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Preface

This book is aimed to analyze and design nano integrated circuits (nanoICs)
that can be fabricated using nanotechnology.

Rationale and audience
Two approaches to the design of computer devices and systems can be recog-
nized in nanoscience and nanotechnology:

The first approach is based on the principle of assembling a complex system
from simple quantum-effect components. Since quantum effects in such
a networked system are local, the global logic design inherits traditional
paradigms. To design, for example, a massive parallel adder, one must
choose a method, develop an algorithm, and design the logic circuit
based on the library of cells implementing an elementary logic function,
or based on the processing elements constituting computing arrays.

The key point of the second approach is a global modeling of computing
processes by appropriate physical phenomena. These processes require
nontrivial algorithms whose major principle is so-called quantum super-
position, or coherent superposition of the two states of an atom. The
design paradigm is based on the control of the chosen phenomena and
data streams, including a representation of input and output data in the
required forms (electrical, optical, or electromagnetic). For example, in
the ion trap, laser pulse directed to the ion, cause electrostatic repulsion
from an ion to other ions.

This book emphasizes and contributes to the first direction, i.e., design of
nanoelectronic devices to document the technological feasibility in synthesis
of complex two- and three-dimensional systems. We argue that from a fabri-
cation viewpoint, complex nanoICs can be designed based on multiterminal
nanoelectronic devices, and can be created using self-assembly and various
synthesis processes. It draws connections to contemporary approaches to com-
puter hardware design based on traditional Boolean algebra. However, it ab-
stracts from the traditional orientation of very large scale integration (VLSI)
technology and ultra large scale integration (ULSI) technology at gate-level

xv© 2005 by CRC Press
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implementation of switching functions, and characterizes structural require-
ments of existing and predictable nanoscale devices.

It is difficult to apply fundamental macroscale architectures and computer
aided design (CAD) of integrated circuits (ICs) tools to the nanoscale do-
main. There has been an active pursuit of alternative computing paradigms,
which employ intrinsically nanoscale components. Because today’s quantum
devices are weak and sensitive, they are not suited to conventional logic gate
architectures, which require robust devices. The focus of investigation is the
developing of design paradigms that can discover novel architectures, per-
form functional synthesis, as well as carry out modeling, analysis, design, and
optimization for nanoICs. Progress is impossible without timely techniques
and tools of CAD of nanoICs, carefully synchronized with current technology
trends and opportunities.

With the motivation of making the field of logic design in nanodimensions
accessible to engineers, the goals of this book are as follows:

To introduce the data structures that satisfy criteria of massive parallel pro-
cessing, homogeneity, and fault tolerance; this enables an engineer to
choose models appropriate to technological possibilities;

To introduce models and data structures for synthesis of circuits in nanodi-
mensions; the focus on hypercube and hypercube-like structures;

To introduce methods for analysis of data structures and models in nan-
odimensions; the concept of Akers’s change and Shannon’s information
theoretical measures are keys of the approach.

To achieve these goals, the authors deploy selected methods of contempo-
rary logic design, as well as specific methods for design of nanoICs. These are
built on a background with which most electrical engineers are already famil-
iar: logic functions and methods of design of discrete devices. We introduce
our vision of logic design of nanoICs through:

� Synthesis of spatial data structures and assembling topological models;

� Word-level technique, emphasizing linear word-level representation;

� Multilevel circuit design in spatial dimensions;

� Concept of change in spatial structures for analysis, i.e., event-driven anal-
ysis;

� Multiple-valued logic for circuit design;

� Fault tolerance computing in spatial structures;

� Systolic arrays of nanodevices; cellular arrays and neural-like networks;

� Information theoretical measures in spatial structures.

The key features that distinguish this book from others include the follow-
ing:
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The central role of topological models (embedding in hypercubes, assembling
the topology);

The revised technique of advanced logic design (algebraic, matrix and graph-
based) with respect to new possibilities of processing in spatial dimen-
sions;

Innovative ideas and solutions inspired by recent advents in nanotechnologies,
such as a stochastic character of calculations in nanodevices. The best
of information theoretic facilities and stochastic computing are applied
to modeling and simulation of the proposed nanostructures.

This book is oriented toward two groups of readers. The first group involves
researchers who are working on design of nanodevices. On the other hand,
nanodesign has not yet had a significant impact on mainstream technologies,
and most computer and electrical engineers and graduate students will prob-
ably never have to deal with them. However, this book will be useful to them.
The reason is that a keystone of this book is the selected methods of advanced
logic design introduced in unified style directed toward the dynamic challenges
of technologies, including today’s frontiers. This volume should be especially
valuable to those active and innovative engineers, scientists, and students who
are interested in logic design of discrete devices in nanodimensions. This is
the second group of readers.

This book does not attempt to be theoretically comprehensive in logic de-
sign of nanoICs in scope: it is rather a first attempt at creating theory in the
area of logic design of spatial computing structures, an introduction to the
subject. By combining a focus on basic principles of logic design in spatial
dimensions with a description of current technology and future trends, this
book aims to inspire the next generation of engineers to continue to develop
the theory and practice of logic design for nanoICs.

There are several excellent textbooks on related topics that we have used
in our courses on advanced logic design:

� Switching Theory for Logic Synthesis, Kluwer Academic Publishers, 1999,
by T. Sasao,

� Algorithms and Data Structures in VLSI Design, Springer, 1998, by C.
Meinel, and T. Theobald,

� Logic Synthesis and Verification, Kluwer Academic Publishers, 2002, S.
Hassoun, and T. Sasao (Eds), R. K. Brayton (Consulting Ed.),

� Spectral Interpretation of Decision Diagrams, Springer, 2003, by R. S.
Stanković and J. T. Astola.

Though the above books are outstanding references to selected areas of logic
design, there are certain aspects of design that are special to nanoICs. They
are not covered in the mentioned references.
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Scope of the book
Perhaps the largest group of readers will consist of people who want to read a
full and unambiguous representation of the methods and tools of logic design
of nanoICs. For these readers, the most important chapters of this book are

In order to follow our representation (description), it might be helpful to read

A large part of this book is aimed at the readers who want to know why
computing logic functions is not straightforward in nanospace, and why it

and principles underlying the design of nanodevices (Chapter 3), culminating

to parallel computations organization focused on word-level computational
models.

The book is organized into 12 chapters.

Chapter 1, Introduction, gently introduces the directions and methodo-
logy of logic design in nanodimensions.

Chapter 2, Nanotechnologies, lays the technology groundwork of CAD
of NanoICs. The key idea is that data structure is a crucial point of
nanotechnologies. In general, this chapter justifies the appropriateness
of data structures that are introduced in the next chapters.

Chapter 3, Basics of logic design in nanospace, includes a brief in-
troduction in graphical representation of switching functions and net-
works, and focuses on uniform representation of data structures: sum-
of-products, Reed-Muller and arithmetic expressions. All known me-
thods are utilized to introduce the technique of representation and ma-
nipulation of these data structures, namely, algebraic equation, matrix
(spectral) method, flowgraphs of algorithms, decision trees and decision
diagrams.

Chapter 4, Word-level data structures, is a continuation of the previ-
ous chapter. Word-level technique is a less studied area of contemporary
logic design, carrying opportunities for massive parallel computing. It
provides the motivation to study their properties in detail. Three kinds
of word-level expression are discussed: arithmetic, sum-of-products, and
Reed-Muller. Chapters 3 and 4 are recommended for engineers and stu-
dents who want to study state-of-the-art logic design.

Chapter 5, Nanospace and hypercube-like data structures, covers
3-D topological structures. It starts with a classic hypercube, and fo-
cuses on assembling the hypercube, in contrast to the well studied prob-
lem of embedding a guest graph into the hypercube. Some renowned
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solutions based on hypercube interpretation and manipulation are intro-
duced from the position of assembling the topological structures from
primitives. It is shown that the classical hypercube is limited to carrying
information about switching functions, and, therefore new topological
constructions are required. Next, a hypercube-like data structure called
an N -hypercube is introduced. Its topology resembles the classic hy-
percube. However, a number of features make it suitable for effective
representation of switching functions in spatial dimensions with respect
to some physical constraints. In particular, dynamic characteristics are
discussed that are related to the polarity of variables and the order of
variables in decision trees and diagrams. This is a key chapter in over-
all understanding of the problem of calculation switching functions in
spatial dimensions.

Chapter 6, Nanodimensional multilevel circuits, presents the tech-
nique of a multilevel circuit design based on an N -hypercube. The
general flow of the chapter is as follows: a library of 3-D gates is intro-
duced, and various techniques for implementing multilevel computation
are applied. Methods for the evaluation of resulting circuits in spatial
dimensions are discussed.

Chapter 7, Linear word-level models of multilevel circuits, is a de-

to the condition of linearity. The study of this boundary case of the
word-level data structure is motivated by its ability to carry the same
information as word-level data does but in a simpler way. For exam-
ple, a linear decision tree or diagram is directly mapped into linear
parallel-pipelining topology. The library of N -hypercube linear models
for primitives allows design of arbitrary combinational and sequential
circuits in nanodimensions. This chapter is recommended to researchers
looking for parallel organization of logic computations in the advent of
nanotechnologies.

Chapter 8, Event-driven analysis of hypercube-like topology, in-
troduces the technique of analysis in spatial dimensions based on the
concept of change. It shows that logic difference is a useful model in some
cases for understanding the relations between different data structures
and representations of switching functions. For example, logic Taylor
expansion produces Reed-Muller coefficients. However, the coefficients
of a logic Taylor expansion carry information in a form acceptable for
analysis, i.e., in terms of change. In general, the Taylor expansion (logi-
cal and arithmetic) allows us to introduce most of the diversification in
transformation of switching functions in a simple way and from a uni-
fied position. The value of this material for design of nanoICs is justified
by the fact that Taylor expansion in spatial dimensions is the general
form used to generate various useful forms of switching functions such
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as Reed-Muller, arithmetic, Walsh, and their modifications. This chap-
ter will be useful for engineers and students interested in advanced logic
design.

Chapter 9, Nanodimensional multivalued circuits, contributes in spa-
tial dimensions to logic design of devices based on multivalued signals.
The formal extension of switching theory is multivalued logic. It is ex-
pected that nanotechnologies will provide us with the opportunity to
utilize the concept of multivalued signals in nanodevices. This chapter
introduces various aspects of 3-D multivalued circuits design following,
however, the line of previous chapters by generalizing of results for swit-
ching functions. The material of this chapter will be useful for engineers
and students who want to take advantage of algebra of multivalued logic
for modeling post-binary devices.

Chapter 10, Parallel computation in nanospace, extends the con-
cept of logic calculations and data processing on 2-D linear arrays to
spatial dimensions. The main motivation for introducing this exten-
sion is the simplification of design in spatial dimensions. Bit-level sys-
tolic processing algorithms and linear systolic arrays have been chosen
as they perfectly translate into locally-interconnected hardware. This
chapter addresses the reader’s interest in massive parallel computations
in nanospace.

Chapter 11, Fault-tolerant computation, discusses the problem of com-
putation using non-reliable elements. Nanodevices created hitherto are
weak and sensitive, and the issue of reliable computations on non-reliable
devices is essential as never before. This chapter will be useful for in-
novative engineers and students who are interested in logic design of
nanoICs.

Chapter 12, Information measures in nanodimensions, contributes
to the technique of information-theoretical measures in spatial struc-
tures. The reason that the Shannon theory of information should be
one of the most important measurement characteristics in nanospace is
that it reflects the physical nature and restrictions that nanostructures
on a molecular level pose to information carriers, due to quantum effects
and other features of ultra-small structures.

Style
A textbook style has been chosen for this book. There are about 250 examples
throughout the text illustrated by about 250 figures. These examples are the
keys to solving the set of about 100 problems at the end of each chapter.
Authors’ solutions to the problems can be found in the Manual for Instructors.
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Some of the problems can be considered as potential further work, both the-
oretical and applied, to inspire suggestions, algorithms, or hypotheses, which
may extend the ideas presented in this book. If you, gentle and ambitious
reader, actually work out any of these problems, we would be interested in
seeing your results. The problems in each set range from simple applications
of procedures developed in the book to challenging solutions of more complex
problems.

In each chapter, recommendations for further reading are given.

Svetlana N. Yanushkevich
Vlad P. Shmerko
Sergey E. Lyshevski

Calgary (Canada)
Rochester (U.S.A.)
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1

Introduction

The supercomputer, a computing architecture concept that has inspired the
creators of Cray T3D and Ncube, is an example of implementation of 3-D
design. The components of a supercomputer, as a system, are designed based
on classical paradigms of 2-D architecture that becomes 3-D because of:

� 3-D topology (of interconnects), or
� 3-D data structures and corresponding algorithms, or
� 3-D communication flow.

Spatial models are widely used for representation and manipulation of digital
data. For example, the hypercube is a classic model for manipulation and
minimization of switching, or Boolean functions in low-level logic design. On
the highest level, e.g., a communication system, or network of workstations,
hypercube-like topologies are deployed as well.

Nanostructures are confined to the 3-D nature of the physical world. Since
low-level design deals with molecular/atomic structures, the physical plat-
form has a 3-D structure instead of the 2-D “macro” layout of silicon ICs.
This chapter aims at a global perspective on how contemporary logic design
techniques fit into nanosystems.

There is a number of particular features to representing logic functions in
nanospace:

� The logic functions have to be represented by a data structure in which
information about the function satisfies the requirements of the imple-
mentation technology;

� An appropriate data structure must be chosen in order to ensure an infor-
mation flow that complies with the implementation topology;

� This data structure must be effectively embedded into the topological struc-
ture.

Therefore, designing the architectures for computing logic functions sup-
poses a resolution to the problem of finding the appropriate data structure
and topology while taking into account some implementation aspects.

In this book, data structures that are efficiently embedded into the hypercube-
like topology are introduced. The main criteria of the relationships between
data structure, topology and technology are discussed in this chapter.
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The structure of this chapter is as follows. A brief overview of current trends
in 3-D architectures design is given in Section 1.2. The methodology of logic
design in spatial dimensions is represented in Section 1.4. In Section 1.3
the structure of computer aided design (CAD) of integrated circuits (ICs) is
introduced. Illustration by example of the application of different hypercube-
like topologies is the focus of Section 1.5. Recommendations for “Further
reading” are given in Section 1.8, and a number of problems in Section 1.7,
some of which can be used as topics of students’ projects, are formulated as
well.

1.1 Progress from micro- to nanoelectronics

Scaling of microelectronics down to nanoelectronics is the inevitable result of
technological evolution (Figure 1.1).
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FIGURE 1.1
Revolutionary progress from micro- to nanosize.

The following can be compared against this scale:

� The size of an atom is approximately 10−10 m. Atoms are composed of
subatomic particles, e.g., proton, neutron and electron. Protons and
neutrons form the nucleus with a diameter approximately 10−15 m.

� 2-D molecular assembly (1 nm)
� 3-D functional nanoICs topology with doped carbon molecules (2 × 2 × 2

nm)
� 3-D nanobioICs (10 nm),
� E.coli bacteria (2 mm) and ants (5 mm) have complex and high-performance

integrated nanobiocircuitry,
� 1.5×1.5 cm 478-pin Intel� Pentium� processor with millions of transistors,

and Intel 4004 Microprocessor (made in 1971 with 2,250 transistors)

Significant evolutionary progress has been achieved in microelectronics.
This progress (miniaturization, optimal design and technology enhancement)

© 2005 by CRC Press



Introduction 3

is achieved by scaling down microdevices approaching 10 nm sizing features
for structures. CMOS technology has been enhanced. Currently, nanolithog-
raphy, advanced etching, enhanced deposition, novel materials and modified
processes are used to fabricate ICs. The channel length of metal-oxide-
semiconductor field effect transistors (MOSFETs) has been decreased from

� 50 µm in 1960, to
� 1 µm in 1990, and to
� 35 nm in 2004.

Example 1.1 Progress made in Intel processors:

� From Intel 4004 (1971, 2,250 transistors), to 286 (1982, 120,000 transis-
tors),

� From Pentium (1993, 3,100,000 transistors), to Pentium 4 (2000,
42,000,000 transistors), to ItaniumTM 2 Processor (2002), and to
Pentium� M Processor (2003) with hundreds of millions of transistors.

By conservative estimates, it is anticipated that field-effect CMOS transistors
scaled approximately to 100 nm in total size must meet the 18 nm gate-length
projection. Fabricating high-yield, high-performance planar (2-D) multilay-
ered ICs with hundreds of millions of transistors on a single 1 cm2 die is
achieved by applying 65 nm CMOS technology.

However, there are fundamental technological differences among

� Nanoelectronic devices vs. microelectronic (which can even be nanometers
in size) devices,

� Nanoelectronics vs. microelectronics, e.g., nanoICs vs. ICs.

These enormous differences are due to differences in basic physics and other
phenomena. The dimensions of nanodevices that have been made and charac-
terized are a hundred times less than newly designed microelectronic devices
(including nanoFETs with 10 nm gate length). Nanoelectronics sizing leads
to 1,000,000 volume reduction in packaging, not to mention revolutionary
enhanced functionality due to multiterminal and spatial features.

1.2 Logic design in spatial dimensions

Traditional logic design models and techniques may not satisfy the require-
ments and properties of nanoscale computing devices:

� While the information flow in today’s semiconductor devices is associated
with surges of electrons, in new devices this is likely to be associated
with states, count of electrons, etc.
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� The nature of the signals and processes in ultra-small devices of size com-
pared to wave length is stochastic. These devices are very sensitive
to many physical factors (thermal fluctuation, wave coherence, random
tunneling, etc.)

� The need for fault-tolerance computation increases as device to device fluc-
tuations become larger at the furthest limits of integration. In nano-
structures, it is likely to be achieved through introducing redundant
hardware, which is not an acceptable practice for silicon devices (on the
transistor level, not the block level where duplication is used), due to
power dissipation, clocking and area constraints.

� While voltage state logic can still be acceptable in some types of nanode-
vices, most of them are supposed to be locally connected arrays of ele-
ments (e.g., molecular ones). This means that traditional gate-level, ran-
domly networked circuits, such as AND/OR/NOT (or other gates) and
corresponding data structures (directed acyclic graphs of the netlists,
symbolic structures) may not work for the purposes of optimization and
manipulation of logic functions implemented on nanostructures.

The class of spatial architectures has proven itself to be useful and rea-
sonable, especially in the area of network communication (communication
hypercubes) and parallel and distributed algorithms in supercomputers. One
can observe a certain relationship to existing parallel algorithms and pro-
gramming models, some of which are 3-D. However, the application of 3-D
techniques to design of nanoICs is not simple.

We draw connections to the contemporary approach to computer hardware
design. This direction comprises of two distinct approaches to logic design in
nanodimensions:

� Development of a new theory and technique for logic design in spatial
dimensions; this direction can be justified, in particular, by nanotech-
nologies that implement devices on a reversibility principle, and

� Using the advanced logic design techniques and methods of computational
geometry in spatial dimensions.

This book focuses on the second approach, inheriting knowledge about dis-

� Selected methods of advanced logic design, and
� Appropriate spatial topologies.

Data structure plays a crucial role in logic design of nanoICs. We adopt
certain methods of advanced logic design including techniques for representa-
tion and manipulation of different data structures (algebraic, matrix, decision
trees, etc.). These methods are selected based on the criteria shown in Table
1.1:

� Graph based models suitable for embedding and manipulation;

© 2005 by CRC Press
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TABLE 1.1

Logic design in spatial dimensions: which methods of advanced logic
design are compatible with nanotechnology requirements.

LOGIC DESIGN TECHNOLOGY

� Graph based models

� Massive parallel computing

� Testability

� Observability

� Fault tolerance computing

� Interpretation of logic signals

� Interpretation of data structures

� Locally interconnected architecture

� Superior density and scalability

� Unreliable low-gain elements

� Technique for massive parallel computing;
� Testability and observability;
� Fault tolerance and reliable computing.

Selected methods of computation geometry include elements of graph the-
ory, measures in spatial dimensions, manipulation, transformation and design
of topological structures. The topological structures are used in the rep-
resentation of data structures. These topologies must satisfy a number of
requirements:

Scalability. Topologies and algorithms for their construction and manipula-
tion must be scalable in the size of the circuit that can be processed. For
example, in 1985, a single run of ICs synthesis system dealt with about
1,000 gate equivalence. In 2004, the gate equivalence in CAD of an IC
system has reached 1,000,000 or more in order to support the design of
multimillion gate circuits;

Suitability for nanotechnology, i.e., implementation at a minimal cost;
Topological compatibility ;
Recursive calculations of size/direction.

The problem of logic design in nanodimensions is a multifaceted problem.
For instance, it is impossible to choose a data structure if the topology is not
determined. On the other hand, the topology can be chosen if the technology
requirements are known. To remove this uncertainty, the following aspects
are highlighted in this book:

A technology independent approach that takes into account the main advan-
tages and drawbacks of nanotechnologies (massive parallel computing,
event-driven analysis, information flow optimization based on entropy
evaluation);

Hypercube-like topology has been proven as efficient for massive parallel com-
puting, and for switching function representations.
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Based on these statements, which are reasonable assumptions in problem
formulation, this book introduces a systematic approach to logic design of
nanoICs.

1.3 Towards computer aided design of nanoICs

CAD of IC systems have to produce circuits which satisfy many design rules
of the target technology. These rules include, in particular, limitations on the
type of primitives, maximum fanout, and connections.

The quality of the synthesized circuit is measured by a set of parameters:
the area, speed, and power of the circuit after physical design.

1.3.1 Contemporary CAD of ICs

The goal of CAD of ICs tools is to automatically transform a description of
ICs in the algorithmic or behavioral domains to one in the physical domain,
i.e., down to a layout mask for chip production. Traditionally this process is
divided into

System level (major units of information processing);
Behavioral level (information flows);
Logic level (the behavior of the circuit is described by switching functions);
Layout level (mapping of logic network to physical layout topology).

Today, design tends to one-pass synthesis from behavioral description down
to layout, and the most popular data structure for switching functions is
decision diagrams.

A CAD system has to produce correct circuits. This means that circuits
are logically equivalent to the source, i.e., initial description in the form of
logic equations, networks, etc. The CAD system should produce logically
correct results, but because of the complexity of the design process, verifying
the correctness of results is a necessary phase of a design. Usually, formal
verification techniques deal with different data structures and descriptions.

1.3.2 CAD of nanoICs

In nanotechnology, behavioral, logic, and sometimes, layout levels of design
are eventually merged. The efficiency of the algorithms applied in these levels
depends largely on the chosen data structure.

An efficient representation of logic functions is of fundamental importance
for CAD of ICs and nanoICs design. For example, in deep-submicron tech-
nology, which precedes nanotechnology, levels of design are merged, and the
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decision diagrams are the integrated data structure in this unified design pro-
cess, called one-pass synthesis.

State-of-the-art and specific new methods are utilized in the design of
NanoICs. Due to the spatial nature of nanostructures, each of the facets
of CAD employs spatial topological structures. Detailed structure of CAD of
nanoICs depends on technology.

Due to the fact that all these approaches originated from traditional logic
design “on the plane” (though silicon microelectronic devices are 3-D), they
tend to consider 2-D models of the nanoelectronic devices as well. However,
on the system level, the nanodevices (perhaps not only electronic but also
molecular) might be assembled into large arrays. Parallel and distributed
computation on arrays (on macrolevel) has been well-studied; for example,
systolic arrays of cells and programmable-logic devices. Most of the dis-
tributed architectures are 2-D, however, 3-D ones have been proposed as
the most cutting-edge models, for instance, hypercube-configured networks
of computers, hypercube supercomputer etc.

A certain type of spatial topology, such as the singular hypercube, repre-
senting the truth values of the function, was introduced long ago. However,
the hypercube structure serves not solely for representation of logic functions
but for computing as well. The most universal data structures, binary de-
cision diagrams (BDDs), are suitable for computations, as models of logic
functions, but do not have direct mapping to physical silicon structure except
for pass-gate logic. BDD structures have not been associated with hypercube
topology as yet.

1.3.3 Topology: 2-D vs. 3-D

On a system level, there exists a topology of ICs:

� 1-D arrays, e.g., linear cellular arrays, linear systolic processors, pipelines,
� 2-D arrays, e.g., matrix processors, systolic arrays,
� 3-D arrays, e.g., of hypercube architecture.

On the physical level, very large scale integration (VLSI), for instance,
are 3-D devices, because they have a layered structure, i.e., interconnection
between layers while each layer has a 2-D layout.

Therefore, on the way to the top VLSI hierarchy (the most complex VLSI
systems), linear and 2-D arrays eventually evolved to multiunit architectures
such as 3-D arrays. Their properties can be summarized as follows:

� As stated in the theory of parallel and distributed computing, processing
units are packed together and best communicate only with their nearest
neighbors.

� In optimal organization, each processing unit will have a diameter com-
parable to the maximum distance a signal can travel within the time
required for some reasonable minimal amount of processing of a signal,
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for example to determine how it should be routed or whether it should
be processed further.

� Internally to each processing unit, 2-D architecture may be favored, since
at that smaller scale, communication times will be short compared with
the cost of computation.

However, 3-D architectures need to contain a fair number of mesh elements
before the advantages of the mesh organization become significant compared
with competing topologies. This does not yet make itself felt much in current
multiprocessor designs. Moreover, this structure may suffer from gate and
wire delay. These are disadvantages of 3-D architectures.

As technology for logic devices goes down to nanoscale, 3-D array architec-
ture will become important:

� At high speed of nanoscale devices, the distance light can travel per cycle
is only around 3 mm, which means that a reasonable number of 3-D
array elements of that size may be integrated on a single tiny chip and
the advantages of the 3-D architecture will begin to become apparent.

� They are desirable for their ideal nature for large scale computing.
� They are simple and regular and relatively straightforward to program.
� There are many 3-D algorithms and designs for existing microscale compo-

nents that are arranged in 3-D space, which computer designers already
have experience with.

1.3.4 Prototyping technologies

Two approaches to mapping designs into nanoscale (electronic and molecu-
lar) circuits, that is traditionally called prototyping technology, can be distin-
guished:

� Randomly wired networks of gates (adopted from conventional electronics),
� Locally-interconnected arrays (adopted from massive parallel computation

on macrolevel), mostly 3-D by nature.

Conventional electronics emphasized the development of logic families, con-
sisting of gates that are networked. This approach can be adopted for nano-
electronics. While this approach exists, design of large circuits is problematic,
due to

� Reliability issues, and
� Interconnection limitations.

The reliability problem is the problem of the design of a reliable machine
from unreliable elements formulated by von Neumann.

Several interconnection limitations are already an issue in present deep
submicron silicon technology, and will become even worse in nanodimensions.
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It is likely that not only would the conventional random wiring demands be
extreme but the discrete-physics devices, having poor fan-out and load-driving
capabilities, would be unable to drive the inevitable long interconnects.

From this perspective, nanoelectronics technology demands locally inter-
connected circuit architectures. One may say that this restricts application
to locally-interconnected computations. However, the rich experience of mas-
sive parallel computation (in today’s macroscale multiprocessors) show that
almost any algorithm can be presented in a form capable of implementation
on such structures.

1.4 Methodology

The methodology of logic design in nanodimensions includes methods from
several fields:

� Switching theory,
� Multiple-valued logic,
� Graph theory and computing geometry,
� Theory of massive parallel computation,
� Information theory,
� Fault-tolerant computing, and
� Stochastic computing.

to logic design in nanodimensions. If, due to the space limit, some aspects are
not mentioned or described very briefly, we refer the reader to the sections
“Further Reading” at the end of each chapter.

1.4.1 Data structures

The fundamentals of switching theory, or Boolean algebra, cannot be changed
while technology and even carriers of logic data are being changed. However,
an appropriate choice of data structure is the way to adjust implementation of
the logic function to the existing technology. That is why this book will give
particular attention to the data structures suitable for logic data processing
in nanodimensions.

Graph-based data structures and circuit topology. In design of high
parallel systems and communication, a number of hypercube-like topologies
have proved themselves to satisfy the above mentioned requirements of design
methodology. However, the data structures that carry information about
logic functions have a number of specific properties. This means that their

© 2005 by CRC Press
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representation and manipulation are different from the same methods in high
parallel systems and communication.
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FIGURE 1.2
Representation of a switching function f = x1x2 ∨ x1x2 ∨ x1x2x3 by the
classical hypercube (a) and N -hypercube (b) in three dimensions.

In Figure 1.2 two hypercubes are represented: the left is referred to as a
classical hypercube, the right is referred to as a hypercube-like topology called
N -hypercube. Both hypercubes represent the same switching function

f = x1x2 ∨ x1x2 ∨ x1x2x3

but in different ways. To distinguish these topologies, let us analyze the
carriers of information.

Hypercube and N -hypercube. The classical hypercube is used for rep-
resentation of switching functions. The carriers of information are the co-
ordinates of links. In the hypercube depicted in Figure 1.2a, three links –
01x, x11, and 10x – connect five nodes. These nodes correspond to 1 of
switching function f .

In N -hypercube,information about the function f given in the root node
is modified by transformations in the intermediate nodes. In contrast to the
classical hypercube, the N -hypercube generates the information by processing
in nodes. The N -hypercube is used for computing a switching function by
implementation of this model in hardware.

Naturally, the hypercube-like structures andN -hypercube, in particular, in-
herit most properties of the classical hypercube. However, there are a number
of specific features that make the modified hypercube suitable for represent-
ing different data structures for logic functions (decision tree, linear decision
diagrams and logical network).
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As mentioned above, the components of the methodology of logic design
in spatial dimensions consist of selected methods of advanced logic design.
In this book, the focus is on appropriate data structures that fit 3-D topo-
logy, the N -hypercube. For application of the N -hypercube, the appropriate
data structure of logic function and method of embedding this structure in
the N -hypercube must be chosen. There are three phases in logic function
manipulation aimed at changing the carrier of information from the algebraic
form (logic equation) to the hypercube-like structure:

Phase 1 : The logic function (switching or multivalued) is transformed to the
appropriate algebraic form (Reed-Muller, arithmetic, word-level, linear
word-level, etc. in matrix or algebraic representation).

Phase 2 : The obtained algebraic form is converted to the graphical form
(decision tree, decision diagram or logic network).

Phase 3 : The obtained graphical form is embedded into a hypercube-like
structure, the N -hypercube.

Schematically, the above is represented as follows

Logic function︸ ︷︷ ︸
Phase 1

⇐⇒ Graph︸ ︷︷ ︸
Phase 2

⇐⇒ N -hypercube structure︸ ︷︷ ︸
Phase 3

Each of the above forms requires specific methods and techniques for ma-
nipulation:

� Algebraic representations and rules of manipulations with switching and
multivalued logic functions.

� Matrix representations and rules of manipulations with switching and mul-
tivalued logic functions. In some cases, matrix representations provide
a better understanding of logic relationships of variables and functions,
for example, from the viewpoint of spectral theory.

� Graph-based representations are introduced by decision trees, decision dia-
grams, and logical networks. These representations have their origin in
state-of-the-art advanced logic design, and are appropriate data struc-
tures for embedding into the N -hypercube.

In the above representations, the term “switching, or logic, function” means
switching that take two values, 0 and 1, and multivalued functions which are
an extension of switching functions and take k values, k ∈ {0, 1, 2, . . . , k− 1}.
The information content of multivalued logic functions is higher compared

There are a num-
ber of successful implementations of multivalued functions in advanced VLSI
and ultra large scale integration (ULSI) technologies. Nanotechnologies give
promising opportunities for the utilization of the advantages of k-valued logic.
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3-D hypercubes. They can carry limited information because the number of
nodes and links is limited. The unique property of hypercubes is the possi-
bilities for extension.
i.e., by the 3-D nature of the physical world, we design many-dimensional
hypercubes. For example, the 4-D classical hypercube is designed by mul-
tiple copies of the 3-D hypercube illustrated in Figure 1.3a. Hypercube-like
topology inherits this property from the hypercube: the 4-D N -hypercube
is designed by connections of root nodes (Figure 1.3b). This is reasonable
architecture from a physical point of view.

On this basis, assembly of complex multidimensional structures can be ac-
complished.

Extension of parallelism by a word-level data structure. The natural
parallelism of the N -hypercube can be increased by the appropriate data
structure of logic functions, so-called word-level representation. In this case
each node of the N -hypercube computes a set of logic functions. Hence, the
hypercube topology is very flexible in this extension.
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FIGURE 1.3
4-D hypercube (a) and 4-D N -hypercube (b).

1.4.2 Assembling in 3-D

The assembly philosophy of nanoICs design in spatial dimensions differs sig-
nificantly from the usual ideas of building complex computer systems.

Assembly means the construction of more complex systems from the compo-
nents provided, in particular, with features identical to the components
which began the process.
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Extension of dimensions. The hypercubes depicted in Figure 1.2 are called

This extension is expressed by notation of dimension,
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Self-assembly is the process of construction of a unity from components
acting under forces/motives internal or local to the components them-
selves, and arising through their interaction with the environment. Self-
assembling structures create their own representations of the informa-
tion they receive. That is, assembly according to a distributed plan
or goal implicit in the structure and behavior of the parts, not ex-
plicitly stated or held by a central controlling entity. Components in
self-assembling systems are unable to plan but respond to their sur-
roundings. The stimuli to which a component is capable of responding
are dictated by that component’s physical composition and properties,
for example, minimum energy states. This is quite different from tradi-
tional programming methodology, which requires all data to be explicitly
specified by the programmer. Self-assembling structures are well suited
for problems for which it is either difficult or impossible to define an
explicit model, program or rules for obtaining the solution.

A self-assembling system is able to process noisy, distorted, incomplete
or imprecise data. This feature of self-assembling systems makes them
particular suited for classification, pattern recognition and optimization
problems. Self-assembling systems typically have higher level properties
that cannot be observed at the level of the elements, and that can be
seen as a product of their interactions. In self-assembling, topology plays
the crucial role.

Self-organizing. The organism, for example, is a self-organizing system. In
the organism, self-organizing is implemented through the local physical
and chemical interactions of the individual elements themselves.

Adaptive self-assembling is the ability of structure to learn how to perform
assembling (appropriate architecture) aiming to solve certain tasks by
being presented with examples.

1.4.3 Massive and parallel computation in nanodimensions

Massive parallel computing of logic functions can be accomplished in nanodi-
mensional structures via word-level representation and also through borrow-
ing some approaches developed in the theory of parallel computing on the
“macroscale.” Relevant problems are analysis, synthesis, information mea-
sures and testability issues.

Hypercube-based massive parallel computing. The hypercube-like to-
pologies inherit high parallelism of computing due to their

� Regular and homogeneous structures,
� Local connectivity, and
� Ability to assemble and extend the structure.

Additional opportunities for parallelization are provided by data structures
that are embeddable to 3-D. Logic functions can be represented by word-level
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decision trees and diagrams that are a powerful resource of parallel computing.
In this case, the node implements the processing of a set of functions grouped
into a word. Hence, there are two levels of parallelization in the N -hypercube:

� Natural parallelism of hypercube-like structures, N -hypercube, in particu-
lar. This property can be efficiently exploited. For this, a decision tree
that represents a logic function is embedded into the N -hypercube. The
node functions are simple – for example, switch only in the case of a
tree representation based on Shannon expansion.

� Extra parallelism is provided by word-level representation of a logic func-
tion. In this case, each node computes logic computations on the bits
in the words in parallel.

Cellular arrays. The term cellular systolic array refers to networks com-
posed of some regular interconnection of logic cells. These arrays may be
either 1-D, 2-D, or theoretically of any higher dimension of three or more.
Practical considerations usually constrain them to 1-D, and 2-D cases (Figure
1.4).
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FIGURE 1.4
1-D (a) and 2-D (b) cellular arrays.

Cellular automata are a reasonable model for study of self-assembling and
self-reproducing phenomena. For example, with many simplifications, the
organisms can be considered as self-assembling, parallel machines whose many
and varied components maintain a stable organization when disturbed.

Systolic arrays is another name for parallel-pipelined computing structures.
In these structures, data input and output is organized in a sequential or par-
tially parallel way, and the processing is accomplished by parallel computing
on the array of the unified processing elements. The topology is usually linear
(e.g., for matrix-vector multiplication) or 2-D (for matrix-matrix multiplica-
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tion). Locality of data input/output and pipelining computing makes this
organization of data processing attractive to implementation on nanoarrays.

tolic principles of data processing.

1.4.4 Fault tolerance computing

Traditional logic circuits are very sensitive to failure: if even a single gate
or single wire malfunctions then the computation may be completely wrong.
If one is worried about the physical possibility of such failures, then it is
desirable to design circuits that are more resilient.

Any computer with nanoscale components will contain a significant number
of defects, as well as massive numbers of wires and switches for communication
purposes. It therefore makes sense to consider architectural issues and defect
tolerance early in the development of a new paradigm.

An incorrect result is defined as a fault. In the presence of faults, a fault-
tolerant system reconfigures itself to exclude the faulty elements from the
system. A system so reconfigured may or may not change its topology. Ideally,
a fault-tolerant system retains the same topology after faults arise.

A hypercube is called faulty if it contains any faulty node or link. For
hypercubes of large dimensions, the probability of occurrence of faults in-
creases. Since efficient cooperation between the nonfaulty nodes (computing
elements) is desirable, a hypercube network is robust if the performance does
not decrease significantly when its topology changes.

Two main aspects are critical in design of nanodevices:

� The probabilistic behavior of nanodevices (electrons, molecules); this means
that the valid switching function can be calculated with some probabi-
lity.

� The high defect rates of nanodevices; this means that because many of the
fabricated devices have defects, their logic correctness is distorted.

This problem is tackled from two directions:

The first direction: designed architecture must recognize and correct errors,
and

The second direction: technological defects must be recognized and removed.
The basic concept of these directions is redundancy (additional hardware
resources or resources at time of computing).

There are two types of fault tolerance exhibited by a nanosystem: fault
tolerance with respect to

� Data that is noisy, distorted or incomplete, which results from the man-
ner in which data is organized and represented in the nanosystem, and

� The physical degradation of the nanosystem itself.
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If certain nanodevices or parts of the network are destroyed, it will continue
to function properly. When damage becomes extensive, it will only affect
the system’s performance, as opposed to a complete failure. Self-assembling
nanosystems must be capable of this type of fault tolerance because they store
information in a distributed (redundant) manner, in contrast to traditional
storage of data in a specific memory location in which data can be lost in case
of the hardware fault.

The methods of stochastic computing provide another approach to over-
coming the problem of design of reliable computers from unreliableelements,
nanodevices. For example, a signal is represented by the probability that a
logic level be 1 or 0 at a clock pulse. In this way, a random noise is being
deliberately introduced into the data. A quantity is represented by a clocked
sequence of logic levels generated by a random process. Operations are per-

1.4.5 Analysis, characterization, and information measures

There are a number of reasons why application of Shannon theory is useful in
logic design of nanodevices:

� The information-theoretical approach is a specific level of abstraction that
is useful in some steps of logic design. It offers approximate estimations
of signal streams and often demonstrates impressive results in combina-
tion with traditional, exact methods.

� The information-theoretical approach based on Shannon theory is relevant
to information measures in nanotechnologies on a physical level (ther-
modynamic). This coherence of measures can be useful in evaluation of
the characteristics of nanodevices, their testing and verification.

� Because nanodevices are very sensitive and processing of information by
these devices is described by probabilistic and statistical methods, the
information theoretic approach is the most reasonable in fault-tolerant
logic design.

� The effectiveness of information-theoretical methods is justified in many
heuristic algorithms. For example, it is difficult to distinguish a gate
function based on information measures, however it is possible to dras-
tically reduce the search space when exact methods fail.

1.5 Example: hypercube structure of hierarchical FPGA

Topological structures of a field programmable gate array (FPGA), the po-
pular computing device, are a good example to introduce the properties and

© 2005 by CRC Press

11).
formed via the completely random data (details are considered in Chapter



Introduction 17

advantages of hypercube-like topologies. We consider here three topologies
(other topologies are discussed in the form of problems at the end of this
chapter):

� The simplest topology (conventional FPGA), characterized by about 50%
of area in implementation; this topology is represented by the multi-
rooted k-ary decision tree;

� The hierarchical topology represented by the completed binary decision
tree; this tree is embedded into the hypercube-like structure;

� The hierarchical topology represented by the completed k-ary decision tree;
this tree is embedded into the hypercube-like structure too but with
other topological properties.

1.5.1 FPGA based on multiinput multioutput switching

can be connected by routing resources. The logic blocks denoted by L contain
combinational and sequential circuits which are used to implement logic func-
tions. Logic blocks are grouped into clusters which are recursively grouped
together.

The routing resources (switch blocks) denoted by SB consist of wire seg-
ments and switch blocks. Switch blocks can be configured to connect wire
segments and logic blocks into networks. An example of a switching block is
given in Figure 1.5b. With some simplification, the FPGA can be represented
by the multirooted k-ary decision tree in 1.5c.

1.5.2 Hierarchical FPGA as hypercube-like structure

Hierarchical FPGA based on single-input two-output switching.
Consider a 2 × 2 cluster of logic blocks L. To connect each logic block to

A switching block has a more simple structure compared to that of the
conventional FPGA (Figure 1.6b). The structure of this FPGA is represented
by a binary decision tree of depth 4 in which the root and levels correspond
to switching blocks SBs and the 16 terminal nodes correspond to logic blocks
(Figure 1.6c, where � denotes logic block L and ◦ denotes SB).

This tree is embedded in the hypercube-like structure of two dimensions
depicted in Figure 1.6d.

Hierarchical FPGA based on single-input four-output switching.
Consider 2 × 2 cluster of logic blocks L connected by single-input 4-output

a “macro cluster.” SB structure is given in Figure 1.7b. The 4-ary decision
tree is shown in Figure 1.7c).

© 2005 by CRC Press

A conventional FPGA (Figure 1.5a) consists of an array of logic blocks that

another it is enough to use a single-input two-output switch block. In Figure
1.6a), four copies of the cluster are organized into a “macro” cluster.

switch blocks SB. In Figure 1.7a four copies of the cluster are organized into
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SB 

 • 3 × 3 array of
logic blocks L

• Routing resources:
4 switch blocks SB

• All logic blocks L can be
connected together

(a) (b)
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SB SB SB 

L 

SB
• 4-root 9-ary decision tree

• The depth of the tree is 1

• All logic blocks L can be
connected to each other
via switch blocks

(c)

FIGURE 1.5
The topology of conventional FPGA (a), the structure of SB (b), and repre-
sentation by the 9-ary decision tree (c).

From these three examples related to the popular computing device, FPGA,
we can observe that:

� Hypercube and hypercube-like topology can be used for interpretation of
a data structure represented by a decision tree;

� Hypercubes consist of clusters that can be patterned to produce arrays;
and

� Hypercube topology complies with parallel and distributed architectures.

1.6 Summary

1. The methodology for designing logic circuits in spatial dimensions includes:

(i) Advanced methods of logic design (logic optimization, logic differ-
ential calculus, decision diagram techniques);

(ii) Methods of massive parallel computing;

© 2005 by CRC Press



Introduction 19

 

L L 

L SB L 

SB 

SB L L

L SBL

SB

SB

SB 

L L 

L SB L 

SB 

SB L L 

L SB L 

SB 

SB 

SB

SB SB 

 

(a) (b)
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FIGURE 1.6
A hierarchical FPGA (a), the structure of a switching block (b), tree repre-
sentation (c) and generalization towards 3-D hypercube-like structure (d).

(iii) Probabilistic modeling and simulation;
(iv) Information-theoretical methods.

2. Graph-based data structures are the “bridge” between logic design and
3-D topology of nanomaterials. Among them, hypercube topology is a
useful model of computing in spatial dimensions. This topology can be
used at all levels of abstractions from the gate level (nodes implement
the simplest logic functions) to macrolevel (nodes implement complex
devices).

3. Tree-like and hypercube-like topology is common in parallel and distributed
architectures; this fact reflects that the principle of an optimal comput-
ing scheme is being preserved while scaling it down to molecular/atomic
structure.

4. Hypercube topology can be used for modeling of nanostructures that im-
plement logic functions, in particular, single-electron neuromorphic net-
works.
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FIGURE 1.7
A hierarchical FPGA topology design: 2-D hypercube-like topology (a),
hypercube-like structure (b), and representation by the 4-ary decision tree
(c).

1.7 Problems

Problems 1.1 and 1.2 can be solved without any additional information and
can be used by both readers and instructors for testing. Detailed information
is given in the Manual for solutions. Problem 1.3 needs more time and can
be considered as the project.

Problem 1.1 Extend the 2-D hypercube-like topology; construct a complete

(b) to 3-D and 4-D (Figure 1.8b);
(c) to 3-D and 4-D (Figure 1.8c);
(d) to 3-D (Figure 1.8d).

© 2005 by CRC Press

decision tree. Follow examples given in Figure 1.6 and Figure 1.7.
(a) to 3-D (Figure 1.8a);
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(a) (b) (c) (d)

FIGURE 1.8
Hypercube-like topology for a hierarchical FPGA for Problem 1.1.

Problem 1.2 Define the hypercube-like topology given by a complete deci-

(a) to 3-D (Figure 1.9a);
(b) to 3-D and 4-D (Figure 1.9b).

  

(a) (b)

FIGURE 1.9
A k-ary decision trees for Problem 1.2.

Problem 1.3 The goal of this problem is to generate different FPGA spatial
topologies. A study of different FPGA topologies is aimed at reducing inter-
connections and improving related electrical and technological characteristics.

In Figure 1.7 and Figure 1.6, the design of hierarchical FPGA topology has
been interpreted by the hypercube-like structure.

The first topology (Figure 1.7a) corresponds to a binary decision tree. The
second topology is based on a 4-ary tree, which 3-D hypercube-like structure
is given in Figure 1.8. These hierarchical FPGA topologies have been reported
by Lai and Wang, and Shyu et al. [11, 23]. The methods are based on earlier
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results in parallel supercomputers, in particular, Greenberg and Leiserson
[7, 12]. There are a lot of other hypercube-like topologies that can be useful
in hierarchical FPGA design, for example, pyramid and fractal structures.
Perhaps in this way you can propose novel topologies for FPGA.

1.8 Further reading

Survey on advanced logic design can be found in a special issue Elec-
tronic Design Automation at the Turn of Century in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.19, no. 12,
2000.

Survey on hypercube architectures. The hypercube structure started to
be investigated in the 1970s and provided a good alternative to operations
like the fast Fourier transform (FFT). In the 1980s, a few machines based on
the hypercube topology had been designed and started to be utilized. This
experience stimulated applications of hypercube topology in data communi-
cations. However, the cube algebra based on functional hypercube has been
applied in logic circuit design in the 1950s. The problem of embedding the
complete binary tree in the hypercube has been studied since the hypercube
configured processor was proposed. The problem arises from the necessity of
the implementation of tree-structured computation. Linial et al. [14], have
been shown that a fairly high dimension is needed to embed a general graph

Fault-tolerance computing. Classic von Neumann’s work on probabilistic
logics and reliable computation upon nonreliable computing elements [27, 28]
is the focus of many recent investigations [4, 10, 18].

Cellular arrays are widely studied as fault-tolerance models of computa-
tions. Cellular array consists of simple identical cells organized as 1-D, 2-D
or 3-D arrays. Interactions between cells are modelled by a small number of
transition rules (instructions). These rules act at a local level. Cellular arrays
are divided into synchronous (global timing control) and asynchronous (local
timing control) arrays. In fault-tolerance cellular arrays, errors of cell are
corrected. Note that von Neumann in his classical model of fault-tolerance
computing, has used error correction.

Cellular automata have been introduced in [29]. Using cellular automata in
quantum computing is discussed in [13]. Fault-tolerance cellular arrays have
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with reasonable distortion. Additional references can be found in Chapter 3.

10 and 11.
been studied by Porod [26]. Additional references can be found in Chapters



Introduction 23

Survey on nanotechnologies and nanocircuit design. The book Ulti-
mate Computing by Stuart R. Hameroff [8] is useful in understanding the
evolution of information processing systems. Representation of today’s prob-
lems of nanotechnology is given in Technology Roadmap for Nano-electronics
[2] and papers [15, 16, 21]. The collection of 16 papers in introduction to
molecular electronics [20] discusses problems and trends in molecular electron-
ics: molecular materials, techniques for molecular scale electronics, molecular
properties (piezoelectric and pyroelectric effects, molecular magnets, polar-
ization, photochromism, etc.), and molecular architectures. Computer archi-
tectures for molecular electronics have been studied in [20, 24, 25, 26].

Various programs of research have been reviewed by Ferry [5]. For more

In [1, 3, 6, 22], the design of circuits and systems is discussed from the
point of view of nanotechnology. In a paper by Mange et al. [17] discusses
the problems of robust circuit design.

In addition. FPGAs are useful structures in nanosystem design. For exam-
ple, FPGAs can be used in quantum dot cellular automata. The topologies
of FPGA are often related to the hypercube-like structures. The reader can
find useful results on FPGA topologies in [7, 9, 11, 12, 23].
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Nanotechnologies

In this chapter, nanotechnology is discussed in its capacity for design of digital
circuits. Logic circuit design, at present, is applied solely to microelectronics.
The process of transfer of circuitry to nanoelectronics and relevant hybrid
technologies (e.g., molecular electronics) has already been started. Other
meanings of the term “nanotechnology,” as it is understood in biochemistry,
biophysics etc., are not the subject of this book.

Tremendous evolutionary progress has been accomplished within the space
of only 60 years from invention of the transistor to computers with 2 cm2 pro-
cessors that integrate hundreds of millions of transistors. Despite the progress
in microelectronics, further developments are needed. This can be accom-
plished by

� Developing and applying new theoretical fundamentals,

� Uniquely utilizing phenomena and novel physics observed at nanoscale,

� Designing and utilizing novel architectures departing from traditional 2-D
planar microelectronics to 3-D nanoICs,

� Applying novel fabrication technologies.

This chapter introduces and covers the fundamentals and practice of nano-
electronics, which is a pioneering development compared to microelectronics.

In microelectronic circuits, an operation on one unit or bit of information,
registered by voltage/current, involves billions of electrons. In recent years
there have been significant advances in the fabrication and demonstration of
molecular wires, diode switches, single-electron transistors, and other nano-
electronic circuitry, whereby a single carrier of charge (or a few carriers or
particles) controls the motion of other particles. Not only does this provide a
more efficient means of storing and processing information, but it also allows a
drastic increase in computing speed compared to the existing complementary
metal-oxide semiconductor (CMOS) technology.

The most important features of nanotechnology, as it applies to nanoelec-
tronics, are introduced in Section 2.1. Section 2.2 focuses on nanoelectronic
devices that can be understood as more realistic components for logic design
of computers based on the design paradigms presented in this book. In Sec-
tion 2.3, potential libraries of nanogates are discussed. Section 2.4 emphasizes
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molecular electronics: CMOS- and CMOS-molecular (CMOL) devices, neuro-
morphic circuits and nanowires. Scaling and operational limits are discussed
in Section 2.5. After a brief summary (Section 2.6) and Problems (Section
2.7), recommendations for “Further Reading” are given in Section 2.8.

2.1 Nanotechnologies

Nanoelectronics are a natural consequence of the evolution of microelectronics.
It is, however, not simply a matter of scaling electronics down to a smaller
size. There are certain constraints, mainly physical, that must be taken into
account when considering nanoscaling:

� The physics of the conventional approach may be characterized as be-
ing continuum-based whereas “scaled” physics is microscopic (discrete),
thus enabling quantum effects which make extreme scaling possible.

� Traditional logic devices and models of computation are characterized by
limited information capacity. This is because they involve the irre-
versible production of some minimum amount of entropy per operation,
so that they do not reach maximum computational efficiency as permit-
ted by the second law of thermodynamics. This law states that entropy
(uncertainty, or unknown information) cannot be destroyed, and can
be viewed as a consequence of the reversibility of microscopic physical
dynamics.

There are fundamental and technological differences between nanoelectronic
devices versus microelectronic (even possibly nanometers in size) devices, e.g.,
nanoICs vs. integrated circuits (ICs). Even though field-effect transistors can
possibly reach 100 nm dimensions for a complete microdevice, they still can-
not be called nanoelectronic devices. Novel physics, integrated with design
methods and nanotechnology, leads to far-reaching revolutionary progress.
For example, multiterminal 1 × 1 × 1 nm electronic nanodevices (endohe-
dral fullerenes, doped fullerenes, functional carbon molecules, etc.) are not
submicron microelectronic devices.

Microelectronic devices can be fabricated using nanotechnology-enhanced
processes and techniques, for example, transistor channels can be formed using
carbon nanotubes. Hence, microelectronics can be nanotechnology-enhanced,
and one can define this as nanotechnology-enhanced microelectronics. There-
fore, microelectronic devices, even if scaled down to the 100 nm or smaller,
are unlikely to be classified as nanotechnology-based electronic nanodevices
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2.2 Nanoelectronic devices

Quantum effects are present, in general, in

� Single-electron devices,
� Single-flux quantum devices, and
� Resonant-tunneling devices.

Among these, the concept of single-electronics is less dependent on the
implementation technology than the other two. It can be implemented in
many ways, e.g., on superconductors, at a molecular level, and by hybrid
approaches.

2.2.1 Single-electronics

Single-electron charging effects are exploited to implement logic functions in
two different ways:

� These effects are confined to the interior of the transistor, so that the logic
0/1 is presented with low/high voltage that is not quantisized.

� The electrons are confined to one or a few islands, so that bits of infor-
mation correspond to presence or absence of electrons in the specific
islands. This is in harmony with the concept of logic switching and is
achieved via electrostatic coupling (spin) of the islands.

The implementation of quantum-effect devices of both groups deploys single
electrons. The first class inherits some inert knowledge from semiconductor
circuits. The second class uses truly new concepts of implementation of logic.

The basic concept of single-electronics is the Coulomb blockade observed in
a single-electron device including a conducting island. An additional electron
can be injected from outside by tunneling it through an energy barrier created
by a thin insulating layer. The resulting electric field is inversely proportional
to the square of the island size, and is strong enough to repulse adding yet more
electrons. This phenomenon is called energy quantization and it is expressed in
terms of charging energy. This energy Ec is proportional to the electron charge
e ≈ 1.6 × 10−19 Coulomb and is inversely proportional to the capacitance of
the island C:

Ec = e2/C.

This is possible when the island size becomes comparable with the wavelength
of the electrons inside the island. If the island size is reduced to below 10 nm,
the charging energy approaches 100 meV, and some single-electron effects
become visible at room temperature. There are several physical problems
here:
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� Thermally induced random tunneling events make it impossible for single-
electron devices to operate at room temperature. The thermal effects
are reduced as the device’s temperature reaches 4 to 5 Kelvin.

� Islands must be smaller than 1 nm (called quantum dots) in order that the
electron’s additional energy be as large as a few electron-volts. This is
difficult to achieve in nanofabrication technology.

� Transport properties are very sensitive to small variations of quantum dot
size and shape.

Single-electron box and trap

it blocks the motion of other electrons travelling along the atomic “wire” (at
least 50 atoms long). Thus, the trapped electron repels the mobile electrons.
When no trapped electron is present, electrons travel along the atomic wire.

Two major drawbacks of the single-electron box are:

� It is a low-temperature device (down to sub-Kelvin scale).
� It cannot be used as memory: the number of electrons in the box is a

unique function of the applied voltage.
� The box cannot carry a DC current.

A single-electron trap is obtained by replacing the single tunnel junction
with an array of several islands separated by tunnel barriers in the single-
electron box (Figure 2.1b).

Single-electron transistor

The basic building block of single electron devices and circuits is the tunnel-
junction, which forms a single-electron tunneling (SET) transistor originally
created experimentally on a metal-insulator system at a low temperature (see

nel junctions are implementable on many technologies including ultrasmall
metal-oxide-metal junctions, GaAs/AlGaAs structure, and the contacts to
carbon nanotubes.

At a small source-drain voltage there is no current, since at low enough tem-
peratures the tunneling rate is exponentially low. This suppression of current
at low voltages is known as the Coulomb blockade. At a certain threshold
voltage the Coulomb blockade is overcome, and at much higher voltages the
current exhibits quasi-periodic oscillations similar to the Coulomb staircase
in the single-electron box. Thus, the threshold voltage and the source-drain
current are periodic functions of the gate voltage. The effect of the gate volt-
age is equivalent to the injection of charge into the island, that changes the
balance of the charges at tunnel barrier capacitances, which determines the
Coulomb blockade threshold.
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Single-electron box (Figure 2.1a) is capable of trapping an electron (see “Fur-
ther Reading” Section). Once an electron occupies the “island,” or “well,”

“Further Reading” Section). The SET has three terminals (Figure 2.2). Tun-
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The single-electron box consists of just one small
island separated from a larger electrode (elec-
tron source) by a tunnel barrier.

An external electric field is applied to the island using
a gate separated from the island by a thicker
insulator which does not allow noticeable tun-
neling.

Increasing gate voltage attracts more and more elec-
trons to the island.

The discreteness of electron transfer through low-
transparency barriers necessarily makes this in-
crease step-like(the Coulomb staircase).

(a)

 

Source 

Trapping 
island

Gate 

The single-electron trap includes several
islands between the source and
single-electron box.

The main new feature of this system is
its internal memory (bi- or mul-
tistability): certain ranges of ap-
plied gate voltage cause the sys-
tem to be in one of two (or more)
charged states of its edge island.
This is due to electric polarization
effects: an electron located in one
of the islands of the array extends
its field to a certain distance out-
side.

(b)

FIGURE 2.1
Single-electron box (a) and trap (b).
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SET consists of a pair of tunnel junc-
tions (barriers) (instead of the usual
inversion channel as in MOSFET)
separated by a small conducting is-
land with an applied source-drain
bias.

The island itself (which represents an iso-
lated conducting region) is capaci-
tively coupled through Cg to a gate
bias.

FIGURE 2.2
Single-electron transistor.
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Single-electron pump and turnstile

The single-electron pump (Figure 2.3) is a multiterminal device, that has
The drive

input is fed by a triangular shaped radio-frequency (RF) waveform. The time
shift between the triangular pulses applied to neighboring electrodes causes
transfer of one electron per period between neighboring islands. This wave
carries an electron from the source to the drain. The transmission in the
device is bidirectional and does not need source-drain voltage: the direction
of the transferred electron is determined by that of the running wave of electric
potential.

 
 

Source Drain 

Gates 

φ1 φ2 φ3

The single-electron pump operates
like the single-electron trap:
one electron may be pulled into
the central island, increasing
the gate voltage beyond a cer-
tain threshold; then it may be
pushed out by decreasing the
voltage.

RF waveforms applied to each gate
electrode are phase shifted,
forming a potential wave glid-

FIGURE 2.3
Single-electron pump.

A similar design is a single-electron turnstile The single-

source; other islands are connected to external electrodes to compensate back-
ground charges with supply voltages. The voltage applied to the gate is peri-
odical. Each period, one electron is transferred from the source to the drain.

Quantum-effect mesoscopic devices: quantum dot arrays

A hypothesis about the possibility to exploit the wave-mechanical properties
of the electron has led to the development of the theory of quantum effect
mesoscopic devices. These devices have been proposed to implement quantum
computing using interference phenomena. However, it has been discovered at
the same time that the utilization of these devices is ultimately limited by
quantum decoherence.
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a source and a drain like SET (see “Further Reading” Section).

ing along the island array.

(Figure 2.4).
electron turnstile has one of the islands in the pump connected to an RF
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An electron is picked up from the source
when the bias voltage φ0 increases
and is delivered to the drain when it
decreases.

The voltage applied to the gate de-
termines the direction of electron
transfer in the first half of the cy-
cle, while the RF potential applied
to the central island lowers its elec-
tron addition energy.

Attracting more electrons is blocked by
the Coulomb repulsion created by
the first electron (assuming the am-
plitude of the RF signal is not too
large).

In the second half of the time period,
the potential in the middle island
increases until the electron escapes
into the drain.

FIGURE 2.4
Single-electron turnstile.

This category is associated with the organization of computing based on
quantum waveguide behavior in the presence of mutually influenced “quantum
dots.” This category includes so-called quantum-dot cellular automata.

2.2.2 Rapid single flux quantum devices

The other class of similar voltage-state low-temperature devices, is that of

They exhibit a clock frequency beyond hundreds of gigahertz and extremely
low power consumption. A rapid SFQ is a two-terminal device formed by a
Josephson junction. It has unusual dynamics due to the macroscopic quantum
nature of charge carriers called Cooper pairs (not Fermi particles, single-
electron and hole) that have integer spin. These junctions:

� Allow generation of picosecond waveforms and
� Recover weak incoming pulses (this is called “return-to-zero”).

The above mentioned properties make the rapid SFQ circuits quite robust,
providing isolation between input and output. Digital logic circuits on dy-
namic SFQ devices use transient dynamics for information transfer: during
the switching between the neighboring flux states, a short voltage pulse is
formed across the junction. This flux change is quantized, as is the pulse
area. These pulses are passed to other devices along superconductor Joseph-
son transmission lines. Logical 1 and 0 are represented by the existence or
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absence of a single flux quantum.
Advantages of SFQ devices include:

� The speed of SFQ devices is very high while energy dissipation is very low.
� The SFQ pulse splitter and merger provide the necessary fan-in and fan-

out.
� The pulse merger implements, at the same time, an OR function.
� Latches and flip-flops are also easily implementable in SFQ logic.
� Also, the natural internal memory is present in the quantizing SFQ loops.
� The clocked inverter, AND and EXOR gates are implementable around the

quantizing loop.
� The interconnect problem is solved in rapid SFQ circuits by using Joseph-

son transmission lines or passive superconductor lines.

The main drawback of the rapid SFQ devices is their low-temperature oper-
ation mode (4 to 5 K ). Because rapid SFQ logic uses Josephson transmission
lines for distributing clock signals to all gates to reset them, and for wiring
gates, it complicates the design of logic circuits.

However, an SFQ circuit can effectively implement binary decision diagrams
(BDDs). BDD topology can be directly mapped into a circuit by replacing
the BDD node with a SFQ D2

details of this type of flip-flop).

2.2.3 Resonant-tunneling devices

There is one group that must be mentioned as the path on the evolution of
nanoelectronics. Today, resonant tunneling transistors are the most estab-
lished nanoscale devices because they already operate at room-temperature.
Moreover, from the viewpoint of circuit applications their fabrication and in-
terfacing with field-effect transistors (FET) and bipolar junction transistors
(BJT) has reached an advanced level that allows the investigation of small
scale circuits. Resonant tunneling devices are based on electron transport via
discrete energy levels in double barrier quantum well structures (see “Further
Reading” Section).

Resonant tunneling is applied in the bipolar quantum resonant tunneling
transistor and similar devices as well as in gated resonant tunneling diodes.

2.3 Digital nanoscale circuits: gates vs. arrays

We will discuss the design of digital logic of the particular types of quantum-
effect devices. The existing approach to design of digital nanoelectronic de-
vices can be divided into two main streams corresponding to classification of
single-electron interpretation of logic signals
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� Voltage-state logic, and
� Charge-state logic.

2.3.1 Voltage-state logic: library of gates

SET-based devices are based on voltage-state logic, originating from tradi-
tional silicon logic.

Logic gates

The simple implementation of voltage-state NOT and EXOR gates is given

In voltage state mode, the input gate voltage controls the source-drain
current of the transistor which is used in digital logic circuits, similarly to
the usual FETs. This means that the single-electron charging effects are
confined to the interior of the transistor, while externally it looks like the usual
electronic device switching multi-electron currents, with binary unity/zero
presented with high/low DC voltage levels (physically not quantized).

The advantages of voltage state devices on SET include:

� The alternating transconductance of the single-electron transistor makes
possible a very simple design of complementary circuits using transistors
of just one type.

� Possible compatiblity with CMOS technology if the signals are treated in
the same fashion, i.e., as voltage/current.

The following constitute drawbacks of SET based devices:

� They make the exact copying of CMOS circuits impossible; in order to get
substantial parameter margins, even the simplest logic gates have to be
redesigned.

� Their operation range starts shrinking under the effect of thermal fluctua-
tions as soon as their scale reaches approximately 1 nm.

� Neither of the transistors in each complementary pair is closed too well, so
static leakage current in these circuits is fairly substantial.

� The corresponding static power consumption is negligible for relatively
large devices operating at helium temperatures. However, at prospec-
tive room temperature operation this power becomes on the order of
10−9 W/transistor. This number turn to an unacceptable static power
dissipation for high-density circuits.

The maximum temperature may be increased by replacing the usual (single
island, double junction) single-electron transistors with short 1-D arrays with
distributed gate capacitances. For example, five-junction transistors allow a
threefold increase of temperature at the price of bulkier circuits. However, in
order to operate at room temperature even with this increase the transistor
island size has to be extremely small in nm.
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in Figure 2.5 (see “Further Reading” Section).
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The circuit consists of:

• Two single-electron transistors, which play the role
of the pMOS, and

• nMOS transistors in a conventional CMOS in-
verter.

In a similar manner to a standard CMOS circuit, the
switch will be ON when the gate voltage is high, and
conversely when the gate voltage is low, the switch
will be OFF.

Unlike nMOS and pMOS devices

• SET junctions are physically identical.
• CMOS inverters, output characteristics are actu-

ally periodic functions of the input rather than
truly bistable behavior, due to the periodicity
of the Coulomb oscillations.
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Two multiple-gate SETs are separated by coupled tun-
neling junctions.

Implementation involves only two transistors, in con-
trast to CMOS implementation. This effect is
achieved due to the Coloumb blockade, which
makes the current amplitude consistent with the
electron charge.

(b)

FIGURE 2.5
NOT SET-based gate (a) and EXOR SET-based gate (b).

Multiterminal devices

The natural property of the multiterminal single-electron device is deployed
for implementation of the majority operation. A majority gate can be created

Binary logic values 0 and 1 correspond to negative and positive voltage of
equal amplitude respectively.
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using a single-electron box (Figure 2.6, see also Section “Further Reading”).
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A majority gate consists of:

(i) A double-junction single-electron box,
(ii) An island between them, and
(iii) Three input capacitances connected to the other

island.

The input capacitors:

(i) Form the voltage-summing network, and
(ii) Produce the mean on the island.

FIGURE 2.6
Single-electron majority gate with three inputs.

2.3.2 Charge state logic

In single-electron logic, the Coulomb blockade is used to suppress quantum
fluctuations thereby enabling an elegant representation of bits by single elec-
trons. This makes possible extreme device-level scalability.

Parametron

The most robust single-electron logic circuits suggested as yet are those based

Unfortunately, the parametron has several disadvantages:

� It has very narrow parameter margins, and
� No “wiring” is available in this type of logic – parametron is essentially a

“shift register.”

The latter means that this device possesses the internal memory, combin-
ing the functions of combinational logic and latches – a perfect property for
cellular arrays that implement pipelined logic.

Parametron-based logic devices

In parametron-based circuits, an extra electron could be propagated along
considerable externally timed shift register type segments of the circuit, while
resistively coupled transistors provide splitting of the signal and binary logic
operations. The sign of the electric dipole moment of the device (the field
that eventually appears in between left and right islands) presents one bit of
information. This “wireless” logic circuit can be constructed of parametron-
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on the so-called single-electron parametron. (Figure 2.7).
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The simplest version of the device uses three small
islands separated by two tunnel barriers and galvani-
cally detached from electron sources. The central is-
land is slightly shifted away from the center line. The
parametron is biased by a periodic (clocking) vertically
oriented electric field that keeps an extra electron in
the central island during a part of the clock period:

(i) If the field reaches a threshold value, the electron
is transferred to one of the edge islands.

(i) A small additional field applied by a similar neigh-
boring device determines the direction of elec-
tron tunneling.

(i) Further change of the clock field causes the elec-
tron to be trapped in one of the edge islands;
the field is turned off, and the device becomes
a source of the dipole signal field for the neigh-
boring cells. The sign of this field presents one
bit of information.

FIGURE 2.7
Single-electron parametron.

based logic gates and fan-outs, due to a “fork-shape” geometry that provides
NAND and NOR gate implementation considering one direction of signal
(charge state) propagation through the chain of cells (parametron-based shift-
registers), or fan-out considering opposite direction. The remarkable property
of this shift-register is its quasi-reversible character, since the information is

2.3.3 Single-electron memory

In charge state logics, the natural internal memory of logic gates can be used.
The gates combine the functions of combinational logic and latches that en-
ables the implementation of deeply pipelined and cellular automata architec-
tures. A single-electron memory represents the ultimate scalability of current
semiconductor memory technology, with potential memory storage densities
on the order of 1011 bit/cm2.

2.3.4 Switches in single-electron logic

Switches might be a clue to the resolving of the poor input-output gain in the
device-centered (based on the library of logic gates) design considered above.
Many nanocircuits, such as arrays of nanowires, charge state logic and other
devices, are nonuniliteral, i.e., they have no clearly distinguished input and
output voltage. In terms of logic design, these circuits act as BDD-based
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preserved by the cells (see “Further Reading” Section for details).
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pass-gate logic, or switch (simplest multiplexer) based devices.

Switches and BDD-based models

The pass-gate logic requires representation of a function by a network of
switches but gates. The corresponding model is a BDD. It also allows avoiding
the interconnection problems, that are present in gate-level implementation,
by mapping BDDs directly to the nanowire lattice. This approach is distin-
guished from netlist-based (network of logic gates), and requires representa-
tion of functions as BDD. It is also the closest to implementation on SET or
rapid SFQ devices, in which the electron island in the SET can act as a switch.
This is the reason this nonconventional (at hardware level) representation of a
logic function in terms of BDD is the basic prerequisite behind the hypercube
structures considered in the further chapters of this book.

Figure 2.8 considers a demultiplexer-based representation of a logic function
of two variables (also called BDD-based structures, as a node of such diagrams
is a simple demultiplexer).
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The BDD of the AND gate cor-
responds to a circuit formed of
switches (simplest multiplexers).

(a)
 

Nano
-wire 

Wrap 
gate 

Quantum 
dot 

The BDD is mapped to
the nanowire network, where
branching of the signal (elec-
tron) is controlled by voltage
applied to a wrap-gate on a
nanowire.
Schematically, the network
of electron junctions and
quantum dots formed on the
wire is shown on the right.

(b)

FIGURE 2.8
A demultiplexer-based single-electron circuit.
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2.3.5 Interconnect problem in voltage-state devices

In some circuits consisting of serially connected tunneling junctions, electrons
can be transmitted as signals from a node to an adjacent node one by one by
the use of clocked control signals, or by applying potential difference across
the circuit. However, in these circuits, signals cannot be transmitted over long
distances during one clock cycle, or the circuit parameters should be changed
depending on the circuit length. In the circuits consisting of all automata,
where each cell is electrically isolated, the displacement of electrons in a cell
is transmitted as a signal, and, therefore, it is necessary to inject the same
number of electrons into all cells in advance.

In some circuits consisting of single electron inverters the number of elec-
trons can be controlled as a signal. In this design, signals cannot be transmit-
ted bidirectionally, since single-electron inverters do not have such a function.

Charge-induced signal transmission (CIST) circuits use single electron junc-
tions that function as two-way transmission passes and branch transmission

ence or absence of an electron and a hole as a binary signal. This circuit can
also transmit signals over long distances during one clock cycle.

2.3.6 Neuron cell and cellular neural network design using
SETs

Once the electronic device can implement transfer of a signal restricted by a
certain threshold T , it is called a neuron. The neuron’s function is:

I = f(
∑
i=1

wixi) =

⎧⎨⎩
1,

∑
i=1 wixi ≥ T,

0, otherwise,
(2.1)

Threshold logic can be easily implemented on single-electron devices. In a
multigate SET, the current ID is a function of input voltages and capacitances:

ID(V1, V2, . . . , VN ) = f(
N∑

i=1

CiVi

e
), (2.2)

where e is a single-electron charge (e = 1.6 · 10−19 Coulomb). Equation
2.2 indicates that the device implements a neuron function. However, the
threshold understanding is different from the traditional one:

� In a traditional understanding, the neuron output is 1 (a device is ON) if
the output supercedes some threshold value.

� In multigate SET, the current ID takes a minimum when
∑N

i=1
CiVi

e is an
integer because the Coulomb blockade sets in.

Here, CiVi

e corresponds to the number of excess electrons on the i-th input
(gate electrode). When

∑N
i=1

CiVi

e is a half-integer, the current flows because
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passes (see “Further Reading” Section). CIST transmits the state of the pres-
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the Coulomb blockade is lifted. So, the multigate SET will implement the
following threshold function

ID(V1, V2, . . . , VN ) = f(
N∑

i=1

CiVi

e
) =

⎧⎨⎩1,
∑N

i=1
CiVi

e = 2l−1
2 ,

0, otherwise,

where l is an integer, Ci is a weight, and Vi is an input signal.
The two-input threshold gate and corresponding multigate SET is given in

Figure 2.9. This gate can be a cell for a cellular neural network (CNN). In a
CNN, a cell’s input and output are locally connected in a weighted fashion to
a neighborhood of identical cells. This CNN network is nonlinear, since the
cells operate in a bistable mode, which is dependent on the weighted sum of
the input voltages to the SET in the cell.
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(a) Schematic representation of a
threshold gate. Its function is de-
scribed by

F = f(
V1C1

e
+

V2C2

e
).

(b) Schematic structure of the
neuron-like element implemented as a
multigate single-electron device.

FIGURE 2.9
Two-input neuron (a), and two-input multigate SET (b).

2.3.7 Single-electron systolic arrays

Locally-interconnected, synchronous networks can be built of SET devices,
which makes possible representation of bits by single electrons and causes
extreme device-level scalability. These have the potential for very high per-
formance because both their devices and their architecture are highly scalable,
perhaps even to molecular dimensions. They possess the following features:

� Digital representation in the devices is pushed to the ultimate limit and is
provided directly by the quantization of electron charge.
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� They are locally-interconnected to overcome interconnect bandwidth limi-
tations and to mitigate discrete-physics device problems associated with
limited gain, fan-out and impedance matching.

� The cell biasing is regular, which simplifies the design and clock distribution
and makes the layout quite similar to a conventional charge-coupled-
device.

� In circuits containing multiple electrons/bits, the screening length is short
compared to the spacing between electrons. In the most existing Coulomb
blockade circuits, only one electron is contained at a time.

The candidates for implementing these devices are:

� Electron-pump devices, and
� Electron-pump-like switches considered earlier.

Single-electron pump switch

In an electron-pump, electron motion occurs both as a result of gate biasing
and via interaction with other single electrons in the circuit. In the electron-

the same manner as the BDD-based circuit considered above.
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A single-electron pump switch includes

• Coulomb islands,
• Gates biased with phases φ, and
• Tunnel junctions.

In operation, an electron will go right
or left, in a fully Coulomb-
blockaded manner, based solely
on whether or not there is an
electron at the control node.

The switching direction does not de-
pend on the gate biases, which
are occupancy independent.

FIGURE 2.10
Single-electron pump-based switch.

A SET-based systolic processor consists of an array of processing cells,
with each cell connected to its nearest neighbors only. It operates in a highly-
parallel, pipelined fashion with data and results streaming through in regular,
rhythmic patterns. Such processors can implement a variety of important
signal processing functions such as convolution, correlation, Fourier transform
and other matrix based computations. For instance, in this book matrix
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pump-like switch (Figure 2.10), the same biasing principle is used (see “Fur-
ther Reading” Section). The switch can be used to design a logic family, in
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transforms are used for representation of switching and multivalued functions
in various forms.

These schemes process anywhere from one bit (bit-serial approach) to one
word (bit-parallel approach) in parallel. Nanoelectronic implementation seems
to be more suitable for bit-parallel methods.

2.3.8 Parallel computation in nanoscale circuits: bit-level vs.
word-level models

computation will be considered in context of organization of massive parallel
computation on nanostructures. It will be proven that:

� The parallel-pipelined architecture of cellular networks such as systolic
arrays is well-suited for ultrasmall scale devices.

� They do not demand long global interconnection – a requirement that
nanotechnology can hardly ever provide.

� They perfectly fit the idea of manipulation with single bits or words of bits
represented by single particles, i.e., single-electrons.

� Locality of cellular network is easily achieved in the devices that are wave-
guarded (such as mesoscopic devices).

� The expected 3-dimensionality of the nanoscale devices is consistent with
the idea of cellular design for massive parallel computation.

2.4 Molecular electronics

The principles of logic that utilize charge states, or counting electrons, are
not material-sensitive. Therefore, single-electron devices can be implemented
using any acceptable basis. This broadens the perspective for single electron-
ics.

2.4.1 CMOS-molecular electronics

The chemically directed self-assembly of molecular single-electron devices on
prefabricated nanowires is considered as a promising way toward integrated
circuits using, for example, single-electron tunneling.

CMOL

The single-molecule single-electron transistors are characterized as follows:

� They can operate at room temperature,
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In Chapters 3, 4, and 10, bit-level and word-level graph based spatial models of
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� The molecules can self-assemble on gaps of a few nm between prefabricated
nanowires,

� The nanowires may allow us to connect molecular single-electron devices
to larger (and hence more sparse) silicon nanoMOSFET devices.

The general idea of such CMOS/nanowire/MOLecular (CMOL) hybrid cir-
cuits is to combine the advantages of single-electron devices (very high den-
sity) with those of advanced field-effect transistors (high voltage gain and high
reproducibility).

This approach uses an inorganic molecule between two electrodes and makes
use of quantum tunneling. Such single-electron devices may be used to per-
form the functions that are natural for them:

� Compact memory cells or
� Externally-controlled switches.

They may leave the more difficult functions (e.g., signal amplification with
high voltage gain) for CMOS circuits.

Neuromorphic circuits

The architecture can be based on so-called distributed crossbar arrays for

Cells that may be implemented in nanoscale CMOS technology) are embedded
into a 2-D array of single-electron latching switches working as single-bit-
weight synapses. In a neuromorphic network,

� Each cell is hard wired to a limited number of other cells, with discrete
synaptic weights controlling which of these connections are currently
active, and

� Vice versa, the signal activity of the network determines whether the
synapses are open or closed, though the state of any particular synapse is
also affected by the underlying randomness of single-electron tunneling.

Such self-adaptive networks can be also trained, using global reinforcement
training techniques, to perform more complex information processing. For
example, this methodology can be used in minimization of logic functions
that are incompletely specified or too large for exact minimization. Moreover,
it is expected that a sufficiently large hierarchical system will be able, after
a period of initial training, to self-evolve and self-improve on the basis of its
interaction with the informational environment.

Molecular technology is considered as the possible technological platform
for single-electronics, as molecular devices can operate at room temperature,
since the principal drawback of the current single-electron devices is low tem-
perature.

2.4.2 Other structures: nanowires

Nanowires are of particular interest for two reasons:
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neuromorphic networks based on switches (see “Further Reading” Section).
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� Nanowires show quantum-mechanical confinement effects and have the
ability to connect to individual molecules,

� They have a very high surface-to-volume ratio, enabling them to be used
as sensors.

There is no simple method to fabricate nanowires over large areas in ar-
The most

interesting are the nanowire patterns of branched “nanotrees.” There can be
three branches at 60-degree angles, four branches at 90-degree angles, and
six branches at 30-degree angles. Using today’s technology, nanotrees can
be created on 2-D thin film. However, with the progress of technology, 3-D
nanotrees, e.g., trees embedded in hypercubes (inherently crystal topology)
are becoming a feasible possibility (see “Further Reading” Section).

2.4.3 Nanotechnology-enhanced microelectronics

The carbon nanotube FET (CNTFET) is a typical example of nanotechnology-
enhanced microelectronics. The fabrication of CNTFET is straightforward
and can be performed utilizing modified CMOS processes. The gold elec-
trodes can be formed on a doped Si with a thermally grown silicon oxide that
serves as the gate insulator. Then, carbon nanotubes are dispersed on the
wafer. The substrate serves as the gate electrode. A transition metal (tita-
nium or cobalt) is patterned on the wafer as the source/drain contact metal.
The CNTFET is equivalent, in terms of performance, with that of conven-
tional MOSFETs. 2-D functional structures have been utilized as crossbar
assemblies that can be viewed as quasi 3-D nanoICs.

Another nanotechnology-enhanced type of a circuit is one that combines
MOSFET and SET to achieve superior integration packaging (see “Further
Reading” Section). Inconsistency in the operation temperature is the main
obstacle in this direction; this can be, perhaps, resolved by the progress of
technology.

2.5 Scaling and fabrication

Further constraints posed by technology are an important aspect to consider
for designing the nanoscale devices.

2.5.1 Scaling limits of electronic devices

The steady downscaling of transistor dimensions over the past two
decades (from 10 mm to 0.2 mm) has significantly affected the growth of
silicon-based ICs, ensuring high performance (high switching frequency, re-
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bitrary material combinations (see “Further Reading” Section ).
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liability with lower power consumption and dissipation), density, reliability,
etc. Further rescaling to shorter channel length, simultaneously leads to im-
provements and drawbacks. It is anticipated that room temperature CMOS
processes can be scaled down to 18 nm channel length, while low-temperature
CMOS can potentially extend the scaling limit to 9 nm. As the channel length
is scaled to the nanometer range (less than 100 nm), the electrical barriers in
the semiconductor device begin to lose their insulating properties due to ther-
mal injection and quantum tunneling. This results in a rapid rise of standby
power, limiting integration level and switching speed. When the MOSFET di-
mensions are scaled down, both the voltage level and the gate-oxide thickness
must also be reduced. Since the electron thermal voltage (kT/q) is constant
for room temperature, the ratio between the operating voltage and the ther-
mal voltage decreases. This leads to higher source-to-drain leakage currents
due to the thermal diffusion of electrons. The gate oxide has been scaled to a
thickness of a few atomic layers (the atomic radius of Si is 0.1176 nm), where
quantum tunneling leads to a significant increase in gate leakage currents
degrading the performance.

The major fundamental limiting factors are:

� Electron thermal diffusion,
� Tunneling leakage through the gate oxide, and
� 2-D electrostatic scale length.

Emphasizing the power consideration with the corresponding limits, some
well-known physical limitations are reported for MOSFETs.

The threshold voltage Vt is defined as the gate voltage at which significant
current begins to flow from the source to the drain. Below the threshold volt-
age, the current does not decrease to zero instantly. It decreases exponentially
with a slope in the log scale inversely proportional to the thermal energy kT.
This is due to the fact that the thermally excited electrons at the source of
the transistor have the energy to overcome the potential barrier controlled
by the gate voltage and flow to the drain. This subthreshold behavior is due
to thermodynamics and is independent of power-supply voltage and channel
length.

The other consequence of scaling is the gate-oxide tunneling effect. To keep
adverse 2-D electrostatic effects on threshold voltage (short-channel effects)
under control, gate-oxide thickness is reduced proportionally to the channel
length. For CMOS devices with channel lengths of 100 nm (0.1 mm) or
less, a required silicon oxide thickness must be on the order of 3 nm. This
thickness approaches fundamental limits due to quantum-mechanical tunnel-
ing. The gate leakage current increases exponentially as the oxide thickness is
reduced through scaling it down. This tunneling current significantly affects
the standby power. The limit for the gate-oxide thickness is in the range of
1 nm. It should be emphasized that for thin gate oxide, inversion charge and

© 2005 by CRC Press



Nanotechnologies 47

transconductance degrade due to inversion-layer quantization and polysilicon-
gate depletion effects. The density of inversion electrons peaks at 1 nm below
the silicon. This effectively reduces the gate capacitance. Therefore, the in-
version charge changes to that of an equivalent oxide 0.4 nm thicker than
the physical oxide. Hence, the scaling limit of silicon oxide thickness leads to
1.5 nm of thickness.

Scaling below 100 nm channel length faces several fundamental difficulties.
Using properly optimized doping profiles, the silicon depletion width, mean-
while approaching the tunneling limit, it is likely that 20 nm channel length
with nanometer gate oxides and below 1 V voltage levels can be achieved for
high-yield fabrication.

Considerable progress has been made in optimizing oxide/nitride and oxyni-
tride dielectrics to reduce boron penetration and dielectric leakage compared
to pure silicon. Promising alternative materials have emerged, and are capable
of 1 nm equivalent oxide thickness. However, even using these novel materials,
it seems that the equivalent oxide thickness cannot be reduced to less than
0.6 or 0.8 nm. For junctions, the main challenge lies in providing low parasitic
series resistance as depths are scaled down in order to reduce short-channel
effects. Because contacts dominate parasitic resistance, low-barrier-height
contacts and/or very heavily doped junctions are required. While ion implan-
tation and annealing processes can be enhanced to meet junction-depth and
series-resistance requirements, low-temperature deposition processes may be
needed.

Thus, scaling down semiconductor devices beyond 65 nm CMOS technol-
ogy requires overcoming formidable fundamental and technological limits. In
addition to quantum-mechanical tunneling of carriers (through the thin gate
oxide, from source to drain, and from drain to the MOSFET body), other
issues must be resolved. In particular, control of the density and location of
dopant atoms in the channel and source/drain region to ensure high on and
off currents, as well as finite subthreshold slope.

Theoretically, for optimal (ideal) ballistic MOSFET, the ultra-thin (2 nm)
undoped channel length may be 10 nm (only hundreds of Si atoms) with two
gates (below and above the channel). However, this may be the absolute limit.
Finally, as was emphasized, this nanotechnology-enhanced microelectronics
cannot be viewed as nanoelectronics. The CNTFET, considered above, is a
typical example of nanotechnology-enhanced microelectronics.

2.5.2 Operational limits of nanoelectronic devices

The conditions affecting operation. Physical effects in nanoelectronic
devices are different from microelectronic ones, but they also have limitations
that must be taken into account in logic design, modeling and analysis. The
conditions affecting operation of single-electron devices include:

� Temperature,
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� Fabrication technology,
� Control.

Temperature. The most important condition for operation of SETs is tem-
perature. For a room-temperature SET with V ≈ 1 Volt, the total current
would be below 10 µA. Since the width of such a transistor has to be very
small, 1 nm, the available current density may be well above 1, 000 µA/µm,
i.e., even higher than that of standard silicon MOSFETs. The latter condition
makes the practical implementation of SETs operating at room temperature
rather problematic.

The technological processes must be ultraprecise to achieve the required
characteristics. Both theory and experiments show that single-electron tun-
neling effects become visible at the electric potential Ea ≈ 3 kBT . This
means that in order to notice these effects at T ≈ 100 mK, Ea should be
above 25 µeV , corresponding to the island capacitance C ≈ 5 × 10−15F and
island size of the order of 1 micron, with tunnel junction area 0.1× 0.1 µm2.
Such dimensions can be reached by several methods such as metal evapora-
tion from two angles through a hanging resist mask. However, for reliable
operation of most digital single-electron devices, the single-electron addition
energy should be at least 100 times larger than 1 kBT. This means that for
room temperature operation, this value corresponds to an island size of about
1 nm. The parameters of such transistors are rather unpredictable, so that
they can hardly ever be used in nanoICs.

The other option is fabrication of discrete transistors with scanning probes,
by nanooxidation of metallic films or manipulation with carbon nanotubes.
Unfortunately, the current in these transistors is very low (below 10−11 A),
though for discrete devices this approach may be promising. Several methods
taken from the standard CMOS technology have also been used to fabricate
single-electron transistors, mostly by the oxidation of a thin silicon channel
until it breaks into one or several tunnel-coupled islands. The disadvantage of
this approach is that the parameters of the resulting transistors are difficult
to reproduce.

2.6 Summary

In this chapter, we reviewed both technological possibilities for nanoscale
fabrication:

� Electronic (semiconductor/superconductor), and
� Molecular.

The first group involves two main groups of nanoelectronic devices:
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� Those based on phenomena of quantum interference, and
� Those based on single electron effects.

1. Single-electron devices are frequently considered as the most probable can-
didates for the replacement of silicon MOSFETs. The reason for this
expectation is that the physics of single electron device operation are
not sensitive to fabrication material, and hence these devices may be
fabricated from a broad variety of materials, in particular, chemically
synthesized molecular devices on prefabricated metallic nanowire struc-
tures.

2. The challenges on the way to digital application of single-electron devices
are:

� Low voltage gain, and
� High sensitivity to single charge impurities in the dielectric environ-

ment at room temperatures.
3. The most realistic implementation is a few-electron memory cell that can

be scaled down to 30 nm2 cell area and demonstrate 1-ns-scale write/erase
time. Moreover, for room temperature operation, they should not be
larger than 3 nm, as opposed to 1 nm for logic circuits. Logic circuits
are heavily affected by temperature, an increase above few K causing
random background charge effects.

4. The hybrid circuit single-electron devices called CMOL, together with
nanoscale MOSFETs and nanowires, may become the basis for imple-
mentation of novel, massively parallel architectures for advanced infor-
mation processing. Such systems may eventually replace traditional
digital processors.

5. The tremendous technological achievements of the past few decades lead
us to address some architecture design issues in nanoelectronic circuits
and systems in the future:

� Nanodevices, both nanoelectronic and molecular, are expected to be
locally interconnected 3-D structures. They can implement massive
parallel computations and non traditional logic because of intercon-
nect bandwidth considerations and because of device limitation in
gain, fan-out and impedance matching.

� Nanoelectronic devices can be classified based on the observed phe-
nomena (waveguide or single electron) into two groups: those rel-
evant to quantum computing (so far theoretical only) and those
relevant to traditional von Neumann computing model implemen-
tation. In both, however, spatial and geometrical properties are
critical, due to the ultra-small size of the proposed particles.

� Computer aided design (CAD) of nanoelectronic ICs and nanoICs
relies on the data structure inherited from classic switching theory
as well as that especially for logic circuit design in 3-D. The prob-
lem of nanoIC design is formulated in this book as a problem of
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creation of appropriate 3-D data structures and algorithms of their
manipulation.

2.7 Problems

Problems 1 and 2 can be used as assignments. The rest of the problems can
be considered as the projects.

1. Sketch the schematic of the BDD-based single-electron network represent-
ing the BDD given in:

(a) Figure 2.11a
(b) Figure 2.11b.
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FIGURE 2.11
BDD that represent EXOR function, and shared BDD (Problem 3).

2. Evaluate the parameters (number of tunnel junctions, quantum dots,
and terminals) of the following implementations of the BDD shown in Figure
2.11a:

(a) on a SET based multigate device
(b) on a BDD based nanowire network
(c) on single-electron pump switches

To prove functionality use PSPICE or SIMON simulation tools.
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3. Propose your design of the voltage state circuits:

(a) AND gate
(b) OR gate
(c) 3-input EXOR.

4. Consider implementation of a 7-input majority gate on a 3-input single-

2.8 Further reading

Although an advanced
deep submicron electronic circuit will be the mainstream technology in at least
ten years, novel nanoelectronic device concept is being actively investigated
[16, 18, 19, 39, 40, 50].

Quantum-effect devices. Solid-state nanoelectronic devices are generally
understood as devices that demonstrate quantum effect and single electron
phenomena. The latter have been studied in physics for a long time, with-
out consideration of electronic applications. It has been discovered that the
mentioned phenomena at quantum level does not perfectly fit the determinis-
tic models of conventional electronic due to quantum decoherence and other
implications [21].

Single-electronics. The key theory of single electronics, orthodox theory was
developed by Kulik and Shekhter [32]. This theory states that the tunneling of
a single electron through a particular tunnel barrier is always a random event,
with a certain probability per unit time. For complex systems, the space of all
possible charge states may become too large, and the only practical method
is to simulate the random dynamics of the system by a Monte Carlo method
[63].

Single-electron transistor. The concept of nanocomputing based on Joseph-
son junction technology is discussed in [38, 58, 63]. This is based on the the-
ory of the Bloch-wave oscillations in small Josephson junctions [34] and the
phenomenon of Coulomb blockade of tunneling [35]. Coulomb blockade and
associated single-electron behavior such as the Coulomb staircase were first
observed in metal-oxide tunnel junction systems in the 1980s [1].

A voltage-state single-electron inverter design that is a pair of SET tran-
sistors that is similar to CMOS design paradigm, has been proposed in [62].
Likharev provides an exhaustive review of SET-based voltage state logic gates
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52 Logic Design of NanoICs

[38]. For the simulation of single electron tunneling, Monte Carlo techniques
are utilized [63]. In Monte Carlo simulation, stochastic tunneling events across
all possible junctions are simulated in time using a random number generator
to generate the time between tunneling events. Commercial simulators are
available such as SIMON 2.0 [63], which provide schematic capture for design
and simulation of single electron circuits. Modeling of SET devices on SPICE,
SIMON and other tools have demonstrated the expected behavior of separate
logic gates.

Poor input/outout transfer makes it difficult to implement large circuits
of the above voltage logic devices, unless another principle such as charge
state and cellular design are used. However, some resolutions are possible:
a dual-rail transmission line based on the principle similar to one for single-
electron pump and called charge-induced signal transmission (CIST), has been
proposed by Yamamura [65]. It is not necessary to place electrons in advance
in each cell of CIST because the circuit has no node that is electrically isolated.
Since these properties are suitable not only for a signal transmission pass but
also for a logical circuit, the feasibility of realizing basic logic elements with
CIST circuits: AND, OR, NOT logic, and so on, has been investigated.

Memory on SET. Memory on charge state logic gates can be implemented
on a parametron-based circuit that operates in shift-register fashion. This
feature is very similar to that of the ultrafast RSFQ logic [37]). Various
proposals include the single-electron flip-flop composed of cross-coupled SETs
[30], and the single-electron trap [46]. The most commercialized single electron
memory [66] is based on naturally occurring islands formed in single grains in
a polysilicon film. This technology has been employed by Hitachi to fabricate
a 128 Mb memory [67].

Switches and BDD nodes on SET. Mapping a ROBDD into a hexago-
nal nanowire network controlled by Schottky wrap gates has been introduced
in [1, 4]. A T-gate demultiplexing an entry into two branches can be easily
implemented using the designated technology called PADOX [1]. Both im-
plementation and modeling aspects have been reported in [1, 2, 4]. Physical
prototyping of the gates, including T-gate, based on PADOX technology has
been reported.

Multivalued logic on SET. Takahashi et al. proposed to implement a
quantized multivalued signal, a multigate circuit [58]. Signal quantization is a
property of SET-based devices that is remarkably well-suited for representa-
tion of multivalued systems. Other multivalued logic devices using multigate
SET have been reported by Inokawa and Takahashi [27]. Recently, the digi-
tal circuits combining SET and MOSFET have been reported by Degawa et
al. [10]. Oya et al. [48] proposed to implement a majority device using an
irreversible single-electron box. This implementation is based on a multigate
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single-electron device (up to three inputs), that can be connected into a chain
to increase the number of inputs.

Neural networks on SET. Threshold logic gate implementation on SET
has been reported in [27, 58]. In the multigate single-electron device, the
output current is the function (not threshold) of the weighted sum of the
input voltages, with weights determined by the capacitance value of each

network [56, 68].
Another approach for designing analog neural network is based on the con-

cept of CNN. The CNN can be defined as an array of a× b× c identical cells
arranged in a spatial grid. Each cell mutually interacts with its nearest neigh-
bors. In the most common case, a set of 2(2× r + 1)n) + 1 parameters, where
r is a neighbor radius, completely defined a functional behavior of a CNN in
n dimensions. The SET realization of a neuron in such a CNN [19] is based
on the circuit proposed by Goossens et al. [22]. It consists of the Tucker SET
inverter [62] which provides a bistable behavior and has multiple capacitive
inputs to the inverter to form a voltage summing node such that the input
voltage is the weighted sum of the external voltages, with weights determined
by the capacitance value of each input signal.

Charge-state logic: parametron. A device that implements charge state
logic using small conducting islands separated by tunnel barriers, while timing
and power are provided by an external RF field, was first explored theoretically
in 1987 [36]. It has been shown by Korotkov and Likharev [31] that a special
geometry arrangement of such a device enables implementation of logic gates
as well as fan-out, and assembling the “wireless” logic circuits.

Quantum effect mesoscopic devices: dots and waveguides. This class
of devices are also called electron waveguides, and are believed to be solid-
state implementation of quantum computing. Two single-mode waveguides,
coupled to each other by means of a short potential barrier have been pro-
posed as a realization of a quantum-mechanical bit (qubit) [5]. A wave-packet
launched in one of the waveguides will oscillate back and forth between the
two branches, as it passes through the region where the potential barrier is
located. The electron can be switched between the two waveguides, which are
therefore used to represent the two logic states of the qubit. An alternative
approach, based on the use of plane waves, rather than wave packets, has also
been proposed [23]. The electron-wave probability can be switched back and
forth between the two waveguides, by controlling the length of the coupling
window. Unfortunately, no practical implementations of the waveguide-based
qubit have been demonstrated.

Quantum dot arrays is another class of mesoscopic devices aimed at imple-
mentation of “wireless” computing in solid-state electronics [33]. Quantum
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dot cell performs based on four phase adiabatic clocking scheme (computation,
cell locked, cell relaxed, and inactive). It enables signal propagation within
the arrays of quantum dots. However, the original idea of quantum dot ar-
rays experiences major practical problems because of the unsolved questions
of mesoscopic devices:

� Coherent hybridization of quantum dot levels, similar to that well studied
in atomic and molecular physics results in tunneling from an island to
bulk electrodes that brings a substantial dissipation into this system and

quantization effects have not yet led to suggestions for any new practi-
cal applications, with the exception of single-electron spectroscopy, and
some highly controversial logic device proposals.

� Coherence of the electron waves is disrupted by phase-randomizing scatter-
ing. Among the possible sources of this scattering are electron-phonon
and electronelectron interaction. Another effect of increasing tempera-
ture is thermal smearing of the electron population near the Fermi level,
and this effect combines with scattering-induced decoherence [21].

Reversible logic. An alternative class of machines intensively studied today
is based on asymptotically reversible logic devices which entail no minimum
entropy per operation [54]. They are organized in such a way as to permit
arbitrary patterns of logically reversible information processing in 3-D space.
Recently, a plenty of techniques for logic synthesis of reversible has been
proposed [26, 42, 43], including multivalued reversible circuits [44].

So far, reversible computation has not gone past the theoretical stage.
Nanoscale devices must, however, obey the fundamental constraints that the
laws of physics impose on the manipulation of information, e.g.:

� Some physical constraints, such as the fact that the speed at which infor-
mation can travel optically through free space is upperbounded by a
constant (the speed of light, 299 792 458 m/s), are still present in nan-
odimensions. The electrical transmission of signals along wires is slower
than light, so the current propagation delays along dissipative wires are
significant.

� The time of transmission is proportional to the square of the distance,
unless the signals are periodically regenerated by additional buffering
logic.

Resonant tunneling has been first observed in 1974 [6]. Since then, the
progress in heterostructure epitaxy has lead to quantum effect devices with
adjustable peak current densities and peak voltages (e.g., MOBILE technology
[3, 8]). Resonant-tunneling devices’ application is primarily in the area of
multivalued logic [7], and threshold logic gates [8]. A second way to implement
a threshold gate on the device level is the neuron MOS transistor [55].
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It must be emphasized that a circuit family based on threshold logic is
able to compute every arbitrary switching function in a network with several
layers. Linear threshold gates have been proposed in [3]. This gate consists
of two resonant tunneling diodes in series whose peak current is modulated
by a gate or by means of a parallel connected FET. Applying a bias voltage
oscillating between the peak voltage and the double peak voltage, the output
node is either monostable or bistable.

Rapid single-flux-quantum technology. This technology is rather submi-
cron, however, these low-temperature devices precede single-electron devices
[28]. Flux quantum devices have been first proposed and evaluated numeri-
cally in [37], including logic switches [70]. This SFQ D2 flip-flop is switching
the pulse (the messenger), the particle representing the state of the system,
from the root into one of the branches, depending on its internal state.

An approach to designing rapid SFQ logic circuits based on binary decision
diagrams has been proposed in [69]. It should be noted that BDD devices
on SFQ are dual rail, and they are data driven and self-timed, so no clock
signal distribution is required. The only requirement for the timing is that
the messenger has to arrive at the gates after the transition caused by input
data.

Molecular technology and other perspectives. The chemically directed
self-assembly of molecular single-electron devices on prefabricated nanowires
is considered by Fendler [14]. The single-molecule SETs operating at room
temperature have been demonstrated experimentally [49, 71].

The main problem now is to synthesize molecules that would combine suit-
able device characteristics with the ability to self-assemble, with high yield,
on a few nm gaps between prefabricated nanowires. The general idea of such
CMOS/nanowire/MOLecular hybrid circuits is to combine the advantages of
single-electron devices [61], on one side, and room temperature molecule scal-
ability.

A three-terminal version of the inorganic molecule device earlier suggested
by Collier et al., and Ellenbogen and Love [9, 12], has been proposed by Fölling
[15]. The device is a simple combination of the SET and the trap, working
together as a latching switch.

A three-terminal CMOL device is a simple combination of the SET and
the trap, working together as a latching switch. The device consists of three
small islands connected by four tunnel junctions. The first island, together
with input and output wires serve as a source and drain, forming a single-
electron transistor; other islands form a single-electron trap. If the effective
source-to-drain voltage applied from two inputs of the device is low, the trap in
equilibrium has no extra electrons, and the transistor remains in the Coulomb
blockade state – input and output wires are disconnected. If the source-to-
drain voltage increases beyond a certain threshold (which should be lower
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than the Coulomb blockade threshold voltage of the transistor), one electron
is injected into the trap.

The latching switch is sensitive to random charge impurities, e.g., if the
source-drain voltage is low for a long time, either thermal fluctuations or
cotunneling forces the trapped electron out of the trap and the transistor
closes, disconnecting the wires. Therefore, the device can be used in redundant
circuits that may tolerate at least a small percentage of faulty devices.

A possible single-molecule implementation of such a device called CrossNets
is discussed by Türel and Likharev [61]. Estimates show that neural cell
density may be as high as 108 cm2, implying that brain-scale systems could
be implemented on a silicon area on the order of 10× 10 cm2. The estimated
speed of scaling of this network is even more impressive, with the time of signal
propagation between the neural cells on the order of 100 ns, at acceptable
power dissipation, with the speed six orders of magnitude higher than that in
biological neural networks. In addition, the system is capable of self-evolving
at a high speed.

Nanowires and nanotrees. Nanowires can form building blocks to create
logic gates [25]. Since the possibility of creating nanowires on silicon technol-
ogy has been demonstrated (Harvard, Berkeley, and Lund University), they
have been considered as reasonable candidates to move forward to the genera-
tion of well-defined nanowire network structures on almost any solid material,
up to macroscopic sample sizes.

One recent method (Lund University) is to create nanowires with diameter
<16 nm within cracks in a thin film; the cracks are straight, scalable down
to nanometre size, and can be aligned via strain. Creation of patterns of
branched “nanotrees” is controlled by seeding of multiple branching events:
first, tiny nanoparticles of gold are created and placed on a semiconducting
tray. Then reactive molecules are released that contain the atoms to form the
nanowires. The reactive molecules seek out the catalytic gold particles and
build crystals on the tiny contact surface directly under the gold. The wires
are on the scale of a few micrometers (1,000ths of mm) in length and about
50 nanometers thick.

In the second step new gold particles are then sprayed onto the nanowires,
and the procedure is repeated. Now new “branches” are grown at sites where
the gold particles landed. The number of branches grown is determined by
the crystal structure of the trunk. There can be three branches at 60-degree
angles, four branches at 90-degree angles, and six branches at 30-degree angles.
In this way veritable forests of nanotrees can be created.

Carbon nanotube devices. Derycke et al. and Martel et al. consider logic
gates based on carbon nanotube (CNT) devices [11, 41]. CNTFETs with
single- and multiwall carbon nanotubes as the channel were fabricated and
tested by Bachtold et al. [4].
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Scaling and fabrication. Another option is fabrication of discrete tran-
sistors with scanning probes, for example by nanooxidation of metallic films
[45] or manipulation with carbon nanotubes [51]. For the former devices,
single-electron addition energies as high as 1 Volt have been reached, but
unfortunately, the current in these transistors is very low (below 10−11A).
Fabrication of single-electron transistors is accomplished by the oxidation of
a thin silicon channel until it breaks into one or several tunnel-coupled is-
lands, see, for example, the work by Takahashi et al.

CAD of ICs. Some models to describe 3-D submicron structure have been
proposed in the past [24]. At the same time, a lot of 3-D graph-based to-

design. In the coming era of nanodimensions, spatial topology might be con-
sidered at the logic design level, since the entire design process is becoming
horizontal rather than vertical in terms of consequent top-down steps [16].
Hypercube-like technologies have been reported for the first time by Shmerko
and Yanushkevich [56]. 3-D aspects of nanoICs have not been given the appro-
priate attention as of yet, except for the results by Endoh et al., and Goldstein
and Budiu [13, 17].
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3

Basics of Logic Design in
Nanospace

In this chapter, selected methods of classical logic design are revised. The
chapter consists of nine sections. In each section we deal with canonical
forms for representation of switching functions. In general, the problem is
to choose an appropriate form, which complies with particular properties of
3-D implementation. Such a formulation of the problem implies the following
strategy for material representation:

� The general equation that generates a variety of forms of a switching func-
tion is introduced;

� The algebraic, matrix and hypercube-based methods of computing a swit-
ching function in a given form are described. Two aspects of the problem
are the focus of discussion: construction of a given form (direct problem)
and restoration of an initial function (inverse problem);

� Decision trees and decision diagram design are revisited, as a basis for 3-D
embedding techniques.

In this chapter, we will focus on utilization of traditional hypercube struc-
tures. In this approach, each variable of a switching function is associated
with one dimension in hyperspace. Manipulation of the function is based on
special encoding of the vertices and edges in the hypercube. The hypercube
is used as an effective algebraic model of a switching function.

The basics of multidimensional logic design include

• Topology design,
• Representations of switching functions (in algebraic and matrix form),
• Decision tree and decision diagram design in 2-D and 3-D space.

Six forms of representations of switching functions are revisited. These
forms are divided into two groups: those for single-output functions, and word-
level forms that represent multioutput functions. The attractive features of
these forms are listed below:

� They are sums (logical, arithmetical, bitwise) of product terms that are
uniform;
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� They can be derived from the unified spectral as direct and inverse trans-
forms in a given basis, and their transform matrices are uniform and
factorizable, i.e., they can be used for computing in different forms;

� The algorithms to calculate switching functions are based on the above uni-
form and homogeneous (flowgraphs, cube-based, decision trees, decision
diagrams) representations;

� This uniformity is a prerequisite for representation in 3-D space considered

brief introduction to the graphical and topological data structures is offered in
Section 3.1. In Section 3.2, the general formal description for sum-of-products,
Reed-Muller, arithmetic and word-level logics is introduced. Various forms of
this general description are discussed: algebraic form, matrix form, cube form,
and graphical form. Then, these forms are discussed in detail. Sections 3.3 and
3.4 focus on sum-of-products expression. In Sections 3.5 and 3.6, Reed-Muller
representation and Davio decision trees and diagrams are introduced. Then,
the technique for computing arithmetic expressions is given in Sections 3.7 and
3.8. Finally, after a brief summary, we provide problems and recommendations
for “Further Reading.”

3.1 Graphs

In this section the elements of graph theory are introduced. The focus is the
design of decision trees and decision diagrams, as well as their structural and
topological properties.

3.1.1 Definitions

A graph is defined as G = (V,E), where V is the vertex (node) set and E
is the edge set. We say (i, j) ∈ E, where i, j ∈ V . The terms edge, link,
connection and interconnection are used here interchangeably, and the terms
graph and logic network are considered synonyms. Functional elements (gates,
circuits) correspond to nodes and communication links correspond to edges
in the graph. The number of nodes in G is n = |V |. An edge in E between
nodes v and u is written as an unordered pair (v, u), and v and u are said
to be adjacent to each other or just neighbors. The distance between two
nodes i and j in a graph G, is the number of edges in G on the shortest path
connecting i and j. The diameter of a graph G is the maximum distance
between two nodes in G. A graph G is connected if a path always exists
between any pair of nodes i and j in G.

© 2005 by CRC Press

in Chapter 5.

The above data structures are represented in this chapter as follows. First, a
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3.1.2 Directed graphs

A directed graph G consists of a finite vertex set V (nodes) and a set E of
edges between the vertices. The indegree of a node (vertex) i in a graph G
is the number of edges in G leading to i. The outdegree of a node (vertex)
i in a graph G is the number of edges in G starting in i. A node is called a
sink if it has an outdegree of 0. If the outdegree of v is bigger than 0, v is
called an internal node. A node is called a root if it has an indegree of 0. The
adjacency matrix A = (aij) of a graph G is defined as |G| × |G| size matrix
such that aij = 1 if (i, j) ∈ E, and aij = 0 otherwise.

 

4

3 2

1
• 4 nodes (n = |V | = 4)

in(v1)=0, out(v1)=3
in(v2)=1, out(v2)=2
in(v3)=2, out(v3)=1
in(v4)=3, out(v4)=0

• v1 is a root

• v4 is a sink

• Diameter = 2

A =

⎡⎢⎢⎣
1 2 3 4

1 1 1 1
2 1 1
3 1
4

⎤⎥⎥⎦

(a) (b) (c)

FIGURE 3.1
The directed graph (a), its properties (b), and an adjacency matrix (c) (Ex-
ample 3.1).

Example 3.1 The properties of the directed graph with four nodes and its
adjacency matrix A are illustrated in Figure 3.1, where in(vi) and out(vi) are
indegrees and outdegrees of a node vi.

3.1.3 Undirected graphs

In the case of undirected graphs the edges are considered unordered pairs and
therefore have no distinguished direction. The degree of a node i in a graph G
is the number of edges in G that are incident with i, i.e., where the outdegree
and the indegree coincide.

Example 3.2
Its adjacency matrix A is equal to the transposed matrix A, A = AT .

3.1.4 Cartesian product graphs

Cartesian product graphs provide a framework in which it is convenient to
analyze as well as to construct new graphs. Let G1 = (V1, E1) and G12 =

© 2005 by CRC Press

Figure 3.2 illustrates the properties of the undirected graph.
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4

3 2

1 • 4 nodes (n = |V | = 4)
degree(v1)=2
degree(v2)=3
degree(v3)=3
degree(v4)=2

• Diameter = 2

A=

⎡⎢⎢⎣
1 2 3 4

1 1 1
2 1 1 1
3 1 1 1
4 1 1

⎤⎥⎥⎦

(a) (b) (c)

FIGURE 3.2
The undirected graph (a), its properties (b), and an adjacency matrix (c)
(Example 3.2).

(V2, E2) are two graphs. The product of G1 and G2, denoted G1 × G2 =
(V1 × V2, E), is a graph where the set of nodes is the product set

V1 × V2 = {x1x2|x1 ∈ V1 and x2 ∈ V2}
E = {〈x1x2, y1, y2〉|(x1 = y1 and 〈x2, y2〉 ∈ E2) or

(x2 = y2 and 〈x1, y1〉 ∈ E1)}.

It can be shown that the hypercube can be defined as the product of n
copies of the complete graph on two vertices, K2. That is

Hn = Hn−1 ×K2.

3.1.5 Interconnection networks

The interconnection network organization depends on data structure.

Interconnection network organization. Let the set of processing elements
be given. Suppose that this set of processing elements must be organized on
the principle of massive parallel computing. To design the model, different
interconnection organizations can be used.

Example 3.3
els interconnection organization based on “1-input, 2-outputs” processing el-
ements. The mesh interconnection network with 16 nodes shown in Figure
3.3b is based on the principle of nearest neighbor communication (each pro-
cessing element has four neighbors). The ring network in Figure 3.3c includes
8 nodes: each processing element communicates with two neighbors. In the
8-node hypercube network, each processing element communicates with three
neighbors (Figure 3.3d).

Notice that meshes, rings, and binary trees can be mapped into a hypercube.

© 2005 by CRC Press

In Figure 3.3a, this is a 7-node binary decision tree that mod-
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FIGURE 3.3
Interconnection network organization: a binary tree (a), mesh (b), ring (c),
and hypercube (d) (Example 3.3).

Modeling a logic network by direct acyclic graphs. A logic network is
modeled by a direct acyclic graph (DAG) G(V,E), whose vertex set V is in
one-to-one correspondence with primary inputs, local functions and primary
outputs. In other words, a logic network is a finite collection of intercon-
nected gates, network input terminals, and network output terminals with
the following restrictions:

� No gate output terminal or network input terminal is connected to another
gate output terminal or network input terminal,

� Every network output terminal or gate input terminal is wired (via one
or more wires) to a constant value, a network input terminal, or a gate
output terminal.

A combinational gate network is one in which the values of the signal present
on its input terminals uniquely determine the signal values at its output ter-
minals.

Example 3.4
from the circuit given in Figure 3.4(a).

3.1.6 Decision tree

A graph is called rooted if there exists exactly one node with an indegree of 0,
the root. A tree is a rooted acyclic graph in which every node but the root has
an indegree of 1. This implies that in a tree, for every vertex v there exists
a unique path from the root to v. The length of this path is called the depth
or level of v. The height of a tree is equal to the largest depth of any node
in the tree. A node with no children is a terminal (external) node or leaf. A
nonleaf node is called an internal node. A complete n−level p-tree, is a tree
with pk nodes on level k for k = 0, . . . , n − 1. A pn-leaf complete tree has a
level hierarchy (levels 0, 1, . . . , n), the root is associated with level zero and
its p children are on level one. This edge model describes the transmission of
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FIGURE 3.4
Logic circuit (a) and its logic network graph (b) (Example 3.4).

data from the child to the parent, so that data are sent in only one direction
at a time, up or down.

A decision tree is characterized by a set of parameters:

� The size, the number of nodes;
� The depth, the number of levels;
� The width, the maximum number of nodes for a level; and
� The area, Depth×Width.

Example 3.5
tree is given. The root corresponds to the level (depth) 0. Its three children
are associated with level 1 (31 = 3). Level 2 includes 32 = 9 nodes. Finally,
there are 33 = 27 terminal nodes.

3.1.7 Embedding of a guest graph in a host graph

An embedding, 〈ϕ, α〉, of a graph G in a graph H is a one-to-one mapping ϕ:
V (G)→ V (H), along with a mapping α that maps an edge (u, v) ∈ E(G) to
a path between ϕ(u) and ϕ(v) in H[11]. The embedding of a guest graph G
in a host graph H is an injection (one-to-one mapping) of the nodes in G to
the nodes in H. An embedding is characterized by a set of parameters:

� The expansion is the ratio |V (H)|/|V (G)|.
� The dilation cost of an embedding of G in H is the maximum distance in

H between the images of any two neighboring nodes in G. This cost
gives a measure of the proximity in H of the neighboring nodes in G
under an embedding.

� The congestion of the embedding is the maximum of the congestions of all
edges of H.

Example 3.6

© 2005 by CRC Press

In Figure 3.5, the complete ternary (p = 3) 3-level (n = 3)

in Figure 3.6.
Details of embedding of graph G in a host graph H are given
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• Size=15
• Width=8
• Depth=3
• Indegree=1
• Outdegree=2
• Area=8 × 3= 24
• Terminal nodes=8
• Intermedial

nodes=7
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Width = 27 

Depth = 3 

(b)

FIGURE 3.5
The complete binary (a) and ternary (b) tree (Example 3.5).

3.1.8 Binary decision diagrams

A decision tree is reduced if it does not contain any vertex v whose successors
lead to the same node, and if it does not contain any distinct vertices v and v′

such that the subgraphs rooted in v and v′ are isomorphic. Reduced decision
trees are usually referred to as decision diagrams. A binary decision diagram
(BDD) is a directed acyclic graph with exactly one root, whose sinks are
labeled by the constants 1 and 0, and whose internal nodes are labeled by a
Boolean variable xi and have exactly two outgoing edges, a 0-edge and 1-edge.
BDD represents a switching function f in the following way:

� Each assignment to the input variables xi defines a uniquely determined
path from the root of the graph to one of the sinks.

� The label of the reached sink gives the function value of this input.

An ordered BDD (OBDD) is a rooted directed acyclic graph that represents
a switching function. A linear variable order is placed on the input variables.
The variables’ occurrences on each path of this diagram have to be consistent
with this order. A OBDD is called reduced if it does not contain any vertex
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Graph G Graph H

The vertex mapping:
1 → 1, 2 → 2,
3 → 3, 4 → 4
The edge to path mapping:
(1, 2) → 1, 2; (2, 4) → 2, 4;
(3, 4) → 3, 4; (1, 3) → 1, 3
Expansion =2
Dilation =1
Congestion =1

(a)

 

1 2 

3 4 
 

x1

x4 x2 x3

Graph G Graph H

The vertex mapping:
1 → x1, 2 → x2,
3 → x3, 4 → x4

The edge to path mapping:
(1, 2) → x1, x2

(2, 4) → x2, x1, x4,
(3, 4) → x3, x1, x4

(1, 3) → x1x3

Expansion =1
Dilation =2
Congestion =2

(b)

FIGURE 3.6
Embedding of graph G in a host graph H (Example 3.6).

v such that the 0-edge and 1-edge of v lead to the same node, and it does not
contain any distinct vertices v and v′ such that the subgraphs rooted in v and
v′ are isomorphic.

A decision diagram is characterized, similarly to a decision tree, by the size,
depth, width, area, and the efficiency of reduction of two decision diagrams
(trees) of size Size1 and Size2:

100× Size1

Size2
%

Example 3.7
tree for the switching function f1 = x1x2 ∨ x3.

A multioutput switching function is represented by a multirooted decision
diagram, which is called a shared decision diagram.

Example 3.8 A multioutput switching function is represented by a shared
OBDD. Let there be two-output function

f1 = x1x2 ∨ x3,

f2 = x1 ∨ x2 ∨ x3.

The shared ROBDD is represented in Figure 3.7c.

© 2005 by CRC Press

Figure 3.7 illustrates the efficiency of the reduction of decision
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FIGURE 3.7
The complete (a) and reduced (b) decision tree for the switching function
f1 = x1x2 ∨ x3; the shared ROBDD (c) (Examples 3.7 and 3.8).

In a multiplexer tree (network), each internal tree node is represented as a 2
to 1 multiplexer controlled by the node variable and each leaf is implemented
as a constant logical value (wired at 0 or wired at 1); the interconnection
scheme is that of the decision tree (diagram). The evaluation of a function
then proceeds from the leaves (the constant values) to the root multiplexer,
the function variables, used as control variables, select a unique path from the
root to one leaf, and the value assigned to that leaf propagates along the path
to the output of the root multiplexer.

3.2 Data structures for switching functions

Circuit, switching net, netlist, fan-in, and fan-out. Switching functions
have a corresponding implementation in terms of interconnected gates. This
is called a circuit, or schematic. The composition of primitive components is
accomplished by physically wiring the gates together. A collection of wires
that always carry the same electrical signal is called a switching net. The
tabulation of gate inputs and outputs and the nets to which they are connected
is called the netlist. The fan-in of a gate is its number of inputs. The fan-out
of a gate is the number of inputs to which the gate’s output is connected.

Data structure is the term used to define an abstract data type. Data
structure for switching functions is a collection of Boolean variables connected
in various ways. In other words, it is a mathematical model of a switching
function. Data type is a property of the mathematical model. Data structures
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for switching functions considered in this book are the following:

� Sum-of-products expressions,
� Reed-Muller expressions,
� Arithmetic expressions, and
� Word-levels (arithmetic, sum-of-products, and Reed-Muller).

These data structures for a switching function f of n variables x1, x2, . . . xn

are represented in different mathematical forms or descriptions:

� General (algebraic) expansion,
� Matrix form,
� Cube form representation,
� Flowgraph,
� Decision tree, and
� Decision diagram.

In addition, each of these forms can be modified with respect to so-called
polarity. Choosing the appropriate

� data structure,
� Data type,
� Data description, and
� Polarity

for a switching function is the crucial point in circuit design in spatial dimen-
sions.

General algebraic equation. This formal description carries information
about the data structure through the algebraic relations between variables.
Each variable in the product term is called a space coordinate, and the number
of variables specifies the number of space dimensions. For example, a one-
variable function corresponds to one-dimensional space, two-variables means
two-dimensional space, etc. Coefficient Ωi is 0 or 1 for sum-of-products and
Reed-Muller expressions, and Ωi is integer number for arithmetic and word-
level representations. The product (xi1

1 · · · xin
n ) generates two kinds of expres-

sions for i = 0, 1, 2, . . . , 2n − 1. If x
ij

j = xj for ij = 0, and x
ij

j = xj for ij = 1,
then

(xi1
1 · · · xin

n ) = x1 . . . xn � x1x2 . . . xn−1xn � . . .� x1x2 . . . xn.

If x
ij

j = 1 for ij = 0, and x
ij

j = xj for ij = 1, then

(xi1
1 · · · xin

n ) = 1� xn � xn−1xn � . . .� x1x2 . . . xn−1 � x1x2 . . . xn.
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The general structure of the equation is illustrated in Figure 3.8 where
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� =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∨, for sum-of-products expression;
⊕, for Reed-Muller expression;
+, for arithmetic and word-level arithmetic expression;
�∨, for word-level sum-of-products expression;
�⊕, for word-level Reed-Muller expression.

 

Switching 
function 

Form of 
switching 
function 

i-th product  term 

Operation 

2n-1 

i=0 
Ωi    ( x1 

i1 xn 
in … ) 

Coefficient 

FIGURE 3.8
Structure of the equation to represent a switching function in various forms.

The matrix (spectral) representation. A data structure can be described
in matrix form. This form often provides a better understanding of the data
structure, for example, symmetric properties, or from a related field of view
(spectral theory, parallel processing).
notation of truth-vector F of a given switching function f , vector of coefficients
(spectrum) Ω, and transform matrix Ω2n . Given the truth-vector F, the result
of the direct transformation is the vector of coefficients Ω. Inverse transform
is used to restore the truth-vector F given a vector of coefficients Ω. Matrix
form is mapped into a flowgraph that carries useful algorithmic properties
(parallel computing and complexity).

A flowgraph is the representation of the transform algorithm. The graph
edges correspond to parallel streams of computing. The flowgraph is derived
from factorization of the transform matrix Ω2n . The nodes of the flowgraph
implement the operation Ω. For example, in the graph of Reed-Muller trans-
form, the nodes implement modulo two operations. Correspondingly, arith-
metic sum operation is implemented in the nodes of flowgraphs for arithmetic
and word-level arithmetic transforms. For Reed-Muller and arithmetic trans-
forms, the basic configuration of the flowgraph is “butterfly,” well-known from
the fast Fourier transform (FFT) used in digital signal processing.

The hypercube is a topological representation of a switching function by
n-dimensional graph. This representation is aimed at:

© 2005 by CRC Press

Matrix form (Figure 3.9) is based on
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FIGURE 3.9
The matrix (spectral) representation of a switching function.
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(a) (b) (c)

FIGURE 3.10
The data structures for representation of switching functions: hypercube (a),
decision tree (b), and decision diagram (c).

� Interpretation (representation) of the function in a form useful for manip-
ulation, and

� Mapping of the function to 3-D space.

In switching theory, a hypercube is defined as a collection of 2m minterms,
therefore, the vertices of the hypercube are assigned with the minterms, m ≤
n.
the product terms in sum-of-products form. This information is encoded as

The design of the hypercube includes the encoding
of switching function accordingly to the rules given in Figure 3.12, assigning
the codes to 2n vertices and n2n−1 edges in the hypercube. The operations
between two hypercubes produce a new hypercube (product) that is utilized
in optimization problems.

© 2005 by CRC Press

In Figure 3.11, the hypercubes for n = 1, . . . , 5, carry information about

shown in Figure 3.12.
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The implementation problem is defined as embedding of a 2-D graphical
structure (decision tree or decision diagram of a switching function) in a hy-
percube that carries functional and topological information about the swit-
ching function.

1−D 2−D 3−D 4−D

 
 

 
 

 

 
 

 
 

f = xi1
1 f = xi1

1 xi2
2 f = xi1

1 xi2
2 xi3

3 f = xi1
1 xi2

2 xi3
3 xi4

4

FIGURE 3.11
Product term of n variables and its spatial interpretation by n-dimensional
hypercube, n = 1, 2, 3, 4.

 

x1

x2 
x3 

X01

0x1

101 

011 X11

1X1

111 

X00

01X

100 000 

010 X10

11X

110 

001 

00X 10X

11X01X

3-D hypercube:

Each node is assigned to one of 8
codes (variable assignment).

Each edge out of 12 is assigned to a
cube with one don’t care (x).

Each face out of 6 is assigned to a
cube with two don’t cares.

FIGURE 3.12
A hypercube data structure for representation and manipulation of switching
functions.

Let us represent switching function f , given by a truth table, by hypercube

� The four corners are called vertices. They correspond to the four rows of

© 2005 by CRC Press

(Figure 3.13a). In classical 2-D hypercube (Figure 3.13b):
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a truth table.

� Each vertex is identified by two coordinates. The horizontal coordinate is
assumed to correspond to variable x1, and vertical coordinate to x2.

� The function f is equal to 1 for vertices 01, 10, and 11. The function f
can be expressed as a set of vertices, f = {01, 10, 11}.

� The edge joins two vertices for which the labels differ in the value of only
one variable. For example, f = 1 for vertices 10 and 11. They are joined
by the edge that is labeled 1x. The letter x is used to denote the fact
that the corresponding variable can be either 0 and 1. Hence 1x means
that x1 = 1, while x2 can be either 0 or 1. Similar, vertices 01 and
11 are joined by the edge labeled x1. The edge 1x is the logical sum of
vertices 10 and 11.

� The term x1 is the sum of minterms x1x2 and x1x2. It is follows that
x1x2 ∨ x1x2 = x1. The edges 1x and x1 define in a unique way the
function f , hence we can write f = {1x,x1}. This corresponds to the
function f = x1 ∨ x2.

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

 

00 10 

01 11 

1x 

x1 
 

000 100 

010 110 

011 111 

001 
101 

f =
∑

m(1, 2, 3) f =
∑

m(0, 2, 4, 5, 6)

(a) (b) (c)

FIGURE 3.13
Representation of switching functions by the hypercube: truth table (a) and 2-
D hypercube representation (b); 3-D hypercube for the function f = x3∨x1x2

(c).

Let f =
∑

m(0, 2, 4, 5, 6). In 3-D hypercube (Figure 3.13c):

(a) There are five vertices that correspond f = 1: 000,010,100,101, and 110.

(b) These vertices are joined by five edges, x00, 0x0,x10, 1x0 and 10x.

(c) These vertices include all variations of x1 and x2, when x3 is 0, and can
be specified by the term xx0. This term means that f = 1 if x3 = 0,
regardless of the values of x1 and x2.
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(d) The function f can be represented in several ways. Some of the possibil-
ities are:

f = {000, 010, 100, 101, 110} = {0x0, 1x0, 101} = {x00,x10, 101}
= {x00,x10, 10x} = {xx0, 10x}.

Obviously, the least-expensive circuit is obtained if f = {xx0, 10x}, which
is equivalent to the logic expression f = x3 ∨ x1x2.

A 4-D hypercube consists of two 3-D hypercubes with their corners con-
nected. The simplest way to visualize a 4-D hypercube is to have one hyper-
cube placed inside the other hypercube.

The decision tree can be derived from the functional equation or its truth
table. It provides a canonical representation of functions in graphical form, so
that for a fixed variable order there is a bijection between switching functions
and decision diagrams. Canonicity is important in two respects: it makes
equivalence tests easy, and it increases efficiency. A node of the decision tree
implements decomposition with respect to a variable. There are 2n terminal
nodes (exactly the same as the number of values in the truth vector) in the
complete decision tree. It is a canonical data structure.

The decision diagram is constructed by reducing a decision tree. The
decision diagram is a canonical form, however, it represents the optimal form
of switching function.

A polarity of expression is one of the possible ways to represent the function.
The polarity of a variable is an indication of complemented variable (x or
polarity 1) or uncomplemented (x). All above forms can be interpreted and
modified with respect to 2n polarities. Moreover, in this modification the
fixed and mixed polarity are distinguished.

In the next sec-
tions, we consider the techniques for computing the coefficients Ωi.

3.3 Sum-of-products expressions

Sum-of-products expressions are derived as canonical polynomials of variables
over OR, AND, NOT operations. Sum-of-products correspond to two-level
AND-OR logic networks.

© 2005 by CRC Press

In Table 3.1 three forms of switching function are given.
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TABLE 3.1

Expansion of a switching function and corresponding decomposition rules for
decision trees and diagrams.

Expansion Formal description x
ij

j Decomposition

Sum-of-products
∨2n−1

i=0 si · (xi1
1 · · · xin

n )
{

xj , ij = 0;
xj , ij = 1.

Shannon

Reed-Muller
⊕2n−1

i=0 ri · (xi1
1 · · · xin

n )
{

1, ij = 0;
xj , ij = 1. Davio

Arithmetic
∑2n−1

i=0 pi · (xi1
1 · · · xin

n )
{

1, ij = 0;
xj , ij = 1. Arithmetic Davio

3.3.1 General form

Given a switching function f of n variables, the sum-of-products expression
is specified by

f =
2n−1∨
i=0

si · (xi1
1 · · · xin

n ),︸ ︷︷ ︸
i−th product

(3.1)

where si ∈ {0, 1} is a coefficient, ij is the j-th bit (j = 1, 2, . . . , n) in the
binary representation of the index i = i1i2 . . . in, and x

ij

j is defined as

x
ij

j =
{

xj , ij = 0;
xj , ij = 1. (3.2)

Example 3.9 An arbitrary function of two variables (n = 2) is represented
in sum-of-products form (3.1) and (3.2):

f = s0(x1x2) ∨ s1(x1x2) ∨ s2(x1x2) ∨ s3(x1x2).

3.3.2 Computing the coefficients

Given a truth vector F = [f(0) f(1) . . . f(2n − 1)]T , the vector of coefficients
S = [s0 s1 . . . s2n−1]T is derived by the matrix equation specified on AND and
OR operations

S = S2n · F, (3.3)

© 2005 by CRC Press
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where the 2n × 2n matrix S2n is formed by the Kronecker (tensor) product
S21 ,

S2n =
n⊗

i=1

S21 , S21 =
[

1 0
0 1

]
. (3.4)

The Kronecker product is defined as follows. Let A2 and B2 be the 2 × 2
matrices

A2 =
[

a11 a12

a21 a22

]
, B2 =

[
b11 b12

b21 b22

]
.

The Kronecker product of A2 and B2 is 4× 4 matrix C2

C22 = A2 ⊗B2 =
[

a11B2 a12B2

a21B2 a22B2,

]
=

⎡⎣ a11b11 a11b12 a12b13 a12b14
a11b21 a11b22 a12b23 a12b24
a21b31 a21b32 a22b33 a22b34
a21b41 a21b42 a22b43 a22b44

⎤⎦
Since, S2n is an identity matrix, F = S. This sum-of-products is the par-

ticular case of other forms. In Figure 3.14a, the general scheme of computing
is represented.

 

 
Direct  
SOP 

transform 

S 
s

0 
s

1 
s

2 
s

3 

F 
f(0) 

f(1) 

f(2) 

f(3) 

 

 
Inverse  

SOP 
transform 

S 
s

0 
s

1 
s

2 
s

3 

F 
f(0) 

f(1) 

f(2) 

f(3) 

(a) (b)

FIGURE 3.14
Direct (a) and inverse (b) sum-of-products (SOP) transforms for a switching
function of two variables.

Example 3.10 Computing the coefficients of the sum-of-products by Equa-
tion 3.3 and Equation 3.4 for the elementary function f = x1 ⊕ x2 given by
the truth vector F = [0 1 1 0]T

3.3.3 Restoration

The following matrix equation using AND and OR operations restores the
truth-vector F from the vector of coefficients S (Figure 3.14b):

F = S−1
2n · S, (3.5)

© 2005 by CRC Press

is illustrated in Figure 3.15.
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x1 f 

x2 

f = x1 ⊕ x2

Computing the vector of coefficients

S=S23 · F =

⎡⎢⎣
1

1
1

1

⎤⎥⎦
⎡⎢⎣ 0

1
1
0

⎤⎥⎦ =

⎡⎢⎣ 0 = s0
1 = s1
1 = s2
0 = s3

⎤⎥⎦

Sum-of-products expression

f = s0(x1x2) ∨ s1(x1x2) ∨ s2(x1x2) ∨ s3(x1x2) = x1x2 ∨ x1x2

FIGURE 3.15
Computation of the sum-of-products expression for EXOR gate (Example
3.10).

where S−1
21 = S21 . Notice that the matrix S21 is self-inverse.

Example 3.11 Restore the truth-vector F of sum-of-products of a function
f given by the vector of coefficients S = [0 1 1 0]T :

F=S−1
23 · S =

⎡⎢⎣
1

1
1

1

⎤⎥⎦
⎡⎢⎣ 0

1
1
0

⎤⎥⎦ =

⎡⎢⎣ 0
1
1
0

⎤⎥⎦ .

3.3.4 Useful rules

Because the vector of coefficients S and the truth-vector F are equal, the
sum-of-products expression can be derived directly from the truth vector F.

Example 3.12 Given F = [0 1 0 0]T , we derive S = [0 1 0 0]T , i.e., f =
x1x2.

3.3.5 Hypercubes

A topological representation of a switching function of n variables is the n-
dimensional hypercube such that:

� The vertices of the hypercube denote the minterms, thus, the hypercube is
a collection of minterms;

� The number of minterms is a power of two, 2m, for some m ≤ n;
� The number of edges in a hypercube is 3 · sn−1.

are represented.

© 2005 by CRC Press

In Figure 3.16, the hypercubes for some logic functions of three variables
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AND NAND OR EXOR
f = x1x2x3 f = x1x2x3 f = x1 ∨ x2 ∨ x3 f = x1 ⊕ x2 ⊕ x3

    

f = [ 1 1 1 ] f =

⎡⎣ 0 x x
x 0 x
x x 0

⎤⎦ f =

⎡⎣ x x 1
x 1 x
1 x x

⎤⎦ f =

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
1 1 1

⎤⎥⎥⎦

FIGURE 3.16
A three-D hypercube and cube-based representation of AND, NAND, OR and
EXOR tree-input gates.

3.4 Shannon decision trees and diagrams

A binary decision tree that corresponds to a canonical sum-of-products repre-
sentation of a switching function is called a Shannon decision tree. This tree
is associated with the Shannon decision diagram (BDD, ROBDD).

3.4.1 Formal synthesis

A node in a Shannon decision tree of a switching function f corresponds to
the Shannon decomposition of the function with respect to a variable xi

f = xif0 ∨ xif1, (3.6)

where f0 = f |xi=0 and f1 = f |xi=1. Here f = f |xi=a denotes the cofactor of
f after assigning the constant a to the variable xi. Shannon decomposition is

a function of a single variable xi given by the truth-vector F = [ f(0) f(1) ]T

is given below

f = [ xi xi ]
[

1 0
0 1

] [
f0

f1

]
= [ xi xi ]

[
f0

f1

]
= xif0 ∨ xif1,

where f0 = f |xi=0, f1 = f |xi=1. Recursive application of the Shannon expan-
sion to f given by truth-vector F = [f(0) f(1) . . . f(2n − 1)]T is described in
the matrix notation as

f = X̂ S2n F, (3.7)

© 2005 by CRC Press

labeled by S (Figure 3.17).
In matrix notation, the transform in a node of the Shannon decision tree for
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 ⎯xi xi 

f 

S 
 

xi 

f 

MUX

f = xif0 ∨ xif1

f0 = f |xi=0

f1 = f |xi=1

f = [ xi xi ]
[

1 0
0 1

] [
f0

f1

]

(a) (b) (c) (d)

FIGURE 3.17
The node of the Shannon decision tree (a), its implementation by multiplexer
(MUX) (b), algebraic (c), and matrix (d) descriptions.

where

X̂ =
n⊗

i=1

[ xi xi ], S2n =
n⊗

i=1

S2, S2 =
[

1 0
0 1

]
,

and ⊗ denotes the Kronecker product.

Example 3.13 Let us derive the Shannon decision tree for the switching
function f = x1 ∨ x2 given truth table F = [1 1 0 1]T . The solution is
shown in Figure 3.18. The minterms are generated by the Kronecker product
X̂. The 4 × 4 transform matrix S is formed by the Kronecker product of the
basic matrix S21 . The final result, sum-of-products, is directly mapped into
the Shannon decision tree.

 

S 
f 

0 1 1 1 

S S 

⎯x1 

x2 x2 ⎯x2 ⎯x2 

x1 

Transform matrix

S22 = S2 ⊗ S2

=

[
1 0
0 1

]
⊗

[
1 0
0 1

]
=

⎡⎢⎣
1

1
1

1

⎤⎥⎦
Sum-of-products expression

f = X̂ S22 F = X̂

⎡⎢⎣
1

1
1

1

⎤⎥⎦
⎡⎢⎣ 1

1
0
1

⎤⎥⎦ = X̂

⎡⎢⎣ 1
1
0
1

⎤⎥⎦
X̂ = [ x1 x1 ]T ⊗ [ x2 x2 ]T

= [ x1x2, x1x2, x1x2, x1x2 ]T

f = x1x2 ∨ x1x2 ∨ x1x2

FIGURE 3.18
Deriving the Shannon decision tree for the switching function f = x1 ∨ x2

(Example 3.13).
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3.4.2 Structural properties

A Shannon decision tree is a canonical representation of f in graphical form
with structural properties as follows:

� The nodes implement the Shannon expansion.
� Nonterminal nodes are distributed over levels, each level corresponding to

a variable xi in f , starting from the root node corresponding to xi, or
some other variable that was chosen first.

� Since the variables appear in a fixed order, such a tree is an ordered Shan-
non decision tree.

� Each path from the root node to the terminal nodes corresponds to a
minterm in the sum-of-products representation of the function; the
minterm is determined as the product of labels at the edges.

� The values of terminal nodes are the values of the represented functions.
Thus, the terminal nodes are assigned with the truth values F=[f000

f001...f111] of switching function f , where “0” corresponds to the value
f0 = f |xi=0, and “1” corresponds to the value f1 = f |xi=1.

Figure 3.19 illustrates graphical representations of sum-of-products for AND
function. The flowgraph is degenerated because inputs and outputs are the
same, i.e., F = S. The complete decision tree is reduced to a decision diagram.
Finally, the decision tree is embedded into a 3-D structure.

 

⎯x2 

f 

0 1 0 0 

x2 ⎯x2 

S 

S S 

⎯x1 x1 

x2 

 

f

1 0 

S 

S 
⎯x1

⎯x2 

x1 

x2 

 x1⎯x1 

⎯x2 

S S S 

⎯x2 

x2 x2 

0 

0 0 

1 

(a) (b) (c)

FIGURE 3.19
Graphical representation of an AND function of two variables in sum-of-
products form: decision tree (a), decision diagram (b), and decision tree
embedded in a hypercube (c).

Example 3.14 An arbitrary switching function f of three variables can be

3), 7 nodes, 8 terminal nodes, 2k nodes at the k-th level, k = 0, 1, 2. To design

© 2005 by CRC Press

represented by the Shannon decision tree shown in Figure 3.20: 3 levels (n =
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this tree, the Shannon expansion is used as follows:
• with respect to variable x1: f = x1f0 ∨ x1f1;
• with respect to variable x2: f0 = x2f00 ∨ x2f01 and f1 = x2f10 ∨ x2f11;
• with respect to variable x3: f00 = x3f000∨x3f001, f01 = x3f010∨x3f011, f10 =
x3f100 ∨ x3f101, and f11 = x3f110 ∨ x3f111.
Hence, the Shannon decision tree represents a switching function f in the
form of the sum-of-products f = f000x1x2x3 ∨ f001x1x2x3 ∨ f010x1x2x3 ∨
f011x1x2x3 ∨ f100x1x2x3 ∨ f101x1x2x3 ∨ f110x1x2x3 ∨ f111x1x2x3.

⎯x1 

f 

f010 f011 f100 f101 f110 f001 f111 f000 

⎯x2 ⎯x2

x1 

x2 

x3 x3x3 x3 ⎯x3 ⎯x3 ⎯x3 ⎯x3 

x2 

f0 f1

f00 f01 f10 f11 

 

S

S 

S S 

S S S

There are 8 paths from f to
the terminal nodes:

Path 1: m1 = x1x2x3

Path 2: m2 = x1x2x3

Path 3: m3 = x1x2x3

Path 4: m4 = x1x2x3

Path 5: m5 = x1x2x3

Path 6: m6 = x1x2x3

Path 7: m7 = x1x2x3

Path 8: m8 = x1x2x3

Sum-of-products
f = m1 ∨ m2 ∨ ... ∨ m8

FIGURE 3.20
The Shannon decision tree for the sum-of-products of a switching function of
three variables (Example 3.14).

3.4.3 Decision tree reduction

The Shannon decision diagram for a given function f is derived from the Shan-
non decision tree for f by deleting redundant nodes, and by sharing equivalent

Elimination rule: If two descendent nodes of a node are identical, then delete
the node and connect the incoming edges of the deleted node to the corre-
sponding successor.

Merging rule: Share equivalent subgraphs.
In a tree, edges longer than 1, i.e., connecting nodes at nonsuccessive lev-
els, can appear. For example, the length of an edge connecting a node at
(i− 1)-th level with a node at (i + 1)-th level is two.

© 2005 by CRC Press

subgraphs. The reduction rules are as follows (Figure 3.21):
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Elimination rule

 S 

xi

S 
  

⎯xi

ϕ 

S

ϕ Formal notation
ϕ = xiϕ0 ∨ xiϕ1,
ϕ0 = ϕ1 = ϕ,
ϕ = xiϕ ∨ xiϕ = ϕ

Merging rule

 

S 

g

S 

g 

S S SS 

S 

g 

α β α β Formal notation
α = xiα0 ∨ xiα1

β = xiβ0 ∨ xiβ1

g = α0 = β1

α = g ∨ xiα1

β = xiβ0 ∨ g

FIGURE 3.21
Reduction of the Shannon decision tree.

Example 3.15

3.5 Reed-Muller expressions

Reed-Muller algebra is a universal basis that includes constant 1, EXOR,
AND, and NOT operations over Boolean variables. Reed-Muller expressions
are classified as fixed and mixed polarity expressions. In this section the fixed
polarity Reed-Muller expressions are introduced.

3.5.1 General form

Given a switching function f of n variables, the Reed-Muller expression is
specified by

f =
2n−1⊕
i=0

ri · (xi1
1 · · · xin

n ),︸ ︷︷ ︸
i−th product

(3.8)

where ri ∈ {0, 1} is a coefficient, ij is the j-th bit j = 1, 2, . . . , n, in the binary
representation of the index i = i1i2 . . . in, and x

ij

j is defined as

© 2005 by CRC Press

3-input NOR function is demonstrated in Figure 3.22.
Application of the reduction rules to a decision tree of the
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fx1 

x2 

x3 

f = x1 ∨ x2∨ x3

⎯x1

f 

0 0 0 0 0 0 0 1 

⎯x2 ⎯x2 
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x3 x3 x3 x3⎯x3 ⎯x3 ⎯x3 ⎯x3 

x2 
S 
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S S S
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s

1

x1 

⎯x2 

⎯x3 

⎯x1 

0

x3 

s

x2 

f 

(a) (b) (c)

FIGURE 3.22
The three-input NOR function (a), Shannon decision tree (b), and decision
diagram with the lexicographical order of variables (c) (Example 3.15).

x
ij

j =
{

1, if ij = 0;
xj , if ij = 1. (3.9)

Example 3.16 An arbitrary switching function of two variables is repre-
sented by the Reed-Muller expression by Equation 3.8 and Equation 3.9

f = r0(x0
1x

0
2)⊕ r1(x0

1x
1
2)⊕ r2(x1

1x
0
2)⊕ r3(x1

1x
1
2)

= r0 ⊕ r1x2 ⊕ r2x1 ⊕ r3x1x2.

rj, where the shadowed nodes implement the AND operations.

3.5.2 Computing the coefficients

Given a truth vector F = [f(0) f(1) . . . f(2n−1)]T , of a function f , the vector
of Reed-Muller coefficients R = [r0 r1 . . . r2n−1]T is derived by the matrix
equation with respect to AND and EXOR operations

R = R2n · F (mod 2), (3.10)

the 2n × 2n matrix R2n is formed by the Kronecker product

R2n =
n⊗

j=1

R2j , R21 =
[

1 0
1 1

]
. (3.11)
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Figure 3.23 illustrates how to assemble the expression given the coefficients

In Figure 3.24a a general computing scheme is shown for n = 2.
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FIGURE 3.23
Deriving the Reed-Muller expression for a function of two variables (Example
3.16).
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FIGURE 3.24
Direct (a) and inverse (b) Reed-Muller transforms for a switching function of
two variables.

3.5.3 Flowgraphs

To design the flowgraph of the algorithm, the matrix R2n must be represented
in the factorized form

R2n = R(1)
2n R(2)

2n · · ·R(n)
2n , (3.12)

where R(i)
2n , i = 1, 2, . . . , n, is formed by the Kronecker product

R(i)
2n = I2n−i ⊗R21 ⊗ I2i−1 . (3.13)

Hence, Reed-Muller coefficients are computed in n iterations.

Example 3.17 Computing the Reed-Muller coefficients by Equation 3.10 and
Equation 3.14 for the function f = x1 ∨ x2 is illustrated in

(Equation 3.12 and Equation 3.13):
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Figure 3.25.
The flowgraph includes two iterations accordingly to factorization relations
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R22 = R(1)
22 R(2)

22 = (I22−1 ⊗R21 ⊗ I21−1)(I22−2 ⊗R21 ⊗ I22−1)
= (I21 ⊗R21 ⊗ 1)︸ ︷︷ ︸

1st iteration

(1⊗R21 ⊗ I21)︸ ︷︷ ︸
2nd iteration

=
[
R21

R21

] [
I21

I21 I21

]
=

[
1
1 1

1
1 1

][
1

1
1 1

1 1

]
.

 

x1 

x2 

f 

f = x1 ∨ x2

Vector of coefficients

R=R22 · F =

⎡⎢⎣
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤⎥⎦
⎡⎢⎣ 1

0
1
1

⎤⎥⎦ =

⎡⎢⎣ 1
1
0
1

⎤⎥⎦ (mod 2)

Reed-Muller expression

f = 1 ⊕ x2 ⊕ x1x2

F l o w g r a p h o f t h e a l g o r i t h m

R
(1)

22 R
(2)

22

 

+ 
+ 
+ 
+ 

 
+ 
+ 
+ 
+ 

 
F R 

+ 
+ 
+ 
+ + 

+ 
+ 
+ 

First iteration Second iteration Two iterations

R
(1)

22 = I21 ⊗ R21 R
(2)

22 = R21 ⊗ I21 R
(1)

22 R
(2)

22

FIGURE 3.25
Computing the Reed-Muller expression for the two-input OR (Example 3.17).

3.5.4 Restoration

The following matrix equation with AND and EXOR operations restores the

F = R−1
2n ·R (mod 2), (3.14)

where R−1
21 = R21 . Notice that the matrix R21 is a self-inverse matrix over

© 2005 by CRC Press

truth-vector F from the coefficients vector R (Figure 3.24b):
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Galois field GF (2), i.e., in terms of logic operations AND and EXOR.

Example 3.18 Restore the truth-vector F of a switching function f given by
the vector of Reed-Muller coefficients R = [1 1 0 1]T :

F=R−1
23 ·R =

⎡⎢⎣
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤⎥⎦
⎡⎢⎣ 1

1
0
1

⎤⎥⎦ =

⎡⎢⎣ 1
0
1
1

⎤⎥⎦ (mod 2).

3.5.5 Useful rules

Rule 1: To derive the Reed-Muller expression from the canonical sum-of-
products, the OR operation must be replaced by the EXOR operation. For
example, x1x2 ∨ x1x2=x1x2 ⊕ x1x2.
Rule 2: To represent the expression in the NAND form, replace the com-
plement variables xi by x1 ⊕ 1, and simplify the obtained expression. For
example,

x1 ∨ x2 = x1 ∨ x2 = x1x2

= (1⊕ x1)(1⊕ x2)
= x1 ⊕ x2 ⊕ x1x2.

3.5.6 Hypercube representation

Let x
ij

j be a literal of a Boolean variable xj such that x
ij

j = xj if ij = 0, and
x

ij

j = xj if ij = 1. A product of literals xi1
1 xi2

2 . . . xin
n is called a product term.

If the variable xj is not present in a cube, ij = x (don’t care), i.e., xx
j = 1.

In cube notation, a term is described by a cube that is a ternary n-tuple of
components ij ∈ {0, 1, x}. A set of cubes corresponding to the true values
of the switching function f represents the sum-of-products for this function.

A Reed-Muller expression consists of products combined by EXOR opera-
tion. For example, a sum-of-products form given by the cubes [x x 0]∨ [1 0 x]
can be written as exclusive sum-of-products (ESOP) [x x 0] ⊕ [0 1 0]. The
different cubes arise because of the different operation between the cubes in
the expressions. Thus, the manipulation of the cubes involves OR, AND and

Example 3.19 Given the cubes [1 1 x] and [1 0 x].

Suppose a sum-of-products expression for a function f is given by cubes.
To represent this function in Reed-Muller form, we have to generate cubes
based on the equation x∨y = x⊕y⊕xy that can be written in cube notation
as

[C1] ∨ [C2] = [C1]⊕ [C2]⊕ [C1][C2]. (3.15)

© 2005 by CRC Press

in Table 3.2.
EXOR operations, applied to the appropriate literals following the rules given

EXOR operations with these cubes are shown in Figure 3.26.
The AND, OR, and
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∧
 =  

[1 1 x] [1 0 x] [1 ∅ x] = ∅

 

∨
 =  

[1 1 x] [1 0 x] [1 x x]

 

⊕
 =  

[1 1 x] [1 0 x] [1 x x]

FIGURE 3.26
AND, OR, and EXOR operations over cubes (Example 3.19).

TABLE 3.2

AND, OR and EXOR operation with respect to
literals of cubes.

AND
Ci

/Cj
0 1 x

0 0 ∅ 0
1 ∅ 1 1
x 0 1 x

OR
Ci

/Cj
0 1 x

0 0 x x
1 x 1 1
x x 1 x

EXOR
Ci

/Cj
0 1 x

0 0 x 1
1 x 1 0
x 1 0 x

Example 3.20 A switching function is given in a sum-of-products form by
four cubes,

f = [x 1 0 1] ∨ [1 0 0 x] ∨ [0 x x 0] ∨ [x x 1 0].

To find its ESOP expression we apply the cube generation operation, i.e., we
replace ∨ by ⊕ and compute AND for each cube distinguished by only one
literal (the rules for AND are given in Table 3.2). We then obtain the cube
representation

f = [x 1 0 1]⊕ [1 0 0 x]⊕ [0 x x 0]⊕ [x x 1 0]⊕ [0 x 1 0]

© 2005 by CRC Press
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that is

f = x2x3x4 ⊕ x1x2x3 ⊕ x1x4 ⊕ x3x4 ⊕ x1x3x4.

Note that ESOP is a mixed polarity form where a variable entries both com-
plemented and uncomplemented. The term fixed polarity is used to describe
Reed-Muller expansions in which each variable appears uncomplemented or
complemented, and never in both expressions.

3.5.7 Polarity

The polarity of a variable xj can be:

cj = 1, corresponding to the uncomplimented variable xj , or
cj = 0, corresponding to the complimented variable xj .

Let the polarity c = c1c2 . . . cn, c ∈ {0, 1, 2, . . . , 2n−1}, where cj is the j-th
bit in binary representation of c. For a switching function f of n variables,
the Reed-Muller expression in a given polarity c = c1c2 . . . cn of variables
x1x2 . . . xn is given by

f =
2n−1⊕
i=0

ri · (x1 ⊕ c1)i1 · · · (xn ⊕ cn)in︸ ︷︷ ︸
i−th product

, (3.16)

where ri is the i-th coefficient, and (xj ⊕ cj)ij is defined as

a
ij

j =
{

1, if ij = 0;
a, if ij = 1. xj ⊕ cj =

{
xj , if cj = 0;
xj , if cj = 1. (3.17)

Example 3.21 In Example 3.16, a switching function of two variables has
been represented by the zero-polarity Reed-Muller expression, thus for c =
0 (c1c2 = 00). We now represent this function in the polarity c = 2, c1c2 = 10.
By Equation 3.16 and Equation 3.17:

f = r0(x1 ⊕ 1)0(x2 ⊕ 0)0 ⊕ r1(x1 ⊕ 1)0(x2 ⊕ 0)1 ⊕ r2(x1 ⊕ 1)1(x2 ⊕ 0)0

⊕ r3(x1 ⊕ 1)1(x2 ⊕ 0)1 = r0 ⊕ r1x2 ⊕ r2x1 ⊕ r3x1x2.

Let f = x ∨ y, then four fixed polarity Reed-Muller (FPRM) expressions can

Recall, in an FPRM expansion of a given switching function f , every vari-
able appears either complemented or uncomplemented; never in both forms.
If all variables are uncomplemented (complemented), the FPRM expansion
is called a positive (Negative) polarity Reed-Muller form. FPRM expansions
are unique. Thus, only one representation exists for the positive and nega-
tive FPRM or indeed any FPRM of f . FPRM expansions have been used

© 2005 by CRC Press

be derived as shown in Figure 3.27.
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to classify a given switching function into an equivalence class of switching
functions, where two switching functions are equivalent if one is transformed
into the other by permuting variables, complementing variables, and/or com-
plementing the switching function, and is useful for determining library cells
in computer aided design (CAD) tools. This is called Boolean matching and
is important in the determination of library cells for use by computer-aided
design tools.

 

x1 

x2 

f 

f = x1 ∨ x2

0− polarity : f = x1 ⊕ x2 ⊕ x1x2

1− polarity : f = 1⊕ x2 ⊕ x1x2

2− polarity : f = 1⊕ x1 ⊕ x1x2

3− polarity : f = 1⊕ x1x2

FIGURE 3.27
Representation of two-input OR gate by Reed-Muller forms of 22 = 4 polari-
ties (Example 3.21).

Given the truth table F = [f(0) f(1) . . . f(2n − 1)]T , the vector of Reed-
Muller coefficients in the polarity c, R(c) = [r(c)

0 r
(c)
1 . . . r

(c)
2n−1]T is derived by

the matrix eqaution

R(c) = R(c)
2n · F (mod 2), (3.18)

where the 2n × 2n-matrix R(c)
2n is generated by the Kronecker product

R(c)
2n =

n⊗
j=1

R(cj)

21 , R(c)
21 =

⎧⎪⎪⎨⎪⎪⎩
[

0 1
1 1

]
, cj = 0;

[
0 1
1 1

]
, cj = 1.

(3.19)

Example 3.22 In the matrix form, the solution to Example 3.17 can be de-
rived by the Equation 3.18 as follows:

R(2) = R(2)
22 · F =

⎡⎢⎣
0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

⎤⎥⎦
⎡⎢⎣ 1

0
1
1

⎤⎥⎦ =

⎡⎢⎣ 1
0
1
1

⎤⎥⎦ (mod 2)

where the matrix R(2)
22 given c = 2 is generated by Equation 3.19 as

R(2)
22 = R(1)

21 ⊗R(0)
21 =

[
0 1
1 1

]
⊗

[
1 0
1 1

]
.

The vector of coefficients R(2) = [1 0 1 1]T corresponds to the expression
f = 1⊕ x1 ⊕ x1x2.

© 2005 by CRC Press
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3.6 Decision trees and diagrams

A binary decision tree that corresponds to the Reed-Muller canonical rep-
resentation of a switching function is called a Davio decision tree. A Davio
(functional) decision diagram can be derived from a Davio decision tree.

3.6.1 Formal design

A node in a Davio decision tree of a switching function f corresponds to the
Davio decomposition of the function with respect to variable xi. There exists:

� The positive Davio expansion

f = f0 ⊕ xif2, (3.20)

where f0 = f |xi=0 and f2 = f |xi=1 ⊕ f |xi=0, and

� The negative Davio expansion

f = x1f2 ⊕ f1, (3.21)

where f1 = f1 = f |xi=1.

Positive and negative Davio decomposition are labeled as pD and nD re-
spectively (Figure 3.28).

1 xi 

f 

 

pD 
 

f0 

xi f2 

f
f = f0 ⊕ xif2

f0 = f |xi=0

f2 = f |xi=1 ⊕ f |xi=0

f = [ 1 xi ]
[

1 0
1 1

] [
f0

f1

]

1 ⎯xi 

f 

 

nD 
 

f1 

⎯xi f2 

f 

f = f1 ⊕ x1f2

f0 = f |xi=0

f1 = f |xi=1

f = [ 1 xi ]
[

0 1
1 1

] [
f0

f1

]

(a) (b) (c) (d)

FIGURE 3.28
The node of a Davio decision tree (a), realization (b), algebraic (c) and matrix
(d), descriptions.
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In matrix notation, the function f of the node is a function of a single
variable xi given by truth-vector F = [ f(0) f(1) ]T and defined as

f = [ xi xi ]
[

1 0
1 1

] [
f0

f1

]
= [ xi xi ]

[
f0

f1

]
= xif0 ⊕ xif1 = (1⊕ xi)f0 ⊕ xif1 = f0 ⊕ xif2,

where f0 = f |xi=0, f2 = f0 ⊕ f1. Recursive application of the positive Davio
expansion to the function f given by the truth-vector F = [f(0) f(1) . . . f(2n−
1)]T can be expressed in matrix notation

f = X̂ R2n F, (3.22)

where

X̂ =
n⊗

i=1

[ 1 xi ], R2n =
n⊗

i=1

R2, R2 =
[

1 0
1 1

]
,

and ⊗ denotes the Kronecker product.

Structure of Reed-Muller expression

X̂ = [ 1 x1 ]⊗ [ 1 x2 ]
= [ 1, x2, x1, x1x2 ]

Transform matrix

R22 = R2⊗R2 =
[

1 0
0 1

]
⊗

[
1 0
0 1

]
=

⎡⎢⎣
1
1 1
1 1
1 1 1 1

⎤⎥⎦
Reed-Muller expression

f = X̂ R22 F = X̂

⎡⎢⎣
1
1 1
1 1
1 1 1 1

⎤⎥⎦
⎡⎢⎣ 1

1
0
1

⎤⎥⎦ = X̂

⎡⎢⎣ 1
0
1
1

⎤⎥⎦
= 1⊕ x1 ⊕ x1x2

f 

1 

1 

x2 x2 1 1 

x1

0 1 1 

 

pD

pD pD 

FIGURE 3.29
The Davio decision tree for the switching function f = x1∨x2 and calculations
in matrix form (Example 3.23).

Example 3.23 Let us derive the Davio decision tree for the switching func-
tion f = x1 ∨ x2, given its truth-vector F = [1 1 0 1]T . We apply Equation

ated by the Kronecker product X̂. The 4× 4 transform matrix R is generated
by the Kronecker product of the basic matrix R21 . The final result, the Reed-
Muller expression, is directly mapped to the complete positive Davio decision
tree.

© 2005 by CRC Press

3.22, to get the solution shown in Figure 3.40. The product terms are gener-



Basics of Logic Design in Nanospace 97

3.6.2 Structural properties

The most important structural properties of the positive Davio decision tree
are described below:

� The Davio expansion is in the nodes of the decision tree.
� n-variable switching function is represented by an n-level Davio decision

tree.
� The i-th level, i = 1, . . . , n, includes 2i−1 nodes.
� Nodes at the n-th level are connected to 2n terminal nodes, which take

values 0 or 1.
� The nodes, corresponding to the i-th variable, form the i-th level in the

Davio decision tree.
� In every path from the root node to a terminal node, the variables appear

in a fixed order; it is said that this tree is ordered.
� The values of constant nodes are the values of the positive polarity Reed-

Muller expression for the represented function. Thus, they are elements
of the Reed-Muller coefficient vector R = [f000 f002 f020 f022 f200 f202

f220 f222], where “0” corresponds to the value f0 = f |xi=0, and “2”
corresponds to the value f2 = f |xi=1 ⊕ f |xi=0.

tions by the example of an AND function. The complete decision tree is
reduced to a decision diagram. Finally, the decision tree or diagram is em-
bedded in a hypercube.

Example 3.24 An arbitrary switching function f of three variables can be

8 terminal nodes). To design this tree, the positive Davio expansion (Equation
3.20) is used as follows:

• with respect to variable x1: f = f0 ⊕ x1f2;
• with respect to variable x2: f0 = f00 ⊕ x2f02 and f1 = f10 ⊕ x2f22; and
• with respect to variable x3: f00 = f000 ⊕ x3f002, f02 = f020 ⊕ x3f022,

f20 = f200 ⊕ x3f202, f22 = f220 ⊕ x3f222.

Hence, the Davio decision tree represents switching function f in the form of
the Reed-Muller expression f = f000 = ⊕f002x3 ⊕ f020x2 ⊕ f022x2x3 ⊕ f200x1

⊕ f202x1x3 ⊕ f220x1x2 ⊕ f222x1x2x3.

3.6.3 Decision tree reduction

The Davio decision diagram is derived from the Davio decision tree by delet-
ing redundant nodes, and by sharing equivalent subgraphs.

© 2005 by CRC Press

Figure 3.30 summarizes the useful sum-of-products graphical representa-

represented by the Davio decision tree shown in Figure 3.31 (3 levels, 7 nodes,

produce the reduced Davio decision diagram (Figure 3.32):
The rules below
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F R

+
+
+
++

+
+
+

 

f 

0 1 0 0 

x2 

pD 1 x1 

x2 1 1 

pD pD 

(a) (b)

 

f 

1 0 

x1 

x2 

pD 

1 
1

pD 

 x11 

1 

pD pD pD 

1 

x2 x2 

0 

0 0 

1 

(c) (d)

FIGURE 3.30
Graphical representation of AND function of two variables: flowgraph (a),
decision tree (b), decision diagram (c), and decision tree embedded in the
hypercube (d).

Elimination rule: If the outgoing edge of a node labeled with xi and xi points
to the constant zero, then delete the node and connect the edge to the other
subgraph directly.

Merging rule: Share equivalent subgraphs.
In a tree, edges longer than one, i.e., connecting nodes at nonsuccessive levels,
can appear. For example, the length of an edge connecting a node at (i−1)-th
level with a node at (i + 1)-th level is two.

Example 3.25

3.7 Arithmetic expressions

Arithmetic representation of switching functions is useful for the word-level
There are a number

of similarities between arithmetic and Reed-Muller expressions. The main
difference is that, in arithmetic expression, arithmetic addition is used in

© 2005 by CRC Press

function is demonstrated in Figure 3.33.
Application of the reduction rules to the three-variable NAND

description, and for linearization (Chapters 4 and 8).
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pD1 

f 

f020 f022 f200 f202 f220f002 f222 f000 

1 1 

x1

x2 

x3 x3x3 x3 1 1 1 1

x2 
f0 f2

f00 f02 f20 f22 

pD pD

pD pD pD pD 

There are 8 paths from f
textto the terminal nodes:

Path 1: t1 = 1
Path 2: t2 = x3

Path 3: t3 = x2

Path 4: t4 = x2x3

Path 5: t5 = x1

Path 6: t6 = x1x3

Path 7: t7 = x1x2

Path 8: t8 = x1x2x3

Reed-Muller expression
f = f000t1 ⊕ f002t2 ⊕
... ⊕ f222t8

FIGURE 3.31
Reed-Muller representation of a switching function of three variables by the
Davio tree (positive polarity) (Example 3.24).

contrast to modulo-two sum in Reed-Muller polynomials.

3.7.1 General form

For two Boolean variables x1 and x2 the following is true:

x = 1− x, x1 ∨ x2 = x1 + x2 − x1x2,

x1 ∧ x2 = x1x2, x1 ⊕ x2 = x1 + x2 − 2x1x2.

The right part of the equation is called arithmetic expressions. A swit-
ching function of n variables is the mapping {0, 1}n → {0, 1}, while an
integer-valued function in arithmetical logic denotes the mapping {0, 1}n →
{0, 1, . . ., p− 1} where p > 2.

For a switching function f of n variables, the arithmetic expression is given
by

f =
2n−1∑
i=0

ai · (xi1
1 · · · xin

n )︸ ︷︷ ︸
i−th product

(3.23)

where ai is a coefficient (integer number), ij is the j-th bit 1, 2, . . . , n, in the
binary representation of the index i = i1i2 . . . in, and x

ij

j is defined as

x
ij

j =
{

1, ij = 0;
xj , ij = 1. (3.24)

Note that
∑

is the arithmetic addition.
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Reduction rule 1

1 ⎯xi 

1 
xi  

ϕ 

ϕ

nD 

pD 

ϕ 

0 

0 

Formal notation

Positive Davio
pD: ϕ = ϕ0 ⊕ xiϕ2

ϕ2 = 0
ϕ = ϕ0

Negative Davio
nD: ϕ = ϕ1 ⊕ xiϕ2

ϕ2 = 0
ϕ = ϕ1

Reduction rule 2

 

 

g 

 

g 

   

 

g

α β α β 
Formal notation

α = α0 ⊕ xiα2

β = β0 ⊕ xiβ2

g = α0 = xiβ0

FIGURE 3.32
Reduction of a Davio decision tree.

 
 
 
  
 

f
x1 

x2 

x3

f = x1 ∧ x2 ∧ x2 

1 

f 

0 0 0 0 0 0 1 1 

1 1 

x1 

x2

x3x3 x3 x3 1 1 1 1 

x2 

pD 

pD 

pD 

pD 

pD pD pD 

 

 

f 

1 0 

1 x1 

x2

x3

1 1

1
1

pD 

pD pD

pD pD

x2 

x3 

(a) (b) (c)

FIGURE 3.33
The three-variable NAND function, its Davio decision tree and reduced Davio
decision diagram (Example 3.25).

Example 3.26 An arbitrary switching function of three variables is repre-
sented in the arithmetic expression by Equation 3.23 and Equation 3.24:
f = a0+a1·x3+a2·x2+a3·(x2x3)+a4·x1+a5·(x1x3)+a6·(x1x2)+a7·(x1x2x3).

where the
shared nodes implement AND operations, and the sum is an arithmetic oper-
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Figure 3.34 illustrates the structure of arithmetic expression,
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ation

 

p
0

p
1

p
2

p
3

1 x2 x1 x1x2 
P r o d u c t    t e r m  

Vector of 
coefficients 

p0 

p1x2 

p2x1 

p3x1x2

+
f 

FIGURE 3.34
Deriving the arithmetic expression for a function of two variables (Example
3.26).

3.7.2 Computing the coefficients

Given the truth vector F = [f(0) f(1) . . . f(2n − 1)]T , the vector of arithmetic
coefficients P = [p0 p1 . . . p2n−1]T is derived by the matrix equation with
respect to AND and arithmetic sum operations

P = P2n ·X (3.25)

where the 2n × 2n-matrix P2n is formed by the Kronecker product

P2n =
n⊗

j=1

P2j , P2j =
[

1 0
−1 1

]
. (3.26)

Notice, in the Reed-Muller matrix R2n the elements are logical values 0 and
1, and the calculation with R2n is performed in GF (2). In arithmetic trans-
form matrix P2n , the elements are the integers 0 and 1, and the calculation
with P2n is performed on integers.

3.7.3 Flowgraphs

To design the flowgraph of the algorithm, the matrix P2n is represented in
the factorized form

P2n = P(1)
2n P(2)

2n · · ·P(n)
2n , (3.27)

where P(i)
2n , i = 1, 2, . . . , n, is formed by the Kronecker product

P(i)
2n = I2n−i ⊗P21 ⊗ I2i−1 . (3.28)

© 2005 by CRC Press

The general scheme of computing is shown in Figure 3.35a.
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FIGURE 3.35
Direct (a) and inverse (b) arithmetic transform for a switching function of
two variables.

 

x1 

x2 

f 

f = x1 ∨ x2

Vector of coefficients

P=P22 ·F =

⎡⎢⎣
1 0 0 0

−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎤⎥⎦
⎡⎢⎣ 0

1
1
1

⎤⎥⎦ =

⎡⎢⎣ 0
1
1

−2

⎤⎥⎦
Arithmetic expression

f = x2 + x1 − 2x1x2

F l o w g r a p h of t h e a l g o r i t h m

P(1)
22 P(2)

22

 

+ 
+ 
+ 
+ 

 
+ 
+ 
+ 
+ 

 
F P 

+ 
+
+
+ + 

+ 
+ 
+ 

First iteration Second iteration Two iterations

P(1)
22 = I21 ⊗P21 P(2)

22 = P21 ⊗ I21 P(1)
22 P(2)

22

FIGURE 3.36
Calculation of arithmetic expansion for OR gate (Example 3.27).

Hence, arithmetic coefficients are computed in n iterations.

Example 3.27 Computing the arithmetic coefficients pi by Equation 3.25 for
the elementary function f = x1 ∨ x2 given its truth-vector F = [0 1 1 1]T is
illustrated in Figure 3.36. The flowgraph includes two iterations, accordingly
to factorization rules (Equation 3.27 and Equation 3.28). The matrix P22 is
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formed as follows:

P22 = P(1)
22 P(2)

22 = (I22−1 ⊗P21 ⊗ I21−1)(I22−2 ⊗P21 ⊗ I22−1)
= (I21 ⊗P21 ⊗ 1)︸ ︷︷ ︸

1st iteration

(1⊗P21 ⊗ I21)︸ ︷︷ ︸
2nd iteration

=
[
P21

P21

] [
I21

−I21 I21

]
=

⎡⎢⎣
1

−1 1
1

− 1 1

⎤⎥⎦
⎡⎢⎣

1
1

−1 1
−1 1

⎤⎥⎦ .

3.7.4 Restoration

The following matrix equation over AND and arithmetic sum operations re-

F = P−1
2n ·P, (3.29)

where 2n × 2n matrix P−1
2n is formed by the Kronecker product

P−1
2n =

n⊗
i=0

P−1
21 , P−1

21 =
[

1 0
1 1

]
(3.30)

Example 3.28 To restore the truth-vector F given by its vector of arithmeti-
cal coefficients P = [0 1 1 − 2]T , Equation 3.29 can be applied:

F=P−1
23 ·P =

⎡⎢⎣
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤⎥⎦
⎡⎢⎣ 0

1
1

−2

⎤⎥⎦ =

⎡⎢⎣ 0
1
1
1

⎤⎥⎦

3.7.5 Useful rules

The simple arithmetic expressions x = 1−x, x1∨x2 = x1+x2−x1x2, x1x2 =
x1x2, x1 ⊕ x2 = x1 + x2 − 2x1x2 can be generalized towards the switching
functions f1 and f2:

� P{f} = 1− P{f}
� P{f1 ∨ f2} = P{f1}+ P{f2} − P{f1}P{f2}
� P{f1f2} = P{f1}P{f2}
� P{f1 ⊕ f2} = P{f1}+ P{f2} − 2P{f1}P{f2}

where P{·} denotes an arithmetic transform.

Example 3.29 The rules above allow us to simplify the manipulations:

� P{x1x2 ∨ x1x3} = P{x1x2}+ P{x1x3} − P{x1x2}P{x1x3}
= x1x2 + x1x3 − x1x2x3

� P{x1 ⊕ x2} = x1 − 2x1x2 + x2

� P{(x1 ∨ x2)⊕ x3} = P{(x1 ∨ x2) + P{x3} − 2P{(x1 ∨ x2)P{x3}
= x1 + x2 + x3 − x1x2 − 2x1x3 − 2x2x3 + 2x1x2x3

© 2005 by CRC Press

store the truth-vector F from the vector of coefficients P (Figure 3.35)
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3.7.6 Hypercube representation

Let a function be given by its cubes. To derive an arithmetic expression of
the function, we can employ an algorithm similar to the one used to derive
its ESOP form. However, it must be taken into account that operations over
cubes in an arithmetic form are specific. The generation of a new cube is
based on the equation x ∨ y = x + y − xy. Given the cubes [C1] and [C2] of
the sum-of-products expression, the cubes to be included in the arithmetical
expression are derived by the equation

[C1] ∨ [C2] = [C1] + [C2]− [C1][C2]. (3.31)

Example 3.30 Let f = x2x3 + x1x3, i.e., [C1] = [x 0 1] and [C2] = [1 x 1].
To derive arithmetic form, Equation 3.31 is applied and three cubes are pro-
duced: [C1], [C2], and new cube −[C1][C2] = −[1 0 1]. Thus, f = x2x3 +
x1x3 1 2 3

A cube that corresponds to a product in the arithmetic expression of a
switching function is composed of the components: {0, 1, x, a, b}, where
a = −xi + xi = (−1)xi and b = −xi + xi = (−1)xi .

Example 3.31 Given the arithmetic expression f = −x1x2x3 + x1x2x3, its
cube form is derived as follows:

f = −x1x2x3 + x1x2x3 = x2x3(−x1 + x1) = (−1)x1x2x3,

which corresponds to f = [a 1 0].

3.7.7 Polarity

The polarity of a variable xj can take the values:

(i) cj = 1, corresponding to the uncomplemented variable xj , or
(ii) cj = 0, corresponding to the complemented variable xj .

Let the polarity c = c1, c2, . . . , cn, c ∈ {0, 1, 2, . . . , 2n − 1}, where cj is
the j-th bit of binary representation of c. For a switching function f of n
variables, the arithmetic expression, given the polarity c = c1, c2, . . . , cn of
variables x1, x2, . . . , xn is as follows

f =
2n−1∑
i=0

pi · (x1 ⊕ c1)i1 · · · (xn ⊕ cn)in︸ ︷︷ ︸
i−th product

, (3.32)

where pi is the coefficient, and (xj ⊕ cj)ij is defined as

a
ij

j =
{

1, if ij = 0;
a, if ij = 1. xj ⊕ cj =

{
xj , if cj = 0;
xj , if cj = 1. (3.33)

© 2005 by CRC Press

− x x x . Figure 3.37 illustrates this calculation.
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 +  =  

C1 =[x 0 1] C2=[1 x 1] CA =
[
x 0 1
1 x 1

]

 ×  =  

C1=[x 0 1] C2=[1 x 1] CB=[1 0 1]

 −  =  

CA =
[
x 0 1
1 x 1

]
CB=[1 0 x] f =

[
x 0 1
1 x 1

−1 0 1

]

FIGURE 3.37
Computing the cubes of a switching function of three variables by the rule
f = [C1] + [C2]− [C1][C2] (Example 3.30).

Example 3.32 Let c = 2, c1, c2 = 1, 0. The representation of a switching
function of two variables by arithmetic expression of the polarity c = 2 can be
derived by Equation 3.32 and Equation 3.33:

f = p0(x1 ⊕ 1)0(x2 ⊕ 0)0 + p1(x1 ⊕ 1)0(x2 ⊕ 0)1 + p2(x1 ⊕ 1)1(x2 ⊕ 0)0

+ p3(x1 ⊕ 1)1(x2 ⊕ 0)1 = p0 + p1x2 + p2x1 + p3x1x2.

The coefficients pi can be derived from the function’s truth values by the
technique presented below.

Given the truth vector F = [f(0) f(1) . . . f(2n − 1)]T , the vector of arith-
metic word-level coefficients of polarity c, P(c) = [p(c)

0 p
(c)
1 . . . p

(c)
2n−1]T is de-

rived by the matrix equation

P(c) = P(c)
2n · F, (3.34)

where the 2n × 2n-matrix P(c)
2n is generated by the Kronecker product

P(c)
2n =

n⊗
j=1

P(cj)

21 , P(c)
21 =

⎧⎪⎪⎨⎪⎪⎩
[

1 0
−1 1

]
, cj = 0;

[
0 1
1 −1

]
, cj = 1.

(3.35)
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x1 

x2 

f1 

 

x1 

x2 

f2 

f1 = x1 ∨ x2

f2 = x1 ∨ x2

F =
[
F1 F2

]
=

⎡⎢⎣ 1 0
1 1
0 1
1 1

⎤⎥⎦ =

⎡⎢⎣ 2
3
1
3

⎤⎥⎦

P(2) = P(2)
22 · F

=

⎡⎢⎣
0 0 1 0
0 0 −1 1
1 0 −1 0

−1 1 1 −1

⎤⎥⎦
⎡⎢⎣ 2

3
1
3

⎤⎥⎦ =

⎡⎢⎣ 1
2
1

−1

⎤⎥⎦ ,

f = 1 + 2x2 + x1 − x1x2

Alternatively,

P
(2)
1 =

⎡⎢⎣ 1
0

−1
1

⎤⎥⎦ , P
(2)
2 =

⎡⎢⎣ 0
1
1

−1

⎤⎥⎦
P(2) = 21P

(2)
2 + 20P

(2)
1 =

⎡⎢⎣ 2
3
1
3

⎤⎥⎦

FIGURE 3.38
Computing the arithmetic expression of polarity c = 2 for the two gates
(Example 3.33).

Example 3.33 Figure 3.38 demonstrates derivation of coefficients pi to Ex-
ample 3.32 by matrix Equation 3.34. Here, the matrix P(2)

22 for the polarity
c = 2 is generated by Equation 3.35 as follows:

P(2)
22 = P(1)

21 ⊗P(0)
21 =

[
0 1
1 −1

]
⊗

[
1 0

−1 1

]
.

Note that in this example the two-output function is presented by the truth
vector F that is a word-level interpretation of two functions, f1 and f2. The
matrix manipulation of word-level vectors is the same as of binary ones.

3.8 Decision trees and diagrams

A binary decision tree that corresponds to the arithmetic canonical represen-
tation of a switching function is called an arithmetic decision tree. Arithmetic
decision trees are associated with the arithmetic decision diagrams, also called
spectral or functional, diagram.

3.8.1 Formal design

A node in an arithmetic decision tree of a switching function f corresponds
to the arithmetic analog of Davio decomposition with respect to a variable xi.

© 2005 by CRC Press

Word-level forms will be considered in Chapter 4.
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There exist:

� The arithmetic analog of the positive Davio expansion

f = f0 + xif2, (3.36)

where f0 = f |xi=0 and f2 = f |xi=1 + f |xi=0, and
� The arithmetic analog of the negative Davio expansion

f = x1f2 + f1, (3.37)

where f1 = f |xi=1.

Arithmetic analogs of positive and negative Davio expansion are labeled as
pDA and nDA correspondingly (Figure 3.39).

 1 xi 

f 

pDA 

f = f0 + xif2

f0 = f |xi=0

f2 = f |xi=1 − f |xi=0  1 ⎯xi 

f 

nD nDA 

f = f1 + x1f2

f0 = f |xi=0

f2 = f |xi=1 − f |xi=0

(a) (b)

FIGURE 3.39
The positive (a) and negative (b) Davio node of an arithmetic decision tree
and its formal description.

In matrix notation, the expansion of switching function f given by truth-
vector F = [ f(0) f(1) ]T , implemented in the node is defined as

f = [ xi xi ]
[

1 0
1 1

] [
f0

f1

]
= [ xi xi ]

[
f0

f1

]
= xif0 ⊕ xif1 = (1⊕ xi)f0 ⊕ xif1 = f0 ⊕ xif2,

where f0 = f |xi=0, f2 = f0 ⊕ f1. Recursive application of the arithmetic
analog of positive Davio expansion to a function f given by its truth-vector
F = [f(0) f(1) . . . f(2n − 1)]T is expressed in matrix notation as

f = X̂ P2n F, (3.38)

where

X̂ =
n⊗

i=1

[ 1 xi ], P2n =
n⊗

i=1

P2, P2 =
[

1 0
1 1

]
,

and ⊗ denotes the Kronecker product.
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Example 3.34 Let us derive the arithmetic decision tree of the switching
function f = x1∨x2 given by the truth-vector F = [1 1 0 1]T . The solution to
Equation 3.38 is shown in Figure 3.40. The product terms are generated by
the Kronecker product X̂. The 4 × 4 transform matrix P is generated by the
Kronecker product over the basic matrix P21 . The final result, the arithmetic
coefficients, is directly mapped into the complete arithmetic decision tree.

X̂ = [ 1 x1 ]⊗ [ 1 x2 ]
= [ 1, x2, x1, x1x2 ]

P22 = P2 ⊗P2 =
[

1 0
−1 1

]
⊗

[
1 0

−1 1

]
=

[
1

−1 1
−1 1

1 −1 −1 1

]

f = X̂ P22 F = X̂

[
1

−1 1
−1 1

1 −1 −1 1

][
1
1
0
1

]
= X̂

[
1
0

−1
1

]
= 1− x1 + x1x2

f 

1 

1 

x2 x2 1 1 

x1 

0 1 1 

 
pDA pDA

pDA 

FIGURE 3.40
Derivation of the arithmetic decision tree for the switching function f = x1∨x2

(Example 3.34).

3.8.2 Structural properties

Structural properties of the arithmetic decision tree are similar to the Reed-
Muller decision tree except:

� The values of terminal nodes are integer numbers and correspond to the
coefficients of the arithmetic expression.

� Each path from the root to a terminal node corresponds to a product in
the arithmetic expression.

� The values of constant nodes are the values of the arithmetic spectrum
in the positive polarity for the represented functions. Thus, they are
elements of the vector of arithmetic coefficients Pf = [f000 f002 f020 f022

f200 f202 f220 f222], where “0” corresponds to the value of f0 = f |xi=0,
and “2” corresponds to the value of f2 = f |xi=1 ⊕ f |xi=0.

Example 3.35 An arbitrary switching function f of three variables can be

© 2005 by CRC Press

represented by the arithmetic decision tree shown in Figure 3.41 (3 levels, 7
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1

f 

f020 f022 f200 f202 f220f002 f222f000 

1 1

x1

x2 

x3 x3x3x31 1 1 1

x2

f0 f2 

f00 f02 f20 f22 

pDA
pDA

pDA

pDA pDA pDA pDA

There are 8 paths from f to
the terminal nodes:

Path 1: t1 = 1
Path 2: t2 = x3

Path 3: t3 = x2

Path 4: t4 = x2x3

Path 5: t5 = x1

Path 6: t6 = x1x3

Path 7: t7 = x1x2

Path 8: t8 = x1x2x3

Arithmetic expression

f = f000t1 + f002t2 + ...
+ f222t8

FIGURE 3.41
Arithmetic representation of a switching function of three variables by the
arithmetic tree (c = 000) (Example 3.35).

nodes, 8 terminal nodes). To design this tree, the positive arithmetic expansion
(Equation 3.20) is used as follows:

(a) with respect to the variable x1: f = f0 + x1f2

(b) with respect to the variable x2: f0 = f00 + x2f02 and f1 = f10 + x2f22

(c) with respect to the variable x3:

f00 = f000 + x3f002, f02 = f020 + x3f022,

f20 = f200 + x3f202, f22 = f220 + x3f222.

Hence, the arithmetic decision tree represents switching function f in the
form of the logic expression f = f000 = ⊕f002x3 +f020x2 +f022x2x3 +f200x1 +
f202x1x3 + f220x1x2 + f222x1x2x3.

3.8.3 Decision tree reduction

The arithmetic decision diagram is derived from the arithmetic decision tree
by deleting redundant nodes, and by sharing equivalent subgraphs. Reduction

Section in this chapter).
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rules produce the reduced arithmetic decision diagram (see “Further Reading”
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3.9 Summary

1. To represent a circuit in spatial dimensions with respect to the require-
ments of the technology, an appropriate data structure must be chosen.
In this chapter, three types of representations of switching functions,
sum-of-products, Reed-Muller, and arithmetic, are revisited. State-of-
the-art techniques are used for the interpretation of each of the above
representations: algebraic, matrix, and graph-based (flowgraphs, hyper-
cubes, decision trees, and decision diagrams).

2. Each form of data structure corresponds to a certain level of abstraction
and is useful at certain phases of logic design:

� Algebraic equations are useful for analyzing the general properties of
logic functions.

� Matrix (spectral) representation is used to study the properties of the
functions through computing so-called spectra of the functions. For
each form, matrix interpretation is based on two transforms: direct
and inverse. The unique property of the transform matrices is their
representability in factorized form. This provides the possibility for
studying signal flows.

� The flowgraph, formally, is derived from the factorized matrix trans-
formation of switching functions. The flowgraph reveals the pos-
sibilities for the parallel processing and the relationship between
matrix notation and hardware implementation.

� The hypercube is useful for manipulation of switching functions. How-
ever, this topological model cannot be considered as a prototype
ready for direct implementation.

� The decision tree is an interpretation of the computing of a switching
function. There are various kinds of decision tree, different in the
interpretation of the node function. The complete decision tree
is a canonical representation of the switching function. The key
reason to focus on the decision tree representation is that it can
be embedded into hypercube structure.

dimensions.
� The decision diagram, the reduced decision tree, is useful for ma-

nipulation of switching functions. There are a variety of decision
diagrams, most of them, in particular OBDD, provide canonical
representations of switching functions.

© 2005 by CRC Press

Later, in Chapters 5 and
6, this property will be utilized to represent a circuit in spatial
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3.10 Problems

Problem 3.1 Derive the Shannon decision tree and BDD for the switching
functions given below. Use Examples 3.13, 3.14, and 3.15 for reference.

(a) f = x1 ∨ x2 ∨ x3

(b) f = x1 ∨ (x2 ⊕ x3)
(c) f = x1x2 ∨ x2x3 ∨ x1x3

(d) f = x1x2x3

Problem 3.2 Represent the switching function given below by the Reed-
Muller expression of polarities c = 1 and c = 2 (follow Example 3.21).

(a) f = x1x2 ∨ x1x2x3 ∨ x3

(b) f = x1 ∨ x2 ∨ x1x3

(c) f = x1 ∨ x1x2x3 ∨ x1x3

(d) f = x1 ∨ (x2 ⊕ x3)

Problem 3.3 Consider the Reed-Muller expressions given below.

(a) f = x1x2 ⊕ x1x2x3 ⊕ x3

(b) f = x1 ⊕ x1x2x3 ⊕ x1x3

(c) f = x1 ⊕ x2 ⊕ x3

(d) f = 1⊕ x1 ⊕ x2 ⊕ x1x3

� Represent the expressions in polarity c = 0 (follow Example 3.21)
� Derive the flowgraph for a switching function of three variables (follow

Example 3.17)
� Represent the expressions by the Davio decision tree and Davio decision

diagram. Use Examples 3.23, 3.24 and 3.25 for reference

Problem 3.4 Represent the switching functions given below by an arith-
metic expression (follow the rules given in subsection 3.7.5)

(a) f = x1x2 ∨ x2x3

(b) f = x1 ⊕ x1x2x3

(d) f = x1 ∨ x2 ∨ x3

(e) f = (x1 ∨ x2)⊕ x3

Problem 3.5 Below some arithmetic expressions are given.

� Represent the function by an arithmetic form of polarity c = 3 (follow
Example 3.32)

� Derive the flowgraph of arithmetic transform for the 3-variable switching
function (follow Example 3.27)

� Represent the arithmetic expression by a decision tree and decision diagram

© 2005 by CRC Press
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Use Examples 3.34 and 3.35 for reference

(a) x3 + x1 − x1x3 − x1x2

(b) x1 − x1x3 + x1x2x3

(c) x2 + x3 − x2x3 − x1x2x3

(d) x1 + x2x3 − x1x3 − x1x2 + 2x1x2x3

Problem 3.6 Using the appropriate inverse transform, find the truth-vector
for the function given by the vector of coefficients

(a) S = [10101011]T (follow Example 3.11)
(b) R = [10101011]T (follow Example 3.17)
(c) P = [10101011]T (follow Example 3.27)

Problem 3.7 Prove that the following expressions represent the same swit-
ching function, f1 = x1 · x3 ∨ x2 · x3 ∨ x2 · x4:

(a) f1 = 1⊕ x2 · x3 · x4 · x5 ⊕ x2 · x4 · x5 ⊕ x2 · x4 ⊕ x2 · x3 · x4

(b) f2 = x2 ⊕ x5 ⊕ x2 · x5 ⊕ x2 · x3 · x4 ⊕ x3 · x4 · x5 ⊕ x2 · x3 · x4 · x5

(c) f3 = 1⊕ x2 · x5 ⊕ x3 · x4 ⊕ x2 · x3 · x4 · x5

(d) f4 = x2 ⊕ x2 · x5 ⊕ x2 · x3 · x4 ⊕ x2 · x3 · x4 · x5

(e) f5 = x2 · x5 ⊕ x2 · x3 · x4 · x5 ⊕ x2 · x3 · x4

(f) f6 = x1 · x3 ⊕ x2 · x3 ⊕ x3 · x4 ⊕ x1 · x2 · x3 · x4

Problem 3.8 Given an n-variable switching function, 2n different Reed-
Muller expansions of polarities 0, 1, . . . , 2n − 1 can be generated. Among
them, an optimal expansion can be defined as an expansion with the minimum
total number of literals. There exist a significant number of algorithms to
for finding an optimal Reed-Muller expansion, including exhaustive search,
evolutionary minimization algorithm, and decision diagram based approach.
Find a method of manipulation of an N -hypercube (with Shannon or pD
expansion in the nodes) given a function of 3 variables (you can also propose
how to extend it to other number of variables).

3.11 Further reading

The basics of logic synthesis. There are many excellent textbooks on the
theory of switching functions and very large scale integration (VLSI) design
of logic circuits, in particular, [7, 11, 13, 18, 22, 23, 24].
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Decision trees and diagrams. The fundamentals of decision diagrams go
back to Lee (1959), Akers (1977) and Bryant (1986). Lee called decision trees
binary decision programs [16]. This result attracted interest of specialists
in complexity and algorithmic theory. Akers has developed the BDD-based
methodology for generation tests [2]. Bryant’s paper [4] has stimulated much
research in developing the technique of decision diagrams for logic design
problems.

Decision tree techniques are introduced in [3, 2, 20] and in the textbooks
[18, 23]. In a number of books, various aspects of the decision trees and
decision diagrams have been discussed, including manipulation and reduction
[6, 4, 26, 28]. Technique of application of decision diagrams is introduced in
many monographs and textbooks, in particular, [8, 18].

Reed-Muller representation of switching functions. There is a long
history of research on sum-of-products expressions in which sum corresponds
to Exclusive-OR and product corresponds to the AND of variables or comple-
ments of variables. It is known that such EXOR expressions require, on the
average, fewer product terms than OR sum-of-products. Such structures are
known to be easily testable. AND-EXOR circuits have been used in arith-
metic, error correcting, and telecommunications applications. Fundamental
aspects of the technique of manipulation with Reed-Muller expressions are
discussed by Davio et al. [6] and in the textbook by Sasao [23]. In a number
of papers and books, the usefulness of manipulation with different polarities
has been shown [11, 25, 30, 31]. Matrix (spectral) computing of Reed-Muller
expressions is discussed in [6, 26, 28]. Computing the Reed-Muller expressions
is presented in detail by Yanushkevich [32]. The reader can find a very de-
tailed study on fixed and mixed polarity Reed-Muller expressions in the papers
of International Workshops on Applications of the Reed-Muller Expansion in
Circuit Design. The most important results in this field are discussed in the
paper by Stanković et al. [27].

Symmetry detection. There have been many studies of symmetric func-
tions dating back to the early history of switching theory. A number of
fundamental results on this problem are presented by Davio et al. [6]. In
particular, the properties of Lagrange, Newton and Nyquist expansions of
symmetric functions are investigated.

Arithmetic representation of switching functions. Apparently, the first
attempts to present logic operations by arithmetical ones were taken by the
founder of Boolean algebra Boolé (1854). He did not used the Boolean opera-
tors well known today. Rather he used arithmetic expressions. It is interesting
to note that: Aiken first found that arithmetic expressions can be useful to
design circuits and used it in the Harvard MARK 3 and MARK 4 computers
[1].
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Arithmetic expressions are closely related to Reed-Muller expressions. How-
ever, with variables and function values interpreted as integers 0 and 1 instead
of logic values. In this way, arithmetic expressions can be considered as integer
counterparts of Reed-Muller expressions.

Arithmetic logic has many applications in contemporary logic design, for
example in the computation of signal probabilities for test generations, and
switching activities for power and noise analysis. In a number of papers the
usefulness of manipulation with arithmetic expressions is shown [10, 4, 21, 32].
Matrix (spectral) computing of word-level expressions is discussed in [26, 28,
32]. Jain introduces probabilistic computing of arithmetic transforms [14].

Walsh representation and other spectral forms. Discrete Walsh func-
tions are a discrete version of the functions introduced by Walsh in 1923
for solving some problems in approximation of square-integrable functions on
the interval 0, 1. The basic Walsh matrix is defined as W2 =

[
1 1
1 −1

]
. The

Walsh transform matrix is constructed using Kronecker product as W2i =[
W2i−1 W2i−1
W2i−1 −W2i−1

]
. This is a so-called Hadamard-ordered Walsh functions. Walsh

functions possess the symmetry properties, and due to this the Walsh matrix
is orthogonal, symmetric and self-inverse (with normalization constant 2−n).
The Walsh functions take two values, +1 and –1, and in that respect are com-
patible with switching functions, which are also two-valued. Discrete Walsh
transform is defined as W = W2nF.

The reader can find more details in [9, 15, 26, 32, 33], including classification
and relations to other orthogonal transforms.
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[27] Stanković RS, Moraga C, and Astola JT. Reed-Muller expressions in
the previous decade. In Proceedings 5th International Workshop on
Applications of the Reed-Muller Expansion in Circuit Design, pp. 7–26,
Mississippi State University, MS, 2001.

[28] Thornton MA, Dreschler R, and Miller DM. Spectral Techniques in
VLSI CAD. Kluwer, Dordrecht, 2002.

[29] Thornton M, and Nair V. Efficient calculation of spectral coefficients
and their applications. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 14(1):1328–13411, 1995.

[30] Tsai CC, and Marek-Sadowska M. Boolean functions classification via
fixed polarity Reed-Muller forms. IEEE Transactions on Computers,
46(2):173–186, 1997.

[31] Tsai CC, and Marek-Sadowska M. Generalized Reed-Muller forms as a
tool to detect symmetries. IEEE Transactions on Computers, 45:33–40,
1996.

[32] Yanushkevich SN. Arithmetical canonical expansions of Boolean and
MVL functions as generalized Reed-Muller series. In Proceedings of the
IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expan-
sions in Circuit Design, pp. 300–307, Japan, 1995.

[33] Yanushkevich SN. Multiplicative properties of spectral Walsh coef-
ficients of the Boolean function. Automation and Remote Control,
Kluwer/Plenum Publishers, 64(12):1938–1947, 2003.

© 2005 by CRC Press



4

Word-Level Data Structures

In this chapter, selected methods of word-level logic design are introduced.
Word-level and manipulation of switching function is the key point of parallel
and homogeneous computing. Therefore, word-level processing is a suitable
candidate for calculations on nanostructures that are parallel and distributed
systems. This is the main motivation to discuss these methods of computing
in spatial dimensions. All methods for word-level representation and manip-
ulation discussed here are divided into three groups:

� Computing with words of assignments,
� Computing with words of functions, and
� Computing with words of assignments and words of functions.

These methods, as well as the basics of the word-level approach, are revised
in Section 4.1. The rest of this chapter focuses on: (i) word-level arithmetic
expressions (Section 4.2), (ii) word-level sum-of-products expressions (Section
4.3), and (iii) word-level Reed-Muller expressions (Section 4.4). The technique
of computation is introduced in each section by general equations for word-
level representations, and computing methods including algebraic, matrix,
and decision diagrams.

4.1 Word-level data structures

The state-of-the-art approaches to word-level representation and manipulation
of switching functions operate on the following groups of data structures:

� Word-level set of assignments,
� Word-levels, and
� Word-levels and set of assignments.

In this section, the general strategy for synthesis and analysis of these data
structures is discussed.
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f1 

fr 

f 
Word-level 
expression 

Set of assignments 

x1x2xn
•    •    • 

Let f be a switching function
of two variables x1, x2 (n = 2)
The set of assignments

u = {00, 10, 11}

Vectors of assignments:

x1 =

[
0
1
1

]
, x2 =

[
0
0
1

]

FIGURE 4.1
Word-level set of assignments for computing the switching function f given a
set of word-level assignments (Example 4.1).

4.1.1 Computing by word-level set of assignments

The problem is stated as follows: given a set of n, u ∈ 0, 1, . . . , 2n assignments
of n variables x1, x2, . . . , xn for a switching function f , calculate the function f
for these u assignments. Denote the columns x1, x2, . . . , xn of the truth table
of f given u assignments, or u× 1 vectors x1,x2, . . . ,xn called the vectors of
assignments.

Example 4.1 For function f of two variables x1, x2 (n = 2), the set of as-
signments is u = {00, 10, 11}. Vectors of assignments are given in Figure 4.1.

Denote the values of a switching function f given the vectors of assign-
ments x1,x2, . . . ,xn by f . In its turn, f is expressed by the equation f =
f(x1,x2, . . . ,xn). The algorithm of computing the switching function f given

illustrated below with the example for a single output function.

Example 4.2 Given the switching function f = x1∨x2x3, calculate its values

Step 1. Determine the vectors of assignments x1,x2 and x3.
Step 2. Calculate f = x1 ∨ x2x3. Figure 4.3 illustrates the operations over

vectors x1,x2 and x3 to derive f .

These calculations can be represented by the bitwise over integer numbers
(words): x1 = 12, x2 = 14,x3 = 8,

f = x1

�∨ x2

�∧ x3 = 12
�∨ 14

�∧ 8 = 12

4.1.2 Computing by word-level expressions

The forms of switching functions considered in this chapter are the following:

© 2005 by CRC Press

a set of word-level assignments is shown in Figure 4.2. This approach is

for assignments 000, 010, 110, 111 (Figure 4.3).
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f1 

fr 
f 

Word-level 
expression 

Set of assignments 

x1x2 xn

Word-level 
assignments 

xn x2 x1

•    •    • 

•    •    • 

Given :
A set of u assignments, and a word-level expres-
sion of switching function f .

(i) Represent the set of u assignments by u×
1 vectors of assignments
x1,x2, . . . ,xn.

(ii) Represent the word-level expression of f
f = f(x1,x2, . . . ,xn).

(iii) Calculate the outputs of
f = (x1,x2, . . . ,xn).

FIGURE 4.2
An algorithm for computing the switching function f given a set of word-level
assignments.

x2 f
x3 
x1 

x1 x2 x3 f
0 0 0 0
0 1 0 0
1 1 0 1
1 1 1 1

The switching function

f = x1 ∨ x2x3

Vectors of assignments

x1 =

⎡⎢⎣ 0
0
1
1

⎤⎥⎦ , x2 =

⎡⎢⎣ 0
1
1
1

⎤⎥⎦ , x3 =

⎡⎢⎣ 0
0
0
1

⎤⎥⎦
Equation for assignments

f = x1 ∨ x2x3

Output :

f =

⎡⎢⎣ 0
0
1
1

⎤⎥⎦ ∨

⎡⎢⎣ 0
1
1
1

⎤⎥⎦
⎡⎢⎣ 0

0
0
1

⎤⎥⎦ =

⎡⎢⎣ 0
0
1
1

⎤⎥⎦

FIGURE 4.3
Derivation of the switching function f = x1∨x2x3 given by word-level assign-
ments (Example 4.2).

� Word-level arithmetic expressions,
� word-level sum-of-products expressions, and
� word-level Reed-Muller expressions.

These forms of a switching function f of n variables x1, x2, . . . xn have the

© 2005 by CRC Press
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� =

⎧⎪⎪⎨⎪⎪⎩
+, for word-level arithmetic expression;
�∨, for word-level sum-of-products expression;
�⊕, for word-level Reed-Muller expression.

TABLE 4.1

Word-level expressions for a switching function and decomposition rules for
relevant decision trees and diagrams.

Expression Formal description x
ij

j Decomposition

Word-level
∑2n−1

i=0 di · (xi1
1 · · · xin

n )
{

1, ij = 0;
xj , ij = 1. Davio

arithmetic arithmetic

Word-level
�∨2n−1

i=0 vi · (xi1
1 · · · xin

n )
{

xj , ij = 0;
xj , ij = 1.

Shannon

sum-of-products

Word-level
�⊕2n−1

i=0 wi · (xi1
1 · · · xin

n )
{

1, ij = 0;
xj , ij = 1.

Davio

Reed-Muller

The expressions are consistent with the relevant data structures – matrix
representation, flowgraph, decision tree and decision diagram – that will be
considered later in this chapter. We observe that these expressions are the
same algebraic structure.

4.2 Word-level arithmetic expressions

Word-level arithmetic expansion serves to represent a logic function whose
outputs are grouped to build a bitstring (word). In other words, the advantage
of arithmetic logic is a possibility to represent an r-output function f with
outputs f1, f2, ..., fr, so that the outputs can be restored in a unique way.
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4.2.1 General form

For an r-output switching function f of n variables, the arithmetic word-level
expression is the weighted sum of arithmetic expressions of fj , j = 1, . . . , r,

f = 2r−1fr + · · ·+ 21f2 + 20f1. (4.1)

This expression (Equation 4.1) can be rewritten in the form

f =
2n−1∑
i=0

di · (xi1
1 · · · xin

n ),︸ ︷︷ ︸
i−th product

(4.2)

where coefficient di is an integer number, ij , j = 1, 2, . . . , n, is the j-th bit in
the binary representation of the index i = i1i2 . . . in, and x

ij

j is defined as

x
ij

j =
{

1, ij = 0;
xj , ij = 1. (4.3)

Example 4.3 An arbitrary r-output switching function of two variables is
represented by the arithmetic word-level expression according to Equation 4.2
and Equation 4.3 by

f = d0(x0
1x

0
2) + d1(x0

1x
1
2) + d2(x1

1x
0
2) + d3(x1

1x
1
2)

= d0 + d1x2 + d2x1 + d3x1x2.

Figure 4.4 illustrates the structure of this expression, where the nodes imple-
ment the AND operations.

 

 

d
0

d
1

d
2

d
3

1 x2 x1 x1x2 
P r o d u c t    t e r m  

Vector of 
coefficients 

d0 

d1x2 

d2x1 

d3x1x2 

+
f 

FIGURE 4.4
Deriving the arithmetic word-level expression for an r-output switching func-
tion of two variables (Example 4.3).
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4.2.2 Masking operator

The masking operator Ξτ{f} is used to recover the single function fτ from
the word-level representation of a r-output switching function f :

fτ = Ξτ{f}.
Example 4.4 Let the switching function be given in 4-bit word format. Re-
cover:

(a) the output f2 and f4,
(b) the output f1 and f4.

In Figure 4.5, the solutions (a) and (b) are given.

Example 4.5 In Example 4.3, f = x1 + x2, which corresponds to the coeffi-

cient vector

[
0
1
1
0

]
and to the truth vector

[
0
1
1
2

]
=

[
0 0
0 1
0 1
1 0

]
, which indeed describes

two-output function. The masking operator recovers two switching functions
Ξ1{x1 + x2} = x1 ⊕ x2 and Ξ2{x1 + x2} = x1x2.

 

f4 f2 f1 

2
0 

2
1 

2
3 

Ξ2{f}= f2Ξ4{f}= f4

f3 

2
2 

(a)

 

f4 f2 f1

2
0 

2
1 

2
3 

Ξ1{f}= f1Ξ4{f}= f4

f3 

2
2 

(b)

FIGURE 4.5
The masking operator Ξτ{f}, τ = 1, 2, 3, 4, recovers the function fτ from a
word-level representation of the switching function f (Example 4.4).

4.2.3 Computing the coefficients

Given a truth vector F = [f(0) f(1) . . . f(2n − 1)]T , the vector of coefficients
D = [d0 d1 . . . d2n−1]T is derived by the matrix eqaution with AND and
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arithmetic sum operations

D = P2n · F, (4.4)

where the 2n × 2n matrix P2n is formed by the Kronecker product

P2n =
n⊗

j=1

P2j , P21 =
[

1 0
−1 1

]
(4.5)

The general scheme of computing is shown in Figure 4.6a.

 

 
Direct  

arithmetic 
transform 

D 
d

0 
d

1 
d

2 
d

3 

F 
f(0) 

f(1) 

f(2) 

f(3) 

 

 
Inverse  

arithmetic 
transform 

D 
d

0 
d

1 
d

2 
d

3 

F 
f(0) 

f(1) 

f(2) 

f(3) 

(a) (b)

FIGURE 4.6
Direct (a) and inverse (b) arithmetic word-level transform for a r-output swit-
ching function of two variables.

Example 4.6 Computing the coefficients by Equation 4.4 and Equation 4.6
for the two-output switching function f1 = x1 ∨ x2, f2 = x1 ∨ x2 with truth-
vector F1 and F2

as

F = [F2|F1] =

[
1 0
1 1
0 1
1 1

]
=

[
2
3
1
3

]
.

The same result can be obtained by algebraic Equation 4.1 given

f1 = x1 ∨ x2 = x2 + x1 − x1x2,

f2 = x1 ∨ x2 = 1− x1 + x1x2,

i.e.,

f = 21f2 + 20f1 = 21 (1− x1 + x1x2)︸ ︷︷ ︸
Output f2

+20 (x2 + x1 − x1x2)︸ ︷︷ ︸
Output f1

= 2 + x2 − x1 + x1x2.

© 2005 by CRC Press
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x1 

x2 

f1 

 

x1 

x2 

f2 

f1 = x2 + x1 − x1x2

f2 = 1 − x1 + x1x2

Direct arithmetic transform

D=P22 · F =

⎡⎢⎣
1 0 0 0

−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎤⎥⎦
⎡⎢⎣ 2

3
1
3

⎤⎥⎦ =

⎡⎢⎣ 2
1

−1
1

⎤⎥⎦
Arithmetic expression

f = 2 + x2 − x1 + x1x2

The equation is equivalent to

F = 21F2 + 20F1 = 21

⎡⎢⎣ 1
1
0
1

⎤⎥⎦ + 20

⎡⎢⎣ 0
1
1
1

⎤⎥⎦ =

⎡⎢⎣ 2
3
1
3

⎤⎥⎦
Applying transformation (Equation 4.4)
implies:

D = P22F = [ 2 1 − 1 1 ]T

i.e., f = 2 + x2 − x1 + x1x2

FIGURE 4.7
Computing the arithmetic word-level expression for a two-output circuit (Ex-
ample 4.6).

4.2.4 Restoration

Given the matrix eqaution with AND and arithmetic sum operations, restore

F = P−1
2n ·D (4.6)

where the 2n × 2n matrix P−1
2n is formed by the Kronecker product

P−1
2n =

n⊗
j=0

P−1
2j , P−1

21 =
[

1 0
1 1

]
. (4.7)

Example 4.7 Restore the truth-vector F of a switching function f given by
the vector of coefficients D = [2 1 − 1 1]T . Using Equation 4.6 implies

F=P−1
23 ·D =

⎡⎢⎣
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤⎥⎦
⎡⎢⎣ 2

1
−1
1

⎤⎥⎦ =

⎡⎢⎣ 2
3
1
3

⎤⎥⎦ .

This means

[
2
3
1
3

]
=

[
1 0
1 1
0 1
1 1

]
, i.e., f1 = x1 ∨ x2, f2 = x1 ∨ x2.

© 2005 by CRC Press

(Figure 4.6b):
the truth-vector F of switching function f from the vector of coefficients D
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4.2.5 Useful properties

The linearity property of a word-level sum of truth-vectors Fi, i = 1, 2, . . . , r
(Figure 4.8a)

F = 2r−1Fr + · · ·+ 21F2 + 20F1︸ ︷︷ ︸
r truth vectors

,

and linearity property of arithmetic transform over this sum yields

D = P2nF

= 2r−1P2nFr + · · ·+ 21P2nF2 + 20P2nF1︸ ︷︷ ︸
r arithmetic transforms

.

Therefore, in a word-level representation, the arithmetic transform of the
truth-vector F can be replaced with r arithmetic transforms of the truth-
vectors Fi.

 

f
1
(0) 
 
 

f
1
(1) 

f
2
(0)

 
 

f
1
(1)

f
3
(0) 

f
3
(1) 

f
3
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f
3
(3)

 

F 
f(0) 
f(1) 
f(2) 
f(3) 

⊕ 
⊕ 
⊕ 
⊕ 

20×F1

22×F3

21×F2

 

p
11 

 
 

f
1
(1) 

p
21 

 
 

f
1

(1) 

p
31

 

p
32

 

p
33

 

p
33 

D 
d

0 
d

1 
d

2 
d

3 

⊕ 
⊕ 
⊕ 
⊕ 

20×P1

22×P3

21×P2

(a) (b)

FIGURE 4.8
Linear properties of arithmetic transform: word-level sum of truth-vectors (a)
and word-level sum of vectors of coefficients (b).

By analogy, a word-level sum of vectors of coefficients (Figure 4.8b)

D = 2r−1Dr + · · ·+ 21D2 + 20D1︸ ︷︷ ︸
r vectors

,

then the inverse arithmetic transform of a vector of coefficients D can be
replaced by r arithmetic transforms of the vectors Di

F = P−1
2n ·D

= 2r−1P2nDr + · · ·+ 21P2nD2 + 20P2nD1︸ ︷︷ ︸
r inverse arithmetic transforms

.
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Figure 4.9 illustrates the final stage of the transformation.
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FIGURE 4.9
The r-iteration direct arithmetic transform.

4.2.6 Polarity

The polarity of a variable xj can be:

cj = 0 that corresponds to the uncomplemented variable xj , or
cj = 1 that corresponds to the complemented variable xj .

Let the polarity c = c1, c2, . . . , cn, c ∈ {0, 1, 2, . . . , 2n−1}, where cj is the j-th
bit of binary representation of c. For a r-output switching function f of n
variables, the arithmetic word-level form in a given polarity c = c1, c2, . . . , cn

of variables x1, x2, . . . , xn is defined as follows

f =
2n−1∑
i=0

di · (x1 ⊕ c1)i1 · · · (xn ⊕ cn)in︸ ︷︷ ︸
i−th product

, (4.8)

where di is the coefficient, and (xj ⊕ cj)ij is defined as

a
ij

j =
{

1, if ij = 0;
a, if ij = 1. xj ⊕ cj =

{
xj , if cj = 0;
xj , if cj = 1. (4.9)

Example 4.8 Represent the r-output switching function of two variables by
arithmetic word-level expression of the polarity c = 2, c1, c2 = 1, 0. By Equa-
tion 4.8 and Equation 4.9,

f = d0 (x1 ⊕ 1)0(x2 ⊕ 0)0︸ ︷︷ ︸
0−st product

+d1 (x1 ⊕ 1)0(x2 ⊕ 0)1︸ ︷︷ ︸
1−st product

+d2 (x1 ⊕ 1)1(x2 ⊕ 0)0︸ ︷︷ ︸
2−nd product

+ d3 (x1 ⊕ 1)1(x2 ⊕ 0)1︸ ︷︷ ︸
3−rd product

= d0 + d1x2 + d2x1 + d3x1x2.

Given the truth vector F = [f(0) f(1) . . . f(2n − 1)]T , the vector of arith-
metic word-level coefficients of polarity c, D(c) = [d(c)

0 d
(c)
1 . . . d

(c)
2n−1]T , is

derived by the matrix eqaution

© 2005 by CRC Press
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D(c) = P(c)
2n · F, (4.10)

where the 2n × 2n matrix P(c)
2n is generated by the Kronecker product

P(c)
2n =

n⊗
j=1

P(cj)

21 , P(c)
21 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
1 0
−1 1

]
, cj = 0;

[
0 1
1 −1

]
, cj = 1.

(4.11)

 

x1 

x2 

f1 

 

x1 

x2 

f2 

f1 = x2 + x1 − x1x2

f2 = 1 − x1 + x1x2

Direct arithmetic transform

D(2) = P
(2)

22 · F =

⎡⎢⎣
0 0 1 0
0 0 −1 1
1 0 −1 0

−1 1 1 −1

⎤⎥⎦
⎡⎢⎣ 2

3
1
3

⎤⎥⎦ =

⎡⎢⎣ 1
2
1

−1

⎤⎥⎦
Arithmetic expression

f = 1 + 2x2 + x1 − x1x2

FIGURE 4.10
Computing the arithmetic word-level expression of polarity c = 2 for the
two-output circuit (Example 4.9).

Example 4.9 In the matrix form, the solution to Example 4.6 using Equation
4.8 is given in Figure 4.10, where the matrix P(2)

22 for the polarity c = 2 is
generated by Equation 4.9 as

P(2)
22 = P(1)

21 ⊗P(0)
21 =

[
0 1
1 −1

]
⊗

[
1 0
−1 1

]

4.2.7 Computing for a word-level set of assignments

In Section 4.1, the word-level techniques have been distinguished by using
words of assignments and words of functions. The implementation aspects
are discussed in this section.

Algebraic form.

Example 4.10
given the word-level arithmetic expression of the switching function:

f = 6x4 + 2x3x4 − 4x1x2x4 + 5x1x2,

© 2005 by CRC Press

Calculate the outputs of the circuit depicted in Figure 4.11
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for the set of assignments u ∈ {1000, 0010, 0001}. The solution is shown in
Figure 4.11. Vectors of assignments x1,x2,x3, and x4 are derived from the
truth table. Calculations over these vectors are performed by simulation the
arithmetic expression of f .

In algebraic form, this calculation is performed over integers x1 = 4, x2 =
2, x3 = 6, x4 = 5.

⎯x2 
f1 

x3 

x1 

f2 

f3

x4 

x1 x2 x3 x4 f3 f2 f1

0 0 0 1 Find
0 1 1 0 Find
1 0 1 1 Find

Three-output switching function:

f = 6x4 + 2x3x4 − 4x1x2x4 + 5x1x2

Vectors of assignments:

x1 =

⎡⎣ 0
0
1

⎤⎦ , x2 =

⎡⎣ 0
1
0

⎤⎦ , x3 =

⎡⎣ 0
1
1

⎤⎦ , x4 =

⎡⎣ 1
0
1

⎤⎦
Equation for assignments in algebraic form:

f = 6x4 + 2x3x4 − 4x1x2x4 + 5x1x2

Equation for assignments in matrix form:

f = 6
[

1
0
1

]
+ 2

[
1
0
1

] [
0
1
0

]
− 4

[
0
0
1

] [
0
0
1

] [
0
0
1

]
+ 5

[
0
0
1

] [
0
0
1

]

=
[

6
2
7

]
=

[
1 1 0
0 1 0
1 1 1

]

Outputs: f1 =
[

0
0
1

]
, f2 =

[
1
1
1

]
, f3 =

[
1
0
1

]
FIGURE 4.11
Computing a three-output function via word-level assignments (Exam-
ple 4.10).

Decision trees and diagrams. Word-level decision trees and diagrams are
analogs of Davio trees and diagrams whereas the nodes correspond to the
arithmetic analog of positive Davio expansion

f = 1 · f0 + xi(−f0 + f1), (4.12)

where f0 = f(xi = 0), f1 = f(xi = 1). The difference is that f0 and f1 take
not integer but binary values, and thus, the edges of the word-level Davio tree
are multibit, or wordwise.
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4.3 Word-level sum-of-products expressions

Sum-of-products expressions describe single-output switching functions. In
this section, we introduce so-called word-level sum-of-products expressions
that describe multi/output switching functions.

4.3.1 General form

For an r-output switching function f of n variables, the word-level sum-of-
products expression is the bitwise of sum-of-products expressions of fj , j =
1, . . . , r,

f = 2r−1fr

�∨ · · · �∨ 21f2

�∨ 20f1, (4.13)

where
�∨ denotes a bitwise operation. Equation 4.13 can be rewritten in the

form

f =
�∨2n−1

i=0
vi · (xi1

1 · · · xin
n )︸ ︷︷ ︸

i−th product

, (4.14)

where coefficient vi is a positive integer number, ij is j-th bit in the binary
representation of the index i = i1i2 . . . in, and x

ij

j is defined as

x
ij

j =
{

xj , ij = 0;
xj , ij = 1.

(4.15)

It can be observed from Equation 4.14 and Equation 4.15 that:

� Word-level sum-of-products include the product terms of n literals. For
example, for n = 2 variables, the expression includes no product terms
of two literals.

� A coefficient vi carries information about the distribution of product terms
over the switching functions: 1s in its binary representation indicate the
index of function that comprises the product (xi1

1 · · · xin
n ). For example,

v2 = 6 = 110 carries information about the product x1x2: this product
is included in the functions f3, x1x2 ∈ f3, and f2, and not in the function
f1, x1x2 /∈ f3.

Example 4.11 The calculations below are based on Equation 4.14 and Equa-
tion 4.15.

(i) Let n = 1, then

f = v0x1

�∨ v1x1 = v0x1 ∨ v1x1.

If v0 = v1 = 1, this expression represents constant 1: f = x1 ∨ x1 = 1.
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(ii) Let n = 1, v0 = 1, and v1 = 2. The expression

x1

�∨ 2x1

implies that there are two functions: f1 = x1 and f2 = x1.
(iii) An arbitrary r−output switching function of two variables (n = 2) is

represented by the word-level sum-of-products

f = v0(x1x2)
�∨ v1(x1x2)

�∨ v2(x1x2)
�∨ v3(x1x2).

Figure 4.12 illustrates the structure of the above expression, where the nodes
implement AND function.

 

 

v
0 

v
1 

v
2 

v
3 

x1x2 P r o d u c t    t e r ms

Vector of 
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v1 (⎯x1 x2)
v2 (x1⎯x2) 

v3 (x1x2) 

+
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x1⎯x2 

⎯x1⎯x2 
⎯x1x2 

FIGURE 4.12
Deriving the word-level sum-of-profucts expression for a r-output switching
function of two variables (Example 4.11).

4.3.2 Masking operator

The masking operator is used to recover a switching function from the word-
level representation. However, for the word-level sum-of-products representa-
tion, the masking operator degenerates to lexicographical order of functions.

output switching function f .

4.3.3 Computing the coefficients

Given a truth vector F = [f(0) f(1) . . . f(2n − 1)]T , the vector of coefficients
V = [v0 v1 . . . v2n−1]T is derived by the matrix equation with AND and OR
operations

V = S2n · F, (4.16)
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f2 f1 

2
0 

2
1 

Ξ2{f}= f2

f3 

2
2

Ξ3{f}= f3 Ξ1{f}= f1

FIGURE 4.13
Masking operator Ξτ{f}, τ = 1, 2, 3, recovers the switching function fτ from
a word-level representation.

where the 2n × 2n matrix S2n is formed by the Kronecker product

S2n =
n⊗

j=1

S2j , S21 =
[

1 0
0 1

]
. (4.17)

The general computing scheme is shown in Figure 4.14.
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FIGURE 4.14
Direct arithmetic word-level transform over a two-output switching function
of two variables.

Example 4.12 Compute the coefficients from Equation 4.16 and Equation
4.17 for the two-output switching function

f1 = x1 ⊕ x2

f2 = x1x2

given the truth-vectors F1 and F2 The truth

© 2005 by CRC Press

. Figure 4.15 is an illustration.
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vector F is defined as

F = [F2|F1] =

⎡⎢⎢⎣
0 0
0 1
0 1
1 0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
1
1
2

⎤⎥⎥⎦ .

Notice, the same result can be obtained by algebraic Equation 4.13 given f1 =
x1 ⊕ x2 and f2 = x1x2:

f = 21f2

�∨ 20f1 = 21(x1x2)
�∨ 20(x1x2 ∨ x1x2)

= 2x1x2

�∨ x1x2

�∨ x1x2.

Two-output function

 

x1 

x2 

f1 

 

x1 

x2 

f2 

f1 = x1x2 ∨ x1x2

f2 = x1x2

The direct transform (Equation 4.16)
to compute vector V

V=S22 · F =

⎡⎢⎣
1

1
1

1

⎤⎥⎦
⎡⎢⎣ 0

1
1
2

⎤⎥⎦ =

⎡⎢⎣ 0
1
1
2

⎤⎥⎦

Word-level expression of the two-output
switching function

f = x1x2

�∨ x1x2

�∨ 2x1x2

FIGURE 4.15
Computing the arithmetic word-level expression for the two-output circuit
(Example 4.12).

4.3.4 Restoration

Restoration from the algebraic and matrix eqaution possesses some specific
features.

Restoration from the algebraic equation. Let the coefficients of the
0 1 2 3

that is

f = x1x2

�∨ 2x1x2

�∨ 3x1x2

�∨ 4x1x2.

This equation yields the matrix of coefficients
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= 1, v = 2, v = 3, v = 4 (see Example 4.11),word-level expression be v
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f =

⎡⎢⎣ v0
v1
v2
v3

⎤⎥⎦ =

⎡⎢⎣ 1
2
3
4

⎤⎥⎦ , C=

⎡⎢⎢⎢⎢⎣

f3 f2 f1

v0, {x1x2} 0 0 1

v1, {x1x2} 0 1 0

v2, {x1x2} 0 1 1

v3, {x1x2} 1 0 0

⎤⎥⎥⎥⎥⎦
Therefore,

� f generates three switching functions f1, f2, f3, since the maximal coeffi-
cient v3 = 4 is represented by three bits.

� f1 includes the products x1x2 and x1x2 because the least significant bit of
the coefficients v0 = 1 = 001 and v2 = 3 = 011 is equal to 1. Hence,
f1 = x1x2 ∨ x1x2.

� f2 includes the products x1x2 and x1x2, because the second bit of the
coefficients v1 = 2 and v2 = 3 is equal to 1. Hence, f2 = x1x2 ∨ x1x2.

� f3 includes the product x1x2 because the most significant bit of the coef-
ficient v3 = 4 is equal to 1. Hence, f3 = x1x2.

Restoration from the matrix equation. The following matrix equation
with AND and arithmetic sum operations restores the truth-vector F from

F = S−1
2n ·V (4.18)

where the 2n × 2n matrix S−1
2n = S2n .

Example 4.13 (Continuation Example 4.12) Restore the truth-vector F of a

4.3.5 Computing for a word-level set of assignments

Word-level forms offer a convenient way to compute the values of switching
functions given variable assignments.

Example 4.14 Calculate the switching function

f = 5x1x2

�∨ 2x3

�∨ 6x4,

given the set of assignments u ∈ {0001, 0110, 1011}. The logic circuit described
by this expression is shown in First, of assignments
x1,x2,x3, and x4 are derived from u. Second, the bitwise calculations are
performed on these vectors according to the word-level sum-of-products.
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the vector of coefficients V (Figure 4.15b):

switching function f given by the vector of coefficients V (Figure 4.16).

Figure 4.17. vectors
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x1 

x2 

f1 

 

x1 

x2 

f2 

Given:
vector of coefficients

V =

⎡⎢⎣ 0
1
1
2

⎤⎥⎦

Applying Equation 4.18 implies

F = S−1
22 · V =

⎡⎢⎣ 1
1

1
1

⎤⎥⎦
⎡⎢⎣ 0

1
1
2

⎤⎥⎦ =

⎡⎢⎣ 0 0
0 1
0 1
1 0

⎤⎥⎦ = [F2|F1]

f = X̂ · V
= 0(x1x2)

�∨ 1(x1x2)
�∨ 1(x1x2)

�∨ 2(x1x2)

= x1x2

�∨ x1x2

�∨ 2x1x2,

where

X̂ = [ x1 x1 ] ⊗ [ x2 x2 ]

= [ x1x2, x1x2, x1x2, x1x2 ]

Functions f1 and f2 are recovered from the least
and the most significant bits of the word repre-
sentation vi, i = 0, 1, 2, 3,

f1 = 0(x1x2) ∨ 0(x1x2) ∨ 1(x1x2) ∨ 1(x1x2) ∨ 0(x1x2)

= x1x2 ∨ x1x2,

f2 = 0(x1x2) ∨ 0(x1x2) ∨ 0(x1x2) ∨ 0(x1x2) ∨ 1(x1x2)

= x1x2

FIGURE 4.16
Restoration of truth-vector of a two-output switching function f given by the
vector of coefficients (Example 4.13).

In the above example, the coefficients 5 = 101, 2 = 010 and 6 = 110 indicate
the scheme of computing. For example, f1 includes the product x1x2 only
(the least significant bit equal to 1 in coefficient 5 only).

In algebraic form this calculation is performed by analogy with x1 = 4, x2 =

2, x3 = 6, x4 = 5. For example, given u = 0001, f = (5 · 0 · 0)
�∨ (2 · 0)

�∨
(6 · 1) = 6, and f3, f2, f1 = 1, 1, 0.

4.3.6 Word-level Shannon decision trees and diagrams

Sum-of-products are useful for word-level representation for three reasons.
First of all, the manipulation of the word-level form is very simple. Second,
restoration procedure is simple, compared to restoration by calculation of
arithmetic word-level form. Finally, the linearity property can be utilized in
order to decrease the computational cost.

A node in a word-level Shannon decision tree of a r-output switching func-
tion f corresponds to the word-level Shannon expansion with respect to a
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Assignments

⎯x2 
f1 

x3 

x1 

f2 

f3

x4 

x1 x2 x3 x4 f3 f2 f1

0 0 0 1 Find
0 1 1 0 Find
1 0 1 1 Find

Word-level expression:

f = 5x1x2

�∨ 2x3

�∨ 6x4 =

⎡⎣ 5
2
6

⎤⎦ =

⎡⎣ 101
010
110

⎤⎦ = [f3|f2|f1]

f1 = x1x2, f2 = x3 ∨ x4, f3 = x1x2 ∨ x4

Vectors of assignments:

x1 =

⎡⎣ 0
0
1

⎤⎦ x2 =

⎡⎣ 0
1
0

⎤⎦

x3 =

⎡⎣ 0
1
1

⎤⎦ x4 =

⎡⎣ 1
0
1

⎤⎦
Equations for assignments:

f = 5x1x2

�∨ 2x3

�∨ 6x4

f1 = x1x2, f2 = x3 ∨ x4, f3 = x1x2 ∨ x4

Outputs (vectors):

f1 =
[

0
0
1

] [
1
0
1

]
=

[
0
0
1

]
, f2 =

[
0
1
1

]
∨

[
1
0
1

]
=

[
1
1
1

]
, f3 =

[
0
0
1

] [
1
0
1

]
∨

[
1
0
1

]
=

[
1
0
1

]

FIGURE 4.17

Computing the three-output switching function f = 5x1x2

�∨ 2x3

�∨ 6x4 by
word-level assignments (Example 4.14).

variable xi

fj = fj(xi = 0) ∨ xifj(xi = 1), (4.19)

where j = 1, 2, . . . , r, and fj = f |xi=a denotes the subfunctions of fj that are
derived from f after assigning the constant a ∈ {0, 1} to the argument denoted

by the variable xi. The Shannon expansion of f is labeled as
�
S

function f in graph-based form with structural properties similar to the Shan-
non decision tree for a single-output switching function.

Example 4.15 A three-output switching function

f = 7x1x2x3 ∨ 3x1x2x3 ∨ 6x1x2x3

of three variables x1, x2 and x3, where

f1 = x1x2x3 ∨ x1x2x3

f2 = x1x2x3 ∨ x1x2x3 ∨ x1x2x3

f3 = x1x2x3 ∨ x1x2x3

© 2005 by CRC Press

(Figure 7.18).
Word-level Shannon decision tree is a canonical representation of switching
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can be represented by the word-level Shannon decision diagram shown in Fig-
ure 4.18a. The terms 7x1x2x3, 3x1x2x3 and 6x1x2x3 are shown in Figure
4.18b.
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for term 7x1x2x3
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FIGURE 4.18
Word-level sum-of-products representation of the three-output switching func-
tion 7x1x2x3 ∨ 3x1x2x3 ∨ 6x1x2x3 (Example 4.15): Shannon tree (a) and the
fragments of the tree corresponding to the terms of f (b)

4.4 Word-level Reed-Muller expressions

Given a multioutput switching function, it is possible to calculate Reed-Muller
expression for the participating functions using bitwise on the whole word at
once.
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grams as shown in Figure 4.19.
The bit-level representation would require three binary decision dia-
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FIGURE 4.19
Shannon diagrams of the switching subfunctions f1 (a), f2 (b) and f3 (c) of
the three-output switching function 7x1x2x3 ∨ 3x1x2x3 ∨ 6x1x2x3, and the
paths corresponding to the term x1x2x3 in each of the diagrams (Example
4.15).
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4.4.1 General form

Given a r-output switching function f of n variables, the word-level Reed-
Muller expression is the bitwise sum of Reed-Muller expressions of fj , j =
1, . . . , r,

f = 2r−1fr

�⊕ · · · �⊕ 21f2

�⊕ 20f1. (4.20)

where
�⊕ denotes a bitwise operation. Equation 4.20 can be rewritten in the

form

f =
�⊕2n−1

i=0
wi · (xi1

1 · · · xin
n )︸ ︷︷ ︸

i−th product

, (4.21)

where coefficient wi is the positive integer number, ij is j-th bit in the binary
representation of the index i = i1i2 . . . in, and x

ij

j is defined as

x
ij

j =
{

1, ij = 0;
xj , ij = 1.

(4.22)

Example 4.16 An arbitrary r-output switching function of two variables (n =
2) is represented by the word-level EXOR expression, accordingly Equation
4.21 and Equation 4.22

f = w0

�⊕ w1x2

�⊕ w2x1

�⊕ w3x1x2.

Figure 4.20 illustrates forming of this expression; the nodes in the graph
implement AND function.
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FIGURE 4.20
Deriving the Reed-Muller word-level expression for a r-output switching func-
tion of two variables (Example 4.16).
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4.4.2 Masking operator

The masking operator is used to recover a switching function from the word-
level representation. However, similar to word-level sum-of-products, in the
word-level Reed-Muller representation, the masking operator degenerates to
lexicographical order.

4.4.3 Computing the coefficients

Given a word-level truth vector F = [f(0) f(1) . . . f(2n − 1)]T , the vector of
coefficients W = [w0 w1 . . . w2n−1]T is derived by the matrix equation over
AND and EXOR operations

W = R2n · F, (4.23)

where the 2n × 2n - matrix R2n is formed by the Kronecker product

R2n =
n⊗

j=1

R2j , R21 =
[

1 0
1 1

]
. (4.24)
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FIGURE 4.21
Direct word-level Reed-Muller transform for a two-output switching function
of two variables.

The general scheme of computing is shown in Figure 4.21a.

Example 4.17 Computing the word-level Reed-Muller coefficients by Equa-
tion 4.23 and Equation 4.24 for the two-output switching function f1 = x1 ⊕
x2, f2 = x1 ⊕ x2 given by the truth-vectors F1 and F2 correspondingly is

F = [F2|F1] =

[
1 0
0 1
0 1
1 0

]
=

[
2
1
1
2

]
.
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illustrated by Figure 4.22. The truth vector F is defined as
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The calculation using Equation 4.23 results to

W = [W2|W1] =

[
1 0
1 1
1 1
0 0

]
=

[
2
3
3
0

]
.

Notice, that the same result can be obtained by the algebraic Equation 4.20
given f1 = x1 ⊕ x2 and f2 = x1 ⊕ x2 = 1⊕ x1 ⊕ x2:

f = 21f2

�⊕ 20f1 = 21(1⊕ x1 ⊕ x2)
�⊕ 20(x1 ⊕ x2) = 2

�⊕ 3x2

�⊕ 3x1.

Two-output function

 

x1 

x2 

f1 

 

⎯x1 

x2 

f2 

f1 = x1 ⊕ x2

f2 = 1 ⊕ x1 ⊕ x2

Calculation of vectors of coefficients

W1 = R22 · F1 =

⎡⎢⎣
1
1 1
1 1
1 1 1 1

⎤⎥⎦
⎡⎢⎣ 0

1
1
0

⎤⎥⎦ =

⎡⎢⎣ 0
1
1
0

⎤⎥⎦ (mod 2)

W2 = R22 · F2 =

⎡⎢⎣
1
1 1
1 1
1 1 1 1

⎤⎥⎦
⎡⎢⎣ 1

0
0
1

⎤⎥⎦ =

⎡⎢⎣ 1
1
1
0

⎤⎥⎦ (mod 2)

Vector of Reed-Muller coefficients of two-output
function

W = [W2|W1] = [2 3 3 0]T

Word-level Reed-Muller expression

f = 2
�⊕ 3x2

�⊕ 3x1

FIGURE 4.22
Computing the word-level Reed-Muller expression of a two-output switching
function (circuit) (Example 4.17).

4.4.4 Restoration

Restoration from the algebraic and matrix equations have a number of specific
features.

Restoration from the algebraic equation. Let us consider the function
from Example 4.16, w0 = 1, w1 = 2, w2 = 3, w3 = 4, that is

f = 1
�⊕ 2x2

�⊕ 3x1

�⊕ 4x1x2.

It follows from this equation that function f generates three switching func-
tions f1, f2, f3 because the coefficient w3 = 4 is represented by three bits.
Therefore,
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C =

⎡⎢⎢⎣
w0

w1

w2

w3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
2
3
4

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣

f3 f2 f1

w0 {1} 0 0 1

w1 {x2} 0 1 0

w2 {x1} 0 1 1

w3 {x1x2} 1 0 0

⎤⎥⎥⎥⎥⎦
f1 = 1⊕ x1, f2 = x2 ⊕ x1, f3 = x1x2, i.e.,

� f1 includes the products 1 and x1 because the least significant bit of the
coefficients w0 = 1 and w2 = 3 is equal to 1. Hence, f1 = 1⊕ x1.

� f2 includes the products x2 and x1 because the second bit of the coefficients
w1 = 2 and w2 = 3 is 1. Hence, f2 = x2 ⊕ x1.

� f3 includes the product x1x2 because the most significant bit of the coef-
ficient w3 = 4 is 1. Hence, f3 = x1x2.

Restoration from the matrix equation. The following matrix equation
over AND and Reed-Muller operations restores the truth-vector Ft from the
vector of coefficients Wt, t = 1, 2, . . . , r:

Ft = R−1
2n ·Wt (mod 2), (4.25)

where R−1
2n = R2n .

Example 4.18 Restore the truth-vector Ft, t = 1, 2, of a function f given
by the vector of coefficients W = [2 3 3 0]T (Example 4.17)

F1 = R−1
22 ·W1 =

[
1
1 1
1 1
1 1 1 1

][
0
1
1
0

]
=

[
0
1
1
0

]
.

By analogy, F2 = [1 0 0 1]T . Hence,

f1 = X̂ · F1 = X̂ · [0 1 1 0]T = x1 ⊕ x2

f2 = X̂ · F2 = X̂ · [1 0 0 1]T = 1⊕ x1 ⊕ x2.

4.4.5 Computing for a word-level set of assignments

This section is devoted to implementation of word assignments in word-level
Reed-Muller expression.

Example 4.19
word-level arithmetic expression

f = 5x1x2

�⊕ 2x3x4

�⊕ 6x4,
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Calculate the outputs of the circuit (Figure 4.23) given the
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and the set of assignments u ∈ {1000, 0010, 0001}. First, the vectors of as-
signments x1,x2,x3, and x4 are derived from the truth-table. Second, the
bitwise calculations are performed over these vectors according to the word-
level sum-of-products.

In this example, the coefficients 5 = 101, 2 = 010 and 6 = 110 indicate that:

� x1x2 ∈ f1 (the least significant bit is equal to 1 in the coefficient 5),

� x3x4 ∈ f2 and x4 ∈ f2 (the second bit is equal to 1 in the coefficient 2 and
coefficient 6),

� x1x2 ∈ f3 and x4 ∈ f3 (the most significant bit is equal to 1 in the coeffi-
cients 4 and 6).

f1 

x3 

x1 

f2 

f3

x4 

⎯x2 

Assignments:
x1 x2 x3 x4 f3 f2 f1

0 0 0 1 Find
0 1 1 0 Find
1 0 1 1 Find

Word-level Reed-Muller expression:

f = 5x1x2

�⊕ 2x3x4

�⊕ 6x4 =

⎡⎣ 5
2
4

⎤⎦ =

⎡⎣ 101
010
100

⎤⎦ = [f3|f2|f1]

Outputs:
f1 = x1x2, f2 = x3 ∨ x4, f3 = x1x2 ⊕ x4

Vectors of assignments:

x1 =

⎡⎣ 0
0
1

⎤⎦ , x2 =

⎡⎣ 0
1
0

⎤⎦ , x3 =

⎡⎣ 0
1
1

⎤⎦ , x4 =

⎡⎣ 1
0
1

⎤⎦
Equation for assignments:

f = 5x1x2

�⊕ 2x3x4

�⊕ 6x4

Output vectors:

f1 = x1x2 =
[

0
0
1

] [
1
0
1

]
=

[
0
0
1

]
, f2 = x3x4 ⊕ x4 =

[
0
1
1

] [
0
1
0

]
⊕

[
1
0
1

]
=

[
1
1
1

]
,

f3 = x1x2 ⊕ x4 =
[

0
0
1

] [
1
0
1

]
⊕

[
1
0
1

]
=

[
1
0
0

]
FIGURE 4.23

Computing the three-output switching function f = 5x1x2

�⊕ 2x3x4

�⊕ 6x4 by
word-level assignments (Example 4.19).
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4.4.6 Word-level Davio decision trees and diagrams

At the node of a word-level Davio decision tree, the positive Davio expansion
of each function fj , j = 1, 2, . . . , r, is implemented in parallel:

f = fj(xi = 0)⊕ xifj(xi = 1). (4.26)

Word-level Davio decomposition is labeled as
�

pD. The negative Davio ex-
pansion of fj

Note that decision trees and diagrams can include nodes corresponding to
pD, nD and S expansions if the Reed-Muller expression contain variables
entering uncomplemented, complemented or in both forms.

Example 4.20 Represent the word-level Davio decision tree of a three-output

�

uncomplemented variables x1 and x3,
�

nDis applied to complemented variable

x2 and
�
S is applied to x4 which enters in the expression in both complemented

and uncomplemented forms (Figure 4.24). The decision trees and the frag-
ments for one term are given for subfunctions f1, f2 and f3

b, and c accordingly.

 

1 

f 

⎯x2 

x1 

x4 

x3 

⎯x4 

 
 

S 

2 0 6 5 

 
nD

 
pD 

 
pD 

1 

1 

Term x1x2x3

  
x1 f 

00

 
pD 5 

1 

⎯x2  
nD 

1 

(a) (b)

FIGURE 4.24

Word-level Davio decision tree of the function f = 5x1x2

�⊕ 2x3x4

�⊕ 6x4 (a)
and a fragment of the tree for the term 5x1x2 (b) (Example 4.20).

© 2005 by CRC Press

switching function given in Figure 4.23. The final result, Reed-Muller expres-

sion, is directly mapped into the decision tree in which pD is applied to the

in Figure 4.25a,

is specified as in Chapter 3.
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1 

f1 

⎯x2

x1 

0 1 

pD 

1 

nD 

The fragment of the tree corresponding to the
term x1x2 in f1

  
x1 f1 

0 0

1 

1 

⎯x2 

1 

pD nD 

(a)

 

f2 

x3 

0 1 

pD 

1 

S 
⎯x4 

x4 

The fragment of the tree corresponding to the
term x1x2 in f2

  
x1 f2 

0 0

0 

1 

⎯x2 

1 

pD nD 

(b)

1 

f3 

⎯x2 

x1 

0 1 

1 

⎯x4 

x4  

pD 

nD S 

The fragment of the tree corresponding to the
term x1x2 in f3

  
x1 f3 

0 0

1 

1 

⎯x2 

1 

pD nD 

(c)

FIGURE 4.25
Decision diagrams for subfunctions f1 (a), f2 (b), and f3 (c) of a tree-output

function f = 5x1x2

�⊕ 2x3x4

�⊕ 6x4 (Example 4.20).

4.5 Summary

In this chapter the advanced topics in word-level representation of switching
functions are introduced. Word-level data structures are the integer counter-
parts of bit-level data structures. In contrast to bit-level representations with
terminal nodes values 0 and 1, in the word-level expressions, decision trees and
diagrams, integers or in general complex numbers are assigned to the terminal
nodes. Word-level data structures provide more compact representation, and
manipulation needs less time.

1. Word-level representation is useful for representation of multioutput swit-
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ching functions. To compose the switching functions in a word, different
forms of representation can be used. In this chapter, the word-level tech-
nique is introduced by arithmetic, sum-of-products, and Reed-Muller
expressions. The result is a word-level representation of a multioutput
switching function. The word-level expression can be in algebraic form,
matrix form, or in graphical form (decision trees and diagrams).

2. In contrast to Boolean expression that takes values 1 and 0 through com-
puting, the word-level expression takes integer values if assign the values
of binary variables. To recover the values of switching functions a simple
scheme of decoding is used (masking operator).

3. Word-level expressions have a number of common properties. However,
they differ in implementation, in particular:

� In the word-level arithmetic representation, the coefficients are inte-
ger numbers (both positive and negative). Word-level arithmetic
representation is useful when the linear properties of truth-vectors
and vectors of coefficients are important. The drawbacks are the
large coefficients and arithmetic operations in the nodes of decision

is possible to alleviate this problem by the linearization technique
and special encoding.

� Word-level sum-of-products representation is an attractive form of
description because of optimal coefficients. This is the main advan-
tage of this word-level form. The coefficients are positive integer
numbers, and can be calculated for a large functions. Additional
benefits follow from the structure of the coefficients: it is easy to
calculate the distribution of the products between the output func-
tions.

� Word-level Reed-Muller representation is useful for description of a
multiple-output function given in the Reed-Muller form. Grouping
and restoration procedures, and the properties, are the same as in
the word-level sum-of-products expression. For example, from the
binary codes of the coefficients (positive integer numbers), it is easy
to represent the output functions. These functions are represented
in Reed-Muller form.

4. Representation of word-level expressions by decision trees and decision
diagrams provides the possibility to manipulate large multioutput func-
tions. In the word-level decision trees and decision diagrams, the con-
stant (terminal) nodes are integers. Different types of a word-level deci-
sion diagrams are developed for the optimization of switching functions
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tree and diagram. However, in Chapter 8, it will be shown that it

(see “Further Reading” Section).
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4.6 Problems

Problem 4.1 Represent the two-output switching function given below by
a word-level arithmetic expression (follow Example 4.6)

(a) f1 = x1x2 ∨ x1x2x3 ∨ x3; f2 = x1 ∨ x2 ∨ x3

(b) f1 = x1 ⊕ x1x2x3 ⊕ x1x3; f2 = x1 ⊕ x2 ⊕ x3

(c) f1 = x1 ∨ x2 ∨ x3; f2 = x1 ⊕ x2 ⊕ x3

(d) f1 = x1 ∨ x2f2 = x1 ⊕ x2

Problem 4.2 Consider the word-level arithmetic expressions given below.

(A) Restore the switching function (follow Example 4.7)
(B) Represent the arithmetic expressions in polarity c = 0 (follow Example

4.8)
(C) Calculate the arithmetic expressions for assignments 000, 011, 110 (follow

Example 4.10)
(D) Represent the arithmetic expressions by the decision tree and decision

diagram

(a) f = 5 + 2x1x2 − x2x3 − x3

(b) f = 3 + x1 + x2x3 − x1x3

(c) f = 4− x1 − x2 − x3

Problem 4.3 Represent the switching function given below by a word-level
sum-of-products (follow Example 4.12)

(a) f1 = x1 ∨ x2 ∨ x3; f2 = x1 ∨ x2 ∨ x3

(b) f1 = x1x2; f2 = x1x2x3

(c) f1 = x1 ∨ x2 ∨ x3; f2 = x1 ∨ x2

Problem 4.4 Below the word-level sum-of-products are given.

(A) Restore the switching functions (follow Example 4.13)
(B) Calculate the word-level sum-of-products expression for assignments 000, 011, 110

(follow Example 4.14)
(C) Represent the word-level sum-of-products expressions by the decision tree

and decision diagram

(a) x1∨̂3x2∨̂2x1∨̂3x3

(b) 2x1∨̂2x2∨̂x1∨̂x2∨̂3x3

(c) 7x1∨̂4x2∨̂x3∨̂2x3

Problem 4.5 Represent the switching function given below by a word-level
Reed-Muller expression (follow Example 4.17)
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(a) f1 = x1 ⊕ x2 ⊕ x3; f2 = x1 ⊕ x2 ⊕ x3

(b) f1 = x1 ⊕ x2 ⊕ x3; f2 = x1 ⊕ x3; f3 = x1 ⊕ x2

(c) f1 = x1 ∨ x2 ∨ x3; f2 = x1 ⊕ x2; f3 = x3

Problem 4.6 Below the word-level Reed-Muller expressions are given.

(A) Restore the switching functions (follow Example 4.18)
(B) Calculate the word-level Reed-Muller expressions for assignments 001, 01, 111

(follow Example 4.19)
(C) Represent the word-level Reed-Muller expression by the decision tree and

(a) 5x1⊕̂3x2⊕̂7x3⊕̂x1

(b) 3x1⊕̂2x2⊕̂x3⊕̂3x3

(c) x1⊕̂6x2⊕̂x3⊕̂2x1⊕̂x2⊕̂x3

Problem 4.7

(a)
(b) Sum-of-products
(c) Derive decision diagram
(d) Derive a set of word-level linear decision diagrams

 

x1

x3

x1 

x2 

x3 

x2 

y1 

y2 

FIGURE 4.26
Two-output logic circuit for Problem 4.7.

Problem 4.8 Compare shared binary decision diagram (in terms of total
nodes) that represent functions f1, f2 and word-level linear decision diagram

4.7 Further reading

Arithmetic word-level expressions and decision diagrams. Formal as-
pects of word-level arithmetic expressions are given in [3, 4, 5] and [6]. The

© 2005 by CRC Press

Consider a two-level combinational circuit shown in Figure
6.10. Find:

Linear arithmetic expression for each level of the circuit

decision diagram (follow Example 4.20)
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technique of application of Word-level decision diagrams has been introduced
Spectral theory provides quite simple formal

Haar representation.

Edge-valued binary decision diagram were introduced by Lai et al. [2] to
improve efficiency of representation of multioutput switching functions. This
is a class of decision diagrams with attributed edges. There is one constant
node in EVBDDs, and its value is set to zero irrespective of the represented
switching function. In contrast to BDDs, the algorithms for assigning swit-
ching function to the decision trees, and for determining this function from
decision tree are related to the edges and weighting coefficients at the edges
(not to the nodes). EVBDDs represent multioutput switching functions in
the form of algebraic polynomials. The node of an EVBDD implements the
particular case of arithmetic Davio expansion. The EVBDDs with a fixed
order of variables provides a canonical representation of a switching function.
Extensions to EVBDD for multiple-valued functions have been developed too.
Spectral theory provides quite simple formal methods of design of EVBDDs.

Binary moment decision diagrams (BMDs) [1]. These are different from
EVBDDs in the order of the decompositions. In BMDs, weights at the edges
are factors in the arithmetic transform coefficients.
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5

Nanospace and Hypercube-Like
Data Structures

Logic design of nanoICs in spatial dimensions is based on selected methods
of advanced logic design, and appropriate spatial topologies. This chapter fo-
cuses on properties of hypercube data structure, and hypercube-like topology,
N -hypercube, obtained by extension of the hypercube.

To introduce the main topic of this chapter, that is, the N -hypercube data
structure, classical hypercube structure is given. Classical hypercube struc-
ture is the base for N -hypercube design and inherits most of the properties
of classical hypercubes. Traditionally, hypercube topology is used in

� Logic design for switching function manipulation (minimization, represen-
tation),

� Communication problems for traffic representation and optimization, and
� Multiprocessor systems design for optimization of parallel computing.

In the first approach, each variable of a switching function is associated
with one dimension in hyperspace. Manipulation of the function is based on
a special encoding of the vertices and edges in the hypercube. The hypercube
is used as an effective algebraic model of a switching function. In the second
approach that is used in communication problems and multiprocessor systems
design, the hypercube is the computational model. To design this model, a
decision tree or a decision diagram must be constructed and embedded into
a hypercube. In this approach the hypercube is utilized as a topological
structure for computing in 3-D space.

The problem of assembling a hypercube from a number of topological com-
ponents is introduced. This approach is especially useful when hypercube
and hypercube-like structures carry information about switching functions.
An alternative approach based on embedding graphs in hypercubes is also
discussed.

Based on the above, the new, hypercube-like topology called theN -hypercube
is introduced. There are many reasons to develop N -hypercube-based topo-
logies:

� N -hypercubes ideally reflect all properties of decision trees and decision
diagrams, popular in advanced logic design data structure, enhancing
them to more than two dimensions.
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� N -hypercubes inherit the classical hypercube’s properties.
� N -hypercubes satisfy a number of nanotechnology requirements.

Several of features distinguish the N -hypercube from a hypercube: in partic-
ular, additional nodes, including a unique node called the root. Thanks to
this, a distribution of information flows that is suitable from the point of view
of technology can be achieved. Moreover, for the N -hypercube distinguished
configurations can be obtained by the rotation.

The structure of this chapter is as follows. A brief overview of various
spatial configurations is given in Section 5.1. A classical hypercube data
structure is introduced in Section 5.2. Section 5.3 is the brief introduction
to assembling hypercubes. In Section 5.4, the basic properties of the N -
hypercube are discussed. Section 5.5 focuses on particular properties of N -
hypercube: degree of freedom and rotation and their relations with polarity
and order of variables. The coordinate description of N -hypercubes is given
in Section 5.6. Sections 5.7, 5.8, and 5.9 represent the basics of technique for
design of N -hypercube structure. The measures in hypercube-like structures
are discussed in Section 5.10. After the Summary (Section 5.11), we provide
Problems (Section 5.12) and recommendation for “Further Reading” (Section
5.13).

5.1 Spatial structures

Several network topologies have been developed to fit different styles of compu-
tation. However, most of the known topologies for massive parallel computing
have not been considered relevant to spatial logic design.

5.1.1 Requirement for representation in spatial dimensions

Ideally, a spatial network topology in space intended for switching function
representation should possess the following characteristics:

� Minimal degree,
� Ability to extend the size of structure with minimal changes to the existing

configuration,
� Ability to increase reliability and fault tolerance with minimal changes to

the existing configuration,
� Good embedding capabilities,
� Flexibility of design methods, and
� Flexibility of technology.
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5.1.2 Topologies

Based on the above criteria, a number of topologies can be considered relevant
to the problems of spatial logic design, namely:

� Hypercube topology,
� Cube-connected cycles known as CCC-topology (hypercube),
� Pyramid topology,
� X-hypercube topology,
� Hybrid topologies, and
� Specific topologies (hyper-Peterson, hyper-star, Fibonacci cube, etc.)

Hypercube topology (Figure 5.1a) has received considerable attention in
classical logic design due mainly to its ability to interpret logic formulas and
logic computation (small diameter, regularity, high connectivity, symmetry).
Hypercube-based structures are at the forefront of massive parallel compu-
tation because of the unique characteristics of hypercubes (fault tolerance,
ability to efficiently permit the embedding of various topologies, such as lat-
tices and trees).

 
 

 

(a) (b) (c)

FIGURE 5.1
Spatial configurations: hypercube (a), CCC-hypercube (b), and pyramid (c).

The binary n−hypercube is a special case of the family of k-ary n−hypercubes,
which are hypercubes with n dimensions and k nodes in each dimension. The
total number of nodes in such a hypercube is N = kn. Parallel computers
with direct-connect topologies are often based on k-ary n−cubes or isomor-
phic structures such as rings, meshes, tori, and direct binary n-cubes. A node
in a k-ary n−hypercube can be represented by an n-digit address dn−1 . . . d0

in radix k. The i-th digit, di, of the address represents the node’s position
in the i-th dimension, where 0 ≤ di ≤ k − 1. Two nodes with addresses

© 2005 by CRC Press



154 Logic Design of NanoICs

(dn−1, dn−2, . . . , d0) and (d′n−1, d
′
n−2, . . . , d

′
0) are neighbors in the ith dimen-

sion if, and only if, either

di = (d′i + 1) mod k, or
dj = d′j , ∀j �= i.

The CCC-hypercube is created from a hypercube by replacing each node
It hence increases the total number

of nodes from 2n to s · 2n and preserves all features of the hypercube. The
CCC-hypercube is closely relevant to the butterfly network. As has been
shown in the previous sections, “butterfly” flowgraphs are the nature of most
transforms of switching functions in matrix form.

the principle of hierarchical control, for example, decision trees and decision
diagrams. An arbitrary large pyramid can be embedded into the hypercube
with a minimal load factor. The dilation is two and the congestion is Θ(

√
l)

where l is the load factor. Pyramid Pn has nodes on levels 0, 1, . . . , n. The
number of nodes on level i is 4i. So, the number of nodes of Pn is (4n+1/3).
The unique node on level 0 is called the root of pyramid. The subgraph of Pn

induced by the nodes on level i is isomorphic to mesh 2i×2i The subgraph of
Pn induced by the edges connecting different levels is isomorphic to a 4n-leaf
quad-tree. This structure is very flexible for extension. Pyramid topology is
relevant also to fractal-based computation that effective for symmetric func-
tions and is used in digital signal processing, image processing and pattern
recognition.

Hybrid topology combines different structures. This topology is effective
when local computation is reasonable to perform in different topological mod-
els. For example, a pyramid can be embedded into a hypercube with the
minimal load factor (the maximum number of nodes of G mapped onto a
node of H).
by hypercubes and extension of CCC-topology by hypercubes is given.

Some topologies are effective in particular cases, for example, for symmetric
functions, partially specified functions, threshold functions, etc. In this chap-
ter, hypercube topology and its special extension is the focus of consideration.

5.2 Hypercube data structure

In this section, the hypercube is described in a formal way, through definitions,
characteristics, topological parameters and components.
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Pyramid topology (Figure 5.1c) is suitable for many computations based on

with a cycle of s nodes (Figure 5.1b).

In Figure 5.2, the example of extension of hypercube topology
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(a) (b)

FIGURE 5.2
Hybrid topology design: extension of a hypercube by hypercubes (a) and
extension of CCC topology by hypercubes (b).

5.2.1 Hypercube definition and characteristics

The hypercube is characterized by the features below (Figure 5.3):

 

0 1 

 

00

01

10

11 

 

111 

101 
000

010

011

100 

110 
001

(a) (b) (c)

FIGURE 5.3
1-D hypercube (a), 2-D hypercube (b), and 3-D hypercube (c).

� A hypercube is an extension of a graph. The dimensions are specified
by the set {0, 1, . . . , n − 1}. An n-dimensional binary hypercube is a
network with N = 2n nodes and diameter n. There are d× 2d−1 edges
in a hypercube of d dimensions.

� Each node of an n-dimensional hypercube can be specified by the binary
address (gn−1, gn−2, . . . , g0) of length n, where the bit gi corresponds
to the i-th dimension in a Boolean space. Two nodes with addresses
(gn−1, gn−2, . . . , g0) and (g′n−1, g

′
n−2, . . . , g

′
0) are connected by an edge

(or link) if and only if their addresses differ by exactly one bit.
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� There are
(

n
x

)
nodes at Hamming distance of x from a given node, and

n node-disjoint paths between any pair of nodes of the hypercube.
� Hypercube Qn can be defined recursively as the graph product.
� The fan-out (i.e. degree) of every node is n, and the total number of com-

munication links is 1
2N log N.

� A k-dimensional subcube (k-subcube) of hypercube Qn, k ≤ n, is a sub-
graph of Qn that is a k-dimensional hypercube. A k-subcube of Qn is
represented by a ternary vector A = a1a2 . . . , an, where ai ∈ {0, 1, ∗},
and ∗denotes an element that can be either 0 or 1.

� Given two subcubes A = a1a2 . . . , an and B = b1b2 . . . , bn, the intercube
distance Di(A,B) between A and B along the i-th dimension is 1 if
{ai, bi = {0, 1}}; otherwise, it is 0. The distance between two subcubes
A,B is given by D(A,B) =

∑n
i=1 Di(A,B).

� A path P of length l is an ordered sequence of nodes xi0 , xi1 , xi2 , . . . , xil
,

where the nodes are labeled with xij
, 0 ≤ j ≤ l, and xik

�= xik+1 , for
0 ≤ k ≤ l − 1.

Example 5.1 The string A = a1a2a3a4 = {01 ∗ ∗} represents the 2-subcube
of Q4 with the node set {0100, 0101, 0110, 0111}.

5.2.2 Gray code

Gray code is used for encoding the indexes of the nodes. There are several
reasons to encode the indexes. The most important of them is to simplify
analysis, synthesis and embedding of topological structures. Gray code is
referred to as unite-distance codes. Let bn...b1b0 be a binary representation
of an integer positive number B and gn...g1g0 be its Gray code.

Binary representation bn...b1b0 ⇐⇒ Gray code gn...g1g0

Binary code to Gray code. Suppose that B = bn...b1b0 is given, then the
corresponding binary Gray code representation

gi = bi ⊕ bi+1 (5.1)

where bn+1 = 0.

Gray code to binary code. Given Gray code G = gn...g1g0, the corre-
sponding binary representation is derived by

bi = g0 ⊕ g1 ⊕ . . . gn−i

=
n−i⊕
i=0

gi. (5.2)
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TABLE 5.1

Relationships for binary and Gray code for n = 3.

Binary Gray
code code

000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

Binary Gray
code code

000 000
001 001
011 010
010 011
110 100
111 101
101 110
100 111

Example 5.2 Binary to Gray and Gray to binary transformation is illus-
trated by Figure 5.4 for n = 3.

 ⊕ ⊕ ⊕
0 

b2 b0b1 

g2 g0g1 

Given:

binary number

Find:

Gray code

i = 0 : g0 = b0 ⊕ b1
i = 1 : g1 = b1 ⊕ b2
i = 2 : g2 = b2 ⊕ 0

 

g2 g1 g0

b2 b1 b0

⊕ 
⊕ 

⊕

0 
Given:

Gray code

Find:

binary number

i = 2 : b2 = g2 ⊕ 0
i = 1 : b1 = g1 ⊕ b2

= g1 ⊕ g2

i = 0 : b0 = g0 ⊕ b1
= g0 ⊕ g1 ⊕ g2

(a) (b)

FIGURE 5.4
Flowgraph and formal equation for binary to the Gray code (a) and inverse
transformation (b) (Example 5.2),

Useful rule. To build a Gray code for d dimensions, one takes the Gray code
for d − 1 dimensions, reflects it top to bottom across a horizontal line just
below the last element, and adds a leading one to each new element below the
line of reflection.
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5.2.3 Hamming distance

The Hamming distance is a useful measure in hypercube topology. The Ham-
ming sum is defined as the bitwise operation

(gd−1 . . . g0)⊕ (g′d−1 . . . g′0) = (gd−1 ⊕ g′d−1), . . . , (g1 ⊕ g′1), (g0 ⊕ g′0) (5.3)

where ⊕ is an exclusive or operation.
In the hypercube, two nodes are connected by a link (edge) if and only if

they have labels that differ by exactly one bit. The number of bits by which
labels gi and gj differ is denoted by h(gi, gj); this is the Hamming distance
between the nodes.

0100 

0101

1010 1011

1110 1111

1100 1101 

0000 

0001

0010 

1010

0011

1011 

1000 1001 

0000 ⊕ 0001 = 0001
0010⊕00011 = 0001
0100 ⊕ 0101 = 0001
0110 ⊕ 0111 = 0001
1000 ⊕ 1001 = 0001
1010 ⊕ 1011 = 0001
1100 ⊕ 1101 = 0001
1110 ⊕ 1111 = 0001

FIGURE 5.5
Hamming sum operation (Example 5.3).

Example 5.3 Hamming sum operation on two hypercubes for 3-variable swit-
ching functions is illustrated in Figure 5.5.

5.2.4 Embedding in a hypercube

Rings and chains. Let G be a ring (chain) with 2d vertices. The ring
(chain) vertices are numbered 0 through 2d

Map vertices of G to vertices of H, and map i, j-th edge of G to the unique
edge in Hd that connects the corresponding vertices. The expansion, dilation,
and congestion of this embedding are all equal to 1. Note that rings and
chains are related to linear arrays.

Meshes. Denote the size of mesh G by X×Y , where X and Y are both powers
of two. Let X = 2x and Y = 2y. Let d = x + y in hypercube Hd (Figure
5.6b, x = 1, y = 2). The embedding of mesh G into Hd is characterized by
expansion, dilation, and congestion of 1.
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00 01 11 10 
 

000 001 011 010 

111 101 100 110

 

000 

001 

011 010 

100 

110 

010 111 

(a) (b) (c)

FIGURE 5.6
Ring (chain) (a), mesh (b), and binary tree (c) representation for embedding
in hypercube.

Complete binary trees. Let Ti be the complete binary tree of height i.
This tree consists of 2i − 1 vertices. The following statements are useful for
embedding:

� Let i > 0, then there is dilation 1 embedding of complete binary tree Ti

into the hypercube Hi+1.

� Let i > 0, then there is dilation 2 embedding of complete binary tree Ti

into the hypercube Hi.

� Let i > 2, then there is no dilation 1 embedding of complete binary tree Ti

into the hypercube Hi. One can justify this statement by construction:
T1 is trivially embedded into H1, T2 is embedded into H2 with a dilation
and congestion of one, and for i > 2 there is no dilation. Note that the
condition of embedding with dilation 1 includes two requirements:

(a) vertices of Ti that are on an odd level of tree hierarchy (Vodd level =
20 + 22 + 24 + · · · + 2i−1 = 2i+1−1

3 ) are mapped to hypercube Hi

vertices that have an even number of ones, and

(b) vertices of Ti that are on an even level of tree (Veven level = 20 +23 +
25 + · · · + 2i−1 = 2(2i−1)

3 ) are mapped to hypercube Hi vertices
that have an odd number of ones.

Because Vodd level > 2i−1 for i > 1 and Veven level > 2i−1 for i > 2, the
hypercube hi does not have enough vertices with odd and even numbers
of ones to host the vertices of tree Ti on odd and even levels of tree
hierarchy.

More references to the above problem are given in “Further Reading” Section.
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5.3 Assembling of hypercubes

Assembling is the basic topological operation that we apply to synthesize
hypercube and hypercube-like data structure. Assembling is the first phase
of the development of self-assembling, that is, the process of construction of
a unity from components acting under forces/motives internal or local to the
components themselves.

To apply assembly procedure, the following items must be defined:

� The structural topological components,
� Formal interpretation of the structural topological components in terms of

the problem, and
� The rules of assembly.

The assembling is a key philosophy of building complex systems. For exam-
ple, assembling a circuit after configuration. In this section, the assembling
of classical hypercubes is considered.

5.3.1 Topological representation of products

Assembling a hypercube of switching functions is accomplished by:

� Generating the products as enumerated points (nodes) in the plane,
� Encoding the nodes by Gray code,
� Generating links using Hamming distance,
� Assembling the nodes and links, and
� Joining a topology of hypercube in n dimensions.

Let x
ij

j be a literal of a Boolean variable xj such that x0
j = xj , and x1

j =
xj , and xi1

1 xi2
2 . . . xin

n is a product of literals. Topologically, it is a set of
points on the plane numerated by i = 0, 1, . . . , n. To map this set into the
hypercube, the numbers must be encoded by Gray code and represented by
the corresponding graphs based on Hamming distance. The example below
demonstrates the assembly procedure.

Example 5.4
ucts of one, two and three variables:

Product xi1
1 ⇐⇒ 2 points ⇐⇒ 1-D hypercube (n = 1)

Product xi1
1 xi2

2 ⇐⇒ 4 points ⇐⇒ 2-D hypercube (n = 2)

Product xi1
1 xi2

2 xi3
3 ⇐⇒ 8 points ⇐⇒ 3-D hypercube (n = 3)

Products with more than three variables are represented by assembling 3-D
hypercubes (Figure 5.7b):

© 2005 by CRC Press
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n = 1 
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01

10

11 

n = 2
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101 

n = 3 
000
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011

100 

110 
001

1 
0

3 
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7 
2 6 

(a)

 

1 

0 3 

4 5 

7 
2 
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n = 4

0001 

1001 

0101 
1111 

1011

1010 

1110 

10000000 

1100 

0110 
0100 

8
9

11 

12 
13 
14 

15 

10000

10010
10011

00000

00010

00100 

11011 11111

11101

01111

01101
01100

n = 5

1 0 

3 
2

6 8 
21 

22 
23 

29 
30 
31 

(b)

FIGURE 5.7
Assembling a hypercube for representation of product terms of a single vari-
able n = 1, two variables n = 2, three variables n = 3 (a); assembling 3-D
hypercubes to represent the product term of four n = 4 and five n = 5 vari-
ables (b) (Example 5.4).

Product xi1
1 xi2

2 xi3
3 xi4

4 ⇐⇒ 16 points ⇐⇒ 4-D hypercube (n = 4)

Product xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 ⇐⇒ 32 points ⇐⇒ 5-D hypercube (n = 5)

Notice that the 0-dimensional hypercube (n = 0) represents constant 0. The
line segment connects vertices 0 and 1, and these vertices are called the face
of 1-D hypercube and denoted by x. A 2-D hypercube has four faces, 0x, 1x,
x0, and x1. The total 2-D hypercube can be denoted by xx.
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Face
1xx 

Face 
0xx 

Face 
xx1 

Face
xx0 

Face
x0x 

Face 
x1x

Faces of the hypercube are carriers
of switching functions of three variables:

Face xx0: x3(x1x2 ∨ x1x2 ∨ x1x2 ∨ x1x2)
Face xx1: x3(x1x2 ∨ x1x2 ∨ x1x2 ∨ x1x2)
Face 0xx: x1(x2x3 ∨ x2x3 ∨ x2x3 ∨ x2x3)
Face 1xx: x3(x2x3 ∨ x2x3 ∨ x2x3 ∨ x2x3)
Face x0x: x2(x1x3 ∨ x1x3 ∨ x1x3 ∨ x1x3)
Face x1x: x2(x1x3 ∨ x1x3 ∨ x1x3 ∨ x1x3)

FIGURE 5.8
Faces of the hypercube interpretation in the sum-of-products of a switching
function of three variables (Example 5.5).

Example 5.5 Six faces of the hypercube, xx0, xx1, 0xx, 1xx, x1x, and
x0x (Figure 5.8) represent 1-term products for a switching function of three
variables.

5.3.2 Assembling hypercubes for switching functions

The assembly of the hypercube is illustrated for switching functions given
by sum-of-products. The most useful property of a sum-of-products for the
hypercube assembly is that it can be derived directly from the switching func-
tion. If the variable xj is not present in the hypercube, then cj = x (don’t
care), i.e., xx

j = 1. In hypercube notation, a term is described by a hypercube
that is a ternary vector [i1i2 . . . in] of components ij ∈ {0, 1, x}. A set of
cubes corresponding to the true values of a switching function f represents
the sum-of-products for this function. The hypercube [i1i2 . . . in] is called
n-hypercube or n-cube to specify the size of the hypercube. Cube algebra
includes a set of elements as C = {1, 0, ∗}, and basic operations to find new
cubes.

Directly adjacent elements of the on-set are called adjacency plane. Each
adjacency plane corresponds to a product term.

Example 5.6 Let a switching function of three variables f = x1x2 ∨ x3 be
given by its truth table illustrates assembling a
hypercube.
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x1 x2 x3 f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

 

x1

fx2

x3

Switching function
f = x1x2 ∨ x3

Representation by the hypercube

 

x 0 0 

x 1 0 

1 x 0 

1 0 x 
0 x 0 

000 100

010 110

011 111 

001 

x1 

x2 

x3

101 

FIGURE 5.9
Truth table of the switching function f , the corresponding logic circuit, and
the hypercube representation (Example 5.6).

5.3.3 Assembling hypercubes for state assignments of finite
state machines

A finite state machine represents the behavior of a sequential network, that
is a logic network with memory. Sequential networks are represented by state
diagrams or state tables with input variables, state variables, and output
variables. Two states si and sj are distinguishable if they produce different
output sequences for the same input sequence. Otherwise, si and sj are
equivalent. A design of a sequential network includes the minimization of the
number of states, assigning a binary code to each state, and implementation
of the network. Each state is represented by a binary vector of state variables
and s state variables represent at most 2s internal states. A state assignment
assigns each state to a binary vector. The complexity of a sequential network
depends on the method of state assignment. The problem of state assignment
or encoding problem is to find a state assignment that simplifies the network.

Let a finite state machine be given by s states Q0, · · ·Qs−1, each of them is
represented by a binary vector. The hypercube assembly procedure includes
the following steps.

Step 1. Generate s states as points in the plane (0-D hypercubes). If s can
not be represented by two to an integer power, it should be increased
to 2n by virtual states, where n =]log2s[ is the smallest integer that is
equal to or greater than log2s.

Step s. The set of (s− 1)−dimensional hypercubes is considered. They join
into pairs, and an s-dimensional hypercube is assembled from each pair
by adding edges properly. As far as it possible, those vertices i and j
are chosen for being connected with an edge, which have the greatest
value of corresponding wij .
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4 2 

6 5 

0 

Step 1:

Generation of the set of points
V = {0, 2, 4, 5, 6} = {000, 010, 100, 101, 110}

 2 
6 

2 

0 

0 

4 

4 
6 4 

5 

Step 2:

Generation of graphs of degree d = 1
for which the Hamming distance is equal to one:
000 ⊕ 010 = 010, 000 ⊕ 100 = 100
010 ⊕ 110 = 100, 100 ⊕ 110 = 010
100 ⊕ 101 = 001

 

2 

6 

0 

0 

4 6 

5 

Step 3:

Generation of connected graphs with degree of d > 1
more than one:
combine vertices 100
combine vertices 010

 

x 0 0 

x 1 0 

1 x 0

1 0 x
0 x 0 

000 100

010 110

011 111

001 

x1

x2 

x3

101

Step 4:

Embed the graphs in a hypercube.

The final representation of the switching function is[
x x 0
1 0 x

]
FIGURE 5.10
Assembling a hypercube (Example 5.6) for a switching function.

Step n. A n-dimensional hypercube is assembled. The n-component Boolean
vectors are assigned to the vertices of the hypercube where the neigh-
borhood relation between the vectors should be represented by the edges
of the hypercube.

For two hypercubes of dimension (s − 1) represented by sequences S
′

and
S

′′
, the sum

∑
ωij is calculated where adding is performed over all pairs i, j of

indices of vertices that take the same places in the sequences. This sum varies
with permutations of vertices of one of the sequences, say S.

′′
Only those

permutations may be taken into consideration which preserve the adjacency
relation among vertices.

The pair of hypercubes is chosen for which
∑

ωij is maximal and they are
joined into an s-dimensional hypercube by edges between vertices that are in
related places of S

′
and S

′′
(after the proper permutation). The sequence

that represents the composed hypercube is formed by concatenation of the
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sequences S
′

and S
′′

one of which changes its order for the reverse one.

Example 5.7 The state machine is given by 16 states. In Table 5.2, the
machine is represented by wi,j

TABLE 5.2

The values of wi,j of the state
machine (Example 5.7).

2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 0 0 16 16 88 32 80 32 0 0 0 1

0 0 0 0 0 0 0 0 0 0 32 0 2
32 0 0 0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 16 0 4
0 16 0 0 0 0 0 16 0 5

48 16 48 16 32 0 0 16 6
16 32 16 48 0 0 0 7

32 80 32 0 0 0 8
32 64 0 0 0 9

32 32 0 0 10
0 0 0 11

0 0 12
0 13

Some comments on Example 5.7 will be useful.

� Since the number of states must be equal to 24, states 15 and 16 are
classified as virtual states.

� The states are interpreted as isolated vertices (hypercubes of zero dimen-
sion) in the plane (Figure 5.11, step 1).

� In the i-th step of assembling procedure, two vertices are connected with an
edge if and only if the places taken by them in the sequence S correspond
to the places of neighbor codes in the Gray code sequence of the same
length as the length of s.

In addition,

wij = w
′
ij + w

′′
ij + w

′′′
ij

where w
′
ij is the number of pairs of transitions in the given machine from the

same state to i-th and j-th states at the neighbouring input states, w
′′
ij is the

number of pairs of transitions of the machine from i-th and j-th states to the
same state at the same input states, w

′′′
ij is the sum of output variables equal

to 1. The sum is taken over all pairs of transitions of machine from i-th and
j-th states at the same input state.
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accordingly to the criteria of Hamming distance
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Step 3:

Generation of graphs of degree d = 2
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Generation of graphs of degree d = 3
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Step 5:

Embed hypercube in the hypercube.
Assign Boolean vectors to the states
of a finite state machine according to
their neighborhood relation:
1 - 0000, 2 - 0001, 3 - 0101, 4 - 1101,
5 - 0111, 6 - 0001, 7 - 0110, 8 - 1000,
9 - 1101, 10 - 1100, 11 - 0010, 12 - 0100,
13 - 1010, 14 - 1111

FIGURE 5.11
Assembling a hypercube to state assignment of finite state machine (Example
5.7).

5.4 N -hypercube definition

In this section the extension of the traditional hypercube is considered. This
extension is called the N -hypercube.

5.4.1 Extension of a hypercube

Extension of a hypercube is made by:
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� Embedding additional nodes,
� Distinguishing the types of nodes,
� Special space coordinate distribution of the additional nodes,
� New link assignments.

Additional embedded nodes and links assignments correspond to embed-
ding decision trees in a hypercube and thus, convert a hypercube from the
passive representation of a function to a connection-based structure, i.e., a
structure in which calculations can be accomplished. In other words, infor-
mation connectivity is introduced into the hypercube. Distinguishing the
types of the nodes satisfies the requirements of graphical data structures of
switching functions.

5.4.2 Structural components

An N -hypercube includes:

� Intermediate nodes embedded into the edges and faces of a singular hyper-
cube,

� Terminal nodes, which are the nodes of a singular hypercube,
� A Root node embedded into singular hypercube, and
� Links between nodes.

Intermediate nodes are the nodes of a decision diagram, i.e., the processing

diagram is a demultiplexor element, i.e., the node performs Shannon expan-
sion. In addition, each intermediate node is associated with a so-called degree
of freedom. Terminal nodes carry information about the results of computing.
The root node resembles the root node of a decision tree. The nodes (their
functions and coordinates), and links carry information about the function
implemented by the N -hypercube.

5.5 Degree of freedom and rotation

The degree of freedom of each intermediate node can be used for variable
order manipulation, as the order of variables is a parameter to adjust in
decision trees and diagrams. Additional intermediate nodes, the root node
and corresponding links in the N -hypercube are associated with

� Polarity of variables in switching function representation,
� Structure of decision tree and decision diagram, and variable order, and
� Degree of freedom and rotation of the N -hypercube based topology.
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FIGURE 5.12
Classical hypercube (a) and N -hypercube (b).

 

⎯x x 
f⎯x fx  

⎯x x f⎯x fx 

(a) (b)

FIGURE 5.13
The switching function of an uncomplement and complement variable x, and
corresponding 1-D N -hypercubes (a) and (b).

Consider the switching function of a single variable x. Corresponding 1-D
N -hypercubes are shown in Figure 5.13.

The term “degree of freedom” is related to the order of variables in decom-
position, and hence, to the order of variables in decision trees and diagrams.
The polarity of variables influences the above characteristics too.

Only intermediate and root nodes in N -hypercube can be characterized by
a degree of freedom. An intermediate node in the 1-D N -hypercube has two

1-D N -hypercubes, and includes three intermediate nodes. The N -hypercube
in 2-D has 2 × 2 × 2 = 8 degrees of freedom. There are four decision trees
with different orders of variables.

Consider an N -hypercube in 3-D. This N -hypercube is assembled of two
two-dimensionalN -hypercubes and includes seven intermediate nodes and has
8× 8× 2 = 128 degrees of freedom. The degree of freedom of an intermediate
node at i-th dimension, i = 2, 3, . . . , n, is equal to DFi = 2n−i +1. In general,
the degree of freedom of the n-dimensional N -hypercube is defined as
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An intermediate node in the 1-D N -hypercube
has two degrees of freedom.
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0100 
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The 2-D N -hypercube is assembled from two
1-D N -hypercubes, and includes three interme-
diate nodes The N -hypercube in 2-D has

2 × 2 × 2 = 8 degrees of freedom.

  

 
 

This N -hypercube is assembled of two two-
dimensional N -hypercubes and includes 7 inter-
mediate nodes and has

8 × 8 × 2 = 128 degrees of freedom.

The degree of freedom of an intermediate node
at i-th dimension, i = 2, 3, . . . n, is equal to
DFi = 2n−i + 1. In general, the degree of
freedom DF of the n-dimensional N -hypercube
is defined as

DF =
∑

i

DFi =
∑

i

(2n−i + 1).

FIGURE 5.14
Degree of freedom and rotation of the N -hypercube in 1-D and 2-D.

Degree of freedom =
∑

i

DFi =
∑

i

(2n−i + 1). (5.4)

5.6 Coordinate description

There are two possible configurations of the intermediate nodes. The first

x00 ⇐⇒ x01 ⇐⇒ xx1 ⇐⇒ x11 ⇐⇒ x10 ⇐⇒ xx0 ⇐⇒ x00.

The second possible configuration (planes) is related to the symmetric faces
(Figure 5.15b)

00x ⇐⇒ 0xx ⇐⇒ 01x ⇐⇒ 11x ⇐⇒ 1xx ⇐⇒ 10x ⇐⇒ 00x.
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FIGURE 5.15
Coordinate description of the N -hypercube: (a) the first plane, (b) the second
plane, (c) the links of an intermediate node, and (d) links of the root.

An N -hypercube includes two types of links with respect to the root node:

Link 1: xx0 ⇐⇒ xxx ⇐⇒ xx1 ,
Link 2: 0xx ⇐⇒ xxx ⇐⇒ 1xx .

The root node coordinate is xxx. There are two types of link in an N -
hypercube: links between terminal nodes and intermediate nodes, and links
between intermediate nodes, including the root node.

Example 5.8 In Figure 5.15, link <000,00x> indicates the connection of the
terminal node 000 and intermediate node 00x. By analogy, if two intermediate
nodes x10 and xx0 are connected, we indicate this fact by <x10,xx0> (Figure
5.15d).

The number of terminal nodes in the N -hypercube is always equal to the
number of nodes in the hypercube. Therefore, the classical hypercube can be
considered as the basic data structure for representation of a switching func-
tion, in which theN -hypercube can be embedded. The obtainedN -hypercube
brings the element of connectivity utilized for calculation of switching func-
tions.

There are plain relationships between the hypercube and N -hypercube:
coordinate of a link (face) in the hypercube corresponds to the coordinate
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of an intermediate node located in the middle of this link (face in the N -
hypercube).

TABLE 5.3

Relationship between hypercube and
N -hypercube.

Hypercube N -hypercube

Link Intermediate node
Face Intermediate node

Example 5.9 Relationship between coordinate description of the hypercube
and the N -hypercube is given in Table 5.4.

TABLE 5.4

Relationship between the hypercube and N -hypercube (Example 5.9).

Hypercube N -hypercube

Links x00, 0x0, x10, 10x Intermediate nodes x00, 0x0, x10,10x
Faces xx0, xx1, 0xx, 1xx, x1x Intermediate nodes 0xx, 1xx, x1x,x0x

5.7 N -hypercube design for n > 3 dimensions

Consider two 3-D N -hypercubes. For example, let us use the configuration

must be joined by links. There are seven possibilities for connecting these
N -hypercubes because the links are allowed between intermediate nodes, in-
termediate node and the root node, and between the root nodes. The new
root node is embedded in the link <xxx0, xxx1>.
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shown in Figure 5.15b. To design a 4-D N -hypercube, two N -hypercubes
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Therefore, the number of bits in the coordinate description of both N -
hypercubes must be increased by one bit. Suppose that N -hypercubes are
connected via link <xxx0, xxx1> between the root nodes xxx0 and xxx1. The
resulting topological structure is called a 4-D N -hypercube.

Link
 <xxx0
xxx1>

Root
xxx1

0100 0110 

0000 

1110 

1010

1100 Root
xxx0

1011 

0101 

0111 

0011 

0001 1001 

1101 

1111 

 

(a) (b)

FIGURE 5.16
Connections between N -hypercubes in n-dimensional space (Example 5.10).

Example 5.10 Figure 5.16 shows the possibilities for connecting a given N -
hypercube to another N -hypercube. This connection property follows from the
properties of intermediate nodes.

Summarizing the above characteristics, the N -hypercube can be specified
as an undirected hypercube with the following properties:

� N -hypercube corresponds to an n-level 2n-leaves complete binary tree.
� k = 2n terminal nodes labelled from 0 to 2n − 1 so that there is an edge

between any two vertices if and only if the binary representations of
their labels differ by one and only one bit.

� Each edge is assigned with an intermediate node which corresponds to
binary representation of both edge-ending constant nodes with the don’t
care value for the only different bit.

� There is an edge between two intermediate nodes if and only if the binary
representations of their labels differ by one and only one bit.
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5.8 Embedding a binary decision tree in N -hypercube

Rings, meshes, pyramids, shuffle-exchange networks, and complete binary
trees can be embedded into hypercubes. For example, the leaf vertex, or
node of the complete binary decision tree with q levels can be embedded into
a hypercube with 2q vertices and q×2q−1 edges. This is because the complete
binary decision tree with q levels has 2q leaves. This is exactly the number of
nodes in the hypercube structure, where each node is connected to q−1 neigh-
bors and assigned the q-bit binary code that satisfies the Hamming encoding
rule, and, thus, has q × 2q−1 edges.

Intermediate 
nodes 

f 

f010 f011 f100 f101 f110f001 f111f000 

T e r m I n a l       n o d e s 

Root node  

 

 

 

   

  

000 

010 

001 

011 

100

110 

101 

111 

(a) (b)

FIGURE 5.17
Correspondence of the attributes of binary tree and N -hypercube.

Lemma 5.1 The number of vertices of the binary tree embedded into the
middle of each edge of the N -hypercube is equal to 2q−1 whereas the possible
number of such embeddings (the number of all wires) is q × 2q−1.

PROOF The proof follows from the fact that the number of vertices
in the second last level of the binary tree is 2q−1. The number of possible
variable orders is equal to the number of variables, q, so the possible number
of embeddings is q × 2q−1.

Lemma 5.2 The number of inner nodes of the binary tree embedded into the
middle of each edge of the N -hypercube is equal to 2q−2 while the possible
number of such embeddings (the number of all edges) is q × 2q−2.

The proof is adequate to the proof for Lemma 5.1.
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Recurrence is a general strategy to generate spatial and homogeneous struc-
tures. This strategy can be used for embedding a binary decision trees into a
N -hypercube:

Step 1. Embed 2q leaves of the binary tree (nodes of the level q − 1) into
2q-node N -hypercube; assign a code to the node so that each node is
connected to q Hamming-compatible nodes.

Step 2. Embed 2q−1 inner nodes of the binary tree (nodes of the level q − 2)
into edges connecting the existing nodes of the N -hypercube, taking
into account the polarity of the variable.

Step 3. Embed 2q−2 inner nodes of the binary tree (nodes of the level q − 3)
into edges connecting the existing nodes of the N -hypercube, taking
into account the polarity of variable.

Step 4. Repeat recursively till we embed the root of the tree into the center
of the N -hypercube.

Example 5.11 Let q = 1, a binary decision tree, represent a switching func-
tion of one variable (Figure 5.18). The function takes value 1 while x = 0
and value 0 while x = 1. These values assign two leaves of the binary decision
diagram.

 x1 x1 

1 0 

0 1 0/1 1/0 S 

FIGURE 5.18
Embedding a binary decision tree of one variable into the N -hypercube (Ex-
ample 5.11).

Example 5.12 Let q = 2, the four leaf nodes of the complete binary decision

In more detail, the embedding is as follows (Figure 5.19:

Step 1. Embed 4 leaves of the binary tree into a 4-node N -hypercube; assign
the codes 00,01,10,11 so that each node is Hamming-compatible with
neighbor nodes. The Hamming distance between the neighbor nodes is
equal to one.
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nodes (Figure 5.19).
tree of a two-variable function can be embedded into a N -hypercube with four
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FIGURE 5.19
Embedding a binary decision tree into a 2-D N -hypercube (Example 5.12).

Step 2. Embed 2 inner nodes of the binary tree into edges connecting the
existing nodes of the N -hypercube; note that two of the edge-embedded
nodes must be considered at a time (Figure 5.19, the left figure cor-
responds to the order x2, x1, and the right figure describes the order
x1, x2; the axes are associated with the polarity of variables (comple-
mented, uncomplemented) and explain the meaning of the bold edges).

Step 3. Embed the root of the tree into the center of the facet of the N -
hypercube and connect it to the edge-embedded nodes.

Example 5.13 Let q = 3, the 8 leaf nodes of the complete binary decision
tree of a two-variable function are embedded into the 3-D N -hypercube (Figure
5.20).
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FIGURE 5.20
Embedding the complete binary tree into the 3-D N -hypercube (Example
5.13).

The total number of nodes and the total number of edges (connections)
between nodes in the N -hypercube is specified as below
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Nd =
n∑

i=0

2n−iCn
i (5.5)

Nc =
n∑

i=0

2i · 2n−iCn
i (5.6)

It is obvious that the total number of internal nodes is equal to the number
of all nodes except leaves in the complete binary decision tree that represents
a switching function of n variables, and the total number of edges is equal to
the number of edges in the complete binary decision tree.

5.9 Assembling

Assembling is one of the possible approaches to N -hypercube design. The
second approach, based on embedding decision trees into the N -hypercube is
discussed later in this chapter.

There are two assembling procedures for the N -hypercube design:

� Assembling a N -hypercube onto N -hypercubes of smaller dimensions; this
is a recursive procedure based on several restrictions (rules), and

� Assembling a shared the N -hypercube based structures; in this approach,
some extensions of the above mentioned rules are used.

The following rules are the basis of assembly procedure.

Rule 1 (Connections). A terminal node is connected to one intermediate

intermediate nodes.
Rule 2 (Connections). The root node is connected to two intermediate nodes

located symmetrically in opposite faces. Figure 5.21 explains this for
5-dimensional structure.

Rule 3 (Symmetry). Configurations of the terminal and intermediate nodes
on the opposite faces are symmetric. The two faces are connected via the
root node. In Figure 5.21, two pairs of 3-D N -hypercubes are connected
via their root nodes forming two new root nodes, and then two pairs are
symmetrically connected via a new root nodes of the 5-D N -hypercube.
Two symmetric planes include terminal nodes only.

If values of some terminal nodes in two N -hypercubes assigned with the
same codes are equal, then these N -hypercubes can share some nodes. The
N -hypercubes are called shared N -hypercubes
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node only. In Figure 5.21, there are 32 terminal nodes connected to 16
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Rule 1 A terminal node is connected to one
intermediate node only.

Rule 2 The root node is connected to two in-
termediate nodes located symmetrically
in opposite face.

Rule 3 Configurations of the terminal and in-
termediate nodes on the opposite face
are symmetric. Two symmetric planes
include terminal nodes only.

FIGURE 5.21
Assembly rules for N -hypercube design.

In Figure 5.22, assembling the shared N -hypercube based structures is il-
lustrated in 2-D and 3-D space. Two 2-D N -hypercubes are combined accord-
ingly to the merging rule by their two terminal nodes (Figure 5.22a). This
type of connection is called strong merging in contrast to weak merging shown
in Figure 5.22b. By analogy, in Figures 5.22c, d the merging procedure for
3-D N -hypercubes is illustrated.

 

 

(a) (b)

Two 2-D N -hypercubes are com-
bined by their two terminal nodes
(strong merging). If one terminal
node of each 3-D N -hypercube
is merged, it is weak merging.

 

 

(c) (d)

The merging procedure for 3-D
N -hypercubes: strong merging
means merging by four nodes,
and and weak merging means
merging by two nodes.

FIGURE 5.22
Assembling N -hypercube based structures: strong (a, c) and weak (b, d)
merging in 2-D and 3-D space.
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Example 5.14 Figure 5.23 illustrates the 3-D N -hypercube assembling.
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Embed 8 leaves of the binary tree
(Gray code ordered) in an N -hypercube.

 

000

010 

001 

011 

100

110
⎯x3 

x3

101

111 

⎯x3 

⎯x3 

x3 

x3 

⎯x3 

 x3 

Step 2:
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of the binary tree into edges
connecting 8 nodes of the N -hypercube
(assembling with respect to x3).
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the binary tree into facets and connect
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Embed the root of the tree in
the inner-cube node (center) and connect
it to two intermediate-facet nodes
(assembling with respect to x1).

FIGURE 5.23
N -hypercube design by embedding a complete binary tree in theN -hypercube
(Example 5.14).
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5.10 Spatial topological measurements

There exists a number of basic measures for estimation of the N -hypercube

Diameter and link complexity.
the maximum distance between any two nodes in the network. Thus, the
diameter determines the maximum number of hops that the carrier may have
to do on the path from the root to a terminal node.

Link complexity or node degree is defined as the number of physical links
per node. For a regular network, where all nodes have the same number of
links, the node degree of the network is that of a node. In an N -hypercube,
the node degree is 3, except the terminal nodes whose degree is one.

Distance between subN -hypercubes. Given two subN -hypercubes A =
a1a2 . . . , an and B = b1b2 . . . , bn, the intercube distance Di(A,B) between
A and B along the i-th dimension is 1 if {ai, bi = {0, 1}}; otherwise, it is
0. The distance between two subN -hypercubes A,B is given by D(A,B) =∑n

i=1 Di(A,B).

Dilation. The dilation of an edge e ∈ E(G) is the length of the path α(e) in
H. The dilation of an embedding is the maximum dilation over all edges in
G.

Bisection width. The bisection width of a network is defined as the mini-
mum number of links that have to be removed to partition the network into
two equal halves. The bisection width indicates the volume of communication
allowed between any two halves of the network with an equal number of nodes.
The bisection width of a n-dimensional hypercube is 2n−1 = N/2 since many
links are connected between two (n − 1)-dimensional N -hypercubes to form
an n-dimensional N -hypercube.

Granularity of size scaling. The granularity of size scaling is the ability
of the system to increase in size with minor or no change to the existing
configuration, and with an expected increase in performance proportional to
the extent of the increase in size. The size of a hypercube can only be increased
by doubling the number of nodes; that is, the granularity of size scaling in an
n-dimensional hypercube is 2n.

Average message distance. The average distance in a network is defined
as the average number of links that a carrier (electron, dot) should travel
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structure of a circuit (Table 5.5).

The diameter of a network is defined as
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TABLE 5.5

Metrics on N -hypercube based structures.
Metric Characteristic

Diameter The maximum distance between any two
nodes in the network

Link complexity The number of physical links per node

Dilation of an edge
The length of the path α(e) in H. The dila-
tion of an embedding is the maximum dilation
over all edges in G

Average message distance
The average number of links that a carrier
should travel between any two nodes

Total number of primitives The number of N -hypercube primitives in the
network

Effectiveness
The average number of variables that repre-
sent a N -hypercube

Active nodes
The nodes connected to nonzero terminals
through a path

Connectivity The number of paths from the root

Average path length The number of links connecting the root node
to a nonzero terminal

Bisection width
The minimum number of links to be removed
in order to partition the network into two
equal halves

The granularity of size scaling
The ability of the system to increase in size
with minor or no change to the existing con-
figuration

between any two nodes. Let Ni represent the number of nodes at a distance
i, then the average distance L is defined as

L =
1

N − 1

n∑
i=1

iNi

where N is the total number of nodes, and n is the degree.

Fault tolerance. In the probability fault model, the reliability of each node
at time t is a random variable. The probability that sub-N -hypercube is
operational is represented by the reliability of the data processing in the sub-
N -hypercubes. The N -hypercube reliability can be formulated as the union
of probabilistic events that all the possible N -hypercubes are operational.
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5.11 Summary

1. The N -hypercube is a data structure obtained by extension of the classical
hypercube. Additional (intermediate) nodes and links contribute to
the information connectivity of a hypercube. Intermediate nodes are
associated with

� Degree of freedom, a new characteristic of a hypercube structure,
� Polarity of variables, closely related to the degree of freedom,
� Intermediate nodes of the embedded decision tree.

2. There are two approaches to design of N -hypercubes

� Embedding of a complete binary decision tree in an N -hypercube,
� Assembling the N -hypercube of the N -hypercube of smaller dimen-

sions.

The basic procedure for both approaches is the representation of a swit-
ching function by a complete binary decision tree.

3. Hypercube-like topology is a reasonable model for various aspects of logic
design:

� Representation and manipulation of switching functions. In this clas-
sical application the carriers of information are coordinates of a

� Representation of state assignments in sequential circuits. The car-
riers of information in this task are marks of nodes (Figure 5.24b).

� A hypercube-like structure can be a topological description of devices,
for example, FPGA. In Figure 5.24c, the terminal nodes represent
logic blocks and intermediate nodes correspond to switch blocks.

� A hypercube-like structure, N -hypercube, can be used for switching
functions implementation in spatial dimensions. The information
is processed in the intermediate nodes and transmitted by links.
In Figure 5.24d, the terminal nodes carry information about the
values of function.

5. Spatial topological measurements include diameter and link complexity,
distance between sub-N -hypercubes, dilation, bisection width, granu-
larity of size scaling, average message distance, fault tolerance, degree
of freedom, and Voronoi diagrams.

6. Due to the additional nodes and their topological relationships, new prop-
erties are achieved, namely:

� Creating a hierarchy of information flows in space dimensions (this
hierarchy satisfies the requirements of different data structures).
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hypercube (Figure 5.24a).
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FIGURE 5.24
Carriers of information in topological structures.

� Embedding graphical data structures such as decision trees and de-
cision diagrams in three dimensions.

� Assembling topological structures; this means new possibilities for
flexible spatial logic design.

5.12 Problems

Problem 5.1 Use the assembling method to represent the switching func-
tions given below by the hypercubes

(a) f = x1x2 ∨ x1x2x3 ∨ x3

(b) f = x1 ⊕ x1x2x3 ⊕ x1x3

(c) f = (x1 ∨ x2)(x2 ∨ x3)
(d) f = x1 + x3 − 2x1x3

(e) f = 2x1∨̂x2∨̂2x3∨̂3x3

Problem 5.2 Given the N -hypercube:

(a)
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N -hypercube (Figure 5.25a).
Derive the switching function in the form of sum-of-products given the
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(b) Derive the switching function in Reed-Muller form given the N -hypercube
(Figure 5.25b).

(c) Derive the switching function in arithmetic form given the N -hypercube
(Figure 5.25c).
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FIGURE 5.25
N -hypercubes for Problem 5.2.

Problem 5.3 Represent the two-output switching function

f1 = x1x ∨ x2x3 ∨ x2x3

f2 = x1 ∨ x2 ∨ x3

(a) By two complete decision trees
(b) By an embedded N -hypercube
(c) By two decision diagrams
(d) By a shared decision diagram

Note, that a is used to represent several functions that can share equivalent
subgraphs in the diagram.

Problem 5.4 Construct a binary decision tree of the switching functions
given below and embed it in the N -hypercube

(a) 2-input majority circuit
(b) 3-input majority circuit
(c) Full adder
(d) 2-input adder

Problem 5.5 Propose a way to implement a shared N -hypercube for the
two-output function represented in Example 5.3.
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Problem 5.6 Among them,
the SET technology is the appropriate technology to implement decision trees
and decision diagrams in N -hypercube. However, other possibilities can be
found. Propose an appropriate nanoelectronic implementation of the N -
hypercube structure.

5.13 Further reading

Hypercube architecture. An approach to design a supercomputer with a
3-D hypercube architecture has been proposed by Hayes et al. [3]. Refer-
ences to 3-D processing algorithms can be found in [1, 6]. Problems of 3-D
representation and simulation of data have been considered in [9].

Hypercube-like structures. Hypercube data structures have been studied
for a long time in the area of parallel and distributed computing. Lai and
White studied the effectiveness of the pyramid topology [5]. Sources [13, 15,
16, 17] are useful for studying the characteristics of hypercube-like topologies
and embedding graphs in these topologies.

Embedding complete binary trees in hypercubes has been studied by Leiss
and Reddy [7]. In [18], the conditions of embedding of a full binary tree in
the hypercube are given. The reader can find rigorous mathematical results
in this field in [13]. Properties of incomplete hypercubes have been studied by
Öhring and Das [11]. In [1, 8], a hypercube-like structure has been used for
modeling semiconductor device structures. Measurements in hypercube-like
structures are considered in [8, 10, 14].

Geometry. Geometric models such as meshes and octrees have been applied
to simulation of 3-D semiconductor device structure [1, 4].

Assembling of hypercubes have been studied by Pottosin [12].
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6

Nanodimensional Multilevel
Circuits

Developed models of two- and multilevel circuits are derived from and closely
dependent on data structure. Data structures such as N -hypercube and
hypercube-like have been chosen to represent the switching function after
careful analysis of the principle of data processing and technological charac-

However,
combination of “nano”-compatible models with very well developed tradi-
tional (mostly gate-level) models of switching circuits is considered as well, as
such an approach is acceptable for some nanotechnologies.

This chapter presents the methodology for spatial logic design of combina-
tional circuits. The spatial topological structure is defined as anN -hypercube.
Two approaches to building N -hypercube structures are introduced:

� A symbolic model of a switching circuit, i.e., sum-of-products expression,
and corresponding decision trees or diagrams followed by embedding
these structures in an N -hypercube,

� A combined approach where a circuit as a network of gates is represented
by a direct acyclic graph (DAG) in which each node is modeled by N -
hypercube; the DAG is embedded in a hypercube-like structure in 3-D.

The first approach is of exponential complexity, and the second allows re-
duction of the complexity. Both approaches are relevant to design of N -
hypercubes of elementary functions, or elementary gates. These primitive
N -hypercubes are constructed by embedding decision trees of elementary
functions.
N -hypercube structure is characterized by topological metrics (space co-

ordinates and space size, diameter, etc.). The recombination of the N -
hypercube structure in space makes it possible to change the order and po-
larity of variables. Transformations of N -hypercube structure (dimension
reduction, N -hypercube deleting or merging, etc.) are possible, and resemble
the rules of manipulation of Boolean expressions and decision trees.

The material is introduced as follows. After having formulated the problem
in Section 6.1, we describe a library of standard of combinational gates in Sec-
tion 6.2. The principles of multilevel circuit design are presented in 6.3. The
rules for transformation of networks are introduced in Section 6.4. Numerical
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teristics of existing and predictable nanodevices (see Chapter 2).
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evaluation of 3-D structures is given in Section 6.5.

6.1 Graph-based models in logic design of multilevel
networks

A multilevel circuit is defined as interconnections of single-output combina-
tional logic gates under the assumption that the interconnection provides a
unidirectional (no feedback) flow of signals from primary inputs to primary
outputs. Multilevel network implementations can be restricted to a gate type
(NAND, NOR) with a fixed fan-in.

A multiinput multioutput switching function can be represented by

� A gate-level model, or network of gates, described by a direct acyclic graph
(DAG), and

� A functional level model, that is a two-level sum-of-products expression,
decision tree or decision diagram.

6.1.1 DAG-based representation of multilevel circuits

The well known techniques that are used in today’s multilevel circuit design
utilize DAG construction and optimization. In design at the physical level,
Boolean mapping is required, which means covering of the DAG by DAGs
of elementary gates from the library of gates. A DAG is the way contem-
porary multilevel circuits are represented and it is a gate-level model that is
compatible with a library of traditional gates.

6.1.2 Decision diagram based representation of circuits

Decision diagrams correspond to multiplexer (MUX)-based implementation
that is not widely used in today’s logic design. The situation is quite opposite

logic for nanowire wrap-gate single-electron devices is based on MUX-gate or
T-gate implementation. This technique suffers from exponential complexity,
which is reduced by transforming decision trees to decision diagrams. In nan-
odimensions, however, the regularity of the tree structures may hold more
benefits than the compactness of decision diagrams.

6.1.3 N -hypercube model of multilevel circuits

functions. It has been shown that an N -hypercube can be generated by

© 2005 by CRC Press

in the design of new devices: as we have shown in Chapter 2, the appropriate

In Chapter 5, we considered an N -hypercube to represent arbitrary n-input
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embedding a decision tree that represents a switching function. It has been
mentioned that both DAG and N -hypercube models can be combined so
that a hybrid structure can be derived. This is a solution to the exponential
complexity problem in decision trees mentioned above.

6.2 Library of N -hypercubes for elementary logic
functions

We will focus on

� Generation of elementary N -hypercubes, and
� Evaluation of elementary N -hypercube structures.

In this section, we introduce the library of N -hypercubes that implement
elementary switching and multivalued functions. This representation is based
on:

� The two-level form of a switching function of a gate, corresponding to a
two-level tree, and

� Characterization, analysis and study of recombination (while the order of
variables is changed).

6.2.1 Structure of the library

In Boolean mapping, a library is understood as a set of logical elements.
Design of a logic network over a given library of gates is accomplished by
covering a DAG by DAGs of elementary gates from the library of gates. The
library contains the set of logic gates that are available in the desired design
style. Each element is characterized by its function, inputs, outputs, and some
parameters such as area, delay and capacity load. The library used below is
characterized by the following properties:

� A variety of models of gates that represent elementary switching functions
(AND, OR, NOR, NAND, EXOR, etc.).

� Flexibility of modification of gates to meet requirements of technology (for
example, extension of inputs and outputs designs of macrocells).

� Flexibility in choosing implementation models: decision trees (Shannon
and Davio), linear word-level representation.

� Flexibility for multivalued logic.

6.2.2 Metrics of N -hypercube

Let us define a primitive
This will be used below as a unit to evaluate N -hypercube models of gates.

© 2005 by CRC Press

as a 1-dimensional N -hypercube of (Figure 6.1).
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The simplest topological characteristics of the N -hypercube gate include:
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• A primitive N -hypercube is a 1-dimensional
N -hypercube (a root node and two
terminal nodes).

• The primitive N -hypercube corresponds
to the decision tree of a single variable (node).

• The primitive is a unit metric unit in the
N -hypercube structure.

FIGURE 6.1
The primitive 1-dimension N -hypercube, and the corresponding node of a
decision tree.

Number of primitives. Because an arbitrary N -hypercube can be assem-
bled on an N -hypercube of lesser dimensions, the primitive is the most
reasonable unit of topological complexity.

Number of nodes (terminal and intermediate). The active terminal nodes
are used to evaluate power dissipation characteristics. The number of
active nodes is equal to the number of 1’s in the truth table of the
implemented switching function, which is the current state of the N -
hypercube structure. The intermediate nodes implement the switching
functions and, therefore, can be used for evaluation of circuit complexity.

Connectivity is the characteristic that describes the complexity in a num-
ber of links between root, terminal and intermediate nodes. Given the
coordinates of a link, it is possible to measure the sizes of links, compare
them, etc. Based on the notation of connectivity, the topological distri-
butions of links are calculated, as are the distances from an arbitrary
point to a set of points in space.

Space size. For a given sets of links, the space size V = X × Y × Z can be
calculated, for example, in the primitive units. The space size is used
for local and global power characteristic evaluation.

Example 6.1
can be calculated in units of the N -hypercube primitives and links.
(a) V = X × Y = 1× 1 = 1 primitive2.
(b) V = X × Y = 2× 2 = 22 links2.

Diameter is the global characteristic of a circuit in space. Diameter is the
maximum number of links between any two nodes in the N -hypercube.

© 2005 by CRC Press

The space size for the N -hypercube given in Figure 6.4
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Example 6.2 In Table 6.1, the topological characteristics of the N -
hypercube model of two- and three-input N -hypercube gates are given.

We observe from Table 6.1, that

� Different gates can be characterized by the same topological characteristics.
Hence, this metric is universal in this sense.

� 2- and 3-input gates are represented by 2-D and 3-D N -hypercubes respec-
tively.

TABLE 6.1

Metrics of 2-input and 3-input N -hypercube gates.
Metrics 2-input 3-input

Total number of primitives, # N 3 7
Number of terminal nodes, NT 4 8
Number of intermediate nodes, NI + 1(root) 2+1 6+1
Total number of nodes, NTotal 3 14
Connectivity, C links: 6 14
Space size, V links2: 22 23

Diameter, D links 4 6

6.2.3 Signal flowgraphs on an N -hypercube

Diagrams that describe computation in terms of the flow of signals between
operators are called signal flowgraphs. Signal flowgraphs of an N -hypercube
represent information streams between the nodes. Suppose that the direction
of the information stream is from the root to the terminal nodes. Then the
root node is associated with the source of information, and the terminal nodes
correspond to the receivers of information.

Example 6.3
graphs.

(a) In the 1-D N -hypercube (Figure 6.2a), the directed stream of informa-
tion from the source f reaches the terminal 0 that corresponds to the
switching function f = x.

(b) In the 2-D N -hypercube (Figure 6.2b), the stream of information from
the source f reaches the terminals 01 and 10 that correspond to the

switching function given by the truth vector F =

[
f(00)
f(01)
f(10)
f(11)

]
= [0110]T ,

that is f = x1 ⊕ x2.
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Figure 6.2 shows one of possible ways to derive signal flow-
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(c) By analogy, in the 3-D N -hypercube (Figure 6.2c), the truth vector is
F = [11011000]T that is f = x1x2x3 ∨ x1x2x3 ∨ x1x2x3 ∨ x1x2x3 =
x1x2 ∨ x2x3 ∨ x1x3.

 

1 0 f 
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01 00 

11 

f 

 

100 000 

101 

011 

010 

001 

110 

111

f 

f = x f = x1 ⊕ x2 f = x1x2 ∨ x2x3 ∨ x1x3

(a) (b) (c)

FIGURE 6.2
Signal flowgraph in the N -hypercube: 1-D (a), 2-D (b), and 3-D (c) (Example
6.3).

The signal flow in the N -hypercube is different from the signal graph in
the gate-level model, or DAG. The input/output relationship of a circuit is
described by equations (models). The signal propagation can be interpreted
in various ways. For example, in decision trees and diagrams, the direction
of a signal stream is usually chosen from the root node (f) to terminal nodes
(the values of variables xi). In the logic network, the signals are propagated
from the inputs (the values of variables xi) to the outputs (fi). In physical
implementation, the direction of a signal flow is defined by the direction of
carriers of information. Hence, in mathematical models, we can choose a
direction that better introduces the properties of the model.

Some nonformal rules that help to choose the direction of a signal flowgraph
are as follows:

� Traditionally, in the models where input/output notation is used, the di-
rection of a flow graph is from input to output.

� In technology-dependent models, the direction of information flow is chosen
based on physical carriers of information. For example, in T-gate based
nanowires with wrap-gate devices, the electron is injected to the root
node.

© 2005 by CRC Press
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6.2.4 Manipulation of N -hypercube

Two attributes of a N -hypercube can be changed by reconfiguration:

� Polarity of variables, and
� The order of variables in a decision tree and decision diagram.

The reconfiguration of the N -hypercube is defined as rotation.

Example 6.4 Two orders of variables are possible in the decision tree de-
The level exchange

is required in the case we change the order. In the embedded N -hypercube,
a change of the order does not influence the levels, it results in a change of
orientation of axes, i.e., rotation. Mapping is implemented in such a way that
we do not need to change the configuration or assign variables to other edges,
– we have to choose the proper edges (that exist already or a priori) depending
on the given variable order.

However, this structure must be configured with respect to the order of
variables in the decision tree. There are six possible orders, in particular:

� The left figure corresponds to the order x1, x2,

� The right figure describes the order x2, x1, and

the axes are associated with the polarity of variables. It also follows from
Figure 6.3, that rotation changes the configuration of flowgraphs. The above
results can be developed for a network of two- and three-input gates, i.e.,
multilevel circuits.

6.2.5 Library-based design paradigm

An approach to creating a library of N -hypercube gates is based on the fol-
lowing technique:

Switching function (gate) ⇐⇒
Decision tree ⇐⇒

N-hypercube

This means that any standard gate of the conventional combinational logic,
i.e., an n-input AND, OR, NOR, NAND, NOT and EXOR gate, can be rep-
resented by the N -hypercube model in two steps:

� A decision tree of the gate is derived;

� The tree is embedded in an N -hypercube of n-dimensions.

An N -hypercube of a two-input gate includes the root node, two intermediate
nodes, four terminal nodes, and the edges (connections).

© 2005 by CRC Press

rived for the two-variable function NAND (Figure 6.3).
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Decision trees are
implemented the same
as switching functions,
however the order of
variables is different.

Rotated N -hypercubes
as a result of changing
the order of variables.

Signal flowgraphs
indicate the change
of information streams.

(a) (b)

FIGURE 6.3
Embedding of a 2-variable binary tree into the N -hypercube for variable order
{x1, x2} (a) and {x2, x1} (b) (Example 6.4).

Example 6.5
two-input NAND gate. Given the two-input NAND function f = x1x2 (a),
the Shannon decision tree is derived (b). Next, this tree is embedded in an
N -hypercube (c).

6.2.6 Useful denotation

To simplify the graphical representation and visualization of a circuit in spatial
dimensions, we use a uniform denotation as follows. A switching function of

five-dimensional N -hypercube respectively.
The N -hypercube in 2-D, 3-D, 4-D, and 5-D is denoted by a cube with two,

Notice that from this
denotation, it is easy to recognize:
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Figure 6.4 illustrates designing an N -hypercube model for the

three, four, and five inputs respectively (Figure 6.5).

two-, three-, four-, or five variables is represented by a two-, three-, four-, or
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FIGURE 6.4
Fragment of a library of N -hypercube gates: a two-input NAND gate (a), its
decision tree (b), and the corresponding N -hypercube (c) (Example 6.5).

� The function’s dimensions.

� General topology configuration, and

� Structural properties.
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f = f(x1, x2) f = f(x1, x2, x3) f = f(x1, x2, x3, x4)

(a) (b) (c)

FIGURE 6.5
Denotation of a multidimensional N -hypercube: (a) 2-D, (b) 3-D, and (c)
5-D.

© 2005 by CRC Press



196 Logic Design of NanoICs

6.3 Hybrid design paradigm: N -hypercube and DAG

An arbitrary switching function can be represented by an N -hypercube de-
rived from the decision tree of a function. However, for a traditional approach
based on covering the DAG of a circuit by the library of gates, netlist must be
also considered. In terms of implementation on nanodevices (nanowire net-
works), the problem of interconnections arises. It is not an unsolved problem

We focus on two approaches for deriving 3-D data structures for switching
functions:

� A logic network (direct acyclic graph) presented, i.e., netlist is treated as
a tree; and

� Embedding the tree in an N -hypercube.

6.3.1 Embedding a DAG in N -hypercube

Deriving a 3-D structure given a circuit netlist is implemented in two steps:

Step 1. The circuit netlist is represented by a DAG and levelized to obtain
an incomplete decision tree;

Step 2. The tree is embedded in an N -hypercube.

Thus, there are two levels of embedding:

� Embedding decision trees in elementary N -hypercubes of gates, and
� Embedding a tree, i.e., DAG, in a “macro” N -hypercube.

6.3.2 Levelization and cascading

The DAG of a switching circuit must be levelized in order to be treated as a
binary decision tree. Given a multioutput function, each output is scanned
from output to inputs, and the result is a DAG. Next, it is levelized.

The algorithm for levelization is based on the representation of i-th, i =
1, 2, . . . , k, level of a k-level circuit by N -hypercube structures. The
result is a set of k N -hypercubes with corresponding links. This algo-
rithm can be used for different data structures; for example, word-level
linear word-level representation. Levelized DAG is treated as a tree and
embedding of the tree into an N -hypercube goes ahead.

The algorithm for cascading r-output logic circuit is represented by a set
of r N -hypercubes. This partition (cascading) is made by traversing
from each output to the inputs of the circuit.
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for all nanoelectronic implementations (see Chapter 2).
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6.4 Manipulation of N -hypercubes

The technique of transformation of circuit models in spatial dimensions is
based on

� Algebraic simplifications of switching functions,
� Topological simplifications, and
� Logic-topological transformations.

Algebraic simplifications can modify the topology, and topological simplifica-
tions can change the switching function described by this topology. Therefore,
algebraic and topological transformations must be carefully combined. In this
section, the rules for manipulation of an N -hypercube are introduced. These
rules allow reduction of dimensions and simplify circuit representation in spa-
tial dimensions, and are also useful in verification of N -hypercubes.

Dimension reduction. If the input i of an N -hypercube to implement an
n-input OR function is equal to 0, reduce this input and replace this

lustrates this property for i = 3. By analogy, the dimensions of the
N -hypercube are decreased by 1 for an n-input AND function if the
input is equal to 1 (Figure 6.6b).

N -hypercube deleting. If the input of an N -hypercube implementing an
AND function is equal to 0, replace the hypercube with the constant 0
(Figure 6.6c). By analogy, replace an OR N -hypercube with constant
1, if one of the outputs is equal to 1 (Figure 6.6d).

N -hypercube merging. Two AND (OR) N -hypercubes of dimensions i and
j correspondingly connected in a series can be merged into one AND

Deleting of duplicated N -hypercubes. If there are twoN -hypercubes whose
inputs and outputs are the same, remove one and create a fan-out (Fig-
ure 6.7c)

Reduction of redundant connections. Consider the manipulation of two
N -hypercubes connected in a series, A and B, with respect to the input
xj :

f = (xjx2x3)︸ ︷︷ ︸
Hypercube A

xjx4x5

︸ ︷︷ ︸
Hypercube B

= (x2x3)︸ ︷︷ ︸
Hypercube A

xjx4x5

︸ ︷︷ ︸
Hypercube B

It follows from the above that the input xj can be deleted from N -
hypercube A (Figure 6.7d).
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Figure 6.6a il-hypercube with the (n − 1)-dimensional N -hypercube.

(OR) N -hypercube of i + j dimensions (Figure 6.7).
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FIGURE 6.6
Reduction of dimensions to implement 3-input OR function when xi = 0 (a),
3-input AND function when xi = 1 (b), and N -hypercube degeneration: 3-
input OR function while xi = 0 (c), and 3-input AND function while xi =
1(d).

Based on the properties of switching functions, the remaining rules for
simplification and manipulation of N -hypercube topology structures can be
derived.

Example 6.6
inputs is given. The resulting function is a 5-input EXOR over a library of 2-
input EXOR gates. To implement this function using N -hypercube structure,
four 2-D N -hypercubes are used.

Of course, it is possible to use the embedding or cascading method here.

Example 6.7
cuits with outputs f1 and f2. Since the gates can be considered as nodes, the
subcircuits are equivalent to the two logic networks. The embedding of these
networks results in two incomplete N -hypercubes over the library of 3-D gates
(Figure 6.9b).

Hence, instead of representation of this circuit by a complete decision tree,
that is, a tree with 26 terminal nodes, 6 levels, 62 intermediate nodes and a
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In Figure 6.8, the extension of EXOR function with respect to

In Figure 6.9a, the initial circuit is cascaded into two subcir-
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FIGURE 6.7
Merging of AND (a) and OR (b) N -hypercubes, reduction of duplicated N -
hypercubes (c) and redundant connections (d).

root, or by 6-dimensional N -hypercube, the circuit is described by two logic
networks with the following characteristics:

� The first network includes 5 terminal nodes and 4 intermediate nodes, and
� The second network includes 4 terminal nodes and 3 intermediate nodes

that correspond to two incomplete 3-D N -hypercubes.
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FIGURE 6.8
Linear N -hypercube structure that implements 5-input and 4-level circuits
(Example 6.6).

6.5 Numerical evaluation of 3-D structures

In this section, the results of numerical evaluation of N -hypercubes combina-
tional circuits from the ISCAS85 standard database are given. In experiments,
circuits from 6 gates to more than 3,500 gates were used.

6.5.1 Experiment on evaluating the N -hypercube

In this experiment, parameters of N -hypercube derived by the decision dia-
grams were evaluated. We used the parameters acquired from the shared re-
duced ordered binary decision diagrams (BDDs) built from the circuit netlist.

The first three columns named TEST include the benchmark type Name,
the number of inputs and outputs I/O, and the number of gates #G.

The next four columns named SPACE SIZE include the maximum num-
ber of dimensions #Dim (this resembles the numbers of variables, and
it can be less for each separate function represented by a BDD), and the
size of the solid in X, Y and Z coordinates.

The last column NODES includes the number of nodes in BDD. Note that
the topological characteristics are represented by the total number of
nodes in the shared BDD; this number is too large for some circuits and
is not shown in the Table.

Consider, for example, circuit c6288. This is a 32 bit multiplier that includes
2,416 NAND gates. Using decision trees of each output, derived from the
netlist, N -hypercube structure with 11 × 11, and 10 primitives connections
(lines) in the 3-D topology.
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The results of evaluation are summarized in Table 6.2 in which:
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FIGURE 6.9
Cascading of a circuit (a) to represent the outputs f1 and f2 by incomplete
N -hypercubes (b)(Example 6.7).

Observation. It follows from this experiment that:

� The number of dimensions is equal to the number of variables. It is a
reasonable value.

� Spatial parameters X,Y and Z are relevant to the number of levels in the
decision tree, i.e., correlated with the number of variables.
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TABLE 6.2

Fragment of an experiment on evaluation of N -hypercube
parameters derived from a decision diagram.

TEST SPACE SIZE NODES

Name I/O #G #Dim X Y Z # Node

c17 5/2 6 5 2 2 1 11
c432 36/7 160 36 88 12 12 1460
c499 41/32 202 41 14 14 13 45922
c880 60/26 383 60 20 20 20 101076
c1355 41/32 546 41 14 14 13 45922
c1908 33/25 889 33 11 11 11 42427
c2670 233/140 1,193 233 78 78 77 -
c3540 50/22 1669 50 17 17 16 422803
c5315 178/123 2307 178 60 59 59 -
c6288 32/32 2,416 32 11 11 10 -
c7552 207/108 3,512 207 69 69 69 -

� The number of terminal nodes is upperbounded by 2n for an n-variable
function.

6.5.2 Experiment on evaluating the hybrid N -hypercube

In this experiment, the hybrid N -hypercube based approach was evaluated for
a selected output in each test circuit. Each gate in the network was replaced
by a N -hypercube model. An N -hypercube of each output has been derived
from the tree obtained for each output by scanning from output to inputs,
and next, by levelization.

number of the selected output, and the number of gates #G in the
selected output. We have selected the output whose implementation
involves the maximum number of gates, and considered the subnetwork
that involves the inputs and gates to implement this function.

The next three columns named SPACE SIZE include the size of the struc-
ture in X, Y and Z.

The last two columns named NODES contain the total number of terminal
nodes #NT (that is the total number of intermediate nodes of the 2- and
3-D N -hypercubes of the gates), and the total number of intermediate
nodes #N in the N -hypercube.

For example, a 32 bit multiplier c6288 requires 248× 248× 244 elementary
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The results of evaluation are summarized in Table 6.3 where:

The first three columns named TEST include the benchmark Name, the
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TABLE 6.3

Fragment of an experimental study of the DAG based
3-D models.

TEST SPACE SIZE NODES

Name #Oc #Gc X Y Z #NT #Node

c17 1 4 8 8 2 16 12
c432 5 126 66 64 66 2022 1896
c499 1 102 28 24 20 468 366
c880 24 130 70 72 70 612 482
c1355 1 322 58 52 54 1346 1024
c1908 25 522 100 104 92 2526 2004
c2670 139 828 82 80 78 3594 2766
c3540 21 1458 132 132 140 9462 8004
c5315 122 937 138 132 126 3750 2813
c6288 32 2327 248 248 244 9246 6916
c7552 107 474 114 112 106 1916 1442

links in the dimension X,Y,Z and 9246 terminal nodes to represent 2327
gates, and 6916 intermediate nodes.

Observation. It follows from the evaluation that:

� The hybrid approach does not suffer from exponential complexity of the
number of terminal nodes, and demonstrates less values of the terminal
nodes than is relevant to the number of gates in the benchmark circuit,

� The space sizes X,Y

6.6 Summary

An arbitrary combinational circuit can be represented by an N -hypercube
from the library of N -hypercube gates. The design methodology includes
different methods of manipulation of data structures.

1. Designing N -hypercube structure includes:

� Representation of a given switching function in the appropriate form
(decision tree, decision diagram, logical network);

© 2005 by CRC Press

models (Table 6.2).
and Z are higher than in the case of shared BDD
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� Construction of topological structure accordingly to the rules (recur-
sion, connections) and algorithms (embedding, levelization, and
cascading).

� Analysis of the topological structure (deriving the flowgraph, verifi-
cation, simplification).

2. The properties of N -hypercube structure include:

� Topological characteristics (diameter, number of nodes, links, and
primitives);

� The number of primitive N -hypercubes;
� Configuration of a set of N -hypercubes, in particular, linear, incom-

plete or complete N -hypercubes;
� Signal flowgraphs that characterize the distribution of information

streams in the N -hypercube.

3. The strategy for designing N -hypercubes involves three basic approaches:

� Embedding technique: a switching function must be represented by
a tree and then embedded in a N -hypercube. This approach is
limited in terms of size when a decision tree or diagram is em-
bedded. Hence, it is useful for representation of small switching
functions, for example, elementary switching functions in library
of gates design. For large switching functions, DAG of the circuit
can be treated as tree, while each gate is represented by a decision
tree. The tree derived from DAG is levelized.

� Levelization technique: the implemented network is levelized, and
each level is considered a level of the tree that is embedded in
an N -hypercube; This approach is used in hybrid technique for
designing large networks in spatial dimensions.

� Cascading technique: the implemented circuit is cascaded, i.e., rep-
resented by a logical network of a single output; the number of net-
works is equal to the number of outputs of a circuit. The logical net-
work is embedded in the N -hypercube. The set of N -hypercubes
is represented by an initial circuit. This approach is useful for
representation of large circuits in spatial dimensions. Hence, the
cascading technique is implemented in the mixed strategy, i.e., de-
cision trees are embedded in N -hypercubes to represent the gate,
and logical networks are embedded in the N -hypercubes.

Problems

Problem 6.1

© 2005 by CRC Press

6.10.
Consider a two-level combinational circuit shown in Figure
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(a) Derive a decision tree and a hypercube for each node.
(b) Derive a DAG of the circuit and embed it in a hypercube structure. Taking

into account the results of (a), evaluate the parameters of the hybrid
approach (a DAG-based hypercube in which each node is a hypercube
of a gate).

(c) Derive two decision trees each of them representing one of two outputs
(functions f1 and f2) and embed them each in a hypercube; compare
the parameters of the decision tree-based hypercubes (total values over
both hypercubes) and parameters of part (b).

(d) Derive a set of two word-level linear decision diagrams for the levelized
circuit. Embed each in a hypercube with a Davio expansion in the
nodes.

 

x1

x3

x1 

x2 

x3 

x2 

y1 

y2 

FIGURE 6.10
Two-level logic function for Problem 6.1.

Problem 6.2
implement functions f1 = x1 ∨ x2 ∨ x3 ∨ x4 and f2 = x1 ∨ x2 ∨ x3 ∨ x5. Prove
that functions f1 and f2 can be implemented by 2-D N -hypercubes.

Problem 6.3 Given the N -hypercube derived from a DAG of a switching
function, restore the function.

(a)
(b) The nodes of theN -hypercube in Figure 6.12b implement NAND function.
(c) In the N -hypercube depicted in Figure 6.12c, the nodes {01x, 0xx, 1xx}

implement EXOR function, and the rest of nodes implement AND func-
tion.

Problem 6.4 Construct a binary decision tree of the switching functions
given below and embed it into the N -hypercube

(a) 2-input majority circuit

© 2005 by CRC Press

Consider two 4-D N -hypercubes, A and B (Figure 6.11a) that

The nodes of theN -hypercube in Figure 6.12a implement EXOR function.
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FIGURE 6.11
N -hypercube structure transformation for Problem 6.2.
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x5 

⎯x1 

x5 

(a) (b) (c)

FIGURE 6.12
N -hypercube structures for Problem 6.3.

(b) 3-input majority circuit
(c) Full adder
(d) 2-input adder

Problem 6.5

(a) Verify that they represent the same, or different switching functions as-
suming the NAND function in the nodes.

(b) Verify that they represent the same, or different switching functions as-
suming the EXOR function in the nodes {01x, 0xx, 1xx} and AND func-
tion in the nodes {01x, 0xx, 1xx}.

Problem 6.6

(a)
(b) The circuit given in Figure 6.14b.
(c) The circuit given in Figure. 6.14c

© 2005 by CRC Press

In Figure 6.13, two N -hypercubes are given.

The NAND circuit given in Figure 6.14a.

Represent by the N -hypercube
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FIGURE 6.13
The N -hypercube for Problem 6.5.
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(c) (d)

FIGURE 6.14
Circuits for Problem 6.6.

(d)

Problem 6.7

(a) Derive the switching function,

© 2005 by CRC Press

For the decision tree given in Figure 6.15a,

The circuit given in Figure 6.14d.
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(b) Represent the network (use any number of levels),
(c) Design a DAG of the network and embed it into a DAG basedN -hypercube.

x1

x2

f

0

x4

x3
S S

S

S

S

SS

0 1 1

SS SS SS

1 1 1 1 1 10 10 1 1 1

SS

f

0 1

S

S

S

S

x1

x2

x3

x4

(a) (b) (c)

FIGURE 6.15
Decision tree (a), decision diagram (b) and the N -hypercube (c) for Problems
6.8 and 6.9.

Problem 6.8 Justify that the decision tree and decision diagram given in
Figure 6.15a,b represent the same switching function.

Problem 6.9 Derive an incomplete N -hypercube from Figure 6.15c.

Problem 6.10
based embedded structure consisting of three connected hypercubes. Restore
the gate-level circuit.
HINT: to restore the gate functions, analyze the terminal nodes.

Problem 6.11 In logic design techniques, BDD are mapped into a circuit
netlist, so that each BDD node is associated with a universal element, e.g.,
multiplexer. A multiplexer normally consists of two AND and one OR gate,
in a gate-level design. Pass-transistor logic may be used to implement a
multiplexer with a smaller number of transistors, however, level restoration
problem causes the transistor count to increase.

Compare pass-transistor logic that is
(a) A result of mapping a BDD in a network of pass-gate, and
(b) A SET-based model of a decision tree node.

© 2005 by CRC Press

The topology presented in Figure 6.16 implements a DAG

See Chapter 2 for references.
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FIGURE 6.16
DAG based hypercube topology for Problem 6.10.

6.7 Further reading

Multilevel circuit design. The best overview of the state-of-the-art multi-
level circuit design can be found in [3]. In this and many other references on
logic design, the traditional gate-level model of a multilevel switching circuit
is a DAG. The major problem of DAG synthesis is factorization of Boolean
expressions, since factored form correspond to levelized (cascade) Boolean
network.

Decision diagram based models of two-level circuits. References to
graph-based models of logic circuits called decision diagrams can be found

BDDs are derived from two-level AND-OR representations of

to the decision diagram. Once the decision diagram is created, a MUX-based
or pass-gate based circuit can be designed. These models have been utilized
by Asachi, Kasai, Yamada et.al. [1, 2, 4] for single-electron circuit design (see
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in Chapter 3.

Chapter 2 for details).

switching functions, and, thus, require transformation of the gate-level model
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7

Linear Word-Level Models of
Multilevel Circuits

case, the word-level arithmetic representations are linear. There are several
reasons to consider linear models of circuits:

� Linear models are simply embedded in the spatial structures.
� Linear models, being the boundary case of more general models, have a

number of specific features that can be useful in logic design.
� Design of hypercube structures is very flexible.

One of the major purposes of this chapter is to introduce the methods of
linearization of word-level models (arithmetic, sum-of-products, and Reed-
Muller) and the former’s mapping into spatial dimensions.

In Section 7.1 the basic definitions of linear word-level technique are intro-
duced. They include conditions for linearity, grouping, masking, and methods
for computing. The linear model based on arithmetic expression is introduced
in Section 7.2. The linear arithmetic models in rigorous mathematical nota-
tion for the typical library of gates are designed in Section 7.3. Section 7.4
focuses on designing the linear decision diagrams. The main hypothesis is
that a set of linear decision diagrams is a formal model of an arbitrary mul-
tilevel circuit. Based on this understanding, a technique of linear models
design is introduced in Sections 7.5 and 7.6. The problem of large coefficients
is resolved in Section 7.7. In the remaining sections, the linear word-level
sum-of-products (Section 7.8) and Reed-Muller (Section 7.9) expressions are
introduced. We follow the same strategy of representation: formal definition,
specific features of grouping and masking, and linear decision diagram design.

7.1 Linear expressions

In this section, a brief introduction to linearization technique is given. It in-
cludes the general algebraic structure, conditions for linearity, and conditions
for embedding in the hypercube and hypercube-like topology.

211© 2005 by CRC Press

This chapter extends the word-level technique presented in Chapter 4. In this
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7.1.1 General algebraic structure

The following word-level forms of a switching function are considered (Table
7.1):

� Linear word-level arithmetic expressions,
� Linear word-level sum-of-products expressions, and
� Linear word-level Reed-Muller expressions.

TABLE 7.1

Linear word-level expressions for a switching function and
decomposition rules for decision trees and diagram.

Formal description Decomposition

Linear word-level arithmetic expressions

∑n
i=0 d∗i · xij

i , x
ij

j =
{

1, ij = 0;
xj , ij = 1. Davio arithmetic

Linear word-level sum-of-products

�∨n

i=1 v∗
i · xij

i , v∗
i x

ij

i =

⎧⎨⎩ v
′
ixi, ij = 1;

v
′′
i xi, ij = 0.

Shannon

Linear word-level Reed-Muller expressions

�⊕n

i=0 w∗
i · xij

i , x
ij

j =
{

1, ij = 0;
xj , ij = 1.

Davio

Inspection of Table 7.1 leads to the conclusions that:

� Various linear word-level expressions have a uniform algebraic structure.
� Multiple decomposition with respect to a given variable can be applied to

linear word sum-of-products and Reed-Muller expressions.
� Linear expressions produce linear data structures.

Word-level manipulation of switching functions f1, f2, . . . , fr using Shan-
non, Davio and arithmetic analogs of Davio expansion is illustrated in Figure

© 2005 by CRC Press
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7.1. Let f be an r-output switching function. A node of a diagram that
implemented Shannon or Davio expansion of r switching functions (r-output
function) in parallel is called a word-level Shannon or Davio expansion, and

is denoted as
�
S and

�
pD correspondingly. The arithmetic analog of Davio ex-

pansion is applied ones to word-format, i.e. to integer encoded multioutput
function.

 

 
 
 
 

 

S 

f1 

S 
S

f2 
f 

fr 

S 
f 

•••

Word-level Shannon expansion.

 

 
 
 
 

 

pD

pD 

f1 

pD 
pD 

f2 
f 

fr f
•••

Word-level Davio expansion.

 

 
 
 
 

 
f1 

f2 

fr 
f 

pDA 

 
 

Word 
• 
• 
• Arithmetic analog of Davio expansion.

FIGURE 7.1
Diagram-based interpretation of a word-level Shannon, Davio, and arithmetic
analog of Davio expansion.

7.1.2 Linearization

The technique of linearization of word-level arithmetic expressions involves
algebraic and matrix transforms and comprises:

� Conditions for linearization,
� Synthesis methods,
� Grouping and masking methods,
� Linear decision diagrams,
� Methods of computing the coefficients,
� Methods for representation of circuits, and
� Methods for embedding the data structures in a hypercube space.

© 2005 by CRC Press
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Conditions for linearization. There is a large group of word-level expres-
sions that cannot be linearized by the traditional approaches. To recognize
the switching functions that cannot be represented by linear expressions, the
conditions for linearization have been developed. These conditions give an
understanding of limitations of the word-level format.

Synthesis methods are understood here as the approaches to construct-
ing word-level models of switching functions and circuits under conditions of
linearity. In this chapter, we focus on the representation of an arbitrary mul-
tilevel circuit by linear expressions and linear decision diagrams level by level.
The final result is a set of linear expressions and linear decision diagrams.

Grouping and masking methods. The order of switching functions in a
word is dependent on certain criteria. In this chapter, the linearization is
achieved through grouping and masking over the standard library of gates.
This approach is useful in the hypercube space too.

Linear decision diagram is the result of the direct mapping of linear ex-
pressions into a word-level decision diagram. A linear decision diagram can
be considered as a boundary case of word-level diagrams and has a number of
features useful for classical logic design and nanotechnologies. The most im-
portant and promising property for space representation is the simple embed-
ding procedure of linear decision diagrams into 3-D structures (hypercubes,
hypercube-like topology, pyramids, etc.).

Methods of coefficients computing. For arithmetic expressions, the main
goal is to minimize the effects of large value coefficients in linear arithmetic
expressions. The crucial idea is to replace the computation by manipulation
of codes of coefficients. This is possible in some cases because the regular
structure of coefficients. The problem is simplified significantly for the word-
level sum-of-products and Reed-Muller expressions.

Methods for circuit representation are based on a number of a fun-
damental statements, in particular: (i) the typical library of gates can be
represented by the appropriate linear expressions and correspondent linear
decision diagrams; (ii) an arbitrary combinational and sequential circuit can
be represented by a set of linear models over the library of linear primitives.

Methods for embedding data structures in hypercube space is the
final and crucial point of the above technique. It is shown in this chapter, that
based on the classical philosophy of logic design (design over the library of
cells) it is possible to map a traditional (2-D) circuit solutions into a hypercube
structure in 3-D space.

© 2005 by CRC Press
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Generalization of the above techniques toward multiple-valued logic is in-

respect to data structures which are both binary structures and multivalued
structures.

7.2 Linear arithmetic expressions

An arbitrary switching function can be represented by a unique arithmetic
expression. For example, x1∨x2 corresponds to x1+x2−x1x2. The remarkable
property of the arithmetic expressions is that they can be applied to an r-
output function f with outputs f1, f2, ..., fr. In this section we focus on the
effects of grouping the functions with the goal of representing a word-level
expression in linear form.

7.2.1 Grouping

Consider the problem of grouping several switching functions in a word-level
format. Let an r-output function f with outputs f1, f2, ..., fr be given. This
function is described by the word-level arithmetic expression

f = 2r−1fr + . . . + 21f2 + 20f1, (7.1)

and the outputs can be restored in a unique way. Therefore, the outputs of a
circuit can be grouped together by using a weighted sum of the outputs. Given

input data to outputs is described by

f = 2r−1x1 + 2r−2x2 + . . . + xr.

Assume n = 2, then f = 2x1 + x2 (Figure 7.2c). This expression does not
include product terms of variables, therefore, it is linear.

The linear arithmetic expression of a switching function f of n variables
x1, . . . , xn is the expression with (n + 1) integer coefficients d∗0, d

∗
1, . . . , d

∗
n

f = d∗0 +
n∑

i=1

d∗i xi = d∗0 + d∗1x1 + . . . + d∗nxn. (7.2)

Note that the word-level arithmetic expression

f =
2n−1∑
i=0

di · (xi1
1 · · · xin

n )

can be linear (Equation 7.2) in two cases:

© 2005 by CRC Press

the simplest commutator function (Figure 7.2a,b), the direct transmission of

troduced in Chapter 8. Hence, the technique of linearization is universal with
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• 
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•
•
•xr 

x1 

fr 

x1 x2 f1 f2
0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

Word-level expression

f = 2r−1x1 + 2r−2x2 + . . . + xr

n = 2 :
f = 2x1 + x2

(a) (b) (c)

FIGURE 7.2
The direct transmission of input data to outputs (a), truth table (b), and
word-level representation (c).

(a) Either arithmetic expressions of each fj is linear, or
(b) Neither fj generates linear expressions separately, but their combination

produces a linear arithmetic expression.

Linearization generally means transformation of a nonlinear expression to
a linear arithmetic expression (Equation 7.2), with no more than (n + 1)
nonzero coefficients. Briefly, the idea of linearization can be explained by a
simple example. The function

f = x1 ∨ x2 = x1 + x2 − x1x2

is extended to the 2-output switching function

f1 = 1⊕ x1 ⊕ x2,

f2 = x1 ∨ x2,

that derives from the linear word-level representation f = 21f2 + 20f1 =
x1+x2+1. The position of f2 (the most significant bit) in this linear expression
is indicated by the masking operator

Ξ2{f} = Ξ2{x1 + x2 + 1}.
In other words, to obtain a linear arithmetic expression given the switching
function f2 = x1 ∨ x2, a garbage function f1 = 1⊕ x1 ⊕ x2 has to be added.
Then, f2 can be extracted using the masking operator. The problem is how to
find this additional function. In the absence of such a technique, i.e., a small
amount of multioutput functions can generate linear arithmetic expressions
assigning the naive approach. We use such functions to form a fixed library
of primitive cells.

Example 7.1
arithmetic expression f = x1 + x2. The permutation of the outputs f1 and f2

generates the nonlinear expression:

f = 2x1 + 2x2 − 3x1x2.

© 2005 by CRC Press

The half-adder (Figure 7.3) can be represented by the linear
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x 1 
x 2 

f1

f2

x1 x2 f2 f1 f
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 0 2

The outputs of switching function in
arithmetic form:

f1 = x1 ⊕ x2 = x1 + x2 − 2x1x2

f2 = x1x2

Word-level expression

f = 21f2 + 20f1

= 21x1x2 + 20(x1 + x2 − 2x1x2)

= x1 + x2

(a) (b) (c)

FIGURE 7.3
Half-adder circuit (a), its truth table (b), and the word-level representation
(c) (Examples 7.1 and 7.4).

The above example demonstrates the high sensitivity of linear arithmetic
expression (Equation 7.2) to any permutation of outputs in the word-level
description. On the other hand, it is a unique representation given the order
of the switching function f1 or f2.

7.2.2 Computing of the coefficients in the linear expression

Equation 7.2 describes a set of switching functions. Let n = 1, then f =
d∗0 + d∗1x1, and the function f is single-output. The coefficients d∗0 and d∗1 can
be calculated by the equation

D = P21 · F =
[

1 0
−1 1

] [
0
1

]
=

[
0
1

]
,

i.e., d∗0 = 0, d1 = 1. In general, f is the r-output switching function f1, . . . , fr.
Let f be a 3-output switching function: f1 = x1, f2 = x1, f3 = x1, with the
truth vector F = [2 5]T . Calculation of the coefficients implies:

D = P21 · F =
[

1 0
−1 1

] [
2
5

]
=

[
2
3

]
,

and f = 2 + 3x1. Assume n = 2, Equation 7.2 yields f = d∗0 + d∗1x1 + d∗2x2.

Example 7.2 The linear word-level arithmetic expression for half-adder func-

7.2.3 Weight assignment

There are two kinds of weight assignments in a linear arithmetic expression
in the formulation as follows:

© 2005 by CRC Press

tion is defined as shown in Figure 7.4.
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x 1 
x 2 

f1

f2

f1 = x1 ⊕ x2

f2 = x1x2

Truth vector

F = [ F2|F1] =

⎡⎢⎣ 0 0
0 1
0 1
1 0

⎤⎥⎦ =

⎡⎢⎣ 0
1
1
2

⎤⎥⎦
Vector of coefficients

D = P22 · F =

⎡⎢⎣ 1 0 0 0
−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎤⎥⎦
⎡⎢⎣ 0

1
1
2

⎤⎥⎦ =

⎡⎢⎣ 0
1
1
0

⎤⎥⎦
Word-level linear arithmetic expression f = x1 +x2

FIGURE 7.4
Constructing the linear word-level expression for a half-adder by matrix
method (Example 7.2).

� The weight assignment to each of functions in a set of switching functions,
and

� The weight assignment to each linear arithmetic expression in a set of
expressions.

The weight assignment to the set of switching functions is defined by Equa-
tion 7.1. The weight assignment to the set of linear arithmetic expressions is
defined as follows. Let fi be the i-th, i = 1, 2, . . . , r, linear word-level arith-
metic expression of ni variables. A linear expression of elementary switching
function is represented by

ti = �log2 ni�+ 1 bits. (7.3)

where �x� is a ceiling function (the least integer greater than or equal to
x). Suppose that fi is the description of some primitive. In this formula-
tion, the problem is relevant to the representation of an arbitrary level of a
combinational circuit by linear arithmetic expression as an n-input r-output
switching function. To construct a word-level expression of r linear arithmetic
expressions, the weight assignment must be made appropriately. This means
that applying any pattern to the inputs of f , an output of each expression fi

cannot affect the outputs of others.

out overlapping of functions are determined by the equation

f =
r−1∑
i=0

2Tifi+1, (7.4)

where
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Figure 7.5a illustrates the problem. Formally, the weight assignments with-
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Ti =
{

0 for i = 0
Ti−1 + ti for i > 0 .

and ti is calculated by Equation 7.3.

 

Σti 2 

f2 f1 

t0  bits 

•  • •fr 

t1  bitstr-1  bits 

t02 
t0+ t1 2 2 

t0+ t1+…+ tr-2 

Σti 

0 2 
(a)

 f12

f3 

f31 

2  bits 4 bits 

3 2 

f21 f13 f11 f22 f33 f32f34 

0 2 9 2 
5 2 

3  bits
f2 f1

(b)

FIGURE 7.5
Word-level format for the set of r linear arithmetic expressions fi (a) and
example for f1, f2, and f3 that are respectively 3rd, 2nd and 4th subfunctions
(b).

Example 7.3 Let the word-level arithmetic expression f consist of three lin-
ear arithmetic expressions f1, f2 and f3 (Figure 7.5b). The expressions are
constructed as follows

f1 = 20f11 + 21f12 + 22f13,

f2 = 23f21 + 24f22,

f3 = 25f31 + 26f32 + 27f33 + 28f34.

by Equation 7.4, the weight assignment of linear expressions f1, f2 and f3 is
resulted in

f = 20f1 + 23f2 + 25f3.

7.2.4 Masking
τ

position t ∈ (1, . . . , r) of a given function f in the word-level expression that
represents a set of r switching functions.
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The masking operator Ξ {f} is discussed in Chapter 3. It indicates the
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Example 7.4 The arithmetical expression of half adder f = x1 + x2 is a
two-output switching function: f1 = x1 ⊕ x2, f2 = x1x2 The
most significant bit (f2) can be extracted by the masking operator

Ξ2{x1 + x2}

whereas function f1

ered by the masking operator

Ξ1{x1 + x2}.

7.3 Linear arithmetic expressions of elementary
functions

As was shown earlier, the majority of functions cannot be converted to a lin-
ear arithmetic expression, since their arithmetic equivalent includes nonlinear
products. In this section, we focus on linearization of elementary switching
functions.

7.3.1 Functions of two and three variables

Elementary switching functions of two variables from the typical library of
cells can be represented by a linear arithmetic expressions.

Theorem 7.1 An arbitrary switching function of two variables can be de-
scribed, in a unique way, by a linear arithmetic expression.

PROOF There are 162 pairs of 16 possible switching functions of two
variables, each pair forming a two-output switching function that generates
an arithmetic expression. This set includes linear arithmetic expressions
(Equation 7.2). Indeed, two functions, represented by their four values,
f = (f0, f1, f2, f3) and f ′ = (f ′

0, f
′
1, f

′
2, f

′
3), form 256 possible 2-output func-

tions with outputs f, f ′, or integer-valued functions with values 2f0 +f ′
0, 2f1 +

f ′
1, 2f2 + f ′

2, 2f3 + f ′
3. Such a function generates the arithmetic expression

21f + 20f ′. This satisfies (7.2) iff

2f3 + f ′
3 = −(2f0 + f ′

0) + (2f1 + f ′
1) + (2f2 + f ′

2).

The last equation is valid for only 44 two-output functions among those 256.
However, each of the possible 16 functions of two variables can be found at
least once in the first or second place in these two outputs. It means that any
single-output function of two variables can be extended to a function of two

© 2005 by CRC Press

(Figure 7.3).

is encoded by the least significant bit which can be recov-
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variables, being its first or second output, such that this extension generates
a linear arithmetic expression.

an arbitrary switching function of two variables by the linear arithmetic ex-
pression, at least one garbage function must be added.

are shown. For example, function AND is the second function in the word
described by x1 + x2.

The above method of proof can be extended to switching functions of many
variables. The linear expressions for the three-input primitives are given in
Table 7.2.

Example 7.5 A switching function x1 ⊕ x2 is represented by a nonlinear
arithmetic expression x1 + x2 − 2x1x2 because of the product term 2x1x2.
To linearize, this function is expanded to the 2-input function f1 = x1 ⊕
x2 and f2 = x1x2. The switching function f1 is extracted from the linear
expression by the masking operator f = Ξ1{x1 + x2}.

7.3.2 AND, OR, and EXOR functions of n variables

Bearing in mind that linear combination of linear expressions for some ele-
mentary switching functions produces linear expressions, we look now at the
method of linearization of elementary switching functions. An approach to
design linear expressions for two- and three-input elementary switching func-
tions is discussed in the previous section. An elegant method to design lin-
ear arithmetic expressions for many-input elementary switching functions has
been developed by Malyugin (see “Further Reading” Section). We introduce
Malyugin’s theorem’s theorem without proof.

Let the input variable of a primitive gate can be xj or xj . Denote the j-th
input, j = 1, 2, . . . , n, as

x
ij

j =
{xj if ji = 0,

xj if ij = 1.

Theorem 7.2 The n-variable AND function xi1
1 . . . xin

n can be represented
by the linear arithmetic expression

f = 2t−1 − n +
n∑

j=1

(ij + (−1)ij xj), (7.5)

generated by an r-output function, in which the function AND is the most
significant bit, as indicated by the masking operator Ξr{f}.

© 2005 by CRC Press

In Table 7.2 the linear expressions for the two-input primitive functions

The conditions of linearity can be formulated in a rigorous way (see “Fur-
ther Reading” Section). It follows from the Theorem that in order to represent
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TABLE 7.2

Linear arithmetic expressions for 2− and 3−input gates.

Function 2-input 3-input

 

x1 

x2 

f 

f = x1x2

Ξ2{x1 + x2} Ξ3{x1 + x2 + x3}

 

x1 

x2 

f 

f = x1 ∨ x2

Ξ2{1 + x1 + x2} Ξ3{3 + x1 + x2 + x3}

 

x1 

x2 

f 

f = x1 ⊕ x2

Ξ1{x1 + x2} Ξ1{x1 + x2 + x3}

 

x1 

x2 

f 

f = x1x2

Ξ2{3− x1 − x2} Ξ3{6− x1 − x2 − x3}

 

x1 

x2 

f 

f = x1 ∨ x2

Ξ2{2− x1 − x2} Ξ3{4− x1 − x2 − x3}

Theorem 7.3 The n-variable OR function xi1
1 ∨ . . .∨ xin

n can be represented
by the linear arithmetic expression

f = 2t−1 − 1 +
n∑

j=1

(ij + (−1)ij xj) (7.6)

of an r-output function, so that the function OR is the most significant bit
f = Ξr{f}.
Theorem 7.4 The n-variable EXOR function xi1

1 ⊕ . . . ⊕ xin
n can be repre-

sented by the linear arithmetic expression

f =
n∑

j=1

(ij + (−1)ij xj) (7.7)

of an r-output function, in which the function EXOR is in the least significant
bit, Ξ1{f}.

In the above statements, the parameter t (the number of bits in a linear
word-level representation of a given switching function) is defined by Equation
7.4.

© 2005 by CRC Press
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Note that the expression 1 ⊕ x
ij

j must be avoided in Equation 7.7. Before
applying Equation 7.7, we have to replace xj with xj ⊕ 1, or replace xj ⊕ xj

with 1 in order to cancel 1’s.

TABLE 7.3

Linear arithmetic expressions for the AND, OR, and EXOR
functions of n-input.

Function Linear arithmetic expression

 

f  
 
 

i1 x1 

in xn 

f = xi1
1 . . . xin

n

Ξt{2t−1 − n +
n∑

j=1

(ij + (−1)ij xj)}

 

f  
 
 

i1 x1 

in xn 

f = xi1
1 ∨ . . . ∨ xin

n

Ξt{2t−1 − 1 +
n∑

j=1

(ij + (−1)ij xj)}

 
f  

 
 

i1 x1 

in xn 

f = xi1
1 ⊕ . . .⊕ xin

n

Ξt{
n∑

j=1

(ij + (−1)ij xj)}

Table 7.3 contains three n-input primitives and corresponding linear ex-
pressions. For NOT function, the corresponding linear arithmetic expression
equals Ξ1{1 − x}. Based on expressions from Table 7.3, it is possible to de-
scribe modified gates, for example,

x1 ∨ x2 = Ξ2{1 + (1− x1) + x2}
= Ξ2{2− x1 + x2},

x1 ⊕ x2 = Ξ1{(1− x1) + x2}
= Ξ1{1− x1 + x2}.

7.3.3 “Garbage” functions

Linear arithmetic expressions are word-level arithmetic expressions that pos-
sess specific properties. First, the linear expression involves extra functions
called garbage functions. The number of garbage functions G increases with
the number of variables in a function that has been linearized:

© 2005 by CRC Press
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G = t− 1 = �log2 n�. (7.8)

Example 7.6 Consider the linear expression for two-input AND function
1 2 1 has

been added, so that the given function AND is the most significant bit in the
word-level description, f2 (Figure 7.6a). To derive a linear representation of
the three-input AND function, two garbage functions have been added through
the two least significant bits of the 3-bit word (Figure 7.6b).

 

f2 f1 

2
0 

2
1 

Garbage 
 function

Ξ2{f}= f2  

f2 f1 

2
0 

2
1 

Garbage functions Ξ3{f}= f3

f3 

2
2

f = x1 + x2 f = x1 + x2 + x3

(a) (b)

FIGURE 7.6
Garbage functions in linear arithmetic expression two-input (a) and three-
input AND function (Example 7.6).

7.4 Linear decision diagrams

A linear decision diagram used to represent a multioutput switching function
is a word-level arithmetic decision diagram upon the condition of linearity.
A set of the linear diagrams is a formal model used to represent a multilevel
circuit. While related as particular (linear) case, the linear diagram based
model has a number of attractive properties discussed in this chapter.

In linear word-level diagram, a node realizes the arithmetic analog of posi-
tive Davio expansion

pDA : f = fxi=0︸ ︷︷ ︸
left term

+ xi(−fxi=0 + fxi=1)︸ ︷︷ ︸
right term

© 2005 by CRC Press

(Table 7.2) f = x +x . To derive this linear form, the garbage function f
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and terminal nodes correspond to integer-valued coefficients of switching func-
tion f .

A linear decision diagram is a decision diagram to represent an arbitrary
network described by a linear word-level arithmetic expression; the nodes cor-
respond to pDA expansion and the terminal nodes are assigned the coefficients
of the linear expression. Linear decision diagram for n-input linear arithmetic
expression includes n nonterminal and n + 1 terminal nodes.

Example 7.7
tion. This diagram includes three nodes. Lexigraphic order of variables is
used: x1, x2.

Step 1 : Compute fx1=0 and fx1=1:

fx1=0 = 0 · x2 = 0, and fx1=1 = 1 · x2 = x2.

Step 2 : A terminal node with the value 1 is generated since the left term of
the pDA expansion is the constant fx1=0 = 0. The right term is equal
to

fx1=1 − fx1=0 = x2 − 0 = x2

and requires further decomposition.
Step 3 : Compute

f∣∣ x1 = 0
x2 = 0

= 0, f∣∣ x1 = 0
x2 = 1

= 0.

The terminal node is equal to

x2(−fx2=0 + fx2=1) = −f∣∣ x1 = 0
x2 = 0

+ f∣∣ x1 = 0
x2 = 1

= −0 + 0 = 0.

The embedded linear decision diagram in 2-D N -hypercube is given in Fig-
ure 7.7c.

typical gate library are given.
Summarizing,

�

� Linear composition of linear expressions (gates in the level of a circuit)
produce linear arithmetic expression,

� Linear expression directly maps into linear decision diagram (Table 7.4).
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In Table 7.4, the linear decision diagrams for two-input gates from the

expressions as shown in Table 7.2 and Table 7.3,
Elementary switching functions can be represented by linear arithmetic

Figure 7.7a,b shows a linear decision diagram for AND func-
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x1 

x2 

f 

f = x1x2

y = x1 + x2

f = Ξ2{x1 + x2}

  

x1 

pDA 

x2 

pDA 0 
0 0 f 

1 1

 

x2 

0 

x1 pDA 

0 

1 

1 
0 pDA 

(a) (b) (c)

FIGURE 7.7
The linear word-level arithmetic expression of AND function (a), linear de-
cision diagram (b), and embedding of a linear decision diagram in a 2-D
N -hypercube (c) (Example 7.7).

7.5 Representation of a circuit level by linear expression

Suppose a multilevel circuit over the typical library of gates is given. The
problem is formulated as follows: representation of an arbitrary level of this
circuit by linear word-level models, algebraic equation and decision diagram.
The solution is based on the following theorem.

Theorem 7.5 A circuit level with n inputs x1, ..., xn and r gates (r outputs)
is modeled by linear diagram with n nodes, assigned input variables and n + 1
terminal nodes, assigned coefficients of the linear expression.

PROOF The proof follows immediately from the fact that an arbitrary
n-input r-output function can be represented by a weighted arithmetic ex-
pression.

Example 7.8 The linear arith-
metic expressions describing the first, the second, and the third gate are given

where parameters
T0, T1, T2 are calculated by (7.4). The final result is

f = 20(x1 + x2) + 22(x1 + x2) + 24(x2 + x3)
= 20(x1 + x2) + 22(1− x1 + x2) + 24(1− x2 + x3)
= −3x1 − 12x2 + 17x3 + 20.

Let us design a set of linear decision diagrams for the circuit from Example
7.8. Note that the order of variables in the diagram can be arbitrary. Let us
choose the lexigraphical order, i.e., x1, x2.
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in Table 7.2. Combining these expressions, we compile f

A level of a circuit is shown in Figure 7.8.
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TABLE 7.4

Linear decision diagrams derived from linear word-level arithmetic
expressions for two-variable functions.

Function Linear decision diagram N -hypercube

 

x1 

x2 

f 

f = x1x2

y = x1 + x2

  

x1 

pDA 

x2 

pDA 0 
0 0 f 

1 1 

 

x2 

0 

x1 pDA 

0 

1 

1 
0 pDA 

 

x1 

x2 

f 

f = x1 ∨ x2

y = 1 + x1 + x2

  

x1 

pDA 

x2 

pDA 1 
0 0 f 

1 1 

 

x2 

0 

x1 pDA 

1 

1 

1 
0 pDA 

 

x1 

x2 

f 

f = x1 ⊕ x2

y = x1 + x2

  

x1 

pDA 

x2 

pDA 0 
0 0 f 

1 1 

 

x2 

0 

x1 pDA 

0 

1 

1 
0 pDA 

 

x1 

x2 

f 

f = x1x2

y = 3− x1 − x2

  

x1 

pDA 

x2 

pDA 3 
0 0 f 

-1 -1 

 

x2 

0 

x1 pDA 

3 

-1 

-1 
0 pDA 

 

x1 

x2 

f 

f = x1 ∨ x2

y = 2− x1 − x2

  

x1 

pDA 

x2 

pDA 2 
0 0 f 

-1 -1 

 

x2 

0 

x1 pDA 

2 

-1 

-1 
0 pDA 

Example 7.9 The linear decision diagram for the expression −3x1− 12x2 +
17x3 +20 consists of three nodes. There are three steps to design the diagram:

Step 1 : Compute

fx1=0 = −3 · 0− 12x2 + 17x3 + 20,

fx1=1 = −3 · 1− 12x2 + 17x3 + 20.

© 2005 by CRC Press
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x1 y1

y2

y3

x3

x3

x2

x2

x1

f1 = x1 + x3

f2 = 1 − x1 + x2

f3 = 1 − x2 + x3

Outputs
y1 = Ξ2{x1 + x2}
y2 = Ξ2{1 − x1 + x2}
y3 = Ξ2{1 − x2 + x3}

Level description

f = 2T2f3 + 2T1f2 + 2T0f1

Masking parameters

t0 = �log22� + 1 = 2 bits
t1 = �log22� + 1 = 2 bits
t2 = �log22� + 1 = 2 bits
T0 = 0
T1 = 2
T2 = 4

Linear word-level arithmetic expression

f = −3x1 − 12x2 + 17x3 + 20

Arithmetic positive Davio expansion

pDA : f = fxi=0 + xi(−fxi=0 + fxi=1)

  

x1 

pDA 20
0 

f 

x2 

pDA 

0 

x3 

pDA

0 

-3 -12 17

x1 

x2 

x3 

0 
pDA pDA

17 

20 

- 3 

0 

0 

-12

pDA

FIGURE 7.8
Technique of the representation of a level of circuit by linear word-level arith-
metic expression and decision diagram (Examples 7.8 and 7.9).

The terminal node is equal to −3 because the right product is a constant
fx1=1 − fx1=0 = −3. The left product needs further decomposition.

Step 2 : Compute

f∣∣ x1 = 0
x2 = 0

= 17x3 + 20, f∣∣ x1 = 0
x2 = 1

= −12 + 17x3 + 20.

The terminal node equals

f∣∣ x1 = 0
x2 = 1

− f∣∣ x1 = 1
x2 = 0

= −12.

Step 3 : By analogy, the terminal node for variable x3 is 17, and the free
terminal node is 20.
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From Examples 7.8 and 7.9, one can observe that the coefficients in linear
expressions are quite large even for the small circuits. Therefore, a special
technique is needed to alleviate this effect.

7.6 Linear decision diagrams for circuit representation

In this section, an arbitrary r-level combinational circuits is represented by
r linear decision diagrams, i.e. for each level of a circuit a linear diagram
is designed. The complexity of this representation is O(G), where G is the
number of gates in the circuit. The outputs of this model are calculated by
transmission data through this set of diagrams. This approach is the basis for
representation circuits in spatial dimensions:

< 2-D circuit> ⇒ < A set of linear diagrams>⇒ <Hypercube-like topology>.

7.6.1 The basic statement

Theorem 7.6 An arbitrary m-level switching network can be uniquely de-
scribed by a set of m linear decision diagrams, and vice versa, this set of
linear decision diagrams corresponds to a unique network.

PROOF One of m levels with r n-input gates from a fixed library is
described by one linear arithmetic expression. Fixing order of the gates in
the level, i.e. keeping unambiguity of the structure, we can derive the unique
linear decision diagram for this level, as well as for other m − 1 levels of the
network.

From this statement follows:

� The order of gates in a level of circuit must be fixed.
� The complexity of linear decision diagram does not depend on the order of

variables.
� Data transmission through linear decision diagrams must be provided.

7.6.2 Examples

Three examples below focus on various details of computing by linear models.

Example 7.10 Representation of a three-level (L1, L2 and L3) circuit by

© 2005 by CRC Press

linear arithmetic expressions is shown in Figure 7.9.



230 Logic Design of NanoICs

 x1 

x2 

L1 

x3 
x4 

z 

y 

f 

L2 L2 

Level L1: f1 = x1 + x2

Level L2: f2 = 1 + y + x3

Level L3: f3 = z + x4

Outputs

y = Ξ2{f1},
z = Ξ2{f2}
f = Ξ1{f3}

Arithmetic Davio expansion

pDA : f = fxi=0 + xi(−fxi=0 + fxi=1)

  

x1 

pDA 

x2 

pDA 0
0 0 

1 1 

The first level L1 

  

y 

pDA 

x3 

pDA 1 
0 0 

11

The second level L2 

  

z 

pDA 

x4 

pDA 0 
0 0 

11

The third level L3 

FIGURE 7.9
Representation of a three-level circuit by a set of linear decision diagrams
(Example 7.10).

The next example illustrates the technique of a linear model design for a
circuit with two gates at the first level.

Example 7.11 1 2

and G3 with known linear expressions for gates. Output f is defined by double
masking operator.

The example below illustrates the technique of a linear model design for
the data permutation, the typical procedure in spatial dimension processing.

Example 7.12
can be described by two linear arithmetic expressions below:

f1 = 20x1 + 21x2 + 22x3 + 23x4,

f2 = 20y1 + 21y2 + 22y3 + 23y4.

Details of calculations, the final diagram and the N -hypercube representation
are given in Figure 7.11b,c,d.
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A circuit in Figure 7.10 consists of three AND gates G , G

A two-level communication network shown in Figure 7.11a
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x1 

x2 

G1 

x3 

x4 
y2 

f 

G2 

G3 y1 

Gate G1: f1 = x1 + x2

Gate G2: 2 = x3 + x4

Gate G3: f3 = y1 + y2

Output:

f = Ξ2{f3} = Ξ2{y1 + y2}
= Ξ2{Ξ2{f1} + Ξ2{f2}}

FIGURE 7.10
Deriving the linear models design for a two-level circuit (Example 7.11).

7.7 Technique for manipulating the coefficients

The problem of large coefficients (weights) seems to be a drawback of linear
arithmetic expression. Direct computation is impossible for circuits with hun-
dreds of gates in the level. Fortunately, the large coefficients can be encoded
in order to avoid calculation of exponents and to manipulate these codes easy.

7.7.1 The structure of coefficients

The purpose of this section is to determine the structure of the coefficients and
to apply the appropriate encoding thereof. The following theorem specifies the
structure of coefficients assigned to the terminal nodes in the linear decision
diagram.

Theorem 7.7 The circuit level with n inputs x1, ..., xn and r gates is de-
scribed by the linear expression:

fl = W0 + Wx1x1 + ... + Wxn
xn, (7.9)

where terminal weights W0 and Wxi
, i = 1, ..., n, are formed as below

W0 = a0,12T1 + . . . + a0,r2Tr ,

Wxi
= ai,12T1 + . . . + ai,r2Tr , (7.10)

ai,k ∈ {0, +1,−1} and a0,k are positive integer numbers, and Ti is defined by
Equation 7.4.

PROOF Let the output of the first gate in the level be described by
f(y1) = 21f2 + 20f1. Since
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x2 

x1 

x4 

x3 

y2 

y1 

y4 

y3 
z2

z1

z4

z3

y1 = Ξ2{f1}, z1 = Ξ3{f2},
y2 = Ξ1{f1}, z2 = Ξ4{f2},
y3 = Ξ4{f1}, z3 = Ξ1{f2},
y4 = Ξ3{f1}, z4 = Ξ2{f2}.

(a) (b)

  

y1 

0 f2 

y2 y3 y4 

  

x1 

0 f1 

x2 x3 x4 

pDA pDApDA pDA 

23 22 2120 

23 22 2120

(c)

x3 

x2 

0 

pDA 

0 

x4 

2 
0 

4 

pDA 

pDA 

0 

1 

0 

0 

pDA

x3 

8 

x1 

(d)

FIGURE 7.11
Communication network (a), formal description by the linear arithmetic ex-
pressions (b), a set of linear decision diagrams (c), and 4-D N -hypercube
representation of function f1 (d) (Example 7.12).

f1 = a0,1 + a1,1x2 + a2,1x1 + a3,1x1x2

f2 = a0,2 + a1,2x2 + a2,2x1 + a3,2x1x2

then

f(y1) = 21f2 + 20f1

= (2a0,2 + a0,1) + (2a1,2 + a1,1)x2

+ (2a2,2 + a2,1)x1 + (2a3,2 + a3,1)x1x2.
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In the linear expression, 2a3,2 + a3,1 = 0. Therefore,

f(y1) = (2a0,2 + a0,1) + (2a1,2 + a1,1)x2 + (2a2,2 + a2,1)x1.

Let

W0 = 21a0,2 + 20a0,1,

Wx1 = 21a1,2 + 20a1,1,

Wx2 = 21a2,2 + 20a2,1,

then the output of the first gate is described by the linear expression

f(y1) = W0 + Wx1x1 + Wx2x2.

Applying the same expansion to other gates, we obtain a linear arithmetic
expression (Equation 7.9) whose coefficients are structured by Equation 7.10.

It follows from the above that:

� The weights are linear expression over ai,j ,
� The co-factors ai,j in Wxi

are always to the power of 2.

7.7.2 Encoding

Based on the above statement that properties of the coefficients are suitable
for effective encoding, the technique of manipulation of the coefficients has
been developed. This technique is introduced by two examples below.

Example 7.13
number of steps to encode the terminal nodes of the corresponding decision
diagram.

Step 1: Determine the outputs f(yi), i = 1, 2, 3, in the form of liner expres-

gates, two functions are involved in a linear form of each gate.
Step 2: Define f1, f2 and f3 by Equation 7.9 and Equation 7.10.
Step 3: Define masking parameters Ti.
Step 4: Define the weights W0,Wx1 ,Wx2 ,Wx3 .
Step 5: Define the fl.
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sion (Table 7.4) with respect to all functions; because there are two input

The level of a circuit is depicted in Figure 7.8. There are a

Details are given in Figure 7.12.

It is useful to compare the above example to Example 7.8 and Example 7.9.
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x1 y1

y2

y3

x3

x3

x2

x2

x1

Step 1

f1 = 20(x1 + x3)
f2 = 22(1 − x1 + x2)
f3 = 24(1 − x1 + x3)

Step 2: General equation

f = f(y1) + f(y2) + f(y3)
= W0 + Wx1x1 + Wx2x2 + Wx3x3

Step 3: Masking parameters

t1 = �log2 2� + 1 = 2
t2 = �log2 2� + 1 = 2
T1 = t0 = 0
T2 = t0 + t1 = 0 + 2 = 2
T3 = t0 + t1 + t2 = 4

Step 4: Computing the weights

W0 = 0 · 2T1 + 1 · 2T2 + 1 · 2T3 = 22 + 24,
Wx1 = 1 · 2T1 − 1 · 2T2 + 0 · 2T3 = 20 − 22,
Wx2 = 0 · 2T1 + 1 · 2T2 − 1 · 2T3 = 22 − 24,
Wx3 = 1 · 2T1 + 0 · 2T2 + 1 · 2T3 = 20 + 24

Step 5: Equations with encoding values of Wxi

f = 22 + 24 + (20 − 22)x1 + (22 − 24)x2 + (20 + 24)x3

 

x1 

pDA 22 + 24 
0 

f 

x2 

pDA 

0 

x3 

pDA 

0 

20 - 22 22 - 24 20 + 24 

FIGURE 7.12
Technique of encoding the weight coefficients in linear arithmetic expression
(Example 7.13).

Example 7.14 Let a terminal node be assigned with the weight

Wxi
= 0 + 23 − 26 − 29 − 212 + 0 + 0 + 221 + 224.

We apply the following encoding rules for 0 → 00, 1 → 01, − 1 → 11 as

ij2T .

Example 7.15 Given the terminal node Wx1 = −24 + 26− 29. The encoding

i,j = 0 is a re-
current procedure. This can be accomplished by using manipulations on a
spectral type of tree.

© 2005 by CRC Press

shown in Figure 7.13.

The below example illustrates restoration (decoding) of coefficients a

of the weights is given in Figure 7.14.

It is observed from Example 7.15 that the computing of a



Linear Word-Level Models of Multilevel Circuits 235

 

01 

20

01 00 00 11 11 11 01 00

23 26 29 212 215 218 221224 

FIGURE 7.13
Encoding the weights of a terminal node (Example 7.14).

 

20

11 01 11 00 00

22 24 2629 

Wx1 = −24 + 26 − 29

{2t4 , 2t0 , 2t1 , 2t2 , 2t3}
t1 = 2, t2 = 2, t3 = 2, t4 = 3

Encoding coefficients
a1,0 = 0, a1,1 = 0,
a1,2 = −1, a1,3 = 1, a1,4 = −1

a1,02T0 = a1,02t0 = 0,

a1,12T1 = a1,12t0+t1 = 0,

a1,22T2 = a1,22t0+t1+t2 = −24,

a1,32T3 = a1,32t0+t1+t2+t3 = 26

a1,42T4 = a1,42t0+t1+t2+t3+t4 = −29

FIGURE 7.14
Encoding the weights of a terminal node (Example 7.15).

7.7.3 W-trees

There are two types of terminal nodes in a linear decision diagram: Wxi

and W0 formed by Equation 7.10. The W -tree to represent a terminal node
corresponding to a variable xi, i ∈ (1, ..., n), is a linear tree with r nodes
assigned the coefficients 2tj , r 1-terminal nodes and one 0-terminal node, and
the successors assigned (multiplied) with the coefficients ai,j ∈ {0, 1,−1}. In
a W -tree, we encode the coefficients ai,j which take the values 0, 1 or -1, by
the codes 00, 01 and 11 correspondingly.

The weight Wxi
assigned to the i-th terminal node includes the exponents

such that each upper one is a sum of the previous ones: Tj = t0+t1+. . .+jtj−1.
Let the nodes in a W -tree be assigned with the coefficients 2t1 , 2t2 , . . ., 2tj−1 .
Then the paths from the root to a terminal node involve the components

2T1 = 2t0 ,

2T2 = 2t0 · 2j1 = 2t0+t1 ,

2Tr = 2t0 · ... · 2tr−1 = 2t0+...+tr−1

of Wxi
that the weights in the nodes along the path are multiplied by the

coefficients ai,j , so that the j-th terminal node corresponds to

ai,j2Tj = ai,j2t0+...+tj−1 .

© 2005 by CRC Press
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These values are summarized, so that the linear W -tree describes the weight
Wxi

(Equation 7.10).

Example 7.16 (Continuation of Example 7.15). A W -tree corresponding to
the terminal node, Wx1 = −24 + 26 − 29 is given in Figure 7.15. This value
can be described by the W -tree with values 2t0 , 2t1 , 2t2 , 2t3 and 2t4 assigned
to the nodes, where t1 = 2, t2 = 2, t3 = 2 and t4 = 3. The successors of these
nodes are assigned with

a1,0 = 0, a1,1 = 0, a1,2 = −1, a1,3 = 1, a1,4 = 1,

so that the paths from the root to the terminal nodes correspond to the expo-
nents −24, 26, − 29.

 

 

 

  

 

  
 

 

 

 

 

 

 

 

 

1 

00 

22 

1

11 

22 

1

01 

23

1 

00 

22 

1 

11 

23pDA 

a1,02t0 = 0
a1,12t0+t1 = 0
a1,22t0+t1+t2 = −24

a1,32t0+t1+t2+t3 = 26

a1,42t0+t1+t2+t3+t4 = −29

FIGURE 7.15
W -trees represent terminal weights; the first terminal node Wx1 = −24 +26−
29 is represented by the front tree consisting of five nodes (Example 7.16).

7.8 Linear word-level sum-of-products expressions

The most important drawback of the linear word-level arithmetic decision di-
agrams is the fact that even using the weight encoding technique, the problem
of large coefficients is still a difficult challenge to tackle. This is a motivation
to define the linear word-level sum-of-products expressions and study their
properties.

7.8.1 Definition

switching function f is defined as the bitwise of sum-of-products expressions

© 2005 by CRC Press

In Chapter 4, a word-level sum-of-products expression for an n-input r-output
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of fj , j = 1, . . . , r,

f = 2r−1fr

�∨ · · · �∨ 21f2

�∨ 20f1 =
�∨2n

i=1
vi · (xi1

1 · · · xin,
n )︸ ︷︷ ︸

i−th product

where x
ij

i is equal to xi if ij = 0, and x
ij

i is equal to xi if ij = 1.
A linear word-level sum-of-products of a switching function f of n variables

x1, . . . , xn is the expression with 2n integer coefficients v∗
1 , . . . , v∗n

f = v∗
1xi1

1

�∨ . . .
�∨ v∗

nxin
n =

�∨n

i=1
v∗

i · xij

i , (7.11)

where the product v∗
i · xij

i is a pair

v∗
i x

ij

i =
{

v
′
ixi, ij = 1;

v
′′
i xi, ij = 0.

Definition of a linear word-level sum-of-products (Equation 7.11) implies
that:

� Linear word-level sum-of-products expression can be recognized by the
products. For example, for given n = 2, the linear expression includes

no more than two literals. Expression 2x1

�∨ 3x2 is linear, whereas

x1

�∨ 2x1x3

�∨ 3x2 is not.
� The same literal x

ij

i can be included in the expression complemented and
non-complemented, with the corresponding coefficients v

′
i and v

′′
i (Equa-

tion 7.8.1). For example, f = x1

�∨ 5x1.
� A coefficient v∗

i carries information about the distribution of terms over the
switching functions: 1’s in its binary representation indicates the index
of function that consists of variable x

ij

i . For example, v∗
2 = 6 = 110

carries information about the variable x
ij

2 : this variable is present in the
functions f3 (f3) and f2 (f2), and does present in the function f1 (f2).

� A product v∗
i x

ij

i generates, in general, two products: v
′
ixi and v

′′
i xi

� To represent the product by Equation 7.11, DeMorgan’s rule might be
applied. For example, f = x1x2 = x1x2 = x1 ∨ x2.

7.8.2 Grouping, weight assignment, and masking

In contrast to linear arithmetic expression, the linear word-level sum-of-
products model is not sensitive to any permutation of outputs. Each output
in this model needs only one bit. Consequently, the parameter t is always
equal to 1, so the masking operators are simplified.

© 2005 by CRC Press

(Figure
7.16).
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′v1 x1 v1 ⎯x1 ′′ ′v2 x2 v2 ′′ ⎯x2

∨∧ *v1 
i1 x1 *v2 

i2 x2 

• A coefficient v∗
i carries information

about the distribution of terms over the
switching functions.

• Distribution: 1’s in its binary represen-
tation indicates the index of function
that depends on variable x

ij

i .

• A product v∗
i x

ij

i generates, in general,

two products: v
′
ixi and v

′′
i xi.

FIGURE 7.16
Structure of products v∗

i x
ij

i , i = 1, 2, in the linear sum-of-products expression.

 

1  bit 

1 2 0 2 
3 2 

2 2 

f1 f1 f1 

1  bit 1  bit 
Bits of word-level format:⎧⎨⎩

f1 = Ξ1{f} = x1 ∨ x3

f2 = Ξ2{f} = x3 ∨ x4

f3 = Ξ3{f} = x2 ∨ x4

Word-level representation:

f = 22f3

�∨ 21f2

�∨ 20f1 = x1

�∨ 4x2

�∨ 3x3

�∨ 6x4

FIGURE 7.17
Word-level format for the set of three linear sum-of-products expressions f1,
f2, and f3 (Example 7.17).

Example 7.17 The three-output function, f1 = x1 ∨ x3, f2 = x3 ∨ x4, f3 =
x2 ∨ x4 is represented by the word-level sum-of-products as shown in Figure
7.17. Let us change the order of functions to f2 = x3 ∨x4, f1 = x1 ∨x3, f3 =

x2 ∨ x4. Then, f = 2x1

�∨ 4x2

�∨ 3x3

�∨ 5x4. Hence, linearity is not relevant to
the order of the functions in word-level sum-of-products expressions.

7.8.3 Linear expressions of elementary functions

shown: linear arithmetic and sum-of-products. Linear sum-of-products ex-
pressions for OR, AND, NOR and NOT functions can be determined directly
from Equation 7.11. For example, an OR function requires two bits for repre-
sentation by arithmetic expression (the first function is a garbage function).
In a word-level sum-of-products, the OR function needs one bit only. The
remarkable feature is that these expressions are determined with respect to
two different definitions of linearity: arithmetic operations and OR bitwise
operation respectively.

© 2005 by CRC Press

In Table 7.5, two word-level models of elementary switching functions are
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TABLE 7.5

Comparison of linear word-level arithmetic
and sum-of-products models of two-input
elementary functions.

Gate Linear Linear

word-level word-level

arithmetic sum-of-products

model model

OR Ξ2{1 + x + y} Ξ1{x ∨ y}

AND Ξ2{x + y} Ξ1{x ∨ y}

NOR Ξ2{2− x− y} Ξ1{x ∨ y}

NAND Ξ2{3− x− y} Ξ1{x ∨ y}

7.8.4 Linear decision diagrams

A linear decision diagram derived from the linear word-level sum-of-products
Equation 7.11 is a linear tree with nodes realizing the Shannon expansion of
r switching functions fj , j = 1, 2, . . . , r, in parallel

fj = fj(xi = 0) ∨ xifj(xi = 1), (7.12)

where j = 1, 2, . . . , r. The term v∗
i x

ij

i of the word-level sum-of-products Equa-
tion 7.11 carries information about:

� The number of times Shannon expansions with respect to variables xi were
applied, and

� The functions fj to which the Shannon expansion was applied.

Example 7.18 Consider product 5x1 in a word-level sum-of-products. We
observe that the Shannon expansion with respect to variable x1 is used twice:
the number of 1s in the coefficient 5 = 101 is equal to 2 (1 + 0 + 1 = 2). This
coefficient also carries information about the values of functions fj (f1 =
1, f2 = 0, f3 = 1) given x1

terminal nodes as follows from Equation 7.11.

Example 7.19 Linear word-level decision diagram using Shannon expansion

and b respectively:

© 2005 by CRC Press

= 1. (Figure 7.18).

In general, a linear decision diagram includes 2n nonterminal and 2n + 1

(Equation 7.12) for the OR and AND functions are shown in Figure 7.19a
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f1 
S 

f2 

f3 

S 
S 

f=5x1 

(a)

 

 
 
 
 

 

S 
f=5x1 

x1  

⎯x1 

(b)

• Bitwise Shannon expansion
is implemented in parallel.

• The coefficient 5 = 101 indicates to
which functions Shannon expansion
has been applied (f1 and f3).

f1 = f1(x1 = 0) ∨ x1f1(x1 = 1)

f3 = f3(x1 = 0) ∨ x1f3(x1 = 1)

• Equivalent denotation of the
word-level Shannon expansion
requires one node.

FIGURE 7.18
Shannon expansion for the product 5x1 in the word-level format of sum-of-
products (a) and its equivalent denotation (b) (Example 7.18).

(a) The diagram for OR function is derived from the linear expression x1∨x2

using Shannon expansion f = xif0 ∨ xif1 = f0

�∨ xif1 that is denoted

by
�
S;

(b) The diagram for AND function is derived from the linear expression x1 ∨
x2 using Shannon expansion f = xif0 ∨ xif1 = xif0

�∨ f1 also denoted

by
�
S.

From Example 7.19, we observe that the word-level Shannon expansions
(Equation 7.12) for elementary functions means the Shannon expansion ap-
plied to each participation function, i.e., bitwise.

7.8.5 Technique of computation

Here, the details of computing the linear sum-of-products (expressions and
diagrams) for a circuit are introduced by three examples.

Representation of a circuit level. An arbitrary level of a multilevel circuit
can be represented by a linear word-level sum-of-products over the library OR,
AND, NOR, NAND, and NOT gates.

Example 7.20
sum-of-products describing three gate outputs f1, f2, and f3

© 2005 by CRC Press

The level of a circuit is presented in Figure 7.20. The linear
are given in Table
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x2 
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f = x1 ∨ x2

f = Ξ1{x1 ∨ x2}

  

x1 x2 

0 
0 0 f 

1 1
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x1 
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1 

1 
0 

Ŝ Ŝ 

(a)

 

x1 

x2 

f 

f = x1x2 = x1 ∨ x2

f = Ξ1{x1 ∨ x2}

  

⎯x1 ⎯x2 

0 
0 0 f 

1 1

 
S S  

⎯x2 

0 

⎯x1 

0 

1 

1 
0 Ŝ Ŝ 

(b)

FIGURE 7.19
Linear decision diagram and N -hypercube for the OR (a) and AND (b) gate
(Example 7.19).

1

�∨ 2x1

�∨ 2x2

�∨ 4x2

�∨ 5x3. We observe, that
literal x1 is generated by f1 because the coefficient v

′
1 = 1 = 001. Literal x1

is generated by f2 because v
′′
1 = 1 = 010. The coefficient v

′
2 = 2 = 010 means

that x2 ∈ f2; v
′′
2 = 4 = 100, that is x2 ∈ f3 and x3 ∈ f3, f3 = x2 ∨ x3.

Application of the word-level Shannon expansion. The two examples
below demonstrate details of computation.

Let us design a linear decision diagram given the result of Example 7.20.
Note that the order of variables in the diagram can be arbitrary. Let us choose
the lexicographical order, i.e., x1, x2.

Example 7.21 (Continuation of Example 7.20). The linear decision diagram

for the expression f = x1

�∨ 2x1

�∨ 2x2

�∨ 4x2

�∨ 5x3 consists of five nodes,
Details are given in

Some comments for this example are useful. There are five steps in the
diagram design with respect to variables x1, x1, x2, x2 and x3. Each step in
the Shannon expansion is computed as follows.

With respect to x1 : The literal x1 ∈ f1, f1 = x1 ∨ x3 (v
′
1 = 1 = 001). The

first terminal node is equal to 1 (right branch). The left branch needs
further decomposition.

© 2005 by CRC Press

The final result is f = x

Table 7.6 and Figure 7.21.
each node performing a word-level Shannon expansion.

7.5.



242 Logic Design of NanoICs

 

x1 

x3 

y1

⎯x1 

x2 

y2 

⎯x2 

x3 

y3 

Linear word-level
expressions for gates

y1 = x1 ∨ x3,
y2 = x1 ∨ x2,
y3 = x2 ∨ x3

Linear expression for level

f = 22f3

�∨ 21f2 + 20f1

= x1

�∨ 2x1

�∨ 2x2

�∨ 4x2

�∨ 5x3

Outputs

f1 = y1 = Ξ1{f}
f2 = y2 = Ξ2{f}
f3 = y3 = Ξ3{f}

FIGURE 7.20
A circuit level and the corresponding linear word-level sum-of-products (Ex-
ample 7.20).

TABLE 7.6

Linear decision diagram design (Example 7.21).

Right branch Left branch

x1 f1(x1 = 0) = x3 x1f1(x1 = 1) = 1 x1

�∨ 2x1

�∨ 2x2

�∨ 4x2

�∨ 5x3

f1(x1 = 1) = 1

x1 f2(x1 = 0) = x2 x1f2(x1 = 1) = 1 x1

�∨ 2
�∨ 2x2

�∨ 4x2

�∨ 5x3

f2(x1 = 1) = 1

x2 f2(x2 = 0) = 1 x2f2(x2 = 1) = 1 x1

�∨ 2
�∨ 2

�∨ 4x2

�∨ 5x3

f2(x2 = 1) = 1

x2 f3(x2 = 0) = x3 x2f3(x2 = 1) = 1 x1

�∨ 2
�∨ 2

�∨ 4
�∨ 5x3

f3(x2 = 1) = 1

x3 f1(x3 = 0) = 1 x3f1(x3 = 1) = 1 1
�∨ 2

�∨ 2
�∨ 4

�∨ 5 = 7
f1(x3 = 1) = 1
f3(x3 = 1) = 1 x3f3(x3 = 1) = 1
f3(x3 = 1) = 1

With respect to x1 : The literal x1 ∈ f2, f2 = x1 ∨ x2 (v
′′
1 = 2 = 010).

The second terminal node is equal to 1 (right branch), thus 010 = 2 in
the notation of a word-level Shannon expansion. The left branch needs
further decomposition.

With respect to x2 : The literal x2 ∈ f2, f2 = x1 ∨ x2 (v
′
2 = 2 = 010).

© 2005 by CRC Press
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x3 

y3 

f1 = y1 = x1 ∨ x3,
f2 = y2 = x1 ∨ x2,
f3 = y3 = x2 ∨ x3

Description of the level

f = 22f3

�∨ 21f2

�∨ 20f1

= x1

�∨ 2x1

�∨ 2x2

�∨ 4x2

�∨ 5x3

Shannon expansion
�
S: fj = fj(xi = 0) ∨ xifj(xi = 1)
for x1, x2, and x3 or
fj = xifj(xi = 0) ∨ fj(xi = 1)
for x1, x2

Outputs

y1 = Ξ1{f}
y2 = Ξ2{f}
y3 = Ξ3{f}

(a)

  

x1 

7 
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⎯x1 

1 2

x2 
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⎯x2 

4
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S
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S
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S

(b)

⎯x1 

x2/⎯x2 

x3/⎯x3 

5 / 0

7 

2 / 4 

x1/⎯x1 
Ŝ

Ŝ 

1 / 2 Ŝ 

⎯x3 

(c)

FIGURE 7.21
Technique of the representation of a level of circuit by a linear word-level
sum-of-products expression (a) linear decision diagram (b), and N -hypercube
(c) (Example 7.21).

The third terminal node is equal to 1 (right branch) that is 010 = 2 in
the notation of a word-levelShannon expansion. The left branch needs
further decomposition.

With respect to x2 : The literal x2 ∈ f3, f3 = x2 ∨ x3 (v
′′
2 = 100). The

fourth terminal node is equal to 1 (right branch) that is 100 = 4 in

© 2005 by CRC Press
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the notation of a word-level Shannon expansion. The left branch needs
further decomposition.

With respect to x3 : The literal x3 ∈ f1, f1 = x1 ∨ x3 (v
′
1 = 1 = 001) and

f3 = x2 ∨ x3 (v
′
3 = 4 = 100). The fifth terminal node is equal to 1

(right branch) that is 001
�∨ 100 = 101 = 5 in the notation of a word-

level Shannon expansion. The left branch (sixth terminal node) is equal
to seven.

The example below demonstrates two aspects of linearization technique by
the word-level sum-of-products: representation of circuit level and computing
by a set of linear decision diagrams given assignment of inputs.

Example 7.22
ment x1x2x3x4 = 0 1 1 1, the value of the function f is calculated as follows.
The outputs y1 = 1 and y2 = 0, since f1 = 0 ∨ 3 · 1 ∨ 2 · 1 = 012. Similarly,
z = 1 because f2 = 1 ∨ 1 = 12. Finally, f = 0, since f3 = 1 ∨ 1 = 0.

7.9 Linear word-level Reed-Muller expressions

The linear word-level sum-of-products decision diagrams are not efficient for
EXOR circuits. However, in some technologies the cost of EXOR logic is
acceptable compared to NAND and NOR logic. The modification of a linear
sum-of-products model can be done to avoid this drawback.

7.9.1 Definition

switching function f is defined as the bitwise of sum-of-products expressions
of fj , j = 1, . . . , r,

f = 2r−1fr

�⊕ · · · �⊕ 21f2

�⊕ 20f1 =
�⊕2n−1

i=0
wi · (xi1

1 · · · xin.
n )︸ ︷︷ ︸

i−th product

where x
ij

i is equal to 1 if ij = 0, and x
ij

i is equal to xi if ij = 1.
The linear word-level Reed-Muller expression of a switching function f of

n variables x1, . . . , xn is the expression with integer coefficients w∗
1 , . . . , w∗

n

f = w∗
1xi1

1

�⊕ . . .
�⊕ w∗

nxin
n =

�⊕n

i=0
w∗

i · xij

i . (7.13)
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A three-level circuit is shown in Figure 7.22. For the assign-

In Chapter 3, the word-level Reed-Muller expression for an n-input r-output
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Level L1: f1 = x1

�∨ 3x2
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Level L3: f3 = z
�∨ x4

y1 = Ξ1{f1}
y2 = Ξ2{f1}
z = Ξ1{f2}
f = Ξ1{f3}

Assignment
x1x2x3x4 = 0111 :

Outputs

y1 = Ξ1{f1} = Ξ1{01} = 1
y2 = Ξ2{f1} = Ξ2{01} = 0
z = Ξ1{f2} = Ξ1{1} = 1
f = Ξ1{f3} = Ξ1{0} = 0
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FIGURE 7.22
Representation of a three-level circuit by a set of linear decision diagrams
(Example 7.22).

where

w∗
i x

ij

i =
{

w
′
ixi, ij = 1;

w
′′
i xi, ij = 0.

The above properties are similar to ones of linear word-level sum-of-products
expressions.

7.9.2 Grouping, weight assignment, and masking

Grouping, weight assignment and masking in the format of linear word Reed-
Muller expressions are similar to the linear word-level sum-of-products model.
For instance, the linearity property does not depend on the order of the func-
tions in word-level expression.
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7.9.3 Linear Reed-Muller expressions of primitives

In Table 7.7, two word-level models of two-input elementary functions are
given: linear word-level arithmetic and linear word-level Reed-Muller expres-
sions. Linear Reed-Muller expressions for two-input EXOR function can be
determined directly from Equation 7.13 for n = 2.

TABLE 7.7

Comparison of linear word-level arithmetic
and Reed-Muller models of two variables
elementary functions.

Gate Linear Linear

word-level word-level

arithmetic sum-of-products

model model

EXOR Ξ1{x + y} Ξ1{x⊕ y}

EXNOR Ξ1{1 + x + y} Ξ1{x⊕ y}

NOT Ξ1{1 + x} Ξ1{x⊕ 1}

7.9.4 Linear decision diagrams

A linear decision diagram derived from the linear word-level Reed-Muller ex-
pression (Equation 7.13) is a linear tree with nodes in which the multiple
Davio expansion is implemented:

f = fj(xi = 0)⊕ xifj(xi = 1), (7.14)

where j = 1, 2, . . . , r. The term w∗
i x

ij

i of a word-level sum-of-products (7.13)
carries information about:

� The number of required Davio expansions with respect to variables xi,
� The functions fj to which Davio expansion has been applied.

Example 7.23 Consider the term 5x1 in a word-level Reed-Muller expres-
sion. We observe that the Davio expansion with respect to variable x1 is used
twice as indicated by coefficient 5: the number of 1s in 5 = 101 is equal to 2,
1 + 0 + 1 = 2. This coefficient also carries information about the function of
action: Davio expansion is applied to f1 and f3

© 2005 by CRC Press

(Figure 7.23).
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f2 
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The coefficient w∗ = 5 = 101 carries infor-
mation about the functions to which Davio
expansion has been applied to (f1 and f3)

f1 = f1(x1 = 0) ⊕ x1f1(x1 = 1)
f3 = f3(x1 = 0) ⊕ x1f3(x1 = 1)

FIGURE 7.23
Davio expansion is applied to f1 and f3 (Example 7.23).

In general, a linear decision diagram includes a 2n nonterminal and 2n + 1
terminal nodes as follows from Equation 7.13.

Example 7.24 Apply Davio expansion (Equation 7.14) to the EXOR expres-
sion with respect to x1: f0 = fx1=0 ⊕ x1fx1=1. The right branch (first terminal
node) is a constant x1fx1=1 = 1 (Figure 7.24). The left branch leads to x2.
Next, expand with respect to x2: the right branch is x2f1 = 1 (second terminal
node) and the left branch is f0 = 0 (third terminal node).
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f = x1 ⊕ x2

f = Ξ1{x1 ⊕ x2}
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pD 

FIGURE 7.24
Linear decision diagram for the EXOR function (Example 7.24).

For circuits, different linear word-level logics and diagrams can be used.
Especially simple is the application of linear word-level sum-of-products and
Reed-Muller expressions. This “mixed” technique can be used, that leads to
linear decision diagrams with Shannon and Davio expansion nodes.

7.10 Summary

Linearization is a technique aimed at conversion of an arbitrary multiinput
multioutput switching function into a linear word-level expression and, even-
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tually, in a linear decision diagram. The linear decision diagram is then em-
bedded in a spatial structure, N -hypercube.

1. The linearization technique

� Is based on grouping several switching functions into a word. The
grouping can be done on various algebraic basis (arithmetic, sum-
of-products, Reed-Muller) that provides linearity over correspond-
ing arithmetic or logic operations.

� Can be implemented for any unary function based on Theorems 7.2,
7.3, and 7.4, on this basis, for multioutput functions.

� Provides the significant simplification of embedding decision dia-
grams in hypercubes.

� Provides the additional resources to massive parallel computation on
words instead of bits.

� Enhance possibilities for verification of spatial structures.

2. There are three levels of parallelism in linear word-level expressions in
spatial dimensions:

� Parallelism of information flows on a hypercube,
� Parallelism of word-level computation of functions, and
� Parallelism of computing the assignments of variables.

The hypercube structure and word-level linear expressions are inherently
parallel in implementation and computation. This property is integrated
into the nodes of decision diagrams and hypercube structures.

3. The advantages and disadvantages of the linearization technique are as
follows:

Arithmetic word-level linear expressions are linear polynomial expan-
sions. While the class of single-output functions that can generate
linear expressions is very limited, the word-level combination of sev-
eral functions can produce linear expression even if involved func-
tion does not have linear representations. To represent an arbitrary
switching function by linear word-level expression, a special tech-
nique based on adding extra bits, or garbage functions, is applied.
Moreover, additional resources are required for masking operators
and encoding of coefficients to alleviate the effect of large values.
The node of linear word-level diagram implements the arithmetic
analog of Davio expansion with arithmetic operations. The number
of intermediate nodes (processing elements) and terminal nodes in
linear diagram does not exceed n and n+ 1 correspondingly, where
n is a number of variables.

Sum-of-products word-level linear expressions provides the linearity of
word-level representation over OR operation. The node of linear
word-level diagram implements the word-level Shannon expansion
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that is a multiple-input multiplexor. The problem of large coeffi-
cients is not present here. However, masking operator is applied
to recover the initial functions (bits) from the word. The number
of intermediate nodes (processing elements) and terminal nodes in
linear diagram not exceed 2n and 2n + 1 correspondingly.

Reed-Muller word-level linear expressions are utilized for representa-
tion of Reed-Muller expressions (EXOR circuits). The number of
intermediate nodes (processing elements) and terminal nodes in
linear diagram does not exceed 2n and 2n + 1 correspondingly.

4. The above techniques for word-level linearization utilized the properties of
linearization by Theorems 7.2, 7.3, and 7.4.

5. Criteria to choose the method of linearization are as follows:

� Function of the node in the computing structure,
� Preferences on the type of operation and masking operator, and
� Library of available elements or logic gates.

In conclusion, the linear models of word-level computation provide the
necessary level of parallelism and are perfect candidates for massive

7.11 Problems

Problem 7.1 1 is equal
to 1 if variable x2 is greater than x1, and output y2 is set if both of variables
x1 and x2 are equal. Construct:

(a) An arithmetic linear expression for each gate,
(b) An arithmetic linear expression for the whole circuit.

Use Example 7.2 and Example 7.3.

Problem 7.2 Given the linear arithmetic expression 5x1 + x2 + 4x3 + 5, find
two masking operators which extract the switching functions 1⊕ x1 ⊕ x2 and
x1 ∨ x3. You may use Example 7.4 for reference.

Problem 7.3 Construct a linear decision diagram for the level of a circuit
presented in Figure 7.25b.

Problem 7.4 Restore ta circuit level containing of two gates, f1 and f2,
represented by a linear decision diagram in Figure 7.25c, if f1 = Ξ3{f}, and
f1 = Ξ1{f}.
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Chapter 11.
parallel computations on 2-D and 3-D structures as it will be shown in
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FIGURE 7.25
Circuit for Problem 7.1 (a), Problem 7.3 (b), and a linear decision diagram
for Problem 7.4 (c).

Problem 7.5 For the linear decision diagram given in Figure 7.25c, evaluate
the output value given the input assignment x1x2 = 10.
HINT: Use the method from Example 7.7.

Problem 7.6 Given the two-input multiplexer realizing the switching func-
tion f = sx1 ∨ sx2, construct:

(a) Word-level sum-of-products expression and,
(b) Propose a simple BDD-based implementation,
(c) A N -hypercube model.

Problem 7.7 Linear
decision diagram of linear arithmetic expressions and N -hypercube for each
level of the circuit are given in Figure 7.26b,c.

(a) Construct linear logic expressions (use the appropriate logic operation)
(b) Restore sum-of-products expression.

Problem 7.8 Consider linear decision diagrams for the three-input majority
1 +x2 +

x3 ≥ 2, is implemented by the circuit, whose level is described by the linear
arithmetic expressions:

Li =
{

(20 + 22)x1 + (20 + 24)x2 + (22 + 24)x3, i = 1,
20y1 + 20y2 + 20y3, i = 2.

(a) Find the masking operators for the corresponding logic functions of the
first and the second level.

(b) Evaluate the value of f given assignments 001, 101, 111 of x1, x2 and x3.

© 2005 by CRC Press

Consider a full-adder 3-D presented in Figure 7.26a.

circuit presented in Figure 7.27. The three-input majority function, x
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FIGURE 7.26
Full adder circuit (a) and its linear decision diagrams (b) for Problem 7.7.

Problem 7.9
and N -hypercubes(Figure 7.28b), restore the word-level logic expressions (the
type of logic is shown in the nodes) and the initial functions for:

(a) L1, assuming that logic operation in the nodes is
�⊕

(b) L2, assuming that logic operation in the nodes is
�∨

(c) L3, assuming that logic operation in the nodes is
�⊕

(d) L4, assuming that logic operation in the nodes is
�∨
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FIGURE 7.27
Three-input majority function (a) and corresponding linear decision diagrams
(b) for Problem 7.8.

Problem 7.10 The 2-level AND/OR implementation of 2-input multiplexer

multiplexer using binary decision diagram technique and compare the results.

7.12 Further reading

Linearization technique. An elegant method for linearization of AND, OR,
EXOR functions of an arbitrary number of variables was introduced by Malyu-
gin [2]. The method is based on the so-called the algebra of corteges. Different

Additional references

Linear transformation of variables is a method for optimization of the
representation of a switching function. In terms of spectral technique, linear
transformation of variables is a method to reduce the number of nonzero co-
efficients in the spectrum of a switching function. This approach is developed
in [1, 3, 4].
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and a set of linear decision diagrams are given in Figure 7.29. Represent the

can be found in Chapter 9.
aspects of linearization technique can be found in [5].
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FIGURE 7.28
Three-input circuits: word-level linear decision diagrams (a) and N -
hypercubes (b) for Problem 7.9.
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FIGURE 7.29
AND/OR circuit to implement two-input multiplexer (a) and corresponding
set of linear decision diagrams (b) for Problem 7.10.
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Event-Driven Analysis of
Hypercube-Like Topology

This chapter contributes to the field of logic design of nanoICs that analyzes
behavior of computing structures in terms of change. The notation of elemen-
tary change in a system is useful at some phases of analysis and synthesis. This
model is serviceable in the study of “static” and “dynamic” changes in a cir-
cuit, caused by an “event” (e.g., a fault on the line of a circuit). This analysis
is event-driven, and the mathematical tool for it is logic differential calculus.
Differential operators, of which the basic one is Boolean difference, provide
an opportunity for analysis of circuit properties, such as flexibility (ability
to be modified without compromising functionality), symmetry, monotony,
i.e., detection of properties that are prerequisite for optimization. It provides
an additional opportunity for analysis of circuit behavior (consequences of
“events”, sensitivity analysis, testability, etc.) In this chapter, we discuss:

� The definition of a mathematical tool for detection of an “event” (change)
in a binary system, a Boolean difference of a switching function;

� Differential operators for analysis of the properties and behavior of swit-
ching functions; and

� Data structures and technique for computing differential operators.

Event-driven analysis is applied to

� Sensitivity and observability analysis;
� Testing;
� Symmetry recognition;
� Power dissipation estimation; and
� Verification.

The Boolean difference is a certain analog of the Taylor cofactor of an algebraic
function. The analog of Taylor expansion on switching theory is Reed-Muller
expansion, as well as arithmetic and Walsh forms. Thus, Boolean difference
can be utilized to calculate Reed-Muller, arithmetical and Walsh coefficients.
On the other hand, Taylor expansion gives a useful interpretation of spectral
technique because of the structure of each spectral coefficient in terms of
change.

255© 2005 by CRC Press
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In this chapter, we briefly introduce various aspects of applied event-driven
analysis. The “Further Reading” Section provides references for extended
reading on the subject.

In Section 8.1, the formal model of change, a Boolean difference, is given.
The basics of technique for computing Boolean differences are the focus of
Section 8.2. The models for independent and dependent changes are intro-
duced in Section 8.3. In Section 8.4, the computing of change in matrix form
is presented. To detect the direction of change, special operators are utilized
(Section 8.5). The technique of local computing via Boolean differential op-
erators is given in Section 8.6. Taylor expansion, a polynomial model for
representation of various forms of a switching function relevant to concept of
change, is the subject of Section 8.7 (Reed-Muller expansion) and Section 8.8
(arithmetic expression). After the Summary (Section 8.9), a set of problems
is provided (Section 8.10). Finally, additional information on state-of-the-art
logic differential calculus is referred to in Section 8.11.

8.1 Formal definition of change in a binary system

To model a binary system in terms of change, we need to:

(a) Specify a formal notation of change;
(b) Develop the rules to manipulate this model to describe the system behav-

ior; and
(c) Apply this technique to solving the problems of logic design.

In this section, we give the formal definition of change, and introduce a tech-
nique of detection of change using various data structures.

8.1.1 Detection of change

Detection of a change in a binary system. A signal in a binary system
is represented by two logical levels, 0 and 1. Let us formulate the task as
detection of the change in this signal. The simplest solution is to deploy an
EXOR operation, modulo 2 sum of the signal si−i before an “event” and the
signal si after the “event” (e.g., a faulty signal), i.e., si−i ⊕ si.

Example 8.1
tions of the logical values or signals 0 and 1 are analyzed.

It follows from this example that if not change itself but direction of change
is the matter, then two logical values 0 and 1 can characterize the behavior of
the logic signal si ∈ {0, 1} in terms of change, where 0 means any change of
a signal, and 1 indicates that one of two possible changes has occurred 0→ 1
or 1→ 0.
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1 ⊕ 1 = 0

Case 3: Change 0:→ 1
Detection:
0 ⊕ 1 = 1

Case 4: Change 1:→ 0
Detection:
1 ⊕ 0 = 1

FIGURE 8.1
The change of a binary signal and its detection (Example 8.1).

Detection of change in a switching function. Let the i-th input of a
switching function have been changed from the value xi to the opposite value,
xi. This causes the circuit output to be changed from the initial value. Note
that values f(xi) and f(xi) are not necessarily different. The simplest way
to recognize whether or not they are different is to try to find a difference
between f(xi) and f(xi).

Model of single change: Boolean difference. The Boolean difference of
a switching function f of n variables with respect to a variable xi is defined
by equation

∂f

∂xi
= f(x1, . . . , xi, . . . , xn)︸ ︷︷ ︸

Initial function

⊕ f(x1, . . . , xi, . . . , xn)︸ ︷︷ ︸
Function with xi complemented

(8.1)

It follows from the definition of Boolean difference that

∂f

∂xi
= f(x1, . . . , 0, . . . , xn)︸ ︷︷ ︸

xi is replaced with 0

⊕ f(x1, . . . , 1, ..., xn)︸ ︷︷ ︸
xi is replaced with 1

(8.2)

= fxi=0 ⊕ fxi=1.

Therefore, the simplest (but optimal) algorithm to calculate the Boolean dif-
ference of a switching function with respect to a variable xi includes two
steps:

(a) Replace xi in the switching function with 0 to get a cofactor fxi=0; simi-
larly, replacement of xi with 1 yields fxi=1, and
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(b) Find modulo 2 sum of the two cofactors.

 

 

∂ f / ∂ xi  =0 

f = 0 f = 0 ∂ f / ∂ xi= 0 

f = 1 f = 1

∂ f / ∂ xi= 1 

 

Behavior of switching function ∂f
∂xi

if (fxi=0 = 0) and (fxi=1 = 0) then 0
if (fxi=0 = 0) and (fxi=1 = 1) then 1
if (fxi=0 = 1) and (fxi=1 = 0) then 1
if (fxi=0 = 1) and (fxi=1 = 1) then 0

FIGURE 8.2
The formal description of change by Boolean difference.

Figure 8.2 gives an interpretation of Boolean difference (Equation 8.1).

Example 8.2 There are four combinations of possible changes of the output
function f = x1 ∨ x2 with respect to input x1 (x2). The Boolean differences
of a switching function f with respect to x1 and x2 are calculated by Equation
8.2 in Figure 8.3.

 

x1 

x2 

f 

f = x1 ∨ x2

Boolean difference with respect to x1

∂f

∂x1
=

∂(x1 ∨ x2)

∂x1

= (x1 ∨ x2) ⊕ (x1 ∨ x2)

= (0 ∨ x2) ⊕ (1 ∨ x2) = x2

Boolean difference with respect to x2

∂f

∂x2
=

∂(x1 ∨ x2)

∂x2

= (x1 ∨ x2) ⊕ (x1 ∨ x2)

= (x1 ∨ 0) ⊕ (x1 ∨ 1) = x1

FIGURE 8.3
Computing Boolean differences for a two-input OR gate (Example 8.2).

The Boolean difference (Equation 8.1) possesses the following properties:

� The Boolean difference is a switching function calculated by the Exclusive
OR operation of the primary function and the function derived by com-
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plementing variable xi; otherwise, it can also be calculated as EXOR of
co-factors fxi=0 and fxi=1.

� The Boolean difference is a switching function of n − 1 variables x1, x2,
. . . , xi−1, xi+1, . . . , xn, i.e., it does not depend on variable xi.

� The value of the Boolean difference reflects the fact of local change of the
switching function f with respect to changing the i-th variable xi: the
Boolean difference is equal to 0 when such change occurs, and it is equal
to 1 otherwise.

The Boolean difference (Equation 8.1) has a number of limitations, in par-
ticular: it cannot recognize the direction of change and cannot recognize the
change in a function while changing a group of variables. This is the reason
to extend the class of differential operators.

Model for simultaneous change: Boolean difference with respect to
vector of variables. Consider the model of change with respect to simulta-
neously changed values of input signals. This model is called Boolean differ-
ence with respect to vector of variables. For a switching function f Boolean
difference of n variables x1 . . . xn with respect to the vector of k variables
xi1 , . . . , xik

, i1, . . . , in ∈ {1, . . . , n}, is defined as follows

∂f

∂(xi1 , xi2 , . . . , xik
)

=

Initial function︷ ︸︸ ︷
f(x1, . . . , xi1 , xi2 , . . . , xik

, . . . , xn)

⊕ f(x1, . . . , xi1 , xi2 , . . . , xik
, . . . , xn)︸ ︷︷ ︸

Function while xi1 ,xi2 ,...,xik

(8.3)

Given k = 2, it follows from Equation 8.3 that

∂f

∂(xi, xj)
= f(x1, . . . , xi, xj , . . . , xn)⊕ f(x1, . . . , xi, xj , . . . , xn) (8.4)

(8.5)

Example 8.3 Calculate Boolean difference of the switching function f =
x1x2 ∨ x3 with respect to a vector of variables using Equation 8.4:

∂f

∂(x1, x2)
= f(x1, x2, x3)⊕ f(x1x2x3 = (x1x2 ∨ x3)⊕ (x1x2 ∨ x3)

= x1x2 ⊕ x3 ⊕ x1x2x3 ⊕ x1x2 ⊕ x3 ⊕ x1x2x3 = (x1x2 ⊕ x1x2)x3

= x1x2x3 ∨ x1x2x3

ables of the function considered above using N -hypercube.
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Figure 8.4 illustrates the Boolean differences with respect to vectors of vari-
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∂(x1,x2)

with respect to vector of
variables (x1, x2)

∂f

∂x1
⊕ ∂f

∂x2
⊕ ∂2f

∂x1∂x2

= x2x3 ⊕ x1x3 ⊕ x3

= (x1 ⊕ x2)x3

= x1x2x3 ∨ x1x2x3

FIGURE 8.4
Interpretation of a Boolean difference with respect to a vector of variables by
N -hypercube (Example 8.4).

Model of multiple change: k-ordered Boolean differences. Multiple,
or k-ordered, Boolean difference is defined as

∂kf

∂xi1∂xi2 ...∂xik

=
∂

∂xi1

(
∂

∂xi2

(
...

∂f

∂xik

)
...

)
.︸ ︷︷ ︸

Either way

(8.6)

It follows from Equation 8.6 that

� High-order differences can be obtained from single-order differences;
� The order of calculation of the Boolean differences does not influence the

result.

Let k = 2, then the second order Boolean difference with respect to variables
xi and xj will be

∂2f

∂xi∂xj
=

∂

∂xi

(
∂

∂xj

)
=

∂

∂xj

(
∂

∂xi

)
︸ ︷︷ ︸

Either way

. (8.7)

Relationship of a Boolean difference with respect to vector of vari-
ables and multiple Boolean differences. There is a relationship between
the second order Boolean difference (Equation 8.7) and Boolean difference
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∂

∂x1
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Boolean difference with re-
spect to vector of variables (x1, x2)

∂f

∂(x1, x2)
=

∂f

∂x1
⊕ ∂f

∂x2
⊕ ∂2f

∂x1∂x2

= x2x3 ⊕ x1x3 ⊕ x3

= (x1 ⊕ x2)x3

= x1x2x3 ∨ x1x2x3

FIGURE 8.5
Measuring the input sensitivity of a circuit in the case of simultaneous change
of input signals (Example 8.3).

with respect to vector of two variables (Equation 8.4)⎧⎪⎨⎪⎩
∂f

∂(xi,xj)
= ∂f

∂xi
⊕ ∂f

∂xj
⊕ ∂2f

∂xi∂xj

∂2f
∂xi∂xj

= ∂f
∂xi
⊕ ∂f

∂xj
⊕ ∂f

∂(xi,xj)

(8.8)

This relationship for two variables can be generalized for k ≤ n variables,
i.e., between multiple or k-ordered Boolean difference (Equation 8.6) and
Boolean difference with respect to vector of k variables (Equation 8.3).

Example 8.4 Calculation of 2-ordered Boolean difference of the switching
function f = x1x2 ∨x3 with respect to variables x1, x2 and the vector of vari-

, 2
∂f

∂(x1,x2)
,

Equation 8.8 was used.
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ables (x x ), is shown in Figure 8.4. To calculate Boolean difference
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8.1.2 Symmetric properties of Boolean difference

By inspection of Equation 8.1, one can observe the symmetry in the compu-
tation:

∂fxi=0

∂xi
=

∂fxi=1

∂xi
.

The signal graph of the computation has a symmetrical structure well-known
as “butterfly” (in signal processing) The graph input is the truth vector F
of the given switching function f , and the result is the truth vector of the
Boolean difference.

Example 8.5 Figure 8.6 illustrates the flowgraphs whose input is the truth
column vector F of an initial function f , output is truth column vector of
Boolean differences ∂F

∂xi
, i=1,2,3, and ∂3F

∂x1∂x2∂x3
, and EXOR operation is

implemented in the nodes.

One Two Four
8-point butterfly 4-point butterfly 2-point butterfly

symmetry symmetries symmetries

 

∂F
∂x1

 

∂F
∂x2

 

 
 

 ∂F
∂x3

(a) (b) (c)

FIGURE 8.6
Illustration of symmetric properties of Boolean difference by flowgraphs for
switching function of three variables: with respect to the first variable (a),
the second variable (b), and the third variable (c) (Example 8.5).

We observe from the above example that

� The Boolean difference is symmetric with respect to xi;
� Symmetries are represented by the “butterfly” configuration of the signal

graphs.

© 2005 by CRC Press

Note that symmetries of the multiple Boolean differences as shown in Figure
8.7 are composed of the Boolean differences with respect to variables.
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8.2 Computing Boolean differences

In this section, the technique for computation of Boolean differences using a
decision tree and an N -hypercube is introduced. There are two approaches:

The first approach is based on interpretation of decision tree andN -hypercube
which nodes implement Shannon expansion. This attractive technique
allows us to get values of Boolean differences without extra manipulation
of the data structure (tree or hypercube);

The second approach is oriented to the Davio tree and a corresponding N -
hypercube structure.

Both approaches include two phases: (a) computing of Boolean differences,
and (b) analysis of behavior of the switching function in terms of change.

8.2.1 Boolean difference and N -hypercube

The problem of computation of a decision tree or N -hypercube is formulated
as the analysis of the behavior of data structure in terms of change. The
example below introduces this technique.

Example 8.6
tion x1x2 ∨ x3. To analyze the behavior of this function, let us detect the
changes as follows.

� Boolean difference with respect to variable x1 is ∂f
∂x1

= x2x3. The logic
equation x2x3 = 1 yields the solution x2x3 = 10. This specifies the
conditions to detect the changes at x1: when x2x3 = 10, a change at x1

cause a change at f . This can be seen on the decision tree and on the
N -hypercube (Figure 8.7a).

� Boolean difference with respect to variable x2 is ∂f
∂x1

= x1x3. The logic
equation x2x3 = 1 specifies the condition of observation as a change at
f while changing xi: x2x3 = 10(Figure 8.7b).

� Boolean difference with respect to variable x3 is ∂f
∂x1

= x1x2. The logic
equation x1x2 = 1 determines the condition: x1x2x3 = {00, 01, 10} (Fig-
ure 8.7c).

8.2.2 Boolean difference, Davio tree, and N -hypercube

Here, we show how to use

� The Davio decision tree, and
� The N -hypercube which implements positive Davio expansion in the nodes

© 2005 by CRC Press

The N -hypercube in Figure 8.7 represents the switching func-
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FIGURE 8.7
Interpretation of Boolean differences by N -hypercube: Boolean difference
with respect to x1 (a), x2 (b), and x3 (c) (Example 8.6).

to compute Boolean differences. Let us rewrite positive Davio expansion in
the form

f = f |xi=0 ⊕ xi (f |xi=0 ⊕ f |xi=1)

= f |xi=0︸ ︷︷ ︸
Left branch

⊕ xi
∂f

∂xi︸ ︷︷ ︸
Right branch

It follows from this form that:

� Branches of the Davio decision tree carry information about Boolean dif-
ferences;

� Terminal nodes are the values of Boolean differences for corresponding
variable assignments.

� Computing of Reed-Muller coefficients can be implemented on the Davio
decision tree as a data structure;

� The Davio tree includes values of all single and multiple Boolean differences
given a variable assignment x1x2 . . . xn = 00 . . . 0. This assignment cor-
responds to the calculation of Reed-Muller expansion of polarity 0, so in
the Davio tree, positive Davio expansion is implemented at each node.
We do not consider other polarities with respect to the N -hypercube
representation, though it should be noted that any polarity can be rep-
resented by the corresponding Davio tree (with positive and negative
expansion at the nodes).

� Representation of a switching function in terms of change is a unique repre-
sentation; it means that the corresponding decision diagram is canonical;

© 2005 by CRC Press
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� The values of terminal nodes correspond to coefficients of logic Taylor ex-
pansion.

The Davio tree can be embedded in an N -hypercube, and the above-
mentioned properties are valid for that data structure as well. In addition,
the N -hypercube enables computing of the Reed-Muller coefficients/Boolean
differences, assuming that the processing is organized using parallel-pipelined,

Example 8.7
hypercube for an arbitrary switching function of two and three variables.

Example 8.8 Let f = x1 ∨ x2. The values of Boolean differences given
assignments x1x2 = {00, 01, 10, 11} are: f(00) = 0, ∂f(01)

∂x1
= x2 = 1, ∂f(10)

∂x2
=

x1 = 1, and ∂2f(11)
∂x1∂x2

= 1. They correspond to the terminal nodes of the Davio

One can conclude from Example 8.8 that data structure in the form of a
Davio decision tree carries information about

� Reed-Muller representation of switching functions, and
� Representation of switching functions in terms of change.

The edges and values in terminal nodes of a Davio decision tree and N -
hypercube carry information about the behavior of a switching function. For

demonstrate the relationship of Boolean differences and logic Taylor expansion
(Section 8.7). Moreover, manipulation of a decision tree can be interpreted
in terms of change: reduction of the decision tree to a decision diagram leads
to minimization of Reed-Muller expression and can be used as a behavioral
model of this function in terms of change.

8.3 Models of logic networks in terms of change

In this section, we consider the simplest behavior models of combinational
circuits in terms of change. The problem is formulated as follows: given a
multiinput multioutput combinational circuit, analyze its behavior in terms
of change.

8.3.1 Event-driven analysis of switching function properties:
dependence, sensitivity, and fault detection

Consider a binary system with n inputs and, for simplicity’s sake, with one
output. Suppose that input signals are changed independently. The problem

© 2005 by CRC Press

tree and N -hypercube (Figure 8.9).

example, let us compare the decision trees in Figure 8.7 and Figure 8.9. They

or systolic processing (see Chapter 10 for details).

Figure 8.8 shows a Davio decision tree and corresponding N -
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FIGURE 8.8
Computing Boolean differences by Davio decision tree and N -hypercube for
a switching function of two (a) and three (b) variables (Example 8.7).

is to analyze the behavior of this system in terms of change. Boolean dif-
ference (Equation 8.1) has the ability to detect dependence of a function f
on a variable xi, i.e., the sensitivity of switching function f to change at xi.
Formally, the unconditional independence/dependence of output on the input
xi can be detected as follows:

� Switching function f is unconditionally independent of i-th variable xi if
∂f
∂xi
≡ 0. This is because

if
∂f

∂xi
= 0, then f(x1, . . . , xi, . . . , xn) = f(x1, . . . , xi, . . . , xn).
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FIGURE 8.9
Computing Boolean differences of the switching function f = x1∨x2 (Example
8.8).

� Switching function f is unconditionally dependent on i-th variable xi if
∂f
∂xi
≡ 1. This is because

if
∂f

∂xi
= 1, then f(x1, . . . , xi, . . . , xn) �= f(x1, . . . , xi, . . . , xn).

Therefore, given a switching function,

(a) ∂f
∂xi

= 0 specify the conditions (variables assignments) under which f is
independent on xi; and

(b) ∂f
∂xi

= 1 generates the conditions under which f is dependent on xi.

Example 8.9 The technique of calculation of Boolean differences and analy-

Behavior of elementary functions. Here we show that the differential
operators considered above allow us to effectively extract information about
the behavior of a circuit. For simplification, we consider a typical library of
gates.

three types of Boolean differential operators: Boolean difference with respect
to a variable, vector of variables and multiple Boolean difference. Consider
four cases:

© 2005 by CRC Press

Table 8.1 summarizes results of analysis of change in elementary gates using

in Figure 8.10.
sis of sensitivity of a switching function to changes of variable values is given
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Boolean difference
with respect to x1

∂f

∂x1
= f(0, x2, x3) ⊕ f(1, x2, x3)

= (0x2 ∨ x3) ⊕ (1x2 ∨ x3)

= x3 ⊕ x2 ∨ x3

= x3 ⊕ (x2 ⊕ 1)(x3 ⊕ 1) ⊕ 1

= x2 ⊕ x2x3 = x2x3

By analogy, Boolean difference
with respect to x2 and x3

∂f

∂x2
= x1 ⊕ x1x3 = x1x3

∂f

∂x3
= x1x2 ⊕ 1 = x1x2

Conditions of dependence
• on x1:
x2 ⊕ x2x3 = 1, x2 = 1, x3 = 0
• on x2:
x1 ⊕ x1x3 = 1, x1 = 1, x3 = 0
• on x3:
x1x2 ⊕ 1 = 1, x1 = 0, x2 = 0

Conditions of independence
• on x1:
x2 ⊕ x2x3 = 0, {x2 = 0, x3 =
0}, {x2 = 0, x3 = 1}, {x2 =
1, x3 = 1}
• on x2:
x1 ⊕ x1x3 = 0, {x1 = 0, x3 =
0}, {x1 = 0, x3 = 1}, {x1 =
1, x3 = 1},
• on x3:
x1x2 ⊕ 1 = 0, x1 = 1, x2 = 1.

FIGURE 8.10
Measuring of sensitivity of the output to changes at the inputs of a circuit (a)
and N -hypercube (b) in terms of change (Example 8.9).

Case 1: The dependence of switching function f on either variable xi or xj

that is ∂f
∂xi

= 1 and ∂f
∂xj

= 1.
Case 2: The dependence of switching function f on either variable xi or xj

but not both. This case is formalized as

∂f

∂xi
∨ ∂f

∂xj
= 1. (8.9)
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TABLE 8.1

Boolean differences of two-input
switching function functions.

∂f
∂x1

∂f
∂x2

∂f
∂(x1,x2)

∂2f
∂x1∂x2

AND x2 x1 x1 ∼ x2 1
OR x2 x1 x1 ∼ x2 1
EXOR 1 1 0 0
NOR x2 x1 x1 ∼ x2 1
NAND x2 x1 x1 ∼ x2 1

Case 3: The dependence of switching function f on either variable xi or xj

or both xi and xj simultaneously. This case is described as

∂f

∂xi∂xj
∨ ∂f

∂xi
∨ ∂f

∂xj
= 1. (8.10)

Case 4: The dependence of switching function f on both variables xi and xj ,
i.e., these variables changing simultaneously. In this case, the following
formula is used:

∂f

∂(xi, xj)
=

∂f

∂xi
⊕ ∂f

∂xj
⊕ ∂2f

∂xi∂xj
= 1 (8.11)

Example 8.10
Note Equations 8.9, 8.10, and 8.11 generate conditions of

independence when the right part is equal to 0.

Fault detection. Consider the simplest case of application of Boolean dif-
ferences to fault detection.

Let us analyze what happens if a fault has occurred in a line (connection)
that transmits binary signals in a circuit. Stuck-at-0 or stuck-at-1 is a fault
type that causes a wire to be stuck-at-zero or one respectively. The conditions
to observe the fault at input xi and its transportation to output are described
by the Boolean equation ∂f

∂xi
= 1. Solutions to the equations xi

∂f
∂xi

= 1 and
xi

∂f
∂xi

= 1 specify the tests for detecting both stuck-at-0 and stuck-at-1 faults.

Example 8.11
vector F and conditions to detect stuck-at-0 and stuck-at-1 faults. The tests
to detect the fault are shown as well.

© 2005 by CRC Press

The OR function analysis based on Table 8.1 is given in Fig-
ure 8.11. that

Figure 8.12 shows the switching function in the form of truth
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f = x1 ∨ x2

Case 1
The dependence of switching function f on
either variables xi or xj .

• Input x1: x2 = 1,
{(x1 = 0, x2 = 0), (x1 = 1, x2 = 0)}, and

• Input x2: x1 = 1,
{(x1 = 0, x2 = 0), (x1 = 0, x2 = 1)}

Case 2
The dependence of switching function f on
either x1 or x2.
Input x1 or x2: x1 ∨ x2 = 1,
{(x1 = 0, x2 = 0), (x1 = 0, x2 = 1), (x1 = 1, x2 = 0)}

Case 3
The dependence of switching function f on
either x1 or x2 or both x1 and x2 simultaneously.
Input x1 or x2 or both x1 and x2: 1 ∨ x1 ∨ x2 = 1,
{(x1 = 0, x2 = 0), (x1 = 0, x2 = 1), (x1 = 1, x2 = 0),
(x1 = 1, x2 = 1)}

Case 4
The dependence of switching function f on
both variables x1 and x2

Inputs x1 and x2: x1 ∼ x2 = 1,
{x1 = 0, x2 = 0}

FIGURE 8.11
Event-driven analysis of OR gate (Example 8.10).

8.3.2 Useful rules

Rule 1. A complement of a switching function f does not change the Boolean
difference with respect to variable xi:

∂f

∂xi
=

∂f

∂xi
.

For instance, the tests for AND and NAND gates are identical.
Rule 2. Given a constant function c, ∂c/∂xi = 0.

Rule 3. (Operations with a constant.) Let c be a constant and f be a swit-
ching function. Then

∂(cf)
∂xi

= c
∂f

∂xi
,

∂(c ∨ f)
∂xi

= c
∂f

∂xi
, and

∂(c⊕ f)
∂xi

=
∂f

∂xi

These formulas describe situations when the constant value feeds one of
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the inputs of AND, OR, EXOR gate (Figure 8.13).
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Initial N -hypercube
f = x1x2x3 ∨ x1x2x3

∨ x1x2x3 ∨ x1x2x3

x1x2x3 F x3
∂F

∂x3
x3

∂F
∂x3

0 0 0 0 0 1
0 0 1 1 1 0
0 1 0 1 0 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 0 1 0
1 1 0 0 0 1
1 1 1 1 1 0

010 
110

111 

101

100 000 

011 

001 

Stuck-at-0
Stuck-at-0 at x3 causes each value
f |x3=1 to be changed to f |x3=0

Equation to find test to detect
stuck-at-0 faults:

x3
∂F

∂x3
= 1

Solution: tests {001, 011, 101, 111}

010 110

111 

101

100000 

011 

001 

Stuck-at-1
Stuck-at-1 at x3 causes each value
f |x3=0 to be changed to f |x3=1

Equation to find test to detect
stuck-at-1 faults:

x3
∂F

∂x3
= 1

Solution: tests {000, 010, 100, 110}

FIGURE 8.12
Deriving the tests to detect stuck-at-0 and stuck-at-1 faults (Example 8.11).

Rule 4. i

∂(f ⊕ g)
∂xi

=
∂f

∂xi
⊕ ∂g

∂xi
,

∂(f ∧ g)
∂xi

= f
∂g

∂xi
⊕ g

∂f

∂xi
⊕ ∂f

∂xi

∂g

∂xi
,

∂(f ∨ g)
∂xi

= f
∂g

∂xi
⊕ g

∂f

∂xi
⊕ ∂f

∂xi

∂g

∂xi
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8.14):
Let f and g be switching functions that depend on x . Then (Figure
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FIGURE 8.13
Boolean difference with respect to variable xi of AND (a), OR (b), and EXOR
operation (c) while the second input is a constant.
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FIGURE 8.14
Boolean difference with respect to variable xi on logical operations of swit-
ching f of n variables xi, i = 1, 2, . . . , n: EXOR operation (a), AND operation
(b), and OR operation (c).

Rule 5. Multilevel circuit analysis includes computing of Boolean difference
with respect to a function z. There are three cases:

� Let z = x1 ∧ x2, then

∂f

∂(xi ∧ xj)
=

∂f

∂xi
⊕ ∂f

∂xj
⊕ ∂2f

∂xi∂xj
. (8.12)

� Let z = x1 ∨ x2, then

∂f

∂(xi ∨ xj)
=

∂f

∂xi
∨ ∂f

∂xj
∨ ∂f

∂(xi, xj)
. (8.13)

� Let z = x1 ⊕ x2 then

∂f

∂(xi ⊕ xj)
=

∂f

∂xi
∨ ∂f

∂xj
. (8.14)
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In Figure 8.15, these three situations are interpreted. Note that the
graphical interpretation supposes that Boolean differences are calculated
for inputs xi and xi.

Example 8.12 Equations 8.12, 8.13, and 8.14 are illustrated in Figure
8.15.
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∂(xi ⊕ xj)
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∨ ∂f
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FIGURE 8.15
Boolean differences for AND (a), OR (b), and EXOR (c) gates with simulta-
neously changed inputs x1 and x2 (Example 8.12).

8.3.3 Probabilistic model

The probabilistic model of implementations of switching functions has been
considered as twofold:

� Probabilistic models utilize pseudo-Boolean expression, e.g., arithmetic
polynomials, to evaluate the probabilities of logic signals in the network
of gates; and

� Probabilistic, or random, Boolean networks, also called Kauffman nets;

the simplest 1-D type of which are called stochastic cellular automata
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the latter share some properties of cellular automata (see Chapter 10),

(see “Further Reading” Section).
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The influence of the variable xi on the switching function f is the expecta-
tion of the Boolean difference with respect to xi:

Ii(f) = E

[
∂f(x)
∂xi

]
.

The expectation is equal to the probability of Boolean difference being at
value 1: P

{
∂f(x)
∂xi

= 1
}

. In this context, ∂f(x)/∂xi is also called distribution
D(xi).

Example 8.13 If the vector of Boolean difference contains four ones in the
truth table given n = 3, then P

{
∂f(x)
∂xi

= 1
}

= 0.5.

Calculation of distribution is relevant to evaluation of switching activity or
transition density of signals in the circuit, i.e., calculated as transition density
of each cube in sum-of-products form of the switching function f . The signal
probability is defined as the probability of a signal being at value 1. The
signal probabilities can be found by BDDs for each xi with respect to the
primary inputs of the circuits.

Given a circuit with n inputs xi, and transition densities D(xi). Transition
densities of all cubes are calculated by equation

D(cj) =
n∑

i=1

E

(
∂f(x)
∂xi

)
D(xi),

where D(xi) = p(xi) is the probability of xi being at value 1.

Example 8.14
D(xi) for a switching function of four variables (the independence of events
is assumed). For the simplification, the transition densities of the inputs are
are equal to signal probabilities of corresponded inputs.

Probabilistic properties of Boolean differences can be easy interpreted by
decision trees and N -hypercubes.

8.4 Matrix models of change

Symbolic manipulations using the rules above are costly in terms of time
complexity. Hence, efficient algorithms are needed to compute models based
on differential operators. In this section, matrix methods of computing are
introduced. These methods are useful in different design styles, in particular,
in massive parallel computing:

© 2005 by CRC Press

Figure 8.16 illustrates the computing of transition densities
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11 

01 

10 

00 

x1x2 

x3x4 

Given:
Signal probabilities:
p(x1) = 0.9
p(x2) = 0.3
p(x3) = 0.5
p(x4) = 0.8

Transition densities:
D(x1) = 0.9
D(x2) = 0.3
D(x3) = 0.5
D(x4) = 0.8

Transition densities of the cube
c = x2x3x4:

Dcj = p(x3)p(x4)D(x2)

+ p(x2)p(x4)D(x3)

+ p(x2)p(x3)D(x1)

= 0.5 · 0.8 · 0.3

+ 0.7 · 0.8 · 0.5

+ 0.7 · 0.5 · 0.9

= 0.715

FIGURE 8.16
Computing the transition densities for switching function (Example 8.14).

� Decision diagram technique,
� Cellular arrays, and
� Systolic arrays.

8.4.1 Boolean difference with respect to a variable in matrix
form

Boolean difference of a switching function f with respect to a variable xi is
defined by Equation 8.1. Let 2× 2 matrix D̃2 be

D̃2 =
[

0 1
1 0

]
Let us form the 2× 2 matrix D2 by the rule

D2 = I2 ⊕ D̃2 =
[

1 0
0 1

]
⊕

[
0 1
1 0

]
=

[
1⊕ 0 0⊕ 1
0⊕ 1 1⊕ 1

]
=

[
1 1
1 1

]

where I2 is the identity matrix.
The matrix form of a Boolean difference (Equation 8.1) with respect to the

i-th variable xi of a switching function f of n variable given by truth vector
F is defined as

∂F
∂xi

= Di
2nF, (8.15)
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where 2n × 2n matrix Di
2n is called a Boolean differential matrix generated

by the rule

Di
2n = I2i−1 ⊗

[
1 1
1 1

]
⊗ I2n−i , (8.16)

I2i−1 , I2n−i are the identity matrices.

Example 8.15 D1
22 and D1

23 are constructed by Equation 8.16 as follows:

D
(1)
22 = I21−1 ⊗D2 ⊗ I22−1

= 1⊗
[

1 1
1 1

]
⊗

[
1 0
0 1

]
=

[
I2 I2
I2 I2

]
=

[
1 1

1 1
1 1

1 1

]
;

D
(1)
23 = I21−1 ⊗D2 ⊗ I23−1

= 1⊗
[

1 1
1 1

]
⊗

[
1

1
1

1

]
=

[
I22 I22
I22 I22

]
=

⎡⎢⎢⎣
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1

⎤⎥⎥⎦
Example 8.16
respect to variable x1, x2 and x3 by multiplication of the truth vector F =
[f(0) f(1) . . . f(7)]T of the switching function function and the corresponding
matrix Di

2n for n = 3 and i = 1, 2, 3. Let f = x1x2∨x3 and F = [01010111]T .
Then

∂X
∂x1

= [00100010]T ,
∂f

∂x1
= x3(x1x2 ∨ x1x2),

∂X
∂x2

= [00001010]T ,
∂f

∂x2
= x3(x1x2 ∨ x1x2).

8.4.2 Boolean difference with respect to a vector of variables
in matrix form

Matrix technique can be used for computing of Boolean differences with re-
spect to a vector of k variables, and thus, multiple Boolean differences.

Matrix form of Boolean difference with respect to a vector of k
variables xi1 , ..., xik

, i1, ..., in ∈ {1, ..., n} (Equation 8.3) is defined as

© 2005 by CRC Press

Figure 8.17 illustrates computing the Boolean differences with
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∂f
∂x1

= (I21−1 ⊗
[

1 1
1 1

]
⊗ I23−1)F =

⎡⎢⎢⎣
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

⎤⎥⎥⎦  

∂f
∂x2

= (I22−1 ⊗
[

1 1
1 1

]
⊗ I23−2)F =

⎡⎢⎢⎣
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

⎤⎥⎥⎦  

∂f
∂x3

= (I23−1 ⊗
[

1 1
1 1

]
⊗ I23−3)F =

⎡⎢⎢⎣
1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

⎤⎥⎥⎦  

 
 

 

FIGURE 8.17
Matrix based computing of the Boolean differences and corresponding flow-
graphs of the algorithm; a node implements EXOR operation (Example 8.16).

∂F
∂(xi1 , xi2 , ..., xik

)
= F(xi1 , xi2 , ..., xik

)︸ ︷︷ ︸
Initial variables

(8.17)

⊕ F(xi1 , xi2 , ..., xik
).︸ ︷︷ ︸

Complemented variables

It follows from Equation 8.17 that

∂F
∂(xi, xj)

= F(x1, ..., xi, ..., xj , ..., xn)⊕ F(x1, ..., xi, ..., xj , ..., xn)

= F(x1, ..., 0, ..., 0, ..., xn)︸ ︷︷ ︸
xi isreplaced with 0

⊕F(x1, ..., 1, ..., 1, ..., xn)︸ ︷︷ ︸
xj isreplaced with 1

(8.18)

Calculation of the Boolean difference with respect to two variables can be
simplified using the equation:

∂F
∂(xi, xj)

=
∂F
∂xi

⊕ ∂F
∂xj

⊕ ∂2F
∂xi∂xj

(8.19)
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Matrix form of a multiple Boolean difference Given the truth vector
F of a switching function f of n variables x1...xn, its Boolean difference with
respect to k variables xi1 , ..., xik

is defined by

∂kF
∂xi1∂xi2 ...∂xik

=
∏

p∈{i1...ik}
D

(p)
2n F over GF (2) (8.20)

Example 8.17 The flowgraph of the calculation of the second-order Boolean
difference is given in Figure 8.18. Here, Equation 8.20 is used.

 

∂2F

∂x1∂x2
=

2∏
p=1

D(p)F = D
(2)

23 D
(1)

23 F

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
0
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIGURE 8.18
Flowgraphs for computing multiple Boolean difference ∂2F

∂x1∂x2
(Example 8.17).

8.5 Models of directed changes in algebraic form

While the Boolean difference indicates output (function) change with respect
to input (variables) changes, a directed Boolean difference investigates the
direction of the changes. There are direct and inverse Boolean differences
with respect to a variable for switching functions, in accordance with the
direction of changes of the values of the function and variables.

8.5.1 Model for direct change

The direct Boolean difference of a switching function f with respect to a
variable xi specifies the conditions of change of f and xi along the same
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directions:

∂f

∂+xi
=

∂f(0→ 1)
∂xi(0→ 1)

=
f(1→ 0)

∂xi(1→ 0)
. (8.21)

Here ∂+xi denotes change 0 −→ 1 of xi. Table 8.2 contains all possible
changes of f while changing x to x.

TABLE 8.2

Truth table of the direct Boolean difference with respect to a
variable.

Changing Changing switching function f

x→ x f(0→ 0) f(0→ 1) f(1→ 0) f(1→ 1)

x(0→ 1) 0 1 0 0
x(1→ 0) 0 0 1 0

∂f

∂+xi
=

∂f(0→ 1)
∂xi(0→ 1)

=
∂f(1→ 0)
∂xi(1→ 0)

= (xi ⊕ f)
∂f

∂xi
= f |xi=0f |xi=1 (8.22)

Example 8.18
directed Boolean difference is equal to 1 if and only if the following changes
take place:

(a) f : 0 −→ 1 while xi : 0 −→ 1, and
(b) f : 1 −→ 0 while xi : 1 −→ 0.

Thus, if the changes in the function and variable occur in unison with each
other, this fact is shown by the directed Boolean difference.

8.5.2 Model for inverse change

The inverse Boolean difference of a switching function f with respect to a
variable xi defines conditions of change of f and xi in the opposite direction

∂f

∂xi
=

∂f(0→ 1)
∂xi(1→ 0)

=
f(1→ 0)

∂xi(0→ 1)
. (8.23)

© 2005 by CRC Press

Equation 8.22 is illustrated in Figure 8.19 for AND gate. The
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Change 0 → 1

 

x2=1 
x1 

Direct Boolean difference

∂f

∂+x1
=

∂f(0 → 1)

∂x1(0 → 1)

= (x1 ⊕ f)
∂f

∂x1

= (x1 ⊕ x1x2)x2

= x2

(a)

Change 1 → 0

 

x1 

x2=1 

Direct Boolean difference

∂f

∂+x1
=

∂f(1 → 0)

∂x1(1 → 0)

= f |x1=0f|x1=1

= 0 · x2

= x2

(b)

FIGURE 8.19
AND gate: conditions of change of output f and input x1 of gate AND in the
same direction (Example 8.18).

TABLE 8.3

Truth table of the inverse Boolean difference with respect to a
variable.

Changing Changing switching function f

x→ x f(0→ 0) f(0→ 1) f(1→ 0) f(1→ 1)

x(0→ 1) 0 0 1 0
x(1→ 0) 0 1 0 0

To calculate the inverse Boolean difference the following formulas are used:

∂f

∂−xi
=

∂f(0→ 1)
∂xi(1→ 0)

= (xi ⊕ f)
∂f

∂xi
= f |xi=1f |xi=0

Example 8.19
ence for AND gate.

There are 4 types of

© 2005 by CRC Press

Table 8.4 gives more details via the primitive gates.

Figure 8.20 illustrates calculation of inverse Boolean differ-
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Change 0 → 1

 

x2=1 
x1 

Inverse Boolean difference

∂f

∂−x1
=

∂f(0 → 1)

∂x1(1 → 0)

= (x1 ⊕ f)
∂f

∂x1

= (x1 ⊕ x1x2)x2 = x2

(a)

Change 1 → 0

 

x2=1 
x1 

Inverse Boolean difference

∂f

∂−x1
= f |x1=1f|x1=0

= x2 · 0
= x2

(b)

FIGURE 8.20
NAND gate: conditions of change of output f and input x1 of gate NAND in
the opposite direction (Example 8.19).

direct and four types of inverse Boolean differences for switching functions
with respect to variable xi.

TABLE 8.4

Direct and inverse Boolean differences
for the gates.

Gate ∂f
∂+x1

∂f
∂+x2

∂f
∂−x1

∂f
∂−x2

AND x2 x1 0 0
OR x2 x1 0 0
EXOR x2 x1 0 0
NAND 0 0 x2 x1

NOR 0 0 x2 x1

Notice that the relationship between generic and directed/inverse Boolean
differences is expressed by the relation:

∂f

∂xi
=

∂f

∂+xi
∨ ∂f

∂−xi
.
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The direct and inverse Boolean differences do not depend on the variable
of derivation, but they generally involve more literals or products in their
expression.

Example 8.20 Figure 8.21 shows the circuits used to implement the swit-
ching function f = x1x2 ⊕ x3, and the calculation of the direct and inverse
Boolean differences. This also illustrates the relationship between Boolean dif-
ferences of different types.

3x

2x
1x

f
f 1

⎯x1

x2 

x3 

x1 

⎯x3 

2
x

f

+∂
∂

  
1x

f

+∂
∂

  

3
x

f

+∂
∂

 

f 

  

3
x

f

−∂
∂

  
1x

f

−∂
∂

2
x

f

−∂
∂

Direct Boolean difference
∂f

∂+x1
= (x1 ⊕ f)

∂f

∂x1

= (x1 ⊕ (x1x2 ⊕ x3)) · x2 = x2x3

Inverse Boolean difference
∂f

∂−x1
= (x1 ⊕ f)

∂f

∂x1

= (x1 ⊕ (x1x2 ⊕ x3)) · x2 = x2x3

Direct Boolean difference
∂f

∂+x2
= (x2 ⊕ f)

∂f

∂x2

= (x2 ⊕ (x1x2 ⊕ x3)) · x1 = x1x3

Inverse Boolean difference
∂f

∂−x2
= (x2 ⊕ f)

∂f

∂x2

= (x2 ⊕ (x1x2 ⊕ x3)) · x1 = x1x3

Direct Boolean difference
∂f

∂+x3
= (x3 ⊕ f)

∂f

∂x3

= (x3 ⊕ (x1x2 ⊕ x3)) · 1 = x1x2

Inverse Boolean difference
∂f

∂−x3
= (x3 ⊕ f)

∂f

∂x3

= (x3 ⊕ x1x2 ⊕ x3)) · 1 = x1x2

∂f
∂x1

= ∂f
∂+x1

∨ ∂f
∂−x1

= x2

∂f
∂x2

= ∂f
∂+x2

∨ ∂f
∂−x2

= x1

∂f
∂x3

= ∂f
∂+x3

∨ ∂f
∂x3

= 1

FIGURE 8.21
The circuit, computing direct and inverse Boolean differences, and interpre-
tation by N -hypercube (Example 8.20).
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8.6 Local computation via partial Boolean difference

The basic property of a partial Boolean difference is formulated as follows.
Given a switching functions f = f(f1) and f1 = f1(xi), the partial Boolean
difference of function f with respect to variable xi via the internal function
fk, is equal to

∂f

∂(xi/f1)
=

∂f

∂f1
· ∂f1

∂xi
(8.24)

The above relation is important for efficient calculation of Boolean differences
on the functional paths from the primary input nodes to the output nodes in
the logic network. For instance, the path is “fi0 − fi1 − . . . − fir

”, thus, the
partial Boolean difference is locally calculated provided that we scan the path
through the whole network. The extensions to Equation 8.24 enable local

Example 8.21 Let us consider the third relation from Figure 8.22, and let
the three cascades of the circuit have inputs x1, x2 and x3. The partial Boolean
differences imply:

∂f

∂f2
= x3,

∂f2

∂f1
= x2,

∂f1

∂xi
= x1,

and thus
∂f

∂xi
= x1x2x3.

On the other hand, Boolean difference calculated “globally,” yields:

∂f

∂xi
= f |xi=0 ⊕ f |xi=1 = x1x2 ∨ x3 ⊕ x3 =

∂f

∂xi
= x1x2x3.

8.7 Generating Reed-Muller expressions by logic Taylor
series

The Boolean difference is relevant to Reed-Muller expansion of a switching
function. The logic Taylor series for a switching function f of n variables at
the point c ∈ 0, 1, . . . , 2n − 1 is defined as

f =
2n−1⊕
i=0

f
(c)
i (x1 ⊕ c1)i1 . . . (xn ⊕ cn)in︸ ︷︷ ︸

i−th product

,

© 2005 by CRC Press

calculations for multilevel networks as demonstrated in Figures 8.22 and 8.23.
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1. Dependence of f on xi

via function f1

∂f
∂(xi/f1)

= ∂f
∂f1

∂f1

∂x1

f
f1

xi

2. Reduction of calculations
in the path {xi → f1 → f1}

∂f
∂(xi/f1/f1)

= ∂f
∂(xi/f1)

f1
f

f1

xi

3. Dependence of f on xi

via functions f1, f2

∂f
∂(xi/f1/f2)

= ∂f
∂f2

∂f2

∂f1

∂f1

∂xi

f2
f

f1xi

4. Dependence of f on both xi and xj

simultaneously via function f1

∂f
∂(xi,xj/f1)

= ∂f
∂f1

∂f1

∂(xi,xj)

xi

xj
f1

f

FIGURE 8.22
Technique of application of partial Boolean differences.

where c1, c2, . . . , cn and i1, i2, . . . , in are the binary representations of c and i
respectively, and the i-th coefficient is defined as

f
(c)
i (d) =

∂nf(c)
∂xi1

1 ∂xi2
2 . . . ∂xin

n

∣∣∣∣∣
d=c

and ∂x
ij

i =

{
1, ij = 0
∂xj , ij = 1

that is a value of the n-ordered Boolean difference of f where x1 = c1, ..., xn =
cn. Note that c is called a polarity of an expansion, i.e., it is an expansion of
a function at the point c.

It follows from this definition that

� The logic Taylor expansion generates 2n Reed-Muller expressions corre-
sponding to 2n polarities;

� In terms of spectral interpretation, this means that expressions are a spec-
trum of a Boolean function in one of 2n polarities. A variable xj
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5. Dependence of f on both xi and xj

simultaneously via functions f1, f2

∂f
∂(xi,xj/f1/f2)

= ∂f
∂f2

∂f2

∂f1

∂f1

∂(xi,xj)

f2
f

f1xi

xj

6. Dependence of f on either xi or xj or both xi and xj

via function f1

∂f
∂(xi∨xj/f1)

= ∂f
∂f1

∂f1

∂(xi∨xj)
= ∂f

∂f1
( ∂f1

∂(xi,xj)
∨∂f1

∂xi
∨ ∂f1

∂xj
)

1f
fix

jx

7. Dependence of f on both xi and xj

simultaneously via functions f1, f2

∂f
∂(xi,xj/f1,f2)

= ∂f
∂(f1,f2)

∂f1

∂(xi,xj)
∂f2

∂(xi,xj)

 

f2 

f 
f1 xi 

xj 

FIGURE 8.23

is 0-polarized if it enters into the expansion uncomplemented, and 1-
polarized otherwise. The components of the logic Taylor series are
Boolean differences.

While the i-th spectral coefficient is described by a Boolean expression,
it can be calculated in different ways, for example, matrix transformations,
cube-based technique, decision diagram technique, and probabilistic methods.

Example 8.22 The Reed-Muller spectrum of an arbitrary switching function
of two variables (n = 2) and the polarity c = c1, c2 = 0, 1 (x1 is uncomple-
mented and x2 is complemented) is defined as a logic Taylor expansion of this

© 2005 by CRC Press

Technique of application of partial Boolean differences (Continuation of Figure
8.22).
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function

f =
7⊕

i=0

f
(1)
i (x1 ⊕ 0)i1(x2 ⊕ 1)i2

= f(1)⊕ ∂f(1)
∂x2

x2 ⊕ ∂f(1)
∂x1

x1 ⊕ ∂2f(1)
∂x1∂x2

x1x2.

Example 8.23 Let f = x1 ∨ x2, then its Reed-Muller expansion of polarity
c = 01 is f = 1 ⊕ x2 ⊕ x1x2. The Reed-Muller spectral coefficients f (i) for
all four polarities and their relationship to the Boolean differences are shown
in Table 8.5. For example, the OR gate in polarity c = 3 (c1c2 = 11) is
represented by two nonzero spectral components f (0)(3) and f (3)(3). This is
an optimal spectral representation of the OR function (optimal polarity).

TABLE 8.5

Reed-Muller as a Taylor expansion of elementary switching
functions.

N -hypercube Boolean differences Reed-Muller

Function F ∂F
∂x2

∂F
∂x1

∂2F
∂x1∂x2

expression

 

x2 
x1 

0 

0 0

1 

f = x1 ∧ x2

0
0
0
1

0
0
1
1

0
1
0
1

1
1
1
1

x1x2

x1 ⊕ x1x2

x2 ⊕ x1x2

1⊕ x2 ⊕ x1 ⊕ x1x2

 

x2 
x1 

1 

0 1 

1 

f = x1 ∨ x2

0
1
1
1

1
1
0
0

1
0
1
0

1
1
1
1

x2 ⊕ x1 ⊕ x1x2

1⊕ x2 ⊕ x1x2

1⊕ x1 ⊕ x1x2

1⊕ x1x2

 

x2 
x1 

1 

0 1

0 

f = x1 ⊕ x2

0
1
1
0

1
1
1
1

1
1
1
1

0
0
0
0

x2 ⊕ x1

1⊕ x2 ⊕ x1

1⊕ x2 ⊕ x1

x2 ⊕ x1

It follows from this example that it is possible to calculate separate spectral
coefficients of a logic Taylor expansion (Equation 8.7). Moreover, the logic
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Taylor expansion generates a family of 2n Reed-Muller spectra of a Boolean
function. In terms of signal processing theory, this means implementation of
a transform in one of 2n bases.

8.8 Arithmetic analogs of Boolean differences and logic
Taylor expansion

In this section,

� Arithmetic analogs of Boolean differences, and
� Arithmetic analogs of logic Taylor expansion

are considered. An arithmetic analog of Boolean difference is called the arith-
metic difference of a switching function. It is utilized to derive a representation
of the function in arithmetic form.

8.8.1 Arithmetic analog of Boolean difference

arithmetic analog of Boolean difference in algebraic form is defined by equation

∂̃f

∂̃xi

= −fxi
+ fxi

. (8.25)

The matrix form of the arithmetic difference (Equation 8.25) with respect
to the i-th variable xi of a switching function f of n variables given by truth
vector F is defined as

∂̃f

∂̃xi

= D̃2n−iF (8.26)

where the 2n−i × 2n−i matrix D̃2n−i is generated by the rule

D̃2n−i = I2i−1 ⊗
[
−1 1

1 −1

]
⊗ I2n−i (8.27)

and I2n−i is the identity matrix.
A k-th-order, k = 1, ..., n, arithmetical difference with respect to a subset

of k variables xi1 , . . . , xik
, is defined in algebraic and matrix form as follows

∂̃kf

∂̃x1 · · · ∂̃xk

=
∂̃

∂̃x1

(
∂̃

∂̃x2

(
· · · ∂̃f

∂̃xk

)
· · ·

)
, (8.28)

∂̃kF

∂̃x1 · · · ∂̃xk

= D̃
(1)
2n D̃

(2)
2n . . . D̃

(n)
2n . (8.29)
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Example 8.24 The structural properties of the flowgraphs of algorithms for
computing arithmetic differences with respect to all the variables are explained
in Figure 8.24.

Boolean differences

D
(1)
23 D

(2)
23 D

(3)
23

∂F
∂x1∂x2∂x3

=

⎡⎢⎢⎣
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

⎤⎥⎥⎦F

Arithmetic differences

D̃
(1)
23 D̃

(2)
23 D̃

(3)
23

∂̃F

∂̃x1∂̃x2∂̃x3
=

⎡⎢⎢⎣
1 -1

1 -1
1 -1

1 -1
-1 1

-1 1
-1 1

-1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

⎤⎥⎥⎦F

FIGURE 8.24
Matrix based computing of third-order Boolean and arithmetical differences
and flowgraphs (the nodes realize EXOR and arithmetic sum respectively
(Example 8.24).

8.8.2 Arithmetic analog of logic Taylor expansion

An analog of the logic Taylor series for a switching function called the arith-
metical Taylor expansion is expressed by the equation

Pc =
2n−1∑
j=0

p(j)
c (x1 ⊕ c1)j1(x2 ⊕ c2)j2 . . . (xn ⊕ cn)jn , (8.30)

where c1c2 . . . cn and j1j2 . . . jn are the binary representations of c (polarity)
and j respectively, and the j-th coefficient is defined as

p(j)
c =

∂̃nf(c)

∂̃xj1
1 ∂̃xj2

2 . . . ∂̃xjn
n

(8.31)

that is, a value of the arithmetical analog of an n-ordered Boolean difference
of f given c, i.e., x1 = c1, x2 = c2, ..., xn = cn. The coefficients p

(j)
c (Equation
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8.31) are also called the arithmetic spectrum of the switching function f .
Hence, the arithmetic Taylor expansion produces 2n arithmetic expressions

corresponding to 2n polarities. Similarly to multiple Boolean differences, one
can draw the flowgraph for any subset of variables to calculate multiple arith-
metic differences.

Example 8.25 Arithmetic spectrum of polarity c of an arbitrary three-variable
(n = 3) switching function can be represented by the arithmetic Taylor series
(Equation 8.30). In particular, given polarity c = 3 (c1c2c3 = 011),

P3 =
7∑

j=0

p
(j)
3 (x1 ⊕ 0)j1(x2 ⊕ 1)j2(x3 ⊕ 1)j3

= f(3) +
∂̃f(3)

∂̃x3

x3 +
∂̃f(3)

∂̃x2

x2 +
∂̃2f(3)

∂̃x2∂̃x3

x2x3 +
∂̃f(3)

∂̃x1

x1 +
∂̃2f(3)

∂̃x1∂̃x3

x1x3

+
∂̃2f(3)

∂̃x1∂̃x2

x1x2 +
∂̃3f(3)

∂̃x1∂̃x2∂̃x3

x1x2x3.

The arithmetic differences of elementary switching functions represented by
N -hypercubes and corresponding arithmetic expressions as Taylor expansion

8.9 Summary

Change is the basic concept for analyzing discrete systems, and can be use-
ful in analyzing a system in spatial dimensions (fault detection, verification,
symmetry detection, etc.).

1. The essence of this concept is an event that occurs in a system if a single
variable changes its value. Formally it corresponds to the problem of
detecting changes in the value of a switching function f in response to
change of xi. The function used to detect it is called Boolean difference
or Boolean derivative.

2. The technique based on the Boolean difference is aimed at analysis of the
behavior of a switching function represented by N -hypercube:

� Sensitivity of a function to the change of inputs;
� Detection of local changes in a circuit;
� Detection of directions of changes.

3. The technique of computing in terms of change utilizes the following prop-
erties of differential operators:
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in all polarities are given in Table 8.6.



290 Logic Design of NanoICs

TABLE 8.6

Arithmetic differences and arithmetic expressions of elementary
switching functions.

N -hypercube Arithmetic differences Arithmetic

Function F ∂̃F

∂̃x2

∂̃F

∂̃x1

∂̃2F

∂̃x1∂̃x2
expression

 

x2 
x1 

0 

0 0

1 

f = x1 ∧ x2

0
0
0
1

0
0
1

−1

0
1
0

−1

1
−1
−1

1

x1x2

x1 − x1x2

x2 − x1x2

1 − x2 − x1 + x1x2

 

x2 
x1 

1 

0 1 

1 

f = x1 ∨ x2

0
1
1
1

1
−1

0
0

1
0

−1
0

−1
1
1

−1

x2 + x1 − x1x2

1 − x2 + x1x2

1 − x1 + x1x2

1 − x1x2

 

x2 
x1 

1 

0 1

0 

f = x1 ⊕ x2

0
1
1
0

1
−1
−1

1

1
−1
−1

1

−2
2
2

−2

x2 + x1 − 2x1x2

1 − x2 − x1 + 2x1x2

1 − x2 − x1 + 2x1x2

x2 + x1 − 2x1x2

� Symmetry properties (“butterfly” configuration of flowgraphs of basic
operators);

� Homogeneity and regularity;
� Fast iterative algorithm for multiorder differences.

4. The coefficients of logic Taylor expansion are values of Boolean differences.
By analogy, arithmetic differences are coefficients of arithmetic Taylor
expansion. The properties of logic and arithmetic Taylor expansion
include:

� Generation of the Reed-Muller or arithmetic expression in a given
polarity;

� Mutual relation of spectral coefficients (Reed-Muller and arithmetic).
It should be noted that extension to other forms of switching func-
tion representation, for example, Walsh forms, will deploy the same
approach and possesses the same properties. For this, so-called

� Generalization towards multiple-valued functions.
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Walsh differences must be defined (see “Further Reading” Section).
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8.10 Problems

Problem 8.1 Calculate Boolean differences ∂f/∂x1, ∂f/∂x2, ∂f/∂x3,
∂f/∂(x1, x2), and ∂f/∂f1 for the circuits given in:

(a) Figure 8.25a
(b) Figure 8.25b
(c) Figure 8.25c
(d) Figure 8.25d

You may use generic Boolean difference or partial difference in symbolic form
(Equation 8.1 or Equation 8.24).

x1

f x2

x3

f1
x1 

f x2 

x3 

f1 

(a) (b)

x1

f x2

x3

f1
x1 

f x2 

x3 

f1 

(c) (d)

FIGURE 8.25
Combinational circuits (Problem 8.1).

Problem 8.2 Given the circuit shown in Figure 8.25a, calculate Boolean
differences ∂f/∂x1, ∂f/∂x2, ∂f/∂x3, and ∂f/∂(x1, x2):

(a) In matrix form (Equation 8.15)
(b) On hypercube (see, for example, Equation 8.7)
(c) On Davio tree embedded in hypercube (use polarity c = 0 to calculate

Boolean difference at the point c)

Problem 8.3
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Calculate Boolean differences for the circuit depicted in Figure
8.15. Follow Example 8.12.
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(b) Let < Circuit1 >= NOR and < Circuit2 >= EXOR (Figure 8.15b)
(c) Let < Circuit1 >= EXOR and < Circuit2 >= AND (Figure 8.15c)

Problem 8.4
parison of generic Boolean difference techniques with partial Boolean differ-
ence. Consider:

(a) Relation 2
(b) Relation 3
(c) Relation 4
(d) Relation 7

Problem 8.5
resulting generic Boolean difference with partial Boolean difference. Consider:

(a) Relation 2
(b) Relation 3
(c) Relation 4
(d) Relation 7

Problem 8.6
the switching function f = x1x2 ∨x3. These differences are coefficients in the
arithmetic Taylor expansion (row vectors).

(a) Find the optimal polarity, i.e., the polarity that contains the minimal
number of literals.

(b) Calculate the coefficients of the Taylor expansion of polarity c = 001 via
symbolic calculation of Boolean differences.

(c) Draw the arithmetic Davio tree for polarity c = 001.
(d) Draw an N -hypercube of the function and show how to calculate arith-

metic difference with respect to variable x3 on the hypercube.

Problem 8.7

(a) Rule (c)
(b) Rule (d)
(c) Rule (e)
(d) Rule (f)
(d) Rule (h)

Problem 8.8 A parametric Boolean difference of a switching function f with
respect to variable X with integer (positive or negative) parameter (distance)
t is defined by Bochmann and Posthoff [5]

df

d(tX)
= X ⊕ f(X + t)

© 2005 by CRC Press

Table 8.7 contains arithmetic differences (column vectors) for

Prove the following equation given in Table 8.8:

(a) Let < Circuit1 >= OR and < Circuit2 >= EXOR (Figure 8.15a)

Justify the result given in Figure 8.22 and Figure 8.23 by com-

Justify the equations given in Figure 8.26 by comparison of the
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f
f3

f2
f1x1

x2

x3

x4

x5

∂f
∂x1

= ∂f
∂(x1/f1/f2/f3)

(a)

f
f3

f2
f1x1

x2

x3

x4

x5

∂f
∂x1

∂f
∂(x1/f1/f2/f3)

(b)

f
f3

f2
f1x1

x2

x3

x4

x5

∂f
∂x1

= ∂f
∂(x1/f1/f2/f3)

(c)

FIGURE 8.26
Local analysis in multilevel circuits by partial Boolean difference (Problem
8.5).

TABLE 8.7

Calculation of eight arithmetic expressions by Taylor expansion for
the switching function f = x1x2 ∨ x3 (Problem 8.6).

Coefficients of arithmetic expression/Arithmetic differences
000 001 010 011 100 101 110 111

c Pc F ∂̃F
∂̃x3

∂̃F
∂̃x2

∂̃2F
∂̃x2∂̃x3

∂̃F
∂̃x1

∂̃2F
∂̃x1∂̃x3

∂̃2F
∂̃x1∂̃x2

∂̃3F
∂̃x1∂̃x2∂̃x3

0 P0 1 -1 0 0 0 1 0 -1
1 P1 0 1 0 0 1 -1 -1 1
2 P2 1 -1 0 0 0 0 0 1
3 P3 0 1 0 0 0 0 1 -1
4 P4 1 0 0 -1 0 -1 0 1
5 P5 1 0 -1 1 -1 1 1 -1
6 P6 1 -1 0 1 0 0 0 -1
7 P7 0 1 1 -1 0 0 -1 1
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TABLE 8.8

The rules for simplification of manipulation of Boolean differences
(Problem 8.7)

Rule Hint

(a) ∂c
∂xi

= 0 Proof: ∂c
∂xi

= a ⊕ a = 0

(b) ∂f
∂xi

= ∂f
∂xi

Proof: ∂f
∂xi

= f |x1=0
⊕ f |x1=1

=

1 ⊕ f|x1=0 ⊕ 1 ⊕ f|x1=1 = f|x1=1 ⊕
f|x1=0 = ∂f

∂xi

(c) ∂(cf)
∂xi

= c ∂f
∂xi

(d) ∂(c∨f)
∂xi

= c ∂f
∂xi

(e) ∂(c⊕f)
∂xi

= ∂f
∂xi

(f) ∂(f⊕g)
∂xi

= ∂f
∂xi
⊕ ∂g

∂xi

(g) ∂(f∧g)
∂xi

= f ∂g
∂xi
⊕ g ∂f

∂xi
⊕ ∂f

∂xi

∂g
∂xi

Hint: start with the right part:
(xif|xi=0 ⊕ xif|xi=1 )(g|xi=0 ⊕
g|xi=1 ) ⊕ (xig|xi=0 ⊕
xig|xi=1 )(f|xi=0 ⊕ f|xi=1 ) ⊕
(f|xi=0 ⊕ f|xi=1 )(fg|xi=0 ⊕ f|xi=1 ).

Further simplification yields the left
part of (g).

(h) ∂(f∨g)
∂xi

= f ∂g
∂xi
⊕ g ∂f

∂xi
⊕ ∂f

∂xi

∂g
∂xi

where + denotes arithmetic sum. Parametric Boolean difference verifies the
fact of change of the switching function value when the argument X is changed
to X+t. Note that in this particular case (special value of t and separate parts
of truth vector of the function) the parametric Boolean difference becomes the
Boolean difference with respect to variables.

given by its truth vector F = [ . . . 10001010111 . . . ] for t = 3 is calculated.
Parametric Boolean difference of a switching function f(X,Y ) with respect

to its variables X and Y with integer positive parameters t1 and t2 accordingly
is defined by the following equation

df(X,Y )
d(t1X, t2Y )

= f(X,Y )⊕ f(X + t1, Y + t2).
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In Figure 8.27 parametric Boolean difference of a switching function f(X)
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This allows us to perform processing (computing Boolean difference, mini-
mum, maximum or other operators) with respect to any direction,

 
1 0

1 2 3 6 54

0 1 0 0  0

7 8 9 1110

1 11Input  f X 

1 0

1 2 3 6 54

1 1 0 0 1 0

7 8 9 1110

1 11Output X 

+

τ =3 Distance

FIGURE 8.27
Parametric Boolean difference for distance t = 3 (Problem 8.8).

Problem 8.9
in the positive Davio tree: these are values of the Boolean differences at point
0. Correspondence of the levels of the tree to calculation of the appropriate
Boolean differences is shown as well.

(a) Find the function implemented by the tree.
(b) Derive the Davio tree that implements negative Davio expansion on the

upper level, and positive on the upper level
(c) Formulate the algorithm of forming spectral (Reed-Muller) transform based

on truth table (or decision diagram).

Problem 8.10 Consider the design possibilities for implementing positive
or negative Davio expansion on a single-electron device and evaluate the char-
acteristics of the devices.

8.11 Further reading

Boolean differential calculus. Akers introduced the concept of Boolean
difference in order to derive and define various formal properties of switching
functions: dependent and independent variables, series expansion as analo-
gous to the classical MacLauren and Taylor series, functional decomposition,
and solution of Boolean equations [1]. Fundamentals of Boolean differential
calculus are developed in [5, 7, 21, 23].
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Figure 8.28 demonstrate the meaning of the terminal nodes
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f

0 

1 

0 

0 

x2 ⎯x2 

 

S 

S S

⎯x1

⎯x2 

x1 

x2 

21

2

xx

f

∂∂
∂

 
1

x

f

∂
∂

2x

f

∂
∂

 

21

0
2

xx

f

∂∂
∂  

 

1

0

x

f

∂
∂  

 

2

0

x

f

∂
∂   f0 

FIGURE 8.28
Positive Davio tree (Problem 8.9).

Gibbs differences. In 1969, Gibbs and Millard introduced so-called dyadic
derivative for a complex function on finite dyadic groups [9]. During the
1970s this direction was called harmonic differential calculus in Galois fields.
Work in this direction has been continued by Stankovic who has developed the
theoretical and computational aspects of Gibbs’s dyadic differentiator [6, 20].

Applications. It has been proposed by Sellers and et al. [18] to use Boolean
differences to find tests for switching circuits. In a number of publications,
the usefulness of differential models has been shown [8, 13, 15, 16]. Boolean
differences are useful for decomposition of logic functions [7]. A comprehensive
guide to application of Boolean differences in switching theory and digital
design can be found in [7], [17], and also in selected chapters of [14]. A review
of applications of logic differential calculus is given by Bochmann et al. [3].

Arithmetic analogs of Boolean differences. Tosic introduced arithmeti-
cal difference of switching functions [22]. The arithmetical difference was used
as an analog of Taylor-Maclaurin series by Davio et al. [7]. Theoretical and
applied aspects have been studied in [28].

Matrix notation of Boolean and arithmetic differences has been pro-
posed by Yanushkevich [26, 28]. This technique has been developed towards
multivalued functions in [25]. Matrix-based approach to solution of Boolean
and multivalued differential equations can be found in [27, 29].

Probabilistic models. The probabilistic, or random, Boolean networks have
been introduced by Kauffman [10, 11, 12]. The simplest, 1-D ones are called
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stochastic cellular automata and have been studied in [2]. Boolean differ-
ence has been utilized by Vichniac [24] to characterize phase transition of the
random Boolean network. It has been also used by Shmulevich et al. [19] to
evaluate the expectation of the Boolean difference with respect to distribution.
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9

Nanodimensional Multivalued
Circuits

The primary advantage of a multivalued system is the ability to encode more
information per variable than a binary system is capable of doing. Hence,
less area is used for interconnections since each interconnection carries more
information. This chapter generalizes the design paradigms introduced in
previous chapters toward multivalued logic systems. These generalizations
are made in the following directions:

� Technique of computing the sum-of-products, Reed-Muller, and arithmetic
representations,

� Event-driven analysis based on logic differential operations,
� Word-level representation of logic functions,
� Linearization of word-level expressions, and
� Linear decision diagrams.

The main contribution of this chapter to logic design of multivalued circuits
in nanodimensions includes:

� Representation of multivalued functions (circuits) by hypercube-like struc-
tures,

� Concept of change in spatial multivalued circuit analysis, and
� Linear word-level models of computing using hypercube-like structures.

The type of data structure is as critical in nanocomputing of multivalued
logic functions as switching ones. The data structure must carry information
in a form suitable for extraction of this information. Matrix (spectral) tech-
nique is very flexible and satisfies this requirement: spectral coefficients carry
information about the form of representation, and the structure of these coef-
ficients carry information about the behavior of the logic function in terms of
change (logic difference, by analogy with Boolean differences in a binary sys-
tem). Spectral representation is closely related to Taylor expansion and is a
useful model for representation of multivalued functions. It can be applied to
generate different forms of multivalued functions: logic and arithmetic. Fol-

have been given, this chapter also discusses generalizations of multivalued
functions:

301© 2005 by CRC Press

lowing Chapter 4, where the word-level representations of switching functions
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� Linearization technique based on arithmetic expressions,
� Linear word-level sum-of-products, and
� Linear word-level Reed-Muller expressions.

The motivation for this is that linear expression is mapped in linear word-
level decision diagrams, and its embedding in spatial topologies becomes very
simple.

The material is introduced as follows. In Section 9.1 the basics of multiple-
valued logic are introduced. Sections 9.2 and 9.3 offer a brief introduction to
spectral and decision diagram technique for multivalued functions respectively.
The focus of Section 9.4 is the concept of change in multivalued systems. Af-
ter formal definition of a model of change, a logic derivative, generalized logic
Taylor expansion is considered in Section 9.5. The approach to linearization

functions in Section 9.6. Also, in Section 9.7 development of linearization
technique (Chapter 8) applied to multiplevalued functions in the word-level
of nonarithmetic expressions is introduced. Section 9.10 is a brief overview of
results in multivalued logic theory and its applications. A set of problems on
the techniques of multivalued logic circuit design is given in Section 9.9.

9.1 Introduction to multivalued logic

Boolean algebra is the mathematical foundation of binary systems. Boolean
algebra is defined on a set of two elements, M = {0, 1}. The operations of
Boolean algebra must adhere to certain properties, called laws, or axioms, for
the two binary operations ∧,∨ and complement. These are AND, OR, and
NOT operations, respectively. The axioms can be used to prove more general
laws about Boolean expressions, for example, to simplify expressions, factorize
them, etc. Multivalued algebra is a generalization of Boolean algebra towards
a set of m elements M = {0, 1, 2, . . . ,m} and corresponding operations. The
focus of this section is

� Operators of m-valued logic; the set of elementary functions is more large
compared to Boolean algebra,

� Algebras that are specified on a universal set of operations, and finally,
� Data structures for representation and manipulation of multivalued func-

tions.

9.1.1 Operations of multivalued logic

A multivalued logic function f = f(x1, x2, . . . , xn) of n variables x1, x2, . . . , xn

is a logic function defined on the set M = {0, 1, . . . ,m− 1} and satisfying the

© 2005 by CRC Press

of word-level expressions (Chapter 8) is developed toward multivalued logic
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mapping: {0, 1, . . . ,m− 1} × {0, 1, . . . ,m− 1}. This means that multivalued
logic circuits operate with multivalued logic signals (Figure 9.1).
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Quaternary 
circuit 

(a) (b)

FIGURE 9.1
A switching circuit operates with two-level logic signals (a), and a quaternary
circuit operates with four-valued logic signals (b).

Each of the logic operations has a corresponding logic gate. Multivalued

Below we list the implementation-oriented operations of m-valued logic.

MAX operation is defined as

MAX(x1, x2) =

{
x1 if x1 ≥ x2

x2 otherwise.

When m = 2, this operation turns to an OR operation. The properties
of MAX operations in ternary logic resemble those of Boolean algebra, i.e.,
MAX(x, x) = x that is x ∨ x = x in binary circuit, x ∨ 0 = x, and x ∨ 2 = 2
that is x∨ 0 = x and x∨ 1 = 1 in binary case. Hence, to propagate a signal x
through MIN gate we must apply logical “2” to the second input (this is “1”

MAX(x1, x2, . . . , xn) = x1 + x2 + . . . + xn.

© 2005 by CRC Press

and Table 9.2.
logic gates are closely linked to hardware implementation given in Table 9.1

in binary circuit) (Figure 9.2). MAX function of n variables is
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TABLE 9.1

Library of ternary (m = 3) two-variable elementary functions.

MAX-gate MIN-gate MODSUM-gate

MAX 

 
 
 
 
 
 

 0 1 2

0 0 0 0 
1 0 1 2 
2 0 2 1 

 
 

 0 1 2 
0 0 0 0 
1 0 1 2 
2 0 2 1 

MIN 

 

MOD- 
SUM 

 0 1 2 

0 0 0 0 
1 0 1 2 
2 0 2 1 

MAX{x1, x2} MIN{x1, x2} x1 + x2 (mod 3)

MODPROD-gate TSUM-gate TPROD-gate

 
 
 

MOD 
PROD 

 0 1 2 

0 0 0 0 
1 0 1 2 
2 0 2 1 

 

TSUM 

 0 1 2 

0 0 1 2 
1 1 2 2 
2 2 0 2 

 

TPROD 

 0 1 2 
0 0 0 0 
1 0 0 1 
2 0 1 2 

x1x2 (mod 3) MIN(x1 + x2, 2) MAX{x1 + x2 − 2, 0}

 

x 
1 
1 

x
x 

Propagation of the signal x through AND gates:
apply logic “1” to the inputs.

 

x 
0 x

x 

0 
Propagation of the signal x through OR gates:
apply logic “0” to the inputs.

 MAX 

x 
MAX 

0 
0 

x 
x 

Propagation of the signal x through MAX gates:
apply logic “0” to the inputs.

 

MIN 

MIN 

x 
2 
2 

x
x 

Propagation of the signal x through MIN gates:
apply logic “2” to the inputs.

FIGURE 9.2
Propagation properties of the binary AND, OR, and ternary MAX and MIN
gates.

MIN operation is defined as

MIN(x1, x2) =

{
x2 if x1 ≥ x2

x1 otherwise.

Example 9.1 Propagation properties of the ternary MIN operation are illus-

© 2005 by CRC Press



Nanodimensional Multivalued Circuits 305

signal x is propagated to the output when the second

Also, MIN(x, x) = x in a ternary circuit and x ∨ x = x in a binary one.
MAX operation for n variables is

MIN(x1, x2, . . . , xn) = x1x2 . . . xn.

Modulo m product operation (MODPROD) is defined by

MODPROD(x1, x2, . . . , xn) = x1x2 . . . xn mod (m).

Example 9.2 Let m = 2, then MODPROD(x1, x2, . . . , xn) = x1·x2·, . . . , ·xn,
i.e., a unary AND function of n variables.

Modulo sum operation (MODSUM) is defined below as

MODSUM(x1, x2, . . . , xn) = x1 + x2 + . . . + xn mod (m).

It has been proven that modulo m sum operation MODSUM , modulo m
product operation MODPROD, and constant “1” constitute a universal set
of operations, and defined as

Example 9.3 Let m = 2, then MODSUM(x1, x2, . . . , xn) = x1⊕ x2⊕ . . .⊕
xn, i.e., it is the EXOR function.

Truncated sum operation (TSUM) of n variables is specified by

TSUM(x1, x2, . . . , xn) = MIN(x1 + x2 + . . . + xn,m− 1).

Example 9.4 Let m = 2, n = 2, then TSUM(x1, x2) = MIN(x1 + x2, 1) =
x1 ∨ x2.

Truncated product operation (TPROD) is defined by

TPROD(x1, x2, . . . , xn) = MIN(x1x2 . . . xn, (m− 1)).

Example 9.5 Given a switching function (m = 2, n = 2), TPROD(x1, x2) =
MIN(x1x2, 1) = x1x2.

Webb function is defined below as

x1 ↑ x2 = MAX(x1, x2) + 1.

The unique property of this operation is that it represents a universal set itself,
i.e., one can use Webb-gate to design an arbitrary multivalued logic network.
The well known Pierce operation is a binary analog of Webb operation.

© 2005 by CRC Press

trated in Figure 9.2:
input is “2” MIN(x, 2) = x. This corresponds to x∧ 1 = x in binary circuit.



306 Logic Design of NanoICs

Complement operation is specified by

x = (m− 1)− x,

where x ∈M is a unary operation. For example, in ternary logic, x = 2− x.
Notice, the property x = x can be used in multivalued logic. This is because
(m− 1)− x = (m− 1)− ((m− 1)− x) = x.

Example 9.6 Let m = 2, then x = (2− 1)− x = 1− x.

TABLE 9.2

Library of ternary (m = 3) logic functions.

COMPLEMENT-gate CYCLIC COMPLEMENT-gate

 

 
x 

 
⎯x 

0 2 
1 1 
2 0  

  r 
  0 1 2 

0 0 1 2 
1 1 2 0 

 
x 

2 2 0 1 

 

xr 
∧ 

x = 2 − x x̂r = x + r(mod 3)

A LITERAL-gate WINDOW LITERAL-gate

 xr 
  r 
  0 1 2 

0 2 0 0 
1 0 2 0 

 

x 
2 0 0 2  

axb 
  ab 
  01 O2 12

0 2 2 0 
1 2 2 2 

 

x 
2 0 2 2 

xr =

{
2 if x = r

0 otherwise.
axb =

{
2 if a ≤ x ≤ b

0 otherwise.

Clockwise cycle operation (r-order cyclic complement) is defined by

x̂r = x + r (mod m).

This implies that

x̂0 = x (mod m),
x̂m = x + m = x (mod m).

The operation MIN and the clockwise cycle operation form a complete system
as well.
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Example 9.7 Let m = 2, then the system is {AND,NOT}, i.e., NAND that
is known to be complete.

Literal operation (LITERAL) is specified below

xy = yx =

{
m− 1 if x = y,

0 otherwise.

A particular case of a literal is a multiple-valued input binary output function

xy =

{
1 if x = y,

0 otherwise.

Window literal operation (WINDOW LITERAL) is defined as

axb =

{
m− 1 if a ≤ x ≤ b,

0 otherwise.

Any m-valued single-output system can be described by a functionally com-
plete set of primitive operations. Various algebras exist to provide functional
completeness for m > 2.

9.1.2 Multivalued algebras

The universal set of operations for each multivalued algebra below is specified.

Post algebra is based on two operations: 1-cycle inversion (x + 1)mod m, and
MAX operation x∨y = MAX(x, y). Using these operations, one can describe
any m-valued logic function. Analogs of Post operations in Boolean algebra
are NOT and OR operations that also constitute a universal system.

Webb algebra is based on one operation – the Sheffer-Stroke operation (a
functionally complete operation) that is specified by x|y = MAX(x, y) +
1(mod m ).

Bernstein algebra or modulo-sum and modulo-product algebra, includes
modulo m sum x1 + x2 (mod m) and modulo m product xy (mod m).

Allen and Givone algebras A universal set consists of MIN operation MIN(x1, x2),
MAX(x1, x2), and WINDOW LITERAL operation

axb =

{
m− 1 if a ≤ x ≤ b

0 otherwise.
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There are a lot of other algebras oriented mostly toward circuit implemen-
tations. For example, there are algebras based on MIN, MAX, and CYCLIC
LITERAL operations. Other examples are MIN, TSUM, and WINDOW LIT-
ERAL operations.

9.1.3 Data structures

We will use the following representations of logic functions:

� Symbolic (algebraic) notations including sum-of-products and polynomial
forms,

� Vector notations, i.e., truth column vector and coefficients column vectors,
� Matrix (two dimensional) notation relevant to word-level representation,
� Graph-based representation, or direct acyclic graph (DAG) and decision

diagram technique,
� Embedded graph-based 3-D data structures.

Multivalued network. Graph-based representation of a network of logic
gates (netlist), that is, the DAG, is relevant to gate-level design. It aims to
make a library of logic gates available.

circuits.

Truth table and truth column vector. The simplest way to represent
a multivalued logic function is the truth table. The truth table of a logic
function is the representation that tabulates all possible input combinations
with their associated output values.

A truth column vector of a multivalued logic function f of n m-valued
variables x1, x2, ..., xn is defined as F= [f(0), f(1), ..., f(mn − 1)]T . The in-
dex i of the element x(i) corresponds to the assignments i1i2...in of variables
x1, x2, ..., xn (i1, i2, ..., in is binary representation of i, i = 0, ...,mn − 1). For
example, the truth column vector F of a ternary MIN function of two variables
is F= [000011012]T

Example 9.8 1 2

ble 9.3 can be represented in algebraic (sum-of-products) form as follows:

MAX(x1, x2) = 0 · x0
1x

0
2 + 1 · x0

1x
1
2 + 2 · x0

1x
2
2 + 1 · x1

1x
0
2 + 1 · x1

1x
1
2

+ 2 · x1
1x

2
2 + 2 · x2

1x
0
2 + 2 · x2

1x
1
2 + 2 · x2

1x
2
2

Decision diagrams technique. Any m-valued function can be given by a
multivalued decision tree and decision diagram, a canonical graph-based data
structure. A multivalued tree and diagram is specified in the same way as
binary decision tree and binary decision diagram (BDD), except the nodes

© 2005 by CRC Press

(Table 9.3).

A ternary function MAX(x , x ) with truth table given in Ta-

Figure 9.3 shows the library of gates for design of binary and multivalued
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FIGURE 9.3
Representation of switching (a) and multivalued (b) functions.

TABLE 9.3

Truth table for elementary three-valued functions.

x1 x2 MAX MIN MODSUM MODPROD TSUM TPROD

0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0
0 2 2 0 2 0 2 0
1 0 1 0 1 0 1 0
1 1 1 1 2 1 2 1
1 2 2 1 0 2 2 2
2 0 2 0 2 0 2 0
2 1 2 1 0 2 2 2
2 2 2 2 1 1 2 2

become more complex due to usage of Shannon and Davio expansion for mul-
tivalued functions.

Example 9.9 A function of two ternary variables is represented by its truth
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table F= [111210221]T . In algebraic form the function is expressed by

f = 0 · x1
1x

2
2 + 1 · (x0

1x
0
2 + x0

1x
1
2 + x0

1x
2
2 + x1

1x
1
2 + x2

1x
2
2)

+ 2 · (x1
1x

0
2 + x2

1x
0
2 + x2

1x
1
2).

The map and decision diagram of the function is given in Figure 9.4 (the
nodes implement Shannon expansion for ternary logic function).

  

x1 
\ x2

 
0 1 2 

 0 1 1 1 
 1 2 1 0 
2 2 2 1 

 
0 1 2 

 
     

 

  

 

 

 

 S 

S  S 

2 

0,1 1 

1 

2 
2 0 
0 

f 

FIGURE 9.4
The map of the ternary function and its graph representation by decision
diagram (Example 9.9).

9.2 Spectral technique

tions in various forms. In this section, the generalization of spectral methods
for multivalued functions is introduced.

9.2.1 Terminology

Because of interdisciplinary study of logic functions, different interpretations
of the same concepts are often used, and new terminology bears clarification.

Spectrum of logic function. Below we draw parallels between the termi-
nology of spectral technique and classical logic design.

Reed-Muller spectrum is the set of coefficients of a Reed-Muller expression of
a switching function as the result of the Galois field transform. In some
cases the term generalized is added to emphasize that the Reed-Muller
transform is applied to a multivalued function.

© 2005 by CRC Press

In Chapter 3, spectral technique has been used to represent switching func-
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Arithmetic spectrum is the set of coefficients of an arithmetic expression
of a switching function or coefficients of a word-level representation of
switching functions in arithmetic form. The additional term generalized
is used to emphasize its representation of multivalued logic functions.

Walsh spectrum is the coefficients of a Walsh expression of switching function
or a word-level representation of switching functions in Walsh form.

Spectral transforms of logic functions usually utilize matrix technique.

Reed-Muller spectral transform is a transformation of a logic function to a
Reed-Muller expression.

Arithmetic spectral transform is a transformation of a logic function to an
arithmetic expression.

Walsh transform is the transformation of a logic function to a Walsh expres-
sion.

Families of spectral transforms currently used in the practice of logic
design:

� Reed-Muller transform,
� Arithmetic transform,
� Walsh transform, and
� Galois field transforms for multivalued functions.

Classification of spectral transforms used in logic design:

Walsh transform is defined as a Fourier transform on the diadic group. The
arithmetic transform is derived from the Walsh transform by recoding
1 and -1 by 0 and 1 respective to the values of Boolean variables.

Vilenkin-Chrestenson transform is a generalization of the Walsh transform
for m > 2.

Galois field transform is a generalization of the Reed-Muller transform over
GF (m).

9.2.2 Generalized Reed-Muller transform

defined. Generalization for multivalued functions is quite straightforward.

Direct and inverse transform generalized Reed-Muller transforms over
GF (m) are defined by matrix equations

R = R(c)
mnF over GF (m)

F = R−1(c)
mn R over GF (m)

(9.1)

© 2005 by CRC Press

In Chapter 3, a pair of Reed-Muller transforms for switching functions was
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where c = c1c2 . . . cn is a m-valued representation of c = 1, 2, . . . ,mn. The
pair of matrices R(c)

mn and R−1(c)
mn in Equation 9.1 are calculated as

R(c)
mn = R(c1)

m ⊗ R(c2)
m ⊗ · · · ⊗ R(cn)

m

R−1(c)
mn = R−1(c1)

m ⊗ R−1(c2)
m ⊗ · · · ⊗ R−1(cn)

m

(9.2)

Elements of matrix R(cj)
m and R−1(cj)

m , j = 1, 2, . . . , n, are obtained as the
solution to the logic equation

R−1(cj)
m R(cj)

m = Im over GF (m) (9.3)

where Im is m×m identity matrix. This solution is represented by matrices.
Observation of solutions results in useful formal representation.

Polarity. The pair of equations in Equation 9.2 is useful in technique ma-
nipulation of logic functions for the following reasons:

� They are a formal justification of the statement that an arbitrary logic
function can be represented by mn different generalized Reed-Muller
expressions or polarities.

� They are a formal notation of the problem of optimal representation of

literals) representation among the mn different generalized Reed-Muller
expressions.

� They are a formal description of the behavior of multivalued function in

It is worthwhile to note that in signal processing, the matrix representa-
tions in the form of Equation 9.2 are known as factorized representations of
transform matrices. These equations play the central role in synthesis of so-
called fast algorithms. However, in advanced logic design we observe another
valuable feature of this classic result.

R(c) =
mn−1∑
j=0

rj(x1 + c1)i1(x2 + c2)i2 · · · (xn + cn)in over GF (m) (9.4)

where

(xj + cj)ij =
{

xj + cj = x̂
cj

j , ij �= 0;
1, ij = 0.

(9.5)
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multivalued functions by generalized Reed-Muller expressions (see Ex-
ample 9.11). This is because it is possible to find optimal (minimal

terms of change (see Section 9.4).
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TABLE 9.4

Basic transform matrices, polarity c = 0, 1, 2, of generalized Reed-Muller and
arithmetic transforms of ternary logic functions.

Reed-Muller transform Arithmetic transform
c Direct Inverse Direct Inverse

0 R
(0)
3 =

[
1 0 0
0 2 1
2 2 2

]
R

−1(0)
3 =

[
1 0 0
1 1 1
1 2 1

]
P

(0)
3 =

[
2 0 0

−3 4 −1
1 −2 1

]
P

−1(0)
3 =

[
1 0 0
1 1 1
1 2 1

]

1 R
(1)
3 =

[
0 0 1
2 1 0
2 2 2

]
R

−1(1)
3 =

[
1 1 1
1 2 1
1 0 0

]
P

(1)
3 =

[
0 0 2
4 −1 −3

−2 1 1

]
P

−1(1)
3 =

[
1 1 1
1 2 1
1 0 0

]

2 R
(2)
3 =

[
0 1 0
1 0 2
2 2 2

]
R

−1(2)
3 =

[
1 2 1
1 0 0
1 1 1

]
P

(2)
3 =

[
0 2 0

−1 −3 4
1 1 −2

]
P

−1(2)
3 =

[
1 2 1
1 0 0
1 1 1

]

Example 9.10 Given truth vector F = [201000102]T of a ternary logic func-
tion of two variables. There are nine Reed-Muller expressions to represent this
function that correspond to polarities of c1c2

1 2 = 01 is given.

Example 9.11 It is possible to manipulate multivalued expressions in differ-

9 forms for the function given by truth vector [020120000]T . The optimal (in
terms of number of literals) polarity is c = 8.

9.2.3 Generalized arithmetic transform

Arithmetic expressions of multivalued functions are an alternative approach
to description of logic circuits sharing useful properties of generalized Reed-
Muller expressions and permitting, at the same time, simplified representa-
tions of multioutput functions. In many applications where switching func-
tions need to be analyzed, arithmetic expressions provide a better insight
into related problems and offer efficient solutions. Examples: satisfiability,
tautology, equivalence checking, etc.

Direct and inverse transform. Direct and inverse arithmetic transforms
are defined as follows:
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ent polarities, for example, to choose the optimal form. Table 9.5 contains all

= {00, 01, 02, . . . , 22}. In Figure
9.5, the computing of Reed-Muller expression for c c
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x1 

x2 

f 

x1 x2 F

0 0 2
0 1 0
0 2 1
1 0 0
1 1 0
1 2 0
2 0 1
2 1 0
2 2 2

R(2) = R
(2)

32 F =
(
R

(0)
3 ⊗ R

(1)
3

)
F

=

⎛⎝⎡⎣ 1 0 0
0 2 1
2 2 2

⎤⎦ ⊗
⎡⎣ 0 0 1

2 1 0
2 2 2

⎤⎦⎞⎠ F

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
2 1 0
2 2 2

0 0 2 0 0 1
1 2 0 2 1 0
1 1 1 2 2 2

0 0 2 0 0 2 0 0 2
1 2 0 1 2 0 1 2 0
1 1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0
1
0
0
0
1
0
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
2
2
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
over GF (3)

R(1) =

8∑
j=0

rjxj1
1 x̂j2

2

= 1 + x̂2 + 2x1 + 2x1x̂2 over GF (3)

FIGURE 9.5
Representation of a ternary logic function of two variables by Reed-Muller
expression of polarity c = 1 (Example 9.10).

TABLE 9.5

Generalized Reed-Muller expression in polarities
c = 0, 1, . . . 8 of ternary logic functions of two variables.

Polarity Reed-Muller expression over GF (3)

c = 0 (c1c2 = 00) R(0) = 2x1 + x2
1 + x1x2 + 2x2

1x2

c = 1 (c1c2 = 01) R(1) = 2 + 2x1 + 2x2
1 + 2x̂2 + 2x1x̂2 + 2x2

1x̂2

c = 2 (c1c2 = 02) R(2) = 2x1
ˆ̂x2 + 2x2

1
ˆ̂x2 + 2ˆ̂x2

c = 3 (c1c2 = 10) R(3) = 1 + 2x̂1 + x̂2
1 + 2x2 + x̂1x2 + 2x̂2

1x2

c = 4 (c1c2 = 11) R(4) = 2 + x̂1 + 2x̂2
1 + 2x̂2 + x̂1x̂2 + 2x̂2

1x̂2

c = 5 (c1c2 = 12) R(5) = 2x̂1
ˆ̂x2 + x̂2

1
ˆ̂x2 + 2ˆ̂x2

c = 6 (c1c2 = 20) R(6) = 2ˆ̂x2
1x2 + ˆ̂x1

c = 7 (c1c2 = 21) R(7) = 2ˆ̂x2
1x̂2 + 2ˆ̂x1

c = 8 (c1c2 = 22) R(8) = 2ˆ̂x2
1
ˆ̂x1

P = 1
(m−1)n P(c)

mnF,

F = P−1(c)
mn P.

(9.6)

The matrices P(c)
mn and P−1(c)

mn in pair of arithmetic transforms (Equation
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9.6) are calculated by

P(c)
mn = P(c1)

m ⊗ P(c2)
m ⊗ · · · ⊗ P(cn)

m ,

P−1(c)
mn = R−1(c1)

m ⊗ P−1(c2)
m ⊗ · · · ⊗ P−1(cn)

m .
(9.7)

Elements of the matrices P(cj)
m and P−1(cj)

m , j = 1, 2, . . . n, are obtained as
solutions of the equation

P−1(cj)
m P(cj)

m = Im. (9.8)

Polarity. Equation 9.7 is useful as a technique for manipulation of logic
functions for the following reasons:

� It is a formal justification of the statement that an arbitrary m-valued
logic function can be represented by mn different generalized arithmetic
expressions, or polarities.

� It is a formal notation of the problem of optimal arithmetic expressions
derived from multivalued functions. This is because it is possible to find
optimal (in terms of the literals) representation among mn different
generalized arithmetic expressions.

� A formal description of the behavior of a multivalued function in terms of
change is derived by the equation

P (c) =
1

(m− 1)n

mn−1∑
j=0

pj(x1 + c1)i1(x2 + c2)i2 · · · (xn + cn)in (9.9)

where

(xj + cj)ij =
{

xj + cj , ij �= 0 (mod m);
1, ij = 0. (9.10)

Note that the coefficients pj are cofactors in the Taylor expansion.

Example 9.12
polarity c1c2 = 02 for a ternary function of two variables given truth vector
F = [010311202]T is given. There are nine arithmetic expressions to represent
this function that correspond to the polarities c1c2 = {00, 01, 02, . . . , 22}.

Word-level representation. Similar to word-level representation of swit-
ching functions, the properties of linearity and superposition are utilized in
computing arithmetic expressions of multioutput logic functions.

© 2005 by CRC Press

In Figure 9.6, the calculation of an arithmetic expression of
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P(2) = 1/4 × P
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32 F

= 1/4 ×
(
P

(0)
3 ⊗ P

(2)
3

)
F

= 1/4 ×
⎛⎝⎡⎣ 2 0 0

−3 4 −1
1 −2 1

⎤⎦ ⊗
⎡⎣ 0 2 0
−1 −3 4

1 1 −2

⎤⎦⎞⎠ F

= 1/4 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 0
−2 −6 8

2 2 −4
0 −6 0 0 8 0 0 −2 0
0 −6 0 0 8 0 0 −2 0
0 −6 0 0 8 0 0 −2 0
1 1 2 1 1 2 1 1 2
0 2 1 0 2 1 0 2 1
2 2 2 2 2 2 2 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
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2
1
1
2
0
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
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2
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−1
3

−2
5

−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P (2) = 1/4 ×
8∑

j=0

pj(x1 + 0)j1 (x2 + 2)j2

= 1/4 × (4 − 6ˆ̂x2 + 2ˆ̂x2
2 + 2x1 − x1

ˆ̂x2 + 3x1
ˆ̂x2
2

− 2ˆ̂x2
1 + 5x2

1
ˆ̂x2 − 3x2

1
ˆ̂x2
2)

FIGURE 9.6
Representation of a ternary logic function of two variables by arithmetic ex-
pression of polarity c = 1 (Example 9.12).

Example 9.13 Consider a three-output ternary logic function of two vari-
Accordingly to the properties of

linearity and superposition, the first method is based on three iterations of a
direct arithmetic transform (Equation 9.6) of truth-vectors F0,F1 and F2. The
resulting vectors of coefficients P0,P1 and P2 form the vector D calculated
as a weighted sum

30P0 + 31P1 + 32P2.

Alternatively, the direct arithmetic transform (Equation 9.6) is applied to the
vector F calculated as a weighted sum

30F0 + 31F1 + 32F2.

9.2.4 Relation of spectral representations to data structures,
behavior models, and massive parallel computing

Here, we focus on the conceptual value of a spectral representation of logic
functions, starting from the trivial role of transformation and emphasizing
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f 

x1 

x2

f0 

f1 

f2 

x1 x2 F2 F1 F0
0 0 0 1 2
0 1 1 1 1
0 2 0 2 1
1 0 0 2 1
1 1 2 2 2
1 2 0 0 0
2 0 2 2 1
2 1 2 1 0
2 2 1 1 1

Method 1

P0 = 1/4 × P
(0)
32

F0 = 1/4 × [ 8 − 6 2 − 6 3 3 − 17 2 − 17 9 ]T ,

P1 = 1/4 × P
(0)
32

F1 = 1/4 × [ 4 0 0 6 11 − 9 − 2 − 7 5 ]T ,

P2 = 1/4 × P
(0)
32

F2 = 1/4 × [ 0 8 − 4 − 4 19 − 9 4 − 11 5 ]T .

D = 30P0 + 31P1 + 32P2
= 1/4 × [20 66 − 34 − 24 237 − 125 32 − 137 69]T

Method 2
FD = [F2|F1|F0] = 32F2 + 31F1 + 30F0

= 32

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
2
0
2
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 31

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
2
2
0
2
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 30

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
1
1
2
0
1
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
13
4
7

26
0

25
21
13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D = 1/4 × P

(0)
32

FD

= [20 66 − 34 − 24 237 − 125 32 − 137 69]T

P
(0)
32

=
1

4

⎛⎝⎡⎣ 2 0 0
−3 4 −1

1 −2 1

⎤⎦ ⊗
⎡⎣ 2 0 0
−3 4 −1

1 −2 1

⎤⎦⎞⎠

=
1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0
−6 8 −2

2 −4 2
−6 0 0 8 0 0 −2 0 0

9 −12 3 −12 16 −4 3 −4 1
−3 6 −3 4 −8 4 −1 2 −1

2 0 0 −4 0 0 2 0 0
−3 4 −1 6 −8 2 −3 4 −1

1 −2 1 −2 4 −2 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D = 1/4 × (20 + 66x2 − 34x2

2 − 24x1 + 237x1x2

− 125x1x2
2 + 32x2

1 − 137x2
1x2 + 69x2

1x2
2)

FIGURE 9.7
Representation of a three-output ternary function of two variables by a word-
level arithmetic expression of polarity c = 0 (Example 9.13).

hidden information about the behavior of logic functions, its testing and ver-
ification.

The essence of the spectral technique in advanced logic design is formalized
by the following statements:

� The direct and inverse matrix transforms of logic functions.
� Factorization of transform matrices.

The latter property leads directly to the fast Fourier-like transform algorithms
and, thus, to implementation of the spectral transforms of signal processors,
including parallel-pipelined processors.

The goal of using spectral transforms is to “extract” the information about
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the function, interpret this information, and utilize it in computing. It is
utilized in many practical applications:

� Technology-dependent gate-level implementation, for example, Reed-Muller
forms are implemented using AND, EXOR, and NOT gates,

� Optimization of representations in the chosen domain, i.e., between a va-
riety of bases and transforms,

� Determination of functional properties, and
� Event-driven analysis via Taylor expansion.

Families of spectral transforms. Families of spectral transforms that
are used in logic design can be divided into two classes: logic and arithmetic
transforms.

Class of logic transforms. Utilizing various basic matrices allows us to gen-
erate mn Reed-Muller expressions over GF (m) for a given m-valued
function.

Class of arithmetic transforms. The first family (mn arithmetic expressions
for a given m-valued function) is generated by changing the basic matrix.
The next family is known as Vilenkin-Chrestenson transforms. From
these transforms various forms can be derived, including a complex rep-
resentation. In complex representation, the coefficients are represented
by a complex number that is reasonable for large m because the addi-
tional resource of parallel computing can be developed. The particular
cases: the Walsh and Walsh-like transform are known as global trans-
forms in logic design. The usefulness of many other transforms has not
been proven; however, it is clear that they can be used in certain areas
of logic design. For example, Haar and Haar-like transforms are suitable
for “catching” group behavior of logic functions.

Information about the behavior of logic functions in terms of change.
Matrices of factorized transforms carry information about the behavior of a
logic function in notation of change.

Elementary change of a logic function is formally described by logic or arith-
metic difference. Each iteration of spectrum computing carries informa-
tion about the behavior of a logic function with respect to a variable.
Note that it is essential to calculate observability and sensitivity func-
tions.

Taylor expansion. The factorized matrix transform can be viewed as a Tay-
lor expansion if the result of each iteration is interpreted in terms of
logic differences.

Testibility properties of a logic function can be analyzed using spectral coef-
ficients.
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Massive parallel processing. The intrinsic nature of massive parallelism
of matrix transforms can be revised in the light of data structures and topology
used for logic calculations. This involves:

Parallelism of word-level representations based on replacing bitwise paral-
lelism with word-wide parallelism.

Parallelism of multidimensional processing of a logic function, defined as a
parallel processing in many dimensions based on embedding a decision
tree or decision diagram into an appropriate spatial structure. In this
book, the latter is a hypercube-like structure, which inherits parallel
properties of decision trees.

9.3 Multivalued decision trees and decision diagrams

Multivalued decision trees and diagrams are the result of straightforward gen-
eralization of binary decision trees and diagrams. In this section, we briefly
review designing these multivalued decision data structures.

9.3.1 Operations in GF(m)

In the Galois field p complements of p−valued variable are considered. They
are defined by

i−x = x + i,

i = 1, . . . , p− 1, where + denotes the addition in the considered Galois field.
For example, in GF (4), four literals are considered: x, 1−x, 2−x, and 3−x for
each variable x. Two elementary operations, addition and multiplication in
GF (4), are given in Table 9.6.

TABLE 9.6

Addition and multiplication in GF (4).

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2
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9.3.2 Shannon trees for ternary functions

The type of tree is characterized by the Shannon expansion applied in its
nodes. Ternary Shannon expansion is defined by

f = x0
i f0 ∨ x1

i f1 ∨ x2
i f2, (9.11)

where f0 = f(xi = 0), f1 = f(xi = 1), and f2 = f(xi = 2).

f 

f1 f0 f2 

0 1 2 

 

S
f1 

f0 

f2 

f = x0
i f0 ∨ x1

i f1 ∨ x2
i f2

f0 = f(xi = 0)

f1 = f(xi = 1)

f2 = f(xi = 2)

(a)

 
S 

f 

f01 f00 

S 

f02 f11 f10 

S

f12 f21 f20 

S

f22 

0 1 2 0 1 2 0 1 2

0 
1

2

(b)

 f11 

f10 

f21 

f20 
f22 

f02 

f01 

f00 

f12 

(c)
FIGURE 9.8
The node of a Shannon tree (a), decision tree for ternary function of two
variables (b), and embeddings in hypercube-like structures (c) (Example 9.14).

Example 9.14 An arbitrary ternary function f of two variables can be rep-
resented by the decision tree shown in Figure 9.8. Here, at the upper level,
the function is expanded as

f = x0
1f0 ∨ x1

1f1 ∨ x2
1f2.
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At the lower level, further expansion is implemented

f0 = x0
2f00 ∨ x1

2f01 ∨ x2
2f02,

f1 = x0
2f10 ∨ x1

2f11 ∨ x2
2f12,

f2 = x0
2f20 ∨ x1

2f21 ∨ x2
2f22.

It follows from the above example that this decision tree represents a ternary
function f of two variables in sum-of-products form.

f = x0
1x

0
2xf00 ∨ x0

1x
1
2f01 ∨ x0

1x
2
2f02 ∨ x1

1x
0
2f10

∨ x1
1x

1
2f11 ∨ x1

1x
2
2f12 ∨ x2

1x
0
2f20 ∨ x2

1x
1
2f21 ∨ x2

1x
2
2f22.

9.3.3 Shannon and Davio trees for quaternary functions

The decision tree design for four-valued functions is based on the following
types of expansion (types of nodes): S, pD, and nD (nD

′
, nD

′′
, nD

′′′
). In

i

Ji(x) = 1, if x = i and Ji(x) = 0, otherwise.

9.3.4 Embedding decision tree in hypercube-like structure

in a 2-D hypercube-like structure. In this topology

� The node is assigned with a Shannon expansion as given in Table 9.7.
� The i-th terminal node corresponds to the characteristic function Ji(x).
� The outgoing branches are assigned with x0, x1, x2, x3.

In Figure 9.9b, a quaternary decision tree of two variables is embedded
into a 3-D hypercube-like structure that is recursively generated from 2-D
structure.

Let one node together with outgoing branches and connected nodes (ter-

inverter gates represented in hypercube-like structure are given. Here,

� The number of primitives is equal to m + n − 1 for m-valued n-input
functions,

� The number of active nodes corresponds to the number of nonzero elements
in the truth table of the function,

� The number of terminal nodes is mn, where n is a number of variables,
� The connectivity is calculated by

∑n
i=1 mi,

� The number of intermediate nodes is
∑n−1

i=1 mi.
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Table 9.7, J (x), i = 0, . . . , k− 1, are the characteristic functions, denoted by

minal or intermediate nodes) be a primitive structure, or primitive. In Table
9.8, some parameters of ternary and quaternary two-inputs MIN, MAX and

Figure 9.9a illustrates the embedding of a node of a quaternary decision tree
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TABLE 9.7

Analogues of Shannon and Davio expansions in GF (4).
Type Rule of expansion

f 

1 2 3 4 
 

S f =

Leaf 1︷ ︸︸ ︷
J0(x) · f|x=0 +

Leaf 2︷ ︸︸ ︷
J1(x) · f|x=1 +

J2(x) · f|x=2︸ ︷︷ ︸
Leaf 3

+ J3(x) · f|x=3︸ ︷︷ ︸
Leaf 4

f 

1 2 3 4 
 

pD 

f = f|x=0 + x · (f|x=1 + 3f|x=2 + 2f|x=3)
+x2 · (f|x=1 + 2f|x=2 + 3f|x=3)
+x3 · (f|x=0 + f|x=1 + f|x=2 + f|x=3)

f 

1 2 3 4 
 

nD′ 
f = f|x=1 + 1−x · (f|x=0 + 2f|x=2 + 3f|x=3)
+1−x2 · (f|x=0 + 3f|x=2 + 2f|x=3)
+1−x3 · (f|x=0 + f|x=1 + f|x=2 + f|x=3)

f 

1 2 3 4 
 

nD′′ 
f = f|x=2 + 2−x · (3f|x=0 + 2f|x=1 + f|x=3)
+ 2−x2 · (2f|x=0 + 3f|x=1 + f|x=3)
+2−x3 · (f|x=0 + f|x=1 + f|x=2 + f|x=3)

f 

1 2 3 4 
 

nD′′′ 

f = f|x=3 + 3−x · (2f|x=0 + 3f|x=1 + f|x=2)
+3−x2 · (3f|x=0 + 2f|x=1 + f|x=2)
+3−x3 · (f|x=0 + f|x=1 + f|x=2 + f|x=3)

9.4 Concept of change in multivalued circuits

This section introduces the basics of event-driven technique, the development

� Formal definition of change for multivalued functions,
� Computing of change, and
� Generalization of logic Taylor expansion for multivalued functions.

9.4.1 Formal definition of change for multivalued functions

Changing a signal. Consider a three-valued signal with three logic values

the direction of change is not considered):
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0, 2, and 3 (Figure 9.10). There are four possible situations (for simplification,

of the binary case represented in Chapter 8. The focus of this section is:
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FIGURE 9.9
Hypercube-like structures for single- (a) and two-variable (b) quaternary func-
tions.

� Change 0↔ 1,

� Change 0↔ 2,

� Change 1↔ 2,

� No change (0↔ 0, 1↔ 1, 2↔ 2).

The problem is formulated as detection of changes in a ternary function f if
the ternary variable xi is changed.
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FIGURE 9.10
Change of three-valued signals.
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TABLE 9.8

Parameters of a hypercube-like representation of ternary and quaternary
single-input and two-input gates.

Ternary gates Quaternary gates
Parameters MIN MAX INV MIN MAX INV

Total number of primitives 4 4 1 5 5 1
Number of active nodes 4 8 2 9 15 3
Number of terminal nodes 9 9 3 16 16 4
Number of intermediate nodes 3 3 0 4 4 0
Total number of nodes 13 13 4 21 21 5
Connectivity 12 12 3 20 20 4

Formal model of change. In contrast to formal notation of Boolean differ-
ence, where the complement of binary variable xi is defined as xi, in multi-
valued logic the cyclic complement to a multivalued variable xi is used. Let
f be an m-valued (m is prime) logic function of n variables. The ti-th order
cyclic complement to a variable xi, i = 1, 2 . . . , n, is

ti

x̂i = xi + ti mod (m),

where ti ∈ {0, 1, 2, . . . ,m−1}. The logic difference of a function f with respect
to the ti-order cyclic complement of the variable xi is defined as:

∂f/∂
ti

x̂i =
m−1∑
p=0

rm−ti,p f(x1, ...,
p

x̂i, ..., xn) over GF(m), (9.12)

where rm−ti,p is the (m − ti, p)-th element of the multivalued Reed-Muller
transform matrix R

(0)
m (Equation 9.2). It follows from Equation 9.12 that

� Logic difference reflects the change of the value of the multivalued function
f with respect to ti-th cyclic complement of the multivalued variable xi,

� There exist m−1 different logic differences with respect to a given variable
xi for an m-valued logic function because there exist m−1 complements
to xi.

� In contrast to Boolean difference, the Equation 9.12 involves m cofactors
in the sum over GF (m).
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Given a switching function (m = 2), Equation 9.12 turns to a Boolean
difference

∂f/∂
ti

x̂i = 1 · f(x1, ...,
0

x̂i, ..., xn) + 1 · f(x1, ...,
1

x̂i, ..., xn)

= f(x1, ..., xi, ..., xn)︸ ︷︷ ︸
Initial function

⊕ f(x1, ..., xi, ..., xn)︸ ︷︷ ︸
xi replaced by xi

=
∂f

∂xi
,

since
1

x̂i = xi = xi⊕ 1, and the coefficients r2−1,0 = r2−1,1 = 1 are taken from
the matrix

R
(0)
2 =

[
r00 r01

r10 r11

]
=

[
1 0
1 1

]
.

Example 9.15 Figure 9.11 illustrates changes in switching and ternary func-
tions described by Equation 9.12. The logic differences

∂f/∂x̂i, ∂f/∂ ˆ̂xi, ∂f/∂
ˆ̂̂
xi

correspond to the behavior of a quaternary function

f(x̂i), f(ˆ̂xi), f(ˆ̂̂
xi)

for xi → {x̂i, ˆ̂xi,
ˆ̂̂
xi}.

xi →⎯xi 

IN 

f(xi) →f(⎯xi)
OUT 

 

Switching
function

∂f 

∂xi
IN OUT 

xi → xi  
∧  

xi  
∧  
∧  

xi → 

f(xi) → f(xi)  
∧  

f(xi)  
∧  
∧  

f(xi) → 

 

Ternary 
function 

∂f 

∂ xi  
∧  

∂f 

∂ xi  
∧  
∧  

, 

(a) (b)

FIGURE 9.11
Logic differences of switching (a) and ternary (b) functions (Example 9.15).

Change of a switching function f (a change in the value of f) caused by a
change of the variable xi to xi is detected by the Boolean difference. In the
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∂f
∂x̂i

= 2f|xi
+ 2f|x̂i

+ 2f|ˆ̂xi

Change of xi : xi → x̂i

 

f = 0 

f = 1 

f = 2 

12

1

2

1

2
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f = 2 

Ternary function,
second-order difference

∂f

∂ ˆ̂xi
= 2f|x̂i

+ f|ˆ̂xi

Change of xi : xi → ˆ̂xi

FIGURE 9.12
Change of switching and ternary functions with respect to a variable (Example
9.16) and logic differences.

ternary logic function f , a combination difference ∂f/∂x̂i = 2 and ∂f/∂ ˆ̂xi

recognizes the type of change.

Example 9.16 Two logic differences with respect to a variable xi for a ternary
system are calculated by the Equation 9.12:

∂f/∂x̂i =
2−1∑
p=0

r3−1,p f(x1, ...,
p

x̂i, ..., xn) over GF(3),

∂f/∂ ˆ̂xi =
2−1∑
p=0

r3−2,p f(x1, ...,
p

x̂i, ..., xn) over GF(3).

Since

R
(0)
3 =

⎡⎣ r00 r01 r02

r10 r10 r10

r20 r21 r22

⎤⎦ =

⎡⎣1 0 0
0 2 1
2 2 2

⎤⎦ ,
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the coefficients rm−ti,p are derived as follows:

1-order cyclic complement of a variable xi: ti = 1, and we take coefficients

from the last row of R
(0)
3 r3−1,0 = r3−1,1 = r3−1,2 = 2;

2-order cyclic complement of a variable xi: ti = 2, and we take coefficients

from the middle row of R
(0)
3 r3−2,0 = 0, r3−2,1 = 2, r3−2,2 = 1.

i and f that are involved in calculation
of the logic differences.
Note that

x̂i = xi + 1 (mod 3)
ˆ̂xi = xi + 2 (mod 3)

9.4.2 Computing logic difference

The matrix interpretation of the logic difference of an m-valued function f of
n-variables with respect to a variable xi with the ti-order cyclic complement,
i = 1, 2, . . . , n, is given below:

∂F

∂
ti

x̂i

=
ti

D̂
(i)
mnF, (9.13)

where the matrix
ti

D̂
(i)
mn is formed by the Kronecker product

ti

D̂
(i)
mn = (m− 1)Imi−1 ⊗ (

m−1∑
p=0

rm−ti,p I(p→)
m )⊗ Imn−i , (9.14)

and I
(p→)
m is the m×m matrix generated by p-th right cyclic shift of elements

of the identity matrix Im.

Note that the denotation of matrix
ti

D̂
(i)
mn carries information about

� The size of the matrix (mn),

� The number of variables (n),

� The order of cyclic complement (ti), and

� The variable with respect to which the difference is calculated (xi).
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Example 9.17 Let m = 3, ti = 2, then

m−1∑
p=0

rm−ti,p I(p→)
m =

2∑
p=0

r1,p I
(p→)
3

= 0 · I(0→)
3 + 2 · I(1→)

3 + 1 · I(2→)
3

= 2 ·
⎡⎣0 1 0

0 0 1
1 0 0

⎤⎦ + 1 ·
⎡⎣0 0 1

1 0 0
0 1 0

⎤⎦ =

⎡⎣0 2 1
1 0 2
2 1 0

⎤⎦ .

Given a switching function (m = 2), Equation 9.13 is the Boolean differ-
ences in matrix form

∂F
∂xi

= D
(i)
2n F, (9.15)

where matrix D
(i)
2n is formed by Equation 9.14

D
(i)
2n = I2i−1 ⊗D2 ⊗ I2n−i , D2 =

[
1 1
1 1

]
.

Example 9.18 The structure of matrix
ti

D̂
(i)
mn for the parameters below is il-

(a)
respect to the variable x2, i = 2.

(b) Ternary function of two variables, m = 3, n = 2, one- and two-complement
logic differences with respect to the variable x2, i = 2.

(c) Quaternary function of two variables, m = 4, n = 2, one-, two-, and
three-complement logic differences with respect to the variable x2, i = 2.

Example 9.19 Given the truth-vector F = [0123112322233333]T of a qua-
ternary (m = 4) logic function of two variables (n = 2), the logic difference
∂F/∂ ˆ̂x1 is calculated by Equation 9.13 and Equation 9.14 as follows:

∂F

∂ ˆ̂x1

= ˆ̂
D

(1)
42 F

=

⎛⎜⎜⎝
⎡⎢⎢⎣

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

⎤⎥⎥⎦⊗
⎡⎢⎢⎣

1
1

1
1

⎤⎥⎥⎦
⎞⎟⎟⎠F

© 2005 by CRC Press

lustrated in Figure 9.13:

Switching function of two variables, m = 2, n = 2, logic difference with
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B I N A R Y T E R N A R Y M A T R I C E S
M A T R I X

D
(1)
22 =

⎡⎢⎣ 1 1
1 1

1 1
1 1

⎤⎥⎦ D̂
(1)
32 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ˆ̂
D

(1)

32 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q U A T E R N A R Y M A T R I C E S

D̂
(2)
42 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ˆ̂
D

(2)
42 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ˆ̂̂
D

(2)
42 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 3 2
1 0 2 3
3 2 0 1
2 3 1 0

0 1 3 2
1 0 2 3
3 2 0 1
2 3 1 0

0 1 3 2
1 0 2 3
3 2 0 1
2 3 1 0

0 1 3 2
1 0 2 3
3 2 0 1
2 3 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
FIGURE 9.13
Logic difference matrices with respect to variable x2 for switching, ternary
and quaternary functions of two variables (Example 9.18).

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
1 2 3

1 2 3
1 2 3

1 3 2
1 3 2

1 3 2
1 3 2

2 3 1
2 3 1

2 3 1
2 3 1

3 2 1
3 2 1

3 2 1
3 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2
3
1
1
2
3
2
2
2
3
3
3
3
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
3
0
0
1
2
0
0
2
1
0
0
3
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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9.5 Generation of Reed-Muller expressions

Reed-Muller representations of switching functions possess the following virtues:

� Reed-Muller expressions are associated with analysis of switching functions
in terms of change through logic Taylor expansion,

� The corresponding Reed-Muller decision tree and diagram provide a use-
ful opportunity for detailed analysis of switching functions, including
switching activity,

� The decision tree embedded into hypercube-like structure allows word-wise
computation and manipulation of Reed-Muller expressions of various
polarities,

� The cost of implementation using Reed-Muller expression is often less com-
pared to sum-of-products expressions, and

� Reed-Muller expression can be efficiently computed using matrix trans-
forms and, thus, the calculations are mapped onto massive parallel tools.

These attractive features of Reed-Muller expression apply to multivalued func-
tions. The relationship between Reed-Muller expressions and generalized logic
Taylor expansion, which is important for analysis of multivalued functions, is
presented below.

9.5.1 Logic Taylor expansion of a multivalued function

The logic analog of the Taylor series for an m-valued function f of n variables
at the point c ∈ 0, 1, . . . ,mn − 1, is defined as

f =
mn−1∑
i=0

r
(c)
i (x1 ⊕ c1)i1 . . . (xn ⊕ cn)in︸ ︷︷ ︸

i−th term

mod (m). (9.16)

In this expression:

� m is a prime number;
� c1c2 . . . cn (polarity) and i1i2 . . . in is the m-valued representation of c and

i correspondingly;
� r

(c)
i is the i-th coefficient, the value of the multiple (n-ordered) logic dif-

ference at the point d = m− c

r
(c)
i =

∂nf(d)

∂
m−i1
x̂1 ∂

m−i2
x̂2 . . . ∂

m−in

x̂n

∣∣∣∣∣
d=m−c

(9.17)

© 2005 by CRC Press
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� ∂
m−ij

x̂i indicates with respect to which variables the multiple logic difference
is calculated, and is defined by

∂
m−ij

x̂i =

⎧⎨⎩1, m = ij ,

∂
m−ij

x̂j , m �= ij
(9.18)

9.5.2 Computing Reed-Muller expressions

It follows from Equation 9.16 that:

� Logic Taylor expansion produces mn Reed-Muller expressions that corre-
spond to mn polarities. In spectral interpretation this means that each
of these expressions is a spectrum of the m-valued function at one of
mn polarities.

� A variable xj is 0-polarized if it enters into the expansion uncomplemented,
and cj-polarized otherwise.

� The coefficients in the logic Taylor series are logic differences.

While the i-th coefficient ri is described by a logical expression, it can be
calculated in different ways, for example, by matrix transformations, cube-
based technique, decision diagram technique, and probabilistic methods. It
is possible to calculate separate coefficients or their arbitrary sets using logic
differences.

Example 9.20 By Equation 9.16, the Reed-Muller expression of an arbitrary
ternary (m = 3) function of two variables (n = 2) and the 7-th polarity
c = 7, c1, c2

Example 9.21 (Continuation of Example 9.20) Consider the function f =
MAX(x1, x2). The values of the first three coefficients at the point c = 7 are

Finally, the vector of coefficient is R = [200012201]T , that yields

f = 2 + ˆ̂x1x̂2 + 2ˆ̂x1x̂2
2 + 2ˆ̂x2

2 + ˆ̂x2
2x̂2

2.

9.5.3 Computing Reed-Muller expressions in matrix form

The logic Taylor expansion consists of n logic differences with respect to each
variable and mn − n− 1 multiple logic differences.

© 2005 by CRC Press

(Figure 9.14).
= 2, 1, is defined as a logic Taylor expansion of this function

given in Figure 9.15. The other differences can be calculated in a similar way.
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+
f

r0
(7)

x2

∧ 2x2

∧ x2

∧∧

x1

∧∧

x2

∧

2x1

∧∧

x2

∧2x1

∧∧
2x2

∧2x1

∧∧

r1
(7)

r2
(7)

r3
(7)

r4
(7)

r5
(7)

r6
(7)

r7
(7)

r8
(7)

Step 1. Apply Equation 9.16 for m = 2, n = 2 :

f =

32−1∑
i=0

r
(7)
1 (x1 ⊕ 2)i1 (x2 ⊕ 1)i2 =

8∑
i=0

r
(7)
i

ˆ̂xi1
1 x̂i2

1

Step 2. Reed-Muller expression:

f = r
(7)
0 + r

(7)
1 x̂2 + r

(7)
2 x̂2

2 + r3(7) ˆ̂x2 + r
(7)
4

ˆ̂x1x̂2 + r
(7)
5

ˆ̂x1x̂2
2 + r

(7)
6

ˆ̂x1
2

+ r
(7)
7

ˆ̂x1
2
x̂2 + r

(7)
8

ˆ̂x1
2
x̂2
2

Step 3. Logic derivatives

r
(c)
i =

∂2f(7)

∂
3−i1
x̂1 ∂

3−i2
x̂2

∂
3−ij

x̂i =

⎧⎨⎩1, 3 = ij

∂
3−ij

x̂j , 3 
= ij

r1 = ∂f(7)/∂ ˆ̂x2 r5 = ∂2f(7)/∂ ˆ̂x1∂x̂2

r2 = ∂f(7)/∂x̂2 r6 = ∂f(7)/∂x̂2

r3 = ∂2f(7)/∂ ˆ̂x1∂x̂2 r7 = ∂2r(7)/∂x̂1∂ ˆ̂x2

r4 = ∂2f(7)/∂ ˆ̂x1∂ ˆ̂x2 r8 = ∂2r(7)/∂x̂1∂x̂2

FIGURE 9.14
Constructing the logic difference for a logic Taylor expansion of an arbitrary
ternary (m = 3) function of two (n = 2) variables for polarity c = 7 (Example
9.20).

9.5.4 N -hypercube representation

Let us utilize Davio decision tree and hypercube-like structure, which imple-

differences. The positive Davio expansion is given in the form

f = f|x=0 + x · (f|x=1 + 3f|x=2 + 2f|x=3)

+ x2 · (f|x=1 + 2f|x=2 + 3f|x=3) + x3 · (f|x=0 + f|x=1 + f|x=2 + f|x=3).

© 2005 by CRC Press

ments positive Davio expansion in the nodes (Table 9.7), to compute Boolean
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0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

MAX
f

x2

x1

f =MAX(x1, x2)

Reed-Muller coefficients (logic differences)

r0 = f(7) = f(2, 1) = 2,

r1 =
∂f(7)

∂ ˆ̂x2

= 2f(x1, x̂2) + f(x1, ˆ̂x2)

= 2f(2, 1̂) + f(2, ˆ̂1)

= 2f(2, 2) + f(2, 0) = 2 · 2 + 2 = 0 (mod 3),

r2 =
∂f(7)

∂x̂2

= 2f(x1, x2) + 2f(x1, x̂2) + 2f(x1, ˆ̂x2)

= 2f(2, 1) + 2f(2, 1̂) + 2f(2, ˆ̂1)

= 2f(2, 1) + 2f(2, 2) + 2f(2, 0)

= 2 · 2 + 2 · 2 + 2 · 2 = 0 (mod 3)

FIGURE 9.15
Taylor expansion of the ternary (m = 3) function MAX of two (n = 2)
variables for polarity c = 7 (Example 9.21).

structures: decision tree and hypercube-like structure.
It follows from this form that:

� Branches of the Davio decision tree carry information about logic differ-
ences;

� Terminal nodes are the values of logic differences for corresponding variable
assignments;

� Computing of Reed-Muller coefficients can be implemented on the Davio
tree as a data structure;

� The Davio decision tree includes values of all single and multiple logic differ-
ences given a variable assignment x1x2...xn = 00 . . . 0. This assignment
corresponds to calculation of Reed-Muller expansion of polarity 0, so in
the Davio tree, positive Davio expansion is implemented at each node;

� Representation of a logic function in terms of change is a unique represen-
tation; it means that the corresponding decision diagram is canonical;

� The values of terminal nodes correspond to coefficients of logic Taylor ex-
pansion.

The Davio tree can be embedded into hypercube-like structure, and the
above mentioned properties are valid for that data structure as well.

© 2005 by CRC Press

Figure 9.16 illustrates the computing of logic differences by different data
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FIGURE 9.16
Computing logic differences by Davio decision tree (a) and hypercube-like
structure for ternary logic function of two variables.

9.6 Linear word-level expressions of multivalued
functions

In this section, generalization of linear word-level data structures toward mul-
tivalued functions is considered. In a similar manner to binary functions, lin-
ear word-level expressions and decision diagrams are distinguished by their
type of decomposition (expansion). There exist three linear word-level forms
for multivalued valued functions:

� Linear word-level arithmetic expressions;
� Linear word-level Reed-Muller (modulo m) expressions; and
� Linear word-level sum-of-products expressions.

The last two forms are considered in the next sections. The focus of this
section is an approach to representation of m-valued function of n variables
by the linear word-level expression

f = d0 + d1x
◦
1 + d2x

◦
2 + · · ·+ dnx◦

n. (9.19)

An arbitrary multivalued function can be represented in linear form (Equa-
tion 9.19). However, in this section, the library of linear models (linear expres-
sions, decision diagrams, and hypercube-like structures) includes elementary

© 2005 by CRC Press
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functions only. Then, the different techniques can be used to design an arbi-
trary multivalued circuit over this library of gates.

The main reason for introducing this approach to linearization of multi-
valued functions is that linear word-level expressions can be represented by
linear word-level diagrams that are

� Easy to embed in hypercube-like structures, and
� Are intrinsically parallel and can be calculated by massive parallel arrays.

9.6.1 Approach to linearization

The approach to linearization includes the following phases (Figure 9.17):

Phase 1. Partitioning of the truth vector F of the m-valued function f of n
m-valued variables to a set of subvectors F◦

j ,
Phase 2. Encoding the multivalued variables xi. The new, binary variables

x◦
i are called pseudo-variables, and

Phase 3. Representation of the multivalued function f by the linear word-
level arithmetic expression that depends on binary pseudo-variables x◦

i .

 

 
Partitioning
truth-vector 

 

 
Multivalued 

function 

Encoding 
of 

variables 

Linear 
 Word-level 
arithmetic 
expression 

FIGURE 9.17
The main phases of an algorithm to represent a multivalued function (circuit)
by a linear word-level expression.

9.6.2 Algorithm for linearization of multivalued functions

Phase 1: Partition.

Given the truth vector F of an m-valued n-variable logic function f . Let us
partition this vector into τ subvectors,

τ =
⌈

mn

n + 1

⌉
, (9.20)

where �a� denotes the least integer greater than or equal to a. The order of
the partition is fixed (with respect to assignments of variables). The index

© 2005 by CRC Press
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µ of subvector Fµ that contains the i-th element of the initial truth table is
equal to

µ =
⌊

i

n + 1

⌋
, (9.21)

where �a� is the greatest integer less than or equal to a.

Example 9.22 Partitioning the truth vector F of lengh 33 = 27 of a ternary
(m = 3) function of three variables (n = 3) is illustrated in Figure 9.18. The
location of the 20-th element of the truth vector F is determined by the index
µ =

⌊
20

3+1

⌋
= 5 of subvector Fµ. This element belongs to subvector F5.

 

F0F2F3F4 F5 F6 F1

100

010

001

000

The vector F is partitioned to

τ =

⌈
33

3 + 1

⌉
=

⌈
27

4

⌉
= �6.7� = 7

subvectors F0,F1, . . . ,F6

The 21-th element is located in the truth-
vector Fµ,

µ =

⌊
21

3 + 1

⌋
= 5

FIGURE 9.18
Representation of truth-vector of a multivalued function by 2-D data structure
(Example 9.22).

Phase 2: Encoding.

Consider the µ-th subvector Fµ, µ = 0, 1, . . . , τ − 1. The length of the sub-
vector Fµ is n + 1. Hence, the i-th element is allocated in the subvector Fµ.

Its position inside µ is specified by the index j = Res
(

i
n+1

)
= 5. The as-

signments of n variables x◦
1, x

◦
2, . . . , x

◦
n in Fµ are called pseudo-variables. The

pseudo-variables are the binary variables valid for assignments with at most
one 1.

Example 9.23 Assignments of pseudo-variables of a three-valued function of
two, three, and four variables are given below:

(a) x◦
1x

◦
2 = {00, 01, 10}; given i = 1, µ =

⌊
1

2+1

⌋
= 0;

(b) x◦
1x

◦
2x

◦
3 = {000, 001, 010, 100}; given i = 20, µ =

⌊
20

3+1

⌋
= 5;

(c) x◦
1x

◦
2x

◦
3x

◦
4 = {0000, 0001, 0010, 0100, 1000}; given i = 10, µ =

⌊
10

4+1

⌋
= 2.
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Phase 3: Representation of a function by linear word-level
arithmetic expression.

This phase consists of two steps:

Step 1: Forming a word-level vector F◦ from subvectors F◦
1, F◦

2, . . . F◦
τ ,

and
Step 2: Truncated arithmetic transform of vector F◦.

Let W =
[
mτ−1 mτ−2 · · · m1 m0

]T be the weight vector. A truth vector
F◦ of a function f of n pseudo-variables x◦

1, . . . , x
◦
n includes n + 1 elements

and is calculated by
F◦ = [Fτ−1| . . . |F1|F0]W, (9.22)

The truncated transform of F◦ yields the vector of arithmetic coefficients D.
The relationship between the F◦ and vector of coefficients D = [d0d1 . . . dn]
is defined by the pair of transforms

D = Tn+1 · F◦, (9.23)
F◦ = T−1

n+1 ·D, (9.24)

where (n + 1) × (n + 1) direct Tn+1 and inverse T−1
n+1 truncated arithmetic

transform matrices are formed by truncation of 2n × 2n arithmetic transform
matrices P2n and P−1

2n respectively. The truncated rule is as follows:

(a) Remove all rows that contain more than one 1;
(b) Remove the remaining columns that consist of all 0s.

The vector of coefficients D yields the linear word-level arithmetic expres-
sion

D = d0 + d1x
◦
1 + d2x

◦
2 + · · ·+ dnx◦

n

Example 9.24 Given a two-variable three-valued function, the 3 × 3 direct
and inverse arithmetic truncated matrices are equal to

T3 =

⎡⎣ 1 0 0
−1 1 0
−1 0 1

⎤⎦ , T
−1
3 =

⎡⎣ 1 0 0
1 1 0
1 0 1

⎤⎦ .

Example 9.25 (Continuation of Example 9.24) Arithmetic expressions for
subvectors D0, D1 and D2

transform (Equation 9.23). For example, D1 is calculated as follows:

D1 = T3F1 =

⎡⎣ 1 0 0
−1 1 0
−1 1 1

⎤⎦ ⎡⎣ 1
1
2

⎤⎦ =

⎡⎣ 1
0
1

⎤⎦ ,

that yields the algebraic form d1 = 1 + x◦
1.

Example 9.26 (Continuation of Example 9.25) The truth vector F◦ of the
1 2 The

© 2005 by CRC Press

in Table 9.9 are calculated by the direct truncated

two-input MAX(x , x ) function is calculated as shown in Figure 9.19.
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direct truncated transform (Equation 9.23) is used for transformation. The
final result is the linear expression

D = 32D2 + 31D1 + 31D0

= 21 + 5x◦
1 + x◦

2

TABLE 9.9

Partitioning of the truth vector F and deriving the
linear word-level arithmetic expression for a ternary
MAX(x1, x2) function.

Function MAX Linear model
x1x2 F Fµ x◦

1x◦
2 Dµ Dµ

00
01
02

0
1
2

F0 =

[
0
1
2

]
00
01
10

D0 =

[
0
1
2

]
; D0 = x◦

2 + 2x◦
1

10
11
12

1
1
2

F1 =

[
1
1
2

]
00
01
10

D1 =

[
1
0
1

]
; D1 = 1 + x◦

1

20
21
22

2
2
2

F2 =

[
2
2
2

]
00
01
10

D2 =

[
2
0
0

]
; D2 = 2

9.6.3 Manipulation of the linear model

A linear word-level expression of elementary multivalued functions is a form
of representation and computation due to the following properties:

� It is convertible to the initial function by way of an operator (a control
parameter of the linear model);

� It is an intrinsically parallel model because it is at word-level; and
� It is extendable to arbitrary logic functions.

The example below illustrates some of these properties by calculation of
the function using the linear model given the input assignments. Let a three-
valued (m = 3) two-input (n = 2) elementary logic function be given by linear
expression D. The masking operation

f = Ξµ{D} (9.25)

is used to recover the value of the logic function.
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0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

MAX
f

x2

x1

f = MAX(x1, x2)

The truth table is partitioned to

τ = 
32/(2 + 1)� = 3 vectors

Truth vector F◦ :

F◦ = [F2|F1|F0]W =

⎡⎣ 2 1 0
2 1 1
2 2 2

⎤⎦ ⎡⎣ 32

31

30

⎤⎦ =

⎡⎣ 21
22
26

⎤⎦
Vector of coefficients:

D = T3 · F◦ =

⎡⎣ 1 0 0
−1 1 0
−1 0 1

⎤⎦ ⎡⎣ 21
22
26

⎤⎦ =

⎡⎣ 21
1
5

⎤⎦
Linear expression:

D = 21 + 5x◦
1 + x◦

2 , x◦
1 , x◦

2 ∈ {0, 1}

Calculation of f = MAX(2, 1), µ = 2 :

x1 = 2 → x◦
1 = 0

x2 = 1 → x◦
2 = 1

MAX(2, 1) = Ξ2{21 + 5x◦
1 + x◦

2}
= Ξ2{22}
= Ξ2{2113} = 2

FIGURE 9.19
Representation of the 3-valued 2-variable logic function f = MAX(x1, x2) by
a linear word-level arithmetic expression (Examples 9.26 and 9.27).

Example 9.27 (Continuation of Example 9.26.) Calculation of values of
MAX(x1, x2) given the linear model and x1 = 2, x2 = 1 involves several
steps (Figure 9.19):

(a) Find the index µ of subvector Fµ in a word-level representation. Here, the
parameter µ is determined as follows: assignment x1x2 = 21 corresponds
to the 7-th element of the truth-vector F; hence µ = �7/3� = 2.

(b) 1 2 = 21→ x◦
1, x

◦
2 = 01.

(c) Calculate the value of MAX(2, 1) for the assignment of pseudo-variables
x◦

1 = 0, x◦
2 = 1: MAX(2, 1) = D2(0, 1) = 2.

9.6.4 Library of linear models of multivalued gates

from a library of gates. The linear models from Table 9.10 can be extended
to an arbitrary logic function.

Example 9.28 The ternary function x1 + x2 can be represented by a linear

© 2005 by CRC Press

Use the encoding rule given in Table 9.9: x x

Table 9.10 contains the linear arithmetic expressions of various ternary gates
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TABLE 9.10

Library of linear word-level arithmetic models of three-valued
gates.

Function Vector of coefficients

x = 2 − x D = [2 −1]T

x1 · x2 (mod 3) = 15x◦
1 + 21x◦

2 D = [0 21 15]T

MIN(x1, x2) = 21x◦
1 + 12x◦

2 D = [0 12 21]T

TSUM(x1, x2) = 21 + 5x◦
1 + 4x◦

2 D = [21 4 5]T

MAX(x1, x2) = 21 + 5x◦
1 + x◦

2 D = [21 1 5]T

TPROD(x1, x2) = 21x◦
1 + 9x◦

2 D = [0 9 21]T

(x1 + x2) (mod 3) = 21 − 10x◦
1 − 14x◦

2 D = [21 −14 −10]T

x1|x2 = 1 − x◦
1 + 5x◦

2 D = [1 5 −1]T

expression as follows

x1 + x2 (mod 3) = Ξµ{30(2− x◦
2 − 2x◦

1)
+ 31(1− x◦

2 + x◦
1)

+ 32(2x◦
2 + x◦

1)}
= Ξµ{5 + 14x◦

2 + 10x◦
1}.

9.6.5 Representation of a multilevel, multivalued circuit

Let D be a level of multivalued, multilevel circuit and consist of r two-input
multivalued gates. The level implements n-input r-output logic function, or
subcircuit over the library of gates. Since each gate is described by a linear
arithmetic expression, this subcircuit can be described by a linear expression
too. The strategy for representation of a multivalued logic circuit by a set of
linear expressions is as follows:

Gate model Dj ⇐⇒ f = Ξµ{D}
Circuit level model D⇐⇒ fj = Ξ3(j−1)+µ{L}

Circuit model (set of D)⇐⇒ Set of level outputs

To simplify the formal notation, let us consider the library of ternary gates
given in Table 9.10.

Let Dj , j = 1, 2, . . . , r, be a linear arithmetic representation of the j-th
gate and its output corresponds to the j-output of a subcircuit. Assume that
the order of gates in the subcircuit is fixed. A linear word-level arithmetic of
an n-input r-output of a ternary subcircuit (level) is defined as

D =
r∑

j=1

33(j−1)Dj . (9.26)
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Example 9.29 Let a level of a ternary circuit be given as shown in Figure
9.20. This figure explains the calculation of the linear expression using Equa-
tion 9.26.

To calculate the value of the j-th output fj , j ∈ {1, . . . , r}, a masking
operator is utilized:

fj = Ξξ{D}, (9.27)

where ξ = 3(j − 1) + µ. This recovers the ξ-th digit in a word-level value D.

Example 9.30 (Continuation of Example 9.29.) Given assignment

x1x2x3x4x5x6 = 201112 =⇒ x◦
1x

◦
2x

◦
3x

◦
4x

◦
5x

◦
6 = 000110,

the outputs fj, j ∈ {1, 2, 3}, are calculated as follows: f1 = 2, f2 = 1, and
f3 = 2.

x1

x2

f1
MAX

x3

x4

f2
MAX

x5

x6

f3
MAX

f1 → D1

f2 → D2

f3 → D3

D1 = 21 + 5x◦
1 + x◦

2
D2 = 21 + 5x◦

3 + x◦
4

D3 = 21 + 5x◦
5 + x◦

6

D =
3∑

j=1

33(j−1)Dj = 30D1 + 31D2 + 32D3

= 30(21 + 5x◦
1 + x◦

2)

+ 33(21 + 5x◦
3 + x◦

4)

+ 36(21 + 5x◦
5 + x◦

6)

= 15897 + 5x◦
1 + x◦

2 + 135x◦
3 + 27x◦

4 + 3645x◦
5 + 729x◦

6.

The relationship of the assignments of variables
and pseudo-variables:

x1x2x3x4x5x6 = 201112 =⇒ x◦
1x◦

2x◦
3x◦

4x◦
5x◦

6 = 000110

Given the assignments µ1 = 2, µ2 = 1, µ3 = 1,
D = 15897+5·0+1·0+135·0+27·1+3645·1+729·0 =
19569

The outputs fj , j ∈ {1, 2, 3}, are recovered by

f1 = Ξ3·0+2{19569} =
⌊

19569
32

⌋
(mod3) = 2

f2 = Ξ3·1+1{19569} =
⌊

19569
34

⌋
(mod3) = 1

f3 = Ξ3·2+1{19569} =
⌊

19569
37

⌋
(mod3) = 2

FIGURE 9.20
Recover of the MAX function from a word-level linear arithmetic expression
(Examples 9.29 and 9.30).
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9.6.6 Linear decision diagrams

There are three hierarchical levels in the representation of multivalued func-
tions. The first level corresponds to description of a gate:

Gate ⇐⇒
Linear expression ⇐⇒

Linear decision diagram

The second level corresponds to description of a level in a multilevel circuit:

Circuit level ⇐⇒
Linear expression ⇐⇒

Linear decision diagram

The third level corresponds to description of the circuit:

Circuit ⇐⇒
Set of linear expressions ⇐⇒

Set of linear decision diagrams

Based on the above statements, an arbitrary multivalued network can be
modeled by a set of linear word-level decision diagrams.

Example 9.31 The linear decision diagram and its embedding in a N -hypercube
for the ternary MAX gate is represented in Figure 9.21.

0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

MAX
f

x2

x1

Linear expression:

f → D
D = 21+5x◦

1 +x◦
2

Linear diagram N -hypercube

pDA

2⋅30 +31 30

pDA

x1° x2°

f 0 0
31 +2⋅32  

0 

pDA 

1 

0 pDA 

x2 ° 
x1 ° 

21 

5 

Truth table on {x1, x2} Truth tables on {x◦
1, x◦

2}

0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

2x 1x

0 1
0 21 26
1 22 -

o
2x

o
1x 0 1 2

0 0 0 1 2
0 1 1 1 2
1 0 2 2 2

o
2xo1x
�

FIGURE 9.21
Representation of the ternary function MAX by linear decision diagram and
N -hypercube (Example 9.31).
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9.6.7 Remarks on computing details

One of the problems of word-level representation, including linear forms, is the
exponential values of terminal nodes. To calculate these, we utilize so-called
Zero-suppressed BDD-like trees. A special encoding scheme must be applied
in order to achieve reasonable memory usage (see additional information in

9.7 Linear nonarithmetic word-level representation of
multivalued functions

represented by a linear nonarithmetic word-level expression. In this section,
the extension of this technique to multivalued functions is presented.

9.7.1 Linear word-level for MAX expressions

Let us denote:

V ariable xi by xi,0 (q = 0),
Complement of variable xi = (m− 1)− xi by xi,1(q = 1),

Cyclic complement of variable
�
xi= xi + 1 by xi,2 (q = 2),

Integer positive values that corresponds to the i-th variable xi by wi,q, and
MAX function by ∨.

A linear word-level expression for the MAX operation of a n-variable mul-
tivalued function is defined by

f =

n
�∨

i = 1

wi,qxi,q, (9.28)

Example 9.32 Examples of word-level representation are given below. For a

single-output ternary MAX function of two variables f = x1

�∨ x2 = x1∨x2.
It is linear expression because it does not contain any product of variables. A
two-output ternary function f1 = x1∨x2, f2 = x1∨x2 of two variables can be

represented by linear expression f = 3x1

�∨ 3x2

�∨ x1

�∨ x2. Details are given

To recover the initial data from the linear expression, we apply a masking
operator. A value fj of a j-th multivalued function, j ∈ {1, . . . , r}, can
be recovered from a linear expression (Equation 9.28) by masking operator
fj = Ξj−1{f}.

© 2005 by CRC Press

in Figure 9.22.

It has been shown in Chapter 7 that an arbitrary switching function can be

the “Further Reading” Section).
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x1

x2

f
MAX

f = x1 ∨ x2

Word-level representation

f = w1,0x1,0

�∨ w2,0x2,0 = x1

�∨ x2 = x1∨x2,

where q = 0, i = 1, 2, w1,0 = w2,0 = 1

(a)

 

⎯x1 f1
MAX ⎯x2 

x1 f2 
MAX x2 

f1 = x1 ∨ x2

f2 = x1 ∨ x2

Word-level representation

f = 3(x1∨x2)
�∨ (x1∨x2) = w1,0x1,0

�∨ w2,0x2,0

= 3x1

�∨ 3x2

�∨ x1

�∨ x2,

where q = {0, 1}, i = 1, 2, w1,0 = w2,0 = 1, w1,1 = w2,1 = 3

(b)

FIGURE 9.22
Linear word-level nonarithmetic representation of a ternary MAX function
(a) and two ternary MAX functions (Example 9.32 ).

Example 9.33 (Continuation of Example 9.32).
(a) Single-output ternary MAX function of two variables is recovered:

f = Ξ0{x1

�∨ x2} = x1∨x2.
(b) Two-output ternary function of two variables is recovered:

f1 = Ξ0{3x1

�∨ 3x2

�∨ x1

�∨ x2} = x1 ∨ x2.

f2 = Ξ1{3x1

�∨ 3x2

�∨ x1

�∨ x2} = x1 ∨ x2.

9.7.2 Network representation by linear models

A multilevel multivalued logic network can be described by a linear word-level
logic, once each level consists of gates of the same type.

Example 9.34 The two-input, three-output level of a ternary circuit given in

1

�∨ 4x2

�∨ 3x1

�∨ 9x2.
The linear decision diagram that corresponds to this expression consists of
four nodes implementing the multiple ternary Shannon expansion. The values
of the outputs given truth vectors f1, f2 and f3 are calculated as below

© 2005 by CRC Press

Figure 9.23 is described by the linear expression f = 10x
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[f3 f2 f1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 · 0
�
� 4 · 0

�
� 3 · 2

�
� 9 · 2

10 · 0
�
� 4 · 1

�
� 3 · 2

�
� 9 · 1

10 · 0
�
� 4 · 2

�
� 3 · 2

�
� 9 · 0

10 · 1
�
� 4 · 0

�
� 3 · 1

�
� 9 · 2

10 · 1
�
� 4 · 1

�
� 3 · 1

�
� 9 · 1

10 · 1
�
� 4 · 2

�
� 3 · 1

�
� 9 · 0

10 · 2
�
� 4 · 0

�
� 3 · 0

�
� 9 · 2

10 · 2
�
� 4 · 1

�
� 3 · 0

�
� 9 · 1

10 · 2
�
� 4 · 2

�
� 3 · 0

�
� 9 · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

000
�
� 000

�
� 020

�
� 200

000
�
� 011

�
� 020

�
� 100

000
�
� 022

�
� 020

�
� 000

101
�
� 000

�
� 010

�
� 200

101
�
� 011

�
� 010

�
� 100

101
�
� 022

�
� 010

�
� 000

202
�
� 000

�
� 000

�
� 200

202
�
� 011

�
� 000

�
� 100

202
�
� 022

�
� 000

�
� 000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 0

1 2 1

0 2 2

2 1 1

1 1 1

1 2 2

2 0 2

2 1 2

2 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In particular, given the assignment x1x2x1x2 = {0022}, the outputs are
equal to

f1(0022) = 0∨0∨0∨0 = 0(x1 ∨ x2 = 0 ∨ 0 = 0),
f2(0022) = 0∨0∨2∨0 = 2(x1 ∨ x2 = 2 ∨ 0 = 2),
f3(0022) = 0∨0∨0∨2 = 2(x1 ∨ x2 = 0 ∨ 2 = 2).

x1

x2

f1
MAX

⎯x1

x2

f2
MAX

x1

⎯x2

f3
MAX

f1 = x1∨x2

f2 = x1∨x2

f3 = x1∨x2

Linear expression

f = 32f3 + 31f2 + 30f1

= 32(x1∨x2) + 31(x1∨x2) + 30(x1∨x2)

= (32 + 30)x1

�∨ (31 + 30)x2

�∨ 31x1

�∨ 32x2

= 10x1

�∨ 4x2

�∨ 3x1

�∨ 9x2.

30 + 32

x1

f 0

31

⎯x1

0

30 + 31

x2

0

32

⎯x2

0
0∨

∧
∨
∧

∨
∧ ∨

∧

FIGURE 9.23
A two-level ternary circuit and its linear diagram (Example 9.34).
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9.8 Summary

1. A multivalued signal has more information capacity per digit than has
However, con-

temporary electronics hardly uses this great asset of multivalued logic.
Quantum levelization in quantum-effect nanoelectronic opens new pos-
sibilities for design of multivalued systems.

2. Formal study of multivalued functions is mostly based on the principle of
generalization of switching functions’ relevant data structures. However,
there are a lot of specific features of multivalued functions that require
a special or innovative approach.

3. Logic difference, the formal description of a change in a multivalued sys-
tem, plays the key role in the analysis of the system and relevant data
structures. In a multivalued system,

� An arbitrary change in the logic value of one of the m-values can be
recognized and described by logic differences;

� Circuit behavior (switching activity, power dissipation, testing, etc.)
can be described in terms of change (see “Further Reading” Sec-
tion);

� Important content, entropy and symmetry properties can be de-
scribed by logic differences.
cussed. It will be prove that the computational complexity of sym-
metry detection can be drastically reduced;

� Generation of logic Taylor expansions whose coefficients are logic
differences; this expansion generates the family of Reed-Muller ex-
pressions with various polarities of variables. The coefficients of
arithmetic Taylor expansion are arithmetic analogs of logic differ-
ence; this expansion generates the family of arithmetic expressions
of a multivalued function.

4. Linearization technique aims to simplify embedded graph-based repre-
sentation in spatial dimensions, and is developed toward multivalued
functions. In this chapter, linear data structures, algebraic equations,
decision trees, decision diagrams and N -hypercubes are developed for
elementary functions. Based on this library of linear primitives, an ar-
bitrary multivalued circuit can be described as a set of linear word-level
diagrams and mapped in spatial dimensions. Linearization technique
includes:

� Linear word-level arithmetic models, and
� Linear word-level nonarithmetic models.

© 2005 by CRC Press

In Chapter 12, this problem is dis-

a switching function (see “Further Reading” Section).
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9.9 Problems

Problem 9.1 Use spectral transforms and calculate spectrum and derive de-
cision diagrams for logic functions of two variables given below

(a) Reed-Muller spectrum of ternary and quaternary functions MIN, MAX,

(b) Arithmetic spectrum ternary and quaternary functions MIN, MAX, MOD-
PROD. Follow Example 9.12 and use Tables 9.4, 9.11, and 9.12.

(c) Arithmetic spectrum of word-level representation of ternary functions is
given below. Follow Example 9.13.

(i) f1 =MIN(x1, x2), f2 =MIN(x1, x2)
(ii) f1 =MIN(x1, x2), f2 =MAX(x1, x2)
(iii) f1 =MIN(x1, x2), f2 =MIN(x1, x2), f3 =MAX(x1, x2)

Problem 9.2 Calculate logic differences for the quaternary logic function
MIN(x1, x2). Follow Examples 9.15 and 9.16. Use Table 9.12.

(a) The first difference
(b) The second difference
(c) The third difference

Problem 9.3 Calculate the logic differences with respect to variable x1 for
the ternary function of two variables. Follow Example 9.19.

(a) MIN(x1, x2)
(b) MODSUM(x1, x2)
(c) MODPROD(x1, x2)
(d) TSUM(x1, x2)
(e) TPROD(x1, x2)

Problem 9.4 Using the logic Taylor expression, represent the ternary func-
tion of two variables by Reed-Muller expression of polarity c. Follow Examples
9.20 and 9.21.

(a) MIN(x1, x2) , c = 0
(b) MODSUM(x1, x2), c = 2
(c) MODPROD(x1, x2), c = 1
(d) TSUM(x1, x2) c = 3

Problem 9.5 Using the linearization technique, represent the ternary func-
tion of two variables by linear word-level arithmetic expression and decision
diagram. Follow Example 9.27.

(a) MIN(x1, x2)
(b) MODSUM(x1, x2)

© 2005 by CRC Press

MODPROD. Follow Example 9.10 and use Tables 9.4, 9.11, and 9.12.
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(c) MODPROD(x1, x2)
(d) TSUM(x1, x2)
(e) TPROD(x1, x2)

Problem 9.6 In Figure 9.24 a linear decision diagram for ternary MIN func-
tion is given. Justify by truth tables that this representation is correct. Con-
struct a hypercube.

x1

x2

f
MIN

pDA

31 +2⋅32 31 + 32

pDA 0

x1° x2°

f 0 0
Linear expression

21x◦
1 + 12x◦

2

FIGURE 9.24
The linear diagrams of the ternary function MIN(x1, x2) (Problem 9.6).

Problem 9.7 The ternary circuit and corresponding set of two linear word-
Justify that calculation on

these decision diagrams has been done properly. For this

(a) Write the truth tables for the first and second levels of a circuit
(b) Describe the first and second levels by linear word-level expressions. Use

(c) Write the rule to encode ternary variables x1x2x3x4 into pseudo-variables
◦
1

◦
2

◦
3

◦
4

(d) Calculate the outputs f1 and f2 given the assignments
x◦

1x
◦
2x

◦
3x

◦
4 = {0000, 0001, 1111}

Problem 9.8
input ternary logic function. It has been generated from the decision tree
for this function. Next, a pyramid is embedded in a N -hypercube. Evaluate
(derive the formula) a diameter and the number of terminal nodes in the
n-dimensional ternary hypercube.

Problem 9.9 Use material in Section 9.7 to solve the problems below:

(a) Given a two-output ternary function f with outputs f1 =MIN(x1x2) and
f2 =MIN(x2x3), justify that

f1 =MIN(x1x2) = Ξ1{30x1

�∨ (30 + 31)x2

�∨ 31x3} and

f2 =MIN(x2x3) = Ξ2{30x1

�∨ (30 + 31)x2

�∨ 31x3}.

© 2005 by CRC Press

linear models of MIN and MAX gates from Table 9.10

x x x x . Follow the encoding rule for two variables given in Table 9.9

level decision diagrams are given in Figure 9.25.

Figure 9.26 illustrates topological representations of a three-
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x1

x2
MIN

y4

y2

f2
MAXx3

x4
MIN

y1

y3

f1
MIN

Linear diagram: first level

pDA

5

x1°

f1 0

1

pDA

x2°

0

27 ⋅ 5

pDA

x3°

0

27 ⋅ 1

pDA

x4°

0
27 ⋅ 21 + 21

Linear diagram: second level

pDA

5

y1°

f2 0

1

pDA

y2°

0

27 ⋅ 21

pDA

y3°

0

27 ⋅ 12

pDA

y4°

0
21

FIGURE 9.25
Two-level ternary circuit (left) and linear word-level decision diagrams (Prob-
lem 9.7).

 

 

(a) (b)

FIGURE 9.26
Representation of a logic function by decision trees (a) and hypercube-like
structures (b) (Problem 9.8).

(b) Find linear word-level logic expression of the two-output function f1 =
x1x2, f2 = x2x3.
Hint : apply DeMorgan’s law and operate on f1 and f2.

(c) Given the two-output ternary function f : f1 =TPROD(x1, x2) = x1 � x2

and f2 =TPROD(x2, x3) = x2 � x3, justify that

f1 = Ξ1{x1

�� (30 + 31)x2

�� 31x3}, and

f2 = Ξ2{x1

�� (30 + 31)x2

�� 31x3}
Hint : apply DeMorgan’s law and represent f1 and f2 by f1 = x1 � x2

and f2 = x2 � x3.
(d) Find linear word-level logic expression of the two-output ternary function
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f1 = x1 ⊕ x3, f2 = x2 ⊕ x3.

Problem 9.10 Consider a level of a ternary circuit consisting of gates with
outputs f1 = x1�x2, f2 = x1�x2, and f3 = x1�x2, where � denotes an
arbitrary elementary function from the set

MAX, MIN, MODSUM, TSUM, TPROD.

The linear word-level model is given below

[f3 f2 f1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 · 0
�
� 4 · 0

�
� 3 · 2

�
� 9 · 2

10 · 0
�
� 4 · 1

�
� 3 · 2

�
� 9 · 1

10 · 0
�
� 4 · 2

�
� 3 · 2

�
� 9 · 0

10 · 1
�
� 4 · 0

�
� 3 · 1

�
� 9 · 2

10 · 1
�
� 4 · 1

�
� 3 · 1

�
� 9 · 1

10 · 1
�
� 4 · 2

�
� 3 · 1

�
� 9 · 0

10 · 2
�
� 4 · 0

�
� 3 · 0

�
� 9 · 2

10 · 2
�
� 4 · 1

�
� 3 · 0

�
� 9 · 1

10 · 2
�
� 4 · 2

�
� 3 · 0

�
� 9 · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

000
�
� 000

�
� 020

�
� 200

000
�
� 011

�
� 020

�
� 100

000
�
� 022

�
� 020

�
� 000

101
�
� 000

�
� 010

�
� 200

101
�
� 011

�
� 010

�
� 100

101
�
� 022

�
� 010

�
� 000

202
�
� 000

�
� 000

�
� 200

202
�
� 011

�
� 000

�
� 100

202
�
� 022

�
� 000

�
� 000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 b0 a0

c1 b1 a1

c2 b2 a2

c3 b3 a3

c4 b4 a4

c5 b5 a5

c6 b6 a6

c7 b7 a7

c8 b8 a8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Follow Example 9.34 and calculate the outputs given the assignments
x1x2x3x4 = {0000, 1111, 2222} if

(a) f1, f2, f3 are MIN gates
(b) f1, f2, f3 are TSUM gates
(c) f1, f2, f3 are TPROD gates
(d) f1, f2, f3 are MODSUM gates

Support data for ternary logic

9.10 Further reading

International Community on Multivalued Logic. Plenty of useful infor-
mation on the theory and application of multivalued logic can be found in the
Proceedings of the Annual IEEE International Symposium on Multiple-Valued
Logic that has been held since 1970. The following topics are traditionally
the focus of discussions at this forum: multivalued circuit design and im-
plementation, minimization and decomposition techniques, fault modeling,
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The basic operations for ternary and quaternary logic are given in Tables 9.11
and 9.12.
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TABLE 9.11

Basic operation over a three-valued argument.

COMPLEMENT
x

0 1 2
x 2 1 0

r-CYCLIC
COMPLEMENT

x
0 1 2

0 0 1 2
r 1 1 2 0

2 2 0 1

LITERAL
x

0 1 2
x0 2 0 0
x1 0 2 0
x2 0 0 2

WINDOW
LITERAL

x
0 1 2

0x0 2 0 0
0x1 2 2 0
0x2 2 2 2
1x1 0 2 0
1x2 0 2 2
2x2 0 0 2

MAX
0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

MAX
0 1 2

0 2 1 0
1 1 1 0
2 0 0 0

TSUM
0 1 2

0 0 1 2
1 1 2 2
2 2 2 2

TSUM
0 1 2

0 2 1 0
1 1 0 0
2 0 0 0

TPROD
0 1 2

0 0 0 0
1 0 0 1
2 0 1 2

TPROD
0 1 2

0 2 2 2
1 2 2 1
2 2 1 0

MIN
0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

MIN
0 1 2

0 2 2 2
1 2 1 1
2 2 1 0

MODSUM
0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

MODSUM
0 1 2

0 2 1 0
1 1 0 2
2 0 2 1

MODPROD
0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

MODPROD
0 1 2

0 2 2 2
1 2 1 0
2 2 0 1

fault diagnostics and testing, decision diagram technique, multivalued alge-
bras, fuzzy logic and their application, automated reasoning and complexity,
theorem proving, computing paradigms, nanoICs design, neural networks and
evolutionary computing, and information theory.

In addition, a good source of information on the above mentioned topics
is the International Journal on Multiple-Valued Logic and Soft Computing.
Also, there are a number of books on the applied problems of multivalued
logic [4, 22, 24, 34, 47].

Logic differential calculus. Excellent contributions to the fundamentals of
logic differential and integral calculus of multivalued logic have been made in
[7, 8, 12, 38, 39]. Computational aspects of this theory have been studied in
[27, 28, 30, 35, 45, 47].

Multivalued decision diagrams can be considered as an extension of BDD
technique for multivalued functions. This technique is the focus of papers
[18, 31, 32, 33]. An excellent survey of ternary decision diagram technique
can be found in [26]. The paper by Kam et al. [10] summarizes the results
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TABLE 9.12

Basic operations over a four-valued argument.

COMPLEMENT
x

0 1 2 3
x 3 2 1 0

r-CYCLIC
COMPLEMENT

x
0 1 2 3

0 0 1 2 3
1 1 2 3 0

r 2 2 3 0 1
3 3 0 1 2

LITERAL
x

0 1 2 3
x0 3 0 0 0
x1 0 3 0 0
x2 0 0 3 0
x3 0 0 0 3

WINDOW LITERAL
x

0 1 2 3
0x0 3 0 0 0
0x1 3 3 0 0
0x2 3 3 3 0
0x3 3 3 3 3
1x1 0 3 0 0
1x2 0 3 3 0
1x3 0 3 3 3
2x2 0 0 3 0
2x3 0 0 3 3
2x3 0 0 3 3
3x3 0 0 0 3

MAX

0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

MAX

0 1 2 3
0 3 2 1 0
1 2 2 1 0
2 1 1 1 0
3 0 0 0 0

TSUM

0 1 2 3
0 0 1 2 3
1 1 2 3 3
2 2 3 3 3
3 3 3 3 3

TSUM
0 1 2 3

0 3 2 1 0
1 2 1 0 0
2 1 0 0 0
3 0 0 0 0

TPROD
0 1 2 3

0 0 0 0 0
1 0 0 0 1
2 0 0 1 2
3 0 1 2 3

TPROD
0 1 2 3

0 3 3 3 3
1 3 3 3 2
2 3 3 2 1
3 3 2 1 0

MIN
0 1 2 3

0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

MIN
0 1 2 3

0 3 3 3 3
1 3 2 2 2
2 3 2 1 1
3 3 2 1 0

MODSUM
0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

MODSUM
0 1 2 3

0 3 2 1 0
1 2 1 0 3
2 1 0 3 2
3 0 3 2 1

MODPROD
0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

MODPROD
0 1 2 3

0 3 3 3 3
1 3 2 1 0
2 3 1 3 1
3 3 0 1 2

for multivalued logic decision diagram technique.
Linear word-level arithmetic representations of multivalued functions have

been introduced by Dziurzanski et al. [3], Yanushkevich et al. [48] and logic
ones have been studied by Tomaszewska et al. [40].

Arithmetic representations. In [36], the Pascal triangle has been used to
obtain arithmetic representations of elementary multivalued functions. Tech-
niques based on spectral transforms have been developed by many researchers.
Yanushkevich has used this technique and arithmetic Taylor expansion to gen-
erate arithmetic forms of multivalued functions [44].
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Spectral technique in multivalued logic is based on spectral transformations
of discrete signals. Historically, the first recognizable activity on application
of the spectral theory of digital signal processing to switching functions come
back to the development of the fast Fourier transform (FFT). The first results
did not attract researchers because a Fourier spectrum of a switching function
is very difficult to interpret in terms of switching theory. Reed-Muller, arith-
metic and Walsh spectra have a simple interpretation both in switching and
multivalued theory. These problems are the focus of papers by Karpovsky
[11]. We also recommend papers by Green [5, 6] where a very detailed study
of Reed-Muller expressions of logic functions has been introduced.

The book by Hurst et al. [9] is a good contribution to the fundamentals
of spectral technique in multivalued logic. In a paper by Moraga [20], formal
aspects of complex representation of multivalued logic functions are developed.
The spectral technique has also been introduced in [17, 25, 33].

Testing. The class of failures in multivalued circuits is much larger compared
with binary circuits. This is the focus of the study of [2, 16, 41]. Generalization
of the D-algorithm for multivalued combinational circuits has been proposed
by Spillman and Su [29] and its extensions can be found in papers [28, 37, 46].

Logic design. While multivalued logic primarily aims at reducing the total
number of transistors compared to CMOS full adder circuits, the functional in-
tegration furthermore enables it to extend digital logic. Compared to purely
digital logic, multivalued logic has some advantages when designing high-
speed arithmetic components in avoiding time-consuming carry propagation,
inherent in switching gates. However, there are several disadvantages, since
multivalued logic circuits often have to be embedded in a conventional digital
system and therefore additional circuitry is needed to transform multivalued
logic into digital signals and vice versa. Thus, global system performance
plays an important role, too. Furthermore, when reducing the supply volt-
ages, the noise margin for the logic levels in multivalued resonant tunneling
device (RTD) circuits decreases and affects reliability. On the other hand,
multivalued logic for storing synaptic weights in neural circuitry preserves ro-
bust information processing and reduces the number of circuit components
per artificial synaptic circuit. Especially for monolithically integrated neu-
ral systems, multistate RTD-memory cells are a promising way to implement
area efficient multivalued logic circuits. The hope is that the fault tolerance
of neural circuits will compensate the errors caused by smaller noise margins.

Different aspects of logic design of multivalued circuits and systems have
been developed, in particular, decomposition [15], linearly independent logic
[23], and minimization of incompletely specified multivalued logic functions
[47, 49]. Moraga has shown that multivalued functions can be processed
by systolic arrays [21]. Linear systolic arrays have been developed in [42,
43]. Computer aided design (CAD) tools of multivalued systems have been
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discussed by Miller [17].

Reversible logic and molecular devices. Since reversible computation has
created a solid background for quantum computing paradigm, study of the
implementation of multivalued functions on quantum-effect devices is inter-
disciplinary and a beneficial direction indeed. An m-input, m-output totally-
specified multivalued logic function is reversible if it maps each input assign-
ment to a unique output assignment. So-called ternary field sum-of-products
expressions and decision diagrams are introduced for the design of ternary
reversible devices by Khan et al. [14]. The heuristic algorithm for synthesis
of multivalued reversible circuits over the library of reversible gates is devel-
oped by Miller et al. [19]. Some properties of multivalued reversible gates
related to completeness are studied by Kerntopf et al. [13] (a set of m-valued
logic functions (or elementary functions) is called universal (or completeness)
if an arbitrary m-valued logic function can be represented by this finite set of

The usefulness of multivalued logic models in design of molecular devices
has been shown, in particular, by Aoki et al. [1].
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[32] Stanković RS. Functional decision diagrams for multiple-valued func-
tions. In Proceedings 25th IEEE International Symposium on Multiple-
Valued Logic, pp. 284–289, 1995.
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Parallel Computation in
Nanospace

In this chapter the technique for designing arrays for switching function com-
puting is introduced. Four types of arrays are considered here:

� 1-D, or linear arrays,
� 2-D arrays; in particular, tree-structured networks, and
� N -hypercube arrays.

These architectures are implemented in a pipelined logic style that avoids
long range interconnections and accelerates computations. Independent of the
technological realization and the operating principles of the different families
of ultra-small devices with extreme circuit-level scalability, important design
principles are:

� A regular layout with a small number of different circuit modules (cells);
� Local interconnections on the circuit and the system level, and
� Concurrent computation and pipelining at the bit-level to achieve a low

latency.

In addition, nanoscale devices, such as single-electron ones, possess

� A stochastic character of computing due to quantum effect phenomena,
and

� Fault tolerant logic schemes to compensate for fabrication tolerances and
background charges.

The material is introduced as follows. In Sections 10.1 and 10.2, the char-
acteristics of array architectures are introduced. In Section 10.3, the design
style of linear systolic arrays is given. Sections 10.4, 10.6, and 10.7 focus on
design of linear systolic arrays for computing Reed-Muller, arithmetic and
Walsh expressions. Section 10.8 introduces tree-network design. Section 10.9
describes N -hypercube array design. In Section 10.11, we propose to solve
several problems of array computer architecture design. Finally, in Section
10.12, recommendations for “Further Reading” are given.
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10.1 Data structures and massive parallel computing

Data structure is an important attribute, highly relevant to implementation
of the algorithm and organizing information flow in parallel structures, i.e.,
mapping algorithms into computing tools.

With respect to capacity of data transmission/storage and speed of calcu-
lations, data structures are classified as:

� Bit-level representations.
� Word-level representations. Manipulation of logic functions and spectral

transforms can be implemented on words. However, among word-level
representations, only the arithmetic one satisfies the principles of lin-
earity and superposition that are inherent properties of spectral trans-
formation.

� Linear word-level representations are a boundary case of word-level repre-
sentation of logic functions. Note that linearization of word-level expres-
sions is not relevant to the above mentioned properties of linearity and
superposition of spectral transform. Linearization of word-level expres-
sion is a method of hiding information: a special hiding technique is used
on spectral components that corresponds to product terms with more
than one literal in an algebraic expression. It is possible to approximate
the spectrum using linear pieces without errors.

Bit-level representation, as described further in this chapter, is utilized for
edge bit-serial input/output organization while processing is implemented in
parallel. This paradigm is called parallel-pipelined or systolic computation.
Word-level enhances the parallelism at input/output and processing levels,
while preserving the parallel-pipelined logic.

Data structures compatible with the parallel-pipelined method are:

� Algebraic descriptions at the bit-level or word-level of computation (e.g.,
algebraic calculation of a switching function).

� Arrays, i.e., 1-D (vectors, e.g., the truth table of a switching function), 2-D
(matrices), or multidimension arrays of logic values).

� Decision trees and diagrams. These data structures represent many opti-
mization algorithms, such as branch-and-bound search, recursive proce-
dures, etc. Regarding logic functions, decision diagrams are tools for

� Spatial representations are defined as multidimensional topological struc-
tures. In this book, we focus on hypercube structures that are the result
of embedding of binary or multivalued decision trees, including spectral
ones. It should be noted that the N -hypercube we introduced for logic
functions does not perform the task of optimization of distributed pro-
cessing on a macrolevel as does communication theory, but resembles it
in a certain sense.
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Finally, at the algorithmic level, the most appropriate representation forms of
the parallel computing include:

� Matrix transforms, as an algebraic model, and

� Signal graph derived directly from the matrix transform, and the infor-
mation flow model of the algorithm, which describes transmission of
information from input to output, involving algebraic operations, etc.

10.2 Arrays

In microelectronics, computing on arrays is a solution to the problem of wiring,
by the introduction of local interconnections. In this section we focus on
nanoscale arrays that are supposed to fully exploit extreme scaling, e.g. with
single-electron devices. Such circuits are suited to implementing bit-level pro-
cessing, since they are locally interconnected, i.e., the processing elements are
integrated into the nanowires so that local connection of neighbor elements is
the optimal solution.

10.2.1 Cellular arrays

Cellular array refers to a network composed of some regular interconnection of
logic cells. Cellular arrays have a number of properties useful for computing
in nanodimensions:

� They are designed using a small set of simple processing elements (PEs),
or cells, locally connected.

� They are locally controlled (e.g. Coloumb blockade devices by biasing in
the single-electron circuits).

� Input-output is organized on edge-fed basis.

� Their topology can be embedded into many dimensions (1-D, 2-D, 3-D as

The theory of cellar automata deals with large collections of interconnected
finite automata, each finite automaton being thought of a cell. The location
of each cell is specifiable by its Cartesian coordinates with respect to some
arbitrary chosen origin and set of axes. Each cell contains an identical copy of
the finite automaton, and state of a cell at time t is precisely the state of the
its associated automaton at time t. Each cell is connected to the neighboring
cells. An allowable assignment of states to all cells in the space is called a
configuration.
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 (a)

 

(b)

 

(c)

FIGURE 10.1
The structures of 1-D (a), 2-D (b) and 3-D (c) cellular arrays.

10.2.2 Systolic arrays

1-D and 2-D arrays implementing parallel-pipelined computation are known
as linear systolic arrays. It is a subclass of cellular arrays.

Linear systolic arrays are defined as arrays of synchronized processors that
process data in parallel by transmitting them, in rhythmic fashion, from
one processor to the ones to which it is connected. For example, the im-
plementation of a signal processing algorithm such as a fast Fourier transform
(FFT), means one iteration (“butterfly” operation) per processor, so that an
n-iteration fast transform is implemented on an array of n processors.

Linear systolic arrays can be divided into two classes:

� Linear arrays with bit-serial input/output, and processing elements (PEs)
performing simple Boolean computations, and

� Linear arrays with word-level input/output and more sophisticated PE
structure.

Linear arrays have a number of useful properties, in addition to those typical
of cellular design in general:

� Simple input/output organization; and
� Easy embedding into hypercube-like topology.

In addition, the linear arrays can be optimized for a specific task; for ex-
ample, for spectral transformations, simulation of cellular automata, cellular
neural networks etc.
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10.2.3 Tree-structured networks

Many search and recursive algorithms are tree-structured, and so too are the
binary decision trees and diagrams for representation and manipulation of
logic functions considered in this book. At the hardware-level, they can be
mapped into tree-like arrays. The latter are remarkable for the following
properties:

� They can be designed directly from decision trees (Shannon, Davio, Walsh,
etc.);

� They can be embedded in spatial topologies, in particular, N -hypercubes;
� Computing in tree-like arrays can be organized in parallel-pipelined fash-

ion;
� These arrays have sequential and parallel inputs and outputs, due to their

levelized structure.

Example 10.1 A switch-type tree is designed from a reduced ordered binary
decision diagram (ROBDD) by replacing Shannon nodes with demultiplexors.
This is a particular ability of tree-like topology.

10.3 Linear systolic arrays for computing logic functions

In this section, our approach to designing linear systolic arrays for manipu-
lation of logic functions is introduced. This approach is appropriate for both
switching and multivalued logic functions, so we will consider primarily swit-
ching functions, without losing generality.

10.3.1 Design technique

Designing the linear systolic arrays is accomplished by:

� Representation of the algorithm in recursive form, referred to as factorized
form of matrix transforms, e.g., FFT, convolution, etc.;

� Mapping matrix equations into linear arrays; and
� Designing the PE-based on their formal model (size of memory for input

and intermediate data, their operation and synchronization, etc.).

Corresponding signal flowgraphs (bitwise and word-wise) represent the it-
erative processing of the components of 1-D arrays (vectors) of input data in
a parallel way.

In order to accomplish n-iteration, or recursive, computing, the linear sys-
tolic array consists of n PEs with memory organized as a first-in-first-out

a storage cell (SC). An example of a PE is given in Figure 10.2b.

© 2005 by CRC Press

(FIFO) register (Figure 10.2a). Each PE includes a computing cell (CC) and
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The control of this element is very simple, though it must be carefully

 
PE 1 PE 2 PE n Input 

 

F  

Output 
 

Y  
…

Formal model of computation:

Y = U
(1)
2n , U

(2)
2n , . . . , U

(n)
2n F︸ ︷︷ ︸

n PEs

(a)

 
CCi 

SCi 

Input
F Output 

Y 

Formal model of computation in
PEi

Yi = U
(i)
2n Fi

SC is memory with FIFO disci-
pline

(b)

FIGURE 10.2

10.3.2 Formal model of computation in a linear array

The formal model of computation in the i-th PE of the linear array
is the matrix eqaution

Yi = U
(i)
2n Fi (10.1)

where 2n × 2n matrix U
(i)
2n is a Kronecker product

U
(j)
2n = I2n−j ⊗ U2 ⊗ I2j−1︸ ︷︷ ︸

i−th PEi

,

U2 is a 2× 2 transform matrix, and I2n−j and I2n−j are identity matrices.

The formal model of computation in the array of n PEs corresponds
to the product of n matrices

Y = U
(1)
2n × U

(2)
2n × · · · × U

(n)
2n × F︸ ︷︷ ︸

n processing elements

The input data for the device is the 2n × 1 coefficient vector F, its l-th
components f(l) are loaded at l-th time (l = 1, ..., 2n−1). Then, CCs provide
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designed in the case of ultra-small devices (see “Further Reading” Section).

Linear systolic array (a) and PE (b).
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the transform of the vector F, and the resulting coefficient vector Y appears
as an output of n-th CC.

Example 10.2 The design of the first PE1 (i = 1) of a linear systolic array
given n = 3 and

U =
[

1 1
1 1

]
is shown in Figure 10.3. The structure of the PE is identical to one depicted

i includes four-bit FIFO register.

In the above example, the structure of matrix and the corresponding signal
graph are the basis for defining FIFO discipline and synchronization.

Formal model of PE Matrix Signal graph

I23−1 ⊗ U2 ⊗ I21−1

=

[
1

1
1

1

]
⊗

[
1 1
1 1

]
⊗ 1

⎡⎢⎢⎢⎢⎣
1 1

1 1
1 1

1 1
1 1
1 1

1 1
1 1

⎤⎥⎥⎥⎥⎦  

(a) (b) (c)

FIGURE 10.3
A PEi model given i = 1: matrix eqaution (a), matrix (b), and “butterfly”
flowgraph (c) (Example 10.2).

10.3.3 Parallel-pipelined computing

A linear systolic array processes data similarly to an assembly line:

� The first phase is called speeding-up (acceleration) a process whereby input
data are processed by the first PE and the result is passed to the second
PE, etc. In this phase, the computing resources of systolic processor are
partially used;

� The second phase is called stationary processing of data. At this phase all
PEs are used, i.e., the computing resources of a systolic processor are
used totally;

� The third phase is called a slowdown (deceleration) process. At this phase,
there are no input data but the rest of PEs continue the processing.

© 2005 by CRC Press
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10.4 Computing Reed-Muller expressions

We introduce two approaches for designing linear systolic arrays for computing
Reed-Muller expressions:

� Design based on factorization of the transform matrix. This technique uti-
lizes the multiplicative property of matrices of direct and inverse trans-
forms of logic functions. The transform matrix is represented by multi-
plication of factorized matrices. The problem is formulated as mapping
a factorized matrix into the structure of a processing element of a linear
array;

� Design based on Taylor expansion utilizes the properties of logic Taylor ex-
pansion to represent an arbitrary switching function in terms of Boolean
differences. From the point view of computation, the complexity of this
approach is the same as in factorization-based technique. However, it
has several useful properties, in particular, information about the coef-
ficients in terms of Boolean differences is given.

This technique can be applied to design of linear systolic arrays for com-
puting arithmetic and Walsh expressions and inverse transforms. This is also
suitable for processing multiple-valued functions unless the model of compu-
tation is matrix based.

10.4.1 Factorization of transform matrix

To design the flowgraph of an algorithm, the matrix R2n must be represented
in the factorized form

R2n = R(1)
2n R(2)

2n · · ·R(n)
2n︸ ︷︷ ︸

n PEs

, (10.2)

where R(i)
2n , i = 1, 2, . . . , n, is formed by the Kronecker product

R(i)
2n = I2n−i ⊗R2 ⊗ I2i−1︸ ︷︷ ︸

PEi

. (10.3)

Hence, Reed-Muller coefficients are computed in n iterations.

Example 10.3 Given n = 3, the flowgraph includes three iterations according
to the factorization relation:
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R23 = R(1)
23 R(2)

23 R(3)
23

= (I23−1 ⊗R2 ⊗ I21−1)︸ ︷︷ ︸
PE1

((I23−2 ⊗R2 ⊗ I22−1)︸ ︷︷ ︸
PE2

((I23−3 ⊗R2 ⊗ I23−1)︸ ︷︷ ︸
PE3

= ((I22 ⊗R2 ⊗ 1)︸ ︷︷ ︸
PE1

((I2 ⊗R2 ⊗ I2)︸ ︷︷ ︸
PE2

((1⊗R2 ⊗ I22)︸ ︷︷ ︸
PE3

=

⎡⎢⎢⎣
R2

R2

R2

R2

⎤⎥⎥⎦
⎡⎢⎢⎣

I2

I2 I2

I2

I2 I2

⎤⎥⎥⎦
⎡⎢⎢⎣

I4

I4 I4

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1

1
1 1

1
1 1

1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

FIFOSC1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1 1
1 1

1
1

1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

FIFOSC2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1 1
1 1

1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

FIFOSC3

ing Reed-Muller expressions of three variables. The following matrix model
corresponds to this iterative process:

R = R
(1)
23 R

(2)
23 R

(3)
23 F (mod 2)

A systolic array for computing a 0-polarity Reed-Muller expression of n
Figure 10.5b shows the SC’s content at

the first three and the last two cycles of calculation in the arrays.

10.4.2 Design based on logic Taylor expansion

The logic Taylor series for a Boolean function f of n variables at point c ∈
0, 1, . . . , 2n − 1 is defined as

f =
2n−1⊕
i=0

f
(c)
i (x1 ⊕ c1)i1 . . . (xn ⊕ cn)in︸ ︷︷ ︸

i−th product

,

where the i-th coefficient is the Boolean difference

f
(c)
i (d) =

∂nf(c)
∂xi1

1 ∂xi2
2 . . . ∂xin

n

∣∣∣∣∣
d=c

and ∂x
ij

i =

{
1, ij = 0
∂xj , ij = 1

,
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variables is shown in Figure 10.5a.

Figure 10.4 illustrates designing PEs of a linear systolic array for comput-
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1 1
1 1

1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 

 
 

 
PE1 

Four truncated “butterfly”
flowgraphs:

I22 ⊗ R21 ⊗ 1

i = 0 : f0 = f(0)
i = 1 : f1 = f(0) ⊕ f(1)
. . . . . . . . . . . . . . . . . .
i = 6 : f6 = f(6)
i = 7 : f7 = f(6) ⊕ f(7)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1 1
1 1

1
1

1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 

 
PE2 

Two truncated “butterfly”
flowgraphs:

I22 ⊗ R21 ⊗ I2

i = 0 : f0 = f(0)
i = 1 : f1 = f(1)
i = 2 : f2 = f(0) ⊕ f(2)
i = 3 : f3 = f(1) ⊕ f(3)
. . . . . . . . . . . . . . . . . .
i = 7 : f7 = f(4) ⊕ f(7)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1

1
1 1

1
1 1

1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 

 PE3 One truncated “butterfly”
flowgraph:

I22 ⊗ R21 ⊗ I22

i = 0, 1, 2, 3 : f0 = f(0),
f1 = f(1),
f2 = f(2), f3 = f(3)
i = 4 : f4 = f(0) ⊕ f(4)
i = 5 : f5 = f(1) ⊕ f(5)
i = 6 : f6 = f(2) ⊕ f(6)
i = 7 : f7 = f(3) ⊕ f(7)

(a) (b) (c)

FIGURE 10.4
Design of PEs for computing Reed-Muller expressions: transform matrix (a),
4-, 2-, and 1-truncated “butterfly” flowgraphs (b), and PE’s structure and
model (c) (Example 10.3).
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PE1 

PE3 

PE2 

(a)

 
f(0)  

 

 

 

f(0)  
 

f(0) 

SC1 SC2 SC3

Input:  f(0) 
Output:  r0 

 
f(1)

f(0)
 

 

f(1) 

f(0)  

f(0) ⊕ f(1) 

SC1 SC2 SC3 

Input:  f(1) 

Output:  r1= f(0) ⊕ f(1) 

 
f(2) 

f(1) 

f(0) 

 

f(0) ⊕ f(2) 

SC1 SC2 SC3 

Input:  f(2) 

Output:  r2= f(0) ⊕ f(2) 

f(1) 

f(0) ⊕ f(2) 

 
f(0) ⊕ f(2)

⊕ f(4) ⊕ f(5)

SC1 SC2 SC3 

Input:  f(6) 
Output:  r6= f(0) ⊕ f(2)  

⊕ f(4) ⊕ f(5) 

f(1) ⊕ f(5)

f(2) ⊕ f(6) 

f(1) ⊕ f(5) 

f(0) ⊕ f(4) 

f(3) 

f(0) ⊕ f(2)
⊕ f(4) ⊕ f(6)

 
f(0) ⊕ f(1) ⊕ f(2)

⊕ f(3) ⊕ f(4) ⊕ f(5)
⊕ f(6) ⊕ f(7)

SC1 SC2 SC3 

Input:  f(7) 
Output:  r7 = f(0) ⊕ f(1) ⊕ f(2) ⊕ f(3) ⊕ f(4) 

 ⊕ f(5) ⊕ f(6) ⊕ f(7) 

f(0) ⊕ f(2)
⊕ f(4) ⊕ f(6) 

f(3) ⊕ f(7) 

f(2) ⊕ f(6) 

f(1) ⊕ f(5) 

f(0) ⊕ f(4) 

f(1) ⊕ f(3)
⊕ f(5) ⊕ f(7)

(b)

FIGURE 10.5
Design of a linear systolic array (Example 10.3).

which is a value of the n-ordered Boolean difference of f where x1 = c1, x2 =
c2, ..., xn = cn. It follows from this that deriving Reed-Muller coefficients can
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Section 10.5).
be accomplished by using processors for calculation of Boolean differences (see
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10.5 Computing Boolean differences

variable xi was defined by the equation

∂F
∂xi

= D
(i)
2n F (mod 2).

Matrix D
(i)
2 is derived using the equation

D
(i)
2n = I2i−1 ⊗

[
1 1
1 1

]
⊗ I2n−i .

This equation is one iteration in a calculation of m-order Boolean difference
in a linear systolic array consisting of m PEs. The m-order Boolean difference
is already factorized representation. A PE must implement the matrix-vector
multiplication D

(i)
2 F, and the structure of the PE is similar to one consid-

ered for calculation of Reed-Muller transform, except that two switches are
required instead of one.

D
(2)

23 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 

 
PE2 

S 

S

(a) (b) (c)

FIGURE 10.6
Computing of Boolean differences of a switching function of three variables
with respect to variable x2: transform matrix (a), “butterfly” flowgraph (b),
and PE (c) (Example 10.4).
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In Chapter 8, the matrix form of a Boolean difference with respect to the i-th
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Example 10.4
ear systolic array for computing a multiple Boolean difference of a switching
function of three variables.

10.6 Computing arithmetic expressions

The computing of arithmetic expressions discussed below is applicable to

� Single-output switching functions; and

� Multioutput switching functions, or word-level representations.

To map the arithmetic transform algorithm to a linear systolic array, the
matrix P2n has to be factorized

P2n = P(1)
2n P(2)

2n · · ·P(n)
2n , (10.4)

where P(i)
2n , i = 1, 2, . . . , n, is formed by the Kronecker product

P(i)
2n = I2n−i ⊗P2 ⊗ I2i−1︸ ︷︷ ︸

PEi

.

Example 10.5 The flowgraph includes two iterations accordingly to factor-
ization relations

P23 = P(1)
23 P(2)

23 P(3)
23

= (I23−1 ⊗P2 ⊗ I21−1)︸ ︷︷ ︸
PE1

(I23−2 ⊗P2 ⊗ I22−1)︸ ︷︷ ︸
PE2

(I23−3 ⊗P2 ⊗ I23−1)︸ ︷︷ ︸
PE3

= (I22 ⊗P2 ⊗ 1)︸ ︷︷ ︸
PE1

(I2 ⊗P2 ⊗ I2)︸ ︷︷ ︸
PE2

(1⊗P2 ⊗ I22)︸ ︷︷ ︸
PE3

=

⎡⎢⎢⎣
P2

P2

P2

P2

⎤⎥⎥⎦
⎡⎢⎢⎣

I2

I2 I2

I2

I2 I2

⎤⎥⎥⎦
⎡⎢⎢⎣

I4

I4 I4

⎤⎥⎥⎦
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Figure 10.6 illustrates designing a PE given i = 2 of a lin-
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
-1 1

1
-1 1

1
-1 1

1
-1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

FIFOSC1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

-1 1
-1 1

1
1

-1 1
-1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

FIFOSC2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

-1 1
-1 1

-1 1
-1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

FIFOSC3

A linear systolic array for computing arithmetic expressions of n-variable
switching function includes n PEs. Computing of identical transform for many
functions is organized in a parallel-pipelined linear array by:

� Sequential feeding of the input with elements (truth-vectors) of the function
in a particular order, or

� Parallel input/output of words of elements.

The first does not need any modification of bit-level linear systolic array
design. The second requires significant modification to afford parallelization
on the PE level.

10.7 Computing Walsh expressions

One approach to mapping the Walsh transform in linear systolic array design
is similar to the one for Reed-Muller and arithmetic transforms. First, the
matrix W2n must be represented in the factorized form

W2n = W(1)
2n W(2)

2n · · ·W(n)
2n︸ ︷︷ ︸

n PEs

, (10.5)

where W(i)
2n , i = 1, 2, . . . , n, is formed by the Kronecker product

W(i)
2n = I2n−i ⊗W2 ⊗ I2i−1︸ ︷︷ ︸

PEi

.

The flowgraph of the algorithm corresponds to the n-iteration processing of
the input data (components of the truth table). The corresponding systolic
array includes n PEs; each PE implements one iteration. The structure of
the SC and combinational part in the PE is similar to one for calculation of
Boolean difference, except that control is organized in a different way.
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Example 10.6 Given a three-variable switching function, calculation of Walsh
coefficients includes three iterations according to the factorization relations.
The first, second and third iteration are implemented on the PE with four,
two and one register SC respectively:

W23 = W(1)
23 W(2)

23 W(3)
23

= (I23−1 ⊗W2 ⊗ I21−1)︸ ︷︷ ︸
PE1

(I23−2 ⊗W2 ⊗ I22−1)︸ ︷︷ ︸
PE2

(I23−3 ⊗W2 ⊗ I23−1)︸ ︷︷ ︸
PE3

= (I22 ⊗W2 ⊗ 1)︸ ︷︷ ︸
PE1

(I2 ⊗W2 ⊗ I2)︸ ︷︷ ︸
PE2

(1⊗W2 ⊗ I22)︸ ︷︷ ︸
PE3

=

⎡⎢⎢⎣
W2

W2

W2

W2

⎤⎥⎥⎦
⎡⎢⎢⎣

I2

I2 I2

I2

I2 I2

⎤⎥⎥⎦
⎡⎢⎢⎣

I4

I4 I4

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
-1 1

1 1
-1 1

1 1
-1 1

1 1
-1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

FIFOSC1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

-1 1
-1 1

1 1
1 1

-1 1
-1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

FIFOSC2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

1 1
1 1

-1 1
-1 1

-1 1
-1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

FIFOSC3

10.8 Tree-based network for manipulating a switching
function

The tree-based structure is remarkable due to the fact that:

� The tree, embedded into a hypercube, will form a multidimensional archi-
tecture for parallel-pipelined computing.

� The tree-based structure can be used for spectral transforms as well. This
is due to the Taylor logic series interpretation: the values of the Boolean
differences are the coefficients of the Reed-Muller expansion. This means
that calculation of other transforms (arithmetic, Walsh) is also possible
on that architecture.
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PE

PE

PE 

PEPE

PE PE 

 PE3 

(a) (b)

FIGURE 10.7
Tree-network systolic array for implementation of Davio decision tree of a
three-variable functions (a), and PE for Davio expansion with respect to the
first variable (b).
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Cycle 3 
 

Cycle 4 
 

Cycle 5

 

Cycle 6 
 

Cycle 7
 

Cycle 8 
 

Cycle 9 
 

Cycle 10 

 

Cycle 11 
 

Cycle 12
 

Cycle 13 
 

Cycle 14 
 

Cycle 15 

FIGURE 10.8
Fifteen cycles of a tree-network systolic array (black, gray and white state
correspond to loading, computing and noncomputing processes respectively).

10.9 Hypercube arrays

In previous chapters, different aspects of computations using hypercubes and
N -hypercubes were introduced. These models can be mapped to the so-called
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hypercube arrays since they have

� A homogeneous structure (a network of locally connected identical nodes);
� The functions of nodes are the same;
� The information flow is a parallel-pipelined; and
� These arrays have sequential and parallel inputs and outputs, due to a

certain lack of constraints on locality in 3-D space.

We consider two approaches to designing N -hypercube cellular arrays:

� Mapping the N -hypercubes that are derived from embedding decision trees
and diagrams that represent switching or multivalued logic functions;
and

� Mapping the binary tree-based structures, considered in this chapter above,
in particular, tree-based arrays calculation of Reed-Muller spectrum,
arithmetic and Walsh transforms and Boolean differences.

The first class of the hypercube arrays are essentially a direct mapping of the
N -hypercube topology into an array, with adequate data flow organization.
They are based on switch-type PEs. However, the principal difference is that
in parallel-pipelined computation, PEs are usually intersparsed with memory,
or delay elements, so N -hypercube topology must be modified taking into
account this requirement.

Example 10.7 Let us implement a two-variable switching function, repre-
First, we

embed the tree in the N -hypercube topology. Next, we map the N -hypercube
into 2-D array topology (since n = 2).
demultiplexer), and PEs are also divided by delay element, which maintains
pipeline processing paradigm in the cellular arrays.

The hypercube arrays that belong to the second class are designed by em-
bedding (reconfigurating) the tree-based arrays introduced in Section 10.8.
The PEs and data flow are identical to the ones used in the tree-based struc-
ture.

Example 10.8 To implement a 0-polarity Reed-Muller transform for a two-
variable switching function, we:

(a) Design a Davio decision tree,
(b) Embed the tree in a 2-D hypercube,
(c) Create a matrix model of the transform (two-iteration matrix-vector mul-

tiplication), and
(d) Design two PEs so that they implement the first and the second iteration

of the matrix transform; these PEs are the central and the intermediate

© 2005 by CRC Press

sented by a binary decision tree (Figure 10.9) on a cellular array.

The PE is a switch (the simplest

nodes of the 2-D hypercube correspondingly (Figure 10.10).
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FIGURE 10.9
Graphical representation of two-input function in sum-of-products form: deci-
sion tree (a), decision tree embedded in a hypercube (b), and cellular topology
(c).
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FIGURE 10.10
Design of an N -hypercube array (Example 10.8).

10.10 Summary

1. Arrays of regularly and locally interconnected logic cells, called cellular
systolic arrays, are a prospective solution for nanocircuit design because:

� The pipelined logic style implemented in the cellular systolic arrays
is well-suited for ultimate scalability of nanostructures;
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� They avoid long range interconnections, which is consistent with the
restrictions of nanotechnolgies, i.e. nanowire paradigm,

� Signal flow in the cellular arrays is suited to manipulation with single
bits, or bitwise words. This is consistent with elementary carries
of information in nanoscale devices, e.g. single electrons; and

� 1-D and 2-D cellular arrays can be easily embedded in hypercube-
like structure using the technique proposed in this book and called
embedding in the N -hypercube.

2. Systolic arrays utilize parallelism on two levels:

� Global (cells perform parallel to each other), and
� Local (each cell explores inherent properties of parallel processing).

This parallelism is not in contradiction with nanoelectronic design prin-
ciples, unless physical requirements are satisfied (such as screening length
that must be short compared to the spacing between electrons in a cel-
lular single-electronic circuit where more than one electron is used in
processing at the same time, in contrast with noncellular single-electron
devices).

3. Linear nanoscale systolic arrays can be used for computing

� Switching functions represented in sum-of-products form;
� Reed-Muller, arithmetic, and Walsh forms of logic functions;
� Multivalued logic functions;
� Boolean and logic differences;
� Switching and multivalued arithmetic word-level forms, utilizing ex-

tra resources for parallelization; and
� Matrix computing.

10.11 Problems

Problem 10.1 The 0-polarity Reed-Muller transform for a two-variable swit-

The function of PEs is given in an order different from that considered in the
sections above. Prove that the results must be the same for this order of
iterations, compared to the opposite order.

Problem 10.2

cycles of acceleration, computing, and deceleration.
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ching function has been mapped in a hypercube-like structure: (Figure 10.11).

Given a Shannon tree for a two-input function NAND (Figure
10.12), find the design of the cellular topology and show the data flow during
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FIGURE 10.11
Design of an N -hypercube array (Problem 10.1).
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FIGURE 10.12
Shannon decision tree of two variables (Problem 10.2).

Problem 10.3 Propose the structure of the first PE (implementing first
iteration) in a linear systolic array for computing the Walsh spectrum of a
three variable switching function.

Problem 10.4 Propose the structure of the third PE (implementing third
iteration) in a linear systolic array for computing the arithmetic spectrum of
a three variables switching function.

Problem 10.5 Propose a single-electron solution of PE design with one
FIFO register. Use a pump-based switch, memory element, and EXOR gate

Problem 10.6 Let a switching function of two variables be represented by a
Davio decision tree. Interpret its right branch in terms of Boolean differences
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(Figure 10.13a). The tree embedded into the N -hypercube is shown in Figure

implementation considered in Chapter 2.
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10.13b. Show the data flow during cycles of acceleration, computing, and
deceleration.
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FIGURE 10.13
Embedding a Davio decision tree of two variables interpreted in terms of
Boolean differences in the N -hypercube (Problem 10.6).

10.12 Further reading

Parallel architectures. Leighton’s book [12] is a comprehensive general
reference to parallel algorithms and architectures.

Cellular arrays. A class of cellular parallel-pipelined arrays, cellular au-
tomata were introduced by John von Neumann in his paper “The Theory of
Automata: Construction, Reproduction, Homogeneity” in trying to develop
an abstract model of self-reproduction in biology – a topic which had emerged
from investigations in cybernetics. Self-reproduction in cellular space is de-
fined as a special case of configuration. The configuration C is self-reproducing
if there exists a transition δ such that C construct Cδ.

By the end of the 1950s, cellular automata could be viewed as parallel
computers. Around 1961, Edward Fredkin simulated the 2-D analog of rule
90 on a PDP-1 computer, and noted its self-reproduction properties.
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Quite disconnected from all this, even in the 1950s, specific types of 1-D
and 2-D cellular automata were already being used in various electronic de-
vices and special-purpose computers. In fact, when digital image processing
began to be done in the mid-1950s (for such applications as optical character
recognition and microscopic particle counting) 2-D cellular automaton rules
were usually what was used to remove noise. And for several decades, starting
in 1960, a long line of so-called cellular logic systems were built to implement

cessing. Ever since the 1960s the idea of making array or parallel computers
has nevertheless resurfaced repeatedly, notably in systems like the ILLIAC IV
from the 1960s and 1970s, and systolic arrays and various massively parallel
computers from the 1980s. From the 1960s onward simulations of idealized
neural networks sometimes had neurons connected to neighbors on a grid,
yielding a 2-D cellular automaton.

Systolic arrays. Systolic 1-D and 2-D arrays have been proposed by Kung
[10, 11]. In a certain sense, they resemble cellular automata. This idea,
combined with RISC architectures based on pipeline paradigm, gave birth to
parallel-pipelined computations. The processors that implement such com-
puting have been called systolic by Kung in 1980. Later, however, the modest
term parallel-pipelined has been rehabilitated. A 2-D architecture has been
called matrix systolic arrays, or simply systolic arrays. They can be two-
dimensional (rectangular, triangular, tree-like) and data may flow between
the cells (which can be programmed) in different directions and at different
speeds. The algorithms that specify operations of each cell in systolic ar-
rays are called systolic algorithms. These algorithms have been suggested for
solving many problems such as binary and polynomial arithmetic, solution of
linear systems, geometric problems, and matrix operations. The latter, espe-
cially matrix multiplication, filtering and convolution, have become the basis
for systolic signal processors. These processors are based on the mapping of
fast digital signal processing algorithms (FFT) to parallel-pipelined structures
of the single-input and single-output systolic arrays.

Linear systolic arrays. A pipeline is an example of a linear systolic array
in which data flows only in one direction. A design of linear systolic arrays
have been considered in [9]. Also a multidimensional analysis of signal based
on multiple application of one-dimensional analysis has been introduced in
by Kukharev et al. [7, 8]. Linear systolic arrays have also been developed
for transforms of Boolean functions [7, 16], including solutions of Boolean
equations [13] and arithmetic and other transforms [19].

Array arithmetic circuits. A multiplier can be considered as matrix array

that is implemented by two-dimensional arrays of full adders (to sum the
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(Figure 10.14). The formal description is based on a matrix of partial products

2-D cellular automata (see, for example, [2, 4, 14]), mainly for image pro-
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rows of partial products). In Figure 10.14, the 8× 6 structure of a multiplier
is shown that is known as an array multiplier. The multiplier consists of
m − 1 = 5 n = 8-bit carry-ripple adders and m = 6 arrays of n AND gates.
The delay of the multiplier is defined as the critical path equal to sum of
delay of the buffer circuit connecting the input signal and the AND gates,
the delay of AND gate, and the delay of the adders. Systolic architecture
of a multiplier utilizes the natural properties of a multiplication, namely, a
regularity of structure and a local interconnection (each cell is connected only
to its neighbor’s).

A design of a multiplier based on systolic paradigm has been discussed, in
particular, by Sinha and Srimani [17] and Danielsson [5]. The homogeneous
highly parallel arithmetic circuits developed in last decade, are the focus in
nanotechnology. For example, the logarithmic multiplier can be considered as
a good candidate for nanotechnology. This multiplier computes the product
of two terms. The property used is log(A×B) = log(A) + log(B). To obtain
the logarithm of a number, the look-up tables, recursive algorithms or the
segmentation of the logarithmic curve can be used [3].
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FIGURE 10.14
A 8× 6 array multiplier.

Addition and multiplication in Galois fields, GF (2n) plays an important role
in coding theory and is widely used in digital computers and data transmis-
sion or storage systems. The group theory is used to introduce the algebraic
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system, called a field. A field is a set of elements in which we can do addi-
tion, subtraction, multiplication and division without leaving the set. Systolic
arrays for addition and multiplication in Galois fields have been proposed in
many papers on digital signal processing, in particular, in [15, 18].

A design of systolic array using SET has been introduced by Ancona [1].

Additional references on systolic arrays and fault-tolerance cellular arrays
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Fault-Tolerant Computation

This chapter contributes to fault-tolerant nanoICs design. In the deterministic
models of gates and circuits that were considered in previous chapters, the
basic statements are

� The input and output signals are deterministic, and

� The implemented logic function is performed correctly.

Physical perfection in nanocircuits is hard to achieve: defects and faults
arise from instability and noise-proneness on nanometer scales. This
leads to unreliable and undesirable results of computation. In order to
ensure more reliable computation, techniques are necessary to cope with
such errors.

This can be achieved in nanotechnology using probabilistic models. In these
models, it is assumed that

� The input and output signals are performed within some probability be-
cause of noise signals, and

� The implemented logic function is performed within some probability be-
cause of the nature of nanodevices.

The nature of noise signals in nanocircuits varies from thermal fluctuation
to wave interface. Hence, different models are needed for investigation of the
effects of noise, and development of methods for protection. For example,
a model can be developed based on the assumption that desired signals in
circuits are very noisy. In this model, the signals are modeled by the average
of stochastic pulses generated by special devices.

This chapter is organized as follows. After basic definitions of fault-tolerance
computing (Section 11.1), the probability behavior of nanodevices is consid-
ered in Section 11.2. Stochastic neural networks are discussed in Section 11.3.
Stochastic computing is the focus of Section 11.4. In Section 11.5, Von Neu-
mann’s model of fault-tolerance computing is introduced. Computing with
faulty-hypercubes is discussed in Section 11.6.
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11.1 Definitions

The basic terminology of fault tolerance computing includes:

� Robustness to errors is the ability of a computer system to operate correctly
in the presence of errors.

� Fault tolerance is the ability of a computer system to recover from transient
errors during computing.

� Defect tolerance is the ability of a computer system to operate correctly in
the presence of permanent hardware errors that emerged in the manu-
facturing process.

The above characteristics can be modified with respect to the particular
tasks, usage technique, and architecture of any computer system.

11.2 Probabilistic behavior of nanodevices

This section is a brief introduction to the problem of the probabilistic behavior
of nanodevices.

11.2.1 Noise

Noise in digital circuits is defined as any deviation of a signal from its stable
value that can stem from sources as varied as physical and chemical processes
in devices, measurement limitations, stochastic simulation procedures, etc.
The noise can

� Affect timing, causing a delay failure,
� Increase power consumption, and
� Cause function failure because of signal deviation.

It is important to understand and predict the effects of noise. As noise can
have a variety of sources, different noise models that are effective in different
situations are desirable.

Sources of noise in nanodevices include:

� Thermodynamic fluctuations,
� Electromagnetic interference,
� Radiation,
� Quantum tunneling, and
� Parameter fluctuations.
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Example 11.1 In the above cases different noise models are needed.

(a) Mutual inductance noise: when signal switching causes transient current
to flow through the loop formed by the signal wire and current return
path, a changing magnetic field is created and mutual inductance noise
occurs.

(b) Thermal noise: electrical power distribution and signal transmission through
interconnections are always accompanied by thermal noise due to self-
heating caused by the current flow. Thermal noise affects both intercon-
nect design and reliability.

It is reasonable to distinguish effects of noise in

� Transmission and storage of information, and
� Processing of information.

11.2.2 Nanogates

Figure 11.1 illustrates the random factors that influence the performance of
a nanodevice:
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FIGURE 11.1
Random factors that influence the performance of a nanodevice.

� The input and output signals are additive or multiplicative of noise with
respect to the desired signal. There are critical parameters which can
be referred to, to distinguish when it is impossible and to extract the
desired signal from the noisy signal.

� There are different faults that input and output wires can generate (open
and short wires, multiple faults) in nanogates.
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� There are different methods for detecting, recognizing, and correcting faults.

11.2.3 Noise models

Deterministic models operate with

� Noise-free signals,
� Noise-free gates,
� Noise-free networks, and
� Fault-free hypercube structures.

Probabilistic models assume that

� Input signals are applied to gates with some level of probability.
� Correct output signals are calculated with some level of probability.

When noise is allowed, the switching function is replaced with a random
function and the configuration is a set of random variables.

There are different approaches to the development of probabilistic models,
in particular:

� Stochastic models for noise-making signals, in particular, Markov chain
models and stochastic pulse stream models.

� Neural networks that use resources for optimization, and feedforward net-
works for computing logic functions over threshold elements.

� Computational techniques that are inspired by biology. Some common
examples include networks, evolutionary algorithms and artificial im-
mune systems (immunological computation). The similarity between
all known applications of algorithms based on biological paradigms is
that they utilize the pattern-matching and learning mechanisms of the
immune system to perform desired system functions. Biological immune
system models are parallel and distributed structures that can be viewed
as a multiagent system (separate functions are carried out by individual
agents). The immune system model is a model of adaptive processes at
the local level, resulting in useful behavior at the global level.

� Fuzzy system technology can be used in stochastic models, neural networks
and evolutionary algorithms. The formal basis of fuzzy logic technique
is a fuzzy that is an extension of the classical set. In classical set theory,
there are binary logic operators AND, OR, and NOT. The corresponding
fuzzy logic operators exist in fuzzy theory. Unlike the binary AND
and OR operators whose operations are uniquely defined, their fuzzy
counterparts are nonunique.

Example 11.2 Based on fuzzys, fuzzy switching functions, fuzzy trees,
fuzzy decision diagrams, fuzzy hypercube, and fuzzy spaces can be defined.
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Below, some of state-of-the-art models based on the assumption of random
factors are listed:

(a) Models for faults detection in wires.

Example 11.3 Stuck-at-0 or stuck-at-1 is a fault type that causes a
wire to be stuck at zero or one respectively. The conditions for observing
the fault at input xi and its transportation to output are described by
the Boolean equations. Solutions to the equations specify the tests for
detecting both stuck-at-0 and stuck-at-1 faults.

(b) Stochastic (probabilistic) models of behavior of gates and circuits. In
these models, to estimate signal probabilities, one has to calculate the

Computing is performed under the assumption that the values applied
to each circuit input are temporally independent. Other algorithms are
based on computing the lower and upper bounds of probabilities. In
the above approaches, different data structures can be used: algebraic
equations, circuit schemes, trees, and decision diagrams.

(c) Error correction codes correct errors in order to ensure data fidelity. The
random error correction codes refers to its ability to correct random
bit errors within a code word. While error position can be random, the
number of error bits within one code word that can be corrected, referred
to as the random error correction capability of the code, is critical. The
frequently used block codes are often denoted by a pair of two integers
(n, k), and one block code is completely defined by 2k binary sequences,
each an n-tuple of bits, called a code word. Bursts (clusters) of errors
are defined as a group of consecutive error bits.

Example 11.4 Below, the main characteristic of a code, the correction
capability, is explained in more detail.

(i) The notation of Bose-Chaudhuri-Hochquenghem code BCH (31, 6)
indicates that there are at most 26 distinct messages, each repre-
sented by 6 bits and encoded by a code word consisting of 31 bits.

(ii) The BCH (31, 6) code can correct 63 errors in a 255-bit code word.
However, the correction capability at the cost of high redundancy
has been wasted because each code word consists of 255 bits.

(d) Model of switching activity, or transition density model is based on the
concept of change. The model is represented in terms of Boolean (logic)
differences and Boolean (logic) equations. Note that switching activity
at the output of a gate depends not only on the switching activities at
the inputs and the logic function of gate, but also on the spatial and
temporal dependencies among the gate inputs. This model is often used
in the estimation of power dissipation and delays in a network.
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It is essential that input and output signals of nanogates are described
by additive or multiplicative expression of both noise and the desired signal.
Often the desired signal is very noisy. This means that a special technique
must be utilized to extract the desired signal from the noisy signal. These
methods are well known and widely used in communication. However, these
are costly methods, and their technical implementation is complicated. It is
rather impractical to apply these methods in nanocircuit design. Therefore,
other models are needed to solve the problem of fault tolerant computation
in nanocircuits, even at the level of a single nanogate.
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FIGURE 11.2
Deterministic (a) and probabilistic (b) models of computing.

Example 11.5 Let the inputs of OR gate x1 ∈ {0, 1} and x2 ∈ {0, 1} be mu-
tually independent with probabilities p1 = p(x1) and p2 = p(x2) correspond-
ingly (Figure 11.2). The output probability can be evaluated as the probability
of at least one event x1 and x2, i.e.,

p = 1− (1− p1)(1− p2) = p1 + p2 − p1p2.

Supposing p1 = 0.8, p2 = 0.9, correct output is produced with a probability of
p = 0.8+0.9−0.8 ·0.9 = 0.98. If p1 = p2 = 1, the inputs become deterministic
and f = x1 + x2 − x1x2, i.e., f = x1 ∨ x2.

Note that in the above example, in general, the mean E(f) and variance D(y)
of the output y are equal to

E(f) = p1 + p2 − p1p2 = p

D(f) = p · (1− p).
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11.2.4 Fault-tolerant computing

There are several aspects to the design of fault-tolerant nanodevices, and
circuits and systems over the library of these nanodevices.

Hierarchical levels of fault-tolerant computing consist of:

� The basic primitives of a system. In the simplest case, the primitives
are similar to a library of cells in conventional design. However, the
complexity of primitives depends on the technology.

� A finite set of primitives makes up macroprimitives, which are the smallest
processors possible within the associated memory. This is similar to the
microprocessor in conventional systems.

� A finite set of macroprimitives makes up a system similar to the organiza-
tion of multiprocessor systems.

� The system makes up a distributed set of systems. This is the highest level
of organization of conventional computer systems.

Example 11.6 A 4-D hypercube can be recognized as a distributed (two con-
nected 3-D hypercubes) and multiprocessor system (each node corresponds to
processor).

The next level of this hierarchy is the level of self-replicated, self-repairing
and self-assembling systems. At this level, a system, for example, can replicate
itself, giving rise to a population of identical systems.

From the above follow different fault-tolerant computing models:

� Probabilistic fault-tolerant computing models of nanogates which rely on the
observation of the mechanism of nanodevices, based on the probabilistic
behavior of nanostructures (electrons, molecules).

� Probabilistic behavior of circuits and systems. At these levels the pro-
bability of getting failed components becomes higher. This approach is
based on the idea of incorporating into the circuit and system a “guard”
against failures.

Example 11.7 In the presence of faults, a fault-tolerant circuit or system
reconfigures itself to exclude the faulty elements. Normally, it is expected
for a circuit and system, upon reconfiguration, to encompass all the healthy
elements whenever possible. A system so reconfigured may or may not change
its topology. Ideally, a fault-tolerant design retains the same system topology
after faults arise.

Noise is but one aspect of the effect of errors on the practical implementation
of computing circuits and systems. Permanent defects affecting computing
resources during the manufacture of the system and within their subsequent
lifetime are an engineering problem. Reconfigurable and self-repairing archi-
tectures are used to solve this problem.

© 2005 by CRC Press



392 Logic Design of NanoICs

Techniques. Fault-tolerant techniques are basically built on two approaches:

� Redundancy (R-fold modular and reconfiguration) achieves tolerance to
faults by employing R copies of a unit.

Example 11.8 Let R = 3. This type of redundancy is called “triple
modular.” Combining the outputs of three units by a majority gate in
each level, cascaded triple modular is obtained. If the output voted at
least two times out of three for each sub-unit, this output is considered
correct.

� Stochastic computing achieves tolerance to faults by employing statisti-
cal models in which deterministic logic signals are replaced by random
variables.

Example 11.9 Let Boolean variables x1 and x2 correspond to stochas-
tic pulse signals with averages E(x1) and E(x2). Suppose these pulse
streams are independent. It is possible to find logic operations that cor-
respond to the sum

E(x1) + E(x2)

and product

E(x1)× E(x2)

of these averages.

Note that reliable computations are always considered with respect to data
structure. Data structure influences hardware optimization, testing, verifica-
tion, power dissipation, interconnection, and finally, implementation.

Example 11.10 Interconnection plays an important role in fault-tolerant com-
puting. The interconnection determines various parameters of nanocircuit,
total area and capacity, delay, and power dissipation. Hence, it must be ac-
counted for as early as possible during the design process. Approximate esti-
mates can be obtained by using so-called stochastic interconnect models.

11.3 Neural networks

Neural networks can be defined as a computational paradigm alternative to
the conventional von Neumann model. The computational potential and lim-
its of conventional computing models are well understood in terms of classi-
cal models such as the Turing machine. Many important results have been
achieved in investigation of the computational power of neural networks by
comparison with conventional computational tools such as finite automata,
Turing machines, and logic circuits.
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11.3.1 Threshold networks

Logic circuit design based on threshold gates can be considered as an alter-
native to traditional logic gate design procedure. The implementation of a
massively interconnected network of threshold gates is possible. Formally, a
threshold gate is described by a threshold decision (linearly separable) func-
tion. This principle is a general one in and of itself, so simple logic gates, such
as AND and OR gates, are merely special cases of the threshold gate. The
power of the threshold gate design style lies in the intrinsic complex functions
implemented by such gates, which allow implementations with less threshold
gates or gate levels than does design with standard logic gates.

Example 11.11 Multiple-addition, multiplication, division and sorting can
be implemented by polynomial-size threshold circuits of small depth.

Feedforward neural networks are modeled by a direct acyclic graph (similar
to the switching network). Units in this network can be grouped in a unique
minimal way into disjointed layers so that neurons in any layer are connected
only to neurons in other layers. Computation proceeds from the input layer
to the output layer (this architecture is similar to the multilevel switching
network). This feedforward neural network coincides with a switching circuit
designed over the threshold elements.

11.3.2 Stochastic feedforward neural networks

An example of these is a stochastic feedforward neural network built on noisy
spiking neurons, which have been developed to model biological neurons. The
important properties of these networks are as follows:

� An arbitrary switching function can be implemented by a sufficient large
network of noisy spiking neurons with an arbitrarily high probability of
correctness.

� An arbitrary deterministic finite automation can be simulated by a net-
work of noisy spiking neurons with an arbitrarily high probability of
correctness.

11.3.3 Multivalued feedforward networks

Multivalued feedforward networks are defined as models of multilevel com-
binational multivalued logic circuit with no feedback and no learning. This
model includes neuron-like gates, each representing a level of a multivalued
circuit, so that the number of gates in the network is equal to the number of
levels in the circuit. The formal description of a gate is a linear arithmetic
expression that is directly mapped to the linear word-level decision diagram

linear word-level diagrams.

© 2005 by CRC Press

introduced in Chapter 9. Thus, an l-level circuit is described by a set of l



394 Logic Design of NanoICs

11.4 Stochastic computing

In this section, models based on reliable gates with stochastic input streams
are considered. Figure 11.3 illustrates this model. If the input stochastic
streams are independent (technically this means that independent generators
of random pulses are used with some additional tools for decorrelation of
signals) with E(x1) and E(x2), the output is described by the equation E(f) =
E(x1) × E(x2). Then follows the transformation of the values to the range
[0, 1].

 

E(x1) 

E(x2)

E( f )
The averages of the stochastic
pulse stream of input and out-
put signals are E(x1), E(x2) and
E(f) = E(x1) × E(x2).

FIGURE 11.3
Stochastic pulse model of computing.

Example 11.12 Given the deterministic signal x ∈ {0, 1}, generate this sig-
nal with probability p(x). The simplest model is p(x) = x · r where r ∈ {0, 1}
is a random variable with probability p(r).

Example 11.13 Implementation of the model for generating a signal with a

Example 11.13 illustrates the possibility of generating a signal with a given
probability. For example, if p(r) = 1, the output is a signal x with probability
p(x) = 1. Based on this model it is possible to study the simplest features of
probabilistic computation.

11.4.1 The model of a gate for input random pulse streams

Let us analyze the output of a gate that implements an elementary switching
function for input independent random pulse streams as 0s and 1s. A binary
stochastic pulse stream is defined as a sequence of binary digits, or bits. The
information in a pulse stream is contained in the primary statistics of the
bit stream, or the probability of any given bit in the stream being a logic 1.
Hence, the output of a gate will generally be in the form of a nonstationary
Bernoulli sequence. Such a sequence can be considered in probabilistic terms
as a deterministic signal with superimposed noise. Suppose that statistical
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x 

Random sequence 
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Deterministic signal x is transmitted
to output with probability p(r)

FIGURE 11.4
Model for generating the signal binary x with probability p(r).

characteristics of these streams are known, i.e., can be measured. In other
words, these streams carry a signal by statistical characteristics (a single event
carries very little information, it is not enough for decision making).

The stochastic pulse stream model states that

� Input signals are modeled by stochastic pulse streams with known
characteristics, and

� The output signals are calculated as an average of statistical charac-
teristics.

Example 11.14 Consider the AND gate. Let r1 and r2 are independent
random input signals with probabilities p(r1) and p(r2) are transmitted to the
output with probability p(f) = p(r1)p(r2).
E(f) and variance D(f) calculation are given. Note that the property∫ ∞

−∞
δ(r − a)f(r)dr = f(a),

and the property of joint probability distribution for independent random vari-
ables r1 and r2, f(r1, r2) = f(r1)f(r2), are used.

The generated probability of a sequence of logic levels corresponds to the
relative frequency of 1 logic levels in a sufficiently long sequence. A probability
cannot be measured exactly but only estimated as the relative frequency of 1
logic level in a sufficiently long sample.

The stochastic computer introduces its own errors in the form of random
variance. If we observe a sequence of N logic levels and k of them are 1, then
the estimated generating probability is p̂ = k/N . The sampling distribution of
the value of k is binomial, and hence the standard deviation of the estimated
probability p̂ from the true probability p is

σ(p̂) = [p(1− p)/N ]1/2.

Hence the accuracy in estimation of a generated probability increases as the
square root of the length of the sequence examined, i.e., the square root of
the length, or time, of computation.
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r2 

r1 1 0

1

1 110 0

10 0 00

Random sequence 

Random sequence 

p( f )

r2 

r1 

1 1

1

E(f) =

∫ ∞

−∞
dr1

∫ ∞

−∞
f · f(r1, r2)dr2

=

∫ ∞

−∞
dr1

∫ ∞

−∞
r1 · r2(p(r1)p(r2)δ(r1 − 1)δ(r2 − 1))

+ q(r1)q(r2)δ(r1)δ(r2) + p(r1)q(r2)δ(r1 − 1)δ(r2)

+ p(r2)q(r1)δ(r1)δ(r2 − 1))dr2

=

∫ ∞

−∞
(r1p(r1)p(r2)δ(r1 − 1)

+ r1p(r2)q(r1)δ(r1))dr1

= p(r1)p(r2)

D(f) =

∫ ∞

−∞
dr1

∫ ∞

−∞
(f − E(f))2f(r1)f(r2)dr2

=

∫ ∞

−∞
{r2

1p(r1)p(r2)δ(r1 − 1)

− 2r1p(r1)p(r2)δ(r1 − 1)E(f)

+ r2
1q(r1)p(r2)δ(r1) − 2r1E(f)q(r1)p(r2)δ(r1)

+ E2(f)(p(r1)p(r2)δ(r1 − 1) + q(r1)q(r2)δ(r1)

+ p(r1)q(r2)δ(r1 − 1) + q(r1)p(r2)δ(r1))}dr1

= p(r1)p(r2)(1 − p(r1)p(r2))

= E(f)(1 − E(f))

= p(1 − p)

FIGURE 11.5
Model of AND gate for the input random pulse streams.

11.4.2 Data structure

There are several features that distinguish classical computation and stochas-
tic computation:

� A signal is represented by the probability that a logic level be 1 or 0 at a
clock pulse.

� Random noise is being deliberately introduced into the data; usually, noise
distribution is normal.

� A quantity is represented by a clocked sequence of logic levels generated
by a random process: the successive levels are statistically independent,
and the probability of the logic level being ON is a measure of that
quantity.

� Arithmetic operations are performed via the completely random data, and
probability that a logic level will be ON or OFF is determined. Its
actual value is

(a) A chance event which cannot be predicted, and
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(b) Repetition of a computation will give rise to a different sequence of
logic levels.

In a conventional computer, logic levels represent data change deter-
ministically from value to value as the computation proceeds. If the
computation is repeated, the same sequence of logic levels will occur.

Note that unlike binary radix arithmetic, stochastic arithmetic is robust in
the presence of noise/single bit fault, and accuracy may be controlled using
the dimension of time.

11.4.3 Primary statistics

If the input distribution is unconstrained, Bernoulli sequences can be used for
formal modeling. This means that

� The probability of a given bit being a 1 is independent of the values of any
previous bits.

� Elements’ processing functions are evaluated only with respect to their
outputs’ primary statistics. The outputs are not, in general, Bernoulli
sequences.

� In the case of processing elements with multiple inputs, the inputs are
uncorrelated with each other.

Example 11.15
ching functions for stochastic computing are given, where autocorrelation func-
tion is defined as Kf (τ) = E[(f(t)− E(f))(f(t− τ)− E(f))].

It is follow from Table 11.1 that, for example, for stochastic computing of
a NOT function, we assume that input signal x is a stochastic pulse stream
characterized by probability p(x) and the autocorrelation function Kx(τx).
The mean of the output signal is E(f) = p(f), and hence p(x) = 1 − p(x) =
1− E(x). By analogy, if the input pulse streams are independent

� AND gate f = x1x2 is modeled by E(f) = p1p2

� OR gate f = x1 ∨ x2 is modeled by E(f) = p1 + p2 − p1p2

� NOR gate f = x1 ∨ x2 is modeled by E(f) = 1− p1 − p2 + p1p2

� EXOR gate f = x1 ⊕ x2 is modeled by E(f) = p1 + p2 − 2p1p2

� NOT-EXOR gate f = x1 ⊕ x2 is modeled by E(f) = 1− p1 − p2 + 2p1p2

where p1 = E(x1) and p2 = E(x2).
Stochastic computing can be interpreted by decision trees andN -hypercubes.

Example 11.16
interpreted by decision trees and N -hypercubes.
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In Figure 11.6, stochastic computing of AND function is
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TABLE 11.1

Stochastic computing of elementary switching functions.

 

x1 

x2 

f 

E(f) =

{
E(x1)E(x2) + Kx1x2 x1 and x2 are dependent

E(x1)E(x2) otherwise.

 

x1 

x2 

f 

E(f) =

{
E(x1) + E(x2) − E(x1)E(x2) − Kx1x2 x1 and x2 are dependent

E(x1) + E(x2) − E(x1)E(x2) otherwise.

 

x1 

x2 

f 

E(f) =

{
1 − E(x1)E(x2) − Kx1x2 x1 and x2 are dependent

1 − E(x1)E(x2) otherwise.

 

x1 

x2 

f 

E(f) =

{
1 − E(x1) − E(x2) + E(x1)E(x2) + Kx1x2 x1 and x2 are dependent

1 − E(x1) − E(x2) + E(x1)E(x2) otherwise.

 

x1 

x2 

f 

E[f ] =

{
E(x1) + E(x2) − 2E(x1)E(x2) − 2Kx1x2 , x1 and x2 are dependent

E(x1) + E(x2) − 2E(x1)E(x2) otherwise.

11.4.4 Stochastic encoding

A binary number X is compared with a uniform random number generated

is Xmax. The firing probability Pf of the comparator output is equal to
X/Xmax, so the output value X̂ which is obtained by accumulating the pulse
times follows the binomial distribution.
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FIGURE 11.6
Interpretation of stochastic computing by decision trees and N -hypercube of
two-input (a) and three-input (b) gate AND (Example 11.16).
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the value X with coding noise

FIGURE 11.7
A coding circuit for generating random pulse sequences

11.5 Von Neumann’s model on reliable computation with
unreliable components

The study of reliable computation by unreliabledevices originates with von
Neumann. He developed the multiplexing technique known as von Neumann’s
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model of computing. In this model, each wire in a circuit is replaced by a
bundle of wires on which a majority vote is conducted to establish its value.
In this section, von Neumann’s multiplexing technique is briefly reviewed. For
this, an unreliable NAND gate is chosen.

11.5.1 Architecture

Let NAND be an unreliable gate. In order to increase its functional probabi-
lity, let us use von Neumann’s model of computing:

� Replace each input of the NAND gate as well as its output by a bundle of
N lines,

� Duplicate the NAND N times.
� Perform a random permutation of the input signals: each signal from the

first input bundle is randomly paired with a signal from the second input
bundle to form the input pair of one of the duplicated NANDs.

The key to this approach is modifying the NAND gate (an arbitrary network,
in general) by replacing each interconnect with a parallel bundle of intercon-
nects and a strategy of random interconnections that prevents the propagation
of errors. In other words, parallelization by bundles and random interconnec-
tions can be viewed as a method for increasing the reliability of the NAND
element. This phenomenon can be explained in terms of information theory

11.5.2 Formalization

Formally, von Neumann model is based on error correction code known as
repetition code. To form the redundancy in this code, each bit (message) is
repeated many times. Let

� X be the set of lines in the first input bundle being stimulated (a logic 1),
� Y be the corresponding set for the second input bundle,
Z be the corresponding set for the output bundle,

� ε be the faulty probability of a NAND gate,
� (X,Y,Z) have (x ·N, y ·N, z ·N) elements, respectively,
� (x, y, z) are relative levels of excitation of the two input bundles and of the

output bundle, respectively,

Then, with an extremely large N :

� z is a stochastic variable, approximately normally distributed,

� The upper bound for the failure probability per gate that can be tolerated:
ε0 = 0.0107.
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Figure 11.8 illustrates the architecture where U is a random permutation.

and error correcting codes (see “Further Reading” Section).
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FIGURE 11.8
Von Neumann model of fault-tolerance computing (a), computation phase (b),
and restitution phase (c).

The mean of the a stochastic variable z, approximately normally.
Note that in fault-tolerance computing based on error correcting codes can

be used different architectures, for example, 1-D, 2-D, and 3-D cellular systolic
arrays and systolic arrays.

11.6 Faulty hypercube-like computing structures

In this section, the focus is fault-tolerance hypercube-like computing struc-
tures. Fault-tolerance properties of a hypercube-like structures are well stud-
ied and used in computing systems. Here, we briefly review the basic principles
of fault-tolerance computing via hypercube-like structures.

11.6.1 Definitions

Below, the basic definitions of fault tolerance computing in hypercube and
hypercube-like structures are given:

� A hypercube computing structure is called a faulty hypercube if it con-
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tains any faulty node (computing device) or communication link. For
hypercube-like structures of large dimensions, the number of processing
elements is very large and hence the probability of occurrence of faults
increases.

� A network is robust if its performance does not decrease significantly when
its topology changes.

� Since efficient cooperation between nonfaulty computing devices is desir-
able, one measure for robustness is the network connectivity, which is
defined as the number of node or link failures that can be allowed with-
out disrupting the system.

� Fault models of a hypercube computing system are defined from subcube
and node reliability.

� Multiple fault models of a hypercube computing system are calculated
based on the probability that many faults in the node or subcube exist.

� The reliability of a hypercube-based computing system is defined as the
probability that the system has survived the interval [0, t] given that it
was operational at time t = 0, where t is the time. Usually, reliability is
used in models of computing systems in which repair cannot take place.

� The terminal reliability of a computer system is defined as the reliability
of computer devices in nodes of a hypercube computer system. Termi-
nal reliability can be also defined as task-based reliability, which is the
probability that some minimal set of connected nodes are available in
the hypercube structure.

� The fault-tolerance computing of a hypercube-based computing system is
provided by reconfiguration and application of error correcting codes.

There are several assumptions and additional data that must be known
to apply the above characteristics: in particular, reliability function of node
computing devices (usually assumed homogeneous), and the characteristic
of statistical dependence of failures of computing devices in nodes (usually
assumed independent).

The hypercube-like network has been proved to be very robust and to divide
it into two components requires at least n faults.

In the probability fault model, the reliability of each node at time t is a
random variable. The probability that a hypercube-like network is operational
is represented by the reliability of the computing devices in the hypercube-
like network. The reliability of computing hypercube-like structure can be
formulated as the union of probabilistic events that all the possible hypercubes
of lower dimensions are operational.

Example 11.17
is faulty too. In Figure 11.9b, the node 0010 is faulty.
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In Figure 11.9a, the node 001 is faulty, and one link marked
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FIGURE 11.9
Faulty 3-D N -hypercube (a) and faulty 4-D hypercube(b) (Example 11.17).

11.6.2 Fault-tolerance technique

Fault-tolerance technique for hypercube and hypercube-like structures is based
on the principle of

� Reconfiguration, and

� Error correcting.

These techniques are well studied and widely used in computer system de-
sign. Several algorithms have been developed for reconfiguring a hypercube
with faults. These algorithms aim to achieve different characteristics after
reconfiguration, in particular, acceptable performance and connectivity. The
crucial idea is to identify maximum subcubes in a faulty hypercube, retaining
as many healthy nodes as possible in order to keep performance degradation
to a minimum.

Example 11.18 Let 3-D hypercube-like structure be a 3-D cellular array.
The basic component of this structure is a cell that includes computing de-
vice and a memory. The discipline of information flows is defined by topology
of computing structure. Reconfiguration of cellular array is the change of this
discipline. The global and local

(a) Reconfiguration,
(b) Error correction, and
(c) Control

of cells are used in 3-D cellular arrays.
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11.7 Summary

1. Fault-tolerance computing is the central problem of nanosystem design
because of the probabilistic nature of nanodevices.

2. There are many methods in state-of-the-art of logic design that deal with
computation with unreliable elements and noise signals, in particular,
methods based on:

� Probabilistic description of signals,
� Stochastic pulse streams organization,
� Fuzzy logic,
� Probabilistic logic,
� Residue number system,
� Paradigms inspired by biological systems,
� Stochastic logic neural networks,
� Von Neumann multiplexing,
� R-fold modular, and
� Error-correcting codes (for dynamic computation in the presence of

noise based on information theoretical measures).

3. Methods listed in item 2 can be applied to design of nanosystems in spa-
tial dimensions. For this, the topological properties of hypercubes and
hypercube-like structures must be used.

4. Fault-tolerance computing based on stochastic pulse streams is related to
paradigms inspired by biological systems with respect to data structure,
i.e., stochastic pulse streams.

11.8 Further reading

Faulty hypercubes and fault-tolerance computing via hypercube comput-
ing structures are studied in [1, 4, 5].

Stochastic computing based on stochastic pulse streams. In [8] the
basics of stochastic computing have been developed. Yakovlev and Fedorov
introduced the fundamentals of reliable computation based on stochastic prin-
ciples [39]. This technique is often used in design of stochastic neural networks.
In modeling, a pseudo-random number generator is used. This is generator is
a deterministic method, usually described with a mapping, to produce from
a small set of numbers (seed) a larger set of random-looking numbers.
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Probabilistic (stochastic) networks can be defined by augmenting the
respective deterministic model with additional random binary input units
whose states in time establish independent identically distributed binary se-
quences. This model of probabilistic networks relates to neural networks with
other stochastic behavior including those which are unreliable in computing
states and connecting units. In stochastic networks, probabilistic feedforward
networks based on deterministic threshold circuits are well studied.

Birge et al. studied the effects of statistical fluctuations in computation [2].
The authors found that redundancies in the thousands were needed for reliable
molecular computation. There are many related problems which can be solved
by probabilistic methods, for example, verification [13, 16, 19, 24, 25, 32, 38].

Stochastic neural networks. The computational properties of feedforward
neural networks have been studied, in particular, by Wegener [36]. Maass has
shown that arbitrary switching functions and deterministic finite automata
can be implemented by a sufficiently large network of noisy spiking neurons
with an arbitrarily high probability of correctness [17]. A model of a multilevel
combinational multivalued logic circuit with no feedback and no learning is

can be recommended for study logic circuit design based on threshold gates.
Recently, interest in study of threshold gates computing of logic functions has
resurged, since the advances in technologies [35].

Information-theoretical approach. Information theory sets bounds on the
tolerable noise during the transmission and storage of information. Numerous
error-correcting codes have been developed based on the information theoret-
ical approach. Information theoretical measures are useful in noise tolerance
computing, including dynamical computation in the presence of noise.

Evolutionary computation. The principle of evolution is the primary con-
cept of biology, linking every organism together in a historical chain of events.
For example, every creature (circuit) in the chain is the product of a series of
events (subcircuits) that have been sorted out thoroughly under selective pres-
sure (correct or noncorrect subcircuits) from the environment (design tech-
nique). Over many generations, random variation and natural selection shape
the behaviors of individuals (circuits) to fit the demands of their surroundings
(principles of circuit design) [7, 10, 21].

The reader can find much useful information on computational techniques
that look to biology for inspiration in journals IEEE Trans. on Evolutionary
Computing. In particular, the collection of papers by Dasgupta covers various
computational aspects of the immune system [6]. The natural immune sys-
tem is a complex adaptive pattern-recognition system that defends the body
from foreign pathogens. Rather than rely on any central control, it has a
distributed task force that has the intelligence to take action from a local and
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also global perspective using its network of messengers for communication.
The immune system has evolved innate (nonspecific) immunity and adaptive
(specific) immunity. From the computation point of view, the natural immune
system is a parallel and distributed adaptive system. The immune system uses
learning, memory, and associative retrieval to solve recognition and classifi-
cation tasks. Specifically, it learns to recognize relevant patterns, remember
patterns that have been seen previously, and use combinatorics to construct
pattern detectors efficiently.

Details of applications of an evolutionary technique can be found in [12],

in which even the most elementary components of the computer were assumed
noisy. This topic was first investigated by von Neumann. He showed that it
is possible to perform fault-tolerant computation with switching circuits. Re-
cently it was shown that if each NAND gate fails independently, the tolerable
threshold probability of each gate will be ε0 = 0.08856. However, this result
was obtained by formulas constructed from noisy NAND gates rather than
circuits. In other words, according to von Neumann, if ε ≥ ε0, the failure
probability of the NAND multiplexing network will be larger than a fixed,
positive lower bound, no matter how large a bundle size N is used. Note that
von Neumann model is based on so-called repetition error correction code
[18, 37].

In addition, the works by von Neumann on realization of a self-replicated
automation endowed with the properties of universal computation and con-
struction are useful.

In [9, 28], von Neumann’s technique has been improved. Authors have pro-
posed generalization of the restitution phase. Parallel restitution is defined
as a specific method of parallelization. Peper et al. studied the asynchronous
cellular systolic arrays that are tolerant to transient errors [26]. Asynchronous
cellular arrays have some advantages for design, prototyping and manufactur-
ing methods.

Some results on defect-tolerance have been obtained by building the Tera-
mac [11], a parallel computer based on FPGAs that is able to achieve high-
performance computing, even if a significant number of its components are
defective.

Error correction codes. Homogenous highly parallel arithmetic circuits, in
particular, systolic structures [29] and error correction coding [27] developed
in the last decade, are the focus in nanotechnology. Scenarios where errors
may occur include nanodevices, data storage, interconnections, etc. [37]. The
design technique of 1-D interleaving and 2-D error burst correction codes
have been well studied and documented. The multidimensional interleaving
technique followed by a random error correction code has become the most
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Von Neumann model. Boolean circuits were the first model of computation
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common approach to correcting multidimensional error bursts [3]. For exam-
ple, size 2 means that the error burst is a 3-D hypercube volume 2 × 2 × 2
blocks. Random error correction codes can be used efficiently to correct bursts
of errors.

Residue number systems. The hardware implementation of an arithmetic
algorithm is largely affected by a choice of a specific numbering system. The
attractive properties of residue number systems (RNS) include

� Carry-free,
� Fault isolating, and
� Modular characteristics,

are widely used, in particular, in high-speed digital signal processing. The
most attractive property of RNS is that there are no carry propagations in-
side the set. In RNS-based system, conversion procedures from conventional
binary representation to residue format, and vise versa, are used.

In RNS, an integer is represented as a set of residues with respect to a set
of relatively prime integers called moduli. An RNS is defined in terms of a set
of relatively prime moduli {r1, r2, . . . , rs} where the greatest common divisor
is equal to 1 for each pair of the moduli.

� If a and b are integers and m is a natural number, the statement a ≡
b (mod m) (a is congruent to b modulo m) means that the difference,
a− b, is exactly divisible by the positive integer m.

� If a and b are two integers and a ≡ b (mod m), then b is a residue of a
modulo m.

Two or more congruences may be added, subtracted, multiplied, provided
the same modulus is used throughout, i.e., congruences behave like ordinary
equations in algebra. While in ordinary arithmetic, there are an infinite num-
ber of integers 0, 1, 2, . . . , in the modular arithmetic there are essentially only
a finite number of integers.

Kinoshita studied RNS floating-point arithmetic (addition, subtraction,
multiplication, division, and square root) for an interval number with the
goal to achieve reliable computation when hardware representations of num-
bers have inadequate precision [15]. For example, a double-base representation
(m1 = 2,m2 = 3, n = 2) is x =

∑
i,j wi,j2i3j , where i and j are positive inte-

gers. For j = 0 and i = 0, this equation becomes a binary and ternary system
representation respectively.

Adder based residue-to-binary number converters have been reported by
Vinnakota and Rao [33]. Wang designed residue-to-binary number converters
for the RNS {2n − 1, 2n, 2n + 1} using 2n-bit or n-bit adders, that are twice
as fast as generic ones, and achieve improvement in area and dynamic range
as well [34].
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Fuzzy logic technique and application to logic design have been discussed
in [14, 20, 22, 31].
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Information Measures in
Nanodimensions

This chapter focuses on information measures in nanosystems. Applying the
notation to a physical system (hardware), information, in a certain sense, is a
measurable quantity, which is independent of the physical medium by which it
is conveyed. The most appropriate measure of information is mathematically
similar to the measure of entropy, but there is good reason for reversing
the sign and stating that information is the negative of entropy in nature as
well as in mathematical formulation. The technique of information theory is
applied to problems of the extraction of information from systems containing
an element of randomness.

Two aspects of the information-theoretical approach are the focus of this
chapter:

� The measures of logic circuits, and
� The measures of decision trees and diagrams.

In Section 12.1 we start with the information-theoretical basis of entropy
calculation on logic networks and decision trees as used in general logic de-
sign. Entropy of spatial measures is introduced, and its calculation on the N -
hypercube is discussed. The estimated attributes here are information flow,
information amount and entropy measures on the N -hypercube. In Section
12.2, the information theoretical measures used in logic design are introduced.
In Section 12.3, the information measures of a typical of library of gates are
given. Finally, we consider application of information theoretical measure-
ment to the problem of synthesis in spatial dimensions in Sections 12.4, 12.5,
and 12.6.

12.1 Information-theoretical measures at various levels
of design in nanodimensions

Nanodimensional structures are characterized by certain attributes that can
be divided into:
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� Static,
� Dynamic, and
� Combinations of both static and dynamic characteristics.

Static characteristics are evaluated by examining the topology or static struc-
ture of the circuit. Dynamic characteristics are relevant to analysis of circuit
behavior or dynamic usage. Compared to logic design of very large scale in-
tegration (VLSI), static characteristics are those which characterize circuit
structure, while dynamic attributes include observability and controllability
in test generation.

Combination of both static and dynamic characteristics is an important
attribute of deep-submicron integrated circuits (ICs) design, and the same
can be said regarding nanoscale design.

12.1.1 Static characteristics

Static characteristics use information from circuit topology that often depends
on technology. In contrast, variations of input assignments have much less
impact. This is why usage of dynamic information along with the static
structure must be combined in comprehensive analysis of circuits. Static
characteristics provide useful information about

� Circuit structure, and
� Connectivity.

However, they lack information about how the various parts of the circuit are
utilized with respect to different input combinations. The latter is important
for evaluating the amount of switching that takes place in the circuit as the
nodes change states. Therefore,

� The static characteristics are computed on circuit topology, and as a result
its value is often influenced by the implementation itself.

� The static characteristics may become a drawback when the characteristic
is trying to capture a fundamental property of the function that is ex-
pected to remain invariant throughout different implementations of the
function.

12.1.2 Dynamic characteristics

Dynamic characteristics refer to:

� Different input combinations, and
� The way in which these combinations cause data to be communicated

through the structure.

Testability analysis and circuit simulation inherently exploit dynamic metrics.
This requires the circuit to be exercised for several input assignments, and
this usually requires more (time and space) resources than static attribute
computation.
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12.1.3 Combination of static and dynamic characteristics

Evaluation of a combination of both static and dynamic characteristics pro-
vides information about

� The function, and
� Its implementation.

An example of usage of static characteristics is optimization via binary deci-
sion diagrams (BDDs). Such optimizations is based on variable ordering and
is performed using static attributes (node levels, depth), and may not always
be satisfactory, or compliant with other criteria, since decision diagrams repre-
sent only one of several possible interpretations of a given switching function.

In both static and dynamic attributes, the issue of communication plays
an essential role. This is because in nanodimensions, area, time and power
performance are dominated less by logic in their circuit and more by communi-
cation between logic. In VLSI design, the complexity of VLSI implementation
is measured in terms of bounds on chip area and computation time, taking
into account partitioning of the input set as a method to evaluate the lower
bound of the complexity. For example, communication complexity can be
measured as the maximum number of bits of information exchanged between
partitions over all input values to correctly compute the function. The com-
munication complexity can be also evaluated by computing the number of
compatible classes of a given function.

12.1.4 measures on data structures

The above leads to the conclusion that static circuit structure along with dy-
namic metrics is a trade-off solution to provide accurate analysis of nanoscale
structures. For example, switching energy of a circuit is a function of static
structure and connectivity, as well as the dynamic behavior of the functions
to be implemented on the structure. Thus, a quantified measure of the energy
consumption in the circuit can be made by unification of both characteristics.

However, it is difficult to find a measure that can unify static and dynamic
characteristics. This is because of the different levels of abstraction that
distort the flow of information. This applies to contemporary logic design of
VLSI circuits as well. In the case of nanometric electronic devices, the problem
of random logic (by nature) arises. The design of such devices must be capable
of dealing with random logical effects. This means that probability evaluation
is essential in the evaluation of dynamic characteristics of the circuits.

All the required virtues are successfully combined in information theory
measures such as

� Entropy, and
� Amount of information.
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The measures can be made on different data structures that carry infor-
mation about a logic function: formal representation (sum-of-products, Reed-
Muller, arithmetic, and Walsh spectrum, and word-level forms), logic network,
flowgraphs, and decision trees and diagrams, including spatial representations.
Information-theory measures are sensitive to data structure. This serves as a
motivation to distinguish two kinds of measures:

� Spatial measures on hypercube and hypercube-like structures derived from
a decision tree. Spatial measurement relates to the function given by the
decision tree, and, thus, captures the communication between minterms
of the function in the implementation. The entropy of spatial measure-
ment is a measure of the effort needed to transmit data, which is a
dynamic communication effort in a circuit.

� Logic measures on a logic networks. Logic measurement is based on logic
network (netlist) and is relevant to the gate-count complexity of the
original network, and thus more technology-dependent. The entropy of
logic measurement depends on the number of logic operations required
to perform a computation which is a static component of a circuit.

In this chapter, we focus on the entropy of spatial measurement in N -
hypercube space. The information content of a switching function is an in-
herent attribute of a function and is technology-independent. Information
content defines the complexity of function implementation and can be used
to estimate a lower bound on some physical (topological) parameters with
respect to various implementations. Therefore, it reflects the fundamental
characteristic of function behavior. Entropy of spatial measurement in N -
hypercube space can be viewed as a contribution to information content, over
all nodes of the embedded decision diagram.

The above is the basis for approaches to estimate the complexity involved
when data are transmitted from various points in a circuit. The estimated
attributes here are information flow, information amount and entropy mea-
sures on the hypercube. Finally, we describe other information-theoretical
definitions and outline their application to the problem of synthesis of 3-D
structures.

12.2 Information-theoretical measures in logic design

In this section, the basics of information-theoretical measures are introduced.
The most basic measure is entropy. Many useful additional characteristics are
derived from the entropy, namely, the conditional entropy, mutual informa-
tion, joint information, and relative information.
basic principles of input and output information measures in a logic circuit,
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where the shared arrows mean that the value of xi(f) carries the information,
the shared arrow therefore indicating the direction of the information stream.
Obviously, we can compare the results of the input and output measures and
calculate the loss of information.

Entropy of the 
 variable H(xi)

 

Logic 
circuit 

Function f Variable xi 

Entropy of the 
function f, H( f) 

Input Output 

Joint entropy H(f xi) 
Mutual information  I(f;xi) 

Relative  information I(f|xi), I(xi|f) 

Conditional entropy  H(f|xi), H(xi|f) 

Loss of 
information 

Information carried 
by the variable xi, I(xi) 

Information carried 
by the function f, I(f) 

 
  

FIGURE 12.1
Information measures at the input and output of a logic circuit, and computing
input/output relationships of information.

12.2.1 Information-theoretical standpoint

A computing system can be seen as a process of communication between
computer components. The classical concept of information advocated by
Shannon is insufficient to capture a number of features of the design and
processing of a computing system.

The information-theoretical standpoint on computing is based on the fol-
lowing notations:

� Source of information, a stochastic process where an event occurs at time
point i with probability pi. In other words, the source of information
is defined in terms of the probability distribution for signals from this
source. Often the problem is formulated in terms of sender and receiver
of information and used by analogy with communication problems.

� Information engine, the machine that deals with information.
� Quantity of information, a value of a function that occurs with the proba-
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bility p carries a quantity of information equal to (− log2 p).
� Entropy, H(f), the measure of the information content of X. The greater

the uncertainty in the source output, the higher is its information con-
tent. A source with zero uncertainty would have zero information con-
tent and, therefore, its entropy would be likewise equal to zero.

The information and entropy, in their turn, can be calculated with respect
to the given sources:

Information carried by the value of a variable or function,
Conditional entropy of function f values given function g,
Relative information of the value of a function given the value of a variable,
Mutual information between the variable and function,
Joint entropy over a distribution of jointly specified functions f and g.

12.2.2 Quantity of information

Let us assume that all combinations of values of variables occur with equal
probability. A value of a logic function that occurs with the probability p
carries a quantity of information equal to

< Quantity of information > = − log2 p bit,

where p is the probability of that value occuring.
The information carried by the value of a of xi is equal to

I(xi)|xi=a = − log2 p bit,

where p is the quotient between the number of tuples whose i-th components
equal a and the total number of tuples. Similarly, the information carried by
a value b of f is

I(f)|f=b = − log2 q bit,

where q is the quotient between the number of tuples in the domain of f and
the number of tuples for which f takes the value b.

Example 12.1 The information carried by the values of variable xi and func-
tion f

12.2.3 Conditional entropy and relative information

Conditional entropy is a measure of a random variable f given a random
variable x. To compute the conditional entropy, the conditional probability
of f must be calculated. The conditional probability of value b of logic function
f , the input value a of xi being known, is

p(f = b|xi = a) =

p|f=b
|xi=a

p|xi=a
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Logic 
circuit 

f xi 

I( xi) |xi =a I( f ) |f =b 

 
 

Input Output
xi f

0 0
1 0
0 0
1 1
0 0

Probabilities of the values of variable xi:

p(xi = 0) = 3/5, p(xi = 1) = 2/5

The information carried by the variable xi:{
I(xi)|xi=0 = − log2

3/5 = 0.737 bit
I(xi)|xi=1 = − log2

2/5 = 1.322 bit

Probabilities of the values of function f :

p(f = 0) = 4/5, p(f = 1) = 1/5

while{
p(f = 0)|xi=0 = 3/5 p(f = 0)|xi=1 = 1/5

p(f = 1)|xi=0 = 0 p(f = 1)|xi=1 = 1/5

Information carried by the function f :{
I(f)|f=0 = − log2

4/5 = 0.322 bit
I(f)|f=1 = − log2

1/5 = 2.322 bit

FIGURE 12.2
The information carried by values of variable xi and switching function f
(Example 12.1).

Similarly, the conditional probability of value a of xi given value b of the
function f is

p(xi = a|f = b) =

p|f=b
|xi=a

p|f=b

Conditional entropy H(f |g) of function f values given logic function g is

H(f |g) = H(f, g)−H(g). (12.1)

In circuit analysis and decision tree design, the so-called chain rule is useful

H(f1, . . . , fn|g) =
n∑

i=1

H(fi|f1, . . . , fi−1, g). (12.2)

The relative information of value b of logic function f given value ai of the
input variable xi is

I(f = b|xi = a) = − log2 p (f = b|xi = a).

The relative information of value ai of the input variable xi given value b
of the logic function f is

I(xi = a|f = b) = − log2 p (xi = a|f = b).

© 2005 by CRC Press



418 Logic Design of NanoICs

Once the probability is equal to 0, we suppose that the relative information
is equal to 0.

Example 12.2 Figure 12.3 illustrates the calculation of the conditional and
relative information given the truth table of a switching function.

Logic 
circuit 

f 

I( f =b|xi=a) 

xi 

H( f | xi) 

 
 

Input Output
xi f

0 0
1 0
0 0
1 1
0 0

Conditional probabilities:

p|f=0
|xi=0

= 3/5 p|f=0
|xi=1

= 1/5 p|f=1
|xi=0

= 0 p|f=1
|xi=1

= 1/5

Then

p(f = 0|xi = 0) = p|f=0
|xi=0

: p|xi=0 = 3/5 : 3/5 = 1

p(f = 0|xi = 1) = p|f=0
|xi=1

: p|xi=1 = 1/5 : 2/5 = 1/2

p(f = 1|xi = 0) = p|f=1
|xi=0

: p|xi=0 = 0

p(f = 1|xi = 1) = p|f=1
|xi=1

: p|xi=1 = 1/5 : 2/5 = 1/2

Conditional entropy H(f |xi):

H(f |xi) = −p(f = 0|xi = 0) log p(f = 0|xi = 0)

− p(f = 0|xi = 1) log p(f = 0|xi = 1)

− p(f = 1|xi = 0) log p(f = 1|xi = 0)

− p(f = 1|xi = 1) log p(f = 1|xi = 1)

= −1 log 1 − 1/2 log 1/2 − 0 log 0 − 1/2 log 1/2

= 1

Relative information I(f = b|xi = a):

I(f = 0|xi = 0) = − log2 1 = 0
I(f = 0|xi = 1) = − log2

1/2 = 1
I(f = 1|xi = 0) = 0
I(f = 1|xi = 1) = − log2

1/2 = 1

FIGURE 12.3
Computing conditional entropy and relative information (Example 12.2).

12.2.4 Entropy of a variable and a function

Let the input variable xi be the outcome of a probabilistic experiment, and
the random logic function f represent the output of some step of computa-
tion. Each experimental outcome results in different conditional probability
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distributions on the random f . Shannon’s entropy of the variable xi is defined
as

H(xi) =
m−1∑
l=0

p|xi=al
log2 p|xi=al

, (12.3)

where m is the number of distinct values assumed by xi. Shannon’s entropy
of the logic function f is

H(f) =
n−1∑
k=0

p|f=bk
log2 p|f=bk

, (12.4)

where n is the number of distinct values assumed by f.
This definition of the measure of information implies that the greater the

uncertainty in the source output, the smaller is its information content. In a
similar fashion, a source with zero uncertainty would have zero information
content and, therefore, its entropy would be likewise equal to zero.

Example 12.3 Figure 12.4 illustrates calculation of entropy of the variable
and function. The entropy of the variable xi and switching function f is 0.971
bits and 0.722 bits.

Logic 
circuit 

f 

I( f ; xi) 

xi 

H(xi) H( f ) 

 
 

Input Output
xi f
0 0
1 0
0 0
1 1
0 0

Shannon’s entropy

H(xi) = −3/5 · log2
3/5 − 2/5 · log2

2/5

= 0.971 bit

H(f) = −4/5 · log2
4/5 − 4/5 · log2

4/5

= 0.722 bit

The mutual information

I(f ; xi) =
4∑

k=1

5∑
l=1

p|f=bk
|xi=al

× I|f=bk
|xi=al

= 0.6 · 0.322 − 0.2 · 0.678 + 0 + 0.2 · 1.322

= 0.322 bit

FIGURE 12.4
Shannon’s entropy and mutual information (Examples 12.3 and 12.4).

Therefore,
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� For any variable xi it holds that 0 ≤ H(xi) ≤ 1; similarly, for any function
f , 0 ≤ H(xi) ≤ 1.

� The entropy of any variable in a completely specified function is 1.
� The entropy of a constant is 0.

12.2.5 Mutual information

The mutual information is used to measure the dependence of the function f
on the values of the variable xi and vice-versa, i.e. how statically distinguish-
able distributions of f and xi are. If the distributions are different, then the
amount of information f carries about xi is large. If f is independent of xi,
then f carries zero information about xi.

The mutual information between the value b of the function and the value
a of the input variable xi is:

I(f ; xi) = I(f ; xi)|f=b − I(f = b|xi = a)

= − log2 p|f=b + log2

p|f=b
|xi=a

p|xi=a
.

By analogy, the mutual information between the input variable xi and the
function f is

I(f ; xi) =
∑

k

∑
l

p|f=bk

|xi=al

× I(f ; xi)|f=bk

|xi=al

=
∑

k

∑
l

p|f=bk

|xi=al

× log2

p|f=bk

|xi=al

p|xi=al

.

Useful relationships are

I(g; f) = I(f ; g) = H(f)−H(f |g)
= H(g)−H(g|f)
= H(f) + H(g)−H(f, g);

I(g; f1, . . . , fn|z) =
n∑

i=1

I(g; fi|f1, . . . , fi−1, z),

where I(g; f |z) is the conditional mutual information between g and f given
z. If g and f are independent, then I(g; f) ≥ 0. The mutual information is a
measure of the correlation between g and f . For example, if g and f are equal
with high probability, then I(g; f) is large. If f1 and f2 carry information
about g and are independent given g then I(z(f1, f2); g) ≤ I(f1; g) + I(f2; g)
for any switching function z.
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Example 12.4
tion. The variable xi carries 0.322 bits of information about the switching
function f .

12.2.6 Joint entropy

Let the distribution of jointly specified functions f and g’s values be known.
Then, the joint entropy H(f, g) given this distribution is defined as follows:

H(f, g) = −
m−1∑
a=0

m−1∑
b=0

p|f=a
|g=b

· log p|f=a
|g=b

, (12.5)

where p|f=a
|g=b

denotes the probability that f takes value a and g takes value b,

simultaneously.

12.3 Information measures of elementary switching
functions

There are two approaches to information measures of elementary functions of
two variables:

� The values of input variables are considered as random patterns; for a
two-input elementary function there are four random patterns x1x2 ∈
{00.01, 10, 11}.

� The values of input variables are considered as noncorrelated random sig-
nals; for a two-input elementary function there are random signals x1 ∈
{0, 1} and x2 ∈ {0, 1}.

Information measures based on pattern. Consider a two-input AND
function with four random combinations of input signals: 00 with probability
p00, 01 with probability p01, 10 with probability p10, and 11 with probability
p11

Using Shannon’s formula (Equation 12.3), we can calculate the entropy of
the input signals, denoted by Hin as follows

Hin = − p00 × log2 p00 − p01 × log2 p01

− p10 × log2 p10 − p3 × log2 p11 bit/pattern.

Maximum entropy of the input signals can be calculated by inserting into
the above equation pi

© 2005 by CRC Press

Figure 12.4 illustrates the calculation of the mutual informa-

(Figure 12.5a).

= 0.25, i = 0, 1, 2, 3 (Figure 12.6).
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f 

x2 

p00 p01 p10 p11 

0 

0 

0 

0 

1 1 

1 1 

x1 

Patterns

Four random combinations of the signals
and their probabilities:
00 → p00

01 → p01

10 → p10

11 → p11

(a)

 
 

f 

x2 

1-p p 1-p p 

0 

0 

0 

0

1 1

1 1 

x1 

1-p 1-p p p 

Probabilities of noncorrelated signals

1 → p
0 → 1 − p

(b)

FIGURE 12.5
Measurement of probabilities: random patterns (a) and noncorrelated signals
(b).

The output of the AND function is equal to 0 with probability 0.25, and
equal to 1 with probability 0.75. The entropy of the output signal, Hout, is
calculated by Equation 12.4

Hout = −0.25× log2 0.25− 0.75× log2 0.75 = 0.81 bit/pattern.

The example below demonstrates a technique of computing information
measures that input signal are not correlated.

Information measures based on noncorrelated signals. Let the input
signal be equal to 1 with probability p, and 0 with probability 1− p (Figure
12.5b). The entropy of the input signals is

Hin = −(1− p)2 × log2(1− p)2 − 2(1− p)× log2(1− p)p− p2 × log2 p2

= −2(1− p)× log2(1− p)− 2p× log2 p bit.

The output of the AND function is equal to 1 with probability p2, and equal
to 0 with probability 1− p2. Hence, the entropy of the output signal is

Hout = −p2 × log2 p2 − (1− p)2 × log2(1− p)2 bit.

The maximum value of the output entropy is equal to 1, when p = 0.707.

observe that in the case of noncorrelated signals, information losses are less.
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bit (Figure 12.6). WeHence, the input entropy of the AND function is 0.745
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 x1 

x2 

f 

Hout Hin 

f = x1x2

x1 x2 f
Pattern1 0 0 0
Pattern2 0 1 0
Pattern3 1 0 0
Pattern4 1 1 1

Method 1:

The entropy of the input pattern (probability pi = 0.25)

Hin = −4 × 0.25 × log2 0.25 = 2 bit/pattern

Entropy of the output signal

Hout = −0.25×log2 0.25−0.75×log2 0.75 =0.81 bit/pattern

Loss of information

Hloss = Hout − Hin = 2.0 − 0.81 = 1.189 bit

Method 2:

Entropy of the input signal (probability p = 0.707)

Hin = −2(1 − p) × log2(1 − p) − 2p × log2 p

= −2(1 − 0.707) × log2(1 − 0.707) − 2 × 0.707 × log2 0.707

= 1.745 bit

Output entropy

Hout = −0.7072 × log2 0.7072

− (1 − 0.707)2 × log2(1 − 0.707)2 = 0.804 bit

Loss of information

Hloss = Hout − Hin

= 1.745 − 0.804 = 0.941 bit

FIGURE 12.6
Information measures of AND functions of two variables.

Information measures in combinations of elementary switching func-
tions. Information measures of the two-variable functions AND, OR, EXOR

1 2

approach, i.e., we suppose that information is generated by patterns. Dif-
ferent techniques are developed to measure the information in combinational
circuits. One of the approaches is demonstrated by the following example.

Example 12.5 Calculation of output entropy for a given circuit is shown in

Useful properties.
functions are grouped and calculated. We observe that

� A large group of the functions is characterized by the same output entropy

© 2005 by CRC Press

and NOT are given in Table 12.1 for p(x ) = p(x ) = 0.5. Note that the first

In Table 12.2, the entropies of elementary switching

Figure 12.7.
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TABLE 12.1

Information measures of elementary switching functions of two variables.

Function Information estimations

 x1 

x2 

f 

H(f) 

H(x1) 

H(x2) 

f = x1x2

H(f) = −p|f=0 · log2 p|f=0 − p|f=1 · log2 p|f=1

p(f) = 0.5 · 0.5 = 0.25
H(f) = −0.25 · log2 0.25 − 0.75 · log2 0.75 = 0.8113 bit

 x1 

x2 

f 

H(f) 

H(x1) 

H(x2) 

f = x1 ∨ x2

H(f) = −p|f=0 · log2 p|f=0 − p|f=1 · log2 p|f=1

p(f) = 1 − (1 − 0.5) · (1 − 0.5) = 0.75
H(f) = −0.75 · log2 0.75 − 0.25 · log2 0.25 = 0.8113 bit

 x1 

x2 

f 

H(f) 

H(x1) 

H(x2)

f = x1 ⊕ x2

H(f) = −p|f=0 · log2 |f = 0 − p|f=1 · log2 p|f=1

p(f) = 0.5 · 0.5 + 0.5 · 0.5 = 0.5
H(f) = −0.5 · log2 0.5 − 0.5 · log2 0.5 = 1 bit

 

x 
f 

H(f) H(x) 

f = x
H(f) = p|f=0 · log2 p|f=0 − p|f=1 · log2 p|f=1

p(f) = 1 − 0.5 = 0.5
H(f) = −0.5 · log2 0.5 − 0.5 · log2 0.25 = 1 bit

H(f) = 0.81, conditional entropies H(f |x1) = 0.5 and H(f |x2) = 0.5,
mutual information I(f ; x1) = 0.31 and I(f ; x2) = 0.31.

� EXOR and EQUIVALENCE functions have maximum values of entropies
H(f) = H(f |x1) = H(f |x2) = 1.

� The entropy measures for a constant function, logical 1 and 0, are equal to
0.

In addition, a single-input single-output function (gate) does not lose infor-
mation. Any many-input single-output logic function always results in a loss
of information. An n-input n-output reversible logic function (for each input
combination there is exactly one output combination, and vise versa). These
fundamental properties are utilized in a method called set of pairs of func-

Information measures in elementary multivalued functions.
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Table
12.3 shows that transmission of information is dependent on m for the PROD

tions to be distinguished (SPFD) and reversible nanocomputing (see “Further
Reading” Section).
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G1

x2

x1

x4

x3

f

H(G1)

G2 G3

G4

H(G2)

H(G3)

H(G4)

Gate G1:

H(G1) = −1/4 · log2
1/4 − 3/4 · log2

3/4

= 0.5625 bit
Gate G2:

H(G2) = −1/2 · log2
1/2 − 1/2 · log2

1/2

= 1.0 bit
Gate G3:

H(G3) = −1/4 · log2
1/4 − 3/4 · log2

3/4

= 0.5625 bit
Gate G4:

H(G4) = (1 − (1 − 1/4)(1 − 1/4)
= 1 − 3/4 · 3/4

= 0.9375 bit

FIGURE 12.7
Information measures in a three-level circuit (Example 12.5).

gate (x1x2)mod k. For example, H(f) = 0.906 for a ternary function and
H(f) = 0.957 for a 5-valued logic function.

Information measures in symmetric functions. The properties of logic
functions can be used for the simplification of information estimation. Symme-
tries in circuits are classified as structural symmetries, arising from similarities
in circuit structure and topology, and data symmetries, arising from similar-
ities in the handling of data values. In the example below, we demonstrate
how symmetric properties can be used for information theoretical measures.

Let f be a totally symmetric function that is 1 if m of its n variables are
1, where m ∈ A ⊆ {0, 1, . . . , n}. For example, NAND of three variables is a
symmetric function that is 1 iff 0, 1, and 2 of its variables are 1.

Example 12.6 The probabilities associated with 0 and 1 of n variables of an
AND function are

p|f=0 =
2n − 1

2n
, p|f=1 =

1
2n

.

By analogy, for an OR function:

p|f=0 =
1
2n

, p|f=1 =
2n − 1

2n
.

The entropy of n-variable AND and OR functions is equal to

H(f) = −2n − 1
2n

· log2

2n − 1
2n

− 1
2n
· log2

1
2n

=
n

2n
− (1− 1

2n
) log(1− 1

2n
)
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TABLE 12.2

Information measures of elementary switching functions of
two variables.

Entropy Mutual information
f H(f) H(f |x1) H(f |x2) I(f ; x1) H|f ; x2

x1x2 0.81 0.5 0.5 0.31 0.31
x1x2 0.81 0.5 0.5 0.31 0.31
x1x2 0.81 0.5 0.5 0.31 0.31
x1 ∨ x2 0.81 0.5 0.5 0.31 0.31
x1 ↑ x2 0.81 0.5 0.5 0.31 0.31
x1 → x2 0.81 0.5 0.5 0.31 0.31
x2 → x1 0.81 0.5 0.5 0.31 0.31
x1 | x2 0.81 0.5 0.5 0.31 0.31
x1 ⊕ x2 1 1 1 0 0
x1 ∼ x2 1 1 1 0 0
x1 1 0 1 1 0
x2 1 0 0 0 1
x1 1 1 0 0 1
x2 1 0 1 1 0
const 1 0 0 0 0 0
const 0 0 0 0 0 0

TABLE 12.3

Information measures of elementary multivalued functions of two
variables.

Function Entropy Mutual information
f H(f) H(f |x1) H(f |x2) I(f ; x1) H|f ; x2

x1x2 (mod 3) 0.906 1.665 0.665 0.759 0.241
x1x2 (mod 4) 0.876 1.625 0.625 0.750 0.250
x1x2 (mod 5) 0.957 1.800 0.800 0.843 0.157
x1 + x2 (mod 3) 1 2 1 1 0
x1 + x2 (mod 4) 1 2 1 1 0

12.4 Information-theoretical measures in decision trees

In this section, we address the design of decision trees with nodes of three
types: Shannon (S ) positive Davio (pD) and negative Davio (nD) based on
the information theoretical approach. An approach revolves around choosing
the “best” variable and the “best” expansion type with respect to this vari-
able for any node of the decision tree in terms of information measures. This
means that in any step of the decision making strategy, we have an opportu-
nity to choose both
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� Variable, and
� Type of expansion,

based on the criterion of minimum entropy.
The entropy-based optimization strategy can be described as the generating

of the optimal paths in a decision tree, with respect to the minimum entropy
criterion.

12.4.1 Decision trees

Calculation of entropy and information on decision trees is best known as the
induction of decision trees (ID3) algorithm for optimization.

Example 12.7 Figure 12.8 illustrates calculation of entropy on a decision
tree.

Free binary decision trees are derived by permitting permutation of vari-
ables in a subtree independently of the order of variables in the other subtree
related to the same nonterminal node. Another way of generalizing decision
trees is to use different expansions at the nodes in the decision tree. This
decision tree is designed by arbitrarily choosing any variable and any of the
S, pD or nD expansions for each node.

 f

0 

1 

0 

0 

x2 ⎯x2 

S

S S

⎯x1

⎯x2

x1 

x2 

H(f |x1) 

H(f |x1,x2) 

H(f ) 

H(f |x1=x2=1)

H(f |x1=1,x2=0) 

H(f |x1=0,x2=1) 

H(f |x1=x2=0)

FIGURE 12.8
measure of entropy on a decision tree (Example 12.7).
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12.4.2 Information-theoretical notation of switching function
expansion

In the process of decision tree design two information measures are used:

< Conditional entropy > = H(f |Tree)
< Mutual information > = I(f ; Tree)

The initial state of this process is characterized by the maximum value for
the conditional entropy

H(f |Tree) = H(f).

Nodes are recursively attached to the decision tree by using the top-down
strategy. In this strategy the entropy H(f |Tree) of the function is reduced,
and the information I(f ; Tree) increases, since the variables convey the in-
formation about the function. Each intermediate state can be described in
terms of entropy by the equation

I(f ; Tree) = H(f)−H(f |Tree). (12.6)

We maximize the information I(f ; Tree) that corresponds to the mini-
mization of entropy H(f |Tree), in each step of the decision tree design.
The final state of the decision tree is characterized by H(f |Tree) = 0 and
I(f ; Tree) = H(f), i.e., Tree represents the switching function f (Figure
12.9).

 
 

H(f |Tree1) 

H(f |Tree2) H(f |Tree)=0 

H(f |Tree3) 

OUTIN 

Maximizing the information

I(f ; Treei)

corresponds to the minimization of
entropy H(f |Treei).

The final state of the decision
tree design corresponds to

H(f |Tree3) = 0

I(f ; Tree) = H(f),

i.e., < Tree > represents the swit-
ching function f

FIGURE 12.9
Four steps of minimization of entropy H(f |Tree) in decision tree design for
reduction of uncertainty.

The decision tree design process is a recursive decomposition of a switching
function. A step of this recursive decomposition corresponds to the expansion
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of switching function f with respect to the variable x. Assume that the
variable x in f conveys information that is, in some sense, the rate of influence
of the input variable on the output value for f .

The initial state of the expansion ω ∈ {S, pD, nD} can be characterized by
the entropy H(f) of f , and the final state by the conditional entropy Hω(f |x).
The ω expansion of the switching function f with respect to the variable x is
described in terms of entropy as follows

Iω(f ; x) = H(f)−Hω(f |x). (12.7)

A formal criterion for completing the sub-tree design is Hω(f |x) = 0, which
means return from the recursion of decision tree design.

Information notation of S expansion

The designed decision tree based on the S expansion is mapped into a sum-
of-products expression as follows: a leaf with the logic value 0 is mapped into
f = 0, and with the logic value 1 into f = 1; a nonterminal node is mapped
into f = x · f|x=0 ∨ x · f|x=1. The information measure of S expansion for
a switching function f with respect to the variable x is represented by the
equation

HS(f |x) = p|x=0 ·H(f|x=0) + p|x=1 ·H(f|x=1). (12.8)

The information measure of S expansion is equal to the conditional entropy
H(f |x):

HS(f |x) = H(f |x). (12.9)

Information notation of pD and nD expansion

The information measure of pD expansion of a switching function f with
respect to the variable x is represented by

HpD(f |x) = p|x=0 ·H(f|x=0) + p|x=1 ·H(f|x=0 ⊕ f|x=1). (12.10)

The information measure of the nD expansion of a switching function f
with respect to the variable x is

HnD(f |x) = p|x=1 ·H(f|x=1) + p|x=0 ·H(f|x=0 ⊕ f|x=1). (12.11)

Theorem 12.1 The information merit (efficiency) in choosing the pD or nD
nodes for a decision tree design in comparison to the S nodes is calculated as
follows:

 IpD = p|x=1 · (H(f|x=1)−H(f|x=0 ⊕ f|x=1)), (12.12)

and
 InD = p|x=0 · (H(f|x=0)−H(f|x=0 ⊕ f|x=1)), (12.13)

respectively.
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⎯xi xi

f

S

Shannon expansion

f = x · f|x=0 ⊕ x · f|x=1

Information-theoretical notation

HS(f |x) = p|x=0H(f|x=0)︸ ︷︷ ︸
Left leaf

+ p|x=1H(f|x=1)︸ ︷︷ ︸
Right leaf

1 xi

f

pD

Positive Davio expansion

f = f|x=0 ⊕ x · (f|x=0 ⊕ f|x=1)

Information-theoretical notation

HpD(f |x) = p|x=0H(f|x=0)︸ ︷︷ ︸
Left leaf

+ p|x=1H(f|x=0 ⊕ f|x=1)︸ ︷︷ ︸
Right leaf

1 ⎯xi

f

nD

Negative Davio expansion

f = f|x=1 ⊕ x · (f|x=0 ⊕ f|x=1)

Information-theoretical notation

HnD(f |x) = p|x=1H(f|x=1)︸ ︷︷ ︸
Left leaf

+ p|x=0H(f|x=0 ⊕ f|x=1)︸ ︷︷ ︸
Right leaf

FIGURE 12.10
Shannon and Davio expansions and their information measures for a switching
function.

PROOF Because HS(f |x) = H(f |x) and IS(f ; x) = I(f ; x), thus I(f ; x) =
H(f)−H(f |x). Denote the information merit by

Iω(f ; x) = I(f ; x) + Iω. (12.14)

Since

H(f |x) = p|x=0 ·H(f|x=0) + p|x=1 ·H(f|x=1) + p|x=1 ·H(f|x=0 ⊕ f|x=1)
− p|x=1 ·H(f|x=0 ⊕ f|x=1)

= HpD(f |x) + p|x=1 · (H(f|x=1)−H(f|x=0 ⊕ f|x=1))

I(f ; x) = H(f)−HpD(f |x)− p|x=1 · (H(f|x=1)−H(f|x=0 ⊕ f|x=1)),

and Equation 12.14 and Equation 12.12 is true. Likewise, the theorem for the
nD expansion (Equation 12.13) can be proven.
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Example 12.8 Given a switching function of three variables, calculate the
entropy of Shannon and Davio expansions with respect to all variables. The
results are summarized in Table 12.4. We observe that the minimal value of
the information theoretical measure corresponds to Shannon expansion with
respect to the variable x2.

TABLE 12.4

Choosing the type of expansion for
switching function of three variables
(Example 12.8).

HS(f1|x) HpD(f1|x) HnD(f1|x)

x1 0.88 0.95 0.88
x2 0.67 0.88 0.75
x3 0.98 0.98 0.95

12.4.3 Optimization of variable ordering in a decision tree

The entropy based optimization of decision tree design can be described as
the optimal (with respect to the information criterion) node selection process.
A path in the decision tree starts from a node and finishes in a terminal node.
Each path corresponds to a term in the final expression for f .

The criterion for choosing the decomposition variable x and the expansion
type ω ∈ {S, pD, nD} is that the conditional entropy of the function with
respect to this variable has to be minimum:

Hω(f |x)→MIN .

The entropy based algorithm for minimization of AND/EXOR expressions
is introduced in the example below. In this algorithm, the ordering restriction
is relaxed. This means that

� Each variable appears once in each path, and
� The orderings of variables along the paths may be different.

Example 12.9 The design of an AND/EXOR decision tree for the hidden

is evaluated based on measure of entropy of switching function f with respect
to variable x1 x2, and x3. According to the criterion of minimum entropy, x1

is assigned to the root, and the other assignments are shown in Figure 12.11.
The quasi-optimal Reed-Muller expression corresponding to this tree is:

f = x2x3 ⊕ x1x3

© 2005 by CRC Press

weighted bit function is given in Figure 12.11. The order of variables in tree
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f

0

x2 0

pD0

0

x1

pD nD

pD

x3

⎯x3

0
0 1

10

x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Step 1. Choose the variable x1 and pD expansion
for the root node

HpD(f |x1) = 0.91 bit
Decision: select the f0 = f|x1=0

Step 2. Choose the variable x2 and pD expansion
for the next node

HpD(f |x2) = 0.5 bit
f0 = f|x2=0 = 0
Decision: select
f1 = f|x2=0 ⊕ f|x2=1

Step 3. Select pD expansion for the variable x3

f0 = f|x3=0 = 0 and
f1 = f|x3=0 ⊕ f|x3=1 = 1
Decision: select
f0 = f|x1=0 ⊕ f|x1=1

Step 4. Choose the variable x3 and select
nD expansion

f0 = f|x3=1 = 0 and
f1 = f|x3=0 ⊕ f|x3=1 = 1

FIGURE 12.11
AND/EXOR decision tree design (Example 12.9).

Example 12.10 Design of the Shannon tree based on sum-of-products ex-
The Shannon tree is shown

12.5 Information measures in the N -hypercube

It has been shown that information-theoretical measures for logic networks
can be evaluated by decision trees. In this section we focus on the details
of information measures in N -hypercube based on information measures in
decision trees.

A useful property of an N -hypercube is that compared with decision trees
and diagrams it is possible to obtain information measure without recalcula-
tion after changing the order of variables. The example below illustrates this
property.
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in Figure 12.12.
pression given the hidden weighted bit function.
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f

0 110

x2 ⎯x2

S

S S

⎯x1

⎯x2

x1

x2

x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Entropy of the function

H(f) = − 1/2 · log 1/2

− 1/2 · log 1/2

= 1 bit/pattern

Conditional entropy with respect to the variable
x1

H(f |x1) = − 3/8 · log 3/8

− 1/8 · log 1/8

− 1/8 · log 1/8

− 3/8 · log 3/8

= 0.81 bit/pattern

Sum-of-products expression
f = x3 · x1 ∨ x3 · x2

FIGURE 12.12
Shannon decision tree design (Example 12.10).

Example 12.11
hypercube. Starting with the root, where entropy is maximal, we approach
variables in sequence. Approaching x1 reveals information about this variable,
etc. Approaching terminal nodes means that the entropy becomes 0.

Example 12.12 Let the order of variables of a two variables switching func-
tion be

{x1, x2}.

picted. Let us change the order of variables: {x2, x1}. It follows from Figure
12.14b that it is necessary to recalculate information estimation in the decision
tree, but we do not need to recalculate in the N -hypercube.

Information computing of two-variable
Here we suppose that input patterns are generated with equal probabilities.
An alternative approach is based on calculation of input and output entropy
assuming that input patterns are generated with different probabilities.

Example 12.13 Calculation of information and entropy on the tree for a
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functions is given in Table 12.1.

Figure 12.13 illustrates the calculation of entropy on N -

In Figure 12.14a, the corresponding decision tree and N -hypercube are de-

switching function given a truth table [0 1 0 1] is illustrated in Figure 12.15.
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x2 

01 

f 

00 

11 10 

⎯x2

⎯x1 x1 

⎯x2 

x2

  

 

  

 

H(f|x1=1,x2=0) 

H(f|x1=1,x2=1)

H(f|x1=1) H(f|x1=0) 

H(f|x1=0,x2=0)

H(f|x1=0,x2=1)

FIGURE 12.13
Measure of entropy on an N -hypercube (Example 12.11).

12.6 Information-theoretical measures in multivalued
functions

In this section, information-theoretical measures are applied to multiple-value
functions. The focus is S, pD, and nD expansions and decision tree design in
terms of entropy and information.

Information-theoretical measures can be applied to m-valued functions. For
calculation, the logarithm base m is applied, e.g. log3 for ternary function,
log4 for quaternary function, etc. The example below demonstrates the tech-
nique for computing computing information-theoretical characteristics for the
function given by a truth table.

Example 12.14 Computing entropy, conditional entropy and mutual infor-

0321]T

12.6.1 Information notation of S expansion

where Ji(x), i = 0, . . . , k − 1, are the characteristic functions, denoted by
Ji(x) = 1, if x = i and Ji(x) = 0, otherwise. The average entropy is equal to
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The information measures of expansion in GF(4) are given in Table 12.6,

are shown in Figure 12.16.
mation for a 4-valued function f given its truth column vector [0000 0231 0213
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H(f) 

H(f|x1=0, x2=0)

H(f|x1=0, x2=1) 

H(f|x1=0) H(f|x1=0)

(a)
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x1 

x2 

  

 

  

 

H(f|x1=1, x2=0) 

H(f|x1=1, x2=1)

H(f) 

H(f|x1=0, x2=0)

H(f|x1=0, x2=1)

H(f| x2=0)

H(f| x2=1)

(b)

FIGURE 12.14
Order of variables in decision tree and rotation of an N -hypercube (Example
12.12).

conditional entropy H(f |x) of function f with respect to x:

HS(f |x) = H(f |x). (12.15)

12.6.2 Information notations of pD and nD expansion

The following theorem is the key to information measures.

Theorem 12.2 (Information merit) For a completely specified 4-valued func-
tion f , information carried by couples (x, pD), (x, nD

′
) differs from (x, S) by:

 IpD = 1/4 ·(H(f|x=1)−H(f1) + H(f|x=2) (12.16)
−H(f2) + H(f|x=3)−H(f3)),

 InD
′

= 1/4 ·(H(f|x=0)−H(f0) + H(f|x=2) (12.17)
−H(f2) + H(f|x=3)−H(f3)).
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00 

f H( f )

Input entropy

Hin = − 2(1 − p) × log2(1 − p)

− 2p × log2 p

= − 2(1 − 0.707) × log2(1 − 0.707)

− 2 × 0.707 × log2 0.707

= 1.745 bit

Output entropy

Hout = − 0.7072 × log2 0.7072

− (1 − 0.707)2 × log2(1 − 0.707)2

= 0.804 bit

Loss of information

Hloss = Hout − Hin

= 1.745 − 0.804 = 0.941 bit

FIGURE 12.15
Information measures on an N -hypercube (Example 12.13).

Equivalent relations can be obtained for the couples (x, nD
′′
), (x, nD

′′′
).

PROOF Since HS(f |x) = H(f |x) and IS(f ; x) = I(f ; x), then for S
expansion, we can write I(f ; x) = H(f)−H(f |x). The information merit can
be denoted by Iω(f ; x) = IS(f ; x) + Iω. Taking into consideration that, for
completely specified 4-valued function, p|x�=0 = 3/4, we can evaluate  IpD by
the expression:

 IpD = H(f |x)− 1/4 · (H(f|x=0) + H(f1) + H(f2) + H(f3))

= 1/4 · (H(f|x=1)−H(f1) + H(f|x=2)−H(f2) + H(f|x=3)−H(f3)),

and then Equation 12.16 is true. Analogously, the same theorem can be proven
for nD

′
, nD

′′
and nD

′′′
expansions.

12.6.3 Information criterion for decision tree design

The main properties of the information measure are

� The recursive character of S, pD and nD expansions and their generaliza-
tion for the 4-valued case, and

� The possibility of choosing a decomposition variable and expansion type
based on the information measure.
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TABLE 12.5

Information measures of elementary switching functions of two
variables.

Function Information estimates
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f = x1x2

H(f) = − p|f=0 · log2 p|f=0

− p|f=1 · log2 p|f=1

pf = 0.5 · 0.5

= 0.25

H(f) = −0.25 · log2 0.25

−0.75 · log2 0.75

= 0.8113 bit
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f = x1 ∨ x2

H(f) = −p|f=0 · log2 p|f=0

−p|f=1 · log2 p|f=1

pf = 1 − (1 − 0.5) · (1 − 0.5)

= 0.75

H(f) = −0.75 · log2 0.75

−0.25 · log2 0.25

= 0.8113 bit
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f = x1 ⊕ x2

H(f) = −p|f=0 · log2 p|f=0

−p|f=1 · log2 p|f=1

pf = 0.5 · 0.5 + 0.5 · 0.5

= 0.5

H(f) = −0.5 · log2 0.5

−0.5 · log2 0.5

= 1 bit

 

f 

0 1 

S 
⎯x1 x1 

x 1 ⎯x 0 

f 

 
 
 

f = x

H(f) = p|f=0 · log2 p|f=0

−p|f=1 · log2 p|f=1

pf = 1 − 0.5

= 0.5

H(f) = −0.5 · log2 0.5

−0.5 · log2 0.5

= 1 bit
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x1 x2 f
0 0 0
0 1 0
0 2 0
0 3 0
1 0 0
1 1 3
1 2 1
1 3 0
2 0 2
2 1 0
2 2 1
2 3 3
3 0 0
3 1 3
3 2 2
3 3 1

The probabilities of the logic function values are

p|f=0 = 7/16, p|f=1 = p|f=2 = p|f=3 = 3/16

The entropy of the logic function f is

H(f) = −7/16 · log2
7/16 − 3 · 3/16 · log2

3/16

= 1.88 bit

The conditional entropy of the logic function f with respect
to the variable x1 is

H(f |x1) = −4/16 · log2 1 − 12 · 1/16 · log2
1/4

= 1.5 bit.

The conditional entropy with respect to variable x2 is

H(f |x2) = 1.25 bit

The mutual information for the logic function f and the vari-
ables x1 and x2 is

I(f ; x1) = 0.38 bit

I(f ; x2) = 0.63 bit

FIGURE 12.16
Information-theoretical measures of a 4-valued function (Example 12.14).

Decision tree design can be interpreted as an optimized (with respect to
information criterion) node selection process.

The criterion for choosing decomposition variable x and expansion type
ω ∈ {S, pD, nD} is that the conditional entropy of the logic function given
variable has to be minimal

Hω(f |x) = MIN(Hωj (f |xi) | ∀ pairs (xi, ωj)) (12.18)

In the algorithm, the ordering restriction is relaxed. This means that (i) each
variable appears once in each path and (ii) the order of variables along with
each path may be different.

Example 12.15 Consider the design of a decision tree for the logic function
f from Example 12.14.

Step 1. Choose variable x2 and 4−pD expansion for root node, because the
minimal entropy is HpD(f |x2) = 0.75 bit. Functions f0 = f|x2=0 and
f3 = f|x2=0 + f|x2=1 + f|x2=2 + f|x2=3 both take logic value 0. Select the
function f1 = f|x2=1 + 3f|x2=2 + 2f|x2=3.

Step 2. Choose variable x1 and pD expansion for the next node. The suc-
cessors are constant: f0 = 0, f1 = 0, f2 = 3 and f3 = 1. Select the
function f2 = f|x2=1 + 2f|x2=2 + 3f|x2=3.
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TABLE 12.6

Information measures of Shannon and Davio expansions in GF(4).
Type Information theoretical measures

f 

1 2 3 4

 

S HS(f |x) =

Leaf 1︷ ︸︸ ︷
p|x=0 · H(f|x=0) +

Leaf 2︷ ︸︸ ︷
p|x=1 · H(f|x=1) +

p|x=2 · H(f|x=2)︸ ︷︷ ︸
Leaf 3

+ p|x=3 · H(f|x=3)︸ ︷︷ ︸
Leaf 4

f 

1 2 3 4

 

pD HpD(f |x) = p|x �=0 · (H(f1) + H(f2) + H(f3))/3+
p|x=0 · H(f|x=0)

f 

1 2 3 4

 

nD′ HnD
′
(f |x) = p|x �=1 · (H(f0) + H(f2) + H(f3))/3+

p|x=1 · H(f|x=1)

f 

1 2 3 4

 

nD′′ HnD
′′
(f |x) = p|x �=2 · (H(f0) + H(f1) + H(f3))/3+

p|x=2 · H(f|x=2)

f 

1 2 3 4

 

nD′′′ HnD
′′′

(f |x) = p|x �=3 · (H(f0)+H(f1)+H(f2))/3+
p|x=3 · H(f|x=3)

Step 3. Select HnD
′

expansion for variable x1. The successors are constant:
f0 = 0, f1 = 1, f2 = 0 and f3 = 1.

Reed-Muller expression is

f = 3 · x2 · x2
1 + x2 · x3

1 + x2
2 · 1−x1 + x2

2 · 3−x1.

By analogy, the logic expression corresponding to decision tree showed in Fig-
ure 12.17(b), is

f = 2 · x2 · J1(x1) + 3 · x2 · J2(x1) + 2 · x2
2 · J2(x1) + 3 · x2

2 · J3(x1).
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The decision tree obtained is shown in Figure 12.17(a). The corresponding
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0 x2
1

20 3 32000

pD

S S

0

J0(x1)

2
x2

3
x2

J0(x1)J3(x1) J3(x1)

(a) (b)

FIGURE 12.17
Decision tree design (Example 12.15).

12.7 Summary

1. In 3-D structures on the molecular/atomic level, information carriers be-
come compatible with partially distributed sources/receivers/transmitters,
and so measures that are inherent to the nature of information process-
ing on a nanoscale level are required.

2. Information theoretical measures may combine both static and dynamic
attributes. The information content of a logic function is a natural
attribute of the function and it is technology-independent. The infor-
mation content defines the complexity of function implementation, and
thus can be used to estimate a lower bound on some physical (topo-
logical) parameters with respect to various implementations. Thus, it
captures the fundamental characteristic of logic function behavior. En-
tropy, as spatial measurement in N -hypercube space, can be viewed as
a contribution to the information content, with respect to all nodes of
the embedded decision diagram.

3. The technique of decision trees and diagrams is revised from an information-
theoretical point of view. Shannon, positive Davio and negative Davio
expansion is formulated in terms of entropy. Based on the information-
theoretic approach, an arbitrary decision tree or decision diagram can
be designed. In each step of the decision making process, the variable
and type of expansion is chosen based on the information estimations.

4. Information-theoretical measures can be applied to multivalued functions.
Instead of a binary signal that takes values 0 and 1, the multilevel signal
carries information by m levels.
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12.8 Problems

Problem 12.1 For the elementary switching functions AND, OR, EXOR,
NAND, NOR of two variables, calculate

(a) The information carried by the variables and function (follow the Example
12.1)

(b) The relative information of the variables and function (follow the Example
12.2)

(c) Conditional entropy
(d) Shannon entropy of the variables and function (follow the Example 12.3)
(e) Mutual information between the variables and function (follow the Ex-

ample 12.4)
(f) Joint entropy

Problem 12.2 Calculate the entropy for the completely specified function
given in Figure 12.18a.

x1x2x3 f

000 1
001 0
010 1
011 1
100 1
101 1
110 1
111 0

 

000

010

001 

011 

100

110 
x1 x2 

x2 

⎯x2 

⎯x2

⎯x3 

⎯x3 

x3 

x3 

101

111

⎯x3 

⎯x3

x3 

⎯x1 

x3 

f 

(a) (b)

FIGURE 12.18
Representations of a switching function of three variables (Problems 12.2 and
12.4).

Problem 12.3 Calculate entropies of the switching functions and the func-
tion with respect to variables x1, x2 and x3:

(a) f = x1x2 ∨ x1x2x3 ∨ x3

(b) f = x1 ⊕ x1x2x3 ⊕ x1x3

(c) f = (x1 ∨ x2)(x2 ∨ x3)
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Problem 12.4
is given. Use the criterion of minimal entropy to evaluate the optimal way of
calculation on the hypercube.

Problem 12.5 A 2-output switching function of five variables is given by a
truth table in Table 12.7.

(a) The entropy of functions f1 and f2

(b) The conditional entropy f1 with respect to variables x1, x2, x3, x4, and x5

(c) Derive AND/OR decision tree using Shannon expansion and variable or-
der by entropy criterion

(d) Derive AND/EXOR decision tree using Davio expansion and variable or-
der by entropy criterion

Hint: the probabilities of output values are p|f1=0 = 14/32 and p|f1=1 = 18/32.

TABLE 12.7

Truth table of the two-output switching function of five
variables (Problem 12.5).

x1 x2 x3 x4 x5 f1 f2 x1 x2 x3 x4 x5 f1 f2
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 1 1 0 1 1 0 0 1 1 0 1
0 0 1 0 0 0 0 1 0 1 0 0 1 0
0 0 1 0 1 0 1 1 0 1 0 1 1 1
0 0 1 1 0 0 0 1 0 1 1 0 1 0
0 0 1 1 1 0 0 1 0 1 1 1 1 0
0 1 0 0 0 1 1 1 1 0 0 0 1 1
0 1 0 0 1 1 1 1 1 0 0 1 1 1
0 1 0 1 0 1 1 1 1 0 1 0 1 1
0 1 0 1 1 1 1 1 1 0 1 1 1 1
0 1 1 0 0 1 1 1 1 1 0 0 1 1
0 1 1 0 1 1 1 1 1 1 0 1 1 1
0 1 1 1 0 0 0 1 1 1 1 0 1 0
0 1 1 1 1 0 0 1 1 1 1 1 1 0

Problem 12.6
given.

(a) Justify that these trees correspond to the same logic network
(b) Show that application of Shannon expansion in the root node, and choos-

ing the variable x2 at the first step of decision tree design is more prefer-
able according to information theoretical criteria

Hint: Calculate HS(f1|x), HpD(f1|x), and HnD(f1|x), x = x1,2 , x3, x4, x5

and choose the expansion with minimal entropy; calculate also the in-
formation merit of pD and nD expansions.
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In Figure 12.18b, a N -hypercube of a 3-input AND function

In Figure 12.19, the logic network and four decision trees are
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FIGURE 12.19
Two-output five-input logic circuit ordered decision tree based on Shannon
expansion (a), free decision tree based on Shannon expansion (b), decision
tree based on Davio expansion (c) (Problem 12.6).

Problem 12.7 Based on information theoretical measures, justify that de-

Problem 12.8 Information is a measurable quantity which is independent of
the physical medium by which it is conveyed. The most appropriate measure
of information is similar to the measure of entropy. In logic design, Shannon
entropy is used. Physicists have emphasized thermodynamics entropy. There
is an identity of meaning as well as a form. Much of the published work
on information theory discusses the relation between information thermody-
namic entropies. For example, one can start to study the problem with the
paper by Gershenfeld [13]. Entropy is inherently associated with energy and
temperature. Entropy in classical thermodynamics is measured as a difference
from some arbitrary origin, and this parallels the feature that information also
is measured as a difference between the state of knowledge of the recipient
before and after the communication of information.

Remarks on information measures in decision diagrams

The first approach. For a completely specified switching function f : p(x =
0) = p(x = 1) = 1/2, and since each node of BDD is an instance of Shannon
expansion, a probability assignment algorithm in a down-top fashion works
as follows: p(f) = 1/2p(f |x = 0) + 1/2p(f |x = 1).
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cision tree in Figure 12.20 corresponds to logic circuit.
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FIGURE 12.20
Two-output five-input logic circuit (a) and ordered decision tree based on
Shannon expansion (b) (Problem 12.7).

The second approach. Consider p(leaf |f = 1) = 1 and p(leaf |f = 0) = 0,
and output probability p(f = 1) = p(root) and p(f = 0) = 1−p(root). Apply
the recursive strategy:

p(node) = p(x = 0)p(edgel) + p(x = 1)p(edger).

In this way, calculate conditional and joint probabilities for computing con-
ditional entropy. Thus, for joint probability p(f = 1, x = 1) it is necessary
to set p(x = 1) = 1 and p(x = 0) = 0 before BDD traversal. This allows to
calculate the whole range of probabilities using only one BDD traversal.

For example, for the switching function f = x3 ∨ x2 ∨ x1 with truth vector
F=[10001111]:

H(f) = −5/8 · log2(5/8)− 3/8 · log2(3/8) = 0.96 bit,

H(f |x1) = −1/8 · log2(1/4)− 3/8 · log2(3/4)− 4/8 · log2(4/4)− 0 = 0.41 bit.

By the same computations we have H(f |x2) = 0.91 bit, H(f |x3) = 0.91 bit.
A down-top approach with assigning p(leaf |f = 1) = 1 gives us p(f = 1) =

p(root) = 0.625 (BDD with three nodes). The result of setting p(x2 = 0) = 1
is a conditional probability p(f |x2 = 0) = 0.75.

© 2005 by CRC Press



Information Measures in Nanodimensions 445

12.9 Further reading

The problem of decision making in the presence of uncertainty is recognized
as being of great importance within the field of logic nanoIC design. Many
methods rely on the use of numerical information to handle imperfections.

Historical remarks. The entropy principle of conquering uncertainty has a
long history. In 1850, Rudolf Clausius, a German physicist, introduced en-
tropy as a quantity that remains constant in the absence of heat dissipation.
Entropy has since been interpreted as the amount of disorder in the system.
Indeed, in thermodynamics, entropy is defined as the thermodynamic proba-
bility of the internal particles of a system while holding the external properties
constant. A hundred years later, in 1948, Shannon suggested a measure to
represent the information by a numerical value, nowadays known as Shannon
entropy. Since then, the term “uncertainty” is interchangable with the term
“entropy.”

Shannon decomposition. In 1938, Shannon introduced a method for the
decomposition of switching functions [32] known as Shannon expansion. In
state-of-the-art of decision diagram technique, Shannon expansion of a swit-
ching function f with respect to a variable xi is used in the form

f = xif0 ∨ xif1,

where f0 = f |xi=0 and f1 = f |xi=1. Here f = f |xi=a denotes the cofactor of
f after assigning the constant a to the variable xi.

Shannon entropy. In 1948, Shannon suggested a measure to represent the
information in numerical values, denoted as the Shannon entropy [33].

The Shannon information theory has been developed for many applications
in circuit design. The latest characterization of a computing system as a com-
munication system is consistent with von Neumann concept of a computer.
The bit strings of information are understood as messages to be communi-
cated from a messenger to a receiver. Each message i is an event that has a
certain probability of occurrence pi with respect to its inputs. The measure
of information produced when one event is chosen from the set of N events is
the entropy of message i: −∑

i∈N pi log pi.
In state-of-the-art decision diagram technique, the information theoretical

notation of a Shannon expansion of a switching function f with respect to a
variable x is used in the form

HS(f |x) = p|x=0 ·H(f|x=0) + p|x=1 ·H(f|x=1),
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where H(f|x=0) and H(f|x=1) is entropy of function f given x = 0 and x = 1
respectively.

Fundamentals of information theory. The amount of randomness in a
probability distribution is measured by its entropy (or information). In a
fundamental sense, the concept of information proposed by Shannon captures
only the case when unlimited computing power is available. However, com-
putational cost may play a central role.

This and other aspects of information theory can be found in [3, 5, 19, 24].

Thermodynamics entropy. In communication and logic design, Shannon
entropy is used. Physicists have emphasized thermodynamics entropy. Rela-
tionship of these different measures has been considered in many papers, for
instance, Gershenfeld’s [13].

Applications in logic design. The most important results in this field
can be found in the book Artificial Intelligence in Logic Design edited by
S.N. Yanushkevich, Kluwer Academic Publishers, 2004, that includes nine
papers on the fundamentals of logic functions manipulation based on artificial
intelligence paradigm, evolutionary circuit design, information measures in
circuit design, and logic design of nanodevices.

Testing. The analysis is based upon a model where all signals are assumed
to have certain statistical properties. The dynamic flavor of entropy has
been studied in many papers to express testability (observability and
controllability) measures for gate level circuits. For example, Agraval
has shown that the probability of the fault detection can be maximized
by choosing test patterns that maximize the information at the output
[1]. The problem of the construction of sequential fault location for
permanent faults has been considered by Varshney et al. [38].

Decision trees and diagrams. Information theoretical measures have been
used in [10, 14, 15, 18, 34, 35] in decision trees and diagrams design.
Entropy based strategies for minimization of logic functions have been
studied in [10, 18, 41]. These results are related to the earlier work by
Ganapathy and Rajaraman [12] and Hartmann et al. [15] on conversion
of decision tables (truth tables of logic functions) into decision trees.
Methods of information theory were used in Popel’s study of continuous
data representation and multivalued decision diagrams [26].

Power dissipation. Existing techniques for power estimation at gate and
circuit levels can be divided in dynamic and static. These techniques
rely on probabilistic information the input stream. The average swit-
ching activity per node (gate) is the main parameter that needs to be
correctly determined. These and related problems are the focus many
researchers. For example, in [22, 23, 31], it is demonstrated that the av-
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erage switching activity in circuit can be calculated using either entropy
or information energy averages.

Finite state machines. Most of algorithms for minimization of state as-
signments in finite state machines target reduced average switching per
transition, i.e., average Hamming distance between states. Several pa-
pers have used entropy based models to solve the above problem. In
particular, Tyagi’s paper [37] provides theoretical lower bound on the
average Hamming distance per transition for finite state machines based
on information theoretical methods.

Search space reduction in optimization. Tomaszewska et al. introduces
a two phase algorithm to detect symmetry in logic functions [36]. In the
first phase, the search space is reduced by using information properties
of symmetric functions. In the second phase, the exact method based on
logic differences is applied to recognizing symmetries. The design of the
algorithm consists of several formal steps, namely, formal definition of
symmetry, deriving the necessary and sufficient conditions to detect the
symmetry, measuring the necessary conditions in terms of information
(the first phase of the algorithm), and measuring sufficient conditions in
terms of logic derivatives (aims to find symmetry in the reduced search
space in the second phase of the algorithm). It was demonstrated via
experiments that a search space can be reduced by 82% at the first
phase. Note that properties of symmetry play an important role in logic
design [6, 7, 42]. Also, information measures in optimization technique
are considered by Jozwiak [17].

Set of Pairs of Functions to be Distinguished (SPFDs) is a method
to represent the flexibility of a node in a multilevel network [40]. An
SPFD attached to a node of a network specifies which pairs of primary
input minterms can be or have to be distinguished. This can be un-
derstood as the information content of the node, since it indicates what
information the node contributes to the network.

Related works are [8, 9] where the problem of synthesis flexibility based
on information theoretical measure is focused. Using an information
theoretical approach, it is possible to verify not only that a network
achieves the target functionality, but also that this network can be au-
tomatically corrected to achieve this. Let Netf be a network implement-
ing the target function f and Netg be the given network with the set
X of primary inputs. Denote by V (Netg) the set of outputs, internal
outputs and primary inputs of the network Netg and constants. Con-
ditional entropy H(f |V (Netg) is an information measure, reflecting an
ambiguity of values of the target function f given network Netg.

Given function f and network Netg, there exists a pair vi, vj ∈ V (Netg)
such that

H(f |vi, vj) = 0,
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then there exists a logic function φ such that f = φ(vi, vj) and Netg is
1-neighbor of Netf . During entropy computation the necessary data to
form the truth table of the function φ is obtained.

Evolutionary circuit design. There have already been some approaches to
evolutionary circuit design. The main ides is that evolutionary strategy
would inevitably explore a much richer set of possibilities in the design
space that are beyond the scope of traditional methods. In [2, 8, 9,
20, 21] evolutionary strategy and information theoretical measures were

Information engine, computational work, and complexity. A deep
and comprehensive analysis of computing systems’ information engine has
been done by Watanabe [39].

The relationship between function complexity and entropy is conjectured
by Cook and Flynn [11]. The complexity of a switching function is expressed
by the cost of implementing the function as a combinational network.

Hellerman has proposed so-called logic entropy [16]. Computation is con-
sidered as a process that reduces the disorder (or entropy) in the space of
solutions while finding a result. The number of decisions required to find
one correct answer in the space of solutions has been defined as entropy of
computation, or logic entropy calculated as log S

A , where s is the number of
solutions, A is the number of answers. This definition is consistent with the
Shannon entropy provided that the space of solutions is all possible messages
(bit strings) of a given length. The answer is one of the messages, so the en-
tropy is the numbers of bits required to specify the correct answer. The term
logical entropy owes its name to the fact that it depends on the number of
logic operations required to perform the computation. In the beginning of the
computation, the entropy (disorder) is maximum, at the end of computation
the entropy is reduced to zero.

The other form of entropy is spatial entropy, and it is relevant to mapping
the computation onto a domain where data travels over a physical distance.
The data communication process is a process of removal of spatial entropy,
while performing logical operations is aimed at removal of logical entropy
(disorder). The spatial entropy of a system is a measure of the effort needed
to bring data from the input location to the output locations. The removal
of the spatial entropy corresponds to reduction of the distance between the
input and the output.

Other applications. The paper by Pavlidis et al. [25] is an excellent example
of how to apply the information theoretical approach to topological structures.
They formulated the problem encoding information on some medium using
printed technology as a set of following conflicting requirements: the code to
have a high density of information, to read the code reliable, to minimize the
cost of the printing process, and to minimize the cost of the reading equipment.
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The results on entropy-based analysis of natural language processing have
been reported by Berger [4].

In machine learning, information theory has been recognized as a useful
criterion [27]. To classify objects from knowledge of a training set of examples
whose classes are previously known, a decision tree rule induction method
known as the ID3 algorithm was introduced by Quinlan [28]. The method
is based on recursive partitioning of the sample space and defines classes
structurally by using decision trees. A number of improved algorithms exist
such as C4.5, C5, CHAID and CART which use general to specific learning
in order to build simple knowledge based systems by inducing decision trees
from a set of examples [29, 30], and the method of quantitatively information
of logical expressions developed by Zhong and Ohsuga [43].
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DV. Experimental verification of the entropy based method for min-
imization of switching functions on pseudo-ternary decision trees. In
Proceedings IEEE International Conference on Telecommunications in
Modern Satellite, Cable and Broadcasting Services, pp. 452–459, Yu-
goslavia, 1999.

[42] Yanushkevich S, Butler J, Dueck G, and Shmerko V. Experiments on
FPRM expressions for partially symmetric logic functions. In Proceed-
ings IEEE 30th International Symposium on Multiple-Valued Logic, pp.
141–146, 2000.

[43] Zhong N, and Ohsuga S. On information of logical expression and
knowledge refinement. Transactions of Information Processing Society
of Japan, 38(4):687–697, 1997.

© 2005 by CRC Press


	Contents
	1: Introduction
	1.1 Progress from micro- to nanoelectronics
	1.2 Logic design in spatial dimensions
	1.3 Towards computer aided design of nanoICs
	1.3.1 Contemporary CAD of ICs
	1.3.2 CAD of nanoICs
	1.3.3 Topology: 2-D vs. 3-D
	1.3.4 Prototyping technologies

	1.4 Methodology
	1.4.1 Data structures
	1.4.2 Assembling in 3-D
	1.4.3 Massive and parallel computation in nanodimensions
	1.4.4 Fault tolerance computing
	1.4.5 Analysis, characterization, and information measures

	1.5 Example: hypercube structure of hierarchical FPGA
	1.5.1 FPGA based on multiinput multioutput switching
	1.5.2 Hierarchical FPGA as hypercube-like structure

	1.6 Summary
	1.7 Problems
	1.8 Further reading
	1.9 References

	2: Nanotechnologies
	2.1 Nanotechnologies
	2.2 Nanoelectronic devices
	2.2.1 Single-electronics
	Single-electron box and trap
	Single-electron transistor
	Single-electron pump and turnstile
	Quantum-effect mesoscopic devices: quantum dot arrays

	2.2.2 Rapid single flux quantum devices
	2.2.3 Resonant-tunneling devices

	2.3 Digital nanoscale circuits: gates vs. arrays
	2.3.1 Voltage-state logic: library of gates
	Logic gates
	Multiterminal devices

	2.3.2 Charge state logic
	Parametron
	Parametron-based logic devices

	2.3.3 Single-electron memory
	2.3.4 Switches in single-electron logic
	Switches and BDD-based models

	2.3.5 Interconnect problem in voltage-state devices
	2.3.6 Neuron cell and cellular neural network design using SETs
	2.3.7 Single-electron systolic arrays
	Single-electron pump switch

	2.3.8 Parallel computation in nanoscale circuits: bit-level vs. word-level models

	2.4 Molecular electronics
	2.4.1 CMOS-molecular electronics
	CMOL
	Neuromorphic circuits

	2.4.2 Other structures: nanowires
	2.4.3 Nanotechnology-enhanced microelectronics

	2.5 Scaling and fabrication
	2.5.1 Scaling limits of electronic devices
	2.5.2 Operational limits of nanoelectronic devices

	2.6 Summary
	2.7 Problems
	2.8 Further reading
	2.9 References

	3: Basics of Logic Design in Nanospace
	3.1 Graphs
	3.1.1 Definitions
	3.1.2 Directed graphs
	3.1.3 Undirected graphs
	3.1.4 Cartesian product graphs
	3.1.5 Interconnection networks
	3.1.6 Decision tree
	3.1.7 Embedding of a guest graph in a host graph
	3.1.8 Binary decision diagrams

	3.2 Data structures for switching functions
	3.3 Sum-of-products expressions
	3.3.1 General form
	3.3.2 Computing the coefficients
	3.3.3 Restoration
	3.3.4 Useful rules
	3.3.5 Hypercubes

	3.4 Shannon decision trees and diagrams
	3.4.1 Formal synthesis
	3.4.2 Structural properties
	3.4.3 Decision tree reduction

	3.5 Reed-Muller expressions
	3.5.1 General form
	3.5.2 Computing the coefficients
	3.5.3 Flowgraphs
	3.5.4 Restoration
	3.5.5 Useful rules
	3.5.6 Hypercube representation
	3.5.7 Polarity

	3.6 Decision trees and diagrams
	3.6.1 Formal design
	3.6.2 Structural properties
	3.6.3 Decision tree reduction

	3.7 Arithmetic expressions
	3.7.1 General form
	3.7.2 Computing the coefficients
	3.7.3 Flowgraphs
	3.7.4 Restoration
	3.7.5 Useful rules
	3.7.6 Hypercube representation
	3.7.7 Polarity

	3.8 Decision trees and diagrams
	3.8.1 Formal design
	3.8.2 Structural properties
	3.8.3 Decision tree reduction

	3.9 Summary
	3.10 Problems
	3.11 Further reading
	3.12 References

	4: Word-Level Data Structures
	4.1 Word-level data structures
	4.1.1 Computing by word-level set of assignments
	4.1.2 Computing by word-level expressions

	4.2 Word-level arithmetic expressions
	4.2.1 General form
	4.2.2 Masking operator
	4.2.3 Computing the coefficients
	4.2.4 Restoration
	4.2.5 Useful properties
	4.2.6 Polarity
	4.2.7 Computing for a word-level set of assignments
	Algebraic form


	4.3 Word-level sum-of-products expressions
	4.3.1 General form
	4.3.2 Masking operator
	4.3.3 Computing the coefficients
	4.3.4 Restoration
	4.3.5 Computing for a word-level set of assignments
	4.3.6 Word-level Shannon decision trees and diagrams

	4.4 Word-level Reed-Muller expressions
	4.4.1 General form
	4.4.2 Masking operator
	4.4.3 Computing the coefficients
	4.4.4 Restoration
	4.4.5 Computing for a word-level set of assignments
	4.4.6 Word-level Davio decision trees and diagrams

	4.5 Summary
	4.6 Problems
	4.7 Further reading
	4.8 References

	5: Nanospace and Hypercube-Like Data Structures
	5.1 Spatial structures
	5.1.1 Requirement for representation in spatial dimensions
	5.1.2 Topologies

	5.2 Hypercube data structure
	5.2.1 Hypercube definition and characteristics
	5.2.2 Gray code
	5.2.3 Hamming distance
	5.2.4 Embedding in a hypercube

	5.3 Assembling of hypercubes
	5.3.1 Topological representation of products
	5.3.2 Assembling hypercubes for switching functions
	5.3.3 Assembling hypercubes for state assignments of finite state machines

	5.4 N-hypercube definition
	5.4.1 Extension of a hypercube
	5.4.2 Structural components

	5.5 Degree of freedom and rotation
	5.6 Coordinate description
	5.7 N-hypercube design for n > 3 dimensions
	5.8 Embedding a binary decision tree in N-hypercube
	5.9 Assembling
	5.10 Spatial topological measurements
	5.11 Summary
	5.12 Problems
	5.13 Further reading
	5.14 References

	6: Nanodimensional Multilevel Circuits
	6.1 Graph-based models in logic design of multilevel networks
	6.1.1 DAG-based representation of multilevel circuits
	6.1.2 Decision diagram based representation of circuits
	6.1.3 N-hypercube model of multilevel circuits

	6.2 Library of N-hypercubes for elementary logic functions
	6.2.1 Structure of the library
	6.2.2 Metrics of N-hypercube
	6.2.3 Signal flowgraphs on an N-hypercube
	6.2.4 Manipulation of N-hypercube
	6.2.5 Library-based design paradigm
	6.2.6 Useful denotation

	6.3 Hybrid design paradigm: N-hypercube and DAG
	6.3.1 Embedding a DAG in N-hypercube
	6.3.2 Levelization and cascading

	6.4 Manipulation of N-hypercubes
	6.5 Numerical evaluation of 3-D structures
	6.5.1 Experiment on evaluating the N-hypercube
	6.5.2 Experiment on evaluating the hybrid N-hypercube

	6.6 Summary
	Problems
	6.7 Further reading
	6.8 References

	7: Linear Word-Level Models of Multilevel Circuits
	7.1 Linear expressions
	7.1.1 General algebraic structure
	7.1.2 Linearization

	7.2 Linear arithmetic expressions
	7.2.1 Grouping
	7.2.2 Computing of the coefficients in the linear expression
	7.2.3 Weight assignment
	7.2.4 Masking

	7.3 Linear arithmetic expressions of elementary functions
	7.3.1 Functions of two and three variables
	7.3.2 AND, OR, and EXOR functions of n variables
	7.3.3 “Garbage” functions

	7.4 Linear decision diagrams
	7.5 Representation of a circuit level by linear expression
	7.6 Linear decision diagrams for circuit representation
	7.6.1 The basic statement
	7.6.2 Examples

	7.7 Technique for manipulating the coefficients
	7.7.1 The structure of coefficients
	7.7.2 Encoding
	7.7.3 W-trees

	7.8 Linear word-level sum-of-products expressions
	7.8.1 Definition
	7.8.2 Grouping, weight assignment, and masking
	7.8.3 Linear expressions of elementary functions
	7.8.4 Linear decision diagrams
	7.8.5 Technique of computation

	7.9 Linear word-level Reed-Muller expressions
	7.9.1 Definition
	7.9.2 Grouping, weight assignment, and masking
	7.9.3 Linear Reed-Muller expressions of primitives
	7.9.4 Linear decision diagrams

	7.10 Summary
	7.11 Problems
	7.12 Further reading
	7.13 References

	8: Event-Driven Analysis of Hypercube-Like Topology
	8.1 Formal definition of change in a binary system
	8.1.1 Detection of change
	8.1.2 Symmetric properties of Boolean difference

	8.2 Computing Boolean differences
	8.2.1 Boolean difference and N-hypercube
	8.2.2 Boolean difference, Davio tree, and N-hypercube

	8.3 Models of logic networks in terms of change
	8.3.1 Event-driven analysis of switching function properties: dependence, sensitivity, and fault detection
	8.3.2 Useful rules
	8.3.3 Probabilistic model

	8.4 Matrix models of change
	8.4.1 Boolean difference with respect to a variable in matrix form
	8.4.2 Boolean difference with respect to a vector of variables in matrix form

	8.5 Models of directed changes in algebraic form
	8.5.1 Model for direct change
	8.5.2 Model for inverse change

	8.6 Local computation via partial Boolean difference
	8.7 Generating Reed-Muller expressions by logic Taylor series
	8.8 Arithmetic analogs of Boolean differences and logic Taylor expansion
	8.8.1 Arithmetic analog of Boolean difference
	8.8.2 Arithmetic analog of logic Taylor expansion

	8.9 Summary
	8.10 Problems
	8.11 Further reading
	8.12 References

	9: Nanodimensional Multivalued Circuits
	9.1 Introduction to multivalued logic
	9.1.1 Operations of multivalued logic
	9.1.2 Multivalued algebras
	9.1.3 Data structures

	9.2 Spectral technique
	9.2.1 Terminology
	9.2.2 Generalized Reed-Muller transform
	9.2.3 Generalized arithmetic transform
	9.2.4 Relation of spectral representations to data structures, behavior models, and massive parallel computing

	9.3 Multivalued decision trees and decision diagrams
	9.3.1 Operations in GF(m)
	9.3.2 Shannon trees for ternary functions
	9.3.3 Shannon and Davio trees for quaternary functions
	9.3.4 Embedding decision tree in hypercube-like structure

	9.4 Concept of change in multivalued circuits
	9.4.1 Formal definition of change for multivalued functions
	9.4.2 Computing logic difference

	9.5 Generation of Reed-Muller expressions
	9.5.1 Logic Taylor expansion of a multivalued function
	9.5.2 Computing Reed-Muller expressions
	9.5.3 Computing Reed-Muller expressions in matrix form
	9.5.4 N-hypercube representation

	9.6 Linear word-level expressions of multivalued functions
	9.6.1 Approach to linearization
	9.6.2 Algorithm for linearization of multivalued functions
	Phase 1: Partition
	Phase 2: Encoding
	Phase 3: Representation of a function by linear word-level arithmetic expression

	9.6.3 Manipulation of the linear model
	9.6.4 Library of linear models of multivalued gates
	9.6.5 Representation of a multilevel, multivalued circuit
	9.6.6 Linear decision diagrams
	9.6.7 Remarks on computing details

	9.7 Linear nonarithmetic word-level representation of multivalued functions
	9.7.1 Linear word-level for MAX expressions
	9.7.2 Network representation by linear models

	9.8 Summary
	9.9 Problems
	Support data for ternary logic

	9.10 Further reading
	9.11 References

	10: Parallel Computation in Nanospace
	10.1 Data structures and massive parallel computing
	10.2 Arrays
	10.2.1 Cellular arrays
	10.2.2 Systolic arrays
	10.2.3 Tree-structured networks

	10.3 Linear systolic arrays for computing logic functions
	10.3.1 Design technique
	10.3.2 Formal model of computation in a linear array
	10.3.3 Parallel-pipelined computing

	10.4 Computing Reed-Muller expressions
	10.4.1 Factorization of transform matrix
	10.4.2 Design based on logic Taylor expansion

	10.5 Computing Boolean differences
	10.6 Computing arithmetic expressions
	10.7 Computing Walsh expressions
	10.8 Tree-based network for manipulating a switching function
	10.9 Hypercube arrays
	10.10 Summary
	10.11 Problems
	10.12 Further reading
	10.13 References

	11: Fault-Tolerant Computation
	11.1 Definitions
	11.2 Probabilistic behavior of nanodevices
	11.2.1 Noise
	11.2.2 Nanogates
	11.2.3 Noise models
	11.2.4 Fault-tolerant computing

	11.3 Neural networks
	11.3.1 Threshold networks
	11.3.2 Stochastic feedforward neural networks
	11.3.3 Multivalued feedforward networks

	11.4 Stochastic computing
	11.4.1 The model of a gate for input random pulse streams
	11.4.2 Data structure
	11.4.3 Primary statistics
	11.4.4 Stochastic encoding

	11.5 Von Neumann’s model on reliable computation with unreliable components
	11.5.1 Architecture
	11.5.2 Formalization

	11.6 Faulty hypercube-like computing structures
	11.6.1 Definitions
	11.6.2 Fault-tolerance technique

	11.7 Summary
	11.8 Further reading
	11.9 References

	12: Information Measures in Nanodimensions
	12.1 Information-theoretical measures at various levels of design in nanodimensions
	12.1.1 Static characteristics
	12.1.2 Dynamic characteristics
	12.1.3 Combination of static and dynamic characteristics
	12.1.4 measures on data structures

	12.2 Information-theoretical measures in logic design
	12.2.1 Information-theoretical standpoint
	12.2.2 Quantity of information
	12.2.3 Conditional entropy and relative information
	12.2.4 Entropy of a variable and a function
	12.2.5 Mutual information
	12.2.6 Joint entropy

	12.3 Information measures of elementary switching functions
	12.4 Information-theoretical measures in decision trees
	12.4.1 Decision trees
	12.4.2 Information-theoretical notation of switching function expansion
	Information notation of S expansion
	Information notation of pD and nD expansion

	12.4.3 Optimization of variable ordering in a decision tree

	12.5 Information measures in the N-hypercube
	12.6 Information-theoretical measures in multivalued functions
	12.6.1 Information notation of S expansion
	12.6.2 Information notations of pD and nD expansion
	12.6.3 Information criterion for decision tree design

	12.7 Summary
	12.8 Problems
	Remarks on information measures in decision diagrams

	12.9 Further reading
	12.10 References


