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Preface

Field Programmable Gate Arrays constitute one of the technologies at hand for
developing electronic systems. They form an attractive option for small production
quantities as their non-recurrent engineering costs are much lower than those
corresponding to ASIC’s. They also offer flexibility and fast time-to-market.
Furthermore, in order to reduce their size and, hence, the unit cost, an interesting
possibility is to reconfigure them at run time so that the same programmable
device can execute different predefined functions.

Complex systems, generally, are made up of processors executing programs,
memories, buses, input-output interfaces, and other peripherals of different types.
Those components are available under the form of Intellectual Property (IP) cores
(synthesizable Hardware Description Language descriptions or even physical
descriptions). Some systems also include specific components implementing
algorithms whose execution on an instruction-set processor is too slow. Typical
examples of such complex algorithms are: long-operand arithmetic operations,
floating-point operations, encoding and processing of different types of signals,
data ciphering, and many others. The way those specific components can be
developed is the central topic of this book. So, it addresses to both, FPGA users
interested in developing new specific components—generally for reducing exe-
cution times—and, IP core designers interested in extending their catalog of
specific components.

This book distinguishes itself with the following aspects:

• The main topic is circuit synthesis. Given an algorithm executing some complex
function, how can it be translated to a synthesizable circuit description? Which
are the choices that the designer can make in order to reduce the circuit cost,
latency, or power consumption? Thus, this is not a book on algorithms. It is a
book on ‘‘how to efficiently translate an algorithm to a circuit’’ using, for that
purpose, techniques such as parallelism, pipeline, loop unrolling, and others.
In particular, this is not a new version of a previous book by two of the authors.1

1 Deschamps JP, Bioul G, Sutter G (2006) Synthesis of Arithmetic Circuits. Wiley, New York.
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It is a complement of the cited book; its aim is the generation of efficient
implementations of some of the most useful arithmetic functions.

• All throughout this book, numerous examples of FPGA implementation are
described. The circuits are modeled in VHDL. Complete and synthesizable
source files are available at the authors’ web site www.arithmetic-circuits.org.

• This is not a book on Hardware Description Languages, and the reader is
assumed to have a basic knowledge of VHDL.

• It is not a book on Logic Circuits either, and the reader is assumed to be
familiarized with the basic concepts of combinational and sequential circuits.

Overview

This book is divided into sixteen chapters. In the first chapter the basic building
blocks of digital systems are briefly reviewed, and their VHDL descriptions are
presented. It constitutes a bridge with previous courses, or books, on Hardware
Description Languages and Logic Circuits.

Chapters 2–4 constitute a first part whose aim is the description of the basic
principles and methods of algorithm implementation. Chapter 2 describes the
breaking up of a circuit into Data Path and Control Unit, and tackles the scheduling
and resource assignment problems. In Chaps. 3 and 4 some special topics of Data
Path and Control Unit synthesis are presented.

Chapter 5 recalls important electronic concepts that must be taken into account
for getting reliable circuits and Chap. 6 gives information about the main Elec-
tronic Design Automation (EDA) tools that are available for developing systems
on FPGAs.

Chapters 7–13 are dedicated to the main arithmetic operations, namely addition
(Chap. 7), multiplication (Chap. 8), division (Chap. 9), other operations such as
square root, logarithm, exponentiation, trigonometric functions, base conversion
(Chap. 10), decimal arithmetic (Chap. 11), floating-point arithmetic (Chap. 12),
and finite-field arithmetic (Chap. 13). For every operation, several configurations
are considered (combinational, sequential, pipelined, bit serial or parallel), and
several generic models are available, thus, constituting a library of virtual
components.

The development of Systems on Chip (SoC) is the topic of Chaps. 14–16. The
main concepts are presented in Chap. 14: embedded processors, memories, buses,
IP components, prototyping boards, and so on. Chapter 15 presents two case
studies, both based on commercial EDA tools and prototyping boards. Chapter 16
is an introduction to dynamic reconfiguration, a technique that allows reducing the
area by modifying the device configuration at run time.
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Chapter 1
Basic Building Blocks

Digital circuits are no longer defined by logical schemes but by Hardware
Description Language programs [1]. The translation of this kind of definition to an
actual implementation is realized by Electronic Automation Design tools (Chap. 5).
All along this book the chosen language is VHDL. In this chapter the most useful
constructions are presented. For all of the proposed examples, the complete source
code is available at the Authors’ web page.

1.1 Combinational Components

1.1.1 Boolean Equations

Among the predefined operations of any Hardware Description Language are the
basic Boolean operations. Boolean functions can easily be defined. Obviously, all
the classical logic gates can be defined. Some of them are considered in the
following example.

Example 1.1
The following VHDL instructions define the logic gates NOT, AND2, OR2,
NAND2, NOR2, XOR2, XNOR2, NAND3, NOR3, XOR3, XNOR3 (Fig. 1.1).

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_1,
� Springer Science+Business Media Dordrecht 2012
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The same basic Boolean operations can be used to define sets of logic gates
working in parallel. As an example, assume that signals a = (an-1, an-2,…, a0) and
b = (bn-1, bn-2,…, b0) are n-bit vectors. The following assignation defines a set of
n AND2 gates that compute c = (an-1�bn-1, an-2�bn-2,…, a0�b0):

More complex Boolean functions can also be defined. It is worthwhile to indicate
that within most Field Programmable Gate Arrays (FPGA) the basic combinational
components are not 2-input logic gates but Look Up Tables (LUT) allowing the
implementation of any Boolean function of a few numbers (4, 5, 6) of variables
(Chap. 5). Hence, it makes sense to consider the possibility of defining small
combinational components by the set of Boolean functions they implement.

Example 1.2
The following VHDL instruction defines an ANDORI gate (a 4-input 1-output
component implementing the complement of a�b v c�d, Fig. 1.2)

and the two following instructions define a 1-bit full adder (a 3-input 2-output
component implementing a+b+cin mod 2 and a�b v a�cin v b�cin, Fig. 1.3).

XNOR2

NOT

AND2 OR2 NAND2 NOR2 XOR2

NAND3 NOR3 XOR3 XNOR3

Fig. 1.1 Logic gates
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1.1.2 Tables

Combinational components can also be defined by their truth tables, without the
necessity to translate their definition to Boolean equations. As a first example,
consider a 1-digit to 7-segment decoder, that is a 4-input 7-output combinational
circuit.

Example 1.3
The behavior of a 4-to-7 decoder (Fig. 1.4) can be described by a conditional
assignment instruction

The last choice of a WITH… SELECT construction must be WHEN OTHERS in
order to avoid the inference of an additional latch, and it is the same for other
multiple choice instructions such as CASE.

As mentioned above, small Look Up Tables are basic components of most
FPGA families. The following example is a generic 4-input 1-output LUT.

FA

a b

s

cincout

Fig. 1.3 One-bit full adder

Fig. 1.2 ANDORI gate

1.1 Combinational Components 3



Example 1.4
The following entity defines a 4-input Boolean function whose truth vector is
stored within a generic parameter (Fig. 1.5). Library declarations are omitted.

Then the following component instantiation defines a 4-input XOR function.

a3,a2,a1,a0

4
16-bit ROM

stored data: 
truth vector of f

b = f(a3,a2,a1,a0)

Fig. 1.5 Four-input Look Up
Table

segment5

segment2

segment 6

segment 3

segment 0

segment 4

segment 1

4 7
decoder

digit segments

Fig. 1.4 Four-digit to seven-segment decoder
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Comment 1.1
The VHDL model of the preceding Example 1.4 can be used for simulation
purposes, independently of the chosen FPGA vendor. Nevertheless, in order to
implement an actual circuit, the corresponding vendor’s primitive component
should be used instead (Chap. 5).

1.1.3 Controllable Connections

Multiplexers are the basic components for implementing controllable connections.
Conditional assignments are used for defining them. Some of them are considered
in the following example.

Example 1.5
The following conditional assignments define a 2-to-1 and a 4-to-1 multiplexer
(Fig. 1.6). The signal types must be compatible with the conditional assignments:
a, b, c, d and e are assumed to be n-bit vectors for some constant value n.

Demultiplexers, address decoders and tri-state buffers are other components fre-
quently used for implementing controllable connections such as buses.

Example 1.6
The following equations define a 1-bit 1-to-2 demultiplexer (Fig. 1.7a)

and the following conditional assignments a 1-to-4 demultiplexer (Fig. 1.7b)

a
n

b
n

n
c

sel

0

1

a
n

b n
e

sel

00

c

d

01

10

11

n

n

n

2

MUX2-1

MUX4-1

Fig. 1.6 Multiplexers
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In the second case the signal types must be compatible with the conditional
assignments: a, b, c, d and e are assumed to be n-bit vectors for some constant
value n.

An address decoder is a particular case of 1-bit demultiplexer whose input is 1.

Example 1.7
The following equations define a 3-input address decoder (Fig. 1.8).

Three-state buffers implement controllable switches.

b

c

DEMUX1-2

0

1

a

sel
n

b

sel

n

n

n

2

DEMUX1-4

00

01

10

11

n
a

c

c

d

(a) (b)Fig. 1.7 Demultiplexers
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Example 1.8
The following conditional assignment defines a tri-state buffer (Fig. 1.9): when the
enable signal is equal to 1, output b is equal to input a, and when the enable signal
is equal to 0, output b is disconnected (high impedance state). The signal types
must be compatible with the conditional assignments: a and b are assumed to be n-
bit vectors for some constant value n.

An example of the use of demultiplexers and tri-state buffers, namely a data bus, is
shown in Fig. 1.10.

Example 1.9
The circuit of Fig. 1.10, made up of demultiplexers and three-state buffers, can be
described by Boolean equations (the multiplexers) and conditional assignments
(the three-sate buffers).

row(0)000
row(1)

row(2)
row(3)
row(4)

row(5)
row(6)

row(7)

001

010
011
100
101

110
111

3address

Fig. 1.8 Address decoder

n na b

enable

Fig. 1.9 Three-state buffer

y2y1

2

11

10

01

00

1

1

0

y0

8

a

8

b

8

c

8

d

8

e

88 8 8 8

enable_a

enable_e

enable_d

enable_c

enable_b

data_bus

Fig. 1.10 Example of a data
bus
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Nevertheless, the same functionality can be implemented by an 8-bit 5-to-1
multiplexer (Fig. 1.11).

Generally, this second implementation is considered safer than the first one. In
fact, tri-state buffers should not be used within the circuit core. They should only
be used within I/O-port components (Sect. 1.4).

1.1.4 Arithmetic Circuits

Among the predefined operations of any Hardware Description Language there are
also the basic arithmetic operations. The translation of this kind of description to

n

e

n

d

n

c

n

b

n

a

n

000 001 01- 10- 11-

data bus

y2y1y0

Fig. 1.11 Data bus, second
version
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actual implementations, using special purpose FPGA resources (carry logic,
multiplier blocks), is realized by Electronic Automation Design tools (Chap. 5).

Example 1.10
The following arithmetic equation defines an adder mod 2n, being a, b and s n-bit
vectors and cIN an input carry (Fig. 1.12a).

By adding a most significant bit 0 to one (or both) of the n-bit operands a and b, an
n-bit adder with output carry cOUT can be defined (Fig. 1.12b). The internal signal
sum is an (n+1)-bit vector.

The following arithmetic equation defines an n-bit by m-bit multiplier where a is
an n-bit vector, b an m-bit vector and product an (n+m)-bit vector (Fig. 1.13).

Comment 1.2
In most VHDL models available at the Authors’ web page, the type unsigned has
been used, so that bit-vectors can be treated as natural numbers. In some cases, it
could be better to use the signed type, for example when bit-vectors are interpreted
as 2’s complement integers, and when magnitude comparisons or sign-bit exten-
sions are performed.

n

a(a) (b)
n

b

n

s

cinmod 2n adder

n

a

n

b

n

s

cinmod 2n+1 adder

0 0

cout

Fig. 1.12 n-bit adders

a n

b m
productn+mn-bit by m-bit 

multiplier

Fig. 1.13 n-bit by m-bit
multiplier

1.1 Combinational Components 9

http://dx.doi.org/10.1007/978-94-007-2987-2_5


1.2 Sequential Components

1.2.1 Flip-Flops

The basic sequential component is the D-flip-flop. In fact, several types of D-flip-
flop can be considered: positive edge triggered, negative edge triggered, with
asynchronous input(s) and with complemented output.

Example 1.11
The following component is a D-flip-flop triggered by the positive edge of clk
(Fig. 1.14a),

while the following, which is controlled by the negative edge of clkb, has two
asynchronous inputs clearb (active at low level) and preset (active at high
level), having clearb priority, and has two complementary outputs q and qb
(Fig. 1.14b).

Comment 1.3
The use of level-controlled, instead of edge-controlled, components is not rec-
ommendable. Nevertheless, if it were necessary, a D-latch could be modeled as
follows:

where en is the enable signal and d the data input.

D
(a) (b)

Q

(clk)

D Q

(clkb)

PRESET

CLEARb
Qb

Fig. 1.14 D flip-flops
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1.2.2 Registers

Registers are sets of D-flip-flops controlled by the same synchronization and
control signals, and connected according to some regular scheme (parallel, left or
right shift, bidirectional shift).

Example 1.12
The following component is a parallel register with ce (clock enable) input,
triggered by the positive edge of clk (Fig. 1.15).

As a second example (Fig. 1.16), the next component is a right shift register with
parallel input (controlled by load) and serial input (controlled by shift).

1.2.3 Counters

A combination of registers and arithmetic operations permits the definition of
counters.

CE

(clk)

register

n

n

d

q

Fig. 1.15 Parallel register
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Example 1.13
This defines an up/down counter (Fig. 1.17) with control signals load (input
parallel_in), count (update the state of the counter) and upb_down (0: count up, 1:
count down).

The following component is a down counter (Fig. 1.18) with control signals load
(input parallel_in) and count (update the state of the counter). An additional binary
output equal_zero is raised when the state of the counter is zero (all 0’s vector).

shift

(clk)

right shift register

n

n

parallel_in

q

load
serial_in

Fig. 1.16 Right shift register

upb_down

(clk)

up/down counter

n

n

parallel_in

q

count
load

Fig. 1.17 Up/down counter
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1.2.4 Finite State Machines

Hardware Description Languages allow us to define finite state machines at an
input/output behavioral level. The translation to an actual implementation
including registers and combinational circuits—a classical problem of traditional
switching theory—is realized by Electronic Automation Design tools (Chap. 5).

In a Moore machine, the output state only depends on the current internal state
(Fig. 1.19) while in a Mealy machine the output state depends on both the input
state and the current internal state (Fig. 1.20). Let tSUinput be the maximum set up
time of the input state with respect to the positive clock edge, t1 the maximum
delay of the combinational block that computes the next internal state, and t2 the
maximum delay of the combinational block that computes the output state. Then,
in the case of a Moore machine, the following conditions must hold

tSUinput þ t1\TCLK and t2\TCLK; ð1:1Þ

and in the case of a Mealy machine

tSUinput þ t1\TCLK and tSUinput þ t2\TCLK : ð1:2Þ

count

(clk)

down counter

n

n

parallel_in

q

load
equal_zero

Fig. 1.18 Down counter

clk

internal state

input state

output state

next state

tSUinput t1

t2

combinational
circuit 1

(t1)

next state

(clk)

internal state

combinational
circuit 2

(t2)

input state output state

(tSUinput)

Fig. 1.19 Moore machine

1.2 Sequential Components 13

http://dx.doi.org/10.1007/978-94-007-2987-2_5


The set up and hold times of the register (Chap. 6) have not been taken into
account.

Example 1.14
A Moore machine is shown in Fig. 1.21. It is the control unit of a programmable
timer (Exercise 2.6.2). It has seven internal states, three binary input signals start,
zero and reference, and two output signals operation (2 bits) and done. It can be
described by the following processes.

clk

internal state

input state

output state

next state

tSUinput

t1

t2

combinational
circuit 1

(t1)

next state

(clk)

internal state

combinational
circuit 2

(t2)
output state

input state
(tSUinput )

Fig. 1.20 Mealy machine
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Example 1.15
Consider the Mealy machine of Table 1.1. It has four internal states, two
binary inputs x1 and x0, and one binary output z. Assume that x0 and x1 are

0 1

reference = 1

2

3 4 5 6

start = 1

start = 0

start = 0

start = 1

zero = 0 reference = 0

reference = 0

reference = 1

zero = 1

reset

state operation done

0 00 1
1 00 1
2 11 0
3 00 0
4 00 0
5 00 0
6 01 0

Fig. 1.21 An example of a Moore machine
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periodic, but out of phase, signals. Then the machine detects if x0 changes
before x1 or if x1 changes before x0. In the first case the sequence of internal
states is A B C D A B… and z = 0. In the second case the sequence is D C B
A D C… and z = 1.

It can be described by the following processes.

Table 1.1 A Mealy
machine: next state/z

X1 x0 : 00 01 10 11

A A/0 B/0 A/1 D/1
B B/1 B/0 A/1 C/0
C B/1 C/1 D/0 C/0
D A/0 C/1 D/0 D/1

16 1 Basic Building Blocks



1.3 Memory Blocks

With regards to memory blocks, a previous comment similar to Comment 1.1 must
be outlined: VHDL models can be generated for simulation purposes; nevertheless,
in order to implement an actual circuit, the corresponding vendor’s primitive
component should be used instead (Chap. 5).

Example 1.16
The following entity defines a Read Only Memory storing 2n m-bit words. The
stored data is defined by a generic parameter (Fig. 1.22). Library declarations are
omitted.

1.2 Sequential Components 17
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Then the following component instantiation defines a ROM storing 16 4-bit words,
namely

Example 1.17
The following entity defines a synchronous Random Access Memory storing 2n

m-bit words (Fig. 1.23). A write input enables the writing operation. Functionally,
it is equivalent to a Register File made up of 2n m-bit registers whose clock enable
inputs are connected to write, plus an address decoder. Library declarations are
omitted.

address
n

m

word

ROM

stored data : 
generic parameter

Fig. 1.22 Read only
memory

address
n

m

data_out

RAM

m

data_in

write

clk

Fig. 1.23 Random access
memory
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The following component instantiation defines a synchronous RAM storing 16
4-bit words.

1.4 IO-Port Components

Once again, a previous comment similar to Comment 1.1 must be outlined: VHDL
models can be generated for simulating input and output amplifiers; nevertheless,
in order to implement an actual circuit, the corresponding vendor’s I/O component
should be used instead (Chap. 5).

1.3 Memory Blocks 19
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In order to generate VHDL models of I/O amplifiers, it is convenient to
understand the meaning of the STD_LOGIC type elements, that is

‘X’: forcing unknown, ‘0’ : forcing 0, ‘1’ : forcing 1,
‘W’: weak unknown, ‘L’ : weak 0, ‘H’ : weak 1,
‘Z’: high impedance

(‘‘uninitialized’’ and ‘‘don’t care’’ states have no sense in the case of I/O
amplifiers).

An amplifier generates low-impedance (forcing) signals when enabled and high
impedance signals when disabled. Thus the possible outputs generated by an
amplifier are ‘X’, ‘0’, ‘1’ and ‘Z’. In the following example several types of input,
output and bidirectional amplifiers are defined.

Example 1.18

The following conditional assignment defines an input buffer (Fig. 1.24a):

An input buffer with a pull-up resistor can be defined as follows (Fig. 1.24b).

a

(a) (d)

(e)

(b)

(c)

b

a b

a b

en

b

a

en

c

b

a

Fig. 1.24 I/O ports
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The definition of a tri-state output buffer (Fig. 1.24c) is the same as in example 1.8,
that is

An open-drain output can be defined as follows (Fig. 1.24d).

As an example of hierarchical description, a bidirectional I/O buffer can be defined
by instantiating an input buffer and a tri-state output buffer (Fig. 1.24e).

1.5 VHDL Models

The following complete VHDL models are available at the Authors’ web page
www.arithmetic-circuits.org:

logic_gates.vhd (Sects. 1.1.1, 1.1.2 and 1.1.3),
arithmetic_blocks.vhd (Sects. 1.1.4, 1.2.1 and 1.2.2),
sequential_components.vhd (Sects. 1.2.1, 1.2.2 and 1.2.3),
fnite_state_machines.vhd (Sect. 1.2.4),
memories.vhd (Sect. 1.3),
input_output.vhd (Sect. 1.4).

1.6 Exercises

1. Generate the VHDL model of a circuit that computes y = a�x where a is a bit,
and x and y are n-bit vectors, so that y = (a�xn-1, a�xn-2,…, a�x0).

2. Generate several models of a 1-bit full subtractor (Boolean equations, table,
LUT instantiation).

3. Generate a generic model of an n-bit 8-to-1 multiplexer.
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4. Generate a generic model of an n-input address decoder.
5. Design an n-bit magnitude comparator: given two n-bit naturals a and b, it

generates a 1-bit output gt equal to 1 if a C b and equal to 0 if a \ b.
6. Design a 60-state up counter with reset and count control inputs.
7. Design a finite state machine with two binary inputs x and y and a binary output

z defined as follows: if the input sequence is (x, t) = 00 01 11 10 00 01 11… then
z = 0, and if the input sequence is (x, y) = 00 10 11 01 00 10 11… then z = 1.

Reference

1. Hamblen JO, Hall TS, Furman MD (2008) Rapid prototyping of digital systems. Springer,
New York
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Chapter 2
Architecture of Digital Circuits

This chapter describes the classical architecture of many digital circuits and presents,
by means of several examples, the conventional techniques that digital circuit
designers can use to translate an initial algorithmic description toan actual circuit.The
main topics are the decomposition of a circuit into Data Path and Control Unit and the
solution of two related problems, namely scheduling and resource assignment.

In fact, modern Electronic Design Automation tools have the capacity to directly
generate circuits from algorithmic descriptions, with performances—latency, cost,
consumption—comparable with those obtained using more traditional methods.
Those development tools are one of the main topics of Chap. 5. So, it is possible
that, in the future, the concepts and methods presented in this chapter will no longer
be of interest to circuit designers, allowing them to concentrate on algorithmic
innovative aspects rather than on scheduling and resource assignment optimization.

2.1 Introductory Example

As a first example, a ‘‘naive’’ method for computing the square root of a natural
x is considered. The following algorithm sequentially computes all the pairs
[r, s = (r ? 1)2] with r = 0, 1, 2, etc.:

Initially r = 0 and thus s = 1. Then, at each step, the pair [r ? 1, (r ? 2)2] is
computed in function of r and s = (r ? 1)2:

r þ 2ð Þ2¼ r þ 1ð Þ þ 1ð Þ2¼ r þ 1ð Þ2þ2 � r þ 1ð Þ þ 1 ¼ sþ 2 � r þ 1ð Þ þ 1:

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_2,
� Springer Science+Business Media Dordrecht 2012
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The same method can be used for computing the square root of x. For that, the loop
execution is controlled by the condition s B x.

Algorithm 2.1: Square root

The loop is executed as long as s B x, that is (r ? 1)2 B x. Thus, at the end of the
loop execution,

r2� x\ r þ 1ð Þ2:

Obviously, this is not a good algorithm as its computation time is proportional to
the square root itself, so that for great values of x (x % 2n) the number of steps is
of the order of 2n/2. Efficient algorithms are described in Chap. 10.

In order to implement Algorithm 2.1, the list of operations executed at each
clock cycle must be defined. In this case, each iteration step includes three oper-
ations: evaluation of the condition s B x, s ? 2�(r ? 1) ? 1 and r ? 1. They can
be executed in parallel. On the other hand, the successive values of r and s must be
stored at each step. For that, two registers are used. Their initial values (0 and 1
respectively) are controlled by a common load signal, and their updating at the end
of each step by a common ce (clock enable) signal. The circuit is shown in Fig. 2.1.

To complete the circuit, a control unit in charge of generating the load and ce
signals must be added. It is a finite state machine with one input greater (detection
of the loop execution end) and two outputs, load and ce. A start input and a done
output are added in order to allow the communication with other circuits. The
finite state machine is shown in Fig. 2.2.

The circuit of Fig. 2.1 is made up of five blocks whose VHDL models are the
following:

• computation of next_r:

• computation of next_s:

(multiplying by 2 is the same as shifting one position to the right)

24 2 Architecture of Digital Circuits

http://dx.doi.org/10.1007/978-94-007-2987-2_10
http://dx.doi.org/10.1007/978-94-007-2987-2_10


1adder

x2

r+1

1adder

next_s

load
ceregister

initial value : 1

s

comparator

x

greater

load
ceregister

initial value : 0

r

next_r s+2·(r+1)+1

Fig. 2.1 Square root computation: data path
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Fig. 2.2 Square root
computation: control unit

2.1 Introductory Example 25



• register r:

• register s:

• end of loop detection:

The control unit is a Mealy finite state machine that can be modeled as follows:
• next state computation:

• output state computation:
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The circuit of Fig. 2.1 includes three n-bit adders: a half adder for computing
next_r, a full adder for computing next_s and another full adder (actually a sub-
tractor) for detecting the condition s [ x. Another option is to use one adder and to
decompose each iteration step into three clock cycles. For that, Algorithm 2.1 is
slightly modified.

Algorithm 2.2: Square root, version 2

A circuit able to execute the three operations, that is r ? 1, s ? 2�r ? 1 and
evaluation of the condition s [ x must be defined. The condition s [ x is equivalent
to s C x ? 1 or s ? 2n - 1 - x C 2n. The binary representation of 2n - 1 - x is
obtained by complementing the bits of the binary representation of x. So, the
condition s [ x is equivalent to s ? not(x) C 2n. Thus, the three operations amount
to additions: r ? 1, s ? 2�r ? 1 and s ? not(x). In the latter case, the output carry
defines the value of greater. The corresponding circuit is shown in Fig. 2.3. It is an
example of programmable computation resource: under the control of a 2-bit
command operation, it can execute the three previously defined operations.
The corresponding VHDL description is the following:
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The complete circuit is shown in Fig. 2.4.
A control unit must be added. It is a finite state machine with one input greater

and five outputs load, ce_r, ce_s, ce_greater. As before, a start input and a done
output are added in order to allow the communication with other circuits. The
finite state machine is shown in Fig. 2.5.

The building blocks of the circuit of Fig. 2.4 (apart from the programmable
resource) are the following:

• register r:

• register s:

0 1,2

0

r

0 1 2

x2

x

operation (1..0)

operand2operand1

adder not(operation(1))

result(n-1..0)

result(n)

s

Fig. 2.3 Square root
computation: programmable
computation resource
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0

start=1/
nop

reset 1 2

start=0/
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start=0/
nop

start=1/
begin

greater=1/
nop
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- /
update_s

- /
update_g

commands ce_r, ce_s, ce_ greater, load, operation , done

nop 0       0           0              0            0           1
begin 0       0           0              1            0           0

update_r 1       0           0              0            0           0
update_s 0       1           0              0            1           0

update_greater 0       0           1              0            2           0

Fig. 2.5 Square root computation, second version: control unit
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Fig. 2.4 Square root computation, second version: data path
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• flip-flop greater

The control unit is a Mealy finite state machine whose VHDL model is the
following:

• next state computation:

• output state computation:
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Complete VHDL models (square_root.vhd) of both circuits (Figs. 2.1, 2.4) are
available at the Authors’ web page.

2.2 Data Path and Control Unit

The general structure of a digital circuit is shown in Fig. 2.6. It consists of a data
path and a control unit. The data path (leftmost part of Fig. 2.6) includes com-
putation resources executing the algorithm operations, registers storing the algo-
rithm variables, and programmable connections (for example multiplexers, not
represented in Fig. 2.6) between resource outputs and register inputs, and between
register outputs and resource inputs. The control unit (rightmost part of Fig. 2.6) is
a finite state machine. It controls the sequence of data path operations by means of
a set of control signals (commands) such as clock enables of registers, program-
ming of computation resources and multiplexers, and so on. It receives from the
data path some feedback information (conditions) corresponding to the algorithm
control statements (loop, if, case).

In fact, the data path could also be considered as being a finite state machine. Its
internal states are all the possible register contents, the next-state computation is
performed by the computation resources, and the output states are all the possible
values of conditions. Nevertheless, the number of internal states is enormous and
there is generally no sense in using a finite state machine model for the data path.
However, it is interesting to observe that the data path of Fig. 2.6 is a Moore
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machine (the output state only depends on the internal state) while the control unit
could be a Moore or a Mealy machine. An important point is that, when two finite
state machines are interconnected, one of them must be a Moore machine in order
to avoid combinational loops.

According to the chronograms of Fig. 2.6, there are two critical paths: from the
data registers to the internal state register, and from the data registers to the data
registers. The corresponding delays are

Tdata�state ¼ t4 þ t1 ð2:1Þ

clk

internal_state

conditions

commands

next_state

t4

t1

t2

next-state
computation

(t1)

next state
(clk)

internal state

command
generation

(t2)

start

conditions

done

computation
resources

(t3)

(clk)

next_data

registers

data

commands

(t4)

data_indata_out

data

next_data

t3

Fig. 2.6 Structure of a digital circuit: data path and control unit
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and

Tdata�data ¼ t4 þ t2 þ t3; ð2:2Þ

where t1 is the computation time of the next internal state, t2 the computation time
of the commands, t3 the maximum delay of the computation resources and t4 the
computation time of the conditions (the set up and hold times of the registers have
not been taken into account).

The clock period must satisfy

Tclk [ max t4 þ t1; t4 þ t2 þ t3f g: ð2:3Þ

If the control unit were a Moore machine, there would be no direct path from the
data registers to the data registers, so that (2.2) and (2.3) should be replaced by

Tstate�data ¼ t2 þ t3 ð2:4Þ

and

Tclk [ max t4 þ t1; t2 þ t3f g: ð2:5Þ

In fact, it is always possible to use a Moore machine for the control unit. Generally
it has more internal states than an equivalent Mealy machine and the algorithm
execution needs more clock cycles. If the values of t1 to t4 do not substantially
vary, the conclusion could be that the Moore approach needs more, but shorter,
clock cycles. Many designers also consider that Moore machines are safer than
Mealy machines.

In order to increase the maximum frequency, an interesting option is to insert a
command register at the output of the command generation block. Then relation
(2.2) is substituted by

Tdata�commands ¼ t4 þ t2 and Tcommands�data ¼ t3; ð2:6Þ

so that

Tclk [ max t4 þ t1; t4 þ t2; t3f g: ð2:7Þ

With this type of registered Mealy machine, the commands are available one cycle
later than with a non-registered machine, so that additional cycles must be
sometimes inserted in order that the data path and its control unit remain
synchronized.

To summarize, the implementation of an algorithm is based upon a decom-
position of the circuit into a data path and a control unit. The data path is in charge
of the algorithm operations and can be roughly defined in the following way:
associate registers to the algorithm variables, implement resources able to execute
the algorithm operations, and insert programmable connections (multiplexers)
between the register outputs (the operands) and the resource inputs, and between
the resource outputs (the results) and the register inputs. The control unit is a finite
state machine whose internal states roughly correspond to the algorithm steps, the
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input states are conditions (flags) generated by the data path, and the output states
are commands transmitted to the data path.

In fact, the definition of a data path poses a series of optimization problems,
some of them being dealt with in the next sections, for example: scheduling of the
operations, assignment of computation resources to operations, and assignment of
registers to variables. It is also important to notice that minor algorithm modifi-
cations sometimes yield major circuit optimizations.

2.3 Operation Scheduling

Operation scheduling consists in defining which particular operations are in the
process of execution during every clock cycle. For that purpose, an important
concept is that of precedence relation. It defines which of the operations must be
completed before starting a new one: if some result r of an operation A is an initial
operand of some operation B, the computation of r must be completed before the
execution of B starts. So, the execution of A must be scheduled before the exe-
cution of B.

2.3.1 Introductory Example

A carry-save adder or 3-to-2 counter (Sect. 7.7) is a circuit with 3 inputs and 2
outputs. The inputs xi and the outputs yj are naturals. Its behavior is defined by the
following relation:

x1 þ x2 þ x3 ¼ y1 þ y2: ð2:8Þ

It is made up of 1-bit full adders working in parallel. An example where x1, x2 and
x3 are 4-bit numbers, and y1 and y2 are 5-bit numbers, is shown in Fig. 2.7.

The delay of a carry-save adder is equal to the delay TFA of a 1-bit full adder,
independently of the number of bits of the operands. Let CSA be the function
associated to (2.8), that is

y1; y2ð Þ ¼ CSA x1; x2; x3ð Þ: ð2:9Þ

Using carry-save adders as computation resources, a 7-to-3 counter can be
implemented. It allows expressing the sum of seven naturals under the form of the
sum of three naturals, that is

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ y1 þ y2 þ y3:

In order to compute y1, y2 and y3, the following operations are executed (op1 to op4

are labels):
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op1 : a1; a2ð Þ ¼ CSA x1; x2; x3ð Þ;
op2 : b1; b2ð Þ ¼ CSA x4; x5; x6ð Þ;
op3 : c1; c2ð Þ ¼ CSA a2; b2; x7ð Þ;
op4 : d1; d2ð Þ ¼ CSA a1; b1; c1ð Þ:

ð2:10Þ

According to (2.10) and the definition of CSA

a1 þ a2 ¼ x1 þ x2 þ x3;
b1 þ b2 ¼ x4 þ x5 þ x6;
c1 þ c2 ¼ a2 þ b2 þ x7;
d1 þ d2 ¼ a1 þ b1 þ c1;

so that

c1 þ c2 þ d1 þ d2 ¼ a2 þ b2 þ x7 þ a1 þ b1 þ c1

¼ x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ c1:

Thus

c2 þ d1 þ d2 ¼ a2 þ b2 þ x7 þ a1 þ b1 þ c1 ¼ x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7

and y1, y2 and y3 can be defined as follows:

y1 ¼ d1; y2 ¼ d2; y3 ¼ c2:

The corresponding precedence relation is defined by the graph of Fig. 2.8,
according to which op1 and op2 must be executed before op3, and op3 before op4.
Thus, the minimum computation time is equal to 3�TFA.

For implementing (2.10) the following options could be considered:

1. A combinational circuit, made up of four carry-save adders, whose structure is
the same as that of the graph of Fig. 2.8. Its computation time is equal to 3�TFA

and its cost to 4�CCSA, being CCSA the cost of a carry-save adder. This is
probably a bad solution because the cost is high (4 carry-save adders) and the
delay is long (3 full-adders) so that the minimum clock cycle of a synchronous
circuit including this 7-to-3 counter should be greater than 3�TFA.

2. A data path including two carry-save adders and several registers (Sect. 2.5).
The computation is executed in three cycles:

x12 x22
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y13 y23

x32
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y12 y22

x13 x23 x33 x10 x20

FA

y11 y21

x30

FA

y10 y20

x11 x21 x31

0

y24y14

0

Fig. 2.7 Carry-save adder
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The computation time is equal to 3�Tclk, where Tclk [ TFA, and the cost equal to
2�CCSA, plus the cost of the additional registers, controllable connections and
control unit.

3. A data path including one carry-save adder and several registers. The com-
putation is executed in four cycles:

The computation time is equal to 4�Tclk, where Tclk [ TFA, and the cost equal to
CCSA, plus the cost of the additional registers, controllable connections and
control unit.

In conclusion, there are several implementations, with different costs and delays,
corresponding to the set of operations in (2.10). In order to get an optimized
circuit, according to some predefined criteria, the space for possible implemen-
tations must be explored. For that, optimization methods must be used.

x1,x2,x3 x4,x5,x6

b2a2a1 b1

c1 c2

d1,d2

x7

y1,y2

y3

op1 op2

op3

op4

Fig. 2.8 Precedence relation
of a 7-to-3 counter
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2.3.2 Precedence Graph

Consider a computation scheme, that is to say, an algorithm without branches and
loops. Formally it can be defined by a set of operations

opJ : xi; xk; . . .ð Þ ¼ f xl; xm; . . .ð Þ; ð2:11Þ

where xi, xk, xl, xm,… are variables of the algorithm and f one of the algorithm
operation types (computation primitives). Then, the precedence graph (or data flow
graph) is defined as follows:

• associate a vertex to each operation opJ,
• draw an arc between vertices opJ and opM if one of the results generated by opJ

is used by opM.

An example was given in Sect. 2.3.1 (operations (2.10) and Fig. 2.8).
Assume that the computation times of all operations are known. Let tJM be the

computation time, expressed in number of clock cycles, of the result(s) generated
by opJ and used by opM. Then, a schedule of the algorithm is an application Sch
from the set of vertices to the set of naturals that defines the number Sch(opJ) of
the cycle at the beginning of which the computation of opJ starts. A necessary
condition is that

SchðopMÞ� SchðopJÞ þ tJM ð2:12Þ

if there is an arc from opJ to opM.
As an example, if the clock period is greater than the delay of a full adder, then,

in the computation scheme (2.10), all the delays are equal to 1 and two admissible
schedules are

Schðop1Þ ¼ 1; Schðop2Þ ¼ 1; Schðop3Þ ¼ 2; Schðop4Þ ¼ 3; ð2:13Þ

Schðop1Þ ¼ 1; Schðop2Þ ¼ 2; Schðop3Þ ¼ 3; Schðop4Þ ¼ 4: ð2:14Þ

They correspond to the options 2 and 3 of Sect. 2.3.1.
The definition of an admissible schedule is an easy task. As an example, the

following algorithm defines an ASAP (as soon as possible) schedule:

• initial step: Sch(opJ) = 1 for all initial (without antecessor) vertices opJ;
• step number n ? 1: choose an unscheduled vertex opM whose total amount of

antecessors, say opP, opQ,… have already been scheduled, and define
Sch(opM) = maximum{Sch(opP) ? tPM, Sch(opQ) ? tQM,…}.

Applied to (2.10) the ASAP algorithm gives (2.13). The corresponding data flow
graph is shown in Fig. 2.9a.

An ALAP (as late as possible) schedule can also be defined. For that, assume
that the latest admissible starting cycle for all the final vertices (without successor)
has been previously specified:
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• initial step: Sch(opM) = latest admissible starting cycle of opM for all final vertices opM;
• step number n ? 1: choose an unscheduled vertex opJ whose all successors, say

opP, opQ,… have already been scheduled, and define Sch(opJ) = mini-
mum{Sch(opP) - tJP, Sch(opQ) - tJQ,…}.

Applied to (2.10), with Sch(op4) = 4, the ALAP algorithm generates the data
flow graph of Fig. 2.9b.

Let ASAP_Sch and ALAP_Sch be ASAP and ALAP schedules, respectively.
Obviously, if opM is a final operation, the previously specified value ALAP_-
Sch(opM) must be greater than or equal to ASAP_Sch(opM). More generally,
assuming that the latest admissible starting cycle for all the final operations has been
previously specified, for any admissible schedule Sch the following relation holds:

ASAP Sch opJð Þ� Sch opJð Þ�ALAP Sch opJð Þ; 8opJ : ð2:15Þ

Along with (2.12), relation (2.15) defines the admissible schedules.
An example of admissible schedule is defined by (2.14), to which corresponds

the data flow graph of Fig. 2.9c.
A second, more realistic, example is now presented. It corresponds to part of an

Elliptic Curve Cryptography algorithm.

Example 2.1
Given a point P = (xP, yP) of an elliptic curve and a natural k, the scalar product
kP = P ? P+ ��� ? P can be defined [1, 2]. In the case of the curve
y2 ? xy = x3 ? ax ? 1 over the binary field, the following formal algorithm [3]
computes kP. The initial data are the scalar k = km - 1 km - 2…k0 and the x-
coordinate xP of P. All the algorithm variables are elements of the Galois field
GF(2m), that is, polynomials of degree m over the binary field GF(2) (Chap. 13).
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Fig. 2.9 7-to-3 counter: a ASAP schedule. b ALAP schedule. c Admissible schedule
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Algorithm 2.3: Scalar product, projective coordinates

In fact, the preceding algorithm computes the value of four variables xA, zA, xB and
zB in function of k and xP. A final, not included, step would be to compute the
coordinates of kP in function of the coordinates of P (xP and yP) and of the final
values of xA, zA, xB and zB.

Consider one step of the main iteration of Algorithm 2.3, and assume that
km - i = 0. The following computation scheme computes the new values of xA, zA,
xB and zB in function of their initial values and of xP. The available
computation primitives are the addition, multiplication and squaring in GF(2m)
(Chap. 13).
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The updated values of xA, zA, xB and zB are xA = l, zA = i, xB = g, zB = d. The
corresponding data flow graph is shown in Fig. 2.10. The operation type corre-
sponding to every vertex is indicated (instead of the operation label). If km - i = 1
the computation scheme is the same but for the interchange of indexes A and B.

Addition and squaring in GF(2m) are relatively simple one-cycle operations,
while multiplication is a much more complex operation whose maximum com-
putation time is tm � 1. In what follows it is assumed that tm = 300 cycles.
An ASAP schedule is shown in Fig. 2.11. The computation of g starts at the
beginning of cycle 603 so that all the final results are available at the beginning of
cycle 604. The corresponding circuit must include three multipliers as the
computations of a, b and h start at the same time.

The computation scheme includes 5 multiplications. Thus, in order to execute
the algorithm with only one multiplier, the minimum computation time is 1,500.
More precisely, one of the multiplications e, f or h cannot start before cycle 1,201,
so that the next operation (g or i) cannot start before cycle 1,501. An ALAP
schedule, assuming that the computations of g and i start at the beginning of cycle
1,501, is shown in Fig. 2.12.

2.3.3 Optimization Problems

Assuming that the latest admissible starting cycle for all the final operations has
been previously specified then any schedule, such that (2.12) and (2.15) hold true,
can be chosen. This poses optimization problems. For example:

1. Assuming that the maximum computation time has been previously specified,
look for a schedule that minimizes the number of computation resources of
each type.
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2. Assuming that the number of available computation resources of each type has
been previously specified, minimize the computation time.

An important concept is the computation width w(f) with respect to the com-
putation primitive (operation type) f. First define the activity intervals of f. Assume
that f is the primitive corresponding to the operation opJ, that is

opJ : xi; xk; . . .ð Þ ¼ f xl; xm; . . .ð Þ:

Then

Sch opJð Þ; Sch opJð Þ þ maximumftJMg½ �
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is an activity interval of f. This means that a resource of type f must be available
from the beginning of cycle Sch(opJ) to the end of cycle Sch(opJ) ? tJM for all
M such that there is an arc from opJ to opM. An incompatibility relation over the set of
activity intervals of f can be defined: two intervals are incompatible if they overlap. If
two intervals overlap, it is obvious that the corresponding operations cannot be
executed by the same computation resource. Thus, a particular resource of type f must
be associated to each activity interval of f in such a way that if two intervals overlap,
then two distinct resources of the same type must be used. The minimum number of
computation resources of type f is the computation width w(f).

The following graphical method can be used for computing w(f).

• Associate a vertex to every activity interval.
• Draw an edge between two vertices if the corresponding intervals overlap.
• Color the vertices in such a way that two vertices connected by an edge have

different colors (a classical problem of graph theory).

Then, w(f) is the number of different colors, and every color defines a particular
resource assigned to all edges (activity intervals) with this color.

Example 2.2
Consider the scheduled precedence graph of Fig. 2.11. The activity intervals of the
multiplication are

a : ½1; 300�; b : ½1; 300�; h : ½1; 300�; f : 301; 600½ �; e : 303; 602½ �:

The corresponding incompatibility graph is shown in Fig. 2.13a. It can be colored
with three colors (c1, c2 and c3 in Fig. 2.13a). Thus, the computation width with
respect to the multiplication is equal to 3.

If the scheduled precedence graph of Fig. 2.12 is considered, then the activity
intervals of the multiplication are

a : 899; 1198½ �; b : 899; 1198½ �; h : 1201; 1500½ �; f : 1201; 1500½ �; e : 1201; 1500½ �:

The corresponding incompatibility graph is shown in Fig. 2.13b. It can be colored
with three colors. Thus, the computation width with respect to the multiplication is
still equal to 3.

Nevertheless, other schedules can be defined. According to (2.15) and
Figs. 2.11 and 2.12, the time intervals during which the five multiplications can
start are the following:

a : 1; 899½ �; b : 1; 899½ �; h : 1; 1201½ �; f : 301; 1201½ �; e : 303; 1201½ �:

As an example, consider the admissible schedule of Fig. 2.14. The activity
intervals of the multiplication operation are

a : ½1; 300� ; b : 301; 600½ �; h : 601; 900½ �; f : 901; 1200½ �; e : 1201; 1500½ �:
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They do not overlap hence the incompatibility graph does not include any edge
and can be colored with one color. The computation width with respect to the
multiplication is equal to 1.

Thus, the two optimization problems mentioned above can be expressed in
terms of computation widths:

1. Assuming that the maximum computation time has been previously specified,
look for a schedule that minimizes some cost function

C ¼ c1 � wðf 1Þ þ c2 � wðf 2Þ þ � � � þ cm � wðf mÞ ð2:16Þ

where f1, f2,…, fm are the computation primitives and c1, c2,…, cm their cor-
responding costs.

2. Assuming that the maximum computation width w(f) with respect to every
computation primitive f has been previously specified, look for a schedule that
minimizes the computation time.

Both are classical problems of scheduling theory. They can be expressed in
terms of integer linear programming problems whose variables are xIt for all
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Fig. 2.13 ColoringComputation width: graph coloring
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operation indices I and all possible cycle numbers t: xIt = 1 if Sch(eI) = t, 0
otherwise. Nevertheless, except for small computation schemes—generally trac-
table by hand—the so obtained linear programs are intractable. Modern Electronic
Design Automation tools execute several types of heuristic algorithms applied to
different optimization problems (not only to schedule optimization). Some of the
more common heuristic strategies are list scheduling, simulated annealing and
genetic algorithms.

Example 2.3
The list scheduling algorithm, applied to the graph of Fig. 2.10, with tm = 300 and
assuming that the latest admissible starting cycle for all the final operations is
cycle number 901 (first optimization problem), would generate the schedule of
Fig. 2.15. The list scheduling algorithm, applied to the same graph of Fig. 2.10,
with tm = 300 and assuming that the computation width is equal to 1 for all
operations (second optimization problem), would generate the schedule of
Fig. 2.14.

2.4 Resource Assignment

Once the operation schedule has been defined, several decisions must be taken.

• The number w(f) of resources of type f is known, but it remains to decide which
particular computation resource executes each operation. Furthermore the def-
inition of multifunctional programmable resources could also be considered.

• As regards the storing resources, a simple solution is to assign a particular
register to every variable. Nevertheless, in some cases the same register can be
used for storing different variables.
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A key concept for assigning registers to variables is the lifetime [tI, tJ] of every
variable: tI is the number of the cycle during which its value is generated, and tJ is
the number of the last cycle during which its value is used.

Example 2.4
Consider the computation scheme of Example 2.1 and the schedule of Fig. 2.14.
The computation width is equal to 1 for all primitives (multiplication, addition and
squaring). The computation is executed as follows:

In order to compute the variable lifetimes, it is assumed that the multiplier reads
the values of the operands during some initial cycle, say number I, and generates
the result during cycle number I ? tm - 1 (or sooner), so that this result can be
stored at the end of cycle number I ? tm - 1 and is available for any operation
beginning at cycle number I ? tm (or later). As regards the variables xA, zA, xB and
zB, in charge of passing values from one iteration step to the next (Algorithm 2.3),
their initial values must be available from the first cycle up to the last cycle during
which those values are used. At the end of the computation scheme execution they
must be updated with their new values. The lifetime intervals are given in
Table 2.1.

The definition of a minimum number of registers can be expressed as a graph
coloring problem. For that, associate a vertex to every variable and draw an edge
between two variables if their lifetime intervals are incompatible, which means
that they have more than one common cycle. As an example, the lifetime intervals
of j and k are compatible, while the lifetime intervals of b and d are not.

The following groups of variables have compatible lifetime intervals:
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zBðinitial! 1Þ; jð1! 2Þ; kð2! 3Þ; lð3! finalÞ;
xBðinitial! 301Þ; bð600! 901Þ; f ð1200! 1501Þ; gð1501! finalÞ;
zAðinitial! 601Þ; cð601! 602Þ; dð602! finalÞ;
xAðinitial! 601Þ; hð900! 901Þ; eð1500! 1501Þ;
að300! 901Þ; ið901! finalÞ:

Thus, the computing scheme can be executed with five registers, namely xA, zA, xB,
zB and R:

Table 2.1 Lifetime intervals a [300, 901]
j [1, 2]
k [2, 3]
l [3, final]
b [600, 901]
h [900, 901]
c [601, 602]
d [602, final]
f [1200, 1501]
i [901, final]
e [1500, 1501]
g [1501, final]
xA [initial, 601]
zA [initial, 601]
xB [initial, 301]
zB [initial, 1]
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2.5 Final Example

Each iteration step of Algorithm 2.3 consists of executing a computation scheme,
either the preceding one when km - i = 0, or a similar one when km - i = 1. Thus,
Algorithm 2.3 is equivalent to the following algorithm 2.4 in which sentences
separated by commas are executed in parallel.

Algorithm 2.4: Scalar product, projective coordinates (scheduled version)

The data processed by Algorithm 2.4 are m-bit vectors (polynomials of degree
m over the binary field GF(2)) and the computation resources are field multipli-
cation, addition and squaring. Field addition amounts to bit-by-bit modulo 2
additions (XOR functions). On the other hand, VHDL models of computation
resources executing field squaring and multiplication are available at the Authors’
web page, namely classic_squarer.vhd and interleaved_mult.vhd (Chap. 13). The
classic_squarer component is a combinational circuit. The interleaved_mult
component reads and internally stores the input operands during the first cycle
after detecting a positive edge on start_mult and raises an output flag mult_done
when the multiplication result is available.
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The operations executed by the multiplier are

xA � zB; xB � zA; xA � zA;R � xB; xP � zA; xB � zB;R � xA; xP � zB:

An incompatibility relation can be defined over the set of involved variables: two
variables are incompatible if they are operands of a same operation. As an
example, xA and zB are incompatible, as xA�zB is one of the operations. The cor-
responding graph can be colored with two colors corresponding to the sets

fxA; xB; xPg and fzA; zB;Rg:

The first set of variables can be assigned to the leftmost multiplier input and the
other to the rightmost input.

The operations executed by the adder are

xA þ zA;Rþ xB; xA þ xB; xB þ zB;Rþ xA; xB þ xA:

The incompatibility graph can be colored with three colors corresponding to the
sets

fxA; zBg; fxB; zAg and fRg:

The first one is assigned to the leftmost adder input, the second to the rightmost
input, and R to both inputs.

Finally, the operations realized by the squaring primitive are

z2
B; z

2
A; x

2
A; x

2
B:

The part of the data path corresponding to the computation resources and the
multiplexers that select their input data is shown in Fig. 2.16. The corresponding
VHDL model can easily be generated. As an example, the multiplier, with its input
multiplexers, can be described as follows.

Consider now the storing resources. Assuming that xP and k remain available
during the whole algorithm execution, there remain five variables that must be
internally stored: xA, xB, zA, zB and R. The origin of the data stored in every register
must be defined. For example, the operations that update xA are
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So, the updated value can be 1 (initial value), product, adder_out or zB. A similar
analysis must be done for the other registers. Finally, the part of the data path
corresponding to the registers and the multiplexers that select their input data is
shown in Fig. 2.17. The corresponding VHDL model is easy to generate. As an
example, the xA register, with its input multiplexers, can be described as follows.

xA xB xP zA zB R

sel_p1 sel_p2
0 21 0 21

product

interleaved_mult
start_mult

mult_done

xA zB R xB zA R

sel_a1 sel_a2
0 21 0 21

adder_out

XOR gates

zA zB xA

sel_sq
0 21

xB

square

3

classic_squarer

Fig. 2.16 Example 2.4: computation resources
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A complete model of the data path scalar_product_data_path.vhd is available at
the Authors’ web page.

The complete circuit is defined by the following entity.

It is made up of

• the data path;
• a shift register allowing sequential reading of the values of km - i;
• a counter for controlling the loop execution;

product zB

sel_xA
0 21

load
en_xA

adder_out

register
initially: 1

product zA
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0 21

load
en_xB

adder_out
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R
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sel_R
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R

Fig. 2.17 Example 2.5: data registers
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• a finite state machine in charge of generating all the control signals, that is
start_mult, load, shift, en_xA, en_xB, en_zA, en_zB, en_R, sel_p1, sel_p2,
sel_a1, sel_a2, sel_sq, sel_xA, sel_xB, sel_zA, sel_zB and sel_R. In particular,
the control of the multiplier operations is performed as follows: the control unit
generates a positive edge on the start_mult signal, along with the values of
sel_p1 and sel_p2 that select the input operands; then, it enters a wait loop until
the mult_done flag is raised (instead of waiting for a constant time, namely 300
cycles, as was done for scheduling purpose); during the wait loop the start_mult
is lowered while the sel_p1 and sel_p2 values are maintained; finally, itgenerates
thesignals forupdating the register that stores the result.Asanexample, assume that
the execution of the fourth instruction of the main loop, that is xB:= xB�zA, starts at
state 6anduses identifiers start4,wait4 andend4for representing thecorresponding
commands. The corresponding part of the next-state function is

and the corresponding part of the output function is

• a command decoder (Chap. 4). Command identifiers have been used in the
definition of the finite state machine output function, so that a command decoder
must be used to generate the actual control signal values in function of the
identifiers. For example, the command start4 initializes the execution of
xB:= xB�zA and is decoded as follows:

In the case of operations such as the first of the main loop, that is R:= xA�zB,
zB:= xA ? zA, the 1-cycle operation zB:= xA ? zA is executed in parallel with the
final cycle of R:= xA�zB and not in parallel with the initial cycle. This makes the
algorithm execution a few cycles (3) longer, but this is not significant as tm is
generally much greater than 3. Thus, the control signal values corresponding to
the identifier end1 are:
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The control unit also detects the start signal and generates the done flag. A com-
plete model scalar_product.vhd is available at the Authors’ web page.

Comment 2.1
The interleaved_mult component is also made up of a data path and a control unit,
while the classic_squarer component is a combinational circuit. An alternative
solution is the definition of a data path able to execute all the operations, including
those corresponding to the interleaved_mult and classic_squarer components. The
so-obtained circuit could be more efficient than the proposed one as some com-
putation resources could be shared between the three algorithms (field multipli-
cation, squaring and scalar product). Nevertheless, the hierarchical approach
consisting of using pre-existing components is probably safer and allows a
reduction in the development times.

Instead of explicitly disassembling the circuit into a data path and a control unit,
another option is to describe the operations that must be executed at each cycle,
and to let the synthesis tool define all the details of the final circuit. A complete
model scalar_product_DF2.vhd is available at the Authors’ web page.

Comment 2.2
Algorithm 2.4 does not compute the scalar product kP. A final step is missing:

The design of a circuit that executes this final step is left as an exercise.
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2.6 Exercises

1. Generate several VHDL models of a 7-to-3 counter. For that purpose use the
three options proposed in Sect. 2.3.1.

2. Generate the VHDL model of a circuit executing the final step of the scalar
product algorithm (Comment 2.2). For that purpose, the following entity,
available at the Authors’ web page, is used:

It computes z = g�h-1 over GF(2m). Several architectures can be considered.

3. Design a circuit to compute the greatest common divisor of two natural
numbers, based on the following simplified Euclidean algorithm.

4. Design a circuit for computing the greatest common divisor of two natural
numbers, based on the following Euclidean algorithm.

5. The distance d between two points (x1, y1) and (x2, y2) of the (x, y)-plane is
equal to d = ((x1 - x2)2 ? (y1 - y2)2)0.5. Design a circuit that computes
d with only one subtractor and one multiplier.

6. Design a circuit that, within a three-dimensional space, computes the distance
between two points (x1, y1, z1) and (x2, y2, z2).

7. Given a point (x, y, z) of the three-dimensional space, design a circuit that
computes the following transformation.

xt

yt

zt

2
4

3
5 ¼

a11 a21 a31

a21 a22 a32

a31 a32 a11

2
4

3
5�

x
y
z

2
4
3
5

8. Design a circuit for computing z = ex using the formula
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ex ¼ 1þ x

1!
þ x2

2!
þ x3

3!
þ � � �

9. Design a circuit for computing xn, where n is a natural, using the following
relations: x0 = 1; if n is even then xn = (xn/2)2, and if n is odd then
xn = x�(x(n-1)/2)2.

10. Algorithm 2.4 (scalar product) can be implemented using more than one
interleaved_multiplier. How many multipliers can operate in parallel? Define
the corresponding schedule.
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Chapter 3
Special Topics of Data Path Synthesis

Several important implementation techniques are presented in this chapter. The
first one is pipelining, a very commonly used method in systems that process great
volumes of data. Self-timing is the topic of the second section. To some extent it
can be considered as an extension of the pipelining concept and is especially
attractive in the case of very big circuits. The third section is an introduction to a
circuit level, or even algorithm level, transformation known as ‘‘loop unrolling’’.
It permits the exploration of different cost—performance tradeoffs, from combi-
national iterative circuits to completely sequential circuits. Finally, the last section
tackles the problem of reducing the number of connection resources.

3.1 Pipeline

A very useful implementation technique, especially for signal processing circuits,
is pipelining [1, 2]. It consists of inserting additional registers so that the maximum
clock frequency and input data throughput are increased. Furthermore, in the case
of FPGA implementations, the insertion of pipeline registers has a positive effect
on the power consumption.

3.1.1 Introductory Example

Consider the introductory example of Sect. 2.3.1. The set of Eq. (2.10) can be
implemented by a combinational circuit (option 1. of Sect. 2.3.1) made up of four
carry-save adders, with a computation time equal to 3�TFA. That means that the
minimum clock period of a synchronous circuit including this 7-to-3 counter
should be greater than 3�TFA, and that the introduction interval between successive
data inputs should also be greater than 3�TFA. The corresponding circuit is shown

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_3,
� Springer Science+Business Media Dordrecht 2012
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in Fig. 3.1a. As previously commented, this is probably a bad circuit because its
cost is high and its maximum clock frequency is low.

Consider now the circuit of Fig. 3.1b in which registers have been inserted in
such a way that operations scheduled in successive cycles, according to the ASAP
schedule of Fig. 2.9a, are separated by a register. The circuit still includes four
carry-save adders, but the minimum clock period of a synchronous circuit
including this counter must be greater than TFA, plus the set-up and hold times of
the registers, instead of 3�TFA. Furthermore, the minimum data introduction
interval is now equal to Tclk: as soon as a1, a2, b1 and b2 have been computed, their
values are stored within the corresponding output register, and a new computation,
with other input data, can start; at the same time, new computations of c1 and c2,
and of d1 and d2 can also start. Thus, at time t, three operations are executed in
parallel:

To summarize, assuming that the set-up and hold times are negligible,

Tclk [ TFA; latency ¼ 3 � Tclk; r ¼ Tclk;

x1 x2 x3

CSA

x4 x5 x7

CSA

CSA

CSA
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a1 a2 b1 b2
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c1 c2

d2

y1 y2 y3

d1

a1

clk

clk
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Fig. 3.1 a Combinational circuit. b Pipelined circuit
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where latency is the total computation time and r is the minimum data introduction
interval.

Another implementation, based on the admissible schedule of Fig. 2.9c is show
in Fig. 3.2. In this case the circuit is made up of two stages separated by a pipeline
register. Within every stage the operations are executed in two cycles. During the
first cycle the following operations are executed

and during the second cycle, the following ones are executed

The circuit of Fig. 3.2 includes two carry-save adders instead of four, and its
timing constraints are the following:

CSA

x1x2x3 x7

a1a2 b1b2 x7

CSA

x4x5x6

a2b2x7 a1b1c1

conexiones

y1 y2 y3

c1

stage 1

stage 2

Fig. 3.2 Two-stage two-
cycle implementation
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Tclk [ TFA þ Tmultiplexor; latency ¼ 4 � Tclk; r ¼ 2 � Tclk:

To summarize, the main parameters of a pipelined circuit are the following.

• Latency (also called delay, response time): total delay between the introduction
of a new set of input data and the generation of the corresponding output results.
It is equal to n�Tclk where n is the number of pipeline stages and Tclk the clock
period.

• Pipeline rate (also called pipeline period): data introduction interval.
• Throughput (also called speed, bandwidth, production): number of input data

processed per time unit. For great numbers of processed data, it is the inverse of
the pipeline rate r.

Assuming that the combinational delay of stage number i is equal to ti, and that
the register set-up and hold times are negligible, the minimum clock period is the
maximum of all ti’s. In the first example (Fig. 3.1a) t1 = t2 = t3 = TFA, while in
the second example (Fig. 3.2) t1 = t2 = TFA ? Tmultiplexor.

A very common situation is that of the first example (Fig. 3.1). An initial
combinational circuit has a delay equal to C, so that it is able to process 1/C input
data per time unit. It is divided up into n pipeline stages, all of them with the same
delay C/n (balanced stages). Then

Tclk ffi C=n; r ¼ 1=Tclk ffi n=C; latency ¼ n � Tclk ffi C; T mð Þ
¼ n � Tclk þ m� 1ð Þ � Tclk;

where T(m) is the time necessary to process m input data. Thus, the average number
of input data processed per time unit is equal to m/T(m) = m/(n ? m - 1)�
Tclk % mn/(n ? m - 1)�C. For great values of m, the number of input data
processed per time unit is equal to n/C. Thus, with respect to the initial combinational
circuit, the throughput has been multiplied by n.

The actual speedup factor is smaller if the connection and register delays are
taken into account. Assume that those additional delays are equal to d time units.
Then, the minimum clock period is equal to Tclk = C/n ? d, r = 1/Tclk = n/
(C ? nd), latency = n�Tclk = C ? nd, T(m) = (n ? m-1)�Tclk = (n ? m-1)�(C/
n ? d) % m�(C/n ? d), m/T(m) % 1/(C/n ? d) = n/(C ? nd). Hence, the
throughput increase factor is equal to n�C/(C ? nd) = n/(1 ? a) where a = nd/C.

3.1.2 Segmentation

Given a computation scheme and its precedence graph G, a segmentation of G is
an ordered partition {S1, S2,…, Sk} of G. The segmentation is admissible if it
respects the precedence relationship. This means that if there is an arc from opJ [
Si to opM then either opM belongs to the same segment Si or it belongs to a different
segment Sj with j [ i. Two examples are shown in Fig. 3.3 in which the segments
are separated by dotted lines.
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The segmentation of Fig. 3.3a, that is S1 = {op1, op2}, S2 = {op3, op4},
S3 = {op5, op6}, is admissible, while that of Fig. 3.3b, that is S1 = {op1, op3},
S2 = {op2, op5}, S3 = {op4, op6}, is not (there is an arc op2 ? op3 from S2

to S1).
Once an admissible partition has been defined, every segment can be synthe-

sized separately, using the same methods as before (scheduling, resource assign-
ment). In order to assemble the complete circuit, additional registers are inserted:
if an arc of the precedence graph crosses the line that separates segments i and
i ? 1, then a register must be inserted; it will store the output data generated by
segment i that in turn are input data to segment i ? 1. As an example, the structure
of the circuit corresponding to Fig. 3.3a is shown in Fig. 3.4.

Assume that Ci and Ti are the cost and computation time of segment i. The cost
and latency of the complete circuit are

C ¼ C1 þ C2 þ � � � þ Ck þ Cregisters and T ¼ T1 þ T2 þ � � � þ Tk þ Tregisters

where Cregisters represents the total cost of the pipeline registers and Tregisters the
additional delay they introduce. The time interval d between successive data inputs is

d ¼ max T1; T2; . . .; Tkf g þ TSU þ TP ffi max T1; T2; . . .;Tkf g

where TSU and TP are the set-up and propagation times of the used flip-flops.

S1

S3

S2

S1

S2

S3

op1

op2

op3 op5

op4

op6

op1

op2

op3 op5

op4

op6

(a) (b)

Fig. 3.3 a Admissible segmentation. b Non-admissible segmentation
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A second, more realistic, example is now presented. It corresponds to part of an
Elliptic Curve Cryptography algorithm (Example 2.1).

Example 3.1
An admissible segmentation of the precedence graph of Fig. 2.10 is shown in
Fig. 3.5.

The operations corresponding to each segment are the following.

stage 1:
op1 and op2

stage 2:
op3 and op4

stage 3:
op5 and op6

Fig. 3.4 Pipelined circuit
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• Segment 1:

• Segment 2:

• Segment 3:

• Segment 4:

• Segment 5:

So, every segment includes a product over a finite field plus some additional
1-cycle operations (finite field additions and squares) in segments 2, 4 and 5. The
corresponding pipelined circuit, in which it is assumed that the output results are
g, d, l and i, is shown in Fig. 3.6.

A finite field product is a complex operation whose maximum computation time
tm, expressed in number of clock cycles, is much [1. Thus, the latency T and the
time interval d between successive data inputs of the complete circuit are

T ffi 5tm and d ffi tm:

The cost of the circuit is very high. It includes five multipliers, three adders, four
squarers and four pipeline registers. Furthermore, if used within the scalar product
circuit of Sect. 2.5, the fact that the time interval between successive data inputs has
been reduced (d % tm) does not reduce the execution time of Algorithm 2.4 as the
input variables xA, zA, xB and zB are updated at the end of every main loop execution.

As regards the control of the pipeline, several options can be considered. A simple
one is to previously calculate the maximum multiplier computation time tm and to
choose d[ tm ? 2 (computation time of segment 2). The control unit updates the
pipeline registers and sends a start pulse to all multipliers every d cycles. In the
following VHDL process, time_out is used to enable the pipeline register clock every
delta cycles and sync is a synchronization procedure (Sect. 2.5):
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In order to describe the complete circuit, five multipliers, three adders and four
squarers are instantiated, and every pipeline register, for example the segment 1
output register, can be described as follows:

A complete VHDL model pipeline_DF2.vhd is available at the Authors’ web page.
Another interesting option could be a self-timed circuit (Example 3.4).

3.1.3 Combinational to Pipelined Transformation

A very common situation is the following: a combinational circuit made up of
relatively small blocks, all of them with nearly equal delays, has been designed,
and its computation time is equal to T seconds. If this combinational circuit is used
as a computation resource of a synchronous circuit, then the clock cycle must be
greater than T, and in some cases it could be an over extended time (a too low
frequency). In order to increase the clock frequency, as well as to reduce the
minimum time interval between successive data inputs, the solution is pipelining.
As the combinational version already exists, it is no longer necessary to use the
general method of Sect. 3.1.2. The combinational circuit can be directly seg-
mented into stages.

Consider a generic example. The iterative circuit of Fig. 3.7 is made up twelve
identical blocks, each of them with a maximum delay of tcell seconds. The max-
imum propagation time of every connection is equal to tconnection seconds. Thus,
the computation time of this circuit is equal to T = 6tcell ? 7tconnection (input and
output connections included). Assume that this circuit is part of a synchronous
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circuit and that all inputs come from register outputs and all outputs go to register
inputs. Then the minimum clock cycle TCLK is defined by the following relation:

TCLK [ 6tcell þ 7tconnection þ tSU þ tP; ð3:1Þ

where tSU and tP are the minimum set-up and propagation times of the registers
(Chap. 6).

If the period defined by condition (3.1) is too long, the circuit must be seg-
mented. A 2-stage segmentation is shown in Fig. 3.8. Registers must be inserted in
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all positions where a connection crosses the dotted line. Thus, seven registers must
be added. Assuming that the propagation time of every part of a segmented
connection is still equal to tconnection, the following condition must hold:

TCLK [ 3tcell þ 4tconnection þ tSU þ tP: ð3:2Þ

A 5-stage segmentation is shown in Fig. 3.9. In this case, 32 registers must be
added and the following condition must hold:

TCLK [ tcell þ 2tconnection þ tSU þ tP: ð3:3Þ

Consider a practical example.

Example 3.2
Implement a 128-bit adder made up of four 32-bit adders. A combinational
implementation is described in Fig. 3.10. The computation time T of the circuit is
equal to 4�Tadder, where Tadder is the computation time of a 32-bit adder.

Fig. 3.7 Combinational
circuit

Fig. 3.8 2-stage
segmentation
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A 4-stage segmentation is shown in Fig. 3.11. Every stage includes one 32-bit
adder so that the minimum clock cycle, as well as the minimum time interval
between successive data inputs, is equal to Tadder. The corresponding circuit is
shown in Fig. 3.12. In total, (7�32 ? 1) ? (6�32 ? 1) ? (5�32 ? 1) = 579 addi-
tional flip-flops are necessary in order to separate the pipeline stages.

Fig. 3.9 5-stage segmentation
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Fig. 3.10 128-bit adder
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Fig. 3.11 4-stage segmentation
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Comments 3.1

• The extra cost of the pipeline registers could appear to be prohibitive. Never-
theless, the basic cell of a field programmable gate array includes a flip-flop,
so that the insertion of pipeline registers does not necessarily increase the total
cost, computed in terms of used basic cells. The pipeline registers could consist
of flip-flops not used in the non-pipelined version.

• Most FPGA families also permit implementing with LUTs those registers that
do not need reset signals. This can be another cost-effective option.

• The insertion of pipeline registers also has a positive effect on the power con-
sumption: the presence of synchronization barriers all along the circuit drasti-
cally reduces the number of generated spikes.

3.1.4 Interconnection of Pipelined Components

Assume that several pipelined circuits are used as computational resources for
generating a new pipelined circuit. For example, consider a circuit that computes
g = a�b and f = (a�b ? c)�d, and uses a 2-stage pipelined multiplier and a 3-stage

32-bit
adder

x31··0 y31··0

cin

x127··96 y127··96 x95··64 y95··64 x63··32 y63··32

32-bit
adder

32-bit
adder

32-bit
adder

z127··96 z95··64 z63··32 z31··0cout

Fig. 3.12 Pipelined 128-bit adder
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pipelined adder, both of them working at the same frequency 1/Tclk and with the
same pipeline rate r = 1. The operations can be scheduled as shown in Fig. 3.13.
Some inputs and outputs must be delayed: input c must be delayed 2 cycles, input
d must be delayed 5 cycles, and output g must be delayed 5 cycles. The corre-
sponding additional registers, which maintain the correct synchronization of the
data, are sometimes called skewing (c and d) and deskewing (g) registers.

An alternative solution, especially in the case of large circuits, is self-timing.
As a generic example, consider the pipelined circuit of Fig. 3.14a. To each

stage, for example number i, are associated a maximum delay tMAX(i) and an
average delay tAV(i). The minimum time interval between successive data inputs is

d ¼ max tMAX 1ð Þ; tMAX 2ð Þ; . . .; tMAX nð Þf g; ð3:4Þ

and the minimum circuit latency T is

T ¼ n � max tMAX 1ð Þ; tMAX 2ð Þ; . . .; tMAX nð Þf g: ð3:5Þ

A self-timed version of the same circuit is shown in Fig. 3.14b. The control is
based on a Request/Acknowledge handshaking protocol:

• a req_in signal to stage 1 is raised by an external circuit; if stage 1 is free, the
input data is registered (ce = 1), and an ack_out signal is issued;

• the start signal of stage 1 is raised; after some amount of time, the done signal of
stage 1 elevates indicating the completion of the computation;

• a req_out signal to stage 2 is issued by stage 1; if stage 2 is free, the output of
stage 1 is registered and an ack_out signal to stage 1 is issued; and so on.

If the probability distribution of the internal data were uniform, inequalities (3.4)
and (3.5) would be substituted by the following:
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Fig. 3.13 Interconnection of
pipelined components:
scheduling
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d ¼ max tAV 1ð Þ; tAV 2ð Þ; . . .; tAV nð Þf g; ð3:6Þ

T ¼ tAV 1ð Þ þ tAV 2ð Þ þ � � � þ tAV nð Þ: ð3:7Þ

Example 3.3
The following process describes a handshaking protocol component. As before,
sync is a synchronization procedure (Sect. 2.5):

stage 1
start

done

handshaking
protocol

ce
req_in ack_out

req_out ack_in

ce

start

done

stage 2
start

done

handshaking
protocol

ce
req_in ack_out

req_out ack_in

ce

start

done

stage n
start

done

handshaking
protocol

ce
req_in ack_out

req_out ack_in

ce

start

done

······· ·······

stage 1

stage 2

stage n

········ ···

(a) (b)

Fig. 3.14 a Pipelined circuit. b Self-timed pipelined circuit
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The corresponding signals are shown in Fig. 3.15.

Example 3.4
Consider a self-timed version of the circuit of Example 3.1 (Fig. 3.6). In stages 1
and 3, the done signals are the corresponding done outputs of the multipliers. In
stages 2, 4 and 5 an additional delay must be added. Stage 2 is shown in Fig. 3.16:
a synchronous delay D, greater than the sum of the computation times
of c0 = a0 ? b0 and d0 = (c0)2, has been added. A complete VHDL model
pipeline_ST.vhd is available at the Authors’ web page.

reqi-1

cei

acki

starti

donei

reqi

acki

segment i exectution

Fig. 3.15 Handshaking protocol
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With regards to the generation of the done signal in the case of combinational
components, an interesting method consists of using a redundant encoding of the
binary signals (Sect. 10.4 of [3]: every signal s is represented by a pair (s1, s0)
according to the definition of Table 3.1.

The circuit will be designed in such a way that during the initialization (reset),
and as long as the value of s has not yet been computed, (s1, s0) = (0, 0). Once the
value of s is known s1 = s and s0 = not(s).

Assume that the circuit includes n signals s1, s2,…, sn. Every signal si is
substituted by a pair (si1, si0). Then the done flag is computed as follows:

done ¼ s11 þ s10ð Þ � s21 þ s20ð Þ. . . sn1 þ sn0ð Þ:

During the initialization (reset) and as long as at least one of the signals is in
transition, the corresponding pair is equal to (0, 0), so that done = 0. The done
flag will be raised only when all signals have a stable value.

In the following example, only the signals belonging to the critical path of the
circuit are encoded.

Example 3.5
Generate an n-bit ripple-carry adder (Chap. 7) with end of computation detection.
For this purpose, all signals belonging to the carry chain, that is c0, c1, c2,…, cn - 1,
are represented by the form (c0, cb0), (c1, cb1), (c2, cb2),…, (cn - 1, cbn - 1). During
the initialization, all ci and cbi are equal to 0. When reset goes down,

axP
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Fig. 3.16 Self-timed pipelined circuit: stage 2

Table 3.1 Redundant
encoding

s s1 s0

Reset or in transition 0 0
0 0 1
1 1 0
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c0 ¼ cin; cb0 ¼ cin;

ciþ1 ¼ xi � yi þ xi � ci þ yi � ci; cbiþ1 ¼ xi � yi þ xi � cbi þ yi � cbi;
8i 2 0; 1; . . .n� 1f g:

The end of computation is detected when

cbi ¼ ci; 8i 2 0; 1; . . .; nf g:

The following VHDL process describes the circuit:

The corresponding circuit is shown in Fig. 3.17.
A complete model adder_ST2.vhd is available at the Authors’ web page.

In order to observe the carry chain delay, after clauses have been added (1 ns for
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reset

cin

(a) (b)

Fig. 3.17 a Iterative cell. b Initial cell
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ci ? 1 and cbi ? 1, 0.2 ns for eoci ? 1). For synthesis purpose, they must be
deleted.

3.2 Loop Unrolling and Digit-Serial Processing

Consider an iterative algorithm whose main operation consists of executing a
procedure iterative_operations(a: in; b: out):

Assuming that a combinational component that implements iterative_operations
has been previously developed, two straightforward implementations of the
algorithm are shown in Fig. 3.18. The first one is an iterative combinational circuit
whose cost and delay are

Ccombinational ¼ p � Ccomponent; Tcombinational\p � Tcomponent:

The second one is a sequential circuit whose main characteristics are

Csequential ¼ Ccomponent þ Cregisters þ Ccontrol; Tclk [ Tcomponent; Tsequentiall ¼ p � Tclk:

An alternative option consists of a partial unroll of the ‘‘for’’ loop [1, 2]. Assume
that p = k�s. Then, s successive iteration steps are executed at each clock cycle.

initial_values

iterative_operations

data_1

iterative_operations

data_2

iterative_operations

·····
data_p-1

final_results

(a)

iterative_operations

registers
initially: initial_values

final_results

(b)

control

Fig. 3.18 Iterative algorithm
implementation
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An example, with s = 3, is shown in Fig. 3.19. Obviously, the clock cycle, say
Tclk

0, must be longer than in the sequential implementation of Fig. 3.18b (Tclk).
Nevertheless, it will be generally shorter than s�Tclk. On the one hand, the critical
path length of s serially connected combinational circuits is generally shorter than
the critical path length of a single circuit, multiplied by s. For example, the delay
of an n-bit ripple-carry adder is proportional to n; nevertheless the delay of two
serially connected adders, that compute (a ? b) ? c, is proportional to n ? 1, and
not to 2n. On the other hand, the register delays are divided by s. Furthermore,
when interconnecting several circuits, some additional logical simplifications can
be performed by the synthesis tool. So,

Cunrolled ¼ s � Ccomponent þ Cregisters þ Ccontrol; Tunrolled

¼ p=sð Þ � T 0clk; where T 0clk\s � Tclk:

Example 3.6
Given two naturals x and y, with x \ y, the following restoring division algorithm
computes two fractional numbers q = 0.q-1 q-2 … q-p and r \ y�2-p such that
x = q�y ? r and, therefore, q B x/y \ q ? 2-p:

iterative_operations

registers
initially: initial_values

final_results

control

iterative_operations

iterative_operations

Fig. 3.19 Unrolled loop
implementation (s = 3)
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Algorithm 3.1: Restoring division algorithm

The corresponding circuit is made up of a combinational component (Fig. 3.20), a
register that stores the successive remainders r0, r1,…, rp, a shift register that
serially stores the quotient bits q-1, q-2,…, q-p, and a control unit. The combi-
national component can be defined as follows:

A complete model restoring.vhd is available at the Authors’ web page.
An unrolled version, with s = 2, is made up of a combinational component

consisting of two serially connected copies of the component of Fig. 3.20, a
register that stores the successive remainders r0, r2, r4,…, a shift register that stores
the successive quotient bits q-1, q-3, q-5,…, another shift register that stores q-2,
q-4, q-6,…, and a control unit. The combinational component can be defined as
follows:

2r

subtractor

y

sign
q-i

1 0

next_r

Fig. 3.20 Restoring
algorithm (combinational
component)
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A complete model unrolled_divider.vhd is available at the Authors’ web page.
The first implementation (restoring.vhd) of Example 3.6 generates one quotient

bit at each step, while the second one (unrolled_divider.vhd) generates two quo-
tient bits at each step. So, as regards to the quotient generation, the first imple-
mentation could be considered as bit-serial and the second one as digit-serial,
defining in this case a digit as a 2-bit number. This is a common situation in
arithmetic function implementation: an algorithm processes data, or part of them,
in a bit-serial manner; a modified version of this initial algorithm permits the
processing of several bits, described as D, concurrently. The second implemen-
tation is called digital-serial and D is the digit size. This technique is used in many
examples during the course of this book, in order to explore cost—performance
tradeoffs: small values of D generate cost-effective circuits, while high values of
D yield fast circuits.
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sign1
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subtractor
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Fig. 3.21 Digit serial restoring divider (D = 2)
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Example 3.7
Consider again a restoring divider (Example 3.6). Algorithm 3.1 is modified in
order to generate two quotient bits (D = 2) at each step.

Algorithm 3.2: Base-4 restoring division algorithm (p even)

The corresponding circuit is made up of a combinational component (Fig. 3.21), a
register that stores the successive remainders r0, r2, r4,…, a shift register that stores
the successive quotient bits q-1, q-3, q-5,…, another shift register that stores q-2,
q-4, q-6,…, a circuit that computes 3y, and a control unit. The combinational
component can be defined as follows:

A complete model restoringDS.vhd is available at the Authors’ web page.
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The components of Fig. 3.20 (initial restoring algorithm) and Fig. 3.21 (digit-
serial restoring algorithm, with D = 2) have practically the same delay, namely
the computation time of an n-bit subtractor, so that the minimum clock period of
the corresponding dividers are practically the same. Nevertheless, the first divider
needs p clock periods to perform a division while the second only needs p/2. So, in
this example, the digit-serial approach practically divides by 2 the divider latency.
On the other hand the second divider includes three subtractors instead of one.

Loop unrolling and digit-serial processing are techniques that allow the
exploration of cost—performance tradeoffs, in searching for intermediate options
between completely combinational (maximum cost, minimum latency) and com-
pletely sequential (minimum cost, maximum latency) circuits. Loop unrolling can
be directly performed at circuit level, whatever the implemented algorithm, while
digit-serial processing looks more like an algorithm transformation. Nevertheless it
is not always so clear that they are different techniques.

3.3 Data Path Connectivity

In the data paths described in Chap. 2, multiplexers are associated with all the
computation resource and register data inputs. With this structure, sets of opera-
tions such as Ri := CRj(…) using different resources CRj can be executed in
parallel. In other words, this type of data path has maximum connectivity.

Assuming that the computation resources have at most p data inputs, another
option is to add p - 1 registers acc1, acc2,…, accp - 1, and to realize all the data
transfers with two multiplexers: the first one connects all the register outputs and
external signals to the first data input of every resource as well as to every register
acci; the second one connects the resource data outputs and the first multiplexer
output to the register data inputs. With this structure, an operation such as

Ri :¼ CRj R0;R1; . . .;Rp�1
� �

;

must be decomposed as follow:

acc1 :¼ R1; acc2 :¼ R2; . . .accp�1 :¼ Rp�1; Ri :¼ CRj R0; acc1; . . .; accp�1
� �

;

Obviously, it is no longer possible to execute several operations in parallel. On the
contrary, every operation is divided up into (at most) p steps. So, this option only
makes sense if one resource of each type is used.

Example 3.8
Figure 3.22 shows a minimum connectivity data path for the example of Sect. 2.5.
The operations of the first branch (km - i = 0) of Algorithm 2.4 are executed as
follows:
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This 2-multiplexer structure includes ten multiplexer inputs instead of thirty-two
in Figs. 2.18 and 2.19, but does not allow the concurrent execution of compatible
operations. Nevertheless, in this case, the total computation time is defined by the
only time consuming operations, which are the five products R := xA�acc, xB

:= xB�acc, xA := xA�acc, xB := R�acc and xA := xP�acc, so that the latency of the
circuit is still of the order of 5tm, tm being the delay of a multiplier. In conclusion,
the circuit of Fig. 3.22 has practically the same computation time as that of
Figs. 2.18 and 2.19, and uses less multiplexing resources.

3.4 Exercises

1. Generate VHDL models of different pipelined 128-bit adders.
2. Design different digit-serial restoring dividers (D = 3, D = 4, etc.).
3. The following algorithm computes the product of two natural numbers x and y:
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A computation resource mult_and_add that computes 2r ? xi�y, is available.

a. Define a combinational circuit using mult_and_add as a computation
resource.

b. Define and compare several pipelined versions of the circuit.
c. Unroll the loop in several ways and synthesize the corresponding circuits.

4. The following algorithm divides an integer x by a natural y, where -y B x \ y,
and generates a quotient q = q0�q1 q2…qp % x/y (Chap. 9).
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Fig. 3.22 Example of minimum connectivity data path
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An adder-subtractor that computes 2r ± y, under the control of an add/sub
variable, is available.

a. Define a combinational circuit.
b. Define and compare several pipelined versions of the circuit.
c. Unroll the loop in several ways and synthesize the corresponding circuits.

5. In the following combinational circuits, the delays of every cell and of every
connection are equal to 5 ns and 2 ns, respectively.

For each circuit:

a. Compute the combinational delay.
b. Segment the circuit in two stages. How many registers must be added?
c. Segment the circuit in three stages. How many registers must be added?
d. What is the maximum number of segmentation stages?
e. Assume that the cutting of a connection generates two new connections

whose delays are still equal to 2 ns, and that the registers have a propa-
gation delay of 1 ns and a setup time of 0.5 ns. Which is the maximum
frequency of circuits b. and c. ?

6. The following pipelined floating-point components are available: fpmul com-
putes the product in 2 cycles, fpadd computes the sum in 3 cycles, and fpsqrt
computes the square root in 5 cycles, all of them with a rate r = 1.

a. Define the schedule of a circuit that computes the distance d between two
points (x1, y1) and (x2, y2) of the (x, y)-plane.

b. Define the schedule of a circuit that computes the distance d between two
points (x1, y1, z1) and (x2, y2, z2) of the three-dimensional space.

c. Define the schedule of a circuit that computes d = a ? ((a - b)�c)0.5.
d. In every case, how many registers must be added?
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Chapter 4
Control Unit Synthesis

Modern Electronic Design Automation tools have the capacity to synthesize the
control unit from a finite state machine description, or even to extract and syn-
thesize the control unit from a functional description of the complete circuit
(Chap. 5). Nevertheless, in some cases the digital circuit designer can himself be
interested in performing part of the control unit synthesis. Two specific synthesis
techniques are presented in this chapter: command encoding and hierarchical
decomposition [1]. Both of them pursue a double objective. On the one hand they
aim at reducing the circuit cost. On the other hand they can make the circuit easier
to understand and to debug. The latter is probably the most important aspect.

The use of components whose latency is data-dependent has been implicitly
dealt with in Sect. 2.5. Some additional comments about variable-latency opera-
tions are made in the last section of this chapter.

4.1 Command Encoding

Consider the control unit of Fig. 2.6 and assume that commands is an m-bit vector,
conditions a p-bit vector and internal_state an n-bit vector. Thus, the command
generation block generates m ? 1 binary function of p ? n binary variables.
Nevertheless, the number s of different commands is generally much smaller than
2m. An alternative option is to encode the s commands with a t-bit vector, with
2t C s. The command generation block of Fig. 2.6 can be decomposed into two
blocks as shown in Fig. 4.1: the first one generates t ? 1 binary functions of
p ? n variables, and the second one (the command decoder) m binary functions of
t binary variables.

A generic circuit-complexity measure is the number of bits that a memory
(ROM) must store in order to implement the same functions. Thus, the complexity
of a circuit implementing m ? 1 functions of p ? n variables is
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mþ 1ð Þ � 2pþnbits; ð4:1Þ

and the total complexity of two circuits implementing t ? 1 function of
p ? n variables and m functions of t variables, respectively, is

t þ 1ð Þ � 2pþn þ m � 2tbits: ð4:2Þ

Obviously, this complexity measure only takes into account the numbers of out-
puts and inputs of the combinational blocks, and not the functions they actually
implement.

Another generic complexity measure is the minimum number of LUTs (Chap. 1)
necessary to implement the functions, assuming that no LUT is shared by two or
more functions. If k-input LUTs are used, the minimum number of LUTs for
implementing a function of r variables is

r � 1ð Þ= k � 1ð Þd eLUTs;

and the minimum delay of the circuit is

logkrd e � TLUT

being TLUT the delay of a k-input LUT.
The complexities corresponding to the two previously described options are

mþ 1ð Þ � pþ n� 1ð Þ= k � 1ð Þd eLUTs ð4:3Þ

and

t þ 1ð Þ � pþ n� 1ð Þ= k � 1ð Þd e þ m � t � 1ð Þ= k � 1ð Þd eLUTs; ð4:4Þ

and the delays

logk pþ nð Þd e � TLUT and ð logk pþ nð Þd e þ logktd eÞ � T ð4:5Þ

Example 4.1
Consider the circuit of Sect. 2.5 (scalar_product.vhd, available at the Authors’
web page). The commands consist of 26 bits: eight one-bit signals

internal state

generation of 
encoded 

commands

conditions

done

commands

p

ntcommand 
decoder

m

Fig. 4.1 Command encoding
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and nine two-bit signals

There are four binary conditions:

and the finite-state machine has 40 states. Thus, m = 26, p = 4 and n = 6.
Nevertheless, there are only 31 � 226 different commands, namely

that can be encoded with t = 5 bits.
Thus, the complexities in numbers of stored bits (4.1 and 4.2) to be compared

are

mþ 1ð Þ � 2pþn ¼ 27 � 210 ¼ 27; 648 bits; ð4:6Þ

t þ 1ð Þ � 2pþn þ m � 2t ¼ 6 � 210 þ 26 � 25 ¼ 6; 976 bits; ð4:7Þ

and the complexities in numbers of LUTs (4.3 and 4.4), assuming that 4-input
LUTs are used, are

mþ 1ð Þ � pþ n� 1ð Þ=3d e ¼ 27 � 9=3d e ¼ 81 LUTS; ð4:8Þ

t þ 1ð Þ � pþ n� 1ð Þ=3d e þ m � t � 1ð Þ=3d e ¼ 6 � 9=3d e þ 26 � 4=3d e ¼ 70 LUTs:

ð4:9Þ

The corresponding minimum delays (4.7) are

logk pþ nð Þd e ¼ log410d e ¼ 2TLUT ; ð4:10Þ

ð logk pþ nð Þd e þ logktd eÞ � TLUT ¼ log410d e þ log45d e ¼ 4TLUT : ð4:11Þ

The second complexity measure (number of LUTs) is surely more accurate than
the first one. Thus, according to (4.8–4.11), the encoding of the commands
hardly reduces the cost and increases the delay. So, in this particular case, the
main advantage is clarity, flexibility and ease of debugging, and not cost
reduction.
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4.2 Hierarchical Control Unit

Complex circuits are generally designed in a hierarchical way. As an example, the
data path of the scalar product circuit of Sect. 2.5 (Fig. 2.18) includes a polyno-
mial adder (XOR gates), a classic squarer and an interleaved multiplier, and the
latter in turn consists of a data path and a control unit (Fig. 4.2). This is a common
strategy in many fields of system engineering: hierarchy improves clarity, security,
ease of debugging and maintenance, thus reducing development times.

Nevertheless, this type of hierarchy based on the use of previously defined
components does not allow for the sharing of computation resources between
several components. As an example, one of the components of the circuit of
Sect. 2.5 is a polynomial adder, and the interleaved multiplier also includes a
polynomial adder. A slight modification of the operation scheduling, avoiding
executing field multiplications and additions at the same time, would allow to use
the same polynomial adder for both operations. Then, instead of the architecture of
Fig. 4.2, a conventional (flat) structure with a data path including only a poly-
nomial adder could be considered. In order to maintain some type of hierarchy, the
corresponding control unit could be divided up into a main control unit, in charge
of controlling the execution of the main algorithm (scalar product) and a sec-
ondary control unit, in charge of controlling the execution of the interleaved
multiplication.
Consider another, simpler, example.

Example 4.2
Design a circuit that computes

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

:

data path
(interleaved
multiplier)

other components

control

control
(interleaved
multiplier)

Fig. 4.2 Hierarchical circuit
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The following algorithm computes z:

A first solution is to use three components: a squaring circuit, an adder and a square
rooting circuit, for example that of Sect. 2.1. The corresponding circuit would include
two adders, one for computing c, and the other within the square_root component
(Fig. 2.3). Another option is to substitute, in the preceding algorithm, the call to
square_root with the corresponding sequence of operations. After scheduling the
operations and assigning registers to variables, the following algorithm is obtained:

This algorithm can be executed by the data path of Fig. 4.3.
In order to distinguish between the main algorithm and the square root

computation, the control unit can be divided up as shown in Fig. 4.4.
A command decoder (Sect. 4.1) is used. There are eight different commands,
namely

that are encoded with three bits. The following process describes the command
decoder:
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The two control units communicate through the start_root and root_done sig-
nals. The first control unit has six states corresponding to a ‘‘wait for start’’ loop,
four steps of the main algorithm (operations 1, 2, 3, and the set of operations 4–8),
and an ‘‘end of computation’’ detection. It can be described by the following
process:

The second control unit has five states corresponding to operations 4, 5, 6, and
7, and ‘‘end of root computation’’ detection:
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The code corresponding to nop is 000, so that the actual command can be
generated by ORing the commands generated by both control units:

A complete VHDL model example4_1.vhd is available at the Authors’ web
page.

Comments 4.1

• This technique is similar to the use of procedures and functions in software
generation.

• In the former example, the dividing up of the control unit was not necessary. It
was done only for didactic purposes. As in the case of software development,
this method is useful when there are several calls to the same procedure or
function.
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• This type of approach to control unit synthesis is more a question of clarity (well
structured control unit) and ease of debugging and maintenance, than of cost
reduction (control units are not expensive).

4.3 Variable-Latency Operations

In Sect. 2.3, operation scheduling was performed assuming that the computation
times tJM of all operations were constant values. Nevertheless, in some cases the
computation time is not a constant but a data-dependent value. As an example, the
latency tm of the field multiplier interleaved_mult.vhd of Sect. 2.5 is dependent on
the particular operand values. In this case, the scheduling of the operations was
done using an upper bound of tm. So, an implementation based on this schedule
should include ‘‘wait for tm cycles’’ loops. Nevertheless, the proposed imple-
mentations (scalar_product.vhd and scalar_product_DF2.vhd) are slightly differ-
ent: they use the mult_done flag generated by the multiplier. For example, in
scalar_product_DF2.vhd (Sect. 2.5), there are several sentences, thus:

In an implementation that strictly respects the schedule of Fig. 2.14, these par-
ticular sentences should be substituted by constructions equivalent to

In fact, the pipelined circuit of Fig. 3.6 (pipeline_DF2.vhd) has been designed
using such an upper bound of tm. For that, a generic parameter delta was defined
and a signal time_out generated by the control unit every delta cycles. On the other
hand, the self-timed version of this same circuit (Example 3.4) used the mult_done
flags generated by the multipliers.

Thus, in the case of variable-latency components, two options could be con-
sidered: a first one is to previously compute an upper bound of their computation
times, if such a bound exists; another option is to use a start-done protocol: done is
lowered on the start positive edge, and raised when the results are available. The
second option is more general and generates circuits whose average latency is
shorter. Nevertheless, in some cases, for example for pipelining purpose, the first
option is better.

Comment 4.2
A typical case of data-dependent computation time corresponds to algorithms that
include while loops: some iteration is executed as long as some condition holds
true. Nevertheless, for unrolling purpose, the algorithm should be modified and the
while loop substituted by a for loop including a fixed number of steps, such as for i
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in 0 to n - 1 loop. Thus, in some cases it may be worthwhile to substitute a
variable-latency slow component by a constant-latency fast one.

An example of a circuit including variable-latency components is presented.

Example 4.3
Consider again Algorithm 2.3, with the schedule of Fig. 2.17, so that two finite
field multipliers are necessary. Assume that they generate output flags done1 and
done2 when they complete their respective operations. The part of the algorithm
corresponding to km-i = 0 can be executed as follows:

The following VHDL model describes the circuit:
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A complete model unbounded_DF.vhd is available at the Authors’ web page.
Other implementations, using latency upper bounds and/or pipelining or self-
timing, are proposed as exercises.
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4.4 Exercises

1. Design a circuit that computes z = (x1 - x2)1/2 ? (y1 - y2)1/2 with a hierar-
chical control unit (separate square rooter control units, see Example 4.2).

2. Design a 2-step self-timed circuit that computes z = (x1 - x2)1/4 using two
square rooters controlled by a start/done protocol.

3. Design a 2-step pipelined circuit that computes z = (x1 - x2)1/4 using two
square rooters, with a start input, whose maximum latencies are known.

4. Consider several implementations of the scalar product circuit of Sect. 2.5,
taking into account Comment 2.2. The following options could be considered:

• hierarchical control unit;
• with an upper bound of the multiplier latency;
• pipelined version;
• self-timed version.

Reference

1. De Micheli G (1994) Synthesis and optimization of digital circuits. McGraw-Hill, New York

94 4 Control Unit Synthesis

http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2


Chapter 5
Electronic Aspects of Digital Design

This chapter is devoted to those electronics aspects important for digital circuit
design. The digital devices are built with analog components, and then some
considerations should be taken into account in order to obtain good and reliable
designs.

Some important electronics aspects, related to the circuit design, the timing and
synchronization aspects are discussed in this chapter. Most of those details are
hidden in reprogrammable logic for simplicity, but these do not eliminate the
consequences.

5.1 Basic Electronic Aspects of Digital Design

Digital devices represent signals by discrete bands of analog levels, rather than by
a continuous range. All levels within a range represent the same signal state.
Typically the number of these states is two, and they are represented by two
voltage bands: one near zero volts (referenced also as ground or earth) and a higher
level near the supply voltage, corresponding to the ‘‘false’’ (‘‘0’’) and ‘‘true’’ (‘‘1’’)
values of the Boolean domain, respectively (Fig. 5.4).

5.1.1 Basic Concepts

Before we start looking at more specific ideas, we need to remember a few basic
concepts.
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5.1.1.1 CMOS Circuits

Complementary metal–oxide–semiconductor (CMOS) is the dominant technology
for constructing digital integrated circuits since mid 1970s. The word ‘‘comple-
mentary’’ refers to the fact that the typical digital design style with CMOS uses
complementary and symmetrical pairs of p-type and n-type metal oxide semi-
conductor field effect transistors (MOSFETs) for logic functions. The key char-
acteristics of CMOS devices are high noise immunity and low static power
consumption. Neglecting other technological details, the power is only drawn
while the transistors in the CMOS device are switching between on and off states.
The CMOS transistors allow creating the logic gates of Fig. 1.1 that are the basics
of the digital design. The key idea is the use of transistors as switches as described
in Fig. 5.1a. The p transistor conducts better the supply voltage meanwhile the
n-type conducts to the ground. With this, the main principle behind CMOS circuits
is the use of p-type and n-type transistors to create paths to the output from either
the voltage source or ground. Figure 5.1b shows the ‘‘complementary-symmetric’’
interconnecttion of p-type and n-type transistors to build some basic gates. More
technological details of these constructions are out of the scope of this book. One
can find excellent surveys and material in [1, 2].

The FPGA technology is a CMOS (re)programmable Application Specific
Integrated Circuit (ASIC). Hence, all the characteristics, peculiarities and conse-
quences of an ASIC design are present.

5.1.1.2 Fan-in and Fan-out

In ASICs technologies and others the fan-in and fan-out are measured in capaci-
tance units (in actual technologies in picofarad or femtofarad). So, the fan-in is the
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Fig. 5.1 CMOS transistors. a Switching action for p-type and n-type. b Some basic gates
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capacitance that an input of a gate has. Thus, the fan-out is the maximum
capacitance controllable by a gate, while providing voltage levels in the guaran-
teed range. The fan-out really depends on the amount of electric current a gate can
source or sink while driving other gates. Table 5.1 shows examples of fan-in and
fan-out for gates in 0.25 lm technologies (a ten years old technology). Observe,
for example, that a NAND2 gate can drive up 49 similar gates (197pf/4pf) if we
neglect the capacitance of interconnection.

In the case of FPGA the concepts of fan-in and fan-out are simplified and
measured in number of connections. Remember that most of the logic is imple-
mented in look-up tables (LUTs). Then the fan-in is the number of inputs a
computing block has, like a two input AND gate implemented in a LUT has a fan-
in of two, and a three input NAND gate a fan-in of three. The concept of fan-out is
used to express the number of gates that each gate has connected at the output. In
some cases there appears the concept of maximum fan-out as the maximum
number of connections that we can control by a gate.

5.1.1.3 Drive Strength or Drive Capabilities

This means the amount of power a gate or circuit can output (i.e. same concept of
fan-out). The larger drive strength a circuit has, the more power it can deliver and
thus the more capable it is to drive a higher number of other gates. In the particular
case of ASIC libraries, a typical gate has different drive strengths (x1, x2, x4, etc.)
to be able to drive more gates. This allows the designer or the synthesizer to
choose the right one at each time. In FPGAs the internal drive strength is not
controlled by programmers. Nevertheless, the output strength of the output buffers
can be controlled.

Table 5.1 Fan-in, fan-out, internal and external delay of typical gates

fan-in
(pf)

fan-out
(pf)

t_int_hl
(ns)

t_int_lh
(ns)

t_ext_hl
(ns/pf)

t_ext_lh
(ns/pf)

INV 0.003 0.337 0.079 0.151 2.710 4.891
BUF 0.004 0.425 0.265 0.056 1.334 2.399
AND2 0.003 0.334 0.105 0.144 4.470 4.271
AND3 0.007 0.673 0.211 0.131 1.362 2.376
NAND2 0.004 0.197 0.105 0.144 4.470 4.271
NAND3 0.003 0.140 0.071 0.192 6.088 7.212
NOR2 0.004 0.205 0.091 0.162 3.101 8.035
XOR2 0.008 0.645 0.279 0.331 1.435 2.560
CKBUF 0.006 1.160 0.355 0.350 0.782 1.782
CKBUF_N 0.006 1.460 0.183 0.537 0.628 1.881
DFF 0.003 0.703 0.402 0.354 1.256 2.360
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5.1.1.4 Pull-up and Pull-down Resistors

The purpose of these resistors is to force an input (or output) to a defined state. The
pull-up and pull-down resistors are mainly used to avoid a circuit input from being
floating if the corresponding external device is disconnected. Figure 5.2 shows a
pull-up and a pull-down resistor. The pull-up resistor ‘‘weakly’’ pulls the internal
voltage towards Vcc (logical ‘1’) when the other components are inactive, and the
pull-down resistor ‘‘weakly’’ pulls the internal voltage towards GND (logical ‘0’).

Pull-up/down resistors may be discrete devices mounted on the same circuit
board as the logic devices, but many microcontrollers and FGPA have internal,
programmable pull-up/pull-down resistors, so that less external components are
needed.

5.1.1.5 Tri-States Buffers and Bus-Keeper

Tri-state (also named as three-state or 3-state) logic allows an output port to
assume a high impedance state (Z, or Hi-Z) in addition to the 0 and 1 logic levels.
The tri-state buffers are used to connect multiple devices to a common bus (or
line).

vcc

pull-up 
resistor

input pad

Internal value

pull-down 
resistor

input pad Internal value

Fig. 5.2 Pull-up and pull-down resistors connected to input pads

outin

G
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In   G    out
0     1     0
1     1     1
- 0     Z

resistor

bus(b)(a)

Fig. 5.3 Tri-state buffer and bus keeper
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As is suggested in Fig. 5.3a, a tri-state buffer can be thought of as a switch. If
G is on, the switch is closed, transmitting either 0 or 1 logic levels. If G is off, the
switch is open (high impedance).

A related concept is the bus-keeper (or bus-holder). The bus-keeper is a weak
latch circuit which holds the last value on a tri-state bus. The circuit is basically a
delay element with the output connected back to the input through a comparatively
high impedance. This is usually achieved with two inverters connected back to
back. The resistor drives the bus weakly; therefore, other circuits can override the
value of the bus when they are not in tri-state mode (Fig. 5.3b).

Many microcontroller and FGPA have internal, programmable tri-states buffers
and the bus-keeper logic at outputs pins, so that minimal external components are
needed to interface to other components.

5.1.2 Propagation Delay—Transition Time

It is the time that an electronic circuit needs to switch between two different stable
states. In a logic circuit performing a change of state, it identifies the rise-time and
the fall-time of the output voltage. These times are related to the times to charge
and discharge capacitances. Figure 5.4 shows typical charge and discharge ramps
of a CMOS gate.

5.1.2.1 Rise Time (Transition Time Low-to-High)

It refers to the time required for a signal to change from a specified low value to a
specified high value. Typically, these values are 10% and 90% of the step height.
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5.1.2.2 Fall Time (Transition Time High-to-Low)

It is the time required for the amplitude of a pulse to decrease (fall) from a
specified value, typically 90% of the peak value, to another specified value, usually
10% of the minimum value.

5.1.2.3 Slew Rate

This concept is used in linear amplifiers but also in digital circuits. In the second
case, it is an approximation of the time necessary to change a logic value, without
distinguishing between high-to-low and low-to-high transitions. In the FPGA
arena, the output pins can be configured as slow slew rate and fast slew rate. The
second one is faster, but consumes more power and is prone to transmit internal
glitches to the outputs.

5.1.2.4 Propagation Delay, Intrinsic and Extrinsic Delays

The propagation delay of a gate or digital component depends on two factors, the
intrinsic and the extrinsic delays. The intrinsic delay is the delay internal to the
gate (also known as gate delay or internal delay). In other words, it is the time
taken by the gate to produce an output after the change of an input (in ns, ps, etc.).

On the other hand, the extrinsic delay (also called, differential, load-dependent
or fan-out delay) depends on the load attached to the gate. This value is expressed
in ns/pf. Table 5.1 shows some intrinsic and extrinsic delays for 0.25 lm gates.
The intrinsic delay in fact depends on which input is changing, but for simplicity
this is not taken into account in the table. Observe that the high to low (HL) and
low to high (LH) values are different. As an example, consider an inverter (INV)
whose output is connected to 10 inverters. Assume that the capacitance of every
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Fig. 5.5 Typical derating curves for temperature and supply voltage
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connection is equal to 0.1 pf. What is the time required for the INV gate to
propagate the transitions 0 to 1 and the 1 to 0?

Thl ¼ t inthl þ t exthl � capacity
¼ 0:079nsþ 2:710ns=pf � 10 � 0:003pf þ 0:1pfð Þ ¼ 0:4313ns

Tlh ¼ t intlh þ t extlh � capacity
¼ 0:151nsþ 4:891ns=pf � 10 � 0:003pf þ 0:1pfð Þ ¼ 0:7868ns

In FPGA technologies these concepts are hidden, given only a propagation
delay for internal nodes (LUTs, multiplexers, nets, etc.), and do not distinguish
between high to low and low to high transitions.

5.1.2.5 Timing Derating Factors

The propagation delays depend also on the temperature and the supply voltage.
Variations in those parameters affect the circuit delay. The circuit manufacturers
even give tables, graphics or embed the information in the static timing analyzer to
adapt the timing to the operating conditions.

The derating factors are coefficients that the timing data are multiplied by, in
order to estimate the delays corresponding to the operating conditions. Figure 5.5
shows typical derating curves for different operating temperature and supply
voltage (the example is based on a 180 nm process). Table 5.2 is another form to
show the same information.

5.1.3 Glitches in Digital Circuits

An electronics glitch is an undesired transition that occurs before the signal settles
to its proposed final value. In other words, a glitch is an electrical pulse of short
duration, usually unwanted, and typically produced by an imbalance in internal
interconnection delays. A simple example is depicted in Fig. 5.6 where different

Table 5.2 A derating table for temperature and supply voltage

Vcc Temperature (�C)

120 100 80 60 40 32 20 0 -20

2.6 1.39 1.36 1.32 1.27 1.24 1.20 1.19 1.15 1.12
2.8 1.29 1.25 1.22 1.18 1.14 1.11 1.10 1.07 1.03
3.0 1.23 1.20 1.17 1.12 1.09 1.06 1.05 1.02 0.99
3.2 1.18 1.15 1.12 1.08 1.05 1.02 1.01 0.98 0.95
3.3 1.16 1.13 1.10 1.06 1.03 1.00 0.99 0.96 0.93
3.4 1.14 1.11 1.08 1.04 1.01 0.98 0.97 0.94 0.91
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delays in interconnections produce unnecessary changes at the output. For
simplicity, in the preceding figure the gates delays are assumed to be equal to 0.

The glitch effect grows with the logic depth. As a simple example, consider two
levels of XOR gates (Fig. 5.7). The four inputs change at the same time (t0) but the
net delays produce different times of arrival to the gates. In this case, changing
from 1010 to 0101 should not produce any output change. Nevertheless, in the
example, four transitions in output G are generated.

5.1.3.1 Runt Pulse and Spikes

A related concept to glitches is the runt pulse. It is a pulse whose amplitude is
smaller than the minimum level specified for correct operation. It is a narrow pulse
that, due to rise and fall times of the signal, does not reach a valid high or low level
value. Typically, it has no influence on the operations, but it increases the power
consumption (see Sect. 5.4).

Some authors define the concept of ‘‘spike’’ as being a short pulse similar to a
glitch, but caused by ringing (an unwanted oscillation of a signal) or crosstalk
(undesired capacitive or inductive coupling).
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5.2 Synchronous Design Issues

Digital circuits are mainly ‘‘synchronous’’. The Register Transfer Level (RTL)
model recognizes register and combinational logic connected between them.
The typical form, adopted to synchronize these components, is the True Single
Phase Clock (TSPC). In TSPC a single clock signal is supposed to be dis-
tributed at different register levels. All the registers (flip-flops) are capturing on
the rising (or falling) edge. Figure 5.8 illustrates the classical situation. A clock
edge (rising in Fig. 5.8) captures the information into the first level of registers
(ffi). The contents of registers ffi (B) are propagated into the combinational
logic and generate new results. The output of the combinational circuitry (C)
should be stable before the next clock arrives to the next register stage (ffj).
The following clock edge captures the content of C in ffj and makes D
available.

In an ideal synchronous circuit, every change in the logical levels of its registers
(flip-flops) is simultaneous. These transitions follow the level change of the clock
(clk) signal (positive or negative clock edge). In normal function, the input to each
storage element has reached its final value before the next edge clock occurs, so
the behavior of the whole circuit is exactly predictable.
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5.2.1 Edge Sensitive and Level Sensitive Registers

The edge sensitive and level sensitive registers (flip-flop and latch) are electronic
circuits that have two stable states and can be used to store binary information. The
circuits are made to change state by signals applied to one or more control inputs
and will have one or two outputs. The latches are level sensitive circuits that pass
their input D to their output Q when the clock is high (or low) (transparent mode),
and the input sampled on the falling edge of the clock is held stable when the clock
is low (or high)-hold mode. The flip-flops (also called edge-triggered latches) are
edge sensitive circuits that sample the inputs on a clock transition (positive edge-
triggered: 0 ? 1 or negative edge-triggered: 1 ? 0). They are built using latches
(e.g., master–slave flip-flops). Historically, there have been different classes of flip-
flops (FF) depending on the way they work (SR –‘‘set-reset’’, D –‘‘data’’, T –
‘‘toggle’’, and JK). Today’s FPGA have registers that can be configured as latches
or flip-flop, but only as a D-FF.

5.2.2 Temporal Parameters of Flip-Flops

The synchronous flip-flop requires that the data to be sampled is stable some time
before and after (setup and hold times) the clock edge Fig. 5.9. If the input data
changes in the setup-hold windows, metastability could occur (next section).
To summarize: the setup time (tsu) is the minimum amount of time the data signal
should be held steady before the clock event; and the hold time (th) is the minimum
amount of time the data signal should be held steady after the clock event, so that
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the data are reliably sampled. These times are specified for any device or tech-
nology, and are typically between a few tens of picoseconds and a few nanosec-
onds for modern devices.

The data stored in the flip-flop is visible at its output as a propagation delay (tpr)
after the clock edge. This timing value is also known as clock-to-output delay.

Another related concept is the minimum clock pulse of a flip-flop. It is the
minimum width of the clock pulse necessary to control the register.

5.2.3 Metastability

Whenever there is a setup or a hold time violation, the flip-flop could enter in a
metastable state (a quasi-stable state). In this state the flip-flop output is unpre-
dictable and it is considered as a failure of the logic design. At the end of a
metastable state, when the output could reveal an ‘‘in between’’ value, the flip-flop
settles down to either ‘1’ or ‘0’. This whole process is known as metastability.
Figure 5.10 illustrates this situation. The duration of the metastable state is a
random variable that depends on the technology of the flip-flop. The circuit’s
vendors provide information about the metastability in their devices. As an
example, the main vendors of FPGA provide this kind of information [3–5].

Comments 5.1

1. Not all the setup-hold window violations imply a metastable state. It is a
probabilistic event.

2. Not all the metastability states cause design failures. In fact, if the data output
signal resolves to a valid state before the next register captures the data, then
the metastable signal does not impact negatively in the system operation.
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Fig. 5.9 Setup time, hold time and propagation delay of a register
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5.2.3.1 Main Causes of Metastability

As previously mentioned, a setup or hold time violation, could produce metasta-
bility, so we have to see when signals violate this timing requirement:

• When the input signal is an asynchronous signal.
• When interfacing two domains operating at two different clock frequencies.
• When the clock skew is too high. (Sect. 5.3.1)
• When the clock slew rate is too high (rise and fall times are longer than the

tolerable values).
• When interfacing two domains operating at the same frequency but with dif-

ferent phase.
• When the combinational delays are such that flip-flop data input change within

the critical window. (setup-hold window)

Observe that that only the first two cases are real metastability problems and we
will discuss possible solutions in the next sections. The other cases are related with
the clock frequency and simple increases of the clock period could solve the
problem. Even a static timing analysis detects these kinds of problems.

5.2.3.2 Mean Time Between Failures (MTBF) in Metastability

The Mean Time Between Failures (MTBF) is a general concept used in reliability.
This concept, applied to the metastability, gives the average time interval between
two successive failures due to this phenomenon. The expression that computes
MTBF is:

MTBF ¼ eTrec�K2

K1 � fclk � fdata
ð5:1Þ

Where:
fclk is the frequency of the clock receiving the asynchronous signal.
fdata is the toggling frequency of the asynchronous input data signal.
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Fig. 5.10 Metastability capturing data in a flip-flop
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Trec is the available metastability settling time (recovery time), or the timing
until the potentially metastable signal goes to a known value ‘0’ or ‘1’.

K1 (in ns) and K2 (in 1/ns) are constants that depend on the device process and
on the operating conditions.

If we can tolerate more time to recover from the metastability (Trec) the MTBF
is reduced exponentially. Faster clock frequencies (fclk) and faster-toggling (fdata)
data worsen (reduce) the MTBF since the probability to have a setup-hold window
violation augments. Figure 5.11 shows a typical MTBF graphic. These graphics
are average data for 300 MHz clock and 50 MHz data in a 130 nm technology.

Comments 5.2

1. Observe the sensitivity to the recovery time. Following Fig. 5.11, if you are
able to ‘‘wait’’ 2 ns to recover from metastability, the MTBF is less than two
weeks. But if you can wait for 2.5 ns the MTBF is more than three thousand
years.

2. Suppose for the previous data (fclk = 300 MHz, fdata = 50 MHz, Trec =

2.5 ns) that give a MTBF of around 3200 years. But, if we have a system with
256 input bits the MTBF is reduced to 12.5 years. If we additionally produce
100,000 systems we have MTBF of 1 h!

3. Measuring the time between metastability events using real designs under real
operating conditions is impractical, because it is in the order of years. FPGA
vendors determine the constant parameters in the MTBF equation by charac-
terizing the FPGA for metastability using a detector circuit designed to have a
short, measurable MTBF [3, 5].
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5.2.3.3 How to Avoid or Mitigate Metastability

In reality, one cannot avoid metastability, without the use of tricky self-timed
circuits. So a more appropriate question might be ‘‘How to mitigate the effect of
metastability?’’

The simplest solution is by making sure the clock period is long enough to
allow the resolution of metastable states and for the delay of whatever logic may
be in the path to the next flip-flop. This approach, while simple, is unpractical
given the performance requirements of modern designs.

The classical solution is the use of a sequence of registers (a synchronization
registers chain or synchronizer) in the destination clock domain (Fig. 5.12). The
idea is to cascade one or more successive synchronizing flip-flops to the flip-flop
that is interfacing with the asynchronous input.

This approach cannot guarantee that metastability cannot pass through the syn-
chronizer; they simply reduce the probability to practical levels. In order to evaluate
the effect, consider the three cases of Fig. 5.13, assuming that tcomb ? tsu % tclk

(combinational delay plus setup time similar to clock period). In the first case,
without registering the asynchronous input, Trec is near zero, raising the MTBF to an
unreliable system. In the second case, with a simple flip-flop capturing the
asynchronous input, Trec % tclk – (tcomb ? tsu). In the final case, using two FFs to
interface the asynchronous input, the recovery time Trec % tclk – tsu. For the data of
Fig. 5.11 (i.e. tclk = 3.33 ns) and assuming a tsu = 350 ps, the MTBF of the
synchronization chain is more than 1 billon years.

5.3 Clock Distribution Network

The clock distribution network (or clock tree) distributes the clock signal(s) from a
common input (an input pin) to the entire synchronous element (registers). Since
this function is vital in an synchronous system, special attention is given to the
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design of this component. In ASIC design a special clock synthesizer is used
(a step in physical synthesis) during the design. In FPGA several dedicated pre-
fabricated clock distribution networks are present.

Clock signals are typically loaded with the greatest amount of interconnections
and operate at the highest speeds of any signal in the system. Today’s clock signals
are easily distributed to tens of thousands of points. Due to the driving capability
of the buffers, the clock distribution is designed as trees (Fig. 5.14a).

As a technological example, suppose use of the data of Table 5.1, and use the
buffer BUF to distribute a clock signal. If we neglect the interconnection load (an
unreal case), a simple BUF can drive 141 flip-flops (DFF) (0.425 pf/0.003 pf) and
also 106 similar buffers (0.425 pf/0.004 pf). If we want to distribute the signal to
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64,000 FF we need at least three levels of those buffers. Real clock trees use
special buffers with more driving capability and with other special characteristics,
and have additional problems related with the interconnections. Figure 5.14 shows
a classic clock tree that present multiple levels of buffers, and the typical H-routing
used to reduce the skew.

5.3.1 Clock Skew

The variation in the arrival times of a clock transition at two different locations on
a chip is commonly known as the clock skew (also timing skew). Being the cause
of the unbalanced delays in the clock distribution network, clock edges could
arrive at clock pins cki and ckj in Fig. 5.15 at different times. This spatial variation
can be caused by many different things, such as wire-interconnect length, tem-
perature variations, material imperfections, capacitance coupling, etc. The skew
between two registers stages i and j could be defined as

skewi;j ¼ delayðckiÞ � delayðckiÞ ¼ ti � tj ð5:2Þ

That leads to two types of clock skew: positive skew (skewi,j [ 0) and negative
skew (skewi,j \ 0). Positive skew occurs when the transmitting register (launch-
ing flip-flop, ffi) receives the clock later than the receiving register (capturing

Am
D      Q D      Q

nCombinational 
circuit

clk

B C D

B

C

clk

clk period (T)

D

Combinational delay

ffi ffjcki ckj

Launching 
flip-flop(s)

Capturing 
flip-flop(s)

cki

ckj

new_cold_c

ERROR

ti
tj

tprop

B

C

clk

D

Combinational 
delay

cki

ckj

new_cold_c

ti

tj

tprop

new_c

old_b new_b

clk period (T)

(a)

(b) (c)

Fig. 5.15 Setup and hold violations due to clock skew. a Example circuit. b Setup violation or
long-path fault. B. Hold violation or race-through

110 5 Electronic Aspects of Digital Design



flip-flop, ffj). Negative skew is the opposite; the sending register gets the clock
earlier than the receiving register. Two types of time violation (synchronization
failures) can be caused by clock skew: setup and hold violations. They are
described in what follows.

5.3.1.1 Setup Violation due to Clock Skew

If the destination flip-flop receives the clock edge earlier than the source flip-flop
(positive skew), the data signal has that much less time to reach the destination
flip-flop before the next clock edge. If it fails to reach the destination timeously, a
setup violation occurs, so-called because the new data was not stable before the
Tsu (setup time) of the next clock edge. This error is drawn in Fig. 5.15b and is
also called zero-clocking (because nothing is captured properly) or also long-path
fault.

In this case, at time ti
max(assuming several FF at level i, the worst case), the

clock edge arrives at flip-flops ffi. In the worst case, to propagate through the flip-
flops and the combinational logic it takestmax

prop þ tmax
comb: The signal must have settled

down for a duration of tmax
su before the next clock edge arrives at the next flip-flop

stage (ffj) at time tj
min ? Tin order to be captured properly. That transform in the

following general setup time constrain:

tmin
j þ T [ tmax

i þ tmax
prop þ tmax

comb ð5:3Þ

Observe that this inequation could be always satisfied if the clock period (T) could
be incremented. In other words, a positive clock skew, as shown in Fig 5.15b,
places a lower bound on the allowable clock period (or an upper bound on the
operating frequency) as follows:

T [ tmax
prop þ tmax

comb þ tmax
su þ skewmax

i;j ð5:4Þ

While a positive skewi,j decreases the maximum achievable clock frequency, a
negative clock skew (skewi,j \ 0) actually increases the effective clock period.
Effectively, we may have a combinational block between two adjacent flip-flops
that has a propagation delay longer than the given clock period.

5.3.1.2 Hold Violation due to Clock Skew

The hold violation is caused when the clock travels more slowly than the path from
one register to another (negative skew), allowing data to penetrate two registers in
the same clock tick, or maybe destroying the integrity of the latched data. This is
called a hold violation because the previous data is not held long enough at the
destination flip-flop to be properly clocked through. This situation is also known as
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double-clocking (because two FFs could capture with the same clock tick) or
race-through and is common in shift registers.

To describe this situation, consider the example in Fig. 5.15c. At time ti
min, the

clock edge triggers flip-flops ffi, and the signals propagates through the flip-flop
and the combinational logic tprop

min + tcomb
min (we use the shortest propagation delay,

because we are considering the possibility of data racing). The input signal at ffj
has to remain stable for thold

max after the clock edge of the same clock cycle arrives
(tj

max). We are using max value since we are considering the worst case. To
summarize the constraint to avoid race condition (hold violation) is:

tmax
j þ tmax

hold\tmin
i þ tmin

prop þ tmin
comb ð5:5Þ

This can be rewritten as a constraint for the skew:

skewi;j [ tmax
hold � tmin

prop � tmin
comb ð5:6Þ

Observe that a hold violation is more serious than a setup violation because it
cannot be fixed by increasing the clock period.

In the previous analysis we consider several launching and capturing flip-flops.
If the entire FFs have the same characteristics we do not need to consider maxi-
mum or minimum setup and hold time in equations 5.3, 5.4, 5.5 and 5.6.

5.3.2 Clock Jitter

The clock edges at a flip-flop may sometimes arrive earlier and sometimes later
with respect to an ideal reference clock, depending on the operating condition of
the circuit. Such temporal variation in the clock period is referred to as clock jitter.

The concept of absolute jitter refers to the worst case deviation (absolute value)
of the arrival time with respect to an ideal reference clock edge (Fig. 5.16).

The clock period may be shortened or lengthened by the clock jitter. For timing
purposes the worst case is considered, then jitter impacts negatively in the max-
imum frequency of operation.
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Fig. 5.16 Clock jitter
example
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There are several sources of clock jitter. The analog component of the clock
generation circuitry and the clock buffer tree in the distribution network are both
significant contributors to clock jitter. There are also environmental variations that
cause jitter, such as power supply noise, temperature gradients, coupling of
adjacent signals, etc.

5.3.3 Clock Gating

Since the clock distribution network could take a significant fraction of the power
consumed by a chip and, moreover, a large amount of power could be wasted
inside computations blocks even when their output are not used (unnecessary
switching activity), a typical power saving technique applied is the clock gating,
which selectively switches off part of the clock tree.

Clock gating works by taking the enable conditions attached to registers, and
uses them to gate the clocks (Figs. 5.17a and b). The clock gating logic can be
added into a design mainly in two ways. Coding into the RTL code as enable
conditions and using automatic clock gating by synthesis tools, or manually
inserting library specific modules that implement this functionality.

Using clock gating in FPGA deserves some especial considerations. The FPGA
have several low skew and low jitter dedicated clock trees; the use of this network
is vital to distribute the clock and achieve high clock frequencies. In order to
disable safely the clock tree, special clock buffers should be used that allow
switching off the clock without glitches. Observe the potential problem to use
general logic to implement gated clock in the timing diagram of Fig. 5.17c.

Today’s FPGA have several clock trees and also clock buffers to disable part of
it safely at different granularities (more or less logic elements). Moreover, the
synthesis tools allow applying this technique automatically.

5.3.4 Clock Managers

A clock manager is a general name to describe a component that can manipulate
some characteristics of the input clock. The most typical actions performed by a
clock manager are:

• Delay Locked Loop (DLL), synchronizes the input clock signal with the internal
clock (clock deskew, Fig. 5.18).

• Frequency Synthesis (FS): Multiply and divide an incoming clock.
• Phase Shifter (PS): a phase shift (skew) with respect to the rising edge of the

input clock may be configured.
• Recondition clock signal: Reduce jitter, duty cycle correction, etc.
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Today’s FPGA have several of those components, for example the Xilinx
Digital Clock Managers (DCM) and the Altera Phase-Locked Loops (PLL). One of
the main actions performed by those components is to act as a Delay Locked Loop
(DLL).

In order to illustrate the necessity of a DLL, consider the clock tree described in
Sect. 5.3.1, Fig. 5.14, based on the cells of Table 5.1, that is, 64,000 FF that uses
three levels of buffers. The interconnection load is neglected (an unreal case).
Assume, additionally, that we decide to connect 40 buffers to the first buffer, 40
buffers at the output of each buffer of the second level, and finally 40 FFs at the
output of the last 1600 buffers. We will calculate the transition time of a rising
edge at input clk using the concepts of Sect. 5.1.2.4. (Tlh = t_intlh ? t_extlh �
capacity). In this scenario the signal ck1 will see the rising edge 0.44 ns later
(0.056 ns ? 2.399 ns/pf � (40 � 0.004pf ? interconnection)). The ck2 rising edge
will be 0.44 ns after the ck1, and finally the ck3 will be propagated 0.344 ns after
the ck1. That is the clk signal will be at the FF 1.22 ns later (remember that for
simplicity we do not consider the interconnection load). If we want to work with a
clock frequency of 400 MHz (2.5 ns period) the clock will arrive half a cycle later.
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Fig. 5.18 A typical delay locked loop used to synchronize the internal clock
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5.3.4.1 Delay-Locked Loop (DLL)

A delay-locked loop (DLL) is conceptually similar to a phase-locked loop (PLL)
but using a different operating principle. The main objective is to maintain the
same phase of the input clock inside a device.

The main component of a DLL is a delay chain composed of many delay
components. The input of the chain, and thus of the DLL, is connected to the input
clock (clk_in). A multiplexer is connected to each stage of the delay chain; the
selector of this multiplexer is a phase controller that compares the clock feedback
(clk_fb) from the clock network and the input clock.

This circuit, after several clock cycles, ensures that the input clock rising edge
is in phase with the clock feedback rising edge (offset = 3608).

5.3.5 Interfacing Different Clock Domains

Several times, a digital design needs to interface two different clock domains. This
interfacing is difficult in the sense that design becomes asynchronous at the
interface boundary, which could fail in setup and hold violations with the
consequent metastability (see Sect. 5.2.3). Hence, particular design and interfacing
techniques are necessary.

Two systems become asynchronous to each other when they operate at two
different frequencies or when they operate at the same frequency, but using
different and independent clock sources (Fig. 5.19a). Observe that if we use the
same clock source and a multiple of the same clock (for example, divided or
multiplied by 2) or a phase shifting of the clock (1808) they do not necessarily
become asynchronous.

Synchronization failure is lethal and difficult to debug, so it is important to take
care about this issue. If we have two systems, asynchronous to each other, and we
need to transfer data between them, several methods can be considered:
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Fig. 5.19 Interfacing different clock domains using synchronization chain
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• Using synchronizer.
• Handshake signaling method.
• Asynchronous FIFO.
• Open loop communication.

5.3.5.1 Using Synchronizer

It is the simplest method, useful only for very low speed communication. As
described in Sect. 5.2.3, a simple method to mitigate metastability is the use a
cascade of flip-flops. Fig. 5.19b shows the simple solution using a synchronization
chain (synchronizer).

This method could lead to errors when it is used to synchronize a bus. As a
simple example consider Fig. 5.20. If the input bus changes at the capturing edge
of the clock, different paths and different flip-flops could react differently, making
a misalignment of the data in the bus. The answer to this problem is the use of a
handshaking protocol.

Comments 5.3
A related synchronization pitfall could occur if a single bit is synchronized in

different places. The same problem described for buses in Fig. 5.20 could appear.

5.3.5.2 Handshake Signaling

In this method system 1 sends data to system 2 based on the handshake signals req
(request) and ack (acknowledge). A simple handshaking protocol (known as
4-phase) will work as follow:

• Sender outputs data and asserts req.
• Receiver captures data and asserts ack.
• Sender, after ack is detected, deasserts req.
• Receiver sees req deasserted, deasserts ack when ready to continue.
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Fig. 5.20 Synchronization problems with buses
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This method is straightforward, but the metastability problems could be present. In
fact, when system 2 samples system 1’s req and system 1 samples system 2’s ack
line, they use their internal clock, so setup and hold time violations could arise. To
avoid this, we can use double or triple stage synchronizers, which increase the
MTBF and thus reduce the metastability to a good extent. Figure 5.21 shows a
handshaking protocol using a two stage synchronizer in req and ack lines.

As shown in the example, the use of double or triple stage synchronizing
reduces significantly the transfer rate, due to the fact that a lot of clock cycles are
wasted for handshaking.

However, a simpler handshaking is possible (2-phase or edge based). In this, the
sender outputs data and changes the state of req; it will not change the state of req
again until after the state of ack changes. The receiver latches data; once the
receiver is ready for more, it changes the state of ack. This method (2-phase)
requires one bit of state to be kept on each side of the transaction to know the ack
state. Additionally, a reliable reset is necessary to start the synchronization.

Handshaking works great, but reduces the bandwidth at the clock crossing
interface because many cycles of handshaking are wasted. The high bandwidth
solution that maintains reliable communication is the use of asyncronous FIFOs.

5.3.5.3 Asynchronous FIFO

An asynchronous FIFO (First In First Out) has two interfaces, one for writing the
data into the FIFO and the other for reading the data out (Fig. 5.22a). Ideal dual
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port FIFOs write with one clock, and read with another. The FIFO storage provides
buffering to help rate match between different frequencies. Flow control is needed
in case the FIFO gets totally full or totally empty. These signals are generated with
respect to the corresponding clock. The full signal is used by system 1 (when the
FIFO is full, we do not want system 1 to write data because this data will be lost or
will overwrite an existing data), so it will be driven by the write clock. Similarly,
the empty signal will be driven by the read clock.

FIFOs of any significant size are implemented using an on-chip dual port RAM
(it has two independent ports). The FIFO is managed as a circular buffer using
pointers. A write pointer to determine the write address and a read pointer to
determine the read address are used (Fig. 5.22b). To generate full/empty condi-
tions, the write logic needs to see the read pointer and the read logic needs to see
the write pointer. That leads to more synchronization problems (in certain cases,
they can produce metastability) that are solved using synchronizers and Gray
encoding.

Comments 5.4

1. Asynchronous FIFOs are used at places where the performance matters, that is,
when one does not want to waste clock cycles in handshake signals.

2. Most of today’s FPGAs vendors offer blocks of on-chip RAMs that can also be
configured as asynchronous FIFOs.

3. A FIFO is the hardware implementation of a data stream used in some com-
putation models.

data_in

clk1

full
we

data_out

read
empty

clk2

Dual Port RAM

WR_data

we

WR_ptr

RD_data

FIFO
Write
logic

data_in

clk1

full
we

FIFO
Read
logic

data_out

read
empty

clk2

RD_ptr

Port 1 Port 2 clk2
clk1

(a)

(b)

Fig. 5.22 Asynchronous FIFO. a Abstract FIFO design. b Detailed view
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5.3.5.4 Open Loop Communication

When two systems of bounded frequency need to communicate, open loop
synchronization circuits can be used (also known as mesosynchronous designs). In
this approach no ack signal is used)

The benefits of mesosynchronous designs are in less synchronization based
circuitry and are of a lower latency in contrast to a 4-phase handshaking. The main
drawback is that this method only works at certain frequency ratios
(clk1 % clk2 ± 5%). Figure 5.23 shows this synchronization method assuming
that the sender holds two cycles of the req signal.

5.4 Power Consumption

Power dissipation is one of the main concerns in today’s digital design. For
portable devices the battery life is essential, the amount of current and energy
available in a battery is nearly constant and the power dissipation of a circuit or
system defines the battery life. On the other hand, the heat generated is propor-
tional to the power dissipated by the chip or by the system; an excessive heat
dissipation may increase the operating temperature and thus degrades the speed
(see Sect. 5.1.2.5, derating factor) and causes circuitry malfunctions. The neces-
sary cooling systems (fans, heatsinks, etc.) when excessive power is used, increase
the total system cost. Additionally, the life of the circuitry is typically shortened
when working at higher temperatures (electromigration and others).
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Fig. 5.23 Open loop communication (mesosynchronous)

5.3 Clock Distribution Network 119



5.4.1 Sources of Power Consumption

CMOS gates are considered very power efficient because they dissipate nearly zero
power when idle. As the CMOS technology moved below sub-micron size this
assumption became relative since the static power is more important. The power
dissipation in CMOS circuits occurs because of two components:

• Static power dissipation. Is the power consumed when the output or input are
not changing. The main contributions are the subthreshold and leakage current.

• Dynamic power dissipation. It is the power consumed during state transitions.
The two main components are charging and discharging of load capacitances
and the short circuit dissipation.

Thus the total power dissipation is the addition of the static power dissipation plus
the dynamic power dissipation.

5.4.1.1 Static Power Consumption

In the past, the subthreshold conduction of transistors has been very small, but as
transistors have been scaled down, leakages from all sources have increased.
Historically, CMOS designs operated at supply voltages much larger than their
threshold voltages (Vdd 5 V, and Vth around 700 mV) and the static power con-
sumption was negligible. As transistor size is reduced, i.e. below 90 nm, the static
current could be as high as 40% of the total power dissipation. The static power
consumption reduction is one of the main concerns in today’s technological
development of new CMOS processes.

5.4.1.2 Dynamic Power Consumption

CMOS circuits dissipate power mainly by charging the different load capacitances
(gates, wire capacitance, etc.) whenever they are switching (Fig. 5.24). In one
complete cycle of CMOS logic, current flows from power supply Vdd to the load
capacitance (0 to 1 transition) to charge it and then flows from the charged load
capacitance to ground during discharge (1 to 0 transition). Therefore in one
complete charge/discharge cycle, a total load Q = C � Vdd is thus transferred from
Vdd to ground. If we multiply by the switching frequency to get the current, and
multiply again to supply voltage we obtain the power dissipated for a gate as:
P = f � C � Vdd

2 Some authors recognize the transition power (the power per
transition) as P = 1/2 � f � C � Vdd

2 (half power charging, half the power dis-
charging). Since most gates do not operate/switch at the clock frequency, they are
often accompanied by a factor a, called the activity factor (also switching activity).
Now, the dynamic power dissipation may be re-written as P = a � f � C � Vdd

2 .
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A clock in a system has an activity factor a = 1, since it rises and falls every
cycle. Most data has an activity factor lower than 0.5, i.e. switches less than one
time per clock cycle. But real systems could have internal nodes with activity
factors grater then one due to the glitches.

If correct load capacitance is calculated on each node together with its activity
factor, the dynamic power dissipation at the total system could be calculated as:

P ¼
X

i
f � ðai � ciÞ�V2

dd ð5:7Þ

Another component in the dynamic component is the short circuit power dissi-
pation. During transition, due to the rise/fall time both pMOS and nMOS tran-
sistors will be on for a small period of time in which current will find a path
directly from Vdd to gnd, hence creating a short circuit current. In power esti-
mation tools this current also can be modeled as an extra capacitance at the output
of the gates.

5.4.1.3 Power and Energy

Power consumption is expressed in Watts and determines the design of the power
supply, voltage regulators and the dimensions of the interconnections and even-
tually short time cooling. Moreover, the energy consumed is expressed in Joules
and indicates the potency consumed over time, as shown in Equation 5.8.

Energy ¼ power � delay joules ¼ watts � secondsð Þ ð5:8Þ

The energy is associated with the battery life. Thus, less energy indicates less
power to perform a calculation at the same frequency. Energy is thus independent
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Fig. 5.24 Dynamic power consumption. a An inverter. b A general CMOS gate charging a
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of the clock frequency. Reducing clock speed alone will degrade performance, but
will not achieve savings in battery life (unless you change the voltage).

That is why, typically, the consumption is expressed in mW/Mhz when com-
paring circuits and algorithms that produce the same amount of data results per
clock cycle, and normally nJoules (nanoJoules) are used when comparing the total
consumption of different alternatives that require different numbers of clock cycles
for computing.

5.4.2 Power Reduction Techniques

The power reduction could be tackled at different abstraction levels. At higher
abstraction levels, bigger possibilities to reduce the power exist.

The static power consumption is reduced mainly at a technological level and is
beyond the scope of this book. Excellent surveys and trends are in [6] and [7].

To a designer of digital systems, Equation 5.7 gives information about the main
sources of reduction. The quadratic influence of the power supply is an interesting
source of power reduction. The lower supply voltage the device employs, the
lower power the systems will use. Today’s systems are supplied at different
voltages for cores and pads in order to reduce, when possible, the power budget.

On the other hand, the operation frequency (f), the activity (a), and the
capacitance (c) are linear sources of power reduction.

At circuit level, the reduction of glitches, data reordering to reduce activity, or
the fan-out reduction are typical techniques. Parts of these ideas are present in the
automatic synthesis for low power provided by EDA tool vendors.

At algorithm level, the complexity and the regularity of algorithms, the data
representation, and other techniques, offer a big scope for optimizations. The
concept of energy and power is useful in this case (Sect. 5.4.1.3); a faster algo-
rithm consuming the same power will consume less energy.

At system level, the partition of the system allows to apply dynamic power
management, that is, applying sleep modes (shut down) to part of or to the
complete system. These power management techniques could be applied manually
by the designer or partially automated by the synthesis tools.

The power consumption is an important issue for today’s FPGA vendors.
Compared to ASICs, FPGAs are not power-efficient components because they use
a larger amount of transistors to provide programmability on the chip (typically
an order of one magnitude more power). That leads to some specific FPGAs
called ‘‘low power FPGA families’’, optimized for power dissipation at the cost of
performance. FPGA vendors use different transistors, trading off speed versus
power in their devices, and also the availability to shut off the unused components.
They also offer power estimation tools and some optimization tools at synthesis
level.
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5.4.3 Power Measurement and Estimation

The power measurement is based on the measure of the supply voltage and the
instant current (P = I * V). Some systems have supply sources that measure the
current and allow measurement of the power. There also are other methods to
measure the total energy consumed, but they are out of scope of the present
discussion.

For power estimation, there are specific tools either for ASIC and FPGA. Some
tools use estimated activities for different blocks; others are based on post place
and route simulation to obtain the ‘‘exact’’ activity. The power estimation tool uses
this activity information in Equation 5.7 to calculate the dynamic power con-
sumption (more details are given in Chap. 6). The main drawback is the possibility
to simulate a real situation to obtain the ‘‘real’’ activity of a circuit.

5.5 Exercises

1. Redraw Fig. 5.5 (glitches for unbalanced paths) considering: (a) NAND gate,
(b) NOR gate, (c) XOR gate.

2. Redraw Fig. 5.6 (cascade effect of glitches paths) considering the transition
(a) from 0000 to 1111; (b) from 0100 to 1101; (c) from 0101 to 1101;

3. Supposing one has a simple ripple carry adder (Fig. 7.1) of four bits. Analyze
the glitch propagation when changing to add 0000 ? 0000 to 1111 ? 1111.

4. What is the rise time and fall time of an AND2 gate that connects at his output
four XOR2 gates? Assume a total interconnection load of 12 pf (use data of
Table 5.1).

5. How many DFF can drive a CKBUF assuming the unreal case of no inter-
connection capacitance? Which is the propagation delay of the rising edge?

6. Assuming the derating factors of Table 5.2, what is the delay of exercise 4 and
5 for 80�C and a supply voltage of 3.0 V.

7. Determine the MTBF for K1 = 0.1 ns, K2 = 2 ns-1; with clock frequency of
100 MHz and data arrival at 1 MHz, for recovery time of 1, 5, 10 and 20 ns.

8. What is the MTBF expected for an asynchronous input that uses two syn-
chronization flip-flops working at 100 MHz and using the data of the previous
problem? The FFs have a setup time of one ns.

9. What is the delay of the falling edge with the data used in Sect. 5.3.4. i.e.
64,000 FF that uses three levels of BUF, neglecting the interconnection load?

10. Calculate the level of clock buffers (CKBUF) necessary to control 128,000
registers (DFF) of Table 5.1. Suppose additionally that any interconnection
has a load of 0.006 pf.

11. For the previous clock tree. Determine the propagation delay from the input
clock signal to the clk input of a FF.
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12. Draw a timing diagram of a two stage handshaking protocol. Assume that the
sending clock is faster than the receiving clock.

13. For the circuit of the figure, suppose that the FF has a propagation delay
between 0.9 and 1.2 ns, a setup time between 0.4 and 0.5 ns and a hold time
between 0.2 and 0.3 ns.

m
D      Q D      Q

nCombinational 
circuit

clk

ffi ffjcki ckj

Launching 
flip-flop(s)

Capturing 
flip-flop(s)

The clock arrives to the different FF of level i with a delay between 2.1 ns and
3.3 ns, and to level j with delays between 2.5 ns and 3.9 ns. What is the
maximum combinational delay acceptable to work at 100 MHz?

14. Using the data of the previous exercise, what is the minimum combinational
delay necessary to ensure a correct functionality?

15. A system ‘A’ works with a supply voltage of 1.2 V and needs 1.3 mA during
10 s to perform a computation. A second system ‘B’ powered at 1.0 V con-
sumes an average of 1.2 mA and needs 40 s to perform the same task. Which
consumes less power and energy?

16. In the shift register of the figure, assuming that all the flip-flops have a
propagation delay of 0.9 ns, a setup time of 0.3 ns and a hold time of 0.2 ns,
what is the maximum skew tolerated if the interconnection has a delay (d1 and
d2) of 0.1 ns?
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17. For the previous problem. What is the maximum frequency of operation?
18. The following FF (with same temporal parameters as in exercise 16) is used to

divide the clock frequency. What is the minimum delay d of the inverter and
interconnection necessary for it to work properly?
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Chapter 6
EDA Tools

The Electronic Design Automation (EDA), is a group of software tools for
designing electronic systems such as integrated circuit (ASICs), printed circuit
boards (PCBs), or reprogrammable hardware as FPGA, etc. The general ideas of
EDA tools and the particular for FPGA designs will be discussed in this section.
Typically these tools work in a design flow that hardware and system designers use
to design and analyze entire system behavior. This chapter explains the main
concepts related to the EDA tools and presents an example using Xilinx ISE and
Altera Quartus tools.

6.1 Design Flow in FPGA EDA Tools

The design flows are the combination of EDA tools to carry out a circuit or system
design. Current digital flows are very modular and are the consequence of the
evolution of the standalone tools for synthesis, placement, and routing.

Naturally, the tools are evolving, driven by Moore’s law from standalone tools
to integrated construction and analysis flows for design closure.

The FPGA design flow is a kind of simplification of the ASIC design flow and
we will concentrate on it. The FPGA vendors groups the EDA tools in ‘‘design
suites’’ such as Libero from Actel [5, 7] or Quartus II from Altera [2]. Figure 6.1
shows a typical design flow; in what follows we will describe the different main
stages.

The design flow can be used as command-line executables or scripting, or by
using the GUI (graphical user interface). Figures 6.5 and 6.14 shows the GUI
aspects for Xilinx ISE and Altera Quartus II, respectively. The graphical interface
is the preferred design entry for newcomer designers and for small projects.

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_6,
� Springer Science+Business Media Dordrecht 2012
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6.1.1 Design Entry

The design entry is the way you describe the hardware that you want to implement
into an FPGA (or in an electronic device) based on a system specification. There
are different methods:

• Using a Hardware Description Language (HDL).
• Using schematics.
• Using Intellectual Property (IP) blocks.
• Using Electronic System Level (ESL) languages.

Today’s EDA tools allow the mixing of different design entries in a hierarchical
structure. It is common to see a schematic top level, with several predesigned IPs,
some specific components developed in VHDL and or Verilog and subsystems
designed in an ESL language.

6.1.1.1 HDL Design Entry

There are now two industry standard hardware description languages (HDL),
Verilog and VHDL. Some vendors used to have their own proprietary HDL lan-
guages but these are displaced by the use of the standard languages.
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Design Entry
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Netlist (edif, propietary )

Implementation

Mapping
Place & Route
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system specification
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(pads and Timming )

Program.
Tool

Fig. 6.1 A typical design flow for FPGA design
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HDL is the de facto design entry in most digital designs. In ASIC designs
Verilog is much more used but, FPGA designer’s use either VHDL and/or Verilog.
All FPGA tools support both languages and even projects mixing the use of booth
languages.

The Verilog hardware description language has been used far longer than
VHDL and has been used extensively since it was launched by Gateway Design
Automation in 1983. Cadence bought Gateway and opened Verilog to the public
domain in 1990. It became IEEE standard 1364 in 1995. It was updated in 2001
(IEEE 1364-2001) and had a minor update in 2005 (IEEE 1364-2001).

On the other hand, VHDL was originally developed at the request of the U.S
Department of Defense in order to document the behavior of existing and future
ASICs. VHDL stand for VHSIC-HDL (Very high speed integrated circuit Hard-
ware Description Language) became IEEE standard 1076 in 1987. It was updated
in 1993 (IEEE standard 1076-1993), and the last update in 2008 (IEEE 1076-2008,
published in January 2009).

Xilinx ISE and Altera Quartus have text editors with syntax highlighting and
language templates for VHDL and Verilog to help in the edition.

6.1.1.2 Schematic Design Entry

With schematic capture or schematic entry you draw on your computer using a
schematic capture tool. The main advantage in the use of schematics is that it
documents the design in an easily readable format. However big designs rapidly
become difficult to maintain and the file formats are incompatible between ven-
dors. A HDL code is easier to be parameterized and regular structures are easily
replicated. ASIC and FPGA users rarely use schematics.

6.1.1.3 Intellectual Property (IP) Blocks

In order to make simpler the design of complex systems, there exist libraries of
predefined complex functions and circuits that have been tested and optimized to
speed up the design process. These predefined circuits are commonly called IP
cores (or IP blocks) and are available from FPGA vendors and third-party IP
suppliers. The IP Cores can be distributed as a compiled netlist or as an HDL
source code. Moreover, the FPGA vendors have tools to generate most typical IP
cores (Xilinx CORE generator in Xilinx, Altera megafunctions). The simplest IP
cores are typically free, but the complex one rarely is without charge, and typically
released under proprietary licenses.

In the FPGA arena a related concept is the idea of ‘‘hard IP core’’ and ‘‘soft IP
core’’. In today’s FPGA several heterogeneous block are built in the FGPA such as
multipliers, blocks of memories, clock managers, transceivers, memory control-
lers, etc. These components are called ‘‘hard IP cores’’ to differentiate from the
ones implemented using general purpose logic (soft IP blocks).
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6.1.1.4 Electronic System Level (ESL) Languages

As FPGA applications have grown in complexity and FPGA chips have become
more complex, there is an increasing need for more efficient less time-consuming
development methodologies. In order to address this requirement, many chip and
tool providers have developed ‘‘high-level’’ development tools. In this environ-
ment, ‘‘high-level’’ means that the input to the tool is a target independent
language as C, C++or Java instead an HDL language.

To refer to these tools and methodologies, several names are used such as High-
level synthesis (HLS), High Level Languages (HLL), C synthesis, C to hardware,
electronic system level (ESL) synthesis, algorithmic synthesis, or behavioral
synthesis and others.

The high-level synthesis seems to be the future design entry for numerous fields
of applications. There are several successful products from the big EDA vendors
and from small companies fighting in this field. Most of those products generate, as
a result, an HDL (Verilog or VHDL) description of the circuit in order to use it in a
traditional design flow.

Related to this ‘‘high-level’’ concept and in the DSP (Digital Signal Processing)
field, the design productivity of DSP system is increased using MatLab/Simulink
design entry. The big EDA companies have tools for DSP design based on
MatLab/Simulink, even booth leaders in the FPGA field: Altera (DSP builder) and
Xilinx (System Generator).

6.1.2 Synthesis

The synthesis (or logic synthesis) is the process by which an abstract form (an
HDL description) of the circuit behavior is transformed into a design implemen-
tation in terms of logic gates and interconnections. The output is typically a netlist
and various reports. In this context, a ‘‘netlist’’ describes the connectivity of the
electronic design, using instances, nets and, perhaps, some attributes.

There are several proprietary netlist formats but, most synthesizers can generate
EDIF (Electronic Design Interchange Format) that is a vendor-neutral format to
store electronic netlist.

FPGA vendors have their own synthesizers (Xilinx XST, Altera Quartus II Integrated
Synthesis) but, main EDA vendors have syntheses for FPGA (Precision by Mentor
Graphics and Synplify by Synplicity) that can be integrated in the FPGA EDA tools.

6.1.2.1 Synthesis Optimizations

The synthesis process performs several target independent optimizations (logic
simplification, state assignment, etc.) but, also the synthesis tools take into account
the target technologies and make target dependent optimizations.
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The optimizations available depend on the synthesizer but, most typical opti-
mizations are present in all of them. Typical optimizations are for the area
reduction, the speed optimization, the low power consumption, and the target
frequency of the whole design.

Nevertheless, much more details can be controlled, such as:

• Hierarchy Preservation: control if the synthesizer flattens the design to get better
results by optimizing entities and module boundaries or maintaining the hier-
archy during Synthesis.

• Add I/O buffers: enables or disables the automatic input/output buffer insertion:
this option is useful to synthesize a part of a design to be instantiated, later on.

• FSM Encoding: selects the Finite State Machine (FSM) coding technique.
Automatic selection, one-hot, gray, Johnson, user defined, etc.

• Use of embedded components: use embedded memory or multipliers blocks or
use general purpose LUTs to implement these functionalities.

• Maximum fan-out: limits the fan-out (maximum number of connections) of nets
or signals.

• Register duplication: allows or limit the register duplication to reduce fan-out
and to improve timing.

• Retiming or Register Balancing: automatically moves registers across combina-
torial gates or LUTs to improve timing while maintaining the original behavior.

The complete description of synthesis optimization can be found at the
synthesis tool documentation (for example for FPGA [3, 4, 6, 8]).

The synthesis behavior and optimization can be controlled using synthesis
constraints. The constraints could be introduced using the integrated environment,
a constraint file or embedding in the HDL code.

6.1.2.2 Synthesis Constraints

The synthesis optimizations are controlled globally (for the complete design) or
locally for each part of the HDL code. The global optimization can be introduced
in the integrated environment (then translated as switches in command line or to an
additional file), or in a specific constrain file. The local optimization can be
specified in a constraint file or embedded in the HDL code.

The synthesis constraint file is, typically, a plain text file having different
syntax, depending on the tool. Xilinx use the xcf (Xilinx Constraint File) [8],
Altera for timing use SDC files (TimeQuest Timing Constrains) and QSF (Quartus
Settings File) for I/O and others [2, 3], and simplify uses SDC (Synopsys Design
Compiler) constraint files [6].

The main advantage of using constraint files (generated by a graphical interface
or entered in a text editor) is that it makes your source code more portable and
separates the functionality described in the HDL of the synthesis detail.

The HDLs (VHDL and Verilog) allow you to embed constraints in the design
code. This method is recommended for constraints that define the desired result of
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the HDL (encoding of FSM, type of memories or multipliers) or specific opti-
mization (duplicate registers, registers balancing, maximum fan-out, etc.). In
VHDL this is done using ‘‘attributes’’ defined in the declaration. The following
lines of code define the maximum fan-out of signal ‘‘a_signal’’ to 20 connections
in XST [8].

6.1.2.3 Synthesis Reports

The synthesis reports show the results of the netlist generation synthesis process.
The synthesizer gives, typically, a text report, where you can see a summary of
your synthesis options, and a summary and analysis of the netlist generation. Some
tools generate an HTML, XML or other proprietary formats which are easier to
navigate into the information.

This report is important in order to see if the hardware generated by the syn-
thesizer agrees with the described HDL. The main parts in a synthesis report are:

• Synthesis Options: a summary of selected optimizations used. Important to
check if differences in results appear.

• HDL Compilation and Analysis: syntax errors and hierarchy are analyzed and
information reported.

• HDL Synthesis: is the main part, where the inferred hardware is reported. The
tool informs what is generated in each part of the code.

• Optimization reports: the advanced optimization and low level optimization are
also informed.

• Final resource and timing: a summary of the device resource utilization and a
preliminary timing analysis with the worst path is informed. Take into account
that this information is previous to the implementation (placement and routing)
and the interconnection delay is only estimated.

Additionally, most synthesis tools can generate graphical information (a
schematic) of the resulted synthesis. Typically, you can see graphically the RTL
view or a technological view (using the target low level components).

6.1.3 Implementation (Mapping, Placement and Routing)

The implementation step is a vendor specific tool that mainly places and routes the
design in the target device. In Altera Quartus II this tool is known as a ‘‘fitter’’ [2,
3], meanwhile, in Xilinx ISE [7, 8] is composed of three processes (translate, map,
and place & route).
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The inputs to the implementation are the netlist(s) generated in synthesis and
the design implementation constraints. The output is a proprietary placed and
routed netlist (ncd file in Xilinx, an internal database representation in Altera) and
several reports summarizing the results. Typically the design implementation uses
timing and area constraints; a general description is in Sect. 6.2.

6.1.3.1 Implementation Reports

The implementation tools generate different information about that process.
Typically, a text report includes detailed information about the used resources, the
clock distribution (including skew), the final timing obtained with respect to the
constraints and other information.

Nevertheless, more information can be obtained of the implementation, such as
internal delay of the interconnections, a description of the used pads, a graphical
view of the placed and routed design in the target device, a simulatable HDL file
including timing information, and a power consumption estimation.

6.1.4 Programming File Generation and Programming

The programming file generation creates a bitstream file (.bit in Xilinx,.rbf in Altera)
that can be downloaded to the device or can be recorded in an external EPROM. This
tool in Altera Quartus II is call ‘‘assembler’’, meanwhile, in Xilinx ISE ‘‘Bitgen’’.

The generated bitstream can be converted in a standard format for EPROM
programming or directly downloaded to an FPGA device using a JTAG connection
(iMPACT in Xilinx, Programmer in Altera).

6.2 Implementation Constraints

The complexity of today’s FPGA designs and the demand for higher performance
makes necessary the use of complex timing and placement constraints to meet the
performance requirements. Implementation constraints are instructions given to
the FPGA implementation tools to direct the mapping, placement, routing, timing
or other guidelines for the implementation tools.

Implementation constraints are placed in constraint file(s) but, may exist in the
HDL code, or in a synthesis constraints file and propagated for implementation.
Xilinx uses the User Constraint File (.ucf), meanwhile Altera uses the Quartus II
Settings File (.qsf) or, in the case of timing constraints, the Synopsys Design
Constraints file (.sdc). The constraint files are plain text but, there are several
graphical tools that help in the edition of such constraints avoiding the necessity to
know the exact syntax.
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Figure 6.2 shows the basic constraints of a digital synchronous design:

• Internal clock speed for one or several clocks.
• I/O speed.
• Pin to Pin timing.
• Pin Locations and Logic Locations (floor-planning).

The first three are timing constraints, meanwhile, the last are area constraints.

6.2.1 Timing Constrains

As suggested previously (Fig. 6.2) the timing constrain includes the clock defi-
nition, input and output timing requirements and the combinatorial path require-
ments. Creating global constraints for a design is the easiest way to provide
coverage of the constrainable connections in a design, and to guide the tools to
meet timing requirements for all paths. For example given a constraint of fre-
quency of 100 MHz, we are constraining each combinational path in the design.

Nevertheless sometimes the designer needs to relax some global constraint and
inform the implementation tools that some path can take more time. The typical
cases are:

• False Paths: if there is a paths that is static in nature, or is not of much sig-
nificance for timing.

• Multi-cycle paths: paths between registers (combinational path) that intention-
ally take more than one clock cycle to become stable.

• Fast or Slow path: combinational path that can work at slower speed than the
global constrain.

In these cases you can use directives to eliminate the paths from timing con-
sideration in implementation.
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6.2.2 Placement and Other Constrains

The placement constraints instruct the implementation tools, where to locate the
logic element into the FPGA (I/O pads, Flip-flops, ROMs, RAMs, LUTs, etc.).
Since every component in the design carries a unique name, you can use these
name to assign to a region in the FPGA where put this components. A represen-
tative placement constraint, always used in a design, is the position of the input/
output pins. Nevertheless, there are others commonly used constraints:

• Relative placement constraints: allow to place logic blocks relative to each other
to increase speed and use die resources efficiently.

• Routing constraints: mechanism of locking the routing in order to maintain
timing.

• Input/output characteristics: specifies the i/o standard, the use of internal pull-
ups or pull-downs, slew rate, asynchronous delay, etc.

• Dedicated block configuration: how the multipliers are configured, digital clock
managers, memory blocks, SERDES, etc.

• Mapping Directives: allow eliminating the simplification of internal nets for
observability, or how the logic is grouped.

• Maximun Skew: allow to control the maximum skew in a line (Sect. 5.3.1).
• Derating Factors: specifies different supply voltage and temperature. Used to de-

rate the timing factors (Sect. 5.1.2.5).

As previously mentioned, implementation constraints (timing and placement) are
placed in separated constraint file(s) but, may be directly written in the HDL code.

6.3 System Verification

Figure 6.3 shows the typical system verification flow for FPGA. The logic sim-
ulation is the most used technique in early stage of development. Nevertheless, the
reprogrammable nature of FPGA gives other alternatives as in-circuit simulation,
testing and debugging.

6.3.1 Simulation

Logic simulation is the primary tool used for verifying the logical correctness of a
hardware design. In many cases, logic simulation is the first activity performed in
the process of design. There are different simulation points were you can simulate
your design, the three more relevant are:

• RTL-level (behavioral) simulation. No timing information is used.
• Post-Synthesis simulation. In order to verify synthesis result.
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• Post implementation (post place & route) simulation. Also known as timing
simulation because it includes blocks and nets delays.

The behavioral (RTL-level) simulation enables you to verify or simulate a
description at the system level. This first pass simulation is typically performed to
verify code syntax, and to confirm that the code is functioning as intended. At this
step, no timing information is available, and simulation is performed in unit-delay
mode to avoid the possibility of a race condition. The RTL simulation is not
architecture-specific, but can contain instantiations of architecture-specific com-
ponents, but in this case additional libraries are necessary to simulate.

Post-synthesis simulation, allows you to verify that your design has been
synthesized correctly, and you can be aware of any differences due to the lower
level of abstraction. Most synthesis tools can write out a post-synthesis HDL
netlist in order to use a simulator. If the synthesizer uses architecture-specific
components, additional libraries should be provided.

The timing simulation (post implementation or post Place & Route full timing)
is performed after the circuit is implemented. The general functionality of the
design was defined at the beginning but, timing information cannot be accurately
calculated until the design has been placed and routed.

After the implementation tools, a timing simulation netlist can be created and
this process is known as back annotation. The result of a back annotation is an
HDL file describing the implemented design in terms of low level components and
additional SDF (Standard Delay Format) file with the internal delays that allows
you to see how your design behaves in the actual circuit.

Xilinx ISE has his own simulator (ISE simulator, ISim) but, can operate with
Mentor Modelsim or Questa and operate with external third-party simulation tools

Design Verification

HDL RTL 
(behavioual) 
simulation

Synthesis

Implementation
(Place & Route)

Generate 
program. File

Bitstream

post-synthesis 
(gate level)
Simulation

Back 
anotation

Timming 
Simulation

In-circuit 
Testing

Program.
Tool

HDL Desing

Tesbench 
Stimulus

In-circuit 
Simulation

Vendor
Libraries

Timing
Libraries

Fig. 6.3 The design verification flow in FPGAs

136 6 EDA Tools



(Synopsys VCS-MX, Cadence NCSim, Aldec Active-HDL). Altera Quartus II uses
Mentor Modelsim and can use other third party simulators.

6.3.2 Formal Verification

The formal verification is the act of proving the correctness of a system with
respect to a certain formal specification, using formal mathematical methods.
Since hardware complexity growth continues to follow Moore’s Law, the verifi-
cation complexity is even more challenging and is impossible to simulate all
possible states in a design. In order to implement the formal verification, Hardware
Verification Language (HVL) can be used. A HVL is a programming language
used to verify the designs of electronic circuits written in a hardware description
language (HDL). System-Verilog, OpenVera, and SystemC are the most com-
monly used HVLs. The formal verification is widely used by the big companies in
the ASIC world but, is relatively new in the FPGA arena. The adoption of formal
verification in FPGA flow is still poor but, increasingly important.

6.3.3 In-Circuit Co-Simulation

The idea is to simulate the system at hardware speed but, maintaining a part of the
flexibility of a traditional simulation. The simulation executes the RTL code
serially while a hardware implementation executes it fully in parallel. This leads to
differences not only in execution time but, also in debugging. In simulation, the
user can stop simulation to inspect the design state (signals and memory contents),
interact with the design, and resume simulation. Downloading the design to an
FPGA, the visibility and observability is greatly reduced.

EDA vendors offer products to simulate the complete or a part of the design in
circuits but, controlling externally the execution. In this line, Xilinx added their
simulator (Isim), the so called ‘‘Hardware co-simulation’’, as a complementary
flow to the software-based HDL simulation. This feature allows the simulation of a
design or a sub-module of the design to be offloaded to hardware (a Xilinx FPGA
regular board). It can accelerate the simulation of a complex design and verify that
the design actually works in hardware.

6.3.4 In-Circuit Testing and Debugging

In order to test the functionality, a simple configuration of the FPGA allows testing
of the circuit. In the typical in-circuit debugging, the user employs an external
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logic analyzer for visibility but, can see only a limited number of signals which
they determined ahead of time.

The reprogramability of FPGA opens new ways to debug the designs. It is
possible to add an ‘‘internal logic analyzer’’ within the programmed logic. Xilinx
ChipScope Pro Analyzer and Altera SignalTap II Logic Analyzer are tools that
allow performing in-circuit verification, also known as on-chip debugging. They
use the internal RAM to store values of internal signals and communicate to the
external world using the JTAG connection.

Another intermediate solution includes inserting ‘‘probes’’ of internal nets
anywhere in the design and connecting of the selected signals to unused pins
(using Xilinx FPGA Editor, Altera Signal Probe, Actel Designer Probe Insertion).

6.3.5 Design for Test

A recurring topic in digital design is the design for test (DFT). The DFT (or also
Design for Testability) is the general name for design techniques that add certain
testability features to a hardware design.

In the ASIC world, tests are applied at several stages in the manufacturing flow.
The tests usually are accomplished by test programs that execute in Automatic
Test Equipment (ATE). For test program generation, several automatic algorithms
are used as the ‘‘Stuck-at’’ fault model and other algorithmic methods.

One of the main issues in a test is to gain control (controllability) and observe
(observability) internal nodes in order to check functionality and this leads to the
concept of scan chain.

In scan chain, registers (flip-flops or latches) in the design are connected in a
shift register chain in order to set the vales or read the values when a test mode is
selected. Figure 6.4 shows the addition of a multiplexer to a simple register to
support the scan chain mode. Observe that only using four signals (clk, Sin, Sout,
test) and an option reset it is possible to gain access to any register inside a device.

The FPGA are pretested ASIC circuits that have their own circuitry to test the
manufacturing procedure. Nevertheless, some techniques of DFT are useful for
FPGA design debugging and testing. The main useful characteristic is the access to
the internal state of the FPGA using the internal scan chain through the JTAG port.
JTAG (Joint Test Action Group) is the name for standard test access port and
boundary-scan architecture. It was initially devised for testing printed circuit boards
using boundary but, today it is also widely used for integrated circuit debug ports.

The FPGA devices allow the accessing of the internal state (read-back) of any
internal register, even the configuration ones using the JTAG port. The possibility
to read and write the internal state of the device allows several standard and ad-hoc
techniques for testing purposes. The access to the entire registers content allows,
for example, the reconfiguration of the device, the partial reconfiguration, read
internal states for in-circuit debugging (Sect. 6.3.4), communicate internal values
to implement an internal logic analyzer, and several other techniques.
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6.4 Timing Analysis

Static timing analysis (STA or simply timing analysis) is the method of computing
the expected timing of a digital circuit without requiring simulation. The word
static refers to the fact that this timing analysis is carried out in an input inde-
pendent manner. The objective is to find the worst case delay of the circuit over all
possible input combinations.

The computational task is to review the interconnection graph that represents
the final netlist and determine the worst case delay. The methods used are specific
optimization of typical graph algorithm such as a depth-first search. Modern static
timing analyzers bear similarities with project management models such as PERT
(Program Evaluation and Review Technique) or CPM (Critical Path Method).

There are some common terms used in timing analysis:

• Critical path: is the path with the maximum delay between an input and an
output (or two synchronous points).

• Arrival time: is the time elapsed for a signal to arrive at a certain point.
• Required time: is the latest time at which a signal can arrive without making

the clock cycle longer than desired (or a malfunction).
• Slack: is the difference between the required time and the arrival time. A negative

slack implies that a path is too slow. A positive slack at a node implies that the arrival
time at that node may be increased without affecting the overall delay of the circuit.

In a synchronous digital system, data is supposed to move on each tick of the
clock signal (Sect. 5.2). In this context, only two kinds of timing errors are pos-
sible (see Sect. 5.2.2):

• Hold time violation: when an input signal changes too fast, after the clock’s
active transition (race conditions).

• Setup time violation: when a signal arrives too late to a synchronous element
and misses the corresponding clock’s edge (long path fault).
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Since the timing analysis is capable of verifying every path, it can detect the
problems in consequence of the clock skew (Sect. 5.3) or due to glitches
(Sect. 5.1.3).

The timing analysis can be performed interactively, asking for different paths
but, typically is used to report the slack upon the specified timing requirements
expressed in the timing constraint (Sect. 6.2.1).

The FPGA tools, after implementing the design, make a default timing analysis
to determine the design system performance. The analysis is based on the basic
types of timing paths: Clock period; input pads to first level of registers; last level
of registers to output pads, and pad to pad (in asynchronous paths).

Each of these paths goes through a sequence of routing and logic. In Xilinx ISE
the tool calls ‘‘Timing Analyzer’’ and in Altera Quartus II Altera ‘‘TimeQuest’’.
More advanced options can be analyzed upon using the specific tool.

6.5 Power Consumption Estimation

Power dissipated in a design can be divided into static and dynamic power
(Sect. 5.3). In FPGA designs, due to the reprogramability nature, the total power is
also divided into three components for each power supply:

Total Power ¼ Device Staticþ Design Staticþ Dynamic Power

Where the components are:

• Device Static: depends on manufacturing, process properties, applied voltage,
and temperature.

• Design Static: blocks in an FPGA (I/O termination, transceivers, block RAM,
etc.) are disabled by default and enabled depending on the design requirements.
When these blocks are enabled they consume power, regardless of user design
activity.

• Dynamic Power: depends on the capacitance and activity of the resources used,
and also scales with the applied voltage level.

FPGA vendors offer early power estimators spreadsheet (Altera PowerPlay
Early Power Estimator, Xilinx XPower Estimator) typically used the pre-design
and pre-implementation phases of a project. These spreadsheets are used for
architecture evaluation; device and power supply selection and helps to choose the
thermal management components which may be required for the application.

For a more accurate estimation, the power analyzer tools (Xilinx XPower,
Altera PowerPlay) perform power estimation, post implementation. They are more
precise tools since they can read from the implemented design netlist the exact
logic and routing resources used. In order to obtain good and reliable results the
activity of each node should be provided. If you do not supply the activity, the
software can predict the activity of each node but, the accuracy is degraded.
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The power analyzer takes the design netlist, the activity of the circuit, the
supply voltage and the ambient temperature and reports the consumed current
(power) and the junction temperature. Nevertheless, the junction temperature itself
depends on the ambient temperature, voltage level, and total current supplied. But
the total current supplied includes the static current as a component that depends
on temperature and voltage, so a clear circular dependency exists. The tools use a
series of iterations to converge on an approximation of the static power for given
operating conditions.

A significant test bench that models the real operation of the circuit provides the
necessary activity of each node. The simulation result of the activity is saved in a
file (SAIF or VCD file) that is later used in conjunction with the capacitance
information by the power analyzer.

The Value Change Dump (VCD) file is an ASCII file containing the value
change details for each step of the simulation and can be generated by most
simulators. The computation time of this file can be very long, and the resulting
file size is typically huge. On the other hand, the SAIF (Switching Activity
Interchange format) file contains toggle counts (number of changes) on the signals
of the design and is supported also for most simulators. The SAIF file is smaller
than the VCD file, and recommended for power analysis.

6.5.1 Reducing the Power Consumption

Using the results of a power analyzer, having a complete system-level under-
standing and the accurate power model will permit the designer to make the
decisions necessary to reduce the power budget (Sect. 5.3), including:

• Selecting the best device.
• Reducing the device operating voltage.
• Optimizing the clock frequencies.
• Reducing long routes in the design.
• Optimizing encodings.

With regards to the EDA automatic improvements for low power, as mentioned
previously, in synthesis it is possible to have, as a target, the power reduction. In
implementation, it is possible to specify optimal routing to reduce power
consumption. In this case, it allows to specify an activity file (VCD or SAIF) to
guide place & route when it optimizes for power reduction.

6.6 Example of EDA Tool Usage

In order to review the concepts of EDA tools we will deploy a simple example
using Xilinx ISE 13.1 and Altera Quartus 11.0. The example is the combinational
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floating point adder of Chap. 12 that we will implement in both vendor tools. The
simple example uses three VHDL files: FP_add.vhd, FP_right_shifter, and
FP_leading_zeros_and_shift.vhd.

If you want to begin with no previous experience, it is highly recommendable to
start with the tutorial included in the tools. In the case of Quartus, follow the
‘‘Quartus II Introduction for VHDL/verilog Users’’ accessible form help menu. If
you will start using ISE we recommend using the ‘‘ISE In-Depth Tutorial’’,
accessible using help ? Xilinx on the web ? Tutorials.

6.6.1 Simple Example Using Xilinx ISE

We create a new project (file ? new project…) with name fp_add. We select a
Virtex 5, XC5VLX30 ff324 -1. For synthesis XST, simulation ISIM and preferred
language VHDL. Then we add to the project the three VHDL source files (pro-
ject ? add source) (Fig. 6.5).

6.6.1.1 Design Entry and Behavioral Simulation

The design entry in this simple project is not used, since the VHDL code is
provided. Nevertheless to create a new source file you can use ‘‘project ? new
source’’, and then choose the design entry type of source code. In the case of using
VHDL or Verilog module you have a graphical wizard to describe the input and
output of the circuit.

Fig. 6.5 A simple project in Xilinx ISE
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In order to make a behavioral simulation we add to the project a test bench
(fp_add_tb.vhd) selecting ‘‘project ? add source’’. The simple test bench reads
the stimuli text file (contains two encoded operands to add and the corresponding
result) and verifies the results (Fig. 6.6).

In order to launch the simulation, select the test bench (fp_add_tb.vhd), and
double click ‘‘Simulate Behavioral Model’’ in the processes window. Before that,
ensure that you have selected the ‘‘simulation’’ view radio button, in order to be
able to see the simulation process.

6.6.1.2 Synthesis and Synthesis Report

To run the synthesis, double click the ‘‘synthesis—XST’’ process in processes
view (Fig. 6.7). The global options of the synthesis are available using the right
button at the option ‘‘process option’’. The more specific constrain can be either
embedded in the HDL code or in the Xilinx constraint file (.xcf). The xcf is a
plain text file that needs to be linked in the process option. The details are
available at [8].

Fig. 6.6 Behavioral simulation in Xilinx ISE using ISIM simulator

Fig. 6.7 Synthesis and synthesis report
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After the synthesis you can review the graphical representation of the synthe-
sized circuit (View RTL schematic) or review the synthesis report (.syr file). This
report gives relevant information. The ‘‘HDL synthesis’’ part of report describes
the inferred component as a function of the HDL and the ‘‘final report’’ summa-
rizes the resource utilization and performs a preliminary timing report.

6.6.1.3 Implementation: Constraints and Reports

In order to implement a design, we need to generate the implementation
constraints. We will firstly assign the position of the pads. We can edit manually
the ucf (user constraint file) text file or double click the ‘‘I/O pin planning (plan
ahead)’’ and use the graphical interface.

Then we can assign timing constraints using the ‘‘create timing constraint’’
option. We will assign a period constraints (‘‘clock domain’’ in constraint type
view) of 80 MHz (12.5 ns) and the same restriction for inputs and outputs
(‘‘inputs’’ and ‘‘outputs’’ in constraint type view, respectively). You can check the
generated restriction editing the ucf file (Fig. 6.8).

We can assign global options to the implementation using right click over the
implementation icon in processes window and selecting ‘‘process properties…’’

We implement the design double clicking in ‘‘implementation’’. The three step
in the Xilinx implementation flow will be executed (translate, map, place & route).

In ISE the design implementation, comprises the following steps:

• Translate: merges the incoming netlists from synthesis and the imple-mentation
constraints into a proprietary Xilinx native generic database (NGD) file.

• Map: fits the design into the available resources on the target device. The output
is a native circuit description (NCD) file.

• Place and Route: takes a mapped NCD file, places and routes the design, and
produces another NCD file.

Fig. 6.8 Assigning timing constraints, and the generated ucf text file
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The result of the implementation is a proprietary placed and routed netlist (ncd
file) and several reports. There are three main reports generated: the map report
(.mrp), the place and route report (.par) and the ‘‘Post-PAR static timing report’’
(.twr) (Fig. 6.9).

The map report shows detailed information about the used resources (LUTs, slices,
IOBs, etc.), the place and route report gives clock network report including the skew
and informs which constraints were met and which were not. Finally, Post-PAR static
timing report gives the worst case delay with respect to the specified constraints.

You can obtain additional graphical information about the place and route
results using FPGA editor and PlanAhead. Use the FPGA Editor to view the actual
design layout of the FPGA (in the Processes pane, expand ‘‘Place & Route’’, and
double-click ‘‘View/Edit Routed Design (FPGA Editor)’’). The PlanAhead soft-
ware can be used to perform post place & route design analysis. You can observe,
graphically, the timing path onto the layout, and also perform floorplaning of the
design. In order to open PlanAhead in the Processes pane, expand Place & Route,
and double-click ‘‘Analyze Timing/Floorplan Design (PlanAhead)’’.

6.6.1.4 Post Place and Route Simulation

The post place and route (or timing) simulation is accessed by selecting ‘‘simu-
lation’’ in the view panel and selecting ‘‘post-route’’ from the drop-down list. Then
select the test bench and double click ‘‘Simulate Post-Place & Route Model’’. This
will execute the back annotation process (netgen). Then the simulation is
performed. Observe that the resulting simulation gives some errors. Why?
The answer is simple, the test bench generates a clock of 100 MHz (10 ns period)

Fig. 6.9 Implemented design. Access to the reports
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and the implementation that we perform is slower. Then, some input pattern
combination violates setup time and gives, consequently, errors. You can modify
the test bench in order to operate at a lower frequency (Fig. 6.10).

6.6.1.5 Running a Static Timing Analysis

We can review, more carefully, the timing aspects, by opening the ‘‘analyze post-
Place & Route Static Timing’’ (expand Implement Design ? Place &
Route ? Generate Post-Place & Route Static Timing to access this process). By
default, this runs an analysis of the worst case delays with respect to the specified
constraints giving the three worst paths (Fig. 6.11).

In order to control more aspects of the timing analysis you can run an analysis
(Timing ? Run Analysis), you can control the type of analysis (Analyze against),
control the amount of path reported, control the timing derating factors
(Sect. 5.1.2.5), filter nets and paths in the analysis, etc.

6.6.1.6 Generating Programming File and Programming the FPGA

After implementing the design and performed the corresponding timing analysis,
you need to create configuration data. A configuration bitstream (.bit) is created for
downloading to a target device or for formatting into a PROM programming file
(Fig. 6.12).

6.6.1.7 Using Command Line Implementation

All the previous step could be executed in command line and group it in order to
create scripts. The ISE software allows you extract the command line arguments

Fig. 6.10 Post place and route simulation
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for the various steps of the implementation process (Design Utilities ? View
Command Line Log File). This allows you to verify the options being used or to
create a command batch file to replicate the design flow.

Fig. 6.11 Post place and route static timing analysis

Fig. 6.12 Generating programming file and programming the FPGA
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6.6.1.8 Estimating the Power Consumption

After place and route of the design it is possible to obtain power consumption
estimation. The accuracy of the estimation relies upon the activity given to the
xpower tool. The activity file is generated with a post place & route simulation
(Sect. 6.6.1.4) but instructing the ISim simulator to generate the SAIF (Switching
Activity Interchange Format) file. In order to do that, right click ‘‘simulate post place
and route model’’, click on ‘‘process properties…’’ then select ‘‘Generate SAIF File
for Power Optimization/Estimation’’, it is possible to assign different file names.

In order to check the power estimation results, based on the activity computed,
you can even generate a simple text report by double clicking on ‘‘Generate Text
Power Report’’, or by opening the interactive tool Xpower double clicking
‘‘Analyze Power Distribution (Xpower Analyzer)’’ (Fig. 6.13). Observe that by
browsing into the details you have access to the activity of each node, the fan-out
of nets and the corresponding power.

6.6.2 Simple Example Using Altera Quartus II

Designing for Altera devices is very similar, in concept and practice, to designing
for Xilinx devices. In most cases, the same RTL code can be compiled by Altera’s

Fig. 6.13 Xpower analyzer result
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Quartus II as was explained for Xilinx ISE (Sect. 6.6.1). Altera has an application
note ‘‘Altera Design Flow for Xilinx Users’’ [1], where this process is carefully
explained.

We can start creating a new project (file ? New Project Wizard) with name
fp_add. We add to the project the three VHDL source files (step 2 of 5).We select a
Stratix III device, EP3SL50F484C3. Leave the default synthesis and simulation
options (Fig. 6.14).

For the rest of the steps in the implementation and simulation flow, Table 6.1
summarizes the GUI (graphical user interface) names for similar task in Xilinx ISE
and Altera Quartus II.

6.7 Exercises

1. Implement the floating adder of Chap. 12 in Altera Quartus in a Stratix III
device. What are the area results? Add implementation constraints in order to
add FP numbers at 100 MHz. Constraints are met?

2. Implement the floating point multiplier of Chap. 12 in Xilinx ISE in a Virtex 5
device. What are the area results? It is possible to multiply at 100 MHz?
Remember to add implementation constraints. Multiplying at 20 MHZ what is the
expected power consumption? Use the XPower tool and the provided test bench.

Fig. 6.14 Quartus II project
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3. Implement the pipelined adder of Chap. 3. Analyze the area-time-power trade off
for different logic depths in the circuit. Use, for the experiment, a Virtex 5 device
and compare the result with respect to the new generation Virtex 7. What hap-
pened in Altera, in comparing stratix III devices with respect to Stratix V?

4. Implement the adders of Chap. 7 (use the provided VHDL models). Add to the
model input and output registers in order to estimate the maximum frequency of
operation.

5. Compare the results of implementation of radix 2 k adders of Sect. 7.3 in Xilinx
devices using muxcy and a behavioural description of the multiplexer (use the
provided VHDL models of Chap. 7).

6. Implement the restoring, non-resorting, radix-2 SRT and radix 2 k SRT divider
of Chap. 9 in Xilinx and Altera devices (use the provided VHDL models of
Chap. 9).

7. Compare the results of square root methods of Chap. 10 in Altera and Xilinx
design flow.

Table 6.1 GUI names for similar tasks in Xilinx ISE and Altera Quartus II

GUI feature Xilinx ISE Altera quartus II

HDL design entry HDL editor HDL editor
Schematic entry Schematic editor Schematic editor
IP entry CoreGen and architecture

wizard
Megawizard plug-in manager

Synthesis Xilinx synthesis technology
(XST)

Quartus II integrated
synthesis (QIS)

Third-party EDA synthesis Third-party EDA synthesis
Synthesis constraints XCF (xilinx contraint file) Same as implementation
Implementation

constraint
UCF (user constraint file) QSF (quartus II settings file) and

SDC (synopsys design
constraints file)

Timing constraint
wizard

Create timing constraints Quartus II timequest timing analyzer
SDC editor

Pin constrain wizard PlanAhead (PinPlanning) Pin planner
Implementation Translate, map, place and

route
Quartus II integrated synthesis (QIS),

fitter
Static timing analysis Xilinx timing analyzer Timequest timing analyzer
Generate programming

file
BitGen Assembler

Power estimator XPower estimator Powerplay early power estimator
Power analysis XPower analyzer Powerplay power analyzer
Simulation ISE simulator (ISim) Modelsim–Altera starter edition

Third-party simulation tools Third-party simulation tools
Co-simulation ISim co-simulation –
In-chip verification Chipscope pro SignalTap II logic analyzer
View and editing

placement
PlanAhead, FPGA editor Chip planner

Configure device iMPACT Programmer
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Chapter 7
Adders

Addition is a primitive operation for most arithmetic functions, so that FPGA
vendors have dedicated a particular attention to the design of optimized adders. As
a consequence, in many cases the synthesis tools are able to generate fast and cost-
effective adders from simple VHDL expressions. Only in the case of relatively
long operands can it be worthwhile to consider more complex structures such as
carry-skip, carry-select and logarithmic adders.

Another important topic is the design of multi-operand adders. In this case, the
key concept is that of carry-save adder or, more generally, of parallel counter.

Obviously, the general design methods presented in Chap. 3 (pipelining, digit-
serial processing, self-timing) can be applied in order to optimize the proposed
circuits. Numerous examples of practical FPGA implementations are reported in
Sect. 7.9.

7.1 Addition of Natural Numbers

Consider two radix-B numbers

x ¼ xn�1 � Bn�1 þ xn�2 � Bn�2 þ � � � þ x1 � Bþ x0

and

y ¼ yn�1 � Bn�1 þ yn�2 � Bn�2 þ � � � þ y1 � Bþ y0;

where all digits xi and yi belong to {0, 1,…, B-1}, and an input carry c0 belonging
to {0, 1}. An n-digit adder generates a radix-B number

z ¼ zn�1 � Bn�1 þ zn�2 � Bn�2 þ � � � þ z1 � Bþ z0;

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
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� Springer Science+Business Media Dordrecht 2012

153

http://dx.doi.org/10.1007/978-94-007-2987-2_3


and an output carry cn, such that

xþ yþ c0 ¼ cn � Bn þ z:

Observe that x ? y ? c0 B 2(Bn-1) ? 1 = 2Bn-1, so that cn belongs to {0, 1}.
The common way to implement an n-digit adder consists of connecting in series

n 1-digit adders (Fig. 7.1). For each of them

xi þ yi þ ci ¼ ci þ 1 � Bþ zi;

where ci and ci ? 1 belong to {0, 1}. In other words

zi ¼ xi þ yi þ cið Þmod B; ciþ 1 ¼ xi þ yi þ cið Þ=Bb c:

The critical path is

x0; y0; c0ð Þ ! c1 ! c2 ! � � � ! cn�1 ! zn�1; cnð Þ;

so that the total computation time is approximately equal to n�Tcarry where Tcarry is
the computation time of ci ? 1 in function of xi, yi and ci.

In order to reduce Tcarry, it is convenient to compute two binary functions
p (propagate) and g (generate) of xi and yi:

p xi; yið Þ ¼ 1 if xi þ yi ¼ B� 1; p xi; yið Þ ¼ 0 otherwise;

g xi; yið Þ ¼ 1 if xi þ yi�B; g xi; yið Þ ¼ 0 if xi þ yi�B� 2; otherwise; any value:
So, ci ? 1 can be expressed under the following way:

ciþ1 ¼ pðxi; yiÞ � ci þ pðxi; yiÞ � gðxi; yiÞ

The last relation expresses that if xi ? yi = B-1, then ci+1 is equal to ci; if
xi ? yi C B, then ci+1 = 1; if xi ? yi B B-2, then ci+1 = 0. The corresponding
implementation is shown in Fig. 7.2. It is made up of two 2-operand combinational
circuits that compute p(xi, yi) and g(xi, yi), and a multiplexer. In an n-digit adder
(Fig. 7.1), all functions p(xi, yi) and g(xi, yi) are computed in parallel, so that the
value of Tcarry is practically equal to the multiplexer delay Tmux.

xn-1 yn-1

cn-1

zn-1

1-digit
adder

cn

x1 y1

c1

z1

1-digit
adder

x0 y0

c0

z0

1-digit
adder

....
c2

Fig. 7.1 n-digit adder
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7.2 Binary Adder

If B = 2, then p(xi, yi) = xi XOR yi, and g(xi, yi) can be chosen equal to xi (or yi).
A complete n-bit adder is shown in Fig. 7.3. Its computation time is equal to

Tadder nð Þ ¼ Txor þ n� 1ð Þ � Tmux þmax Tmux; Txorf g; ð7:1Þ

and the delay from the input carry to the output carry is equal to

Tcarry�to�carry nð Þ ¼ n � Tmux: ð7:2Þ

Comment 7.1
Most FPGA’s include the basic components to implement the structure of Fig. 7.3,
and the synthesis tools automatically generate this optimized adder from a simple
VHDL expression such as

7.3 Radix-2k Adder

If B = 2k, then p(xi, yi) = 1 if xi ? yi = 2k-1, that is, if the k less significant bits
of si = xi ? yi are equal to 1, and g(xi, yi) = 1 if xi ? yi C 2k, that is, if the most
significant bit of si is equal to 1. The iterative cell of a radix-2k adder is shown
in Fig. 7.4. The critical path of the part of the circuit that computes g(xi, yi) and
p(xi, yi) has been shaded. Its computation time is equal to Tadder(k) +Tand.
An m-digit radix-2k adder is equivalent to an n-bit adder with n = m � k. The total
computation time is

Tadder nð Þ ¼ Tadder kð Þ þ Tand þ m� 1ð Þ � Tmux þ Thalf�adder kð Þ; ð7:3Þ

and the delay from the input carry to the output carry to

Tcarry�to�carry nð Þ ¼ m � Tmux: ð7:4Þ

xi yi

p

xi yi

g

ci+1 ci
1

0

Fig. 7.2 Carry computation
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The following VHDL model describes the basic cell of Fig. 7.4.

An alternative way of computing p = s0�s1�… �sk-1 is

The corresponding circuit is a k-bit half adder that computes t = (s mod 2k) + 1.
The most significant bit tk of t is equal to 1 if, and only if, all the bits of (s mod 2k)
are equal to 1. As mentioned above (Comment 7.1) most FPGA’s include the basic
components to implement the structure of Fig. 7.3. In the particular case where
x = 0, y = s and c0 = 1, the circuit of Fig. 7.4 is obtained. The apparently
unnecessary XOR gates are included because there is generally no direct con-
nection between the adder inputs and the multiplexer control inputs. Actually, the

1

0

x0 y0

c0

z0

1

0

x1 y1

z1

1

0

xn-1yn-1

zn-1

c1cn-1zn ....

Fig. 7.3 n-bit adder
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XOR gates are LUTs whose outputs are permanently connected to the carry-logic
multiplexers.

A complete generic model base_2 k_adder.vhd is available at the Authors’ web
page and examples of FPGA implementations are given in Sect. 7.9.

According to (7.3), the non-constant terms of Tadder(n) are:

• m�Tmux,
• k�Tmux included in Tadder(k) according to (7.1),
• k�Tmux included in Thalf-adder(k) according to (7.1).

Thus, the sum of the non-constant terms of Tadder(n) is equal to (2k ? m)�Tmux.
The value of 2k ? m, with m�k = n, is minimum when 2k % m, that is, when
k % (n/2)1/2. With this value of k, the sum of the non-constant terms of Tadder(n) is
equal to (8n)��Tmux. Thus, the computation time is O(n)� instead of O(n).

1-bit
adder

2-input
AND

xi(k-1)

....

yi(k-1)

si(k-1)

xi (1) yi(1) xi(0) yi(0)

si(1) si(0)

0
si(k)

2-input
AND

2-input
AND

1....
pi

ci+1

1
0 ci

1-bit
half adder .... 1-bit

half adder
1-bit

half adder

si(k-1) si(1) si(0)

zi(k-1) zi(1) zi(0)

...... ......

1-bit
adder

1-bit
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Fig. 7.4 Radix 2k adder
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1
0
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....pi
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implementation of a k-input
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Comments 7.2

1. The circuit of Fig. 7.4 is an example of carry-skip adder. For every group of
k bits, both the carry-propagate and carry-generate functions are computed.
If the carry-propagate function is equal to 1, the input carry is directly prop-
agated to the carry output of the k-bit group, thus skipping k bits.

2. A mixed-radix numeration system could be used. Assume that n = k1 ?

k2 ? … ? km; then a radix

ð2k1 ; 2k2 ; � � � ; 2kmÞ

representation can be considered. The corresponding adder consists of m
blocks, similar to that of Fig. 7.3, whose sizes are k1, k2,…, and km, respec-
tively. Nevertheless, within an FPGA it is generally better to use adders that fit
within a single column. Assuming that the chosen device has r carry-logic cells
per column, a good option could be a fixed-radix adder with k B r. In order to
minimize the computation time, k must be approximately equal to (n/2)1/2, so
that n must be smaller than 2r2, which is a very large number.

1-bit
adder

1-bit half
adder

xi(k-1)

....

yi(k-1)

zi0(k-1)

xi(1) yi(1) xi(0) yi(0)
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adder 1....

1-bit
adder

1-bit
adder

1-bit half
adder
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1
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0 1

Fig. 7.6 Carry select adder
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7.4 Carry Select Adders

Another way of reducing the computation time of a radix-2k adder consists in
computing, at each step, the next carry and the output digit for both values of the
input carry. The corresponding circuit is shown in Fig. 7.6.

The critical path of the part of the circuits that computes the two possible values
of the next carry and of the output digit has been shaded. Its computation time is
equal to Tadder(k) ? Tadder(2). The total computation time is (n = m�k)

Tadder nð Þ ¼ Tadder kð Þ þ Thalf adder 2ð Þ þ m� 1ð Þ � Tmux þ Tmux; ð7:5Þ

and the delay from the input carry to the output carry to

Tcarry�to�carry m � kð Þ ¼ m � Tmux: ð7:6Þ

The following VHDL model describes the basic cell of Fig. 7.6.

A complete generic model carry_select_adder.vhd is available at the Authors’ web
page and examples of FPGA implementations are given in Sect. 7.9.

The non-constant term of Tadder(n) is equal to (k ? m)�Tmux. The minimum
value is obtained when k % m, that is k % (n)�. With this value of k, the non-
constant term of Tadder(n) is equal to (4n)��Tmux. Thus, the computation time is
O(n)� instead of O(n).

xi(k-1··0) yi(k-1··0)

ci1

k-bit adder

zi1(k-1··0)

k-bit adder

0

1

ci0
zi0(k-1··0)

Fig. 7.7 Carry-select adder
(second version)
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Comment 7.3
As before (Comments 7.2) a mixed-radix numeration system could be
considered.

As a matter of fact, the FPGA implementation of a half-adder is generally not
more cost-effective than the implementation of a full adder. So, the circuit of
Fig. 7.6 could be slightly modified: instead of computing ci0 and ci1 with a full
adder and a half adder, two independent full adders of any type can be used
(Fig. 7.7).

The following VHDL model describes the modified cell:

The computation time of the modified circuit is

Tadder nð Þ ¼ Tadder kð Þ þ m� 1ð Þ � Tmux þ Tmux ¼ Tadder kð Þ þ m � Tmux: ð7:7Þ

A complete generic model carry_select_adder2.vhd is available at the Authors’
web page and examples of FPGA implementations are given in Sect. 7.9.

7.5 Logarithmic Adders

Several types of adders whose computation time are proportional to the logarithm
of n have been proposed. For example: carry-lookahead adders ([1], Chap. 6), Ling
adders [2], Brent-Kung prefixed adders [3], Ladner-Fischer prefixed adders [4].
Nevertheless, their FPGA implementations are generally not as fast as what could
be theoretically expected. There are two reasons for that. On the one hand, the
special purpose carry-logic included in most FPGAs is very fast, so that ripple-
carry adders are fast. Their computation time is approximately equal to a ? b�n,
where a and b are very small constants: a is the delay of a LUT and b is the delay
of a multiplexer belonging to the carry logic. On the other hand, the structure of
most logarithmic adders is not so regular as the structure of ripple-carry adders, so
that they include long connections which in turn introduce long additional delays.
The practical result is that, except for very great values of n, the adders described
in Sects. 7.2–7.4 are faster and more cost-effective.

Obviously, any optimization method that allows the dividing up of an n-bit
adder into smaller k-bit and m-bit adders, with k�m = n, in such a way that
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Tadder nð Þ ffi Tadder kð Þ þ Tadder mð Þ;

can be recursively used in order to generate a logarithmic adder. As an example,
consider again a carry-select adder. According to (7.7)

Tadder nð Þ ¼ Tadder kð Þ þ m:Tmux:

Assume that k = r�s. Then each k-bit adder (Fig. 7.7) can in turn be decomposed
in such a way that

Tadder kð Þ ¼ Tadder rð Þ þ s:Tmux;

so that the computation time of the corresponding 2-level carry-select adder is

Tadder nð Þ ¼ Tadder rð Þ þ ðsþ mÞ � Tmux;

where n = r�s�m. Finally, if n = n1�n2�… �nt, then a (t-1)-level carry-select adder,
whose computation time is equal to

Tadder n1 � n2 � . . . � ntð Þ ¼ Tadder n1ð Þ
þ n2 þ . . .þ ntÞ � Tmux ¼ Oðn1 þ n2 þ . . .þ ntð Þ;

can be generated.

Example 7.1
The following VHDL model describes an n-bit 2-level carry-select adder with
n = n1�n2�n3. First, define the basic cell carry_select_step3, in which two 1-level
carry-select adders, with k = n1 and m = n2, are used:

The complete circuit is made up of n3 basic cells:
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A complete generic model carry_select_adder3.vhd is available at the Authors’
web page and examples of FPGA implementations are given in Sect. 7.9.

7.6 Long-Operand Adder

In the case of long-operand additions, the n-digit operands can be broken down
into s-digit groups and the addition computed according to the following algorithm
in which natural_addition is a procedure that computes

zi ¼ xi þ yi þ cið Þmod Bs and ciþ1 ¼ xi þ yi þ cið Þ =Bsb c;

where xi, yi and zi are s-digit numbers, and ci and ci+1 are bits.

xn-1..n-s x2s-1..s xs-1..0
.....

k-1 1 0

yn-1..n-s y2s-1..s ys-1..0
.....

k-1 1 0 sel

s-digit addercout cin

DFF
init.:cin

enk-1 en0en1.....

zn-1..n-s z2s-1..s zs-1..0zn

Fig. 7.8 Long-operand adder
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Algorithm 7.1: Long-operand addition

The complete circuit (Fig. 7.8, with k = n/s) is made up of an s digit adder,
connection resources (k-to-1 multiplexers) giving access to the s-digit groups,
a D-flip-flop which stores the carries (ci in Algorithm 7.1), an output register
storing z, and a control unit whose main component is a k-state counter.

The following VHDL model describes the circuit of Fig. 7.8 (B = 2).

A complete generic model long_operand_adder.vhd is available at the Authors’
web page.
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7.7 Multioperand Adders

Consider m natural numbers x0, x1,…, xm-1. A multioperand adder computes

z ¼ x0 þ x1 þ � � � þ xm�1: ð7:8Þ

7.7.1 Sequential Multioperand Adders

In order to compute (7.8), the following (obvious) algorithm can be used.

Algorithm 7.2: Basic multioperand addition

The corresponding sequential circuit (Fig. 7.9) is made up of an n-digit adder, an
n-digit register, an m-to-1 n-digit multiplexer, and a control unit whose main
component is an m-state counter.

The following VHDL model describes the circuit of Fig. 7.9 (B = 2). The n�m-
bit vector x is the concatenation of x0, x1,…, xm-1.

x0

.....

0

x1

1

x2

2

xm-1

m -1
sel

n-digit adder

n-digit register
initially: 0

en_acc
load

z

Fig. 7.9 Multioperand
addition
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A complete generic model multioperand_adder.vhd is available at the Authors’
web page.

The computation time of the preceding m-operand n-digit sequential adder is
approximately equal to

Tsequential m; nð Þ ffi m � Tadder nð Þ: ð7:9Þ

In order to reduce the computation time, a carry-save adder can be used. The basic
component is shown in Fig. 7.10: it consists of n 1-digit adders working in parallel.
Given two n-digit numbers x and y, and an n-bit number c, it expresses the sum
(x ? y ? c) mod Bn under the form z ? d, where z is an n-digit number and d an
n-bit number. In other words, the carries are stored within the output binary vector
d instead of being propagated (stored-carry encoding). As all cells work in parallel
the computation time is independent of n.Let CSA be the function implemented by
the circuit of Fig. 7.10, that is

CSA x; y; cð Þ ¼ z; dð Þ;

where

zi ¼ xi þ yi þ cið Þmod B; di ¼ xi þ yi þ cið Þ =Bb c; 8i 2 0; 1; . . .; n� 1f g:

Assume that at every step of Algorithm 7.2 the value of accumulator is represented
under the form u ? v, where u is an n-digit number and v an n-bit number. Then, at
step j, the following operation must be executed:

u; vð Þ : ¼ CSA u; xj; v
� �

:

The following formal algorithm computes z.

xn-1 yn-1 cn-1

1-digit
adder

zn-1

x1 y-1 c1

1-digit
adder

z1

x0 y0 c0

1-digit
adder

z0dn-1 d1 d0

0....

Fig. 7.10 Carry-save adder

7.7 Multioperand Adders 165



Algorithm 7.3: Multioperand addition with stored-carry encoding

The sequential circuit corresponding to Algorithm 7.3 (Fig. 7.11) is made up of an
n-digit carry-save adder (Fig. 7.10), an n-digit register, an n-bit register, an m-to-1
n-digit multiplexer, a conventional n-digit adder implementing the last step of
Algorithm 7.3, and a control unit whose main component is an m-state counter.The
following VHDL model describes the circuit of Fig. 7.10 (B = 2). As before, x is
the concatenation of x0, x1,…, xm-1.

x0

.....

0

x1

1

x2

2

xm-1

m-1 sel

n-digit carry-save adder

n-digit register
initially: 0

en_acc
load

u

n-bit register
initially: 0

v

n-digit adder

z

Fig. 7.11 Carry save adder
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A complete generic model CSA_multioperand_adder.vhd is available at the
Authors’ web page.

Taking into account that the computation time of the circuit of Fig. 7.10 is
independent of the number n of digits, the computation time of the circuit of
Fig. 7.10 is approximately equal to

Tsequential csa m; nð Þ ffi m � Tadder 1ð Þ þ Tadder nð Þ: ð7:10Þ

....

...

x0,n-1 x1,n-1 x0,n-2 x1,n-2 x0,n-3 x1,n-3 x0,0 x1,0

x2,n-1 x2,n-2 x2,n-3 x2,0

x3,n-1 x3,n-2 x3,n-3 x3,0

xm-1,n-1 xm-1,n-2 xm-1,n-3 xm-1,0

zn-1 zn-2 zn-3 z0

Fig. 7.12 Multioperand
addition array
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7.7.2 Combinational Multioperand Adders

The combinational circuit that corresponds to Algorithm 7.2 is an iterative circuit
made up of m-1 2-operand n-digit adders. If every adder is a simple ripple-carry
adder, then the complete circuit is a 2-dimensional array made up of (m-1)�n one-
digit adders, as shown in Fig. 7.12 in which one of the critical paths has been
shaded. The corresponding computation time is equal to

Tcombinational m; nð Þ ¼ mþ n� 2ð Þ � Tadder 1ð Þ: ð7:11Þ

The following VHDL model describes the circuit of Fig. 7.12 (B = 2). As before,
x is the concatenation of x0, x1,…, xm-1.

x4,2 x5,2 x4,1 x5,1 x4,0 x5,0 x6,2 x7,2 x6,1 x7,1 x6,0 x7,0

z2 z1 z0

x0,2 x1,2 x0,1 x1,1 x0,0 x1,0 x2,2 x3,2 x2,1 x3,1 x2,0 x3,0

Fig. 7.13 Multioperand addition tree
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A complete generic model comb_multioperand_adder.vhd is available at the
Authors’ web page.

A most time-effective solution is a binary tree of 2-operand n-digit adders
instead of an iterative circuit. An example, with n = 3 and m = 8, is shown in
Fig. 7.13:

x0 ¼ x0;2x0;1x0;0; x1 ¼ x1;2x1;1x1;0; . . .; x7 ¼ x7;2x7;1x7;0:

...

...

...

...

0

0

0

0

x0,n-1

un-1 vn-1

x0,1

u1 v1

x0,0

u0 v0

x3,n-1 x3,1 x3,0

x4,n-1 x4,1 x4,0

xm-1,n-1 xm-1,1 xm-1,0

x1,n-1 x1,1 x1,0x2,n-1 x2,1 x2,0

Fig. 7.14 Combinational carry-save adder
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The depth of the tree is equal to dlog2me and its computation time (one of the
critical paths has been shaded) is approximately equal to

Tadder�tree m; nð Þ ffi n þ log2 m � 1ð Þ � Tadder 1ð Þ: ð7:12Þ

The following VHDL model describes the circuit of Fig. 7.13 (B = 2).

A complete generic model eight_operand_adder.vhd is available at the Authors’
web page.

Another way to reduce the computation time, with an iterative architecture
similar to that of Fig. 7.12, is to use the carry-save principle. An m-operand
carry-save array (Algorithm 7.3) is shown in Fig. 7.14 (if B [ 2, x2 must be an
n-bit number or an initial file that computes x0 ? x1 ? 0 must be added). The
result is the sum of two n-digit numbers u and v. In order to get the actual
result, an additional 2-operand n-digit adder is necessary for computing
u ? v (last instruction of Algorithm 7.3). The corresponding computation time
is equal to

Tcombinational csa m; nð Þ ¼ m� 2ð Þ � Tadder 1ð Þ þ Tadder nð Þ: ð7:13Þ

The following VHDL model describes a 2-operand carry-save adder, also called 3-
to-2 counter (Sect. 7.7.3). It corresponds to a file of the circuit of Fig. 7.14.

The complete circuit is made up of m-2 3-to-2 counters:
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A complete generic model comb_CSA_mutioperand_adder.vhd is available at the
Authors’ web page and examples of FPGA implementations are given in Sect. 7.9.

Comment 7.4
In all of the previously described multioperand adders, the operands, as well as the
result, were assumed to be n-digit numbers. If all of the operands belong to the
same range, and the result is known to be an n-digit number, whatever the value of
the operands, then the operands can be represented with (n–k) digits where
k % logBm, and the previously described circuits can be pruned.

7.7.3 Parallel Counters

Given two n-digit numbers x and y, and an n-bit number c, the carry-save adder of
Fig. 7.10 allows the expression of the sum (x ? y ? c) mod Bn under the form
z ? d, where z is an n-digit numbers and d an n-bit number. In other words, it
reduces the sum of three digits x, y and c to the sum of two digits z and d. For that
reason, it is also called a 3-to-2 counter.

This 3-to-2 counter can be used as a computation resource for reducing the sum
of m digits x0, x1,…, xm-1 to the sum of two digits u and v as shown in Fig. 7.14.
Thus, the circuit of Fig. 7.14 could be considered as an m-to-2 counter.

This type of construction can be generalized. As an example, consider an adder
that computes the sum of 6 bits x0, x1,…, x5. The result, smaller than or equal to 6,
is a 3-bit number. Thus, this 6-operand 1-bit adder computes

x0 þ x1 þ � � � þ x5 ¼ 4z2 þ 2z1 þ z0 ð7:14Þ

and can be implemented by three 6-input Look Up Tables (LUT6) working in
parallel:
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6-operand
1-bit adder

6-operand
1-bit adder

6-operand
1-bit adder

...

u1

v1

w1

x0,n-1x1,n-1··· x5,n-1

un-1

vn-1

wn-1

u0

v0

w0

0

0

0

···

x0,1x1,1··· x5,1 x0,0x1,0··· x5,0Fig. 7.15 6-to-3 counter

6-to-3
counter

6-to-3
counter

6-to-3
counter

6-to-3
counter

6-to-3
counter

6-to-3
counter

6-to-3
counter

x0x1··· x5
x6x7··· x11

x12x13··· x17
x18x19··· x23

Fig. 7.16 24-to-3 counter
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Then, by connecting in parallel n circuits of this type, a binary 6-to-3 counter is
obtained (Fig. 7.15):

The counter of Fig. 7.15 can in turn be used as a building block for generating

24-to-3
counter

x0x1··· x23

3-to-2
counter

2-operand adder

z

Fig. 7.17 24-operand adder
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more complex counters. As an example, the circuit of Fig. 7.16 is a 24-to-3
counter.

The computation time of the circuit of Fig. 7.16 is equal to 3TLUT6. More
generally, a tree made up of 2k-1 6-to-3 counters generates a 6�2k-1-to-3 counter,
with a computation time equal to k�TLUT6. In the case of Fig. 7.16, k = 3 and
6�2k-1 = 24.

Finally, with an additional 3-to-2 counter and an n-bit adder a 24-operand adder
is obtained (Fig. 7.17). Complete VHDL models six_to_three_counter.vhd and
twenty_four_operand_adder.vhd are available at the Authors’ web page and
examples of FPGA implementations are given in Sect. 7.9.

To summarize, an m-operand adder, with m = 6�2k-1, can be synthesized with
2k-1 6-to-3 counters plus a 3-to-2 counter and an n-bit adder. Its computation time is

T m; nð Þ ffi k � TLUT6 þ TFA þ Tadder nð Þ;

where k = log2m ? 1-log26 \ log2m.

Comment 7.5
More complex types of counters have been proposed (see, for example, Chap. 8 of
[1], Chap. 3 of [5], Chap. 11 of [6]). Nevertheless, they do not necessarily give
high performance FPGA implementations. As a matter of fact, in many cases the
best FPGA implementations are based on relatively simple algorithms, to which
correspond regular circuits that allow taking advantage of the special purpose carry

cin

xn yn

zn

n-digit adder

xn-1··0 yn-1··0

zn-1··0

Fig. 7.18 Radix-B B’s
complement adder

xn yn

zn

(B-1)’s
compl.

n-digit
adder

1

xn-1··0 yn-1··0

zn-1··0

y ’n-1··0

Fig. 7.19 Radix-B B’s
complement subractor
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logic circuitry, and permit the use of efficient design techniques such as pipelining
and digit-serial processing.

7.8 Subtractors and Adder–Subtractors

Given two radix-B naturals x and y, the difference z = x-y could be negative. So,
the subtraction operation must be considered over the set of integers. A convenient
way to represent integers is B’s complement: the vector

xnxn�1xn�2. . .x1x0; with xn 2 0; 1f g and xi 2 0; 1; . . .;B� 1f g8i\n;

represents

x ¼ �xn � Bn þ xn�1 � Bn�1 þ xn�2 � Bn�2 þ � � � þ x1 � Bþ x0:

Thus, xn is a sign bit: if xn = 0, x is a non-negative integer (a natural), and if
xn = 1, x is a negative integer. The range of represented integers is

�Bn� x\Bn:

Let xn xn-1 xn-2… x1 x0 and yn yn-1 yn-2… y1 y0 be the B’s complement repre-
sentations of x and y. If the sum z = x ? y ? cin, being cin an initial carry, belongs
to the interval -Bn B z \ Bn, then z is represented by the vector zn zn-1 zn-2… z1 z0

generated by the mixed-radix adder of Fig. 7.18 (all radix-B digits but the most
significant binary digits xn, yn and zn).

If the difference z = x-y belongs to the interval -Bn B z \ Bn, then z is
represented by the vector zn zn-1 zn-2… z1 z0, generated by the circuit of Fig. 7.19 in
which yi’ is the (B-1)’s complement of yi, Vi \ n.

The sum z = x ? y or the difference z = x-y could lie outside the interval -

Bn B z \ Bn (an overflow situation). In order to avoid overflows, both x and
y should be represented with an additional digit. In the case of B’s complement
representations, digit extension is performed as follows:

xnxn�1xn�2. . .x1x0 ! xnwnxn�1xn�2. . .x1x0; with wn ¼ xn � B� 1ð Þ:

For example, if B = 10 and x = 249, then x is represented by

(n+2)-bit
adder

yn··0

yn
xn··0

xn

zn+1··0

(n+2)-bit
adder

yn··0

y ’n
xn··0

xn

1

zn+1··0

y ’n··0

cin

Fig. 7.20 20s complement
adder and subractor
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0249; 00249; 000249; etc:

If B = 10 and x = -249, then x is represented by

1751; 19751; 199751; etc:

Observe that if B = 2, then the bit extension operation amounts to repeating the
most significant bit. In Fig. 7.20 a 20s complement adder and a 20s complement
subtractor are shown. In both cases the comparison of bits zn+1 and zn allows the
detection of overflows: if zn+1 = zn then the result does not belong to the interval
- Bn B z \ Bn.

The following VHDL models describe the circuits of Fig. 7.20.

Generic models two_s_comp_adder.vhd and two_s_comp_subtractor.vhd are
available at the Authors’ web page.

Table 7.1 Binary adders n LUTs Delay

32 32 2.25
64 64 2.98
128 128 4.44
256 256 7.35
512 512 13.1
1024 1024 24.82

Table 7.2 Radix-2k n-bit
adders

n k LUTs Delay

32 4 88 2.92
64 4 176 3.11
64 5 143 3.05
64 8 152 3.64
64 16 140 4.95
128 8 304 3.85
128 12 286 4.73
128 16 280 5.04
256 16 560 5.22
256 12 572 4.98
256 13 551 4.99
512 16 1120 5.59
1024 16 2240 6.31
1024 22 2303 6.15
1024 23 2295 6.13
1024 32 2304 6.41
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7.9 FPGA Implementations

Several adders have been implemented within a Virtex 5-2 device. All along this
section, the times are expressed in ns and the costs in numbers of Look Up Tables
(LUTs) and flip-flops (FF’s). All VHDL models as well as several test benches are
available at the Authors’ web page.

Table 7.3 n-bit carry-select
adders

n k LUTs Delay

32 6 84 4.83
32 8 72 3.99
32 4 60 3.64
64 8 144 6.06
64 16 199 4.17
64 4 120 4.03
128 12 417 5.37
128 16 399 4.87
256 16 799 5.69
256 32 783 5.26
256 13 819 5.64
512 16 1599 6.10
512 32 1567 6.09
512 23 1561 6.16
1024 16 3199 6.69
1024 64 3103 6.74
1024 32 3135 6.52

Table 7.4 n-bit carry-select
adders (version 2)

n k Delay

32 8 3.99
256 16 5.69
512 32 6.09
1024 32 6.52

Table 7.5 n-bit adders with
n = n1�n2�n3

n n1 n2 n3 LUTs Delay

256 16 4 4 1452 6.32
256 4 16 4 684 6.81
512 8 8 8 2120 10.20
512 4 16 8 1364 7.40
512 16 4 8 2904 7.33
1024 16 4 16 5808 10.33
1024 16 16 4 6242 7.79
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7.9.1 Binary Adder

The circuit is shown in Fig. 7.3. The synthesis results for several numbers n of bits
are given in Table 7.1.

7.9.2 Radix 2k Adders

The circuit is shown in Fig. 7.4. The synthesis results for several numbers n = 2k

of bits are given in the Table 7.2. In these implementations, the carry propa-
gation multiplexer muxcy has been explicitly instantiated within the VHDL
description.

Table 7.6 Long-operand adders

n s k FF LUTs Period Total time

128 8 16 135 107 3.21 51.36
128 16 8 134 97 3.14 25.12
128 32 4 133 132 3.18 12.72
128 64 2 132 137 3.45 6.90
256 16 16 263 187 3.40 54.40
256 32 8 262 177 3.51 28.08
256 64 4 261 234 3.87 15.48
512 16 32 520 381 3.92 125.44
512 32 16 519 347 3.78 60.48
512 64 8 518 337 4.26 34.08
1024 16 64 1033 757 4.20 268.80
1024 32 32 1034 717 4.32 138.24
1024 64 16 1031 667 4.55 72.80
2048 32 64 2063 1427 4.45 284.80
2048 64 32 2056 1389 5.04 161.28

Table 7.7 Sequential
multioperand adders

n m FF LUTs Period Total time

8 4 12 23 2.25 9.00
8 8 13 32 2.37 18.96
16 16 22 90 2.71 43.36
16 8 21 56 2.57 20.56
32 32 39 363 3.72 119.04
32 16 38 170 3.09 49.44
32 64 40 684 3.89 248.96
64 64 72 1356 4.62 295.68
64 32 71 715 4.48 143.36
64 16 70 330 4.41 70.56
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7.9.3 Carry Select Adder

The circuit is shown in Fig. 7.6. The synthesis results for several numbers n = m�k
of bits are given in Table 7.3.

The alternative circuit of Fig. 7.7 has also been implemented for several values
of n. The results are given in Table 7.4.

7.9.4 Logarithmic Adders

The synthesis results for several numbers n = n1�n2�n3 of bits are given in Table 7.5.

7.9.5 Long Operand Adder

The circuit is shown in Fig. 7.8. The synthesis results for several numbers n = k�s
of bits are given in Table 7.6. Both the clock period Tclk and the total delay (k�Tclk)
are given.

Table 7.8 Sequential carry-
save adders

n m FF’s LUTs Period Total time

8 4 19 37 1.81 7.24
8 8 20 46 1.81 14.48
16 16 37 120 1.87 29.92
16 8 36 86 1.84 14.72
32 32 70 425 2.57 82.24
32 16 69 232 1.88 30.08
32 64 71 746 2.68 171.52
64 64 135 1482 2.69 172.16
64 32 134 841 2.61 83.52
64 16 133 456 1.9 30.40

Table 7.9 Multioperand
addition array

n m LUTs Delay

8 4 21 2.82
8 8 47 5.82
16 16 219 11.98
16 8 103 6.00
32 32 947 24.32
32 8 215 6.36
32 16 459 12.35
32 64 1923 47.11
64 64 3939 49.98
64 32 1939 25.04
64 16 939 13.07
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7.9.6 Sequential Multioperand Adders

The circuit is shown in Fig. 7.9. The synthesis results for several numbers n of bits
and m of operands are given in Table 7.7. Both the clock period Tclk and the total
delay (m�Tclk) are given.

The carry-save adder of Fig. 7.10 has also been implemented. The results are
given in Table 7.8.

7.9.7 Combinational Multioperand Adders

The circuit of Fig. 7.12 has been implemented. The synthesis results for several
numbers n of bits and m of operands are given in Table 7.9.

The carry-save adder of Fig. 7.14 has also been implemented. The results are
given in Table 7.10.

Table 7.10 Combinational
carry-save adder

n m LUTs Delay

8 4 22 2.93
8 8 68 5.49
16 16 314 10.26
16 8 135 5.59
32 32 1388 20.03
32 8 279 5.95
32 16 649 10.65
32 64 2868 37.75
64 64 5844 39.09
64 32 2828 20.31
64 16 1321 11.35

Table 7.11 8-operand
addition trees

n LUTs Delay

8 50 3.78
16 106 3.97
32 218 4.33
64 442 5.06

Table 7.12 24-operand
adders based on 6-to-3
counters

n LUTs Delay

8 157 4.59
16 341 4.77
24 525 4.95
32 709 5.13
64 1445 5.86
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As an example of multioperand adddition trees (Fig. 7.13), several 8-bit adders
have been implemented, with the results given in Table 7.11.

Examples of implementation results for 24-operand adders based on 6-to-3
counters (Fig. 7.17) are given in Table 7.12.

7.9.8 Comparison

A comparison between four types of 2-operand adders, namely binary (normal),
radix-2k, carry-select and logarithmic adders, has been done: Fig. 7.21 gives the
corresponding adder delays (ns) in function of the number n of bits.

7.10 Exercises

1. Generate a generic model of a 20s complement adder–subtractor with overflow
detection.

2. An integer x can be represented under the form (–1)s � m where s is the sign of
x and m its magnitude (absolute value). Design an n-bit sign-magnitude adder–
subtractor.

3. Design several n-bit counters, for example

7-to-3,
31-to-3,
5-to-2,
26-to-2.

4. Design a self-timed 64-bit adder with end of computation detection (done
signal).

0
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0 200 400 600 800 1000 1200

normal

Base_2k

Carry_sel

log_add

Fig. 7.21 Delay in function of the number of bits for several 2-operand adders
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5. Generate several generic models of an incrementer/decrementer, that is, a
circuit that computes x ± 1 mod m under the control of an upb/down binary
signal.
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Chapter 8
Multipliers

Multiplication is a basic arithmetic operation whose execution is based on 1-digit
by 1-digit multipliers and multi-operand adders. Most FPGA families include the
basic components for implementing fast and cost-effective multipliers. Further-
more, they also include optimized fixed-size multipliers which, in turn, can be used
for implementing larger-size multipliers.

The basic multiplication algorithm is described in Sect. 8.1. Several combi-
national implementations are proposed in Sect. 8.2. They correspond to different
types of multi-operand adders: iterative ripple-carry adders, carry-save adders,
multi-operand adders based on counters, radix-2k and mixed-radix adders.
Sequential implementations are proposed in Sect. 8.3. They used the shift and add
method implemented with either a ripple-carry adder or a carry-save adder. If
integer operands are considered, several options are proposed in Sect. 8.4. A first
method consists of multiplying B’s complement integers as they are naturals; the
drawback of this conceptually simple method is that the operands must be rep-
resented, and multiplied, with as many digits as the final result. Better options are a
modification of the shift and add algorithm, multiplication of naturals followed
by a post-correction, and the Booth algorithms. The last section describes a
LUT-based method for implementing a constant multiplier, that is to say, circuits
that compute c � y ? u, where c is a constant.

8.1 Basic Algorithm

Consider two radix-B numbers

x ¼ xn�1 � Bn�1 þ xn�2 � Bn�2 þ . . . þ x1 � Bþ x0 and

y ¼ ym�1 � Bm�1 þ ym�2 � Bm�2 þ . . . þ y1 � Bþ y0;

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_8,
� Springer Science+Business Media Dordrecht 2012
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where xi and yi belong to {0, 1,…, B -1}. An n-digit by m-digit multiplier
generates a radix-B number

z ¼ znþm�1 � Bnþm�1 þ znþm�2 � Bnþm�2 þ . . . þ z1 � Bþ z0

such that

z ¼ x � y:

A somewhat more general definition considers the addition of two additional
numbers

u ¼ un�1 � Bn�1 þ un�2 � Bn�2 þ . . . þ u1 � Bþ u0 and

v ¼ vm�1 � Bm�1 þ vm�2 � Bm�2 þ . . . þ v1 � Bþ v0;

so that

z ¼ x � yþ uþ v: ð8:1Þ

Observe that the maximum value of z is

Bn � 1ð Þ Bm � 1ð Þ þ Bn � 1ð Þ þ Bm � 1ð Þ ¼ Bnþm � 1:

In order to compute (8.1), first define a 1-digit by 1-digit multiplier: given four
B-ary digits a, b, c and d, it generates two B-ary digits e and f such that

a � bþ cþ d ¼ e � Bþ f ð8:2Þ

(Fig. 8.1a).
If B = 2, it amounts to a 2-input AND gate and a 1-digit adder (Fig. 8.1b).
An n-digit by 1-digit multiplier made up of n 1-digit by 1-digit multipliers is

shown in Fig. 8.2. It computes as

z ¼ x � bþ uþ d ð8:3Þ

where x and u are n-digit numbers, b and d are 1-digit numbers, and z is an
(n ? 1)-digit number. Observe that the maximum value of z is

Bn � 1ð Þ B� 1ð Þ þ Bn � 1ð Þ þ B� 1ð Þ ¼ Bnþ1 � 1:

x

a b

c

d

f

e

a b c

de FA

f

(a) (b)

Fig. 8.1 1-digit by 1-digit
multiplier. a Symbol,
b internal structure (B = 2)

184 8 Multipliers



Using the iterative circuit of Fig. 8.2 as a computation resource, the computation
of (8.1) amounts to computing the m n-digit by 1-digit products

z 0ð Þ ¼ x � y0 þ uþ v0;

z 1ð Þ ¼ x � y1 þ v1ð ÞB;
z 2ð Þ ¼ x � y2 þ v2ð ÞB2;

. . .

z m�1ð Þ ¼ x � ym�1 þ vm�1ð ÞBm�1;

ð8:4Þ

and to adding them, that is

z ¼ z 0ð Þ þ zð1Þ þ zð2Þ þ . . . þ zðm�1Þ ¼ x � yþ uþ v: ð8:5Þ

For that, one of the multioperand adders of Sect. 7.7 can be used. As an example, if
Algorithm 7.2 is used, then z is computed as follows.

Algorithm 8.1: Multiplication, right to left algorithm

8.2 Combinational Multipliers

8.2.1 Ripple-Carry Parallel Multiplier

The combinational circuit of Fig. 8.3 implements Algorithm 8.1 (with n = 4 and
m = 3). One of its critical paths has been shaded. Its computation time is equal to

Tmultiplier n;mð Þ ¼ nþ 2m� 2ð Þ � Tmultiplier 1; 1ð Þ: ð8:6Þ

x x x x

xn-1 b xn-2 x1 x0b b bun-1 un-2 u1 u0

d
.....

zn-1 zn-2 z1 z0zn

Fig. 8.2 n-digit by 1-digit multiplier

8.1 Basic Algorithm 185

http://dx.doi.org/10.1007/978-94-007-2987-2_7


The following VHDL model describes the circuit of Fig. 8.3 (B = 2).

x x x x

x3 y0 x2 x1 x0y0 y0 y0u3 u2 u1 u0

v0

x x

x3 y1 x2 x1 x0y1 y1 y1

xx
v1

x x

x3 y2 x2 x1 x0y2 y2 y2

xx
v2

z3 z2

z1

z0

z6 z5 z4

Fig. 8.3 Combinational multiplier
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A complete generic model parallel_multiplier.vhd is available at the Authors’
web page.

8.2.2 Carry-Save Parallel Multiplier

A straightforward modification of the multiplier of Fig. 8.3, similar to the
carry-save principle, is shown in Fig. 8.4. The circuit is made up of an n-by-
m array of 1-by-1 multipliers, whose computation time is equal to n � T(1,1),
plus an m-digit output adder. Its critical path has been shaded. Its computation
time is equal to

Tmultiplier n;mð Þ ¼ n � Tmultiplier 1; 1ð Þ þ m � Tadder 1ð Þ � nþ mð Þ � Tmultiplier 1; 1ð Þ:
ð8:7Þ

The following VHDL model describes the circuit of Fig. 8.4 (B = 2).
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A complete generic model parallel_csa_multiplier.vhd is available at the Authors’
web page.

xx x x

x3 y0 x2 x1 x0y0 y0 y0

v0

u3 u2 u1 u0

v1v20

xx x x

x3 y1 x2 x1 x0y1 y1 y1

0

xx x x

0

x3 y2 x2 x1 x0y2 y2 y2

+ + + +

z3

z2

z1

z0

z6 z5 z4

Fig. 8.4 Carry-save combinational multiplier
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8.2.3 Multipliers Based on Multioperand Adders

A straightforward implementation of Eqs. (8.4) and (8.5) can also be considered
(Fig. 8.5). For that, any type of multioperand adder can be used.

Example 8.1
Consider an n-bit by 7-bit multiplier. The 7-operand adder can be divided up into a 7-
to-3 counter, a 3-to-2 counter and a ripple-carry adder. The complete structure is shown
in Fig. 8.6 and is described by the following VHDL model:

A complete generic model N_by_7_multiplier.vhd is available at the Authors’
web page.

Numerous multipliers, based on trees of counters, have been proposed and
reported, among others the Wallace and Dadda multipliers (Wallace [4]; Dadda
[3]). Nevertheless, as already mentioned before (Comment 7.5), in many cases the
best FPGA implementations are based on relatively simple algorithms, to which
correspond regular circuits that allow taking advantage of the special purpose carry
logic circuitry. To follow, an example of efficient FPGA implementation is
described.

Consider the set of equations (8.4). If two successive steps are merged within an
only step (loop unrolling), the new set of equations is:

z 1;0ð Þ ¼ x � y1 þ v1ð ÞBþ x � y0 þ uþ v0;

z 3;2ð Þ ¼ x � y3 þ v3ð ÞBþ x � y2 þ v2ð Þ½ �B2;

. . .

z m�1;m�2ð Þ ¼ ½ x � ym�1 þ vm�1ð ÞBþ x � ym�2 þ vm�2ð Þ�Bm�2;

ð8:8Þ
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x ym-1
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x b
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z

z=x·b+u+d
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x b

u

d
z
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z(1)

x y0

v0

x b
u

d
z

z=x·b+u+d

x B0

z(0)

u
····

z

multioperand adder

Fig. 8.5 Multiplier with a multioperand adder
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0
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u
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z

z=x·b+u+d
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v1

0
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u

d
z

z=x·b+u+d
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z (1)

x y0

v0
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u
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u
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w (6) w (1) w (1)

x (1) x (2) x(3)
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Fig. 8.6 An n-bit by 7-bit multiplier
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and the product is equal to

z ¼ z 1;0ð Þ þ zð3;2Þ þ . . . þ zðm�1;m�2Þ:

Assuming that u = 0, the basic operation to implement (8.8) is

z iþ1;ið Þ ¼ x � yjþ1 þ vjþ1
� �

Bþ x � yj þ vj

� �

to which corresponds the circuit of Fig. 8.7 (with n = 4).
The circuit of Fig. 8.7 can be decomposed into n ? 1 vertical slices of the type

shown in Fig. 8.8a (with obvious simplifications regarding the first and last slices).
Finally, if B = 2 and vj = 0, the carries of the first line are equal to 0, so that the
circuit of Fig. 8.8a can be implemented as shown in Fig. 8.8b.

Comment 8.1

Most FPGA’s include the basic components for implementing the structure of
Fig. 8.8b, and the synthesis tools have the capability to generate optimized mul-
tipliers from a simple VHDL expression, such as

z \¼ x � y;

Furthermore, many FPGA’s also include fixed-size multiplier blocks.

8.2.4 Radix-2k and Mixed-Radix Parallel Multipliers

The basic multiplication algorithm (Sect. 8.1) and the corresponding ripple-carry
and carry-save multipliers (Sects. 8.2.1 and 8.2.2) have been defined for any radix-
B. In particular, radix-2k multipliers can be defined. This allows the synthesis of
n � k-bit by m � k-bit multipliers using k-bit by k-bit multipliers as building blocks.

x x x x

x3 yj x2 x1 x0yj yj yj

vj

0 0 0 0

x x

x3 yj+1 x2 x1 x0yj+1 yj+1 yj+1

xx
vj+1

z5
(j+1,j) z4

(j+1,j) z3
(j+1,j) z2

(j+1,j) z1
(j+1,j)

z0
(j+1,j)

Fig. 8.7 4-digit by 2-digit multiplier
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The following VHDL model defines a radix-2k ripple-carry parallel multiplier.
The main iteration consists of m � n instantiations of any type of k-bit by k-bit
combinational multiplier that computes z = a � b ? c ? d and represents z under
the form zH � 2k þ zL; where zH and zL are k-bit numbers:

x

yj

yj+1

x

zi
(j+1,j)

xi 0

xi-1

cji

cj+1,i-1

cj,i+1

cj+1,i

yjxi yj+1xi-1

p = xiyj XOR xi-1yj+1

0

1
cj+1,i-1cj+1,i

zi
(j+1,j)

(a) (b)

Fig. 8.8 Iterative cell of a parallel multiplier
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A complete generic model base_2k_parallel_multiplier.vhd is available at the
Authors’ web page.

The stored-carry encoding can also be applied. Once again, the main iteration
consists of m � n instantiations of any type of k-bit by k-bit multiplier, and the
connections are similar to those of the carry-save multiplier of Sect. 8.2.2. A
complete generic model base_2k_csa_multiplier.vhd is available at the Authors’
web page.

A straightforward generalization of relations (8.2) to (8.5) allows defining
mixed-radix combinational multipliers. First consider the circuit of Fig. 8.1a,
assuming that

a; c 2 0; 1; . . . ;B1 � 1f g; and b; d 2 0; 1; . . . ;B2 � 1f g:

Then

z ¼ a � bþ cþ d� B1 � 1ð Þ � B2 � 1ð Þ þ B1 � 1ð Þ þ B2 � 1ð Þ ¼ B1 � B2 � 1;

so that z can be expressed under the form

z ¼ e � B1 þ f ; with e 2 0; 1; . . . ;B2 � 1f g; f 2 0; 1; . . . ;B1 � 1f g:

Then, consider the circuit of Fig. 8.2, assuming that x and u are n-digit radix-B1

numbers, and b and d are 1-digit radix-B2 numbers. Thus,

x � bþ uþ d ¼ zn � Bn
1 þ zn�1 � Bn�1

1 þ . . . þ z1 � B1 þ z0; ð8:9Þ

with

zn 2 0; 1; . . . ;B2 � 1f g and zi 2 0; 1; . . . ;B1 � 1f g; 8i in 0; 1; . . . ; n� 1f g:

Finally, given two n-digit radix-B1 numbers x and u, and two m-digit radix-B2

numbers y and v, compute

z 0ð Þ ¼ x � y0 þ uþ v0;

z 1ð Þ ¼ x � y1 þ v1ð ÞB2;

z 2ð Þ ¼ x � y2 þ v2ð ÞB2
2;

. . .

z m�1ð Þ ¼ x � ym�1 þ vm�1ð ÞBm�1
2 :

ð8:10Þ

Then

z ¼ z 0ð Þ þ zð1Þ þ zð2Þ þ . . . þ zðm�1Þ ¼ x � yþ uþ v: ð8:11Þ

Consider the case where

B1 ¼ 2k1 ; B2 ¼ 2k2 :
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An easy way to define a VHDL model of the corresponding multiplier consists
in first modelling a circuit that implements (8.9). The main iteration consists of
n instantiations of any type of k1-bit by k2-bit combinational multiplier that
computes

a � bþ cþ d ¼ zH � 2k1 þ zL;

where zH is a k2-bit number and zL a k1-bit number:

Then, it remains to instantiate m rows:

A complete generic model MR_parallel_multiplier.vhd is available at the Authors’
web page.

The circuit defined by the preceding VHDL model is a bidirectional array
similar to that of Fig. 8.3, but with more complex connections. As an example,
with k1 = 4 and k2 = 2, the connections corresponding to cell (j, i) are shown in
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Fig. 8.9. As before, a stored-carry encoding circuit could also be designed, but
with an even more complex connection pattern. It is left as an exercise.

8.3 Sequential Multipliers

8.3.1 Shift and Add Multiplier

In order to synthesize sequential multipliers, the basic algorithm of Sect. 8.1 can be
modified. For that, Eq. (8.4) are substituted by the following:

x4i+3··4i y2j+1··2j x4i-1··4i-4 y2j+1··2j

x4i+3··4i y2j-1··2j-2x4i+7··4i+4 y2j-1··2j-2

a b
c

d
e

f

a b
c

d
e

f

a b
c

d
e

f

a b
c

d
e

f

j-1,i+1 j-1,i

j,i-1j,i

Fig. 8.9 Part of a 4n-bit by 2n-bit multiplier using 4-bit by 2-bit multiplication blocks
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z 0ð Þ ¼ uþ x � y0 þ v0ð Þ=B;

z 1ð Þ ¼ zð0Þ þ x � y1 þ v1

� �
=B;

z 2ð Þ ¼ z1Þ þ x � y2 þ v2

� �
=B;

. . .

z m�1ð Þ ¼ zðm�2Þ þ x � ym�1 þ vm�1

� �
=B:

ð8:12Þ

Multiply the first equation by B, the second by B2, and so on, and add the so
obtained equations. The result is

z m�1ð ÞBm ¼ uþ x � y0 þ v0 þ x � y1 þ v1ð ÞBþ . . . þ x � ym�1 þ vm�1ð ÞBm�1

¼ xyþ uþ v:

Algorithm 8.2: Shift and add multiplication

A data path for executing Algorithm 8.2 is shown in Fig. 8.10a. The following
VHDL model describes the circuit of Fig. 8.10a (B = 2).

x

xu b

dzn..1 z0

Fig. 8.2

shift register
initially: y

register
initially: u

shift register
initially: v

zn+m-1..m zm-1..0

(a)

xu b

dzn..1 z0

Fig. 8.2

register
initially: u

shift register
initially: y

zn+m-1..m zm-1..0

(b)

0

Fig. 8.10 Shift and add multipliers
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The complete circuit also includes an m-state counter and a control unit.
A complete generic model shift_and_add_multiplier.vhd is available at the
Authors’ web page.

If v = 0, the same shift register can be used for storing both y and the least
significant bits of z. The modified circuit is shown in Fig. 8.10b. A complete
generic model shift_and_add_multiplier2 is also available.
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The computation time of the circuits of Fig. 8.10 is approximately equal to

Tmultiplier n;mð Þ ¼ m � Tmultiplier n; 1ð Þ ¼ m � n � Tmultiplier 1; 1ð Þ: ð8:13Þ

8.3.2 Shift and Add Multiplier with CSA

The shift and add algorithm can also be executed with stored-carry encoding. After
m steps the result is obtained under the form

sn�1 Bnþm�1 þ cn�2 þ sn�2ð ÞBnþm�2 þ . . . þ c0 þ s0ð ÞBm þ zm�1 Bm�1 þ . . .
þ z1Bþ z0;

and an additional n-digit adder computes

sn�1 Bn�1 þ cn�2 þ sn�2ð ÞBn�2 þ . . .þ c0 þ s0ð Þ
¼ zmþn�1 Bn�1 þ . . . þ zmþ1 Bþ zm:

The corresponding data path is shown in Fig. 8.11. The carry-save adder computes

y1 þ y2 þ y3 ¼ sþ c;

where y1, y2 and y3 are n-bit numbers, and s and c are (n ? 1)-bit numbers. At the
end of step i, the less significant bit of s is zi, and the n most significant bits of s and
c are transmitted to the next step:

x

cn..1 s0

carry-save adder
y

register
initially: v

shift register
initially: y

zm-1..0

sn..1

y1

register
initially: u

y2 y3

zn+m-1..m

adder

Fig. 8.11 Sequential carry-
save multiplier
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The complete circuit also includes an m-state counter and a control unit. A com-
plete generic model sequential_CSA_multiplier.vhd is available at the Authors’
web page. The minimum clock period is equal to the delay of a 1-bit by 1-bit
multiplier. Thus, the total computation time is equal to

Tmultiplier n;mð Þ ¼ m � Tmultiplier 1; 1ð Þ þ Tadder nð Þ � nþ mð Þ � Tmultiplier 1; 1ð Þ:
ð8:14Þ

Comment 8.2

In sequential_CSA_multiplier.vhd the done flag is raised as soon as the final values
of the adder inputs are available. A more correct control unit should raise the flag
k cycles later, being k � Tclk an upper bound of the n-bit adder delay. The value of
k could be defined as a generic parameter (Exercise 8.3).

8.4 Integers

Given four B’s complement integers

x ¼ xnxn�1xn�2. . .x0; y ¼ ymym�1ym�2. . .y0; u ¼ unun�1 un�2. . .u0;

v ¼ vmvm�1vm�2 . . . v0;

belonging to the ranges

�Bn� x\Bn;�Bm� y\Bm;�Bn� u\Bn;�Bm� v\Bm;

then z = x � y ? u ? v belongs to the interval
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�Bnþmþ1� z\Bnþmþ1:

Thus, z is a B’s complement number of the form

z ¼ znþmþ1 znþm znþm�1 . . . z1z0:

8.4.1 Mod 2Bn+m Multiplication

The integer represented by a vector xn xn�1 xn�2 . . . x1 x0 is

x ¼ �xnBn þ xn�1 Bn�1 þ xn�2 Bn�2 þ . . .þ x1Bþ x0;

while the natural natural(x) represented by this same vector is

natural xð Þ ¼ xnBn þ xn�1 Bn�1 þ xn�2 Bn�2 þ . . .þ x1Bþ x0:

As xn [ {0, 1}, either natural(x) = x or natural(x) = x +2Bn. So,

natural xð Þ ¼ x mod 2Bn:

The following method can be used to compute z = x � y ? u ? v. First, represent
the operands x, y, u and v with the same number of digits (n ? m ? 2) as the result
z (digit extension, Sect. 7.8). Then, compute z = x � y ? u ? v as if x, y, u and
v were naturals:

z ¼ natural xð Þ � natural yð Þ þ natural uð Þ þ natural vð Þ ¼ natural x � yþ uþ vð Þ:

Finally, reduce z modulo 2Bnþmþ1: Assume that before the mod 2Bnþmþ1 reduction

z ¼ . . . þ znþmþ1 Bnþmþ1 þ znþm Bnþm þ znþm�1 Bnþm�1 þ . . .þ z1Bþ z0;

then

z mod 2Bnþmþ1 ¼ . . .þ znþmþ1 mod 2ð ÞBnþmþ1 þ znþm Bnþm þ znþmþ1 Bnþm�1

þ . . .þ z1Bþ z0:

In particular, if B is even,

z mod 2Bnþmþ1 ¼ znþmþ1 2ð ÞBnþmþ1 þ znþm Bnþm þ znþm�1 Bnþm�1 þ . . .þ z1Bþ z0:

Example 8.2
Assume that B = 10, n = 4, m = 3, x = 7918, y = -541, u =

-7017, v = 742, and compute z = 7918�(-541) ? (-7017) ? 742. In 10’s
complement: x = 07918, y = 1459, u = 12983, v = 0742.

1. Express all operands with 9 digits: x = 000007918, y = 199999459, u =

199992983, v = 000000742.
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2. Compute x � y ? u ? v: 000007918�199999459 ? 199992983 ? 000000742 =

1583795710087.
3. Reduce 1583795710087 modulo 2�108: (1583795710087) mod 2�108 = (7 mod 2)�

108 ? 95710087 = 195710087.

The result 195710087 is the 10’s complement representation of -4289913.
Thus, any multiplier for natural numbers can be used. As an example, an

(n ? m ? 2)-digit by (n ? m ? 2)-digit carry-save multiplier could be used
(Fig. 8.4). As the result is reduced modulo 2Bn+m+1, only the rightmost part of the
circuit is used (if B is even), so that there is no output adder, and the most
significant digit is reduced mod 2. An example with n = 3 and m = 2 is shown in
Fig. 8.12. The corresponding computation time is equal to

nþ mþ 2ð Þ � Tmultiplier 1; 1ð Þ: ð8:15Þ

This delay is practically the same as that of a carry-save combinational multiplier
(8.7). Nevertheless, the number of 1-digit by 1-digit multiplication cells is equal to
1þ 2þ 3þ . . .þ nþ mþ 2ð Þ ¼ nþ mþ 2ð Þ nþ mþ 3ð Þ=2 instead of n � m.

u0v0u1u2u3u3u3u3 v1v2v2v2v2v2

z0

z1

z2

z3

z4

z5

z6

0,01,02,03,03,03,03,0

0,11,12,13,13,13,1

0,21,22,23,23,2

0,21,22,23,2

0,21,22,2

0,21,2

0,2

j,i

c d

e f

xj·yi + c + d = 2e + f

Fig. 8.12 Carry-save multiplier for integers (n = 3, m = 2)
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A very simple way to generate a VHDL model consists of defining
(n ? m ? 2)-bit representations of all operands and instantiating an (n ? m ? 2)-
bit by (n ? m ? 2)-bit carry-save multiplier:

Only n ? m ? 2 output bits of the carry-save multiplier are connected to output
ports, and the synthesis program will prune the circuit accordingly.

A complete generic model integer_CSA_multiplier.vhd is available at the
Authors’ web page.

To conclude, this approach is conceptually attractive because any type of
multiplier for natural numbers can be used. Nevertheless, the cost of the corre-
sponding circuits is very high.

8.4.2 Modified Shift and Add Algorithm

Consider again four B’s complement integers

x ¼ xn xn�1 xn�2 . . . x0; y ¼ ymym�1 ym�2 . . . y0; u ¼ un un�1 un�2 . . . u0;

v ¼ vm vm�1 vm�2 . . . v0:

A set of equations similar to (8.12) can be defined:

z 0ð Þ ¼ uþ x � y0 þ v0ð Þ=B;

z 1ð Þ ¼ zð0Þ þ x � y1 þ v1

� �
=B;

z 2ð Þ ¼ z1Þ þ x � y2 þ v2

� �
=B;

. . .

z m�1ð Þ ¼ zðm�2Þ þ x � ym�1 þ vm�1

� �
=B;

z mð Þ ¼ zðm�1Þ � x � ym � vm

� �
=B:

ð8:16Þ
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Multiply the first equation by B, the second by B2, and so on, and add the m ? 1
so obtained equations. The result is

z mð ÞBmþ1 ¼ uþ x � y0 þ v0 þ x � y1 þ v1ð ÞBþ . . . þ x � ym�1 þ vm�1ð ÞBm�1

� x � ym þ vmð ÞBm

¼ xyþ uþ v:

Algorithm 8.3: Modified shift and add multiplication

In what follows it is assumed that vm = 0, that is to say v C 0; so, in order to
implement Algorithm 8.3, the two following computation primitives must be
defined:

z ¼ uþ x � bþ d ð8:17Þ

and

z ¼ u� x � b; ð8:18Þ

where

�Bn� x\Bn;�Bn� u\Bn; 0 � b\B; 0 � d\B:

Thus, in the first case,

�Bnþ1� z\Bnþ1;

and in the second case

�Bnþ1 þ B� 1ð Þ � z\Bnþ1;

so that in both cases z is an (n ? 2)-digit B’s complement integer and natu-
ral(z) = z mod 2Bn+1.

The first primitive (8.17) is implemented by the circuit of Fig. 8.13 and the
second (8.18) by the circuit of Fig. 8.14. In both, circuit zn+1 is computed
modulo 2.

As an example, the combinational circuit of Fig. 8.15 implements Algorithm
8.3 (with n = m = 2). Its cost and computation time are practically the same as in
the case of a ripple-carry multiplier for natural numbers. It can be described by the
following VHDL model.
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Fig. 8.14 Second computation primitive
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Fig. 8.13 First computation primitive
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x2 y0 x2 x1 x0y0 y0 y0u3 u2 u1 u0
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Fig. 8.15 Combinational
multiplier for integers
(B = 2, m = n = 2)
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A complete generic model modified_parallel_multiplier.vhd is available at the
Authors’ web page.

The design of a sequential multiplier based on Algorithm 8.3 is left as an
exercise.

8.4.3 Post Correction Multiplication

Given four B’s complement integers

x ¼ xn xn�1 xn�2 . . . x0; y ¼ ym ym�1 ym�2 . . . y0; u ¼ unun�1 un�2 . . . u0;

v ¼ vmvm�1 vm�2 . . . v0;

then z = x � y ? u ? v, belonging to the interval �Bnþmþ1� z\Bnþmþ1; can be
expressed under the form

z ¼ X0 � Y0 þ U0 þ V0ð Þ þ xn � ym � Bnþm � xn � Y0 þ unð Þ � Bn

� ym � X0 þ vmð Þ � Bn;

where X0, Y0, U0 and V0 are four naturals

X0 ¼ xn�1 xn�2 . . . x0; Y0 ¼ ym�1 ym�2 . . . y0; U0 ¼ un�1 un�2 . . . u0;

X0 ¼ vm�1vm�2 . . . v1v0

deduced from x, y, u and v by eliminating the sign bits. Thus, the computation of
z amounts to the computation of

Z0 ¼ X0 � Y0 þ U0 þ V0;

that can be executed by any type of multiplier for naturals, plus a post correction
that consists of several additions and left shifts.

If B = 2 and u = v = 0, then
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z ¼ x � y ¼ X0 � Y0 þ xn � ym � 2nþm � xn � Y0 � 2n � ym � X0 � 2n:

The (n ? m ? 2)-bit 2’s complement representations of �xn � Y0 � 2n and
�ym � X0 � 2m are

ð2mþ1 þ 2m þ ðxn � ym�1Þ � 2m�1 þ . . .þ ðxn � y0Þ � 20 þ 1Þ � 2n mod 2nþm�2;

and

ð2nþ1 þ 2n þ ðym � xn�1Þ � 2n�1 þ . . . þ ðym � x0Þ � 20 þ 1Þ � 2m mod 2nþm�2;

so that the representation of xn � ym � 2nþm � xn � Y0 � 2n � ym � X0 � 2n is

ð2nþmþ1 þ xn � ym � 2nþm þ ðxn � ym�1Þ � 2nþm�1 þ . . .þ ðxn � y0Þ � 2n

þ2n þ ðym � xn�1Þ � 2nþm�1 þ . . .þ ðym � x0Þ � 2m þ 2mÞ mod 2nþmþ2:

A simple modification of the combinational multipliers of Fig. 8.3 and 8.4
allows computing x � y, where x is an (n ? 1)-bit 2’s complement integer and y an
(m ? 1)-bit 2’s complement integer. An example is shown in Fig. 8.16 (n = 3,

x
nand x x x

x3 y0 x2 x1 x0y0 y0 y01 0 0 0

0

x

x3 y1 x2 x1 x0y1 y1 y1

xx
0

x

x3 y2 x2 x1 x0y2 y2 y2

1

z3 z2

z1

z0

z6 z5 z4

x
nand

x
nand

x
nand

x
nand

Fig. 8.16 Multiplier with post correction
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m = 2). The nand multiplication cells are similar to that of Fig. 8.1b, but for the
substitution of the AND gate by a NAND gate [1].
The following VHDL model describes the circuit of Fig. 8.16.

A complete generic model postcorrection_multiplier.vhd is available at the
Authors’ web page.

8.4.4 Booth Multiplier

Given an (m ? 1)-bit 2’s complement integer y ¼ �ym � 2m þ ym�1 � 2m�1 þ
. . . þ y1 � 2þ y0; define

y00 ¼ �y0 and y0j ¼ �yj þ yj�1; 8i in 1; 2; . . .;mf g;
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so that all coefficients yi’ belong to {-1, 0, 1}. Then y can be represented under the
form

y ¼ y0m � 2m þ y0m�1 � 2m�1 þ . . .þ y01 � 2þ y00;

the so-called Booth’s encoding of y (Booth [2]. Unlike the 2’s complement rep-
resentation in which ym has a specific function, all coefficients yi’ have the same
function. Formally, the Booth’s representation of an integer is the same as the
binary representation of a natural. The basic multiplication algorithm (Algorithm
8.1), with v = 0, can be used.

Algorithm 8.4: Booth multiplication, z 5 x�y 1 u

The following VHDL model describes a combinational circuit based on Algorithm
8.4.

A complete generic model Booth1_multiplier.vhd is available at the Authors’ web
page.

Higher radix Booth multipliers can be defined. Given an (m ? 1)-bit 2’s
complement integer y ¼ �ym � 2m þ ym�1 � 2m�1 þ . . .þ y1 � 2þ y0; where m is
odd, define

y00 ¼ �2 � y1 þ y0; y
0
i ¼ �2 � y2 � iþ1 þ y2 � i þ y2� i�1; 8i in 1; 2; . . .; m� 1ð Þ=2f g;

so that all coefficients yi’ belong to {-2, -1, 0, 1, 2}. Then y can be represented
under the form
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y ¼ y0m�1ð Þ=2 � 4 m�1ð Þ=2 þ y0m�1ð Þ=2�1 � 4 m�1ð Þ=2�1 þ . . . þ y01 � 4þ y00;

the so-called Booth-2 encoding of y.

Example 8.3
Consider the case where m = 9 and thus (m-1)/2 = 4. The 2’s complement
representation of -137 is 1101110111. The corresponding Booth-2 encoding is -

1 2 -1 2 -1 and, indeed, -44 ? 2 � 43 - 42 +2 � 4 - 1 = -137.The basic radix-
4 multiplication algorithm, with v = 0, can be used.

Algorithm 8.5: Radix-4 Booth multiplication, z 5 x � y 1 u

A sequential implementation is shown in Fig. 8.17. It includes a shift register
whose content is shifted two positions at each step, a parallel register and an adder
whose second operand is -2x, -x, 0, x or 2x depending on the three least sig-
nificant bits (y2�i+1, y2�i, y2�i-1) of the shift register. At each step, two output bits are
generated. Hence, the total computation time is equal to (m ? 1)/2�Tclk, where Tclk

must be greater than the computation time of an (n ? 3)-bit adder. Thus,

Tðn;mÞ ffi mþ 1
2
� Tadderðnþ 3Þ:

With respect to a radix-2 shift and add multiplier (Sect. 8.2.1), the computation
time has been divided by 2.

The following VHDL model describes the circuit of Fig. 8.17.

y

register
initially: u

shift register
initially: y.0

zn+m+1..m+1 zm..0

adder

n+1 2
3

2x
x
0
-x
-2x100

110,101
111,000
010,001

011
Fig. 8.17 Sequential radix-4
Booth multiplier
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The complete circuit also includes an (m ? 1)/2-state counter and a control
unit. A complete generic model Booth2_sequential_multiplier.vhd is available at
the Authors’ web page.

8.5 Constant Multipliers

Given an n-bit constant natural c and an m-bit natural y, the computation of
c � y can be performed with any n-bit by m-bit multiplier whose first operand is
connected to the constant value c. Then, the synthesis tool will eliminate useless
components. In the case of FPGA implementations, an alternative method is to
store the constant c within the LUTs.

Assume that the technology at hand includes k-input LUTs. The basic com-
ponent is a circuit that computes w = c � b, where b is a k-bit natural. The
maximum value of w is

2n � 1ð Þ 2k � 1
� �

¼ 2nþk � 2k � 2n þ 1;
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so w is an (n ? k)-bit number. The circuit is shown in Fig. 8.18, with k = 6. It is
made up of n ? 6 LUT-6, each of them being programmed in such a way that

w6jþ5 ... 6j bð Þ ¼ c1 � b½ �6jþ5 ... 6j:

Its computation time is equal to TLUT6.
The following VHDL model describes the circuit of Fig. 8.18.

The function LUT_definition defines the LUT contents.

b5..0

w5..0

w11..6

wn+5..n

··· ···

Fig. 8.18 LUT
implementation of a k-bit by
n-bit constant multiplier
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The circuit of Fig. 8.18 can be used as a component for generating constant
multipliers. As an example, a sequential n-bit by m-bit constant multiplier is
synthesized. First define a component similar to that of Fig. 8.2, with x constant. It
computes z = c � b ? u, where c is an n-bit constant natural, b a k-bit natural, and
u an n-bit natural. The maximum value of z is

2n � 1ð Þ 2k � 1
� �

þ 2n � 1 ¼ 2nþk � 2k;

so it is an (n ? k)-bit number. It consists of a k-bit by n-bit multiplier (Fig. 8.18)
and an (n ? k)-bit adder (Fig. 8.19).

Finally, the circuit of Fig. 8.19 can be used to generate a radix-2k shift and add
multiplier that computes z = c � y ? u, where c is an n-bit constant natural, y an
m-bit natural, and u an n-bit natural. The maximum value of z is

2n � 1ð Þ 2m � 1ð Þ þ 2n � 1 ¼ 2nþm � 2m;

so z is an (n ? m)-bit number. Assume that the radix-2k representation of y is
Ym/k-1 Ym/k-2… Y0, where each Yi is a k-bit number. The circuit implements the
following set of equations:

z 0ð Þ ¼ uþ c � Y0ð Þ=2k;

z 1ð Þ ¼ zð0Þ þ c � Y1

� �
=2k;

z 2ð Þ ¼ z1Þ þ c � Y2

� �
=2k;

. . .

z m=k�1ð Þ ¼ zðm=k�2Þ þ c � Ym=k�1

� �
=2k:

ð8:19Þ

Thus,

z m=k�1ð Þ � 2k
� �m=k¼ uþ c � Y0 þ c � Y1 � 2k þ . . .þ c � Ym=k�1 � 2k

� �m=k�1
;

that is to say

z m=k�1ð Þ � 2m ¼ c � yþ u:

The circuit is shown in Fig. 8.20.
The computation time is approximately equal to

T ffi m=kð Þ � ðTLUT�k þ Tadder nþ kð Þ:

b5..0
wn+5..0

Fig.8.18

u
(n+6)-bit 

adder
z

Fig. 8.19 Computation of
w = c � b ? u
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The following VHDL model describes the circuit of Fig. 8.20 (k = 6).

A complete model sequential_constant_multiplier.vhd is available at the
Authors’ web page.

The synthesis of constant multipliers for integers is left as an exercise.

u

b

zn+k-1..k zk-1..0

Fig. 8.19

register
initially: u

shift register
initially: y

zn+m-1..m zm-1..0

Yi

Fig. 8.20 n-bit by m-bit
constant multiplier
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8.6 FPGA Implementations

Several multipliers have been implemented within a Virtex 5-2 device. Those
devices include Digital Signal Processing (DSP) slices that efficiently perform
multiplications (25 bits by 18 bits), additions and accumulations. Apart from
multiplier implementations based on LUTs and FFs, more efficient implementa-
tions, taking advantage of the availability of DSP slices, are also reported. As
before, the times are expressed in ns and the costs in numbers of Look Up Tables
(LUTs), flip-flops (FFs) and DSP slices. All VHDL models as well as several test
benches are available at the Authors’ web page.

8.6.1 Combinational Multipliers

The circuit is shown in Fig. 8.3. The synthesis results for several numbers n and
m of bits are given in Table 8.1.

A faster implementation is obtained by using the carry-save method (Fig. 8.4;
Table 8.2).

If multipliers based on the cell of Fig. 8.8b are considered, more efficient
circuits can be generated. It is the ‘‘by default’’ option of the synthesizer
(Table 8.3).

Finally, if DSP slices are used, better implementations are obtained (Table 8.4).

Table 8.1 Combinational
multiplier

m n LUTS Delay

8 8 96 13.29
16 16 384 28.26
32 16 771 36.91
32 32 1536 57.46
64 32 3073 74.12
64 64 6181 119.33

Table 8.2 Carry-save
combinational multiplier

m n LUTS Delay

8 8 102 8.05
16 16 399 15.42
32 16 788 16.99
32 32 1580 29.50
64 32 3165 32.08
64 64 6354 60.90
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8.6.2 Radix-2k Parallel Multipliers

Several m � k bits by n � k bits multipliers (Sect. 8.2.4) have been implemented
(Table 8.5).

A faster implementation is obtained by using the carry-save method
(Table 8.6).

The same circuits have been implemented with DSP slices. The implementation
results are given in Tables 8.7, 8.8

8.6.3 Sequential Multipliers

Several shift and add multipliers have been implemented. The implementation
results are given in Tables 8.9, 8.10. Both the clock period Tclk and the total delay
(m � Tclk) are given.

Table 8.3 Optimized
combinational multiplier

n m LUTs Delay

8 8 113 5.343
16 16 435 6.897
32 16 835 7.281
32 32 1668 7.901
64 64 6460 11.41
64 32 3236 9.535
32 64 3236 9.535

Table 8.4 Combinational
multiplier with DSP slices

n m LUTs DSPs Delay

8 8 0 2 4.926
16 16 0 2 4.926
32 16 77 2 6.773
32 32 93 4 9.866
64 64 346 12 12.86
64 32 211 6 11.76
32 64 211 6 11.76

Table 8.5 Radix-2k parallel
multipliers

m n k m � k n � k LUTs Delay

2 2 8 16 16 452 10.23
4 4 4 16 16 448 17.40
2 2 16 32 32 1740 12.11
4 4 8 32 32 1808 20.29
4 2 16 64 32 3480 15.96
4 4 16 64 64 6960 22.91
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8.6.4 Combinational Multipliers for Integers

A carry-save multiplier for integers is shown in Fig. 8.12. The synthesis results for
several numbers n and m of bits are given in Table 8.11.

Table 8.6 Carry-save radix-
2k parallel multipliers

m n k m � k n � k LUTs Delay

2 2 8 16 16 461 8.48
4 4 4 16 16 457 10.09
2 2 16 32 32 1757 10.36
4 4 8 32 32 3501 11.10
4 2 16 64 32 1821 12.32
4 4 16 64 64 6981 14.93

Table 8.7 Radix-2k parallel
multipliers with DSPs

m n k m � k n � k DSPs LUTs Delay

2 2 8 16 16 8 0 12.58
4 4 4 16 16 32 0 27.89
2 2 16 32 32 8 0 12.58
4 4 8 32 32 32 0 27.89
4 2 16 64 32 16 0 16.70
4 4 16 64 64 32 0 27.89

Table 8.8 Carry-save radix-
2k parallel multipliers with
DSPs

m n k m � k n � k DSPs LUTs Delay

2 2 8 16 16 8 15 9.90
4 4 4 16 16 32 15 17.00
2 2 16 32 32 8 31 10.26
4 4 8 32 32 32 31 17.36
4 2 16 64 32 16 63 11.07
4 4 16 64 64 32 63 18.09

Table 8.9 Shift and add
multipliers

n m FFs LUTs Period Total time

8 8 29 43 2.87 23.0
8 16 46 61 2.87 45.9
16 8 38 72 4.19 33.5
16 16 55 90 4.19 67.0
32 16 71 112 7.50 120.0
32 32 104 161 7.50 240.0
64 32 136 203 15.55 497.6
64 64 201 306 15.55 995.2
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Another option is the modified shift and add algorithm of Sect. 8.4.2 (Fig. 8.15;
Table 8.12).

In Table 8.13, examples of post correction implementations are reported.
As a last option, several Booth multipliers have been implemented

(Table 8.14).

Table 8.10 Sequential carry-
save multipliers

n m FFs LUTs Period Total time

8 8 29 43 1.87 15.0
16 8 47 64 1.88 15.0
16 16 56 74 1.92 30.7
32 16 88 122 1.93 30.9
32 32 106 139 1.84 58.9
64 32 170 235 1.84 58.9
64 64 203 268 1.84 117.8

Table 8.11 Carry-save mod
2n+m+1 multipliers

n m LUTs Delay

8 8 179 12.49
8 16 420 18.00
16 8 421 20.41
16 16 677 25.86
32 16 1662 42.95
32 32 2488 55.69

Table 8.12 Modified shift
and add algorithm

n m LUTs Delay

8 8 122 15.90
8 16 230 27.51
16 8 231 20.20
16 16 435 31.81
32 16 844 39.96
32 32 1635 62.91

Table 8.13 Multipliers with
post correction

n m LUTs Delay

8 8 106 14.18
8 16 209 24.60
16 8 204 18.91
16 16 407 30.60
32 16 794 39.43
32 32 1586 62.91
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8.6.5 Sequential Multipliers for Integers

Several radix-4 Booth multipliers have been implemented (Fig. 8.17). Both the
clock period Tclk and the total delay (m � Tclk) are given (Table 8.15).

8.7 Exercises

1. Generate the VHDL model of a mixed-radix parallel multiplier (Sect. 8.2.4).
2. Synthesize a 2n-bit by 2n-bit parallel multiplier using n-bit by n-bit multipliers

as building blocks.
3. Modify the VHDL model sequential_CSA_multiplier.vhd so that the done flag

is raised when the final result is available (Comment 8.2).
4. Generate the VHDL model of a carry-save multiplier with post correction

(Sect. 8.4.3).
5. Synthesize a sequential multiplier based on Algorithm 8.3.
6. Synthesize a parallel constant multiplier (Sect. 8.5).
7. Generate models of constant multipliers for integers.
8. Synthesize a constant multiplier that computes z = c1�y1 ? c2�y2 ? … ?

cs�ys ? u.

Table 8.14 Combinational
Booth multipliers

n m LUTs Delay

8 8 188 13.49
8 16 356 25.12
16 8 332 13.68
16 16 628 25.31
32 16 1172 25.67
32 32 2276 49.09

Table 8.15 Sequential radix-
4 Booth multipliers

n m FFs LUTs Period Total time

8 9 25 58 2.90 26.1
8 17 34 68 2.90 49.3
16 9 33 125 3.12 28.1
16 17 42 135 3.12 53.0
32 17 58 231 3.48 59.2
32 33 75 248 3.48 114.8
64 33 107 440 4.22 139.1
64 65 140 473 4.22 274.0
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Chapter 9
Dividers

Division is a basic arithmetic operation whose execution is based on 1-digit by
m-digit multiplications and subtractions. Nevertheless, unlike addition and mul-
tiplication, division is generally not included as a predefined block within FPGA
families. So, in many cases, the circuit designer will have to generate dividers by
choosing some division algorithm and implementing it with adders and
multipliers.

The basic digit-recurrence algorithm is described in Sect. 9.1. Among others, it
introduces the Robertson and PD diagrams [1, 2]. Several radix-2 dividers are
proposed in Sect. 9.2: non-restoring and restoring dividers, binary SRT dividers
[2, 3]), and radix-2k dividers. Section 9.3 gives some information about radix-
B division. As a matter of fact, unless B = 2k, the main and perhaps unique
application of radix-B operations is decimal arithmetic (Chap. 11). The last section
describes two convergence algorithms, namely the Newton-Raphson and Golds-
chmidt algorithms, which could be considered in the case of real number opera-
tions (Chap. 12).

9.1 Basic Digit-Recurrence Algorithm

Consider an integer x and a natural y [ 0 such that -y B x \ y. The quotient
q and the remainder r, with an accuracy of p fractional radix-B digits, are defined
by the following relation:

x � Bp ¼ q � yþ r; with �y� r\y: ð9:1Þ

In fact, Eq. (9.1) has two solutions: one with r C 0 and another with r \ 0.
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The following set of equations generates q and r:

r0 ¼ x;

B � r0 ¼ q1 � yþ r1;

B � r1 ¼ q2 � yþ r2;

. . .

B � rp�1 ¼ qp � yþ rp:

ð9:2Þ

From (9.2) the following relation is obtained:

x � Bp ¼ q1 � Bp�1 þ q2 � Bp�2 þ � � � þ qp�1 � B1 þ qp � B0
� �

� y
þ rp; with �y� rp\y: ð9:3Þ

Thus,

q ¼ q1 � Bp�1 þ q2 � Bp�2 þ � � � þ qp�1 � B1 þ qp � B0 and r ¼ rp:

At each step of (9.2) ri ? 1 and qi ? 1 are computed in function of y and ri:

riþ 1 ¼ B � ri � qiþ 1 � y; where �y� riþ 1\y: ð9:4Þ

The Robertson diagram of Fig. 9.1 defines the set of possible solutions: the dotted
lines define the domain B � ri; riþ 1ð Þj � B � y�B � ri\B � y and �y� riþ 1\yf g;
and the diagonals correspond to the equations riþ 1 ¼ B � ri � k � y with k 2
�B;� B� 1ð Þ; . . .;�1; 0; 1; . . .;B� 1;Bf g: If k � y�B � ri\ k þ 1ð Þ � y; there are

two possible solutions for qi ? 1, namely k and k ? 1. To the first one corresponds
a non-negative value of ri ? 1, and to the second one a negative value.

If the values qi ? 1 = -B and qi ? 1 = B are discarded, the solutions of (9.4)
are the following:

• if B � ri� B� 1ð Þ � y then qiþ 1 ¼ B� 1;
• if k � y�B � ri\ k þ 1ð Þ � y then qiþ 1 ¼ k or k þ 1; 8k in � B� 1ð Þ; . . .;�1; 0;f

1; . . .;B� 2g;
• if B � ri\� B� 1ð Þ � y then qiþ 1 ¼ � B� 1ð Þ;

so all qi’s are radix-B digits or negative radix-B digits. The quotient q is obtained
under the form

B·ri

ri+1
qi+1=

1 B-120-2 B-2B-3-B -(B-1) -(B-2)

y 2y (B-3)·y (B-2)·y (B-1)·y B·y-y-2y

-(B-2)·y-(B-1)·y-B·y

-1

Fig. 9.1 Robertson diagram
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q ¼ q1 � Bp�1 þ q2 � Bp�2 þ � � � þ qp�1 � B1 þ qp � B0; with qi in

� B� 1ð Þ; . . .;�1; 0; 1; . . .; B� 1f g;

that is to say a signed-digit radix-B number. According to (9.3)

x=y ¼ 0 � q1q2. . .qp þ rp � B�p=y; with �B�p� rp � B�p=y\B�p: ð9:5Þ

In other words, 0: q1 q2. . .qp is an approximation of x/y with an absolute error
smaller than or equal to B-p.

Another useful diagram is the Partial remainder-Divisor diagram (P-D dia-
gram) of Fig. 9.2. It defines zones of the (B�ri, y) plane and the corresponding
solutions for qi ? 1:

yymax

B·ri = (B-1)·y

B·ri = y

B·ri = 2y

B·ri = -y

B·ri = -2y

B·ri = -(B-1)·y

0 or 1

1 or 2

B-1

B·ri = (B-2)·y
B-1 or B-2

qi+1 =

B·ri = -(B-2)·y

0 or -1

-1 or -2

-(B-1) or -(B-2)

-(B-1)

B·ri

ymax

2ymax

3ymax

(B-1)·ymax

-ymax

-2ymax

-3ymax

-(B-1)·ymax

Fig. 9.2 P-D diagram
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• beyond the line defined by B � ri ¼ B� 1ð Þ � y; qiþ 1 ¼ B� 1;
• betweenthelinesdefinedbyB � ri ¼ k � y and B � ri ¼ k þ 1ð Þ � y; qiþ 1 ¼ k or k þ 1;
• below the line defined by B � ri ¼ � B� 1ð Þ � y; qiþ 1 ¼ � B� 1ð Þ:

Assume that a function quotient_selection has been defined, compatible with
Figs. 9.1 or 9.2. The following formal algorithm computes q and r.

Algorithm 9.1: Division, digit-recurrence algorithm

9.2 Radix-2 Division

The Robertson and P-D diagram corresponding to B = 2 are shown in Fig. 9.3.

9.2.1 Non-Restoring Divider

According to the diagrams of Fig. 9.3, a possible choice of the quotient_selection
function of Algorithm 1 is qi ? 1 = -1 if ri \ 0 and qi ? 1 = 1 if ri C 0. The
corresponding algorithm is

Algorithm 9.2: Division, non-restoring algorithm, version 1

In this case, a slight modification allows avoiding the conversion of a signed-digit
number to an unsigned-digit one. Let q ¼ q1 � 2p�1 þ q2 � 2p�2 þ � � � þ qp�1 � 21 þ
qp � 20; with qi in {-1, 1}, be the quotient in signed-digit form computed with the
previously defined quotient_selection function. Define

q0i ¼ 1þ qiþ 1ð Þ=2; 8i in 0; 1; . . . ; p� 1f g:
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Then q0i 2 0; 1f g and q ¼ � 1� q00
� �

� 2p þ q01 � 2p�1 þ q02 � 2p�2 þ � � � þ q0p�1 �
21 þ 20: In other words, the vector

1� q00
� �

q01 q02. . .q0p�1 1

is the 2’s complement representation of q. The corresponding modified algorithm
is the following.

Algorithm 9.3: Division, non-restoring algorithm, version 2

The corresponding circuit is shown in Fig. 9.4.
The following VHDL model describes the circuit of Fig. 9.4. The dividend

x ¼ xn xn�1. . .x0 and the remainder r ¼ rn rn�1. . .r0 are (n ? 1)-bit 2’s comple-
ment integers, the divisor y ¼ yn�1 yn�2. . .y0 is an n-bit natural, the quotient
q ¼ q0 q1. . .qp is a (p ? 1)-bit 2’s complement integer, and condition

�y� x\y ð9:6Þ

must hold. Then 2p�x = q�y ? r, with -y B r \ y, and

x ¼ q0 � q1 q2. . .qp

� �
� yþ r=yð Þ � 2�p; with �2�p� r=yð Þ � 2�p\2�p:

2ri

qi+1= 0

2qi+1= -1

-2

y 2y-y-2y

ri+1

2ri

yymax

ymax

-ymax

2ri = y

2ri = -y

qi+1 = 0 or 1

qi+1 = 0 or -1

qi+1 = 1

qi+1 = -1(a)
(b)

1

Fig. 9.3 Robertson diagram (a) and P-D diagram (b), when B = 2
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The complete circuit also includes a p-state counter and a control unit. A complete
generic model non_restoring.vhd is available at the Authors’ web page.

ri-1

y

addb /sub

sign bit

update

.....

shift register
qi-1

quotient
update

load

ri = 2r i-1 y

ri-1

adder/
subtractor  

register
initially: x

1

Fig. 9.4 Non-restoring divider
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The computation time is approximately equal to

Tdivider n; pð Þ ¼ p � Tadder nð Þ ¼ p � n � Tadder 1ð Þ: ð9:7Þ

Comment 9.1
The least significant bit is always equal to 1 while the sign of the remainder could
be different from that of the dividend. For some applications a final correction step
could be necessary.

9.2.2 Restoring Divider

If x is a natural, so that r0 C 0, the quotient_selection function can be chosen as
follows (Fig. 9.3):

• if 2 � ri\y then qiþ 1 ¼ 0 and riþ 1 ¼ 2 � ri;
• if 2 � ri� y then qiþ 1 ¼ 1 and riþ 1 ¼ 2 � ri � y

So, all along the algorithm execution the remainders ri are non-negative.

Algorithm 9.4: Division, restoring algorithm

The corresponding circuit is shown in Fig. 9.5.
The following VHDL model describes the circuit of Fig. 9.5. The dividend

x ¼ xn�1. . .x0; the divisor y ¼ yn�1 yn�2. . .y0 and the remainder r ¼ rn�1. . .r0 are
n-bit naturals, the quotient q ¼ q1 q2. . .qp is a p-bit natural, and the condition
x \ y must hold. Then 2p � x ¼ q � yþ r; with r \ y, so

x ¼ 0 � q1 q2. . . qp

� �
� yþ r=yð Þ � 2�p; with r=yð Þ � 2�p\2�p:
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The complete circuit also includes a p-state counter and a control unit. A complete
generic model restoring.vhd is available at the Authors’ web page.

ri-1 y

update

.....

shift register
qi

quotient

update
load

ri-1

subtractor

register
initially: x

sign

2ri-1 - y
2ri-1

1 0

ri

Fig. 9.5 Restoring divider
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The computation time is approximately the same as that of a non-restoring
divider (9.7).

9.2.3 Binary SRT Divider

Assume that a lower bound ymin of y is known. Then, according to the P-D diagram
of Fig. 9.6, the quotient_selection function can be defined as follows:

• if 2 � ri� ymin then qiþ 1 ¼ 1;
• if �ymin� 2 � ri\ymin then qiþ 1 ¼ 0;
• if 2 � ri\�ymin then qiþ 1 ¼ �1:

Algorithm 9.5: Division, binary SRT algorithm, version 1

Assume that x is an (n ? 1)-bit 2’s complement integer and y a normalized n-bit
natural, that is 2n�1� y\2n; so ymin ¼ 2n�1: The condition 2 � r� ymin is equivalent
to r=2n�2� 1; and the condition 2 � r\�ymin to r=2n�2\�1: If r ¼ rn rn�1 rn�2

rn�3. . .r0; then 2 � r� ymin if rn rn�1 rn�2� 1; and 2 � r\�ymin if rn rn�1 rn�2\� 1:
In order to convert the signed-bit representation of q to a 2’s complement

representation, the following on-the-fly conversion algorithm can be used. Assume
that q ¼ q1 � 2�1 þ q2 � 2�2 þ � � � þ qp � 2�p; with qi in {-1, 0, 1}, and define

2ri

yymax

ymax

-ymax

2ri = y

2ri = -y

qi+1 = 0 or 1

qi+1 = 0 or -1

qi+1 = 1

qi+1 = -1

ymin

ymin

-ymin

qi+1 = 1

qi+1 = 0

qi+1 = -1

Fig. 9.6 P-D diagram,
B ¼ 2; y� ymin
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q 0ð Þ ¼ 0; qðiÞ ¼ q1 � 2�1 þ q2 � 2�2 þ � � � þ qi � 2�i; qmð0Þ ¼ 1; qmðiÞ ¼ qðiÞ � 2�i;

Vi in 1; 2; . . .; pf g: Then

• if qi ¼ 1 : qðiÞ ¼ qði�1Þ þ 2�i; qmðiÞ ¼ qði�1Þ;

• if qi ¼ 0 : qðiÞ ¼ qði�1Þ; qmðiÞ ¼ qði�1Þ � 2�i ¼ qði�1Þ � 2�ði�1Þ þ 2�i ¼ qmði�1Þ þ 2�i;

• if qi ¼ �1 : qðiÞ ¼ qði�1Þ � 2�i ¼ qmði�1Þ þ 2�i; qmðiÞ ¼ qmði�1Þ:

The corresponding circuit is shown in Fig. 9.7.
The complete circuit is shown in Fig. 9.8.
The following VHDL model describes the circuit of Fig. 9.8. The dividend

x ¼ xn xn�1. . .x0 and the remainder r ¼ rn rn�1. . .r0 are (n ? 1)-bit 2’s comple-
ment integers, the divisor y ¼ 1yn�2. . . y0 is an n-bit normalized natural, the
quotient q ¼ q0 q1. . .qp is a (p ? 1)-bit 2’s complement integer, and condition
(9.6) must hold.

q(i) qm(i)

qi
0,1 -1

|qi|

load

update
register

initially: 0 

q(i)

q(i) qm(i)

qi
1 0,-1

1-|qi|

load

update
register

initially: 1

qm(i)

Fig. 9.7 On-the-fly
conversion

r

rn..n-2

quotient 
selection 
function

operation

y

adder/
subtractor

2r-y or 2r or 2r+y

load register
initially: xupdate

on the fly 
conversion

q
r

load

update

Fig. 9.8 SRT divider
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The complete circuit also includes a p-state counter and a control unit. A complete
generic model srt_divider.vhd is available at the Authors’ web page.

The computation time is approximately the same as that of a non-restoring
divider (9.7).

9.2.4 Binary SRT Divider with Carry-Save Adder

Assume again that a lower bound ymin of y is known and that an integer estimation
of vi ¼ 2 � ri=ymin satisfying

2 � ri=ymin � 2\vi� 2 � ri=ymin ð9:8Þ

is computed at each step. The quotient_selection function can be defined as
follows:

• if vi� � 2 then 2 � ri=ymin\0; select qiþ 1 ¼ �1;
• if vi ¼ �1 then �1� 2 � ri=ymin\1; select qiþ 1 ¼ 0;
• if vi� 0 then 2 � ri=ymin� 0; select qiþ 1 ¼ 1:

In the following algorithm the function estimated_value generates an integer vi

belonging to (9.8).

Algorithm 9.6: Division, binary SRT algorithm, version 2

In what follows x is an (n ? 1)-bit 2’s complement integer and y a normalized
n-bit natural, that is 2n�1� y\2n; so that ymin ¼ 2n�1: Assume that all remainders
ri are represented in stored-carry form, that is ri = ci ? si. Define

vi ¼ ci=2n�2
� �

þ si=2n�2
� �

:
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Thus vi� ci=2n�2
� �

þ si=2n�2
� �

¼ ri=2n�2 and vi [ ci=2n�2
� �

� 1þ si=2n�2
� �

�
1 ¼ ri=2n�2

� �
� 2; so that (9.8), with ymin = 2n - 1, holds. Lower and upper

bounds of vi are computed as follows:

vi� ri=2n�2\2n=2n�2 ¼ 4 and vi [ ri=2n�2
� �

� 2� �2n=2n�2
� �

� 2 ¼ �6:

Thus, vi belongs to the range -5 B vi B 3 and is a 4-bit 2’s complement integer.
In order to compute vi, both ci and si must be represented with 4 ? (n - 2) = n ? 2
bits.

The complete circuit is shown in Fig. 9.9.
The following VHDL model describes the circuit of Fig. 9.9. The dividend

x = xn xn – 1 … x0 and the remainder r = rn rn - 1 … r0 are (n ? 1)-bit 2’s
complement integers, the divisor y = 1 yn - 2 … y0 is an n-bit normalized natural,
the quotient q = q0 q1 … qp is a (p ? 1)-bit 2’s complement integer, and con-
dition (9.6) must hold.

c
cn+1..n-2

quotient 
selection 
function

operation

y

2r-y or 2r or 2r+y 
(stored-carry form)

loadregister
initially: 0 updateon the fly 

conversion

q
c

load

update

s

sn+1..n-2

adder

v

carry-save 
adder/subtractor

register
initially: x

s

Fig. 9.9 SRT divider with carry-save adder
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The complete circuit also includes a p-state counter and a control unit. A complete
generic model srt_csa_divider.vhd is available at the Authors’ web page.

The computation time is approximately equal to

Tdivider n; pð Þ ¼ p � Tadder 1ð Þ þ Tadder nð Þ ¼ nþ pð Þ � Tadder 1ð Þ: ð9:9Þ

9.2.5 Radix-2k SRT Dividers

Another way to accelerate the quotient calculation consists of generating k quo-
tient bits at each step. For that, the digit-recurrence algorithm can be executed in
base 2k. As an example, an SRT divider with k = 2 is defined.
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As before x = xn xn - 1 … x0 is an (n ? 1)-bit 2’s complement integer and y ¼
1yn�2. . .y0 is an n-bit normalized natural. The basic algorithm, based on Eq. (9.2)
with B = 4, is used, so that the quotient is obtained under the form q ¼ q1 � 4p�1 þ
q2 � 4p�2 þ � � � þ qp�1 � 41 þ qp � 40 with qi in {-3, -2, -1, 0, 1, 2, 3}.

According to the P-D diagram of Fig. 9.10, the quotient_selection function can
be defined as follows:

• if 4 � ri� 2nþ1 then qiþ 1 ¼ 3;
• if 3 � 2n�1� 4 � ri\2nþ1 and y\3 � 2n�2 then qiþ 1 ¼ 3;
• if 3 � 2n�1� 4 � ri\2nþ1 and y� 3 � 2n�2 then qiþ 1 ¼ 2;
• if 2n� 4 � ri\3 � 2n�1 then qiþ 1 ¼ 2;
• if 2n�1� 4 � ri\2n then qiþ 1 ¼ 1;
• if �2n�1� 4 � ri\2n�1 then qiþ 1 ¼ 0;
• if �2n� 4 � ri\� 3 � 2n�1 then qiþ 1 ¼ �1;
• if �3 � 2n�1� 4 � ri\� 2n then qiþ 1 ¼ �2;

4r

2n-1

2n

3·2n-1

2n+1

5·2n-1

3·2n

2n2n-1 3·2n-2

4r = 3y

4r = 2y

4r = y

4r = -2y

4r = -3y

-2n-1

-2n

-3·2n-1

-2n+1

-5·2n-1

-3·2n

3

2 or 3

1 or 2

0 or 1

0 or -1

-1 or -2

-2 or -3

-3

4r = -y

y

Fig. 9.10 P-D diagram, radix-4 SRT, y� ymin ¼ 2n�1
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• if �2nþ1� 4 � ri\� 3 � 2n�1 and y� 3 � 2n�2 then qiþ 1 ¼ �2;
• if �2nþ1� 4 � ri\� 3 � 2n�1 and y\3 � 2n�2 then qiþ 1 ¼ �3;
• if 4 � ri\� 2nþ1 then qiþ 1 ¼ �3:

Given a remainder r ¼ rn rn�1 rn�2 rn�3. . .r1 r0; then the next digit value is a
function of 4 � r=2n�1 ¼ r=2n�3 and of y/2n - 2, that is rn rn�1 rn�2 rn�3ð Þ and
yn�1 yn�2ð Þ ¼ ð1yn�2Þ: Table 9.1 defines the value of the next digit in function of

rn; rn�1;1; rn�1;0; rn�2;1 and yn - 2.
In order to convert the signed-digit representation of q to a 2’s complement

representation, the following on-the-fly conversion algorithm can be used. Assume
that q ¼ q1 � 4�1 þ q2 � 4�2 þ � � � þ qp � 4�p; with qi in {-3, -2, -1, 0, 1, 2, 3},
and define

q 0ð Þ ¼ 0; qðiÞ ¼ q1 � 4�1 þ q2 � 4�2 þ � � � þ qi � 4�i; qmð0Þ ¼ 3; qmðiÞ ¼ qðiÞ � 4�i;

Vi in {1, 2, … , p}. Then

• if qi [ 0 : qðiÞ ¼ qði�1Þ þ qi � 4�i; qmðiÞ ¼ qði�1Þ þ qi � 1ð Þ � 4�i;

• if qi ¼ 0 : qðiÞ ¼ qði�1Þ; qmðiÞ ¼ qði�1Þ � 4�i ¼ qði�1Þ � 4�ði�1Þ þ 3 � 4�i ¼ qmði�1Þþ
3 � 4�i;

• if qi\0 : qðiÞ ¼ qði�1Þ þ qi � 4�i ¼ qði�1Þ þ 4þ qið Þ � 4�i � 4�ði�1Þ ¼ qmði�1Þþ
4þ qið Þ � 4�i;

• qm ið Þ ¼ qðiÞ � 4�i ¼ qmði�1Þ þ 3þ qið Þ � 4�i:

The corresponding circuit is shown in Fig. 9.11.

Table 9.1 Digit selection rn rn - 1 rn - 2 rn - 3 r/2n - 2 q-(i ? 1)

0000 0 0
0001 1 1
0010 2 2
0011 3 2 if yn - 2 = 1, 3

if yn - 2 = 0
0100 4 3
0101 5 3
0110 6 3
0111 7 3
1000 -8 -3
1001 -7 -3
1010 -6 -3
1011 -5 -3
1100 -4 -3 if yn - 2 = 0, -2

if yn - 2 = 1
1101 -3 -2
1110 -2 -1
1111 -1 0
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The complete circuit is shown in Fig. 9.12. The dividend x ¼
xn xn�1xn�2. . .x1x0 and the remainder r ¼ rn rn�1 rn�2. . .r1 r0 are (n ? 1)-bit 2’s
complement integers, the divisor y ¼ 1 yn�2. . .y1 y0 is an n-bit natural, the quotient
q ¼ q0 q1 q2. . .q2p�1 q2p is a (2p ? 1)-bit 2’s complement integer, and condition
(9.6) must hold.

The following VHDL model describes the circuit of Fig. 9.12.

0 1 2 3

0 1,-3 2,-2 3,-1qi

3 0 1 2

0 1,-3 2,-2 3,-1

q(i-1) qm(i-1)

qi ≥ 0? Y N

q(i-1) qm(i-1)

qi > 0? Y N

register
initially: 0...00

q(i-1)

register
initially: 0...03

qm(i-1)

load
update

Fig. 9.11 Radix-4 on-the-fly conversion
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2y
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0
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Fig. 9.12 Radix-4 SRT divider

238 9 Dividers



The complete circuit also includes a p-state counter and a control unit. A complete
generic model radix_four_divider.vhd is available at the Authors’ web page.

9.3 Radix-B Dividers

When B is greater than 2, the quotient_selection function of Algorithm 9.1 is not easy
to implement. According to the Robertson diagram of Fig. 9.1, the definition of
qi ? 1 is based on the knowledge of the interval to which belongs ri: if
k�y B B�ri \ (k ? 1)�y, then qi ? 1 can be chosen equal to k or k ? 1. A conceptually
simple method would consist of computing B�ri - k�y for all k in {B-1, … , -1, 0,
1, … , B-1} and choosing qi ? 1 in function of the signs of the results. Better
methods would use approximate values of ri and y, taking advantage of the fact that
for each interval there are two possible values of qi ? 1. In other words, larger
intervals can be considered: if k�y B B�ri \ (k ? 2)�y, then qi ? 1 = k ? 1. Algo-
rithms based on truncated values of ri and y have been proposed in the case where
B = 10 [4, 5], and the method proposed in the second reference can be generalized to
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the case of any radix B [6]. Nevertheless, the corresponding FPGA implementations
are generally very costly in terms of used cells.

Another method for executing radix-B division consists of converting the radix-
B operands to binary operands, executing the division with any type of binary
divider, and converting the binary results to radix-B results. Radix-B to binary and
binary to radix-B converters are described in Chap. 10. Decimal dividers (B = 10)
based on this method are reported in Chap. 12.

An alternative option, similar to the previous one, is to use a classical binary
algorithm (Sect. 9.2) and to execute all the operations in base B. All along this
section it is assumed that B is even.

Consider the following digit-recurrence algorithm (Algorithm 9.1 with B = 2):

Algorithm 9.7: Division, binary digit-recurrence algorithm

It generates q and rp such that

x=y ¼ q � 2�p þ rp=y
� �

2�p; with �2�p� rp=y
� �

2�p\2�p: ð9:10Þ

Algorithm 9.7 can be executed whatever the radix used for representing the
numbers. If B’s complement radix-B representation is used, then the following
operations must be available: radix-B doubling, adding, subtracting and halving.

Algorithm 9.8: Division, binary digit-recurrence algorithm, version 2
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The corresponding data path is shown in Fig. 9.13.
Radix-B adders and subtractors can be generated using the general principles

presented in Sects. 7.1 and 7.8. The p and g blocks of Fig. 7.2 compute binary
functions of radix-B variables, namely p = 1 if xi ? yi = B-1, p = 0 otherwise,
g = 1 if xi ? yi C B, g = 0 if xi ? yi B B-2, otherwise, any value. The carry
chain is a binary circuit, whatever the radix. An output block computes
(xi ? yi ? ci) mod B. Furthermore, in the case of a subtractor, additional (B-1)’s
complement cells, are necessary. Decimal adders and subtractors (B = 10) are
described and implemented in Chap. 12. In order to synthesize the circuit of
Fig. 9.13, it remains to generate circuits which compute 2x and x/2.

Consider a radix-B natural x ¼ xn�1 Bn�1 þ xn�2 Bn�2 þ � � � þ x0B0: First define
a digit-doubling cell: given a radix-B digit xi, the cell computes the radix-B rep-
resentation of 2xi. As xi B B-1, then 2xi� 2B� 2 ¼ Bþ B� 2ð Þ; so that 2xi can
be expressed under the form

2xi ¼ diBþ ui; where di� 0; 1f g and ui�B� 2 if B is even; so is uið Þ:

Then, 2x can be expressed under the form

2x ¼ dn�1 Bn þ un�1 þ dn�2ð ÞBn�1 þ un�2 þ dn�3ð ÞBn�2 þ � � � þ u1 þ d0ð ÞB1

þ u0B0:

As all coefficients di belong to {0, 1} and all coefficients ui are even, then all sums
ui ? di - 1 amount to a simple concatenation, that is ui þ di�1 ¼ uj=2

� �
&di�1;

and no carry is generated. The corresponding circuit is shown in Fig. 9.14.
Assume that radix-B digits are represented as k-bit naturals and that k-input

LUT’s are available. Then, every cell of Fig. 9.14 can be implemented with
k LUT-k. As an example, if B = 10, the following model defines the doubling cell
of Fig. 9.14.

ri-1

x2

y -y 0

0 1 2

two_r

adder

register
initially: x

ri-1

adder

register
initially: 0

q

q

-ulp 0

0 1 2

ulp

register
initially: 2-1

÷2

ulp

ulp

quotient 
selection

ri-1 y

load
update

Fig. 9.13 Digit-recurrence
divider
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The complete circuit is defined by instantiating n doubling cells. Its computation
time is equal to TLUT-k. A complete model doubling_circuit2.vhd is available at the
Authors’ web page (B = 10).

As B is even, halving is equivalent to multiplying by B/2 and dividing by B. Let
ak�1 ak�2. . .a0 be the binary representation of a radix-B digit a, that is a ¼
ak�12k�1 þ ak�22k�2 þ � � � þ a020: Then

a B=2ð Þ ¼ dBþ u; where d ¼ ak�12k�2 þ ak�22k�3 þ � � � þ a120 and u
¼ a0 B=2ð Þ:

Observe that d B a/2 \ B/2 and u B B/2.
Consider now a radix-B natural x ¼ xn�1 � Bn�1 þ xn�2 � Bn�2 þ � � � þ x0 � B0:

The product (B/2)�xi can be represented under the form diB ? ui where di \ B/2
and ui B B/2, so that

B=2ð Þ � x ¼ dn�1Bn þ ðun�1 þ dn�2ÞBn�1 þ ðun�2 þ dn�3ÞBn�2

þ � � � þ ðu1 þ d0ÞB1 þ u0B0:

All sums ui ? di - 1 are smaller than B, so that no carry is generated. Finally

x0

x2

u0/2

x1

x2

u1/2 d0

x2

x2

u2/2 d1

xn-1

x2

un-1/2 dn-2

z0z1z2zn-1zn

....
cin=0

Fig. 9.14 Doubling circuit
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x=2 ¼ dn�1Bn�1 þ ðun�1 þ dn�2ÞBn�2 þ ðun�2 þ dn�3ÞBn�3

þ � � � þ ðu1 þ d0ÞB0 þ u0B�1:

The circuit of Fig. 9.15 computes z = (B/2)�x.
If k-input LUT’s are available, then every cell of Fig. 9.15 can be implemented

with k LUT-k. As an example, if B = 10, the following model defines the mul-
tiply-by-five cell of Fig. 9.15. It computes b ¼ 5a0 þ ð4a3 þ 2a2 þ a1Þ:

The complete circuit is defined by instantiating n - 1 multiply-by-five cells. Its
computation time is equal to TLUT-k. A complete model multiply_by_five.vhd is
available at the Authors’ web page (B = 10).

Example 9.1
A decimal divider (B = 10) based on the circuit of Fig. 9.13 can be synthesized. The
quotient selection is done according to the non-restoring algorithm method, that is to
say ri ? 1 = 2�ri ? y if ri is negative, and ri ? 1 = 2�ri - y if ri is non-negative. The
number p of steps is defined as follows: according to 9.10, the maximum value of the
error | x/y - q| is smaller than or equal to 2-p. If q is rounded in such a way that
the final result qrounded has m fractional digits, the additional rounding error is smaller
than 10-m, and the final error x=y� qroundedj j is smaller than 2-p ? 10-m. By
choosing p so that 2-p % 10-m, that is p % 3.3 m, then x=y� qroundedj j\2 � 10�m:
In the following VHDL models, behavioral descriptions of the decimal adders have
been used. Real implementations are proposed in Chap. 12.

x10

conn.

x0 k-1...x02x01

x10·B/2

z1

(k-1)-bit 
adder

xn-1 0

conn.

xn-2 k-1...xn-2 1

xn-2 0·B/2

zn-1

(k-1)-bit 
adder

x00

conn.

x00·B/2

z0

xn-1 k-1...xn-1 1

zn

Fig. 9.15 Multiplication by B/2 (‘‘conn.’’ only includes connections)
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A complete generic model decimal_divider.vhd is available at the Authors’ web
page.

9.4 Convergence Algorithms

Instead of using digit-recurrence algorithms, an alternative option is the use of
convergence algorithms. This type of algorithm is mainly attractive in the case of
real number operations (Chap. 12).

Given a real number x belonging to the interval 1 B x \ 2, the inverse y of
x belongs to the interval 1/2 \ y B 1. The following Newton-Raphson algorithm
generates successive approximations y0; y1; y2; . . . of y ¼ 1=x:

Algorithm 9.9: Newton-Raphson inversion algorithm

If all operations were executed with full precision, then the maximum error after
i steps would be given by the following relation:

y� yi \1=22i
: ð9:11Þ

Another option is the Goldschmidt algorithm. Given two real numbers x and
y belonging to the intervals 1 B x \ 2 and 1 B y \ 2, it generates two sequences
of real numbers a0, a1, a2, … and b0, b1, b2, … , and the second one constitutes a
sequence of successive approximations of x/y.

Algorithm 9.10: Goldschmidt’s algorithm

If all operations were executed with full precision, then the maximum error after
i steps would be defined by the following relation:
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x

y
� bi\1=2ð2

i�1Þ: ð9:12Þ

The following VHDL model describes the corresponding circuit; n is the number
of fractional bits of x and y, and p is the number of fractional bits of the internal
variables a, b and c.

A complete generic model goldschmidt.vhd is available at the Authors’ web page.
It includes an m-state counter, where m is the number of steps (a generic
parameter), and a control unit.

9.5 FPGA Implementations

Several dividers have been implemented within a Virtex 5-2 device. As before, the
times are expressed in ns and the costs in numbers of Look Up Tables (LUTs) and
flip-flops (FFs). All VHDL models as well as several test benches are available at
the Authors’ web page.
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9.5.1 Digit-Recurrence Algorithms

Tables 9.2, 9.3, 9.4, 9.5 give implementation results for several

• non-restoring dividers,
• restoring dividers,
• binary SRT dividers,
• binary SRT dividers with carry-save adder.

Radix-4 SRT dividers have also been implemented. The quotient is a (2p ? 1)-bit
2’s complement integer (Table 9.6).

Examples of decimal dividers are given in Chap. 11.

Table 9.2 Non-restoring
dividers

n p FFs LUTs Period Total time

8 8 22 28 2.21 19.9
16 16 39 46 2.43 41.3
24 27 59 64 2.63 73.6
32 16 55 78 2.82 47.9
32 32 72 79 2.82 93.1
53 56 118 123 3.30 188.1
64 32 104 143 3.55 117.2
64 64 137 144 3.55 230.8

Table 9.3 Restoring dividers n p FFs LUTs Period Total time

8 8 21 26 2.46 22.1
16 16 38 44 2.68 45.6
24 27 58 62 2.90 81.2
32 16 54 76 3.08 52.4
32 32 71 77 3.08 101.6
53 56 117 121 3.56 202.9
64 32 103 141 3.82 126.1
64 64 136 142 3.82 248.3

Table 9.4 Binary SRT
dividers

n p FFs LUTs Period Total time

8 8 33 44 2.43 21.9
16 16 58 78 2.57 43.7
24 27 89 118 2.76 77.3
32 16 75 110 2.94 50.0
32 32 107 143 2.94 97.0
53 56 177 235 3.42 194.9
64 32 139 207 3.66 120.8
64 64 204 272 3.66 237.9
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9.5.2 Convergence Algorithms

Table 9.7 gives implementation results of several dividers based on the Golds-
chmidt’s algorithm. In this case, DSP slices have been used.

9.6 Exercises

1. Synthesize several types of combinational dividers: restoring, non-restoring,
SRT, radix-2k.

2. Generate a generic VHDL model of a Newton-Raphson inverter.

Table 9.5 Binary SRT
dividers with carry-save
adders

n p FFs LUTs Period Total time

8 8 40 86 2.81 25.3
16 16 73 143 2.86 48.6
24 27 112 215 2.86 80.1
32 16 105 239 2.86 48.6
32 32 138 272 2.86 94.4
53 56 229 448 2.87 163.6
64 32 202 464 2.87 94.7
64 64 267 529 2.87 186.6

Table 9.6 Radix-4 SRT
dividers

n p 2p FFs LUTs Period Total time

8 4 8 30 70 3.53 17.7
16 8 16 55 112 3.86 34.7
24 14 28 88 170 4.08 61.2
32 8 16 71 175 4.27 38.4
32 16 32 104 209 4.27 72.6
53 28 56 174 343 4.76 138.0
64 16 32 136 337 5.01 85.2
64 32 64 201 402 5.01 165.3

Table 9.7 Dividers based on
the Goldschmidt’s algorithm

n p m FFs LUTs DSPs Period Total time

8 10 4 25 38 2 5.76 23.0
8 16 5 38 42 2 5.68 28.4
16 18 5 43 119 2 7.3 36.5
16 32 7 71 76 8 10.5 73.5
24 27 6 62 89 8 10.5 63.0
53 56 8 118 441 24 14.42 115.4
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3. Synthesize several dividers using a Newton-Raphson inverter and different
types of multipliers.

4. Generate generic models of combinational circuits with three n-bit inputs x,
y and m, and an n-bit output z = x�y mod m. For that, use any type of com-
binational multiplier to compute p = x�y and any type of combinational divider
to compute z = p mod m.

5. Generate generic models of sequential circuits that implement the same func-
tion as in exercise 4.
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Chapter 10
Other Operations

This chapter is devoted to arithmetic functions and operations other than the four
basic ones. The conversion of binary numbers to radix-B ones, and conversely, is
dealt with in Sects. 10.1 and 10.2. An important particular case is B = 10 as human
interfaces generally use decimal representations while internal computations are
performed with binary circuits. In Sect. 10.3, several square rooting circuits are
presented, based on digit-recurrence or convergence algorithms. Logarithms and
exponentials are the topics of Sects. 10.4 and 10.5. Finally, the computation of
trigonometric functions, based on the CORDIC algorithm [2, 3], is described in
Sect. 10.6.

10.1 Binary to Radix-B Conversion (B even)

Assume that B is even and greater than 2. Consider the binary representation
of x:

x ¼ xn�1 � 2n�1 þ xn�2 � 2n�2 þ � � � þ x1 � 2þ x0: ð10:1Þ

Taking into account that B[2, the bits xi can be considered as radix-B digits,
and a simple conversion method consists of computing (10.1) in radix-B.

Algorithm 10.1: Binary to radix-B conversion

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_10,
� Springer Science+Business Media Dordrecht 2012
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In order to compute z�2 + xn–i the circuit of Fig. 9.14, with cin ¼ xn�i instead of 0,
can be used. A sequential binary to radix-B converter is shown in Fig. 10.1. It is
described by the following VHDL model.

The complete circuit also includes an n-state counter and a control unit.
A complete model BinaryToDecimal2.vhd is available at the Authors’ web page
(B = 10).

The computation time of the circuit of Fig. 10.1 is equal to n�Tclk where Tclk

must be greater than TLUT-k (Sect. 9.3). Thus

Tbinary�radix�B ffi n � TLUT�k: ð10:2Þ

10.2 Radix-B to Binary Conversion (B even)

Given a natural z, smaller than 2n, its binary representation is deduced from the
following set of integer divisions

z ¼ q1 � 2þ r0;

q1 ¼ q2 � 2þ r1;

. . .

qn�1 ¼ qn � 2þ rn�1;

zm-1..0

wm-1..0

xn-1..0 (binary)

xn-i load
update

load
update

Fig.9.14

register (radix B)
initially: 0

shift register (binary)

ym-1..0 (base B)

cin

Fig. 10.1 Binary to
radix-B converter
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so

z ¼ qn � 2n þ rn�1 � 2n�1 þ rn�2 � 2n�2 þ � � � þ r1 � 2þ r0:

As z is smaller than 2n, then qn = 0, and the binary representation of z is
constituted by the set of remainders rn�1 rn�2 . . . r1 r0:

Algorithm 10.2: Radix-B to binary conversion

Observe that if qi = qi+1�2 + ri, then qi�(B/2) = qi+1�B + ri�(B/2) where ri�(B/2)\
2�(B/2) = B.

Algorithm 10.3: Radix-B to binary conversion, version 2

In order to compute (B/2)�qi the circuit of Fig. 9.15 can be used. A sequential
radix-B to binary converter is shown in Fig. 10.2. It is described by the following
VHDL model.
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wm..1

xn-1..0 (binary)

load
update

load
update

Fig.9.15

register (radix -B)
initially: z

shift register (binary)
w0

Fig. 10.2 Decimal to binary
converter
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The complete circuit also includes an n-state counter and a control unit.
A complete model DecimalToBinary2.vhd is available at the Authors’ web page
(B = 10).

The computation time of the circuit of Fig. 10.2 is equal to n�Tclk where Tclk

must be greater than TLUT-k (Sect. 9.3). Thus

Tradix�B�binary ffi n � TLUT�k: ð10:3Þ

10.3 Square Rooters

Consider a 2n-bit natural X ¼ x2n�1 � 22n�1 þ x2n�2 � 22n�2 þ � � � þ x1 � 2þ x0;

and compute Q ¼ X1=2
� �

: Thus, Q2 B X\ (Q+1)2, and the difference R = X - Q2

belongs to the range
0 �R� 2Q: ð10:4Þ

10.3.1 Restoring Algorithm

A digit recurrence algorithm consisting of n steps is defined. At each step two
numbers are generated:

Qi ¼ qn�1 � 2i�1 þ qn�2 � 2i�2 þ � � � þ qn�iþ1 � 2þ qn�i and Ri

¼ X � Qi � 2n�i
� �2

;
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such that

0 �Ri\ 1þ 2Qið Þ22ðn�iÞ: ð10:5Þ

After n steps, 0 B Rn \ 1 + 2Qn, that is (10.4) with Q = Qn and R = Rn.
Initially define Q0 = 0 and R0 = X, so condition (10.5) amounts to 0 B X\22n.

Then, at step i, compute Qi and Ri in function of Qi-1 and Ri-1:

Qi ¼ 2Qi�1 þ qn�i where qn�i 2 0; 1f g;

Ri ¼ X � Qi � 2n�i
� �2¼ X � 2Qi�1 þ qn�ið Þ2n�i

� �2

¼ X � Qi�1 � 2n�iþ1
� �2� qn�i þ 4Qi�1ð Þqn�i � 22ðn�iÞ ¼ Ri�1 � qn�i þ 4Qi�1ð Þqn�i2

2ðn�iÞ:

The value of qn-i is chosen in such a way that condition (10.5) holds. Consider
two cases:

• If Ri�1\ 1þ 4Qi�1ð Þ22ðn�iÞ; then qn�i ¼ 0; Qi ¼ 2Qi�1;Ri ¼ Ri�1:

As Ri ¼ Ri�1\ 1þ 4Qi�1ð Þ22ðn�iÞ ¼ 1þ 2Qið Þ22ðn�iÞ and Ri ¼ Ri�1� 0;
condition (10.5) holds.

• If Ri�1� 1þ 4Qi�1ð Þ22ðn�iÞ; then qn�i ¼ 1; Qi ¼ 2Qi�1 þ 1; Ri ¼ Ri�1�
1þ 4Qi�1ð Þ22ðn�iÞ; so that Ri� 0 and Ri\ 1þ 2Qi�1ð Þ22ðn�iþ1Þ � 1þ 4Qi�1ð Þ

22ðn�iÞ ¼ 3þ 4Qi�1ð Þ22ðn�iÞ ¼ 1þ 2Qið Þ22ðn�iÞ:

Algorithm 10.4: Square root, restoring algorithm

Qi is an i-bit number, Ri\ 1þ 2Qið Þ22ðn�iÞ ¼ Qi & 1& 0 0 � � � 0 is a (2n-i+1)-
bit number, and Pi�1 ¼ 1þ 4Qi�1ð Þ22ðn�iÞ ¼ Qi & 01& 00 � � � 0 a 2nþ 2� ið Þ-
bit number.
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An equivalent algorithm is obtained if Pi and Ri are replaced by pi�1 ¼
Pi�1=22ðn�iÞ and ri ¼ Ri=22ðn�iÞ:

Algorithm 10.5: Square root, restoring algorithm, version 2

As before, Qi is an i-bit number, ri is a (2n-i+1)-bit fixed-point number
with 2(n-i) fractional bits and an (i+1)-bit integer part, and pi-1 a (2n-

i+2)-bit fixed-point number with 2(n-i) fractional bits and an (i+2)-bit integer
part.

A sequential implementation is shown in Fig. 10.3. It can be described by the
following VHDL model.

r3n..2n-2 Q&01

(n+3)-bit
subtractor

r3n..2n-2
difn..0

r2n-3..0&00

sign

r

1 0

(3n+1)-bit register
initially: 00··0.x2n-1··x0

n-bit shift register
initially: 0

Q

Fig. 10.3 Square root computation: data path
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The only computational resource is an (n+3)-bit subtractor so that the com-
putation time is approximately equal to n�Tadder(n). The complete circuit includes
an n-bit counter and a control unit. A generic VHDL model SquareRoot.vhd is
available at the Authors’ web page.

Another equivalent algorithm is obtained if Pi, Qi and Ri are replaced by
pi ¼ Pi=22n�i�1; qi ¼ Qi=2i; ri ¼ Ri=22n�i:

Algorithm 10.6: Square root, restoring algorithm, version 3

Algorithm 10.6 is similar to the restoring algorithm defined in Chap. 21 of [1].
Its implementation is left as an exercise.
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10.3.2 Non-Restoring Algorithm

Instead of computing Ri and Qi as in Algorithm 10.4, an alternative option is the
following. Define Ri ¼ Ri�1 � 1þ 4Qi�1ð Þ22ðn�iÞ; whatever the sign of Ri. If Ri is
non-negative, then its value is the same as before. If Ri is negative then it is equal
to Ri restoring � 1þ 4Qi�1ð Þ22ðn�iÞ where Ri restoring is the value that would have
been computed with Algorithm 10.4. Then, at the next step, Qi and Ri+1 are
computed as follows:

• if Ri is non-negative, then Qi ¼ 2Qi�1 þ 1 and Riþ1 ¼ Ri � 1þ 4Qið Þ 22ðn�i�1Þ;

• if Ri is negative, then Qi ¼ 2Qi�1 and Riþ1 ¼ Ri restorig � 1þ 4Qið Þ22ðn�i�1Þ ¼
Ri þ 1þ 4Qi�1ð Þ22ðn�iÞ � 1þ 4Qið Þ22ðn�i�1Þ ¼ Ri þ 1þ 2Qið Þ22ðn�iÞ

� 1þ 4Qið Þ22ðn�i�1Þ ¼ Ri þ 3þ 4Qið Þ22ðn�i�1Þ:

Algorithm 10.7: Square root, non-restoring algorithm

Qi is an i-bit number and Ri is an (i+2)-bit signed number.
An equivalent algorithm is obtained if Pi and Ri are replaced by

pi�1 ¼ Pi�1=22ðn�iÞ; ri ¼ Ri=22ðn�iÞ:

Algorithm 10.8: Square root, non-restoring algorithm, version 2

As before, Qi is an i-bit number and ri a (2n+1)-bit fixed-point number a2n �
a2n�1 a2n�2 . . . a0 initially equal to 0:x2n�1 x2n�2 . . . x0:
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In this case rn2n is the remainder only if rn is non-negative. In fact, the
remainder is equal to (rn-i�4i)�2n where rn-i is the last non-negative remainder.

A sequential implementation is shown in Fig. 10.4. It can be described by the
following VHDL model.

The only computation resource is an (n+2)-bit adder/subtractor so that the
computation time is again approximately equal to n�Tadder(n). The complete circuit
includes an n-bit counter and a control unit. A generic VHDL model Square-
Root3.vhd is available at the Authors’ web page.

r3n+1..2n-2 Q&r3n+11

(n+2)-bit
adder/subtractor

sumdifn+1..0

r2n-3..0&00
sign

r

(3n+2)-bit register
initially: 00··0.x2n-1··x0

n-bit shift register
initially: 0

Q

r3n+1

Fig. 10.4 Square root computation: non-restoring algorithm
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10.3.3 Fractional Numbers

Assume that X is a 2(n+p)-bit fractional number x2n-1 x2n-2 ��� x1 x0. x-1 x-2 ��� x-2p.
The square root Q of X, with an accuracy of p fractional bits, is defined as follows:

Q ¼ qn�12n�1 þ qn�222n�2 þ . . .þ q0 þ q�12�1 þ q�22�2 þ . . .þ q�p2�p;

Q2�X and Qþ 2�pð Þ2 [ X;

so that the remainder R = X - Q2 belongs to the range 0 B R\21-pQ + 2-2p, that
is to say

0 �R�Q � 21�p:

In order to compute Q, first substitute X by X0 = X�22p, which is a natural, and
then compute the square root Q0 ¼ qnþp�1 qnþp�2 . . . q1 q0 of X0, and the corre-
sponding remainder R0 ¼ rnþp rnþp�1 . . . r1 r0; using for that one of the previously

defined algorithms. Thus, X0 = (Q0)2 + R0, with 0 B R0 B 2Q0, so that X ¼
Q0 � 2�pð Þ2þR0 � 2�2p; with 0 B R0�2-2p B 2Q0�2-2p. Finally, define Q = Q0�2-p

and R = R0�2-2p. Thus

X = Q2 + R, with 0 B R B Q�21-p,

where Q ¼ qnþp�1 qnþp�2 . . . qp � qp�1 . . . q1 q0 and R ¼ rnþp rnþp�1 . . . r2p �
r2p�1 . . . r1 r0 is smaller than or equal to Q�21-p.

Comment 10.1
The previous method can also be used for computing the square root of a natural
X ¼ x2n�1 x2n�2 . . . x1 x0 with an accuracy of p bits: represent X as an (n+p)-bit
fractional number x2n�1 x2n�2 . . . x1 x0 � 00 . . . 0 and use the preceding method.

10.3.4 Convergence Methods (Newton–Raphson)

Instead of a digit-recurrence algorithm, an alternative option is the Newton–Raphson
convergence method. The following iteration can be used for computing X1/2

xiþ1 ¼ 1=2ð Þ � xi þ X=xið Þ:

It corresponds to the graphical construction of Fig. 10.5.
First check that (1/2)�(x + X/x) is a function whose minimum value, within the

half plane x [ 0, is equal to X1/2, and is obtained when xi = X1/2. Thus, whatever
the initial value x0, xi is greater than or equal to X1/2 for all i[0. Furthermore, if xi[X1/2

then xiþ1\ 1=2ð Þ � xi þ X=X1=2
� �

¼ 1=2ð Þ � xi þ X1=2
� �

\ 1=2ð Þ � xi þ xið Þ ¼ xi:

Thus, either X1=2\xiþ1\xi or X1=2 ¼ xiþ1 ¼ xi: For x0 choose a first rough
approximation of X1/2. As regards the computation of X/xi, observe that if xi C X1/2

and X\22n, then xi � 2n [ X1=2 � X1=2 ¼ X: So, compute q % X/(xi�2n), with an
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accuracy of p+n fractional bits, using any division algorithm, so that X � 2nþp ¼
q � xi � 2n þ r; with r\xi�2n, and X ¼ Q � xi þ R; where Q = q�2-p and R = (r/xi)�
2-(n+p)\2-p.

An example of implementation SquareRootNR4.vhd is available at the Authors’
web page. The corresponding data path is shown in Fig. 10.6. The initial value x0

must be defined in such a way that x0�2n[X. In the preceding example, initial_y =
x0 is defined so that initial_y(n+p �� n+p-4)�2-2 is an approximation of the square
root of X2n-1 �� 2n-4 and that initial_y�2n is greater than X.

table_x0 is a constant array defined within a user package:

The end of computation is detected when xi+1 = xi.

f (x ) = x2-X

xxixi+1
X

1/2
-X

Fig. 10.5 Newton–Raphson
method:
computation of X1/2
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Comment 10.2
Every iteration step includes a division, an operation whose complexity is similar
to that of a complete square root computation using a digit recurrence algorithm.
Thus, this type of circuit is generally not time effective.

Another method is to first compute X-1/2. A final multiplication computes
X1/2 = X-1/2 � X. The following iteration can be used for computing X-1/2

xiþ1 ¼ xi=2ð Þ � 3� x2
i � X

� �
;

where the initial value x0 belongs to the range 0\x0 B X-1/2. The corresponding
graphical construction is shown in Fig. 10.7.

The corresponding circuit does not include dividers, only multipliers and an adder.
The implementation of this second convergence algorithm is left as an exercise.

10.4 Logarithm

Given an n-bit normalized fractional number x = 1�x-1 x-2 ��� x-n, compute y =
log2x with an accuracy of p fractional bits. As x belongs to the interval 1 B x\2, its
base-2 logarithm is a non-negative number smaller than 1, so y = 0.y-1 y-2 ��� y-p.

If y = log2x, then x ¼ 20 � y�1 y�2...y�p ...; so that x2 ¼ 2y�1 � y�2 ... y�p ...: Thus

• if x2� 2 : y�1 ¼ 1 and x2=2 ¼ 20:y�2 ��� y�p ���;

• if x2\2 : y�1 ¼ 0 and x2 ¼ 20:y�2 ��� y�p ���:

X

start_div

div_done
dividertable

(n+p+1)-bit register
initially:x0

load

update

xi

x0

adder

xi+1

Fig. 10.6 Newton–Raphson method: data path
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The following algorithm computes y:

Algorithm 10.9: Base-2 logarithm

The preceding algorithm can be executed by the data path of Fig. 10.8 to which
corresponds the following VHDL model.

f(x) = 1/x2-X

xxi xi+1

X -1/2

-X

Fig. 10.7 Newton–Raphson
method: computation of X-1/2

(n+1)-bit register
initially:x

load

update
z

squaring

z 2

z2/2

m.s.b.

0 1
p-bit shift register

load

update

log

Fig. 10.8 Logarithm: data path
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A complete VHDL model Logarithm.vhd is available at the Authors’ web page.

Comments 10.3

1. If x belongs to the interval 2n�1� x\2n; then it can be expressed under the
form x ¼ 2n�1 � y where 1 B y \ 2, so that log2x = n -1 + log2y.

2. If the logarithm in another base, say b, must be computed, then the following
relation can be used: logbx ¼ log2x=log2b:

10.5 Exponential

Given an n-bit fractional number x ¼ 0:x�1 x�2 . . . x�n; compute y = 2x with an
accuracy of p fractional bits. As x ¼ x�12�1 þ x�22�2 þ . . . þ x�n2�n; then

2x ¼ 22�1
� �x�1

22�2
� �x�2

. . . 22�n� �x�n
:

If all the constant values ai ¼ 22�i
are computed in advance, then the following

algorithm computes 2x.

Algorithm 10.10: Exponential 2x

The preceding algorithm can be executed by the data path of Fig. 10.9.
The problem is accuracy. Assume that all ai’s are computed with m fractional

bits so that the actual operand ai’ is equal to ai - ei, where ei belongs to the range

0� ei\2�m: ð10:6Þ

Consider the worst case, that is y = 20.11 ��� 1. Then the obtained value is
y0 ¼ a1 � e1ð Þ a2 � e2ð Þ . . . an � enð Þ: If second or higher order products ei ej ��� ek

are not taken into account, then y0 % y - (e1 a2 ��� an + a1 e2 ��� an + a1 ��� an-1 en).
As all products p1 = a2 ��� an, p2 = a1 a3 ��� an, etc., belong to the range 1\pi\2,
and ei to (10.6), then

y� y0\2 � n � 2�m�: ð10:7Þ
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Relation (10.7) would define the maximum error if all products were computed
exactly, but it is not the case. At each step the obtained product is rounded. Thus
Algorithm 10.8 successively computes

z2 [ a
0

1 � a
0

2 � 2m;

z3 [ a
0

1 � a
0

2 � 2m
� �

� a
0

3 � 2m ¼ a
0

1 � a
0

2 � a
0

3 � 2�m 1þ a
0

3

� �
;

z4 [ a
0

1 � a
0

2 � a
0

3 � 2�m 1þ a
0

3

� �� �
� a

0

4 � 2m ¼ a
0

1 � a
0

2 � a
0

3 � a
0

4 � 2�m 1þ a
0

4 þ a
0

3 � a
0

4

� �
;

and so on. Finally

zn [ y
0 � 2�m 1þ a

0

n þ a
0

n�1 � a
0

n þ � � � þ a
0

3 � a
0

4 � � � a
0

n

� �

[ y
0 � 2�m 1þ 2 n� 2ð Þð Þ[ y

0 � 2 � n � 2�m:
ð10:8Þ

Thus, from (10.7) and (10.8), the maximum error y - zn is smaller than 4�n�2-m.
In order to obtain the result y with p fractional bits, the following relation must hold
true: 4�n�2-m- B 2-p, and thus

m� pþ log2nþ 2: ð10:9Þ

As an example, with n = 8 and p = 12, the internal data must be computed with
m = 17 fractional bits.

The following VHDL model describes the circuit of Fig. 10.9.

itable
ai

multiplier

10
shift-register

load

update

x-i

parallel register
initially:1.00···0

load

update

z

x

y

Fig. 10.9 Exponential: data path
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powers is a constant array defined within a user package; it stores the fractional
part of ai with 24 bits:

A complete VHDL model Exponential.vhd is available at the Authors’ web
page.

Instead of storing the constants ai, an alternative solution is to store an, and to
compute the other values on the fly:

ai�1 ¼ 22�iþ1 ¼ 22�i
� �2

¼ a2
i .

Algorithm 10.11: Exponential 2 x, version 2

The preceding algorithm can be executed by the data path of Fig. 10.9 in which
the table is substituted by the circuit of Fig. 10.10.

Once again, the problem is accuracy. In this case there is an additional problem:
in order to get all coefficients ai with an accuracy of m fractional bits, they must be
computed with an accuracy of k[m bits. Algorithm 10.11 successively computes

266 10 Other Operations



a
0

n [ an � 2�k; a
0

n�1 [ an � 2�k
� �2�2�k ffi a2

n � 2an2�k � 2�k ¼ an�1 � 2�k

1þ 2anð Þ; a0n�2 [ an�1 � 2�k 1þ 2anð Þ
� �2�2�k ffi a2

n�1 � 2an�1 2�k 1þ 2anð Þ
�2�k ¼ an�2 � 2�k 1þ 2an�1 þ 4an�1 anð Þ; a0n�3 [ an�2 � 2�k

�

1þ 2an�1 þ 4an�1anð ÞÞ2 �2�k ffi a2
n�2 � 2an�22�k 1þ 2an�1 þ 4an�1anð Þ � 2�k

¼ an�3 �2�k 1þ 2an�2 þ 4an�2 an�1 þ 8an�2 an�1 anð Þ;

and so on. Finally

a
0

1 [ a1 � 2�k 1þ 2a2 þ 4a2a3 þ � � � þ 2n�2a2 a3 . . . an

� �

[ a1 � 2�k 1þ 4þ 8þ � � � þ 2n�1
� �

¼ a1 � 2�k 2n � 3ð Þ:

In conclusion, a1 - a1
0\ 2-k(2n - 3) \ 2n-k. The maximum error is smaller

than 2-m if n-k B -m, that is k C n + m. Thus, according to (10.9)

k� nþ pþ log2nþ 2:

As an example, with n = 8 and p = 8, the coefficients ai (Fig. 10.10) are
computed with k = 21 fractional bits and z (Fig. 10.9) with 13 fractional bits.

A complete VHDL model Exponential2.vhd, in which an, expressed with
k fractional bits, is a generic parameter, is available at the Authors’ web page.

Comment 10.3
Given an n-bit fractional number x and a number b[2, the computation of y = bx,
with an accuracy of p fractional bits, can be performed with Algorithm 10.10 if the
constants ai are defined as follows:

ai ¼ b2�i
:

So, the circuit is the same, but for the definition of the table which stores the
constants ai. In particular, it can be used for computing ex or 10x.

multiplier

parallel register
initially:an

load

update

ai

ai
2

Fig. 10.10 Computation of
ai on the fly
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10.6 Trigonometric Functions

A digit-recurrence algorithm for computing ejz = cos z + j�sin z, with 0 B z B p/2,
similar to Algorithm 10.10 can be defined. In the modified version, the operations
are performed over the complex field.

Algorithm 10.12: Exponential ejz; z ¼ z0 � z�1 z�2 . . . z�n

The constants aRi and aIi are equal to cos 2-i and sin 2-i, respectively. The
synthesis of the corresponding circuit is left as an exercise.

A more efficient algorithm, which does not include multiplications, is CORDIC
[2, 3]. It is a convergence method based on the graphical construction of
Fig. 10.11. Given a vector (xi, yi), then a pseudo-rotation by ai radians defines a
rotated vector (xi+1, yi+1) where

xiþ1 ¼ xi � yi � tan ai ¼ ðxi � cos ai � yi � sin aiÞ � ð1þ tan2 aiÞ0:5;
yiþ1 ¼ yi þ xi � tan ai ¼ ðyi � cos ai þ xi � sin aiÞ � ð1þ tan2 aiÞ0:5:

In the previous relations, xi�cos ai - yi�sin ai and yi�cos ai + xi�sin ai define the
vector obtained after a (true) rotation by ai radians. Therefore, if an initial vec-
tor (x0, y0) is rotated by successive angles a0, a1, ���, an-1, then the final vector is
(xn, yn) where

i

xixi+1

yi

yi+1

/2

Fig. 10.11 Pseudo-rotation
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xn ¼ ðx0 � cosa� y0 � sinaÞð1þ tan2a0Þ0:5ð1þ tan2a1Þ0:5 . . . ð1þ tan2an�1Þ0:5;
yn ¼ ðy0 � cosaþ x0 � sinaÞð1þ tan2a0Þ0:5ð1þ tan2a1Þ0:5. . .ð1þ tan2an�1Þ0:5;

with a = a0 + a1 + ��� + an-1. The CORDIC method consists in choosing angles ai

such that

• xi - yi�tan ai and yi + xi�tan ai are easy to calculate,
• a0 + a1 + a2 + ��� tends toward z.

As regards the first condition, ai is chosen as follows: ai = tan-12-i or -tan-12-i, so
that tan ai = 2-i or -2-i. In order to satisfy the second condition, ai is chosen in
function of the difference di = z - (a0 + a1 + ��� + ai-1): if di\0, then ai = tan-12-i;
else ai = -tan-12-i. The initial values are

x0 ¼ 1=k; where k ¼ 1þ 1ð Þ0:5ð1þ 2�2Þ0:5 . . . ð1þ 2�2ðn�1ÞÞ0:5; y0 ¼ 0; d0 ¼ z:

Thus, if z ffi a0 þ a1 þ . . . þ an�1; then xn % cos z and yn % sin z. It can be
shown that the error is less than 2-n. In the following algorithm, x0 has been
computed with n = 16 and 32 fractional bits.

itable
tan-1(2-i)

+/-

d

dm

register
init.: z

d

ishifter

+/-

x

dm

register
init.: x0

x

ishifter

+/-

y

dm

register
init.: 0

y

xy

Fig. 10.12 Data path executing CORDIC
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Algorithm 10.13: CORDIC, x = cos z, y = sin z

A circuit for executing Algorithm 10.13 is shown in Fig. 10.12. It can be
described by the following VDL model.

angles is a constant array defined within a user package; it stores tan-12-i, for i up
to 15, with 32 bits:
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shifter is a previously defined component that computes b = a�2-shift. A complete
VHDL model cordic2.vhd is available at the Authors’ web page. It includes an n-
state counter, which generates the index i of Algorithm 10.13, and a control unit.

CORDIC can be used for computing other functions. In fact, Algorithm 10.13 is
based on circular CORDIC rotations, defined in such a way that the difference
di ¼ z� ða0 þ a1 þ . . . þ ai�1Þ tends to 0. Another CORDIC mode, called cir-
cular vectoring, can be used. As an example, assume that at each step the value of
ai is chosen in such a way that yi tends toward 0: if sign(xi) = sign(yi), then ai = -
tan-12-i; else, ai = tan-12-i. Thus, if yn % 0, then xn is the length of the initial
vector multiplied by k. The following algorithm computes (x2 + y2)0.5.

Algorithm 10.14: CORDIC, z = (x2 + y2)0.5
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A complete VHDL model norm_cordic.vhd corresponding to the previous
aslgorithm is available at the Authors’ web page.

10.7 FPGA Implementations

Several circuits have been implemented within a Virtex 5-2 device. The times are
expressed in ns and the costs in numbers of Look Up Tables (LUTs) and flip-flops
(FFs). All VHDL models are available at the Authors’ web page.

10.7.1 Converters

Table 10.1 gives implementation results of several binary-to-decimal converters.
They convert n-bit numbers to m-digit numbers.

In the case of decimal-to-binary converters, the implementation results are
given in Table 10.2.

Table 10.1 Binary to
decimal converters

n m FFs LUTs Period Total time

8 3 27 29 1.73 15.6
16 5 43 45 1.91 32.5
24 8 54 56 1.91 47.8
32 10 82 82 1.83 60.4
48 15 119 119 1.83 89.7
64 20 155 155 1.83 119.0

Table 10.2 Decimal-to-binary converters n m FFs LUTs Period Total time

8 3 26 22 1.80 16.2
16 5 43 30 1.84 31.3
24 8 65 43 1.87 46.8
32 10 81 51 1.87 61.7
48 15 118 72 1.87 91.6
64 20 154 92 1.87 121.6
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10.7.2 Square Rooters

Three types of square rooters have been considered, based on the restoring
algorithm (Fig. 10.3), the non-restoring algorithm (Fig. 10.4) and the Newton–
Raphson method (Fig. 10.6). The implementation results are given in Tables
10.3, 10.4.

In the case of the Newton–Raphson method, the total time is data dependent. In
fact, as was already indicated above, this type of circuit is generally not time
effective (Table 10.5).

Table 10.3 Square rooters:
restoring algorithm

n FFs LUTs Period Total time

8 38 45 2.57 20.6
16 71 79 2.79 44.6
24 104 113 3.00 72.0
32 136 144 3.18 101.8

Table 10.4 Square rooters:
non-restoring algorithm

n FFs LUTs Period Total time

8 39 39 2.61 20.9
16 72 62 2.80 44.8
24 105 88 2.98 71.5
32 137 111 3.16 101.1

Table 10.5 Square rooter:
Newton–Raphson method

n p FFs LUTs Period

8 0 42 67 2.94
8 4 51 78 3.50
8 8 59 90 3.57
16 8 92 135 3.78
16 16 108 160 3.92
32 16 173 249 4.35
32 32 205 301 4.67

Table 10.6 Base-2
logarithm

n p FFs LUTs DSPs Period Total time

8 10 16 20 1 4.59 45.9
16 18 25 29 1 4.59 82.6
24 27 59 109 2 7.80 210.5
32 36 44 46 4 9.60 345.6
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10.7.3 Logarithm and Exponential

Table 10.6 gives implementation results of the circuit of Fig. 10.8. DSP slices
have been used.

The circuit of Fig. 10.9 and the alternative circuit using a multiplier instead of a
table (Fig. 10.10) have been implemented. In both cases DSP slices have been
used (Tables 10.7, 10.8)

10.7.4 Trigonometric Functions

Circuits corresponding to algorithms 10.13 and 10.14 have been implemented. The
results are summarized in Tables 10.9, 10.10.

10.8 Exercises

1. Generate VHDL models of combinational binary-to-decimal and decimal-to-
binary converters.

2. Synthesize binary-to-radix-60 and radix-60-to-binary converters using LUT-6.

Table 10.7 Exponential 2x
n p m FFs LUTs DSPs Period Total time

8 8 13 27 29 1 4.79 38.3
16 16 23 46 48 2 6.42 102.7

Table 10.8 Exponential 2x,
version 2

n p m k FFs LUTs DSPs Period Total time

8 8 13 21 49 17 3 5.64 45.1
16 16 23 39 86 71 10 10.64 170.2

Table 10.9 CORDIC: sine
and cosine

n p m FFs LUTs Period Total time

16 8 16 57 134 3.58 57,28
32 16 32 106 299 4.21 134.72
32 24 32 106 309 4.21 134.72

Table 10.10 CORDIC:

z ¼ x2 þ y2ð Þ0:5
n p m FFs LUTs DSPs Period Total time

8 8 16 43 136 1 3.39 27.12
16 16 32 76 297 2 4.44 71.04
48 24 48 210 664 5 4.68 224.64
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3. Implement Algorithm 10.6.
4. Implement the second square rooting convergence algorithm (based on

Fig. 10.7).
5. Synthesize circuits for computing ln, log10, ex and10x.
6. Generate a circuit which computes ejx ¼ cos xþ j � sin x:
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Chapter 11
Decimal Operations

In a number of computer arithmetic applications, decimal systems are preferred to
the binary ones. The reasons come, not only from the complexity of coding/
decoding interfaces but, mostly from the lack of precision in the results of the
binary systems.

For the following circuits the input and output operators are supposed to be
encoded in Binary Encoded Digits (BCD).

11.1 Addition

Addition is a primitive operation for most arithmetic functions, and then it
deserves special attention. The general principles for addition are in Chap. 7, and
in this section we examine special consideration for efficient implementation of
decimal addition targeting FPGAs.

11.1.1 Decimal Ripple-Carry Adders

Consider the base-B representations of two n-digit numbers

x ¼ xn�1 � Bn�1 þ xn�2 � Bn�2 þ � � � þ x0 � B0;

y ¼ yn�1 � Bn�1 þ yn�2 � Bn�2 þ � � � þ y0 � B0:

The following (pencil and paper) Algorithm 11.1 computes the (n ? 1)-digit
representation of the sum z = x ? y ? cin where cin is the initial carry.
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Algorithm 11.1: Classic addition (ripple carry)

For B = 10, the classic ripple-carry for a BCD decimal adder cell can be
implemented as suggested in Fig. 11.1 The mod-10 addition is performed adding 6
to the binary sum of the digits, when a carry for the next digit is generated. The
VHDL model ripple_carry_adder_BCD.vhd is available at the Authors’ web page.

As described in Chap. 7, the na implementation of an adder (ripple-carry,
Fig. 7.1) has a meaningful critical path. In order to reduce the execution time of
each iteration step, Algorithm 11.1 can be modified as shown in the next section.

11.1.2 Base-B Carry-Chain Adders

In order to improve the ripple-carry adder, a better solution is the use of two binary
functions of two B-valued variables, namely the propagate (P) and generate
(G) functions.

pi¼ p xi;yið Þ¼ 1if xiþyi¼B�1; p xi;yið Þ¼ 0 otherwise;

gi¼ g xi;yið Þ¼ 1if xiþyi�B; g xi;yið Þ¼ 0if xiþyi�B�2; otherwise; anyvalue:

FA FA FA HAs4

s3 s2 s1 s0

HA FA HA

s4 ∨ 
s3.(s2∨s1)

x3(i) y3(i) x2(i) y2(i) x1(i) y1(i) x0(i) y0(i)

z3(i) z2(i) z1(i) z0(i)

c(i)

c(i+1)

Fig. 11.1 Decimal ripple-
carry adder cell
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So, ci ? 1 can be expressed under the following way:

ciþ1 ¼ pi � ci þ not pið Þ � gi:

The corresponding modified Algorithm 11.2 is the following one.

Algorithm 11.2: Carry-chain addition

The use of propagate and generate functions allow generating a n-digit adder
carry-chain array of Fig. 11.1. It is based on the Algorithm 11.2. The Generate-
Propagate (G-P) cell calculates the Generate and Propagate functions; and the
carry-chain (Cy.Ch) cell computes the next carry. Observe that the carry-chain
cells are binary circuits, whereas the generate-propagate and the mod B sum cells
are B-ary ones. As regards the computation time, the critical path is shaded in
Fig. 11.2. (It has been assumed that Tsum [ TCy. Ch)

x(1) y(1)

G-P

g(1) p(1)

x(0) y(0)

G-P

g(0) p(0)

x(n-1) y(n-1)

G-P

g(n-1) p(n-1)

x(n-2) y(n-2)

G-P

g(n-2) p(n-2)

Cy.Ch. Cy.Ch. Cy.Ch. Cy.Ch.
c(0)=c_inc(1)c(2)c(n-2)c(n-1)z(n)=c(n)

x(1) y(1)

mod B sum

x(0) y(0)

mod B sum

x(n-1) y(n-1)

mod B sum

x(n-2) y(n-2)

mod B sum

.....

z(n-1) z(n-2) z(1) z(0)

Fig. 11.2 n-digits carry-chain adder
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11.1.3 Base-10 Carry-Chain Adders

If B = 10, the carry-chain circuit remains unchanged but the P and G functions as
well as the modulo-10 sums are somewhat more complex. In base 2 (Chap. 7), the
P and G cells are respectively synthesized by XOR and AND functions, while in
base 10, P and G are now defined as follows:

pi ¼ 1 if xi þ yi ¼ 9; pi ¼ 0 otherwise; ð11:1Þ

gi ¼ 1 if xi þ yi [ 9; gi ¼ 0 otherwise; ð11:2Þ

A straightforward way to synthesize P and G is shown at Fig. 11.3a. That is add
the BCD numbers and detects if the sum is equal to nine and greater than nine
respectively. Nevertheless, functions P and G may be directly computed from xi, yi

inputs. The following formulas (11.3) and (11.4) are Boolean expressions of
conditions (11.1) and (11.2).

pi ¼ P0 � ½K1 � ðP3 � K2 _ K3 � G2Þ _ G1 � K3 � P2� ð11:3Þ

gi ¼ G0 � ½P3 _ G2 _ P2 � G1� _ G3 _ P3 � P2 _ P3 � P1 _ G2 � P1 _ G2 � G1 ð11:4Þ

where Pj ¼ xj � yj; Gj ¼ xj � yj and Kj ¼ x
0
j � y

0
j are the binary propagator, generator

and carry-kill for the jth components of the BCD digits x(i) and y(i).
The BCD carry-chain adder ith digit computation is shown at Fig. 11.3b and it

is made of a first binary mod 16 adder stage, a carry-chain cell driven by the G-
P functions, and an output adder stage performing a correction (adding 6)
whenever the carry-out is one. Actually, a zero carry-out c(i ? 1) identifies that
the mod 16 sum does not exceed 9, so no corrections are needed. Otherwise, the
add-6 correction applies. Naturally, the G-P functions may be computed according
to Fig. 11.3, using the outputs of the mod 16 stage, including the carry-out s4.

The VHDL model cych_adder_BCD_v1.vhd that implements a behavioral
model of the decimal carry-chain adder is available at the Authors’ web page.

p = s4.s3.s2.s1.s0

g = s4  s3.(s2 ∨ ∨ s1)

FA FA FA HA

s4 s3 s2 s1 s0

p g

x3 y3 x2 y2 x1 y1 x0 y0

Cy.Ch.

FA FA FA HA

x3(i) y3(i) x2(i) y2(i) x1(i) y1(i) x0(i) y0(i)

G-P

...

p(i) g(i)

HA FA FA HA

c(i)
c(i+1) 1

0

(a) (b)

z3(i) z2(i) z1(i) z0(i)

Fig. 11.3 a Simple G-P cell for BCD adder. b Carry-chain BCD adder ith digit computation
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11.1.4 FPGA Implementation of the Base-10 Carry-Chain Adders

The FPGA vendors provides dedicated resources to implement binary carry-chain
adders [1, 2]. As mentioned in Chap. 7 a simple HDL description of a binary adder
is implemented efficiently using the carry-logic. Nevertheless in order to use this
resources in other designs it is necessary to instantiate the components manually.

Figure 11.4 shows a Xilinx implementation of the decimal carry-chain adder.
The VHDL model cych_adder_BCD_v2.vhd that implements a low level com-
ponent instantiation model of the decimal carry-chain adder is available at the
Authors’ web page.

Observe that the critical path includes a 4-bit adder, the G-P computation; the n-
digits carry propagation and a final 3-bit correction adder. Xilinx 6-input/2-output
LUT is built as two 5-input functions while the sixth input controls a 2-1 multi-
plexor allowing to implement either two 5-input functions or a single 6-input one;
so G and P functions fit in a single LUT as shown at Fig. 11.5a.

Other alternatives to implement in FPGA the decimal carry-chain adders, include
computing the functions P and G directly from the decimal digits (x(i), y(i) inputs)
using the Boolean expressions, instead of the intermediate sum bits sk [3].

correc
Adder

correc
Adder

4-bit 
Adder

x3:0(N-1)

y3:0(N-1)

s4:0(N-1) z3:0(N-1)

. . . . . . . . . 
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BCD carry chain
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s4:0(N-2) z3:0(N-2)correc
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Fig. 11.4 FPGA implementation of an N-digit BCD Adder
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For this purpose one could use formulas (11.3) and (11.4), nevertheless, in order
to minimize time and hardware consumption the implementation of p(i) and g(i) is
revisited as follows. Remembering that p(i) = 1 whenever the arithmetic sum
x(i) ? y(i) = 9, one defines a 6-input function pp(i) set to be 1 whenever the
arithmetic sum of the first 3 bits of x(i) and y(i) is 4. Then p(i) may be computed as:

pðiÞ ¼ ðx0ðiÞ � y0ðiÞÞ � ppðiÞ: ð11:5Þ

On the other hand, gg(i) is defined as a 6-input function set to be 1 whenever the
arithmetic sum of the first 3 bits of x(i) and y(i) is 5 or more. So, remembering that
g(i) = 1, whenever the arithmetic sum x(i) ? y(i) [ 9, g(i), may be computed as:

gðiÞ ¼ ggðiÞ _ ðppðiÞ � x0ðiÞ � y0ðiÞÞ: ð11:6Þ

As Xilinx LUTs may compute 6-variable functions, then gg(i) and pp(i) may be
synthesized using 2 LUTs in parallel while g(i) and p(i) are computed through an
additional single LUT as shown at Fig. 11.5b.

11.2 Base-10 Complement and Addition: Subtration

11.2.1 Ten’s Complement Numeration System

B’s complement representation general principles are available in the literature.
One restricts to 10’s complement system to cope with the needs of this section.
A one-to-one function R(x), associating a natural number to x is defined as follows.

Every integer x belonging to the range –10n/2 B x \ 10n/2, is represented by
R(x) = x mod 10n, so that the integer represented in the form xn�1xn�2 � � � x1x0 is

xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � � þ x0 if xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � �
þ x0\10n=2;

ð11:7Þ

xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � � þ x0 � 10n if xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � �
þ x0� 10n=2:

ð11:8Þ

The conditions (11.7) and (11.8) may be more simply expressed as

xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � � þ x0 if xn�1\5; ð11:9Þ

xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � � þ x0 � 10n if xn�1� 5: ð11:10Þ

Another way to express a 10’s complement number is:

x
0

n�1 � 10n�1 þ xn�2 � 10n�2 þ � � � þ x0 ð11:11Þ
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where x
0
n�1 ¼ xn�1 ��10 if xn�1� 5 and x

0
n�1 ¼ xn�1 if xn�1\5; while the sign

definition rule is the following one: if x is negative then xn – 1 C 5; otherwise
xn - 1 \ 5.

11.2.2 Ten’s Complement Sign Change

Given an n-digit 10’s complement integer x, the inverse z = -x of x, is an n-digit
10’s complement integer. Actually the only case -x cannot be represented with
n digits is when x ¼ �10n=2; so� x ¼ 10n=2: The computation of the represen-
tation of -x is based on the following property. Assuming x to be represented as an
n-digit 10’s complement number R(x), -x may be readily computed as

�x ¼ 10nþ1 � R xð Þ: ð11:12Þ

A straightforward inversion algorithm then consists of representing x with
n ? 1 digits, complementing every digit to 9, then adding 1. Observe that sign
extension is obtained by adding a digit 0 to the left of a positive number, or 9 for a
negative number, respectively.

11.2.3 10’s Complement BCD Carry-Chain Adder-Subtractor

To compute X ? Y similar algorithm as in Algorithm 11.2 (Sect. 11.1.2) can be
used. In order to compute X - Y, 10’s complement subtraction algorithm actually
adds (-Y) to X.

10’s complement sign change algorithm may be implemented through a dig-
itwise 9’s complement stage followed by an add-1 operation. It can be shown that
the 9’s complement binary components w3;w2;w1;w0 of a given BCD digit
y3; y2; y1; y0 are expressed as

w3 ¼ y03 � y02 � y01; w2 ¼ y2 � y1; w1 ¼ y1; w0 ¼ y00 ð11:13Þ

An improvement to the adder stage could be carried out by avoiding the delay
produced by the 9’s complement step. Thus, this operation may be carried out
within the first binary adder stage, where p(i) and g(i) are computed as

p0 ið Þ ¼ x0 ið Þ � y0 ið Þ � A
0
=S

� �
; p1 ið Þ ¼ x1 ið Þ � y1 ið Þ;

p2 ið Þ ¼ x2 ið Þ � y2 ið Þ � y1 ið Þ: A
0
=S

� �

p3 ið Þ ¼ x3 ið Þ � y3 ið Þ
0
�y2 ið Þ

0
�y1 ið Þ

0
� �

� A
0
=S

� �
� y3 ið Þ � A

0
=S

� �0
ð11:14Þ

gk ið Þ ¼ xk ið Þ; 8k: ð11:15Þ
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A third alternative is computing G and P directly from the input data. As far as
addition is concerned, the P and G functions may be implemented according to
formulas (11.4) and (11.5). The idea is computing the corresponding functions in
the subtract mode and then multiplexing according to the add/subtract control
signal A0/S.

11.2.4 FPGA Implementations of Adder Subtractors

To compute X – Y, 10’s complement subtraction algorithm actually adds (-Y) to
X. So for a first implementation, Fig. 11.6 presents a 9’s complement imple-
mentation using 6-input/2-output LUTs, available in the Xilinx (Virtex-5, Virtex-6,
spatan6, 7-series) technology. A0/S is the add/subtract control signal; if A0/S = 1
(subtract), formulas (11.13) apply, otherwise A0/S = 0 and wj ið Þ ¼ yj ið Þ8i; j:

The complete circuit is similar to the circuit of Fig. 11.4, but instead of input y,
the input w as produced by the circuit of Fig. 11.5.

The better alternative intended to avoid the delay produced by the 9’s com-
plement step, embeds the 9’s complementation within the first binary adder stage,
as depicted in Fig. 11.7a, where p(i) and g(i) are computed as explained in (11.14)
and (11.15).

The VHDL model addsub_1BDC.vhd that implements the circuit of Fig. 11.7a
is available at the Authors’ web page. The VHDL model has two architectures a
behavioral and a low level that instantiates components (Luts, muxcy, xorcy, etc.).
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Fig. 11.5 FPGA carry-chain for decimal addition. a. P-G calculation using an intermediate
addition. b. P-G calculation directly from BCD digits
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Then we can use the circuit of Fig. 11.6a to compute the P-G function using the
previous computed addition of BDC digits. The VHDL model addsub_BDC_v1.vhd
that implements a complete decimal adder-subtractor and it is available at the
Authors’ web page. To complete the circuit, a final correction adder (cor-
rect_add.vhd) corrects the decimal digit as a function of the carries.

The third alternative is computing G and P directly from the input data. For this
reason, assuming that the operation at hand is X ? (±Y), one defines on one hand
ppa(i) and gga(i) according to (11.4) and (11.5) (Sect. 11.1.4), i.e. using the
straight values of Y’s BCD components. On the other hand, pps(i) and ggs(i) are
defined using wk(i) as computed by the 9’s complement circuit (11.13). As
wk(i) are expressed from the yk(i) both pps(i) and ggs(i) may be computed directly
from xk(i) and yk(i). Then the correct pp(i) and gg(i) signal is selected according to
the add/subtract control signal A0/S. Finally, the propagate and generate function
are computed as:

p ið Þ ¼ ðx0 ið Þ � y0 ið Þ � ðA0=SÞÞ � pp ið Þ; ð11:16Þ

g ið Þ ¼ gg ið Þ _ ðpp ið Þ � x0 ið Þ � ðy0 ið Þ � ðA0=SÞÞÞ: ð11:17Þ

Figure 11.7b shows the Xilinx LUT based implementation. The multiplexers
are implemented using dedicated muxF7 resources.

The VHDL model addsub_BDC_v2.vhd that implements the adder-subtractor
using for the P-G computation from the direct inputs (carry-chain_v2.vhd) is
available at the Authors’ web page.
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Fig. 11.7 FPGA implementation of adder-subtractor. a Adder-subtractor for one BCD digit.
b Direct computation of P-G function
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11.3 Decimal Multiplication

This section presents approaches for BCD multipliers. It starts by discussing algo-
rithmic alternatives to implement a 1 9 1 BCD digit multiplier. Then, this section
proposes an implementation for an N 9 1 BCD multiplier. This operation can be used
to carried out an N 9 M multiplier, but by itself, the N 9 1 multiplication appears to
be a primitive for other algorithms, such as logarithm or exponential functions.

11.3.1 One-Digit by One-Digit BCD Multiplication

11.3.1.1 Binary Arithmetic with Correction

The decimal product can be obtained through a binary product and a post cor-
rection stage [4, 5]. Let A and B be two BCD digits (a3 a2 a1 a0) and (b3 b2 b1 b0)
respectively. The BCD coded product consists of two BCD digits D and C such
that:

A�B ¼ D�10þ C ð11:18Þ

A * B is first computed as a 7-bit binary number P(6:0) such that

A�B ¼ P ¼ p6 p5 p4 p3 p2 p1 p0 ð11:19Þ

Although a classic binary-to-BCD decoding algorithm can be used, it can be
shown that the BCD code for P can be computed through binary sums of correcting
terms described in Fig. 11.8. The first row in Figure shows the BCD weights. The
weights of p3, p2, p1 and p0 are the same as those of the original binary number
‘‘p6 p5 p4 p3 p2 p1 p0’’. But weights 16, 32 and 64 of p4, p5, and p6 have been
respectively decomposed as (10, 4, 2), (20, 10, 2) and (40, 20, 4). Observe that ‘‘p3

p2 p1 p0’’ could violate the interval [0, 9], then an additional adjust could be
necessary.

First the additions of Row 1, 2, 3, and correction of ‘‘p3 p2 p1 p0’’ are completed
(least significant bit p0 is not necessary in computations). Then the final correction
is computed.

One defines (Arithmetic I):

1. the binary product A�B ¼ P ¼ p6 p5 p4 p3 p2 p1 p0

2. the Boolean expression: adj1 ¼ p3 ^ ðp2 _ p1Þ;

80 40 20 10 8 4 2 1
p6 p5 p4 p3 p2 p1 p0

+ p6 p5 p4 p4

p6 p5

d3 d2 d1 d0
c3 c2 c1 c0

Fig. 11.8 Binary to BCD
arithmetic reduction
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3. the arithmetic sum: dcp ¼ p6 p5 p4 p3 p2 p1 p0 þ 0 p6 p5 0 p4 p3 þ 0 0 0 0p6 p5 0þ
0 0 0 0 adji adj1 0;

4. the Boolean expression: adj2 ¼ ðdcp3 ^ ðdcp2 _ dcp1ÞÞ _ ðp5 ^ p4 ^ p3Þ:

One computes

dc ¼ dcpþ 0 0 0 0 adj2 adj2 0: ð11:20Þ

Then

D ¼ dc7 dc6 dc5 dc4 and C ¼ dc3 dc2 dc1 dc0

A better implementation can be achieved using the following relations
(Arithmetic II):

1. the product A�B ¼ P ¼ p6 p5 p4 p3 p2 p1 p0

2. compute:

cc ¼ p3 p2 p1 p0 þ 0 p4 p4 0þ 0 p6 p5 0;

dd ¼ p6 p5 p4 þ 0 p6 p5

(cc is 5 bits, dd has 4 bits, computed in parallel)

3. define:

cy1 ¼ 1 iff cc [ 19; cy0 ¼ 1 iff 9\cc\20

(cy1 y cy2 are function of cc3 cc2 cc1 cc0, and can be computed in parallel)

4. compute:

c ¼ cc3 cc2 cc1 cc0 þ cy1 cy1 or cy0ð Þ cy 0 0; ð11:21Þ

d ¼ dd3 dd2 dd1 dd0 þ 0 0 cy1 cy0

(c and d calculated in parallel)

Compared with the first approach, the second one requires smaller adders (5 and
4-bit vs. 8-bit) and the adders can operate in parallel as well. The VHDL models
bcd_mul_arith1.vhd and bcd_mul_arith2.vhd that described the previous method
for digit by digit multiplication are available at the Authors’ web page.

11.3.1.2 Using ROM

Actually a (100 9 8)-bit ROM can fit to store all the A* B multiplications.
However, as A and B are two 4-bit operands (BCD digits) the product can be
mapped into a 28 9 8-bit ROM. In FPGA devices there mainly two main memory
recourses: Block and distributed RAMS. For the examples in Xilinx devices two
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main possibilities are considered: Block RAMs BRAM’s or distributed RAM’s
(LUT based implementation of RAM’s).

BRAM-based implementation: Xilinx Block RAM’s are 18-kbit (or 36-kbits)
configurable and synchronous dual-port RAM (or ROM) blocks. They can be
configured into different layouts. The 211 9 8-bit configuration option has been
selected, though wasting some memory capacity. As BRAM is dual-port, two one-
by-one digit multiplications can be implemented in a single BRAM and in a single
clock cycle. However the main characteristic to cope with is that BRAM’s are
synchronous, so either the address or the output should be registered.

Distributed RAM (LUT-based): 6-input LUT’s can be configured as 64 9

1-bit RAM’s. Moreover the four 6-LUTs in a slice has additional multiplexers to
implement 256 9 1 bit RAMs. Then the 28 9 8-bit ROM can be implemented
using 8 slices (32 LUT’s).

A trivial optimization reduces the area considering the computation of the BCD
final result components c0 and d3 straightforward. Actually c0 ¼ a0 ^ b0 and d3 ¼
a0 ^ b0 ^ a3 ^ b3: That is, c0 is related to the parity while d3 emphasizes that most
significant bit is set for one in only one case (decimal 9 9 9 = 81). It is thus
possible to reduce the required memory size to a 28 9 6-bit ROM only plus two
LUTs to implement c0 and d3.

Comments

1. BRAM-based design is fast but synchronous. It is useless for combinational
implementations, but suitable for sequential and pipelined ones.

2. The existence of ‘‘do-not-care’’ conditions in the memory definition allows the
synthesizer to reduce the effective memory requirement.

The VHDL model bcd_mul_bram.vhd implements the BRAM based imple-
mentation for the digit by digit multiplication. Additionally, and bcd_mul_-
mem1.vhd and bcd_mul_mem2.vhd provides the LUT based implementation of
decimal BCD multiplication. These models with the corresponding test bench
(test_mul_1by1BCB.vhd) are available at the Authors’ web page.

11.3.2 N by One BCD Digit Multiplier

A N 9 1 BCD digit multiplier is readily achieved through N 1 9 1-digit multi-
plications followed by a BCD decimal addition. Fig. 11.9 shows how the partial
products are arranged to feed the BCD N-digit adder stage. The carry-chain adder
of Sect. 13.1 can be used.

The VHDL model mult_Nx1_BCD.vhd and mult_Nx1_BCD_bram.vhd that
describe the N by one decimal multiplier are available at the Authors’ web page.
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11.3.3 N by M Digits Multiplier

Using the previously designed N by one digit multiplier it is possible to perform
the N 9 M digits multiplication. The best area compromise is obtained using a
sequential implementation that uses an N 9 1 digits multiplier and an N ? 1 digit
adder. Figure 11.10 show the scheme of the Least Significant Digit (LSD) first
algorithm implemented. The B operand is shifted right at each clock cycle. The
LSD digit of B is multiplied by the A operand and accumulated in the next cycle to
shorten the critical path. After M ? 1 cycles, the N ? M digit result is available.

The VHDL models mult_BCD_seq.vhd and mult_BCD_bram_seq.vhd that
describes the N by M digits decimal multiplier and the matching test bench
(test_mult_BCB_seq.vhd) is available at the Authors’ web page.
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Fully combinational implementations of N 9 M digits multipliers are possible
also based on the N 9 1 digit multiplication cell. After the first multiplication, an
adder tree sums up the intermediate result and gives the N ? M digit result.
Figure 11.11 show an N 9 8 digit multiplication example.

The VHDL model mult_BCD_comb.vhd that describes the N by M digits
decimal multiplier and the test bench (test_mult_BCB_comb.vhd) are available at
the Authors’ web page.

11.4 Decimal Division

As described in Chap. 9, the basic algorithms are based on digit recurrence. Using
Eqs. (9.1), (9.2) and (9.3) at each step of (9.2) q-(i ? 1) and ri+1 are computed in
function of ri and y in such a way that 10 � ri ¼ q�ðiþ1Þyþ riþ1; with �
y� riþ1\y; that is

riþ1 ¼ 10 � ri � q�ðiþ1Þy; with � y� riþ1\y: ð11:22Þ

The Robertson diagram applied to radix-10 (B = 10) is depicted at Fig. 11.12. It
defines the set of possible solutions: the dotted lines define the domain

10 � ri; riþ1ð Þj � 10 � y� 10 � ri\10 � y and � y� riþ1\yf g; and the diagonals
correspond to the equations riþ1 ¼ 10 � ri � ky with k 2 �10;�9; . . .;f
�1; 0; 1; . . .; 9; 10g: If ky� 10 � ri\ k þ 1ð Þy; there are two possible solutions for
q-(i ? 1), namely k and k ? 1. To the first one corresponds a non-negative value of
ri ? 1, and to the second one a negative value.
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Fig. 11.11 An example of a paralell N 9 M multiplier (N 9 8)
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11.4.1 Non-Restoring Division Algorithm

A slightly modified version of the base-10 non-restoring algorithm (Sect. 9.2.1) is
used. For that y must be a normalized n-digit natural, that is 10n�1� y\10n: The
remainders ri satisfy the condition -y B ri \ y and belong to the range -

10n \ ri \ 10n. Define wi ¼ 10 � ri; so that

�10nþ1\wi\10nþ1: ð11:23Þ

Thus, wi is an (n ? 2)-digit 10’s complement number. The selection of every
digit q�ðiþ1Þ is based on a truncated value of wi, namely w0 ¼ wi=10ab c; for some a
that will be defined later, so that wi � 10a\w0 � 10a�wi and

w0 � 10a�wi\w0 � 10a þ 10a: ð11:24Þ

According to (11.23) and (11.24), �10nþ1 � 10a\w0 � 10a\10nþ1; so that

�10nþ1�a�w
0
\10nþ1�a: ð11:25Þ

Thus, w0 is an (n ? 2 - a)-digit 10’s complement number. Assume that a set of
integer-valued functions mk(y), for k in {-10, -9,…, -1, 0, 1,…, 8, 9}, satisfying

k � y�mk yð Þ � 10a\ k þ 1ð Þ � y� 10a ð11:26Þ

has been defined. The interval [k�y, (k ? 1)�y - 10a] must include a multiple of
10a. Thus, y must be greater than or equal to 2�10a. Taking into account that
y C 10n - 1, the condition is satisfied if a B n - 2.

The following property is a straightforward consequence of (11.24) and (11.26):

Property 11.1 If mk yð Þ�w
0
\mkþ1 yð Þ; then k � y�wi\ k þ 2ð Þ � y:

According to the Robertson diagram of Fig. 11.12, a solution q�ðiþ1Þ can be chosen
as follows:

if w
0
\m�9 yð Þ then q�ðiþ1Þ ¼ �9;

if w
0 �m8 yð Þ then q�ðiþ1Þ ¼ 9;

if mk yð Þ�w
0
\mkþ1 yð Þ for some k in �9;�8; . . .;�1; 0; 1; . . .; 7f g; then q�ðiþ1Þ ¼ k þ 1:

10.ri

- 10 -9 -8 - 7 -6 -5 -4 -3 -2 -1 0 1 3 4 5 6 7 8 9

10

2

-9y -8y -7y -6y -5y -4y -3y -2y -y y 2y 3y 4y 5y 6y 7y 8y 9y

ri+1qi+1 =

Fig. 11.12 Robertson diagram for radix 10
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Thus, this non-restoring algorithm generates a p-digit decimal quotient 0.q-1

q-2…q-p and a remainder rp satisfying

x ¼ 0 � q�1q�2. . .q�p

� �
yþ rp � 10�p; with � y � 10�p� rp � 10�p\y � 10�p;

ð11:27Þ

where every q-i is a signed decimal digit. It can be converted to a decimal number
by computing the difference between two decimal numbers

pos ¼ q0�1 � 10�1 þ q0�2 � 10�2 þ � � � þ q0�p � 10�p and

neg ¼ q00�1 � 10�1 þ q00�2 � 10�2 þ � � � þ q00�p � 10�p;

with q0�i ¼ qi if qi [ 0; q0�i ¼ 0 if qi\ 0; q00�1 ¼ qi if qi\0; q00�i ¼ 0 if qi [ 0:

It remains to define a set of integer-valued functions mk(y) satisfying (11.26). In
order to simplify their computation, they should only depend on the most signif-
icant digits of y. The following definition satisfies (11.26):

mk yð Þ ¼ k � y0=10b c þ bias where y0 ¼ y=10a�1
� �

if k� 0 and

mk yð Þ ¼ � �k � y0=10b c þ bias if k\0;

where bias is any natural belonging to the range 2 B bias B 6. With a = n-2, y0 as
a 3-digit natural, and w0 and mk(y) are 4-digit 10’s complement numbers. In the
following Algorithm 1 mk(y) is computed without adding up bias to
k � y0=10b cor� �k � y0=10b c; and w0 is substituted by w0—bias.

Algorithm 11.3: Non-restoring algorithm for decimal numbers
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The structure of the data path corresponding to Algorithm 11.3 is shown in
Fig. 11.13. Additionally, two decimal shift registers storing pos and neg and an
output subtractor are necessary. Alternatively the conversion could be done on-the
fly. The computation time and complexity of the k_y’s generation and range
detection components are independent of n. The execution time of the iteration
step is determined by the n-digit by 1-digit multiplier and by the (n ? 1)-digit
adder. The total computation time is O(p�n).

The simplified VHDL model decimal_divider_nr.vhd that describes the N by
N digits divider that produces P digits of decimal result and the test bench
(test_dec_div_seq.vhd) are available at the Authors’ web page.

11.4.2 An SRT-Like Division Algorithm

In order to make the computation time linear, a classical method consists of using
carry-save adders and multipliers instead of ripple-carry ones. In this way, the
iteration step execution time can be made independent of the number n of digits.
Nevertheless, this poses the following problem: a solution q�ðiþ1Þ of Eq. (9.2) must
be determined in function of a carry-stored representation (si, ci) of ri, without
actually computing ri = si ? ci. An algorithm similar to the SRT-algorithms for
radix-2K dividers can be defined for decimal numbers (Sect. 9.2.3). Once again the
divisor y must be assumed to be a normalized n-digit natural.
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All along the algorithm execution, ri will be encoded in the form wi ¼ si þ ci

(stored-carry encoding) where si and ci are 10’s-complement numbers. Define wi

and w0 as in previous section, that is wi ¼ 10 � ri; and w0 ¼ wi=10ab c: Thus, wi ¼
10 � si þ 10 � ci and w0 ¼ 10 � si þ 10 � cið Þ=10ab c: Define also truncated values st

and ct of 10�si and 10�ci, that is st ¼ 10 � si=10ab c and ct ¼ 10 � ci=10ab c; and let w00

be the result of adding st and ct. The difference between w0 ¼
10 � si þ 10 � cið Þ=10ab c and w00 ¼ 10 � si=10ab c þ 10 � ci=10ab c is the possible

carry from the rightmost positions, so that w0 � 1�w00 �w0; and thus

w00 �w0 �w00 þ 1: ð11:28Þ

According to (11.25) and (11.28),

�10nþ1�a � 1�w00\10nþ1�a; ð11:29Þ

so that w00 is an (n ? 3-a)-digit 10’s-complement number. The relation between
wi and the estimate w00�10a of wi is deduced from (11.24) and (11.28):

w00 � 10a�wi\w00 � 10a þ 2 � 10a: ð11:30Þ

Assume that a set of integer-valued functions Mk(y), for k in {-10, -9,…, -1,
0, 1,…, 8, 9}, satisfying

k � y�Mk yð Þ � 10a\ k þ 1ð Þ � y� 2 � 10a; ð11:31Þ

have been defined. The interval [k�y, (k ? 1)�y - 2�10a[ must include a multiple of
10a. Thus y must be greater than or equal to 3�10a. Taking into account that
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y C 10n - 1, once again the condition is satisfied if a B n - 2. The following
property is a straightforward consequence of (11.30) and (11.31).

Property If Mk yð Þ�w00\Mkþ1 yð Þ; then k � y�wi\ k þ 2ð Þ � y:
Thus, according to the Robertson diagram of Fig. 11.12, a solution q�ðiþ1Þ can

be chosen as follows:

if w00\M�9 yð Þ then q�ðiþ1Þ ¼ �9;

if w00 �M8 yð Þ then q�ðiþ1Þ ¼ 9;

if Mk yð Þ�w00\Mkþ1 yð Þ for some k in �9;�8; . . .;�1; 0; 1; . . .; 7f g; then q�ðiþ1Þ ¼ k þ 1:

This SRT-like algorithm generates a p-digit decimal quotient 0.q-1 q-2…q-p and
a remainder rp satisfying (11.27), and can be converted to a decimal number by
computing the difference between two decimal numbers as in non-restoring
algorithm.

It remains to define a set of integer-valued functions Mk(y) satisfying (11.31). In
order to simplify their computation, they should only depend on the most signif-
icant digits of y. Actually, the same definition as in Sect. 11.3.1 can be used, that is

Mk yð Þ ¼ k � y0=10b c þ bias where y0 ¼ y=10a�1
� �

if k� 0 and

Mk yð Þ ¼ � �k � y0=10b c þ bias if k\0:

In this case the range of bias is 3 B bias B 6. With a = n - 2, y0 as a 3-digit
natural, w0 and mk(y) are 4-digit 10’s complement numbers, and w00 is a 5-digit 10’s
complement number. In the following Algorithm 2 Mk(y) is computed without
adding up bias to k � y0=10b c or � �k � y0=10b c; and w00 is substituted by w00—bias.

Algorithm 11.4: SRT like algorithm for decimal numbers
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The structure of the data path corresponding to Algorithm 11.4 is shown in
Fig. 11.4. The carry-free multiplier is a set of 1-digit by 1-digit multipliers
working in parallel. Each of them generates two digits p1, j ? 1 and p0, j such that
q� iþ1ð Þ � yj ¼ 10 � p1;jþ1 þ p0;j; and the product q� iþ1ð Þ � y is obtained under the
form p1 ? p0. The 4-to-2 counter computes 10�si ? 10�ci - (p1 ? p0), that is
10�ri - q-(i ? 1)�y, under the form si ? 1 ? ci ? 1. Two decimal shift registers
storing pos and neg and an output ripple-carry subtractor are necessary. Another
output ripple-carry adder is necessary for computing the remainder rp = sp ? cp.
Thus, all the components, but the output ripple-carry components, have compu-
tation times independent of n and p. The total computation time is O(p ? n).
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The VHDL model decimal_divider_SRT_like.vhd that describes the N by
N digits divider that produces P digits decimal result with several modules
(decimal_shift_register.vhd, mult_Nx1_BCD_carrysave.vhd, special_5digit_
adder.vhd, range_detection3.vhd, bcd_csa_addsub_4to2.vhd) and the test bench
(test_dec_div_seq.vhd) are available at the Authors’ web page.

11.4.3 Other Methods for Decimal Division

Other methods of division could be considered such as the use digit recoding in
dividend and or divisor and also use extra degree of pre-normalization for the
operands. The idea behind these methods is to ease the digit selection process.

Another idea is the use of the binary digit recurrence algorithm of describe in
Chap. 9 but using decimal operands.

Observe that the Algorithm 9.1 can be executed whatever the representation of
the numbers. If B’s complement radix-B representation is used, then the following
operations must be available: radix-B doubling, adding, subtracting and halving.
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Fig. 11.14 Binary digit-recurrence data path for decimal division
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Algorithm 11.5: Binary digit-recurrence algorithm for decimal division

In order to obtain m decimal digits results, you need to choose p so that
2-p % 10-m, that is p ffi m � log210 ffi 3:3 � m: A possible data path is shown in
Fig. 11.14. The implementation of this architecture leads to a smaller circuit, but
slower than the decimal digit recurrence due to the difference in the amount of
cycles to be executed.

11.5 FPGA Implementation Results

The circuits have been implemented on Xilinx Virtex-5 family with speed grade -2
[6]. The Synthesis and implementation have been carried out on XST (Xilinx
Synthesis Technology) [7] and Xilinx Integrated System environment (ISE) ver-
sion 13.1 [2]. The critical parts were designed using low level components
instantiation (lut6_2, muxcy, xorcy, etc.) in order to obtain the desired behavior.

11.5.1 Adder-Subtractor Implementations

The adder and adder-subtractor implementation results are presented in this sec-
tion. Performances of different N-digit BCD adders have been compared to those
of an M-bit binary carry chain adder (implemented by XST) covering the same
range, i.e. such that M ¼ N:log2 10ð Þb c ffi 3:322N:
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Table 11.1 exhibits the post placement and routing delays in ns for the decimal
adder implementations Ad-I and Ad-II of Sect. 7.1; and the delays in ns
for the decimal adder-subtractor implementations AS-I and AS-II of Sect. 7.2.
Table 11.2 lists the consumed areas expressed in terms of 6-input look-up tables
(6-input LUTs). The estimated area presented in Table 11.2 was empirically
confirmed.

Comments

1. Observe that for large operands, the decimal operations are faster than the
binary ones.

2. The delay for the carry-chain adder and the adder-subtractor are similar in
theory. The small difference is due to the placement and routing algorithm.

3. The overall area with respect to binary computation is not negligible. In Xilinx
6-input LUT family an adder-subtractor is between 3 and 4 times bigger.

11.5.2 Multiplier Implementations

The decimal multipliers use the one by one digit multiplication described in
Sect. 11.2.1 and the decimal adders of Sect. 11.1. The results are for the same
Virtex 5 device speed grade -2.

Table 11.1 Delays in ns for decimal and binary adders and adder-subtractor

N (digits) RpCy add CyCh add AddSub V1 AddSub V2 M (bits) Binary add-sub

8 12.4 3.5 3.5 3.4 27 2.1
16 24.4 3.8 3.8 3.7 54 2.6
32 48.5 4.5 4.6 4.8 107 3.8
48 72.3 5.1 5.2 5.3 160 5.2
64 95.9 5.2 5.5 5.5 213 6.6
96 – 5.9 6.1 6.1 319 8.8

Table 11.2 Area in 6-input
LUTs for different decimal
adders and adders-subtractors

Circuit # LUTs

Ripple carry adder 7 9 N
Carry chain adder 9 9 N
Binary d3:32
 Ne
Adder-subtractor V2 (PG from binary addition) 9 9 N
Adder-subtractor V2 (PG direct form inputs) 13 9 N
Binary adder and adder-subtractor d3:32
 Ne
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11.5.2.1 Decimal N 3 1 Digits Implementation Results

Comparative figures of merit (minimum clock period (T) in ns, and area in LUTs
and BRAMS) of the N 3 1 multiplier are shown in Table 11.3, for several values
of N; the result are shown for circuits using LUTs, and BRAMS to implement the
digit by digit multiplication respectively.

11.5.2.2 Sequential Implementations

The sequential circuit multiplies N digits by 1 digit per clock cycle, giving the
result M ? 1 cycles later. In order to speed up the computation, the addition of
partial results is processed in parallel, but one cycle later (Fig. 11.10). Results for
sequential implementation using LUT based cells for 1 3 1 BCD digit multipli-
cation are given in Table 11.4. If the BRAM-based cell is used, similar periods (T)
can be achieved, by means of less LUTs but using BRAMs blocks.

11.5.2.3 Combinational Implementations of N by M Multipliers

For the implementation of the N 3 M-digit multiplier, the N 3 1 mux-based mul-
tiplication stage has been replicated M times: it is the best choice because BRAM-

Table 11.3 Results of BCD N 9 1 multipliers using LUTs cells and BRAM cells

N Mem in LUTs cells BRAM-based cells

T (ns) # LUT T (ns) # LUT # BRAM

4 5.0 118 5.0 41 1
8 5.1 242 5.1 81 2
16 5.3 490 5.4 169 4
32 6.1 986 6.1 345 8

Table 11.4 Results of sequential implementations of N 9 M multipliers using one by one digit
multiplication in LUTs

N M T (ns) # FF # LUT # cycles Delay (ns)

4 4 5.0 122 243 4 25.0
8 4 5.1 186 451 5 25.5
8 8 5.1 235 484 9 45.9
8 16 5.1 332 553 17 86.7
16 8 5.3 363 921 9 47.7
16 16 5.3 460 986 17 90.1
32 16 5.7 716 1,764 17 96.9
16 32 5.3 653 1,120 33 174.9
32 32 5.7 909 1,894 33 188.1
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based multipliers are synchronous. Partial products are inputs to an addition tree. For
all BCD additions the fast carry-chain adder of Sect. 11.1.4 has been used.

Input and output registers have been included in the design. Delays include FF
propagation and connections. The amount of FF’s actually used is greater than
8*(M ? N) because the ISE tools [2] replicate the input register in order to reduce
fan-outs. The most useful data for area evaluation is the number of LUT’s
(Table 11.5).

Comments

1. Observe that computation time and the required area are different for N by M
than M by N. That is due mainly by the use of carry logic in the adder tree.

11.5.3 Decimal Division Implementations

The algorithms have been implemented in the same Xilinx Virtex-5 device as
previous circuits in the chapter. The adders and multipliers used in division are the
ones described in previous sections. The non-restoring like division circuit cor-
respond to Algorithm 11.4 (Fig. 11.13), meanwhile the SRT-like to Algorithm
11.5 (Fig. 11.15). In tables the number of decimal digits of dividend and divider is
expressed as N and the number of digits of quotient as P, meanwhile the period and
latency in ns (Table 11.6, 11.7).

Comments

1. Both types of dividers have approximately the same costs and similar delay.
They are also faster than equivalent binary dividers. As an example, the
computation time of an SRT-like 48-digit divider (n = p = 48) is about
50�10.9 = 545 ns, while the computation time of an equivalent binary non-
restoring divider, that is a 160-bit one (48/log102 % 160), is more than 900 ns.

2. On the other hand, the area of the 48-digit divider (4,607 LUTs) is about five
times greater than that of the 160-bit binary divider (970 LUTs). Why so a great
difference? On the one hand it has been observed that decimal computation
resources (adders and subtractors) need about three times more slices than
binary resources (Sects. 11.4.1 and 11.4.2), mainly due to the more complex
definition of the carry propagate and carry generate functions, and to the final

Table 11.5 Results of
combinational
implementations of
N 9 M multipliers

N M Delay (ns) # LUT

4 4 10.2 719
8 4 10.7 1,368
8 8 13.4 2,911
8 16 15.7 6,020
16 8 13.6 5,924
16 16 16.3 12,165
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mod 10 reduction. On the other hand, the computation of the next quotient digit
is much more complex than in the binary case.
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Fig. 11.15 SRT-like radix-10 algorithm data path

Table 11.6 Result for non-restoring division algorithm

N, P FF LUTS Period Latency

8 106 1,082 11.0 110.0
16 203 1,589 11.3 203.4
32 396 2,543 11.6 394.4
48 589 3,552 12.1 605.0

Table 11.7 Result for SRT-like division algorithm

N, P FF LUTS Period Latency

8 233 1,445 10.9 109.0
16 345 2,203 10.9 196.2
32 571 3,475 10.9 370.6
48 795 4,627 10.9 545.0
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11.6 Exercises

1. Implement a decimal comparator. Based on the decimal adder subtractor
architecture modify it to implement a comparator.

2. Implement a decimal ‘‘greater than’’ circuit that returns ‘1’ if A C B else ‘0’.
Tip: Base your design on the decimal adder subtractor.

3. Implement a N 9 2 digits circuit. In order to speed up computation analyze the
use of a 4 to 2 decimal reducer.

4. Implement a N 9 4 digits circuit using a 8 to 2 decimal reducer and only one
carry save adder.

5. Design a N by M digit multiplier using the N 9 2 or the N 9 4 digit multiplier.
Do you improve the multiplication time? What is the area penalty with respect
to the use of a N 9 1 multiplier?

6. Implement the binary digit-recurrence algorithm for decimal division (Algo-
rithm 11.5). The key point is an efficient implementation of radix-B doubling,
adding, subtracting and halving.
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Chapter 12
Floating Point Arithmetic

There are many data processing applications (e.g. image and voice processing),
which use a large range of values and that need a relatively high precision. In such
cases, instead of encoding the information in the form of integers or fixed-point
numbers, an alternative solution is a floating-point representation. In the first
section of this chapter, the IEEE standard for floating point is described. The next
section is devoted to the algorithms for executing the basic arithmetic operations.
The two following sections define the main rounding methods and introduce the
concept of guard digit. Finally, the last few sections propose basic implementa-
tions of the arithmetic operations, namely addition and subtraction, multiplication,
division and square root.

12.1 IEEE 754-2008 Standard

The IEEE-754 Standard is a technical standard established by the Institute of
Electrical and Electronics Engineers for floating-point operations. There are
numerous CPU, FPU and software implementations of this standard. The current
version is IEEE 754-2008 [1], which was published in August 2008. It includes
nearly all the definitions of the original IEEE 754-1985 and IEEE 854-1987
standards. The main enhancement in the new standard is the definition of decimal
floating point representations and operations. The standard defines the arithmetic
and interchange formats, rounding algorithms, arithmetic operations and exception
handling.

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_12,
� Springer Science+Business Media Dordrecht 2012
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12.1.1 Formats

Formats in IEEE 754 describe sets of floating-point data and encodings for
interchanging them. This format allows representing a finite subset of real num-
bers. The floating-point numbers are represented using a triplet of natural numbers
(positive integers). The finite numbers may be expressed either in base 2 (binary)
or in base 10 (decimal). Each finite number is described by three integers: the sign
(zero or one), the significand s (also known as coefficient or mantissa), and the
exponent e. The numerical value of the represented number is (-1)sign 9 s 9 Be,
where B is the base (2 or 10).

For example, if sign = 1, s = 123456, e = -3 and B = 10, then the repre-
sented number is -123.456.

The format also allows the representation of infinite numbers (+? and -?),
and of special values, called Not a Number (NaN), to represent invalid values. In
fact there are two kinds of NaN: qNaN (quiet) and sNaN (signaling). The latter,
used for diagnostic purposes, indicates the source of the NaN.

The values that can be represented are determined by the base (B), the number
of digits of the significand (precision p), and the maximum and minimum values
emin and emax of e. Hence, s is an integer belonging to the range 0 to Bp-1, and e is
an integer such that emin� e� emax:

For example if B = 10 and p = 7 then s is included between 0 and 9999999. If
emin = -96 and emax = 96, then the smallest non-zero positive number that can be
represented is 1 9 10-101, the largest is 9999999 9 1090 (9.999999 9 1096), and
the full range of numbers is from -9.999999 9 1096 to 9.999999 9 1096. The
numbers closest to the inverse of these bounds (-1 9 10-95 and 1 9 10-95) are
considered to be the smallest (in magnitude) normal numbers. Non-zero numbers
between these smallest numbers are called subnormal (also denormalized)
numbers.

Zero values are finite values whose significand is 0. The sign bit specifies if a
zero is +0 (positive zero) or -0 (negative zero).

12.1.2 Arithmetic and Interchange Formats

The arithmetic format, based on the four parameters B, p, emin and emax, defines the
set of represented numbers, independently of the encoding that will be chosen for
storing and interchanging them (Table 12.1). The interchange formats define fixed-
length bit-strings intended for the exchange of floating-point data. There are some
differences between binary and decimal interchange formats. Only the binary format
will be considered in this chapter. A complete description of both the binary and the
decimal format can be found in the document of the IEEE 754-2008 Standard [1].

For the interchange of binary floating-point numbers, formats of lengths equal
to 16, 32, 64, 128, and any multiple of 32 bits for lengths bigger than 128, are
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defined (Table 12.2). The 16-bit format is only for the exchange or storage of small
numbers.

The binary interchange encoding scheme is the same as in the IEEE 754-1985
standard. The k-bit strings are made up of three fields (Fig. 12.1):

• a 1-bit sign S,
• a w-bit biased exponent E = e ? bias,
• the p - 1 trailing bits of the significand; the missing bit is encoded in the

exponent (hidden first bit).

Each binary floating-point number has just one encoding. In the following
description, the significand s is expressed in scientific notation, with the radix point
immediately following the first digit. To make the encoding unique, the value of the
significand s is maximized by decreasing e until either e = emin or s C 1 (normal-
ization). After normalization, there are two possibilities regarding the significand:

• If s C 1 and e C emin then a normalized number of the form 1.d1 d2…dp -1 is
obtained. The first ‘‘1’’ is not stored (implicit leading 1).

Table 12.1 Binary and decimal floating point format in IEEE 754-2008

Binary formats (B = 2) Decimal formats (B = 10)

Parameter Binary
16

Binary
32

Binary
64

Binary
128

Decimal
132

Decimal
l64

Decimal
128

p, digits 10 ? 1 23 ? 1 52 ? 1 112 ? 1 7 16 34
emax +15 +127 +1023 +16383 +96 +384 +16,383
emin -14 -126 -1022 -16382 -95 -383 -16,382
Common

name
Half

precision
Single

precision
Double

precision
Quadruple
precision

Table 12.2 Binary interchange format parameters

Parameter Binary16 Binary32 Binary64 Binary128 Binary{k} (k C 128)

k, storage width in bits 16 32 64 128 Multiple of 32
p, precision in bits 11 24 53 113 k - w
emax 15 127 1,023 16,383 2ðk�p�1Þ � 1
bias, E - e 15 127 1,023 16,383 emax

w, exponent field width 5 8 11 15 Round(4�log2 k) - 13
t, trailing significand bits 10 23 52 112 k - w - 1

Fig. 12.1 Binary interchange format
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• If e ¼ emin and 0 \ s \ 1, the floating-point number is called subnormal. Sub-
normal numbers (and zero) are encoded with a reserved biased exponent value.
They have an implicit leading significand bit = 0 (Table 12.2).

The minimum exponent value is emin ¼ 1� emax: The range of the biased
exponent E is 1 to 2w - 2 to encode normal numbers. The reserved value 0 is used
to encode ± 0 and subnormal numbers. The value 2w - 1 is reserved to encode
±? and NaNs.

The value of a binary floating-point data is inferred from the constituent fields
as follows:

• If E ¼ 2w�1 (all 1’s in E), then the data is an NaN or infinity. If T = 0, then it
is a qNaN or an sNaN. If the first bit of T is 1, it is an sNaN. If T = 0, then the
value is �1ð Þsign� þ1ð Þ:

• If E = 0 (all 0’s in E), then the data is 0 or a subnormal number. If T = 0 it is a
signed 0. Otherwise (T = 0), the value of the corresponding floating-point

number is �1ð ÞSign�2emin � 0þ 21�p � Tð Þ:
• If 1 B E B 2w - 2, then the data is �1ð Þsign�2ðE�biasÞ � 1þ 21� p � Tð Þ:

Remember that the significand of a normal number has an implicit leading 1.

Example 12.1
Convert the decimal number -9.6875 to its binary32 representation.

• First convert the absolute value of the number to binary (Chap. 10):
9:687510 ¼ 1001:10112:

• Normalize: 1001:1011 ¼ 1:00110011� 23: Hence e ¼ 3; s ¼ 1:0011 0011:
• Hide the first bit and complete with 0’s up to 23 bits:

00110011000000000000000.
• Add bias to the exponent. In this case, w = 8, bias = 28 - 1 = 127 and thus

E ¼ eþ bias ¼ 3þ 127 ¼ 13010 ¼ 100000102:
• Compose the final 32-bit representation:
• 1 10000010 001100110000000000000002 ¼ C119800016:

Example 12.2
Convert the following binary32 numbers to their decimal representation.

• 7FC0000016: sig n ¼ 0; E ¼ FF16; T 6¼ 0; hence it is an NaN. Since the first bit
of T is 1, it is a quiet NaN.

• FF80000016: sig n ¼ 0; E ¼ FF16; T ¼ 0; hence it is -?.
• 6545AB7816 : sign ¼ 0;E ¼ CA16;¼ 20210; e ¼ E � bias ¼ 202� 127 ¼ 7510;

T ¼ 100010110101011011110002;

s ¼ 1:100010110101011011110002 ¼ 1:544295310:

The number is 1:100010110101011011112 � 275 ¼ 5:8341827� 1022:
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• 1234567816 : sign ¼ 0; E ¼ 2416 ¼ 3610; e ¼ E � bias ¼ 36� 127 ¼ �9110;

T ¼ 011010001010110011110002;

s ¼ 1:011010001010110011110002 ¼ 1:40888810:

The number is 1:01101000101011001111
�2�91 ¼ 5:69045661� 10�28:8000000016: sign = 1, E = 0016, T = 0. The
number is -0.0.

• 8000000016: sign = 1, E = 0016, T = 0. The number is -0.0.
• 0001234516:sign = 0, E = 0016, T = 0, hence it is a subnormal number,

e ¼ E � bias ¼ �127; T ¼ 00000100100011010001012;

s ¼ 0:00000100100011010001012 ¼ 0:017777710:

The number is 0:0000010010001101000101 � 2�127 ¼ 1:0448782� 10�40:

12.2 Arithmetic Operations

First analyze the main arithmetic operations and generate the corresponding
computation algorithms. In what follows it will be assumed that the significand s is
represented in base B (in binary if B = 2, in decimal if B = 10) and that it belongs
to the interval 1 B s B B - ulp, where ulp stands for the unit in the last position
or unit of least precision. Thus s is expressed in the form (s0 � s-1 � s-2… � s-p).
Be where emin� e� emax and 1 B s0 B B - 1.

Comment 12.1
The binary subnormals and the decimal floating point are not normalized numbers
and are not included in the following analysis. This situation deserves some special
treatment and is out of the scope of this section.

12.2.1 Addition of Positive Numbers

Given two positive floating-point numbers s1 � Be1 and s2 � Be2 their sum s � Be is
computed as follows: assume that e1 is greater than or equal to e2; then (alignment)
the sum of s1 � Be1 and s2 � Be2 can be expressed in the form s � Be where

s ¼ s1 þ s2= Be1�e2
� �

and e ¼ e1: ð12:1Þ

The value of s belongs to the interval

1� s� 2 � B� 2 � ulp; ð12:2Þ

so that s could be greater than or equal to B. If it is the case, that is if

B� s� 2 � B� 2 � ulp; ð12:3Þ
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then (normalization) substitute s by s/B, and e by e ? 1, so that the value of s � Be

is the same as before, and the new value of s satisfies

1� s� 2 � 2=Bð Þ � ulp�B� ulp: ð12:4Þ

The significands s1 and s2 of the operands are multiples of ulp. If e1 is greater than
e2, the value of s could no longer be a multiple of ulp and some rounding function
should be applied to s. Assume that s0\ s \ s00 = s0 ? ulp, s0 and s00 being two
successive multiples of ulp. Then the rounding function associates to s either s0 or s00,
according to some rounding strategy. According to (12.4) and to the fact that 1 and
B—ulp are multiples of ulp, it is obvious that 1 B s0\ s00 B B—ulp. Nevertheless, if
the condition (12.3) does not hold, that is if 1 B s \ B, s could belong to the interval

B� ulp\s\B; ð12:5Þ

so that rounding(s) could be equal to B, then a new normalization step would be
necessary, i.e. substitution of s = B by s = 1 and e by e ? 1.

Algorithm 12.1: Sum of positive numbers

Examples 12.3
Assume that B = 2 and ulp = 2-5, so that the numbers are represented in the form
s � 2e where 1 B s B 1.111112. For simplicity e is written in decimal (base 10).

1. Compute z ¼ 1:10101� 23
� �

þ ð1:00010� 2�1Þ:

Alignment: z ¼ ð1:10101þ 0:000100010Þ � 23 ¼ 1:101110010� 23:

Rounding: s ffi 1:10111:

Final result: z ffi 1:10111� 23:

2. Compute z ¼ ð1:11010� 23Þ þ ð1:00110� 22Þ:
Alignment:z ¼ ð1:11010þ 0:100110Þ � 23 ¼ 10:011010� 23:

Normalization : s ¼ 1:0011010; e ¼ 4:

Rounding: s ffi 1:00110:

Final result: z ffi 1:00110� 24:
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3. Compute z ¼ 1:10101� 23
� �

þ 1:10101� 21
� �

:

Alignment: z ¼ ð1:10010þ 0:0110101Þ � 23 ¼ 1:1111101 � 23:

Rounding: s ffi 10:00000:

Normalization: s ffi 1:00000; e ¼ 4:

Final result : z ffi 1:00000� 24:

Comments 12.2

1. The addition of two positive numbers could produce an overflow as the final
value of e could be greater than emax.

2. Observe in the previous examples the lack of precision due to the small number
of bits (6 bits) used in the significand s.

12.2.2 Difference of Positive Numbers

Given two positive floating-point numbers s1 � Be1 and s2 � Be2 their difference s � Be is
computed as follows: assume that e1 is greater than or equal to e2; then (for alignment)
the difference between s1 � Be1 and s2 � Be2 can be expressed in the form s � Be where

s ¼ s1 � s2= Be1�e2
� �

and e ¼ e1: ð12:6Þ

The value of s belongs to the interval �s � � B� ulpð Þ� s�B� ulp: If s is neg-
ative, then it is substituted by and the sign of the final result will be modified
accordingly. If s is equal to 0, then an exception equal_zero could be raised. It
remains to consider the case where 0\s�B� ulp: The value of s could be smaller
than 1. In order to normalize the significand, s is substituted by s � Bk and e by e - k,
where k is the minimum exponent k such that s � Bk� 1: Thus, the relation 1� s�B
holds. It remains to round (up or down) the significand and to normalize it if
necessary.

In the following algorithm, the function leading_zeroes(s) computes the
smallest k such that s � Bk C 1.

Algorithm 12.2: Difference of positive numbers
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Examples 12.4
Assume again that B = 2 and ulp = 2-5, so that the numbers are represented in
the form s � 2e where 1 B s B 1.111112. For computing the difference, the 2’s
complement representation is used (one extra bit is used).

1. Compute z ¼ ð1:10101� 2�2Þ � 1:01010� 21
� �

:

Alignment: z ¼ ð0:00110101� 1:01010Þ � 21:

20s complement addition: 00:00110101þ 10:10101þ 00:00001ð Þ � 21 ¼

10:11100101� 21:

Change of sign: � s ¼ 01:00011010þ 00:00000001 ¼ 01:00011011:

Rounding: � s ffi 1:00011:

Final result: z ffi �1:00011� 21:

2. Compute z ¼ 1:00010� 23
� �

� 1:10110� 22
� �

:

Alignment: z ¼ 1:00010��0:110110ð Þ � 23:

20s complement addition: ð01:00010þ 11:001001þ 00:000001Þ � 23 ¼

00:001110� 23:

Leading zeroes: k ¼ 3; s ¼ 1:11000; e ¼ 0:

Final result: z ¼ 1:11000� 20:

3. Compute z ¼ 1:01010� 23
� �

� 1:01001� 21
� �

:

Alignment: z ¼ ð1:01010��0:0101001Þ � 23 ¼ 0:1111111� 23:

Leading zeroes: k ¼ 1; s ¼ 1:111111; e ¼ 2:

Rounding: s ffi 10:00000:

Normalization: s ffi 1:0000; e ¼ 3:

Final result:z ffi 1:00000 � 23:

Comment 12.3
The difference of two positive numbers could produce an underflow as the final
value of e could be smaller than emin.
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12.2.3 Addition and Subtraction

Given two floating-point numbers �1ð Þsign1�s1 � Be1 and �1ð Þsign2�s2 � Be2; and a
control variable operation, an algorithm is defined for computing

z ¼ �1ð Þsign�s � Be ¼ �1ð Þsign1�s1 � Be1 þ �1ð Þsign2�s2 � Be2; if operation ¼ 0;

z ¼ �1ð Þsign�s � Be ¼ �1ð Þsign1�s1 � Be1 � �1ð Þsign2�s2 � Be2; if operation ¼ 1:

Once the significands have been aligned, the actual operation (addition or
subtraction of the significands) depends on the values of operation, sign1 and sign2

(Table 12.3). The following algorithm computes z. The procedure swap (a, b)
interchanges a and b.

Algorithm 12.3: Addition and subtraction

Table 12.3 Effective
operation in floating point
adder–subtractor

Operation Sign1 Sign2 Actual
operation

0 0 0 s1 ? s2

0 0 1 s1 - s2

0 1 0 -(s1 - s2)
0 1 1 -(s1 - s2)
1 0 0 s1 - s2

1 0 1 s1 ? s2

1 1 0 -(s1 ? s2)
1 1 1 -(s1 - s2)
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12.2.4 Multiplication

Given two floating-point numbers �1ð Þsign1�s1 � Be1 and �1ð Þsign2�s2 � Be2 their
product (-1)sign � s � Be is computed as follows:

sign ¼ sign1 xor sign2; s ¼ s1 � s2; e ¼ e1 þ e2: ð12:7Þ

The value of s belongs to the interval 1 B s B (B - ulp)2, and could be greater
than or equal to B. If it is the case, that is if B B s B (B - ulp)2, then (normal-
ization) substitute s by s/B, and e by e ? 1. The new value of s satisfies

1� s� B� ulpð Þ2=B ¼ B� 2:ulpþ ulpð Þ2=B\B��ulp ð12:8Þ

(ulp \ B so that 2 - ulp/B [ 1). It remains to round the significand and to
normalize if necessary.

Algorithm 12.4: Multiplication

Examples 12.5
Assume again that B = 2 and ulp = 2-5, so that the numbers are represented in
the form s � 2e where 1 B s B 1.111112. The exponent e is represented in decimal.

1. Compute z ¼ 1:11101� 2�2
� �

� 1:00010� 25
� �

:

Multiplication : z ¼ 01:1100101100� 23:

Rounding : s ffi 1:11001:

Final result : z ffi 1:11001 � 23:

2. Compute z ¼ 1:11101� 23
� �

� ð1:00011� 2�1Þ:

Multiplication : z ¼ 10:00010101112 � 22:

Normalization : s ¼ 1:000010101112; e ¼ 3:

Rounding : s ffi 1:00001:

Final result : z ffi 1:00001� 23:
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3. Compute z ¼ 1:01000 x 21
� �

� 1:10011� 22
� �

:

Multiplication : z ¼ 01:111111000� 22:

Normalization : s ¼ 1:11111; e ¼ 3:

Rounding : s ffi 10:00000:

Normalization : s ffi 1; e ¼ 4:

Final result : z ffi 1:000002 � 24:

Comment 12.4
The product of two real numbers could produce an overflow or an underflow as the
final value of e could be greater than emax or smaller than emin (addition of two
negative exponents).

12.2.5 Division

Given two floating-point numbers �1ð Þsign1 � s1 � Be1 and �1ð Þsign2 � s2 � Be2 their
quotient

(-1)sign � s � Be is computed as follows:

sign ¼ sign1 xor sign2; s ¼ s1=s2; e ¼ e1 � e2: ð12:9Þ

The value of s belongs to the interval 1/B \ s B B - ulp, and could be smaller
than 1. If that is the case, that is if s ¼ s1=s2\1; then s1\s2; s1� s2

�ulp; s1=s2� 1� ulp=s2\1� ulp=B; and 1=B\s\1� ulp=B:

Then (normalization) substitute s by s � B, and e by e - 1. The new value of
s satisfies 1 \ s \ B - ulp. It remains to round the significand.

Algorithm 12.5: Division

Examples 12.6
Assume again that B = 2 and ulp = 2-5, so that the numbers are represented in
the form s • 2e where 1 B s B 1.111112. The exponent e is represented in
decimal.

12.2 Arithmetic Operations 315



1. Compute z ¼ 1:11101� 23
� ��

1:00011� 2�1
� �

:

Division: z ¼ 1:1011111000� 24:

Rounding: s ffi 1:10111:

Final result: z ffi 1:00001� 23:

2. Compute z ¼ 1:01000� 21
� ��

1:10011� 22
� �

:

Division: z ¼ 0:1100100011� 2�1:

Normalization: s ffi 1:100100011; e ¼ �2:

Rounding: s ffi 1:10010:

Final result: z ffi 1:10010� 2�2:

Comment 12.5
The quotient of two real numbers could produce an underflow or an overflow as the
final value of e could be smaller than emin or bigger than emax. Observe that a second
normalization is not necessary as in the case of addition, subtraction and multiplication.

12.2.6 Square Root

Given a positive floating-point number s1 � Be1, its square root s � Be is computed
as follows:

if e1 is even; s ¼ s1ð Þ1=2; e ¼ e1=2; ð12:10Þ

if e1 is odd; s ¼ s1=Bð Þ1=2; e ¼ ðe1 þ 1Þ=2: ð12:11Þ

In the first case (12.10), 1 B s B (B - ulp)1/2 \ B - ulp. In the second case (1/
B)1/2 B s \ 1. Hence (normalization) s must be substituted by s � B and e by e - 1,
so that 1 B s \ B. It remains to round the significand and to normalize if necessary.

Algorithm 12.6: Square root

An alternative is to replace (12.11) by:

if e1 is odd; s ¼ ðs1 � BÞ1=2; e ¼ e1 � 1ð Þ=2: ð12:12Þ
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In this case B1=2� s�ðB2 � ulp � BÞ1=2\B; then the first normalization is not
necessary. Nevertheless, s could be B - ulp \ s \ B, and then depending on the
rounding strategy, normalization after rounding could be still necessary.

Algorithm 12.7: Square root, second version

Note that the ‘‘round to nearest’’ (default rounding in IEEE 754-2008) and the
‘‘truncation’’ rounding schemes allow avoiding the second normalization.

Examples 12.7
Assume again that B = 2 and ulp = 2-5, so that the numbers are represented in the
form s � 2e where 1 B s B 1.111112. The exponent e is represented in decimal form.

1. Compute z ¼ 1:11101� 24
� �1=2

:

Square rooting : z ¼ 1:01100001� 22:

Rounding : s ffi 1:01100:

Final result : z ffi 1:01100� 22:

2. Compute z ¼ ð1:00101� 2�1Þ1=2:

Even exponent : s ¼ 10:0101; e ¼ �2:

Square rooting : z ¼ 1:10000101� 2�1:

Rounding : s ffi 1:10000

Final result : z ffi 1:10000� 2�1:

3. Compute z ¼ 1:11111� 23
� �1=2

:

Even exponent; s ¼ 11:1111; e ¼ 2:

Square rooting : z ¼ 1:11111011� 21:

Rounding : s ffi 1:11111 round to nearestð Þ:

Final result : z ffi 1:111112 � 21:
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However, some rounding schemes (e.g. toward infinite) generate s ffi 10:00000:
Then, the result after normalization is s ffi 1:00000; e ¼ 2; and the final result
z ffi 1:00000� 22:

Comment 12.6
The square rooting of a real number could produce an underflow as the final value
of e could be smaller than emin.

12.3 Rounding Schemes

Given a real number x and a floating-point representation system, the following
situations could happen:

xj j\smin � Be min; that is, an underflow situation,
xj j[ smax � Be max; that is, an overflow situation,

xj j ¼ s � Be; where emin� e� emax and smin� s� smax:

In the third case, either s is a multiple of ulp, in which case a rounding operation
is not necessary, or it is included between two multiples s0 and s00 of ulp:
s0\ s \ s00.

The rounding operation associates to s either s0 or s00, according to some
rounding strategy. The most common are the following ones:

• The truncation method (also called round toward 0 or chopping) is accom-
plished by dropping the extra digits, i.e. round(s) = s0 if s is positive, round(-
s) = s00 if s is negative.

• The round toward plus infinity is defined by round(s) = s00.
• The round toward minus infinity is defined by round(s) = s0.
• The round to nearest method associates s with the closest value, that is, if

s \ s0 ? ulp/2, round(s) = s0, and if s [ s0 ? ulp/2, round(s) = s00.

If the distances to s0 and s00 are the same, that is, if s = s0 ? ulp/2, there are
several options. For instance:

• round(s) = s0;
• round(s) = s00;
• round(s) = s0 if s is positive, round(s) = s00 if s is negative. It is the round to

nearest, ties to zero scheme.
• round(s) = s00 if s is positive, round(s) = s0if s is negative. It is the round to

nearest, ties away from zero scheme.
• round(s) = s0 if s0 is an even multiple of ulp, round(s) = s00 if s00 is an even

multiple of ulp. It is the default scheme in the IEEE 754 standard.
• round(s) = s0 if s0 is an odd multiple of ulp, round(s) = s00 if s00 is an odd

multiple of ulp.
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The preceding schemes (round to the nearest) produce the smallest absolute
error, and the two last (tie to even, tie to odd) also produce the smallest average
absolute error (unbiased or 0-bias representation systems).

Assume now that the exact result of an operation, after normalization, is

s ¼ 1:s�1 s�2 s�3 . . . s�pjs�ðpþ1Þ s�ðpþ2Þ s�ðpþ3Þ. . .

where ulp is equal to B-p (the | symbol indicates the separation between the digit
which corresponds to the ulp and the following). Whatever the chosen rounding
scheme, it is not necessary to have previously computed all the digits s-(p+1) s-

(p+2)…; it is sufficient to know whether all the digits s-(p+1) s-(p+2)… are equal to
0, or not. For example the following algorithm computes round(s) if the round to
the nearest, tie to even scheme is used.

Algorithm 12.8: Round to the nearest, tie to even

In order to execute the preceding algorithm it is sufficient to know the value of
s1 ¼ 1 � s�1 s�2 s�3 . . . s�p; the value of s-(p+1), and whether s2 ¼
0:00 . . . 0j0 s� pþ2ð Þs� pþ3ð Þ. . . is equal to 0, or not.

12.3.1 Rounding Schemes in IEEE 754

From the previous description, the IEEE 754-2008 standard defines five rounding
algorithms. The two first round to a nearest value; the others are called directed
roundings:

• Round to nearest, ties to even; this is the default rounding for binary floating-
point and the recommended default for decimal.

• Round to nearest, ties away from zero.
• Round toward 0—directed rounding towards zero.
• Round toward +?—directed rounding towards positive infinity
• Round toward -?—directed rounding towards negative infinity.

12.3 Rounding Schemes 319



12.4 Guard Digits

Consider the exact result r of an operation, before normalization. According to the
preceding paragraph:

r\B2; i:e: r ¼ r1 r0 � r�1 r�2 r�3 . . . r�pjr�ðpþ1Þ r�ðpþ2Þ r�ðpþ3Þ. . .

The normalization operation (if necessary) is accomplished by

• dividing the result by B (sum of positive numbers, multiplication),
• multiplying the result by B (division),
• multiplying the result by Bk (difference of positive numbers).

Furthermore, if the operation is a difference of positive numbers (Algorithm
12.2), consider two cases:

• if e1 � e2� 2; then r ¼ s1 � s2= Be1�e2ð Þ[ 1� B=B2 ¼ 1�
1=B� 1=Bðas B� 2Þ; so that the number k of leading zeroes is equal to 0 or 1, and
the normalization operation (if necessary i.e. k = 1) is accomplished by multi-
plying the result by B;
• if e1 - e2 B 1, then the result before normalization is either

r0 � r�1 r�2 r�3 . . . r�pjr�ðpþ1Þ0 0 . . . ðe1 � e2 ¼ 1Þ; or

r0 � r�1 r�2 r�3 . . . r�pj0 0 0 . . . ðe1 � e2 ¼ 0Þ:

A consequence of the preceding analysis is that the result after normalization
can be either

r0 � r�1 r�2 r�3 . . . r�pjr�ðpþ1Þ r�ðpþ2Þ r�ðpþ3Þ . . . no normalization operationð Þ;
ð12:13Þ

or
r1 � r0 r�1 r�2 . . . r�pþ1jr�p r�ðpþ1Þ r�ðpþ2Þ . . . divide by Bð Þ; ð12:14Þ

or

r�1 � r�2 r�3 r�4 . . . r�ðpþ1Þjr�ðpþ2Þ r�ðpþ3Þ r�ðpþ4Þ . . . multiply by Bð Þ; ð12:15Þ

or

r�k � r�ðkþ1Þ r�ðkþ2Þ . . . r�p r�ðpþ1Þ0 . . . 0j0 0 . . . ðmultiply by Bkwhere k [ 1Þ:
ð12:16Þ

For executing a rounding operation, the worst case is (12.15). In particular, for
executing Algorithm 12.8, it is necessary to know
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• the value of s1 ¼ r�1 � r�2 r�3 r�4 . . . r�ðpþ1Þ;

• the value of r� pþ2ð Þ;

• whether s2 ¼ 0:00 . . . 0j0 r�ðpþ3Þ r�ðpþ4Þ . . . is equal to 0, or not.

The conclusion is that the result r of an operation, before normalization, must
be computed in the form

r ffi r1 r0 � r�1 r�2 r�3 . . . r�pjr�ðpþ1Þ r�ðpþ2Þ T;

that is, with two guard digits r-(p+1) and r-(p+2)-, and an additional sticky digit
T equal to 0 if all the other digits r�ðpþ3Þ ; r�ðpþ4Þ; . . .

� �
are equal to 0, and equal to

any positive value otherwise.
After normalization, the significand will be obtained in the following general form:

s ffi 1:s�1 s�2 s�3 . . . s�pjs�ðpþ1Þ s�ðpþ2Þ s�ðpþ3Þ:

The new version of Algorithm 12.8 is the following:

Algorithm 12.9: Round to the nearest, tie to even, second version

Observe that in binary representation, the following algorithm is even simpler.

Algorithm 12.10: Round to the nearest, tie to even, third version

12.5 Arithmetic Circuits

This section proposes basic implementations of the arithmetic operations, namely
addition and subtraction, multiplication, division and square root. The implementation
is based on the previous section devoted to the algorithms, rounding and guard digit.
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The circuits support normalized binary IEEE 754-2008 operands. Regarding the
binary subnormals the associated hardware to manage this situation is complex.
Some floating point implementations solve operations with subnormals via soft-
ware routines. In the FPGA arena, most cores do not support denormalized
numbers. The dynamic range can be increased using fewer resources by increasing
the size of the exponent (a 1-bit increase in exponent, roughly doubles the dynamic
range) and is typically the solution adopted.

12.5.1 Adder–Subtractor

An adder-subtractor based on Algorithm 12.3 will now be synthesized. The
operands are supposed to be in IEEE 754 binary encoding. It is made up of five
parts, namely unpacking, alignment, addition, normalization and rounding, and
packing. The following implementation does not support subnormal numbers; they
are interpreted as zero.

12.5.1.1 Unpacking

The unpacking separates the constitutive parts of the Floating Points and addi-
tionally detects the special numbers (infinite, zeros and NaNs). The special number
detection is implemented using simple comparators. The following VHDL process
defines the unpacking of a floating point operand FP; k is the number of bits of FP,
w is the number of bits of the exponent, and p is the significand precision.

The previous is implemented using two w bits comparators, one p bits com-
parator and some additional gates for the rest of the conditions.

12.5.1.2 Alignment

The alignment circuit implements the three first lines of the Algorithm 12.3, i.e.
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An example of implementation is shown in Fig. 12.2. The principal and more
complex component is the right shifter.

Given a (p ? 3)-bit input vector 1 ak�1 ak�2 . . . a1 a0 0 0 0½ �; the shifter gener-
ates a (p ? 3)-bit output vector. The lsb (least significand bit) of the output is the
sticky bit indicating if the shifted bits are equal to zero or not. If B = 2, the sticky-
digit circuit is an OR circuit.

Observe that if e1 � e2� pþ 3; then the shifter output is equal to [0 0… 0 1],
since the last bit is the sticky bit and the input number is a non-zero. The operation
with zero is treated differently.

12.5.1.3 Addition and Subtraction

Depending on the respective signs of the aligned operands, one of the following
operations must be executed: if they have the same sign, the sum aligned_-
s1 ? aligned_s2 must be computed; if they have different signs, the difference

operatione2e1

actual_sign2

subtractor

e1-e2

subtractor

e2-e1

dif

sign(e1-e2)

10 0 1

e

0 1 0 1

sign1

new_sign2

1 0

s

1 0

s2

new_s2

s1

000

sign

sign2

000right shifter
(from 0 to p+3)

aligned_s2 aligned_s1

Fig. 12.2 Alignment circuit in floating point addition/subtraction
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aligned_s1—aligned_s2 is computed. If the result of the significand difference is
negative, then aligned_s2—aligned_s1 must be computed. Moreover, the only
situation in which the final result could be negative is when the e1 = e2.

In the circuit of Fig. 12.3 two additions are performed in parallel: result = a-
ligned_s1 ± aligned_s2, where the actual operation is selected with the signs of the
operands, and alt_result = s2 - s1. At the end of this stage a multiplexer selects
the correct results. The operation selection is done as follows:

12.5.1.4 Normalization and Rounding

The normalization circuit executes the following part of Algorithm 12.3:

If the number of leading zeroes is greater than pþ 3; i:e: s1 � s2 [ B� pþ2ð Þ;

then s2 [ s1 � B�ðpþ2Þ: If e1 were greater than e2 then s2� B� ulpð Þ=B ¼
1� B�ðpþ1Þ so that 1� B�ðpþ1Þ � s2\s1 � B�ðpþ2Þ � 1� B�ðpþ2Þ; which is
impossible. Thus, the only case where the number of leading zeroes can be greater
than p ? 3 is when e1 = e2 and s1 = s2. If more than p ? 3 leading 0’s are
detected in the circuit of Fig. 12.4, a zero_flag is raised.

It remains to execute the following algorithm where operation is the internal
operation computed in Fig. 12.3:
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The rounding depends on the selected rounding strategy. An example of
rounding circuit implementation is shown in Fig. 12.4. If the round to the nearest,
tie to even method is used (Algorithm 12.10), the block named rounding decision
computes the following Boolean function decision:

The second rounding is avoided in the following way. The only possibility to need a
second rounding is when, as the result of an addition, the significand is 1.111…1111xx.
This situation is detected in a combinational block that generates the signal ‘‘isTwo’’
and adds one to the exponent. After rounding, the resulting number is 10.000…000, but
the two most significand bits are discarded and the hidden 1 is appended.

12.5.1.5 Packing

The packing joins the constitutive parts of the floating point result. Additionally
depending on special cases (infinite, zeros and NaNs), generates the corresponding
codification.

Example 12.8 (Complete VHDL code available)
Generate the VHDL model of an IEEE decimal floating-point adder-subtractor. It
is made up of five previously described blocks. Fig. 12.5 summarizes the inter-
connections. For clearness and reusability the code is written using parameters,

sign
sign2

aligned_s2aligned_s1

(p+4)-bits adder /
subtractor

result operationalt_result

0

s2

(p+1)-bits subtractor

s1

significand 
selection

e1

iszero1

30

s2 &000 result 
alt_result & 000s1 &000

signif

operation

iszero2

alt_result >0

e2
1 2

Fig. 12.3 Effective addition and subtraction

12.5 Arithmetic Circuits 325



where K is the size of the floating point numbers (sign, exponent, significand), E is
the size of the exponent and P is the size of the significand (including the hidden
1). The entity declaration of the circuit is:

For simplicity the code is written as a single VHDL code except additional files
to describe the right shifter of Fig. 12.2 and the leading zero detection and shifting
of Fig. 12.4. The code is available at the book home page.
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A two stage pipeline could be achieved dividing the data path between addtion/
subtraction and normalization and rounding stages (dotted line in Fig. 12.5).

12.5.2 Multiplier

A basic multiplier deduced from Algorithm 12.4 is shown in Fig. 12.6. The
unpacking and packing circuits are the same as in the case of the adder-subtractor
(Fig. 12.5, Sects. 12.5.1.1 and 12.5.1.5) and for simplicity, are not drawn. The
‘‘normalization and rounding’’ is a simplified version of Fig. 12.4, where the part
related to the subtraction is not necessary.
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The obvious method of computing the sticky bit is with a large fan-in OR gate
on the low order bits of the product. Observe, in this case, that the critical path
includes the p by p bits multiplication and the sticky digit generation.

An alternative method consists of determining the number of trailing zeros in
the two inputs of the multiplier. It is easy to demonstrate that the number of
trailing zeros in the product is equal to the sum of the number of trailing zeros in
each input operand. Notice that this method does not require the actual low order
product bits, just the input operands, so the computation can occur in parallel with
the actual multiply operation, removing the sticky computation from the critical
path.

The drawback of this method is that significant extra hardware is required. This
hardware includes two long length priority encoders to count the number of
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Fig. 12.6 General structure of a floating point multiplier
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trailing zeros in the input operands, a small length adder, and a small length
comparator. On the other hand, some hardware is eliminated, since the actual low
order bits of the product are no longer needed.

A faster floating point multiplier architecture that computes the p by p multi-
plication and the sticky bit in parallel is presented in Fig. 12.7. The dotted lines
suggest a three stage pipeline implementation using a two stage p by p multipli-
cation. The two extra blocks are shown to indicate the special conditions detec-
tions. In the second block, the range of the exponent is controlled to detect
overflow and underflow conditions. In this figure the packing and unpacking
process are omitted for simplicity.

Example 12.9 (complete VHDL code available)
Generate the VHDL model of a generic floating-point multiplier. It is made up of
the blocks depicted in Fig. 12.7 described in a single VHDL file. For clearness and
reusability the code is written using parameters, where K is the size of the floating
point numbers (sign, exponent, significand), E is the size of the exponent and P is
the size of the significand (including the hidden 1). The entity declaration of the
circuit is:
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Fig. 12.7 A better general structure of a floating point multiplier
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The code is available at the home page of this book. The combinational circuit
registers inputs and outputs to ease the synchronization. A two or three stage
pipeline is easily achievable adding the intermediate registers as suggested in
Fig. 12.7. In order to increase the clock frequency, more pipeline registers can be
inserted into the integer multiplier.
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12.5.3 Divider

A basic divider, deduced from Algorithm 12.6, is shown in Fig. 12.9. The
unpacking and packing circuits are similar to those of the adder-subtractor or
multiplier. The ‘‘normalize and rounding’’ is a simplified version of Fig. 12.4,
where the part related to the subtraction is not necessary.

The inputs of the p-bit divider are s1 and s2. The first operator s1 is internally
divided by two (s1/B, i.e. right shifted) so that the dividend is smaller than the
divisor. The precision is chosen equal to p ? 3 digits. Thus, the outputs quotient
and remainder satisfy the relation (s1/B).Bp+3 = s2.q ? r where r \ s2, that is,

s1=s2 ¼ q:B�ðpþ2Þ þ r=s2ð Þ � B�ðpþ2Þwhere r=s2ð Þ � B�ðpþ2Þ\B�ðpþ2Þ:

The sticky digit is equal to 1 if r \ 0 and to 0 if r = 0. The final approximation
of the exact result is

quotient ¼ q:B�ðpþ2Þ þ sticky digit:B�ðpþ3Þ:
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divider
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e

sign1 sign2
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subtractor
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Fig. 12.9 A pipelined structure of a floating point divider
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If a non-restoring divider is used, a further optimization could be done in the
sticky bit computation. In the non-restoring divider the final remainder could be
negative. In this case, a final correction should be done. This final operation can be
avoided: the sticky bit is 0 if the remainder is equal to zero, otherwise it is 1.

A divider is a time consuming circuit. In order to obtain circuits, with fre-
quencies similar to those of floating point multipliers or adders, more pipeline
stages are necessary. Figure 12.9 shows a possible pipeline for a floating point
divider where the integer divider is also pipelined.

Example 12.10 (complete VHDL code available)
Generate the VHDL model of a generic floating-point divider. It is made up of the
blocks depicted in Fig. 12.9. Most of the design is described in a single VHDL file,
but for the integer divider. The integer divider is a non-restoring divider
(div_nr_wsticky.vhd) that uses a basic non-restoring cell (a_s.vhd). For clearness
and reusability the code is written using parameters, where K is the size of the
floating point numbers (sign, exponent, significand), E is the size of the exponent
and P is the size of the significand (including the hidden 1). The entity declaration
of the circuit is:

12.5.4 Square Root

A basic square rooter deduced from Algorithm 12.7 is shown in Fig. 12.10. The
unpacking and packing circuits are the same as in previous operations and, for
simplicity, are not drawn. Remember that the first normalization is not necessary,
and for most rounding strategies the second normalization is not necessary either.

The exponent is calculated as follows:

E ¼ e1=2þ bias ¼ E1 � biasð Þ=2þ bias ¼ E1=2þ bias=2:

• If e1 is even, then both E1 and bias are odd (bias is always odd). Thus, E ¼
bE1=2c þ bbias=2c þ 1 where bE1=2c and bbias=2c amount to right shifts.

• If e1 is odd, then E1 is even. The significand is multiplied by 2 and the exponent
reduced by one unit. The biased exponent
E ¼ E1 � 1ð Þ=2þ bias=2 ¼ E1=2þ bbias=2c:

To summarize, the biased exponent E ¼ bE1=2c þ bbias=2c þ parity E1ð Þ:
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Since the integer square root is a complex operation, a pipelined floating-point
square rooter should be based on a pipelined integer square root. The dotted line of
Fig. 12.10 shows a possible five stage pipeline circuit.

Example 12.11 (complete VHDL code available)
Generate the VHDL model of a generic floating-point square rooter. It is made up
of the blocks depicted in Fig. 12.10. The design is described in a single VHDL file,
but for the integer square root. The integer square root is based in a non-restoring
algorithm (sqrt_wsticky.vhd) that uses two basic non-restoring cells (sqrt_cell.vhd
and sqrt_cell_00.vhd). For clearness and reusability, the code is written using
parameters, where K is the size of the floating point numbers (sign, exponent,
significand), E is the size of the exponent and P is the size of the significand
(including the hidden 1). The entity declaration of the circuit is:
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12.5.5 Implementation Results

Several implementation results are now presented. The circuits were implemented
in a Virtex 5, speed grade 2, device, using ISE 13.1 and XST for synthesis.
Tables 12.4 and 12.5 show combinational circuit implementations for binary32
and binary64 floating point operators. The inputs and outputs are registered. When
the number of registers (FF) is greater than the number of inputs and outputs, this
is due to the register duplication made by synthesizer. The multiplier is imple-
mented using the embedded multiplier (DSP48) and general purpose logic.

Table 12.6 shows the results for pipelined versions in the case of decimal32
data. The circuits include input and output registers. The adder is pipelined in two
stages (Fig. 12.5). The multiplier is segmented using three pipeline stages
(Fig. 12.7). The divider latency is equal to 6 cycles and the square root latency is
equal to five cycles (Figs. 12.9 and 12.10).

Table 12.5 Combinational floating point operators in binary64 format

FF LUTs DSP48 Slices Delay

FP_add 192 1372 – 585 15.4
FP_mult 192 495 15 199 15.1
FP_mult_luts 192 3325 – 907 12.5
FP_div 244 3291 – 903 136.9
FP_sqrt 128 1651 – 447 97.6

Table 12.4 Combinational floating point operators in binary32 format

FF LUTs DSP48 Slices Delay

FP_add 96 699 – 275 11.7
FP_mult 96 189 2 105 8.4
FP_mult_luts 98 802 – 234 9.7
FP_div 119 789 – 262 46.6
FP_sqrt 64 409 – 123 38.0

Table 12.6 Pipelined floating point operators in binary32 format

FF LUTs DSP48 Slices Period Latency

FP_add 137 637 – 247 6.4 2
FP_mult 138 145 2 76 5.6 2
FP_mult_luts 142 798 – 235 7.1 2
FP_mult 144 178 2 89 3.8 3
FP_mult_luts 252 831 – 272 5.0 3
FP_sqrt 384 815 – 266 9.1 6
FP_div 212 455 -0 141 9.2 5
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12.6 Exercises

1. How many bits are there in the exponent and the significand of a 256-bit
binary floating point number? What are the ranges of the exponent and the
bias?

2. Convert the following decimal numbers to the binary32 and binary64 floating-
point format. (a) 123.45; (b) -1.0; (c) 673.498e10; (d) qNAN; (e) -1.345e-

129; (f) ?; (g) 0.1; (h) 5.1e5
3. Convert the following binary32 number to the corresponding decimal number.

(a) 08F05352; (b) 7FC00000; (c) AAD2CBC4; (d) FF800000; (e) 484B0173;
(f) E9E55838; (g) E9E55838.

4. Add, subtract, multiply and divide the following binary floating point numbers
with B = 2 and ulp = 2-5, so that the numbers are represented in the form s �
2e where 1 B s B 1.111112. For simplicity e is written in decimal (base 10).

(a) 1.10101 9 23 op 1.10101 9 21

(b) 1.00010 9 2-1 op 1.00010 9 2-1

(c) 1.00010 9 2-3 op 1.10110 9 22

(d) 1.10101 9 23 op 1.00000 9 24

5. Add, subtract, multiply and divide the following decimal floating point
numbers using B = 10 and ulp = 10-4, so that the numbers are represented in
the form s � 10e where 1 B s B 9.9999 (normalized decimal numbers).

(a) 9.4375 9 103 op 8.6247 9 102

(b) 1.0014 9 103 op 9.9491 9 102

(c) 1.0714 9 104 op 7.1403 9 102

(d) 3.4518 9 10-1 op 7.2471 9 103

6. Analyze the consequences and implication to support denormalized (subnor-
mal in IEEE 754-2008) numbers in the basic operations.

7. Analyze the hardware implication to deal with no-normalized significands
(s) instead of normalized as in the binary standard.

8. Generate VHDL models adding a pipeline stage to the binary floating point
adder of Sect. 12.5.1.

9. Add a pipeline stage to the binary floating point multiplier of Sect. 12.5.2.
10. Generate VHDL models adding two pipeline stages to the binary floating point

multiplier of Sect. 12.5.2.
11. Generate VHDL models adding several pipeline stages to the binary floating

point divider of Sect. 12.5.3.
12. Generate VHDL models adding several pipeline stages to the binary floating

point square root of Sect. 12.5.4.
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Chapter 13
Finite-Field Arithmetic

Finite fields are used in different types of computers and digital communication
systems. Two well-known examples are error-correction codes and cryptography.
The traditional way of implementing the corresponding algorithms is software,
running on general-purpose processors or on digital-signal processors. Neverthe-
less, in some cases the time constraints cannot be met with instruction-set proces-
sors, and specific hardware must be considered.

The operations over the finite ring Zm are described in Sect. 13.1. Two multi-
plication algorithms are considered: ‘‘multiply and reduce’’ (Sect. 13.1.2.1) and
‘‘interleaved multiplication’’ (Sect. 13.1.2.2). The Montgomery multiplication,
and its application to exponentiation algorithms, are the topics of Sect. 13.1.2.3.
Section 13.2 is dedicated to the division over Zp, where p is a prime. The proposed
method is the ‘‘binary algorithm’’, an extension of an algorithm that computes the
greatest common divider of two naturals. The operations over the polynomial ring
Z2[x]/f(x) are described in Sect. 13.3. Two multiplication algorithms are consid-
ered: ‘‘multiply and reduce’’ (Sect. 13.3.2.1) and ‘‘interleaved multiplication’’
(Sect. 13.3.2.2). Squaring is the topic of Sect. 13.3.2.3. Finally, Sect. 13.4 is
dedicated to the division over GF(2n).

As a matter of fact, only some of the most important algorithms have been
considered. According to the Authors’ experience they generate efficient FPGA
implementations (Sect. 13.5). Furthermore, non-binary extension fields GF(pn) are
not considered. A much more complete presentation of finite field arithmetic can
be found in [1] and [2].

13.1 Operations Modulo m

Given a natural m, the set Zm ¼ 0; 1; . . .;m� 1f g is a ring whose operations are
defined as modulo m.

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_13,
� Springer Science+Business Media Dordrecht 2012
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13.1.1 Addition and Subtraction Mod m

Given two natural numbers x and y belonging to Zm, compute z = (x ? y) mod
m. Taking into account that 0� xþ y\2 � m; z must be equal to either x ? y or
x ? y - m, the following algorithm computes z.

Algorithm 13.1: Mod m addition

As regards the computation of z = (x - y) mod m, take into account that
-m \ x - y \ m, so that z must be equal to either x� y or x� yþ m: The cor-
responding algorithm is the following.

Algorithm 13.2: Mod m subtraction

The circuit of Fig. 13.1 is an adder-subtractor, which computes z = (x ? y) mod
m if operation = 0 and z = (x - y) mod m if operation = 1. It is described by the
following VHDL model in which k is the number of bits of m.

x y

operation+/-

s1
sign1

+/-

m

s2 sign2

z

0 1 c
C.C.

Fig. 13.1 Adder–subtractor
modulo m
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A complete VHDL model is mod_m_AS.vhd is available at the Authors’ web page.

13.1.2 Multiplication Mod m

Given x and y [ Zm, compute z = x�y mod m, where m is a k-bit natural.

13.1.2.1 Multiply and Reduce

A straightforward method consists of multiplying x by y, so that a 2k-bit result
product is obtained, and then reducing product mod m. For that, any combination
of multiplier and mod m reducer can be used. For fixed values of m, specific
combinational mod m reducers can be considered.

As an example, synthesize a mod m multiplier with m = 2192 - 264 - 1. Any
192-by-192 multiplier can be used. A 384-bit to 192-bit mod m reducer can be
synthesized as follows: given x ¼ x383 � 2383 þ x382 � 2382 þ . . .þ x0 � 20; it can
be divided up under the form

ðx383 � 263þx382 � 262þ ...þx320 � 20Þ2320þðx319 �263þx318 �262þ ...þx256 � 20Þ2256

þðx255 � 263þx254 � 262þ ...þx192 � 20Þ2192þx191 � 2191þx190 � 2190þ ...þx0 � 20:

Then, substitute 2320 by 2128 ? 264 ? 1 : 2320 mod m, 2256 by
2128 ? 264 : 2256 mod m, and 2192 by 264 ? 1 : 2192 mod m.
So, x : x0 ? x00 ? x¢¢¢ ? x0000, where

x0 ¼ ðx383 � 2191 þ x382 � 2190 þ . . .þ x320 � 2128Þ
þ ðx383 � 2127 þ x382 � 2126 þ . . .þ x320 � 264Þ
þ ðx383 � 263 þ x382 � 262 þ . . .þ x320 � 20Þ;

x00 ¼ ðx319 � 2191 þ x318 � 2190 þ . . .þ x256 � 2128Þ
þ ðx319 � 2127 þ x318 � 2126 þ . . .þ x256 � 264Þ;

x000 ¼ ðx255 � 2127 þ x254 � 2126 þ . . .þ x192 � 264Þ
þ ðx255 � 263 þ x254 � 262 þ . . .þ x192 � 20Þ;

x0000 ¼ x191 � 2191 þ x190 � 2190 þ . . .þ x0 � 20:
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The sum s ¼ x0 þ x00 þ x000 þ x0000 is smaller than 4 � ð2192 � 264 � 1Þ ¼ 4 m; so
that x mod m is either s, s - m, s - 2m or s - 3m.

The corresponding circuit is shown in Fig. 13.2 and is described by the
following VHDL model.

A complete VHDL model is mod_p192_reducer2.vhd is available at the Authors’
web page.

In order to complete the multiplier design, any 192-bit by 192-bit multiplier can
be used (Chap. 8). This is left as an exercise.

13.1.2.2 Interleaved Multiplier

Another option is to modify a classical left-to-right multiplication algorithm based
on the following computation scheme

x � y ¼ . . . 0 � 2þ xn�1 � yð Þ � 2þ xn�2 � yð Þ � 2þ . . .þ x1 � yð Þ � 2þ x0 � y:

Algorithm 13.3: Mod m multiplication, left-to-right algorithm

The data path corresponding to Algorithm 13.3 is shown in Fig. 13.3. It is
described by the following VHDL model.

340 13 Finite-Field Arithmetic

http://dx.doi.org/10.1007/978-94-007-2987-2_8
http://dx.doi.org/10.1007/978-94-007-2987-2_8


A complete VHDL model mod-_m_multiplier.vhd-, including a k-state counter and
a control unit, is available at the Authors’ web page.

x 383..320&x383..320&x383..320 x191..0

192 -bit adder

x319..256&x319..256 x255..192

128 -bit adder

x255..192

s1,192..0 s2,192..64
s2,63..0

193 -bit adder

s193..0

subtractor

m

z1

subtractor

2m

z2

subtractor

3m

z3sign1 sign2 sign3

sign1..3
1-- 01- 001 000

Fig. 13.2 Mod 2192 � 264 � 1 reducer
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If ripple-carry adders are used, the minimum clock period is about k�TFA, so that
the total computation time is approximately equal to k2�TFA. In order to reduce the
computation time, the stored-carry encoding principle could be used [2]. For that,
Algorithm 13.3 is modified: accumulator is represented under the form
accs ? accc; the conditional sum (accs ? accc) �2 ? xn-k-i�y is computed in stored-
carry form, and every sum is followed by a division by m, also in stored-carry form
(Sect. 9.2.4), without on-the-fly conversion as only the remainder must be com-
puted. The corresponding computation time is proportional to k instead of k2. The
design of the circuit is left as an exercise.

s

subtractor

m

z1

subtractor

2m

z2sign1 sign2

1- 01 00

acc

adder

sign1..2

register
initially: 0

shif register
initially: x

xn-i-1

y

2·acc

load
update

load
update

Fig. 13.3 Interleaved mod m multiplier
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13.1.2.3 Montgomery Multiplication

Assume that m is an odd k-bit number. As m is odd, then gcd(m, 2k) = 1, and there
exists an element 2-k of Zm such that 2k � 2�k� � 1 mod m. Define a one-to-one
and onto application T from Zm to Zm:

T xð Þ ¼ x:2k mod m and T�1 yð Þ ¼ y:2�k mod m:

The following properties hold true: T((x ? y) mod m) = (T(x) ? T(y)) mod m,
T((x - y) mod m) = (T(x) - T(y)) mod m, T(x�y mod m) = T(x)�T(y).2-k mod
m. The latter suggests the definition of a new operation on Zm, the so-called
Montgomery product MP [3]:

MP x; yð Þ ¼ x � y � 2�k mod m:

Assume that the value 22k mod m has been previously computed. Then

T xð Þ ¼ MP x; 22k mod m
� �

and T�1 yð Þ ¼ MP y; 1ð Þ:

The main point is that the Montgomery product MP is easier to compute than the
mod m product. The following algorithm computes MP(x, y).

Algorithm 13.4: Montgomery product

The data path corresponding to Algorithm 13.4 (without the final correction) is
shown in Fig. 13.4. It is described by the following VHDL model.

If ripple-carry adders are used, the total computation time is approximately equal
to k2�TFA. In order to reduce the computation time, the stored-carry encoding
principle could be used [2, 4].
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Algorithm 13.5: Montgomery product, carry-save addition

The corresponding computation time is proportional to k instead of k2. The design
of the circuit is left as an exercise.

In order to compute z = x�y mod m, the Montgomery product concept should
be used in the following way: first (initial encoding) substitute x and y by
x0 ¼ T xð Þ ¼ MPðx; 22k mod mÞ and y0 ¼ T yð Þ ¼ MPðy; 22k mod mÞ; then com-
pute z0 = MP(x0, y’); finally (result decoding) compute z ¼ T�1 z0ð Þ ¼ MP z; 1ð Þ:
This method is not efficient, unless many operations involving the same initial data
are performed, in which case the initial encoding of those data is performed only
once. Consider the following modular exponentiation algorithm; it computes
z = yx mod m and is based on the following computation scheme:

z ¼ yx0þx1 � 2þx2 � 22þ...þxk�1 � 2k�1 ¼ yx0 � ðy2Þx1 � ðy22Þx1 � . . . � ðy2k�1Þxk�1 mod m:

y

xishif register
initially: x

load
update

m

p0

y0xi

q

adder

p

register
initially: 0

load
update

p

Fig. 13.4 Montgomery product
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Algorithm 13.6: Mod m exponentiation, LSB-first

Mod m operations can be substituted by Montgomery products. For that, 1 is
substituted by T 1ð Þ ¼ 2k mod m, and y by T yð Þ ¼ MPðy; 22k mod mÞ: Thus,
assuming that 2k mod m and 22k mod m have been previously computed, the
following algorithm computes z = x�y mod m.

Algorithm 13.7: Modulo m exponentiation, Montgomery algorithm,
LSB-first

The corresponding circuit is made up of two Montgomery multipliers working in
parallel, with some kind of synchronization mechanism. A data-flow VHDL
description mod_m_exponentiation.vhd is available at the Authors’ web page. At
each step both multipliers MP1 and MP2, with their corresponding done1 and done2

signals, are synchronized with a wait instruction:

An MSB-first exponentiation algorithm could also be considered. For that, use the
following computation scheme:

z ¼ yx0þx1 � 2þx2 � 22þ...þxk�1 � 2k�1

¼ ðð. . .ð12 � yxk�1Þ2 � yxk�2Þ2 � . . . � yx1Þ2 � yx0 mod m:
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Algorithm 13.8: Mod m exponentiation, MSB-first

As before, mod m multiplications can be substituted by Montgomery products. For
that, 1 is substituted by T(1) = 2k mod m, and y by T(y) = MP(y, 22k mod m). There is
a precedence relation between the two main operations T(e) : = T(e2) = MP(T(e),
T(e)) and T(e) : = T(e�y) = MP(T(e), T(y)). Thus, a direct implementation includes
only one Montgomery multiplier, but needs up to 2k cycles instead of k in the case of
the LSB-first algorithm. The design of the corresponding circuit is left as an exercise.

13.2 Division Modulo p

If p is prime, than all non-zero elements of Zp have a multiplicative inverse. Thus,
given x and y = 0 in Zp, there exists an element z of Zp such that z = x�y-1 mod p.

There are several types of algorithms that compute z. Some of them are gen-
eralizations of algorithms that compute the greatest common divider: Euclidean
algorithm [5, 6], binary algorithm [7], plus-minus algorithm [8–10]. Another
option is to substitute division by multiplications: according to the Fermat’s little
theorem z = x�yp-2 mod p. As an example, the following binary algorithm com-
putes z = x�y-1 mod p. It uses four variables a, b, c and d, initially equal to p, y, 0
and x, respectively. At each step, a and b are updated in such a way that their gcd is
unchanged and that b decreases. For that, observe that if b is even and a is odd,
then gcd(a, b) = gcd(a, b/2), and if both a and b are odd, then gcd(a, b) = gcd
(a, |b-a|) = gcd(b, |b-a|). As initially a = p and b = y, where p is a prime, after a
finite number of steps a is equal to 1. On the other hand, c and d are updated in
such a way that c�y : a�x mod p and d�y : b�x mod p. Initially, c = 0,
a = p : 0 mod p, d = x and b = y, so that the mentioned relations are satisfied.
It can be proven that if c and d are updated in the same way as a and b, both
relations remain true. In particular, if a = 1, then c�y : x mod p, and z = c.
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Algorithm 13.9: Mod p division, binary algorithm

The corresponding circuit is made up of adders, registers and connection resour-
ces. A data-flow VHDL description mod_p_division2.vhd is available at the
Authors’ web page.

An upper bound of the number of steps before a = 1 is 4k, k being the number
of bits of p. So, if ripple-carry adders are used, the computation time is shorter than
4�k2�TFA (a rather pessimistic estimation).

13.3 Operations Over Z2½x�=fðxÞ

Given a polynomial f xð Þ ¼ xm þ fm�1xm�1 þ . . .þ f1xþ f0; whose coefficients fi
belong to the binary field Z2, the set of polynomials of degree smaller than m over
Z2 is a ring Z2[x]/f(x) whose operations are defined modulo f(x).

13.3.1 Addition and Subtraction of Polynomials

Given two polynomials a xð Þ ¼ am�1xm�1 þ . . .þ a1xþ a0 and b xð Þ ¼ bm�1xm�1

þ. . .þ b1xþ b0; then

a xð Þ þ b xð Þ ¼ a xð Þ � b xð Þ ¼ cm�1xm�1 þ . . .þ c1xþ c0;

where ci ¼ ðai þ biÞ mod 2; 8i in 0; 1; . . .;m� 1f g: In other words, the corre-
sponding circuit is a set of m 2-input XOR gates working in parallel, which can be
described by the following VHDL sentence:

13.3.2 Multiplication Modulo f(x)

Given two polynomials a xð Þ ¼ am�1xm�1 þ . . .þ a1xþ a0 and b xð Þ ¼ bm�1xm�1

þ. . .þ b1xþ b0 of degree smaller than m, and a polynomial f ðxÞ ¼ xm þ fm�1xm�1

þ. . .þ f1xþ f0; compute c(x) = a(x)�b(x) mod f(x).
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13.3.2.1 Multiply and Reduce

A straightforward method consists of multiplying a(x) by b(x), so that a polyno-
mial d(x) of degree smaller than 2m-1 is obtained, and then reducing d(x) mod f(x).

The coefficients dk of d(x) are the following:

dk ¼
Xk

i¼0
ai � bk�i; k ¼ 0; 1; . . .; m� 1;

dk ¼
X2m�2

i¼k
ak�iþðm�1Þ � bi�ðm�1Þ; k ¼ m; mþ 1; . . . ; 2m� 2:

The preceding equations can be implemented by a combinational circuit made up
of 2-input AND gates and XOR gates with up to m inputs.

It remains to reduce d(x) modulo f(x). Assume that all coefficients ri,j, such that

xmþj mod f xð Þ ¼ rm�1; jx
m�1 þ rm�2; jx

m�2 þ � � � þ r1;jx
1 þ r0;j;

have been previously computed. Then the coefficients of c(x) = a(x)�b(x) mod
f(x) are the following:

cj ¼ dj þ
Xm�2

i¼0
rj;i � dmþi; j ¼ 0; 1; . . . ; m� 1: ð13:1Þ
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The preceding equations can be implemented by a combinational circuit made up
of m XOR gates with up to m inputs. The number of gate inputs is determined by
the maximum number of 1’s within a column of the matrix [ri,j], and this depends
on the chosen polynomial f(x).

A complete VHDL model classic_multiplier.vhd, including both the polyno-
mial multiplier and the polynomial reducer, is available at the Authors’ web
page.

Every coefficient dk is the sum of at most m products ai�bk-i, and every coef-
ficient cj is the sum of, at most, m coefficients dk. Thus, if tree structures are used,
the computation time is proportional to log m. On the other hand, the cost is
proportional to m2. Hence, this type of multiplier is suitable for small values of
m. For great values of m, the cost could be excessive and sequential multipliers
should be considered.

13.3.2.2 Interleaved Multiplier

The following LSB-first algorithm computes c(x) = a(x)�b(x) mod f(x) according
to the following computation scheme:

c xð Þ ¼ b0 � a xð Þ þ b1 � a xð Þ � xð Þ þ b2 � a xð Þ � x2
� �

þ . . .þ bm�1 � a xð Þ � xm�1
� �

:

Algorithm 13.10: Interleaved multiplication, LSB-first

The first operation c(x) ? bi�a(x) is executed by the circuit of Fig. 13.5a. In order
to compute a(x)�x mod f(x), use the fact that xm mod f xð Þ ¼ fm�1xm�1 þ
fm�2xm�2 þ . . .þ f0: Thus,
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a xð Þ � x mod f xð Þ ¼ am�1 � fm�1xm�1 þ fm�2xm�2 þ . . .þ f0
� �

þ am�2xm�1

þ am�3xm�2 þ . . .þ a0x:

The corresponding circuit is shown in Fig. 13.5b. For fixed f(x), the products am-1�fj
must not be computed: if fj ¼ 1; aþj ¼ aj�1 þ am�1

� �
mod 2, and if fj ¼ 0;

aþj ¼ aj�1:

The circuit also includes two parallel registers a and c, a shift register b, an
m-state counter, and a control unit. A complete VHDL model interleaved_mult.vhd
is available at the Authors’ web page.

13.3.2.3 Squaring

Given a xð Þ ¼ am�1xm�1 þ . . .þ a1xþ a0; the computation of c(x) = a2(x) mod
f(x) can be performed with the algorithm of Sect. 13.3.2.1. The first step (multiply)
is trivial:

d xð Þ ¼ a2 xð Þ ¼ ðam�1xm�1 þ . . .þ a1xþ a0Þ2

¼ am�1x2 m�1ð Þ þ am�2x2 m�2ð Þ þ . . .þ a1x2 þ a0:

Thus, di = ai/2 if i is even, else di = 0. According to (13.1),

cj ¼ aj=2 þ
P

0� i�m�2
mþi even

rj;i � aðmþiÞ=2; j ¼ 0; 2; 4; . . .

cj ¼
X

0� i�m�2
mþi even

rj;i � aðmþiÞ=2; j ¼ 1; 3; 5; . . .

The cost of the circuit depends on the chosen polynomial f(x), which, in turn,
defines the matrix [ri,j]. If f(x) has few non-zero coefficients, as is the case of
trinomials and pentanomials, then the matrix [ri,j] also has few non-zero coeffi-
cients, and the corresponding circuit is very fast and cost-effective. Examples of
implementations are given in Sect. 13.5.

cm -1
+

c
(a)

(b)m-1 am-1 cm-2 am-2 c0 a0

bi

cm -2
+ c0

+

·····

am-1
+ am-2

+ a1
+

·····
am-2

am-1·fm-1

am-3 a0

am-1·fm-2 am-1·f1 am -1·f0

a0
+

Fig. 13.5 Interleaved multiplier, computation of c(x) ? bi�a(x) and a(x)�x mod f(x)
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13.4 Division Over GF(2m)

If f(x) is irreducible, then all non-zero polynomials in Z2[x]/f(x) have a multipli-
cative inverse. Thus, given g(x) and h xð Þ 6¼ 0 in Z2 x½ �=f xð Þ; there exists a poly-
nomial z(x) in Z2[x]/f(x) such that z xð Þ ¼ g xð Þ � h�1 xð Þ mod f xð Þ:

There are several types of algorithms for computing z(x). Some of them are
generalizations of algorithms that compute the greatest common divider, like the
Euclidean algorithm and the binary algorithm. Another option is to substitute the
division by multiplications: according to the Fermat’s theorem z xð Þ ¼ g xð Þ �
hq�2 xð Þ mod f xð Þ where q = 2m. As an example, the following binary algorithm
computes z xð Þ ¼ g xð Þ � h�1 xð Þ mod f xð Þ: It uses four variables a(x), b(x),
u(x) and v(x), initially equal to f(x), h(x), 0 and g(x), respectively. At each step,
a(x) and b(x) are updated in such a way that their greatest common divider is
unchanged and that the degree of a(x) ? b(x) decreases. For that, observe that if
b(x) is divisible by x and a(x) is not, then gcd(a(x), b(x)) = gcd(a(x), b(x)/x), and if
neither a(x) nor b(x) are divisible by x, then gcd a xð Þ; b xð Þð Þ ¼ gcdða xð Þ; ða xð Þ þ
b xð ÞÞ=xÞ ¼ gcdðb xð Þ; ða xð Þ þ b xð ÞÞ=xÞ: As initially a(x) = f(x) and b(x) = h(x),
where f(x) is irreducible, after a finite number of steps b(x) = 0 and
a(x) = gcd(f(x), h(x)) = 1. On the other hand, u(x) and v(x) are updated in such a
way that u(x)�h(x) : a(x)�g(x) mod f(x) and v(x)�h(x) : b(x)�g(x) mod f(x).
Initially, u(x) = 0, a(x) = f(x) : 0 mod f(x), v(x) = g(x) and b(x) = h(x), so that
both equivalence relations are satisfied. It can be proven that if u(x) and v(x) are
updated in the same way as a(x) and b(x), both relations remain true. In particular,
if a(x) = 1, then u(x)�h(x) : g(x) mod f(x), and z(x) = u(x).

Algorithm 13.11: Mod f(x) division, binary algorithm

Given a polynomial w(x), then w xð Þ � x�1 mod f xð Þ ¼ w xð Þ þ w0 � f xð Þð Þ=x:
A data path for executing the preceding algorithm is shown in Fig. 13.6. The small
circles connected to f1, f2,…, represent programmable connections: if fi = 1, the
rightmost input of the corresponding XOR gate is connected to w0, else it is
connected to 0.
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A drawback of the proposed algorithm is that the degrees of a(x) and b(x) must be
computed at each step. A better option is to use upper bounds a and b of the
degrees of a(x) and b(x).

Algorithm 13.12: Mod f(x) division, binary algorithm, version 2

The data path is the same as before (Fig. 13.6). An upper bound of the number of
steps is 2m. As the operations are performed without carry propagation, the com-
putation time is proportional to m. A data-flow VHDL description mod_f_divi-
sion2.vhd is available at the Authors’ web page.
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Fig. 13.6 Binary algorithm for polynomials
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In the preceding binary algorithms, the number of steps is not fixed; it depends
on the input data values. This is an inconvenience when optimization methods,
such as digit-serial processing (Chap. 3), are considered. In the following algo-
rithm [11] a and b are substituted by count = |a-b-1|, and a binary variable state
equal to 0 if a[ b, and equal to 1 if a B b.

Algorithm 13.13: Mod f(x) division, binary algorithm, version 3

The data path is still the same as before (Fig. 13.6), and the number of steps is 2m,
independently of the input data values. As the operations are performed without
carry propagation, the computation time is proportional to m. A data-flow VHDL
description mod_f_division3.vhd is available at the Authors’ web page. Further-
more, several digit-serial implementations, with different digit definitions, are
given in Sect. 13.5.

13.5 FPGA Implementations

Several circuits have been implemented within a Virtex 5–2 device. The times are
expressed in ns and the costs in numbers of Look Up Tables (LUTs) and flip-flops
(FFs). All VHDL models are available at the Authors’ web page.

Two combinational multipliers (multiply and reduce) have been implemented
(Table 13.1).

For greater values of the degree m of f(x), sequential implementations should be
considered. Several interleaved multipliers have been implemented (Table 13.2).

In the case of the squaring operation, combinational circuits can be used, even
for great valued of m (Table 13.3).
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Several sequential mod f(x) dividers (Sect. 13.4) have been implemented
(Table 13.4).

13.6 Exercises

1. Generate the VHDL model of a reducer modulo 239.
2. Generate the VHDL model of a multiplier modulo m ¼ 2192 � 264 � 1:
3. Design an interleaved modulo m multiplier using the stored-carry principle.
4. Design a modulo p divider based on Fermat’s little theorem.
5. Generate the VHDL model of a multiplier over Z2[x]/f(x) where f xð Þ ¼ x8þ

x4 þ x3 þ xþ 1:

Table13.1 Classic mod f(x)
multipliers

m LUTs Delay

8 37 3.2
64 2,125 5.3

Table 13.2 Interleaved mod
f(x) multipliers

m FFs LUTs Period Total time

8 32 34 1.48 13.3
64 201 207 1.80 117.0

163 500 504 1.60 262.4
233 711 714 1.88 439.9

Table 13.3 Mod
f(x) squaring (square and
reduce)

m LUTs Delay

8 8 0.7
64 129 0.7

163 163 0.7
233 153 0.7

Table 13.4 Mod
f(x) dividers

m FFs LUTs Period Total time

8 43 34 2.41 41.0
64 273 157 2.63 339.3

163 673 370 2.96 967.9
233 953 510 2.98 1391.7
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6. Generate the VHDL model of a divider over Z2[x]/f(x) where f xð Þ ¼ x8þ
x4 þ x3 þ xþ 1:

7. Design a squarer over Z2 x½ �=f xð Þwhere f xð Þ ¼ x8 þ x4 þ x3 þ xþ 1:
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Chapter 14
Systems on Chip

This chapter introduces the main concepts related to the implementation of
embedded systems on FPGA devices. Many of these concepts will appear during
the case studies that are exposed in the next chapter.

14.1 System on Chip

The concept System on Chip (SoC) indicates a technical direction where the
increasing capacity of transistors into a chip enables the integration of more complex
systems. A SoC integrates all the components of the system, such as processors,
memory, analog functions, etc., on a single chip substrate. Some systems may be too
complex to be built using a single microelectronic technological process; therefore a
system’s subset is optimized to be implemented in a single chip. Typical SoC
applications are embedded systems that are specific-application computers.

SoCs can be implemented on several microelectronic technologies: full-custom,
standard-cells, FPGAs. Advances in FPGA devices permit the mapping of quite
complex embedded systems in a single programmable device, thus, leading a
growing technology.

14.2 Intellectual Property Cores

Most SoCs are developed from pre-designed hardware cores usually know as
Intellectual Property (IP) cores. The IP cores are reusable hardware units designed
and verified by third-party companies or open-source developers to perform a
specific task. They can be licensed to permit a faster SoC development, since they
can be integrated into the design flow as a qualified building block. Software

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_14,
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drivers are enclosed in some IP cores, in order to facilitate the development of
applications for embedded systems.

IP cores can be delivered in different abstraction levels. In general terms, a
higher level of abstraction provides more flexibility but poorer performances and
failure risks due to the following stages of the design flow.

• Soft-core. They are described in files and can be represented in different levels.

– Register Transfer Logic (RTL). The highest abstraction level where IP
cores are generally described in VHDL/Verilog files, therefore, they must be
synthesized and implemented on the target device. Open source IPs are
suitable on a large number of different devices and they may be modified to
match the required needs. By contrast many industrial IP cores, as the IP cores
deployed in the Xilinx’s EDK suite, may be designed for a particular device
and protected in order to avoid their modification.

– Gate-level. The next lower level are IPs described in netlist files that are obtained
after the synthesis for a particular family. They can not be (easily) modified or
ported to other devices. The IP is usually optimized to use the most appropriate
hardware resources, but the design flow must implement the layout for the target
device. The soft macros from Xilinx are pre-defined circuits, composed of library
components that have flexible mapping, placement and routing.

– Layout-level. The next abstraction level is obtained after the IP implemen-
tation on a device. The layout is usually optimized to improve area and timing
constraints. The Relative Placed Macro (RPMs) from Xilinx are pre-defined
layouts that have flexible placement.

• Hard-core. It is the physical IP implementation on the device, therefore, logic
and performances are fixed. FPGA devices, usually, provide hard IP cores that
are efficiently built in a devoted area. For instance, most FPGAs provide internal
memory blocks that can be employed by embedded processors. More advanced
devices, such as some of the Xilinx Virtex-4/5 family, integrate PowerPC
processors, Digital Signal Processing (DSP) blocks, Ethernet Media Access
Control (MAC), etc.

14.3 Embedded Systems

General-purpose computers are designed to execute a wide range of different
applications. Usually, they are built with a high-performance microprocessor, a large
memory capacity and many different peripherals (USB ports, video card, disk drives,
etc.). Applications rely on the Operating System (OS) which manages memory,
peripherals, file system, interrupts and task scheduling. By contrast, an embedded
system is a computer designed and programmed to meet the requirements of a
specific application, such as media players, printers, domotics, etc. Applications may
not require OS or may rely on a customized OS. Important aspects concerning these
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systems are their reduced size, cost and power consumption when they are compared
against general-purpose computers. An embedded system is, usually, composed
of a low-cost microprocessor, memory and some peripherals. It may include a
customized peripheral or coprocessor to speed-up a specific task or computation.

14.3.1 Embedded Microprocessors

Microprocessors are the heart of any computer system since they manage the
rest of the system, performing the control tasks and many of the computations.
An embedded microprocessor is a general-purpose processor whose cost, size,
power consumption and computational performances are adequate for the specific
application it executes. The variety of general-purpose microprocessors is huge,
but they can be classified according to their architecture. Embedded micropro-
cessors are usually classified according to:

• Data-path width. The basic building blocks of a microprocessor’s data-path
are the registers and the Arithmetic Logic Unit (ALU) that are of n-bit width.
The data-path width indicates the maximum size carried out by a single com-
putation. In general terms, a higher data-path width brings more computational
performance but higher cost and power consumption. Most embedded proces-
sors are 8-bit to 32-bit width since they offer a good trade-off.

• Instruction set. General-purpose microprocessors can be divided into Reduced
Instruction Set Computing (RISC) and Complex Instruction Set Computing
(CISC). The machine instructions of a RISC processor are quite simple, such as
loading a register from memory, computing an arithmetic/logical operation on
registers, and storing a register to memory. A CISC processor improves the
efficiency of the instruction memory since a single instruction can perform
several of the previously described steps. However, RISC microprocessors are
predominant in embedded systems since they benefit from a simpler architecture
and increased clock frequency.

• Memory architecture. The von Neumann architecture provides a single bus to
access memory which stores instructions and data. The memory architecture is
simplified, but it cannot simultaneously read the next instruction while it is
reading/writing data, due to the previous instruction. The Harvard architecture
provides separated busses (instruction-side and data-side) to memory, in order to
improve the execution performance. In the latter case, the system provides an
arbiter which multiplexes the accesses to memory, from both sides. The memory
devices that store instructions and data can be physically different or not.

• Endianness. The minimum addressable space of memory that a microprocessor,
usually, can read/write is a byte (8-bit). A 32-bit processors can also access
memory to read/write 16/32-bit words that are stored in a set of 2/4 bytes
allocated in consecutive addresses. A little-endian processor stores the least
significant byte of a word into the byte of memory which is allocated at the
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lower address. By contrast, a big-endian processor stores the most significant
byte of the word into the memory byte at the lower address.

• Pipeline architecture. The pipeline architecture is a digital design technique
which divides a large combinational path into a set of simpler processing stages
that are serially connected through registers. During a time slot, a stage performs
a partial computation from the resulting data of the previous stage, which is
processing the next data. For instance, a typical 3-stage microprocessor can
simultaneously fetch, decode and execute three different instructions. Most
microprocessors provide several pipeline stages, since they can significantly
increase the instruction throughput and the clock frequency. Their main draw-
backs are the increased number of registers and the conditions that flush the
pipeline. Some microprocessors can minimize the pipeline flushing, permitting
out-of-order execution or the predicting of conditional branches.

• Superscalar architecture. They are microprocessors that have duplicated some of
the functional units. For instance, they may provide several ALUs, in order to
permit the parallel execution of computations that require several clock cycles.
Another possibility is to provide duplicated stages of the pipelined architecture,
in order to enhance the execution of conditional branches.

• Single-core or Multi-core. Many embedded microprocessors are single-core
since they provide enough computing performance for the application.
However, other applications may require a faster microprocessor. Increasing the
clock frequency is not always feasible or reliable due to the physical limitations
of the technology. Multi-core processors can perform several tasks in parallel in
order to increase the performance at the same clock frequency. They are widely
applied on general-purpose computers and they are extending their applicability
on embedded systems. Usually, they are homogeneous cores since they are
composed of a set of microprocessors of the same type. A heterogeneous core is
composed of different processor types. For instance, the DM37xx [9] OMAP
processors are composed of a general-purpose ARM microprocessor and
a Digital Signal Processor (DSP) to accelerate processing of image, video
and audio.

FPGAs can implement embedded processors as hard- or soft-cores. Hard-core
microprocessors offer better performances. A fixed area of the FPGA implements
the microprocessor and the programmable logic fabric is available to implement
the rest of the embedded system (busses, peripherals, etc.). On the other hand,
soft-core microprocessors on FPGAs offer a greater flexibility since they can be
configured to match the required performances on a larger variety of applications.
However, they may occupy a large area of the programmable logic. The set of
machine instructions can be extended to support some of the optional features of
the microprocessor. This way a C/C ++ compiler can optimize the machine code
to take benefits from the enhanced architecture of the microprocessor.

Many of the soft-core microprocessors offer configurable features that can be
enabled or disabled to match the desired performance/cost trade-off.
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• Cache logic. The on-chip memory provides high bandwidth memory, but very
limited capacity. By contrast, the external memory is slower, but it provides a
higher capacity due to its lower cost per byte. When the on-chip memory does
not provide enough capacity for the application, it can be used as cache memory.
The cache improves the execution of applications from external memory,
storing transparently the most frequently accessed instructions and data. The
microprocessor architecture must provide cache logic which implements a
policy, in order to try to maximize the number of cache hits.

• Memory Management Unit (MMU). Most sophisticated OS require virtual
memory support in order to provide memory protection, and to extend the logical
capacity of the physical memory. The address space of the memory is divided in
pages and the MMU translates the page numbers from the logical memory to the
physical memory. It relies on the Translation Lookaside Buffer (TLB) which stores
a page table, in order to provide a fast translation. Many embedded microprocessors
may not implement the MMU, since the OS does not support virtual memory.

• Floating-Point Unit (FPU). The unit provides arithmetic operations on real
numbers that are usually formatted on the single or double-precision IEEE-754.
The FPU may not be adequate on many low-cost applications and it can be
emulated by software.

• Parallel multiplier, divider, barrel-shifter, or other additional units. Some appli-
cations require frequent operation on integer numbers that can be accelerated using
a dedicated hardware unit. For instance, a barrel-shifter can perform an arbitrary
n-bit shift in a single clock cycle which is useful in some applications.

• Debug module. Most embedded processors can add logic to support an external
debugger tool. This way the external debugger can control the microprocessor
which is running an application, by performing actions like stop it, inspect the
registers or set breakpoints.

There is a very large collection of embedded microprocessors from different
device vendors, third-parties or free sources. Some FPGAs embed hard-core
microprocessors that provide the highest performance, but with a lower flexibility
since they are physically implemented in the device. The FPGA vendor provides
the tool chain (compiler, linker, debugger, etc.) to easily develop the software.
Many FPGA vendors provide their own soft-core microprocessors, in order to
facilitate the development of embedded systems on their devices. They are highly
optimized for the target device, and they can be configured to match the required
specifications. However, the flexibility is quite limited since the microprocessor
cannot be (easily) modified or implemented in a device from other vendors. The
vendor also provides the design flow, which permits the easily development of the
hardware and software. The open-source microprocessors usually occupy a larger
area and cannot run at the same clock frequencies when they are compared with
the previous alternatives. However, they provide the greater flexibility since they
can be modified or implemented in any FPGA that provides enough logic capacity.
The design flow is also more complicated since the designer uses tools from
different parties and they may lack support and warranty.
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The Harvard, RISC, 32-bit microprocessors are widely implemented on FPGAs
since they can provide a near to optimal performance/cost trade-off for the current
technology. Therefore, we introduce some of the most likely used.

Some of the Xilinx Virtex-4/5 FPGAs offer the hard-core PowerPC-405/440
32-bit processors. The PowerPC-405 [10] is a little-endian processor which features
a 5-stage pipeline, cache and MMU. The PowerPC-440 [11] is an enhanced version
which features superscalar architecture and 7-stage pipeline. The architecture of
both PowerPC processors supports an auxiliary FPU or other coprocessors. The
newer Zynq-7000 [12] FPGAs from Xilinx integrate a dual-core ARM Cortex-A9
processor. The ARM processors are the de facto standard for embedded 32-bit
microprocessors on Application Specific Integrated Circuit (ASICs).

Xilinx provides the MicroBlaze [13], a soft-core 32-bit microprocessor suit-
able for embedded systems implemented on their FPGA families. It can be
configured to a 3/5-stage pipeline, and it can enable cache logic, MMU, single-
precision FPU, divider unit, barrel-shifter, etc. Altera provides the Nios II [2]
32-bit microprocessor, a competing soft-core, licensable for their FPGAs or third-
party standard-cells. The byte ordering is little-endian, with 1/5/6-stage pipeline,
and it provides many of the configurable features available as in MicroBlaze.
The LatticeMico32 [6] is an open source microprocessor which can be embedded
in any FPGA device or ASIC technology. It features a 6-stage pipeline and big-
endian ordering. The core can be configured to enable cache logic, parallel
multiplier, divider or barrel shifter, but not MMU nor FPU. Actel FPGAs can
license the Cortex-M1 [1] microprocessor which is an implementation ARMv6
processor specially designed for major FPGA devices. The processor provides a
3-stage pipeline, but the configurable options are not as extended as in the pre-
vious microprocessors.

Leon-3/4 [4, 5] are synthesizable VHDL models of SPARC v8 microprocessors
that can be licensed for commercial applications. They feature a 7-stage pipeline,
cache, MMU, single or double-precision FPU, etc. The microprocessors can
be implemented on FPGAs, or attached to build a multi-core embedded system.
The OpenRISC-1200 [7] is delivered in Verilog files and it is suitable for many
FPGAs. It provides a 5-stage pipeline and optionally cache logic, MMU and
single-precision FPU.

14.3.2 Peripherals

A general-purpose microprocessor is attached to other hardware components to
add functionalities to the computer system. Peripherals extend the capabilities of
the computer and they are dependent on it. The peripheral provides a bus interface
which transforms signals and the handshake from the core to the system bus, in
order to permit the microprocessor to control/monitor it. Many peripherals can
generate an interrupt request which triggers the execution of a service routine on
the microprocessor when the peripheral detects an event.
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There are many types of peripherals. Some examples of typical peripherals are:

• General Purpose Input/Output (GPIO), a peripheral which can be used to get or
set the state of I/O pins that are externally connected to other device. Typical
applications are to drive led diodes or to read switches. However, they can control
more complex devices when the microprocessor is programmed accordingly.

• Universal Asynchronous Receiver-Transmitter (UART). The data transported
on a serial communication interface is composed of character frames. The
frames on an asynchronous transmission are characterized by the start, stop and
parity bits, the character length, as well as the bit speed. The UART peripheral
generates and transmits a frame when it receives a new character from the
microprocessor. It also performs the reverse transformation when it receives a
frame from the serial interface. The transmitted and received characters are
temporally stored in First Input First Output (FIFOs) in order to permit the
microprocessor to not attend the UART immediately.

• Counter/Timer. The peripheral implements a register which counts an event
from an external signal or from an internal clock. In the second case the elapsed
time is deducted from the number of counts and the clock period. Another
typical application is to generate a Programmable Interval Timer (PIT) which
periodically generates an interrupt request.

• Memory controllers. They assign an address space to the memory and they
control efficiently the read/write accesses from the microprocessor, in order to
maximize the memory bandwidth. They can also match the data width between
the memory and system bus. Depending on the memory they may permit burst
accesses and refresh the dynamic memory.

• Interrupt controller. Combines interrupt requests from several sources to the
microprocessor’s interrupt input. They can mask interrupts to enable/disable
them or assign priorities.

• Direct Memory Access (DMA). Some peripherals, such as video and disk
controllers, require very frequent accesses to memory. The microprocessor can
move data from memory to the peripheral (or vice versa) through the system
bus, although, it is quite inefficient. A DMA is connected as a master of the
system bus in order to permit to copy data between memory and peripherals
while the microprocessor performs any other action. The microprocessor task
can be reduced to program the DMA with the source and destination addresses,
the data length and the burst size. These systems require a bus arbiter since they
are several bus masters that can concurrently initiate a new access. The DMA
can be a centralized peripheral or be a part of a peripheral.

• Video controller. A peripheral which generates the video signals required to
display an image. They require a DMA in order to read pixels from the video
memory (frame buffer) to generate the images at the required frequency.

Peripherals implement a set of internal registers in order to control or monitor
them. Each register provides different functionalities that depend on the peripheral
type and designer. A basic classification of peripheral registers is:
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• Control register. A write-only register which configures and controls the
peripheral. For instance, it sets the communication parameters in an UART.

• Status register. A read-only register used to get the status of the peripheral.
For instance, it gets the detected error conditions and the state of the FIFOs in a
UART.

• Data register. A read/write register which sets or gets data through the periph-
eral. For instance, it is the register used in the UART to read/write the characters
stored in the reception/transmission FIFOs.

Each register is mapped on an address, in order to be accessible from the
microprocessor. Two registers may be assigned to the same address. This is a quite
common situation since the control and the status registers are, usually, mapped on
the same address. In this way, a read instruction on the assigned address will get
the status register and a write instruction will set the control register.

Peripherals attach to the system in order to permit the microprocessor to access
their internal registers. Depending on the attachment, peripherals are classified as:

• Port-mapped peripherals are attached to a microprocessor’s dedicated ports that
are physically isolated from memory. The peripheral’s registers are accessed
through specific machine instructions that are different from the memory
instructions.

• Memory-mapped peripherals share the system bus with memory. The periphe-
ral’s registers are accessed with the same machine instructions used to read/
write memory. The bus provides handshake signals to introduce wait states, in
order to adapt it to the different latencies of the memory and peripherals.
Usually, the system reserves an address range for peripherals to easily differ-
entiate them from the regular memory space, simplifying the address decoding
logic.

The address decoder enables the selected register according to the address
bus which attaches to the peripheral. In a memory-mapped peripheral, the address
bus is much larger than required, due to the number of registers. For instance, the
address decoder of a peripheral, which implements 4 registers, requires only 2 of
the bits. The address decoding is divided into:

• Complete address decoding. The decoder checks all the arriving bits from the
address bus. Each register is mapped on a single address.

• Incomplete address decoding. It does not check some bits of the address bus to
simplify the logic. It checks some of the Most Significant Bit (MSBs) to select
one of the peripherals and some of the Lower Significant Bit (LSBs) to enable
one of its registers. Therefore, a peripheral register can be accessed from dif-
ferent addresses because some bits of the address bus are not decoded.

A software application can directly access the peripheral’s registers in order to
get the desired behavior. This approach has several drawbacks. Firstly, the pro-
grammer must have a deep knowledge about the internal architecture of the
peripheral. Secondly, the application may not be portable since the peripheral
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could change. Finally, it is not adequate on a multi-tasking OS, since several
processes could simultaneously control the peripheral. A better approach is to
program the application to use the peripheral’s driver which is composed of
high-level functions that rely on the OS.

14.3.3 Coprocessors

Some algorithms may require a set of specific computations that cannot be re-solved
in a general-purpose microprocessor in a reasonable execution time. A co-processor
is designed and optimized to quickly perform a specific set of computations to
accelerate the system performance. Coprocessors do not fetch instructions or data
from memory. The general-purpose microprocessor accesses to memory to read
data and enables the coprocessor to accelerate a computation. Coprocessors allow
the customization of computer systems, since they can improve computational
performances without upgrading the general-purpose microprocessor.

There is a wide range of coprocessors and some of the most typical are:

• FPU coprocessors to accelerate the computations on real numbers. Many
embedded microprocessors do not integrate a FPU in order to reduce cost.
Others may integrate a single-precision FPU which may be not adequate for
some applications. The single and double-precision IEEE-754 may be emulated
through software libraries, but the system performance may be greatly affected.

• Cryptoprocessors are designed to accelerate the most time spending computa-
tions related to cryptography, such as the encryption and decryption tasks. Their
architecture usually implements several parallel processing units to improve the
speed-up factor.

• DSPs perform a digital signal processing from a data stream (voice, image,
etc.). The internal architecture may provide several pipeline stages to improve
the data throughput. The input and output streams are carried from/to the
microprocessor which accesses to memory or other components.

The coprocessors can attach to the microprocessor in several ways:

• Data-path extension by custom instructions. For instance the ALU of the soft-
core NIOS II [3] is prepared to be connected to custom logic which accepts
user’s machine instructions that are similar to the native ones. Another example
is the APU (Auxiliary Processor Unit) of the PowerPC-405/440 [10, 11], which
permits the execution of new instructions on a tightly-coupled coprocessor.

• Dedicated point-to-point attachment, such as the FSL (Fast Simplex Link) for
MicroBlaze [13]. The machine instructions set provides some instructions able
to transmit/receive data to/from the links attached to the coprocessor.

• System bus. A coprocessor can be also attached to the system bus, as any
peripheral. This alternative is not usually implemented since it increases the
latency to communicate data, due to the more sophisticated bus handshake.
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14.3.4 Memory

A memory circuit is a digital storage device which is commonly used to allocate
the program executed by a microprocessor. The memory on embedded systems
can be classified in several ways. A first logical division is:

• Instruction memory. Microprocessors execute software applications when
reading machine instructions from the instruction memory.

• Data memory. Some of the machine instructions command the microprocessor
to read or write data from/to the data memory.

The instruction and data memories may be physically isolated or implemented
on the same devices. Moreover, they can be composed of several banks and types
of memories. According to the physical placement, memory can be classified as
the following:

• Internal memory. It is integrated in the same device as the embedded system.
The memory is usually SRAM technology which features fast access time but
small capacity (some KB). The internal memory can store a small executable
(like a boot loader) or serve as cache memory. Many FPGAs integrate internal
blocks of memory. For instance, Xilinx FPGAs implement Block RAM
(BRAMs), dual-port synchronous SRAM memories that permit simultaneous
access to instructions and data per clock cycle.

• External memory. It is not integrated into the device which implements the
embedded system. The external memory can be semiconductor chips or storage
devices.

– The semiconductor technologies that are, usually, applied as external memory
are DRAM and FLASH. They provide larger capacity (MB or GB) but slower
access time, when compared with SRAM memory. The DRAM can storage
instructions and data; however it is a volatile memory. By contrast, the
FLASH is non-volatile but it cannot be used as the data memory since it is
read-only memory. Many embedded systems make use of both technologies,
first copying the program from FLASH to DRAM during the boot-up, and
then executing the application from DRAM.

– Storage devices, such as hard drives or FLASH cards, are more common in
general-purpose computers than in embedded systems. They are non-volatile
memories that feature very high capacity, but very slow access time.
Moreover, data is sequentially accessed in large blocks (some KB) making
it inefficient when randomly accessing data. The main purpose is to serve as
storage repository of programs and files, although some computer systems
can implement virtual memory on them if the microprocessor and OS
support it.

Another classification is based on the architecture of the bit cells. The most
common memories on embedded systems are as follows:
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• Static Random Access Memory (SRAM). The bit cell is larger than the other
alternatives; therefore, the memory density is lower and the cost per capacity is
increased. The main advantages are the lower access time and lower power
consumption when they are in standby mode. Many embedded systems and
FPGAs integrate some SRAM blocks, since they are compatible with conven-
tional CMOS technologies to fabricate the integrated circuit.

• Dynamic RAM (DRAM). It is a read/write and volatile memory as is the
SRAM. The main advantage is the larger memory density, since the bit cell is
very simple. However, the access time is, usually, slower and the bit cells must
be periodically refreshed, increasing the power consumption. Moreover, they
cannot be integrated efficiently in conventional CMOS technologies; therefore
they are usually connected as external memory.

• FLASH. The bit cell is based on a floating-gate transistor which can be erased
and programmed providing read-only and non-volatile memory. There are two
important variants depending on the interconnections between cells: NAND and
NOR. The NAND FLASH memories are employed as storage devices, since
they provide higher capacity and bandwidth. However, the disadvantage is that
data is sequentially read on pages. By contrast, the NOR FLASHs are, usually,
employed as Read-Only Memory (ROMs), since they provide random access to
data and similar interface as in SRAM chips.

There are more memory technologies, but most of them are not currently
implemented or widely used on commercial applications. The Ferroelectric RAM
(FRAM) is an emerging technology on embedded systems. It provides random-
access and non-volatile memory which features much better performances on
access time, power consumption, and write endurance when compared with
FLASH. However, the memory density is much lower. For instance, the
MSP430FR57xx family [8] of 16-bit microcontrollers can embed up to 16 KB of
FRAM.

Another classification is based in the synchronicity of accesses to data.

• Asynchronous memory. Data is accessed by the address bus, independently of
any clock signal. Many external SRAM memories are asynchronous since they
provide a very simple interface and low latency when data is randomly accessed.
An interesting alternative to external SRAM is the Pseudo Static RAM
(PSRAM), which is DRAM surrounded with internal circuitry that permits to
control it as a SRAM chip. It offers external memory featured by a high capacity
and simple interface, since its internal circuitry hides the specific DRAM
operations.

• Synchronous memory. Data is synchronously accessed according to a clock
signal. These memories improve the data bandwidth since they implement a
pipeline scheme, in order to increment clock frequency and data throughput.
However, the latency is increased due to the stage registers. Most of the present
Synchronous DRAM (SDRAMs), such as the DDR2 and DDR3, use Double
Data Rate (DDR) registers to provide very efficient burst accesses in order to
replace the cache pages. Another example of synchronous external memory is
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the Zero-Bus Turn-around (ZBT) SRAM which improves the bandwidth of burst
accesses and eliminates the idle cycles between read and write operations.
Usually, the embedded memory blocks on FPGAs are double-port synchronous
SRAMs that can efficiently implement the data and instruction cache of a
Harvard microprocessor.

Embedded systems usually provide a memory controller to assign an address
space to memory and to adapt the handshake signals and the data width from the
system bus. The complexity of the external memory controller depends on the type
of memory. The SRAM controllers are quite simple, since data can be accessed
randomly. The DRAM controllers are more complex since the address bus is
multiplexed and they control the periodical refreshing operation. Moreover, data is
usually synchronously accessed on a burst basis; therefore the controller also
generates the clock signal and the logic to communicate data between clock
domains.

14.3.5 Busses

The interconnection between the microprocessor, peripherals and memory con-
trollers in an embedded system is done through busses. The system bus permits the
transfer of data between the building components. It is physically composed of a
set of connecting lines that are shared by the components. The component must
follow a common communication protocol which is implemented on the bus
handshake.

The bus master starts a new access cycle in order to read/write data from/to a
slave. An embedded system can provide several masters, but only one of them can
take the bus control during a time slot. The bus arbiter assigns the control to one of
the masters that are requesting it concurrently. For instance, a typical embedded
system is composed of a Harvard microprocessor which connects to an external
memory controller through the system bus. The external memory stores the
instructions and data of an application program. The bus arbiter assigns the bus
control to the microprocessor’s instruction-side, or the data-side, according to the
arbitration policy, while executing the program from the external memory.

There is a wide variety of busses depending on the embedded processor.
Moreover many embedded systems provide several busses; depending on the
memory or peripherals that are connected. A typical bus can be divided into the
following:

• The address bus is a unidirectional bus, from the masters to the slaves, that
carries the address of the memory (or a register in a memory-mapped peripheral)
that is going to be accessed.

• The data bus is a bidirectional bus that carries the data which is read from
slaves, or written to them. A bidirectional bus requires tri-state buffers that are
not, usually, available in the internal FPGA fabric. In FPGAs, the data bus is
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replaced by two unidirectional busses: the write data bus (from masters to
slaves) and the read data bus (from slaves to masters).

• The control bus is the set of signals which implements the bus handshake, such
as the read/write signal, or signals that indicate the access start and to
acknowledge the completion. Some advanced busses permit burst accesses, in
order to improve the throughput of sequential data transfers, and error signals, to
permit the microprocessor to detect error conditions on the bus.
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Chapter 15
Embedded Systems Development:
Case Studies

Embedded systems are computers designed and programmed to meet the
requirements of a specific application. Applications may not require an OS
(Operating System) or may rely on a customized OS. The system architecture is
usually composed of a low-cost microprocessor, memory and peripherals inter-
connected through busses. It may also include a coprocessor to speed-up a specific
computation.

This chapter introduces the design of embedded systems on Xilinx FPGAs
through a set of case studies. The studies focus on the hardware development of a
peripheral and a coprocessor, as well as their software drivers. It assumes you are
familiarized with the VHDL necessary on the hardware implementation, and with
C/C++ which is required during the software development. In order to simplify the
contents, they only expose the most relevant steps and interesting portions of the
source files. They usually make references to specific documentation available in
the Xilinx software, to get more details. The full examples can be downloaded
from the authors’ website.

15.1 Introduction to Xilinx EDK

The FPGA implementation of embedded systems requires a set of tools which
permits the building of the hardware and the software (also named firmware).
It also provides utilities to simulate and debug the embedded system.

The Xilinx Embedded Development Kit (EDK) suite facilitates the develop-
ment of those systems. The system’s hardware is composed of a general-purpose
microprocessor connected to some peripherals through busses. The software
development provides the firmware executed by the microprocessor. The EDK
generates the bitstream of the system in order to program the FPGA, which can be
connected to the debugger tools, in order to test it on a real scenario. EDK also
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permits the building of a simulation model in order to check the hardware design
through a Hardware Description Language (HDL) simulator.

The EDK is frequently updated and upgraded. We will focus this chapter on the
ISE Design Suite 13.1 for Windows since it is probably the most popular oper-
ating system for PCs, but there are no significant differences with versions for
other operating systems. Although the case studies included in this chapter can be
implemented on other upgraded EDK versions, they might require some small
changes.

The EDK is composed of a set of tools:

• Xilinx Platform Studio (XPS). A graphical user interface that permits the
designing of the hardware of the embedded system from a set of interconnected
IP cores. It is the top-level tool which takes care of the necessary files and steps
needed to successfully complete the hardware design. The XPS implements the
design flow which runs other low-level tools in order to compute the hardware
synthesis and implementation (Platgen), the generation of the bitstream (Bit-
Gen) and the simulation model (Simgen).

• Software Development Kit (SDK). An integrated environment based on the
Eclipse/CDT to manage the development of the software. It launches the C/C++
cross-compiler and linker to build the binary which is executed by the embedded
microprocessor. Moreover, it also provides a simple interface with the debugger
and profiler tools used by more advanced users. SDK also builds the BSP (Board
Support Package) through a low-level tool (Libgen). The BSP contains the set of
software drivers used to control the hardware from the executable.

• IP cores. The library of configurable cores (microprocessors, peripherals, busses,
etc.) that are used as basic building blocks of the embedded system. Most of
these cores are licensed with the EDK, but there are also some cores that must
be licensed separately. Many cores include a set of programming functions and
drivers that can be used to facilitate the software development.

• GNU tools chain. The set of tools that generate the software libraries and the
executable binaries. It includes the GNU C/C++ cross-compiler and linker. The
GNU tools are developed for the Linux operating system, but EDK includes
ported versions to the Windows OS.

Additionally, the EDK relies on other tools:

• ISE tools. They synthesize and implement the hardware, generate the bitstream
and program the device. They also include other tools to generate the simulation
model, implement the internal memory, the timing analysis and others. Platform
Studio calls the required ISE tools, simplifying the design flow since the user
can be abstracted from many specific details.

• Supported HDL simulator. It is recommended if the user designs a new IP, since
it permits the simulation of the hardware of the embedded system. Some IP
cores deployed with EDK are protected and encrypted, therefore, they can be
simulated only on supported simulators. The ISE tools provide the ISim, but the
user can choose a third-party simulator.
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• A development board with a Xilinx FPGA. There is a wide range of boards with
different FPGAs (Spartan or Virtex series), memories, displays, communication
interfaces and other elements.

• A Xilinx programmer, such as the Parallel III/IV or the Platform Cable USB
I/II. Some development boards provide an embedded USB programmer. The
programmers can be used to program the FPGA and to debug the executable
through the Xilinx Machine Debugger (XMD) low-level tool.

Two files play an important role in the design flow (see Fig. 15.1): the
Microprocessor Hardware Specification (MHS) and the Microprocessor Software
Specification (MSS). The XPS manages the hardware design flow using a Xilinx
Microprocessor Project (XMP) project file. The XPS project relies on the MHS file
which configures a set of instances to IP cores that are interconnected as building
blocks. The XPS can export the hardware design to SDK in order to generate the
Board Support Package (BSP) for the embedded system. The BSP generation
relies on the MSS file which configures the drivers and libraries that can be used by
the executable to control the hardware.
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Fig. 15.1 Overview of the EDK design flow
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15.1.1 Case Study 1-A: A Basic Embedded System

This case study builds a basic embedded system, composed of the MicroBlaze
processor [16], internal memory, and some peripherals. The system controls a
4-digit, 7-segment led display to visualize the hexadecimal content of a variable.
The system attaches to two external switches that turn on/off the display and show/
hide the left-side zeros. The display can also be controlled by an external computer
connected through the serial interface.

The development FPGA board is the Xilinx Spartan-3 Starter Kit [2], a cheap
board composed of a XC3S200 FPGA interconnected to a 7-segment display, a
serial port and other elements. The four digits of the display share the segment inputs
and each digit is enabled with a dedicated anode input, as depicted in Fig. 15.2.
The system must continuously perform a time-multiplexed control to refresh the
display, driving a single digit during a short time slot (a few milliseconds).
Depending on the board, the inputs of the display are asserted to low or high logic
levels. The case study can be easily adapted to any FPGA board which provides a
similar display.

The display could be continuously controlled by the microprocessor in a loop to
enable one digit per refresh cycle. This system is quite inefficient, since most of the
execution time would be devoted to wait the refresh of the display, and to poll the
serial interface and the state of the switches. A better approach uses two interrupt
service routines (ISR) to attend the interrupts from two peripherals. A timer
peripheral can, periodically, request an interrupt which triggers an ISR in order to
read the switches and refresh the display. The Universal Asynchronous Receiver
Transmitter (UART) peripheral requests an interrupt when a new character is
received from the serial interface, and its ISR will process it.

The design of an embedded system involves the hardware and software devel-
opment phases. The output of the hardware phase is a BIT (bitstream) file which
configures the hardware resources of the FPGA except the contents of the internal
BRAM (Block RAM) used as the microprocessor’s local memory. The output of
the software phase is the Executable and Linkable Format (ELF) file which must be
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Fig. 15.2 The 4-digit, 7-segment led display
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allocated into the microprocessor’s memory. In order to program the FPGA the
design flow executes the Data2MEM tool to generate a new bitstream file which
configures the FPGA including the BRAM contents to store the executable binary.

15.1.2 Hardware

The system is composed of the MicroBlaze, the internal BRAM and a set of
peripherals (see Fig. 15.3). The BRAM implements the microprocessor’s local
memory and it is connected through two Local Memory Bus (LMBs). The periph-
erals are connected through a Processor Local Bus (PLB). The MicroBlaze can
control the display and the two switches through General Purpose Input Output
(GPIO) peripherals. The UART peripheral permits the serial communication with
the external PC through the RS-232 interface. The timer and the UART will request
the microprocessor to interrupt, therefore, the system includes an interrupt con-
troller. Finally, the Machine Debug Module (MDM) permits the debugging of the
application executed by the MicroBlaze through the FPGA programmer and the
XMD tool.
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Fig. 15.3 Overview of the system hardware
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The hardware generation involves three main steps:

(1) Hardware specification in the MHS file
(2) Synthesis of the hardware
(3) Implementation of the FPGA layout and bitstream generation

15.1.2.1 Specification

The first step is to specify the hardware of the embedded system in the MHS file.
The easiest way to start is by using the Base System Builder (BSB) wizard.
It creates the project file and a valid MHS file [14] which describes the system
composed of the microprocessor attached to local memory and peripherals. Open
the Xilinx Platform Studio (XPS) and follow the steps:

(1) XPS opens a dialog window. Choose the BSB wizard
(2) The next dialog window configures the project file and directory. Change the

path to C:\edk13.1\led7seg and the project name to system.xmp
(3) Next, a new dialog configures the system bus. The AXI is currently supported

only on the newer FPGA families (Spartan-6, Virtex-6). Therefore, select the
PLB [4] since it is supported by all the FPGA families.

(4) Select the option Create a new design in the dialog Welcome.
(5) The dialog can configure a pre-built system for a supported FPGA board.

Choose Create a system for a custom board to setup the system from scratch.
Then select the Spartan-3 xc3s200-ft256-4 device and any polarity for the reset
button. These parameters can be easily modified later.

(6) Choose a single processor system since it simplifies the design.
(7) The next dialog configures the frequencies of the reference and system clocks

as well as the capacity of the microprocessor’s local memory. Leave the
default parameters since they are changed later.

(8) The BSB permits the connecting of a set of peripherals to the system. Just
continue until the end of the wizard since they are added later. The BSP
creates the hardware specification of a basic embedded system.

The XPS permits to display and modify the system in a graphical way using the
tab System Assembly View, as shown in Fig. 15.4. The view Bus Interfaces shows
the system composed of instances to IP components that are interconnected
through busses. The microprocessor (microblaze_0) is connected to the BRAM
(lmb_bram) through the data and instruction LMBs (dlmb, ilmb) [17] and their
memory controllers (dlmb_cntrl, ilmb_cntrl). The peripherals attach to the system
through the PLB as slaves. The instruction and data PLB sides of the micropro-
cessor are the bus masters. The MDM (mdm_0) peripheral attaches to the
microprocessor through the PLB (mb_plb). The MicroBlaze is master of the
busses, meanwhile, the peripheral and memory controllers are the slaves. Finally
the last two instances are the generators of the internal clock (clock_generator_0)
and reset (proc_sys_reset_0) that are required by the system.
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The IPs provide a set of parameters that can be fixed, auto-computed or con-
figurable. Select an instance and open the contextual menu (click the right button of
the mouse) to configure the IP graphically (see Fig. 15.5). The HDL name of a
parameter is the same as it appears in the MHS file. The configurable parameters
C_BASEADDR and C_HIGHADDR of the LMB controllers setup the address space
of the microprocessor’s local memory. Changing the C_HIGHADDR to 0 9 3FFF
of both LMB controllers increases the auto-computed parameter C_MEMSIZE of
the BRAM to 16 KB (0 9 4000). Every IP deployed by EDK provides a PDF file
which details the parameters, the input/output ports and internal architecture.

The MHS file is a text file which can be manually edited, as shown in Fig. 15.6.
It is synchronized with the System Assembly View. Therefore, they both update
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Fig. 15.4 Bus interfaces of the system in EDK

Fig. 15.5 Configuration parameters of the data LMB controller
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when the other one is modified. The MHS specifies the system’s hardware as a set
of interconnected instances and external FPGA ports. Each instance contains
configurable parameters, interface to busses and other ports. The parameters that
are not declared in the MHS take a default or the auto-computed value. The bus
interfaces or ports that are not declared in the MHS are disconnected.

At the beginning of the MHS file there are the declarations of the external
FPGA ports used to input the clock and the reset. The external ports are connected
to the internal signals CLK_S and sys_rst_s that are used by the clock and reset
generators. The parameter CLK_FREQ declares the frequency of the external
oscillator and the RST_POLARITY declares the logic level when the reset input
asserts. Both parameters must be modified according to the FPGA board.

The instance proc_sys_reset_0 generates the internal reset signals required by
the system. The configurable parameter C_EXT_RESET_HIGH must be modified
according to the reset polarity which was declared in the external port.

Fig. 15.6 MHS file in the XPS project

378 15 Embedded Systems Development: Case Studies



The instance clock_generator_0 infers a Digital Clock Manager (DCM) circuit to
generate the system clock from a reference clock (external oscillator). The param-
eter C_EXT_RESET_HIGH must be configured as in the reset generator.
The parameter C_CLKOUT0_FREQ configures the generated frequency from the
reference clock defined by the C_CLKIN_FREQ. The BSP generated a signal named
clk_66_6667 MHz (or similar) which carries out the generated clock, but it can be
renamed to sys_clk. Also change the name of the signal which drives the clock port
of the busses. An incorrect configuration of the clock frequencies will lead to errors
during the synthesis or implementation of the hardware.

In order to accommodate it to the desired application, the hardware must add
new peripherals. The first peripheral is a GPIO [5] which controls the 7 segments
and the 4 anodes of the display. As depicted in Fig. 15.7:
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(1) Drag the XPS General Purpose IO from the IP Catalog to the System
Assembly View.

(2) XPS opens a dialog to configure it. Set the data width of the first channel
(parameter C_GPIO_WIDTH) to 11 in order to control the display.

(3) Click the created instance and change the name to led7seg.
(4) Click the PLB interface to connect the peripheral’s SPLB (Slave PLB).

Go to the view Addresses and configure automatically the addresses of the
peripheral (see Fig. 15.8). The internal registers of the GPIO are accessible from
the microprocessor within this addresses range. By default, XPS assigns the
addresses range to 64 KB (0 9 10000) from an address above the 0 9 80000000.
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Fig. 15.7 Adding the new GPIO peripheral
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The user can change the range, but they must not overlap to the other memory-
mapped peripherals.

Finally, the 11-bit width GPIO’s output port must be connected to the external
FPGA ports that drive the display. Figure 15.9 shows the view Ports which permits
the external connection of the output port GPIO_IO_O. Change the default name to
fpga_0_led7seg_pin in a similar fashion as the rest of the external FPGA ports and
check that the direction is configured as output. Finally, set the range order to [10:0]
to declare them in descending order. The MSB and the LSB are indexed as 10 and 0,
respectively.

Open the MHS file to observe the previous changes. There is a new entry in the
section of the external FPGA ports. It also contains the new GPIO instance
including its configuration parameters and connections.

The next step adds a new GPIO to read the state of the two switches. The
hardware can also be modified by editing the MHS file. Copy the previous GPIO
instance and change the instance name to switches and the data width to 2. Set
the addresses range to 64 KB and do not overlap it to the other peripherals.
Connect the input port GPIO_IO_I to a signal which is connected to an external
FPGA port named fpga_0_switches_pin. Save the MHS file to update the
graphical view. The project will close if there is an error in the MHS file, which
must be manually corrected.

21

Fig. 15.8 Automatic configuration of the addresses for the GPIO peripheral

15.1 Introduction to Xilinx EDK 381



The next step adds the two peripherals to the PLB that will request interrupts.
The timer [6] will be programmed to request a periodic interrupt. The parameter
C_ ONE_TIMER_ONLY configures a single timer to minimize the size of the
peripheral.
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Fig. 15.9 External FPGA connection of the GPIO’s output port
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The UART [7] will request an interrupt when it receives a new character from
the RS232. It will also transmit messages to the user through the serial commu-
nication. Therefore the UART ports transmission (TX) and reception (RX) are
connected to external FPGA ports. The parameters C_BAUDRATE and
C_USE_PARITY configure the speed and parity of the communication.

Some displays provide an extra input to turn on a dot placed beside the digit.
This case study just turns off the dot connecting the net_gnd or net_vcc to its
associated external port.

The system requires an interrupt controller [8] since MicroBlaze provides a
single input port for the interrupt requests. The interrupt controller attaches to the
PLB in order to permit the MicroBlaze to enable/disable interrupts or to check the
interrupt source. The interrupt controller (int_control_0) connects the interrupt
requests from the timer and UART peripherals to Microblaze. The controller
receives the concatenated signal from the two peripherals and drives the interrupt
port of MicroBlaze. The interrupt priority is higher when the interrupt source is
concatenated at the right side. The UART is assigned to the lower priority since it
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provides a receiving First Input First Output (FIFO) memory which temporarily
stores the characters. Therefore, a new character received can be processed when
the display is not refreshing.

MicroBlaze provides configurable parameters to optimize area/performance and
to implement optional machine instructions. The parameter C_AREA_OPTIMIZED
configures a 3-stage pipeline architecture which optimizes the area of the imple-
mentation. The parameter C_USE_BARRELL implements a barrel shifter and its
related machine instructions. Therefore, the C/C++ compiler provides a set of flags
to build the BSP and the executable for the configured microprocessor. By default,
the MicroBlaze attaches to a MDM instance (mdm_0) which permits the debugging
of executables.

15.1.2.2 Synthesis

The XPS menu Hardware ? Generate Netlist synthesizes the design to generate
a set of NGC netlist files. It calls the Platgen tool [13] which starts performing a
Design Rule Check (DRC). Then it calls the Xilinx Synthesis Technology (XST)
[3] tool to synthesize the IP instances to get their NGC files. The embedded
system is finally synthesized and optimized to get the top-level netlist file.
A change in the MHS file will force Platgen to synthesise only the required
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modules to speed-up the execution. If desired, the XPS can clean up the gen-
erated files to start the Platgen from scratch. Synthesis is dependent of the FPGA,
therefore, the user must select the correct device in the Project Options
(see Fig. 15.10) before proceeding.

Figure 15.11 shows the tab Design Summary which displays the report files
generated by the Platgen and XST in order to check details about the design, such
as the occupied FPGA resources or the estimated maximum frequency of the
clock.

15.1.2.3 Implementation

The implementation computes the FPGA layout which is stored in a Native Circuit
Description (NCD) file. The design flow executes three main tools: NGDBUILD,
MAP and PAR [15]. The NGDBUILD translates the NGC files and annotates
constraints from a User Constraints File (UCF). The following tools compute the
layout based on the annotated constraints. The design flow continues with
the MAP and PAR tools to map the netlist into the FPGA resources and to compute
their placements and routings.

The BSB wizard generates the UCF for the selected prototyping board. The
XPS project refers the UCF which must be edited to specify the attachment of the
display and switches to the FPGA board. The UCF also specifies the clock
frequency of the external oscillator.
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Fig. 15.10 Selection of the device in the XPS project
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The XPS menu Hardware ? Generate Bitstream launches the BitGen tool [15]
which generates the bitstream file from the FPGA layout. First, the XPS executes
the design flow to implement the FPGA layout, if necessary. Then it generates the
BIT (bitstream) file system.bit and the BlockRAM Memory Map (BMM) file
system_bd.bmm. The microprocessor’s local memory is implemented on BRAMs,
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Fig. 15.11 Report files from the Platgen and synthesis
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but the generated BIT file does not initialize them, since the executable binary is
not available at this stage. The file system_bd.bmm annotates the physical place-
ment of the BRAMs with the microprocessor’s local memory. This file will be
required later to update the BRAM contents of the bitstream. The tab Design
Summary shows the reports generated by the implementation tools.

15.1.2.4 Software

The XPS menu Project ? Export Hardware opens a dialog window to export the
required files to SDK, as shown in Fig. 15.12. Select the option to export the BIT
and BMM files to permit SDK to program the FPGA. It creates a new directory
which is allocated in the XPS project folder.

SDK starts opening a dialog to set the workspace folder. Write the path
c:\edk13.1\led7seg\SDK\workspace to create it into the SDK folder which was generated
by XPS during the hardware exportation. The software development involves two stages:

(1) The BSP generation. Creates a set of headers and libraries to control the
hardware from the microprocessor.

(2) The executable ELF file. It builds the file executed by the embedded
microprocessor.

15.1.2.5 Board Support Package

The BSP provides the Application Programming Interface (API) for the target
hardware and Operating System (OS). The BSP generates a set of libraries and
header files that facilitates the development of software executables. The appli-
cation C/C++ source files are compiled and linked using the API to build the
binary ELF which is executed by the microprocessor.

The SDK menu File ? New ? New Board Support Package Project launches a
wizard to create a BSP project (see Fig. 15.13). Choose the platform hw_platform_0
which is the hardware exported from XPS. Then set the standalone OS [18] since it
provides interrupts management and it does require a large memory capacity. Other
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Fig. 15.12 Hardware export
from EDK to SDK
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OS provide more advanced features, but they require external memory. The BSP
project standalone_bsp_0 is located by default in a folder contained in the SDK
workspace.

The wizard generates the BSP project which is linked to a MSS file. The MSS
[14] is a text file which list the drivers used by the peripherals and the OS for the
microprocessor. The Libgen [13] tool reads the MSS file to generate the BSP. As
with the MHS file, the MSS can be graphically or manually edited. Figure 15.14
shows the graphical view which configures the MSS. Change the standard input
(stdin) and output (stdout) to the instance rs232 in order to permit the console
functions to use the UART peripheral.

The MSS file can also be manually edited, and it reflects the configuration
changes done in the previous dialog.

The rest of the MSS file shows the drivers and peripherals. A peripheral driver
is a collection of declarations and functions that can be used to control it from the
executable. By default the BSP wizard sets a specific driver to every peripheral,
but the user can change it to set a generic driver or no driver. The generic driver
can control any peripheral, but the user must have a deeper knowledge about its
internal architecture. The system’s hardware provides two GPIO peripherals: the

c:\edk13.1\led7seg\workspace\standalone_bsp_0
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Fig. 15.13 Configuration of the BSP project
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switches and the led7seg instances. Select the generic driver for them in order to
understand better the role of internal registers of peripherals.

The SDK automatically calls the Libgen tool [13] when the MHS is changed to
build the BSP. The user may disable the Build Automatically behaviour in order to
clean or build the BSP using the commands under the menu Project. The Libgen
tool compiles the source files of the peripheral drivers and the OS, and it stores
them into the A (archive) library files. It also generates the H (header) files that
declare the functions contained in the libraries. The library and header files are
stored in the folders lib and include of the instance microblaze_0. The SDK can
display the contents of both folders and open the header files.
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Fig. 15.14 Configuration on the BSP
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An important header file is the xparameters.h which declares a set of param-
eters about the hardware. Every peripheral has its own parameters that are obtained
from the exported hardware, as the addresses range of the GPIOs. The declarations
can be used by the C/C++ source files to control the peripherals.

15.1.2.6 Executable

The SDK will build the ELF executable from the source C++ files that are compiled
and linked with the functions stored in the BSP libraries. Click the menu
File ? New ? Xilinx New C++ Project which opens a wizard to create a C++
project for the BSP. Change the default project name to app1 and select the
previously generated BSP standalone_bsp_0, as depicted in Fig. 15.15. The wizard
creates a nested folder app1/src in the SDK workspace to store the source files that
will be compiled.

Using the Windows Explorer delete the template file main.cc which was
created by the wizard, and copy the new source files: ledseg7.cc, led7seg.h and
application.cc. Go to SDK and click the menu Refresh of the contextual menu
(right button of the mouse) of the project app1, in order to update the list of
source files. The SDK can open and display the source files in its integrated
editor (see Fig. 15.16).

The source files led7seg.h and led7seg.cc declare and implement a C++ class
named CLed7Seg which controls the display through the GPIO. The EDK
peripherals implement a set of 32-bit registers that are used to control them.
The peripheral’s registers are memory-mapped, therefore, MicroBlaze can access
them when it executes read/write instructions to the content of a C/C++ pointer.
The application can directly control the peripheral, although, it is necessary to
have a deeper knowledge about the internal architecture. The first register of a
GPIO [5] is the GPIO_DATA which is mapped at the base address of the
peripheral. The register retrieves/sets the state of the input/output ports depending
if the microprocessor reads/writes it.

The class constructor assigns the input argument to the integer (32-bit) pointer
GPIO_Data. Any pointer used to access a peripheral’s register should be declared
volatile. If not, the compiler may optimize a set of sequential memory accesses
through the pointer, changing the order or deleting some of them. The GPIO
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method concatenates the anodes and segments to write them into the GPIO_DATA
register through its pointer. The header file of the class declares the two parameters
that configure the active state of the anodes and segments of the display, therefore,
they can be easily changed to adapt it to another prototyping board.
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Fig. 15.15 Creating a new C++ project in SDK
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Fig. 15.16 Displaying the C++ source files
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The class declares two member variables: Data and Config. The Data is a
16-bit variable which stores the number which is displayed. The Config is an 8-bit
variable which uses the two LSBs to turn on/off the display and to show/hide the
left-side zeros of the number. The method Refresh is periodically executed since
the timer’s ISR calls it. It reads the member variables and calls the Digit method
to display one of the digits starting at the left side. The Digit method first com-
putes the segments and anodes of a digit and then it calls the GPIO method to
display it.

The application C++ file is composed of 4 sections. The first section opens the
required header files. The application controls the GPIOs directly, but the rest of
the peripherals are controlled through their drivers. Therefore, it opens the header
files that declare the functions stored in the BSP libraries. The file xparameter.h
declares base addresses that are necessary to use the driver functions.

The second section initializes the object Display for the class CLed7Seg. The
object’s constructor gets the base address of the GPIO which drives the display.
The section also declares the global variables data and endloop that are managed
by the ISR of the UART.

The third section is composed of the two ISRs. The timer’s ISR periodically
reads the state of the two external switches and refreshes the display. First, it reads
the register GPIO_DATA of the peripheral which attaches to the two external
switches. Then, it compares the state of the switches against the previous call.
A change in one of the switches will swap one of the two bits that configure the
display, using the bitwise XOR operators. Finally, it refreshes the display. The
other ISR is executed when the UART receives a new character which is read
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using its driver function [9]. Depending on the received character, it changes the
data or the configuration of the display, or it quits the application.

The last section is the main function of the application. It configures and
enables the interrupt sources, and then it executes a loop until the application
quits. The loop can execute any computation without affecting the control of the
display.

The timer peripheral [6] implements two registers to periodically generate an
interrupt request: Timer Control/Status Register 0 (TCSR0) and Timer Load
Register 0 (TLR0). The configuration of both registers asserts the interrupt signal
every 5 ms (250,000 counts, 50 MHz clock). The constants and functions of the
timer driver are declared in the header file tmrctr_l.h [10] which was generated by
the BSP. They are low-level API functions since the programmer knows the
functionality of the registers. These functions compute the address of the registers
and write data into them through a pointer.

The driver of the interrupt controller provides functions [11] to register ISRs and
to enable the interrupts sources. Finally the application enables the MicroBlaze’s
interrupt input through an OS function [18].
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By default, the wizard of the C++ project generates two targets: Debug and
Release. They differ in the flags of the GNU compiler [13]. The target Debug
compiles source files without optimizations and enabling debug symbols. The
target Release compiles source files with optimizations to build smaller and faster
code which is not suitable to debug. The targets configure other compiler flags that
are derived from the MicroBlaze’s configuration in order to use the optional
machine instructions. The menu Project ? Build Project builds the active target
which can be changed anytime using the Project ? Build Configurations ? Set
Active. Then, SDK runs the GNU tool chain which compiles the source files and it
links the resulting object code with the BSP libraries. The executable ELF file is
stored in a nested folder which is named as the target.

15.1.3 Programming and Debugging

The SDK menu Xilinx Tools ? Program FPGA opens a dialog window which
displays the BIT and BMM files that were imported from EDK, as shown in
Fig. 15.17. Select the ELF file app1.elf of any of the two targets and press the
button Program. It calls the Data2MEM tool [20] which generates a new bitstream
download.bit from an existing bitstream and its annotated BMM file. The new
bitstream configures the entire FPGA including the BRAM contents with the
selected ELF file. Then, the new bitstream is programmed into the FPGA and the
application begins to run.

The serial ports of the FPGA board and the PC are attached to test the
application. The PC should execute a terminal configured with the same
communication parameters as the embedded system. The terminal displays the
received characters from the FPGA and sends the characters that are pressed on
the keyboard. The SDK provides its own terminal which can be used for this
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purpose (see Fig. 15.18). Press the reset button of the FPGA board and play with
the terminal.

The Xilinx Microprocessor Debugger (XMD) [13] is a low-level tool which
manages the programming and debugging of the embedded system through the
MDM peripheral and the JTAG programming cable. The user can interact with the
XMD clicking the SDK menu Xilinx Tools ? XMD console

c:\edk13.1\led7seg\SDK\workspace\hw_platform_0\system.bit

c:\edk13.1\led7seg\SDK\workspace\hw_platform_0\system_bd.bmm

c:\edk13.1\led7seg\SDK\workspace\app1\Release\app1.elf
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Fig. 15.17 Bitstream configuration to program the FPGA
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Fig. 15.18 Configuration of the terminal in SDK
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The debugging permits the programmer to inspect variables, insert breakpoints
or execute step-by-step, in order to correct or improve the executable. Click the
menu Run ? Debug Configurations to open the dialog shown in Fig. 15.19.
Ensure it selects the ELF under the target Debug. SDK will ask to switch to a new
perspective which facilitates the debugging tasks, therefore it is recommended to
confirm it. The debug perspective shows the source code, disassembly, variables,
microprocessor’s registers, memory, breakpoints, XMD console and more. The
user can debug the executable, manually launching XMD commands which is
quite uncomfortable. The SDK debugger relies on XMD to send or retrieve data
through a graphical view. The debugger starts uploading the ELF into the BRAM
and suspending it at the first executable line of the source file.

Set a breakpoint on a line of the timer’s ISR and resume the application to
observe the display refreshing (see Fig. 15.20). The tab Variables shows the local
variables of the ISR that are updated when the user plays with the switches and
resumes the application. The tab Expressions permits to display the object Display
and the global variables data and endloop.
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Fig. 15.19 Configuration of the debugger
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In a similar way the user can place another breakpoint at the assignment of the
variable rs232_char in the ISR of the UART. The application will suspend when it
receives a new character from the PC. Then, the ISR updates the data or the
configuration of the display.

15.2 Case Study 1-B: Creating a Custom Peripheral

The previous embedded system devotes three peripherals (two GPIOs and a timer)
to drive the display and to read the switches. The executable uses the timer’s ISR
to periodically read the switches and refresh the display. A dedicated peripheral
can improve the design since it can replace the ISR and peripherals that are
devoted to a specific task. The main disadvantage is the greater design effort since
the designer must develop the source files of the hardware and the software driver.
The designer will surely require simulating the source VHDL files, in order to
verify and modify the hardware of the peripheral.

This case study starts from the previous one. It modifies the hardware design
and the executable to incorporate the new peripheral. Copy the previous project
folder and rename it to led7seg_ip. Then, open the XMP file to launch the XPS.

15.2.1 Design of a Custom Peripheral

A peripheral performs a specific task on hardware. Typically they are attached to
the PLB bus as a slave in order to permit the microprocessor to access their
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Fig. 15.20 Debugging the application
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internal registers to control them. More sophisticated peripherals can be attached
as PLB masters in order to access memory themselves. These kinds of peripherals
are quite harder to develop and they are much less common, therefore, they are not
covered in this example.

The hardware of a peripheral is implemented from a set of source VHDL files.
The driver of a peripheral is compiled from a set of source C and H files to build
the BSP. The source files must be organized in a set of named folders in order to
use the new peripheral in the EDK and SDK.

15.2.1.1 Hardware Design

The hardware is described in a set of VHDL files that are synthesized during the
design flow. EDK requires two files in order to permit the integration of the
peripheral to the embedded system: the MPD and PAO. The peripheral wizard from
XPS generates the folders and a set of template files that must be modified in order to
develop the desired IP. Open the wizard by clicking the menu Hardware ? Create
or Import Peripheral.

(1) Select the option Create templates for a new peripheral.
(2) Select the XPS project repository to create the template files into the local

repository which is stored in the XPS directory. The folders pcores and drivers
contain the local repository of the hardware and software.

(3) Set the name the peripheral to plb_led7seg, and the version to 1.00.a. The
wizard will create the folders plb_led7seg_v1_00_a in the local repositories.

(4) Select the PLB attachment.
(5) Unselect all the slave and master services of the IPIF (IP InterFace) to generate

the simplest template files. The IPIFs are IPs deployed with EDK to facilitate
the PLB interface.

(6) Continue with the default options of the next three dialogs.
(7) Select the option Generate template driver file. This option creates the tem-

plate files for the driver in the software repository.

The MPD and PAO files are stored in the folder data which is nested in the
local hardware repository pcores.

The Microprocessor Peripheral Description (MPD) file [14] is composed of four
sections. The first section declares the description and implementation options.
The second section sets the bus interface to Slave PLB (SPLB). The last two
sections declare the parameters and ports of the SPLB. The data generated by the
wizard in the MPD template must not be modified. However, the designer can add
more parameters and ports to extend the peripheral. The parameters will be passed
as VHDL generics and ports during the synthesis.

The new peripheral adds three parameters in order to configure the peripheral
from XPS. The refresh period is an integer parameter which contains the number of
microseconds, and its default value is set to 5,000 ls. The boolean data configure the
active state of the ports that drive the display. The peripheral adds two output ports to

398 15 Embedded Systems Development: Case Studies



drive the 7 segments and the 4 anodes of the display. Finally, it declares two input
ports that attaches to the external switches that configure the display.

IPIF

PLB

IP2Bus_*

PLB_*

Bus2IP_*

Sl_*

reg_controlreg_data

plb_led7seg.vhd

user_logic.vhd

led7seg.vhd

core

anodes segments

16 2

74

GLUE LOGIC

switch_off switch_zeros

counter

Fig. 15.21 Hierarchical schematic of the peripheral
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Figure 15.21 shows a hierarchical schematic of the peripheral and related files.
The wizard created two VHDL files that are stored in the folder hdl\vhdl which is
nested in the hardware repository. The plb_led7seg.vhd is the top-level file which
connects an instance of the user logic to the PLB. The user_logic.vhd is a dummy
peripheral, therefore, the file must be modified to perform the desired function-
ality. The tasks related to the timer’s ISR are now described as hardware in this
file. The computation related to the class CLed7Seg class is now described in the
new hardware file led7seg.vhd.

The Peripheral Analyze Order (PAO) file [14] is the ordered list (bottom to top
level) of libraries and files required to synthesize the IP. The first two entries refer
to EDK libraries due to the selected IPIF. Then, it continues with the list of VHDL
files that will be synthesized into the target library. The target library must be
named as the repository folder of the peripheral.

The top-level file declares the entity plb_dec7seg and its architecture.
The template of the entity leaves space to add new generics and ports, therefore,
the user must complete it. The VHDL generics and ports of the entity must be
declared in the same way as in the MPD file.

The architecture declares an instance to the user logic. It leaves space to map the
new generics and ports. The two switches are directly connected from the top-level
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input ports to the user logic. The glue logic attaches the output ports from the user
logic to the top-level ports, in order to drive the display. The synthesizer will
infer inverters between these ports if the configuration parameters are set to true.
The user logic will provide its internal timer, therefore, the instance requires a new
generic which configures the number of clock cycles to refresh the display. It is
computed from the MPD parameters that define the refreshing period (microsec-
onds) and the clock period (picoseconds). Finally, the user logic also requires a
generic which configures the number of internal registers.

The architecture also contains the IPIF instance which eases the PLB con-
nection. It adapts the PLB handshake to/from IP signals named ipif_Bus2IP_*/
ipif_IP2Bus_*. The IPIF also decodes the PLB address bus to enable one of the
peripheral’s internal registers. The architecture declares the number of internal
registers in the user logic, which is two in this case. This number affects the width
of the signals Bus2IP_RdCE (Read Chip Enable) and Bus2IP_WrCE (Write Chip
Enable) that arrives to the user logic. When MicroBlaze executes a read/write
instruction to a peripheral’s address range, the IPIF decoder sets one of the enable
bits, in order to read/write one of the internal registers of the user logic. The IPIF
maps registers on 32-bit boundaries from the peripheral’s base address. The first
register is mapped on C_BASEADDR, the second register on C_BASEADDR+4,
and so on. In order to simplify the IPIF, the C_HIGHADDR parameter is usually
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configured much higher than necessary, but it leads to an incomplete address
decoding. In this case, the peripheral’s registers can be accessed from different
addresses since the IFPF does not decode some bits of the address bus.

The template of the user logic is a dummy design which must be modified. The
entity template declares an important generic which is the number of registers. The
entity must be completed according to the top-level file. Therefore, the designer must
add the new generics to configure the refreshing counts and the new ports to drive the
display and to read the switches. The default values of the generics are overwritten
since they are passed from the instance at the top-level file.

The architecture of the user logic declares two registers to control the display
that are accessible from the PLB. The first one (reg_data) is a 16-bit data register
which sets the 4 digits to display. The second one (reg_control) is a 2-bit register
which controls the display configuration: one bit to turn on/off the display and the
other bit to show/hide the left-hand zeros. The input ports Bus2IP_RdCE and
Bus2IP_WrCE provide a single bit for each register to read or write them. The data
comes from the port Bus2IP_Data during a write access to one of the registers.
During a read access, one of the registers drives the port IP2Bus_Data.
The architecture uses the signals bus_data/ip_data to get/set the data bus, since
they are declared in descending bit order as the registers. The PLB must
acknowledge the access completion before MicroBlaze can continue with a new
access. The user logic asserts the ports IP2Bus_RdAck/IP2Bus_WrAck when it
completes the access to the registers. In this case, the user logic does not require
wait states to read/write the registers.
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The rest of the user logic performs the tasks executed in the timer’s ISR in the
software application. It implements a counter which periodically asserts the signal
refresh. This signal is used to refresh the display and to capture the state of the
switches in order to modify the control register. There is an instance, named core,
of the IP led7seg, which drives the display from the registers contents.
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The file led7seg.vhd implements the functionalities described in the C++ class
CLed7Seg in the software application. It generates the signals that drive the dis-
play, updating the displayed digit when the port refresh is asserted. The archi-
tecture is composed of two processes. The first process updates the index of the
digit to refresh, starting at the left side. The second process computes the display’s
ports based in the input ports off, zeros and data that are driven from the
peripheral’s registers.

15.2.1.2 Driver Design

A peripheral’s driver is built from header and implementation files. The C files
implement functions that control the peripheral. The header H files contain the
declarations required to use the functions. The SDK requires two additional files,
the MDD and the TCL, and a structured folder organization in a repository in order
to build the BSP with the peripheral’s driver. The Microprocessor Driver Definition
(MDD) file [14] declares the supported peripherals, dependencies of the driver and
files to copy. The TCL file is a script used to compile the source files and build the
library. The XPS peripheral wizard generates the template files and folders.
The designer usually does not modify the MDD and TCL files, but he must rewrite
the H and C files to develop the driver.

The MSS file controls the peripheral drivers that are built in the BSP. The
Libgen tool creates a folder named as the microprocessor and copies the H files
into the folder include. Then it compiles the C files and adds the functions into the
library libxil.a which is stored in the folder lib of the BSP.

The header file contains the declarations that are used to build the BSP and the
executable. First, it defines the masks to control the display. Next, it declares C
macros to read or write the peripheral’s registers through a pointer. Finally, there
are the declarations of the visible functions.
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The C file of the driver is compiled during the BSP generation. The library file
stores the functions, but not the C macros. The library may store other internal
functions that are not visible for the programmer since they are not declared in the H
file. The function which swaps one of the bits of the control register executes two
accesses to the register. First, MicroBlaze reads the register and changes one bit
according to a mask. Next, it writes the resulting value into the same register.
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Fig. 15.22 Overview of the modified system architecture
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15.2.2 System’s Hardware/Software Modification

The new peripheral replaces the timer and the GPIOs connected to the display and
switches, as well as the software code related to them. Therefore, the hardware and
software of the new system must be modified, accordingly.

15.2.2.1 Hardware Modification

The MHS file of the new system adds the instance led7seg of the PLB display
controller plb_led7seg, and it removes the timer and GPIOs, as depicted in
Fig. 15.22. The external ports connected to the display and switches are assigned
to the display controller. The parameters that configure the refresh period and
active state of the anodes and segments can be easily modified to adapt them to
other FPGA board. The MHS parameters overwrite the default values defined in
the peripheral’s MPD file. The modified system requires just one interrupt source
for the UART, therefore, the interrupt controller could be eliminated. However, the
system maintains it since it does not increase significantly the area and it provides
the possibility to add new peripherals to request interrupts.

Fig. 15.23 Selection of the ELF to generate the simulation model
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The names of the external FPGA ports, connected to the display and switches,
have changed, therefore, the UCF must be updated.

At this point, the designer can easily test the peripheral’s hardware using the
XMD tool. Using the XPS, implement the new hardware. Then, click Device
Configuration ? Download Bitstream to create the download.bit file and program
the FPGA. If the XPS project has no ELF file, the bitstream configures the BRAM
to store the default executable bootloop which runs a dummy loop. In order to
program the FPGA, XPS calls the iMPACT tool with the commands of the batch
file download.cmd. Check the number of the –p flag, which configures the FPGA
position in the JTAG chain.
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Once the FPGAis successfully programmed, click the Debug ? Launch XMD to open
the command shell. The XMD shell initially shows the microprocessor configuration when
it connects to the MDM. Then, the user can test the peripheral when he runs the XMD
commands: mwr (memory write) and mrd (memory read). Write the peripheral’s base
address (0 9 84C00000) to change the displayed number. Write the next register
(0 9 84C00004) to change the configuration of the display. The peripheral’s registers are
accessible from different addresses due to the incomplete IPIF decoder.

15.2.2.2 Software Modification

At the software level, the executable has to be also modified in order to delete the
code related to the GPIOs and the timer’s ISR. Export the new hardware from XPS
and create a SDK workspace in the c:\edk13.1\led7seg_ip\SDK\workspace path.
Check that the imported hardware presents the new display controller.

Create a new BSP project and select the standalone OS. By default, the MSS
assigns the generic driver to the display controller led7seg. A more convenient
way is to assign the specific driver to the peripheral in order to build the BSP.
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The Libgen tool generates the BSP according to the information described in
the MSS file. It gets the source files from the folder plb_led7seg_v1_00_a which
must be stored in the driver repositories. Then, it copies the header files and builds
the libraries. The file libgen.options must be modified to configure the local
repository to the XPS directory.

The C++ code related to the GPIOs and timer’s ISR is deleted. Therefore, the
files that declare and implement the class CLed7Seg are deleted in the project.
The modified file application.cc calls the driver’s functions to control the
display.

The application can be programmed and debugged following the same steps as
in the previous case study. Check that the BIT and BMM files are the imported
ones from the current XPS project, before proceeding.

15.2.3 Functional Simulation

The source VHDL files should be simulated if the peripheral is not working as
expected. The easiest way to test the VHDL files is by performing a functional
simulation of the embedded system. The system can be simulated with the ISim or
other supported simulator. The XPS can select the simulator when you click the
Edit ? Preferences. The Xilinx ISim has some limitations when it is compared
with other third-party simulators. However, the ISim is easy to use, and it provides
the simulation libraries.

Instead of simulating the application executable, which depends on the serial
communication, it is preferable to develop a much simpler executable. Create a
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new Xilinx C++ project in SDK named simulation. Modify the C++ template file
main.cc to add a sequence which just writes the peripheral’s registers, as desired.
The function delay is called to improve the observation on the simulation results.
Build the target Debug to get the file simulation.elf.

The XPS project must import the ELF file in order to generate the simulation
model. Click the menu Project ? Select Elf file and choose the file simulation.elf
which is stored in the SDK project (see Fig. 15.23)

XPS launches the Simgen tool [13] to generate the set of files required to sim-
ulate the embedded system running the selected executable. Click the XPS menu
Project ? Project Options which opens the dialog window shown in Fig. 15.24.
Select the options: VHDL, generate testbench template and behavioural model.
This is the recommended model since it simulates the peripheral’s source files. The
other models are more complicated, since they simulate the output files from the
synthesis or the implementation stages. Click the XPS menu Simulation ?
Generate Simulation HDL Files to call the Simgen tool. The Simgen does not
support some FPGA families, such as the Spartan-3, but there is a workaround.
Choose any supported device since it does not affect the behavioural simulation of
the peripheral, because it does not require the synthesizing of its source VHDL files.
Finally, click the menu Simulation ? Launch HDL Simulator which takes some
time to compile the simulation files before starting the ISim [19].

Simgen creates the testbench file system_tb.vhd. It declares the instance dut
(Device Under Test) of the system and the stimulus applied to its inputs. ISim
shows the hierarchical view of the instances to simulate. Open the contextual menu
of the top-level instance system_tb and click Go To Source Code in order to edit
the testbench template, as shown in Fig. 15.25.

The template file drives the clock and reset signals, and it provides a user’s
section to write more stimulus. In order to simulate the external switches, change
the state of the switch, which turns off/on the display, at 250 and 260 ls.
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The simulation will take a huge number of clocks to refresh the display. The
display’s ports are updated every 200,000 clock cycles when the refresh cycle is
set to 4,000 ls (50 MHz clock frequency). Each instance of a peripheral is sim-
ulated from a wrapper file which configures the IP according the MHS file. Go
through the hierarchical view, and select the instance led7seg. Open the wrapper
file led7seg_wrapper.vhd, and change the generic C_REFRESH_PERIOD_US to
shorten the simulation of the refresh. This change does not affect the synthesis or
the implementation since it does not modify the MHS file.
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Fig. 15.24 Configuration of the simulation model
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Fig. 15.26 Configuring the waveform window
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Any change in the VHDL files requires the compilation of the model before starting
the simulation. Therefore, click the ISim menu Simulation ? Relaunch. In order to
display the external ports of the system, select the instance system_tb and drag the desired
signals into the waveform window. Add a divider, named USER LOGIC, in order to
display a new group of waveforms separately from the previous ones. Go to the hierarchy
of the instances system_tb ? dut ? led7seg ? led7seg ? USER_LOGIC_I and
drag the IPIF signals and the peripheral’s registers to the waveform. Repeat the previous
steps to display the signals of the instance core, as shown in Fig. 15.26.
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Fig. 15.27 Simulation waveform
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By default, signals are displayed in binary radix which is uncomfortable for
some signals. Select the peripheral’s registers and the IPIF busses to change the
radix to hexadecimal.

Write 100 ls on the simulation time, and run the simulation, as shown in
Fig. 15.27. The resulting waveform can be zoomed in/out to show the desired time
interval. Check that the signal refresh is asserted during a clock cycle every 1 ls, due
to the change done in the wrapper file. Display the peripheral’s registers at 35 ls. At
this point MicroBlaze has already executed the first four lines of the C++ file,
therefore, the peripheral’s registers (reg_data, reg_control) contain the expected
values. The ports anodes and segments that drive the display are refreshed according
to the value stored in those registers.

The simulation should continue another 100 ls to display how Microblaze
executes the driver function Led7Seg_SwapOff. The function executes two
consecutive accesses to the register control_reg: a read followed by a write access.
The registers are accessed when the microprocessor executes read/write instructions
to memory addresses within the peripheral’s address range. The IPIF decodes the
PLB address bus in order to assert one of the enabler bits of the signals
Bus2IP_RdCE/Bus2IP_WrCE that arrive to the user logic, in order to read/write a
peripheral’s registers. The register control_reg is associated with the index 1 of these
signals. The waveform window permits a search for the next/previous transition of a
signal. Search a rising edge of the bit Bus2IP_RdCE(1), as shown in Fig. 15.28.
At this time, the MicroBlaze is reading the control register. The peripheral carries the
register’s content on the signal IP2Bus_Data and it asserts the IP2Bus_RdAck to
complete the read access. The next access, MicroBlaze writes the control register.
The peripheral gets the new content from the Bus2IP_Data and asserts the
IP2Bus_WrAck to complete the write access.

Figure 15.29 shows the simulation of the user action on a switch at 250 ls and
260 ls to turn off/on the display, as described in the testbench file. The peripheral
updates the control register when the signal refresh is asserted, after the user action.

If the C/C++ code of the simulation executable is changed it is necessary to
close the ISim before executing Simgen. Save the waveform file before exiting
ISim. Then, build the SDK project to get the new ELF file and generate the new
simulation model with XPS. Finally, launch ISim, open the saved waveform file,
and run a new simulation.

Once the simulation is finished, select the target FPGA in the project options
and generate the bitstream. The system will be synthesized and implemented for
the selected device.

15.3 Case Study 2: Implementation of a Custom Coprocessor

A coprocessor is a specific processor aimed to accelerate an algorithm. The
hardware architecture is designed to efficiently speed-up a specific computation.
The rest of computations and tasks are carried on the general-purpose
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Fig. 15.28 Simulation of a read/write accesses to a peripheral’s register

1 2

Fig. 15.29 Simulation of the user’s action on a switch
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microprocessor. The microprocessor writes commands and data to the copro-
cessor’s registers in order to perform a computation. When the coprocessor
completes, the microprocessor retrieves the computed data in order to continue
the algorithm.

This case study presents an embedded system which communicates with an
external PC in order to set the state of some led diodes and to read the state of some
switches. The system is connected through the serial port, but the communications
are ciphered using the Advanced Encryption Standard (AES-128). The system
decrypts the commands received from the PC and encrypts the answer messages.
The MicroBlaze cannot decrypt the messages at the desired speed, therefore, a
coprocessor is developed to accelerate the AES-128 computation.

15.3.1 A Brief Introduction to the AES-128 Cipher

The AES [1] standard comprises three symmetric-key block ciphers: AES-128,
AES-192 and AES-256, where the number denotes the key size. The cipher
encrypts a fixed-size block of plain text to get a block of ciphered text. It also
decrypts ciphered blocks in the reverse way using the same key. The block size of
the AES ciphers is 128 bits independently of the key size.

All the steps executed during AES encryption/decryption are done using a
variable named state. It is a 128-bit data arranged on an array of 4-rows x 4-columns
of 8-bit elements (bytes). During the AES-128 encryption the state is initially
written with a block of plain text. Then it is processed 9 rounds, and each round is
composed of 4 steps, as shown in Fig. 15.30. The initial and the final rounds are
slightly different since some steps are skipped. The AES state stores intermediary
computations and the block of ciphered text at the end of the final round. In a similar
way the decryption initializes the state with the ciphered block which is processed
with inverted computations and steps to get the block of plain text.

One of the AES steps applies the expanded key which must be computed from
the cipher key. The expansion of the key can be computed online or offline. The
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Fig. 15.30 Block encryption (left) and decryption (right) in the AES-128 cipher
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offline mode computes the expanded key before starting the rounds, therefore, it is
computed only when the cipher key changes.

The transmitter divides a message into blocks that are encrypted and trans-
mitted. The receiver decrypts the received blocks to build the message. There are
several operation modes and padding schemes to permit block ciphers to work
with messages of any length [22]. This case study chooses the Electronic Code-
Book (ECB) mode and null padding, due to its simplicity. The other modes require
the IV (Initialization Vector) generator and a different block partitioning, but this
fact does not affect the AES block cipher.

15.3.2 Software Implementation of the AES-128 Cipher

In order to study the applicability of a coprocessor on this application, the AES-
128 cipher is implemented as a C++ class named CAES128. The system receives/
transmits ciphered messages from/to the external PC and it uses the C++ class to
decrypt/encrypt blocks according to the cipher key. Microblaze reacts to the
messages to set the leds or to report the state of the switches.

The hardware specification is quite similar to the first case study, but it
pro-vides a single GPIO peripheral to read two switches and to set two leds.
Copy the folder which allocates the XPS project of the first case study and
rename it as co-processor. Edit the MHS file to add the 4-bit width GPIO and
connect its bidirectional port to an external FPGA port. The timer will not only
measure the time taken to encrypt/decrypt blocks, but it will also be used for the
cipher’s profiling. The profiler requires the timer to be able to interrupt the
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Fig. 15.31 Enabling and configuring the profiling in the BSP
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microprocessor, therefore, the MHS connects their interrupt ports. The system
removes the interrupt controller since there is a single interrupt source.

The UCF file is modified to attach the external port to the switches and leds
according the FPGA board. Implement the hardware and export it to SDK.

Open the SDK workspace c:\edk13.1\coprocessor\SDK\workspace. Modify the
BSP settings to enable the profiling and configure the profile timer (see Fig. 15.31).
Clean and build the new BSP which includes a new library which is required when
the application is profiled.

Delete the previous C++ projects and create a new project named server which
targets the new BSP. The server application is composed of four files.

The files caes128.h and caes128.cc are the source files of the C++ class
CAES128 which implements the cipher. It is a straightforward implementation in
order to facilitate the next steps. The class can be improved, in terms of speed and
security, but it requires a deeper knowledge of the AES. The class provides the
method SetKey to compute the expanded key at the beginning of the application.
Then, it provides methods to Encrypt or Decrypt a single 128-bit block.
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The file app.cc implements the application. It waits for commands launched
from a PC in order to set the leds or to report the state of the switches. Any
command produces an answer message which is transmitted to the PC. Com-
mands and answer messages are encrypted during their transmission on the serial
interface. The function send_rs232_cipher implements the ECB operation mode
and null padding. It divides an answer message into 128-bit blocks that are
individually encrypted and transmitted. In a similar way, the function
get_rs232_cipher builds a command message from the received and decrypted
blocks.
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Fig. 15.32 Settings to build the release target
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The application stores into the variables EncryptMaxCycles/DecryptMaxCycles
the maximum number of clock cycles taken to encrypt/decrypt a block. It relies on
the file cchronometer.h which implements the C++ class to get the number of
clock cycles from the timer. The compiler can skip the code related to the
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Fig. 15.33 Project cleaning
and building
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chronometer when the CIPHER_CHRONOMETER declaration is commented. The
application also declares the CIPHER_DISABLE which can be used to skip the
cipher to facilitate debugging.

Click the menu Project ? Properties to edit the settings of the build of the
target Release, as shown in Fig. 15.32. The compiler can optimize the code to
improve the execution speed, by changing the order of instructions or the unrolling
of loops. The ELF may not fit in the BRAM memory if the optimization level at
the maximum (-O3). In order to display the measured encryption/decryption time,
lower the optimization level (-O2) and set the debug to the maximum level (-g3).

Set the Release as the active target. Then, click the menu Project ? Clean to
clean the C++ project in order to build it from scratch (see Fig. 15.33).

In order to test or debug the application, the PC must also use the AES-128
cipher. There are many PC programs that permit the ciphering of messages
through a communication channel, but they usually employ sophisticated pro-
tocols (SSH, SSL, etc.) to authenticate users before transmitting the cipher keys.
The presented application is much simpler, since the PC and the embedded
system are programmed with the same cipher key. In order to test the applica-
tion, the PC executes a Linux program to encrypt/decrypt messages from/to a
console which redirects the input/output to the serial port. The folder
linux_aes128 stores the executable files for Linux or Cygwin. Cygwin permits
the execution of applications written for Linux on Windows PC. Cygwin cannot
execute the Linux binaries, but it requires the building of the executable from the
Linux source files.

Install Cygwin or a Linux virtual machine and open a shell to launch a set of
commands. The first command changes to the directory which contains the path of
the executable (it may change). The next one configures the communication
parameters on the serial port (/dev/com1 may change). The third command maps a
file descriptor to the serial port. The last two commands decrypt or encrypt
messages between the console and the serial port. The cipher key is set to the
same value as the embedded system. Finally, program the FPGA and test
the application. The Linux console shows unreadable text if the cipher keys are
mismatched.

In order to display the time taken to encrypt/decrypt blocks, debug the ELF of
the target Release using SDK. Set a breakpoint at the last instruction of the C++
file to pause the execution when the user launches the quit command. Then resume
the application and launch several commands to the embedded system through the
Linux console. The variables EncryptMaxCycles and DecryptMaxCycles contain
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the maximum number of clock cycles required to encrypt and decrypt a block. The
decryption of a block takes 1.76 ms (87,338 clock cycles, 50 MHz clock
frequency), but the serial communication requires 1.39 ms to transmit it (115,200
bps). The FIFO of the UART may overrun during the reception of large messages
since the MicroBlaze cannot decrypt blocks at the required speed. To solve the
problem, the transmission speed can be lowered or the system can implement a
flow control. A better solution is to accelerate the most time-spending
computations.

15.3.3 Profiling

The profiler [12] is an intrusive tool which is used to test the application perfor-
mances. It reports the number of calls and the execution time of every function.
The profiling requires a dedicated timer able to interrupt the microprocessor in
order to sample the program counter. The source files of the application must be
compiled to add profiling ISR and code (compiler switch—pg). The linker attaches
to the profiling library to build the executable.

The server application is not adequate to profile the since most of the execution
time is devoted to wait for user messages from the serial port. A better approach is
to execute a new application which continuously encrypts and decrypts messages.
Therefore, create a new C++ project named profiling. The application file, named
profiling_app.cc, uses the class CAES128 to encrypt/decrypt messages in a loop.
Change the compiler switches of the target Release to enable the profiler and the
same optimization level as the server application (switches -pg -O2). Next, clean
the project in order to build the application from scratch.

The profiler collects data and stores it in memory during the execution. Once
the application completes, the collected data is downloaded to the PC in order to
analyze it. The SDK must set the profiler memory which cannot be overlapped to
the application memory. Use the SDK to program the FPGA with the imported
bitstream and BMM, and set the ELF to bootloop. Open the XMD console to
launch some commands. The first command changes the working directory to the
application’s folder. The second command establishes the connection to the
MicroBlaze’s MDM. The last command tries to download the ELF file into
memory. It fails since the profiler memory is not defined, but it reports the allo-
cated memory of the ELF. The hardware implements the local memory from the
address 0 9 0000 to 0 9 3FFF, and the XMD reported there is available free
memory from address 0 9 2248.
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The profiling data can be stored into any free space of memory. Click the menu
Run ? Run Configurations to open the dialog depicted in Fig. 15.34. Then add
the application to profile and set the profile memory from the 0 9 3000 address.
Finally, run the application and wait until the application ends. The PC downloads
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Fig. 15.34 Run configuration to profile
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the collected data which is stored in the file gmon.out. It is a binary file which is
interpreted by the GNU gprof tool.

Double click on the file gmon.out to display the results (see Fig. 15.35). The
SDK shows a graphical view of the collected data which can be arranged in several
ways, as the percentage of execution time devoted to each function. Two methods
of the CAES128 class take the 88% of the processing time: X and Multiply. They
are child functions called from the function InvMixColumn which is one of the
steps executed during the decryption. The child function X is also called from the
step MixColumn during the encryption.

The profiling information can be used to re-implement the most time-spending
functions to improve the execution time. However, a coprocessor can greatly
accelerate a specific computation.

15.3.4 Coprocessor Design

The coprocessor aims to accelerate the step InvMixColumn and its child functions.
The step MixColumn is quite similar, therefore, the hardware design of both steps
does not significantly increase the effort. The coprocessor will accelerate the
computations that take the 92% of the processing time obtained from the profiler.
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Fig. 15.35 Collected data from the application profiling
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Copy the previous XPS folder and rename it as coprocessor_ip in order to
develop the coprocessor, its driver, and to update the hardware and software of the
application.

15.3.4.1 Hardware Design

Coprocessors are attached to MicroBlaze through Fast Simplex Link (FSLs), as
depicted in Fig. 15.36 (top). A MicroBlaze’s master-FSL connects to the copro-
cessor’s slave-FSL in order to write the coprocessor’s registers. In the reverse way,
the MicroBlaze’s slave-FSL permits the reading of the coprocessor’s registers.

The FSL [21] is a point-to-point link which permits a low latency and fast
communication due to its simple handshake. The FSL does not provide an address
bus, as seen in Fig. 15.36 (bottom). Therefore, the coprocessor’s registers must be
sequentially accessed in a predetermined order. Each FSL provides, by default, a
16-depth FIFO which can temporally store data written from the master, when the
slave is not ready to read it. The FSL provides a single 32-bit width bus
(FLS_M_Data, FSL_S_Data) which can carry data or commands, depending on the
control signal (FSL_M_Control, FSL_S_Control). In order to read data, the FIFO
signals when data is available to read (FSL_S_Exists), and the slave acknowledges

Fig. 15.36 Attachment of the MicroBlaze and coprocessor (top), and FSL schematic (bottom)
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when data is retrieved (FSL_S_Read). Similarly, in order to write data, the FIFO
signals when there is no free space (FSL_M_Full), and the master requests to write
data (FSL_M_Write).

XPS can create the template files for coprocessors through the same wizard
used for peripherals. Launch the wizard by clicking the menu Hardware ? Create
or Import Peripheral:

(1) Choose create templates in the XPS directory
(2) Set the name to fsl_mixcolumns and the version to v1.00.a
(3) Select FSL attachment and go ahead with the default settings
(4) Select to implement the driver template and finish the wizard

The coprocessor does not require additional parameters, ports or VHDL files,
therefore, the MPD and PAO files are not modified. The template file
fsl_mixcolumns.vhd is modified to design the coprocessor. It implements a 4x4
matrix of 8-bit registers (reg_state) to compute and store the AES state.
Additionally, a 1-bit register (reg_mode) configures the computation mode as
MixColumns or InvMixColumns. MicroBlaze will execute a control-type write
instruction to the coprocessor’s slave FSL to set the mode register. Next, it
follows four data-type write instructions to set the registers of the AES state.
Matrices are stored in rows in the microprocessor’s memory, and each 32-bit
data sets the 4 registers of a row in the coprocessor. The coprocessor starts the
computation when the registers reg_state and reg_mode have been written. The
coprocessor must acknowledge the read of data to the slave-FSL in order to
delete it from the FIFO.

The coprocessor computes and stores the result in the registers reg_state. The
coprocessor writes the resulting data to its master-FSL in a quite similar way. It
writes a new row on the FSL when the computation is completed and the FIFO is
not full. MicroBlaze executes four read instructions to the FSL in order to retrieve
the resulting AES state.

A key idea to accelerate a computation is in parallel processing. A full-parallel
implementation could compute the entire array of the AES state in a single clock
cycle, although it may occupy a large area. However, MicroBlaze would not
completely take profit of this architecture since it takes several more clock cycles
to execute the FSL instructions to set and retrieve the AES state. A semi-parallel
architecture offers a good trade-off between speed and area. The coprocessor
computes the left-side column of the reg_state in a clock cycle. The state register
shifts one column and the computation is repeated for the next 3 columns.
Therefore, it takes 4 clock cycles to complete.

426 15 Embedded Systems Development: Case Studies



15.3 Case Study 2: Implementation of a Custom Coprocessor 427



15.3.4.2 Driver Design

The XPS wizard generates the H and C templates for the coprocessor’s driver. The
driver provides a single function which sends the AES state and gets the result
through FSLs. It executes a control-type write instruction followed by four data-
type instructions to set the computation mode and the AES state. The state is
transmitted in rows to avoid rearrangement of data from memory to the FSL. The
last instructions read the resulting state.

The function uses macros to set/get data to/from FSLs. During the BSP
generation, the compiler replaces them by the MicroBlaze instructions that read
or write an FSL slot. MicroBlaze provides 16 master-FSLs and 16 slave-FSLs.
The input slot is the FSL index from which the coprocessor reads the input data
(coprocessor’s slave-FSL). The output slot is the FSL index which connects to
the coprocessor’s master-FSL. The slot names must match with the name of the
coprocessor’s instance (fsl_mixcolumns_0) which will be declared in the MHS
file, otherwise the BSP will fail.
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15.3.5 Modification of the Embedded System

The hardware must be modified to attach MicroBlaze to the coprocessor through
FSLs. The class CAES128 must accelerate the computation of the steps MixColumns
and InvMixColumns using the coprocessor’s driver.

15.3.5.1 Hardware Modification

The XPS offers a wizard (see Fig. 15.37) to connect a coprocessor when clicking
the menu Hardware ? Configure Coprocessor. It modifies the MHS file to
attach the coprocessor’s instance (fsl_mixcolumns_0) to MicroBlaze through two
FSLs.
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15.3.5.2 Software Modification

Export the new hardware to SDK and set the workspace to the path
c:\edk13.1\coprocessor_ip\SDK\workspace before continuing. By default, the
MSS associates a generic driver to the coprocessor. The BSP generation with
the coprocessor’s driver is similar to the case of the peripheral. First, edit the file
libgen.options to add the local repository which contains the driver’s source files.
Then, edit the MSS file to change the driver associated to the coprocessor.

Clean and build the BSP project to generate the new BSP from scratch. The
software applications use the C++ class CAES128 which implements the block
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cipher. The member methods MixColumns and InvMixColumns are modified in
order that the coprocessor computes these steps. The class also provides condi-
tional compilation to permit the computation by software for testing purposes.

The rest of the source files are not modified, since the class CAES128 carries
out the encryption/decryption of blocks. Build the C++ projects to generate the
new executables.

15.3.6 Simulation

The coprocessor can be simulated in a very similar way as described for the
peripheral. The application profiling is used to build the simulation model since it
continuously encrypts/decrypts blocks using the coprocessor.

Search when the coprocessor asserts the signal start which launches the com-
putation, as shown in Fig. 15.38. The waveform previously shows the execution of
five FSL write instructions by MicroBlaze. The coprocessor reads the data from its
slave-FSL. The first FSL instruction is a control-type access which writes the mode
register (reg_mode). The next four FSL instructions are data-type accesses to write
the rows of the state register (reg_state). The coprocessor starts the computation
after the completion of the five write accesses.

Figure 15.39 shows that the coprocessor takes 4 clock cycles to compute the
state register. Then, it writes the four rows of the resulting reg_state to its master-
FSL, in order the MicroBlaze can read them. The coprocessor does not have to
wait for the MicroBlaze to read the resulting data, since the FIFO of the FSL is not
full.
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Fig. 15.37 EDK wizard to connect a coprocessor
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Fig. 15.38 Simulation of the coprocessor’s slave FSL
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Fig. 15.39 Simulation of the coprocessor computation and the master FSL
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Fig. 15.40 Profiling data with the coprocessor
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15.3.7 Experimental Results

Follow the steps previously described to collect the new profiling data. Before
programming the FPGA, check the directories used to get the BIT, BMM and ELF
files are in the current SDK workspace. Figure 15.40 shows the functions
MixColumns and InvMixColumns currently represent only the 6.14% of the exe-
cution time. The time in these functions is mainly devoted to the transmitting and
receiving of the state variable through the FSL instructions.

The application server can be tested as described before. The measured number
of clock cycles to encrypt and decrypt a block are now 5,189 and 5,150, respectively.
Therefore the decryption time is greatly improved from 1.76 ms to 103 ls (50 MHz
clock frequency), which represents about 17 times faster.
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Chapter 16
Partial Reconfiguration on Xilinx FPGAs

Partial Reconfiguration (PR) is the ability to change a portion (the reconfigurable
partition) of the device without disturbing the normal operation of the rest
(the static partition). A typical PR application is a reconfigurable coprocessor
which switches the configuration of the reconfigurable partition at run-time when
required by the application. The main advantage is the ability to map different
coprocessor configurations in the reconfigurable partition in a time-multiplexed
way, reducing the required area. The main drawbacks are the storage of partial
bitstreams, the reconfiguration time and the increased complexity of the design
flow. Reconfigurable systems must be implemented in a reconfigurable device,
such as FPGAs. Most FPGAs are not partially reconfigurable since the internal
architecture of the device must provide features to support it as well as the design
flow tools. Moreover, the steps required to implement a reconfigurable system on a
FPGA is highly dependent of the device architecture and cannot be easily adapted
to other FPGA vendors. Virtex-4/5/6 are the Xilinx families of devices that are
supported by the ISE 13.1 to perform partial reconfiguration [1].

16.1 Partial Reconfiguration on Xilinx FPGAs

Xilinx FPGAs that supports partial reconfiguration feature a set of common fea-
tures at the hardware level:

• ICAP (Internal Configuration Access Port). It is an internal version of the Se-
lectMAP programming interface. It permits to write or read-back the FPGA
configuration from an embedded microprocessor or other internal circuit. The
ICAP is controlled through commands that are embedded in the bitstream file.

• The configuration granularity is the minimum set of bit required to update FPGA
resources which is a frame in Virtex-4/5/6 devices.

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_16,
� Springer Science+Business Media Dordrecht 2012
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• Configuration frame. The configuration memory of the FPGA is arranged in
frames that are addressable memory spaces. Each frame is composed of a fixed
number of 32-bit configuration words. There are several types of frames, such as
the CLB or BRAM. A Virtex-5 frame [2] configures a single row of 20 CLBs,
4 BRAMs, etc.

• Partial bitstream. Contains the ICAP commands and configuration frames
required to reconfigure a portion of the FPGA hardware resources. The con-
figuration bits of the rest resources of the FPGA are not affected.

• Glicthless reconfiguration. It guaranties that if a configuration bit has the same
value before and after the reconfiguration, the hardware resource controlled by
the bit does not undergo any discontinuities in its operation. Therefore a portion
of the static partition may be placed in the reconfigurable area and not be
affected by the reconfiguration.

At the design flow level, the PR terminology is:

• HWICAP. It is an EDK peripheral which contains the ICAP plus FIFO mem-
ories and the PLB interface, in order to attach it to an embedded system.

• Static partition or top-level logic. It is composed of an embedded processor
which drives the HWICAP with a partial bitstream. It cannot be affected during
the partial reconfiguration, in order to complete it.

• Reconfigurable Partition (RP). It is composed of a subset of FPGA resources
that can be reconfigured at run-time from the static partition. A RP implements
several reconfigurable modules in a time-multiplexed way.

• Reconfigurable Module (RM). It is an implemented module in the reconfigu-
rable partition.

• Partition pin. It connects a 1-bit net across the static and the dynamic partitions.
The proxy logic transfers the bit value of the partition pin.

• Proxy logic. It is the interface logic between the static and the dynamic parti-
tions. Each partition pin devotes a LUT placed in the RP which connects a
reconfigurable routing line to a static routing line (see Fig. 16.1). The LUT and
the reconfigurable routing line must be entirely contained in the RP. The
reconfiguration does not affect the static routing line, therefore, the communi-
cation is reestablished when the partial reconfiguration is completed.

Static
Partition

Reconfigurable
Partition

Proxy LUT Proxy LUT

Reconfigurable
routing line

Reconfigurable
routing line

Static
routing line

Static
routingline

Partial
Reconfiguration

Fig. 16.1 FPGA layout displaying the proxy logic
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• Decoupling logic. Hardware resources that are changing their configuration bits
can drive unexpected transient values on crossing nets that may cause a mal-
function in the static partition. The static partition can deassert the nets from the
proxy logic during the reconfiguration. Another approach is to reset the affected
circuits of the static partition when the reconfiguration completes.

16.2 Design Flow for Partial Reconfiguration

The Project Navigator tool, which is frequently used to implement designs on
Xilinx FPGA, does not support PR. The PR design flow is based on a technique
named modular design which can be run by using the command-line ISE tools as
well in the PlanAhead graphical tool. The modular design flow starts from a set of
module netlists to implement (map, place and route) the layout of modules sep-
arately, merging them to build the complete design layout. A previous phase to
modular design is to synthesize HDL sources to get the set of module netlists,
where the reconfigurable modules have to meet a set of requirements in order to
build a successful design.

16.3 Case Study

The case study exposes the design and PR flow of a self-reconfigurable embedded
system. It summarizes some steps related to the design flow of the embedded
system since they are detailed in the previous chapter. The case study is developed
for the AVNET Virtex-5 LX Evaluation Kit [3, 4], but it can be easily adapted to
other Virtex-4/5/6 boards.

Figure 16.2 depicts the embedded MicroBlaze which attaches to a reconfigu-
rable coprocessor through FSLs. The coprocessor can map several configurations
sharing a devoted set of FPGA resources in a time-multiplexed way. The Mi-
croBlaze switches the coprocessor’s configuration at run-time when required by
the application. It reads a partial bitstream to control the HWICAP accordingly to
perform the partial reconfiguration.

An important issue is the size of partial bitstreams which is usually larger than
the internal BRAM capacity. Therefore, the system architecture must retrieve
bitstreams from an external host or a non-volatile memory. An external host could
store and transmit bitstreams when requested. The approach is slow and it depends
on the communication channel. A better approach is to store the set of bitstreams
in a non-volatile memory since many prototyping boards provide some FLASH
which can be used for the required purpose. The case study provides autonomous
reconfiguration since it reads the partial bitstreams from a FLASH memory to
reconfigure the coprocessor.

16.1 Partial Reconfiguration on Xilinx FPGAs 437



The reconfigurable coprocessor is defined as the reconfigurable partition (RP)
since it can allocate different reconfigurable modules (RM). The static partition is
composed of the rest of the system. Each RM performs a different computation on
3 9 3 matrices: addition, multiplication, scalar multiplication and the determinant.
There is also a dummy RM which does not perform any computation, but it is used
in the design flow, as explained later.

The followed steps are the hardware design on XPS and synthesis of the RMs,
the PR flow and the software development on SDK. The steps related to XPS and
SDK are similar to the cases of the previous chapter, but they meet a set of
requirements to permit the partial reconfiguration.

1. The hardware design starts with XPS to synthesize the embedded system in
order to get the set of netlist files. The next step synthesizes the different
configurations of the coprocessor to get the netlist files of the RMs.

2. PlanAhead runs the PR flow which starts declaring the reconfigurable partition
and modules from the set of netlist files. The PR flow computes the layout of
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Fig. 16.2 Overview of the system architecture
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the static partition and the RMs on the reconfigurable partition. The output is
the set of partial bitstreams required to perform the partial reconfiguration.

3. The software development on SDK. The partial bitstreams are programmed into
a FLASH memory. The application provides a C++ class which performs the
partial reconfiguration controlling the HWICAP according to the bitstreams
retrieved from the FLASH.

16.3.1 Hardware Design

The PR flow will start from a set of netlist files that are obtained from the synthesis of
the hardware design of the embedded system and the RMs. The XPS facilitates the
design and synthesis of the embedded system. The coprocessor will map different
circuit configurations, therefore, it is also necessary to synthesize the RMs.

16.3.1.1 Design of the Embedded System on XPS

The architecture of the embedded system includes a MicroBlaze microprocessor
attached to internal BRAMs through the data and instruction LMBs and memory
controllers. The PLB attaches MicroBlaze to the peripherals: RS232 serial inter-
face, the MDM and the HWICAP. The system includes the FSL reconfigurable
coprocessor and the associated decoupling logic. The set of partial bitstreams will
be retrieved from an external FLASH memory, therefore, the system includes an
EMC (External Memory Controller) peripheral in order to permit the MicroBlaze
reading them to perform the reconfiguration.

In order to design the hardware of the embedded system, create a new XPS
project with the BSB wizard, as described in the previous chapter.

1. Choose the folder c:\edk13.1\reconfig\XPS to store the project file system.xmp.
2. Select the PLB, since the EDK does not support AXI for Virtex-5 devices.
3. Create a new design and select the xc5vlx50-ff676-1 device which is embedded

in the Virtex-5 prototyping board.
4. Select a single processor and continue to the end with the default options.

Edit the MHS file to change the polarity of reset button and the frequencies of
the reference clock and the system’s clock to the appropriate values of the pro-
totyping board. Set the frequency of the system’s clock to 100 MHz as it will be
detailed later. The name of the system’s clock is changed to sys_clk, therefore, it is
necessary that the clock inputs reference to the new name, including the LMBs and
the PLB. Finally, change the parameters C_HIGHADDR of the instruction and
data BRAM controllers to increase the processor’s local memory to 64 KB.
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The system declares the instance rcopro which is the reconfigurable copro-
cessor. The source files of the coprocessor fsl_rcopro are stored in the default local
repository pcores created by the XPS wizard. The coprocessor’s instance attaches
to MicroBlaze through FSLs. There is a decoupling logic which can reset the FSLs
and the coprocessor. MicroBlaze will control a GPIO (instance decoupling_gpio)
in order to assert the 1-bit signal decoupling_rst when the reconfiguration is
completed. If not, the FIFOs of the FSLs would store unexpected data, and the
state machine of the coprocessor would start in an undesired state.
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The reconfigurable coprocessor can map several configurations. The parameter
C_CONFIG_IDX in the MHS file specifies the initial configuration which is
synthesized and implemented during the EDK flow. The value 0 sets the module
dummy as the initial configuration of the coprocessor.

MicroBlaze will control the reconfiguration through the HWICAP peripheral
[5]. The peripheral embeds the ICAP which is connected to read/write FIFOs and a
slave PLB interface. The maximum frequency of the ICAP’s input clock is
100 MHz, therefore, the system’s clock accomplishes this constraint. The system
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will provide several clock domains if the ICAP sets a different clock frequency to
the system’s clock; however, it will complicate the design.

MicroBlaze must read a partial bitstream from the external FLASH to feed the
ICAP, in order to reconfigure the coprocessor. EDK provides an external memory
controller (EMC) [6] which permits access to asynchronous memories such as
SRAM and FLASH. It can control several banks of different memories that share
the same input/output ports. Each bank is accessible from a configurable address
range and provides configuration parameters to set the width of the data bus and
the timing specifications. The EMC permits access to 8-bit/16-bit data width
memories, and it can match them to the 32-bit data bus of the PLB. The displayed
configuration is valid for the 28F128J3D [7] device, the 16 MB FLASH embedded
in the Virtex-5 development board [3]. The MicroBlaze can access to the FLASH
from the address 0xA0000000 to the 0xA0FFFFFF. The configuration can be
complicated but, the board designer usually provides a reference design which can
be used to get the parameters. The input/output ports of the EMC are externally
connected to the address, data and control busses of the FLASH. The width of
address bus of the FLASH is 24-bit, but the EMC generates 32-bit addresses.
Therefore, the MHS slices the 24 lower bits that are externally connected.
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The system must be synthesized in order to generate the netlist files required by the
PR flow. The system netlist contains the module dummy as the initial configuration of
the coprocessor. The module dummy just reads the slave FSL and writes the master
FSL with zeros, but it does not perform any computation. This way, MicroBlaze will
not hang up when it executes any read/write instructions to the coprocessor’s FSLs.

XPS can continue to implement the FPGA layout, generating the bitstream sys-
tem.bit. Previously, the UCF file must be modified to map the external ports
depending on the development board. The implemented system is not valid to per-
form the PR but it can be exported to SDK in order to build the software. Moreover,
the system provides an initial configuration for the coprocessor which can be tested
and simulated, as described in the previous chapter. Finally, the system is able to
program the set of partial bitstreams into the FLASH, as is detailed later.

16.3.1.2 Synthesis of the RMs

The coprocessor will map several reconfigurable modules. All of them are con-
nected to MicroBlaze through the same FSL ports. The master and the slave FSL
connections are quite similar to the case study exposed in the previous chapter.
The VHDL source files that contain the different configurations of the coprocessor
must be synthesized to obtain their netlist files. There are several ways, as with the
Xilinx Project Navigator or with a third-party synthesizer.

This case study executes the XST synthesizer [8] from a command shell. The
directory c:\edk13.1\reconfig\XST allocates the files required by XST. Open a
Xilinx console clicking the XPS menu Project?Launch Xilinx Shell, and type the
next commands:
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The batch file fsl_rcopro.scr contains the XST commands to synthesize a set of
source VHDL files. The NGC file stores the netlist of a single module for the target
device.

The batch file relies on the file fsl_rcopro.prj which lists the files that are
synthesized, as in the PAO file. The VHDL file fsl_rcopro.vhd declares the top-
level entity of the coprocessor, and it contains the instance of the RM which is
synthesized. The rest of the VHDL files (fsl_rcopro_dummy.vhd, fsl_rco-
pro_adder.vhd, etc.) are the source files of the different RMs.

The XST must be executed for every RM in order to get the set of netlist files.
Change the parameter C_CONFIG_IDX and the name of the NGC output file to
synthesize a new RM. The XST folder will store the netlist files such as
fsl_rcopro_dummy.ngc, fsl_rcopro_adder.ngc, and so on.
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16.3.2 Partial Reconfiguration Flow on PlanAhead

PlanAhead is a complex tool to perform the design floorplanning on Xilinx
FPGAs, in order to improve clock frequency and delays, the placement of IOBs,
and more. PlanAhead can run in a PR flow mode in order to facilitate the
implementation of RMs on a reconfigurable partition. The PR flow requires an
additional license feature. The main steps to follow are:

1. Set the PR flow and the design files. The flow starts from the top-level netlist
file.

2. Set the reconfigurable partition and assign it the netlist of the RMs.
3. First layout implementation. It computes the FPGA layout of the static and the

reconfigurable partition with the initial RM. The static partition is promoted to
be imported during the next step.

4. Layout implementation for the rest of RMs. The flow continues importing the
promoted static partition, but implementing a new layout in the reconfigurable
partition for each new RM. The result is a set of FPGA layouts, where the
layout of the static partition remains invariable.

5. Bitstream generation. The last step is the bitstream generation phase to compute
the complete and partial bitstream of each implemented layout.

16.3.2.1 Set the PR Flow and the Design Files

Launch the PlanAhead and click the menu Create a New Project to open the
wizard (see Fig. 16.3).

1. Select the root folder c:\edk13.1\reconfig, and set the project name to
PlanAhead.

2. Choose the options Specify synthesized (EDIF or NGC) netlist and Set PR
Project. The PR license must be correctly installed in order to set the PR
project.

3. Select the top-level netlist file system.ngc which is stored in the folder
c:\edk13.1\reconfig\XPS\implementation. It is the synthesized embedded sys-
tem designed in XPS. It relies on the rest of the netlist files, therefore, add the
same path to the Netlist directories. Do not select the copy option.

4. Continue with the default options to complete the wizard.

The BMM file system.bmm is required during the implementation of embedded
systems, in order to generate the initial bitstream which configures the FPGA and
the BRAM contents, as commented in the previous chapter. The BMM file is
stored in the same location as the set of netlist files. Therefore, copy the file
system.bmm to the folder c:\edk13.1\reconfig\PlanAhead which contains the
PlanAhead project.
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16.3.2.2 Set the Reconfigurable Partition and the Reconfigurable Modules

Click the menu Flow?Netlist Design to display the list of netlist files which
composes the system’s hardware. The tab Netlist displays the instances of the
embedded system. In order to set the reconfigurable partition (see Fig. 16.4):

1. Select the instance rcopro and open the contextual menu (right button of the
mouse) and select Set Partition.

2. Select the option is a reconfigurable Partition, and change the name of the
reconfigurable module to module_dummy since it is the initial configuration
stored in the netlist files.

The tab Netlist now shows the module_dummy contained in the instance rcopro.
In order to add a new RM to the RP (see Fig. 16.5):

1. Open the contextual menu of the rcopro and click Add Reconfigurable Module
2. Change the RM name to module_adder.
3. Select the netlist file fsl_rcopro_adder.ngc which is stored in the XST direc-

tory. Continue with the default settings to end the wizard.

The previous steps are repeated for every RM. PlanAhead displays all the RM
modules in the tab Netlist. Finally, open the contextual menu of the configuration
module_dummy to select the option Set as Active Reconfigurable Module.

The next step defines the FPGA area devoted as the reconfigurable partition.
The RP must accomplish a set of design rules [1].

1

2

6

7

3

5

4

6

Fig. 16.3 Wizard to create a new PlanAhead PR project
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• The global clock logic must reside in the static partition
• Some types of hardware resources (global buffers, boundary-scan, etc.) should

be placed in the static partition.
• Bidirectional partition pins are not permitted.
• In order to obtain a greater efficiency, the RP should align to the boundaries of

the configuration frames.
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Fig. 16.5 Adding a RM to the RP
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Fig. 16.4 Set the RP and the initial RM to the coprocessor’s instance
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Select the instance rcopro and click the button Set Pblock Size in the device
view, as shown in Fig. 16.6. The number of hardware resources in the RP must be
higher than required by any of the synthesized RMs. This case study selects a
region which starts from the top-left edge of the FPGA. Set the partition height to
20 CLBs (a Virtex-5 configuration frame) and the width to 28 CLB columns.
The RP occupies the whole clock region of the FPGA which contains 560 SLICES,
4 RAMB36 and 8 DSP48 resources. Select all the resources in the next window to
permit them to be reconfigured, with the exception of the RAMB36 since no RM
requires them. The partial bitstream will reconfigure the hardware resources
contained in the RP, with the exception of the BRAM contents. This way, the size
of the partial bitstreams is reduced and the reconfiguration time improves.

Figure 16.7 displays the tab Statistics in the Properties of the Pblock
pblock_rcopro. It shows the size of a partial bitstream and the detailed number of
reconfigurable hardware resources. It also reports that the 100 % of the RP is con-
tained in a single clock region, as desired. The tab Attributes shows the range of
resources as SLICE_X0Y100:SLICE_X27Y119 and DSP48_X0Y40:DSP48_X0Y47.
The numbers denote the x–y coordinates starting from the bottom-left edge of the
FPGA. Therefore, the SLICES are arranged in a 28 9 20 matrix and the DSP48 are in
a single column. These parameters are annotated in a new UCF in order to implement
the layout of the reconfigurable system.

It is recommended to check the design rules for the PR flow before continuing.
Press Run DRC and unselect all rules except the related to the partial recon-
figuration, as shown in Fig. 16.8. It should only report a warning for each RM
since it is not still implemented by a configuration.
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Fig. 16.6 Assigning the area of the RP
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16.3.2.3 First Layout Implementation

The tab Design Runs shows the settings to run the implementations (see Fig. 16.9).
The default run created by PlanAhead will implement the layouts of the static
partition and the dummy module into the reconfigurable partition. It creates a batch
file which calls the ISE tools starting from the annotated constraints and netlist
files.

1. Select the default run config_1 created by PlanAhead
2. Display the properties of the partitions and check the coprocessor’s RP will

implement the RM module_dummy.
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Fig. 16.8 Design rule check for
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Fig. 16.7 Properties of the RP
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3. Display the implementation options to add –bm..\..\system.bmm to the NGD-
Build tool. This option will load the BMM file which was copied from the XPS
project, in order to generate the annotated BMM file which will be required
later by the Data2MEM tool [9].

4. Display the general properties to change the run name to config_dummy.
5. Start the implementation run by pressing the button Launch Selected Runs.

The implementation of the layout takes some minutes to complete. PlanAhead
opens a dialog window when it completes. Promote the implemented partitions
since it is necessary in the next step.

16.3.2.4 Layout Implementation for the Next RMs

The next step implements the layouts for the rest of the reconfigurable modules. The
PR flow starts importing the layout of the static partition from the first implemen-
tation. Then, it computes the layout of a new RM implemented into the RP.
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Fig. 16.9 Configuring the implementation run for the first layout
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1. Click the button Create New Runs to configure a new implementation
(see Fig. 16.10). Continue with the default netlist, constraints and device since
they are the same as the first implementation.

2. Change the default name to config_adder. Configure the RP rcopro to imple-
ment the RM module_adder.

3. Add the BMM file in the same way as exposed in the first implementation run.
4. Press the button More to add the new runs to implement the rest of the RMs and

repeat the previous two steps (but changing the name and the RM).
5. Finalize the wizard, but do not launch the run.

Select the new created runs to launch them. PlanAhead can take profit of a
multi-core PC incrementing the number of jobs to compute several layouts in
parallel. Each run imports the layout of the static partition and computes a new
layout in the reconfigurable partition. After finishing the implementation, do not
perform any action when asked by PlanAhead.

The ISE provides the FPGA Editor tool which displays an implemented layout.
Open the file config_dummy_routed.ncd which is stored in the folder c:\edk13.1\
reconfig\PlanAhead\PlanAhead.runs\config_dummy to display the FPGA first
layout. In a similar way, open another implemented layout and check that the
layouts are only different in the reconfigurable partition (see Fig. 16.11).
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Fig. 16.10 Configuring a new implementation run for the adder RM
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16.3.2.5 Bitstreams Generation

It is the final step in the PR flow. Select all the implementation runs and open the
contextual menu to generate the bitstreams with the default options. It launches the
BitGen tool [10] from the implemented layouts. Each layout generates two bitstream
BIT files: the total and the partial. The total bitstream configures all the hardware
resources of the FPGA to program the reconfigurable embedded system. The partial
bitstream only configures the resources of the reconfigurable partition to program
the coprocessor. The BitGen also creates the file system_bd.bmm which annotates
the source BMM file with the placement of the BRAM blocks. The annotated BMM
file is required later to program the FPGA with an executable ELF file.

A change in the netlist files or in the PR settings requires updating the bitstream
files. PlanAhead permits to reset the implemented runs in order to update the
implemented layouts and bitstreams.

16.3.3 Software Development

Once the system hardware has been exported from XPS, the SDK can start, as
detailed in the previous chapter. Create a new SDK workspace in the folder
c:\edk13.1\reconfig\XPS\SDK\workspace. The imported bitstream file system.bit

config_dummy config_adder config_xxx

Reconfigurable
partition

Fig. 16.11 The first implemented layout (left) and two other layouts for other RMs
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from XPS can program the FPGA with a static embedded system which cannot be
reconfigured since it does not provide a reconfigurable partition. However, SDK
can build the BSP and the ELF file for the imported system. Moreover, this static
system can be tested, debugged and simulated, with the initial configuration for the
coprocessor, in a similar way as in the previous chapter. The static system can be
used also to program the external FLASH with the partial bitstreams. The re-
configurable system will read the partial bitstreams to program the coprocessor.

16.3.3.1 Flashing the Partial Bitstreams

The folder bitstream contains a simple batch file bitstream.bat which copies the
required bitstream files from PlanAhead. Open a command shell by clicking the
SDK menu Xilinx Tools?Launch Shell, in order to execute the batch file.

The total bitstream of the reconfigurable system is copied and renamed to
system_dummy.bit since the module dummy is the initial coprocessor configuration.
The partial bitstreams are named partial_dummy.bit, partial_adder.bit and so on.
The file sizes of the partial bitstream are larger than those reported by PlanAhead
since they include header data and the ICAP commands [2] to perform the partial
reconfiguration. The batch also copies the BMM file system_bd.bmm which will be
necessary later.

The NOR FLASH 28F128J3D [7] provides 16 MB of non-volatile memory
arranged in 128 KB blocks. It provides the standard CFI (Common Flash Inter-
face) which permits to erase and program the FLASH blocks. The application
devotes the last 1 MB (8 blocks) to storing the partial bitstreams and each single
block can allocate a partial bitstream file.

The easiest way to program the FLASH memory is from SDK. First, the FPGA
must map an embedded system which provides a memory controller able to
successfully access the external FLASH. Then, the SDK can load an executable
into the embedded system which downloads a data file and executes the CFI
queries to program the FLASH.

Therefore, program the FPGA with the bitstream system.bit imported from
XPS, and then click the menu Xilinx Tools?Program Flash to open the dialog
window shown in Fig. 16.12.

1. Set the file partial_dummy.bit which will be programmed into the FLASH.
2. Check that the EMC and bank are related to the external FLASH, and that the

base address is correct (0xA0000000).
3. Set the address offset to 15 MB (0xF00000). The file is programmed in the

resulting address of the addition the base address and the offset (0xA0F00000).
4. Program the FLASH. It will take some seconds to complete.
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Repeat the process to program the rest of partial bitstreams into the next
FLASH blocks (0xA0F200000, 0xA0F400000, etc.). Therefore, the offset must be
incremented 128 KB (0x20000) to point to the next block.

16.3.3.2 BSP Generation

The BSP generation is similar to the study cases of the previous chapter. The SDK
provides a wizard to create the BSP project. The MSS file is modified to set the
specific driver to the reconfigurable coprocessor in order to build the BSP with it.

Moreover, the file libgen.options must add the path of the local repository
which contains the source files. They are stored in the default folder drivers
allocated in the XPS root directory.
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Fig. 16.12 Programming a partial bitstream into the FLASH
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The coprocessor driver is composed of a different function for each module to
compute 3 9 3 matrices. They send data and retrieve results through the FSL slots,
in the same way as described in the previous chapter. The driver function for the
matrix addition and multiplication sends two matrices and it retrieves the resulting
matrix. The scalar multiplication function sends an integer and a matrix and
retrieves the computed matrix. The determinant function sends a matrix and it
returns the integer result. Finally, the driver for the dummy module sends any data
and it returns the data (should be zero) retrieved from the module.

16.3.3.3 Executable

Create a new C++ project named app1 to build the executable ELF file for the
generated BSP. The source file app1.cc contains the main application functions,
and it relies on the C++ class CBitStream. The class implements methods to read
the bitstream headers from FLASH and to perform the partial reconfiguration. The
application devotes an array of objects of the previous class which is initialized at
the beginning of the application. Three parameters define the settings used to
initialize the array reading the bitstream headers. Then, the application continues
communicating with the user through the serial port in order to load the desired
RM. It also performs a test of the active reconfigurable module which compares
the resulting data from the coprocessor and the computed data from MicroBlaze.
As commented previously, Microblaze must command the GPIO to reset the FSLs
and the reconfigurable coprocessor after the partial reconfiguration completes.
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The class CBitStream contains the method ReadHeader to initialize its member
data from a bitstream file. The member data will take invalid values if the header
reading fails. The BIT files stored in the FLASH are composed of a header and raw
data. The header contains several fields [11] that provide information about the
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layout: target FPGA, date, time and name of the NCD file. The last field contains
the address and the size (in bytes) of the raw data.

The method Reconfig performs the partial reconfiguration after checking the
data collected from the header. The raw data of a bitstream embeds the set of ICAP
commands [2] that permit the partial reconfiguration of the FPGA. Therefore, the
task performed by the C++ class during the reconfiguration is reduced to write into
the HWICAP the 32-bit words retrieved from the raw data.

The HWICAP peripheral [5] embeds the ICAP and provides two FIFOs and a
set of registers to perform the partial reconfiguration or to read-back the config-
uration memory. The example uses three peripheral’s registers to perform the
partial reconfiguration: control, status, and write FIFO registers. MicroBlaze
accesses to the registers through C/C++ pointers as commented in the previous
chapter.

The C++ class implements the method Hwicap_WordWrite to write a config-
uration word to the HWICAP. First, the word is temporally stored in the write
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FIFO. Then, it sets the control register to start the data transfer from the FIFO to
the ICAP. The status register indicates whether the write to the HWICAP was
completed, aborted or got an error. The method returns unsuccessfully in the last
two cases. The method waits until the write of the configuration word completes
before returning successfully.

The method Hwicap_InitWrite aborts and restarts the HWICAP before starting,
in order to assure that the peripheral is empty of data from a previous
reconfiguration.

The application would improve using an ISR associated to the HWICAP to
avoid waiting to the completion of the write. The ISR would read a new config-
uration word when the HWICAP is ready to get a new one. Moreover, the ISR
would write the FIFO with several configuration words before starting the data
transfer to the ICAP. They were not implemented since they would obfuscate the
basics about the partial reconfiguration.
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16.3.3.4 Testing

In order to test the reconfigurable embedded system, the FPGA must be pro-
grammed with the bitstream generated by PlanAhead and the executable file.
Therefore, select the bitstream system_dummy.bit and the BMM system_bd.bmm
that were imported from PlanAhead (see Fig. 16.13). Then, select the executable
ELF file app1.elf. SDK calls the Data2MEM [9] tool to generate the bitstream file
download.bit which configures the FPGA and the BRAM contents.

The application can also be debugged in the reconfigurable system as described
in the previous chapter.
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