in step 2 until k = 1.For k = 1, use a 1-to-2 decoder.

EXAMPLE 3-6 6-to—64-Line Decoder

For a 6-to—64-line decoder (k = n = 6), in the first execution of step 2, 64 2-input
AND gates are driven by two decoders of output size 2° = 8 (i.e., by two 3—to-8-
line decoders). In the second execution of step 2, k = 3. Since k is odd, the result
is (k +1)/2 =2 and (k — 1)/2 = 1. Eight 2-input AND gates are driven by a
decoder of output size 2> = 4 and by a decoder of output size 2! = 2 (i.e., by a 2—
to—4-line decoder and by a 1-to-2-line decoder, respectively). Finally, on the next
execution of step 2, k = 2, giving four 2-input AND gates driven by two decoders
with output size 2 (i.e., by two 1-to—2-line decoders). Since all decoders have been
expanded, the algorithm terminates with step 3 at this point. The resulting struc-
ture is shown in Figure 3-15. This structure has a gate input cost of
6 +2(12X4)+2(2xX8)+2X 64 =182.1f asingle AND gate for each minterm
was used, the resulting gate-input cost would be 6 + (6 X 64) = 390, so a substan-
tial gate-input cost reduction has been achieved. |
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A 6-t0-64-Line Decoder

As an alternative expansion situation, suppose that multiple decoders are
needed and that the decoders have common input variables. In this case, instead of
implementing separate decoders, parts of the decoders can be shared. For example,
suppose that three decoders d,, d;,, and d, are functions of input variables as follows:

d, (A, B, C, D)
dy (A, B, C, E)
d.(C,D,E,F)

A 3-to-8-line decoder for A, B, and C can be shared between d, and d,. A
2-to—4-line decoder for C and D can be shared between d, and d.. A 2—-to—4-line
decoder for C and E can be shared between dj, and d,. If we implemented all of this
sharing, we would have C entering three different decoders and the circuit would be
redundant. To use C just once in shared decoders larger than 1 to 2, we can consider
the following distinct cases:

1. (A, B) shared by d, and d},, and (C, D) shared by d, and d_,
2. (A, B) shared by d, and d,,, and (C, E) shared by d,, and d,, or
3. (A, B, C) shared by d, and d,,.
Since cases 1 and 2 will clearly have the same costs, we will compare the cost of

cases 1 and 3. For case 1, the costs of functions d,, d;,, and d. are reduced by the cost
of two 2-to—4-line decoders (exclusive of inverters) or 16 gate inputs. For case 3, the
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costs for functions d, and d; are reduced by one 3-to-8-line decoder (exclusive of
inverters) or 24 gate inputs. So case 3 should be implemented. Formalization of this
procedure into an algorithm is beyond our current scope, so only this illustration of
the approach is given.

Decoder and Enabling Combinations

The function, n—to-m-line decoding with enabling, can be implemented by attaching m
enabling circuits to the decoder outputs. Then, 1 copies of the enabling signal EN are
attached to the enable control inputs of the enabling circuits. For n = 2 and m = 4,
the resulting 2-to—4-line decoder with enable is shown in Figure 3-16, along with its
truth table. For EN = 0, all of the outputs of the decoder are 0. For EN = 1, one of
the outputs of the decode, determined by the value on (A, A ),is 1 and all others are 0.
If the decoder is controlling a set of lights, then with EN = 0, all lights are off, and with
EN = 1, exactly one light is on, with the other three off. For large decoders (n = 4),
the gate-input cost can be reduced by placing the enable circuits on the inputs to the
decoder and their complements rather than on each of the decoder outputs.

In Section 3-7 selection using multiplexers will be covered. The inverse of selec-
tion is distribution, in which information received from a single line is transmitted to
one of 2" possible output lines. The circuit which implements such distribution is called
a demultiplexer. The specific output to which the input signal is transmitted is con-
trolled by the bit combination on # selection lines. The 2—-to—4-line decoder with enable
in Figure 3-16 is an implementation of a 1-to—4-line demultiplexer. For the demulti-
plexer,input EN provides the data, while the other inputs act as the selection variables.
Although the two circuits have different applications, their logic diagrams are exactly
the same. For this reason, a decoder with enable input is referred to as a decoder/
demultiplexer. The data input EN has a path to all four outputs, but the input informa-
tion is directed to only one of the outputs, as specified by the two selection lines A, and
A,. For example, if (A;, A)) = 10, output D, has the value applied to input EN, while

EN

A Do
Ag DO— -
—

pEIDs
|
EN Al Ao Do Dl D2 D3 _’_\ ’_}Dl
0 X X|0 0 0 0 — -
1 001 0 0 0 :)—D2
1 01,0 1 0 0 |/
1 1. 0,0 0 1 0 L b
1 1 1,0 0 0 1 D 3
(a) (b)

[J FIGURE 3-16
A 2-to—4-Line Decoder with Enable
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all other outputs remain inactive at logic 0. If the decoder is controlling a set of four
lights, with (A;, Ay) = 10 and EN periodically changing between 1 and 0, the light con-
trolled by D, flashes on and off and all other lights are off.

The next several examples illustrate using VHDL and Verilog to describe the
behavior of decoders, providing additional instances of structural and dataflow model-
ing in each language with the language constructs initially introduced in Chapter 2.

EXAMPLE 3-7 VHDL Models for a 2-to—4-Line Decoder

Figure 3-17 shows a structural VHDL description for the 2-to—4-line decoder circuit
from Figure 3-16. The model uses the library of basic gates 1cdf_vhdl available from
the Companion Website for the text as described in Chapter 2.

Figure 3-18 shows a dataflow VHDL description for the 2—-to—4-line decoder
circuit from Figure 3-16. Note that this dataflow description is much simpler
than the structural description in Figure 3-17, which is often the case. The library,
use, and entity statements are identical to those in Figure 3-16, so they are not

repeated here. [ |
—— 2-to-4-Line Decoder with Enable: Structural VHDL Description -— 1
-— (See Figure 3-16 for logic diagram) - 2
library ieee, lcdf_vhdl; -—- 3
use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all; -— 4
entity decoder_2_to_4_w_enable is -—- 5
port (EN, A0, Al: in std_logic; -— 6
DO, D1, D2, D3: out std_logic); -— 7

end decoder_2_to_4_w_enable; -— 8
- 9

architecture structural_1 of decoder_2_ to_4_ w_enable is -- 10
component NOT1 -—- 11
port (inl: in std_logic; -— 12
outl: out std_logic); -- 13

end component; -— 14
component AND2 -—- 15
port (inl, in2: in std_logic; -- 106
outl: out std_logic); -—- 17

end component; -- 18
signal AO_n, Al_n, NO, N1, N2, N3: std_logic; -- 19
begin -- 20
g0: NOT1 port map (inl => AO0, outl => AO_n); -—- 21

gl: NOT1 port map (inl => Al, outl => Al _n); -— 22

g2: AND2 port map (inl => AO_n, in2 => Al_n, outl => NO); -- 23

g3: AND2 port map (inl => AO, in2 => Al _n, outl => N1); -— 24

g4: AND2 port map (inl => AO_n, in2 => Al, outl => N2); -—- 25

g5: AND2 port map (inl => A0, in2 => Al, outl => N3); -= 26

g6: AND2 port map (inl => EN, in2 => NO, outl => DO); -— 27

g7: AND2 port map (inl => EN, in2 => N1, outl => D1); -— 28

g8: AND2 port map (inl => EN, in2 => N2, outl => D2); -- 29

g9: AND2 port map (inl => EN, in2 => N3, outl => D3); -— 30

end structural_1; -- 31

0 FIGURE 3-17
Structural VHDL Description of 2-to—4-Line Decoder
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—-— 2-to-4-Line Decoder: Dataflow VHDL Description
—— (See Figure 3-16 for logic diagram)
—— Use library, use, and entity entries from 2_to_4_decoder_st;

architecture dataflow_1 of decoder_2_to_4_w_enable is

signal A0_n, Al _n: std_logic;
begin
AO0_n <= not A0;
Al n <= not Al;
DO <= AO_n and Al_n and EN;
D1 <= A0 and Al_n and EN;
D2 <= AO_n and Al and EN;
D3 <= A0 and Al and EN;
end dataflow_1;

[0 FIGURE 3-18
Dataflow VHDL Description of 2-to—4-Line Decoder

EXAMPLE 3-8 Verilog Models for a 2-to—4-Line Decoder
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A structural Verilog description for the 2-to-4-line decoder circuit from Figure 3-16
is given in Figure 3-19. In Figure 3-20, a dataflow description is given for the
2—-to—4-line decoder. This particular dataflow description uses an assignment state-

ment followed by a Boolean equation.

// 2-to-4-Line Decoder with Enable: Structural Verilog Desc.
// (See Figure 3-16 for logic diagram)
module decoder_2_to_4_st_v (EN, AO, Al, DO, D1, D2, D3);
input EN, AQ0, Al;
output DO, D1, D2, D3;

wire AO_n, Al_n, NO, N1, N2, N3;
not
g0 (AO_n, AO0),
gl(Al_n, Al);
and
g3 (NO, AO_n, Al _n),
g4 (N1, A0, Al_n),
g5 (N2, AO_n, Al),
g6 (N3, A0, Al),
g7 (D0, NO, EN),
g8 (D1, N1, EN),
g9 (D2, N2, EN),
gl0 (D3, N3, EN);
endmodule

[0 FIGURE 3-19
Structural Verilog Description of 2-to—4-Line Decoder
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// 2-to-4-Line Decoder with Enable: Dataflow Verilog Desc. // 1
// (See Example 3-16 for logic diagram) // 2
module decoder_2_to_4_df_v (EN, A0, Al, DO, D1, D2, D3); // 3
input EN, A0, Al; // 4
output DO, D1, D2, D3; // 5
// 6

assign DO = EN & ~Al & ~AO; /)
assign D1 = EN & ~Al & AO; // 8
assign D2 = EN & Al & ~AO0; // 9
assign D3 = EN & Al & AO; // 10

// 11

endmodule // 12

[0 FIGURE 3-20
Dataflow Verilog Description of 2-to—4-Line Decoder

Decoder-Based Combinational Circuits

A decoder provides the 2" minterms of # input variables. Since any Boolean function
can be expressed as a sum of minterms, one can use a decoder to generate the mint-
erms and combine them with an external OR gate to form a sum-of-minterms imple-
mentation. In this way, any combinational circuit with » inputs and m outputs can be
implemented with an n—to-2"-line decoder and m OR gates.

The procedure for implementing a combinational circuit by means of a decoder
and OR gates requires that the Boolean functions be expressed as a sum of mint-
erms. This form can be obtained from the truth table or by plotting each function on
a K-map. A decoder is chosen or designed that generates all the minterms of the
input variables. The inputs to each OR gate are selected as the appropriate minterm
outputs according to the list of minterms of each function. This process is shown in
the next example.

EXAMPLE 3-9 Decoder and OR-Gate Implementation of a Binary Adder Bit

In Chapter 1, we considered binary addition. The sum bit output S and the carry bit
output C for a bit position in the addition are given in terms of the two bits being
added, X and Y, and the incoming carry from the right, Z, in Table 3-4.
From this truth table, we obtain the functions for the combinational circuit in
sum-of-minterms form:
SXY,Z)=32m(1,2,4,7)

C(X,Y,Z) = 3m(3,5,6,7)

Since there are three inputs and a total of eight minterms, we need a 3-to-8-
line decoder. The implementation is shown in Figure 3-21. The decoder generates all
eight minterms for inputs X, Y, and Z. The OR gate for output S forms the logical
sum of minterms 1, 2, 4, and 7. The OR gate for output C forms the logical sum of
minterms 3, 5, 6, and 7. Minterm O is not used. [
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[0 TABLE 3-4
Truth Table for 1-Bit Binary Adder

X Y z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
3-to-8-line
Decoder
0
1
— T >—s
3
1
Y—2 4
5 C
x—|» _f%[%
7

O FIGURE 3-21
Implementing a Binary Adder Using a Decoder

A function with a long list of minterms requires an OR gate with a large
number of inputs. A function having a list of k minterms can be expressed in its
complement form with 2" — k minterms. If the number of minterms in a function
F is greater than F, then the complement of F, F, can be expressed with fewer
minterms. In such a case, it is advantageous to use a NOR gate instead of an OR
gate. The OR portion of the NOR gate produces the logical sum of the minterms
of F. The output bubble of the NOR gate complements this sum and generates the
normal output F.

The decoder method can be used to implement any combinational circuit.
However, this implementation must be compared with other possible implemen-
tations to determine the best solution. The decoder method may provide the best
solution, particularly if the combinational circuit has many outputs based on the
same inputs and each output function is expressed with a small number of
minterms.
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[0 TABLE 3-5
Truth Table for Octal-to-Binary Encoder
Inputs Outputs

D Dg Ds Dy D3 D Dy D A, Ay A
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

3-6 ENcoODING

An encoder is a digital function that performs the inverse operation of a decoder. An
encoder has 2" (or fewer) input lines and » output lines. The output lines generate
the binary code corresponding to the input value. An example of an encoder is the
octal-to-binary encoder whose truth table is given in Table 3-5. This encoder has
eight inputs, one for each of the octal digits, and three outputs that generate the cor-
responding binary number. It is assumed that only one input has a value of 1 at any
given time, so that the table has only eight rows with specified output values. For the
remaining 56 rows, all of the outputs are don’t cares.

From the truth table, we can observe that A; is 1 for the columns in which D; is
1 only if subscript j has a binary representation with a 1 in the ith position. For exam-
ple,output A, = 1if the inputis 1 or 3 or 5 or 7 Since all of these values are odd, they
have a 1 in the 0 position of their binary representation. This approach can be used to
find the truth table. From the table, the encoder can be implemented with n OR
gates, one for each output variable A;. Each OR gate combines the input variables
D; having a 1 in the rows for which A, has value 1. For the 8-to-3-line encoder, the
resulting output equations are

A0=D1+D3+D5+D7
A1:D2+D3+D6+D7
A2:D4+D5+D6+D7

which can be implemented with three 4-input OR gates.

The encoder just defined has the limitation that only one input can be active at
any given time: if two inputs are active simultaneously, the output produces an incorrect
combination. For example, if D, and D, are 1 simultaneously, the output of the encoder
will be 111, because all the three outputs are equal to 1. This represents neither a binary
3 nor a binary 6.To resolve this ambiguity,some encoder circuits must establish an input
priority to ensure that only one input is encoded. If we establish a higher priority for
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inputs with higher subscript numbers, and if both D, and D are 1 at the same time, the
output will be 110, because D has higher priority than D,. Another ambiguity in the
octal-to-binary encoder is that an output of all Os is generated when all the inputs are 0,
but this output is the same as when D is equal to 1. This discrepancy can be resolved by
providing a separate output to indicate that at least one input is equal to 1.

Priority Encoder

A priority encoder is a combinational circuit that implements a priority function. As
mentioned in the preceding paragraph, the operation of the priority encoder is such
that if two or more inputs are equal to 1 at the same time, the input having the high-
est priority takes precedence. The truth table for a four-input priority encoder is
given in Table 3-6. With the use of Xs, this condensed truth table with just five rows
represents the same information as the usual 16-row truth table. Whereas Xs in out-
put columns represent don’t-care conditions, Xs in input columns are used to repre-
sent product terms that are not minterms. For example, 001X represents the product
term D3 D, D;. Just as with minterms, each variable is complemented if the corre-
sponding bit in the input combination from the table is 0 and is not complemented if
the bit is 1. If the corresponding bit in the input combination is an X, then the vari-
able does not appear in the product term. Thus, for 001X, the variable D, corre-
sponding to the position of the X, does not appear in D3 D, D .

The number of rows of a full truth table represented by a row in the condensed
table is 27, where p is the number of Xs in the row. For example, in Table 3-6, 1XXX
represents 2° = 8 truth-table rows, all having the same value for all outputs. In form-
ing a condensed truth table, we must include each minterm in at least one of the rows
in the sense that the minterm can be obtained by filling in 1s and Os for the Xs. Also, a
minterm must never be included in more than one row such that the rows in which it
appears have one or more conflicting output values.

We form Table 3-6 as follows: Input D, has the highest priority; so, regardless of
the values of the other inputs, when this inputis 1, the output for A, A is 11 (binary 3).
From this we obtain the last row of the table. D, has the next priority level. The out-
put is 10 if D, = 1, provided that D3 = 0, regardless of the values of the lower-
priority inputs. From this, we obtain the fourth row of the table. The output for D, is
generated only if all inputs with higher priority are 0, and so on down the priority
levels. From this, we obtain the remaining rows of the table. The valid output desig-
nated by Vis set to 1 only when one or more of the inputs are equal to 1. If all inputs

[0 TABLE 3-6
Truth Table of Priority Encoder
Inputs Outputs
D3 D, D, Do A, Ay '
0 0 0 0 X X 0
0 0 0 1 0 0 1
0 0 1 X 0 1 1
0 1 X X 1 0 1
1 X X X 1 1 1
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are 0, V' is equal to 0, and the other two outputs of the circuit are not used and are
specified as don’t-care conditions in the output part of the table.

The maps for simplifying outputs A, and A are shown in Figure 3-22. The min-
terms for the two functions are derived from Table 3-6. The output values in the table
can be transferred directly to the maps by placing them in the squares covered by the
corresponding product term represented in the table. The optimized equation for
each function is listed under the map for the function. The equation for output V is
an OR function of all the input variables. The priority encoder is implemented in
Figure 3-23 according to the following Boolean functions:

A0:D3+D152
A1=D2+D3
V:D0+D1+D2+D3

Encoder Expansion

Thus far, we have considered only small encoders. Encoders can be expanded to
larger numbers of inputs by expanding OR gates. In the implementation of

\D1D0 D, \D1D0 D,
D;D, 00 01 11 10 D;D, 00 01 11 10
00] X 00 | X 1 1
01| |1 1 1 1 01
Dz D2
111 1 1 1 11 | 1 1 1 1
D; D;
10 1 1 1 1 10 || 1 1 1 1
DO DO
A, =D, + D; Ay=D;+ DD,
[0 FIGURE 3-22
Maps for Priority Encoder
D;
D, Do
|—D_4D—Ao
D,
) o—

[0 FIGURE 3-23
Logic Diagram of a 4-Input Priority Encoder



140 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

decoders, the use of multiple-level circuits with OR gates beyond the output lev-
els shared in implementing the more significant bits in the output codes reduces
the gate input cost as n increases for n = 5. For n = 3, multiple-level circuits
result from technology mapping anyway, due to limited gate fan-in. Designing
multiple-level circuits with shared gates reduces the cost of the encoders after
technology mapping.

3-7 SELECTING

Selection of information to be used in a computer is a very important function, not
only in communicating between the parts of the system, but also within the parts as
well. Circuits that perform selection typically have a set of inputs from which selec-
tions are made, a single output, and a set of control lines for making the selection.
First, we consider selection using multiplexers; then we briefly examine selection cir-
cuits implemented by using three-state drivers.

Multiplexers

A multiplexer is a combinational circuit that selects binary information from one
of many input lines and directs the information to a single output line. The selec-
tion of a particular input line is controlled by a set of input variables, called selec-
tion inputs.

Normally, there are 2" input lines and # selection inputs whose bit combina-
tions determine which input is selected. We begin with n = 1, a 2-to-1-line multi-
plexer. This function has two information inputs, / and / , and a single select input S.
The truth table for the circuit is given in Table 3-7 Examining the table, if the select
input § = 0, the output of the multiplexer takes on the values of I, and, if input
§ = 1, the output of the multiplexer takes on the values of /. Thus, § selects either
input /, or input /, to appear at output Y. From this discussion, we can see that the
equation for the 2—-to—1-line multiplexer output Y is

Y = EIO + SI 1
[0 TABLE 3-7
Truth Table for 2-to-1-Line Multiplexer
S I, I, Y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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Enabling
Circuits Iy

P, v

(a) (b)

Decoder

[0 FIGURE 3-24
(a) Single-Bit 2-to-1-Line Multiplexer; (b) common Symbol for a Multiplexer

This same equation can be obtained by using a 3-variable K-map. As shown in
Figure 3-24(a), the implementation of the preceding equation can be decomposed
into a 1-to—2-line decoder, two enabling circuits, and a 2-input OR gate. A common
symbol for a 2-to-1 multiplexer is shown in Figure 3-24(b), with a trapezoid signify-
ing the selection of the output on the short parallel side from among the 2" informa-
tion inputs on the long parallel side.

Suppose that we wish to design a 4-to—1-line multiplexer. In this case, the
function Y depends on four inputs /, Il, ,»and I, and two select inputs S, and S|,
By placing the values of /; through 7, in the Y column we can form Table 3-8, a
condensed truth table for thls multlplexer In this table, the information variables
do not appear as input columns of the table but appear in the output column.
Each row represents multiple rows of the full truth table. In Table 3-8, the row 00
I, represents all rows in which (8, Sy) = 00. For [, = 1 it gives Y = 1, and for
Iy = 0 it gives Y = 0. Since there are six variables, and only §, and S are fixed,
this single row represents 16 rows of the corresponding full truth table. From the
table, we can write the equation for Y as

Y = SISOIO + 315011 + 513012 + 51S013

If this equation is implemented directly, two inverters, four 3-input AND gates,
and a 4-input OR gate are required, giving a gate-input cost of 18. A different imple-
mentation can be obtained by factoring the AND terms to give

Y = (S1So)o + (S180)11 + (81S0)1> + (S180)]5

[J TABLE 3-8
Condensed Truth Table for 4-to-1-Line
Multiplexer

S S Y

0 0
0 1
1 0
1 1
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S, DO Decoder
4 X 2 AND-OR
So I >0—

)
— IO——D—
T )
L n
— —Y
D
—
/ 13——3—

O FIGURE 3-25
A Single-Bit 4-to—1-Line Multiplexer

This implementation can be constructed by combining a 2-to—4-line
decoder, four AND gates used as enabling circuits, and a 4-input OR gate, as
shown in Figure 3-25. We will refer to the combination of AND gates and OR
gates as an m X 2 AND-OR, where m is the number of AND gates and 2 is the
number of inputs to the AND gates. This resulting circuit has a gate input cost of
22, which is more costly. Nevertheless, it provides a structural basis for construct-
ing larger n—to—2"-line multiplexers by expansion.

A multiplexer is also called a data selector, since it selects one of many infor-
mation inputs and steers the binary information to the output line. The term “multi-
plexer” is often abbreviated as “MUX.”

Multiplexers can be expanded by considering vectors of input bits for larger
values of n. Expansion is based upon the circuit structure given in Figure 3-24(a),
consisting of a decoder, enabling circuits, and an OR gate. Multiplexer design is illus-
trated in Examples 3-10 and 3-11.

EXAMPLE 3-10 64-to-1-Line Multiplexer

A multiplexer is to be designed for n = 6.This will require a 6-to—64-line decoder as
given in Figure 3-15,and a 64 X 2 AND-OR gate. The resulting structure is shown in
Figure 3-26. This structure has a gate-input cost of 182 + 128 + 64 = 374.

In contrast, if the decoder and the enabling circuit were replaced by invert-
ers plus 7-input AND gates, the gate-input cost would be 6 + 448 + 64 = 518. For
single-bit multiplexers such as this one, combining the AND gate generating D;
with the AND gate driven by D, into a single 3-input AND gate for every i = 0
through 63 reduces the gate-input cost to 310. For multiple-bit multiplexers, this
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64 X 2 AND-OR

I
v S S

T
|
: 6-to-64-Line decoder
|
|
|

:

[0 FIGURE 3-26
A 64-to-1-Line Multiplexer

reduction to 3-input ANDs cannot be performed without replicating the output
ANDs of the decoders. As a result, in almost all cases, the original structure has a
lower gate-input cost. The next example illustrates the expansion to a multiple-bit
multiplexer. |

EXAMPLE 3-11 4-to-1-Line Quad Multiplexer

A quad 4-to-1-line multiplexer, which has two selection inputs and each informa-
tion input replaced by a vector of four inputs, is to be designed. Since the informa-
tion inputs are a vector, the output Y also becomes a four-element vector. The
implementation for this multiplexer requires a 2-to—4-line decoder, as given in
Figure 3-13, and four 4 X 2 AND-OR gates. The resulting structure is shown in
Figure 3-27 This structure has a gate-input cost of 10 + 32 + 16 = 58. In contrast,
if four 4-input multiplexers implemented with 3-input gates were placed side by
side, the gate-input cost would be 76. So, by sharing the decoder, we reduced the
gate-input cost.
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0 FIGURE 3-27
A Quad 4-to-1-Line Multiplexer |

The next several examples illustrate using VHDL and Verilog to describe
the behavior of multiplexers, providing additional instances of structural and
dataflow modeling in each language with the language constructs initially intro-
duced in Chapter 2.

EXAMPLE 3-12 VHDL Models for a 4-to-1 Multiplexer

In Figure 3-28 shows a structural description of the 4-to—1-line multiplexer from
Figure 3-25. This model illustrates two VHDL concepts introduced in Chapter 2:
std_logic_vector and an alternative approach to mapping ports.

The architecture in Figure 3-29, instead of using Boolean equation-like state-
ments to describe the multiplexer, uses a when-else statement. This statement is a repre-
sentation of the function table given as Table 3-8. When s takes on a particular binary
value, then a particular input I (i) is assigned to output Y. When the value on s is 00,
then v is assigned T (0). Otherwise, the else is invoked so that when the value on s is
01,then v is assigned I (1),and so on. In standard logic, each of the bits can take on 9
different values. So the pair of bits for s can take on 81 possible values, only 4 of which
have been specified so far. In order to define v for the remaining 77 values, the final
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-- 4-to-1-Line Multiplexer: Structural VHDL Description -- 1
-- (See Figure 3-25 for logic diagram) -—- 2
library ieee, lcdf_vhdl; -- 3
use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all; -— 4
entity multiplexer_4_to_1_st is -- 5
port (S: in std_logic_vector (0 to 1); -- 6

I: in std_logic_vector (0 to 3); -— 7

Y: out std_logic); -- 8

end multiplexer_4_to_1_st; -- 9
--10

architecture structural 2 of multiplexer 4 _to_1_st is --11
component NOT1 --12
port(inl: in std_logic; --13
outl: out std_logic); --14

end component; --15
component AND2 --16
port(inl, in2: in std_logic; --17
outl: out std_logic); --18

end component; --19
component OR4 --20
port(inl, in2, in3, in4: in std_logic; --21
outl: out std_logic); --22

end component; --23
signal S_n: std_logic_vector (0 to 1); --24
signal D, N: std_logic_vector (0 to 3); --25
begin --26
g0: NOT1 port map (S(0), S_n(0)); -=27

gl: NOT1 port map (S(1), S_n(l)); --28

g2: AND2 port map (S_n(l), S_n(0), D(0)); --29

g3: AND2 port map (S_n(l), S(0), D(1)); --30

g4: AND2 port map (S(1), S_n(0), D(2)); --31

g5: AND2 port map (S(1), S(0), D(3)); -=32

g6: AND2 port map (D(0), I(0), N(0)); --33

g7: AND2 port map (D(1), I(1l), N(1)); --34

g8: AND2 port map (D(2), I(2), N(2)); -=35

g9: AND2 port map (D(3), I(3), N(3)); --36

gl0: OR4 port map (N(0), N(1), N(2), N(3), Y); -=37

end structural_2; --38

[0 FIGURE 3-28
Structural VHDL Description of 4-to—1-Line Multiplexer

else followed by x (unknown) is given. This assigns the value X to Y if any of these 77
values occurs on s. However, this output value occurs only in simulation, since Y will
always take on a 0 or 1 value in an actual circuit.

Figure 3-30 provides an alternative implementation using with-select for the
4-to-1-line multiplexer. The expression, the value of which is to be used for the deci-
sion, follows with and precedes select. The values for the expression that causes
the alternative assignments then follow when with each of the assignment-value
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-- 4-to-1-Line Mux: Conditional Dataflow VHDL Description - 1

-- Using When-Else (See Table 3-8 for function table) -- 2

library ieee; -- 3

use ieee.std_logic_1164.all; -- 4

entity multiplexer_4_to_1 we is -- 5

port (S : in std_logic_vector(l downto 0); -- 6

I : in std_logic_vector (3 downto 0); -— 7

Y : out std_logic); -- 8

end multiplexer_4_to_1_we; -- 9

-- 10

architecture function table of multiplexer 4 to_1_we is -- 11

begin -- 12

Y <= I(0) when S = "00" else -- 13

I(1) when S = "01" else -- 14

I(2) when S = "10" else -- 15

I(3) when S = "11" else -- 16

'X'; -- 17

end function_table; -- 18

[0 FIGURE 3-29

Conditional Dataflow VHDL Description of 4-to—1-Line Multiplexer Using When-Else

--4-to-1-Line Mux: Conditional Dataflow VHDL Description -- 1

Using with Select (See Table 3-8 for function table) - 2

library ieee; -- 3

use ieee.std_logic_1164.all; -—- 4

entity multiplexer 4_to_1 _ws is -- 5

port (S : in std_logic_vector (1l downto 0); -- 0

I : in std_logic_vector (3 downto 0); -— 7

Y : out std_logic); -- 8

end multiplexer_4_to_1_ws; -- 9

-- 10

architecture function_ table_ws of multiplexer_ 4 to_1 ws is -- 11

begin -- 12

with S select -- 13

Y <= I(0) when "00", -- 14

I(1) when "01", -- 15

I(2) when "10", -- 16

I(3) when "11", -- 17

'X'when others; -- 18

end function_table_ws; -- 19

[0 FIGURE 3-30
Conditional Dataflow VHDL Description of 4-to-1-Line Multiplexer Using With-Select

pairs separated by commas. In the example, s is the signal, the value of which deter-
mines the value selected for y. When s = "00", 1(0) is assigned to Y. When s =
"01", I(1) is assigned to Y and so on. 'X' is assigned to Y when others, where
others represents the 77 standard logic combinations not already specified.
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These last two models provide examples of the difference between when-else
and with-select that was noted in Chapter 2: when-else permits decisions on multiple
distinct signals, while with-select can depend on only one signal. For example, for the
demultiplexer in Figure 3-16, the first when can be conditioned on input EN with the
subsequent when’s conditioned on input s. In contrast, the with-select can depend on
only a single Boolean condition (e.g., either EN or s, but not both). Also, as noted
previously in Chapter 2, for typical synthesis tools, when-else usually results in a
more complex logical structure, since each of the decisions depends not only on the
condition currently being evaluated, but also on all prior decisions as well. As a con-
sequence, the structure that is synthesized takes into account this priority order,
replacing the 4 X 2 AND-OR by a chain of four 2-to-1 multiplexers. In contrast,
there is no direct dependency between the decisions made in with-select. With-select
produces a decoder and the 4 X 2 AND-OR gate. |

EXAMPLE 3-13 Verilog Models for a 4-to-1-Line Multiplexer

In Figure 3-31, the structural description of the 4-to—1-line multiplexer from Figure 3-25
illustrates the Verilog concept of a vector that was introduced in Chapter 2. Rather than

// 4-to-1-Line Multiplexer: Structural Verilog Description // 1
// (See Figure 3-25 for logic diagram) // 2
module multiplexer_4_to_1_st_v(S, I, Y); // 3
input [1:0] S; // 4
input [3:0] I; // 5
output Y; // 6
/7

wire [1:0] not_S; // 8
wire [0:3] D, N; // 9
// 10

not // 11
gn0 (not_s[0], s[0]), // 12
gnl (not_S[1], S[1]); // 13

// 14

and // 15
g0(D[0], not_S[1l], not_S[0]), // 16
g1(D[1], not_S[1], S[0]), [/ 17
g2(D[2], S[1], not_sS[O0]), // 18
g3(D[3], s[1], s[0]); // 19
gO(N[O], D[O], TI[O]), // 20
gl(N[1], D[1], I[1]), // 21

g2 (N[2], D[2], I[2]), // 22
g3(N[3], D[3], T[3]); // 23

// 24

or go(Y, N[O], N[1], N[2], N[3]); // 25
// 26

endmodule // 27

[0 FIGURE 3-31
Structural Verilog Description of 4-to—1-Line Multiplexer
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specifying each wire as a single bit, the wires are specified as multiple-bit vectors where
each individual wire can be accessed using the vector name and the number of the indi-
vidual wire within the vector range.

Figure 3-32 shows a Verilog dataflow model using single Boolean equation
for Y to describe the multiplexer. This equation is in sum-of-products form with &
for AND and | for OR. Components of the s and T vectors are used as its
variables.

The Verilog model in Figure 3-33 resembles the function table given as
Table 3-8 by using a conditional operator on binary combinations. If the logical
value within the parentheses is true, then the value before the : is assigned to the
independent variable, in this case, v. If the logical value is false, then the value
after the: is assigned. Suppose we consider condition S == 2'b00, where == is the
logical equality operator. As introduced in Chapter 2, 2'500 is Verilog’s represen-
tation of a constant, representing a two-bit binary constant with a value of 00.

// 4-to-1-Line Multiplexer: Dataflow Verilog Description
// (See Figure 3-25 for logic diagram)
module multiplexer_4_to_1_df_v (S, I, Y);

input [1:0] S;

input [3:0] I;

output Y;
assign Y = (~ S[1] & ~ S[0] & I[O0])| (~ S[1] & S[O] & I[1])
[ (S[1] & ~ S[0] & I[2]) | (S[1] & S[O0] & I[3]);
endmodule

[0 FIGURE 3-32
Dataflow Verilog Description of 4-to—1-Line Multiplexer Using a Boolean Equation

// 4-to-1 Line Multiplexer: Dataflow Verilog Description
// (See Table 3-8 for function table)
module multiplexer_ 4 to_ 1 _cf v(S, I, Y);

input [1:0] S;

input [3:0] I;

output Y;
assign Y = (S == 2'b00) ? I[0]
(S == 2'pb01) 2 I[1]
(S == 2'b10) ? I[2] :
(S == 2'bll) 2 I[3] : 1'bx ;
endmodule

O FIGURE 3-33
Conditional Dataflow Verilog Description of 4-to—1-Line
Multiplexer Using Combinations
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// 4-to-1-Line Multiplexer: Dataflow Verilog Description
// (See Table 3-8 for function table)
module multiplexer_4_to_1_tf v (S, I, Y);

input [1:0] S;

input [3:0] I;

output Y;
assign Y = S[1] 2 (S[0] 2 I[3] : I[2])
(S[01 2 I[1] : I[0]);
endmodule

[0 FIGURE 3-34
Conditional Dataflow Verilog Description of 4-to—1-Line
Multiplexer Using Binary Decisions

Thus, the expression has value true if vector s is equal to 00; otherwise, it is false.
If the expression is true, then 1107 is assigned to v. If the expression is false, then
the next expression containing a 2 is evaluated, and so on. In this example, for a
condition to be evaluated, all conditions preceding it must evaluate to false. If
none of the conditions evaluate to true, then the default value 1'bx (unknown) is
assigned to v.

The final form of a Verilog dataflow description for the multiplexer is shown in
Figure 3-34. It is based on conditional operators used to form a decision tree, which
corresponds to a factored Boolean expression. In this case,if sS{1] is 1,then s[0] is
evaluated to determine whether v is assigned 1[3] or assigned 1[2].If s[1] is 0,
then s[0] is evaluated to determine whether v is assigned 1[1] or 1[0]. For a regu-
lar structure such as a multiplexer, this approach, based on two-way (binary) deci-
sions, gives a simple dataflow expression. |

EXAMPLE 3-14 Security System Sensor Selection using Multiplexers

The Problem: A home security system has 15 sensors that detect open doors and win-
dows. Each sensor produces a digital signal 0 when the window or door is closed and 1
when the window or door is open. The control for the security system is a microcon-
troller with eight digital input/output bits available. Each bit can be programmed to be
either an input or an output. Design a logic circuit that repeatedly checks each of the
15 sensor values by connecting the sensor output to a microcontroller input/output
that is programmed to be an input. The parts list for the design consists of the following
multiplexer parts: 1) a single 8-to—1-line multiplexer,2) a dual 4-to—1-line multiplexer,
and 3) a quad 2-to-1-line multiplexer. Any number of each part is available. The design
is to minimize the number of parts and also minimize the number of microcontroller
input/outputs used. Microcontroller input/outputs programmed as outputs are to be
used to control the select inputs on the multiplexers.

The Solution: Some of the sensors can be connected to multiplexer inputs and
some directly to microcontroller inputs. One possible solution that minimizes the num-
ber of multiplexers is to use two 8-to-1 multiplexers, each connected to a
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microcontroller input. The two multiplexers handle 16 sensors and require three micro-
controller outputs as selection inputs. Since there are 15 sensor outputs, the unused 16th
multiplexer input can be attached to 0. The number of microcontroller input/outputs
used is 3 + 2 = 5. Use of any of the other multiplexer types will increase the number
of microcontroller inputs used and decrease the number of microcontroller outputs
used. The increase in inputs, however, is always greater than the decrease in outputs. So
the initial solution is best in terms of microcontroller input/outputs used. |

Multiplexer-Based Combinational Circuits

Earlier in this section, we learned that a decoder combined with an m X 2 AND-OR
gate implements a multiplexer. The decoder in the multiplexer generates the min-
terms of the selection inputs. The AND-OR gate provides enabling circuits that de-
termine whether the minterms are “attached” to the OR gate with the information
inputs (/;) used as the enabling signals. If the /; input is a 1, then minterm m; is at-
tached to the OR gate, and, if the /; input is a 0, then minterm m; is replaced by a 0.
Value fixing applied to the I inputs provides a method for implementing a Boolean
function of n variables with a multiplexer having n selection inputs and 2" data in-
puts, one for each minterm. Further, an m-output function can be implemented by
using value fixing on a multiplexer with m-bit information vectors instead of the in-
dividual 7 bits, as illustrated by the next example.

EXAMPLE 3-15 Multiplexer Implementation of a Binary-Adder Bit

The values for S and C from the 1-bit binary adder truth table given in Table 3-4
can be generated by using value fixing on the information inputs of a multiplexer.

X —{S, Dual

Y—§, 8-to-1

Z—s, MUX

0—loo

0—loa

1—1lo

0—{Li1

1—hy

00—z

0—Lp Yo l—s
1—131 Y, l—c
1—1Lpo

00—l

0—lsp

1—1s1

0—1leo

1—161

1—I70

1—ln

[0 FIGURE 3-35
Implementing a 1-Bit Binary Adder with a Dual 8-to-1-Line Multiplexer
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Since there are three selection inputs and a total of eight minterms, we need a
dual 8-to-1-line multiplexer for implementing the two outputs, S and C. The im-
plementation based on the truth table is shown in Figure 3-35. Each pair of values,
suchaas (0,1) on (1, , 1, ),is taken directly from the corresponding row of the last
two truth-table columns. |

A more efficient method implements a Boolean function of n variables with
a multiplexer that has only n — 1 selection inputs. The first n — 1 variables of the
function are connected to the selection inputs of the multiplexer. The remaining
variable of the function is used for the information inputs. If the final variable is
Z,each data input of the multiplexer will be either Z, Z, 1, or 0. The function can
be implemented by attaching implementations of the four rudimentary functions
from Table 3-1 to the information inputs to the multiplexer. The next example
demonstrates this procedure.

EXAMPLE 3-16 Alternative Multiplexer Implementation of a Binary
Adder Bit

This function can be implemented with a dual 4-to—1-line multiplexer, as shown
in Figure 3-36. The design procedure can be illustrated by considering the sum S.
The two variables X and Y are applied to the selection lines in that order; X is
connected to the S, input, and Y is connected to the S, input. The values for the
data input lines are determined from the truth table of the function. When
(X Y) = 00, the output S is equal to Z, because S =0 when Z =0 and § =1
when Z = 1.This requires that the variable Z be applied to information input /.
The operation of the multiplexer is such that, when (X, Y) = 00, information in-
put I, has a path to the output that makes S equal to Z. In a similar fashion, we
can determine the required input to lines /,, 1,, and I, from the value of § when
(X Y) = 01,10, and 11, respectively. A similar approach can be used to determine
the values for I, 1,,,1,,,and [,,. ]

01> 711° 721°

X— S Dual

Y —15, 4-to-1

MUX

Z—lop

0 — IO 1

7 —] I1Yo Yo—S
Z P 1111 Yl —C
Z—1

Z—Ip,

Z—I39

I—r,

[0 FIGURE 3-36
Implementing a 1-Bit Binary Adder with a Dual 4-to—1-Line Multiplexer
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The general procedure for implementing any Boolean function of » variables
with a multiplexer with n — 1 selection inputs and 2"~ ! data inputs follows from the
preceding example. The Boolean function is first listed in a truth table. The first
n — 1variables in the table are applied to the selection inputs of the multiplexer. For
each combination of the selection variables, we evaluate the output as a function of
the last variable. This function can be 0, 1, the variable, or the complement of the
variable. These values are then applied to the appropriate data inputs. This process is
illustrated in the next example.

EXAMPLE 3-17 Multiplexer Implementation of 4-Variable Function

As a second example, consider the implementation of the following Boolean function:
F(A,B,C,D) = Xm(1,3,4,11,12,13, 14, 15)

This function is implemented with an 8 X 1 multiplexer as shown in Figure 3-37
To obtain a correct result, the variables in the truth table are connected to selection
inputs S,, S, and S in the order in which they appear in the table (i.e., such that A is
connected to §,, B is connected to S, and C'is connected to S, respectively). The val-
ues for the data inputs are determined from the truth table. The information line
number is determined from the binary combination of A, B, and C. For example,

ABCD|F
000
F=D
00011
8 X 1 MUX
0 0 1 oD
0011 |1 C So
01001 K 5
F=D A S,
010110
011 0 D 0
F=0
011110 1 F
Dm 2
100 0
F=0 O 3
10011/0 .
rtotojo o 5
101 1 6
L——7
11
00 |1 _,
110111
L U
111 1

OO0 FIGURE 3-37
Implementing a Four-Input Function with a Multiplexer
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when (A, B, C) = 101, the truth table shows that F = D, so the input variable D is
applied to information input /.. The binary constants 0 and 1 correspond to two fixed
signal values. Recall from Section 3-6 that, in a logic schematic, these constant values
are replaced by the ground and power symbols, as shown in Figure 3-7. |

The next example provides a comparison between implementing a combina-
tional circuit using logic gates, decoders, or multiplexers.

EXAMPLE 3-18 Design of a BCD-to-Seven-Segment Decoder

SeeciFication:  Digital readouts found in many consumer electronic products such
as alarm clocks often use light-emitting diodes (LEDs). Each digit of the readout
is formed from seven LED segments, each of which can be illuminated by a digital
signal. A BCD-to-seven-segment decoder is a combinational circuit that accepts
a decimal digit in BCD and generates the appropriate outputs for the segments of
the display for that decimal digit. The seven outputs of the decoder (a, b, c,d, e, f, g)
select the corresponding segments in the display, as shown in Figure 3-38(a). The nu-
meric designations chosen to represent the decimal digits are shown in Figure 3-38(b).
The BCD-to-seven-segment decoder has four inputs, A, B, C, and D, for the BCD
digit and seven outputs, a through g, for controlling the segments.

FormuLaTion:  The truth table of the combinational circuit is listed in Table 3-9.
On the basis of Figure 3-38(b), each BCD digit illuminates the proper segments
for the decimal display. For example, BCD 0011 corresponds to decimal 3, which
is displayed as segments a, b, c, d, and g. The truth table assumes that a logic 1
signal illuminates the segment and a logic O signal turns the segment off. Some
seven-segment displays operate in reverse fashion and are illuminated by a logic
0 signal. For these displays, the seven outputs must be complemented. The six bi-
nary combinations 1010 through 1111 have no meaning in BCD. In the previous
example, we assigned these combinations to don’t-care conditions. If we do the
same here, the design will most likely produce some arbitrary and meaningless
displays for the unused combinations. As long as these combinations do not oc-
cur, we can use that approach to reduce the complexity of the converter. A safer
choice, turning off all the segments when any one of the unused input combina-
tions occurs, avoids any spurious displays if any of the combinations occurs, but
increases the converter complexity. This choice can be accomplished by assigning
all Os to minterms 10 through 15.

< N i [N | gy [
o[2]e LOCITa0 100
d

(a) Segment designation (b) Numeric designation for display

[0 FIGURE 3-38
Seven-Segment Display
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[0 TABLE 3-9
Truth Table for BCD-to-Seven-Segment
Decoder
BCD Input Seven-Segment Decoder

A B C D a b ¢c d e f g
0 0 0 O 11 1 1 1 1 0
0 0 0 1 0o 1 1 0 0 0 O
0 0 1 o0 11 0 1 1 0 1
0 0o 1 1 1 1 1 1 0 0 1
0 1 0 O 0 1 1 0o 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 o0 1 0 1 1 1 1 1
0 1 1 1 1 1.1 0 0 0 O
1 0 0 O 11 1 1 1 1 1
1 0 1 1 1 1 1 0 1 1
All other inputs 0o 0 0 0 0 0 O

OpmimizaTion:  For implementing the function using logic gates, the information
from the truth table can be transferred into seven K-maps, from which the initial
optimized output functions can be derived. The plotting of the seven functions in
map form is left as an exercise. One possible way of simplifying the seven functions
results in the following Boolean functions:

a=AC+ ABD + BCD + ABC
b=AB+ ACD + ACD + ABC
c=AB+ AD + BCD + ABC

d=ACD + ABC+ BCD + ABC + ABCD

f=ABC+ ACD + ABD + ABC
g=ACD + ABC + ABC + ABC

Independent implementation of these seven functions requires 27 AND gates and 7
OR gates. However, by sharing the six product terms common to the different output
expressions, the number of AND gates can be reduced to 14 along with a substantial
savings in gate-input cost. For example, the term B C D occurs in a, ¢, d, and e. The
output of the AND gate that implements this product term goes directly to the inputs
of the OR gates in all four functions. For this function, we stop optimization with the
two-level circuit and shared AND gates, realizing that it might be possible to reduce
the gate-input cost even further by applying multiple-level optimization.

In general, the total number of gates can be reduced in a multiple-output com-
binational circuit by using common terms of the output functions. The maps of the
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output functions may help us find the common terms by finding identical implicants
from two or more maps. Some of the common terms may not be prime implicants of
the individual functions. The designer must be inventive and combine squares in the
maps in such a way as to create common terms. This can be done more formally by
using a procedure for simplifying multiple-output functions. The prime implicants
are defined not only for each individual function, but also for all possible combina-
tions of the output functions. These prime implicants are formed by using the AND
operator on every possible nonempty subset of the output functions and finding the
prime implicants of each of the results. Using this entire set of prime implicants, we
can employ a formal selection process to find the optimum two-level multiple-out-
put circuit. Such a procedure is implemented in various forms in logic optimization
software and is used to obtain the equations.

The circuit can also be implemented using a decoder or multiplexers rather
than only logic gates. One 4-t0-16 decoder along with seven OR gates (one for
each function for the segments on the display) is all that is required —however, in
practice, OR gates with more than four inputs are not practical, so more gates
would be required. In sum-of-minterms form, the inputs to each of the seven OR
gates would be:

a(A,B,C,D) = Sm(0,2,3,5,6,7,8,9)
b(A,B,C,D) = 3m(0,1,2,3,4,7,8,9)
¢(A,B,C,D) = 3m(0,1,3,4,5,6,7,8,9)
d(A,B,C,D) = 3m(0 2,3,5,6,8,9)
e(A, B, C,D) = Sm(0,2,6,8)

f(A, B, C,D) = Sm(0,4,5,6,8,9)
g(A,B,C,D) = 3m(2,3,4,5,6,8,9)

For a multiplexer implementation, seven 8-to-1 multiplexers are required, one
for each function for the segments on the display. Alternatively, a 7-bit wide 8-to-1
multiplexer could be used. With the select inputs S, connected to A, S| connected to
B,and S connected to C, then the data inputs to the seven multiplexers would be as
shown in Table 3-10. |

3-8 ITERATIVE COMBINATIONAL CIRCUITS

The remainder of this chapter focuses on functional blocks for arithmetic. The
arithmetic functional blocks are typically designed to operate on binary input
vectors and produce binary output vectors. Further, the function implemented of-
ten requires that the same subfunction be applied to each bit position. Thus, a
functional block can be designed for the subfunction and then used repetitively
for each bit position of the overall arithmetic block being designed. There will of-
ten be one or more connections to pass values between adjacent bit positions.
These internal variables are inputs or outputs of the subfunctions, but are not
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[0 TABLE 3-10

Inputs to Multiplexers to Implement Seven-Segment-Display decoder

Select

Inputs Multiplexer Data Inputs for Each Output Function

$>8:S a b c d e f g
000 D 1 1 D D D 0
001 1 1 D 1 D 0 1
010 D D 1 D 0 1 1
011 1 D 1 D D D D
100 1 1 1 1 D 1 1
101 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0

accessible outside the overall arithmetic block. The subfunction blocks are re-
ferred to as cells and the overall implementation is an array of cells. The cells in
the array are often, but not always, identical. Due to the repetitive nature of the
circuit and the association of a vector index with each of the circuit cells, the over-
all functional block is referred to as an iterative array. Iterative arrays, a special
case of hierarchical circuits, are useful in handling vectors of bits—for example, a
circuit that adds two 32-bit binary integers. At a minimum, such a circuit has 64
inputs and 32 outputs. As a consequence, beginning with truth tables and writing
equations for the entire circuit is out of the question. Since iterative circuits are
based on repetitive cells, the design process is considerably simplified by a basic
structure that guides the design.

A block diagram for an iterative circuit that operates on two n-input vectors
and produces an n-output vector is shown in Figure 3-39. In this case, there are two
lateral connections between each pair of cells in the array, one from left to right and
the other from right to left. Also, optional connections, indicated by dashed lines,
exist at the right and left ends of the array. An arbitrary array employs as many lat-
eral connections as needed for a particular design. The definition of the functions
associated with such connections is very important in the design of the array and its

Anlenfl Al Bl AO BO
X, <—- <X"—71 <X—2 X < — — X,
n Celln — 1| Y., e o Y, Cell 1 Y, Cell 0 0
Y,——> - — -—> Y,
Cnfl Cl CO

[0 FIGURE 3-39
Block Diagram of an Iterative Circuit
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cell. In particular, the number of connections used and their functions can affect
both the cost and speed of an iterative circuit.

In the next section, we will define cells for performing addition in individual bit
positions and then define a binary adder as an iterative array of cells.

3-9 BINARY ADDERS

An arithmetic circuit is a combinational circuit that performs arithmetic operations
such as addition, subtraction, multiplication, and division with binary numbers or with
decimal numbers in a binary code. We will develop arithmetic circuits by means of hi-
erarchical, iterative design. We begin at the lowest level by finding a circuit that per-
forms the addition of two binary digits. This simple addition consists of four possible
elementary operations: 0 + 0 = 0,0 + 1 =1,1 + 0 = 1,and 1 + 1 = 10 The first
three operations produce a sum requiring a one-bit representation, but when both the
augend and addend are equal to 1, the binary sum requires two bits. Because of this
case, the result is always represented by two bits, the carry and the sum. The carry ob-
tained from the addition of two bits is added to the next-higher-order pair of signifi-
cant bits. A combinational circuit that performs the addition of two bits is called a half
adder. One that performs the addition of three bits (two significant bits and a previous
carry) is called a full adder. The names of the circuits stem from the fact that two half
adders can be employed to implement a full adder. The half adder and the full adder
are basic arithmetic blocks with which other arithmetic circuits are designed.

Half Adder

A half adder is an arithmetic circuit that generates the sum of two binary digits. The
circuit has two inputs and two outputs. The input variables are the augend and ad-
dend bits to be added, and the output variables produce the sum and carry. We assign
the symbols X and Y to the two inputs and S (for “sum”) and C (for “carry”) to the
outputs. The truth table for the half adder is listed in Table 3-11. The C outputis 1 only
when both inputs are 1. The S output represents the least significant bit of the sum.
The Boolean functions for the two outputs, easily obtained from the truth table, are

S=XY+XY=X®Y

C =XY
[0 TABLE 3-11
Truth Table of Half Adder
Inputs Outputs
X Y cC s

__-0 0
_o = O
o o O
O = O
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[0 FIGURE 3-40
Logic Diagram of Half Adder

The half adder can be implemented with one exclusive-OR gate and one AND
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted
by X and Y, represent the two significant bits to be added. The third input, Z, rep-
resents the carry from the previous lower significant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value
of the bit of the sum, and the binary variable C gives the output carry. The truth table
of the full adder is listed in Table 3-12. The values for the outputs are determined
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41.
The simplified sum-of-product functions for the two outputs are

S=XYZ+ XYZ+ XYZ+ XYZ
C=XY+XZ+YZ

The two-level implementation requires seven AND gates and two OR gates.
However, the map for output S is recognized as an odd function, as discussed in

[J TABLE 3-12
Truth Table of Full Adder

Inputs Outputs
XY

N

cC s

— === O O OO
—_—_ 0 Ok ek OoOOo
O R OFRO=O
— == O = OO O
OO RR O =O
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[0 FIGURE 3-41
Maps for Full Adder

Section 2-6. Furthermore, the C output function can be manipulated to include the
exclusive-OR of X and Y. The Boolean functions for the full adder in terms of exclu-
sive-OR operations can then be expressed as

S=(X®YV®Z
C=XY+Z(X®DY)

The logic diagram for this multiple-level implementation is shown in Figure 3-42.
It consists of two half adders and an OR gate.

Binary Ripple Carry Adder

A parallel binary adder is a digital circuit that produces the arithmetic sum of two
binary numbers using only combinational logic. The parallel adder uses » full adders
in parallel, with all input bits applied simultaneously to produce the sum.

The full adders are connected in cascade, with the carry output from one full
adder connected to the carry input of the next full adder. Since a 1 carry may appear
near the least significant bit of the adder and yet propagate through many full
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[0 FIGURE 3-42
Logic Diagram of Full Adder
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adders to the most significant bit, just as a wave ripples outward from a pebble
dropped in a pond, the parallel adder is referred to as a ripple carry adder. Figure
3-43 shows the interconnection of four full-adder blocks to form a 4-bit ripple carry
adder. The augend bits of A and the addend bits of B are designated by subscripts
in increasing order from right to left, with subscript 0 denoting the least significant
bit. The carries are connected in a chain through the full adders. The input carry to
the parallel adder is C, and the output carry is C,. An n-bit ripple carry adder
requires n full adders, with each output carry connected to the input carry of the
next-higher-order full adder. For example, consider the two binary numbers
A = 1011 and B = 0011. Their sum, § = 1110, is formed with a 4-bit ripple carry
adder as follows:

BAA
Input carry 0110
Augend A 1011
Addend B 0011
Sum S 1110
Output carry 0011
—

The input carry in the least significant position is 0. Each full adder receives the cor-
responding bits of A and B and the input carry, and generates the sum bit for § and
the output carry. The output carry in each position is the input carry of the next-high-
er-order position, as indicated by the blue lines.

The 4-bit adder is a typical example of a digital component that can be used as
a building block. It can be used in many applications involving arithmetic operations.
Observe that the design of this circuit by the usual method would require a truth
table with 512 entries, since there are nine inputs to the circuit. By cascading the four
instances of the known full adders, it is possible to obtain a simple and straightfor-
ward implementation without directly solving this larger problem. This is an exam-
ple of the power of iterative circuits and circuit reuse in design.
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3-10 BINARY SUBTRACTION

In Chapter 1, we briefly examined the subtraction of unsigned binary numbers.
Although beginning texts cover only signed-number addition and subtraction, to the
complete exclusion of the unsigned alternative, unsigned-number arithmetic plays an im-
portant role in computation and computer hardware design. It is used in floating-point
units, in signed-magnitude addition and subtraction algorithms, and in extending the
precision of fixed-point numbers. For these reasons, we will treat unsigned-number
addition and subtraction here. We also, however, choose to treat it first so that we can
clearly justify,in terms of hardware cost, an approach that otherwise appears bizarre and
often is accepted on faith, namely, the use of complement representations in arithmetic.

In Section 1-3, subtraction is performed by comparing the subtrahend with the
minuend and subtracting the smaller from the larger. The use of a method containing
this comparison operation results in inefficient and costly circuitry. As an alternative,
we can simply subtract the subtrahend from the minuend. Using the same numbers
as in a subtraction example from Section 1-3, we have

Borrows into: 1100
Minuend: 10011
Subtrahend: —1100110
Difference: 10101

Correct Difference: — 01011

If no borrow occurs into the most significant position, then we know that the
subtrahend is not larger than the minuend and that the result is positive and correct.
If a borrow does occur into the most significant position, as indicated in blue, then
we know that the subtrahend is larger than the minuend. The result must then be
negative, and so we need to correct its magnitude. We can do this by examining the
result of the calculation when a borrow occurs:

M- N+ 2"

Note that the added 2" represents the value of the borrow into the most signifi-
cant position. Instead of this result, the desired magnitude is N — M. This can be
obtained by subtracting the preceding formula from 2

2"—-M-N+2"=N-M

In the previous example, 100000 — 10101 = 01011, which is the correct magnitude.
In general, the subtraction of two n-digit numbers, M — N, in base 2 can be
done as follows:

1. Subtract the subtrahend N from the minuend M.

2. Ifno end borrow occurs,then M = N, and the result is nonnegative and correct.

3. If an end borrow occurs, then N > M, and the difference, M — N + 2", is
subtracted from 27, and a minus sign is appended to the result.



162 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Subtraction of a binary number from 2" to obtain an n-digit result is called tak-
ing the 2s complement of the number. So in step 3, we are taking the 2s complement
of the difference M — N + 2". Use of the 2s complement in subtraction is illustrated
by the following example.

EXAMPLE 3-19 Unsigned Binary Subtraction by 2s Complement Subtract
Perform the binary subtraction 01100100 — 10010110. We have

Borrows into: 10011110
Minuend: 01100100
Subtrahend: —10010110
Initial Result: 11001110

The end borrow of 1 implies correction:

28 100000000
—Initial Result: —11001110
Final Result: —00110010 [ |

To perform subtraction using this method requires a subtractor for the initial sub-
traction. In addition, when necessary, either the subtractor must be used a second time
to perform the correction, or a separate 2s complementer circuit must be provided. So,
thus far, we require a subtractor, an adder, and possibly a 2s complementer to perform
both addition and subtraction. The block diagram for a 4-bit adder—subtractor using
these functional blocks is shown in Figure 3-44. The inputs are applied to both the adder
and the subtractor, so both operations are performed in parallel. If an end borrow value
of 1 occurs in the subtraction, then the selective 2s complementer receives a value of 1
on its complement input. This circuit then takes the 2s complement of the output of the
subtractor. If the end borrow has value of 0, the selective 2s complementer passes the
output of the subtractor through unchanged. If subtraction is the operation, then a 1 is
applied to S of the multiplexer that selects the output of the complementer. If addition
is the operation, then a 0 is applied to S, thereby selecting the output of the adder.

As we will see, this circuit is more complex than necessary. To reduce the amount
of hardware, we would like to share logic between the adder and the subtractor. This
can also be done using the notion of the complement. So before considering the com-
bined adder-subtractor further, we will take a more careful look at complements.

Complements

There are two types of complements for each base-r system: the radix complement,
which we saw earlier for base 2, and the diminished radix complement. The first is
referred to as the r’s complement and the second as the (r — 1)’s complement. When
the value of the base r is substituted in the names, the two types are referred to as the
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2s and 1s complements for binary numbers and the 10s and 9s complements for
decimal numbers, respectively. Since our interest for the present is in binary numbers
and operations, we will deal with only 1s and 2s complements.

Given a number N in binary having » digits, the Is complement of N is defined as
(2" = 1) — N.2"is represented by a binary number that consists of a 1 followed by n
0s. 2" — 1 is a binary number represented by n 1s. For example, if n = 4, we have
2% = (10000), and 2* — 1 = (1111),. Thus, the 1s complement of a binary number is
obtained by subtracting each digit from 1. When subtracting binary digits from 1, we can
have either 1 — 0 = 1or1 — 1 = 0, which causes the original bit to change from 0 to
1 or from 1 to 0, respectively. Therefore, the 1s complement of a binary number is
formed by changing all 1s to Os and all Os to 1s—that is, applying the NOT or comple-
ment operation to each of the bits. Following are two numerical examples:

The 1s complement of 1011001 is 0100110.
The 1s complement of 0001111 is 1110000.

In similar fashion, the 9s complement of a decimal number, the 7s complement
of an octal number, and the 15s complement of a hexadecimal number are obtained
by subtracting each digit from 9,7 and F (decimal 15), respectively.

Given an n-digit number N in binary, the 2s complement of N is defined as
2" — Nfor N # 0andO0for N = 0.The reason for the special case of N = 0 is that
the result must have n bits, and subtraction of 0 from 2" gives an (n + 1)-bit result,
100 ... 0. This special case is achieved by using only an n-bit subtractor or otherwise
dropping the 1 in the extra position. Comparing with the 1s complement, we note
that the 2s complement can be obtained by adding 1 to the 1s complement, since
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2" — N = {[(2" — 1) — N] + 1}. For example, the 2s complement of binary 101100 is
010011 + 1 = 010100 and is obtained by adding 1 to the 1s complement value.
Again, for N = 0, the result of this addition is 0, achieved by ignoring the carry out
of the most significant position of the addition. These concepts hold for other bases
as well. As we will see later, they are very useful in simplifying 2s complement and
subtraction hardware.

Also, the 2s complement can be formed by leaving all least significant Os and
the first 1 unchanged and then replacing 1s with Os and Os with 1s in all other higher
significant bits. Thus, the 2s complement of 1101100 is 0010100 and is obtained by
leaving the two low-order Os and the first 1 unchanged and then replacing 1s with Os
and Os with 1s in the other four most significant bits. In other bases, the first nonzero
digit is subtracted from the base r, and the remaining digits to the left are replaced
with » — 1 minus their values.

It is also worth mentioning that the complement of the complement restores
the number to its original value. To see this, note that the 2s complement of N is
2" — N, and the complement of the complement is 2" — (2" — N) = N, giving back
the original number.

Subtraction Using 2s Complement

Earlier, we expressed a desire to simplify hardware by sharing adder and subtrac-
tor logic. Armed with complements, we are prepared to define a binary subtrac-
tion procedure that uses addition and the corresponding complement logic. The
subtraction of two n-digit unsigned numbers, M — N, in binary can be done as
follows:

1. Add the 2s complement of the subtrahend N to the minuend M. This performs
M+ 2" - N)=M—- N + 2"

2. If M = N, the sum produces an end carry, 2". Discard the end carry, leaving
result M — N.

3. If M <N, the sum does not produce an end carry, since it is equal
to 2" — (N — M), the 2s complement of N — M. Perform a correction, taking
the 2s complement of the sum and placing a minus sign in front to obtain the
result — (N — M).

The examples that follow further illustrate the foregoing procedure. Note that,
although we are dealing with unsigned numbers, there is no way to get an unsigned
result for the case in step 3. When working with paper and pencil, we recognize, by
the absence of the end carry, that the answer must be changed to a negative number.
If the minus sign for the result is to be preserved, it must be stored separately from
the corrected n-bit result.

EXAMPLE 3-20 Unsigned Binary Subtraction by 2s Complement Addition

Given the two binary numbers X = 1010100 and Y = 1000011, perform the sub-
traction X — Y and Y — X using 2s complement operations. We have
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X = 1010100

2scomplementof Y = 0111101
Sum = 10010001

Discard end carry2’ = —10000000

Answer: X — Y = 0010001

Y = 1000011

2scomplementof X = 0101100

Sum = 1101111

There is no end carry.
Answer: Y — X = — (2scomplementof1101111) = —0010001. |

While subtraction of unsigned numbers also can be done by means of the 1s
complement, it is little used in modern designs, so will not be covered here.

3-11 BINARY ADDER-SUBTRACTORS

Using the 2s complement, we have eliminated the subtraction operation and need
only the complementer and an adder. When performing a subtraction we comple-
ment the subtrahend N, and when performing an addition we do not complement .
These operations can be accomplished by using a selective complementer and adder
interconnected to form an adder—subtractor. We have used 2s complement, since it is
most prevalent in modern systems. The 2s complement can be obtained by taking the
1s complement and adding 1 to the least significant bit. The 1s complement can be
implemented easily with inverter circuits, and we can add 1 to the sum by making the
input carry of the parallel adder equal to 1. Thus, by using 1s complement and an un-
used adder input, the 2s complement is obtained inexpensively. In 2s complement
subtraction, as a correction step after adding, we complement the result and append
a minus sign if an end carry does not occur. The correction operation is performed by
using either the adder—subtractor a second time with M = 0 or a selective comple-
menter as in Figure 3-44.

The circuit for subtracting A — B consists of a parallel adder as shown in
Figure 3-43, with inverters placed between each B terminal and the corresponding
full-adder input. The input carry C; must be equal to 1. The operation that is per-
formed becomes A plus the 1s complement of B plus 1. This is equal to A plus the 2s
complement of B. For unsigned numbers, it gives A — Bif A = B or the 2s comple-
mentof B — Aif A < B.

The addition and subtraction operations can be combined into one circuit with
one common binary adder. This is done by including an exclusive-OR gate with each
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full adder. A 4-bit adder—subtractor circuit is shown in Figure 3-45. Input S controls
the operation. When S = 0 the circuit is an adder, and when S = 1 the circuit
becomes a subtractor. Each exclusive-OR gate receives input S and one of the inputs
of B, B;, When § = 0, we have B; @ 0. If the full adders receive the value of B, and
the input carry is 0, the circuit performs A plus B.When S = 1,we have B, ® 1 = B;
and C, = 1. In this case, the circuit performs the operation A plus the 2s comple-
ment of B.

Signed Binary Numbers

In the previous section, we dealt with the addition and subtraction of unsigned num-
bers. We will now extend this approach to signed numbers, including a further use of
complements that eliminates the correction step.

Positive integers and the number zero can be represented as unsigned num-
bers. To represent negative integers, we need a notation for negative values. In ordi-
nary arithmetic, a negative number is indicated by a minus sign and a positive
number by a plus sign. Because of hardware limitations, computers must represent
everything with 1s and Os, including the sign of a number. As a consequence, it is cus-
tomary to represent the sign with a bit placed in the most significant position of an
n-bit number. The convention is to make the sign bit O for positive numbers and 1 for
negative numbers.

Itis important to realize that both signed and unsigned binary numbers consist
of a string of bits when represented in a computer. The user determines whether the
number is signed or unsigned. If the binary number is signed, then the leftmost bit
represents the sign and the rest of the bits represent the number. If the binary num-
ber is assumed to be unsigned, then the leftmost bit is the most significant bit of the
number. For example, the string of bits 01001 can be considered as 9 (unsigned
binary) or +9 (signed binary), because the leftmost bit is 0. Similarly, the string of
bits 11001 represents the binary equivalent of 25 when considered as an unsigned
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number or —9 when considered as a signed number. The latter is because the 1 in the
leftmost position designates a minus sign and the remaining four bits represent
binary 9. Usually, there is no confusion in identifying the bits because the type of
number representation is known in advance. The representation of signed numbers
just discussed is referred to as the signed-magnitude system. In this system, the num-
ber consists of a magnitude and a symbol (+ or —) or a bit (0 or 1) indicating the
sign. This is the representation of signed numbers used in ordinary arithmetic.

In implementing signed-magnitude addition and subtraction for n-bit num-
bers, the single sign bit in the leftmost position and the » — 1 magnitude bits are
processed separately. The magnitude bits are processed as unsigned binary numbers.
Thus, subtraction involves the correction step. To avoid this step, we use a different
system for representing negative numbers, referred to as a signed-complement
system. In this system, a negative number is represented by its complement. While
the signed-magnitude system negates a number by changing its sign, the signed-
complement system negates a number by taking its complement. Since positive
numbers always start with 0 (representing a plus sign) in the leftmost position, their
complements will always start with a 1, indicating a negative number. The
signed-complement system can use either the 1s or the 2s complement, but the latter
is the most common. As an example, consider the number 9, represented in binary
with eight bits. +9 is represented with a sign bit of 0 in the leftmost position, followed
by the binary equivalent of 9, to give 00001001. Note that all eight bits must have a
value, and therefore, Os are inserted between the sign bit and the first 1. Although
there is only one way to represent +9, we have two different ways to represent —9
using eight bits:

In signed-magnitude representation: 10001001
In signed 2s complement representation: ~ 11110111

In signed magnitude, —9 is obtained from +9 by changing the sign bit in the
leftmost position from 0 to 1. The signed 2s complement representation of —9 is
obtained by taking the 2s complement of the positive number, including the 0 sign
bit.

Table 3-13 lists all possible 4-bit signed binary numbers in two representations.
The equivalent decimal number is also shown. Note that the positive numbers in
both representations are identical and have 0 in the leftmost position. The signed 2s
complement system has only one representation for 0, which is always positive. The
signed-magnitude system has a positive 0 and a negative 0, which is something not
encountered in ordinary arithmetic. Note that both negative numbers have a 1 in the
leftmost bit position; this is the way we distinguish them from positive numbers. With
four bits, we can represent 16 binary numbers. In the signed-magnitude representa-
tion, there are seven positive numbers and seven negative numbers, and two signed
zeros. In the 2s complement representation, there are seven positive numbers, one
zero, and eight negative numbers.

The signed-magnitude system is used in ordinary arithmetic, but is awkward
when employed in computer arithmetic due to the separate handling of the sign and
the correction step required for subtraction. Therefore, the signed complement is
normally used. The following discussion of signed binary arithmetic deals exclusively
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[0 TABLE 3-13
Signed Binary Numbers
Decimal Signed 2s Complement Signed Magnitude

+7 0111 0111
+6 0110 0110
+5 0101 0101
+4 0100 0100
+3 0011 0011
+2 0010 0010
+1 0001 0001
+0 0000 0000
-0 — 1000
-1 1111 1001
-2 1110 1010
-3 1101 1011
-4 1100 1100
-5 1011 1101
-6 1010 1110
-7 1001 1111
-8 1000 —

with the signed 2s complement representation of negative numbers, because it pre-
vails in actual use.

Signed Binary Addition and Subtraction

The addition of two numbers, M + N, in the signed-magnitude system follows the
rules of ordinary arithmetic: If the signs are the same, we add the two magnitudes
and give the sum the sign of M. If the signs are different, we subtract the magnitude
of N from the magnitude of M. The absence or presence of an end borrow then de-
termines the sign of the result, based on the sign of M, and determines whether or
not a 2s complement correction is performed. For example, since the signs are differ-
ent, (00011001) + (10100101) causes 0100101 to be subtracted from 0011001. The
result is 1110100, and an end borrow of 1 occurs. The end borrow indicates that the
magnitude of M is smaller than that of N. So the sign of the result is opposite to that
of M and is therefore a minus. The end borrow indicates that the magnitude of the
result, 1110100, must be corrected by taking its 2s complement. Combining the sign
and the corrected magnitude of the result, we obtain 1 0001100.

In contrast to this signed-magnitude case, the rule for adding numbers in the
signed 2s complement system does not require comparison or subtraction, but only
addition. The procedure is simple and can be stated as follows for binary numbers:

The addition of two signed binary numbers with negative numbers repre-
sented in signed 2s complement form is obtained from the addition of the
two numbers, including their sign bits. A carry out of the sign bit position is
discarded.
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Numerical examples of signed binary addition are given in Example 3-21. Note
that negative numbers will already be in 2s complement form and that the sum
obtained after the addition, if negative, is left in that same form.

EXAMPLE 3-21 Signed Binary Addition Using 2s Complement

+6 00000110 —6 11111010 +6 00000110 —6 11111010
+13 00001101 +13 00001101 —13 11110011 —13 11110011
+19 00010011 +7 00000111 -7 11111001 —19 11101101

In each of the four cases, the operation performed is addition, including the sign bits.
Any carry out of the sign bit position is discarded, and negative results are automati-
cally in 2s complement form. |

The complement form for representing negative numbers is unfamiliar to peo-
ple accustomed to the signed-magnitude system. To determine the value of a nega-
tive number in signed 2s complement, it is necessary to convert the number to a
positive number in order to put it in a more familiar form. For example, the signed
binary number 11111001 is negative, because the leftmost bit is 1. Its 2s complement
is 00000111, which is the binary equivalent of +7. We therefore recognize the origi-
nal number to be equal to —7.

The subtraction of two signed binary numbers when negative numbers are in
2s complement form is very simple and can be stated as follows:

Take the 2s complement of the subtrahend (including the sign bit) and add it
to the minuend (including the sign bit). A carry out of the sign bit position is
discarded.

This procedure stems from the fact that a subtraction operation can be changed
to an addition operation if the sign of the subtrahend is changed. That is,

(xA) — (+B) = (£ A) + (—B)
(xA) — (=B) = (£ A) + (+B)

But changing a positive number to a negative number is easily done by taking
its 2s complement. The reverse is also true, because the complement of a negative
number that is already in complement form produces the corresponding positive
number. Numerical examples are shown in Example 3-22.

EXAMPLE 3-22 Signed Binary Subtraction Using 2s Complement

-6 11111010 11111010 +6 00000110 00000110
—(—13) - 11110011 + 00001101 —(-13) — 11110011 + 00001101

+7 00000111 + 19 00010011

The end carry is discarded. |
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It is worth noting that binary numbers in the signed-complement system are
added and subtracted by the same basic addition and subtraction rules as are
unsigned numbers. Therefore, computers need only one common hardware circuit to
handle both types of arithmetic. The user or programmer must interpret the results
of such addition or subtraction differently, depending on whether it is assumed that
the numbers are signed or unsigned. Thus, the same adder—subtractor designed for
unsigned numbers can be used for signed numbers. If the signed numbers are in 2s
complement representation, then the circuit in Figure 3-45 can be used.

EXAMPLE 3-23 Electronic Scale Feature

Often goods or materials must be placed in a container to be weighed. These three
definitions apply to the use of a container in weighing:

Gross Weight— Weight of the container plus its contents.
Tare Weight— Weight of the empty container.
Net Weight— Weight of the contents only.

The Problem: For a particular electronic scale, a feature that permits the net
weight to be displayed is activated by the following sequence of actions:

1) Place the empty container on the scale.

2) Press the TARE button to indicate that the current weight is the weight of the
empty container.

3) Add the contents to be weighed to the container (measure the gross weight).

4) Read the net weight from the scale indicator.

Assuming that the container weight (tare weight) is stored by the scale,

(a) What arithmetic logic is required?
(b) How many bits are required for the operands, assuming the gross weight
capacity of the scale is 2200 grams with one gram as the smallest unit?

The Solution: (a) The scale is measuring the gross weight. The displayed result
is the net weight. So a subtractor is needed to form:

NetWeight = Gross Weight — (stored) Tare Weight

Since the container plus its contents always weighs at least as much as the con-
tainer only, for this application the result must always be nonnegative. If, on the
other hand, the user makes use of this feature to find the differences in the weight of
two objects, then a negative result is possible. In the design of the actual scale, this
negative result is properly taken into account in the display logic.

(b) Assuming that the weights and the subtraction are in binary, 12 bits are
required to represent 2200 grams. If the weights and the subtraction are represented
in BCD,then2 + 3 X 4 = 14 bits are required. |

Overflow

To obtain a correct answer when adding and subtracting, we must ensure that the
result has a sufficient number of bits to accommodate the sum. If we start with
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two n-bit numbers, and the sum occupies n + 1 bits, we say that an overflow
occurs. This is true for binary or decimal numbers, whether signed or unsigned.
When one performs addition with paper and pencil, an overflow is not a problem,
since we are not limited by the width of the page. We just add another 0 to a posi-
tive number and another 1 to a negative number, in the most significant position,
to extend them to n + 1 bits and then perform the addition. Overflow is a prob-
lem in computers because the number of bits that hold a number is fixed, and a
result that exceeds the number of bits cannot be accommodated. For this reason,
computers detect and can signal the occurrence of an overflow. The overflow
condition may be handled automatically by interrupting the execution of the pro-
gram and taking special action. An alternative is to monitor for overflow condi-
tions using software.

The detection of an overflow after the addition of two binary numbers depends
on whether the numbers are considered to be signed or unsigned. When two
unsigned numbers are added, an overflow is detected from the end carry out of the
most significant position. In unsigned subtraction, the magnitude of the result is
always equal to or smaller than the larger of the original numbers, making overflow
impossible. In the case of signed 2s complement numbers, the most significant bit
always represents the sign. When two signed numbers are added, the sign bit is
treated as a part of the number, and an end carry of 1 does not necessarily indicate
an overflow.

With signed numbers, an overflow cannot occur for an addition if one number
is positive and the other is negative: Adding a positive number to a negative number
produces a result whose magnitude is equal to or smaller than the larger of the origi-
nal numbers. An overflow may occur if the two numbers added are both positive or
both negative. To see how this can happen, consider the following 2s complement
example: Two signed numbers, +70 and +80, are stored in two 8-bit registers. The
range of binary numbers, expressed in decimal, that each register can accommodate
is from +127 to —128. Since the sum of the two stored numbers is +150, it exceeds
the capacity of an 8-bit register. This is also true for —70 and —80. These two addi-
tions, together with the two most significant carry bit values, are as follows:

Carries: 01 Carries: 10
+70 01000110 =70 10111010
+80 01010000 —80 10110000
+150 10010110 —-150 01101010

Note that the 8-bit result that should have been positive has a negative sign bit and
that the 8-bit result that should have been negative has a positive sign bit. If, how-
ever, the carry out of the sign bit position is taken as the sign bit of the result, then
the 9-bit answer so obtained will be correct. But since there is no position in the
result for the ninth bit, we say that an overflow has occurred.

An overflow condition can be detected by observing the carry into the sign bit
position and the carry out of the sign bit position. If these two carries are not equal,
an overflow has occurred. This is indicated in the 2s complement example just com-
pleted, where the two carries are explicitly shown. If the two carries are applied to an
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exclusive-OR gate, an overflow is detected when the output of the gate is equal to 1.
For this method to work correctly for 2s complement, it is necessary either to apply
the 1s complement of the subtrahend to the adder and add 1 or to have overflow
detection on the circuit that forms the 2s complement as well as on the adder. This
condition is due to overflow when complementing the maximum negative number.

Simple logic that provides overflow detection is shown in Figure 3-46. If the
numbers are considered unsigned, then the C output being equal to 1 detects a carry
(an overflow) for an addition and indicates that no correction step is required for a
subtraction. C being equal to 0 detects no carry (no overflow) for an addition and
indicates that a correction step is required for a subtraction.

If the numbers are considered signed, then the output V is used to detect an
overflow. If V' = 0 after a signed addition or subtraction, it indicates that no over-
flow has occurred and the result is correct. If V' = 1, then the result of the operation
contains n + 1 bits, but only the rightmost n of those bits fit in the n-bit result, so an
overflow has occurred. The (n + 1)th bit is the actual sign, but it cannot occupy the
sign bit position in the result.

‘ /2" MuLTipLIERs AND DivibErs A supplement that discusses the design of multipliers and
) " dividers is available on the Companion Website for the text.

=

HDL Models of Adders

Thus far, all of the HDL descriptions used have contained only a single entity (VHDL)
or module (Verilog). Descriptions that represent circuits using hierarchies have multi-
ple entities, one for each distinct element of the hierarchy, as shown in the next example.

EXAMPLE 3-24 Hierarchical VHDL for a 4-Bit Ripple Carry Adder

The example in Figures 3-47 and 3-48 uses three entities to build a hierarchical de-
scription of a 4-bit ripple carry adder. The style used for the architectures will be a
mix of structural and dataflow description. The three entities are a half adder, a full
adder that uses half adders, and the 4-bit adder itself. The architecture of half_
adder consists of two dataflow assignments, one for s and one for c.The architecture
of full adder uses half_ adder as a component. In addition, three internal signals,
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-- 4-bit Adder: Hierarchical Dataflow/Structural
-- (See Figures 3-42 and 3-43 for logic diagrams)
library ieee;
use ieee.std_logic_1164.all;
entity half adder is

port (x, y : in std_logic;

s, ¢ : out std_logic);

end half_adder;

architecture dataflow_3 of half_adder is
begin
s <= X Xor y;
c <= x and y;
end dataflow_3;

library ieee;
use ieee.std_logic_1164.all;
entity full adder is
port (x, y, z : in std_logic;
s, ¢ : out std_logic);
end full_adder;

architecture struc_dataflow_3 of full adder is
component half adder
port (x, y : in std_logic;
s, ¢ : out std_logic);
end component;
signal hs, hc, tc: std_logic;
begin
HAl: half_adder
port map (x, y, hs, hc);
HA2: half_adder
port map (hs, z, s, tc);
c <= tc or hc;
end struc_dataflow_3;

library ieee;

use ieee.std_logic_1164.all;

entity adder_4 is

port (B, A : in std_logic_vector (3 downto 0);

CO : in std_logic;
S : out std_logic_vector (3 downto 0);
C4: out std_logic);

end adder_4;

OO0 FIGURE 3-47
Hierarchical Structural/Dataflow Description of 4-Bit Full Adder
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architecture structural_4 of adder_4 is
component full_ adder
port(x, y, z : in std_logic;
s, c: out std_logic);
end component;
signal C: std_logic_vector (4 downto O0);
begin
BitO: full_adder
port map (B(0), A(0), C(0), sS(0), C(1));
Bitl: full_adder
port map (B(l), A(l), C(1), S(1), C(2));
Bit2: full_adder
port map (B(2), A(2), C(2), S(2), C(3));
Bit3: full_adder
port map (B(3), A(3), C(3), S(3), C(4));
C(0) <= CO;
C4 <= C(4);
end structural 4;

[0 FIGURE 3-48
Hierarchical Structural/Dataflow Description of 4-Bit Full
Adder (continued)

hs,hc,and tc, are declared. These signals are applied to two half adders and are also
used in one dataflow assignment to construct the full adder in Figure 3-42. In the
adder_4 entity, four full-adder components are simply connected together using the
signals given in Figure 3-43.

Note that co and c4 are an input and an output, respectively, but ¢ (0) through
C (4) are internal signals (i.e., neither inputs nor outputs). c (0) is assigned c0 and c4
is assigned c (4) . The use of C(0) and C(4) separately from C0 and C4 is not essential
here, but is useful to illustrate a VHDL constraint. Suppose we wanted to add over-
flow detection to the adder as shown in Figure 3-46. If C(4) is not defined separately,
then one might attempt to write

v <= C(3) xor C4

In VHDL, this is incorrect. An output cannot be used as an internal signal. Thus, it
is necessary to define an internal signal to use in place of C4 (e.g., C(4)) giving

v <= C(3) =xor C(4) |

Behavioral Description

The 4-bit adder provides an opportunity to illustrate description of circuits at levels
higher than the logic level. Such levels of description are referred to as the behavior-
al level or the register transfer level. We will specifically study register transfers in
Chapter 6. Without studying register transfers, however, we can still show a behav-
ioral-level description.
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EXAMPLE 3-25 Behavioral VHDL for a 4-Bit Ripple Carry Adder

A behavioral description for the 4-bit adder is given in Figure 3-49. In the architec-
ture of the entity adder_4_b, the addition logic is described by a single statement
using + and &.The + represents addition and the & represents an operation
called concatenation. A concatenation operator combines two signals into a single
signal having its number of bits equal to the sum of the number of bits in the original
signals. In the example, '0' & Arepresents the signal vector

'"O'A(3)A(2)A(1)A(0)

with 1 + 4 = 5 signals. Note that '0', which appears on the left in the concatena-
tion expression, appears on the left in the signal listing. The inputs to the addition are
all converted to 5-bit quantities for consistency, since the output including C4 is five
bits. This conversion is not essential, but is a safe approach.

Since + cannot be performed on the std_logic type, we need an addi-
tional package to define addition for the std_logic type. In this case, we are
using std_logic_arith, a package present in the ieee library. Further, we wish
to specifically define the addition to be unsigned, so we use the unsigned exten-
sion. Also, concatenation in VHDL cannot be used on the left side of an assign-
ment statement. To obtain c4 and s as the result of the addition, a 5-bit signal sum
is declared. The signal sum is assigned the result of the addition including the
carry out. Following are two additional assignment statements which split sum
into outputs c4 and s.

-- 4-bit Adder: Behavioral Description
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity adder_4_b is
port(B, A : in std_logic_vector (3 downto 0);
CO : in std_logic;
S : out std_logic_vector (3 downto 0);
C4: out std_logic);
end adder_4_Db;

architecture behavioral of adder_4_Db is
signal sum: std_logic_vector (4 downto 0);
begin
sum <= ('0' & A) + ('0' & B) + ("0000" & CO);
C4 <= sum(4);
S <= sum(3 downto 0);
end behavioral;

[0 FIGURE 3-49
Behavioral Description of 4-Bit Adder |
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EXAMPLE 3-26 Hierarchical Verilog for a 4-Bit Ripple Carry Adder

The description in Figure 3-50 uses three modules to represent a hierarchical design
for a 4-bit ripple carry adder. The style used for the modules will be a mix of structural
and dataflow description. The three modules are a half adder, a full adder built
around half adders, and the 4-bit adder itself.

The half_adder module consists of two dataflow assignments, one for s and
one for c. The full adder module uses the half adder as a component as in
Figure 3-42. In the full_adder, three internal wires, hs, hc, and tc, are declared.
Inputs, outputs, and these wire names are applied to the two half adders, and tc
and hc are ORed to form carry c. Note that the same names can be used on

// 4-bit Adder: Hierarchical Dataflow/Structural
// (See Figures 3-42 and 3-43 for logic diagrams)

module half_adder_v(x, y, s, c);
input x, y;
output s, c;

~

assign s = x v
assign c = x & y;
endmodule

module full_adder v (x, y, z, s, C);
input x, y, z;
output s, c;

wire hs, hc, tc;

half_adder_v HAl(x, vy, hs, hc),
HA2 (hs, z, s, tc);
assign ¢ = tc | hc;

endmodule

module adder_4_v (B, A, CO, S, C4);
input [3:0] B, A;
input CO;
output [3:0] S;
output C4;

wire [3:1] C;

full_adder_v BitO0(B[0], A[0], CO, S[0], C[1])
Bitl(B[1], A[1], C[1], S[1], CI[2]1),
Bit2 (B[2], A[2], CI[2], SI[2], CI3]),
Bit3(B[3], A[3], C[3], SI3], C4);

endmodule

[0 FIGURE 3-50
Hierarchical Dataflow/Structural Verilog Description of 4-Bit Adder
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different modules (e.g., %, v, s, and c are used in both the half_adder and
full_adder).

In the adder_4 module, four full adders are simply connected together using
the signals given in Figure 3-43. Note that co and c4 are an input and an output,
respectively, but ¢ (3) through c (1) are internal signals (i.e., neither inputs nor
outputs). |

EXAMPLE 3-27 Behavioral Verilog for a 4-Bit Ripple Carry Adder

Figure 3-51 shows the Verilog description for the 4-bit adder. In module ad-
der_4_b_v, the addition logic is described by a single statement using + and {}.
The + represents addition and the {} represents an operation called concatenation.
The operation + performed on wire data types is unsigned. Concatenation com-
bines two signals into a single signal having its number of bits equal to the sum of the
number of bits in the original signals. In the example, {C4, s} represents the signal
vector

C4 S[3] S[2] S[1] S[0]

with 1 + 4 = 5 signals. Note that c4, which appears on the left in the concatenation
expression, appears on the left in the signal listing. |

// 4-bit Adder: Behavioral Verilog Description

module adder_4_b_v (A, B, CO0, S, C4);
input(3:0] A, B;
input CO;
output([3:0] S;
output C4;

assign {C4, S} = A + B + CO;
endmodule

O FIGURE 3-51
Behavioral Description of Four-Bit Full Adder Using Verilog

3-12 OTHER ARITHMETIC FUNCTIONS

Other arithmetic functions beyond +, —, X and +, are quite important. Among
these are incrementing, decrementing, multiplication and division by a constant,
greater-than comparison, and less-than comparison. Each can be implemented
for multiple-bit operands by using an iterative array of 1-bit cells. Instead of using
these basic approaches, a combination of rudimentary functions and a new tech-
nique called contraction is used. Contraction begins with a circuit such as a binary
adder or a binary multiplier. This approach simplifies design by converting
existing circuits into useful, less complicated ones instead of designing the latter
circuits directly.



178 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Contraction

Value fixing, transferring, and inverting on inputs can be combined with function blocks
to implement new functions. We can implement new functions by using similar tech-
niques on a given circuit or on its equations and then contracting it for a specific appli-
cation to a simpler circuit. We will call the procedure contraction. The goal of contrac-
tion is to accomplish the design of a logic circuit or functional block by using results
from past designs. It can be applied by the designer in designing a target circuit or can
be applied by logic synthesis tools to simplify an initial circuit with value fixing, transfer-
ring, and inverting on its inputs in order to obtain a target circuit. In both cases, contrac-
tion can also be applied to circuit outputs that are unused, to simplify a source circuit to
a target circuit. First, we illustrate contraction by using Boolean equations.

EXAMPLE 3-28 Contraction of Full-Adder Equations

The circuit Add1 to be designed is to form the sum §; and carry C;,; for the single bit
addition A; + 1 + C,. This addition is a special case with B; = 1 of the addition
performed by a full adder, A; + B; + C,. Thus, equations for the new circuit can be
obtained by taking the full-adder equations,

Si=A®BDC
Ci.1 = AB; + A,C; + B,C;
setting B; = 1, and simplifying the results, to obtain
S;=A®10C=40C
Ci1=A"1+AC+1-C;=A; +C

Suppose that this Add1 circuit is used in place of each of the four full adders in
a 4-bit ripple carry adder. Instead of S = A + B + C,, the computation being per-
formed is S =A + 1111 + C,. In 2s complement, this computation is
S=A -1+ CyIf Cy = 0, this implements the decrement operation S = A — 1,
using considerably less logic than for a 4-bit addition or subtraction. |

Contraction can be applied to equations, as done here, or directly on circuit
diagrams with rudimentary functions applied to function-block inputs. In order to
successfully apply contraction, the desired function must obtainable from the initial
circuit by application of rudimentary functions on its inputs. Next we consider con-
traction based on unused outputs.

Placing an unknown value, X, on the output of a circuit means that output will
not be used. Thus, the output gate and any other gates that drive only that output
gate can be removed. The rules for contracting equations with Xs on one or more
outputs are as follows:

1. Delete all equations with Xs on the circuit outputs.

2. If an intermediate variable does not appear in any remaining equation, delete
its equation.
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3. If an input variable does not appear in any remaining equation, delete it.

4. Repeat 2 and 3 until no new deletions are possible.

The rules for contracting a logic diagram with Xs on one or more outputs are as
follows:

1. Beginning at the outputs, delete all gates with Xs on their outputs and place Xs
on their input wires.

2. If all input wires driven by a gate are labeled with Xs, delete the gate and place
Xs on its inputs.

3. If all input wires driven by an external input are labeled with Xs, delete the in-
put.

4. Repeat steps 2 and 3 until no new deletions are possible.

In the next subsection, contraction of a logic diagram is illustrated for the
increment operation.

Incrementing

Incrementing means adding a fixed value to an arithmetic variable, most often a fixed
value of 1. An n-bit incrementer that performs the operation A + 1 can be obtained
by using a binary adder that performs the operation A + B with B = 0... 01.The
use of n = 3 is large enough to determine the incrementer logic to construct the cir-
cuit needed for an n-bit incrementer.

Figure 3-52 (a) shows a 3-bit adder with the inputs fixed to represent the com-
putation A + 1 and with the output from the most significant carry bit C, fixed at
value X. Operand B = 001 and the incoming carry Cy = 0,so that A + 001 + Ois
computed. Alternatively, B = 000 and incoming carry Cy = 1 could have been used.

(b)

[0 FIGURE 3-52
Contraction of Adder to Incrementer
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Based on value fixing, there are three distinct contraction cases for the cells in
the adder:

1. The least significant cell on the right with By, = 1 and C, = 0,
2. The typical cell in the middle with B; = 0,and
3. The most significant cell on the left with B, = O and C3 = X

For the right cell, the output of gate 1 becomes Ay, so it can be replaced by an
inverter. The output of gate 2 becomes A, so it can be replaced by a wire connected
to A . Applying A, and 0 to gate 3, it can be replaced by a wire, connecting A to the
output . The output of gate 4 is 0, so it can be replaced with a 0 value. Applying this
0 and A from gate 2 to gate 5, gate 5 can be replaced by a wire connecting A to C,.
The resulting circuit is shown as the right cell in Figure 3-52(b).

Applying the same technique to the typical cell with B; = 0 yields

S =A4@®C
C2 - A1C1

giving the circuit shown as the middle cell in Figure 3-52(b).

For the left cell with B, = 0 and C3 = X, the effects of X are propagated first
to save effort. Since gate E has X on its output, it is removed and Xs are placed on its
two inputs. Since all gates driven by gates B and C have Xs on their inputs, they can
be removed and Xs placed on their inputs. Gates A and D cannot be removed, since
each is driving a gate without an X on its input. Gate A, however, becomes a wire,
since X @ 0 = X.The resulting circuit is shown as the left cell in Figure 3-52(b).

For an incrementer with n > 3 bits, the least significant incrementer cell is
used in position 0, the typical cell in positions 1 through n — 2, and the most signifi-
cant cell in position n — 1. In this example, the rightmost cell in position 1 is con-
tracted, but, if desired, it could be replaced with the cell in position 2 with By = 0
and C, = 1. Likewise, the output C, could be generated, but not used. In both cases,
logic cost and power efficiency are sacrificed to make all of the cells identical.

Decrementing

Decrementing is the addition of a fixed negative value to an arithmetic variable —
most often, a fixed value of —1. A decrementer has already been designed in
Example 3-28. Alternatively, a decrementer could be designed by using an adder—
subtractor as a starting circuit and applying B = 0. .. 01, and selecting the subtrac-
tion operation by setting S to 1. Beginning with an adder—subtractor, we can also use
contraction to design a circuit that increments for § = 0 and decrements for § = 1
by applying B = 0... 01, and letting S remain a variable. In this case, the result is a
cell of the complexity of a full adder in the typical bit positions.

Multiplication by Constants

In Figure 3-53(a), a multiplier with a 3-bit multiplier and a 4-bit multiplicand is shown
with constant values applied to the multiplier. (The design of this multiplier is ex-
plained in the supplement Multipliers and Dividers on the Companion Website.)
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[0 FIGURE 3-53

Contractions of Multiplier: (a) for 101 X B, (b) for 100 X B,and (c)
for B + 100

Constants applied to the multiplier inputs have the following effects. If the multiplier
value for a particular bit position is 1, than the multiplicand will be applied to an adder.
If the value for a particular bit position is 0, then 0 will be applied to an adder and the
adder will be reduced by contraction to wires producing its right inputs plus a carry of
0 on its outputs. In both cases, the AND gates will be removed. In Figure 3-53(a), the
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multiplier has been set to 101. The end result of the contraction of this circuit is a circuit
that conveys the two least significant bits of B to the outputs C, and C. The circuit adds
the two most significant bits of B to B, with the result shifted two positions to the left
applied to product outputs C, through C,.

An important special case occurs when the constant equals 2/ (i.e., for multi-
plication 2’ X B). In this case, only one 1 appears in the multiplier and all logic is
eliminated from the circuit, resulting in only wires. In this case, for the 1 in position
i, the result is B followed by i 0s. The functional block that results is simply a com-
bination of skewed transfers and value fixing to 0. The function of this block is
called a left shift by i bit positions with zero fill. Zero fill refers to the addition of Os
to the right of (or to the left of) an operand such as B. Shifting is a very important
operation applied to both numerical and nonnumerical data. The contraction
resulting from a multiplication by 22 (i.e., a left shift of two bit positions) is shown
in Figure 3-53(b).

Division by Constants

Our discussion of division by constants will be restricted to division by powers of
2 (i.e., by 27 in binary). Since multiplication by 2/ results in addition of i Os to the
right of the multiplicand, by analogy, division by 2/ results in removal of the i least
significant bits of the dividend. The remaining bits are the quotient, and the bits
discarded are the remainder. The function of this block is called a right shift by i
bit positions. Just as for left shifting, right shifting is likewise a very important op-
eration. The function block for division by 22 (i.e., right shifting by two bit posi-
tions) is shown in Figure 3-53(c).

Zero Fill and Extension

Zero fill, as defined previously for multiplication by a constant, can also be used
to increase the number of bits in an operand. For example, suppose that a byte
01101011 is to be used as an input to a circuit that requires an input of 16 bits. One
possible way of producing the 16-bit input is to zero-fill with eight Os on the left to
produce 0000000001101011. Another is to zero-fill on the right to produce
0110101100000000. The former approach would be appropriate for operations
such as addition or subtraction. The latter approach could be used to produce a
low-precision 16-bit multiplication result in which the byte represents the most
significant eight bits of the actual product with the lower byte of the product dis-
carded.

In contrast to zero fill, sign extension is used to increase the number of bits in
an operand represented by using a complement representation for signed numbers.
If the operand is positive, then bits can be added on the left by extending the sign of
the number (0 for positive and 1 for negative). Byte 01101011, which represents 107
in decimal, extended to 16 bits becomes 0000000001101011. Byte 10010101, which
in 2s complement represents —107, extended to 16 bits becomes 1111111110010101.
The reason for using sign extension is to preserve the complement representation
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for signed numbers. For example, if 10010101 were extended with Os, the magnitude
represented would be very large, and further, the leftmost bit, which should be a 1 for
a minus sign, would be incorrect in the 2s complement representation.

\ DecivaL ArithvETic  The supplement that discusses decimal arithmetic functions
/ and circuit implementations is available on the Companion Website for the text.

3-13 CHAPTER SUMMARY

This chapter dealt with functional blocks, combinational circuits that are frequently
used to design larger circuits. Rudimentary circuits that implement functions of a
single variable were introduced. The design of decoders that activate one of a num-
ber of output lines in response to an input code was covered. Encoders, the inverse
of decoders, generated a code associated with the active line from a set of lines. The
design of multiplexers that select from data applied at the inputs and present it at the
output was illustrated.

The design of combinational logic circuits using decoders and multiplexers,
was covered. In combination with OR gates, decoders provide a simple min
term-based approach to implementing combinational circuits. Procedures were
given for using an n—to-1-line multiplexer or a single inverter and an (n — 1)-to-1-
line multiplexer to implement any n-input Boolean function.

This chapter also introduced common combinational circuits for performing
arithmetic functions. The implementation of binary adders was treated in detail. The
subtraction of unsigned binary numbers using 2s complement was presented, as was
the representation of signed binary numbers and their addition and subtraction. The
adder—subtractor, developed for unsigned binary, was found to apply directly to the
addition and subtraction of signed 2s complement numbers as well.
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. PROBLEMS

3-2.

» The plus (+) indicates a more advanced problem and the asterisk (*) indicates that
/" asolution is available on the text website.

3-1.

A majority function has an output value of 1 if there are more 1s than Os on its
inputs. The output is 0 otherwise. Design a three-input majority function.

*Find a function to detect an error in the representation of a decimal digit in
BCD. In other words, write an equation with value 1 when the inputs are any
one of the six unused bit combinations in the BCD code, and value 0
otherwise.

Design a Gray code-to—-BCD code converter that gives output code 1111 for
all invalid input combinations. Assume that the Gray code sequence for
decimal numbers 0 through 9 is 0000, 0001, 0011, 0010, 0110, 0111, 0101,
0100, 1100, and 1101. All other input combinations should be considered to
be invalid.

A simple well-known game, tic-tac-toe, is played on a three-by-three grid of
squares by two players. The players alternate turns. Each player chooses a
square and places a mark in a square. (One player uses X and the other O.)
The first player with three marks in a row, in a column, or on a diagonal wins
the game. A logic circuit is to be designed for an electronic tic-tac-toe that
indicates the presence of a winning pattern. The circuit output Wisa 1 if a
winning pattern is present and a 0 if a winning pattern is not present. For each
of the nine squares, there are two signals, X; and O; . Two copies of the circuit
are used, one for Xs and one for Os. Hint: Form a condensed truth table for
W(X1, Xz, ... ,Xo).

(a) Design the X circuit for the following pattern of signals for the squares:

X1 X X3
X, X5 Xe
X7 Xg Xo

(b) Minimize the W output for the X circuit as much as possible, using
Boolean algebra.

Repeat Problem 3-4 for 4 X 4 tic-tac-toe, which is played on a four-by-four
grid. Assume that the numbering pattern is left to right and top to bottom, as
in Problem 3-4.

A low-voltage lighting system is to use a binary logic control for a particular
light. This light lies at the intersection point of a T-shaped hallway. There is a
switch for this light at each of the three endpoints of the T. These switches
have binary outputs 0 and 1 depending on their position and are named X,
X,,and X..The light is controlled by a buffer driving a thyristor, an electronic
part that can switch power-circuit current. When Z, the input to the buffer, is
1, the light is ON, and when Z is 0, the light is OFF. You are to find a function
Z = F(X}, X5, X3) so that if any one of the switches is changed, the value of
Z changes, turning the light ON or OFF.
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+A traffic light control at a simple intersection uses a binary counter to
produce the following sequence of combinations on lines A, B, C,and D: 0000,
0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011,
1001, 1000. After 1000, the sequence repeats, beginning again with 0000,
forever. Each combination is present for 5 seconds before the next one
appears. These lines drive combinational logic with outputs to lamps RNS
(red—north/south), YNS (yellow—north/south), GNS (green—north/south),
REW (red—ecast/west), YEW (yellow —east/west), and GEW (green—east/
west). The lamp controlled by each output is ON for a 1 applied and OFF for a
0 applied. For a given direction, assume that green is on for 30 seconds, yellow
for 5 seconds, and red for 45 seconds. (The red intervals overlap for 5 seconds.)
Divide the 80 seconds available for the cycle through the 16 combinations into
16 intervals and determine which lamps should be lit in each interval based on
expected driver behavior. Assume that, for interval 0000, a change has just
occurred and that GNS = 1, REW = 1, and all other outputs are 0. Design
the logic to produce the six outputs using AND and OR gates and inverters.

Design a combinational circuit that accepts a 3-bit number and generates a
6-bit binary number output equal to the square of the input number.

+Design a combinational circuit that accepts a 4-bit number and generates a
3-bit binary number output that approximates the square root of the number.
For example, if the square root is 3.5 or larger, give a result of 4. If the square
rootis < 3.5and = 2.5,give a result of 3.

Design a circuit with a 4-bit BCD input A, B, C, D that produces an output W,
X, Y, Z that is equal to the input + 3 in binary. For example,
9 (1001) + 3 (0011) = 12 (1100). The outputs for invalid BCD codes are
don’t-cares.

. A traffic metering system for controlling the release of traffic from an

entrance ramp onto a superhighway has the following specifications for a part
of its controller. There are three parallel metering lanes, each with its own
stop (red)-go (green) light. One of these lanes, the car pool lane, is given
priority for a green light over the other two lanes. Otherwise, a “round robin”
scheme in which the green lights alternate is used for the other two (left and
right) lanes. The part of the controller that determines which light is to be
green (rather than red) is to be designed. The specifications for the controller
follow:

Inputs
PS Car pool lane sensor (car present— 1; car absent—0)
LS Left lane sensor (car present— 1; car absent—0)
RS  Right lane sensor (car present—1; car absent—0)
RR  Round robin signal (select left—1; select right—0)

Outputs
PL Car pool lane light (green—1; red—0)
LL Left lane light (green—1; red —0)
RL  Right lane light (green—1; red —0)
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Operation
1. If there is a car in the car pool lane, PL is 1.

2. If there are no cars in the car pool lane and the right lane, and there
is a car in the left lane, LL is 1.

3. If there are no cars in the car pool lane and in the left lane, and there
is a car in the right lane, RL is 1.

4. If there is no car in the car pool lane, there are cars in both the left
and right lanes,and RRis 1,then LL = 1.

5. If there is no car in the car pool lane, there are cars in both the left
and right lanes,and RR is 0, then RL. = 1.

6. If any PL, LL,or RL is not specified to be 1 above, then it has value 0.

(a) Find the truth table for the controller part.

(b) Find a minimum multiple-level gate implementation with minimum
gate-input cost using AND gates, OR gates, and inverters.

Complete the design of the BCD-to-seven-segment decoder by performing
the following steps:

(a) Plot the seven maps for each of the outputs for the BCD-to-seven-
segment decoder specified in Table 3-9.

(b) Simplify the seven output functions in sum-of-products form, and
determine the total number of gate inputs that will be needed to
implement the decoder.

(c¢) Verity that the seven output functions listed in the text give a valid
simplification. Compare the number of gate inputs with that obtained in
part (b) and explain the difference.

Design a circuit to implement the following pair of Boolean equations:

F = A(CE + DE) + AD

G = B(CE + DE) + BC
To simplify drawing the schematic, the circuit is to use a hierarchy based
on the factoring shown in the equation. Three instances (copies) of a single
hierarchical circuit component made up of two AND gates, an OR gate, and
an inverter are to be used. Draw the logic diagram for the hierarchical com-

ponent and for the overall circuit diagram using a symbol for the hierarchi-
cal component.

A hierarchical component with the function is to be used along with inverters
to implement the following equation:

H=XY + XZ
G = ABC + ABD + ABC + ABD
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The overall circuit can be obtained by using Shannon’s expansion theorem,
F=X-FyX) + X+-F(X)

where Fy(X) is F evaluated with variable X = 0 and F;(X) is F evaluated
with variable X = 1. This expansion F can be implemented with function H
by letting Y = Fyand Z = F;. The expansion theorem can then be applied
to each of F and F, using a variable in each, preferably one that appears in
both true and complemented form. The process can then be repeated until
all F;’s are single literals or constants. For G,use X = A to find G and G,
and then use X = B for G and G . Draw the top-level diagram for G using
H as a hierarchical component.

+A NAND gate with eight inputs is required. For each of the following cases,
minimize the number of gates used in the multiple-level result:

(a) Design the 8-input NAND gate using 2-input NAND gates and NOT
gates.

(b) Design the 8-input NAND gate using 2-input NAND gates, 2-input NOR
gates,and NOT gates only if needed.

(¢) Compare the number of gates used in (a) and (b).

Perform technology mapping to NAND gates for the circuit in Figure 3-54.
Use cell types selected from: Inverter (n = 1), 2NAND, 3NAND, and
4NAND, as defined at the beginning of Section 3-2.

Repeat Problem 3-16, using NOR gate cell types selected from: Inverter
(n = 1),2NOR, 3NOR, and 4NOR, each defined in the same manner as the
corresponding four NAND cell types at the beginning of Section 3-2.
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[J FIGURE 3-54
Circuit for Problems 3-16 and 3-17
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Circuit for Problem 3-20
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Circuit for Problems 3-21 and 3-22

3-18. (a) Repeat Problem 3-16 for the Boolean equations for the segments a and ¢
of the BCD to seven-segment decoder from Example 3-18. Share
common terms where possible.

(b) Repeat part (a) using only Inverter (n = 1) and 2NAND cell types.
3-19. (a) Repeat Problem 3-18, mapping to NOR gate cell types as in Problem 3-17
Share common terms where possible.
(b) Repeat part (a) using only Inverter (n = 1) and 2NOR cell types.

By using manual methods, verify that the circuit of Figure 3-55 generates the
exclusive-NOR function.
. The logic diagram for a 74HC138 MSI CMOS circuit is given in Figure 3-56.

Find the Boolean function for each of the outputs. Describe the circuit
function carefully.

. Do Problem 3-21 by using logic simulation to find the output waveforms of
the circuit or a partial truth-table listing, rather than finding Boolean functions.

3-23. (a) Use logic simulation to verify that the circuits described in Example 3-18
implement the BCD-to-seven-segment converter correctly.
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(b) Design the converter assuming that the unused input combinations
(minterms 10-15) can be don’t cares rather than 0s. Simulate your design
and compare it to your simulation from part (a).

3-24. *(a) Draw an implementation diagram for a constant vector function
F = (F5,Fs,Fs, Fy, F3, F,, F|, Fy) = (1,0,0,1,0,1,1,0) using the ground
and power symbols in Figure 3-7(b).

(b) Draw an implementation diagram for a rudimentary vector function
G = (G7,Ge, G5, Gy, G3, G, G1,Gy) = (A,A,0,1,A,A,1,1) using inputs
1,0,A,and A.

3-25. (a) Draw an implementation diagram for rudimentary vector function
F = (Fy,F4,Fs,F4, F3,F,, F|,Fy) = (A,A,1,A,A,0,1,A), using the ground
and power symbols in Figure 3-7(b) and the wire and inverter in Figures 3-
7(c) and (d).
(b) Draw an implementation diagram for rudimentary vector function
G = (G7, G6’ G5, G4, G3, Gz, Gla Go) = (F(),Fl, F3, Fz, 1, 0, 0, 1), using the
ground and power symbols and components of vector F.

3-26. (a) Draw an implementation diagram for the vector G = (G,, G,, G,, G,,
G1,Go) = (Fi3,Fs, Fs5, F3, Fy, Fy).
(b) Draw a simple implementation for the rudimentary vector H =
(Hy,Hg, Hs, Hy, H3, Hy, H1, Hy) = (F3,F), Fy, Fo, G3, Gy, Gy, Gy).

. A home security system has a master switch that is used to enable an alarm,
lights, video cameras, and a call to local police in the event one or more of six
sets of sensors detects an intrusion. In addition there are separate switches to
enable and disable the alarm, lights, and the call to local police. The inputs,
outputs, and operation of the enabling logic are specified as follows:

Inputs
S;,i =0,1,2,3,4,5 : signals from six sensor sets (0 = intrusion de-
tected, 1 = no intrusion detected)
M: master switch (0 = security system enabled, 1 = security system
disabled)
A:alarm switch (0 = alarm disabled, 1 = alarm enabled)
L:light switch (0 = lights disabled, 1 = lights enabled)
P: police switch (0 = police call disabled, 1 = police call enabled)

Outputs
A:alarm (0 = alarm on, 1 = alarm off)
L:lights (0 = lights on, 1 = lights off)
V:video cameras (0 = video cameras off, 1| = video cameras on)
C: call to police (0 = call off, 1 = call on)

Operation
If one or more of the sets of sensors detect an intrusion and the secu-
rity system is enabled, then outputs activate based on the outputs of
the remaining switches. Otherwise, all outputs are disabled.
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Patterns for Dice for Problem 3-32

Find a minimum-gate-input cost realization of the enabling logic using AND
and OR gates and inverters.

Design a 4-to—16-line decoder using two 3-to—8-line decoders and 16 2-input
AND gates.

Design a 4-to-16-line decoder with enable using five 2-to—4-line decoders
with enable as shown in Figure 3-16.

*Design a 5-to-32-line decoder using a 3-to—8-line decoder, a 2-to—4-line
decoder, and 32 2-input AND gates.

A special 4-to—6-line decoder is to be designed. The input codes used are 000
through 101. For a given code applied, the output D;, with i equal to the
decimal equivalent of the code, is 1 and all other outputs are 0. Design the
decoder with a 2—-to—4-line decoder, a 1-to-2-line decoder, and six 2-input
AND gates, such that all decoder outputs are used at least once.

. An electronic game uses an array of seven LEDs (light-emitting diodes) to

display the results of a random roll of a die. A decoder is to be designed to
illuminate the appropriate diodes for the display of each of the six die values.
The desired display patterns are shown in Figure 3-57

(a) Use a 3—to—-8-line decoder and OR gates to map the 3-bit combinations
oninputs X,, X ,and X for values 1 through 6 to the outputs a through g.
Input combinations 000 and 111 are don’t-cares.

(b) Note that for the six die sides, only certain combinations of dots occur.
For example, dot pattern A = {d } and dot pattern B= {a, g } canbe
used for representing input values 1,2, and 3 as {A}, {B},and {A, B}.
Define four dot patterns A, B, C, and D, sets of which can provide all six
output patterns. Design a minimized custom decoder that has inputs X,
X,,and X and outputs A, B, C,and D, and compare its gate-input cost to
that of the 3-to-8 decoder and OR gates in part (a).

Draw the detailed logic diagram of a 3-to—8-line decoder using only NOR
and NOT gates. Include an enable input.

. To provide uphill running and walking, an exercise treadmill has a grade

feature that can be set from 0.0% to 15.0% in increments of 0.1%. (The grade
in percent is the slope expressed as a percentage. For example, a slope of 0.10
is a grade of 10%.) The treadmill has a 10 high by 20 wide LCD dot array
showing a plot of the grade versus time. This problem concerns only the
vertical dimension of the display.
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To define the vertical position of the LCD dot to be illuminated for the
current grade, the 151 different grade values (0.0 to 15.0) need to be trans-
lated into ten different dot positions, PO to P9. The translation of intervals
of inputs to output values is represented as follows: [(0.0,1.4),0], [(1.5,2.9),1],
[(3.0,4.4).2], [(4.5,5.9),3], [(6.0,74),4], [(75,8.9),5], [(9.0,10.4),6], [(10.5,11.9),7],
[(12.0,13.4),8], and [(13.5,15.0),9]. The grade values are represented by a pair
of values consisting of a 4-bit binary value 0 through 15 followed by a 4-bit
BCD value 0 through 9. For example, 10.6 is represented by (10,6) [1010,0110].
Design a special decoder with eight inputs and ten outputs to perform this
translation. Hint: Use two subcircuits, a 4-to-16-line decoder with the binary
value as inputs and DO through D15 as outputs, and a circuit which deter-
mines whether the BCD input value is greater than or equal to 5 (0101) with
output GES. Add additional logic to form outputs PO through P9 from DO
through D15 and GES. For example:

P4:D6+ D7-GESand
P5 :D7'GE5 +D8

. *Design a 4-input priority encoder with inputs and outputs as in Table 3-6,

but with the truth table representing the case in which input D has the
highest priority and input D, the lowest priority.

. Derive the truth table of a decimal-to-binary priority encoder. There are 10

inputs /, through /; and outputs A, through A and V.Input /, has the highest
priority.

(a) Design an 8-to-1-line multiplexer using a 3-to—8-line decoder and an
8 X 2 AND-OR.

(b) Repeat part (a), using two 4-to—1-line multiplexers and one 2-to-1-line
multiplexer.

Design a 16-to-1-line multiplexer using a 4-to—16-line decoderanda 16 X 2
AND-OR.

Design a dual 8-to—1-line decoder using a 3—to—8-line decoder and two 8 X 2
AND-ORs.

Construct a 12-to—1-line multiplexer with a 3-to—8-line decoder, a 1-to-2-
line decoder, and a 12 X 3 AND-OR. The selection codes 0000 through
1011 must be directly applied to the decoder inputs without added logic.

Construct a quad 10-to-1-line multiplexer with four single 8-to—I-line
multiplexers and two quadruple 2-to-1-line multiplexers. The multiplexers
should be interconnected and inputs labeled so that the selection codes 0000
through 1001 can be directly applied to the multiplexer selection inputs
without added logic.

*Construct a 15-to-1-line multiplexer with two 8-to-l-line multiplexers.
Interconnect the two multiplexers and label the inputs such that any added
logic required to have selection codes 0000 through 1110 is minimized.
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Rearrange the condensed truth table for the circuit of Figure 3-16, and verify
that the circuit can function as a demultiplexer.

A combinational circuit is defined by the following three Boolean functions:
FF=X+Z+XYZ
B =X+Z+XYZ
FE=XYZ+X+Z

Design the circuit with a decoder and external OR gates.

. The rear lights of a car are to be controlled by digital logic. There is a single

lamp in each of the rear lights.

Inputs
LT left turn switch —causes blinking of left side lamp
RT right turn switch—causes blinking of right side lamp
EM emergency flasher switch —causes blinking of both lamps
BR brake applied switch—causes both lamps to be on
BL blinking signal with 1 Hz frequency

Outputs
LR power control for left rear lamp
RR power control for right rear lamp

(a) Write the equations for LR and RR. Assume that BR overrides EM and
that LT and RT override BR.

(b) Implement each function LR (BL,BR, EM, LT) and RR (BL, BR, EM,
RT) with a 4-to-16-line decoder and external OR gates.

Implement the following Boolean function with an 8-to-1-line multiplexer
and a single inverter with variable D as its input:

FA,B,C,D) = Sm(2,4,6,9, 10, 11, 15)

*Implement the Boolean function
KA, B C D) =3m(1,3,4,11,12,13, 14, 15)

with a 4-to-1-line multiplexer and external gates. Connect inputs A and B
to the selection lines. The input requirements for the four data lines will
be a function of the variables C and D. The values of these variables are
obtained by expressing F as a function of C and D for each of the four cases
when AB = 00, 01, 10, and 11. These functions must be implemented with
external gates.

Solve Problem 3-47 using two 3-to—8-line decoders with enables, an inverter,
and OR gates with a maximum fan-in of 4.

Design a combinational circuit that forms the 2-bit binary sum § .S, of two
2-bit numbers A A and B B and has both a carry input C and carry output
C,. Design the entire circuit implementing each of the three outputs with a
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Circuit for Problems 3-50, 3-65, and 3-69

two-level circuit plus inverters for the input variables. Begin the design with
the following equations for each of the two bits of the adder:

S; = AiB;C; + AiB.C; + AB,C; + AB;C; + A;B,C;
Civ1 = AB + AC + BC

*The logic diagram of the first stage of a 4-bit adder, as implemented in
integrated circuit type 74283, is shown in Figure 3-58. Verify that the circuit
implements a full adder.

*QObtain the 1s and 2s complements of the following unsigned binary
numbers: 10011100,10011101,10101000,00000000, and 10000000.

Perform the indicated subtraction with the following unsigned binary
numbers by taking the 2s complement of the subtrahend:

(a) 11010 — 10001
(b) 11110 — 1110
(¢) 1111110 — 1111110
(d) 101001 — 101

Repeat Problem 3-52, assuming the numbers are 2s complement signed
numbers. Use extension to equalize the length of the operands. Indicate
whether overflow occurs during the complement operations for any of the
given subtrahends. Indicate whether overflow occurs overall for any of
the given subtractions. When an overflow does occur, repeat the operation
with the minimum number of bits required to perform the operation without
overflow.

*Perform the arithmetic operations (+36) + (—24) and (—35) — (—24) in
binary using signed 2s complement representation for negative numbers.
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The following binary numbers have a sign in the leftmost position and, if
negative, are in 2s complement form. Perform the indicated arithmetic
operations and verify the answers.

(a) 100111 + 111001
(b) 001011 + 100110
(¢) 110001 — 010010
(d) 101110 — 110111

Indicate whether overflow occurs for each computation.

+Design two versions of the combinational circuit whose input is a 4-bit
number and whose output is the 2s complement of the input number, for each
of the following cases using AND, OR, and NOT gates:

(a) The circuit is a simplified two-level circuit, plus inverters as needed for
the input variables.

(b) The circuit is made up of four identical two-input, two-output cells, one
for each bit. The cells are connected in cascade, with lines similar to a
carry between them. The value applied to the rightmost carry bit is 1.

(¢) Calculate the gate input costs for the designs in (a) and (b) and
determine which is the better design in terms of gate-input cost.

Use contraction beginning with a 4-bit adder with carry out to design a 4-bit
increment-by-2 circuit with carry out that adds the binary value 0010 to its
4-bit input. The function to be implementedis § = A + 0010.

Use contraction beginning with an 8-bit adder—subtractor without carry out
to design an 8-bit circuit without carry out that increments its input by
000000101 for input S = 0 and decrements its input by 00000101 for input
S = 1. Perform the design by designing the distinct 1-bit cells needed and
indicating the type of cell use in each of the eight bit positions.

Design a combinational circuit that compares two 4-bit unsigned numbers A
and B to see whether B is greater than A.The circuit has one output X, so that
X =1ifA < Band X = 0if A = B.

+Repeat Problem 3-59 by using three-input, one-output circuits, one for each
of the four bits. The four circuits are connected together in cascade by carry-
like signals. One of the inputs to each cell is a carry input, and the single
output is a carry output.

Repeat Problem 3-59 by applying contraction to a 4-bit subtractor and using
the borrow out as X.

Design a combinational circuit that compares 4-bit unsigned numbers A and
B to see whether A = B or A > B. Use an iterative circuit as in Problem
3-60.

+Design a 5-bit signed-magnitude adder—subtractor. Divide the circuit for
design into (1) sign generation and add-subtract control logic, (2) an
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unsigned number adder—subtractor using 2s complement of the minuend for
subtraction, and (3) selective 2s complement result correction logic.

*The adder—subtractor circuit of Figure 3-45 has the following values for
input select S and data inputs A and B:

s A B
(a) 0 0111 0111
(b) 1 0100 0111
(c) 1 1101 1010
(d) 0 0111 1010
(e) 1 0001 1000

Determine, in each case, the values of the outputs §,,S,,§,, S, and C,.

Using Figure 3-28 as a guide, write a structural VHDL description for the
full-adder circuit in Figure 3-58. Compile and simulate your description.
Apply all eight input combinations to check the correction function of
your description.

Compile and simulate the 4-bit adder in Figures 3-47 and 3-48. Apply
combinations that check out the rightmost full adder for all eight
input combinations; this also serves as a check for the other full adders. Also,
apply combinations that check the carry chain connections between all full
adders by demonstrating that a 0 and a 1 can be propagated from c0 to c4.

*Compile and simulate the behavioral description of the 4-bit adder in Figure
3-49. Assuming a ripple carry implementation, apply combinations that check
out the rightmost full adder for all eight input combinations. Also apply
combinations that check the carry chain connections between all full adders
by demonstrating that a 0 and a 1 can be propagated from c0 to c4.

+ Using Figure 3-49 as a guide and a “when-else” on s from Figure 3-29, write
a high-level behavior VHDL description for the adder—subtractor in Figure
3-46 (see Figure 3-45 for details). Compile and simulate your description.
Assuming a ripple carry implementation, apply combinations that check out
one of the full adder—subtractor stages for all 16 possible input combinations.
Also, apply combinations to check the carry chain connections in between
the full adders by demonstrating that a 0 and a 1 can be propagated from c0
to c4. Check the overflow signals as well.

Using Figure 3-31 as a guide, write a structural Verilog description for the full-
adder circuit in Figure 3-58. Compile and simulate your description. Apply all
eight input combinations to check the correction function of your description.

Compile and simulate the 4-bit adder in Figure 3-50. Apply combinations that
check out the rightmost full adder for all eight input combinations; this also
serves as a check for the other full adders. Also, apply combinations that



196

3-71.

3-72.

[0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

check the carry chain connections between all full adders by demonstrating
thata 0 and a 1 can be propagated from c0 to c4.

*Compile and simulate the behavioral description of the 4-bit adder in
Figure 3-51. Assuming a ripple carry implementation, apply all eight input
combinations to check out the rightmost full adder. Also, apply
combinations to check the carry chain connections between all full adders
by demonstrating that a 0 and a 1 can be propagated from co to c4.

Using Figure 3-51 as a guide and a “binary decision” on s from Figure 3-34,
write a high-level behavior Verilog description for the adder—subtractor in
Figure 3-46 (see Figure 3-45 for details). Compile and simulate your description.
Assuming a ripple carry implementation, apply input combinations to your
design that will (1) cause all 16 possible input combinations to be applied to
the full adder-subtractor stage for bit 2, and (2) simultaneously cause the
carry output of bit 2 to appear at one of your design’s outputs. Also, apply
combinations that check the carry chain connections between all full adders
by demonstrating that a 0 and a 1 can be propagated from co to c4.



SEQUENTIAL CIRCUITS

capable of interesting operations, such as addition and subtraction, the

performance of useful sequences of operations using combinational logic alone
requires cascading many structures together. The hardware to do this is very costly and
inflexible. In order to perform useful or flexible sequences of operations, we need to be
able to construct circuits that can store information between the operations. Such
circuits are called sequential circuits. This chapter begins with an introduction to
sequential circuits, describing the difference between synchronous sequential circuits,
which have a clock signal to synchronize changes in the state of the circuit at discrete
points in time, and asynchronous sequential circuits, which can change state at any
time in response to changes in inputs. This introduction is followed by a study of the
basic elements for storing binary information, called latches and flip-flops. We
distinguish flip-flops from latches and study various types of each. We then analyze
sequential circuits consisting of both flip-flops and combinational logic. State tables and
state diagrams provide a means for describing the behavior of sequential circuits.
Subsequent sections of the chapter develop the techniques for designing sequential
circuits and verifying their correctness. The state diagram is modified into a more
pragmatic model for use in Chapter 6 and beyond, which, for lack of a better term, we
call a state-machine diagram. The chapter provides VHDL and Verilog hardware
description language representations for storage elements and for the type of sequential
circuits in this chapter. We then discuss the timing characteristics of flip-flops and how
the timing characteristics are related to the frequency of the clock for sequential circuits.
Next, we deal with problems associated with interaction with asynchronous circuits and
circuits having multiple clock domains, focusing on the important topic of synchronization
of signals entering a clocked circuit domain. The discussion of delay and timing
concludes with the issue of synchronization failure due to a physical phenomenon
called metastability.

Latches, flip-flops, and sequential circuits are fundamental components in the
design of almost all digital logic. In the generic computer given at the beginning of
Chapter 1, latches and flip-flops are widespread in the design. The exception is memory
circuits, since large portions of memory are designed as electronic circuits rather than

To this point, we have studied only combinational logic. Although such logic is

197



198 [0 CHAPTER 4/ SEQUENTIAL CIRCUITS

as logic circuits. Nevertheless, due to the wide use of logic-based storage, this chapter
contains fundamental material for any in-depth understanding of computers and digital
systems and how they are designed.

4-1 SEQUENTIAL CIRCUIT DEFINITIONS

The digital circuits considered thus far have been combinational. Although every
digital system is likely to include a combinational circuit, most systems encountered
in practice also include storage elements, requiring that the systems be described as
sequential circuits.

Figure 4-1(a) is block diagram of a sequential circuit, formed by interconnect-
ing a combinational circuit and storage elements. The storage elements are circuits
that are capable of storing binary information. The binary information stored in
these elements at any given time defines the state of the sequential circuit at that
time. The sequential circuit receives binary information from its environment via the
inputs. These inputs, together with the present state of the storage elements, deter-
mine the binary value of the outputs. They also determine the values used to specify
the next state of the storage elements. The block diagram demonstrates that the out-
puts in a sequential circuit are a function not only of the inputs, but also of the pres-
ent state of the storage elements. The next state of the storage elements is also a
function of the inputs and the present state. Thus, a sequential circuit is specified by a
time sequence of inputs, internal states, and outputs.

There are two main types of sequential circuits, and their classification depends
on the times at which their inputs are observed and their internal state changes. The
behavior of a synchronous sequential circuit can be defined from the knowledge of
its signals at discrete instants of time. The behavior of an asynchronous sequential
circuit depends upon the inputs at any instant of time and the order in continuous
time in which the inputs change.

Information is stored in digital systems in many ways, including the use of logic
circuits. Figure 4-2(a) shows a buffer. This buffer has a gate delay 7. Since informa-
tion present at the buffer input at time ¢ appears at the buffer output at time 7 + 7,
the information has effectively been stored for time 7. But, in general, we wish to
store information for an indefinite time that is typically much longer than the time
delay of one or even many gates. This stored value is to be changed at arbitrary times
based on the inputs applied to the circuit and the duration of storage of a value
should be longer than the specific time delay of a gate.

Inputs —> Outputs
Comt.nna.tional Next
circui state Storage Present
elements state
[0 FIGURE 4-1

Block Diagram of a Sequential Circuit
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[0 FIGURE 4-2
Logic Structures for Storing Information

Suppose that the output of the buffer in Figure 4-2(a) is connected to its input
as shown in Figures 4-2(b) and (c). Suppose further that the value on the input to the
buffer in part (b) has been 0 for at least time ¢, the delay of the buffer. Then the out-
put produced by the buffer will be 0 at time 7 + .. This output is applied to the input
so that the output will also be 0 at time ¢ + 2¢. This relationship between input and
output holds for all ¢, so the 0 will be stored indefinitely. The same argument can be
made for storing a 1 in the circuit in Figure 4-2(c).

The example of the buffer illustrates that storage can be constructed from logic
with delay connected in a closed loop. Any loop that produces such storage must also
have a property possessed by the buffer, namely, that there must be no inversion of
the signal around the loop. A buffer is usually implemented by using two inverters, as
shown in Figure 4-2(d). The signal is inverted twice, that is,

X=X

giving no net inversion of the signal around the loop. In fact, this example illustrates one
of the most popular methods of implementing storage in computer memories. (See
Chapter 7) However, although the circuits in Figures 4-2(b) through (d) are able to
store information, there is no way for the information to be changed without providing
additional inputs to override with stored values. If the inverters are replaced with NOR
or NAND gates, the information can be changed. Asynchronous storage circuits called
latches are made in this manner and are discussed in the next section.

In general, more complex asynchronous circuits are difficult to design, since
their behavior is highly dependent on the delays of the gates and on the timing of the
input changes. Thus, circuits that fit the synchronous model are the choice of most
designers. Nevertheless, some asynchronous design is necessary. A very important
case is the use of asynchronous latches as blocks to build storage elements, called
flip-flops, that store information in synchronous circuits.

A synchronous sequential circuit employs signals that affect the storage ele-
ments only at discrete instants of time. Synchronization is achieved by a timing
device called a clock generator which produces a periodic train of clock pulses. The
pulses are distributed throughout the system in such a way that synchronous storage
elements are affected only in some specified relationship to every pulse. In practice,
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[0 FIGURE 4-3
Synchronous Clocked Sequential Circuit

the clock pulses are applied with other signals that specify the required change in the
storage elements. The outputs of storage elements can change their value only in the
presence of clock pulses. Synchronous sequential circuits that use clock pulses as
inputs for storage elements are called clocked sequential circuits. These are the types
of circuits most frequently encountered in practice, since they operate correctly in
spite of wide differences in circuit delays and are relatively easy to design.

The storage elements used in the simplest form of clocked sequential circuits
are called flip-flops. For simplicity, assume circuits with a single clock signal. A
flip-flop is a binary storage device capable of storing one bit of information and hav-
ing timing characteristics to be defined in Section 4-9. The block diagram of a syn-
chronous clocked sequential circuit is shown in Figure 4-3. The flip-flops receive their
inputs from the combinational circuit and also from a clock signal with pulses that
occur at fixed intervals of time, as shown in the timing diagram. The flip-flops can
change state only in response to a clock pulse. For a synchronous operation, when a
clock pulse is absent, the flip-flop outputs cannot change even if the outputs of the
combinational circuit driving their inputs change in value. Thus, the feedback loops
shown in the figure between the combinational logic and the flip-flops are broken.
As aresult, a transition from one state to the other occurs only at fixed time intervals
dictated by the clock pulses, giving synchronous operation. The sequential circuit
outputs are shown as outputs of the combinational circuit. This is valid even when
some sequential circuit outputs are actually the flip-flop outputs. In this case, the
combinational circuit part between the flip-flop outputs and the sequential circuit
outputs consists of connections only.

A flip-flop has one or two outputs, one for the normal value of the bit stored
and an optional one for the complemented value of the bit stored. Binary informa-
tion can enter a flip-flop in a variety of ways, a fact that gives rise to different types of
flip-flops. Our focus will be on the most prevalent type used today, the D flip-flop.
Other flip-flop types, such as the JK and T flip-flops, are described in the online mate-
rial available at the Companion Website. In preparation for studying flip-flops and
their operation, necessary groundwork is presented in the next section on latches,
from which the flip-flops are constructed.
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4-2 LATCHES

A storage element can maintain a binary state indefinitely (as long as power is deliv-
ered to the circuit), until directed by an input signal to switch states. The major dif-
ferences among the various types of latches and flip-flops are the number of inputs
they possess and the manner in which the inputs affect the binary state. The most
basic storage elements are latches, from which flip-flops are usually constructed. Al-
though latches are most often used within flip-flops, they can also be used with more
complex clocking methods to implement sequential circuits directly. The design of
such circuits is, however, beyond the scope of the basic treatment given here. In this
section, the focus is on latches as basic primitives for constructing storage elements.

SR and SR Latches

The SR latch is a circuit constructed from two cross-coupled NOR gates. It is derived
from the single-loop storage element in Figure 4-2(d) by simply replacing the invert-
ers with NOR gates, as shown in Figure 4-4(a). This replacement allows the stored
value in the latch to be changed. The latch has two inputs, labeled S for set and R for
reset, and two useful states. When output Q = 1 and Q = 0, the latch is said to be in
the set state. When Q = 0 and Q = 1, it is in the reset state. Outputs Q and Q are
normally the complements of each other. When both inputs are equal to 1 at the
same time, an undefined state with both outputs equal to 0 occurs.

Under normal conditions, both inputs of the latch remain at 0 unless the state is
to be changed. The application of a 1 to the S input causes the latch to go to the set
(1) state. The S input must go back to 0 before R is changed to 1 to avoid occurrence
of the undefined state. As shown in the function table in Figure 4-4(b), two input
conditions cause the circuit to be in the set state. The initial condition is S = 1,
R = 0, to bring the circuit to the set state. Applying a 0 to § with R = 0 leaves the
circuit in the same state. After both inputs return to 0, it is possible to enter the reset
state by applying a 1 to the R input. The 1 can then be removed from R, and the cir-
cuit remains in the reset state. Thus, when both inputs are equal to 0, the latch can be
in either the set or the reset state, depending on which input was most recently a 1.

If a 1is applied to both the inputs of the latch, both outputs go to 0. This produces
an undefined state, because it violates the requirement that the outputs be the

(Reset) SR|[QQ
R (Reset i >
° Lo ! Set stat
00 |1 et state
>< 0101
Reset state
00|01
E >0 Q 1 1| 0 0 Undefined
S (Set)
(a) Logic diagram (b) Function table

[0 FIGURE 4-4
SR Latch with NOR Gates
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complements of each other. It also results in an indeterminate or unpredictable next
state when both inputs return to 0 simultaneously. In normal operation, these problems
are avoided by making sure that 1s are not applied to both inputs simultaneously.

The behavior of the SR latch described in the preceding paragraph is illustrated
by the ModelSim® logic simulator waveforms shown in Figure 4-5. Initially, the inputs
and the state of the latch are unknown, as indicated by a logic level halfway between 0
and 1. When R becomes 1 with S at 0, the latch is reset, with Q first becoming 0 and, in
response, Q_b (which represents Q) becoming 1. Next, when R becomes 0, the latch
remains reset, storing the 0 value present on Q. When S becomes 1 with R at 0, the
latch is set, with Q_b going to 0 first and, in response, Q going to 1 next. The delays in
the changes of Q and Q_b after an input changes are directly related to the delays of
the two NOR gates used in the latch implementation. When S returns to 0, the latch
remains set, storing the 1 value present on Q. When R becomes 1 with S equal to 0,
the latch is reset, with Q changing to 0 and Q_b responding by changing to 1. The latch
remains reset when R returns to 0. When S and R both become 1, both Q and Q_b
become 0. When S and R simultaneously return to 0, both Q and Q_b take on
unknown values. This form of indeterminate state behavior for the (S, R) sequence of
inputs (1, 1), (0, 0) results from assuming simultaneous input changes and equal gate
delays. The actual indeterminate behavior that occurs depends on circuit delays and
slight differences in the times at which S and R change in the actual circuit. Regardless
of the simulation results, these indeterminate behaviors are viewed as undesirable,
and the input combination (1, 1) is avoided. In general, the latch state changes only in
response to input changes and remains unchanged otherwise.

The S R latch with two cross-coupled NAND gates is shown in Figure 4-6. It
operates with both inputs normally at 1, unless the state of the latch has to be changed.
The application of a 0 to the S input causes output Q to go to 1, putting the latch in the
set state. When the S input goes back to 1, the circuit remains in the set state. With
both inputs at 1, the state of the latch is changed by placing a 0 on the R input. This
causes the circuit to go to the reset state and stay there, even after both inputs return
to 1. The condition that is undefined for this NAND latch is when both inputs are
equal to 0 at the same time, an input combination that should be avoided.

Comparing the NAND latch with the NOR latch, note that the input signals
for the NAND require the complement of those values used for the NOR. Because

SR Latch
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[0 FIGURE 4-5

Logic Simulation of SR Latch Behavior
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[0 FIGURE 4-6
S R Latch with NAND Gates

the NAND latch requires a 0 signal to change its state, it is referred to as an S R latch.
The bar above the letters designates the fact that the inputs must be in their comple-
ment form in order to act upon the circuit state.

The operation of the basic NOR and NAND latches can be modified by pro-
viding an additional control input that determines when the state of the latch can be
changed. An SR latch with a control input is shown in Figure 4-7 It consists of the
basic NAND latch and two additional NAND gates. The control input C acts as an
enable signal for the other two inputs. The output of the NAND gates stays at the
logic-1 level as long as the control input remains at 0. This is the quiescent condition
for the S R latch composed of two NAND gates. When the control input goes to 1,
information from the S and R inputs is allowed to affect the S R latch. The set state is
reached with § = 1, R = 0, and C = 1. To change to the reset state, the inputs must
be S = 0,R = 1,and C = 1. In either case, when C returns to 0, the circuit remains
in its current state. Control input C = 0 disables the circuit so that the state of the
output does not change, regardless of the values of S and R. Moreover, when C = 1
and both the § and R inputs are equal to 0, the state of the circuit does not change.
These conditions are listed in the function table accompanying the diagram.

An undefined state occurs when all three inputs are equal to 1. This condition
places Os on both inputs of the basic S R latch, giving an undefined state. When the

C S R | Nextstate of Q
S —_
:)7:)—— Q 0 X X | Nochange
1 0 0 | Nochange
c— 1 01 Q = 0; Reset state
1 10 Q = 1; Set state
— 1 1 1 | Undefined
BB
R —_
(a) Logic diagram (b) Function table

OO0 FIGURE 4-7
SR Latch with Control Input
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D Latch

control input goes back to 0, one cannot conclusively determine the next state, since
the S R latch sees inputs (0, 0) followed by (1, 1). The SR latch with control input is
an important circuit, because other latches and flip-flops are constructed from it.
Sometimes the SR latch with control input is referred to as an SR (or RS) flip-flop—
however, according to our terminology, it does not qualify as a flip-flop, since the
circuit does not fulfill the flip-flop requirements presented in the next section.

D Latch

One way to eliminate the undesirable undefined state in the SR latch is to ensure
that inputs S and R are never equal to 1 at the same time. This is done in the D latch,
shown in Figure 4-8. This latch has only two inputs: D (data) and C (control). The
complement of the D input goes directly to the S input,and D is applied to the R in-
put. As long as the control input is 0, the S R latch has both inputs at the 1 level, and
the circuit cannot change state regardless of the value of D. The D input is sampled
when C = 1. If D is 1, the Q output goes to 1, placing the circuit in the set state. If D
is 0, output Q goes to 0, placing the circuit in the reset state.

The D latch receives its designation from its ability to hold data in its internal stor-
age.The binary information present at the data input of the D latch is transferred to the
O output when the control input is enabled (1). The output follows changes in the data
input, as long as the control input is enabled. When the control input is disabled (0), the
binary information that was present at the data input at the time the transition in C
occurred is retained at the Q output until the control input C is enabled again.

4-3 Frip-FLoOPS

A change in value on the control input allows the state of a latch in a flip-flop to
switch. This change is called a trigger, and it enables, or triggers, the flip-flop. The D
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latch with clock pulses on its control input is triggered every time a pulse to the
logic-1 level occurs. As long as the pulse remains at the active (1) level, any changes
in the data input will change the state of the latch. In this sense, the latch is transpar-
ent, since its input value can be seen from the outputs while the control input is 1.

As the block diagram of Figure 4-3 shows, a sequential circuit has a feedback
path from the outputs of the flip-flops to the combination circuit. As a consequence,
the data inputs of the flip-flops are derived in part from the outputs of the same and
other flip-flops. When latches are used for the storage elements, a serious difficulty
arises. The state transitions of the latches start as soon as the clock pulse changes to the
logic-1 level. The new state of a latch may appear at its output while the pulse is still
active. This output is connected to the inputs of some of the latches through a combi-
national circuit. If the inputs applied to the latches change while the clock pulse is still
in the logic-1 level, the latches will respond to new state values of other latches instead
of the original state values, and a succession of changes of state instead of a single one
may occur. The result is an unpredictable situation, since the state may keep changing
and continue to change until the clock returns to 0. The final state depends on how
long the clock pulse stays at the logic-1 level. Because of this unreliable operation, the
output of a latch cannot be applied directly or through combinational logic to the input
of the same or another latch when all the latches are triggered by a single clock signal.

Flip-flop circuits are constructed in such a way as to make them operate prop-
erly when they are part of a sequential circuit that employs a single clock. Note that
the problem with the latch is that it is transparent: As soon as an input changes,
shortly thereafter the corresponding output changes to match it. This transparency is
what allows a change on a latch output to produce additional changes at other latch
outputs while the clock pulse is at logic 1. The key to the proper operation of flip-flops
is to prevent them from being transparent. In a flip-flop, before an output can change,
the path from its inputs to its outputs is broken. So a flip-flop cannot “see” the change
of its output or of the outputs of other, similar flip-flops at its input during the same
clock pulse. Thus, the new state of a flip-flop depends only on the immediately pre-
ceding state, and the flip-flops do not go through multiple changes of state.

A common way to create a flip-flop is to connect two latches as shown in
Figure 4-9, which is often referred to as a master—slave flip-flop. The left latch, the
master, changes its value based upon the input while the clock is high. That value is
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[0 FIGURE 4-9
Negative-Edge-Triggered D Flip-Flop
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then transferred to the right latch, the slave, when the clock changes to low.
Depending upon the type of latch that is used to construct the master—slave flip-flop,
there are two possible ways that the flip-flop can respond to changes in the clock.
One way is to combine two latches such that (1) the inputs presented to the flip-flop
when a clock pulse is present control its state and (2) the state of the flip-flop changes
only when a clock pulse is not present. Such a circuit is called a pulse-triggered
flip-flop. A master—slave flip-flop constructed with SR latches is a pulse-triggered
flip-flop, because changes on either the S or R inputs of the master during the clock
pulse can change the master’s output value. Thus a master—slave SR flip-flop depends
on the input values throughout the entire high clock pulse.

In contrast, another way is to produce a flip-flop that triggers only during a sig-
nal transition from 0 to 1 (or from 1 to 0) on the clock and that is disabled at all other
times, including for the duration of the clock pulse. Such a circuit is said to be an
edge-triggered flip-flop. Edge-triggered flip-flops tend to be faster and have easier
design constraints than pulse-triggered flip-flops, so they are much more commonly
used. It is necessary to consider the SR flip-flop to illustrate the pulse-triggering
approach, which is presented in the online Companion Website due to its lesser
prevalence in contemporary design. The edge-triggered D flip-flop is currently the
most common flip-flop, so its implementation is presented next.

Edge-Triggered Flip-Flop

An edge-triggered flip-flop ignores the clock pulse while it is at a constant level and
triggers only during a transition of the clock signal. Some edge-triggered flip-flops
trigger on the positive edge (0-to-1 transition), whereas others trigger on the nega-
tive edge (1-to-O transition). The logic diagram of a negative-edge-triggered D
flip-flop is shown in Figure 4-9. The logic diagram of a D-type positive-edge-triggered
flip-flop to be analyzed in detail here appears in Figure 4-10. This flip-flop is a
master-slave flip-flop, with the master a D latch and the slave an SR latch or a D
latch. Also, an inverter is added to the clock input. Because the master latch is a D
latch, the flip-flop exhibits edge-triggered rather than pulse-triggered behavior. For
the clock input equal to 0, the master latch is enabled and transparent and follows
the D input value. The slave latch is disabled and holds the state of the flip-flop fixed.

c {>c C O R O0——0Q
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[0 FIGURE 4-10
Positive-Edge-Triggered D Flip-Flop
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When the positive edge occurs, the clock input changes to 1. This disables the master
latch so that its value is fixed and enables the slave latch so that it copies the state of
the master latch. The state of the master latch to be copied is the state that is present
at the positive edge of the clock. Thus, the behavior appears to be edge triggered.
With the clock input equal to 1, the master latch is disabled and cannot change, so
the state of both the master and the slave remain unchanged. Finally, when the clock
input changes from 1 to 0, the master is enabled and begins following the D value.
But during the 1-to-0 transition, the slave is disabled before any change in the master
can reach it. Thus, the value stored in the slave remains unchanged during this
transition. An alternative implementation that requires fewer gates is given in
Problem 4-3 at the end of the chapter.

Standard Graphics Symbols

The standard graphics symbols for the different types of latches and flip-flops are
shown in Figure 4-11. A flip-flop or latch is designated by a rectangular block with
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(c) Edge-triggered flip-flops

[0 FIGURE 4-11
Standard Graphics Symbols for Latches and Flip-Flop
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inputs on the left and outputs on the right. One output designates the normal state of
the flip-flop, and the other, with a bubble, designates the complement output. The
graphics symbol for the SR latch or SR flip-flop has inputs S and R indicated inside
the block. In the case of the S R latch, bubbles are added to the inputs to indicate that
setting and resetting occur for O-level inputs. The graphics symbol for the D latch or
D flip-flop has inputs D and C indicated inside the block.

Below each symbol, a descriptive title, which is not part of the symbol, is given.
In the titles, I'L denotes a positive pulse, LI a negative pulse, I a positive edge, and T
a negative edge.

Triggering by the 0 level rather than the 1 level is denoted on the latch symbols
by adding a bubble at the triggering input. The pulse-triggered flip-flop is indicated
as such with a right-angle symbol called a postponed output indicator in front of the
outputs. This symbol shows that the output signal changes at the end of the pulse. To
denote that the master—slave flip-flop will respond to a negative pulse (i.e., a pulse to
0 with the inactive clock value at 1), a bubble is placed on the C input. To denote that
the edge-triggered flip-flop responds to an edge, an arrowhead-like symbol in front
of the letter C designates a dynamic input. This dynamic indicator symbol denotes
the fact that the flip-flop responds to edge transitions of the input clock pulses. A
bubble outside the block adjacent to the dynamic indicator designates a
negative-edge transition for triggering the circuit. The absence of a bubble desig-
nates a positive-edge transition for triggering.

In contemporary practice, positive- or negative-edge-triggered D flip-flops are
the most commonly used flip-flops; the symbols for pulse-triggered flip-flops are
included for completeness but are not likely to be encountered outside of a
textbook.

Often, all of the flip-flops used in a circuit are of the same triggering type, such
as positive-edge triggered. All of the flip-flops will then change in relation to the
same clocking event. When using flip-flops having different triggering in the same
sequential circuit, one may still wish to have all of the flip-flop outputs change rela-
tive to the same clocking event. Those flip-flops that behave in a manner opposite
from the adopted polarity transition can be changed by the addition of inverters to
their clock inputs. The inverters unfortunately cause the clock signal to these
flip-flops to be delayed with respect to the clocks to the other flip-flops. A preferred
procedure is to provide both positive and negative pulses from the master clock
generator that are carefully aligned. We apply positive pulses to positive-pulse-
triggered and negative-edge-triggered flip-flops and negative pulses to negative-
pulse-triggered and positive-edge-triggered flip-flops. In this way, all flip-flop outputs
will change at the same time. Finally, to prevent specific timing problems, some
designers use flip-flops having different triggering (i.e., both positive and negative
edge-triggered flip-flops) with a single clock. In these cases, flip-flop outputs are pur-
posely made to change at different times.

In the remainder of this text, it is assumed that all flip-flops are of the
positive-edge-triggered type, unless otherwise indicated. This provides a uniform
graphics symbol for the flip-flops and consistent timing diagrams.

Note that there is no input to the D flip-flop that produces a “no-change” con-
dition. This condition can be accomplished either by disabling the clock pulses on
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the C input or by leaving the clock pulses undisturbed and connecting the output
back into the D input using a multiplexer when the state of the flip-flop must remain
the same. The technique that disables clock pulses is referred to as clock gating. This
technique typically uses fewer gates and saves power, but is often avoided because
the gated clock pulses into the flip-flops are delayed. The delay, called clock skew,
causes gated clock and non-gated clock flip-flops to change at different times. This
can make the circuit unreliable without careful design, since the outputs of some
flip-flops may reach others while their inputs are still affecting their state. To avoid
this problem, delays must be inserted in the clock circuitry to align inverted and
non-inverted clocks. If possible, this situation should be avoided entirely by using
flip-flops that trigger on the same edge.

Direct Inputs

Flip-flops often provide special inputs for setting and resetting them asynchronously
(i.e., independently of the clock input C). The inputs that asynchronously set the
flip-flop are called direct set or preset. The inputs that asynchronously reset the
flip-flop are called direct reset or clear. Application of a logic 1 (or a logic 0 if a bubble
is present) to these inputs affects the flip-flop output without the use of the clock.
When power is turned on in a digital system, the states of its flip-flops can be any-
thing. The direct inputs are useful for bringing flip-flops in a digital system to an ini-
tial state prior to the normal clocked operation.

The IEEE standard graphics symbol for a positive-edge-triggered D flip-flop
with direct set and direct reset is shown in Figure 4-12(a). The notations C1 and 1D
illustrate control dependency. An input labeled Crn, where n is any number, con-
trols all the other inputs starting with the number #. In the figure, C1 controls input
1D. S and R have no 1 in front of them, and therefore they are not controlled by
the clock at C1. The S and R inputs have circles on the input lines to indicate that
they are active at the logic-0 level (i.e., a 0 applied will result in the set or reset
action).

The function table in Figure 4-12(b) specifies the operation of the circuit. The
first three rows in the table specify the operation of the direct inputs S and R. These
inputs behave like NAND SR latch inputs (see Figure 4-6), operating independently
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(a) Graphic symbol (b) Function table (c) Simplified symbol

[0 FIGURE 4-12
D Flip-Flop with Direct Set and Reset
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of the clock, and are therefore asynchronous inputs. The last two rows in the function
table specity the clocked operation for values of D. The clock at C is shown with an
upward arrow to indicate that the flip-flop is a positive-edge-triggered type. The D
input effects are controlled by the clock in the usual manner.

Figure 4-12(c) shows a less formal symbol for the positive-edge-triggered
flip-flop with direct set and reset. The positioning of S and R at the top and bottom of
the symbol rather than on the left edge implies that resulting output changes are not
controlled by the clock C.

Frip-FLop Timing  Flip-flop timing is covered in Section 4-9.

4-4 SEQUENTIAL CIRCUIT ANALYSIS

The behavior of a sequential circuit is determined from the inputs, outputs, and pres-
ent state of the circuit. The outputs and the next state are a function of the inputs and
the present state. The analysis of a sequential circuit consists of obtaining a suitable
description that demonstrates the time sequence of inputs, outputs, and states.

A logic diagram is recognized as a synchronous sequential circuit if it includes
flip-flops with the clock inputs driven directly or indirectly by a clock signal and if
the direct sets and resets are unused during the normal functioning of the circuit. The
flip-flops may be of any type, and the logic diagram may or may not include combi-
national gates. In this section, an algebraic representation for specifying the logic
diagram of a sequential circuit is given. A state table and a state diagram are pre-
sented that describe the behavior of the circuit. Specific examples will be used
throughout the discussion to illustrate the various procedures.

Input Equations

The logic diagram of a sequential circuit consists of flip-flops and, usually, combina-
tional gates. The knowledge of the type of flip-flops used and a list of Boolean func-
tions for the combinational circuit provide all the information needed to draw the
logic diagram of the sequential circuit. The part of the combinational circuit that
generates the signals for the inputs of flip-flops can be described by a set of Boolean
functions called flip-flop input equations. We adopt the convention of denoting the
dependent variable in the flip-flop input equation by the flip-flop input symbol with
the name of the flip-flop output as the subscript for the variable, e.g., D . A flip-flop
input equation is a Boolean expression for a combinational circuit. The output of
this combinational circuit is connected to the input of a flip-flop—thus the name
“flip-flop input equation.”

The flip-flop input equations constitute a convenient algebraic expression for
specifying the logic diagram of a sequential circuit. They imply the type of flip-flop
from the letter symbol, and they fully specify the combinational circuit that drives
the flip-flops. Time is not included explicitly in these equations, but is implied from
the clock at the C input of the flip-flops. An example of a sequential circuit is given in
Figure 4-13.The circuit has two D-type flip-flops, an input X, and an output Y. It can
be specified by the following equations:
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[0 FIGURE 4-13
Example of a Sequential Circuit

D, =AX + BX
DB:ZX
Y =(A + B)X

The first two equations are for flip-flop inputs, and the third specifies the out-
put Y. Note that the input equations use the symbol D, which is the same as the input
symbol of the flip-flops. The subscripts A and B designate the outputs of the respec-
tive flip-flops.

State Table

The functional relationships among the inputs, outputs, and flip-flop states of a se-
quential circuit can be enumerated in a state table. The state table for the circuit of
Figure 4-13 is shown in Table 4-1. It consists of four sections, labeled present state, in-
put, next state, and output. The present-state section shows the states of flip-flops A
and B at any given time ¢. The input section gives each value of X for each possible
present state. Note that for each possible input combination, each of the present
states is repeated. The next-state section shows the states of the flip-flops one clock
period later, at time ¢ + 1. The output section gives the value of output Y at time ¢
for each combination of present state and input.
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[0 TABLE 4-1
State Table for Circuit of Figure 4-13

Present State Input Next State Output
A B X A B Y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0

The derivation of a state table consists of first listing all possible binary combi-
nations of present state and inputs. In Table 4-1, there are eight binary combinations,
from 000 to 111. The next-state values are then determined from the logic diagram or
from the flip-flop input equations. For a D flip-flop, the relationship A(z + 1) = D 4(¥)
holds. This means that the next state of flip-flop A is equal to the present value of its
input D. The value of the D input is specified in the flip-flop input equation as a func-
tion of the present state of A and B and input X. Therefore, the next state of flip-flop
A must satisfy the equation

A(t+1)=D, = AX + BX

The next-state section in the state table under column A has three 1s, where the pres-
ent state and input value satisfy the conditions (A, X) = 11 or (B, X) = 11.
Similarly, the next state of flip-flop B is derived from the input equation

B(t + 1) = Dy = AX

and is equal to 1 when the present state of A is 0 and input X is equal to 1. The output
column is derived from the output equation

Y = AX + BX

The state table of any sequential circuit with D-type flip-flops is obtained in
this way. In general, a sequential circuit with m flip-flops and » inputs needs 2" rows
in the state table. The binary numbers from 0 through 2" — 1 are listed in the com-
bined present-state and input columns. The next-state section has m columns, one for
each flip-flop. The binary values for the next state are derived directly from the D
flip-flop input equations. The output section has as many columns as there are output
variables. Its binary values are derived from the circuit or from the Boolean func-
tions in the same manner as in a truth table.

Table 4-1 is one-dimensional in the sense that the present state and input com-
binations are combined into a single column of combinations. A two-dimensional
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state table having the present state tabulated in the left column and the inputs tabu-
lated across the top row is also frequently used. The next-state entries are made in
each cell of the table for the present-state and input combination corresponding to
the location of the cell. A similar two-dimensional table is used for the outputs if
they depend upon the inputs. Such a state table is shown in Table 4-2. Sequential cir-
cuits in which the outputs depend on the inputs, as well as on the states, are referred
to as Mealy model circuits. Otherwise, if the outputs depend only on the states, then a
one-dimensional column suffices. In this case, the circuits are referred to as Moore
model circuits. Each model is named after its originator.

As an example of a Moore model circuit, suppose we want to obtain the logic
diagram and state table of a sequential circuit that is specified by the flip-flop input
equation

Dy,=A@X®Y
and output equation
Z=A

The D 4 symbol implies a D-type flip-flop with output designated by the letter A. The
X and Y variables are taken as inputs and Z as the output. The logic diagram and
state table for this circuit are shown in Figure 4-14. The state table has one column
for the present state and one column for the inputs. The next state and output are
also in single columns. The next state is derived from the flip-flop input equation,
which specifies an odd function. (See Section 2-6.) The output column is simply a
copy of the column for the present-state variable A.

State Diagram

The information available in a state table may be represented graphically in the form
of a state diagram. A state is represented by a circle, and transitions between states
are indicated by directed lines connecting the circles. Examples of state diagrams are
given in Figure 4-15. Figure 4-15(a) shows the state diagram for the sequential circuit
in Figure 4-13 and its state table in Table 4-1. The state diagram provides the same

[0 TABLE 4-2
Two-Dimensional State Table for the Circuit in Figure 4-13
Next State Output
Present - E—
State X=0 X=1 X=0| X=1
A B A B | A B Y Y
0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0
1 0 0 0 1 0 1 0
1 1 0 0 1 0 1 0
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Clock
(a) Logic diagram

Present Next
State Inputs State Output

A XY A V4
0 00 0 0
0 0 1 1 0
0 10 1 0
0 11 0 0
1 00 1 1
1 0 1 0 1
1 10 0 1
1 11 1 1
(b) State table

[0 FIGURE 4-14
Logic Diagram and State Tablefor D, = A XD Y

[0 FIGURE 4-15
State Diagrams

information as the state table and is obtained directly from it. The binary number in-
side each circle identifies the state of the flip-flops. For Mealy model circuits, the di-
rected lines are labeled with two binary numbers separated by a slash. The input
value during the present state precedes the slash, and the value following the slash
gives the output value during the present state with the given input applied. For
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example, the directed line from state 00 to state 01 is labeled 1/0, meaning that when
the sequential circuit is in the present state 00 and the input is 1, the output is 0. After
the next clock transition, the circuit goes to the next state, 01. If the input changes to
0, then the output becomes 1, but if the input remains at 1, the output stays at 0. This
information is obtained from the state diagram along the two directed lines emanat-
ing from the circle with state 01. A directed line connecting a circle with itself indi-
cates that no change of state occurs.

The state diagram of Figure 4-15(b) is for the sequential circuit of Figure 4-14.
Here, only one flip-flop with two states is needed. There are two binary inputs, and
the output depends only on the state of the flip-flop. For such a Moore model circuit,
the slash on the directed lines is not included, since the outputs depend only on the
state and not on the input values. Instead, the output is included inside the state
circle, indicated here with a slash. There are two input conditions for each state tran-
sition in the diagram, and they are separated by a comma. When there are two input
variables, each state may have up to four directed lines coming out of the corre-
sponding circle, depending upon the number of states and the next state for each
binary combination of the input values.

There is no difference between a state table and a state diagram, except for
their manner of representation. The state table is easier to derive from a given logic
diagram and input equations. The state diagram follows directly from the state table.
The state diagram gives a pictorial view of state transitions and is the form more
suitable for human interpretation of the operation of the circuit. For example, the
state diagram of Figure 4-15(a) clearly shows that, starting at state 00, the output is 0
as long as the input stays at 1. The first O input after a string of 1s gives an output of 1
and sends the circuit back to the initial state of 00. The state diagram of Figure 4-15(b)
shows that the circuit stays at a given state as long as the two inputs have the same
value (00 or 11). There is a state transition between the two states only when the two
inputs are different (01 or 10).

The state diagram in Figure 4-15(a) is useful for illustrating two concepts:
(1) the reduction of the number of states required by using the concept of equiva-
lent states, and (2) the mixing of Mealy and Moore types of outputs in a single
description. Two states are equivalent if the response for each possible input
sequence is an identical output sequence. This definition can be recast in terms of
states and outputs. Two states are equivalent if the output produced for each input
symbol is identical and the next states for each input symbol are the same or
equivalent.

EXAMPLE 4-1 Equivalent State Illustration

In the state diagram in Figure 4-15(a), consider states 10 and 11. Under input 0, both
states produce output 1, and, under input 1, both states produce output 0. Under in-
put 0, both states have the same state 00 as their next state. Under input 1, both
states have state 10 as their next state. By the second definition above, states 11 and
10 are equivalent. These equivalent states can be merged into a single state entered
from state 01 under input 1, with a transition under input 0 to state 00 with an output
of 1, and a transition back to itself under input 1 with an output of 0. In the original
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diagram, consider states 01 and 11. These states satisfy the output conditions for
being equivalent. Under 0, they both go to next state 00, and under 1, they go to next
states 11 and 10, which have just been shown to be equivalent. So, states 01 and 11
are equivalent. Since state 11 is equivalent to state 10, all three of these states are
equivalent. Merging these three states, states 11 and 10 can be deleted and state 01
can be modified to have the transition under 1 with output 0 back to state 01. If the
circuit in Figure 4-13 was analyzed for redesign, the new design has two states and
one flip-flop instead of four states and two flip-flops. [

State reduction through state equivalence may or may not result in reduced
cost, since cost is dependent on combinational circuit cost as well as flip-flop cost.
Nevertheless, combining equivalent states has inherent advantages in the design,
verification, and testing processes.

Ordinarily, the Mealy and Moore output types are not mixed in a given sequen-
tial circuit representation. In doing real designs, however, such mixing may be
convenient.

EXAMPLE 4-2 Mixed Mealy and Moore Outputs

The state diagram in Figure 4-15(a) can also be used to illustrate a mixed output
model that uses both Mealy and Moore type outputs. For state 00, all input values
produce the same output value 0 on Z. As a consequence, the output depends only
on the state 00 and satisfies the definition of a Moore type output. If desired, the out-
put value 0 can be moved from the outgoing transitions on state 00 to within the
circle for state 00. For the remaining states, however, the outputs for the two input
values on X differ, so the output values are the Mealy type and must remain on the
state transitions. [

Unfortunately, this representation does not translate well to the two-
dimensional state tables. It can be translated to a modified one-dimensional state
table with rows that contain the state and the Moore output value without the out-
put conditions, and rows that contain the state, an output condition, and the Mealy
value output.

SeauenTiaL Circuit Crocks anp Timing  The details of sequential circuit clocks and
timing are discussed in Section 4-10.

Sequential Circuit Simulation

Simulation of sequential circuit involves issues not present in combinational circuits.
First of all, rather than a set of input patterns for which the order of application is
immaterial, the patterns must be applied in a sequence. This sequence includes time-
ly application of input patterns as well as clock pulses. Second, there must be some
means to place the circuit in a known state. Realistically, initialization to a known
state is accomplished by application of an initialization subsequence at the beginning
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of the simulation. In the simplest case, this subsequence is a reset signal. For flip-flops
lacking a circuit reset (or set), a longer sequence typically consisting of an initial re-
set followed by a sequence of normal input patterns is required. A simulator may
also have a means of setting the initial state, which is useful to avoid long sequences
that may be needed to get to an initial state. Aside from getting to an initial state, a
third issue is observing the state to verify correctness. In some circuits, application of
an additional sequence of inputs is required to determine the state of the circuit at a
given point. The simplest alternative is to set up the simulation so that the state of
the circuit can be observed directly; the approach to doing this varies depending on
the simulator and whether or not the circuit contains hierarchy. A crude approach
that works with all simulators is to add a circuit output with a path from each state
variable signal.

A final issue to be dealt with in more detail is the timing of application of inputs
and observation of outputs relative to the active clock edge. Initially, we discuss the
timing for functional simulation having as its objective determination or verification
of the function of the circuit. In functional simulation, components of the circuit
have no delay or a very small delay. Much more complex is timing simulation, in
which the circuit elements have realistic delays and verification of the proper opera-
tion of the circuit in terms of timing is the simulation objective.

Some simulators, by default, use a very small component delay for functional
simulation so that the order of changes in signals can be observed, provided that the
time range used for display is small enough. Suppose that the component delays for
gates and the delays associated with flip-flops are all 0.1 ns for such a simulation and
that the longest delay through a path from positive clock edge to positive clock edge
is 1.2 ns in your circuit. If you happen to use a clock period of 1.0 ns for your simula-
tion, when the result depends on the longest delay, the simulation results will be in
error! So for functional simulation with such a simulator, either a longer clock period
should be chosen for the simulation or the default delay needs to be changed by the
user to a smaller value.

In addition to the clock period, the time of application of inputs relative to the
positive clock edge is important. For functional simulation, to allow for any small,
default component delays, the inputs for a given clock cycle should be changed well
before the positive clock edge, preferably early in the clock cycle while the clock is
still at a 1 value. This is also an appropriate time to change the reset signal values to
insure that the reset signal is controlling the state rather than the clock edge or a
meaningless combination of clock and reset.

A final issue is the time at which to examine a simulation result in functional
simulation. At the very latest, the state-variable values and outputs should be at their
final values just before the positive clock edge. Although it may be possible to
observe the values at other locations, this location provides a foolproof observation
time for functional simulation.

The ideas just presented are summarized in Figure 4-16. Input changes in Reset
and Input, encircled in blue, occur at about the 25 percent point in the clock cycle.
Signal values on State and Output, as well as on Input and Reset, all encircled in blue
and listed, are observed just before the 100 percent point in the clock cycle.
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4-5 SEQUENTIAL CIrRcuIT DESIGN

The design of clocked sequential circuits starts from a set of specifications and culmi-
nates in a logic diagram or a list of Boolean functions from which the logic diagram
can be obtained. In contrast to a combinational circuit, which is fully specified by a
truth table, a sequential circuit requires a state table for its specification. Thus, the
first step in the design of a sequential circuit is to obtain a state table or an equivalent
representation such as a state diagram.

A synchronous sequential circuit is made up of flip-flops and combinational
gates. The design of the circuit consists of choosing the flip-flops and finding a combi-
national circuit structure which, together with the flip-flops, produces a circuit that
fulfills the stated specifications. The minimum number of flip-flops is determined by
the number of states in the circuit; n flip-flops can represent up to 2" binary states.
The combinational circuit is derived from the state table by finding the flip-flop input
equations and output equations. In fact, once the type and the number of flip-flops
are determined and binary combinations are assigned to the states, the design pro-
cess transforms a sequential circuit problem into a combinational circuit problem. In
this way, the techniques of combinational circuit design can be applied.

Design Procedure

The following procedure for the design of sequential circuits is similar to the proce-
dure for combinational circuits that was introduced in Chapters 1 through 3, but the
procedure for sequential circuits has some additional steps:

1. Specification: Write a specification for the circuit, if not already available.

2. Formulation: Obtain either a state diagram or a state table from the statement
of the problem.

3. State Assignment: If only a state diagram is available from step 1, obtain the
state table. Assign binary codes to the states in the table.
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4. Flip-Flop Input Equation Determination: Select the flip-flop type or types.
Derive the flip-flop input equations from the next-state entries in the encoded
state table.

5. Output Equation Determination: Derive output equations from the output
entries in the state table.

6. Optimization: Optimize the flip-flop input equations and output equations.

7. Technology Mapping: Draw a logic diagram of the circuit using flip-flops,
ANDs, ORs, and inverters. Transform the logic diagram to a new diagram us-
ing the available flip-flop and gate technology.

8. Verification: Verify the correctness of the final design.

For convenience, we often omit the technology mapping in step 7, since it does not
contribute to our understanding once it is understood. Also, for more complex cir-
cuits, we may skip the use of either the state table or state diagram.

Finding State Diagrams and State Tables

The specification for a circuit is often in the form of a verbal description of the be-
havior of the circuit. This description needs to be interpreted in order to find a state
diagram or state table in the formulation step of the design procedure. This is often
the most creative part of the design procedure, with many of the subsequent steps
performed automatically by computer-based tools.

Fundamental to the formulation of state diagrams and tables is an intuitive
understanding of the concept of a state. A state is used to “remember” something
about the history of input combinations applied to the circuit either at triggering
clock edges or during triggering pulses. In some cases, the states may literally store
input values, retaining a complete history of the sequence appearing on the inputs. In
most cases, however, a state is an abstraction of the sequence of input combinations
at the triggering points. For example, a given state S, may represent the fact that
among the sequence of values applied to a single bit input X, “the value 1 has
appeared on X for the last three consecutive clock edges.” Thus, the circuit would be
in state S, after sequences ... 00111 or ... 0101111, but would not be in state S, after
sequences ...00011 or ...011100. A state S, might represent the fact that the sequence
of 2-bit input combinations applied are “in order 00, 01, 11, 10 with any number of
consecutive repetitions of each combination permitted and 10 as the most recently
applied combination.” The circuit would be in state S, for the following example
sequences: 00,00, 01,01, 01, 11, 10, 10 or 00, 01, 11, 11, 11, 10. The circuit would not
be in state S, for sequences: 00, 11, 10, 10 or 00, 00, 01, 01, 11, 11. In formulating a
state diagram or state table it is useful to write down the abstraction represented by
each state. In some cases, it may be easier to describe the abstraction by referring to
values that have occurred on the outputs as well as on the inputs. For example, state
S, might represent the abstraction that “the output bit Z, is 1, and the input combina-
tion has bit X, at 0.” In this case, Z, equal to 1 might uniquely represent a complex
set of past sequences of input combinations that would be more difficult to describe
in detail.
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As one formulates a state table or state diagram, new states are added. There is
potential for the set of states to become unnecessarily large or potentially even
infinite in size! Instead of adding a new state for every current state and possible
applied input combination, it is essential that states be reused as next states to pre-
vent uncontrolled state growth as outlined above. The mechanism for doing this is a
knowledge of the abstraction that each state represents. To illustrate, consider state
S, defined previously as an abstraction: “the value 1 has appeared at the last three
consecutive clock edges.” If S, has been entered due to the sequence ...00111 and the
next input is a 1, giving sequence ... 001111, is a new state needed or can the next
state be S,? By examining the new sequence, we see that the last three input values
are 1s, which matches the abstraction defined for state S,. So, state S, can be used as
the next state for current state S, and input value 1, avoiding the definition of a new
state. This careful process of avoiding equivalent states is in lieu of applying a
state-minimization procedure to combine equivalent states.

When the power in a digital system is first turned on, the state of the flip-flops
is unknown. It is possible to apply an input sequence with the circuit in an unknown
state, but that sequence must be able to bring a portion of the circuit to a known
state before meaningful outputs can be expected. In fact, many of the larger sequen-
tial circuits we design in subsequent chapters will be of this type. In this chapter,
however, the circuits that we design must have a known initial state, and further, a
hardware mechanism must be provided to get the circuit from any unknown
state into this state. This mechanism is a reset or master reset signal. Regardless of all
other inputs applied to the circuit, the reset places the circuit in its initial state. In
fact, the initial state is often called the reset state. The reset signal is usually activated
automatically when the circuit is powered up. In addition, it may be activated elec-
tronically or by pushing a reset button.

The reset may be asynchronous, taking place without clock triggering. In this
case, the reset is applied to the direct inputs on the circuit flip-flops. as shown in
Figure 4-17(a). This design assigns 00...0 to the initial state of the flip-flops to be reset.
If an initial state with a different code is desired, then the Reset signal can be selec-
tively connected to direct set inputs instead of direct reset inputs. It is important to
note that these inputs should not be used in the normal synchronous circuit design
process. Instead, they are reserved only for an asynchronous reset that returns the
system, of which the circuit is a component, to an initial state. Using these direct

Y(t+1
RS IDS
Reset

C —>CR 0 c+=Cc p
Reset J
(a) Asynchronous Reset (b) Synchronous Reset

[0 FIGURE 4-17
Asynchronous and Synchronous Reset for D Flip-flops
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inputs as a part of the synchronous circuit design violates the fundamental synchro-
nous circuit definition, since it permits a flip-flop state to change asynchronously
within direct clock triggering.

Alternatively, the reset may be synchronous and require a clock-triggering
event to occur. The reset must be incorporated into the synchronous design of the
circuit. A simple approach to synchronous reset for D flip-flops, without formally
including the reset bit in the input combinations, is to add the AND gate shown in
Figure 4-17(b) after doing the normal circuit design. This design also assigns 00 ... 0
to the initial state. If a different initial state code is desired, then OR gates with Reset
as an input can selectively replace the AND gates with inverted Reset.

To illustrate the formulation process, two examples follow, each resulting in a
different style of state diagram.

EXAMPLE 4-3 Finding a State Diagram for a Sequence Recognizer

The first example is a circuit that recognizes the occurrence of a particular sequence
of bits, regardless of where it occurs in a longer sequence. This “sequence recognizer”
has one input X and one output Z. It has Reset applied to the direct reset inputs on
its flip-flops to initialize the state of the circuit to all zeros. The circuit is to recognize
the occurrence of the sequence of bits 1101 on X by making Z equal to 1 when the
previous three inputs to the circuit were 110 and current input is a 1. Otherwise, Z
equals 0.

The first step in the formulation process is to determine whether the state dia-
gram or table must be a Mealy model or Moore model circuit. The portion of the
preceding specification that says “... making Z equal to 1 when the previous three
inputs to the circuit are 110 and the current input is a 1” implies that the output is
determined from not only the current state, but also the current input. As a conse-
quence, a Mealy model circuit with the output dependent on both state and inputs is
required.

Recall that a key factor in the formulation of any state diagram is to recognize
that states are used to “remember” something about the history of the inputs. For
example, for the sequence 1101 to be able to produce the output value 1 coincident
with the final 1 in the sequence, the circuit must be in a state that “remembers” that
the previous three inputs were 110. With this concept in mind, we begin to formulate
the state diagram by defining an arbitrary initial state A as the reset state, and the
state in which “none of the sequence to be recognized has occurred.” If a 1 occurs on
the input, since 1 is the first bit in the sequence, this event must be “remembered,”
and the state after the clock pulse cannot be A. So a second state, B, is established to
represent the occurrence of the first 1 in the sequence. Further, to represent the
occurrence of the first 1 in the sequence, a transition is placed from A to B and
labeled with a 1. Since this is not the final 1 in the sequence 1101, its output is a 0. This
initial portion of the state diagram is given in Figure 4-18(a).

The next bit of the sequence is a 1. When this 1 occurs in state B, a new state is
needed to represent the occurrence of two 1s in a row on the input—that is, the
occurrence of an additional 1 while in state B. So a state C and the associated transi-
tion are added, as shown in Figure 4-18(b). The next bit of the sequence is a 0. When
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Construction of a State Diagram for Example 4-3

this 0 occurs in state C, a state is needed to represent the occurrence of the two 1s in
arow followed by a 0. So the additional state D with a transition having a 0 input and
0 output is added. Since state D represents the occurrence of 110 as the previous
three input bit values on X, the occurrence of a 1 in state D completes the sequence
to be recognized, so the transition for the input value 1 from state D has an output
value of 1. The resulting partial state diagram, which completely represents the
occurrence of the sequence to be recognized, is shown in Figure 4-18(c).

Note in Figure 4-18(c) that, for each state, a transition is specified for only one of
the two possible input values. Also, the state that is the destination of the transition
from D for input 1 is not yet defined. The remaining transitions must be based on the
idea that the recognizer is to identify the sequence 1101, regardless of where it occurs in
a longer sequence. Suppose that an initial part of the sequence 1101 is represented by a
state in the diagram. Then, the transition from that state for an input value that rep-
resents the next input value in the sequence must enter a state such that the 1 output
occurs if the remaining bits of the sequence are applied. For example, state C represents
the first two bits, 11, of sequence 1101. If the next input value is 0, then the state that is
entered, in this case, D, gives a 1 output if the remaining bit of the sequence, 1,is applied.

Next, evaluate where the transition for the 1 input from the D state is to go.
Since the transition input is a 1, it could be the first or second bit in the sequence to
be recognized. But because the circuit is in state D, it is evident that the prior input
was a 0. So this 1 input is the first 1 in the sequence, since it cannot be preceded by a
1. The state that represents the occurrence of a first 1 in the sequence is B, so the
transition with input 1 from state D is to state B. This transition is shown in the
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[0 TABLE 4-3

State Table for State Diagram in Figure 4-18

Next State Output Z

Present - EE—
State X=0|X=1 X=0 | X=1
A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

diagram in Figure 4-18(d). Examining state C, we can trace back through states B
and A to see that the occurrence of a 1 input in C is at least the second 1 in the
sequence. The state representing the occurrence of two 1s in sequence is C, so the
new transition is to state C. Since the combination of two 1s is not the sequence to be
recognized, the output for the transition is 0. Repeating this same analysis for miss-
ing transitions from states B and A, the final state diagram in Figure 4-18(d) is
obtained. The resulting state table is given in two-dimensional form in Table 4-3. M

One issue that arises in the formulation of any state diagram is whether, in
spite of best designer efforts, excess states have been used. This is not the case in the
preceding example, since each state represents input history that is essential for rec-
ognition of the stated sequence. If, however, excess states are present, then it may be
desirable to combine states into the fewest needed. This can be done using ad hoc
methods as in Example 4-1 or formal state-minimization procedures. Due to the
complexity of the latter, particularly in the case in which don’t-care entries appear in
the state table, formal procedures are not covered here. For the interested student,
state-minimization procedures are found in Reference 8 at the end of the chapter as
well as in many other logic design texts.

The next example illustrates an additional method for avoiding extra states by
recognizing potential state equivalence during the design process.

EXAMPLE 4-4 Finding a State Diagram for a BCD-to-Excess-3 Decoder

The excess-3 code for a decimal digit is the binary combination corresponding to the
decimal digit plus 3. For example, the excess-3 code for decimal digit 5 is the binary
combination for 5 + 3 = 8, which is 1000. The excess-3 code has desirable proper-
ties with respect to implementing decimal subtraction. In this example, the function
of the circuit is similar to that of the combinational decoders in Chapter 3 except
that the inputs, rather than being presented to the circuit simultaneously, are pre-
sented serially in successive clock cycles, least significant bit first. In Table 4-4(a), the
input sequences and corresponding output sequences are listed with the least signifi-
cant bit first. For example, during four successive clock cycles, if 1010 is applied to
the input, the output will be 0001. In order to produce each output bit in the same
clock cycle as the corresponding input bit, the output depends on the present input
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[0 TABLE 4-4
Sequence Tables for Code-Converter Example
(a) Sequences in Order of (b) Sequences in Order of
Digits Represented Common Prefixes
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value as well as the state. The specifications also state that the circuit must be ready
to receive a new 4-bit sequence as soon as the prior sequence has completed. The
input to this circuit is labeled X and the output is labeled Z. In order to focus on the
patterns for past inputs, the rows of Table 4-4(a) are sorted according to the first bit
value, the second bit value, and the third bit value of the input sequences.
Table 4-4(b) results.

The state diagram begins with an initial state, as shown in Figure 4-19(a).
Examining the first column of bits in Table 4-4(b) reveals that a 0 produces a 1 out-
putand a 1 produces a 0 output. Next, we ask, “Do we need to remember the value of
the first bit?” In Table 4-4(b), when the first bit is a 0, a 0 in the second bit results in
an output of 1 and a 1 in the second bit gives an output of 0. In contrast, if the first bit
isa 1,a 0 in the second bit causes an output of 0, and a 1 in the second bit gives out-
put 1. It is clear that we cannot determine the output for the second bit without
“remembering” the value of the first bit. Thus, the first input equal to 0 and the first
input equal to 1 must give different states, as shown in Figure 4-19(a), which also
shows the input/output values for the arcs to the new states.

Next, it must be determined whether the inputs following the two new states need
to have two states to remember the second bit value. In the first two columns of inputs
in Table 4-4(b), sequence 00 produces outputs for the third bit that are 0 for input 0 and
1 for input 1. On the other hand, for sequence 01, the outputs for the third bit are 1 for
input 0 and O for input 1. Since these are different for the same input values in the third
bit, separate states are necessary, as shown in Figure 4-19(b). A similar analysis for input
sequences 10 and 11, which examines the outputs for both the third and fourth bits,
shows that the value of the second bit has no effect on the output values. Thus, in
Figure 4-19(b), there is only a single next state for state B1 = 1.
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[0 FIGURE 4-19
Construction of a State Diagram for Example 4-4

At this point, six potential new states might result from the three states just
added. Note, however, that these states are needed only to define the outputs for the
fourth input bit, since it is known that the next state thereafter will be Init in prepara-
tion for applying the next input sequence of four bits. How many states does one
need to specify the different possibilities for the output value in the last bit? Looking
at the final column, a 1 input always produces a 1 output and a 0 may produce either
a 0 or a 1 output. Thus, at most two states are necessary, one that has a 0 outputtoa0
and one that has a 1 output to a 0. The output for a 1 input is the same for both states.
In Figure 4-19(c), we have added these two states. For the circuit to be ready to
receive the next sequence, the next state for these new states is Init.

Remaining is the determination of the blue arcs shown in Figure 4-19(d). The
arcs from each of the bit B2 states can be defined based on the third bit in the input/
output sequences. The next state can be chosen based on the response to input 0 in
the fourth bit of the sequence. The B2 state reaches the B3 state on the left with
B3 = 0 or B3 =1 as indicated by B3 = X on the upper half of the B3 state. The
other two B2 states reach this same state with B3 = 1, as indicated on the lower half
of the state. These same two B2 states reach the B3 state on the right with B3 = 0, as
indicated by the label on the state. |
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State Assignment

In contrast to the states in the analysis examples, the states in the diagrams con-
structed have been assigned symbolic names rather than binary codes. It is necessary
to replace these symbolic names with binary codes in order to proceed with the de-
sign. In general, if there are m states, then the codes must contain at least n bits,
where 2" = m, and each state must be assigned a unique code. So, for the circuit in
Table 4-3 with four states, the codes assigned to the states require two bits. Note that
minimizing the number of bits in the state code does not always minimize the cost of
the overall sequential circuit. The combinational logic may have become more costly
in spite of the gains achieved by having fewer flip-flops.

The first state assignment method we will consider is to assign codes with n bits
(2" =z m > 2"1) such that the code words are assigned in counting order. For example,
for states A, B, C, and D, the codes 00,01, 10, and 11 are assigned to A, B, C,and D,
respectively. An alternative that is attractive, particularly if K-maps are being used
for optimization, is to assign the codes in Gray code order, with codes 00,01, 11, and
10 assigned to A, B, C,and D, respectively.

More systematic assignment of codes attempts to reduce the cost of the
sequential circuit combinational logic. A number of methods based on heuristics
are available for targeting minimum two-level and minimum multilevel combina-
tional logic. The problem is difficult and the solutions are too complex for treatment
here.

There are a number of specialized state assignment methods, some of which
are based on efficient structures for implementing at least a portion of the transi-
tions. The most popular of these methods is the one flip-flop per state or one-hot
assignment. This assignment uses a distinct flip-flop for each of the m states, so it
generates codes that are m bits long. The sequential circuit is in a state when the
flip-flop corresponding to that state contains a 1. By definition, all flip-flops corre-
sponding to the other states must contain 0. Thus, each valid state code contains m
bits, with one bit equal to 1 and all other m — 1 bits equal to 0. This code has the prop-
erty that going from one state to another can be thought of as passing a token, the
single 1, from the source state to the destination state. Since each state is represented
by a single 1, before combinational optimization, the logic for entering a particular
state is totally separate from the logic for entering other states. This is in contrast to
the mixing of the logic that occurs when multiple 1s are present in the destination
and source state codes. This separation can often result in simpler, faster logic, and in
logic that is simpler to debug and analyze. On the other hand, the flip-flop cost may
be overriding. Finally, while the state codes listed have values for m variables, when
equations are written, only the variable which is 1 is listed. For example, for
ABCD = 0100, instead of writing ABC D, we can simply write B. This is because
all of the remaining 2™ — m codes never occur and as a consequence produce don’t
cares.

The use of a sequentially assigned Gray code and of a one-hot code for the
sequence recognizer design is illustrated in the following example. In the next sub-
section, the designs will be completed and the costs of these two assignments
compared.
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EXAMPLE 4-5 State Assignments for the Sequence Recognizer

The Gray code is selected in this case simply because it makes it easier for the
next-state and output functions to be placed on a Karnaugh map. The state table de-
rived from Table 4-3 with codes assigned is shown in Table 4-5. States A, B, C,and D
are replaced in the present state column by their respective codes, 00,01, 11, and 10.
Next, each of the next states is replaced by its respective code. This 2-bit code uses a
minimum number of bits.

A one-hot code assignment is illustrated in Table 4-6. States A, B, C,and D are
replaced in the Present State column by their respective codes, 1000,0100, 0010, and
0001. Next, each of the next states is replaced by its respective code. Since there are

four states, a 4-bit code is required, with one state variable for each state. [ |

[0 TABLE 4-5

Table 4-3 with Names Replaced by a 2-Bit Binary Gray Code
Present State Next State Output Z
AB X=0 X=1 X=0|X=1
00 00 01 0 0
01 00 11 0 0
11 10 11 0 0
10 00 01 0 1
[0 TABLE 4-6

Table 4-3 with Names Replaced by a 4-Bit One-Hot Code
Present State Next State Output Z
ABCD X=0|X=1 X=0|X=1
1000 1000 0100 0 0
0100 1000 0010 0 0
0010 0001 0010 0 0
0001 1000 0100 0 1

Designing with D Flip-Flops

The remainder of the sequential circuit design procedure will be illustrated by
the next two examples. We wish to design two clocked sequential circuits for the
sequence recognizer, one that operates according to the Gray-coded state table
given in Table 4-5 and the other according to the one-hot coded table given in
Table 4-6.
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EXAMPLE 4-6 Gray Code Design for the Sequence Recognizer

For the Gray-coded design, two flip-flops are needed to represent the four states.
Note that the two state variables are labeled with letters A and B.

Steps 1 through 3 of the design procedure have been completed for this circuit.
Beginning step 4, D flip-flops are chosen. To complete step 4, the flip-flop input equa-
tions are obtained from the next-state values listed in the table. For step 5, the output
equation is obtained from the values of Z in the table. The flip-flop input equations
and output equation can be expressed as a sum of minterms of the present-state vari-
ables A and B and the input variable X:

A(t + 1) = D4(A, B, X) = Sm(3,6,7)
B(t + 1) = Dg(A, B, X) = 3m(1,3,5,7)

Z(A,B,X) = Sm(5)

In the case of this table with the Gray code on the left margin and a trivial Gray
code at the top of the table, the adjacencies of the cells of the state table match the
adjacencies of a K-map. This permits the values for the two next state variables
A(t + 1) and B(t = 1) and output Z to be transferred directly to the three K-maps
in Figure 4-20, bypassing the sum-of-minterms equations. The three Boolean func-
tions, simplified by using the K-maps, are:

D, = AB + BX
DB=X
Z = ABX

The logic diagram of the sequential circuit is shown in Figure 4-21. The gate-input
cost of the combinational logic is 9. A rough estimate for the gate-input cost for a

flip-flop is 14. Thus the overall gate-input cost for this circuit is 37 |

X X X X X X

ABN_0 1 ABN 01 ABN_0 1
00 00 1] 00
01 1 01 1 01

B B B

11 | NIk | 11 1 11

A — A A
10 10 1 10
D, = AB + BX Dg = X Z = ABX

OO0 FIGURE 4-20
K-Maps for the Gray-Coded Sequential Circuit with D Flip-Flops
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Logic Diagram for the Gray-Coded Sequence Recognizer with D Flip-Flops

EXAMPLE 4-7 One-Hot Code Design for the Sequence Recognizer

For the one-hot coded design in Table 4-6, four flip-flops are needed to represent the
four states. Note that the four state variables are labeled A, B, C, and D. As is often
the case, the state variables have names that are the same as those of the correspond-
ing states.

Just as for the Gray-coded case, steps 1 through 3 of the design procedure have
been completed and D flip-flops have been chosen. To complete step 4, the flip-flop
input equations are obtained from the next-state values. Although the state codes
listed have values for four variables, recall that when equations from a one-hot code
are written, only the variable with value 1 is included. Also, recall that each term of
the excitation equation for state variable Y is based on a 1 value for variable Y in a
next-state code entry and the sum of these terms is taken over all such 1s in the
next-state code entries. For example, a 1 appears for next-state variable B for present
state 1000 (A) and input value X = 1, and for present state 0001 (D) and input
value X = 1. This gives B(t + 1) = AX + DX. For step 5, the output equation is
obtained from the locations of the 1 values of Z in the output table. The resulting
flip-flop input equations and output equation are:

Alt+1)=D,=AX+BX+ DX =(A+ B+ D)X
B(t+1)=Dz=AX+ DX = (A + D)X
Ct+1)=Dc=BX+CX=(B+0OX
D(t+1)=Dp=CX

Z = DX

The logic diagram of the sequential circuit is shown in Figure 4-22. The gate-input
cost of the combinational logic is 19 and the cost of four flip-flops using the estimate
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Logic Diagram for the One-Hot Coded Sequence Recognizer with D Flip-Flops

from Example 4-5 is 56, giving a total gate input cost of 74, almost twice that of the
Gray code design. This result supports the view that the one-hot design tends to be
more costly, but, in general, there may be reasons for its use with respect to other
factors such as performance, reliability, and ease of design and verification. |

Designing with Unused States

A circuit with # flip-flops has 2" binary states. The state table from which the circuit
was originally derived, however, may have any number of states, m < 2. States that
are not used in specifying the sequential circuit are not listed in the state table. In
simplifying the input equations, the unused states can be treated as don’t-care condi-
tions. The state table in Table 4-7 defines three flip-flops, A, B, and C, and one in-
put, X. There is no output column, which means that the flip-flops serve as outputs of
the circuit. With three flip-flops, it is possible to specify eight states, but the state
table lists only five. Thus, there are three unused states that are not included in the
table: 000, 110, and 111. When an input of 0 or 1 is included with the unused
present-state values, six unused combinations are obtained for the present-state and
input columns: 0000, 0001, 1100, 1101, 1110, and 1111. These six combinations are
not listed in the state table and hence may be treated as don’t-care minterms.
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[0 TABLE 4-7

State Table for Designing with Unused States
Present State Input Next State
A B C X A B C
0o o0 1 0 0 o0 1
0 0 1 1 0O 1 0
0 1 0 0 0o 1 1
0o 1 0 1 1 0 0
o 1 1 0 0 0 1
0 1 1 1 1 0 0
1 0 0 0 1 0 1
1 0 0 1 1 0 0
1 0 1 0 0 0 1
1 0 1 1 1 0 0

The three input equations for the D flip-flops are derived from the next-state
values and are simplified in the maps of Figure 4-23. Each map has six don’t-care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

D,= AX + BX + BC
DB:Z
DC:Y

The logic diagram can be obtained directly from the input equations and will not be
drawn here.

It is possible that outside interference or a malfunction will cause the circuit to
enter one of the unused states. Thus, it is sometimes desirable to specify, fully or at least

Aﬁx 0 ol 11 10 < <
nEn T~ T+
01 1| |1_| 1 1
X
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| x [ x| x|f| x x| x| x x| x| x| x
A A A
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X X X
D, =AX +BX + BC Dy = ACX + ABX Dc=X

[0 FIGURE 4-23
Maps for Optimizing Input Equations
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partially, the next-state values or the output values for the unused states. Depending on
the function and application of the circuit, a number of ideas may be applied. First, the
outputs for the unused states may be specified so that any actions that result from entry
into and transitions between the unused states are not harmful. Second, an additional
output may be provided or an unused output code employed which indicates that the
circuit has entered an incorrect state. Third, to ensure that a return to normal operation
is possible without resetting the entire system, the next-state behavior for the unused
states may be specified. Typically, next states are selected such that one of the normally
occurring states is reached within a few clock cycles, regardless of the input values. The
decision as to which of the three options to apply, either individually or in combination,
is based on the application of the circuit or the policies of a particular design group.

Verification

Sequential circuits can be verified by showing that the circuit produces the original state
diagram or state table. In the simplest cases, all possible input combinations are applied
with the circuit in each of the states, and the state variables and outputs are observed.
For small circuits, the actual verification can be performed manually. More generally,
simulation is used. In manual simulation, it is straightforward to apply each of the state—
input combinations and verify that the output and the next state are correct.

Verification with simulation is less tedious, but typically requires a sequence of
input combinations and applied clocks. In order to check out a state—input combina-
tion, it is first necessary to apply a sequence of input combinations to place the cir-
cuit in the desired state. It is most efficient to find a single sequence to test all the
state—-input combinations. The state diagram is ideal for generating and optimizing
such a sequence. A sequence must be generated to apply each input combination in
each state while observing the output and next state that appear after the positive
clock edge. The sequence length can be optimized by using the state diagram. The
reset signal can be used as an input during this sequence. In particular, it is used at
the beginning to reset the circuit to its initial state.

In Example 4-8, both manual and simulation-based verification are illustrated.

EXAMPLE 4-8 Verifying the Sequence Recognizer

The state diagram for the sequence recognizer appears in Figure 4-18(d) and the log-
ic diagram in Figure 4-21. There are four states and two input combinations, giving a
total of eight state—input combinations to verify. The next state can be observed as
the state on the flip-flop outputs after the positive clock edge. For D flip-flops, the
next state is the same as the D input just before the clock edge. For other types of
flip-flops, the flip-flop inputs just before the clock edge are used to determine the
next state of the flip-flop. Initially, beginning with the circuit in an unknown state, we
apply a 1 to the Reset input. This input goes to the direct reset input on the two
flip-flops in Figure 4-21. Since there is no bubble on these inputs, the 1 value resets
both flip-flops to 0, giving state A (0, 0). Next, we apply input 0, and manually simu-
late the circuit in Figure 4-21 to find that the output is 0 and the next state is A (0, 0),
which agrees with the transition for input 0 while in state A. Next, simulating state A
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with input 1, next state B (0, 1) and output O result. For state B, input 0 gives output 0
and next state A (0,0), and input 1 gives output 0 and next state C (1, 1). This same
process can be continued for each of the two input combinations for states C and D.

For verification by simulation, an input sequence that applies all state—input
combination pairs is to be generated accompanied by the output sequence and state
sequence for checking output and next-state values. Optimization requires that the
number of clock periods used exceed the number of state-input combination pairs
by as few periods as possible (i.e., the repetition of state—input combination
pairs should be minimized). This can be interpreted as drawing the shortest path
through the state diagram that passes through each state—input combination pair at
least once.

In Figure 4-24(a), for convenience, the codes for the states are shown and the
path through the diagram is denoted by a sequence of blue integers beginning with 1.
These integers correspond to the positive clock edge numbers in Figure 4-24(b),
where the verification sequence is to be developed. The values shown for the clock
edge numbers are those present just before the positive edge of the clock (i.e., during
the setup time interval). Clock edge Ois at = 0 in the simulation and gives unknown
values for all signals. We begin with value 1 applied to Reset (1) to place the circuit in
state A. Input value 0 is applied first (2) so that the state remains A, followed by 1 (3)
checking the second input combination for state A. Now in state B, we can either
move forward to state C or go back to state A. It is not apparent which choice is best,
so we arbitrarily apply 1 (4) and go to state C. In state C, 1 is applied (5) so the state
remains C. Next, a 0 is applied to check the final input for state C. Now in state D, we
have an arbitrary choice to return to state A or to state B. If we return to state B by

Clock Edge: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
InputR: X 1 0 0 0 0 0 0 0 0 0
Input X: X 0
State (A,B): X, X 0,0 0,0 0,0 0,1 1,1 1,1 1,0 0,1 0,0 0,1 1,1 1,0 0,0
OutputZ: X 0 0 0 0 0 0 1 0 0 0 0 0
(b)

[0 FIGURE 4-24
Test Sequence Generation for Simulation in Example 4-3
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Simulation for Example 4-8

applying 1 (7), then we can check the transition from B to A for input 0 (8). Then, the
only remaining transition to check is state D for input 0. To reach state D from state
A, we must apply the sequence 1,1,0 (9) (10) (11) and then apply 0 (12) to check the
transition from D to A. We have checked eight transitions with a sequence consisting
of reset plus 11 inputs. Although this test sequence is of optimum length, optimality
is not guaranteed by the procedure used. However, it usually produces an efficient
sequence.

In order to simulate the circuit, we enter the schematic in Figure 4-21 using the
Xilinx ISE 4.2 Schematic Editor and enter the sequence from Figure 4-24(b) as a
waveform using the Xilinx ISE 4.2 HDL Bencher. While entering the waveform, it is
important that the input X changes well before the clock edge. This insures that there
is time available to display the current output and to permit input changes to propa-
gate to the flip-flop inputs before the setup time begins. This is illustrated by the
INPUT waveforms in Figure 4-25,in which X changes shortly after the positive clock
edge, providing a good portion of the clock period for the change to propagate to the
flip-flops. The circuit is simulated with the MTI Model Sim simulator. We can then
compare the values just before the positive clock edge on the STATE and OUTPUT
waveforms in Figure 4-25 with the values shown on the state diagram for each clock
period in Figure 4-24. In this case, the comparison verifies that the circuit operation
is correct. [

4-6 STATE-MACHINE DIAGRAMS AND APPLICATIONS

Thus far, we have used a traditional notation for state diagrams and tables, a nota-
tion illustrated by a Mealy model state diagram in Figure 4-26(a). Although this
model serves well for very small designs, it often becomes cumbersome or unwork-
able for large designs. For example, all 2" combinations of » input variables must be
represented on the transitions from each of the states even though the next state or
output may be affected by only one of the n input variables. Also, for a large number
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Inputs: A,B
Outputs: Y,Z

(a) Traditional state diagram

TCD Mealy Output Actions,
OC/TOCD Mealy Output Actions

TC

Moore Output Actions,
OC/TCI Mealy Output Actions

(b) Generic State Diagram Template
BIY

Inputs: A, B
Outputs: Y,Z
Defaults: Y =0,Z=0

Reset

(c) State machine diagram

Inputs: A, B - 7
Outputs: Y,Z AB AB
Defaults: Y =0,Z =0
A A
B AB
(d) Invalid Transition Conditions (e) Invalid Ouput Action

O FIGURE 4-26
Traditional State and State-Machine Diagram Representations
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of output variables, for each state or input combination label, up to 2" output
combinations must be specified even though only one among the m output variables
is affected by the state and input values. Also, the Mealy model is very inefficient in
specifying outputs because of the need to combine transition and output control
functions together. To illustrate, the use of Moore outputs, in addition to Mealy, can
greatly simplify output specification when applicable. Also, the use of Mealy outputs
that are dependent upon input values, but not dependent on transition labels, can be
useful.

These arguments suggest that for pragmatic design, a modified state diagram
notation is critical. We call this modified state diagram a state-machine diagram. This
term is also applied to the traditional state diagram representations, although here
we use it primarily to identify departures in notation from that used for traditional
diagrams. The main targets of the notation changes are to replace enumeration of
input and output combinations with the use of Boolean expressions and equations
to describe input combinations, and the expansion of the options for describing out-
put functions beyond those permitted by the traditional model.

State-Machine Diagram Model

The development of this model is based on input conditions, transitions, and out-
put actions. For a given state, an input condition can be described by a Boolean
expression or equation in terms of input variables. An input condition as an ex-
pression is either equal to 1 or 0. As an equation, it is equal to 1 if it is satisfied, and
equal to 0 if it is not. An input condition on a transition arc is called a transition
condition (TC), and causes a transition to occur if it is equal to 1. An input condi-
tion that, if equal to 1, causes an output action to occur is an output condition (OC).
In a Moore model state-machine diagram, only transition conditions appear. Out-
put actions are a function of the state only and therefore are unconditional, i.e.,
with an implicit output condition equal to 1. In a traditional Mealy model, when a
condition appears on an arc, by definition, it is both a transition condition and an
output condition. Multiple transition and output conditions may appear on a given
transition arc. In our model, we modify the Mealy model in two ways. First of all,
we permit output conditions to appear on the state, not just on transitions. Second,
we permit output conditions that depend on, but are not transition conditions on
the arcs. This provides more modeling flexibility in the formulation of correspond-
ing state tables and HDL descriptions. For this