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Introduction to Logic Design, Third Edition by Alan Marcovitz—the 
student’s companion to logic design! A clear presentation of fundamentals 
and well-paced writing style make this the ideal companion to any �rst 
course in digital logic. An extensive set of examples—well integrated 
into the body of the text and included at the end of each chapter in 
sections of solved problems—gives students multiple opportunities  
to understand the topics being presented.

In the third edition, design is emphasized throughout, and switching 
algebra is developed as a tool for analyzing and implementing digital 
systems. The design of sequential systems includes the derivation of 
state tables from word problems, further emphasizing the practical 
implementation of the material being presented.

Laboratory experiments are included that also serve to integrate  
practical circuits with theory. Traditional hands-on hardware  
experiments as well as simulation laboratory exercises using popular 
software packages are closely tied to the text material to allow  
students to implement the concepts they are learning.

new to the Third Edition:

•  All of the K map (Karnaugh map) coverage is presented in one  
chapter (chapter 3) instead of coverage appearing in two chapters.

•  New Appendix A (Relating the Algebra to the Karnaugh Map) ties 
together algebra coverage and K map coverage.

•  Additional experiments have been added to Appendix D to allow 
students the opportunity to perform a variety of experiments.

•  New problems have been added in Appendix E for both combinational 
and sequential systems, which go from word problem to circuit all 
in one place.
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WALK THROUGH

Introduction to Logic Design is written with the student in mind.
The focus is on the fundamentals and teaching by example. The
author believes that the best way to learn logic design is to study
and solve a large number of design problems, and that is what he
gives students the opportunity to do. In keeping with the student
focus, the following features contribute to this goal.

Examples Numerous easy-to-spot examples that help
make concepts clear and understandable are integrated
throughout each chapter.

EXAMPLE 3.12
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The four essential prime implicants are shown on the second map, leaving

three 1’s to be covered:

F � A�C�D� � AC�D � A�CD � ACD� � � � �

These squares are shaded on the right-hand map. The three other prime

implicants, all groups of four, are also shown on the right-hand map. Each

of these covers two of the remaining three 1’s (no two the same). Thus, any

two of B�D�, AB�, and B�C can be used to complete the minimum SOP

expression. The resulting three equally good answers are

F � A�C�D� � AC�D � A�CD � ACD� � B�D� � AB�

F � A�C�D� � AC�D � A�CD � ACD� � B�D� � B�C

F � A�C�D� � AC�D � A�CD � ACD� � AB� � B�C

We will first construct a truth table and map the functions.

7.5 SOLVED PROBLEMS

1. For the following state table and state assignment, show
equations for the next state and the output. 

q
q� z

x � 0 x � 1 x � 0 x � 1

A C A 1 0
B B A 0 1
C B C 1 0

q q1 q2

A 0 1
B 1 1
C 0 0

q x q1 q2 z q1
� q2

�

C 0 0 0 1 1 1
A 0 0 1 1 0 0
— 0 1 0 X X X
B 0 1 1 0 1 1
C 1 0 0 0 0 0
A 1 0 1 0 0 1
— 1 1 0 X X X
B 1 1 1 1 0 1

6.6 EXERCISES

1. For each of the following state tables, show a state diagram and

complete the timing trace as far as possible (even after the input

is no longer known).

a. q1
� q2

� z
q1q2 x � 0 x � 1 x � 0 x � 1

0 0 0 1 0 0 0 1

0 1 1 0 1 1 0 0

1 0 0 0 0 0 1 1

1 1 0 1 0 1 1 0

x 1 0 1 1 0 0 0 1

q1 0

E
X

E
R

C
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7.7 Chapter 7 Test 491

2. For the following state table and state assignment, design a system

using an SR flip flop for q1 and a JK flip flop for q2. Show the flip

flop input equations and the output equation; you do NOT need to

draw a block diagram.

7.7 CHAPTER 7 TEST (75 MINUTES)

1. For the following state table, design a system using a D flip flop for

A, a JK flip flop for B, and AND, OR, and NOT gates. Show the

flip flop input equations and the output equation; you do NOT need

to draw a block diagram.

A�B� z
A B x � 0 x � 1 x � 0 x � 1

0 0 1 1 0 1 0 1

0 1 0 0 1 0 0 0

1 0 1 0 0 1 1 1

1 1 0 1 1 0 1 0
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Solved Problems A hallmark feature
of this book, the extensive set of solved prob-
lems found at the end of every chapter gives
students the advantage of seeing concepts
applied to actual problems.

Color Color is used as a powerful
pedagogical aid throughout.

Karnaugh Maps The liberal use of
Karnaugh maps helps students grasp the basic
principles of switching algebra.

End-of-Chapter Tests “Test Yourself”
sections, also identifiable by a shaded bar, are
designed to help students measure their compre-
hension of key material. Answers to tests can be
found in Appendix C.

Exercises Each chapter features a wide
selection of exercises, identifiable by a colored
bar, with selected answers in Appendix B.
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Complete Examples Marcovitz features six
complete examples, from word problem to design, in
Appendix E.

15. Design a 1-bit decimal adder, where decimal digits are stored in

excess 3 code.

When you add the two codes using a binary adder, the carry is

always correct. The sum must be corrected by adding �3 if

there is no carry or �3 if there is a carry.

0011 0 1010 7

0100 1 1001 6

0 0111 1 0011

�3 1101 +3 0011

(1) 0100 1 0110 13

4-Bit Adder

4-Bit Adder

A�s B�s

s4s3s2s1

cin

cout

sumignored

c

01

EXAMPLE 4
Design a Moore system with one input, x, and one output, z, such that z
changes whenever there have been two consecutive 0 inputs. The system

output is initially 0. Implement it with JK flip flops and NAND.

Sample

x 1  1  0  0  1  0  0  1  0  0  0  1  0  1  1  0  1  0  0  0  0  0  

z 0  0  0  0  1  1  1  0  0  0  1  1  1  1  1  1  1  1  1  0  1  0  1

From the sample timing trace, it is clear that when there are more than two

consecutive 0 inputs, the output keeps changing.

There are two nowhere states, A where the output is 0 and B where 

the output is one. In either of these states, a 1 input leaves the state

unchanged, and a 0 input moves ahead. The other two states are C, where

the output is still 0, but there has been a 0 input and D, where the output is

still 1. This leads to the following state diagram.

EXAMPLE E.4
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� 24. Design a serial adder to add two 4-bit numbers. Each number is
stored in a 7495 shift register.

Full
Adder

Shift Registers

Flip Flop

c

Load them using the parallel load capability. You must clear
the carry storage flip flop before starting. Use a pulser for
the clock and a switch to control whether it is loading or
shifting. Display the contents of the lower shift register

4.6 PRIME IMPLICANT TABLES FOR
MULTIPLE OUTPUT PROBLEMS

Having found all of the product terms, we create a prime implicant table

with a separate section for each function. The prime implicant table for

the first set of functions of the last two sections

f(a, b, c) � �m(2, 3, 7)

g(a, b, c) � �m(4, 5, 7)

is shown in Table 4.9. An X is only placed in the column of a function for

which the term is an implicant. (For example, there is no X in column 7

of g or for term D.) Essential prime implicants are found as before (a�b
for f and ab� for g).

Table 4.9 A multiple output prime implicant table.

f g

� � � �
$ 2 3 7 4 5 7

1 1 1 4 A X X

0 1 –� 3 B X X

1 0 –� 3 C X X

– 1 1 3 D X X

1 – 1 3 E X X

Multiple Output Problems Techniques 
for solving multiple output problems are shown 
using the Karnaugh map, Quine-McCluskey, and
iterated consensus.

Labs Four types of laboratory experiments help to 
integrate practical circuits with theory. Students can
take advantage of traditional hands-on hardware exper-
iments, experiments designed for WinBreadboard/
MacBreadboard (a virtual breadboard), and simulation
laboratory exercises using the circuit capture program
LogicWorks.

Design Design using standard small- and
medium-scale integrated circuit packages and
programmable logic devices is a key aspect of
the book.
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This book is intended as an introductory logic design book for
students in computer science, computer engineering, and electri-
cal engineering. It has no prerequisites, although the maturity

attained through an introduction to engineering course or a first pro-
gramming course would be helpful.

The book stresses fundamentals. It teaches through a large number
of examples. The philosophy of the author is that the only way to learn
logic design is to do a large number of design problems. Thus, in addi-
tion to the numerous examples in the body of the text, each chapter has a
set of Solved Problems, that is, problems and their solutions, a large set
of Exercises (with answers to selected exercises in Appendix B), and a
Chapter Test (with answers in Appendix C). Also, six complete examples
(from word problem to circuit design) are included in Appendix E. Three
of these are combinational and can be used after Chapter 3, and the oth-
ers are sequential, to follow Chapter 7. In addition, there is a set of labo-
ratory experiments that tie the theory to the real world. Appendix D
provides the background to do these experiments with a standard hard-
ware laboratory (chips, switches, lights, and wires), a breadboard simu-
lator (for the PC or Macintosh), and a schematic capture tool. The course
can be taught without the laboratory, but the student will benefit signifi-
cantly from the addition of 8 to 10 selected experiments.

Although computer-aided tools are widely used for the design of
large systems, the student must first understand the basics. The basics
provide more than enough material for a first course. The schematic cap-
ture laboratory exercises and sections on Hardware Design Languages in
Chapters 4 and 8 provide some material for a transition to a second
course based on one of the computer-aided tool sets.

Chapter 1, after a brief introduction, gives an overview of number
systems as it applies to the material of this book. (Those students who
have studied this in an earlier course can skip this chapter.)

Chapter 2 discusses the steps in the design process for combina-
tional systems and the development of truth tables. It then introduces
switching algebra and the implementation of switching functions using
common gates—AND, OR, NOT, NAND, NOR, Exclusive-OR, and
Exclusive-NOR. We are only concerned with the logic behavior of the
gates, not the electronic implementation. 

Although the Karnaugh map is not introduced until Chapter 3, those
who wish to use it in conjunction with algebraic simplification can cover
Section 3.1 after Section 2.6, and find a number of examples relating the
algebra to the map in Appendix A.

PREFACE

ix
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Chapter 3 deals with simplification using the Karnaugh map. It pro-
vides methods for solving problems (up to six variables) with both single
and multiple outputs.

Chapter 4 introduces two algorithmic methods for solving combi-
national problems—the Quine-McCluskey method and iterated con-
sensus. Both provide all of the prime implicants of a function or set of
functions, and then use the same tabular method to find minimum sum of
products solutions.

Chapter 5 is concerned with the design of larger combinational
systems. It introduces a number of commercially available larger
devices, including adders, comparators, decoders, encoders and priority
encoders, and multiplexers. That is followed by a discussion of the use
of logic arrays—ROMs, PLAs, and PALs for the implementation of
medium-scale combinational systems. Finally, two larger systems are
designed.

Chapter 6 introduces sequential systems. It starts by examining the
behavior of latches and flip flops. It then discusses techniques to analyze
the behavior of sequential systems.

Chapter 7 introduces the design process for sequential systems. The
special case of counters is studied next. Finally, the solution of word
problems, developing the state table or state diagram from a verbal
description of the problem is presented in detail.

Chapter 8 looks at larger sequential systems. It starts by examining
the design of shift registers and counters. Then, PLDs (logic arrays with
memory) are presented. Three techniques that are useful in the design 
of more complex systems—ASM diagrams, one-hot encoding, and
HDLs—are discussed next. Finally, two examples of larger systems are
presented.

Chapter 9 (available on the web site of the book, http://www
.mhhe.com/marcovitz) deals with state reduction and state assignment
issues. First, a tabular approach for state reduction is presented. Then
partitions are utilized both for state reduction and for achieving a state
assignment that will utilize less combinational logic.

A feature of this text is the Solved Problems. Each chapter has a
large number of problems, illustrating the techniques developed in the
body of the text, followed by a detailed solution of each problem. Stu-
dents are urged to solve each problem (without looking at the solution)
and then compare their solution with the one shown. 

Each chapter contains a large set of exercises. Answers to a selection
of these are contained in Appendix B. Solutions are available to instruc-
tors on the website. In addition, each chapter concludes with a Chapter
Test; answers are given in Appendix C.

Another unique feature of the book is the laboratory exercises,
included in Appendix D. Three platforms are presented—a hardware-
based Logic Lab (using chips, wires, etc.); a hardware lab simulator that
allows the student to “connect” wires on the computer screen; and a cir-
cuit capture program, LogicWorks. Enough information is provided

x Preface
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about each to allow the student to perform a variety of experiments. A set
of 26 laboratory exercises are presented. Several of these have options, to
allow the instructor to change the details from one term to the next.

We teach this material as a four-credit course that includes an average
of three and a half hours per week of lecture, plus, typically, eight labora-
tory exercises. (The lab is unscheduled; it is manned by Graduate
Assistants 40 hours per week; they grade the labs.) In that course we cover

Chapter 1: all of it

Chapter 2: all but 2.11

Chapter 3: all of it

Chapter 5: all but 5.8. However, there is a graded design problem
based on that material (10 percent of the grade; students usually
working in groups of 2 or 3).

Chapter 6: all of it

Chapter 7: all of it

Chapter 8: 8.1, 8.2, 8.3. We sometimes have a second project based
on 8.7.

Chapter 9 and Chapter 4: We often have some time to look at one
of these. We have never been able to cover both.

With less time, the coverage of Section 2.10 could be minimized.
Section 3.5 is not needed for continuity; Section 3.6 is used somewhat in
the discussion of PLAs in Section 5.7.2. Chapter 5 is not needed for any-
thing else in the text, although many of the topics are useful to students
elsewhere. The instructor can pick and choose among the topics. The SR
and T flip flops could be omitted in Chapters 6 and 7. Sections 7.2 and 7.3
could be omitted without loss of continuity. As is the case for Chapter 5,
the instructor can pick and choose among the topics of Chapter 8. With a
limited amount of time, Section 9.1 could be covered. With more time, it
could be skipped and state reduction taught using partitions (Sections 9.2
and 9.3).

WEBSITE
Teaching and learning resources are available on the website that accom-
panies this text. For students, these resources include quiz files and sam-
ple tests. For instructors, a solutions manual, PowerPoint lecture
outlines, and other resources are available. The web address for this site
is http://www.mhhe.com/marcovitz.

ELECTRONIC TEXTBOOK OPTIONS
This text is offered through CourseSmart for both instructors and stu-
dents. CourseSmart is an online resource where students can pur-
chase the complete text online for almost half the cost of a traditional

Preface xi
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text. Purchasing the eTextbook allows students to take advantage of
CourseSmart’s web tools for learning, which include full text search,
notes and highlighting, and email tools for sharing notes between class-
mates. To learn more about CourseSmart options, contact your sales rep-
resentative or visit http://www.CourseSmart.com.
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C H A P T E R

Figure 1.1 A digital system.

A
B

W
X

m outputsn inputs

Digital
System� �

EXAMPLE 1.1

*The term if and only if is often abbreviated “iff.” It means that the output is 1 if the
condition is met and is not 1 (which means it must be 0) if the condition is not met.

1

Introduction

This book concerns the design of digital systems, that is, systems in
which all of the signals are represented by discrete values. Inter-
nally, digital systems usually are binary, that is, they operate with

two-valued signals, which we will label 0 and 1. (Although multivalued
systems have been built, two-valued systems are more reliable and thus
almost all digital systems use two-valued signals.)

Computers and calculators are obvious examples of digital systems,
but most electronic systems contain a large amount of digital logic. The
music that we listen to on our CD players or iPods, the individual dots on
a computer screen (and on the newer digital televisions), and most cell
phone signals are coded into strings of binary digits, referred to as bits.

1.1 LOGIC DESIGN

A digital system, as shown in the Figure 1.1, may have an arbitrary num-
ber of inputs (A, B, . . .) and an arbitrary number of outputs (W, X, . . .).
In addition to the data inputs shown, some circuits require a timing
signal, called a clock (which is just another input signal that alternates
between 0 and 1 at a regular rate). We will discuss the details of clock
signals in Chapter 6.

A simple example of digital systems is described in Example 1.1.

A system with three inputs, A, B, and C, and one output, Z, such that Z�1
if and only if* two of the inputs are 1.

The inputs and outputs of a digital system represent real quantities.
Sometimes, as in Example 1.1, these are naturally binary, that is, they
take on one of two values. Other times, they may be multivalued. For
example, an input may be a decimal digit or the output might be the let-
ter grade for this course. Each must be represented by a set of binary 

1
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Table 1.1 A truth table for
Example 1.1.

A B C Z

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

2 Chapter 1 Introduction

digits. This process is referred to as coding the inputs and outputs into
binary. (We will discuss the details of this later.)

The physical manifestation of these binary quantities may be one of
two voltages, for example, 0 volts (V) or ground for logic 0 and 5 V for
logic 1. It may also be a magnetic field in one direction or another (as on
diskettes), a switch in the up or down position (for an input), or a light on
or off (as an output). Except in the translation of verbal descriptions into
more formal ones, the physical representation will be irrelevant in this
text; we will be concerned with 0’s and 1’s.

We can describe the behavior of a digital system, such as that of Exam-
ple 1.1, in tabular form. Since there are only eight possible input combina-
tions, we can list all of them and what the output is for each. Such a table
(referred to as a truth table) is shown in Table 1.1. We will leave the devel-
opment of truth tables (including one similar to this) to the next chapter.

Four other examples are given in Examples 1.2 through 1.5.

A system with eight inputs, representing two 4-bit binary numbers, and one
5-bit output, representing the sum. (Each input number can range from 0 to
15; the output can range from 0 to 30.)

A system with one input, A, plus a clock, and one output, Z, which is 1 iff
the input was one at the last three consecutive clock times.

A digital clock that displays the time in hours and minutes. It needs to dis-
play four decimal digits plus an indicator for AM or PM. (The first digit display
only needs to display a 1 or be blank.) This requires a timing signal to
advance the clock every minute. It also requires a means of setting the time.
Most digital clocks also have an alarm feature, which requires additional
storage and circuitry.

A more complex example is a traffic controller. In the simplest case, there
are just two streets, and the light is green on each street for a fixed period
of time. It then goes to yellow for another fixed period and finally to red.
There are no inputs to this system other than the clock. There are six out-
puts, one for each color in each direction. (Each output may control multi-
ple bulbs.) Traffic controllers may have many more outputs, if, for example,
there are left-turn signals. Also, there may be several inputs to indicate
when there are vehicles waiting at a red signal or passing a green one.

The first two examples are combinational, that is, the output depends
only on the present value of the input. In Example 1.1, if we know the
value of A, B, and C right now, we can determine what Z is now.* Exam-

EXAMPLE 1.2

EXAMPLE 1.3

EXAMPLE 1.4

EXAMPLE 1.5

*In a real system, there is a small amount of delay between the input and output, that is, if
the input changes at some point in time, the output changes a little after that. The time
frame is typically in the nanosecond (10�9 sec) range. We will ignore those delays almost
all of the time, but we will return to that issue in Chapter 5.
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1.1 Logic Design 3

ples 1.3, 1.4, and 1.5 are sequential, that is, they require memory, since
we need to know something about inputs at an earlier time (previous
clock times).

We will concentrate on combinational systems in the first half of the
book and leave the discussion about sequential systems until later. As we
will see, sequential systems are composed of two parts: memory and
combinational logic. Thus, we need to be able to design combinational
systems before we can begin designing sequential ones.

A word of caution about natural language in general, and English
in particular, is in order. English is not a very precise language. The
previous examples leave some room for interpretation. In Example 1.1,
is the output to be 1 if all three of the inputs are 1, or only if exactly two
inputs are 1? One could interpret the statement either way. When we
wrote the truth table, we had to decide; we interpreted “two” as “two or
more” and thus made the output 1 when all three inputs were 1. (In
problems in this text, we will try to be as precise as possible, but even
then, different people may read the problem statement in different
ways.)

The bottom line is that we need a more precise description of logic
systems. We will develop that for combinational systems in Chapter 2
and for sequential systems in Chapter 6.

1.1.1 The Laboratory

Although the material in this text can be studied without implementing
any of the systems that are designed, hands-on laboratory experimenta-
tion greatly aids the learning process. The traditional approach involves
wiring logic blocks, connecting inputs from switches or power supplies,
and probing the outputs with meters or displaying them with lights. In
addition, there are a large number of computer tools available that allow
the user to simulate a logic system.

Using whichever platform is available, students should build some
of the circuits that they have designed and test them, by applying vari-
ous inputs and checking that the correct output is produced. For small
numbers of inputs, try all input combinations (the complete truth table).
For larger numbers of inputs, the 4-bit adder, for example, a sample of
the inputs is adequate as long as the sample is chosen in such a way as
to exercise all of the circuit. (For example, adding many pairs of small
numbers is not adequate, since it does not test the high-order part of the
adder.)

We include, in Appendix D, the description of three platforms—one
traditional hardware approach and two of the simpler software simula-
tors. Also included is a set of laboratory exercises that can be performed
on each, and the pinouts for all of the integrated circuits discussed in the
text and the experiments.
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In Appendix D.1, we will introduce the features of the IDL-800 Dig-
ital Lab.* It provides switches, pulsers, and clock signals for inputs, and a
set of lights and two seven-segment displays for outputs. There is a place
to put a breadboard and to plug in a number of integrated circuit packages
(such as those described throughout the text). Also, power supplies and
meters are built in. It is not necessary to have access to this system to exe-
cute the experiments, but it does have everything needed in one place
(except the integrated circuit packages and the wires for connectors).

We will also introduce, in Appendix D.2, a breadboard simulator
(MacBreadboard and WinBreadboard†). It contains switches, pulsers, a
clock signal, and lights, very much like the hardware laboratory. Inte-
grated circuits can be placed on the breadboard and wires “connected.”

More complex software packages, such as LogicWorks‡ and Altera§,
allow us to build a simulation of the circuit on a computer and test it. The
circuit can be described as a set of gates or integrated circuits and their
connections. In some systems, parts or all of the circuit can be repre-
sented in VHDL or other similar design languages. We will introduce the
basics of LogicWorks in Appendix D.3, enough to allow us to “build”
and test the various circuits discussed in the text. A description of the
Altera tool set can be found in Brown & Vranesic, Fundamentals of
Logic with VHDL Design, 3rd Ed., McGraw-Hill, 2009.

Appendix D.4 contains a set of 26 experiments (keyed to the appro-
priate chapters) that can be performed on each of the platforms.

Finally, Appendix D.5 contains the pinouts for all of the integrated
circuits discussed in the text and the experiments.

1.2 A BRIEF REVIEW
OF NUMBER SYSTEMS

This section gives an introduction to some topics in number systems, pri-
marily those needed to understand the material in the remainder of the
book. If this is familiar material from another course, skip to Chapter 2.

Integers are normally written using a positional number system, in
which each digit represents the coefficient in a power series

N � an�1r
n�1 � an�2r

n�2 � � � � � a2r
2 � a1r � a0

where n is the number of digits, r is the radix or base, and the ai are the
coefficients, where each is an integer in the range

0 � ai � r

For decimal, r � 10, and the a’s are in the range 0 to 9. For binary, r � 2,
and the a’s are all either 0 or 1. Another commonly used notation in

4 Chapter 1 Introduction

*Manufactured by K & H Mfg. Co., Ltd. (http://www.kandh.com.tw).
†A trademark of Yoeric Software (http://www.yoeric.com).
‡Capilano Computing (http://www.capilano.com).
§Altera Corporation (http://www.altera.com).
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Table 1.2 Powers of 2.

n 2n n 2n

1 2 11 2,048
2 4 12 4,096
3 8 13 8,192
4 16 14 16,384
5 32 15 32,768
6 64 16 65,536
7 128 17 131,072
8 256 18 262,144
9 512 19 524,288

10 1,024 20 1,048,576

computer documentation is hexadecimal, r � 16. In binary, the digits are
usually referred to as bits, a contraction for binary digits.

The decimal number 7642 (sometimes written 764210 to emphasize
that it is radix 10, that is, decimal) thus stands for.

764210 � 7 � 103 � 6 � 102 � 4 � 10 � 2

and the binary number

1011112 � 1 � 25 � 0 � 24 � 1 � 23 � 1 � 22 � 1 � 2 � 1
� 32 � 8 � 4 � 2 � 1 � 4710

From this example,* it is clear how to convert from binary to decimal;
just evaluate the power series. To do that easily, it is useful to know the
powers of 2, rather than compute them each time they are needed. (It
would save a great deal of time and effort if at least the first 10 powers of
2 were memorized; the first 20 are shown in the Table 1.2.)

We will often be using the first 16 positive binary integers, and
sometimes the first 32, as shown in the Table 1.3. (As in decimal, leading
0’s are often left out, but we have shown the 4-bit number including lead-
ing 0’s for the first 16.) When the size of the storage place for a positive
binary number is specified, then leading 0’s are added so as to obtain the
correct number of bits.

1.2 A Brief Review of Number Systems 5

*Section 1.3, Solved Problems, contains additional examples of each of the types of
problems discussed in this chapter. There is a section of Solved Problems in each of the
chapters.

Table 1.3 First 32 binary integers.

Decimal Binary 4-bit Decimal Binary

0 0 0000 16 10000
1 1 0001 17 10001
2 10 0010 18 10010
3 11 0011 19 10011
4 100 0100 20 10100
5 101 0101 21 10101
6 110 0110 22 10110
7 111 0111 23 10111
8 1000 1000 24 11000
9 1001 1001 25 11001

10 1010 1010 26 11010
11 1011 1011 27 11011
12 1100 1100 28 11100
13 1101 1101 29 11101
14 1110 1110 30 11110
15 1111 1111 31 11111
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Note that the number one less than 2n consists of n 1’s (for example,
24 � 1 � 1111 � 15 and 25 � 1 � 11111 � 31).

An n-bit number can represent the positive integers from 0 to 2n � 1.
Thus, for example, 4-bit numbers have the range of 0 to 15, 8-bit num-
bers 0 to 255 and 16-bit numbers 0 to 65,535.

To convert from decimal to binary, we could evaluate the power
series of the decimal number, by converting each digit to binary, that is

746 � 111 � (1010)10 � 0100 � 1010 � 0110

but that requires binary multiplication, which is rather time-consuming.
There are two straightforward algorithms using decimal arith-

metic. First, we can subtract from the number the largest power of
2 less than that number and put a 1 in the corresponding position of the
binary equivalent. We then repeat that with the remainder. A 0 is put in
the position for those powers of 2 that are larger than the remainder.

For 746, 29 � 512 is the largest power of 2 less than or equal to 746, and
thus there is a 1 in the 29 (512) position.

746 � 1 _ _ _ _ _ _ _ _ _

We then compute 746 � 512 = 234. The next smaller power of 2 is 28 �

256, but that is larger than 234 and thus, there is a 0 in the 28 position.

746 � 1 0 _ _ _ _ _ _ _ _

Next, we compute 234 � 128 � 106, putting a 1 in the 27 position.

746 � 1 0 1 _ _ _ _ _ _ _

Continuing, we subtract 64 from 106, resulting in 42 and a 1 in the 26 position.

746 � 1 0 1 1 _ _ _ _ _ _

Since 42 is larger than 32, we have a 1 in the 25 position, and compute 42 �
32 � 10.

746 � 1 0 1 1 1 _ _ _ _ _

At this point, we can continue subtracting (8 next) or recognize that there is no
24 � 16, and that the binary equivalent of the remainder, 10, is 1010, giving

74610 � 1 � 29 � 0 � 28 � 1 � 27 � 1 � 26 � 1 � 25 � 0 � 24 � 1
� 23 � 0 � 22 � 1 � 2 � 0

� 1 0 1 1 1 0 1 0 1 02

The other approach is to divide the decimal number by 2 repeatedly.
The remainder each time gives a digit of the binary answer, starting at the
least significant bit (a0). The remainder is then discarded and the process
is repeated.

6 Chapter 1 Introduction

EXAMPLE 1.6
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Converting 746 from decimal to binary, we compute
746�2 � 373 with a remainder of 0 0
373�2 � 186 with a remainder of 1 10
186�2 � 93 with a remainder of 0 010

93�2 � 46 with a remainder of 1 1010
46�2 � 23 with a remainder of 0 01010
23�2 � 11 with a remainder of 1 101010
11�2 � 5 with a remainder of 1 1101010

5�2 � 2 with a remainder of 1 11101010
2�2 � 1 with a remainder of 0 011101010
1�2 � 0 with a remainder of 1 1011101010

Do not forget the last division (1/2); it produces the most significant 1.
We could continue dividing by 2 and get additional leading 0’s. Thus,
the answer is 1011101010 as before. In this method, we could also
stop when we recognize the number that is left and convert it to binary.
Thus, when we had 23, we could recognize that as 10111 (from Table 1.3)
and place that in front of the bits we had produced, giving 10111 01010.

Convert 105 to binary
105�2 � 52, rem 1 produces 1

52�2 � 26, rem 0 01
26�2 � 13, rem 0 001

but 13 � 1101 1101 001

The method works because all of the terms in the power series 
except the last divide evenly by 2. Thus, since

746 � 1 � 29 � 0 � 28 � 1 � 27 � 1 � 26 � 1 � 25 � 0 � 24

� 1 � 23 � 0 � 22 � 1 � 2 � 0

746�2 � 373 and remainder of 0
� 1 � 28 � 0 � 27 � 1 � 26 � 1 � 25 � 1 � 24

� 0 � 23 � 1 � 22 � 0 � 2 � 1 � rem 0

The last bit became the remainder. If we repeat the process, we get

373�2 � 186 and remainder of 1
� 1 � 27 � 0 � 26 � 1 � 25 � 1 � 24 � 1 � 23 � 0 � 22

� 1 � 2 � 0 � rem 1

That remainder is the second digit from the right. On the next division,
the remainder will be 0, the third digit. This process continues until the
most significant bit is found.

1.2 A Brief Review of Number Systems 7

EXAMPLE 1.8

[SP 1, 2; EX 1, 2]*

*At the end of most sections, a list of solved problems and exercises that are appropriate
to that section is given.

EXAMPLE 1.7
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1.2.1 Hexadecimal

Hexadecimal, often referred to as hex (r � 16) is another base that is com-
monly used in computer documentation. It is just a shorthand notation for 
binary. In hexadecimal, binary digits are grouped in fours (starting at the
least significant). For example, an 8-bit number,

N � �b72
7 � b62

6 � b52
5 � b42

4� � �b32
3 � b22

2 � b12
1 � b0�

� 24 �b72
3 � b62

2 � b52
1 � b4� � �b32

3 � b22
2 � b12

1 � b0�
� 16h1 � h0

where the h1 represent the hexadecimal digits and must fall in the range
0 to 15. Each term in parentheses is just interpreted in decimal. If the
binary number does not have a multiple of four bits, leading 0’s are
added. The digits above 9 are represented by the first six letters of the
alphabet (uppercase).

10 A

11 B

12 C

13 D

14 E

15 F

(from Examples 1.6 and 1.7)

10111010102 � 0010 1110 10102

� 2EA16

To convert from hex to decimal, we evaluate the power series.

2EA16 � 2 � 162 � 14 � 16 � 10
� 512 � 224 � 10 � 74610

Finally, to convert from decimal to hex, repeatedly divide by 16,
producing the hex digits as the remainder (or convert to binary and then
group the bits as in Example 1.9).

746�16 � 46 rem 10 produces A

46�16 � 2 rem 14 EA

2�16 � 0 rem 2 2EA

8 Chapter 1 Introduction

EXAMPLE 1.9

EXAMPLE 1.10

EXAMPLE 1.11

[SP 3, 4; EX 3, 4]
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1.2.2 Binary Addition

A common operation required in computers and other digital systems is
the addition of two numbers. In this section, we will describe the process
for adding binary numbers.

To compute the sum of two binary numbers, say

0 1 1 0 6
0 1 1 1 �7

we add one digit at a time (as we do in decimal), producing a sum and
a carry to the next bit. Just as we have an addition table for decimal,
we need one for binary (but it is of course much shorter) (Table 1.4).
A step-by-step addition is shown in Example 1.12 for adding 6 (0110)
and 7 (0111).

First, the least significant bits (the rightmost bits) are added, producing a
sum of 1 and a carry of 0, as shown in brown.

0

0 1 1 0

0 1 1 1

1

Next, we must add the second digit from the right,
0 � 1 � 1 � 0 � (1 � 1) � 0 � 10 � 10

(a sum of 0 and a carry of 1)

or (0 � 1) � 1 � 1 � 1 � 10
(the order of addition does not matter).

That addition is highlighted in brown.

1 0

0 1 1 0

0 1 1 1

0 1

The final two additions then become

1 1 0 1

0 1 1 0 0 1 1 0

0 1 1 1 0 1 1 1

1 0 1 1 1 0 1

Notice that in the third bit of addition, we had three 1’s (the carry in plus the
two digits). That produced a sum of 3 (11 in binary), that is, a sum bit of 1

1.2 A Brief Review of Number Systems 9

Table 1.4 Binary addition.

0 � 0 � 0
0 � 1 � 1
1 � 0 � 1
1 � 1 � 10 (2, or a sum of 0 and a

carry of 1 to the next bit)

EXAMPLE 1.12
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10 Chapter 1 Introduction

and a carry of 1. The answer, of course, comes to 13 (in decimal). In this
case, the last addition produced a carry out of 0, and thus the answer was
4-bits long. If the operands were larger (say, 13 � 5), the answer would
require 5 bits as shown in the following addition, where the last carry is
written as part of the sum. (This is, of course, no different from decimal
addition, where the sum of two 4-digit numbers might produce a 4- or
5-digit result.)

1 0 1

1 1 0 1 1 3

0 1 0 1 5

1 0 0 1 0 1 8

In a computer with n-bit words, when an arithmetic operation pro-
duces a result that is out of range [for example, addition of n-bit positive
integers produces an (n � 1)-bit result], it is called overflow. With the
addition of 4-bit positive integers, overflow occurs when the sum is
greater than or equal to 16 (that is, 24). In the previous example, there
was overflow since the answer, 18, is greater than 15, the largest 4-bit
positive integer.

After the addition of the least significant bits (which only has two
operands), each remaining addition is a three-operand problem. We will
denote the carry that is added in as cin and the resulting carry from the
addition cout. The addition problem then becomes

cin

a
b

cout s

Table 1.5 shows a truth table of the addition process.
A device that does this 1-bit computation is referred to as a full

adder. To add 4-bit numbers, we might build four of these and connect
them as shown in Figure 1.2. Notice that the carry input of the bit 1 adder

Figure 1.2 A 4-bit adder.

Full
Adder

c4 s4

Full
Adder

s3

Full
Adder

s2

Full
Adder

a4 b4 a3 b3 a2 b2 a1 0c1 b1

c1
s1

Table 1.5 One-bit adder.

a b cin cout s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

[SP 5; EX 5]
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has a 0 on it, since there is no carry into that bit. Sometimes a simpler cir-
cuit (called a half adder) is built for that bit. We will return to this prob-
lem in Chapter 2, when we are prepared to design the full adder.

1.2.3 Signed Numbers

Up to this point, we have only considered positive integers, sometimes
referred to as unsigned numbers. Computers must deal with signed num-
bers, that is, both positive and negative numbers. The human-friendly
notation is referred to as signed-magnitude (� 5 or � 3 as decimal
examples). This could be incorporated into a computer, using the first bit
of a number as a sign indicator (normally 0 for positive and 1 for nega-
tive) and the remaining bits for the magnitude. Thus, in a 4-bit system,
we would represent

�5 → 0101 �5 → 1101 � 3 → 1011

With 3 bits for magnitude, the range of numbers available would be from
�7 to �7. (Of course, most computers use a larger number of bits to
store numbers and thus have a much larger range.) Note that such a
representation has both a positive (0000) and negative (1000) zero.
Although that might cause confusion (or at least complicate the internal
logic of the computer), the major problem with signed-magnitude is the
complexity of arithmetic. Consider the following addition problems:

�5 �5 �5 �5 �3 �3
�3 �3 �3 �3 �5 �5

�8 �8 �2 �2 �2 �2

In the first two, where the signs of the two operands are the same, we
just add the magnitudes and retain the sign. For these two, the computa-
tion is 5 � 3. In each of the other examples, we must determine which
is the larger magnitude. (It could be the first operand or the second.)
Then, we must subtract the smaller from the larger, and finally, attach
the sign of the larger magnitude. For these four, the computation is
5 � 3. Although this could all be done, the complexity of the hardware
involved (an adder, a subtractor, and a comparator) has led to another
solution.

Signed binary numbers are nearly always stored in two’s comple-
ment format. The leading bit is still the sign bit (0 for positive). Positive
numbers (and zero) are just stored in normal binary. The largest number
that can be stored is 2n � 1 � 1 (7 for n � 4). Thus, in a 4-bit system, �5
would be stored as 0101.

The negative number, �a, is stored as the binary equivalent of 2n � a
in an n-bit system. Thus, for example, �3 is stored as the binary for
16 � 3 � 13, that is, 1101.

The most negative number that can be stored is �2n � 1 (�8 in a
4-bit system). The largest number available in two’s complement is
about half that of unsigned numbers with the same number of bits, since

1.2 A Brief Review of Number Systems 11
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12 Chapter 1 Introduction

half of the 2n representations are used for negative numbers. This method
extends to other bases than binary. It is referred to as radix complement. 
Negative numbers, �a, in n digits are stored as r n � a. In decimal for
example, this is called ten’s complement. In a 2-digit decimal system,
�16 would be stored as 100 � 16 � 84. (Numbers from 0 to 49 would
be considered positive and those between 50 and 99 would be represen-
tations of negative numbers.)

An easier way to find the storage format for negative numbers in
two’s complement is the following three-step approach:

1. Find the binary equivalent of the magnitude.

2. Complement each bit (that is, change 0’s to 1’s and 1’s to 0’s)

3. Add 1.

�5 �1 �0
1. 5: 0 1 0 1 1: 0 0 0 1 0: 0 0 0 0

2. 1 0 1 0 1 1 1 0 1 1 1 1
3. 1 1 1

�5: 1 0 1 1 �1: 1 1 1 1 0 0 0 0

(a) (b) (c)

Note that there is no negative zero; the process of complementing �0 pro-
duces an answer of 0000. In two’s complement addition, the carry out of
the most significant bit is ignored.

Table 1.6 lists the meaning of all 4-bit numbers both as positive
(unsigned) numbers and as two’s complement signed numbers.

To find the magnitude of a negative number stored in two’s comple-
ment format (that is, one that begins with a 1), the second and third steps
of the negation process are followed.

�5: 1 0 1 1 �1: 1 1 1 1

2. Bit-by-bit complement 0 1 0 0 0 0 0 0
3. Add 1 1 1

5: 0 1 0 1 1: 0 0 0 1

(We could subtract 1 and then complement, instead; that will give the same
answer.)

The reason that two’s complement is so popular is the simplicity of
addition. To add any two numbers, no matter what the sign of each is, we
just do binary addition on their representations. Three sample computations

EXAMPLE 1.13

EXAMPLE 1.14
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are shown in Example 1.15. In each case, the carry out of the most sig-
nificant bit is ignored.

�5 1 0 1 1 �5 1 0 1 1 �5 1 0 1 1

�7 0 1 1 1 �5 0 1 0 1 �3 0 0 1 1

�2 (1) 0 0 1 0 0 (1) 0 0 0 0 �2 (0) 1 1 1 0

In the first, the sum is 2. In the second, the sum is 0. In the third, the sum is
�2, and, indeed, the representation of �2 is produced.

Overflow occurs when the sum is out of range. For 4-bit numbers,
that range is �8 � sum � �7.

�5 0 1 0 1

�4 0 1 0 0

(0) 1 0 0 1 (looks like �7)

The answer produced is clearly wrong because the correct answer (�9) is
out of range.

Indeed, whenever we add two positive numbers (each beginning
with a 0) and get a result that looks negative (begins with a 1), there is
overflow. Similarly, adding two negative numbers and obtaining a sum 

1.2 A Brief Review of Number Systems 13

Table 1.6 Signed and unsigned 4-bit numbers.

Signed
Binary Positive (two’s complement)

0000 0 0
0001 1 � 1
0010 2 � 2
0011 3 � 3
0100 4 � 4
0101 5 � 5
0110 6 � 6
0111 7 � 7
1000 8 � 8
1001 9 � 7
1010 10 � 6
1011 11 � 5
1100 12 � 4
1101 13 � 3
1110 14 � 2
1111 15 � 1

EXAMPLE 1.16

EXAMPLE 1.15
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more negative than �8 also produces overflow. (Also, we can detect
overflow when the carry into the most significant bit [1 in this case] dif-
fers from the carry out.)

�5 1 0 1 1

�4 1 1 0 0

(1) 0 1 1 1 (looks like �7)

This time, two negative numbers produced a sum that looks positive.

The addition of two numbers of the opposite sign never produces
overflow, since the magnitude of the sum is somewhere between the
magnitudes of the two operands. (Although overflow seems rather com-
mon when dealing with 4-bit examples, it is an unusual occurrence in
most computer applications, where numbers are 16 or 32 bits or longer.)

1.2.4 Binary Subtraction

Subtraction (whether dealing with signed or unsigned numbers) is gener-
ally accomplished by first taking the two’s complement of the second
operand, and then adding. Thus, a � b is computed as a � (�b).

Consider the computation of 7 � 5.

5: 0 1 0 1

1 0 1 0 7: 0 1 1 1

� 1 �5: �1 0 1 1

�5: 1 0 1 1 2 (1) 0 0 1 0

The 5 is first complemented. This same process is followed whether the
computation involves signed or unsigned numbers. Then, the representa-
tion of �5 is added to 7, producing an answer of 2.

For signed numbers, the carry out of the high-order bit is ignored,
and overflow occurs if the addition process operates on two numbers of
the same sign and produces a result of the opposite sign. For unsigned
numbers, the carry out of the high-order bit is the indicator of overflow,
as in addition. However, in subtraction, a 0 indicates overflow. In Exam-
ple 1.18, there was no overflow for either signed or unsigned numbers,
since the answer, 2, is within range. The carry out of 1 indicates no over-
flow, for unsigned numbers. For signed numbers, the addition of a posi-
tive number to a negative one never produces overflow.

In most computer applications, the two additions (of the 1 in the
complement computation and of the two operands) are done in one step. 

14 Chapter 1 Introduction

EXAMPLE 1.17

[SP 6, 7, 8; EX 6, 7, 8, 9]

EXAMPLE 1.18
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The least significant bit of the adder (bit 1) has a zero carry input for
addition. The 1 that was added in the process of complementing can be
input to that carry input for subtraction. Thus, to compute 7 � 5, we take
the bit-by-bit complement of 5 (0101 becomes 1010) and add.

7 � 5

1

0 1 1 1

1 0 1 0

(1) 0 0 1 0

Of course, we could design a subtractor (in addition to the adder),
but that is unnecessary additional hardware for most computers.

Note that this process works for unsigned numbers even if the operands
are larger than could be represented in a two’s complement system, as
shown in Example 1.20, where the difference 14 � 10 is computed.

1

1 1 1 0

�0 1 0 1

(1) 0 1 0 0 � 4

We see overflow for unsigned numbers in Example 1.21a and for
signed numbers in Example 1.21b.

5 � 7 7 � (�5)

1 1

0 1 0 1 0 1 1 1

1 0 0 0 0 1 0 0
(0) 1 1 1 0 1 1 0 0

(a) (b)

For unsigned numbers, overflow is indicated by the carry of 0. The result of
(a) should be negative (�2), which cannot be represented in an unsigned
system. For signed numbers, the result is correct. For signed numbers,
overflow may occur if we subtract a negative number from a positive one or
a positive number from a negative one, as shown in Example 1.21b. That is
overflow because the addition process involved two positive numbers and
the result looked negative. (Indeed, the answer should be 12, but that is
greater than the largest 4-bit signed number, 7.)

1.2 A Brief Review of Number Systems 15

EXAMPLE 1.19

[SP 9, 10; EX 10]

EXAMPLE 1.20

EXAMPLE 1.21
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Table 1.7 Binary-coded decimal codes.

Decimal 8421 5421 2421 Excess 3 2 of 5
digit code code code code code

0 0000 0000 0000 0011 11000
1 0001 0001 0001 0100 10100
2 0010 0010 0010 0101 10010
3 0011 0011 0011 0110 10001
4 0100 0100 0100 0111 01100
5 0101 1000 1011 1000 01010
6 0110 1001 1100 1001 01001
7 0111 1010 1101 1010 00110
8 1000 1011 1110 1011 00101
9 1001 1100 1111 1100 00011

unused 1010 0101 0101 0000 any of
1011 0110 0110 0001 the 22
1100 0111 0111 0010 patterns
1101 1101 1000 1101 with 0, 1,
1110 1110 1001 1110 3, 4, or 5
1111 1111 1010 1111 1’s

*See Section 5.8.1 for an example of this.

1.2.5 Binary Coded Decimal (BCD)

Internally, most computers operate on binary numbers. However, when
they interface with humans, the mode of communication is generally
decimal. Thus, it is necessary to convert from decimal to binary on input
and from binary to decimal on output. (It is straightforward to write
software to do this conversion.) However, even this decimal input and
output must be coded into binary, digit by digit. If we use the first 10 
binary numbers to represent the 10 decimal digits (as in the first binary
column in Table 1.7), then the number 739, for example, would be
stored as

0111 0011 1001

Each decimal digit is represented by 4 bits, and thus a 3-digit decimal
number requires 12 bits (whereas, if it were converted to binary, it would
require only 10 bits because numbers up to 1023 can be represented with
10 bits). In addition to the inefficiency of storage, arithmetic on BCD
numbers is much more complex* than that on binary, and thus BCD is
only used internally in small systems requiring limited computation.

We have already discussed the simplest code, using the first 10 binary
numbers to represent the 10 digits. The remaining 4-bit binary numbers
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(1010, 1011, 1100, 1101, 1110, 1111) are unused. This code, and those in
the next two columns of Table 1.7 are referred to as weighted codes
because the value represented is computed by taking the sum of each digit
times its weight. This first code is referred to as the 8421 code, since those
are the weights of the bits. Each decimal digit is represented by

8 � a3 � 4 � a2 � 2 � a1 � 1 � a0

It is also referred to as straight binary. Two other weighted codes (5421
and 2421) that are occasionally used are shown next.

Two other codes that are not weighted are also shown in Table 1.7.
The first is excess 3 (XS3) where the decimal digit is represented by the
binary equivalent of 3 more than the digit. For example, 0 is stored as the
binary 3 (0011) and 6 as the binary of 6 � 3 � 9 (1001). The final col-
umn shows a 2 of 5 code, where each digit is represented by a 5-bit num-
ber, two of which are 1 (and the remaining three bits are 0). This provides
some error detection capabilities, because, if an error is made in just one
of the bits (during storage or transmission), the result will contain either
one or three 1’s and can be detected as an error.

Note that in both the 5421 and 2421 codes, other combinations can
be used to represent some of the digits (such as 0101 for 5). However,
those shown in the table are the standard representations; the others are
included in the unused category.

Each of the representations has advantages in various applications.
For example, if signed (ten’s complement) numbers were stored, the
first digit of that number would be in the range 5 to 9 for negative num-
bers. In the 5421, 2421, and excess 3 codes, that would correspond to
the first bit of the number being 1. (We would only need to check 1 bit
to determine if a number is negative.) In the 8421 code, however, more
complex logic is required, because the first bit might be either 0 or 1 for
negative numbers. In both 5421 and excess 3 codes, the ten’s comple-
ment is computed by complementing each bit and adding 1 (as in two’s
complement). The process is more complex using the other codes. We
will make use of some of these codes in later examples.

1.2.6 Other Codes

Other codes also appear in the digital world. Alphanumeric information
is transmitted using the American Standard Code for Information Inter-
change (ASCII). Seven digits are used to represent the various characters
on the standard keyboard as well as a number of control signals (such as
carriage return). Table 1.8 lists the printable codes. (Codes beginning
with 00 are for control signals.)

This allows us to code anything that can be printed from the stan-
dard keyboard. For example, the word Logic would be coded

1.2 A Brief Review of Number Systems 17

[SP 11, 12; EX 11, 12]
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Table 1.9 Gray code.

Number Gray code Number Gray code

0 0000 8 1100
1 0001 9 1101
2 0011 10 1111
3 0010 11 1110
4 0110 12 1010
5 0111 13 1011
6 0101 14 1001
7 0100 15 1000

A Gray code is particularly useful in coding the position of a continuous
device. As the device moves from one section to the next, only 1 bit of
the code changes. If there is some uncertainty as to the exact position,
only 1 bit is in doubt. If a normal binary code were used, all 4 bits would
change as it moved from 7 to 8.

1001100 1101111 1100111 1101001 1100011

L o g i c

Table 1.8 ASCII code.

a6a5a4

a3a2a1a0 010 011 100 101 110 111

0000 space 0 @ P ` p
0001 ! 1 A Q a q
0010 “ 2 B R b r
0011 # 3 C S c s
0100 $ 4 D T d t
0101 % 5 E U e u
0110 & 6 F V f v
0111 ‘ 7 G W g w
1000 ( 8 H X h x
1001 ) 9 I Y i y
1010 * : J Z j z
1011 � ; K [ k {
1100 , < L \ l |
1101 � M ] m }
1110 . > N ^ n ~
1111 / ? O _ o delete

[SP 13; EX 13]

In a Gray code, consecutive numbers differ in only one bit. Table 1.9
shows a 4-bit Gray code sequence.
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1.3 Solved Problems 19

1.3 SOLVED PROBLEMS

1. Convert the following positive binary integers to decimal.

a. 110100101

b. 00010111

a. 110100101 � 1 � 4 � 32 � 128 � 256 � 421
Starting the evaluation from right (1’s position) to left
(28 position). (There are 0’s in the 2, 8, 16, and 64 bits.)

b. 00010111 � 1 � 2 � 4 � 16 � 23

Leading 0’s do not change the result.

2. Convert the following decimal integers to binary. Assume all
numbers are unsigned (positive) and represented by 12 bits.

a. 47

b. 98

c. 5000

a. 47 47 � 64 Thus no 26 bit or greater

47 � 32 � 15 gives a 25 bit

15 � 16 no 24 bit

15 � 8 � 7 23 bit

7 � 111 thus last 3 bits are 111

47 � 000000101111

b. 98 98/2 � 49 remainder � 0 0

49/2 � 24 remainder � 1 10

24/2 � 12 remainder � 0 010

12/2 � 6 remainder � 0 0010

6/2 � 3 remainder � 0 00010

3/2 � 1 remainder � 1 100010

1/2 � 0 remainder � 1 1100010

We could keep dividing 0 by 2 and getting remainders of 0 until we had
12 bits or recognize that the leading bits must be 0.

98 � 000001100010

As in part a, we could have stopped dividing when we recognized
the number, say that 12 � 1100. We would take what we had already
found, the three least significant bits of 010, and put the binary for 12
ahead of that, getting the same answer, of course, 1100010 (with enough
leading 0’s to make up the appropriate number of bits).

c. 5000: cannot represent in 12 bits because 5000 	 212.
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3. Convert the following to hexadecimal

a. 110101101112

b. 61110

Leading 0’s are added when necessary to make the number of bits a mul-
tiple of 4.

a. 0110 1011 0111 � 6B716

b. 611�16 � 38 rem 3 3

38�16 � 2 rem 6 63

2�16 � 0 rem 2 263

This equals 0010 0110 0011.

4. Convert the following hexadecimal integers to decimal
a. 263

b. 1C3

a. 3 � 6 � 16 � 2 � 162 � 3 � 96 � 512 � 611

b. 3 � 12 � 16 � 162 � 3 � 192 � 256 � 451

5. Compute the sum of the following pairs of 6-bit unsigned
integers. If the answer is to be stored in a 6-bit location, indicate
which of the sums produces overflow. Also, show the decimal
equivalent of each problem.

a. 0 0 1 0 1 1 � 0 1 1 0 1 0

b. 1 0 1 1 1 1 � 0 0 0 0 0 1

c. 1 0 1 0 1 0 � 0 1 0 1 0 1

d. 1 0 1 0 1 0 � 1 0 0 0 1 1

a. 0 1 0 0 1

11 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1

26 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0

37 1 0 1 1 0 1

1 0 1 1 1

0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1

0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0

0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 � 37

Note that in this case the last carry result is 0 (it is shown as part of the
sum) and thus the answer does fit in 6 bits (there is no overflow).
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b. 0 1 1 1 1 (carries)

1 0 1 1 1 1 47

0 0 0 0 0 1 1

0 1 1 0 0 0 0 48

c. 0 0 0 0 0

1 0 1 0 1 0 42

0 1 0 1 0 1 21

0 1 1 1 1 1 1 63

d. 0 0 0 1 0

1 0 1 0 1 0 42

1 0 0 0 1 1 35

1 0 0 1 1 0 1 77 overflow (looks like 13)

Note that the answer is larger than 63, which is the largest 6-bit
number.

6. The following decimal numbers are to be stored in a 6-bit two’s
complement format. Show how they are stored.

a. � 14

b. � 20

c. � 37

a. �14 � 001110 Positive numbers are just converted to binary.

b. �20: �20 � 010100

Complement every bit 1 0 1 0 1 1

Add 1 1

�20 is stored as 1 0 1 1 0 0

c. �37: Cannot be stored, the range of 6-bit numbers is 
�32 � n � 31. Converting 37 to binary would give 100101,
but that represents a negative number.

7. The following 6-bit two’s complement numbers were found in a
computer. What decimal number do they represent?

a. 001011

b. 111010

a. 001011: Because it begins with 0, it is positive � 1 � 2 � 8 � 11

b. 111010: Because it begins with a 1, it is negative; take two’s
complement: 0 0 0 1 0 1

1

0 0 0 1 1 0 � 6

Thus, 111010 represents �6.

1.3 Solved Problems 21
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8. Each of the following pairs of signed (two’s complement)
numbers are stored in computer words (6 bits). Compute the sum
as it is stored in a 6-bit computer word. Show the decimal
equivalents of each operand and the sum. Indicate if there is
overflow.

a. 1 1 1 1 1 1 � 0 0 1 0 1 1

b. 0 0 1 0 0 1 � 1 0 0 1 0 0

c. 0 0 1 0 0 1 � 0 1 0 0 1 1

d. 0 0 1 0 1 0 � 0 1 1 0 0 0

e. 1 1 1 0 1 0 � 1 1 0 0 0 1

f. 1 0 1 0 0 1 � 1 1 0 0 0 1

g. 1 1 0 1 0 1 � 0 0 1 0 1 1

a. 1 1 1 1 1 1 �1

0 0 1 0 1 1 �11 The carry out is ignored and will not

(1) 0 0 1 0 1 0 �10 be shown in the remaining examples.

b. 0 0 1 0 0 1 �9

1 0 0 1 0 0 �28

1 0 1 1 0 1 �19

c. 0 0 1 0 0 1 �9

0 1 0 0 1 1 �19

0 1 1 1 0 0 �28

d. 0 0 1 0 1 0 �10

0 1 1 0 0 0 �24

1 0 0 0 1 0 looks like �30; should be �34; overflow
sum of two positive numbers looks negative

e. 1 1 1 0 1 0 �6

1 1 0 0 0 1 �15

1 0 1 0 1 1 �21

f. 1 0 1 0 0 1 �23

1 1 0 0 0 1 �15

0 1 1 0 1 0 looks like �26; should be � 38; overflow
sum of two negative numbers looks positive

g. 1 1 0 1 0 1 �11

0 0 1 0 1 1 �11

0 0 0 0 0 0 0

9. Subtract each of the following pairs of unsigned integers.

a. 0 0 1 1 0 1 � 0 0 0 1 1 0

b. 1 1 0 1 0 1 � 0 0 0 0 1 1

c. 0 0 0 1 1 1 � 0 1 0 0 1 1

22 Chapter 1 Introduction
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a. (This example is the same for either signed or unsigned
numbers.)

1

0 0 1 1 0 1 0 0 1 1 0 1 13

�0 0 0 1 1 0 1 1 1 0 0 1 �6

(1) 0 0 0 1 1 1 7

b. 1

1 1 0 1 0 1 1 1 0 1 0 1 53

�0 0 0 0 1 1 1 1 1 1 0 0 �3

(1) 1 1 0 0 1 0 50

c. 1

0 0 0 1 1 1 0 0 0 1 1 1 7

�0 1 0 0 1 1 1 0 1 1 0 0 �19

(0) 1 1 0 1 0 0 overflow, answer negative

10. Subtract each of the following pairs of signed integers.

a. 1 1 0 1 0 1 � 0 0 0 0 1 1

b. 1 1 0 1 0 1 � 0 1 1 0 0 0

c. 0 1 0 0 0 0 � 1 0 0 1 0 0

a. 1

1 1 0 1 0 1 1 1 0 1 0 1 � 11

�0 0 0 0 1 1 1 1 1 1 0 0 �(�3)

(1) 1 1 0 0 1 0 �14

Note that this is the same binary number as in Solved Problem 9b.

b. 1

1 1 0 1 0 1 1 1 0 1 0 1 �11

�0 1 1 0 0 0 1 0 0 1 1 1 �(�24)

(1) 0 1 1 1 0 1 overflow, answer looks
positive

c. 1

0 1 0 0 0 0 0 1 0 0 0 0 16

�1 0 0 1 0 0 0 1 1 0 1 1 �(�28)

(0) 1 0 1 1 0 0 overflow, answer looks
negative

11. We have a computer that can store 3 decimal digits. How are the
following two numbers stored in each of the five codes?

a. 491

b. 27

1.3 Solved Problems 23
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a. 8421 0100 1001 0001
5421 0100 1100 0001
2421 0100 1111 0001
XS3 0111 1100 0100
2 of 5 01100 00011 10100
Note that the first four codes require 12-bit words; the 2 of 5
code requires 15-bit words.

b. 8421 0000 0010 0111
5421 0000 0010 1010
2421 0000 0010 1101
XS3 0011 0101 1010
2 of 5 11000 10010 00110

12. We have the following numbers stored in a computer. What is
the decimal value represented if the number is stored as

i. BCD 8421 iv. BCD excess 3
ii. BCD 5421 v. Binary unsigned

iii. BCD 2421 vi. Binary signed
a. 1000 0111
b. 0011 0100
c. 1100 1001

a. 1000 0111
i. BCD 8421 87
ii. BCD 5421 — 0111 not used

iii. BCD 2421 — 1000, 0111 not used
iv. BCD excess 3 54
v. Binary unsigned 135
vi. Binary signed �121

b. 0011 0100
i. BCD 8421 34

ii. BCD 5421 34
iii. BCD 2421 34
iv. BCD excess 3 01
v. Binary unsigned 52

vi. Binary signed �52

c. 1100 1001
i. BCD 8421 — 1100 not used

ii. BCD 5421 96
iii. BCD 2421 — 1001 not used
iv. BCD excess 3 96
v. Binary unsigned 201

vi. Binary signed �55

24 Chapter 1 Introduction

mar91647_c01_001_028.qxd  10/22/08  11:33 AM  Page 24



13. a. Code the following into ASCII.

i. HELLO

ii. hello

b. Translate the following into English.

i. 1011001 1100101 1110011 0100001

ii. 0110010 0101011 0110001 0111101 0110011

a. i. 1001000 1000101 1001100 1001100 1001111

ii. 1101000 1100101 1101100 1101100 1101111

b. i. Yes!

ii. 2�1�3

1.4 EXERCISES*
1. Convert the following unsigned binary integers to decimal.

★a. 11111 e. 10101010

b. 1000000 f. 000011110000

c. 1001101101 g. 110011001100
★ d. 101111 ★ h. 000000000000

2. Convert the following decimal integers to binary. Assume all
numbers are unsigned (positive) and represented by 12 bits.
★a. 73 c. 402 ★e. 1000 ★g. 4200

b. 127 d. 512 f. 17 h. 1365

3. Convert the following to hexadecimal
★a. 1001011010112

b. 101101000001012
★c. 79110

d. 160010

4. Convert the following hexadecimal numbers to decimal

a. 1000

b. ABCD
★c. 3FF

5. Compute the sum of the following pairs of 6-bit unsigned integers.
If the answer is to be stored in a 6-bit location, indicate which of
the sums produce overflow. Also, show the decimal equivalent of
both operands and the result.
★a. 000011 � 001100 ★e. 001011 � 100111

b. 010100 � 101101 f. 000101 � 000111

c. 011100 � 011010 g. 101100 � 100100
★d. 110011 � 001110

1.4 Exercises 25

*Answers to Exercises marked with a star (★) are given in Appendix B.
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6. The following decimal integers are to be stored in a 6-bit two’s
complement format. Show how they are stored.
★a. �25 ★c. �32 ★e. �15 g. �1

b. 0 d. �15 f. �45 h. �16

7. The following 6-bit two’s complement integers were found in a
computer. What decimal number do they represent?

a. 000101 ★c. 010101 e. 011111 g. 101010

b. 111111 ★d. 100100 f. 111001 ★h. 100000

8. We have a computer that stores binary signed integers in two’s
complement form. All numbers are 8 bits long.

a. What decimal number is represented by 01101011?

b. What decimal number is represented by 10101110?
★c. How is the number �113 stored?
★d. How is the number �143 stored?

e. How is the number �43 stored?

f. How is the number �43 stored?

9. Each of the following pairs of signed (two’s complement) integers
are stored in computer words (6 bits). Compute the sum as it is
stored in a 6-bit computer word. Show the decimal equivalents of
each operand and the sum. Indicate if there is overflow.
★a. 110101 c. 001100 e. 011010

001111 110100 001100

b. 111010 ★d. 101010 ★f. 111101

000111 100110 110000

10. For each of the following pairs of integers, subtract the second
from the first. Show the operands and the answers in decimal,
assuming

i. the numbers are unsigned.

ii. the numbers are signed (two’s complement).

Indicate overflow where appropriate.

a. 010101 ★c. 111010 e. 110010

001100 000111 110111
★b. 010001 ★d. 100100 f. 111010

011000 011000 101101

11. We have a computer that can store 3 decimal digits. How are each
of the following numbers stored in each of the five codes?

i. 8421 iv. excess 3

ii. 5421 v. 2 of 5

iii. 2421
★a. 103 b. 999 c. 1 d. 0

E
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12. We have the following numbers stored in a computer. What is the
decimal value represented if the number is stored as

i. BCD 8421 iv. BCD excess 3
ii. BCD 5421 v. binary unsigned

iii. BCD 2421 vi. binary signed

a. 1111 1010 ★d. 1001 0101
★b. 0001 1011 e. 1110 1101
c. 1000 0011 f. 0100 1000

13. a. Code the following into ASCII

i. Problem 5 iii. 2 � 1 � 3
★ii. “OK” iv. ABM

b. Translate the following into English

i. 1000001 1101100 1100001 1101110
ii. 0100100 0110111 0101110 0111001 0110101

★iii. 0111001 0101111 0110011 0111101 0110011
iv. 1010100 1101000 1100101 0100000 1100101

1101110 1100100

1.5 CHAPTER 1 TEST (30 MINUTES)*

1. Convert the decimal number 347 to
a. binary.
b. hexadecimal.
Show your work.

2. Add the two unsigned binary numbers; show both operands and the
result in decimal as well as binary. (Be sure to show the carry as
you add.) Indicate if there is overflow.

0 1 0 1 1 1 0 1 0 1 1

0 1 1 1 0 0 1 1 0 0 1

3. Show the decimal equivalent of each of the numbers if they are
interpreted as (six answers).

1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1

a. Unsigned binary

b. Signed binary

c. BCD (8421 code)

1.5 Chapter 1 Test 27

*Tests assume students are allowed one sheet of 81–
2

� 11 paper with any notes they wish
on both sides. Solutions to Chapter Tests are given in Appendix C.
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28 Chapter 1 Introduction

4. Add the three pairs of signed (two’s complement) numbers. Be sure to
show the carry as you add. Show both operands and the result of each
addition in decimal as well as binary. Indicate if there is overflow.

1 1 0 0 1 0 1 0 0 1 0 1

1 1 0 1 0 1 1 1 0 0 1 1

5. Subtract the two pairs of numbers. Show the operands and the
results in decimal and binary

a. assuming they are unsigned.

b. assuming they are signed.

1 1 0 1 � 1 1 0 0 1 0 1 0 � 0 1 1 0

Indicate if there is overflow.

C
H

A
P

T
E

R
 T

E
S

T

mar91647_c01_001_028.qxd  10/22/08  11:33 AM  Page 28



Combinational
Systems

In this chapter, we will develop the tools to specify combinational
systems. Then, we will develop an algebraic approach for the
description of these systems, their simplification, and their imple-

mentation. We will concentrate on rather small systems, which will 
enable us to better understand the process. We will look at larger prob-
lems in Chapter 5.

2.1 THE DESIGN PROCESS FOR
COMBINATIONAL SYSTEMS

In this section, we will outline the process to be used to design combina-
tional systems. (A similar process will be developed in Chapter 7 for
sequential systems.) The design process typically starts with a problem
statement, a verbal description of the intended system. The goal is to
develop a block diagram of that system, utilizing available components
and meeting the design objectives and constraints.

We will use the following five examples to illustrate the steps in the
design process and, indeed, continue to follow some of them in subse-
quent chapters, as we develop the tools necessary to do that design.

Continuing Examples (CE)

CE1. A system with four inputs, A, B, C, and D, and one output, Z, such
that Z � 1 iff three of the inputs are 1.

CE2. A single light (that can be on or off) that can be controlled by any one
of three switches. One switch is the master on/off switch. If it is down, the
light is off. When the master switch is up, a change in the position of one of
the other switches (from up to down or from down to up) will cause the light
to change state.

CE3. A system to do 1 bit of binary addition. It has three inputs (the 2 bits
to be added plus the carry from the next lower order bit) and produces two
outputs: a sum bit and a carry to the next higher order position.

29
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CE4. A display driver; a system that has as its input the code for a decimal
digit and produces as its output the signals to drive a seven-segment dis-
play, such as those on most digital watches and numeric displays (more
later).

CE5. A system with nine inputs, representing two 4-bit binary numbers and
a carry input, and one 5-bit output, representing the sum. (Each input num-
ber can range from 0 to 15; the output can range from 0 to 31.)

In addition to these continuing examples, Appendix E will contain
some complete examples of the design of small systems, from the verbal
description through the design with gates.  (There will also be some 
examples of sequential systems.)

The design process involves each of the following steps (although
some may not be necessary in some problems).

Sometimes, as in CE1, 3, and 5, the problem statement is already
given in terms of binary inputs and outputs. Other times, it is up to the 
designer. In CE2, we need to create a numeric equivalence for each of the
inputs and outputs. We might code the light on as a 1 output and off as 0.
(We could just as well have used the opposite definition, as long as we are
coordinated with the light designer.) Similarly, we will define a switch in
the up position as a 1 input and down as 0. For CE4, the input is a decimal
digit. We must determine what BCD code is to be used. That might be
provided for us by whoever is providing the input, or we may have the
ability to specify it in such a way as to make our system simplest. We must
also code the output; we need to know the details of the display and
whether a 1 or a 0 lights each segment. (We will discuss those details in
Section 2.1.1.) In general, the different input and output representations
may result in a significant difference in the amount of logic required.

This step is listed here because sometimes it is possible to do
this after having developed the truth table and sometimes, we must really
break up the problem before we can even begin to do such a table.

It is not possible to apply most of the design techniques that we
will develop to very large problems. Even CE5, the 4-bit adder, has
nine inputs and would thus require a truth table of 29 � 512 rows with
nine input columns and five output columns. Although we can easily
produce the entries for any line of that table, the table would spread
over several pages and be very cumbersome. Furthermore, the mini-
mization techniques of this chapter and Chapter 3 would be strained.
The problem becomes completely unmanageable if we go to a realistic

Step 1.5: If necessary, break the problem into smaller subproblems.

Step 1: Represent each of the inputs and outputs in binary.

30 Chapter 2 Combinational Systems
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2.1 The Design Process for Combinational Systems 31

adder for a computer—say one that adds 32-bit numbers. There the
table would be 264 lines long, even without a carry input (approxi-
mately 1.84 � 1019). (That means that if we were to write 1 million
lines on each page and put 1 million pages in a book, we would still
need over 18 million volumes to list the entire truth table. Or, if we had
a computer that could process 1 billion lines of the truth table per sec-
ond (requiring a supercomputer), it would still take over 584 years to
process the whole table.)

Obviously, we have been able to solve such problems. In the case of
the adder, we can imitate how we do it by hand, namely, add 1 bit at a
time, producing 1 bit of the sum and the carry to the next bit. That is the
problem proposed in CE3; it only requires an eight-line truth table. We
can build 32 such systems and connect them together.

Also, it is often most economical to take advantage of subsystems
that already have been implemented. For example, we can buy the 4-bit
adder described in CE5 (on a single integrated circuit chip). We might
want to use that as a component in our design. We will examine this part
of the design process further in Chapter 5.

We will concentrate on the idea of a truth table here and leave the
development of algebraic expressions for later in the chapter. The truth
table format is the most common result of step 2 of the design process.
We can do this in a digital system because each of the inputs only takes
on one of two values (0 or 1). Thus, if we have n inputs, there are 2n input
combinations and thus the truth table has 2n rows. These rows are nor-
mally written in the binary order of the inputs (if, for no other reason,
than to make sure that we do not leave any out). The truth table has two
sets of columns: n input columns, one for each input variable, and m out-
put columns, one for each of the m outputs.

An example of a truth table with two inputs, A and B, and one out-
put, Y, is shown as Table 2.1, where there are two input columns, one out-
put column, and 22 � 4 rows (not including the title row). We will look
at truth tables for some of the continuing examples shortly, after present-
ing the other steps of the design process.

The truth table will lead directly to an implementation in some tech-
nologies (see, for example, the ROM in Chapter 5). More often, we must
convert that to an algebraic form to implement it. But the algebraic form
we get from the truth table tends to lead to rather complex systems. Thus,
we will develop techniques for reducing the complexity of algebraic
expressions in this chapter and the next.

Step 3: Simplify the description.

Step 2: Formalize the design specification either in the form of a
truth table or of an algebraic expression.

Table 2.1 A two-input
truth table.

A B Y

0 0 0
0 1 1
1 0 1
1 1 1
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32 Chapter 2 Combinational Systems

A gate is a network with one output. Most of the implementations of
this chapter and the next use gates as the components. The truth table
used to illustrate step 2 (see Table 2.1) describes the behavior of one type
of gate—a two-input OR gate. The final form of the solution may be a
block diagram of the gate implementation, where the OR gate is usually
depicted by the symbol of Figure 2.1. We may build the system in the
laboratory using integrated circuit packages that contain a few such
gates, or we may simulate it on a computer. 

As mentioned earlier, more complex components, such as adders
and decoders, may be available as building blocks, in addition to (or in
place of) gates. (Of course, when we get to sequential systems, we will
introduce storage devices and other larger building blocks.)

The design objective is often to build the least expensive circuit.
That usually corresponds to the simplest algebraic expression, although
not always. Since gates are usually obtained in packages (say 4 two-input
OR gates in a package), the cost may be measured in terms of the num-
ber of packages. Thus, whether we need one of the four gates in a pack-
age, or all four, the cost would be the same. Sometimes, one of the
objectives is speed, that is, to build as fast a circuit as possible. As we
will see later, each time a signal passes through a gate, there is a small
delay, slowing down the system. Thus, if speed is a factor, we may have
a limit on the number of gates any one signal must pass through.

2.1.1 Don’t Care Conditions

Before we can develop the truth table for the display driver example
(CE4), we must understand the concept of the don’t care. In some
systems, the value of the output is specified for only some of the input
conditions. (Such functions are sometimes referred to as incompletely
specified functions.) For the remaining input combinations, it does not
matter what the output is, that is, we don’t care. In a truth table, don’t
cares are indicated by an X. (Some of the literature uses d, f, or w.)
Table 2.2 is such a truth table.

This table states that the f must be 0 when a and b are 0, that it must
be 1 when a � 0 and b � 1 or when a � 1 and b � 0, and that it does not
matter what f is when a and b are both 1. In other words, either f1 or f2 of
Table 2.3 are acceptable.

When we design a system with don’t cares, we may make the output
either 0 or 1 for each don’t care input combination. In the example of
Table 2.3, that means that we can implement either f1 or f2. One of these
might be much less costly to implement. If there are several don’t cares, the
number of acceptable solutions greatly increases, since each don’t care can

Step 4: Implement the system with the available components,
subject to the design objectives and constraints.

Figure 2.1 OR gate symbol.

A

B
Y

Table 2.2 A truth table with
a don’t care.

a b f

0 0 0
0 1 1
1 0 1
1 1 X

Table 2.3 Acceptable truth
tables.

a b f1 f2

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1
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2.1 The Design Process for Combinational Systems 33

We will see a third kind of don’t care in CE4; we may really not care
what one output is.

2.1.2 The Development of Truth Tables

Given a word problem, the first step is to decide how to code the inputs.
Then, the development of a truth table is usually rather straightforward.
The number of inputs determines the number of rows, and the major
problem generally revolves about the ambiguity of English (or any natu-
ral language).

For CE1, a 16-row truth table is required. There are four input
columns and one output column. (In Table 2.4, three output columns are
shown Z1, Z2, and Z3 to account for the three interpretations of the prob-
lem statement.) There is little room for controversy on the behavior of
the system for the first 15 rows of the table. If there are fewer than three
1’s on the input lines, the output is 0. If three of the inputs are 1 and the
other is 0, then the output is 1. The only question in completing the table
is in relation to the last row. Does “three of the inputs are 1” mean exactly
three or does it mean at least three? If the former is true, then the last line
of the truth table is 0, as shown for Z1. If the latter is true, then the last
line of the table is 1, as shown in Z2. Two other options, both shown as
Z3, are that we know that all four inputs will not be 1 simultaneously, and

Figure 2.2 Design example with don’t cares.

System
One

A J

K
System

Two
B

C

be either 0 or 1, independently. The techniques we develop in Chapter 3 han-
dle don’t cares very easily; they do not require solving separate problems.

In real systems, don’t cares occur in several ways. First, there may
be some input combinations that never occur. That is the case in CE4,
where the input is the code for a decimal digit; there are only 10 possible
input combinations. If a 4-bit code is used, then six of the input combi-
nations never occur. When we build a system, we can design it such that
the outputs would be either 0 or 1 for each of these don’t care combina-
tions, since that input never happens.

A second place where don’t cares occur is in the design of one sys-
tem to drive a second system. Consider the block diagram of Figure 2.2.
We are designing System One to make System Two behave in a certain
way. On some occasions, for certain values of A, B, and C, System Two
will behave the same way whether J is 0 or 1. In that case, the output J of
System One is a don’t care for that input combination. We will see this
behavior arise in Chapter 7, where System Two is a flip flop (a binary
storage device).
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34 Chapter 2 Combinational Systems

that we do not care what the output is if all four inputs are 1. In those
cases, the last entry is don’t care, X.

For CE2, even after coding the inputs and outputs, we do not have a
unique solution to the problem. We will label the switches a, b, and c
(where a is the master switch) and use a 1 to represent up (and a 0 for
down). The light output is labeled f (where a 1 on f means that the light
is on). When a � 0, the light is off (0), no matter what the value of b and c.
The problem statement does not specify the output when a � 1; it only
specifies what effect a change in the other inputs will have. We still have
two possible solutions to this problem. If we assume that switches b and
c in the down position cause the light to be off, then the fifth row of the
table (100) will have an output of 0, as shown in Table 2.5a. When one of
these switches is up (101, 110), then the light must be on. From either of
these states, changing b or c will either return the system to the 100 input
state or move it to state 111; for this, the output is 0.

Table 2.5 Truth tables for CE2.

a b c f a b c f

0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 0 0 1 1 0
1 0 0 0 1 0 0 1
1 0 1 1 1 0 1 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 1

(a) (b)

Table 2.4 Truth table for CE1.

A B C D Z1 Z2 Z3

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 1 1 1
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 1 1 1
1 1 0 0 0 0 0
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 0 1 X
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2.1 The Design Process for Combinational Systems 35

We could have started with some other fixed value, such as switches
b and c up means that the light is on or that switches b and c down means
that the light is on. Either of these would produce the truth table of 
Table 2.5b, which is equally acceptable.

We have already developed the truth table for CE3, the 1-bit binary
full adder, in Section 1.2.2, Table 1.5 (although we did not refer to it as a
truth table at that time).

Although we could easily construct a truth table for CE5, the 4-bit
adder, we would need 512 rows. Furthermore, once we had done this, we
would still find it nearly impossible to simplify the function by hand (that
is, without the aid of a computer). We will defer further discussion of this
problem to Chapter 5.

We will now examine the display driver of CE4.  A block diagram of
the system is shown in Figure 2.3a. The inputs are a code for the decimal
digit and are labeled W, X, Y, and Z. The display driver must provide the
seven inputs to the display, a, b, c, d, e, f, and g. The layout of the display
is shown in Figure 2.3b. How each digit is displayed is shown in Figure
2.3c, where a solid line indicates that the segment is lit, and a dashed line
that it is not lit. Note that various devices use alternative displays for the
digits 6, 7, and 9. For example, segment a is sometimes lit for a 6, and
sometimes it is not.

The first thing that we must do is to select a code for the decimal
digit. That will (obviously) affect the truth table and might make a sig-
nificant difference in the cost of the implementation. For the sake of this
example, we will assume that the digits are stored in 8421 code. (We will
look at variations on this in Chapter 4.) The next thing we need to know
is whether the display requires a 0 or a 1 on each segment input to light
that segment. Both types of displays exist. The design specification must
also indicate which of the alternative displays for 6, 7, and 9 should be
used, or state that it doesn’t matter. Finally, we must decide what to do

Figure 2.3 A seven-segment display.
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Table 2.6 A truth table for the seven-segment display driver.

Digit W X Y Z a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 1 0 1 1 0 0 0 0
2 0 0 1 0 1 1 0 1 1 0 1
3 0 0 1 1 1 1 1 1 0 0 1
4 0 1 0 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1 0 1 1
6 0 1 1 0 X 0 1 1 1 1 1
7 0 1 1 1 1 1 1 0 0 X 0
8 1 0 0 0 1 1 1 1 1 1 1
9 1 0 0 1 1 1 1 X 0 1 1
– 1 0 1 0 X X X X X X X
– 1 0 1 1 X X X X X X X
– 1 1 0 0 X X X X X X X
– 1 1 0 1 X X X X X X X
– 1 1 1 0 X X X X X X X
– 1 1 1 1 X X X X X X X

EXAMPLE 2.1

a b c w x y z

0 0 0 0 1 1 1
0 0 1 1 1 0 1
0 1 0 X X X X
0 1 1 1 1 1 1
1 0 0 0 0 1 0
1 0 1 X X X X
1 1 0 0 1 1 0
1 1 1 1 1 1 0

36 Chapter 2 Combinational Systems

We want to develop a truth table for a system with three inputs, a, b, and c,
and four outputs, w, x, y, z. The output is a binary number equal to the
largest integer that meets the input conditions:

a � 0: odd a � 1: even

b � 0: prime b � 1: not prime

c � 0: less than 8 c � 1: greater than or equal to 8

Some inputs may never occur; the output is never all 0’s.
(A prime is a number that is only evenly divisible by itself and 1.) The follow-
ing is a truth table for this system.

about the inputs that do not correspond to a decimal digit (1010, 1011,
… , 1111). If we know for sure that they will never happen, then we don’t
care what the display driver produces for those input combinations. On
the other hand, the specifications might state that the display is to be
blank (no segment lit) or that it is to display an error code.  

The truth table of Table 2.6 assumes 8241 code, a 1 to light a seg-
ment, the version of 6, 7, and 9 does not matter, and that the inputs that
do not represent a decimal digit never occur.
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2.2 Switching Algebra 37

For the first four rows, we are looking for odd numbers. The odd primes
are 1, 3, 5, 7, 11, and 13. Thus, the first row is the binary for 7 (the largest odd
prime less than 8) and the second row is the binary for 13. The next two rows
contain nonprimes. All odd numbers less than 8 are prime; therefore, the
input is never 010 and the outputs are don’t cares. Finally, 9 and 15 are odd
nonprimes; 15 is larger. For the second half of the table, the only even prime
is 2; thus, 101 never occurs. The largest even nonprimes are 6 and 14.

2.2 SWITCHING ALGEBRA

In the last section, we went from a verbal description of a combinational
system to a more formal and exact description—a truth table. Although
the truth table is sufficient to implement a system using read-only mem-
ory (see Chapter 5), we need an algebraic description to analyze and
design systems with other components. In this section, we will develop
the properties of switching algebra.

We need the algebra for several reasons. Perhaps the most obvious is
that if we are presented with a network of gates, we need to obtain a
specification of the output in terms of the input. Since each gate is
defined by an algebraic expression, we most often need to be able to
manipulate that algebra. (We could try each possible input combination
and follow the signals through each gate until we reached the output.
That, however, is a very slow approach to creating a whole truth table for
a system of gates.)

Second, in the design process, we often obtain an algebraic expres-
sion that corresponds to a much more complex network of gates than is
necessary. Algebra allows us to simplify that expression, perhaps even
minimize the amount of logic needed to implement it. When we move on
to Chapter 3, we will see that there are other nonalgebraic ways of doing
this minimization, methods that are more algorithmic. However, it is still
important to understand the algebraic foundation behind them.

Third, algebra is often indispensable in the process of implementing
networks of gates. The simplest algebraic expression, found by one of the
techniques presented in this chapter or the next, does not always correspond
to the network that satisfies the requirements of the problem. Thus, we may
need the algebra to enable us to satisfy the constraints of the problem.

In an earlier edition, we introduced the Karnaugh map in the middle
of this chapter, to aid in the understanding of the algebraic manipulation.
Without loss of continuity, one might study Section 3.1 before Sec-
tion 2.7 and then refer to some examples in Appendix A, which illustrate
the algebra using the map.

One approach to the development of switching algebra is to begin
with a set of postulates or axioms that define the more general Boolean
algebra. In Boolean algebra, each variable—inputs, outputs, and internal
signals—may take on one of k values (where k � 2). Based on these 

[SP 1, 2; EX 1, 2]
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38 Chapter 2 Combinational Systems

postulates, we can define an algebra and eventually determine the mean-
ing of the operators. We can then limit them to the special case of switch-
ing algebra, k � 2. We have deferred a brief discussion of that approach
to Section 2.9. Rather, we will define switching algebra in terms of its
operators and a few basic properties.

2.2.1 Definition of Switching Algebra

Switching algebra is binary, that is, all variables and constants take on
one of two values: 0 and 1. Quantities that are not naturally binary must
then be coded into binary format. Physically, they may represent a light
off or on, a switch up or down, a low voltage or a high one, or a magnetic
field in one direction or the other. From the point of view of the algebra,
the physical representation does not matter. When we implement a system,
we will choose one of the physical manifestations to represent each value.

We will first define the three operators of switching algebra and then
develop a number of properties of switching algebra:

OR (written as �)*

a � b (read a OR b) is 1 if and only if a � 1 or b � 1 or both

AND (written as � or simply two variables catenated)

a � b � ab (read a AND b) is 1 if and only if a � 1 and b � 1.

NOT (written �)

a� (read NOT a) is 1 if and only if a � 0.

The term complement is sometimes used instead of NOT. The operation
is also referred to as inversion, and the device implementing it is called
an inverter.

Because the notation for OR is the same as that for addition in ordi-
nary algebra and that for AND is the same as multiplication, the termi-
nology sum and product is commonly used. Thus, ab is often referred to
as a product term and a � b as a sum term. Many of the properties dis-
cussed in this chapter apply to ordinary algebra, as well as switching
algebra, but, as we will see, there are some notable exceptions.

Truth tables for the three operators are shown in Table 2.7.

Table 2.7 Truth tables for OR, AND, and NOT.

a b a � b a b ab a a�

0 0 0 0 0 0 0 1
0 1 1 0 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1

*OR is sometimes written �; AND is then written as �. NOT x is sometimes written
~x or –x.
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2.2 Switching Algebra 39

We will now begin to develop a set of properties of switching algebra.
(These are sometimes referred to as theorems.) A complete list of the prop-
erties that we will use may be found inside the front cover.* The first group
of properties follow directly from the definitions (or the truth tables).

P1a. a � b � b � a P1b. ab � ba

Note that the values for both OR and AND are the same for the second and
third lines of the truth table. This is known as the commutative property. It
seems obvious because it holds for addition and multiplication, which
use the same notation. However, it needs to be stated explicitly, because
it is not true for all operators in all algebras. (For example, a � b � b � a
in ordinary algebra. There is no subtraction operation in switching
algebra.)

P2a. a � (b � c) � (a � b) � c P2b. a(bc) � (ab)c

This property, known as the associative law, states that the order in
which one does the OR or AND operation doesn’t matter, and thus we
can write just a � b � c and abc (without the parentheses). It also
enables us to talk of the OR or AND of several things. We can thus
extend the definition of OR to

a � b � c � d � � � � is 1 if any of the operands (a, b, c, d, . . .) is 1
and is 0 only if all are 0

and the definition of AND extends to

abcd . . . is 1 if all of the operands are 1 and is 0 if any is 0

The most basic circuit element is the gate. A gate is a circuit with
one output that implements one of the basic functions, such as the OR
and AND. (We will define additional gate types later.) Gates are available
with two inputs, as well as three, four, and eight inputs. (They could be
built with other numbers of inputs, but these are the standard commer-
cially available sizes.) The symbols most commonly used (and which we
will use throughout this text) are shown in Figure 2.4. (Note in Figure 2.4
the rounded input for the OR and the flat input for the AND; and the
pointed output on the OR and the rounded output on the AND.)

Figure 2.4 Symbols for OR and AND gates.

a
a � b

b

OR

a

b
ab

AND

Property 2b states that the three circuits of Figure 2.5 all produce the
same output.

commutative

associative

*This list is somewhat arbitrary. We are including those properties that we have found
useful in manipulating algebraic expressions. Any pair of expressions that are equal to each
other could be included on the list. Indeed, other books have a somewhat different list.
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40 Chapter 2 Combinational Systems

The third gate we will include is the NOT, which has the symbol shown
in Figure 2.6. The triangle is just the symbol for an amplifier (from elec-
tronics). The circle (sometimes referred to as a bubble) on the output is
the symbol for inversion (NOT) and, as we will see later, is often shown
attached to other gate inputs and outputs to indicate the NOT function.

Parentheses are used as in other mathematics; expressions inside the
parentheses are evaluated first. When evaluating expressions without
parentheses, the order of precedence is

NOT

AND

OR

Thus, for example,

ab� � c�d � [a(b�)] � [(c�)d]

Even without parentheses, the input b is complemented first and then
ANDed with a. Input c is complemented and ANDed with d and then the
two product terms are ORed. If the intent is to AND a and b and then
complement them, it must be written (ab)� rather than ab� and if the
intent is to do the OR before the ANDs, it must be written a(b� � c�)d.

In each of the properties, we use a single letter, such as a, b, c, . . . to
represent any expression, not just a single variable. Thus, for example,
Property 1a also states that

xy�z � w� � w� � xy�z

One other thing to note is that properties always appear in dual
pairs. To obtain the dual of a property, interchange OR and AND, and the
constants 0 and 1. The first interchange is obvious in P1 and P2; the other
will be used in the next three properties. It can be shown that whenever
two expressions are equal, the duals of those expressions are also equal.
That could save some work later on, since we do not have to prove both
halves of a pair of properties.

2.2.2 Basic Properties of Switching Algebra

We will next look at three pairs of properties associated with the con-
stants 0 and 1.

[SP 3; EX 3]

Figure 2.6 A NOT gate.

a �a

Figure 2.5 AND gate implementation of Property 2b.

a
b
cb

a

c

b

a

c
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P3a. a � 0 � a P3b. a � 1 � a

P4a. a � 1 � 1 P4b. a � 0 � 0

P5a. a � a� � 1 P5b. a � a� � 0

Properties 3a and 4b follow directly from the first and third lines of the
truth tables; Properties 3b and 4a follow from the second and fourth
lines. Property 5 follows from the definition of the NOT, namely, that
either a or a� is always 1 and the other is always 0. Thus, P5a must be
either 0 � 1 or 1 � 0, both of which are 1, and P5b must be either 0 � 1
or 1 � 0, both of which are 0. Once again, each of the properties comes in
dual pairs.

Note that by combining the commutative property (P1a) with 3, 4,
and 5, we also have

P3aa. 0 � a � a P3bb. 1 � a � a

P4aa. 1 � a � 1 P4bb. 0 � a � 0

P5aa. a� � a � 1 P5bb. a� � a � 0

Often, as we manipulate expressions, we will use one of these versions,
rather than first interchanging the terms using the commutative law (P1).

Another property that follows directly from the first and last lines of
the truth tables for OR and AND (see Table 2.7) is

P6a. a � a � a P6b. a � a � a

By repeated application of Property 6a, we can see that

a � a � a � a � a

In the process of manipulating logic functions, it should be understood
that each of these equalities is bidirectional. For example, xyz � xyz can
be replaced in an expression by xyz; but, also, it is sometimes useful to
replace xyz by xyz � xyz.

The final property that we will obtain directly from the truth tables of
the operators is the only one we will include on our list that is a self-dual.

P7. (a�)� � a

If a � 0, then a� � 1. However, when that is complemented again, that
is, (0�)� � 1� � 0 � a. Similarly, if a � 1, a� � 0 and (1�)� � 1. 
Because there are no ANDs, ORs, 0’s, or 1’s, the dual is the same property.

The next pair of properties, referred to as the distributive law, are
most useful in algebraic manipulation.

P8a. a(b � c) � ab � ac P8b. a � bc � (a � b)(a � c)

P8a looks very familiar; we use it commonly with addition and multipli-
cation. In right to left order, it is referred to as factoring. On the other
hand, P8b is not a property of regular algebra. (Substitute 1, 2, 3 for a, b,

identity

null

involution

complement
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42 Chapter 2 Combinational Systems

The table could have been constructed by evaluating each of the 
expressions for each row (input combination). For the first row,

a � bc � 0 � �0 � 0) � 0 � 0 � 0

�a � b)�a � c) � �0 � 0)�0 � 0) � 0 � 0 � 0

and for the sixth row (101)

a � bc � 1 � �0 � 1) � 1 � 0 � 1

�a � b)�a � c) � �1 � 0)�1 � 1) � 1 � 1 � 1

We would need to do this for all eight rows. If we need the whole table,
the first method usually requires less work.

This method can also be used to determine whether functions are
equal. To be equal, the functions must have the same value for all input
combinations. If they differ in any row of the truth table, they are not equal.

Construct a truth table and show which of the three functions are equal. (Be
sure to state whether they are equal.)

f � y�z� � x�y � x�yz�

g � xy� � x�z� � x�y
h � (x� � y�)(x � y � z�)

EXAMPLE 2.2

Table 2.8 Truth table to prove Property 8b.

a b c bc LHS a � b a � c RHS

0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

c, and the computation is 1 � 6 � 7 on the left and 4 � 3 � 12 on the
right.) The simplest way to prove these properties of switching algebra is
to produce a truth table for both sides of the equality and show that they
are equal. That is shown for Property 8b in Table 2.8. The left three
columns are the input columns. The left-hand side (LHS) of the equality
is constructed by first forming a column for bc. That column has a 1 in
each of the rows where both b and c are 1 and 0 elsewhere. Then LHS �
a � bc is computed using the column for a and that for bc. LHS is 1 when
either of those columns contains a 1 or both are 1 and is 0 when they are
both 0. Similarly, the right-hand side (RHS) is computed by first con-
structing a column for a � b, which contains a 1 when a � 1 or b � 1.
The column for a � c is constructed in a similar fashion and finally
RHS � (a � b)(a � c) is 1 wherever both of the previous columns are 1.
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2.2 Switching Algebra 43

The truth table was constructed for each of the three functions (using the
same technique as we did in developing Table 2.8). For input combination 
1 0 1, f � 0, but g � h � 1. Thus, f is not equal to either of the other func-
tions. The columns for g and h are identical; thus, g � h.

2.2.3 Manipulation of Algebraic Functions

Before adding some properties that are useful in simplifying algebraic
expressions, it is helpful to introduce some terminology that will make
the discussion simpler.

A literal is the appearance of a variable or its complement. Examples
are a and b�. In determining the complexity of an expression, one of the
measures is the number of literals. Each appearance of a variable is
counted. Thus, for example, the expression

ab� � bc�d � a�d � e�

contains eight literals.
A product term is one or more literals connected by AND operators.

In the previous example, there are four product terms, ab�, bc�d, a�d, and
e�. Notice that a single literal is a product term.

A standard product term, also called a minterm, is a product term
that includes each variable of the problem, either uncomplemented or
complemented. Thus, for a function of four variables, w, x, y, and z, the
terms w�xyz� and wxyz are standard product terms, but wy�z is not.

A sum of products expression (often abbreviated SOP) is one or
more product terms connected by OR operators. The previous expression
meets this definition as do each of the following:

w�xyz� � wx�y�z� � wx�yz � wxyz (4 product terms)

x � w�y � wxy�z (3 product terms)

x� � y � z (3 product terms)

wy� (1 product term)

z (1 product term)

It is usually possible to write several different SOP expressions for the
same function.

x y z y�z� x�y x�yz� f xy� x�z� x�y g x�� y� x � y � z� h

0 0 0 1 0 0 1 0 1 0 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0 1 1 1 1 1 1
0 1 1 0 1 0 1 0 0 1 1 1 1 1
1 0 0 1 0 0 1 1 0 0 1 1 1 1
1 0 1 0 0 0 0 1 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 0 0 1 0

[SP 4, 5; EX 4, 5]
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44 Chapter 2 Combinational Systems

A canonical sum, or sum of standard product terms, is just a sum of
products expression where all of the terms are standard product terms.
The first example is the only canonical sum (if there are four variables in
all of the problems). Often, the starting point for algebraic manipulations
is with canonical sums.

A minimum sum of products expression is one of those SOP expres-
sions for a function that has the fewest number of product terms. If there
is more than one expression with the fewest number of terms, then min-
imum is defined as one or more of those expressions with the fewest
number of literals. As implied by this wording, there may be more than
one minimum solution to a given problem. Each of the following expres-
sions are equal (meaning that whatever values are chosen for x, y, and z,
each expression produces the same value). Note that the first is a sum of
standard product terms.

(1) x�yz� � x�yz � xy�z� � xy�z � xyz 5 terms, 15 literals

(2) x�y � xy� � xyz 3 terms, 7 literals

(3) x�y � xy� � xz 3 terms, 6 literals

(4) x�y � xy� � yz 3 terms, 6 literals

Expressions (3) and (4) are the minima. (It should be clear that those are
minimum among the expressions shown; it is not so obvious that there
is not yet another expression with fewer terms or literals.) (A word of
caution: When looking for all of the minimum solutions, do not include
any solution with more terms or more literals than the best already
found.)

Actually, we have enough algebra at this point to be able to go from
the first expression to the last two. First, we will reduce the first expres-
sion to the second:

x�yz� � x�yz � xy�z� � xy�z � xyz

� (x�yz� � x�yz) � (xy�z� � xy�z) � xyz associative

� x�y(z� � z) � xy�(z� � z) � xyz distributive

� x�y � 1 � xy� � 1 � xyz complement

� x�y � xy� � xyz identity

The first step takes advantage of P2a, which allows us to group terms in
any way we wish. We then utilized P8a to factor x�y out of the first two
terms and xy� out of the third and fourth terms. Next we used P5aa to
replace z� � z by 1. In the final step, we used P3b to reduce the expression.

The last three steps can be combined into a single step. We can add
a property

P9a. ab � ab� � a P9b. (a � b)(a � b�) � a

where, in the first case, a � x�y and b � z�. Thus, if there are two prod-
uct terms in a sum that are identical, except that one of the variables is

adjacency
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2.2 Switching Algebra 45

uncomplemented in one and complemented in the other, they can be
combined, using P9a. (The proof of this property follows the same three
steps we used before—P8a to factor out the a, P5a to replace b � b� by
1, and finally P3b to produce the result.) The dual can be proved using
the dual steps, P8b, P5b, and P3a.

The easiest way to get to expression (3), that is, to go to six literals,
is to use P6a, and make two copies of xy�z, that is,

xy�z � xy�z � xy�z

The expression becomes

x�yz� � x�yz � xy�z� � xy�z � xyz � xy�z

� �x�yz� � x�yz) � �xy�z� � xy�z) � �xyz � xy�z)

� x�y�z� � z) � xy��z� � z) � xz�y � y�)

� x�y � 1 � xy� � 1 � xz � 1
� x�y � xy� � xz

We added the second copy of xy�z at the end and combined it with the last
term (xyz). The manipulation then proceeded in the same way as before.
The other expression can be obtained in a similar manner by using P6a
on x�yz and combining the second copy with xyz. Notice that we freely
reordered the terms in the first sum of products expression when we
utilized P6a to insert a second copy of one of the terms.

In general, we may be able to combine a term on the list with more
than one other term. If that is the case, we can replicate a term as many
times as are needed.

Another property that will allow us to reduce the system to six liter-
als without the need to make extra copies of a term is

P10a. a � a�b � a � b P10b. a(a� � b) � ab

We can demonstrate the validity of P10a by using P8b, P5a, and P3bb as
follows:

a � a�b � �a � a�) �a � b) distributive

� 1 � �a � b) complement

� a � b identity

P10b can be demonstrated as follows:

a�a� � b) � aa� � ab � 0 � ab � ab

We can apply this property to the example by factoring x out of the last
two terms:

x�y � xy� � xyz

� x�y � x�y� � yz) distributive

� x�y � x�y� � z) simplification

� x�y � xy� � xz distributive

simplification
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46 Chapter 2 Combinational Systems

We used P10a where a � y� and b � z in going from line 2 to 3. Instead,
we could have factored y out of the first and last terms, producing

y(x� � xz) � xy�

� y(x� � z) � xy�

� x�y � yz � xy�

which is the other six literal equivalent.
Consider the following example, an expression in canonical form.

a�b�c� � a�bc� � a�bc � ab�c�

The first two terms can be combined using P9a, producing

a�c� � a�bc � ab�c�

Now, we can factor a� from the first two terms and use P10a to reduce this to

a�c� � a�b � ab�c�

and repeat the process with c� and the first and last terms, resulting in the
expression

a�c� � a�b � b�c�

Although this expression is simpler than any of the previous ones, it is not
minimum. With the properties we have developed so far, we have reached
a dead end, and we have no way of knowing that this is not the minimum.
Returning to the original expression, we can group the first term with the last
and the middle two terms. Then, when we apply P9a, we get an expression
with only two terms and four literals:

a�b�c� � a�bc� � a�bc � ab�c�

� b�c� � a�b

Later, we will see a property that allows us to go from the three-term
expression to the one with only two terms.

Each terminology defined earlier has a dual that will also prove useful.
A sum term is one or more literals connected by OR operators.

Examples are a � b� � c and b� (just one literal).
A standard sum term, also called a maxterm, is a sum term that

includes each variable of the problem, either uncomplemented or
complemented. Thus, for a function of four variables, w, x, y, and z, the
terms w� � x � y � z� and w � x � y � z are standard sum terms, but
w � y� � z is not.

A product of sums expression (POS) is one or more sum terms con-
nected by AND operators. Examples of product of sums expressions:

�w � x)�w � y) 2 terms

w�x � y) 2 terms

w 1 term

EXAMPLE 2.3
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2.2 Switching Algebra 47

w � x 1 term

�w � x� � y� � z�)�w� � x � y � z�) 2 terms

A canonical product, or product of standard sum terms, is just a
POS expression in which all of the terms are standard sum terms. The
last example above is the only canonical sum (if there are four variables
in all of the problems). Often, the starting point for algebraic manipula-
tions is with canonical sums.

Minimum is defined the same way for both POS and SOP, namely,
the expressions with the fewest number of terms, and, among those with
the same number of terms, those with the fewest number of literals. A
given function (or expression) can be reduced to minimum sum of prod-
ucts form and to minimum product of sums form. They may both have
the same number of terms and literals or either may have fewer than the
other. (We will see examples later, when we have further developed our
minimization techniques.)

An expression may be in sum of products form, product of sums
form, both, or neither. Examples are

SOP: x�y � xy� � xyz

POS: �x � y�)�x� � y)�x� � z�)

both: x� � y � z or xyz�

neither: x�w� � yz) or z� � wx�y � v�xz � w�)

We will now look at an example of the simplification of functions in
maxterms form. (Later, we will look at methods of going from sum of
products to product of sums and from product of sums to sum of prod-
ucts forms.)

g � (w� � x� � y � z�)(w� � x� � y � z)(w � x� � y � z�)

The first two terms can be combined, using P9b, where

a � w� � x� � y and b � z�

producing

g � (w� � x� � y)(w � x� � y � z�)

That can most easily be reduced further by using P6b, to create a second
copy of the first term, which can be combined with the last term, where

a � x� � y � z� and b � w

producing the final answer

g � (w� � x� � y)(x� � y � z�)

We could also do the following manipulation (parallel to what we did
with the SOP expression)
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48 Chapter 2 Combinational Systems

Figure 2.7 Block diagram of f in sum
of standard products form.
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This is an example of a two-level circuit. The number of levels is the
maximum number of gates through which a signal must pass from the

[SP 6, 7, 8, 9; EX 6, 7, 8, 9]

g � (w� � x� � y)(w � x� � y � z�)

� x� � y � w�(w � z�) [P8b]
� x� � y � w�z� [P10b]
� (x� � y � w�)(x� � y � z�) [P8b]

which, after reordering the literals in the first set of parentheses, is the
same expression as before.

2.3 IMPLEMENTATION OF FUNCTIONS
WITH AND, OR, AND NOT GATES

We will first look at the implementation of switching functions using net-
works of AND, OR, and NOT gates. (After all, the goal of our design is
to produce the block diagram of a circuit to implement the given switching
function.) When we defined minimum SOP expressions, we introduced,
as an example, the function

f � x�yz� � x�yz � xy�z� � xy�z � xyz

A block diagram of a circuit to implement this is shown in Figure 2.7.
Each of the product terms is formed by an AND gate. In this example,
all of the AND gates have three inputs. The outputs of the AND gates
are used as inputs to an OR (in this case a five-input OR). This imple-
mentation assumes that all of the inputs are available, both uncomple-
mented and complemented (that is, for example, both x and x� are
available as inputs). This is usually the case if the input to the combina-
tional logic circuit comes from a flip flop, a storage device in sequential
systems. It is not usually true, however, if the input is a system input.
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2.3 Implementation of Functions with AND, OR, and NOT Gates 49

input to the output. In this example, all signals go first through an AND
gate and then through an OR. When inputs are available both uncomple-
mented and complemented, implementations of both SOP and POS
expressions result in two-level circuits.

We saw that this same function can be manipulated to a minimum
SOP expression, one version of which is

f � x�y � xy� � xz

This, of course, leads to a less complex circuit, namely, the one shown in
Figure 2.8.

We have reduced the complexity of the circuit from six gates with 20
gate inputs (three to each of the five ANDs and five to the OR) to one
with four gates and 9 gate inputs. The simplest definition of minimum for
a gate network is minimum number of gates and, among those with the
same number of gates, minimum number of gate inputs. For two-level
circuits, this always corresponds to minimum sum of products or mini-
mum product of sums functions.

If complemented inputs are not available, then an inverter (a NOT
gate) is needed for each input that is required to be complemented
(x and y in this example). The circuit of Figure 2.9 shows the NOT gates
that must be added to the circuit of Figure 2.8 to implement f. Note that
in this version we showed each input once, with that input line con-
nected to whatever gates required it. That is surely what happens when
we actually construct the circuit. However, for clarity, we will draw cir-
cuits more like the previous one (except, of course, we will only have
one NOT gate for each input, with the output of that gate going to those
gates that require it). (This is a three-level circuit because some of the
paths pass through three gates: a NOT, an AND, and then an OR.)

Figure 2.8 Minimum sum
of product
implementation of f.

x

y�
f

x�

y

x

z

Figure 2.9 Circuit with only
uncomplemented inputs.

x

z

f

y

A POS expression (assuming all inputs are available both uncom-
plemented and complemented) corresponds to a two-level OR–AND
network. For this same example, the minimum POS (although that is not
obvious based on the algebra we have developed to this point)

f � (x � y)(x� � y� � z)

is implemented with the circuit of Figure 2.10.

Figure 2.10 A product of sums
implementation.

x

y

x�

z
y�

f
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50 Chapter 2 Combinational Systems

This is a four-level circuit because the signals x and z pass first
through an AND gate, then an OR, then an AND, and finally through an
OR—a total of four gates.

If we take the version of f used for Figure 2.8, and factor x from the last two
terms, we obtain

f � x�y � x(y� � z)

That would result in the three-level circuit

EXAMPLE 2.4

Figure 2.11 A multilevel circuit.
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z
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This (three-level) solution uses 4 two-input gates.

Gates are typically available in dual in-line pin packages (DIPs) of
14 connector pins. These packages are often referred to as chips. (Larger
packages of 16, 18, 22, and more pins are used for more complex logic.)
These packages contain integrated circuits (ICs). Integrated circuits are

When we implement functions that are in neither SOP nor POS
form, the resulting circuits are more than two levels. As an example, con-
sider the following function:

h � z� � wx�y � v(xz � w�)

We begin inside the parentheses and build an AND gate with inputs x and
z. The output of that goes to an OR gate, the other input of which is w�.
That is ANDed with v, which is ORed with the input z� and the output of
the AND gate, producing wx�y, which results in the circuit of Figure 2.11.
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categorized as small-scale integration (SSI) when they contain just a few
gates. Those are the ones that we will refer to in this chapter. Medium-
scale (MSI) circuits contain as many as 100 gates; we will see examples
of these later. The terminology large-scale integration (LSI), very large-
scale integration (VLSI), and giga-scale integration (GSI) is used for
even more complex packages, including complete computers.

Two of the connector pins are used to provide power to the chip.
That leaves 12 pins for logic connections (on a 14-pin chip). Thus, we
can fit 4 two-input gates on a chip. (Each gate has two input connections
and one output connection. There are enough pins for four such gates.)
Similarly, there are enough pins for 6 one-input gates (NOTs), 3 three-input
gates, and 2 four-input gates (with two pins unused). In examples that refer
to specific integrated circuits, we will discuss transistor–transistor logic
(TTL) and, in particular, the 7400 series of chips.* For these chips, the
power connections are 5 V and ground (0 V).

A list of the common AND, OR, and NOT integrated circuits that
might be encountered in the laboratory is

7404 6 (hex) NOT gates
7408 4 (quadruple) two-input AND gates
7411 3 (triple) three-input AND gates
7421 2 four-input (dual) AND gates
7432 4 (quadruple) two-input OR gates

If a three-input OR (or AND) is needed, and only two-input ones are
available, it can be constructed as follows:

a � b � c
a

c

b

abc
a

c

b

ab
a

b
a � b

a

b

This idea can be extended to gates with larger numbers of inputs.†

Also, if we need a two-input gate and there is a leftover three-input
one (because they come three to a package), we can connect the same
signal to two of the inputs (since aa � a, and a � a � a).

*There are many families of logic circuits on the market, with different electronic
characteristics. In each, there are similar packages of gates. Since our primary interest is
at the logic level (rather than the electronics level), we chose one of these, TTL, for the
examples that involve specific chips. Even within the 7400 series, there are a number of
variations, indicated by a letter or letters after the 74 (such as 74H10). We will not be
concerned with that detail; it is left for a course on digital electronics.

†Caution: This approach does not work for NAND and NOR gates (which we will intro-
duce in Section 2.6).
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52 Chapter 2 Combinational Systems

In the laboratory, logic 0 and logic 1 are represented by two voltages:
often 0 and 5 V. Most commonly, the higher voltage is used to represent 1
and the lower voltage to represent 0. This is referred to as positive logic.
The opposite choice is also possible, that is, use the higher voltage to rep-
resent 0. That is referred to as negative logic. When dealing with 1’s and
0’s, the concept does not really come up. However, the same electronic
circuit has different logic meanings depending on which choice we make.

Consider the truth table of Table 2.9a, where the behavior of the gate
is described just in terms of high (H) and low (L). The positive logic
interpretation of Table 2.9b produces the truth table for an OR gate. The
negative logic interpretation of Table 2.9c is that of an AND gate.

Most implementations use positive logic; we will do that consis-
tently throughout this book. Occasionally, negative logic, or even a mix-
ture of the two, is used.

2.4 THE COMPLEMENT

Before we go further, we need to develop one more property. This prop-
erty is the only one for which a person’s name is commonly attached—
DeMorgan’s theorem.

P11a. (a � b)� � a�b� P11b. (ab)� � a� � b�

The simplest proof of this property utilizes the truth table of Table 2.10.
In Table 2.10, we have produced a column for each of the expressions in
the property. (The entries in the table should be obvious because they just
involve the AND, OR, and NOT operations on other columns.) Note that
the columns (labeled 11a) for (a � b)� and a�b� are the same and those
(labeled 11b) for (ab)� and a� � b�are the same.

DeMorgan

[SP 10, 11; EX 10, 11; LAB*]

Table 2.9

a. High/Low b. Positive logic c. Negative logic

a b f a b f a b f

L L L 0 0 0 1 1 1
L H H 0 1 1 1 0 0
H L H 1 0 1 0 1 0
H H H 1 1 1 0 0 0

*LAB refers to experiments in Appendix D.

1 • ab � ab a
1

b
0 � a � b � a � ba

0

b

Also, we could connect a logic 1 (�5 V) to one of the inputs of an AND
or a logic 0 (ground) to one of the inputs of an OR:
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2.4 The Complement 53

The property can be extended to more than two operands easily.

P11aa. (a � b � c . . .)� � a�b�c� . . .
P11bb. (abc . . .)� � a� � b� � c� . . .

For P11aa, with three variables, the proof goes

(a � b � c)� � [(a � b) � c]� � (a � b)�c� � a�b�c�

Just look at the (ab)� and a�b� columns of the truth table and compare the
expressions for a � 0 and b � 1 (or for a � 1 and b � 0):

(0 � 1)� � 0� � 1 0� � 1� � 1 � 0 � 0

There will be times when we are given a function and need to find its
complement, that is, given f(w, x, y, z), we need f �(w, x, y, z). The straight-
forward approach is to use DeMorgan’s theorem repeatedly.

f � wx�y � xy� � wxz

then

f � � (wx�y � xy� � wxz)�

� (wx�y)�(xy�)�(wxz)� [P11a]

� (w� � x � y�)(x� � y)(w� � x� � z�) [P11b]

Note that if the function is in SOP form, the complement is in POS form
(and the complement of a POS expression is an SOP one).

To find the complement of more general expressions, we can repeat-
edly apply DeMorgan’s theorem or we can follow this set of rules:

1. Complement each variable (that is, a to a� or a� to a).

2. Replace 0 by 1 and 1 by 0.

3. Replace AND by OR and OR by AND, being sure to preserve the
order of operations. That sometimes requires additional parentheses.

COMMON MISTAKE:  The NOT does not distribute through the
parentheses. Thus,

(ab)� 	 a�b� and (a + b)� 	 a� + b�

and, for example, 

ab + a�b� 	 1

EXAMPLE 2.5

Table 2.10 Proof of DeMorgan’s theorem.

a b a � b (a � b)� a� b� a�b� ab (ab)� a� � b�

0 0 0 1 1 1 1 0 1 1
0 1 1 0 1 0 0 0 1 1
1 0 1 0 0 1 0 0 1 1
1 1 1 0 0 0 0 1 0 0

11a 11a 11b 11b 
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54 Chapter 2 Combinational Systems

EXAMPLE 2.6

Table 2.11 A two-variable
truth table.

a b f

0 0 0
0 1 1
1 0 1
1 1 1

[SP 12; EX 12]

f � ab�(c � d�e) � a�bc�

f� � [a� � b � c�(d � e�)][a � b� � c]

Note that in f, the last operation to be performed is an OR of the complex
first term with the product term. To preserve the order, parentheses
were needed in f�; making the AND the last operation. 

We would produce the same result, with much more work, by using
P11a and P11b over and over again:

f� � [ab�(c � d�e) � a�bc�]�

� [ab�(c � d�e)]�[a�bc�]�

� [a� � b � (c � d�e)�][a � b� � c]

� [a� � b � c�(d�e)�][a � b� � c]

� [a� � b � c�(d � e�)][a � b� � c]

2.5 FROM THE TRUTH TABLE TO
ALGEBRAIC EXPRESSIONS

Often, a design problem is stated in terms of the truth table that describes
the output in terms of the inputs. Other times, verbal descriptions of sys-
tems can most easily be translated into the truth table. Thus, we need the
ability to go from the truth table to an algebraic expression. To under-
stand the process, consider the two-variable truth table of Table 2.11.

Because this is a two-variable problem, the truth table has 4(� 22)
rows, that is, there are 4 possible combinations of inputs. (This is the
truth table for the OR as we defined it at the beginning of this chapter, but
that is irrelevant to this discussion.) What the table says is that

f is 1 if a � 0 AND b � 1 OR

if a � 1 AND b � 0 OR

if a � 1 AND b � 1

However, this is the same as saying

f is 1 if a� � 1 AND b � 1 OR

if a � 1 AND b� � 1 OR

if a � 1 AND b � 1

But a� � 1 AND b � 1 is the same as saying a�b � 1 and thus

f is 1 if a�b � 1 OR if ab� � 1 OR if ab � 1

That finally produces the expression

f � a�b � ab� � ab
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Each row of the truth table corresponds to a product term. An SOP
expression is formed by ORing those product terms corresponding to
rows of the truth table for which the function is 1. Each product term has
each variable included, with that variable complemented when the entry
in the input column for that variable contains a 0 and uncomplemented
when it contains a 1. Thus, for example, row 10 produces the term ab�.
These product terms include all of the variables; they are minterms.
Minterms are often referred to by number, by just converting the binary
number in the input row of the truth table to decimal. Both of the fol-
lowing notations are common:

f�a, b� � m1 � m2 � m3

f�a, b� � �m�1, 2, 3�

Note: If we use minterm numbers, we must include the variable names
in the function name, such as f (a, b). If we write an algebraic expres-
sion, such as f = a�b + ab� + ab, we can use just f, since the variables are
obvious.

We show, in Table 2.12, the minterms and minterm numbers that are
used for all functions of the three variables A, B, and C.

For a specific function, those terms for which the function is 1 are
used to form an SOP expression for f, and those terms for which the func-
tion is 0 are used to form an SOP expression for f �. We can then comple-
ment f� to form a POS expression for f.

Table 2.12 Minterms.

ABC Minterm Number

0 0 0 A�B�C� 0
0 0 1 A�B�C 1
0 1 0 A�BC� 2
0 1 1 A�BC 3
1 0 0 AB�C� 4
1 0 1 AB�C 5
1 1 0 ABC� 6
1 1 1 ABC 7

ABC f f�

0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 0 1
1 1 1 0 1

where the truth table shows both the function, f, and its complement, f�. We
can write

f(A, B, C) � �m(1, 2, 3, 4, 5)

� A�B�C � A�BC� � A�BC � AB�C� � AB�C

Either from the truth table, or by recognizing that every minterm is included
in either f or f�, we can then write

f�(A, B, C) � �m(0, 6, 7)

� A�B�C� � ABC� � ABC

EXAMPLE 2.7
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56 Chapter 2 Combinational Systems

We can then complement f� to get a sum of maxterms.*

f � (f�)� � (A � B � C)(A� � B� � C)(A� � B� � C�)

The two sum of minterm forms are SOP expressions. In most cases,
including this one, the sum of minterms expression is not a minimum sum
of products expression. We could reduce f from 5 terms with 15 literals to
either of two functions with 3 terms and 6 literals as follows:

f � A�B�C � A�BC� � A�BC � AB�C� � AB�C

� A�B�C � A�B � AB� [P9a, P9a]

� A�C � A�B � AB�

� B�C � A�B � AB�

where the final expressions are obtained using P8a and P10a on the first
term and either the second or the third. Similarly, we can reduce f� from 
3 terms with 9 literals to 2 terms with 5 literals, using P9a:

f� � A�B�C� � AB

Using P11, we can then obtain the minimum POS expression for f.

f = (A + B + C)(A� + B�)

To find a minimum POS expression, we can either manipulate the previous
POS expression (using P9b on the last two terms) or simplify the SOP
expression for f� and then use DeMorgan to convert it to a POS expression.
Both approaches produce the same result.

In much of the material of Chapter 3, we will specify functions by
just listing their minterms (by number). We must, of course, list the vari-
ables of the problem as part of that statement. Thus,

f(w, x, y, z) � �m(0, 1, 5, 9, 11, 15)

is the simplest way to specify the function

f � w�x�y�z� � w�x�y�z � w�xy�z � wx�y�z � wx�yz � wxyz

If the function includes don’t cares, then those terms are included in
a separate sum (�).

*It is possible to obtain POS expressions directly from the truth table without first finding
the SOP expression. Each 0 of f produces a maxterm in the POS expression. We have
omitted that approach here, because it tends to lead to confusion.
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f(a, b, c) � �m(1, 2, 5) � �d(0, 3)

implies that minterms 1, 2, and 5 are included in the function and that 0 and
3 are don’t cares, that is the truth table is as follows:

abc f

0 0 0 X
0 0 1 1
0 1 0 1
0 1 1 X
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

EXAMPLE 2.8

Let us now return to the first three of our continuing examples and
develop algebraic expressions for them.

Using Z2 for CE1, we get

Z2 � A�BCD � AB�CD � ABC�D � ABCD� � ABCD

directly from the truth table. The last term (ABCD) can be combined with
each of the others (using P10a). Thus, if we make four copies of it (using
P6a repeatedly) and then utilize P10a four times, we obtain

Z2 � BCD � ACD � ABD � ABC

No further simplification is possible; this is the minimum sum of products
expression. Notice that if we used Z1, we would have

Z1 � A�BCD � AB�CD � ABC�D � ABCD�

No simplification is possible. This expression also has four terms, but it has
16 literals, whereas the expression for Z2 only has 12.

For CE2, we have either

f � ab�c � abc� or f � ab�c� � abc

depending on which truth table we choose. Again, no simplification is
possible.

For f�, we have (for the first version)

f� � a�b�c� � a�b�c � a�bc� � a�bc � ab�c� � abc
� a�b� � a�b � ab�c� � abc [P9a, P9b]
� a� � ab�c� � abc � a� � b�c� � bc [P9a, P10a]

Thus, the product of maxterms is

f � (a � b � c) (a � b � c�) (a � b� � c) (a � b� � c�)
(a� � b � c) (a� � b� � c�)

and the minimum POS is

f � a (b � c) (b� � c�)

EXAMPLE 2.9

EXAMPLE 2.10
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For the full adder, CE3 (using c for the carry in, cin, to simplify the algebraic
expressions), we get from the truth table

cout � a�bc � ab�c � abc� � abc

s � a�b�c � a�bc� � ab�c� � abc

The simplification of carry out is very much like that of Z2 in Example 2.9,
resulting in

cout � bc � ac � ab

but s is already in minimum SOP form. We will return to the implementation
of the full adder in Section 2.8.

We will next take a brief look at a more general approach to switch-
ing functions. How many different functions of n variables are there?

For two variables, there are 16 possible truth tables, resulting in 
16 different functions. The truth table of Table 2.13 shows all of these
functions. (Each output column of the table corresponds to one of the 16
possible 4-bit binary numbers.)

EXAMPLE 2.11

Table 2.14 Number of
functions of n
variables.

Variables Terms

1 4
2 16
3 256
4 65,536
5 4,294,967,296

[SP 13, 14; EX 13, 14, 15, 16]

Table 2.13 All two-variable functions.

a b f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Some of the functions are trivial, such as f0 and f15, and some are
really just functions of one of the variables, such as f3. The set of func-
tions, reduced to minimum SOP form, are

f0 � 0 f6 � a�b � ab� f12 � a�

f1 � ab f7 � a � b f13 � a� � b

f2 � ab� f8 � a�b� f14 � a� � b�

f3 � a f9 � a�b� � ab f15 � 1

f4 � a�b f10 � b�

f5 � b f11 � a � b�

For n variables, the truth table has 2n rows, and thus, we can choose
any 2n-bit number for a column. Thus, there are 22n

different functions of
n variables. That number grows very quickly, as can be seen from
Table 2.14.

(Thus, we can find a nearly unlimited variety of problems of four or
more variables for exercises or tests.)
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Figure 2.12 NAND gates.

(ab)�
a

b
(wxyz)�

w
x

z
y

Figure 2.13 Alternative symbol
for NAND.

a

b
a� � b� � (ab)�

Figure 2.14 Symbols for NOR gate.

a

b
(a � b)�

a

b
a�b�

Why use NAND and NOR gates, rather than AND, OR, and NOT
gates? After all, the logic expressions are in terms of AND, OR, and NOT
operators and thus the implementation with those gates is straightforward.
Many electronic implementations naturally invert (complement) signals;
thus, the NAND is more convenient to implement than the AND. The
most important reason is that with either NAND or NOR, only one type
of gate is required. On the other hand, both AND and OR gates are
required; and, often, NOT gates are needed, as well. As can be seen from
the circuits of Figure 2.15, NOT gates and two-input AND and OR gates
can be replaced by just two-input NANDs. Thus, these operators are said
to be functionally complete. (We could implement gates with more than
two inputs using NANDs with more inputs. We could also implement
AND, OR, and NOT gates using only NORs; that is left as an exercise.)

Using these gate equivalences, the function, f � x�y � xy� � xz, that
we first implemented with AND and OR gates in Figure 2.8 (Section 2.3)
can now be implemented with NAND gates, as shown in Figure 2.16.

The NAND has the symbol shown in Figure 2.12. Like the AND and
the OR, the NAND is commercially available in several sizes, typically
two-, three-, four-, and eight-input varieties. When first introduced, it
was referred to as an AND-NOT, which perfectly describes its function,
but the shorter name, NAND, has become widely accepted. Note that
DeMorgan’s theorem states that

(ab)� � a� � b�

and thus an alternative symbol for the two-input NAND is shown in
Figure 2.13. The symbols may be used interchangeably; they refer to the
same component.

The NOR gate (OR-NOT) uses the symbols shown in Figure 2.14. Of
course, (a � b)� � a�b�. NOR gates, too, are available with more inputs.

2.6 NAND, NOR, AND
EXCLUSIVE-OR GATES

In this section we will introduce three other commonly used types of
gates, the NAND, the NOR, and the Exclusive-OR, and see how to
implement circuits using them.
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But note that we have two NOT gates in a row in each of the brown paths.
They serve no purpose logically (P7 states (a�)� � a), and thus they can
be removed from the circuit, yielding that of Figure 2.17. That is, all of
the AND and OR gates of the original circuit became NANDs. Nothing
else was changed.

This process can be greatly simplified when we have a circuit con-
sisting of AND and OR gates such that

1. the output of the circuit comes from an OR,

2. the inputs to all OR gates come either from a system input or from
the output of an AND, and

3. the inputs to all AND gates come either from a system input or
from the output of an OR.

All gates are replaced by NAND gates, and any input coming directly
into an OR is complemented.

We can obtain the same result by starting at the output gate and put-
ting a bubble (a NOT) at both ends of each input line to that OR gate. If
the circuit is not two-level, we repeat this process at the input of each
of the OR gates. Thus, the AND/OR implementation of f becomes that of
Figure 2.18, where all of the gates have become NAND gates (in one of
the two notations we introduced earlier).

This approach works with any circuit that meets these conditions,
with only one additional step. If an input comes directly into an OR gate,

Figure 2.15 Functional completeness of NAND.

a (aa)� � a �

NOT

OR

b

a
ab

(ab)�

AND

b

a

a 
  � b 
  � a � b

Figure 2.16 NAND gate implementation.

x �

y

f
x

y �

x

z

Figure 2.17 Better NAND gate
implementation.

x�

x
f

y�

x

z

y

mar91647_c02_029_110.qxd  10/22/08  12:56 PM  Page 60



2.6 NAND, NOR, and Exclusive-OR Gates 61

there is no place for the second NOT; thus, that input must be comple-
mented. For example, the circuit for h

h � z� � wx�y � v(xz � w�)

is shown in Figure 2.19. Again, all of the AND and OR gates become
NANDs, but the two inputs that came directly into the OR gates were
complemented. 

Figure 2.18 Double NOT gate
approach.

x �

y

x

y �

x

z

f

Figure 2.19 A multilevel NAND implementation.

v

z

x

w

y
x� h

w �w

z �z

f � wx(y � z) � x�y

This would be implemented with AND and OR gates in either of two ways.

EXAMPLE 2.12

x
w

f

x�

y

y

z

f

x�

y

y

z

w

x

The first version can be directly converted to NAND gates, as follows.

x
w

f

x �

y

y �

z �
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The second version cannot be converted to NAND gates without adding an
extra NOT gate, because it violates the third rule—an AND gets an input
from another AND. Thus, this circuit would become

f

x �

y

y �

z �

w

x

x

y�

x�

y

x�

z�

g

where the NOT is required to implement the AND that forms wx. Expres-
sions such as this one are often obtained starting from SOP solutions. We
will see some examples of this in Section 2.8.

The dual approach works for implementing circuits with NOR
gates. When we have a circuit consisting of AND and OR gates such that

1. the output of the circuit comes from an AND,

2. the inputs to OR gates come either from a system input or from the
output of an AND, and

3. the inputs to AND gates come either from a system input or from
the output of an OR.

Then all gates can be converted to NOR gates, and, if an input comes
directly into an AND gate, that input must be complemented.

g � (x � y�)(x� � y)(x� � z�)

is implemented

where all gates are NOR gates.

EXAMPLE 2.13
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The Exclusive-OR gate implements the expression

a�b � ab�

which is sometimes written a � b. The terminology comes from the def-
inition that a � b is 1 if a � 1 (and b � 0) or if b � 1 (and a � 0), but
not both a � 1 and b � 1. The operand we have been referring to as OR
(�) is sometimes referred to as the Inclusive-OR to distinguish it from
the Exclusive-OR. The logic symbol for the Exclusive-OR is similar to
that for the OR except that it has a double line on the input, as shown in
Figure 2.20a. Also commonly available is the Exclusive-NOR gate, as
shown in Figure 2.20b. It is just an Exclusive-OR with a NOT on the out-
put and produces the function

(a � b)� � a�b� � ab.

This sometimes is referred to as a comparator, since the Exclusive-NOR
is 1 if a � b, and is 0 if a 	 b.

A NAND gate implementation of the Exclusive-OR is shown in
Figure 2.21a, where only uncomplemented inputs are assumed.

The two NOT gates (implemented as two-input NANDs) can be
replaced by a single gate, as shown in Figure 2.21b, since

a(a� � b�) � b(a� � b�) � aa� � ab� � ba� � bb� � ab� � a�b

Figure 2.20 (a) An Exclusive-
OR gate. (b) An
Exclusive-NOR
gate.

a � b
a

b

(a � b)�
a

b

(a)

(b)

Figure 2.21 Exclusive-OR gates.

a

b

a

b

(a) (b)

Some useful properties of the Exclusive-OR are

(a � b)� � (a�b � ab�)� � (a � b�)(a� � b) � a�b� � ab

a� � b � (a�)�b � (a�)b� � ab � a�b� � (a � b)�

(a � b�) � (a � b)�

a � 0 � a � (a� � 0 � a � 1)

a � 1 � a� � (a� � 1 � a � 0)

The Exclusive-OR has both the commutative and associative properties,
that is,

a � b � b � a

(a � b) � c � a � (b � c)
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The number of gates and packages are shown in the left part of the follow-
ing table

Gates Packs

Inputs AND OR AND OR NAND Packs

2 3 2 1 5 1
3 2 1 1 1 3 1
4 1 1 1 1

Total 6 3 3 1 9 3

With AND and OR gates, four packages are needed: three ANDs and one
OR package (because the 2 two-input OR gates can be constructed with
the leftover three-input gates).

If all of the gates are converted to NANDs (and some of the inputs are com-
plemented) the gate and package count is shown in the right part of the table.

64 Chapter 2 Combinational Systems

A list of some of the more common NAND, NOR, and Exclusive-
OR integrated circuit packages that we may encounter in the laboratory
is as follows:

7400 4 (quadruple) two-input NAND gates
7410 3 (triple) three-input NAND gates
7420 2 (dual) four-input NAND gates
7430 1 eight-input NAND gate
7402 4 (quadruple) two-input NOR gates
7427 3 (triple) three-input NOR gates
7486 4 (quadruple) two-input Exclusive-OR gates

To build a circuit, we utilize packages. Even if we only need 1 three-
input NAND gate, we must buy a package with three gates on it (a 7410).
Recognize, however, that a three-input gate can be used as a two-input
gate by connecting two of the inputs together or by connecting one of the
inputs to a logic 1.

Consider the following circuit, constructed with ANDs and ORs; the input
variables have been omitted because they are irrelevant to the discussion.
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absorption

Only three packages are needed. The second four-input gate on the 7420
would be used as the fifth two-input gate (by tying three of the inputs together).

2.7 SIMPLIFICATION OF ALGEBRAIC
EXPRESSIONS*

We have already looked at the process of simplifying algebraic expres-
sions, starting with a sum of minterms or a product of maxterms. The pri-
mary tools were

P9a. ab � ab� � a P9b. (a � b) (a � b�) � a

P10a. a � a�b � a � b P10b. a(a� � b) � ab

although many of the other properties were used, particularly,

P6a. a � a � a P6b. a � a � a

P8a. a(b � c) � ab � ac P8b. a � bc � (a � b)(a � c)

If the function is stated in other than one of the standard forms, two
other properties are useful. First,

P12a. a � ab � a P12b. a(a � b) � a

The proof of P12a uses P3b, P8a, P4aa, and P3b (again).

a � ab � a � 1 � ab � a(1 � b) � a � 1 � a

Remember that we only need to prove one half of the property, because
the dual of a property is always true. However, we could have proven
P12b using the duals of each of the theorems we used to prove P12a.
Instead, we could distribute the a from the left side of P12b, producing

a � a � ab � a � ab

However, that is just the left side of P12a, which we have already proved
is equal to a.

P10a and P12a look very similar; yet we used two very different
approaches to demonstrate their validity. In P10a, we did

a � a�b � (a � a�)(a � b) � 1 � (a � b) � a � b
[P8b, P5a, P3bb]

whereas for P12a, we used P3b, P8a, P4aa, and P3b. How did we know
not to start the proof of P11a by using P8b to obtain

a � ab � (a � a)(a � b) � a(a � b)?

Those steps are all valid, but they do not get us anywhere toward show-
ing that these expressions equal a. Similarly, if we started the proof of
P10a by using P3b, that is,

a � a�b � a � 1 � a�b

*At this point, some instructors prefer to introduce the Karnaugh map. Section 3.1 could
be studied next, and the remaining material could be studied along with Appendix A,
which shows the relationship between algebraic manipulation and the Karnaugh map.
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we also do not get anywhere toward a solution. How does the novice
know where to begin? Unfortunately, the answer to that is either trial and
error or experience. After solving a number of problems, we can often
make the correct guess as to where to start on a new one. If that approach
does not work, then we must try another one. This is not much of a prob-
lem in trying to demonstrate that two expressions are equal. We know that
we can quit when we have worked one side to be the same as the other.

Before proceeding with a number of examples, some comments on
the process are in order. There is no algorithm for algebraic simplifica-
tion, that is, there is no ordered list of properties to apply. On the other
hand, of the properties we have up to this point, 12, 9, and 10 are the ones
most likely to reduce the number of terms or literals. Another difficulty
is that we often do not know when we are finished, that is, what is the
minimum. In most of the examples we have worked so far, the final
expressions that we obtained appear to be as simple as we can go. How-
ever, we will see a number of examples where it is not obvious that there
is not a more minimum expression. We will not be able to get around this
until Chapter 3 when we develop other simplification methods. (Note
that in the Solved Problems and the Exercises, the number of terms and
literals in the minimum solution is given. Once that is reached, we know
we are done; if we end up with more, we need to try another approach.)

We will now look at several examples of algebraic simplification.

xyz � x�y � x�y�

� xyz � x� [P9a]

� x� � yz [P10a]

where a � x�, a� � x, and b � yz

wx � wxy � w�yz � w�y�z � w�xyz�

� (wx � wxy) � (w�yz � w�y�z) � w�xyz�

� wx � w�z � w�xyz� [P12a, P9a]
� wx � w�(z � xyz�)
� wx � w�(z � xy) [P10a]
� wx � w�z � w�xy
� w�z � x(w � w�y)
� w�z � x(w � y) [P10a]
� w�z � wx � xy

P10a could have been used first with wx and w�xyz�(resulting in xyz�). That
approach, however, would leave us with an expression

w�z � wx � xyz�

for which there are no algebraic clues as to how to proceed. The only way
we can now reduce it is to add terms to the expression. Shortly, we will
introduce another property that will enable us to go from this expression to
the minimum one.

66 Chapter 2 Combinational Systems

EXAMPLE 2.15

EXAMPLE 2.16
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(x � y)(x � y � z�) � y� � (x � y) � y� [P12b]
� x � (y � y�) � x � 1 � 1 [P5a, P4a]

(a � b� � c)(a � c�)(a� � b� � c)(a � c � d)
� (b� � c)(a � c�)(a � d) [P9b, P10b]

where the second simplification really took several steps

(a � c�)(a � c � d) � a � c�(c � d) � a � c�d � (a � c�)(a � d)

One more tool is useful in the algebraic simplification of switching
functions. The operator consensus (indicated by the symbol ¢) is defined
as follows:

For any two product terms where exactly one variable appears
uncomplemented in one and complemented in the other, the consensus is
defined as the product of the remaining literals. If no such variable exists
or if more than one such variable exists, then the consensus is undefined.
If we write one term as at1 and the second as a�t2 (where t1 and t2 repre-
sent product terms), then, if the consensus is defined,

at1 ¢ a�t2 � t1t2

ab�c ¢ a�d � b�cd
ab�c ¢ a�cd � b�cd
abc� ¢ bcd� � abd�

b�c�d� ¢ b�cd� � b�d�

abc� ¢ bc�d � undefined—no such variable
a�bd ¢ ab�cd � undefined—two variables, a and b

We then have the following property that is useful in reducing functions.

P13a. at1 � a�t2 � t1t2 � at1 � a�t2

P13b. (a � t1)(a� � t2)(t1 � t2) � (a � t1)(a� � t2)

P13a states that the consensus term is redundant and can be removed
from an SOP expression. (Of course, this property, like all of the others,
can be used in the other direction to add a term. We will see an example
of that shortly.)

A similar kind of simplification can be obtained in POS expressions
using the dual (P13b). We will not pursue that further.

First, we will derive this property from the others. Using P12a twice,
the right-hand side becomes

COMMON MISTAKE:  The consensus theorem allows you to
remove the consensus term (t1t2), not the two terms that
formed the consensus (at1 + a�t2).  For example

ab + b�c + ac = ab + b�c 	 ac

EXAMPLE 2.17

EXAMPLE 2.18

EXAMPLE 2.19

consensus
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EXAMPLE 2.20

EXAMPLE 2.21

68 Chapter 2 Combinational Systems

at1 � a�t2 � (at1 � at1t2) � (a�t2 � a�t1t2) [P12a]
� at1 � a�t2 � (at1t2 � a�t1t2)

� at1 � a�t2 � t1t2 [P9a]

It is also useful to look at the truth table for this theorem. From Table
2.15, we see that the consensus term, t1t2, is 1 only when one of the other
terms is already 1. Thus, if we OR that term with RHS, it does not change
anything, that is, LHS is the same as RHS.

Table 2.15 Consensus.

a t1 t2 at1 a�t2 RHS t1t2 LHS

0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1
0 1 0 0 0 0 0 0
0 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 1 0 1
1 1 1 1 0 1 1 1

In Example 2.3 (Section 2.2.3), we reduced the function as

f � a�b�c� � a�bc� � a�bc � ab�c�

to

f1 � a�c� � a�b � b�c�

by combining the first two terms using P9a, and then applying P10a twice.
At that point, we were at a dead end. However, we found by starting over
with a different grouping that we could reduce this to

f2 � b�c� � a�b

Indeed, the term eliminated, a�c�, is the consensus of the other terms; we
could use P13a to go from f1 to f2.

g � bc� � abd � acd

Because Properties 1 through 12 produce no simplification, we now try
consensus. The only consensus term defined is

bc� ¢ acd � abd

Property 13 now allows us to remove the consensus term. Thus,

g � bc� � acd
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EXAMPLE 2.23

Reduce

f = c�d� + ac� + ad + bd� + ab

to three terms with six literals.  We can use consensus twice.

c�d� ¢ ad = ac� and ad ¢ bd� = ab

Thus, we can remove ac� and ab, leaving

f = c�d� + ad + bd�

With the following function, there is no way to apply Properties 12,
9 and 10:

f � w�y� � w�xz � wxy � wyz�

However, we are told that it can be reduced to three terms and eight lit-
erals. Next, we try consensus. An approach that ensures that we try to
find the consensus of all pairs of terms is to start with consensus of the
second term with the first; then try the third with the second and the first;
and so forth. Following this approach (or any other) for this example, the
only consensus that exists is

w�xz ¢ wxy � xyz

When a consensus term was part of the SOP expression, P13a allowed us
to remove that term and thus simplify the expression. If the consensus
term is not one of the terms in the SOP expression, the same property
allows us to add it to the expression. Of course, we don’t add another
term automatically because that makes the expression less minimum.
However, we should keep track of such a term, and, as a last resort, con-
sider adding it to the function. Then, see if that term can be used to form
other consensus terms and thus reduce the function. In this example, by
adding xyz, f becomes

f � w�y� � w�xz � wxy � wyz� � xyz

Now, however,

xyz ¢ wyz� � wxy and xyz ¢ w�y� � w�xz

Thus, we can remove both wxy and w�xz, leaving

f � w�y� � wyz� � xyz (3 terms, 8 literals)

We will now consider an example making use of consensus, as well
as all of the other properties. The usual approach is to try to utilize prop-
erties 12, 9, and then 10. When we get as far as we can with these, we
then turn to consensus.

A�BCD � A�BC�D � B�EF � CDE�G � A�DEF � A�B�EF
� A�BD � B�EF � CDE�G � A�DEF [P12a, P9a]

But A�BD ¢ B�EF � A�DEF and this reduces to
A�BD � B�EF � CDE�G

EXAMPLE 2.22
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w�xy � wz � xz � w�y�z � w�xy� � wx�z

� wz � w�x � xz � w�y�z [P12a, P9a]

� wz � w�x � w�y�z since wz ¢ w�x � xz [P13a]

But,

wz � w�y�z � z(w � w�y�) � z(w � y�) [P10a]

� wz � w�x � y�z

2.8 MANIPULATION OF ALGEBRAIC
FUNCTIONS AND NAND GATE
IMPLEMENTATIONS

In addition to the need to minimize algebraic expressions, there is some-
times the requirement to put an expression in a certain format, such as
SOP, sum of minterms, POS, or product of maxterms. Secondly, to meet
design constraints, we sometimes must manipulate the algebra. In this
section we will look at some examples and introduce one more property.

If we have an SOP expression and need to expand it to sum of
minterms, we have two options. First, we can create a truth table, and, from
that, follow the approach of Section 2.5 to produce a sum of minterms. 
Indeed, this approach will work for an expression in any format. The other
approach is to use P9a to add variables to a term.

f � bc � ac � ab

� bca � bca� � ac � ab

We can repeat the process on the other two terms, producing

f � bca � bca� � acb � acb� � abc � abc�

� abc � a�bc � abc � ab�c � abc � abc�

� a�bc � ab�c � abc� � abc

where P6a was used to remove the duplicate terms.

If two literals were missing from a term, that term would produce
four minterms, using P9a repeatedly.

g � x� � xyz � x�y � x�y� � xyz

� x�yz � x�yz� � x�y�z � x�y�z� � xyz

g(x, y, z) � �m(3, 2, 1, 0, 7) � �m(0, 1, 2, 3, 7)

since minterm numbers are usually written in numeric order.

EXAMPLE 2.25

EXAMPLE 2.26

EXAMPLE 2.24

[SP 18; EX 20, 21, 22]
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To convert to product of maxterms, P9b can be used. For example,

f � (A � B � C)(A� � B�)

� (A � B � C)(A� � B� � C)(A� � B� � C�)

One other property is useful in manipulating functions from one
form to another.

P14a. ab � a�c � (a � c)(a� � b)

(The dual of this is also true; but it is the same property with the variables
b and c interchanged.) This property can be demonstrated by first apply-
ing P8a to the right side three times:

(a � c)(a� � b) � (a � c)a� � (a � c) b � aa� � a�c � ab � bc

However, aa� � 0 and bc � a�c ¢ ab, and thus, using P3aa and P13a, we
get

aa� � a�c � ab � bc � a�c � ab

which is equal to the left side of the property.
This property is particularly useful in converting POS expressions to

SOP and vice versa. We will also use it to manipulate expressions when
using NAND gates to implement systems.

In Example 2.7, we found the sum of minterms and the minimum
SOP expressions, as well as the product of maxterms and the minimum
POS expression for

f(A, B, C) � �m(1, 2, 3, 4, 5)

In Example 2.28, we will start with the minimum POS, and use Property
14 to convert it to a SOP.

f � (A � B � C)(A� � B�) � AB� � A�(B � C) � AB� � A�B � A�C

where the a of P14a is A, the b is B � C, and the c is B�. This, indeed, is
one of the SOP solutions we found in Example 2.7 for this problem.
Although the utilization of this property does not always produce a minimum
SOP expression (as it does in this case), it does produce a simpler expres-
sion than we would get just using P8a.

f � AA� � AB� � BA� � BB� � CA� � CB�

� AB� � A�B � A�C � B�C

The term B�C can then be removed because it is the consensus of AB� and A�C.

To go from a POS expression (or a more general expression that is
neither SOP nor POS) to an SOP expression, we use primarily the follow-
ing three properties:

EXAMPLE 2.27

EXAMPLE 2.28
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P8b. a � bc � (a � b)(a � c)

P14a. ab � a�c � (a � c)(a� � b)

P8a. a(b � c) � ab � ac

We try to apply them in that order, using the first two from right to left.

(A � B� � C)(A � B � D)(A� � C� � D�)

� [A � (B� � C)(B � D)](A� � C� � D�) [P8b]

� (A � B�D � BC)(A� � C� � D�) [P14a]

� A(C� � D�) � A�(B�D � BC) [P14a]

� AC� � AD� � A�B�D � A�BC [P8a]

The dual of these properties can be used to convert to POS as can be
seen in Example 2.30.

wxy� � xyz � w�x�z�

� x(wy� � yz) � w�x�z� [P8a]

� x(y� � z)(y � w) � w�x�z� [P14a]

� (x � w�z�)[x� � (y�� z)(y � w)] [P14a]

� (x � w�)(x � z�)(x� � y� � z)(x� � y � w) [P8b]

Another application of P14a and this type of algebraic manipulation
comes when we wish to implement functions using only two-input
NAND or NOR gates (or two- and three-input gates). (We will only con-
sider examples of NAND gate implementations.) Consider the following
problem.

The following expression is the only minimum SOP expression for
the function f. Assume all inputs are available both uncomplemented and
complemented. Find a NAND gate circuit that uses only two-input gates.
No gate may be used as a NOT gate.*

f � ab�c� � a�c�d� � bd

(A two-level solution would require four gates, three of which would be
three-input gates, and 11 gate inputs.)

*We could always produce a circuit using two-input gates by replacing a three-input gate
by 2 twos and a NOT. For example, a three-input NAND could be implemented as
follows:

x
y
z z

x

y

Larger gates could be replaced in a similar fashion. But this approach almost always leads
to circuits with more gates than are necessary.

EXAMPLE 2.29

EXAMPLE 2.30
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More complex examples of finding a two-input gate implementation
often require the use of P14a as well as P8a. Consider the function in
Examples 2.31 and 2.32 (already in minimum sum of products form).

f = w�y�z + wz� + wx + wy

We cannot factor anything from the three-literal term (since there is no w�,
y�, or z in the other terms). We can factor w from any two of the others (not
all three because that would leave a term z�+ x + y).  

f = (w�y�z + wz�) + w(x + y)

We can then use Property 14. One of the solutions is

f = (w� + z�)(w + y�z) + w(x + y) 

Figure 2.22 A two-input NAND gate circuit.

a

c�

f
b

d

a�

d�

b�

EXAMPLE 2.31

To solve this problem, we must eliminate three-input gates. Thus,
the starting point is to attempt to factor something from the three literal
terms. In this example, there is a common c� in the first two terms, and
we can thus obtain

f � c�(ab� � a�d�) � bd

This, indeed, solves the whole problem in one step because not only did
we reduce the 2 three-input product terms to two inputs each, but we also
got the final OR to a two-input one. Thus, the resulting circuit is shown
in Figure 2.22, where we first implemented it with AND and OR gates
and then, starting at the output, added double inverters in each path from
the input of an OR back to the output of an AND. (In this example, no
inputs came directly into an OR.) This solution requires 6 gates and 12
inputs. It should be noted that either solution, this one or the two-level
one mentioned earlier requires two integrated circuit packages. This
requires two 7400s (4 two-input NANDs each) and would leave two of
the gates unused. The two-level solution would require a 7410 (3 three-
input gates) and a 7400 for the remaining two-input gate and would leave
three of those gates unused. (If we had replaced each three-input gate by
2 two-input ones plus a NOT, the implementation would require 7 two-
input gates plus three NOT gates.)
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G � DE� � A�B�C� � CD�E � ABC�E

The four-literal product term is the first place we must attack. We could fac-
tor E from the last two terms. That would produce

G � DE� � A�B�C� � E(CD� � ABC�)

But now, there is no way of eliminating the three-input gate corresponding
to A�B�C�. Instead, we can factor C� from the second and the fourth terms,
producing

G � C�(A�B� � ABE) � DE� � CD�E

We can apply P14a to the expression within the parentheses to get

G � C�(A� � BE)(A � B�) � DE� � CD�E

or, using B instead of A,

G � C�(B� � AE)(B � A�) � DE� � CD�E

In either case, we still have 2 three-input AND terms, that first product and
the last one. (We cannot take the output of the OR gate that forms B� � AE
and the output of the OR gate that forms B � A� and connect them to a
two-input AND gate. We would then need to connect the output of that
AND gate to the input of another AND gate with C� as its other input. This
would violate the third rule for conversion to NAND gates—the inputs to
AND gates may not come from the output of another AND gate.) We can
reduce it to all two-input gates by applying P14a again, using the C� from
the first complex term and the C from the last product term, producing (from
the second version) the following expression:

G � (C� � D�E)[C � (B� � AE)(B � A�)] � DE�

This requires 10 gates, as shown in the following NAND gate circuit.

EXAMPLE 2.32

w
w

xx �

yy �

w �

z �

w

z

z

y �
w

f

The circuit implementing this is shown below, where the crossed out inputs
were those that would have been into an OR.
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Again, we began by implementing the circuit with ANDs and ORs, starting
at the innermost parentheses. Five of the inputs went directly to OR gates
and were thus complemented (as shown in brown in the circuit).

There is still another approach to manipulating this algebra.

G � C�(A� � BE)(A � B�) � DE� � CD�E

� C�(A� � BE)(A � B�) � (D � CE)(D� � E�)

� (A� � BE)(AC� � B�C�) � (D � CE)(D� � E�)

In this case, we eliminated the three-input AND by distributing the C� (P8a)
and used P14a on the last two product terms. We will leave the implemen-
tation of this as an exercise, but we can count 11 gates (one more than
before) from the algebraic expression, as seen from the following count.

G � (A� � BE )(AC� � B�C�) � (D � CE )(D� � E�)

1 2 3 4 5 6 7 8 9 10 11

where each gate is numbered below the operator corresponding to that gate.

As an example of sharing a gate, consider the implementation of the
following function with two-input NAND gates:

G � C�D� � ABC� � A�C � B�C

� C�(D� � AB) � C(A� � B�)

The circuit for that expression is shown next.

G

D

E �

D �

C �

E

C

A

E

B

B �

A

C �
D

C

GB

A

EXAMPLE 2.33
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EXAMPLE 2.34

*We could just as easily factor b and b� or a and a� from these expressions; the resulting
circuits would have the same layout of gates.

Note that only one NAND gate is needed for the product term AB and
for the sum term A� � B� (because inputs coming directly to an OR are
complemented).

As a final example, we will return to the implementation of the full
adder (CE3). The SOP expressions developed in Example 2.11 are
repeated (where the carry input, cin, is represented by just c).

s � a�b�c � a�bc� � ab�c� � abc

cout � bc � ac � ab

A two-level implementation of these would require 1 four-input NAND
gate (for s), 5 three-input NAND gates (four for s and one for cout), and 
3 two-input NANDs (for cout), assuming all inputs are available both uncom-
plemented and complemented. But this assumption is surely not valid for c
because that is just the output of combinational logic just like this (from the
next less significant bit of the sum). Thus, we need at least one NOT gate
(for c�) and possibly three (one for each input). The implementation of this
adder would thus require four integrated circuit packages (one 7420, two
7410s, and one 7400). (There would be one gate left over of each size,
which could be used to create whatever NOTs are needed.)

Although s and cout are in minimum SOP form, we can manipulate the
algebra to reduce the gate requirements by first factoring c from two terms
of s and from two terms of cout, and factoring c� from the other two terms of
s, yielding*

s � c(a�b� � ab) � c�(ab� � a�b)

cout � c(a � b) � ab

This requires 11 two-input NAND gates, not including the three NOTs
(because ab need only be implemented once for the two terms and a � b
is implemented using the same gate as a�b�).

Returning to the expression for sum, note that

s � c(a � b)� � c�(a � b) � c � (a � b)

Furthermore, we could write

cout � c(a � b) � ab

(That is a little algebraic trick that is not obvious from any of the properties.
However, the difference between a � b and a � b is that the former is 
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1 when both a and b are 1, but the latter is not. But the expression for cout

is 1 for a � b � 1 because of the ab term.)
Using these last two expressions, we could implement both the sum

and carry using two Exclusive-ORs and 3 two-input NANDs as follows:

c
b s

cout

a

a

b s

c

cout

Packages with four Exclusive-OR gates are available (7486) and thus
this circuit could be implemented with one of those packages and one 7400.
Note that complemented inputs are not necessary for this implementation.

Finally, because we can implement each Exclusive-OR with 4 two-
input NAND gates, without requiring complemented inputs, we obtain

Note that the two brown NAND gates have the same inputs and the two tan
ones also have the same inputs. Only one copy of each is necessary, yield-
ing the final circuit with only nine NAND gates.
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[SP 19, 20, 21, 22, 23, 24;
EX 22, 23, 24, 25, 26, 27; LAB]

a

b s

c

cout

This implementation would require three 7400s if we were only building one
bit of an adder. However, a 4-bit adder could be built with nine packages
(36 two-input gates).

2.9 A MORE GENERAL 
BOOLEAN ALGEBRA

The basis for switching algebra is Boolean algebra, first published by
George Boole in 1849. It allows more than two elements. It is defined in
terms of a set of postulates and then the remaining properties are devel-
oped from them as theorems. The postulates have been stated in a variety
of ways, but the following development seems most straightforward.
Indeed, several of these postulates are identical in form to the properties
of switching algebra listed in Sections 2.2.1 and 2.2.2. But there, we
began with the definition of the operators (limited to a two-valued alge-
bra) and proved the properties either directly from the definition or by
way of a truth table. Here, the operators are not defined, but can be
derived from the postulates.

1. A Boolean algebra consists of a set of k � 2 elements. (For the
switching algebra developed in Section 2.2.1, k � 2.)

2. There are two binary operators, � and �, and one unary
operator, �.

3. The algebra is closed, that is, if a and b are members of the set,
then

a � b, a � b, a�

are also members of the set. (This property is not true of all
operators and all sets in normal algebra. For example, if the set is
the set of positive integers, subtraction is not closed since it may
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result in a negative integer, and division is not closed since the quo-
tient may be a noninteger.)

4. Commutative law (same as P1):

i. a � b � b � a

ii. a � b � b � a

5. Associative law (same as P2):

i. a � (b � c) � (a � b) � c

ii. a � (b � c) � (a � b) � c

6. Distributive law (same as P8):

i. a � b � c � (a � b) � (a � c)

ii. a � (b � c) � a � b � a � c

7. Identity (similar to P3):

i. There exists a unique element in the set, 0, such that
a � 0 � a

ii. There exists a unique element in the set, 1, such that 
a � 1 � a

8. Complement (same as P5): For each element a, there exists a
unique element a� such that

i. a � a� � 1

ii. a � a� � 0

We have now defined Boolean algebra. It works for a two-valued
system (the switching algebra we have been discussing throughout this
chapter) as well as a more general one.

For switching algebra, we can use these postulates to define the
operators. First, we can recognize that there are the two elements, 0 and
1, postulated in number 7. Using that postulate and the commutative law,
we can complete the first three lines of Table 2.16a for the OR (�) oper-
ator and the last three for the AND(�). For the OR, the postulate

a � 0 � a

implies that 0 � 0 � 0 (first line) and 1 � 0 � 1 (third line). In addition,
using the commutative law, we get

0 � a � a

and thus the second line is completed (0 � 1 � 1). 
Using the other part of postulate 7, we get 0 � 1 � 0, 1 � 1 � 1, and

with the commutative property, 1 � 0 � 0. For the remaining lines, we
need to prove the idempotency property (P6 from before). We can do that
in the following steps:

Table 2.16a Defining OR
and AND.

a b a � b a � b

0 0 0
0 1 1 0
1 0 1 0
1 1 1
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a � a � (a � a) � 1 [7ii]
� (a � a) � (a � a�) [8i]
� a � a � a� [6i]
� a � 0 [8ii]
� a [7i]

Using this theorem, we can complete the first row of the OR truth table 
(0 � 0 � 0). We can prove the dual of this theorem,

a � a � a

using the other half of each of the postulates and thus complete the last
line of the AND Table 2.16b (1 � 1 � 1).

Finally, we can define the NOT (�) operator from postulate 8. Part i
says that either a or a� (or both) is 1; part ii says that either a or a� (or
both) is 0. Thus, one of them must be 1 and the other 0, that is, if a � 0,
then a� must be 1, and if a � 1, then a� must be 0.

From here, we can prove all of the properties of switching algebra as
before. Most of them are also properties of a general Boolean algebra,
but that is beyond the scope of this book.

2.10 SOLVED PROBLEMS

1. For each of the following problems, there are four inputs, A, B,
C, and D. Show a truth table for the functions specified. (One
truth table with four outputs is shown for the four examples.)

a. The inputs represent a 4-bit unsigned binary number. The
output, W, is 1 if and only if the number is a multiple of 2 or 
of 3 but not both.

b. The inputs represent a 4-bit positive binary number. The
output, X, is 0 if and only if the input is a prime (where 0 
never occurs).

c. The first two inputs (A, B) represent a 2-bit unsigned binary
number (in the range 0 to 3). The last two (C, D) represent a
second unsigned binary number (in the same range). The
output, Y, is 1 if and only if the two numbers differ by two or
more.

d. The inputs represent a BCD number in Excess-3 code. Those
combinations that do not represent one of the digits never
occur. The output, Z, is 1 if and only if that number is a per-
fect square.

The truth table contains the answer to all four parts.

Table 2.16b Completed
definition of OR
and AND.

a b a � b a � b

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1
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a. It doesn’t matter whether one considers 0 a multiple of 2 or 3
because it is either a multiple of neither or of both. In both
cases, W � 0. For the next row, 1 is not a multiple of either 2
or 3; thus, W � 0. For the next three rows W � 1 because 2
and 4 are multiples of 2, but not 3, and 3 is a multiple of 3, but
not 2. Both 5 and 7 are multiples of neither and 6 is a multiple
of both; thus, for the next three rows, W � 0. Then, 8, 10, and
14 are multiples of only 2; 9 and 15 are multiples of only 3; all
of these produce an output of 1. The others produce an output
of 0 (12 is a multiple of both 2 and 3).

b. A prime number is one that is evenly divisible only by 1 or
itself. Note that the problem specifies that the output is 0 for
primes and is thus 1 for numbers that are not prime. The first
nonprime is 4 (2 � 2). Indeed, all of the even numbers (other
than 2) are nonprimes. Because 0 never occurs, the output for
the first row is a don’t care.

c. For the first four rows, the first number is 0. It is compared on
successive rows with 0, 1, 2, and 3. Only 2 and 3 differ from 0
by 2 or more. In the next group of four rows, the first number
is 1; it only differs from 3 by 2 or more. In the next four rows,
2 differs only from 0 by 2 or more. Finally, in the last 4 rows,
3 differs from 0 and 1 by 2 or more.

d. A perfect square is an integer obtained by multiplying some
integer by itself. Thus, 0, 1, 4, and 9 are perfect squares. Note
that the first three rows and the last three rows are all don’t
cares because those input combinations never occur.

2. The system is a speed warning device. It receives, on two lines, an
indication of the speed limit on the highway. There are three

A B C D W X Y Z

0 0 0 0 0 X 0 X
0 0 0 1 0 0 0 X
0 0 1 0 1 0 1 X
0 0 1 1 1 0 1 1
0 1 0 0 1 1 0 1
0 1 0 1 0 0 0 0
0 1 1 0 0 1 0 0
0 1 1 1 0 0 1 1
1 0 0 0 1 1 1 0
1 0 0 1 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 1 0 0 0 0
1 1 0 0 0 1 1 1
1 1 0 1 0 0 1 X
1 1 1 0 1 1 0 X
1 1 1 1 1 1 0 X

mar91647_c02_029_110.qxd  10/22/08  12:56 PM  Page 81



Speed c d

�45 0 0
46–55 0 1
56–65 1 0
�65 1 1

Speed limit a b

45 0 0
55 0 1
65 1 0

unused 1 1

The outputs will be 1 if the car is speeding or driving dangerously.
a b c d f g

0 0 0 0 0 0
45 0 0 0 1 1 0

0 0 1 0 1 1
0 0 1 1 1 1

0 1 0 0 0 0
55 0 1 0 1 0 0

0 1 1 0 1 0
0 1 1 1 1 1

1 0 0 0 0 0
65 1 0 0 1 0 0

1 0 1 0 0 0
1 0 1 1 1 1

1 1 0 0 X X
1 1 0 1 X X
1 1 1 0 X X
1 1 1 1 X X

3. Show a block diagram of a circuit using AND and OR gates for
each side of P8b: a � bc � (a � b)(a � c)

a

b

a

c

(a � b) (a � c)

a

b

c

a � bc

possible values: 45, 55, or 65 mph. It receives from the automobile,
on two other lines, an indication of the speed of the vehicle. There
are four possible values: under 45, between 46 and 55, between 56
and 65, and over 65 mph. It produces two outputs. The first, f,
indicates whether the car is going above the speed limit. The
second, g, indicates that the car is driving at a “dangerous speed”—
defined as either over 65 mph or more than 10 mph above the
speed limit. Show how each of the inputs and outputs are coded (in
terms of binary values) and complete the truth table for this system.

The first step is to code the inputs. We chose (arbitrarily) what is
shown in the following tables.

82 Chapter 2 Combinational Systems
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XYZ XY� YZ X�Y�Z� F XYZ X�Y X � Z� Y � Z () ( ) G

000 0 0 1 1 000 0 1 0 0 0
001 0 0 0 0 001 0 0 1 0 0
010 0 0 0 0 010 1 1 1 1 1
011 0 1 0 1 011 1 0 1 0 1
100 1 0 0 1 100 0 1 0 0 0
101 1 0 0 1 101 0 1 1 1 1
110 0 0 0 0 110 0 1 1 1 1
111 0 1 0 1 111 0 1 1 1 1

5. Determine, using truth tables, whether or not each of the groups
of expressions are equal:

a. f � a�c� � a�b � ac

g � bc � ac � a�c�

b. f � P�Q� � PR � Q�R

g � Q� � PQR

(a)

abc a�c� a�b ac f bc ac a�c� g

000 1 0 0 1 0 0 1 1
001 0 0 0 0 0 0 0 0
010 1 1 0 1 0 0 1 1
011 0 1 0 1 1 0 0 1
100 0 0 0 0 0 0 0 0
101 0 0 1 1 0 1 0 1
110 0 0 0 0 0 0 0 0
111 0 0 1 1 1 1 0 1

The two functions are equal.

(b)

←

PQR P�Q� PR Q�R f Q� PQR g

000 1 0 0 1 1 0 1
001 1 0 1 1 1 0 1
010 0 0 0 0 0 0 0
011 0 0 0 0 0 0 0
100 0 0 0 0 1 0 1
101 0 1 1 1 1 0 1
110 0 0 0 0 0 0 0
111 0 1 0 1 0 1 1

4. Show a truth table for the following functions:

a. F � XY� � YZ � X�Y�Z�

b. G � X�Y � (X � Z�)(Y � Z)

(a) (b)
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Note that for row 100 (marked with a brown arrow), f � 0 and
g � 1. Thus, the two functions are different.

6. For each of the following expressions, indicate which (if any) of
the following apply (more than one may apply):

i. Product term

ii. Sum of products expression

iii. Sum term

iv. Product of sums expression

a. ab�

b. a�b � ad

c. (a � b)(c � a�d)

d. a� � b�

e. (a � b�)(b � c)(a� � c � d)

a. i. product of two literals

ii. sum of one product term

iv. product of two sum terms

b. ii. sum of two product terms

c. none; second term is not a sum term

d. ii. sum of two product terms

iii. sum of two literals

iv. product of one sum term

e. iv. product of three sum terms

7. In the expressions of problem 6, how many literals are in each?

a. 2 b. 4 c. 5 d. 2 e. 7

8. Using Properties 1 to 10, reduce the following expressions to a
minimum SOP form. Show each step (number of terms and
number of literals in minimum shown in parentheses).

a. xyz� � xyz (1 term, 2 literals)

b. x�y�z� � x�y�z � x�yz � xy�z � xyz (2 terms, 3 literals)

c. f � abc� � ab�c � a�bc � abc (3 terms, 6 literals)

a. xyz� � xyz � xy (z� � z) � xy � 1 � xy [P8a, P5aa, P3b]
or, in one step, using P9a, where a � xy and b � z�
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b. x�y�z� � x�y�z � x�yz � xy�z � xyz

Make two copies of x�y�z
� �x�y�z� � x�y�z� � �x�y�z � x�yz� � �xy�z � xyz� [P6a]
� x�y��z� � z� � x�z�y� � y� � xz�y� � y� [P8a]
� x�y� � 1 � x�z � 1 � xz � 1 [P5aa]
� x�y� � x�z � xz [P3b]
� x�y� � �x� � x�z � x�y� � 1 � z [P8a, P5aa]
� x�y� � z [P3bb]

or, without using P6a,
� (x�y�z� � x�y�z) � x�yz � (xy�z � xyz)
� x�y� � x�yz � xz [P9a]
� x�(y� � yz) � xz [P8a]
� x�(y� � z) � xz [P10a]
� x�y� � x�z � xz [P8a]
� x�y� � z [P9a]

Note that we could follow a path that does not lead us to the
correct answer, by combining the last two terms in the second
line of this second sequence, yielding

� x�y� � z(x�y � x)
� x�y� � z(y � x) [P10a]
� x�y� � yz � xz [P8a]

This is a dead end. It has more terms than the minimum (which
was given) and we do not have the tools (in Properties 1 to 10)
to reduce this further without backing up to the original
expression (or, at least, the first reduction). We should then go
back and start again.

c. There are two approaches to this problem. In the first, we note
that abc can be combined with each of the other terms. Thus,
we make three copies of it, using
abc � abc � abc � abc [P6a]

f � (abc� � abc) � (ab�c � abc) � (a�bc � abc)
� ab � ac � bc [P9a]

In the second approach, we just use abc to combine with the
term next to it, producing
f � abc� � ab�c � a�bc � abc � abc� � ab�c � bc [P9a]

� abc� � c(b � b�a) � abc� � c(b � a)
� abc� � bc � ac [P10a]
� a(c � c�b) � bc � a(c � b) � bc
� ac � ab � bc [P10a]

or, in place of the last two lines,
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� b(c � c�a) � ac � b(c � a) � ac

� bc � ab � ac [P10a]
In this approach, we used P10a twice to eliminate a literal from
the second term and then the first. We could have done it in any
order. Indeed, there were two ways to do the last step (as shown
on the last two lines).

9. Using Properties 1 to 10, reduce the following expressions to a
minimum POS form. Show each step (number of terms and
number of literals in parentheses).

a. (a � b� � c) (a � b� � c�) (a� � b � c) (a� � b� � c)
(2 terms, 4 literals)

b. (x� � y� � z�) (x� � y � z�) (x� � y � z) (2 terms, 4 literals)

a. We group the first two and the last two terms, and use Property 9b

[(a � b� � c)(a � b� � c�)][(a� � b � c)(a� � b� � c)] �

[a � b�][a� � c]

b. We can make a second copy of the middle term and group it
with each of the others

(x� � y� � z�)(x� � y � z�)(x� � y � z)

� [(x� � y� � z�)(x� � y � z�)][(x� � y � z)(x� � y � z�)]

� [x� � z�][x� � y]

If we don’t make the second copy, we get

[x� � z�](x� � y � z)

We can then use P8b to get

x� � z� (y � z) � x� � yz� [P8a, P5bb, P3a]
� (x� � y)(x� � z) [P8b]

10. Show a block diagram of a system using AND, OR, and NOT gates
to implement the following function. Assume that variables are
available only uncomplemented. Do not manipulate the algebra.

F � [A (B � C)� � BDE](A� � CE)

B

E

B

C

D

A

A

F

C

E
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11. For each of the following circuits,

i. find an algebraic expression.

ii. put it in SOP form.

* We will see later that this can be reduced even further.

d

e

c

c
d

e

g

c

f

a

b
c�

c

d

b�

a

a. i. g � (d � e)c� � cde�

ii. g � c�d � c�e � cde�

b. i. f � ac � ab�[cd � c�(a � b)]

ii. f � ac � ab�cd � ab�c� � ab�c�b

� ac � ab�cd � ab�c�

� ac � ab�cd � ab�* [P10a]

12. Find the complement of the following expressions. Only single
variables may be complemented in the answer.

a. f � x�yz� � xy�z� � xyz

b. g � (w � x� � y)(w� � x � z)(w � x � y � z)

c. h � (a � b�c)d� � (a� � c�)(c � d)

a. f � � (x � y� � z)(x� � y � z)(x� � y� � z�)

SOP becomes POS.

a.

b.
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b. g� � w�xy� � wx�z� � w�x�y�z�

POS becomes SOP.

c. h� � [a�(b � c�) � d][ac � c�d�]

or, step by step

h� � [�a � b�c�d�]�[�a� � c���c � d�]�
� [�a � b�c�� � d][�a� � c��� � �c � d��]
� [a��b�c�� � d][ac � c�d�]

� [a��b � c�� � d][ac � c�d�]

13. For the following truth table,

a. Show the minterms in numerical form.

b. Show an algebraic expression in sum of minterm form.

c. Show a minimum SOP expression (two solutions, three terms,
six literals each).

d. Show the minterms of f � (complement of f ) in numeric form.

e. Show an algebraic expression for f in product of maxterm
form.

f. Show a minimum POS expression for f (two terms, five
literals).

a. f (a, b, c) � �m(1, 3, 4, 6, 7)

b. f � a�b�c � a�bc � ab�c� � abc� � abc

c. f � a�c � ac� � abc

� a�c � ac� � ab (using P10a on last two terms)

� a�c � ac� � bc (using P10a on first and last term)

d. f ��a, b, c� � �m�0, 2, 5�
e. f ��a, b, c� � �m�0, 2, 5�

� a�b�c� � a�bc� � ab�c

f � (a � b � c)(a � b� � c)(a� � b � c�)

f. Reordering the first two terms of f, we see that adjacency
(P9b) is useful.

f � �a � c � b��a � c � b���a� � b � c��
� �a � c��a� � b � c��

a b c f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1
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a.

b. f � x�yz� � x�yz � xy�z � xyz� � xyz
c. f � x�y � xy�z � xy

� y � xy�z
� y � xz

d. f ��x, y, z� � �m�0, 1, 4�
e. f � � x�y�z� � x�y�z � xy�z�

f � (x � y � z) (x � y � z�)(x� � y � z)
f. f � � x�y�z� � x�y�z � xy�z� � x�y�z�

� x�y� � y�z�

f � (x � y) (y � z)

15. Show a block diagram corresponding to each of the expressions
below using only NAND gates. Assume all inputs are available
both uncomplemented and complemented. There is no need to
manipulate the functions to simplify the algebra.

a. f � ab�d� � bde� � bc�d � a�ce

b. g � b(c�d � c�e�) � (a � ce) (a� � b�d�)

Or, we can minimize f � and then use DeMorgan’s theorem:

f � � a�c� � ab�c

f � (a � c)(a� � b � c�)

14. For the following function,

f (x, y, z) � �m(2, 3, 5, 6, 7)

a. Show the truth table.

b. Show an algebraic expression for f in sum of minterm form.

c. Show a minimum SOP expression for f (two terms, three
literals).

d. Show the minterms of f � (complement of f ) in numeric form.

e. Show an algebraic expression for f in product of maxterm
form.

f. Show a minimum POS expression for f (two terms, five
literals).

x y z f

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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a
b �

f

a �
c
e

d �

b

b

d

d

e �

c �

ga �

c �

d

c

e

a
b �

d �

c �

e�  b

(b)(a)

Note that in part (a), this is a two-level circuit. In part (b), the
only inputs that go directly into an OR are a and a�; they are
complemented.

16. Show a block diagram corresponding to each of the following
expressions using only NOR gates. Assume all inputs are
available both uncomplemented and complemented. There is no
need to manipulate the functions to simplify the algebra.

a. f � (a � b�)(a� � c � d)(b � d�)

b. g � [a�b� � a(c � d)](b � d�)

a

a�
c f
d

b

d �

b �

b

g

d �

d

c

b�

a�

a

b

a

a�

(b)(a)

17. For each of the following circuits,

i. Find an algebraic expression.

ii. Put it in minimum SOP form.

mar91647_c02_029_110.qxd  10/22/08  12:56 PM  Page 90



2.10 Solved Problems 91

a. i. f � (a � b) � (a � c�)

ii. f � �a�b � ab�� � �a�c� � ac�
� �a�b � ab��� �a�c� � ac�� �a�b � ab�� �a�c� � ac��
� �a�b� � ab� �a�c� � ac� � �a�b � ab���a�c � ac��
� a�b�c� � abc � a�bc � ab�c�

� b�c� � bc

b. i. g � x� � y� � �a�b � ab��� � c � d

ii. g � ab � a�b� � c � d

c. i. f � {[(a� � b)� � c](c�d)�}� � [(b(c�d)�]�

ii. f � {[�a� � b�� � c]� � �c�d�} � [b� � c�d]

� �a� � b�c� � c�d � b� � c�d

� a�c� � bc� � c�d � b� � a�c� � c� � c�d � b�

� c� � a�c� � c�d� � b� � c� � b�

18. Reduce the following expressions to a minimum SOP form.
Show each step (number of terms and number of literals in
minimum shown in parentheses).

a. F � A � B � A�B�C�D (3 terms, 4 literals)

b. f � x�y�z � w�xz � wxyz� � wxz � w�xyz
(3 terms, 7 literals)

c. g � wxy� � xyz � wx�yz � xyz� � wy�

(3 terms, 6 literals)

a

f

a

c �

b

(a) (b)

a

g

c

x

y
d

b

(c)

a�

b
c

f
c �

d

b
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d. H � AB � B�C � ACD � ABD� � ACD�
(2 terms, 4 literals)

e. G � ABC� � A�C�D � AB�C� � BC�D � A�D
(2 terms, 4 literals)

f. f � abc � b�cd � acd � abd�
(2 solutions, 3 terms, 9 literals)  

a. F � A � B � A�B�C�D

� �A � A�B�C�D� � B

� �A � B�C�D� � B [P10a]
� A � �B � B�C�D�
� A � B � C�D [P10a]

We can also achieve the same result using a different approach.

A � B � A�B�C�D � �A � B� � �A � B��C�D [P11a]
� �A � B� � C�D [P10a]

b. f � x�y�z � w�xz � wxyz� � wxz � w�xyz

� x�y�z � w�xz � wxyz� � wxz [P12a]
� x�y�z � xz � wxyz� [P9a]
� x�y�z � x�z � wyz��
� x�y�z � x�z � wy� [P10a]
� x�y�z � xz � wxy

� z�x�y� � x� � wxy

� z�y� � x� � wxy [P10a]
� y�z � xz � wxy

c. There are two ways to apply P10a. If we use it with the first
and third terms, we get

g � w(y� � yx�z) � xy

� w(y� � x�z) � xy

� wy� � wx�z � xy

But now, there is nothing further we can do (without a great deal
of backtracking or P13a).

However, if we first used P10a with the second and third terms,

g � wy� � y(x � x�wz) 

� wy� � y(x � wz) 

� wy� � xy � wyz

Now we can apply P10a again to the first and third terms to
produce the solution with six literals.

g � w(y� � yz) � xy � w(y� � z) � xy � wy� � wz � xy
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the consensus term can be removed and thus

f � abc � b�cd � abd�

No further reduction is possible; the only consensus that exists
among the terms in this reduced expression produces the term
acd, the one that we just removed. None of the other properties
can be used to reduce this function further.

However, if we go back to the original function, we note
that another consensus does exist:

acd ¢ abd� � abc

and thus the term abc can be removed, producing

f � b�cd � acd � abd�

That is another equally good minimum solution (because no
further minimization is possible). Even though we found two
applications of consensus in this function, we cannot take
advantage of both of them because no matter which one we
use first, the term needed to form the second consensus has
been removed.

19. Expand the following function to sum of minterms form

F(A, B, C) � A � B�C

d. H � AB � B�C � ACD � ABD� � ACD�

� AB � B�C � AC [P12a, P9a]
� AB � B�C [P13a]

e. G � ABC� � A�C�D � AB�C� � BC�D � A�D

� ABC� � AB�C� � A�D � BC�D [P12a]
� AC� � A�D � BC�D [P9a]

But,

AC� ¢ A�D � C�D

G � AC� � A�D � BC�D � C�D [P13a]
� AC� � A�D � C�D [P12a]
� AC� � A�D [P13a]

Note that we used consensus to first add a term and then to
remove that same term.

f. f � abc � b�cd � acd � abd�

Since

abc ¢ b�cd � acd
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94 Chapter 2 Combinational Systems

We have a choice of two approaches. We could use P3b,
P5aa (both from right to left) and P8a repeatedly to produce

A � B�C � A�B� � B� � �A� � A�B�C

� AB� � AB � A�B�C � AB�C

� AB��C� � C� � AB�C� � C� � A�B�C � AB�C

� AB�C� � AB�C � ABC� � ABC � A�B�C � AB�C

� AB�C� � AB�C � ABC� � ABC � A�B�C

having removed the duplicated term (AB�C). Or we could use a
truth table, such as

A B C B�C F

0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 1 1
1 1 0 0 1
1 1 1 0 1

and thus,

F � A�B�C � AB�C� � AB�C � ABC� � ABC

which is the same as the previous expression reordered, or

F (A, B, C) � �m(1, 4, 5, 6, 7)

20. Convert each of the following expressions to SOP form:

a. (w � x� � z)(w� � y � z�)(x � y � z)

b. (a � b � c � d�)(b � c � d)(b� � c�)

a. �w � x� � z��w� � y � z���x � y � z�
� [z � �w � x���x � y�]�w� � y � z�� [P8b]
� �z � wx � x�y��w� � y � z�� [P14a]
� z�w� � y� � z��wx � x�y� [P14a]
� w�z � yz � wxz� � x�yz� [P8a]

Note that this is not a minimum SOP expression, even though
the original was a minimum POS expression. Using P10a, we
could reduce this to

w�z � yz � wxz� � x�y

b. �a � b � c � d���b � c � d��b� � c��
� [b � c � �a � d��d]�b� � c�� [P8b]
� �b � c � ad��b� � c�� [P8b, P5b, P3a]
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2.10 Solved Problems 95

� bc� � b��c � ad� [P14a]
� bc� � b�c � ab�d [P8a]

or using c instead of b for P14a

� �b � c � ad��b� � c��
� b�c � c��b � ad�
� b�c � bc� � ac�d

These are two equally good solutions.

21. Convert the following expression to POS form:

a�c�d � a�cd� � bc

a�c�d � a�cd� � bc

� c�b � a�d�� � c�a�d [P8a]
� �c � a�d��c� � b � a�d�� [P14a]
� �c � a���c � d��c� � b � a���c� � b � d�� [P8b]

Two comments are in order. This is not in minimum POS form.
P12b allows us to manipulate the first and third terms so as to
replace the third term by (a� � b). We could have started the
process by factoring a� from the first two terms, but that would
require more work.

22. Implement each of the following expressions (which are already
in minimum SOP form) using only two-input NAND gates. 
No gate may be used as a NOT. All inputs are available both
uncomplemented and complemented. (The number of gates
required is shown in parentheses.)

a. f � w�y� � xyz � wyz� � x�y�z (8 gates)

b. f � abc � abd � a�c�d � a�b�c (8 gates)

c. F � B�C�D� � BD � ACD � ABC (7 gates)

d. g � a�b�c�d� � abcd� � a�ce � ab�d � be (12 gates)

a. f � y�(w� � x�z) � y(xz � wz�)

fw

x

z

x �

z

w

z � y

y �
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96 Chapter 2 Combinational Systems

b. f = abc + abd + a�c�d + a�b�c
Factoring ab from the first two terms and a� from the second, we
get 

f = ab(c + d) + a�(c�d + b�c)

But that would require a three-input AND for the first term. We
could distribute the a or b through the parentheses, getting

f = a(bc + bd) + a�(c�d + b�c)

That requires nine gates. Instead, we can factor c from the first
and last term, and d from the middle terms, yielding

f = c(ab + a�b�) + d(ab + a�c�)

Since the term ab appears twice, we can share that gate,
producing

a�

b�

a�

c�

a

b

c

d 

f

c. F = AC(B + D) + B�C�D� + BD
= (C + B�D�)[C� + A(B + D)] + BD

F

D �

C �

C

A

B �

D

B

Note that the gate on the left is used to implement both the B�D�
term and the (B � D) term.

d. g � a�b�c�d� � abcd� � a�ce � ab�d � be

The first attempt at a solution yields one with 13 gates.
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g � d��a�b�c� � abc� � e�b � a�c� � ab�d

� �d� � ab���d � a�b�c� � abc� � e�b � a�c�
� �d� � ab��[d � �a � b�c���a� � bc�] � e�b � a�c�

1  2   3    4       5    6   7     8   9    10 11 12 13

Another approach is

g � a��b�c�d� � ce� � a�bcd� � b�d� � be

� [a � b�c�d� � ce][a� � bcd� � b�d] � be

� [a � �c � b�d���c� � e�][a� � (b � d)�b� � cd��] � be

1      2 3   4     5 6 7 3 8     9 10 11 12

where gate three is used twice, as follows.

g

e

bd �

d �

c �

b �

e � a �  

a

c

c

b

23. For the following function, show the block diagram for a
NAND gate implementation that uses only four 7400 series
NAND gate modules. No gate may be used as a NOT. Assume
that all variables are available both uncomplemented and
complemented. (Note that a two-level solution would require
2 six-input gates and a five-input gate (each of which would be
implemented with a 7430 module containing 1 eight-input gate),
plus a 7420 for the four-input gate and a 7410 for the 2 three-
input gates and the 1 two-input gate.)

g � abcdef � d�e�f � a�b� � c�d�e� � a�def� � abcd�f�

g � abc(def � d�f�) � d�e�(c� � f ) � a�(b� � def�)

This requires 1 four-input gate (for the first term), 4 three-input
gates, and 5 two-input gates (one 7420, with the second gate
used as a three-input one, one 7410, and two 7400s with three
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a�e

g

b�

a
b
c

d �

d

c�

e �

f

a

f�

e

f

f�

gates unused). If we required that no four-input gates be used,
we could further manipulate the algebra as follows:

g � [a� � bc(def � d�f �)][a � b� � def�] � d�e�(c� � f )

using P14a on the first and last terms, which would require 
5 three-input gates and 6 two-input gates (still four modules).

We could also do a completely different factoring, yielding

g � de�abcf � a�f�� � d��abcf� � e�f � c�e�� � a�b�

� [d� � e�abcf � a�f ��][d � abcf �� e�f � c�e�] � a�b�

� [d� � e�a� � f�� f�� abc�]
� [d � c�e� � � f � abc�� f � � e��] � a�b�

This requires 3 three-input gates and 10 two-input gates (also
four modules), as shown below.

24. The following is already in minimum sum of products form.

F � B�DE� � A�B�D � A�BC�D� � ABD�E� � ABDE � ACDE

All variables are available both uncomplemented and
complemented. Find two solutions, each of which uses no more
than three integrated circuit packages of NAND gates (4 two-
input or 3 three-input or 2 four-input gates per package). One
solution must use only two- and three-input gates; the other must
use at least 1 four-input gate package.

The easiest starting point is to factor pairs of terms as follows:

F � B�D(A� � E�) � BD�(A�C� � AE�) � ADE(B � C)
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This indeed corresponds to a solution that satisfies the problem
requirements. There are 3 three-input gates (corresponding to the
first AND of B�D ( ), the second AND of BD� ( ), and the output
OR). There is 1 four-input gate, corresponding to the last AND,
and 5 two-input gates. We thus need one 7420 for the four-input
gate; the second gate on that package can be used as the fifth two-
input gate. The 3 three-input gates require one 7410, and the
remaining 4 two-input gates require one 7400.

By utilizing P14a, we obtain

F � B�D(A� � E�) � BD�(A�� E�)(A � C�) � ADE(B � C )

Note that the term A� � E� appears twice in the expression, and
we can thus share the output of the NAND gate that creates it.
This requires 2 four-input gates, 2 three-input gates, and 3 two-
input gates, leaving an extra two- and three-input gate unused. 
(This might be useful if we were building other circuits at the
same time and physically close to this one.) A block diagram of
this circuit follows.

D
B �

F

B �

C �

A �

C

A

E

A

E
D

B
D �

If we wish to find a solution that does not use four-input gates,
then we can factor D from the four terms containing it, as
follows:

F � D[B�(A� � E�) � AE(B � C)] � BD�(A�C� � AE�)

2 2        2         2 3        2         2 3       2      2   2

As can be seen from the listing under the expression, this
implementation requires 9 two-input gates and 2 three-input
ones, a total of three chips. There are several other solutions
which we will not enumerate here (but none of them use only
two-input gates).
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2.11 EXERCISES

1. Show a truth table for a 1-bit full subtractor that has a borrow input
bin and inputs x and y, and produces a difference, d, and a borrow
output, bout.

bin

x

�y

bout d

2. Show truth tables for each of the following.
★a. There are four inputs and three outputs. The inputs, w, x, y, z,

are codes for the grade that may be received:

0000 A 0100 B� 1000 D� 1100 Incomplete

0001 A� 0101 C� 1001 D 1101 Satisfactory

0010 B� 0110 C 1010 D� 1110 Unsatisfactory

0011 B 0111 C� 1011 F 1111 Pass

The outputs are

1: a 1 if and only if the grade is C or better (only letter
grades; C� is not C or better)

2: a 1 if and only if the university will count it toward
the 120 credits required for a degree (passing grade only)

3: a 1 if and only if it will be counted in computing a grade
point average (letter grades only).

b. This system has four inputs and three outputs. The first two
inputs, a and b, represent a 2-bit binary number (range of 0 to
3). A second binary number (same range) is represented by the
other two inputs, c and d. The output f is to be 1 if and only if
the two numbers differ by exactly 2. Output g is to be 1 if and
only if the numbers are equal. Output h is to be 1 if and only if
the second number is larger than the first.

c. The system has four inputs. The first two, a and b, represent a
number in the range 1 to 3 (0 is not used). The other two, c
and d, represent a second number in the same range. The
output, y, is to be 1 if and only if the first number is greater
than the second or the second is 2 greater than the first.

★d. A system has one output, F, and four inputs, where the first
two inputs (A, B) represent one 2-bit binary number (in the
range 0 to 3) and the second two inputs (C, D) represent
another binary number (same range). F is to be 1 if and only if
the two numbers are equal or if they differ by exactly 1.

e. A system has one output, F, and four inputs, where the first
two inputs (A, B) represent one 2-bit binary number (in the
range 0 to 3) and the second two inputs (C, D) represent

E
X

E
R

C
IS

E
S
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another binary number (same range). F is to be 1 if and only if
the sum of the two numbers is odd.

f. The system has four inputs. The first two, a and b, represent a
number in the range 0 to 2 (3 is not used). The other two, c
and d, represent a second number in the same range. The
output, y, is to be 1 if and only if the two numbers do not
differ by more than 1.

★g. The months of the year are coded in four variables, abcd,
such that January is 0000, February is 0001, . . . , and
December is 1011. The remaining 4 combinations are never
used. (Remember: 30 days has September, April, June, and
November. All the rest have 31, except February. . . .) Show a
truth table for a function, g, that is 1 if the month has 31 days
and 0 if it does not.

h. The months of the year are coded as in 2g, except that
February of a leap year is coded as 1100. Show a truth table
with five outputs, v, w, x, y, z that indicates the number of days
in the selected month.

i. Repeat 2h, except that the outputs are to be in BCD (8421 code).
There are now six outputs, u, v, w, x, y, z (where the first decimal
digit is coded 0, 0, u, v and the second digit is coded w, x, y, z).

j. The system has four inputs, a, b, c, and d, and one output, f.
The last three inputs (b, c, d) represent a binary number, n, in
the range 0 to 7; however, the input 0 never occurs. The first
input (a) specifies which of two computations is made.

a � 0: f is 1 iff n is a multiple of 2

a � 1: f is 1 iff n is a multiple of 3

k. The system has four inputs, a, b, c, and d, and one output, f.
The first two inputs (a, b) represent one binary number (in the
range 0 to 3) and the last two (c, d) represent another number
in the range 1 to 3 (0 never occurs). The output, f, is to be 1 iff
the second number is at least two larger than the first.

l. Show the truth table for a system with four inputs, a, b, c, and
d, and two outputs, f and g. The inputs represent a BCD digit
between 1 and 9 (8421 code). All other inputs never happen.
The output f is 1 if and only if the input represents an odd
number larger than 6 or an even number less than 7. The
output g is 1 iff the input represents a perfect square. (A 
perfect square is a number whose square root is an integer.)

3. Show a block diagram of a circuit using AND and OR gates for
each side of each of the following equalities:

★a. P2a: a � (b � c) � (a � b) � c

b. P8a: a(b � c) � ab � ac
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4. Show a truth table for the following functions:
★a. F � X�Y � Y�Z� � XYZ

b. G � XY � (X� � Z)(Y � Z�)

c. H � WX � XY� � WX�Z � XYZ� � W�XY�

5. Determine, using truth tables, which expressions in each of the
groups are equal:

a. f � ac� � a�c � bc
g � �a � c��a� � b � c��

★b. f � a�c� � bc � ab�

g � b�c� � a�c� � ac

h � b�c� � ac � a�b

c. f � ab � ac � a�bd

g � bd � ab�c � abd�

6. For each of the following expressions, indicate which (if any) of
the following apply (more than one may apply):

i. Product term

ii. SOP expression

iii. Sum term

iv. POS expression

a. abc�d � b�cd � ad�
★b. a� � b � cd

c. b�c�d�
★d. (a � b)c�

e. a� � b
★ f. a�
★g. a(b � c) � a�(b� � d)
h. (a � b� � d)(a� � b � c)

★7. For the expressions of problem 4, how many literals are in each?

8. Using properties 1 to 10, reduce the following expressions to a
minimum SOP form. Show each step (number of terms and
number of literals in minimum shown in parentheses).

★a. x�z � xy�z � xyz (1 term, 1 literal)
b. x�y�z� � x�yz � xyz (2 terms, 5 literals)
c. x�y�z� � x�y�z � xy�z � xyz� (3 terms, 7 literals)

★d. a�b�c� � a�b�c � abc � ab�c (2 terms, 4 literals)

e. x�y�z� � x�yz� � x�yz � xyz (2 terms, 4 literals)
★f. x�y�z� � x�y�z � x�yz � xyz � xyz�

(2 solutions, each with 3 terms, 6 literals)
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2.11 Exercises 103

g. x�y�z� � x�y�z � x�yz � xy�z � xyz � xyz�

(3 terms, 5 literals)

h. a�b�c� � a�bc� � a�bc � ab�c � abc� � abc

(3 terms, 5 literals)

9. Using Properties 1 to 10, reduce the following expressions to a
minimum POS form. The number of terms and number of literals
are shown in parentheses.

a. (a � b � c)(a � b� � c)(a � b� � c�)(a� � b� � c�)
(2 terms, 4 literals)

b. (x � y � z)(x � y � z�)(x � y� � z)(x � y� � z�)
(1 term, 1 literal)

★c. (a � b � c�)(a � b� � c�)(a� � b� � c�)(a� � b� � c)
(a� � b � c) (2 solutions, each with 3 terms, 6 literals)

10. Show a block diagram of a system using AND, OR, and NOT gates
to implement the following functions. Assume that variables are
available only uncomplemented. Do not manipulate the algebra.

a. P�Q� � PR � Q�R

b. ab � c(a � b)
★c. wx�(v � y�z) � (w�y � v�)(x � yz)�

11. For each of the following circuits,

i. find an algebraic expression.

ii. put it in sum of product form.

a �

b �

d

b
c

a

c �

g

a �

b �

d

b
c

a

c �

f

b

d

b

d

c �

a �

c

a

h
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104 Chapter 2 Combinational Systems

12. Find the complement of the following expressions. Only single
variables may be complemented in the answer.

★ a. f � abd� � b�c� � a�cd � a�bc�d

b. g � (a � b� � c)(a� � b � c)(a � b� � c�)

c. h � (a � b)(b� � c) � d�(a�b � c)

13. For each of the following functions:

f �x, y, z� � �m�1, 3, 6�
g�x, y, z� � �m�0, 2, 4, 6�

a. Show the truth table.

b. Show an algebraic expression in sum of minterms form.

c. Show a minimum SOP expression (a: 2 terms, 5 literals; 
b: 1 term, 1 literal).

d. Show the minterms of f � (complement of f ) in numeric form.

e. Show an algebraic expression in product of maxterms form.

f. Show a minimum POS expression ( f: 2 solutions, 3 terms,
6 literals; g: 1 term, 1 literal)

14. For each of the following functions,★

a b c f g

0 0 0 0 1
0 0 1 1 1
0 1 0 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 0

a. Show the minterms in numerical form.

b. Show an algebraic expression in sum of minterms form.

c. Show a minimum SOP expression ( f : 2 terms, 4 literals; 
g: 2 terms, 3 literals).

d. Show the minterms of f � (complement of f ) in numeric form.

e. Show an algebraic expression in product of maxterms form.

f. Show a minimum POS expression ( f : 2 terms, 4 literals; 
g: 2 terms, 4 literals)

15. For each of the following functions:

F � AB� � BC � AC

G � (A � B)(A � C�) � AB�

a. Show the truth table.

b. Show an algebraic expression in sum of minterms form.
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2.11 Exercises 105

★

c. Show a minimum sum of products expression (F: 2 terms,
4 literals; G: 2 terms, 3 literals).

d. Show the minterms of the complement of each function in
numeric form.

e. Show an algebraic expression in product of maxterms form.

f. Show a minimum POS expression ( F: 2 terms, 4 literals; 
G: 2 terms, 4 literals)

16. Consider the following function with don’t cares:

G(X, Y, Z) � �m(5, 6) � �d(1, 2, 4)

For each of the following expressions, indicate whether it could be
used as a solution for G. (Note: It may not be a minimum solution.)

a. XYZ� � XY�Z d. Y�Z � XZ� � X�Z

b. Z� � XY�Z e. XZ� � X�Z

c. X(Y� � Z�) f. YZ� � Y�Z

17. Show that the NOR is functionally complete by implementing a NOT,
a two-input AND, and a two-input OR using only two-input NORs.

18. For each of the following circuits,

i. find an algebraic expression.

ii. put it in SOP form.

b

c

a

d �

f

c

da

b�

f

d

★a.

b.
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106 Chapter 2 Combinational Systems

a

c

d

b
f

1 a

c

d

b
g

0

★e. f.

a

f

c

d

b

c

d

b

a

g

c.
d.

19. Show a block diagram corresponding to each of the expressions
below using only NAND gates. Assume all inputs are available
both uncomplemented and complemented. Do not manipulate the
functions to simplify the algebra.

a. f � wy� � wxz� � xy�z � w�x�z

b. g � wx � (w� � y)(x � y�)

c. h � z(x�y � w�x�) � w(y� � xz�)
★ d. F � D[B�(A� � E�) � AE(B � C)] � BD�(A�C� � AE�)

20. Reduce the following expressions to a minimum sum of products
form, using P1 through P12. Show each step (number of terms and
number of literals in minimum shown in parentheses).

a. h � ab�c � bd � bcd� � ab�c� � abc�d (3 terms, 6 literals)

b. h � ab� � bc�d� � abc�d � bc (3 terms, 5 literals)
★ c. f � ab � a�bd � bcd � abc� � a�bd� � a�c

(2 terms, 3 literals)

d. g � abc � abd � bc�d� (2 terms, 5 literals)

e. f � xy � w�y�z � w�xy� � wxyz� � w�yz � wz
(3 terms, 5 literals)

21. Reduce the following expressions to a minimum sum of products
form. Show each step and the property used (number of terms and
number of literals in minimum shown in parentheses).

a. f � x�yz � w�x�z � x�y � wxy � w�y�z
(3 terms, 7 literals)

b. G � A�B�C� � AB�D � BCD� � A�BD � CD � A�D
(4 terms, 9 literals)

★ c. F � W�YZ� � Y�Z � WXZ � WXYZ� � XY�Z � W�Y�Z�
(3 terms, 7 literals)

E
X

E
R

C
IS

E
S

mar91647_c02_029_110.qxd  10/22/08  12:56 PM  Page 106



2.11 Exercises 107

d. g � wxz � xy�z � wz� � xyz � wxy�z � w�y�z�
(3 terms, 6 literals)

e. F � ABD� � B�CE � AB�D� � B�D�E � ABCD�E � B�C�D�
(3 terms, 8 literals)

f. f � b�c � abc � b�cd � a�b�d � a�c�d (3 terms, 7 literals)
★ g. G � B�C�D � BC � A�BD � ACD � A�D

(3 terms, 6 literals)

h. f � ab � bcd � ab�c� � abd � bc � abc�
(2 terms, 4 literals)

i. h � abc� � ab�d � bcd � a�bc (3 terms, 8 literals)
★ j. g � a�bc� � bc�d � abd � abc � bcd� � a�bd�

(2 solutions, 3 terms, 9 literals)

22. i. For the following functions, use consensus to add as many
new terms to the sum of product expression given.

ii. Then reduce each to a minimum sum of products, showing
each step and the property used. 

★ a. f � a�b�c� � a�bd � a�cd� � abc (3 terms, 8 literals)

b. g � wxy � w�y�z � xyz � w�yz� (3 terms, 8 literals)

23. Expand the following functions to sum of minterms form:

a. f (a, b, c) � ab� � b�c�
★ b. g(x, y, z) � x� � yz � y�z�

c. h(a, b, c, d) � ab�c � bd � a�d�

24. Convert each of the following expressions to sum of products form:

a. (a � b � c � d�)(b � c�� d)(a � c)

b. (a� � b � c�)(b � c� � d)(b� � d�)
★ c. (w� � x)(y � z)(w� � y)(x � y� � z)

d. (A � B � C)(B� � C � D)(A � B� � D)(B � C� � D�)

25. Convert each of the following expressions to product of sums form:

a. AC � A�D�

b. w�xy� � wxy � xz
★ c. bc�d � a�b�d � b�cd�

26. Implement each of the following expressions (which are already
in minimum sum of products form) using only two-input NAND
gates. No gate may be used as a NOT. All inputs are available both
uncomplemented and complemented. (The number of gates
required is shown in parentheses.)

★ a. f � wy� � wxz� � y�z � w�x�z (7 gates)

b. ab�d� � bde� � bc�d � a�ce (10 gates)

c. H � A�B�E� � A�B�CD� � B�D�E� � BDE� � BC�E � ACE�
(14 gates)

★ d. F � A�B�D� � ABC� � B�CD�E � A�B�C � BC�D (11 gates)
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108 Chapter 2 Combinational Systems

e. G � B�D�E� � A�BC�D � ACE � AC�E� � B�CE
(12 gates, one of which is shared)

f. h � b�d�e� � ace � c�e� � bcde (9 gates)

27. Each of the following is already in minimum sum of products
form. All variables are available both uncomplemented and
complemented. Find two solutions each of which uses no more
than the number of integrated circuit packages of NAND gates 
(4 two-input or 3 three-input or 2 four-input gates per package)
listed. One solution must use only two and three input gates; the
other must use at least 1 four-input gate package.

★ a. F � ABCDE � B�E� � CD�E� � BC�D�E � A�B�C
� A�BC�E (3 packages)

b. G � ABCDEF � A�B�D� � C�D�E � AB�CE� � A�BC�DF
� ABE�F� (4 packages)

2.12 CHAPTER 2 TEST (100 MINUTES,
OR TWO 50-MINUTE TESTS)

1. The inputs of this system A and B represent one binary number in
the range 0:3. The inputs C and D represent a second binary number
(also in the range 0:3). There are three outputs, X, Y, and Z.

Show a truth table such that Y and Z represent a number
equal to the magnitude of the difference of the two inputs and X
is 1 if and only if the first is larger. Two lines of the table are
filled in.

A B C D X Y Z

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0 0 0 1
0 1 1 1
1 0 0 0
1 0 0 1 1 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
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2. Use a truth table to demonstrate whether or not the following
functions are equal:

f � a�b� � a�c� � ab
g � �b� � c���a� � b�

3. Reduce the following expression to a SOP expression with two
terms and four literals. Show each step.

a�b�c � a�bc � ab�c � ab�c�

4. For each part, assume all variables are available both
uncomplemented and complemented.

f � ab�c � ad � bd

a. Show a block diagram for a two-level implementation of f
using AND and OR gates.

b. Show a block diagram for an implementation of f using only
two-input AND and OR gates.

5. For the following truth table

a b c f g

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x y z f

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

a. Write a sum of minterms function in numeric form, for
example,


m(0, . . .)

b. Write a sum of minterms function in algebraic form, for
example,

x�yz � . . .
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110 Chapter 2 Combinational Systems

c. Find one minimum SOP expression (3 terms, 6 literals).

d. Find a POS expression in product of maxterms form.

e. Find a minimum POS form (2 terms, 5 literals).

6. Assume all inputs are available both uncomplemented and
complemented. Show an implementation of

g � wx � wz � w�x� � w�y�z�

� �w� � x � z��w � x� � y���w � x� � z��

a. using NAND gates of any size.

b. using NOR gates of any size.

c. using two-input NAND gates (none of which may be used as a
NOT).

7. For each of the following functions find a minimum SOP
expression (3 terms, 6 literals). Show each algebraic step.

a. f � b�d� � bc�d � b�cd� � bcd � ab�d

5-POINT BONUS: Find a second minimum sum of products.

b. g � xy�z� � yz � xy�z � wxy � xz

8. a. Expand the following to sum of minterms (sum of standard
product terms). Eliminate any duplicates.

g � a� � ac � b�c

b. Manipulate the following to a SOP expression.

f � (x� � y)(w� � y � z�)(y� � z)(w � y� � z�)

9. Implement the following function using only two-input NAND
gates. No gate may be used as a NOT gate. The function is in
minimum SOP form. All inputs are available both
uncomplemented and complemented.

f � ac � bcd � a�b�d� (7 gates)

10. Implement the following function using only two-input NAND
gates. No gate may be used as a NOT gate. The function is in
minimum SOP form. All inputs are available both
uncomplemented and complemented.

f � abc � ac�d�e� � a�d�e � ce � cd

(Full credit for 11 gates, 5-point bonus for 10 gates)
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C H A P T E R

111
*This tool was introduced in 1953 by Maurice Karnaugh.

The Karnaugh Map

The algebraic methods developed in Chapter 2 allow us, in theory,
to simplify any function. However, there are a number of prob-
lems with that approach. There is no formal method, such as first

apply Property 10, then P14, etc. The approach is totally heuristic,
depending heavily on experience. After manipulating a function, we
often cannot be sure whether it is a minimum. We may not always find
the minimum, even though it appears that there is nothing else to do. Fur-
thermore, it gets rather difficult to do algebraic simplification with more
than four or five variables. Finally, it is easy to make copying mistakes as
we rewrite the equations.

In this chapter, we will examine an approach that is easier to imple-
ment, the Karnaugh map* (sometimes referred to as a K-map). This is a
graphical approach to finding suitable product terms for use in sum of
product expressions. (The product terms that are “suitable” for use in min-
imum SOP expressions are referred to as prime implicants. We will define
that term shortly.) The map is useful for problems of up to six variables and
is particularly straightforward for most problems of three or four variables.
Although there is no guarantee of finding a minimum solution, the meth-
ods we will develop nearly always produce a minimum. We will adapt the
approach (with no difficulty) to finding minimum POS expressions, to
problems with don’t cares, and to multiple output problems.

In Chapter 4, we will introduce two other techniques that can be com-
puterized and could be used for more than six variables (although the
amount of work required to use them for hand computation is very large).

3.1 INTRODUCTION TO THE
KARNAUGH MAP

In this section, we will look at the layout of two-, three-, and four-
variable maps. The Karnaugh map consists of one square for each possible
minterm in a function. Thus, a two-variable map has 4 squares, a three-
variable map has 8 squares, and a four-variable map has 16 squares.

Three views of the two-variable map are shown in Map 3.1. In each,
the upper right square, for example, corresponds to A � 1 and B � 0,
minterm 2.

3
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When we plot a function, we put a 1 in each square corresponding to
a minterm that is included in the function, and put a 0 in or leave blank
those squares not included in the function. For functions with don’t cares,
an X goes in the square for which the minterm is a don’t care. Map 3.2
shows examples of these.

112 Chapter 3 The Karnaugh Map

Map 3.1 Two-variable Karnaugh maps.

A�B � A B �

A�B A B

0 2

1 3

0 1

0

1

A

B

m0 m2

m1B

A

m3

Map 3.2 Plotting functions.

1

1

1

0

0

1

a
b

f (a, b) � �m (0, 3)

1 X

1

0 1

0

1

A

B

g(A, B) � �m (0, 3) � �d (2)

Map 3.3 Three-variable maps.

A �B �C � A� B C � A B C � A  B �C �

A� B �C A� B C A B C A  B �C

00 01 11 10
A� B� A� B A B A B�

0

1

C�

C

A B

C
0 2 6 4

1 3 7 5

00 01 11 10

0

1

A B

C

*Some people label the row(s) of the map with the first variable(s) and the columns with
the others. The three-variable map then looks like

This version of the map produces the same results as the other.

Three-variable maps have eight squares, arranged in a rectangle as
shown in Map 3.3.*

0 1 3 2

4 5 7 6

00 01 11 10

0

1

B C

A
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Notice that the last two columns are not in numeric order. That is the key
idea that makes the map work. By organizing the map that way, the
minterms in adjacent squares can always be combined using the adja-
cency property,

P9a. ab � ab� � a

m0 � m1: A�B�C� � A�B�C � A�B�

m4 � m6: AB�C� � ABC� � AC�

m7 � m5: ABC � AB�C � AC

Also, the outside columns (and the outside rows when there are four rows)
are adjacent. Thus,

m0 � m4: A�B�C� � AB�C� � B�C�

m1 � m5: A�B�C � AB�C � B�C

If we had ordered the columns in numeric order, as shown in Map 3.4
(where the algebraic version of the minterms is shown only for m2 and
m4), we would not be able to combine adjacent squares:

3.1 Introduction to the Karnaugh Map 113

Map 3.4 Incorrect arrangement of
the map.

0
A� B C �

2
A B �  C �

4 6

1 3 5 7

00 01 10 11

0

1

A B

C

EXAMPLE 3.1

m2 � m4 � A�BC� � AB�C� � C�(A�B � AB�)

However, we cannot manipulate that into a single term.
Product terms that correspond to the sum of two minterms appear

as two adjacent 1’s on the map. The terms of Example 3.1 are shown in
Map 3.5.

It is sometimes more convenient to draw the map in a vertical orien-
tation (that is, two columns and four rows) as shown in Map 3.6. Both
versions of the map produce the same results.

In reading the map, it is useful to label the pairs of columns (in those
arrangements where there are four columns) as shown in Map 3.7. Thus,
1’s in squares 4 and 6 are in the A columns and the C� row (that is, not in
the C row), producing the AC� term as shown earlier.
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114 Chapter 3 The Karnaugh Map

Map 3.5 Product terms corresponding to groups of two.

00 01 11 10

0 1

1

A B

A� B �

C

1

00 01 11 10

0 1 1

1

A B

A C �

C 00 01 11 10

0

1

A B

A C

C

1 1

00 01 11 10

0 1 1

1

A B

B � C �

C 00 01 11 10

0

1 1 1

A B

B � C

C

Map 3.6 Vertical orientation of three-variable map.

0 1

00 0 4

A

B C

01 1 5

11 3 7

10 2 6

0 1

00 1

A

B C

01 1

11

10

A� B �

0 1

00

A

B C

01

1

1

11

10

A C �

0 1

00

A

B C

01 1

111

10

A C

Map 3.7 Map with columns
labeled.

00 01 11 10

0
0 2 6 4

1 C

A B

C

1 3 7 5

B

A

The four-variable map consists of 16 squares in the 4 by 4 arrange-
ment shown in Map 3.8.

As with the three-variable map, 1’s in two adjacent squares (where
the top and bottom rows as well as the left and right columns are consid-
ered to be adjacent) correspond to a single product term (combined using
P9a). Example 3.2 shows three such terms.
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m13 � m9: ABC�D � AB�C�D � AC�D

m3 � m11: A�B�CD � AB�CD � B�CD

m0 � m2: A�B�C�D� � A�B�CD� � A�B�D�

3.1 Introduction to the Karnaugh Map 115

00 01 11 10

00

01

11

10

A B

A C �D

C D

1 1

00 01 11 10

00

01

11

10

A B

B �C D

C D

1 1

00 01 11 10

00

01

11

10

A B

A� B �D�

C D

1

1

Map 3.8 The four-variable map.

00 01 11 10

00

01

11 A�B C D A B C D A B�C D

A�B C D� A B C D�10

A B

C D00 01 11 10

00

01

11

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 1010

A B

C D

EXAMPLE 3.2

Up to this point, all of the product terms that we have shown corre-
spond to two minterms combined using P9a. These correspond to a
product term with one literal missing, that is, with only two literals in a
three-variable function and three literals in a four-variable function. Let
us next look at the maps of Map 3.9 with a group of four 1’s.
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On the map to the left, we have circled two groups of two, one form-
ing the term A�C and the other forming the term AC. Obviously, P9a can
be applied again to these two terms, producing

A�C � AC � C

116 Chapter 3 The Karnaugh Map

Map 3.9 A group of four 1’s.

00 01 11 10

0

1

A B

A� C A C

C

1 1 1 1

00 01 11 10

0

1

A B

C

C

1 1 1 1

That is shown on the map to the right as a rectangle of four 1’s. In gen-
eral, rectangles of four 1’s will correspond to a product term with two of
the variables missing (that is, a single literal for three-variable problems
and a two-literal term for four-variable problems).

We could have factored C from all of the terms producing

A�B�C � A�BC � ABC � AB�C � C(A�B� � A�B � AB � AB�)

However, the sum inside the parentheses is just a sum of all of the
minterms of A and B; that must be 1. Thus, we can get the result in just
that one step. Indeed, we could have added a secondary property to P9,
namely,

P9aa. a�b� � a�b � ab � ab� � 1
P9bb. (a� � b�) (a� � b) (a � b) (a � b�) � 0

These can be proved by repeated application of P9, first to the first two
terms, then to the last two terms, and finally to the resulting terms as
shown

(a�b� � a�b) � (ab � ab�) � (a�) � (a) � 1

[(a� � b�) (a� � b)][(a � b) (a � b�)] � [a�][a] � 0

Some examples of such groups for four-variable problems are shown in
Map 3.10.

The easiest way to identify the term from the map is by determining
in which row(s) and column(s) all of the 1’s are located. Thus, on the first
map, the 1’s in the group on the left are all in the 00 (A�B�) column and
thus the term is A�B�. The other group has its 1’s in the 11 and 10
columns; the common feature is the 1 in the A position (which corre-
sponds to A). Furthermore, the 1’s are in the 01 and 11 rows; there is a
common 1 in the D position. Thus, the term is AD. In the middle map, the
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1’s are in the 00 and 10 columns, producing B� and the 01 and 11 rows,
resulting in D; the term is thus B�D. (Notice, by the way, that that term
also appears on the first map, even though it was not circled.) On the last
map, the four corners produce the term B�D� (since all the 1’s are in the
00 or 10 columns and the 00 or 10 rows). The middle group is BD. Any
of these terms could also be obtained algebraically by first writing the
minterms, then applying P10a to pairs of terms, and then applying it
again to the two terms that resulted (as we did for the three-variable
example). However, the whole idea of the map is to eliminate the need to
do algebra.

Two adjacent groups of four can be combined in a similar way to
form a group of eight squares (with three of the literals missing). Two
such groups are shown in Map 3.11. The terms are A� for the map on the
left and D� for the map on the right.

3.1 Introduction to the Karnaugh Map 117

Map 3.10 Examples of groups of four.

00 01 11 10

00

01

11

10

A B

A� B � A D

C D

11 1

1

11 1

1

00 01 11 10

00

01

11

10

A B

B �D

C D

1 1

1 1

00 01 11 10

00

01

11

10

A B

B �D � B D

C D

11

1

11

1

1

1

Map 3.11 Groups of eight.

00 01 11 10

00

01

11

10

A B

C D

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

A B

C D

1

1

1 1 1

1 1 1
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We can plot any function on the map. Either, we know the minterms,
and use that form of the map, or we put the function in SOP form and
plot each of the product terms.

Map

F � AB� � AC � A�BC�

The map for F follows, with each of the product terms circled. Each of
the two-literal terms corresponds to two squares on the map (since one
of the variables is missing). The AB� term is in the 10 column. The AC term
is in the C � 1 row and in the 11 and 10 columns (with a common 1 in the
A position). Finally, the minterm A�BC� corresponds to one square, in the 01
(A�B) column and in the C � 0 row.

118 Chapter 3 The Karnaugh Map

EXAMPLE 3.3

00 01 11 10

0

1

A B

A B �

A� B C � A C

C

1

1 1

1

We could have obtained the same map by first expanding F to minterm
form algebraically, that is,

F � AB�(C� � C) � AC(B� � B) � A�BC�

� AB�C� � AB�C � AB�C � ABC � A�BC�

� m4 � m5 � m5 � m7 � m2

� m2 � m4 � m5 � m7

(removing duplicates and reordering)

We can then use the numeric map and produce the same result.

00
0 2 6 4

1 3 7 5

01 11 10

0

1

A B

C

1

1 1

1

We are now ready to define some terminology related to the Kar-
naugh map. An implicant of a function is a product term that can be used
in an SOP expression for that function, that is, the function is 1 whenever
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the implicant is 1 (and maybe other times, as well). From the point of
view of the map, an implicant is a rectangle of 1, 2, 4, 8, . . . (any power
of 2) 1’s.* That rectangle may not include any 0’s. All minterms are
implicants.

Consider the function, F, of Map 3.12. The second map shows the
first four groups of 2; the third map shows the other groups of 2 and the
group of 4.

3.1 Introduction to the Karnaugh Map 119

Map 3.12 A function to illustrate definitions.

00 01 11 10

00

01

11

10

A B

C D

1 1

11 1 1

1

00 01 11 10

00

01

11

10

A B

C D

1 1

11 1 1

1

00 01 11 10

00

01

11

10

A B

C D

1 1

11 1 1

1

The implicants of F are

Minterms Groups of 2 Groups of 4
A�B�C�D� A�CD CD

A�B�CD BCD

A�BCD ACD

ABC�D� B�CD

ABC�D ABC�

ABCD ABD

AB�CD

Any SOP expression for F must be a sum of implicants. Indeed, we
must choose enough implicants such that each of the 1’s of F are
included in at least one of these implicants. Such an SOP expression
is sometimes referred to as a cover of F, and we sometimes say that
an implicant covers certain minterms (for example, ACD covers m11

and m15).
Implicants must be rectangular in shape and the number of 1’s in the

rectangle must be a power of 2. Thus, neither of the functions whose
maps are shown in Example 3.4 are covered by a single implicant, but
rather by the sum of two implicants each (in their simplest form).

*We will expand the definition of an implicant to include maps with don’t cares in Section 3.3.
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EXAMPLE 3.4

00 01 11

G

10

00

01

11

10

A B

C D

1

1

1

00 01 11 10

00

01

11

10

A B

C D

1

1

11

H

A prime implicant is an implicant that (from the point of view of the
map) is not fully contained in any one other implicant. For example, it is
a rectangle of two 1’s that is not part of a single rectangle of four 1’s. On
Map 3.13, all of the prime implicants of F are circled. They are
A�B�C�D�, ABC�, ABD, and CD. Note that the only minterm that is not
part of a larger group is m0 and that the other four implicants that are
groups of two 1’s are all part of the group of four.

From an algebraic point of view, a prime implicant is an implicant
such that if any literal is removed from that term, it is no longer an impli-
cant. From that viewpoint, A�B�C�D� is a prime implicant because B�C�D�,
A�C�D�, A�B�D�, and A�B�C� are not implicants (that is, if we remove any
literal from that term, we get a term that is 1 for some input combinations
for which the function is to be 0). However, ACD is not a prime implicant
since when we remove A, leaving CD, we still have an implicant. (Surely,
the graphical approach of determining which implicants are prime impli-
cants is easier than the algebraic method of attempting to delete literals.)

The purpose of the map is to help us find minimum SOP expres-
sions, where we defined minimum as being minimum number of product
terms (implicants), and among those with the same number of impli-
cants, the ones with the fewest number of literals. However, the only
product terms that we need consider are prime implicants. Why? Say we
found an implicant that was not a prime implicant. Then, it must be con-
tained in some larger implicant, a prime implicant. But that larger impli-
cant (say four 1’s rather than two) has fewer literals. That alone makes a

Map 3.13 Prime implicants.

00 01 11 10

00

01

11

10

A B

C D

1 1

11 1 1

1

G consists of three minterms, ABC�D, ABCD, and ABCD�, in the shape of a
rectangle. It can be reduced no further than is shown on the map, namely,
to ABC � ABD, since it is a group of three 1’s, not two or four. Similarly, H
has the same three minterms plus A�BC�D; it is a group of four, but not in
the shape of a rectangle. The minimum expression is, as shown on the
map, BC�D � ABC. (Note that ABD is also an implicant of G, but it includes
1’s that are already included in the other terms.)

120 Chapter 3 The Karnaugh Map
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[SP 1; EX 1]

3.2 Minimum Sum of Product Expressions Using the Karnaugh Map 121

solution using the term that is not a prime implicant not a minimum. (For
example, CD has two literals, whereas, ACD has three.) Furthermore,
that larger implicant covers more 1’s, which often will mean that we
need fewer terms.

An essential prime implicant is a prime implicant that includes at
least one 1 that is not included in any other prime implicant. (If we were
to circle all of the prime implicants of a function, the essential prime
implicants are those that circle at least one 1 that no other prime implicant
circles.) In the example of Map 3.13, A�B�C�D�, ABC�, and CD are
essential prime implicants; ABD is not. The term essential is derived from
the idea that we must use that prime implicant in any minimum SOP
expression. A word of caution is in order. There will often be a prime 
implicant that is used in a minimum solution (even in all minimum solu-
tions when more than one equally good solution exists) that is not “essen-
tial.” That happens when each of the 1’s covered by this prime implicant
could be covered in other ways. We will see examples of that in Section 3.2.

3.2 MINIMUM SUM OF PRODUCT
EXPRESSIONS USING THE 
KARNAUGH MAP

In this section, we will describe two methods for finding minimum SOP
expressions using the Karnaugh map. Although these methods involve
some heuristics, we can all but guarantee that they will lead to a mini-
mum SOP expression (or more than one when multiple solutions exist)
for three- and four-variable problems. (It also works for five- and six-
variable maps, but our visualization in three dimensions is more limited.
We will discuss this in detail in Section 3.6.)

In the process of finding prime implicants, we will be considering
each of the 1’s on the map starting with the most isolated 1’s. By iso-
lated, we mean that there are few (or no) adjacent squares with a 1 in it.
In an n-variable map, each square has n adjacent squares. Examples for
three- and four-variable maps are shown in Map 3.14.

Map 3.14 Adjacencies on three- and four-variable maps.

1

1

1

1
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Map Method 1
1. Find all essential prime implicants. Circle them on the map and

mark the minterm(s) that make them essential with a star (★). Do
this by examining each 1 on the map that has not already been
circled. It is usually quickest to start with the most isolated 1’s, that
is, those that have the fewest adjacent squares with 1’s in them.

2. Find enough other prime implicants to cover the function. Do this
using two criteria:
a. Choose a prime implicant that covers as many new 1’s (that is,

those not already covered by a chosen prime implicant).
b. Avoid leaving isolated uncovered 1’s.

It is often obvious what “enough” is. For example, if there are five
uncovered 1’s and no prime implicants cover more than two of them,
then we need at least three more terms. Sometimes, three may not be
sufficient, but it usually is.

We will now look at a number of examples to demonstrate 
this method. First, we will look at the example used to illustrate the
definitions.

As noted, m0 has no adjacent 1’s; therefore, it (A�B�C�D�) is a prime impli-
cant. Indeed, it is an essential prime implicant, since no other prime implicant
covers this 1. (That is always the case when minterms are prime implicants.)
The next place that we look is m12, since it has only one adjacent 1. Those
1’s are covered by prime implicant ABC�. Indeed, no other prime implicant
covers m12, and thus ABC� is essential. (Whenever we have a 1 with only
one adjacent 1, that group of two is an essential prime implicant.) At this
point, the map has become

and

F � A�B�C�D� � ABC� � � � �

00 01 11 10

00

01

11

10

A B

C D

1★ 1★

11 1 1

1
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Each of the 1’s that have not yet been covered are part of the group of four,
CD. Each has two adjacent squares with 1’s that are part of that group. That
will always be the case for a group of four. (Some squares, such as m15 may
have more than two adjacent 1’s.) CD is essential because no other prime
implicant covers m3, m7, or m11. However, once that group is circled, we
have covered the function:

resulting in

F � A�B�C�D � ABC� � CD

In this example, once we have found the essential prime implicants, we are
done; all of the 1’s have been covered by one (or more) of the essential
prime implicants. We do not need step 2. There may be other prime impli-
cants that were not used (such as ABD in this example).

We start looking at the most isolated 1, m11. It is covered only by the group
of two shown, wyz. The other essential prime implicant is y�z� because of
m0, m8, or m12. None of these are covered by any other prime implicant;
each makes that prime implicant essential. The second map shows these
two terms circled.

00 01 11 10

00

01

11

10

w x

y z

1★ 1 1★ 1★

1 1 1★

1

00 01 11 10

00

01

11

10

w x

y z

1 1 11

1 1 1

1

00 01 11 10

00

01

11

10

A B

C D

1★ 1★

1★1★ 1 1★

1
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That leaves two 1’s uncovered. Each of these can be covered by two differ-
ent prime implicants, but the only way to cover them both with one term is
shown on the first of the maps below.

Thus, the minimum sum of product solution is

f � y�z� � wyz � w�xz

The other two prime implicants are w�xy� and xyz, circled in brown on the
last map. They are redundant, however, since they cover no new 1’s. Even
though w�xz must be used in a minimum solution, it does not meet the def-
inition of an essential prime implicant; each of the 1’s covered by it can be
covered by other prime implicants.

We will next look at the “dead end” example from Chapter 2
(Example 2.2).

f � a�b�c� � a�bc� � a�bc � ab�c�

In the first attempt at algebraic manipulation, we grouped the first two
minterms. But, as can be seen on the left-hand map below, the two 1’s that
are left could not be combined and resulted in a three-term solution. Further-
more, a�c� is not an essential prime implicant. If, on the other hand, we used
the map, we could see that choosing the two essential prime implicants on
the right-hand map includes all of the minterms and produces the solution

f � a�b � b�c�

00 01 11 10

0

1

a b

c

1

11 1

00 01 11 10

0

1

a b

c

1★

11 1★

00 01 11 10

00

01

11

10

w x

y z

1★ 1 1★ 1★

1 1 1★

1

00 01 11 10

00

01

11

10

w x

y z

1★ 1 1★ 1★

1 1 1★

1
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Sometimes, after selecting all of the essential prime implicants,
there are two choices for covering the remaining 1’s, but only one of
these produces a minimum solution, as in Example 3.8.

f (a, b, c, d) � �m(0, 2, 4, 6, 7, 8, 9, 11, 12, 14)

The first map shows the function and the second shows all essential prime
implicants circled. In each case, one of the 1’s (as indicated with a star, ★)
can be covered by only that prime implicant. (That is obvious from the last
map, where the remaining two prime implicants are circled.)

3.2 Minimum Sum of Product Expressions Using the Karnaugh Map 125

EXAMPLE 3.8

00 01 11 10

00

01

11

10

a b

c d

1 1 1 1

1 1 1

1 1

1

00 01 11 10

00

01

11

10

a b

c d

1 1 1 1

1★ 1 1★

1★ 1★

1

00 01 11 10

00

01

11

10

a b

c d

1 1 1 1

1 1 1

1 1

1

Only one 1 (m8) is not covered by an essential prime implicant. It can be
covered in two ways, by a group of four (in brown) and a group of two
(tan). Clearly, the group of four provides a solution with one less literal,
namely,

f � a�d� � bd� � a�bc � ab�d � c�d�

When asking whether a 1 makes a group of four an essential prime
implicant on a four-variable map, we need find only two adjacent 0’s. If
there are fewer than two adjacent 0’s, this 1 must be either in a group of
eight or part of two or more smaller groups. Note that in Example 3.8, m2

and m14 have two adjacent 0’s, and thus each makes a prime implicant
essential. In contrast, m0, m4, m8, and m12 each have only one adjacent 0
and are each covered by two or three prime implicants.

We will now consider some examples with multiple minimum solu-
tions, starting with the three-variable function used to illustrate the defi-
nition of terminology in Section 2.2.3.
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x�yz� � x�yz � xy�z� � xy�z � xyz

A map of that function is shown on the left. The two essential prime impli-
cants are shown on the map on the right.

After finding the two essential prime implicants, m7 is still uncovered. The
following maps show the two solutions.

This example is one we call “don’t be greedy.”

At first glance, one might want to take the only group of four (circled in tan).
However, that term is not an essential prime implicant, as is obvious once
we circle all of the essential prime implicants and find that the four 1’s in the
center are covered. Thus, the minimum solution is

G � A�BC� � A�CD � ABC � AC�D

00 01 11 10

00

01

11

10

A B
C D

1

1

11 1

111

00 01 11 10

00

01

11

10

A B
C D

1★

1★

1 11★

1★11

00 01 11 10

0

1

x y

x� y � x y � � x z

z

1 1

1

1

1

x� y � x y � � y z

00 01 11 10

0

1

x y

z

1 1

1

1

1

00 01 11 10

0

1

x y

z

1 1

1

1

1

00 01 11 10

0

1

x y

z

1 1 1

1★1★
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g(w, x, y, z) � �m(2, 5, 6, 7, 9, 10, 11, 13, 15)

The function is mapped first, and the two essential prime implicants are
shown on the second map, giving

g � xz � wz � � � �

Although m2 looks rather isolated, it can indeed be covered by w�yz� (with
m6) or by x�yz� (with m10). After choosing the essential prime implicants, the
remaining three 1’s can each be covered by two different prime implicants.
Since three 1’s still need to be covered (after choosing the essential prime
implicants), and since all the remaining prime implicants are groups of two
and thus have three literals, we need at least two more of these prime
implicants. Indeed, there are three ways to cover the remaining 1’s with two
more prime implicants. Using the first criteria, we choose one of the prime
implicants that covers two new 1’s, w�yz�, as shown on the left-hand map.

00 01 11 10

00

01

11

10

w x

y z

1 1 1

1 1 1

111

00 01 11 10
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11
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w x

y z

1 1 1

1 1 1

1★11★
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y z

1 1 1
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EXAMPLE 3.11

Then, only m10 remains, and it can be covered either by wx�y or by x�yz�, as
shown on the center map. Similarly, we could have started with x�yz�, in
which case we could use w�xy to complete the cover, as on the right-hand
map. (We could also have chosen w�yz�, but that repeats one of the 
answers from before.) Thus, the three solutions are
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g � xz � wz � w�yz� � wx�y

g � xz � wz � w�yz� � x�yz�

g � xz � wz � x�yz� � w�xy

All three minimum solutions require four terms and 10 literals.

At this point, it is worth stating the obvious.

128 Chapter 3 The Karnaugh Map

EXAMPLE 3.12

00 01 11 10
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The four essential prime implicants are shown on the second map, leaving
three 1’s to be covered:

F � A�C�D� � AC�D � A�CD � ACD� � � � �

These squares are shaded on the right-hand map. The three other prime
implicants, all groups of four, are also shown on the right-hand map. Each
of these covers two of the remaining three 1’s (no two the same). Thus, any
two of B�D�, AB�, and B�C can be used to complete the minimum SOP
expression. The resulting three equally good answers are

F � A�C�D� � AC�D � A�CD � ACD� � B�D� � AB�

F � A�C�D� � AC�D � A�CD � ACD� � B�D� � B�C

F � A�C�D� � AC�D � A�CD � ACD� � AB� � B�C

COMMON MISTAKE:  If there are multiple solutions, all minimum
solutions must have the same number of terms and literals. If, for
example, you find a minimum solution with three terms and seven
literals, no solution with four terms is minimum, and no solution
with three terms and eight literals is minimum.
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3.2 Minimum Sum of Product Expressions Using the Karnaugh Map 129

EXAMPLE 3.13

Once again there are two essential prime implicants, as shown on the right-
hand map. The most isolated 1’s are m10 and m15. Each has only two adja-
cent 1’s. But all of the 1’s in groups of four have at least two adjacent 1’s; if
there are only two, then that minterm will make the prime implicant essen-
tial. (Each of the other 1’s in those groups of four has at least three adjacent
1’s.) The essential prime implicants give us

f � b�d� � bd � � � �

There are three 1’s not covered by the essential prime implicants. There is
no single term that will cover all of them. However, the two in the 01 col-
umn can be covered by either of two groups of four, as shown on the map
on the left (a�d� circled in brown, a�b in tan). And, there are two groups of
two that cover m9 (ac�d circled in brown, ab�c� in tan), shown on the map
to the right.

We can choose one term from the first pair and (independently) one from
the second pair. Thus, there are four solutions. We can write the solution as
shown, where we take one term from within each bracket

f � b�d� � bd � � � � � �ac�d
ab�c�

a�d�

a�b
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or we can write out all four expressions

f � b�d� � bd � a�d� � ac�d

� b�d� � bd � a�d� � ab�c�

� b�d� � bd � a�b � ac�d

� b�d� � bd � a�b � ab�c�

130 Chapter 3 The Karnaugh Map
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EXAMPLE 3.14

The four essential prime implicants are shown on the second map, leaving
three 1’s to be covered:

F � A�C�D� � AC�D � A�CD � ACD� � � � �

These squares are shaded on the third map. The three other prime impli-
cants, all groups of four, are also shown on the third map. Each of these
covers two of the remaining three 1’s (no two the same). Thus any two of
B�D�, AB�, and B�C can be used to complete the minimum sum of products
expression. The resulting three equally good answers are

F � A�C�D� � AC�D � A�CD � ACD� � B�D� � AB�

F � A�C�D� � AC�D � A�CD � ACD� � B�D� � B�C

F � A�C�D� � AC�D � A�CD � ACD� � AB� � B�C

Before doing additional (more complex) examples, we will intro-
duce a somewhat different method for finding minimum sum of products
expressions.

Map Method 2
1. Circle all of the prime implicants.

2. Select all essential prime implicants; they are easily identified by
finding 1’s that have only been circled once.

3. Then choose enough of the other prime implicants (as in
Method 1). Of course, these prime implicants have already been
identified in step 1.
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EXAMPLE 3.15
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All of the prime implicants have been circled on the center map. Note that
m0 has been circled three times and that several minterms have been
circled twice. However, m3 and m5 have only been circled once. Thus, the
prime implicants that cover them, A�B� and C�D are essential. On the third
map, we have shaded the part of the map covered by essential prime
implicants to highlight what remains to be covered. There are four 1’s, each
of which can be covered in two different ways, and five prime implicants not
used yet. No prime implicant covers more than two new 1’s; thus, we need
at least two more terms. Of the groups of four, only B�D� covers two new
1’s; B�C� covers only one. Having chosen the first group, we must use ABC
to cover the rest of the function, producing

F � A�B� � C�D � B�D� � ABC

Notice that this is the only set of four prime implicants (regardless of size)
that covers the function.
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G(A, B, C, D) � �m(0, 1, 3, 7, 8, 11, 12, 13, 15)

This is a case with more 1’s left uncovered after finding the essential prime
implicant. The first map shows all the prime implicants circled. The only 
essential prime implicant is YZ; there are five 1’s remaining to be covered.
Since all of the other prime implicants are groups of two, we need three
more prime implicants. These 1’s are organized in a chain, with each prime
implicant linked to one on either side. If we are looking for just one solution,
we should follow the guidelines from Method 1, choosing two terms that

EXAMPLE 3.16
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each cover new 1’s and then select a term to cover the remaining 1. One
such example is shown on the third map, starting with WXY� and X�Y�Z�. If
we wish to find all of the minimum solutions, one approach is to start at one
end of the chain (as shown in the second map). (We could have started at
the other end, with m13, and achieved the same results.) To cover m1, we
must either use W�X�Z, as shown in brown above, or W�X�Y� (as shown on
the maps below). Once we have chosen W�X�Z, we have no more freedom,
since the terms shown on the third map above are the only way to cover the
remaining 1’s in two additional terms. Thus, one solution is

F � YZ � W�X�Z � X�Y�Z� � WXY�

The next three maps show the solutions using W�X�Y� to cover m0.

132 Chapter 3 The Karnaugh Map

EXAMPLE 3.17
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After choosing W�X�Y�, there are now three 1’s to be covered. We can use
the same last two terms as before (left) or use WY�Z� to cover m8 (right two
maps). The other three solutions are thus

F � YZ � W�X�Y� � X�Y�Z� � WXY�

F � YZ � W�X�Y� � WY�Z� � WXY�

F � YZ � W�X�Y� � WY�Z� � WXZ

We will now look at some examples with no essential prime impli-
cants. A classic example of such a function is shown in Example 3.17. 
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3.2 Minimum Sum of Product Expressions Using the Karnaugh Map 133

There are eight 1’s; all prime implicants are groups of two. Thus, we need at
least four terms in a minimum solution. There is no obvious place to start;
thus, in the second map, we arbitrarily chose one of the terms, a�c�d�.
Following the guidelines of step 2, we should then choose a second term
that covers two new 1’s, in such a way as not to leave an isolated uncov-
ered 1. One such term is bc�d, as shown on the third map. Another possi-
bility would be b�cd� (the group in the last row). As we will see, that group
will also be used. Repeating that procedure, we get the cover on the left-
hand map below,

f � a�c�d� � bc�d � acd � b�cd�

Notice that if, after starting with a�c�d�, we chose one of the prime
implicants not included in this solution above, such as abd, shown on the
middle map, we leave an isolated uncovered 1 (which would require a third
term) plus three more 1’s (which would require two more terms). A solution
using those two terms would require five terms (obviously not minimum
since we found one with four). Another choice would be a term such as
a�b�d�, which covers only one new 1, leaving five 1’s uncovered. That, too,
would require at least five terms.

The other solution to this problem starts with a�b�d�, the only other
prime implicant to cover m0. Using the same process, we obtain the map on
the right and the expression

f � a�b�d� � a�bc� � abd � ab�c

G(A, B, C, D) � �m(0, 1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15)

All of the prime implicants are groups of four. Since there are 13 1’s, we
need at least four terms. The first map shows all of the prime implicants
circled; there are nine. There are no 1’s circled only once, and thus, there
are no essential prime implicants.
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EXAMPLE 3.18
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134 Chapter 3 The Karnaugh Map

As a starting point, we choose one of the minterms covered by only
two prime implicants, say m0. On the second map, we used C�D� to cover
it. Next, we found two additional prime implicants that cover four new 1’s
each, as shown on the third map. That leaves just m13 to be covered. As can
be seen on the fourth map (shown below), there are three different prime
implicants that can be used. Now, we have three of the minimum solutions.

F � C�D� � B�D � BC � �AB or AC� or AD�

If, instead of using C�D� to cover m0, we use B�C� (the only other prime
implicant that covers m0), as shown on the next map, we can find two other
groups of four that each cover four new 1’s and leave just m13 to be
covered. Once again, we have three different ways to complete the cover
(the same three terms as before).

Thus, there are six equally good solutions

F � � � � � �
where one group of terms is chosen from the first bracket and an additional
term from the second. We are sure that there are no better solutions, since
each uses the minimum number of prime implicants, four. Although it may
not be obvious without trying other combinations, there are no additional
minimum solutions.
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EXAMPLE 3.19
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This function has one essential prime implicant (a minterm) and ten other
1’s. All of the other prime implicants are groups of two. The second map
shows all 13 prime implicants. The prime implicants of this function are

a�b�c�d a�cd b�cd ac�d bc�d bcd� acd�

a�cd a�bd abc� abd� ab�c ab�d

Note that every 1 (other than m0) can be covered by two or three different
terms.

Since there are ten 1’s to be covered by groups of two, we know that
we need at least five terms, in addition to a�b�c�d�. The third map shows the
beginnings of an attempt to cover the function. Each term covers two new
1’s without leaving any isolated uncovered 1. (The 1 at the top could be
combined with m14.) The four 1’s that are left require three additional terms.
After trying several other groupings, we can see that it is not possible to
cover this function with less than seven terms. There are 32 different mini-
mum solutions to this problem. A few of the solutions are listed below. The
remainder are left as an exercise (Exercise 1p).

f � a�b�c�d� � a�cd � bc�d � ab�d � abc� � a�bc � acd�

� a�b�c�d� � a�cd � bc�d � ab�d � abd� � bcd� � ab�c

� a�b�c�d� � b�cd � a�bd � ac�d � abd� � acd� � bcd�

� a�b�c�d� � b�cd � abc� � bcd� � a�bd � ab�c � ab�d

3.3 DON’T CARES

Finding minimum solutions for functions with don’t cares does not
significantly change the methods we developed in the last section. We
need to modify slightly the definitions of an implicant and a prime 
implicant, and clarify the definition of an essential prime implicant.

[SP 2, 3, 4; EX 2, 3, 4]

A number of other examples are included in Solved Problems 1 and
2. Example 3.19 is one of the most complex four-variable problems,
requiring more terms than we might estimate at first. 
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An implicant is a rectangle of 1, 2, 4, 8, . . .  1’s or X’s (containing
no 0’s).

A prime implicant is an implicant not included in any one larger rec-
tangle. Thus, from the point of view of finding prime implicants, X’s
(don’t cares) are treated as 1’s.

An essential prime implicant is a prime implicant that covers at least
one 1 not covered by any other prime implicant (as always). Don’t
cares (X’s) do not make a prime implicant essential.

Now, we just apply either of the methods of the last section. When we are
done, some of the X’s may be included and some may not. But we don’t
care whether or not they are included in the function.

F(A, B, C, D) � �m(1, 7, 10, 11, 13) � �d(5, 8, 15)

136 Chapter 3 The Karnaugh Map

EXAMPLE 3.20
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We first mapped the function, entering a 1 for those minterms included in
the function and an X for the don’t cares. We found two essential prime
implicants, as shown on the center map. In each case, the 1’s with a star
cannot be covered by any other prime implicant. That left the two 1’s circled
in brown to cover the rest of the function. That is not an essential prime 
implicant, since each of the 1’s could be covered by another prime implicant
(as shown in tan on the third map). However, if we did not use AB�C, we
would need two additional terms, instead of one. Thus, the only minimum
solution is

F � BD � A�C�D � AB�C

and terms AB�D� and ACD are prime implicants not used in the minimum
solution. Note that if all of the don’t cares were made 1’s, we would need a
fourth term to cover m8, making

F � BD � A�C�D � AB�C � AB�D� or

F � BD � A�C�D � ACD � AB�D�

and that if all of the don’t cares were 0’s, the function would become

F � A�B�C�D � A�BCD � ABC�D � AB�C

In either case, the solution is much more complex then when we treated
those terms as don’t cares (and made two of them 1’s and the other a 0).
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EXAMPLE 3.21
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There are two essential prime implicants, as shown on the center map, x�z
and w�yz. The group of four don’t cares, w�x�, is a prime implicant (since it
is a rectangle of four 1’s or X’s) but it is not essential (since it does not cover
any 1’s not covered by some other prime implicant). Surely, a prime impli-
cant made up of all don’t cares would never be used, since that would add
a term to the sum without covering any additional 1’s. The three remaining
1’s require two groups of two and thus there are three equally good solu-
tions, each using four terms and 11 literals:

g1 � x�z � w�yz � w�y�z� � wxy�

g2 � x�z � w�yz � xy�z� � wxy�

g3 � x�z � w�yz � xy�z� � wy�z

An important thing to note about Example 3.21 is that the three
algebraic expressions are not all equal. The first treats the don’t care for
m0 as a 1, whereas the other two (which are equal to each other) treat it
as a 0. This will often happen with don’t cares. They must treat the spec-
ified part of the function (the 1’s and the 0’s) the same, but the don’t
cares may take on different values in the various solutions. The maps of
Map 3.15 show the three functions.

Map 3.15 The different solutions for Example 3.21.
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On the first map, we have shown the only essential prime implicant, c�d�,
and the other group of four that is used in all three solutions, ab. (This must
be used since the only other prime implicant that would cover m15 is bcd,
which requires one more literal and does not cover any 1’s that are not
covered by ab.) The three remaining 1’s require two terms, one of which
must be a group of two (to cover m3) and the other must be one of the
groups of four that cover m10. On the second map, we have shown two of
the solutions, those that utilize b�d� as the group of four. On the third map,
we have shown the third solution, utilizing ad�. Thus, we have

g1 � c�d� � ab � b�d� � a�cd

g2 � c�d� � ab � b�d� � a�b�c

g3 � c�d� � ab � ad� � a�b�c

We can now ask if these solutions are equal to each other. We can 
either map all three solutions as we did for Example 3.21, or we can make
a table of the behavior of the don’t cares—one column for each don’t care
and one row for each solution.

138 Chapter 3 The Karnaugh Map

EXAMPLE 3.22
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From the table, it is clear that g2 � g3, but neither is equal to g1. A more
complex example is found in the solved problems.

Don’t cares give us another option for solving map problems for
functions with or without don’t cares. At any point in the process of
using either Map Method 1 or 2, we can replace all 1’s covered by the
terms already chosen by don’t cares. That highlights the 1’s remaining to
be covered. We then need to choose enough terms to cover the remaining

m7 m9

g1 1 0
g2 0 0
g3 0 0
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3.3 Don’t Cares 139

1’s. This works because the 1’s already covered can be used again (as
part of a term covering some new 1’s), but need not be.

F(A, B, C, D) � �m(0, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15) EXAMPLE 3.23
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We first found the two essential prime implicants, A�B and CD. On the sec-
ond map, we converted all of the 1’s covered to don’t cares. Finally, we can
cover the remaining 1’s with AC and B�C�D�, producing

F � A�B � CD � AC � B�C�D�

Replacing covered minterms by don’t cares accomplishes the same thing
as the shading that we did in Examples 3.14 and 3.15; it highlights the 1’s
that remain to be covered.

The essential prime implicants, xy� and x�y, are circled on the first map. The
1’s covered by them are changed to don’t cares on the second map. It is
now clear that the two 1’s in the 10 column can be covered by either w�y or
w�x and that the other 1 can be covered by wx�z� or wy�z�.

[SP 5, 6; EX 5, 6]
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EXAMPLE 3.24

Thus, the four minimum solutions are 

xy� � x�y � � � � � �wx�z�

wy�z�

w�y
x�y
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3.4 PRODUCT OF SUMS

Finding a minimum product of sums expression requires no new theory.
The following approach is the simplest:

1. Map the complement of the function. (If there is already a map for
the function, replace all 0’s by 1’s, all 1’s by 0’s, and leave X’s
unchanged.)

2. Find the minimum sum of products expression for the complement
of the function (using the techniques of the last two sections).

3. Use DeMorgan’s theorem (P11) to complement that expression,
producing a product of sums expression.

Another approach, which we will not pursue here, is to define the
dual of prime implicants (referred to as prime implicates) and develop a
new method.

f(a, b, c, d) � �m(0, 1, 4, 5, 10, 11, 14)

Since all minterms must be either minterms of f or of f�, then f� must be the
sum of all of the other minterms, that is

f�(a, b, c, d) � �m(2, 3, 6, 7, 8, 9, 12, 13, 15)

Maps of both f and f� are shown below:

We did not need to map f, unless we wanted both the sum of products
expression and the product of sums expression. Once we mapped f, we did
not need to write out all the minterms of f�; we could have just replaced the 1’s
by 0’s and 0’s by 1’s. Also, instead of mapping f�, we could look for rectangles
of 0’s on the map of f. This function is rather straightforward. The maps for
the minimum sum of product expressions for both f and f� are shown next:
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EXAMPLE 3.25
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3.4 Product of Sums 141

There is one minimum solution for f and there are two equally good solu-
tions for the sum of products for f�:

f � a�c� � ab�c � acd� f� � ac� � a�c � abd

f� � ac� � a�c � bcd

We can then complement the solutions for f� to get the two minimum prod-
uct of sums solutions for f:

f � (a� � c)(a � c�)(a� � b� � d�)

f � (a� � c)(a � c�)(b� � c� � d�)

The minimum sum of products solution has three terms and eight literals;
the minimum product of sums solutions have three terms and seven literals.
(There is no set pattern; sometimes the sum of products solution has fewer
terms or literals, sometimes the product of sums does, and sometimes they
have the same number of terms and literals.)

Find all of the minimum sum of products and all minimum product of sums
solutions for

g(w, x, y, z) � �m(1, 3, 4, 6, 11) � �d(0, 8, 10, 12, 13)

We first find the minimum sum of products expression by mapping g.
However, before complicating the map by circling prime implicants, we also
map g� (top of next page). Note that the X’s are the same on both maps.
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EXAMPLE 3.26
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For g, the only essential prime implicant, w�xz� is shown on the center map.
The 1’s covered by it are made don’t cares on the right-hand map, and the
remaining useful prime implicants are circled. We have seen similar exam-
ples before, where we have three 1’s to be covered in groups of two. There
are three equally good solutions:

g � w�xz� � � �
For g�, there are three essential prime implicants, as shown on the center
map. Once all of the 1’s covered by them have been made don’t cares,
there is only one 1 left; it can be covered in two ways as shown on the right
map:

g� � x�z� � xz � wy� � � �
g � (x � z)(x� � z�)(w� � y)� �

Note that in this example, the sum of products solutions each require only
three terms (with nine literals), whereas the product of sums solutions each
require four terms (with eight literals).

Finally, we want to determine which, if any, of the five solutions are
equal. The complication (compared to this same question in the last sec-
tion) is that when we treat a don’t care as a 1 for g�, that means that we are
treating it as a 0 of g. Labeling the three sum of product solutions as g1, g2,
and g3, and the two product of sums solutions as g4 and g5, we produce the
following table:

0 8 10 12 13

g1 1 0 0 0 0
g2 0 0 0 0 0
g3 0 0 1 0 0
g�4 1 1 1 1 1
g4 0 0 0 0 0
g�5 1 1 1 1 1
g5 0 0 0 0 0

(w� � x�)
(w� � z)

wx
wz�

w�x�y� � x�yz
w�x�z � x�yz
w�x�z � wx�y

142 Chapter 3 The Karnaugh Map

00 01 11 10

00

01

11

10

w x

y z

X XX

11

X1 1

11

X

00 01 11 10

00

01

11

10

w x

y z

X XX

1 1★

X1★ 1

11★

X

00 01 11 10

00

01

11

10

w x

y z

X

X X

X

X

X1X

X

X X

g�

mar91647_c03b_129_161.qxd  11/5/08  11:47 AM  Page 142
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[SP 7, 8; EX 7, 8]

The product of sum solutions treat all of the don’t cares as 1’s of g� since
each is circled by the essential prime implicants of g�. (Thus, they are 0’s
of g.) We then note that the three solutions that are equal are

g2 � w�xz� � w�x�z � x�yz

g4 � (x � z)(x� � z�)(w� � y)(w� � x�)

g5 � (x � z)(x� � z�)(w� � y)(w� � z)

3.5 FIVE- AND SIX-VARIABLE MAPS

A five-variable map consists of 25 � 32 squares. Although there are sev-
eral arrangements that have been used, we prefer to look at it as two layers
of 16 squares each. The top layer (on the left below) contains the squares
for the first 16 minterms (for which the first variable, A, is 0) and the
bottom layer contains the remaining 16 squares, as pictured in Map 3.16:

Each square in the bottom layer corresponds to the minterm numbered
16 more than the square above it. Product terms appear as rectangular
solids of 1, 2, 4, 8, 16, . . . 1’s or X’s. Squares directly above and below
each other are adjacent. 

m2 � m5 � A�B�C�DE� � AB�C�DE� � B�C�DE�

m11 � m27 � A�BC�DE � ABC�DE � BC�DE

m5 � m7 � m21 � m23 � B�CE

These terms are circled on the following map.

00 01 11 10

00

01

11

10

B C

D E

51 13 9

40 12

A � 0

8

73 15 11

62 14 10

2117 29 25

2016 28

A � 1

24

2319 31 27

2218 30 26

Map 3.16 A five-variable map.

EXAMPLE 3.27
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In a similar manner, six-variable maps are drawn as four layers 
of 16-square maps, where the first two variables determine the layer 
and the other variables specify the square within the layer. The layout,
with minterm numbers shown, is given in Map 3.17. Note that the layers
are ordered in the same way as the rows and the columns, that is 00, 01,
11, 10.

In this section, we will concentrate on five-variable maps,
although we will also do an example of six-variable maps at the end. The
techniques are the same as for four-variable maps; the only thing new is
the need to visualize the rectangular solids. Rather than drawing the
maps to look like three dimensions, we will draw them side by side. The
function, F, is mapped in Map 3.18. 

F(A, B, C, D, E) � �m(4, 5, 6, 7, 9, 11, 13, 15, 16, 18, 27, 28, 31)

00 01 11 10

00

01

11

10

B C

D E

1

A � 0

1 1

1

1

A � 1

1 1

1
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00 01 11 10

00

01

11

10

C D
E F

51 13 9

40 12

A B � 00

8

73 15 11

62 14 10

A B � 01

2117 29 25

2016 28 24

2319 31 27

2218 30 26

A B � 11

5349 61 57

5248 60 56

5551 63 59

5450 62 58

A B � 10

3733 45 41

3632 44 40

3935 47 43

3834 46 42

Map 3.17 A six-variable map.
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As always, we first look for the essential prime implicants. A good
starting point is to find 1’s on one layer for which there is a 0 in the cor-
responding square on an adjoining layer. Prime implicants that cover that
1 are contained completely on that layer (and thus, we really only have a
four-variable map problem). In this example, m4 meets this criteria (since
there is a 0 in square 20 below it). Thus, the only prime implicants cov-
ering m4 must be on the first layer. Indeed, A�B�C is an essential prime
implicant. (Note that the A� comes from the fact that this group is con-
tained completely on the A � 0 layer of the map and the B�C from the
fact that this group is in the second column.) Actually, all four 1’s in this
term have no counterpart on the other layer and m6 would also make this
prime implicant essential. (The other two 1’s in that term are part of
another prime implicant, as well.) We also note that m9, m16, m18, and m28

have 0’s in the corresponding square on the other layer and make a prime
implicant essential. Although m14 has a 0 beneath it (m30), it does not
make a prime implicant on the A� layer essential. Thus, Map 3.19 shows
each of these circled, highlighting the essential prime implicants that are
contained on one layer.
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Map 3.18 A five-variable problem.
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Map 3.19 Essential prime implicants on one layer.
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The complete solution is thus

F � A�B�C � A�BE � AB�C�E� � ABCD�E� � BDE

Groups of eight 1’s are not uncommon in five-variable problems, as
illustrated in Example 3.28.

G(A, B, C, D, E ) � �m(1, 3, 8, 9, 11, 12, 14, 17, 19, 20, 22, 24, 25, 27)

The first map shows a plot of that function. On the second map, to the
right, we have circled the two essential prime implicants that we found by
considering 1’s on one layer with 0’s in the corresponding square on the
other layer, A�BCE�and AB�CE�. The group of eight 1’s, C�E (also an
essential prime implicant), is shown in brown on the third map (where the
essential prime implicants found on the second map are shown as don’t
cares). Groups of eight have three literals missing (leaving only two). At this
point, only two 1’s are left uncovered; that requires the essential prime
implicant, BC�D�, shown on the fourth map in tan.
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1★ 1★

1★ 1★
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Map 3.20 A prime implicant covering 1’s on both layers.

EXAMPLE 3.28

So far, we have

F � A�B�C � A�BE � AB�C�E� � ABCD�E� � � � �

The two 1’s remaining uncovered do have counterparts on the other layer.
However, the only prime implicant that covers them is BDE, as shown on
Map 3.20 in brown. It, too, is an essential prime implicant. (Note that
prime implicants that include 1’s from both layers do not have the vari-
able A in them. Such prime implicants must, of course, have the same
number of 1’s on each layer; otherwise, they would not be rectangular.)
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3.5 Five- and Six-Variable Maps 147

The solution is thus

G � A�BCE� � AB�CE� � C�E � BC�D�

Note that there is only one other prime implicant in this function, A�BD�E�; it
covers no 1’s not already covered.

The next problem is shown on the maps below. Once again, we start by
looking for 1’s that are on one layer, with a corresponding 0 on the other
layer. Although there are several such 1’s on the A � 0 layer, only m10

makes a prime implicant essential. Similarly, on the A � 1 layer, m30 is cov-
ered by an essential prime implicant. These terms, A�C�E� and ABCD, are
shown on the second map. The 1’s covered are shown as don’t cares on
the next map.
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Three other essential prime implicants include 1’s from both layers of the map;
they are CD�E, BCE and B�C�DE�, as shown on the left-hand map below.
These were found by looking for isolated 1’s, such as m21, m15, and m18.

EXAMPLE 3.29
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Finally, the remaining two 1’s (m4 and m12) can be covered in two ways, as
shown on the right-hand map above, A�CD� and A�D�E�. Thus, the two 
solutions are 

F � A�C�E� � ABCD � CD�E � BCE � B�C�DE� � A�CD�

F � A�C�E� � ABCD � CD�E � BCE � B�C�DE� � A�D�E�

H(A, B, C, D, E ) � �m(1, 8, 9, 12, 13, 14, 16, 18, 19, 22, 23, 24, 30)
� �d(2, 3, 5, 6, 7, 17, 25, 26) 

A map of H is shown below on the left with the only essential prime impli-
cant, B�D (a group of eight, including four 1’s and four don’t cares), circled.
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Next, we choose CDE�, since otherwise separate terms would be needed to
cover m14 and m30. We also chose A�BD� since it covers four new 1’s. Fur-
thermore, if that were not used, a group of two (A�BCE�) would be needed
to cover m12. That leaves us with three 1’s (m1, m16, and m24) to be covered.
On the maps below, we have replaced all covered 1’s by don’t cares (X’s) to
highlight the remaining 1’s. No term that covers m1 also covers either of the
other terms. However, m16 and m24 can be covered with one term in either
of two ways (AC�E� or AC�D�) as shown on the first map below, and m1 can

EXAMPLE 3.30
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3.5 Five- and Six-Variable Maps 149

be covered by four different groups of four, as shown on the second map
(A�D�E, A�B�E, B�C�E, or C�D�E ), yielding the eight solutions shown.

H � B�D � CDE� � A�BD� � � � � � �
Finally, we will look at one example of a six-variable function.

G(A, B, C, D, E, F ) � �m(1, 3, 6, 8, 9, 13, 14, 17, 19, 24, 25, 29, 32,

33, 34, 35, 38, 40, 46, 49, 51, 53, 55, 56, 61, 63)

The map is drawn horizontally, with the first two variables determining the
16-square layer (numbered, of course 00, 01, 11, 10).

A�D�E
A�B�E
B�C�E
C�D�E

AC�E�

AC�D�

EXAMPLE 3.31
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The first map shows three of the essential prime implicants. The only one that
is confined to one layer is on the third layer, ABDF. The 1’s in the upper right-
hand corner of each layer form another group of four (without the first two vari-
ables), CD�E�F�. The brown squares form a group of eight, C�D�F. The next
map shows 1’s covered by the first three prime implicants as don’t cares.

The other two essential prime implicants are A�CE�F and B�DEF�. (Remem-
ber that the top and bottom layers are adjacent.) Finally, m32 and m34 (on the
fourth layer) remain uncovered; they are covered by the term, AB�C�D�.
(Each of them could have been covered by a group of two, but that would
take two terms.) Thus, the minimum expression is 

G � ABDF � CD�E�F� � C�D�F � A�CE�F � B�DEF� � AB�C�D�

[SP 9, 10; EX 9, 10]
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3.6 MULTIPLE OUTPUT PROBLEMS

Many real problems involve designing a system with more than one out-
put. If, for example, we had a problem with three inputs, A, B, and C and
two outputs, F and G, we could treat this as two separate problems (as
shown on the left in Figure 3.1). We would then map each of the func-
tions, and find minimum solutions. However, if we treated this as a single
system with three inputs and two outputs (as shown on the right), we
may be able to economize by sharing gates.

150 Chapter 3 The Karnaugh Map

A

B F

C

A

B G

Two Separate Systems

C

A

B

C G

F

One System

Figure 3.1 Implementation of two functions.

In this section, we will illustrate the process of obtaining minimum two-
level solutions using AND and OR gates (sum of products solutions),
assuming all variables are available both uncomplemented and comple-
mented.* We could convert each of these solutions into NAND gate cir-
cuits (using the same number of gates and gate inputs). We could also
find product of sums solutions (by minimizing the complement of each
of the functions and then using DeMorgan’s theorem).

We will illustrate this by first considering three very simple
examples.

F(A, B, C) � �m(0, 2, 6, 7) G(A, B, C) � �m(1, 3, 6, 7)

If we map each of these and solve them separately, 

we obtain

F � A�C� � AB G � A�C � AB

Looking at the maps, we see that the same term (AB) is circled on both. Thus,
we can build the circuit on the left, rather than the two circuits on the right.
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1

A B

C
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G
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EXAMPLE 3.32

*We will use as the definition for minimum a circuit containing the minimum number of
gates, and among those with the same number of gates, the minimum number of gate inputs.
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3.6 Multiple Output Problems 151

Obviously, the version on the left requires only five gates, whereas the one
on the right uses six.

This example is the simplest. Each of the minimum sum of products
expressions contains the same term. It would take no special techniques
to recognize this and achieve the savings.

Even when the two solutions do not have a common prime impli-
cant, we can share as illustrated in the following example:

F(A, B, C) � �m(0, 1, 6) G(A, B, C) � �m(2, 3, 6)

In the top maps, we considered each function separately and obtained

F � A�B� � ABC� G � A�B � BC�
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EXAMPLE 3.33
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This solution requires six gates (four ANDs and two ORs) with 13 inputs.
However, as can be seen from the second pair of maps, we can share the
term ABC� and obtain

F � A�B� � ABC� G � A�B � ABC�

(To emphasize the sharing, we have shown the shared term in brown, and
will do that in other examples that follow.) As can be seen from the circuit
below, this only requires five gates with 11 inputs.

This example illustrates that a shared term in a minimum solution
need not be a prime implicant. (In Example 3.33, ABC� is a prime impli-
cant of F but not of G; in Example 3.34, we will use a term that is not a
prime implicant of either function.)

F(A, B, C) � �m(2, 3, 7) G(A, B, C) � �m(4, 5, 7)

In the first pair of maps, we solved this as two problems. Using essential
prime implicants of each function, we obtained

F � A�B � BC G � AB� � AC
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EXAMPLE 3.34
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3.6 Multiple Output Problems 153

However, as can be seen in the second set of maps, we can share the term
ABC, even though it is not a prime implicant of either function, and once
again get a solution that requires only five gates:

F � A�B � ABC G � AB� � ABC

The method for solving this type of problem is to begin by looking
at the 1’s of each function that are 0’s of the other function. They must be
covered by prime implicants of that function. Only the shared terms need
not be prime implicants. In this last example, we chose A�B for F since
m2 makes that an essential prime implicant of F and we chose AB� for G
since m4 makes that an essential prime implicant of G. That left just 
one 1 uncovered in each function—the same 1—which we covered with
ABC. We will now look at some more complex examples.

F(A, B, C, D) � �m(4, 5, 6, 8, 12, 13)

G(A, B, C, D) � �m(0, 2, 5, 6, 7, 13, 14, 15)

The maps of these functions are shown below. In them, we have shown in
brown the 1’s that are included in one function and not the other.

We then circled each of those prime implicants that was made essential by
a brown 1. The only brown 1 that was not circled in F is m4 because that
can be covered by two prime implicants. Even though one of the terms
would have fewer literals, we must wait. Next, we will use A�BD� for F. Since
m6 was covered by an essential prime implicant of G, we are no longer look-
ing for a term to share. Thus, m6 will be covered in F by the prime implicant,
A�BD�. As shown on the maps below, that leaves m4 and m12 to be covered
in both functions, allowing us to share the term BC�D, as shown on the
following maps circled in brown.
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EXAMPLE 3.35
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leaving 

F � AC�D� � A�BD� � BC�D

G � A�B�D� � BC � BC�D

for a total of seven gates with 20 gate inputs. Notice that if we had mini-
mized the functions individually, we would have used two separate terms for
the third term in each expression, resulting in

F � AC�D� � A�BD� � BC�

G � A�B�D� � BC � BD

for a total of eight gates with 21 gate inputs. Clearly, the shared circuit costs
less.

The shared version of the circuit is shown below.*
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154 Chapter 3 The Karnaugh Map

*All of these gates can be changed to NAND gates, even though the output of BC�D goes to
two places. There are still two bubbles (NOTs) in each path.
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3.6 Multiple Output Problems 155

F(A, B, C, D) � �m(0, 2, 3, 4, 6, 7, 10, 11)

G(A, B, C, D) � �m(0, 4, 8, 9, 10, 11, 12, 13)

Once again the maps are shown with the unshared 1’s in brown and the
prime implicants made essential by one of those 1’s circled.

Each of the functions can be solved individually with two more groups of
four, producing

F � A�C � A�D� � B�C G � AC� � C�D� � AB�

That would require eight gates with 18 gate inputs. However, sharing the
groups of two as shown on the next set of maps reduces the number of
gates to six and the number of gate inputs to 16. If these functions were
implemented with NAND gates, the individual solutions would require a total
of three packages, whereas the shared solution would require only two.
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EXAMPLE 3.36
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leaving the equations and the resulting AND/OR circuit.

F � A�C � A�C�D� � AB�C G � AC� � A�C�D� � AB�C

F(W, X, Y, Z ) � �m(2, 3, 7, 9, 10, 11, 13)

G(W, X, Y, Z ) � �m(1, 5, 7, 9, 13, 14, 15)

On the maps below, the 1’s that are not shared are shown in brown and the
essential prime implicants that cover these 1’s are circled.

F � X�Y � � � �

G � Y�Z � WXY � � � �

Now, there are three 1’s left in F. Since m9 and m13 have been covered in G
by an essential prime implicant, no sharing is possible for these terms in F.
Thus, WY�Z, a prime implicant of F, is used in the minimum cover. Finally,
there is one uncovered 1 in each function, m7; it can be covered by a shared
term, producing the solution
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156 Chapter 3 The Karnaugh Map

EXAMPLE 3.37
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3.6 Multiple Output Problems 157

F � X�Y � WY�Z � W�XYZ

G � Y�Z � WXY � W�XYZ

This requires seven gates and 20 inputs, compared to the solution we
obtain by considering these as separate problems

F � X�Y � WY�Z � W�YZ

G � Y�Z � WXY � XZ

which requires eight gates with 21 inputs.

The same techniques can be applied to problems with three or more
outputs. 

First, we show the solution obtained if we considered them as three sepa-
rate problems.
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F � AB� � BD � B�C

G � C � A�BD

H � BC � AB�C� � (ABD or AC�D)

This solution requires 10 gates and 25 gate inputs. (Note that the term C in
function G does not require an AND gate.)

EXAMPLE 3.38
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The technique of first finding 1’s that are only minterms of one of the
functions does not get us started for this example, since each of the 1’s is a
minterm of at least two of the functions. The starting point, instead, is to
choose C for function G. The product term with only one literal does not
require an AND gate and uses only one input to the OR gate. Any other
solution, say sharing B�C with F and BC with H, requires at least two inputs
to the OR gate. Once we have made that choice, however, we must then
choose B�C for F and BC for H because of the 1’s shown in brown on the
following maps. There is no longer any sharing possible for those 1’s and
they make those prime implicants essential in F and H. 

158 Chapter 3 The Karnaugh Map
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EXAMPLE 3.39

The term AB�C� (circled in tan) was chosen next for H since it is an essen-
tial prime implicant of H and it can be shared (that is, all of the 1’s in that
term are also 1’s of F, the only place where sharing is possible). AB�C� is
also used for F, since it covers two 1’s and we would otherwise require an
additional term, AB�, to cover m8. In a similar fashion, the term A�BD is used
for G (it is the only way to cover m5) and can then be shared with F. Finally,
we can finish covering F and H with ABD (a prime implicant of H, one of the
choices for covering H when we treated that as a separate problem). It
would be used also for F, rather than using another AND gate to create the
prime implicant BD. The solution then becomes

F � B�C � AB�C� � A�BD � ABD

G � C � A�BD

H � BC � AB�C� � ABD

which requires only eight gates and 22 gate inputs (a savings of two gates
and three-gate inputs).

F(A, B, C, D) � �m(0, 2, 6, 10, 11, 14, 15)

G(A, B, C, D) � �m(0, 3, 6, 7, 8, 9, 12, 13, 14, 15)

H(A, B, C, D) � �m(0, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15)

The map on the next page shows these functions; the only 1 that is not
shared and makes a prime implicant essential is m9 in G. That prime
implicant, AC�, is shown circled. 
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3.6 Multiple Output Problems 159

Next, we note that AC is an essential prime implicant of F (because of m11

and m15) and of H (because of m10). Furthermore, neither m10 nor m11 are 
1’s of G. Thus, that term is used for both F and H. Next, we chose BC� for
H and BC for G; each covers four new 1’s, some of which can no longer be
shared (since the 1’s that correspond to other functions have already been
covered). 

At this point, we can see that A�B�C�D� can be used to cover m0 in all three
functions; otherwise, we would need three different three-literal terms.
A�CD can be used for G and H, and, finally, CD� is used for F, producing the
following map and algebraic functions. 
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F � AC � A�B�C�D� � CD�

G � AC� � BC � A�B�C�D� � A�CD

H � AC � BC� � A�B�C�D� � A�CD

This solution requires 10 gates with 28 inputs, compared to 13 gates and
35 inputs if these were implemented separately.

Finally, we will consider an example of a system with don’t cares:

F(A, B, C, D) � �m(2, 3, 4, 6, 9, 11, 12) � �d(0, 1, 14, 15)

G(A, B, C, D) � �m(2, 6, 10, 11, 12) � �d(0, 1, 14, 15)

A map of the functions, with the only prime implicant made essential by a 1
that is not shared circled, B�D, is shown below.

Since m11 has now been covered in F, we must use the essential prime
implicant of G, AC, to cover m11 there. Also, as shown on the next maps,
ABD� is used for G, since that is an essential prime implicant of G, and the
whole term can be shared. (We will share it in the best solution.)
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EXAMPLE 3.40
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3.6 Multiple Output Problems 161

Since we need the term ABD� for G, one approach is to use it for F also.
(That only costs a gate input to the OR gate.) If we do that, we could cover
the rest of F with A�D� and the rest of G with CD�, yielding the map and
equations that follow.

F � B�D � ABD� � A�D�

G � AC � ABD� � CD�

That solution uses seven gates and 17 inputs. Another solution using the
same number of gates but one more input shares A�CD�. That completes
G, and then the cover of F is completed with BD�. The maps and equations
are thus:

F � B�D � A�CD� � BD�

G � AC � ABD� � A�CD�

That, too, requires seven gates, but using a three-input AND gate instead of
a two-input one, bringing the total number of inputs to 18. Thus, this solu-
tion is not minimum.
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[SP 11; EX 11, 12]
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3.7 SOLVED PROBLEMS

1. Plot the following functions on a Karnaugh map:

a. f (a, b, c) � �m(0, 1, 3, 6)

b. g(w, x, y, z) � �m(3, 4, 7, 10, 11, 14) � �d(2, 13, 15)

c. F � BD� � ABC � AD � A�B�C

00 01 11 10

0

1

a b
c

11

1 1

00 01 11 10

00

01

11

10

w x

y z

X 1

1 1X

1

X

11

00 01 11 10

00

01

11

10

A B

C D

1

1

1

1 1

1 1

1

1 1

a. b. c.

162 Chapter 3 The Karnaugh Map

c. g(a, b, c, d) � �m(0, 6, 8, 9, 10, 11, 13, 14, 15)
(2 solutions)

d. f(a, b, c, d) � �m(0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)
(2 solutions)

e. f(a, b, c, d) � �m(0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 15)

f. g(a, b, c, d) � �m(0, 2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15)
(4 solutions)
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a. All of the prime implicants are essential, as shown on the map
to the right.

2. For each of the following, find all minimum sum of products
expressions. (If there is more than one solution, the number of
solutions is given in parentheses.)

a. G(X, Y, Z) � �m(1, 2, 3, 4, 6, 7)

b. f(w, x, y, z) � �m(2, 5, 7, 8, 10, 12, 13, 15)
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b.

The essential prime implicants are shown on the second map,
leaving two 1’s to be covered. The third map shows that each
can be covered by two different prime implicants, but the
brown group shown is the only one that covers both with one
term. We would require both tan terms. The minimum is

f � xz � x�yz� � wy�z�

c.
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The three essential prime implicants are shown on the center
map. The only 1 left to be covered can be covered by either of
two groups of four, as shown circled in brown on the third
map, producing

g � b�c�d� � bcd� � ad � ab�

g � b�c�d� � bcd� � ad � ac
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There are no essential prime implicants. We need one group of
two to cover m0; all other 1’s can be covered by groups of four.
Once we have chosen a�c�d� to cover m0 (center map),
we would choose ab� to cover m8. (Otherwise, we must use
b�c�d�, a group of two, to cover that 1. Not only is that more
literals, but it covers nothing else new; ab� covered three addi-
tional uncovered 1’s.) Once that has been done, the other two
prime implicants become obvious, giving

f � a�c�d� � ab� � bc � bd

164 Chapter 3 The Karnaugh Map

In a similar fashion (on the next map), once we choose b�c�d�
(the other prime implicant that covers m0), a�b is the appropri-
ate choice to cover m4:
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The only way to cover the remaining 1’s in two terms is with
ac and ad, as shown on the second map, leaving

f � b�c�d� � a�b � ac � ad

e. There are two essential prime implicants, as indicated on the
first map, leaving six 1’s to be covered. The essential prime
implicants are shaded on the second map.
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1
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No prime implicant covers more than two of the remaining
1’s; thus, three more terms are needed. The three groups of
four (two literal terms) are circled in brown on the second
map. We can cover four new 1’s only using a�d� and ab�. Note
that m7 and m15 are uncovered; they require a group of two,
bcd. The only minimum solution, requiring five terms and 11
literals,

f � c�d� � b�c� � a�d� � ab� � bcd

is shown on the third map. There is another solution that uses
five terms, but it requires 12 literals, namely,

f � c�d� � b�c� � b�d� � a�bc � acd

Obviously, it is not minimum (since it has an extra literal); it
only used one of the groups of four instead of two.

f. On the second map, the two essential prime implicants have
been highlighted (b�d� � bd), leaving four 1’s uncovered. On
the third map, we have shown the 1’s covered by these prime
implicants shaded.
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166 Chapter 3 The Karnaugh Map

We can cover m3 and m11 by either cd or b�c (shown with
brown lines), and we can cover m12 and m14 by either ab or ad�
(shown in gray lines). Thus, there are four solutions:

f � b�d� � bd � cd � ab

f � b�d� � bd � cd � ad�

f � b�d� � bd � b�c � ab

f � b�d� � bd � b�c � ad�

The term ac is also a prime implicant. However, it is not useful
in a minimum solution since it leaves two isolated 1’s to be
covered, resulting in a five-term solution.

3. For each of the following functions, find the minimum SOP
expression(s). There are two solutions for z.
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All of the 1’s of w are also 1’s of the other functions. For x, we
added one 1; for y, we added a second 1; and for z, we added
two more. Only essential prime implicants are used for w (and
the group of four is not needed).

w = ac�d� + bc�d + acd + bcd�
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For x, the last three terms of w are still essential prime
implicants, as is b�c�d�. As can be seen on the next map,
that leaves only m12 uncovered.  

That leaves a choice between ab and ac�d�. Obviously, the
former has one less literal, leaving the minimum solution:

x = bc�d + acd + bcd� + b�c�d� + ab

For y, there are only two essential prime implicants, leaving
six 1’s to cover. 

No term covers more than two of them. We must then use the
group of four, giving

y = acd + bcd� + ab + b�c�d� + a�c�d

Finally, for z, we need 4 three-literal terms to cover the 1’s in
columns 01 and 10.
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We can either use the solution for w and add a�b� (as shown on
the left) or use the other 4 three-literal terms along with ab (as
shown on the right).

f = ac�d� + bc�d + acd + bcd� + a�b�

= ab + b�c�d� + a�c�d + b�cd + a�cd�
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168 Chapter 3 The Karnaugh Map

4. For the following functions,

i. List all prime implicants, indicating which are essential.

ii. Show the minimum sum of products expression(s).

a. G(A, B, C, D) � �m(0, 1, 4, 5, 7, 8, 10, 13, 14, 15)
(3 solutions)

b. f (w, x, y, z) � �m(2, 3, 4, 5, 6, 7, 9, 10, 11, 13)

c. h(a, b, c, d) � �m(1, 2, 3, 4, 8, 9, 10, 12, 13, 14, 15)
(2 solutions)

a. The first map shows all of the prime implicants circled; the 1’s
that have been covered only once are indicated with a star.

Essential prime implicants: A�C�, BD

Other prime implicants: B�C�D�, AB�D�, ACD�, ABC
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On the second map, the essential prime implicants have been
shaded, highlighting the three 1’s remaining to be covered. We
need two terms to cover them, at least one of which must
cover two of these remaining 1’s. The three solutions are thus

F � A�C� � BD � ACD� � B�C�D�

F � A�C� � BD � AB�D� � ACD�

F � A�C� � BD � AB�D� � ABC

b.

The second map shows all of the prime implicants circled and
the 1’s that have been covered only once are indicated with a
star:

Essential prime implicants: w�x, x�y

Other prime implicants: w�y, xy�z, wy�z, wx�z

With the essential prime implicants shaded on the third map, it
is clear that the only minimum solution is

f � w�x � x�y � wy�z
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c. All of the prime implicants are circled on the first map, with
the essential prime implicants shown in brown.
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a.
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Essential prime implicants: ab, bc�d�

Other prime implicants: ac�, ad�, b�c�d, b�cd�, a�b�c, a�b�d

Once we chose the essential prime implicants, there are six 
1’s left to be covered. We can only cover two at a time. There
are two groups of four 1’s, either of which can be used. (We
cannot use both, since that would only cover three 1’s.) The
two solutions are shown on the maps below.

h � ab � bc�d� � ac� � a�b�d � b�cd�

h � ab � bc�d� � ad� � b�c�d � a�b�c

5. For each of the following, find all minimum sum of products
expressions. (If there is more than one solution, the number of
solutions is given in parentheses.)

a. f (a, b, c, d ) � �m(0, 2, 3, 7, 8, 9, 13, 15) � �d(1, 12)

b. F(W, X, Y, Z ) � �m(1, 3, 5, 6, 7, 13, 14) � �d(8, 10, 12)
(2 solutions)

c. f (a, b, c, d ) � �m(3, 8, 10, 13, 15)
� �d(0, 2, 5, 7, 11, 12, 14) (8 solutions)
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The first map shows the one essential prime implicant, a�b�.
The remaining 1’s can be covered by two additional terms, as
shown on the second map. In this example, all don’t cares are
treated as 1’s. The resulting solution is

f � a�b� � ac� � bcd

Although there are other prime implicants, such as b�c�, abd,
and a�cd, three prime implicants would be needed in addition
to a�b� if any of them were chosen.

b.

The second map shows all of the prime implicants circled. It 
is clear that only W�Z is essential, after which three 1’s remain
uncovered. The prime implicant XYZ� is the only one that can
cover two of these and thus appears in both minimum solu-
tions. That leaves a choice of two terms to cover the remaining
one—either WXY� (tan) or XY�Z (gray). Note that they treat the
don’t care at m12 differently, and, thus, although the two solu-
tions shown below both satisfy the requirements of the prob-
lem, they are not equal:

F � W�Z � XYZ� � WXY�

F � W�Z � XYZ� � XY�Z
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Also, the group of four (WZ�) is not used; that would require a
four-term solution.

c. There are no essential prime implicants in this problem.
The left map shows the only two prime implicants that cover
m8; they also cover m10. We must choose one of these. The
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next map shows the only prime implicants that cover m13;
both also cover m15. We must choose one of these also.
Finally, the last map shows the only two prime implicants
that cover m3.

So, our final solution takes one from each group, giving us a
total of eight solutions:

f � � � � � � � � �
or, written out

f � ad� � ab � cd

f � ad� � ab � b�c

f � ad� � bd � cd

f � ad� � bd � b�c

f � b�d� � ab � cd

f � b�d� � ab � b�c

f � b�d� � bd � cd

f � b�d� � bd � b�c

6. For each of the following, find all minimum sum of products
expressions. Label the solutions f1, f2, . . . and indicate which
solutions are equal.

a. F(A, B, C, D) � �m(4, 6, 9, 10, 11, 12, 13, 14)
� �d(2, 5, 7, 8) (3 solutions)

b. f (a, b, c, d) � �m(0, 1, 4, 6, 10, 14)
� �d(5, 7, 8, 9, 11, 12, 15) (13 solutions)

cd
b�c

ab
bd

ad�
b�d�
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a.
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On the first map, we have shown the one essential prime
implicant, AB�. Neither A�B nor CD� are essential, since the
1’s covered by them can each be covered by some other prime
implicant. (That there is a don’t care that can only be covered
by one of these terms does not make that term essential.) With
five 1’s left to be covered, we need two additional terms. The
first that stands out is BD�, circled on the middle map, since it
covers four of the remaining 1’s. If that is chosen, it leaves
only m13, which can be covered by BC� or AC�. However, the
third map shows still another cover, utilizing BC� and CD�.
Thus, the three solutions are

F1 � AB� � BD� � BC�

F2 � AB� � BD� � AC�

F3 � AB� � BC� � CD�

Notice that none of the solutions utilize the remaining prime
implicant, A�B.

Next is the question of whether or not these three solu-
tions are equal. The answer can be determined by examining
how the don’t cares are treated by each of the functions. The
following table shows that:

In all functions, m7 is treated as 0 (that is, it is not included in
any prime implicant used) and m8 as 1 (since it is included in
the essential prime implicant, AB�); but the first two columns
show that no two functions treat m2 and m5 the same. Thus,
none of these is equal to any other.

2 5 7 8

F1 0 1 0 1
F2 0 0 0 1
F3 1 1 0 1
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174 Chapter 3 The Karnaugh Map

b. There are no essential prime implicants. The best place to start
is with a 1 that can only be covered in two ways; in this prob-
lem there is only one, m1. Any solution must contain either the
term a�c� (as shown on the first four maps) or the term b�c� (as
shown on the remaining two maps). There is no reason to use
both, since b�c� does not cover any 1’s that are not already
covered by a�c�. The first map shows a�c�. Note that there are
three 1’s left, requiring two more terms. At least one of these
terms must cover two of the remaining 1’s.
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The second map shows two ways of covering m6 and m14, bc
and bd�. In either case, only one 1 is left to be covered. The
third map shows the previously covered 1’s as don’t cares and
three ways of covering the last 1, m10. Thus, we have as the
first six solutions

f1 � a�c� � bc � ab�

f2 � a�c� � bc � ac
f3 � a�c� � bc � ad�

f4 � a�c� � bd� � ab�

f5 � a�c� � bd� � ac
f6 � a�c� � bd� � ad�

Next, we consider how we may cover both m10 and m14 with
one term (in addition to those already found). That provides
two more solutions shown on the left map below. (Other solu-
tions that use these terms have already been listed.)
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f7 � a�c� � a�b � ad�

f8 � a�c� � a�b � ac

We next consider the solutions that use b�c�. The middle map
shows two of these, utilizing a�b. The last map shows the final
three, utilizing bd�, instead; it has the same three last terms as
in the first series. Thus, we have

f9 � b�c� � a�b � ad�

f10 � b�c� � a�b � ac

f11 � b�c� � bd� � ab�

f12 � b�c� � bd� � ac

f13 � b�c� � bd� � ad�

Finally, the table below shows how each of the functions treats
the don’t cares:

Comparing the rows, the only two pairs that are equal are

f1 � f10 and f2 � f8.

7. For each of the following functions, find all of the minimum
sum of products expressions and all of the minimum product of
sums expressions:

a. f (w, x, y, z) � �m(2, 3, 5, 7, 10, 13, 14, 15)
(1 SOP, 1 POS solution)

b. f (a, b, c, d) � �m(3, 4, 9, 13, 14, 15) � �d(2, 5, 10, 12)
(1 SOP, 2 POS solutions)

c. f (a, b, c, d) � �m(4, 6, 11, 12, 13) � �d(3, 5, 7, 9, 10, 15)
(2 SOP and 8 POS solutions)

5 7 8 9 11 12 15

f1 1 1 1 1 1 0 1
f2 1 1 0 0 1 0 1
f3 1 1 1 0 0 1 1
f4 1 0 1 1 1 1 0
f5 1 0 0 0 1 1 1
f6 1 0 1 0 0 1 0
f7 1 1 1 0 0 1 0
f8 1 1 0 0 1 0 1
f9 1 1 1 1 0 1 0
f10 1 1 1 1 1 0 1
f11 0 0 1 1 1 1 0
f12 0 0 1 1 1 1 1
f13 0 0 1 1 0 1 0
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a. The map of f is shown below.

Although there is only one essential prime implicant, there is
only one way to complete the cover with two more terms,
namely,

f � xz � w�x�y � wyz�

By replacing all the 1’s with 0’s and 0’s with 1’s, or by plot-
ting all the minterms not in f, we get the map for f �
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There are four essential prime implicants, covering all of f �,
giving

f � � x�y� � y�z� � w�xz� � wx�z

Using DeMorgan’s theorem, we get

f � (x � y)(y � z)(w � x� � z)(w� � x � z�)

In this case, the sum of products solution requires fewer terms.

b. As indicated on the map below, all of the 1’s are covered by
essential prime implicants, producing the minimum sum of
products expression.
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f1 � bc� � ab � a�b�c � ac�d

Now, replacing all of the 1’s by 0’s and 0’s by 1’s and leaving
the X’s unchanged, we get the map for f �.
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There is one essential prime implicant, ab�c. Although m6 and
m7 can each be covered in two ways, only a�bc covers them
both (and neither of the other terms cover additional 1’s). The
middle map shows each of these terms circled, leaving three
1’s to be covered. There is a group of four, covering two of 
the 1’s (as shown on the third map), b�d�. That leaves just m1,
which can be covered in two ways, as shown on the third map
in brown and tan lines. Thus, the two minimum sum of prod-
uct expressions for f � are

f2� � ab�c � a�bc � b�d� � a�c�d

f3� � ab�c � a�bc � b�d� � a�b�c�

producing the two minimum product of sums solutions

f2 � (a� � b � c�)(a � b� � c�)(b � d)(a � c � d�)

f3 � (a� � b � c�)(a � b� � c�)(b � d)(a � b � c)

c. The map for f is shown next (on the left). There are two essen-
tial prime implicants, leaving only m11 to be covered. There
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Thus the two sum of products solutions are 

f1 � a�b � bc� � ad

f2 � a�b � bc� � cd

We then mapped f � and found no essential prime implicants.

We chose as a starting point m8. It can be covered either by the
four corners, b�d� (as shown on the second map) or by b�c�, as
shown on the third map. Whichever solution we choose, we
need a group of two to cover m14 (as shown in tan); neither
covers any other 1. After choosing one of these (and b�d�),
all that remains to be covered is m1. The three brown lines
show the covers. (Notice that one of those is b�c�.) If we don’t
choose b�d�, then we must choose b�c� to cover m0 and a�b� to
cover m2 (since the only other prime implicant that covers m2

is b�d�, and we have already found all of the solutions using
that term). Thus, the eight solutions for f � are

f3� � b�d� � abc � a�b�

f4� � b�d� � abc � a�d

f5� � b�d� � abc � b�c�

are two groups of four that can be used, as indicated on the
right-hand map.
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f6� � b�d� � acd� � a�b�

f7� � b�d� � acd� � a�d

f8� � b�d� � acd� � b�c�

f9� � b�c� � abc � a�b�

f10� � b�c� � acd� � a�b�

The product of sums solutions for f are thus

f3 � (b � d )(a� � b� � c�)(a � b)

f4 � (b � d )(a� � b� � c�)(a � d�)

f5 � (b � d )(a� � b� � c�)(b � c)

f6 � (b � d )(a� � c� � d)(a � b)

f7 � (b � d )(a� � c� � d)(a � d�)

f8 � (b � d )(a� � c�� d)(b � c)

f9 � (b � c)(a� � b� � c�)(a � b)

f10 � (b � c)(a� � c� � d)(a � b)

8. Label the solutions of each part of problem 7 as f1, f2, . . . , and
indicate which solutions are equal.

a. Since this problem does not involve don’t cares, all solutions
are equal.

b.

All of the solutions are unique. The sum of products solution
treats m2 as a 1; the product of sums treats it as a 0. The two
product of sums solutions treat m5 differently.

c.

For one of the sum of products expressions to be equal to 
one of the product of sums expressions, the pattern must be

3 5 7 9 10 15

f1 0 1 1 1 0 1
f2 1 1 1 0 0 1
f3� 1 0 0 0 1 1
f4� 1 1 1 0 1 1
f5� 0 0 0 1 1 1
f6� 1 0 0 0 1 0
f7� 1 1 1 0 1 0
f8� 0 0 0 1 1 0
f9� 1 0 0 1 0 1
f10� 1 0 0 1 1 0

2 5 10 12

f1 1 1 0 1
f2� 1 1 1 0
f2 0 0 0 1
f3� 1 0 1 0
f3 0 1 0 1
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9. Find the minimum sum of products solution(s) for each of the
following:

a. F(A, B, C, D, E ) � �m(0, 5, 7, 9, 11, 13, 15, 18, 19, 22, 23,
25, 27, 28, 29, 31)

b. F(A, B, C, D, E ) � �m(0, 2, 4, 7, 8, 10, 15, 17, 20, 21, 23,
25, 26, 27, 29, 31)

c. G(V, W, X, Y, Z ) � �m(0, 1, 4, 5, 6, 7, 10, 11, 14, 15, 21, 24,
25, 26, 27) (3 solutions)

d. G(V, W, X, Y, Z ) � �m(0, 1, 5, 6, 7, 8, 9, 14, 17, 20, 21, 22,
23, 25, 28, 29, 30) (3 solutions)

e. H(A, B, C, D, E ) � �m(1, 3, 10, 14, 21, 26, 28, 30)
� �d(5, 12, 17, 29)

a. We begin by looking at 1’s for which the corresponding
position on the other layer is 0. On the first map, all of the
essential prime implicants that are totally contained on one
layer of the map, A�B�C�D�E�, A�CE, AB�D, and ABCD�, are
circled.

The 1’s covered by these essential prime implicants are shown
as don’t cares on the second map. The remaining 1’s are all
part of the group of eight, BE, shown on the second map.
Thus, the minimum solution is

F � A�B�C�D�E� � A�CE � AB�D � ABCD� � BE

b. On the left-hand map below, the essential prime implicants are
circled. Note that A�C�E� is on the top layer, AD�E is on the
lower layer, and CDE is split between the layers.
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opposite (since we are showing the values of the don’t cares
for f� for the POS forms). Thus, f1 � f6, and f2 � f8, that is

a�b � bc� � ad � (b � d )(a� � c� � d)(a � b)

a�b � bc� � cd � (b � d )(a� � c� � d)(b � c)
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That leaves four 1’s to be covered, using two groups of two as
shown on the right map. The minimum is thus

F � A�C�E� � AD�E � CDE � B�CD�E� � ABC�D

c. The map, with essential prime implicants circled, is shown on
the left. After choosing V�W�Y� � VWX� � W�XY�Z, there are
still six 1’s uncovered. On the right-hand map, the minterms
covered by essential prime implicants are shown as don’t
cares. Each of the 1’s can be covered by two different groups
of four, which are shown on the map on the right.
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One group that covers four new 1’s must be used (or both of
them may be used), giving the following solutions:

G � V�W�Y� � VWX� � W�XY�Z � V�XY � V�WY

G � V�W�Y� � VWX� � W�XY�Z � V�XY � WX�Y

G � V�W�Y� � VWX� � W�XY�Z � V�WY � V�W�X

d. On the first map, the two essential prime implicants, V�X�Y�
and XYZ�, are circled. The term W�XZ is circled on the second
map; if it is not used, W�XY would be needed to cover m7 and
m23. But then, three more terms would be needed to cover the
function.
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182 Chapter 3 The Karnaugh Map

The three minimum solutions are thus

G � V�X�Y� � XYZ� � W�XZ � VY�Z � VXY�

G � V�X�Y� � XYZ� � W�XZ � VY�Z � VXZ�

G � V�X�Y� � XYZ� � W�XZ � VXY� � X�Y�Z

e. The two essential prime implicants, A�B�C�E and BDE�, are
circled on the first map. Each of the remaining 1’s can be cov-
ered in two ways, by a group of two contained completely on
one layer or by the group of four shown.
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The following maps show the covered terms as don’t cares and
three ways of covering the remaining 1’s. On the left map, the
brown term, VY�Z, is used with either of the other terms, VXY�
or VXZ�. On the right map, VXY� and X�Y�Z are used.
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Thus, the minimum solution is 

H � A�B�C�E � BDE� � BCE� � B�D�E

10. Find the four minimum sum of products expressions for the
following six-variable function

G(A, B, C, D, E, F) � �m(0, 4, 6, 8, 9, 11, 12, 13, 15, 16,
20, 22, 24, 25, 27, 28, 29, 31, 32, 34, 36, 38, 40, 41, 42,
43, 45, 47, 48, 49, 54, 56, 57, 59, 61, 63)

On the first map, the three essential prime implicants,
ABD�E�, CF, and C�DEF�, are circled in black. The first 
is on just the third layer. The other two include 1’s on all four
layers (and thus do not involve the variable A and B). Also cir-
cled (in brown) is a group of eight, A�E�F�, that is not essential
(since each of the 1’s is part of some other prime implicant). If
that is not used, however, at least two terms would be needed
to cover those 1’s.
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On the next map, the 1’s that have been covered are shown as
don’t cares. The remaining 1’s are all on the bottom (10) layer.
The four corners, AB�D�F�, covers four of the five remaining
1’s. Then, either AB�C�F� (on the bottom layer) or B�C�E�F�
or B�C�DF� (both half on the top layer and half on the bottom)
can be used to cover the remaining 1’s. These terms are
circled below.
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184 Chapter 3 The Karnaugh Map

H � ABD�E� � CF � C�DEF� � A�E�F� � AB�D�F�
� B�C�DF�

H � ABD�E� � CF � C�DEF� � A�E�F� � AB�C�F�
� AB�CD�

11. Find a minimum two-level circuit (corresponding to sum of
products expressions) using AND gates and one OR gate per
function for each of the following sets of functions:

a. f (a, b, c, d ) � �m(0, 1, 2, 3, 5, 7, 8, 10, 11, 13)

g(a, b, c, d ) � �m(0, 2, 5, 8, 10, 11, 13, 15)
(7 gates, 19 inputs)

b. f (a, b, c, d ) � �m(1, 2, 4, 5, 6, 9, 11, 13, 15)

g(a, b, c, d ) � �m(0, 2, 4, 8, 9, 11, 12, 13, 14, 15)
(8 gates, 23 inputs)

c. F(W, X, Y, Z ) � �m(2, 3, 6, 7, 8, 9, 13)

G(W, X, Y, Z ) � �m(2, 3, 6, 7, 9, 10, 13, 14)

H(W, X, Y, Z ) � �m(0, 1, 4, 5, 9, 10, 13, 14)
(8 gates, 22 inputs)

d. f (a, b, c, d ) � �m(0, 2, 3, 8, 9, 10, 11, 12, 13, 15)

g(a, b, c, d ) � �m(3, 5, 7, 12, 13, 15)

h(a, b, c, d ) � �m(0, 2, 3, 4, 6, 8, 10, 14)
(10 gates, 28 inputs)

e. f (a, b, c, d ) � �m(0, 3, 5, 7) � �d(10, 11, 12, 13, 14, 15)

g(a, b, c, d ) � �m(0, 5, 6, 7, 8) � �d(10, 11, 12, 13, 14, 15)
(7 gates, 19 inputs)

Also, as shown on the map below, AB�C�F� could be used
with AB�CD�.

Thus, we have the following four solutions

H � ABD�E� � CF � C�DEF� � A�E�F� � AB�D�F�
� AB�C�F�

H � ABD�E� � CF � C�DEF� � A�E�F� � AB�D�F�
� B�C�E�F�
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No other 1 (of either f or g) that is not shared makes a prime
implicant essential (m1 or m3 in f or m15 in g). Two other terms,
b�d� and bc�d, are essential prime implicants of both f and g
and have been thus chosen in the maps below.

a. The maps below show the prime implicant a�d in f, that
covers a 1 not part of the other function.
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Although the term ab�c could be shared, another term would
be needed for g (either abd or acd ). This would require seven
gates and 20 gate inputs (one input too many). But, if acd is
used for g, we could then complete covering both functions
using b�c for f as shown on the maps below.
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186 Chapter 3 The Karnaugh Map

Next, we note that ad is an essential prime implicant of both
functions, producing the following maps:
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Unless we choose c�d� to cover the remaining three 1’s in the
first row of g, we will need an extra term. Once we have done
that, we see that the last 1 (m2) of g can be covered by the
minterm and shared with f. That leaves just two 1’s of f that
can be covered with the term a�bd�. The functions and the
maps are shown next:
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Thus,

f � a�d � b�d� � bc�d � b�c

g � b�d� � bc�d � acd

requiring seven gates and 19 inputs.

b. Scanning each function for 1’s that are not part of the other
function, we find m1, m5, and m6 in f and m0, m8, m12, and m14

in g. The only ones that make a prime implicant essential are
indicated on the map below.
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c. When minimizing three functions, we still look for 1’s that are
only included in one of the functions and that make a prime
implicant essential. In this problem, the only ones that satisfy
these conditions are m8 in F and m0 and m4 in H, as shown on
the map below.

Next, notice that W�Y is an essential prime implicant of both
F and G. Once that is chosen, the term WY�Z covers the
remaining 1 of F and two 1’s in G and H. (That term would be
used for both F and G in any case since it is an essential prime
implicant of both and is shareable. It is used for H since the
remaining 1’s in the prime implicant Y�Z are already covered.)
Finally, WYZ�, an essential prime implicant of H, finishes the
cover of G and H. The maps and functions below show the
final solution, utilizing eight gates and 22 inputs.
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f � c�d � ad � a�b�cd� � a�bd�

g � ab � ad � c�d� � a�b�cd�

for a total of eight gates and 23 inputs.
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188 Chapter 3 The Karnaugh Map

F � WX�Y� � W�Y � WY�Z

G � W�Y � WY�Z � WYZ�

H � W�Y� � WY�Z � WYZ�

d. On the maps below, the essential prime implicants that cover
1’s not part of any other function are circled. In f, m9 and m11

can be covered with any of three prime implicants.
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Next, we note that m8 can only be covered by b�d� in h and
that b�d� is also an essential prime implicant of f. That leaves
only m3 uncovered in h; by using the minterm for that, it can
be shared with both f and g. (Otherwise, a new term would be
required in each of those functions.) The resulting maps are
shown below.
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The only uncovered 1 in g is m12. By using abc� for both 
that and for f, we can cover the three remaining 1’s in f with
ad, yielding the maps and equations below.
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f � b�d� � a�b�cd � abc� � ad

g � bd � a�b�cd � abc�

h � a�d� � cd� � b�d� � a�b�cd

e. This example includes a number of don’t cares, but that does
not change the process significantly. There are two essential
prime implicants, cd in f and bc in g, that cover 1’s that cannot
be shared. In addition, a�b�c�d� must be used in f since it is the
only prime implicant that covers m0. (If a minterm is a prime
implicant, we have no choice but to use it.) The following
maps show these terms circled.
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190 Chapter 3 The Karnaugh Map

Next, we use bd to cover m5 in both functions, and complete
the cover of f. The obvious choice is to use b�c�d� for the
remaining 1’s of g, producing the following maps and equa-
tions:
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f � cd � a�b�c�d� � bd

g � bc � bd � b�c�d�

But, there is another solution, as illustrated below. By using
a�b�c�d� to cover m0 in g (we already needed that term for f ),
we can cover the remaining 1 in g with a group of four, ad�,
producing the solution

f � cd � a�b�c�d� � bd

g � bc � bd � a�b�c�d� � ad�

as shown on the following maps. Both solutions require seven
gates and 19 inputs.
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3.8 EXERCISES
1. Plot the following functions on the Karnaugh map:

a. f(a, b, c) � �m(1, 2, 3, 4, 6)
★ b. g(w, x, y, z) � �m(1, 3, 5, 6, 7, 13, 14) � �d(8, 10, 12)

c. F � WX�Y�Z � W�XYZ � W�X�Y�Z� � W�XY�Z � WXYZ
★ d. g � a�c � a�bd� � bc�d � ab�d � ab�cd�

e. h � x � yz� � x�z

2. For each of the following, find all minimum sum of products
expressions. (If there is more than one solution, the number of
solutions is given in parentheses.)

a. f (a, b, c) � �m(1, 2, 3, 6, 7)
★ b. g(w, x, y) � �m(0, 1, 5, 6, 7) (2 solutions)

c. h(a, b, c) � �m(0, 1, 2, 5, 6, 7) (2 solutions)
d. f (a, b, c, d ) � �m(1, 2, 3, 5, 6, 7, 8, 11, 13, 15)

★ e. G(W, X, Y, Z ) � �m(0, 2, 5, 7, 8, 10, 12, 13)
f. h(a, b, c, d ) � �m(2, 4, 5, 6, 7, 8, 10, 12, 13, 15)

(2 solutions)
g. f (a, b, c, d ) � �m(1, 3, 4, 5, 6, 11, 12, 13, 14, 15)

(2 solutions)
h. g(w, x, y, z) � �m(2, 3, 6, 7, 8, 10, 11, 12, 13, 15)

(2 solutions)
★ i. h(p, q, r, s) � �m(0, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15)

(3 solutions)
j. F(W, X, Y, Z ) � �m(0, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15)

(4 solutions)
k. f (w, x, y, z) � �m(0, 1, 2, 4, 5, 6, 9, 10, 11, 13, 14, 15)

(2 solutions)
l. g(a, b, c, d ) � �m(0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15)

★ m. H(W, X, Y, Z ) � �m(0, 2, 3, 5, 7, 8, 10, 12, 13)
(4 solutions)
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192 Chapter 3 The Karnaugh Map

★ n. f (a, b, c, d ) � �m(0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)
(6 solutions)

o. g(w, x, y, z) � �m(0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15)
(6 solutions)

★ p. f (a, b, c, d ) � �m(0, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14)
(32 solutions)

3. For the following functions,

i. List all prime implicants, indicating which are essential.

ii. Show the minimum sum of products expression(s).

a. f (a, b, c, d ) � �m(0, 3, 4, 5, 8, 11, 12, 13, 14, 15)
★ b. g(w, x, y, z) � �m(0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15)

4. Map each of the following functions and find the minimum sum of
products expression:

a. F � AD � AB � A�CD� � B�CD � A�BC�D�
★ b. g � w�yz � xy�z � wy � wxy�z� � wz � xyz�

5. For each of the following, find all minimum sum of products
expressions. (If there is more than one solution, the number of
solutions is given in parentheses.) Label the solutions f1, f2, . . . .

a. f (w, x, y, z) � �m(1, 3, 6, 8, 11, 14) � �d(2, 4, 5, 13, 15)
(3 solutions)

b. f (a, b, c, d ) � �m(0, 3, 6, 9, 11, 13, 14) � �d(5, 7, 10, 12)
★ c. f (a, b, c, d ) � �m(0, 2, 3, 5, 7, 8, 9, 10, 11) � �d(4, 15)

(3 solutions)

d. f (w, x, y, z) � �m(0, 2, 4, 5, 10, 12, 15) � �d(8, 14)
(2 solutions)

e. f (a, b, c, d ) � �m(5, 7, 9, 11, 13, 14) � �d(2, 6, 10, 12, 15)
(4 solutions)

★ f. f (a, b, c, d ) � �m(0, 2, 4, 5, 6, 7, 8, 9, 10, 14) � �d(3, 13)
(3 solutions)

g. f (w, x, y, z) � �m(1, 2, 5, 10, 12) � �d(0, 3, 4, 8, 13, 14, 15)
(7 solutions)

6. For each of the functions of problem 5, indicate which solutions
are equal.

7. For each of the following functions, find all of the minimum sum
of products expressions and all of the minimum product of sums
expressions:

★ a. f (A, B, C, D) � �m(1, 4, 5, 6, 7, 9, 11, 13, 15)

b. f (W, X, Y, Z ) � �m(2, 4, 5, 6, 7, 10, 11, 15)
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c. f (A, B, C, D) � �m(1, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15)
(1 SOP and 2 POS solutions)

★ d. f(a, b, c, d ) � �m(0, 2, 4, 6, 7, 9, 11, 12, 13, 14, 15)
(2 SOP and 1 POS solutions)

e. f (w, x, y, z) � �m(0, 4, 6, 9, 10, 11, 14) � �d(1, 3, 5, 7)

f. f (a, b, c, d ) � �m(0, 1, 2, 5, 7, 9) � �d(6, 8, 11, 13, 14, 15)
(4 SOP and 2 POS solutions)

g. f (w, x, y, z) � �m(4, 6, 9, 10, 11, 13) � �d(2, 12, 15)
(2 SOP and 2 POS solutions)

h. f(a, b, c, d) � �m(0, 1, 4, 6, 10, 14) � �d(5, 7, 8, 9, 11, 12, 15)
(13 SOP and 3 POS solutions)

i. f (w, x, y, z) � �m(1, 3, 7, 11, 13, 14) � �d(0, 2, 5, 8, 10, 12, 15)
(6 SOP and 1 POS solutions)

j. f (a, b, c, d ) � �m(0, 1, 6, 15) � �d(3, 5, 7, 11, 14)
(1 SOP and 2 POS solutions)

8. Label the solutions of each part of problem 7 as f1, f2, . . . and
indicate which solutions are equal.

9. For each of the following five-variable functions, find all minimum
sum of products expressions. (If there is more than one solution,
the number of solutions is given in parentheses.)

a. F(A, B, C, D, E ) � �m(0, 1, 5, 7, 8, 9, 10, 11, 13, 15, 18, 20,
21, 23, 26, 28, 29, 31)

b. G(A, B, C, D, E ) � �m(0, 1, 2, 4, 5, 6, 10, 13, 14, 18, 21, 22,
24, 26, 29, 30)

★ c. H(A, B, C, D, E) � �m(5, 8, 12, 13, 15, 17, 19, 21, 23, 24, 28, 31)

d. F(V, W, X, Y, Z ) � �m(2, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16,
17, 18, 21, 24, 25, 29, 30, 31)

e. G(V, W, X, Y, Z ) � �m(0, 1, 4, 5, 8, 9, 10, 15, 16, 18, 19, 20,
24, 26, 28, 31)

★ f. H(V, W, X, Y, Z ) � �m(0, 1, 2, 3, 5, 7, 10, 11, 14, 15, 16, 18,
24, 25, 28, 29, 31) (2 solutions)

g. F(A, B, C, D, E ) � �m(0, 4, 6, 8, 12, 13, 14, 15, 16, 17, 18,
21, 24, 25, 26, 28, 29, 31) (6 solutions)

h. G(A, B, C, D, E ) � �m(0, 3, 5, 7 12, 13, 14, 15, 19, 20, 21,
22, 23, 25, 26, 29, 30) (3 solutions)

★ i. H(A, B, C, D, E ) � �m(0, 1, 5, 6, 7, 8, 9, 14, 17, 20, 21, 22,
23, 25, 28, 29, 30) (3 solutions)

j. F(V, W, X, Y, Z ) � �m(0, 4, 5, 7, 10, 11, 14, 15, 16, 18, 20,
21, 23, 24, 25, 26, 29, 31) (4 solutions)

k. G(V, W, X, Y, Z ) � �m(0, 2, 5, 6, 8, 10, 11, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 24, 26, 29, 31)

(3 solutions)
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194 Chapter 3 The Karnaugh Map

l. H(V, W, X, Y, Z ) � �m(0, 1, 2, 3, 5, 8, 9, 10, 13, 17, 18, 19,
20, 21, 26, 28, 29)

(3 solutions)

m. F(A, B, C, D, E ) � �m(1, 2, 5, 8, 9, 10, 12, 13, 14, 15, 16, 18,
21, 22, 23, 24, 26, 29, 30, 31)

(18 solutions)
★ n. G(V, W, X, Y, Z ) � �m(0, 1, 5, 7, 8, 13, 24, 25, 29, 31)

� �d(9, 15, 16, 17, 23, 26, 27, 30)
(2 solutions)

o. H(A, B, C, D, E ) � �m(0, 4, 12, 15, 27, 29, 30) � �d(1, 5, 9,
10, 14, 16, 20, 28, 31)

(4 solutions) 

p. F(A, B, C, D, E ) � �m(8, 9, 11, 14, 28, 30) � d(0, 3, 4, 6, 7,
12, 13, 15, 20, 22, 27, 29, 31)

(8 solutions) 

10. For each of the following six-variable functions, find all minimum
sum of products expressions. (The number of terms and literals,
and, if there is more than one solution, the number of solutions is
given in parentheses.)

a. G(A, B, C, D, E, F ) � �m(4, 5, 6, 7, 8, 10, 13, 15, 18, 20, 21,
22, 23, 26, 29, 30, 31, 33, 36, 37, 38,
39, 40, 42, 49, 52, 53, 54, 55, 60, 61)

(6 terms, 21 literals)
★ b. G(A, B, C, D, E, F ) � �m(2, 3, 6, 7, 8, 12, 14, 17, 19, 21, 23,

25, 27, 28, 29, 30, 32, 33, 34, 35, 40, 44,
46, 49, 51, 53, 55, 57, 59, 61, 62, 63)

(8 terms, 30 literals)

c. G(A, B, C, D, E, F ) � �m(0, 1, 2, 4, 5, 6, 7, 9, 13, 15, 17, 19,
21, 23, 26, 27, 29, 30, 31, 33, 37, 39,
40, 42, 44, 45, 46, 47, 49, 53, 55, 57,
59, 60, 61, 62, 63)

(8 terms, 28 literals, 2 solutions)

11. Find a minimum two-level circuit (corresponding to sum of
products expressions) using AND and one OR gate per function for
each of the following sets of functions.

★ a. f (a, b, c, d ) � �m(1, 3, 5, 8, 9, 10, 13, 14)

g(a, b, c, d ) � �m(4, 5, 6, 7, 10, 13, 14) (7 gates, 21 inputs)

b. f (a, b, c, d ) � �m(0, 1, 2, 3, 4, 5, 8, 10, 13)

g(a, b, c, d ) � �m(0, 1, 2, 3, 8, 9, 10, 11, 13)
(6 gates, 16 inputs)

c. f (a, b, c, d ) � �m(5, 8, 9, 12, 13, 14)

g(a, b, c, d ) � �m(1, 3, 5, 8, 9, 10)
(3 solutions, 8 gates, 25 inputs)
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d. f (a, b, c, d ) � �m(1, 3, 4, 5, 10, 11, 12, 14, 15)

g(a, b, c, d ) � �m(0, 1, 2, 8, 10, 11, 12, 15)
(9 gates, 28 inputs)

★ e. F(W, X, Y, Z ) � �m(1, 5, 7, 8, 10, 11, 12, 14, 15)

G(W, X, Y, Z ) � �m(0, 1, 4, 6, 7, 8, 12) (8 gates, 23 inputs)

f. F(W, X, Y, Z ) � �m(0, 2, 3, 7, 8, 9, 13, 15)

G(W, X, Y, Z ) � �m(0, 2, 8, 9, 10, 12, 13, 14)
(2 solutions, 8 gates, 23 inputs)

g. f (a, b, c, d ) � �m(1, 3, 5, 7, 8, 9, 10)

g(a, b, c, d ) � �m(0, 2, 4, 5, 6, 8, 10, 11, 12)

h(a, b, c, d ) � �m(1, 2, 3, 5, 7, 10, 12, 13, 14, 15)
(2 solutions, 12 gates, 33 inputs)

★ h. f (a, b, c, d ) � �m(0, 3, 4, 5, 7, 8, 12, 13, 15)

g(a, b, c, d ) � �m(1, 5, 7, 8, 9, 10, 11, 13, 14, 15)

h(a, b, c, d ) � �m(1, 2, 4, 5, 7, 10, 13, 14, 15)
(2 solutions, 11 gates, 33 inputs)

i. f (a, b, c, d ) � �m(0, 2, 3, 4, 6, 7, 9, 11, 13)

g(a, b, c, d ) � �m(2, 3, 5, 6, 7, 8, 9, 10, 13)

h(a, b, c, d ) � �m(0, 4, 8, 9, 10, 13, 15)
(2 solutions for f and g, 10 gates, 32 inputs)

★ j. f (a, c, b, d ) � �m(0, 1, 2, 3, 4, 9) � �d(10, 11, 12, 13, 14, 15)

g(a, c, b, d ) � �m(1, 2, 6, 9) � �d(10, 11, 12, 13, 14, 15)
(3 solutions for f, 6 gates, 15 inputs)

k. f (a, c, b, d ) � �m(5, 6, 11) � �d(0, 1, 2, 4, 8)

g(a, c, b, d ) � �m(6, 9, 11, 12, 14) � �d(0, 1, 2, 4, 8)
(2 solutions for g, 7 gates, 18 inputs)

12. In each of the following sets, the functions have been minimized
individually. Find a minimum two-level circuit (corresponding to
sum of products expressions) using AND and one OR gate per
function for each.

a. F � B�D� � CD� � AB�C

G � BC � ACD (6 gates, 15 inputs)
★ b. F � A�B�C�D � BC � ACD � AC�D�

G � A�B�C�D� � A�BC � BCD�

H � B�C�D� � BCD � AC� � AD
(2 solutions for H, 10 gates, 35 inputs)

c. f � a�b� � a�d � b�c�d�

g � b�c�d� � bd � acd � abc

h � a�d� � a�b � bc�d � b�c�d� (10 gates, 31 inputs)
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196 Chapter 3 The Karnaugh Map

3.9 CHAPTER 3 TEST (100 MINUTES, OR
TWO 50-MINUTE TESTS)

1. Map each of the following functions (be sure to label the maps):

a. f (x, y, z) � �m(1, 2, 7) � �d(4, 5)

b. g � a�c � ab�c�d � a�bd � abc�

Circle each of the terms.

2. Find the minimum sum of products expression for each of the
following functions (that is, circle the terms on the map and write
the algebraic expressions).

a. b.

3. Find all four minimum sum of products expressions for the
following function. (Two copies of the map are given for your
convenience.)

00 01 11 10

00

01

11

10

a b

c d

11

1

1

1

11

1

1 1

1

00 01 11 10

00

01

11

10

w x

y z

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

00 01 11 10

0

1
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3.9 Chapter 3 Test 197

4. For the following function (three copies of the map are shown),

a. List all prime implicants, indicating which, if any, are
essential.

b. Find all four minimum solutions.

00 01 11 10

00

01

11

10

a b

c d

1 11

11

11

1

11 1

1

00 01 11 10

00

01

11

10

a b

c d

1 11

11

11

1

11 1

1

00 01 11 10

00

01

11

10

w x

y z

1 X

X

1

X

X

1

1

1

X

00 01 11 10

00

01

11

10

w x

y z

1 X

X

1

X

X

1

1

1

X

00 01 11 10

00

01

11

10

w x

y z

1 X

X

1

X

X

1

1

1

X

5. For the following four-variable function, f, find both minimum sum
of products expressions and both minimum product of sums
expressions.

00 01 11 10

00

01

11

10

a b

c d

X1 1

1

X

X

X

X1
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198 Chapter 3 The Karnaugh Map

6. For the following function, f, find all four minimum sum of
products expressions and all four minimum product of sums
expressions.

7. For the following five-variable problem, find both minimum sum
of products expressions.

8. For the following five-variable problem, find both minimum sum
of products expressions. (5 terms, 15 literals)

00 01

0 1

11 10

00

01

11

10

B C

D E

1

1 1

1 1

1

1

1

00 01 11 10

00

01

11

10

B C

D E

1

1

1

11 1

1

1

1

11

1

A

00 01 11 10

00

01

11

10

B C 0 1

D E

1

1

1

1

1

1

00 01 11 10

00

01

11

10

B C

D E

1

1

1

1 1

11

A

00 01 11 10

00

01

11
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w x

y z

11
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X

X

X

X

X
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3.9 Chapter 3 Test 199

9. a. For the following two functions, find the minimum sum of
products expression for each (treating them as two separate
problems).

b. For the same two functions, find a minimum sum of products
solution (corresponding to minimum number of gates, and
among those with the same number of gates, minimum
number of gate inputs). (7 gates, 19 inputs)

10. Consider the three functions, the maps of which are shown below.

00 01 11 10

00

01

11

10

w x

y z

1

1

1 1

1

1

1

00 01 11 10

00

01

11

10

w x

y z

11

1 11

1

1

f g

00 01 11 10

00

01

11

10

w x

y z

1 1 1 1 1

11

1

11

11 1

1

00 01 11 10

00

01

11

10

w x

y z

1

1

11

00 01 11 10

00

01

11

10

w x

y z

1

1

1

1 1

1

1

f g h

a. Find the minimum sum of products expression (individually)
for each of the three functions. Indicate which, if any, prime
implicants can be shared.

b. Find a minimum two-level NAND gate solution. Full credit for
a solution using 10 gates and 32 inputs. All variables are
available both uncomplemented and complemented. Show the
equations and a block diagram.
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4

201

Function Minimization
Algorithms

In this chapter, we will look at two approaches to finding all of the
prime implicants of a function and then algorithms for finding mini-
mum sum of products solutions. We will then extend the approaches

to problems with multiple outputs.
The first approach to finding prime implicants is referred to as the

Quine-McCluskey method. It starts with minterms and uses, repeatedly,
the adjacency property

ab � ab� � a

The second approach is iterated consensus. It starts with any set of
terms that covers the function and uses the consensus operation and the
absorption property

a � ab � a

Each of these methods has been computerized and is effective for a
larger number of variables than the Karnaugh map, although the amount
of computing becomes excessive for many practical problems.

4.1 QUINE-McCLUSKEY METHOD 
FOR ONE OUTPUT*

In this section, we will use the Quine-McCluskey method to find all of
the prime implicants of a function. In Section 4.3, we will use that set of
prime implicants to find the minimum sum of products expression(s) for
that function. We start with a list of minterms, in numerical form (that is,
1 for an uncomplemented variable and 0 for a complemented one). If we
start with minterm numbers, this is just the binary equivalent of the
minterm number. We order this list by the number of 1’s in each term. We
will use the function of Example 3.6:

f(w, x, y, z) � �m(0, 4, 5, 7, 8, 11, 12, 15)

*The Quine-McCluskey algorithm was developed by W. V. Quine and Edward J.
McCluskey in the 1950s.
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202 Chapter 4 Function Minimization Algorithms

Our initial list, grouped by the number of 1’s, is

A 0 0 0 0

--------

B 0 1 0 0

C 1 0 0 0

--------

D 0 1 0 1

E 1 1 0 0

--------

F 0 1 1 1

G 1 0 1 1

--------

H 1 1 1 1

where we have labeled the terms for easy reference.
We now apply the adjacency property to each pair of terms. Since

that property requires all the variables to be the same except for one, we
need only consider terms in consecutive groups. We produce a second
column of terms with one variable missing:

A � B � J � 0 – 0 0 (where the dash represents a missing
variable)

A � C � K � – 0 0 0

B � D � L � 0 1 0 –

B � E � M � – 1 0 0

C � D � none

C � E � N � 1 – 0 0

D � F � O � 0 1 – 1

D � G � none

E � F � none

E � G � none

F � H � P � – 1 1 1

G � H � Q � 1 – 1 1

Of course, some pairs of terms, even in adjacent groups, cannot be com-
bined because they differ in more than one place, such as terms C and D.
Whenever a term is used to produce another term, it is checked off; it is
not a prime implicant. These (three literal) terms are placed in a second
column as shown in Table 4.1. All of the minterms have been used to
form at least one term in the second column; thus, no minterms are prime
implicants. 

We now repeat the process with the second column. Again, we need
only consider terms in consecutive sections of that column (number of
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4.1 Quine-McCluskey Method for One Output 203

Table 4.1 Quine-McCluskey prime implicant computation.

A 0 0 0 0 √ J 0 – 0 0 √ R – – 0 0
------------- K – 0 0 0 √
B 0 1 0 0 √ -------------
C 1 0 0 0 √ L 0 1 0 –
------------- M – 1 0 0 √
D 0 1 0 1 √ N 1 – 0 0 √
E 1 1 0 0 √ -------------
------------- O 0 1 – 1
F 0 1 1 1 √ -------------
G 1 0 1 1 √ P – 1 1 1
------------- Q 1 – 1 1 
H 1 1 1 1 √

1’s differing by only one). Also, we need only consider terms with
dashes in the same position, since they are the only ones with the same
three variables. Thus, we find

J � N � R � – – 0 0

K � M � R (same term)

Each term in this column is always formed by two different pairs of
terms. In this example, y�z� is formed by the computation w�y�z� + wy�z�
as well as by x�y�z� + xy�z�, as shown on the map below.  (Note that only
these terms of the function are shown.)

There are no adjacencies between the second and third group or between
the third and fourth group.

Since there is only one term in the third column, we are done. If
there were more terms, we would repeat the process, forming a column
with three literals missing (corresponding to a group of eight minterms).
The prime implicants are

L 0 1 0 – w�xy�

O 0 1 – 1 w�xz

P – 1 1 1 xyz

Q 1 – 1 1 wyz

R – – 0 0 y�z�

00 01 11 10

00

01

11

10

11 1 1

w x

y z
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204 Chapter 4 Function Minimization Algorithms

[SP 1; EX 1]

EXAMPLE 4.1

If there are don’t cares in the problem, all of them must be included in the
first column of the table, since don’t cares are part of prime implicants.

g(w, x, y, z) � �m(1, 3, 4, 6, 11) � �d(0, 8, 10, 12, 13)

The process proceeds as before

0 0 0 0 √ 0 0 0 – – – 0 0
-------- 0 – 0 0 √
0 0 0 1 √ – 0 0 0 √
0 1 0 0 √ --------
1 0 0 0 √ 0 0 – 1
-------- 0 1 – 0
0 0 1 1 √ – 1 0 0 √
0 1 1 0 √ 1 0 – 0
1 0 1 0 √ 1 – 0 0 √
1 1 0 0 √ --------
-------- – 0 1 1
1 0 1 1 √ 1 0 1 –
1 1 0 1 √ 1 1 0 –

Thus, the prime implicants are 

w�x�y� x�yz
w�x�z wx�y
w�xz� wxy�

wx�z� y�z�

Although wxy� and wx�z� are prime implicants, they consist of all don’t cares
and would never be used in a minimum solution.

This process works for larger number of variables, but the number of
minterms and other implicants can increase rapidly. We will see one
example with five variables in the solved problems. This process has
been computerized.

4.2 ITERATED CONSENSUS
FOR ONE OUTPUT

In this section, we will use the iterated consensus algorithm to list all of
the prime implicants of a function. In the next section, we will use that
list to find the minimum sum of products expression(s).

To simplify the discussion, we will first define the relationship
included in.

Product term t1 is included in product term t2 (written t1 � t2) if t2 is 1
whenever t1 is 1 (and elsewhere, too, if the two terms are not equal).*

*The relationship included in is also applied to more complex functions than product
terms, but that will not be important here.
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4.2 Iterated Consensus for One Output 205

All this really means for product terms is that either t1 � t2, or t1 � xt2,
where x is a literal or a product of literals. From the perspective of the
map, it means that t1 is a subgroup of t2. If an implicant, t1, is included in
another implicant, t2, then t1 is not a prime implicant since

t1 � t2 � xt2 � t2 � t2 [P12a]

The iterated consensus algorithm for single functions is as follows:

1. Find a list of product terms (implicants) that cover the function.
Make sure that no term is equal to or included in any other term 
on the list. (The terms on the list could be prime implicants or
minterms or any other set of implicants. However, the rest of the
algorithm proceeds more quickly if we start with prime implicants.)

2. For each pair of terms, ti and tj (including terms added to the list in
step 3), compute ti ¢ tj.

3. If the consensus is defined, and the consensus term is not equal to
or included in a term already on the list, add it to the list.

4. Delete all terms that are included in the new term added to the list.

5. The process ends when all possible consensus operations have
been performed. The terms remaining on the list are ALL of the
prime implicants.

Consider the following function (Example 3.6 from Chapter 3 and
the function we used to describe the Quine-McCluskey method in
Section 4.1).

f(w, x, y, z) � �m(0, 4, 5, 7, 8, 11, 12, 15)

We chose as a starting point a set of product terms that cover the func-
tion; they include some prime implicants and a minterm, as well as other
implicants.

A w�x�y�z�
B w�xy�
C wy�z�
D xyz
E wyz

We labeled the terms for reference and go in the order, B ¢ A, C ¢ B,
C ¢ A, D ¢ C, . . . , omitting any computation when the term has been
removed from the list. When a term is removed, we cross it out. The first
consensus, B ¢ A, produces w�y�z�; A is included in that term and can
thus be removed. After the first step, the list becomes

A w�x�y�z�
B w�xy�
C wy�z�
D wyz
E wyz
F w�y�z�
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Table 4.3 Numeric computation of prime implicants.

A 0 0 0 0

B 0 1 0 –

C 1 – 0 0

D – 1 1 1

E 1 – 1 1

F 0 – 0 0 B ¢ A � A

G – 1 0 0 C ¢ B

H 0 1 – 1 D ¢ B (D ¢ C undefined)

(E ¢ D, E ¢ C, E ¢ B, F ¢ E, F ¢ D undefined)
J – – 0 0 F ¢ C � G, F, C

(H ¢ E � D; H ¢ D, H ¢ B undefined; J ¢ H � B;
J ¢ E, J ¢ D, J ¢ B undefined)

Table 4.2 Computing the prime
implicants.

A w�x�y�z�
B w�xy�
C wy�z�
D xyz
E wyz
F w�y�z� B ¢ A � A (remove A)
G xy�z� C ¢ B

D ¢ C undefined
H w�xz D ¢ B

E ¢ D undefined
E ¢ C undefined
E ¢ B undefined
F ¢ E undefined
F ¢ D undefined

J y�z� F ¢ C � G, F, C
(remove G, F, C )

H ¢ E � D (do not add)
H ¢ D undefined
H ¢ B undefined
J ¢ H � B  (do not add)
J ¢ E undefined
J ¢ D undefined
J ¢ B undefined

We next find C ¢ B, which creates term G, xy�z�; it is not included
in any other term and no other term is included in it. There is no need
to compute C ¢ A, since term A has already been removed from
the list.

The complete computation is shown in Table 4.2, where each possi-
ble consensus is listed on a separate line.

The terms that remain, B, D, E, H, and J, that is, w�xy, xyz, wyz,
w�xz, and y�z�, are all the prime implicants. The minimum sum of prod-
ucts expression(s) will use some of these, typically not all of them.

The process can be simplified by using a numeric representation of
the terms. As in the truth table, a 0 represents a complemented variable,
and a 1 represents an uncomplemented variable. If a variable is missing
from a term, as we did in Quine-McCluskey, a dash (–) is used in its
place so that each term has four entries. A consensus exists if there is a
1 for exactly one variable in one term and a 0 for that variable in the
other. The consensus term has a 1 for a variable if one term has a 1 and
the other either a 1 or a –; it has a 0 if one term has a 0 and the other a
0 or a –, and a – if one term has a 0 and the other a 1 or if both terms
have a –. For the function of Table 4.2, the process becomes that of
Table 4.3 (where we have not left lines for consensus operations that are
undefined).

The five terms remaining in Table 4.3 are the same as those in
Table 4.2.

If there are don’t cares in the function, all of them must be included
in at least one of the terms to start the process. The resulting list of prime
implicants will then include all possible prime implicants (including
possibly some that are made up of only don’t cares). The prime implicant
table will then allow us to choose the minimum cover.
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g(w, x, y, z) � �m(1, 3, 4, 6, 11) � �d(0, 8, 10, 12, 13)

Using the map above, we chose the following list of implicants as a starting
point:

A y�z� – – 0 0

B w�x�z 0 0 – 1

C w�xyz� 0 1 1 0

D wxy� 1 1 0 –

E wx�y 1 0 1 –

All of these, except the third, are prime implicants. It does not matter what
set of terms we start with (as long as all of the 1’s and don’t cares are
included in at least one term); we will get the same result. By choosing a
pretty good cover, we will create few if any extraneous terms. The process
then proceeds:

A – – 0 0

B 0 0 – 1

C 0 1 1 0

D 1 1 0 –

E 1 0 1 –

F 0 0 0 – B ¢ A
C ¢ B undefined

G 0 1 – 0 C ¢ A � C
D ¢ B, D ¢ A, E ¢ D undefined

H – 0 1 1 E ¢ B

J 1 0 – 0 E ¢ A

F ¢ E, F ¢ D, F ¢ B, F ¢ A undefined, G ¢ F � 0 – 0 0 � A;
G ¢ E undefined; G ¢ D � A; G ¢ B, G ¢ A, H ¢ G undefined; 
H ¢ F � B; H ¢ E, H ¢ D, H ¢ B, H ¢ A, undefined; J ¢ H � E;
J ¢ G, J ¢ E, J ¢ B, J ¢ A undefined; J ¢ F � A, J ¢ D � A

Thus, all terms but term C are prime implicants. 

00 01 11 10

00

01

11

10

XX

1 X

1 1

1 X

w x

y z

X1

4.2 Iterated Consensus for One Output 207

EXAMPLE 4.2

[SP 2; EX 2]
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Table 4.4 A prime implicant (PI) table.

PI Numeric $ Label 0 4 5 7 8 11 12 15

w�xy� 0 1 0 – 4 A X X

xyz – 1 1 1 4 B X X

wyz 1 – 1 1 4 C X X

w�xz 0 1 – 1 4 D X X

y�z� – – 0 0 3 E X X X X

4.3 PRIME IMPLICANT TABLES
FOR ONE OUTPUT

Once we have a complete list of prime implicants, using either Quine-
McCluskey or iterated consensus, a table is constructed with one row for
each prime implicant and one column for each minterm included in the
function (not don’t cares). An X is entered in the column of a minterm
that is covered by that prime implicant. Thus, for the prime implicants of
the first function, f, in both Sections 4.1 and 4.2, the prime implicant
table is shown in Table 4.4.

The first column is the list of prime implicants in algebraic form; the
second is in numeric form.* The latter makes it easy to find a list 
of minterms that are covered by this term, since each – can represent
either a 0 or a 1. For example, term 010– covers minterms 0100 (4) and 
0101 (5). The third column is the number of gate inputs when that term
is used in a two-level circuit, that is, just one for each literal plus one for
the input to the output gate (OR). The fourth column is just the label (to
save writing the whole term later). We will label terms in alphabetic
order. (They may differ from the labeling of these terms in Sections 4.1
and 4.2.)

Our job is to find a minimum set of rows such that using only these
rows, every column has at least one X, that is, all of the minterms are
included in the expression. If there is more than one set, the total number
of gate inputs ($ column) is minimized. The first step in the process is
to find essential prime implicants. They correspond to rows where the X
is the only one in at least one column. Those squares are shaded; the
minterms covered by each of the essential prime implicants are checked
off; and an asterisk is placed next to the prime implicant as shown in
Table 4.5.

*The order of the list is not important. The two methods used to find prime implicants
produced the same list but in different order.
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Table 4.5 Finding essential prime implicants.

√ √ √ √ √ √

PI Numeric $ Label 0 4 5 7 8 11 12 15

w�xy� 0 1 0 – 4 A X X

xyz – 1 1 1 4 B X X

wyz★ 1 – 1 1 4 C X X

w�xz 0 1 – 1 4 D X X

y�z�★ – – 0 0 3 E X X X X

Table 4.6 The reduced
table.

$ Label 5 7

4 A X

4 B X

4 D X X

EXAMPLE 4.3

Note that all of the minterms covered by the essential prime implicants
are checked, not just those columns with shaded X’s. The table is now
reduced to that of Table 4.6 by eliminating the essential prime implicant
rows and the covered minterms.

In this simple example, the answer is apparent. Prime implicant H
covers the remaining 1’s; any other solution would require at least two
more terms, for a total of four. Thus, the solution is

C � E � D � wyz � y�z� � w�xz

Before looking at some more complex examples that will require us
to develop additional techniques, we will complete Examples 4.1 and 4.2
(with don’t cares), for which we have already developed a list of prime
implicants. The only thing that is different from the first example is that
we only have columns for minterms included in the function—not for
don’t cares. That is really what happened in the reduced table above; the
columns that were eliminated correspond to minterms that became don’t
cares after having chosen the essential prime implicants (as in Map
Method 3).

√ √
PI $ Label 1 3 4 6 11

y�z� – – 0 0 3 A X

w�x�z 0 0 – 1 4 B X X

wxy� 1 1 0 – 4 C

wx�y 1 0 1 – 4 D X

w�x�y� 0 0 0 – 4 E X

w�xz�★ 0 1 – 0 4 F X X

x�yz – 0 1 1 4 G X X

wx�z� 1 0 – 0 4 H
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210 Chapter 4 Function Minimization Algorithms

EXAMPLE 4.4

The first thing to note about this table is that rows C and H have no X’s in
them; they correspond to prime implicants that cover only don’t cares. F is
essential, as indicated by the shading. We can now eliminate rows C, H,
and F and columns 4 and 6, producing the reduced table:

Note that row A has no X’s; the minterm that it covered was already covered
by the essential prime implicant. There are several ways to proceed from
here. By looking at the table, we can see that we need at least one prime
implicant that covers two minterms (either B or G). In either case, one
minterm is left. There are three solutions:

F � B � D � w�xz� � w�x�z � wx�y

F � B � G � w�xz� � w�x�z � x�yz

F � G � E � w�xz� � x�yz � w�x�y�

All of these are equal cost, since each of the prime implicants used have the
same number of literals. (We will see in other examples that some of the
covers that use the same number of terms may have a different number of
literals.)

If we are looking for only one of the minimum solutions, instead of
all of them, we can often reduce a prime implicant table by removing
dominated or equal rows. A row dominates another if the term it repre-
sents costs no more than the other and has X’s in every column that the
dominated row does (and possibly more).

In Example 4.3, row E is dominated by B, and row D is dominated by G.
Removing the dominated rows, the table reduces to

and the only solution produced is 

F � B � G � w�xz� � w�x�z � x�yz

Finally, a third approach, called Petrick’s method, utilizes the table
we have obtained after removing the essential prime implicants, but

$ Label 1 3 11

4 B X X

4 G X X

$ Label 1 3 11

3 A

4 B X X

4 D X

4 E X

4 G X X
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4.3 Prime Implicant Tables for One Output 211

EXAMPLE 4.5

before removing dominated and equal rows. Create a product of sums
expression by producing one term for each column. For the last example,
the expression is

(B � E)(B � G)(D � G)

Minterm 1 must be covered by B or E, minterm 3 by B or G, and minterm
11 by E or G. Expanding that expression to sum of products form, we get

(B � EG)(D � G) � BD � BG � DEG � EG
� BD � BG � EG

Each product term corresponds to a set of prime implicants that could be
used to cover the function. These are, of course, the solutions that we
found.

We are now ready to look at some more complex examples.

f(a, b, c, d) � �m(1, 3, 4, 6, 7, 9, 11, 12, 13, 15)

From the map, Quine-McCluskey, or iterated consensus,* we could find all
of the prime implicants and construct the following table:

*An effective approach is to map the function and find as many prime implicants as
possible. Then, use iterated consensus to check that none have been left out.

There is one essential prime implicant, b�d, as shown in the table above.
The table is then reduced, by eliminating that row and the terms that have
been covered.

√ √ √ √
$ 1 3 4 6 7 9 11 12 13 15

b�d★ – 0 – 1 3 A X X X X

cd – – 1 1 3 B X X X X

ad 1 – – 1 3 C X X X X

abc� 1 1 0 – 4 D X X

bc�d� – 1 0 0 4 E X X

a�bd� 0 1 – 0 4 F X X

a�bc 0 1 1 – 4 G X X

$ 4 6 7 12 13 15

3 B X X

3 C X X

4 D X X

4 E X X

4 F X X

4 G X X

mar91647_c04_201_248.qxd  11/5/08  10:40 AM  Page 211



212 Chapter 4 Function Minimization Algorithms

The reduced table has two X’s in each column and two X’s in each row.
Since there are six minterms to be covered, we need at least three prime
implicants. Also, since B and C cost less than the other terms, we should
try to use them. A careful study of the table will show that there are two cov-
ers that use three terms, each of which uses one of the less costly terms,
namely,

A � B � D � F � b�d � cd � abc� � a�bd�

A � C � E � G � b�d � ad � bc�d� � a�bc

(We cannot complete the cover with three terms in addition to A by using
both of the less costly rows, since they only cover three 1’s between them.)
The more systematic approach is to choose one of the minterms that can
be covered in the fewest number of ways, for example, 4. We then recog-
nize that we must choose either E or F in order to cover minterm 4. We will
next derive a minimum solution using each of those and compare them.
After we choose E, the table reduces to 

Note that row D is dominated by C and costs more than C. It can be
removed. (This row is shaded in the table above.) If that is eliminated, C is
needed to cover minterm 13. (It also covers minterm 15.) Now, only
minterms 6 and 7 need to be covered; the only way to do that with one term
is with G. That produces the solution

A � C � E � G

Row F is also dominated (by G); but those two terms cost the same. In
general (although not in this example), we risk losing other equally good
solutions if we delete dominated rows that are not more expensive.

If, instead, we chose prime implicant F to cover minterm 4, we would
have

$ 6 7 13 15

3 B X X

3 C X X

4 D X

4 F X

4 G X X

$ 7 12 13 15

3 B X X

3 C X X

4 D X X

4 E X

4 G X
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4.3 Prime Implicant Tables for One Output 213

EXAMPLE 4.6

Row G is dominated by row B and costs more. Thus, prime implicant B is
needed to cover the function. With only minterms 12 and 13 left, we must
choose term D, giving the other solution

A � F � B � D

Finally, we could go back to the second table (with six minterms) and con-
sider the prime implicants needed to cover each minterm. Petrick’s method
produces the following expression

(E � F )(F � G)(B � G)(D � E )(C � D)(B � C)

� (F � EG)(B � CG)(D � CE )

� (BF � BEG � CFG � CEG)(D � CE )

� BDF � BDEG � CDFG � CDEG � BCEF
� BCEG � CEFG � CEG

Any of these eight combinations could be used; but only the two underlined
correspond to three terms (in addition to A). This approach produces the
same two minimum solutions.

f(w, x, y, z) � �m(1, 2, 3, 4, 8, 9, 10, 11, 12)

The prime implicants are

x�z

x�y

wx�

xy�z�

wy�z�

The prime implicant table is

There are three essential prime implicants, A, B, and D, which cover all but
one of the 1’s. The reduced table is thus

√ √ √ √ √ √ √ √
$ 1 2 3 4 8 9 10 11 12

x�z★ – 0 – 1 3 A X X X X

x�y★ – 0 1 – 3 B X X X X

wx� 1 0 – – 3 C X X X X

xy�z�★ – 1 0 0 4 D X X

wy�z� 1 – 0 0 4 E X X

$ 8

C 3 X

E 4 X
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EXAMPLE 4.7

Although either prime implicant could cover m8, C is less expensive. Thus,
the only minimum solution is

f � x�z � x�y � xy�z� � wx�

g(a, b, c, d ) � �m(0, 1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15)

From Example 3.18 we came up with the list of nine prime implicants shown
in the table below. (We can check that this list is complete and that all of
these are prime implicants by using them as the starting point for iterated
consensus. If we do that, no new terms are produced in this example.) We
do not need a cost column since all terms consist of two literals.

All of the minterms are covered by at least two prime implicants (some by
as many as four). We will choose one of the columns that has only two X’s
and try to minimize the function first using one term, and then using the
other. For this example, we will use either term A or term B to cover m0; first
we will use A and reduce the table by removing the minterms covered by A.

Row B is dominated by C; and row D is dominated by E. Although row H is
dominated by J, we will leave that for now. Thus, we will choose terms C

0 1 3 4 6 7 8 9 11 12 13 14 15

– – 0 0 A X X X X

– 0 0 – B X X X X

– 0 – 1 C X X X X

– 1 – 0 D X X X X

– 1 1 – E X X X X

– – 1 1 F X X X X

1 1 – – G X X X X

1 – 0 – H X X X X

1 – – 1 J X X X X

√ √ √ √ √ √ √ √
1 3 6 7 9 11 13 14 15

– 0 0 – B X X

– 0 – 1★ C X X X X

– 1 – 0 D X X

– 1 1 – E X X X X

– – 1 1 F X X X X

1 1 – – G X X X

1 – 0 – H X X

1 – – 1 J X X X X
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4.3 Prime Implicant Tables for One Output 215

and E. Reducing the table once more, we get

Obviously, any of G, H, or J could be used to cover minterm 13. Notice that
row H, even though it was dominated, is used in one of the minimum solu-
tions. We must now ask if that might be true of row B or row D. To be sure,
we must go back to the previous table and see what happens if we don’t
eliminate them. We will choose B (rather than C to cover m1 and m4) and E
and leave it to the reader to do it for D (rather than E ) and C. The reduced
table now becomes

Now, however, we need two more prime implicants to complete the cover,
a total of five. Those solutions cannot be minimum, since we found three (so
far) with only four terms. Thus, the three minimum solutions using term A are

f � c�d� � b�d � bc � ab

f � c�d� � b�d � bc � ac�

f � c�d� � b�d � bc � ad

We will now go back and repeat the process, starting with term B. We
can eliminate row A, since we already found all minimum solutions using
row A.

13

– – 1 1 F

1 1 – – G X

1 – 0 – H X

1 – – 1 J X

3 11 13

– 0 – 1 C X X

– – 1 1 F X X

1 1 – – G X

1 – 0 – H X

1 – – 1 J X X

√ √ √ √
3 4 6 7 11 12 13 14 15

– 0 – 1 C X X

– 1 – 0★ D X X X X

– 1 1 – E X X X X

– – 1 1 F X X X X

1 1 – – G X X X X

1 – 0 – H X X

1 – – 1 J X X X
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[SP 3; EX 3]

Row D is now required. We will reduce the table one more time.

It is clear now that F is necessary, covering all the remaining minterms 
except m13. (Otherwise, we would need both C and E and would
still leave m13 uncovered.) As before, prime implicants G, H, and J
could be used to complete the function. The three solutions using term B
are thus

f � b�c� � bd� � cd � ab

f � b�c� � bd� � cd � ac�

f � b�c� � bd� � cd � ad

giving a total of six solutions.

4.4 QUINE-McCLUSKEY FOR MULTIPLE
OUTPUT PROBLEMS

The Quine-McCluskey method can be expanded to include multiple
output systems by adding a tag section to each product term. The
tag indicates for which functions that term can be used. We will include
a bit for each function, with a – if the term is included in that function
and a 0 if not. Terms can be combined if they have a common –. When
combining terms (using the adjacency property), each tag is 0 if either
term had a 0 and is – if both terms had a dash. We will develop
the technique for finding all useful terms in this section and defer
to Section 4.6 the method for finding minimum sum of products
expressions.

To illustrate the process, consider the following functions (the same
functions as in Example 3.34):

f(a, b, c) � �m(2, 3, 7)

g(a, b, c) � �m(4, 5, 7)

3 7 11 13 15

– 0 – 1 C X X

– 1 1 – E X X

– – 1 1 F X X X X

1 1 – – G X X

1 – 0 – H X

1 – – 1 J X X X
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4.4 Quine-McCluskey for Multiple Output Problems 217

There are no adjacencies in the second column. At the end of the process,
there are 2 two-literal terms for each function and 1 three-literal term that
can be shared.

Before completing the solution of this problem using multiple
output prime implicant tables (in Section 4.6), we will consider two
additional examples.

f(a, b, c, d ) � �m(2, 3, 4, 6, 9, 11, 12) � �d(0, 1, 14, 15)*

g(a, b, c, d ) � �m(2, 6, 10, 11, 12) � �d(0, 1, 14, 15)

We begin, by grouping the terms based on the number of 1’s (where let-
ters are added for easy identification). 

We now apply the adjacency property to each pair of terms in adjacent
groups that have at least one – in common.

When we continue to another column, terms are checked off only if they
are covered in all functions. Thus, for example, term E is not checked
because no term covers it in both F and G.

A 0 1 0 – 0 

B 1 0 0 0 – 

--------------

C 0 1 1 – 0

D 1 0 1 0 – 

--------------
E 1 1 1 – –

Table 4.7 Multiple output Quine-McCluskey
method.

A 0 1 0 – 0 √ F 0 1 – – 0
B 1 0 0 0 – √ G 1 0 – 0 –

C 0 1 1 – 0 √ H – 1 1 – 0
D 1 0 1 0 – √ J 1 – 1 0 –

E 1 1 1 – –

A + C = F = 0 1 – – 0

B + D = G = 1 0 – 0 –
-----------------------------------------------
C + E = H = – 1 1 – 0

D + E = J = 1 – 1  0 –

EXAMPLE 4.8

*This is the same problem as Example 3.40.
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Thus, the terms that can be shared are a�b�c�, a�b�d�, a�cd�, bcd�, abd�,
acd, and abc. The prime implicants of f are a�b�, a�d�, b�d, and bd�. The
prime implicants of g are cd� and ac.

Note that some sums, such as AF � AN exist, but the two terms
belong to different functions (and would have a tag of 00); they are not
included.

Last, we will consider a small example with three outputs:

f(x, y, z) � �m(0, 2, 5, 6, 7)

g(x, y, z) � �m(2, 3, 5, 6, 7)

h(x, y, z) � �m(0, 2, 3, 4, 5)

The tag now has three bits, but otherwise the process is as before:

218 Chapter 4 Function Minimization Algorithms

A 0 0 0 0 – – √

--------------

B 0 0 0 1 – – √

C 0 0 1 0 – – √

D 0 1 0 0 – 0 √

--------------

E 0 0 1 1 – 0 √

F 0 1 1 0 – – √

G 1 0 0 1 – 0 √

H 1 0 1 0 0 – √

I 1 1 0 0 – – √

--------------

J 1 0 1 1 – – √

K 1 1 1 0 – – √

--------------

L 1 1 1 1 – – √

AA 0 0 0 – – –

AB 0 0 – 0 – –

AC 0 – 0 0 – 0 √

--------------

AD 0 0 – 1 – 0 √

AE – 0 0 1 – 0 √

AF 0 0 1 – – 0 √

AG 0 – 1 0 – – 

AH – 0 1 0 0 – √

AI 0 1 – 0 – 0 √

AJ – 1 0 0 – 0 √

--------------

AK – 0 1 1 – 0 √

AL – 1 1 0 – –

AM 1 0 – 1 – 0 √

AN 1 0 1 – 0 – √

AO 1 – 1 0 0 – √

AP 1 1 – 0 – –

--------------

AQ 1 – 1 1 – –

AR 1 1 1 – – –

BA 0 0 – – – 0

BB 0 – – 0 – 0

--------------

BC – 0 – 1 – 0

BD – – 1 0 0 –

BE – 1 – 0 – 0

--------------

BF 1 – 1 – 0 –

EXAMPLE 4.9

We begin by listing all of the minterms, with tags, including the don’t
cares, grouping terms by the number of 1’s:
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A 0 0 0 – 0 – √

--------------

B 0 1 0 – – –

C 1 0 0 0 0 – √

--------------

D 0 1 1 0 – – √

E 1 0 1 – – –

F 1 1 0 – – 0 √

--------------

G 1 1 1 – – 0 √
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H 0 – 0 – 0 –

J – 0 0 0 0 – 

--------------

K 0 1 – 0 – – 

L – 1 0 – – 0

M 1 0 – 0 0 –

--------------

N – 1 1 0 – 0 √

P 1 – 1 – – 0

Q 1 1 – – – 0

The terms that can be used for all three functions are x�yz� and xy�z. For f
and g, we can use yz�, xz, and xy. For f and h, we can use x�z�. For g and
h, we can use x�y. For h, we can use y�z� and xy�. For g, we can use y.

4.5 ITERATED CONSENSUS FOR 
MULTIPLE OUTPUT PROBLEMS

The iterated consensus algorithm needs only minor modifications to pro-
duce all of the terms that may be used for sum of products expressions
for multiple output problems. Candidates are terms that are prime impli-
cants of any one function or prime implicants of the product of functions.
(Although we did not make use of this property in other approaches, if
we look back, we will find that all terms that were shared between two
functions were indeed prime implicants of the product of those two func-
tions, and terms that were shared among three functions were prime
implicants of the product of the three functions.) In this section, we will
find all prime implicants. We will find minimum solutions in Section 4.6.

To begin the iterated consensus procedure, we must either start with
minterms or include not only a cover of each function but also a cover of
all possible products of functions. We will follow the first approach in
this example and use the second in some of the Solved Problems. To each
product term on our list for iterated consensus, we add a tag section with
a dummy variable for each output. That tag contains a 0 (complemented
output variable) if the term is not an implicant of that function and a
blank if it is. We will illustrate the process using the same functions as
those of Section 4.4.

f(a, b, c) � �m(2, 3, 7)

g(a, b, c) � �m(4, 5, 7)

[SP 4; EX 4]

R – 1 – 0 – 0
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The initial list then becomes

a� b c� g� 0 1 0 – 0

a� b c g� 0 1 1 – 0

a b� c� f � 1 0 0 0 –

a b� c f � 1 0 1 0 –

a b c 1 1 1 – –

We now proceed as before, taking the consensus of each pair of terms
(including the tag), adding new terms and deleting terms included in
others. The only new rule is that terms that have an all 0 tag section are
also deleted. (They correspond to a grouping made of a 1 from one func-
tion with a 1 from the other function; they are not implicants of either
function.) Note that the tag never affects whether or not a consensus
exists, since there are no 1’s in the tag section.

We now proceed, as in Table 4.8.

220 Chapter 4 Function Minimization Algorithms

Table 4.8 Iterated consensus for multiple output functions.

A 0 1 0 – 0
B 0 1 1 – 0
C 1 0 0 0 –
D 1 0 1 0 –
E 1 1 1 – –
F 0 1 – – 0 B ¢ A � B, A
G 1 0 – 0 – D ¢ C � D, C
H – 1 1 – 0 F ¢ E
J 1 – 1 0 – G ¢ E (G ¢ F undefined)

H ¢ G zero tag; H ¢ F, H ¢ E undefined
J ¢ H, J ¢ F zero tag; J ¢ G, J ¢ E undefined

The term that can be shared is abc; a�b and bc are prime implicants of f;
ab� and ac are prime implicants of g.

We will consider the functions from Example 4.8, a two-output problem with
don’t cares.

f(a, b, c, d ) � �m(2, 3, 4, 6, 9, 11, 12) � �d(0, 1, 14, 15)

g(a, b, c, d ) � �m(2, 6, 10, 11, 12) � �d(0, 1, 14, 15)

To obtain the list of prime implicants to include in the prime implicant table,
we can start with minterms, treating all don’t cares as 1’s and work the iter-
ated consensus algorithm. It is very time-consuming and prone to error
(although it would be fairly straightforward to write a computer routine to
process it).* The other approach is to map fg (the product of the two func-
tions), find all of the prime implicants of that plus those terms that are
only prime implicants of one of the functions. The following maps show the

EXAMPLE 4.10

*Another example of this approach is given in Solved Problem 5a.
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The product terms (with their tag) are

0 0 0 – – – 0 0 – – – 0 – – 1 0 0 –

0 0 – 0 – – 0 – – 0 – 0 1 – 1 – 0 –

0 – 1 0 – – – 1 – 0 – 0

– 1 1 0 – – – 0 – 1 – 0

1 1 1 – – –

1 1 – 0 – –

1 – 1 1 – –

We could try iterated consensus on this list but would find no new terms.

f(x, y, z) � �m(0, 2, 5, 6, 7)

g(x, y, z) � �m(2, 3, 5, 6, 7)

h(x, y, z) � �m(0, 2, 3, 4, 5)

We start by listing all of the minterms used for any of the functions, including
the tag, and then perform the iterated consensus algorithm to find all of the
prime implicants.

A 0 0 0 – 0 – H 0 – 0 – 0 – B ¢ A � A

B 0 1 0 – – – J 0 1 – 0 – – C ¢ B � C

C 0 1 1 0 – – K 1 0 – 0 0 – E ¢ D � D

D 1 0 0 0 0 – L – 1 0 – – 0 F ¢ B � F

E 1 0 1 – – – M 1 – 1 – – 0 G ¢ E � G

F 1 1 0 – – 0 N – 0 0 0 0 – K ¢ H

G 1 1 1 – – 0 P 1 1 – – – 0 M ¢ L

Q – 1 1 0 – 0 M ¢ J

R – 1 – 0 – 0 Q ¢ L � Q
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EXAMPLE 4.11

00 01 11

f g

10

00

01

11

10

a b

c d

1 1

11 1

1

1

1

f

00 01 11 10

00

01

11

10

a b

c d

1 1 1

11 1

1

1 1

11

g

00 01 11 10

00

01

11

10

a b

c d

1 1

1 11 1

1

1

1

prime implicants of fg and those of f and g that are not prime implicants of
both functions, where all don’t cares have been made 1 on the maps, since
we must include all prime implicants that cover don’t cares, as well. 
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We did not show any term that produced an all 0 tag section, and we did
not list the consensus operations that led to undefined terms or to terms
included in other terms already on the list. This leaves a total of 10 prime
implicants (of one of the functions or the product of functions). Note that
two of the minterms remain, since they can be used for all three functions
and are not part of any one larger group in all three. 

4.6 PRIME IMPLICANT TABLES FOR
MULTIPLE OUTPUT PROBLEMS

Having found all of the product terms, we create a prime implicant table
with a separate section for each function. The prime implicant table for
the first set of functions of the last two sections

f(a, b, c) � �m(2, 3, 7)

g(a, b, c) � �m(4, 5, 7)

is shown in Table 4.9. An X is only placed in the column of a function for
which the term is an implicant. (For example, there is no X in column 7
of g or for term D.) Essential prime implicants are found as before (a�b
for f and ab� for g).
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Table 4.9 A multiple output prime implicant table.

f g

√ √ √ √
$ 2 3 7 4 5 7

1 1 1 4 A X X

0 1 –★ 3 B X X

1 0 –★ 3 C X X

– 1 1 3 D X X

1 – 1 3 E X X

The table is then reduced as in Table 4.10.
Now, it is clear that we can use term E to cover both functions, rather

than two separate terms, even though E costs 4 and the others cost 3.
Indeed, the cost to use a term in each function after the first is only 1, the
input to another OR gate. (We only build one AND gate for that term.)
The solution using A thus costs 5, compared to 6 for a solution that uses
both D and E. (The latter solution requires an extra gate.) The solution is
thus,

f � a�b � abc

g � ab� � abc

Table 4.10 A reduced prime
implicant table.

f g

$ 7 7

1 1 1 4 A X X

– 1 1 3 D X

1 – 1 3 E X
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4.6 Prime Implicant Tables for Multiple Output Problems 223

The prime implicant table for the functions of Example 4.8 and 4.10

f(a, b, c, d ) � �m(2, 3, 4, 6, 9, 11, 12) � �d(0, 1, 14, 15)

g(a, b, c, d ) � �m(2, 6, 10, 11, 12) � �d(0, 1, 14, 15)

is shown below.

Note that the table is divided into three sections of rows. The first (A to
G) includes the terms that are eligible for sharing. The second section
contains the prime implicants of f that are not also implicants of g, and the
last section contains those of g that are not implicants of f. Notice that
rows A and F have no X ’s; they are prime implicants made up of only
don’t cares. (Of course, there are no columns corresponding to the don’t
cares.)

Row L, b�d, is an essential prime implicant of f and row G; abd� is
an essential prime implicant of g. Although the latter is also useful for f, it
is not essential, and we may or may not want to use it. The reduced table is
shown next.

EXAMPLE 4.12

f g

√ √ √ √
2 3 4 6 9 11 12 2 6 10 11 12

0 0 0 – A 4

0 0 – 0 B 4 X X

0 – 1 0 C 4 X X X X

– 1 1 0 D 4 X X

1 – 1 1 E 4 X X

1 1 1 – F 4

1 1 – 0★ G 4 X X

– 1 – 0 H 3 X X X

0 – – 0 J 3 X X X

0 0 – – K 3 X X

– 0 – 1★ L 3 X X X

– – 1 0 M 3 X X X

1 – 1 – N 3 X X
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Note that the cost for term G has been reduced to 1, since the AND gate
has already been built; we only need an input to the OR gate. Term E is
dominated by and costs more than term N, and can be eliminated. (It will
never be part of a minimum solution, since it is less expensive to use
term N.) That makes term N, ac, necessary for g. With these two terms and
the minterms they cover removed, the table reduces to

224 Chapter 4 Function Minimization Algorithms

Neither B nor D would be used, since term C covers all of the 1’s of B and
D. That leaves us with a choice of using either C or M for function g. If we
use C, we would use it for both functions, since M is less expensive if we
were not sharing. That would require us to use H to complete the cover of
f. The cost would be 5 (for C) plus 3, or 8. The alternative is to use M (at a
cost of 3) for g, and then use J and G to cover f, at a total cost of only 7.
Either solution requires two new gates.

f g

2 4 6 12 2 6

0 0 – 0 B 4 X X

0 – 1 0 C 4 X X X X

– 1 1 0 D 4 X X

1 1 – 0 G 1 X

– 1 – 0 H 3 X X X

0 – – 0 J 3 X X X

0 0 – – K 3 X

– – 1 0 M 3 X X

f g

√ √
2 4 6 12 2 6 10 11

0 0 – 0 B 4 X X

0 – 1 0 C 4 X X X X

– 1 1 0 D 4 X X

1 – 1 1 E 4 X

1 1 – 0★ G 1 X

– 1 – 0 H 3 X X X

0 – – 0 J 3 X X X

0 0 – – K 3 X

– – 1 0 M 3 X X X

1 – 1 – N 3 X X
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Thus, the minimum solution is the second one, as we found in Exam-
ple 3.36,

f � b�d � abd� � a�d�

g � ac � abd� � cd�

For the functions of Example 4.9 and 4.11, we have the following prime
implicant table:

4.6 Prime Implicant Tables for Multiple Output Problems 225

EXAMPLE 4.13

We see that term C is an essential prime implicant of f, but not of h. (We will
thus check off the terms in f and leave those in h, but reduce the cost of this
term to 1 in the reduced table, since the AND gate is already accounted for;
only the input to the h OR gate needs to be charged.) Similarly, term D is an
essential prime implicant of h, but not of g. Finally, term K will be used for g,
since it only costs 1 (the OR gate input). Even if we could cover that with two
shared terms, that would cost two inputs to the OR gate. The table thus
reduces to

f g h

√ √ √ √ √ √ √ √
0 2 5 6 7 2 3 5 6 7 0 2 3 4 5

0 1 0 4 A X X X

1 0 1 4 B X X X

0 – 0★ 3 C X X X X

0 1 –★ 3 D X X X X

1 0 – 3 E X X

– 1 0 3 F X X X X

1 – 1 3 G X X X X

– 0 0 3 H X X

1 1 – 3 J X X X X

– 1 –★ 1 K X X X X

f g h

5 6 7 5 0 4 5

0 1 0 4 A

1 0 1 4 B X X X

0 – 0 1 C X

0 1 – 1 D

1 0 – 3 E X X

– 1 0 3 F X

1 – 1 3 G X X X

– 0 0 3 H X X

1 1 – 3 J X X
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We can see that terms A and D no longer cover any terms; those rows can
be eliminated. We seem to have two choices now. First, we can use B for
all three functions, at a cost of 6. We would then use J for f and H for h, for
a cost of 12 (on this table). This solution requires eight gates and 19 inputs.

f � x�z� � xy�z � xy
g � y � xy�z
h � x�y � xy�z � y�z�

The other choice is to use G for f and g (at a cost of 4). Then F or J can be
used for f; and C (since it costs only 1) and E for h. The total cost is 
11 inputs and three gates (G, F or J, and E ), and thus this second solution
is best. (Note that the gate to create term C is not included in the gate count
here, since it was already built.) The equations are

f � x�z� � xz � (yz� or xy)
g � y � xz
h � x�y � x�z� � xy�

It also uses eight gates, but has only 18 inputs.

4.7 SOLVED PROBLEMS

1. For each of the following functions, find all of the prime
implicants using the Quine-McCluskey method. (The first three
functions have been minimized using the Karnaugh map in
Solved Problems 2b, 2d, and 5b of Chapter 3.)

a. f (w, x, y, z) � �m(2, 5, 7, 8, 10, 12, 13, 15)

b. f (a, b, c, d ) � �m(0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)
(2 solutions)

c. F(W, X, Y, Z) � �m(1, 3, 5, 6, 7, 13, 14) � �d(8, 10, 12)
(2 solutions)

d. f(a, b, c, d, e) � �m(0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15,
21, 23, 26, 28, 29, 30, 31)

a. We organize the minterms by the number of 1’s

A 0 0 1 0 √ J – 0 1 0 R – 1 – 1

B 1 0 0 0 √ K 1 0 – 0

-------- L 1 – 0 0

C 0 1 0 1 √ --------

D 1 0 1 0 √ M 0 1 – 1 √

E 1 1 0 0 √ N – 1 0 1 √

-------- O 1 1 0 –

F 0 1 1 1 √ --------

G 1 1 0 1 √ P – 1 1 1 √

-------- Q 1 1 – 1 √

H 1 1 1 1 √

226 Chapter 4 Function Minimization Algorithms
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Only sums that produce a product term are shown

A � D � J E � G � O

B � D � K F � H � P

B � E � L G � H � Q

C � F � M M � Q � N � P � R

C � G � N

The prime implicants are thus x�yz�, wx�z�, wy�z�, wxy�, and xz.

b.
0 0 0 0 √ 0 – 0 0 0 1 – –
-------- – 0 0 0 1 0 – –
0 1 0 0 √ -------- --------
1 0 0 0 √ 0 1 0 –  √ – 1 – 1
-------- 0 1 – 0 √ – 1 1 –
0 1 0 1 √ 1 0 0 – √ 1 – – 1
0 1 1 0 √ 1 0 – 0 √ 1 – 1 –
1 0 0 1 √ --------
1 0 1 0 √ 0 1 – 1 √
-------- – 1 0 1 √
0 1 1 1 √ 0 1 1 – √
1 0 1 1 √ – 1 1 0 √
1 1 0 1 √ 1 0 – 1 √
1 1 1 0 √ 1 – 0 1 √
-------- 1 0 1 – √
1 1 1 1 √ 1 – 1 0 √

--------
– 1 1 1 √
1 – 1 1 √
1 1 – 1 √
1 1 1 – √

The prime implicants are a�c�d�, b�c�d�, a�b, ab�, bd, bc, ad,
and ac.

c.
0 0 0 1 √ 0 0 – 1 √ 0 – – 1
1 0 0 0 √ 0 – 0 1 √ 1 – – 0
-------- 1 0 – 0 √
0 0 1 1 √ 1 – 0 0 √
0 1 0 1 √ --------
0 1 1 0 √ 0 – 1 1 √
1 0 1 0 √ 0 1 – 1 √
1 1 0 0 √ – 1 0 1
-------- 0 1 1 – 
0 1 1 1 √ – 1 1 0
1 1 0 1 √ 1 – 1 0 √
1 1 1 0 √ 1 1 0 –

1 1 – 0 √
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mar91647_c04_201_248.qxd  11/5/08  10:40 AM  Page 227



The prime implicants are XY�Z, W�XY, XYZ�, WXY�, W'Z,
and WZ�.

d.
0 0 0 0 0 √ 0 0 0 – 0 √ 0 0 – – 0 – – 1 – 1
---------- 0 0 – 0 0 √ 0 – 0 – 0
0 0 0 1 0 √ 0 – 0 0 0 √ ----------
0 0 1 0 0 √ ---------- 0 0 1 – –
0 1 0 0 0 √ 0 0 – 1 0 √ 0 1 0 – –
---------- 0 – 0 1 0 √ ----------
0 0 1 0 1 √ 0 0 1 0 – √ 0 – 1 – 1 √
0 0 1 1 0 √ 0 0 1 – 0 √ – – 1 0 1 √
0 1 0 0 1 √ 0 1 0 0 – √ – 0 1 – 1 √
0 1 0 1 0 √ 0 1 0 – 0 √ 0 1 – – 1 
---------- ---------- ----------
0 0 1 1 1 √ 0 0 1 – 1 √ – – 1 1 1 √
0 1 0 1 1 √ 0 – 1 0 1 √ – 1 1 – 1 √
0 1 1 0 1 √ – 0 1 0 1 √ 1 – 1 – 1 √
1 0 1 0 1 √ 0 0 1 1 – √ 1 1 1 – –
1 1 0 1 0 √ 0 1 0 – 1 √
1 1 1 0 0 √ 0 1 – 0 1 √
---------- 0 1 0 1 – √
0 1 1 1 1 √ – 1 0 1 0 
1 0 1 1 1 √ ----------
1 1 1 0 1 √ 0 – 1 1 1  √
1 1 1 1 0 √ – 0 1 1 1 √
---------- 0 1 – 1 1 √
1 1 1 1 1 √ 0 1 1 – 1 √

– 1 1 0 1 √
1 0 1 – 1 √
1 – 1 0 1 √
1 1 – 1 0 
1 1 1 0 – √
1 1 1 – 0 √
----------
– 1 1 1 1 √
1 – 1 1 1 √
1 1 1 – 1 √
1 1 1 1 – √

Note that terms in the fourth column are formed in three ways.
The prime implicants are bc'de', abde', a'b'e', a'c'e', a'b'c,
a'bc', a'be, abc, and ce.

2. For each of the functions of Solved Problem 1, find all of the
prime implicants using iterated consensus.

a. We will start with the minterms for this solution, listing 
only those consensus terms that are to be added to the list.

228 Chapter 4 Function Minimization Algorithms
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A 0 0 1 0 J 0 1 – 1 C ¢ B � C, B

B 0 1 0 1 K 1 0 – 0 E ¢ D � D, E

C 0 1 1 1 L 1 1 0 – G ¢ F � F, G

D 1 0 0 0 M – 1 1 1 J ¢ H � H

E 1 0 1 0 N – 0 1 0 K ¢ A � A

F 1 1 0 0 P 1 – 0 0 L ¢ K

G 1 1 0 1 Q – 1 0 1 L ¢ J

H 1 1 1 1 R 1 1 – 1 M ¢ L

S – 1 – 1 Q ¢ M � J, M, Q, R

All other consensus operations are either undefined or produce
a term that is already on the list. The terms remaining on the
list are all the prime implicants—wx�z�, wxy�, x�yz�, wy�z�,
and xz.

b. We first map the function (as in Solved Problem 2d of Chapter 3)
and find four prime implicants that cover the function. We then
use iterated consensus to generate the rest.

A 0 – 0 0 E 0 1 0 – B ¢ A

B – 1 – 1 F 0 1 – 0 C ¢ A

C – 1 1 – G 1 – 1 – D ¢ C

D 1 0 – – H 1 – – 1 D ¢ B

J – 0 0 0 D ¢ A

K 0 1 – – E ¢ C � E, F

No other consensus terms are formed. 

c. First, we took the map of the function and converted all of the
don’t cares to 1’s. We then found a set of prime implicants that
covered the function. (We could have used any set of product
terms that covered the function, but starting with prime
implicants usually reduces the amount of work.)

00 01 11 10

00

01

11

10

W X

Y Z

X X

X

1

1

1 1

1

1 1

00 01 11 10

00

01

11

10

W X

Y Z

11

1 1 1

11

1 11
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Iterated consensus then proceeds very smoothly

A 0 – – 1

B 1 – – 0

C – 1 0 1

D – 1 1 0

E 1 1 0 – C ¢ B

F 0 1 1 – D ¢ A

No other new terms are formed. The only other consensus
terms formed are

E ¢ D � 1 1 � 0 � B

E ¢ A � C

F ¢ C � A

F ¢ B � D

d. We will first map the function and cover the function with
product terms on one layer.

Those product terms are shown in the first column. We then
perform the consensus algorithm, which creates some new
terms (in the second column) and eliminates others. There are
a total of nine terms.

0 0 – – 0 0 0 1 – –

0 – 1 – 1 0 1 – – 1

0 1 0 – – 0 – 0 – 0

1 1 1 – – – 1 1 – 1

1 – 1 – 1 – – 1 – 1

1 1 – 1 0 – 1 0 1 0

00 01

0
a

1

11 10

00

01

11

10

b c

d e

1 1

11

11

1 1

1

1

1

1

00 01 11 10

00

01

11

10

b c

d e

1

1 1

11

11
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3. For each of the functions of Solved Problems 1 and 2, find all
minimum sum of product solutions (one solution for a, two for
each of the others).

a. The prime implicant table is

4.7 Solved Problems 231

√ √ √ √ √ √

$ 2 5 7 8 10 12 13 15

wx�z� 1 0 – 0 A 4 X X

wxy� 1 1 0 – B 4 X X

x�yz�★ – 0 1 0 C 4 X X

wy�z� 1 – 0 0 D 4 X X

xz★ – 1 – 1 E 3 X X X X

$ 8 12

wx�z� A 4 X

wxy� B 4 X

wy�z� D 4 X X

The 1’s that make two prime implicants essential, x�yz� and
xz, are shaded, and the minterms covered by them are
checked. The table then reduces to

Clearly, term D must be used; otherwise, two more terms
would be necessary. The solution becomes

f � x�yz� � xz � wy�z�

b. The prime implicant table is

$ 0 4 5 6 7 8 9 10 11 13 14 15

A 0 – 0 0 4 X X

B – 1 – 1 3 X X X X

C – 1 1 – 3 X X X X

D 1 0 – – 3 X X X X

E 1 – 1 – 3 X X X X

F 1 – – 1 3 X X X X

G – 0 0 0 4 X X

H 0 1 – – 3 X X X X

mar91647_c04_201_248.qxd  11/5/08  10:40 AM  Page 231



There are no essential prime implicants. The starting point
should be one of the columns in which there are only
two X’s. We will choose minterm 5, since both terms will
cover four 1’s (but we could have used minterm 0, 4, 5, 6, 8,
9, 10, 13, or 14). We will first try prime implicant B; then
we will try prime implicant H. If we choose B, the table
reduces to
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Row F is dominated by row D. If row D is chosen, the table
reduces to 

$ 0 4 6 14

A 0 – 0 0 4 X X

C – 1 1 – 3 X X

E 1 – 1 – 3 X

G – 0 0 0 4 X

H 0 1 – – 3 X X

At this point, the only way to cover the function with two
terms is to choose A and C, giving a solution of

f � bd � ab� � a�c�d� � bc

Notice that if the dominated term F had been chosen
instead of D, three additional terms would be required to
cover the function, since minterms 8 and 10 are not covered
by F.

√ √ √ √
$ 0 4 6 8 9 10 11 14

A 0 – 0 0 4 X X

C – 1 1 – 3 X X

D 1 0 – –★ 3 X X X X

E 1 – 1 – 3 X X X

F 1 – – 1 3 X X

G – 0 0 0 4 X X

H 0 1 – – 3 X X
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Now, we must consider what happens if we choose term
H instead of B. The resulting table is
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√ √ √ √ √ √

$ 0 8 9 10 11 13 14 15

A 0 – 0 0 4 X

B – 1 – 1 3 X X

C – 1 1 – 3 X X

D 1 0 – – 3 X X X X

E 1 – 1 –★ 3 X X X X

F 1 – – 1 3 X X X X

G – 0 0 0★ 4 X X

√ √ √ √
$ 1 3 5 6 7 13 14

0 – – 1★ A 3 X X X X

1 – – 0 B 3 X

– 1 0 1 C 4 X X

– 1 1 0 D 4 X X

1 1 0 – E 4 X

0 1 1 – F 4 X X

Prime implicant A is dominated by G, and C is dominated by
E. Eliminating them, we must choose G and E, leaving only
minterms 9 and 13 uncovered. They can both be covered by
term F. No other solution (that used H) requires as few as
four terms (even those using one of the dominated terms, A
or C). The resulting function, the second equally good
solution, is

f � a�b � ac � b�c�d� � ad

c. The prime implicant table is

Note that there are no columns for the don’t cares; they do not
need to be covered. There is one essential prime implicant,
A(W�Z), and the table can then be reduced to
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√ √ √ √ √ √ √ √ √ √
0 2 4 5 6 7 8 9 10 11 13 15 21 23 26 28 29 30 31

– 1 0 1 0 A 4 X X

1 1 – 1 0 B 4 X X

0 0 – – 0 C 3 X X X X

0 – 0 – 0 D 3 X X X X

0 0 1 – – E 3 X X X X

0 1 0 – – F 3 X X X X

0 1 – – 1 G 3 X X X X

1 1 1 – – H★ 3 X X X X

– – 1 – 1 J★ 2 X X X X X X X X

A study of the reduced table reveals that row D must be
chosen; otherwise, it would take both terms B and F to cover
minterms 6 and 14. That leaves us two choices to conclude
the cover, C or E. Thus, the two solutions to the problem are

F � W�Z � XYZ� � XY�Z

F � W�Z � XYZ� � WXY�

d. The prime implicant table is

0 2 4 6 8 9 10 11 26

– 1 0 1 0 A 4 X X

1 1 – 1 0 B 4 X

0 0 – – 0 C 3 X X X X

0 – 0 – 0 D 3 X X X X

0 0 1 – – E 3 X X

0 1 0 – – F 3 X X X X

0 1 – – 1 G 3 X X

The two essential prime implicants are H and J. The table is
then reduced to

$ 6 13 14

1 – – 0 B 3 X

– 1 0 1 C 4 X

– 1 1 0 D 4 X X

1 1 0 – E 4 X

0 1 1 – F 4 X
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At this point, there are nine minterms left to be covered. Either
A or B must be used for m26. C and F must be used to cover the
remaining 1’s, producing the solutions

f � abc � ce � a�b�e� � a�bc� � bc�de�
� abc � ce � a�b�e� � a�bc� � abde'

4. For each of the sets of functions, find all terms that may be used
in a minimum two-level AND/OR gate (or NAND gate) solution
using the Quine-McCluskey method.

a. f(a, b, c, d) � �m(0, 1, 2, 3, 5, 7, 8, 10, 11, 13)
g(a, b, c, d) � �m(0, 2, 5, 8, 10, 11, 13, 15)

b. f(w, x, y, z) � �m(5, 7, 9, 11, 13, 15)
g(w, x, y, z) � �m(1, 5, 7, 9, 10, 11, 14)

c. f(a, b, c, d) � �m(0, 3, 5, 7) � �d(10, 11, 12, 13, 14, 15)
g(a, b, c, d) � �m(0, 5, 6, 7, 8) � �d(10, 11, 12, 13, 14, 15)

d. f(a, b, c, d) � �m(0, 2, 3, 8, 9, 10, 11, 12, 13, 15)
g(a, b, c, d) � �m(3, 5, 7, 12, 13, 15)
h(a, b, c, d) � �m(0, 2, 3, 4, 6, 8, 10, 14)

a. We first form a column of minterms, organized by the number
of 1’s in each term. We then produce a second column of
three-literal terms and a third of two-literal terms.

0 0 0 0 – – √ 0 0 0 – – 0 √ 0 0 – – – 0
--------------- 0 0 – 0 – – √ – 0 – 0 – –
0 0 0 1 – 0 √ – 0 0 0 – – √ ---------------
0 0 1 0 – – √ --------------- 0 – – 1 – 0
1 0 0 0 – – √ 0 0 – 1 – 0  √ – 0 1 – – 0
--------------- 0 – 0 1 – 0 √
0 0 1 1 – 0 √ 0 0 1 – – 0 √
0 1 0 1 – – √ – 0 1 0 – – √
1 0 1 0 – – √ 1 0 – 0 – – √
--------------- ---------------
0 1 1 1 – 0 √ 0 – 1 1 – 0 √

1 0 1 1 – – √ – 0 1 1 – 0 √
1 1 0 1 – – √ 0 1 – 1 – 0 √
--------------- – 1 0 1 – –
1 1 1 1 0 – √ 1 0 1 – – –

---------------
1 – 1 1 0 –
1 1 – 1 0 –

The unshared prime implicants of f are a�b�, a�d, and b�c; those
of g are acd and abd. The shared terms are b�d�, bc�d, and ab�c.
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b.
0 0 0 1 0 – √ 0 – 0 1 0 – – 1 – 1 – 0

--------------- – 0 0 1 0 – 1 – – 1 – 0

0 1 0 1 – – √ ---------------

1 0 0 1 – – √ 0 1 – 1 – –

1 0 1 0 0 – √ – 1 0 1 – 0 √

--------------- 1 0 – 1 – –

0 1 1 1 – –  √ 1 – 0 1 – 0 √

1 0 1 1 – – √ 1 0 1 – 0 –

1 1 0 1 – 0 √ 1 – 1 0 0 –

1 1 1 0 0 – √ ---------------

--------------- – 1 1 1 – 0 √

1 1 1 1 – 0 √ 1 – 1 1 – 0 √

1 1 – 1 – 0 √

The prime implicants of f are xz and wz; those of g are w�y�z,
x�y�z, wx�y, and wyz�. The terms that can be shared are w�xz
and wx�z.

c. We must include all of the don’t cares

0 0 0 0 – – – 0 0 0 0 – 1 – – 0 0 –

--------------- --------------- ---------------

1 0 0 0 0 – √ 1 0 – 0 0 – √ – – 1 1 – 0

--------------- 1 – 0 0 0 – √ – 1 – 1 – –

0 0 1 1 – 0 √ --------------- – 1 1 – 0 –

0 1 0 1 – – √ 0 – 1 1 – 0 √ 1 – 1 – – –

0 1 1 0 0 – √ – 0 1 1 – 0 √ 1 1 – – – –

1 0 1 0 – – √ 0 1 – 1 – – √

1 1 0 0 – – √ – 1 0 1 – – √

--------------- 0 1 1 – 0 – √

0 1 1 1 – – √ – 1 1 0 0 – √

1 0 1 1 – – √ 1 0 1 – – – √

1 1 0 1 – – √ 1 – 1 0 – – √

1 1 1 0 – – √ 1 1 0 – – – √

--------------- 1 1 – 0 – – √

1 1 1 1 – – √ ---------------

– 1 1 1 – – √

1 – 1 1 – – √

1 1 – 1 – – √

1 1 1 – – – √
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The unshared prime implicant of f is cd; those of g are
b�c�d�, ad�, and bc. The shared terms are a�b�c�d�, bd, ac,
and ab.

d. The tag has three terms

0 0 0 0 – 0 – √ 0 0 – 0 – 0 – √ 0 – – 0 0 0 –

----------------- 0 – 0 0 0 0 – √ – 0 – 0 – 0 –

0 0 1 0 – 0 – √ – 0 0 0 – 0 – √ -----------------

0 1 0 0 0 0 – √ ----------------- – 0 1 – – 0 0

1 0 0 0 – 0 – √ 0 0 1 – – 0 – – – 1 0 0 0 –

----------------- 0 – 1 0 0 0 –  √ 1 0 – – – 0 0

0 0 1 1 – – – – 0 1 0 – 0 – √ 1 – 0 – – 0 0

0 1 0 1 0 – 0 √ 0 1 – 0 0 0 – √ -----------------

0 1 1 0 0 0 – √ 1 0 0 – – 0 0 √ – 1 – 1 0 – 0

1 0 0 1 – 0 0 √ 1 0 – 0 – 0 – √ 1 – – 1 – 0 0

1 0 1 0 – 0 – √ 1 – 0 0 – 0 0 √

1 1 0 0 – – 0 √ -----------------

----------------- 0 – 1 1 0 – 0

0 1 1 1 0 – 0  √ – 0 1 1 – 0 0  √

1 0 1 1 – 0 0 √ 0 1 – 1 0 – 0 √

1 1 0 1 – – 0 √ – 1 0 1 0 – 0 √

1 1 1 0 0 0 – √ – 1 1 0 0 0 – √

----------------- 1 0 – 1 – 0 0 √

1 1 1 1 – – 0 √ 1 – 0 1 – 0 0 √

1 0 1 – – 0 0 √

1 – 1 0 0 0 – √

1 1 0 – – – 0 

-----------------

– 1 1 1 0 – 0 √

1 – 1 1 – 0 0 √

1 1 – 1 – – 0

The unshared prime implicants of f are b�c, ab�, ac�, and ad;
those of g are a�bc and bd; those of h are a�d� and cd�. Terms
shared by f and g are abc� and abd; those shared by f and h
are a�b�c and b�d�; the one shared by all three functions
is a�b�cd.

5. Repeat Solved Problem 4 using iterated consensus.
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We will start by finding all of the prime implicants of the
product, fg, and then those that are prime implicants of the
individual functions but not of the product. (Of course, we
will add the appropriate tag section, – if it is included in the
function, 0 if it is not.)

A – 0 – 0 – –

B 1 0 1 – – –

C – 1 0 1 – –

D 0 0 – – – 0

E 0 – – 1 – 0

F 1 1 – 1 0 –

G 1 – 1 1 0 –

After “completing” the list, it is a good idea to try the
consensus of all pairs of terms, in case we missed one. In this
case, we did.

H – 0 1 – – 0 D ¢ B

Note that in trying the consensus, there is no need to take the
consensus of F or G with D or E (or H) since the tag would be
0 0, indicating that the term is in neither function.

The unshared prime implicants of f are a�b�, a�d, and
b�c; those of g are abd and acd. The terms that can be shared
are b�d�, ab�c, and bc�d.

b. We will solve this problem by starting with minterms and
finding all of the prime implicants.
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a. The maps of f, g, and fg are shown below

00 01 11 10

00

01

11

10

a b

c d

111

1

1

11

f g f g

1 1

1

00 01 11 10

00

01

11

10

a b

c d

11

11

11

1 1

00 01 11 10

00

01

11

10

a b

c d

1 1

1 1

1 1

1
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1 0 0 0 1 0 – A 0 – 0 1 0 – 5 ¢ 1 � 1

5 0 1 0 1 – – B 0 1 – 1 – – 7 ¢ 5 � 7, 5

7 0 1 1 1 – – C 1 0 1 – 0 – 11 ¢ 10 � 10

9 1 0 0 1 – – D 1 0 – 1 – – 11 ¢ 9 � 11, 9

10 1 0 1 0 0 – E 1 1 – 1 – 0 15 ¢ 13 � 15, 13

11 1 0 1 1 – – F 1 – 1 0 0 – C ¢ 14 � 14

13 1 1 0 1 – 0 G – 0 0 1 0 – D ¢ A

14 1 1 1 0 0 – H 1 – – 1 – 0 E ¢ D � E

15 1 1 1 1 – 0 J – 1 – 1 – 0 H ¢ B

Each of the new terms that is created by consensus is shown;
all of the original terms and one of the groups of 2 are
included in a larger prime implicant. 

The unshared prime implicants of f are wz and xz; those
of g are w�y�z, wx�y, wyz�, and x�y�z. The product terms that
can be shared are w�xz and wx�z.

c. In finding the prime implicants, we must treat all don’t cares
as 1’s. We first map f, g, and fg, converting all X’s to 1’s to find
the prime implicants. (Once again, it is a good idea to check
that none have been missed by using the iterated consensus
algorithm on the result.)
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The unshared prime implicant of f is cd; those of g are bc,
ad�, and b�c�d�. The shared terms are a�b�c�d�, bd, ab,
and ac.

d. We first map the functions and all the products of pairs of
functions. (We do not need a separate map for fgh, since it
equals gh.)

00 01 11 10

00

01

11

10

a b

c d

1

1 1

1

f g f g

1 1 1 1

11

00 01 11 10

00

01

11

10

a b

c d

1

11 1

111

1

1 1 1

00 01 11 10

00

01

11

10

a b

c d

1

1 11

1 1

1

11
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We started with the products and listed the circled terms
(A through E) and then listed the prime implicants of the
individual functions (F through M). When we finished, we
applied the iterated consensus algorithm and found that we
had missed term N (circled in brown),

A 0 0 1 1 – – –

B 1 1 0 – – – 0

C 1 1 – 1 – – 0

D 0 0 1 – – 0 –

E – 0 – 0 – 0 –

F – 0 1 – – 0 0

G 1 0 – – – 0 0

H 1 – 0 – – 0 0

J 1 – – 1 – 0 0

K – 1 – 1 0 – 0

L – – 1 0 0 0 –

M 0 – – 0 0 0 –

N 0 – 1 1 0 – 0
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00 01 11 10

00

01

11

10

a b

c d

1

1

1

1

f g h

1 1 1

1

00 01 11 10

00

01

11

10

a b

c d

11

1

1

1

00 01 11 10

00

01

11

10

a b

c d

1

1

11

1111

00 01 11 10

00

01

11

10

a b

c d

1

1

f g f h g h � f g h

1 1

00 01 11 10

00

01

11

10

a b

c d

1 1

1

1

1

00 01 11 10

00
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f g

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √
0 1 2 3 5 7 8 10 11 13 0 2 5 8 10 11 13 15

– 0 – 0★ 3 A X X X X X X X X

1 0 1 – 4 B X X X X

– 1 0 1★ 4 C X X X X

0 0 – – 3 D X X X X

0 – – 1★ 3 E X X X X

1 1 – 1 4 F X X

1 – 1 1 4 G X X

– 0 1 – 3 H X X X X
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Terms A and C are essential prime implicants of both f and g,
and E is an essential prime implicant of f. The reduced table
thus becomes

Term G completes the cover of g and term H would then
be used for f since it is less expensive than B. The other
option, using B for both f and g, and then using either F or
G to cover m15 in g, would cost an extra input. The solution

6. For each of the sets of functions of Solved Problems 4 
and 5, find a set of minimum sum of products expressions,
corresponding to a two-level AND/OR gate (or NAND gate)
system (a. 1 solution, b. 6 solutions, c. 2 solutions,
d. 2 solutions).

a. The prime implicant table is

f g

11 11 15

1 0 1 – 4 B X X

0 0 – – 3 D

1 1 – 1 4 F X

1 – 1 1 4 G X X

– 0 1 – 3 H X
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The two essential prime implicants of g, w�xz and wyz�, are
shown. The table is then reduced (and the cost of B is made 1,
since the AND gate was already built).
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We have two sharing possibilities. We could share B, using it
with G to cover f. Then, we have three choices for g: A + D,
F + D, and F + C, costing 1 for B, 3 for G, and 8 for any of the
pair of terms covering g, costing a total of 12. If not, we could
choose D to share. In that case, we could cover f with one
more term, H, and cover g with either A or F. That would cost
5 for D, 3 for H, and 4 for A or F, also a total of 12.  

thus becomes

f � b�d� � bc�d � a�d � b�c

g � b�d� � bc�d � acd

b. The prime implicant table is

f g

√ √ √ √
5 7 9 11 13 15 1 5 7 9 10 11 14

0 – 0 1 A 4 X X

0 1 – 1★ B 4 X X X X

1 0 1 – C 4 X X

1 0 – 1 D 4 X X X X

1 – 1 0★ E 4 X X

– 0 0 1 F 4 X X

1 – – 1 G 3 X X X X

– 1 – 1 H 3 X X X X

f g

5 7 9 11 13 15 1 9 11

0 – 0 1 A 4 X

0 1 – 1 B 1 X X

1 0 1 – C 4 X

1 0 – 1 D 4 X X X X

– 0 0 1 F 4 X X

1 – – 1 G 3 X X X X

– 1 – 1 H 3 X X X X

mar91647_c04_201_248.qxd  11/5/08  10:40 AM  Page 242



The three solutions that share B, w�x z, are

f1 � w�xz � wz
g1 � w�xz � wyz� � w�y�z � wx�z
g2 � w�xz � wyz� � wx�y � x�y�z
g3 � w�xz � wyz� � wx�z � x�y�z

The two that share D, wx�z, are

f2 � wx�z � xz
g4 � w�xz � wyz� � wx�z � w�y�z
g5 � w�xz � wyz� � wx�z � x�y�z

c. This produces the following prime implicant table.
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Notice that prime implicants A and C cover no minterms;
they are both groups of four don’t cares. The function f is
covered by essential prime implicants; only minterms 0 and
8 of g are left. The reduced prime implicant table (for g)
becomes

f g

√ √ √ √ √ √ √
0 3 5 7 0 5 6 7 8

1 1 – – A 3

– 1 – 1★ B 3 X X X X

1 – 1 – C 3

0 0 0 0★ D 5 X X

– – 1 1★ E 3 X X

– 0 0 0 F 4 X X

– 1 1 –★ G 3 X X

1 – – 0 H 3 X

g

0 8

0 0 0 0 D 1 X

– 0 0 0 F 4 X X

1 – – 0 H 3 X

There are two equally good solutions. Prime implicant F
covers both minterms, but requires one AND gate and four
inputs. Prime implicant D was an essential prime implicant of
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f and thus does not require a new AND gate and only one gate
input. Thus, D and H also produce a solution that requires one
new gate and four inputs. The two solutions are

f � bd � a�b�c�d� � cd

and

g1 � bd � bc � b�c�d�

or

g2 � bd � bc � a�b�c�d� � ad�

d. When we map the various products and find all of the prime
implicants, we come up with the following prime implicant
table. Note that because of its size, we have broken it into
two parts. We show all of the prime implicants in each part 
of the table, although some of the rows are empty in one
part of the table. After finding essential prime implicants,
we will be able to combine the tables and complete the
problem.
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f

√ √ √ √
0 2 3 8 9 10 11 12 13 15

0 0 1 1 A 5 X

1 1 0 – B 4 X X

1 1 – 1 C 4 X X

– 0 – 0★ D 3 X X X X

0 0 1 – E 4 X X

1 0 – – F 3 X X X X

1 – 0 – G 3 X X X X

1 – – 1 H 3 X X X X

– 0 1 – J 3 X X X X

– 1 – 1 K 3

0 – 1 1 L 4

0 – – 0 M 3

– – 1 0 N 3
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g h

√ √ √ √ √ √ √ √ √ √ √ √
3 5 7 12 13 15 0 2 3 4 6 8 10 14

0 0 1 1 A 5 X X

1 1 0 –★ B 4 X X

1 1 – 1 C 4 X X

– 0 – 0★ D 3 X X X X

0 0 1 – E 4 X X

1 0 – – F 3

1 – 0 – G 3

1 – – 1 H 3

– 0 1 – J 3

– 1 – 1★ K 3 X X X X

0 – 1 1 L 4 X X

0 – – 0★ M 3 X X X X

– – 1 0★ N 3 X X X X

The table can be reduced, and the two halves combined as
shown below. Note that all of g and h other than minterm 3
have already been covered and that the cost of prime
implicant B has been reduced to 1, since it is an essential
prime implicant of g.

f g h

√ √ √ √
3 9 11 12 13 15 3 3

0 0 1 1 A 5 X X X

1 1 0 – B 1 X X

1 1 – 1 C 4 X X

0 0 1 – E 4 X X

1 0 – – F 3 X X

1 – 0 – G 3 X X X

1 – – 1 H 3 X X X X

– 0 1 – J 3 X X

0 – 1 1 L 4 X

Clearly, prime implicant A should be used to cover m3 in both
g and h (at a cost of 5 � 1 � 6), since otherwise we would
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need both E and L at a cost of 8. For f, we can eliminate prime
implicant C, since that row is dominated by row H and costs
more. That requires us to choose H to cover m15. Once H is
chosen, all that remains to be covered are m3 and m12, which
can be covered by A and B (respectively), each at a cost of 1.
(J or G could have been used, but they would cost 3 each.) The
final functions are

f � b�d� � ad � a�b�cd � abc�

g � abc� � bd � a�b�cd

h � b�d� � a�d� � cd� � a�b�cd

4.8 EXERCISES*

1. For each of the following functions, find all prime implicants using
the Quine-McCluskey method.

a. f(a, b, c) � �m(1, 2, 3, 6, 7)
★ b. g(w, x, y) � �m(0, 1, 5, 6, 7)

c. g(w, x, y, z) � �m(2, 3, 6, 7, 8, 10, 11, 12, 13, 15)
★ d. h(p, q, r, s) � �m(0, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15)

e. f(a, b, c, d) � �m(5, 7, 9, 11, 13, 14) � �d(2, 6, 10, 12, 15)
★ f. f(a, b, c, d) � �m(0, 2, 4, 5, 6, 7, 8, 9, 10, 14) � �d(3, 13)

g. G(V, W, X, Y, Z) � �m(0, 1, 4, 5, 8, 9, 10, 15, 16, 18, 19,
20, 24, 26, 28, 31)

★ h. H(V, W, X, Y, Z) � �m(0, 1, 2, 3, 5, 7, 10, 11, 14, 15,
16, 18, 24, 25, 28, 29, 31)

2. For the functions of Exercise 1, find all prime implicants using
iterated consensus.

3. For the functions of Exercises 1 and 2, find all minimum sum of
products expressions (b. 2 solutions, c. 2 solutions, d. 4 solutions,
e. 4 solutions, f. 3 solutions, h. 2 solutions, all others, 1 solution).

4. For the following sets of functions, find all product terms that
could be used in a minimum two-level AND/OR system using the
Quine-McCluskey algorithm.

a. f(a, b, c, d) � �m(5, 8, 9, 12, 13, 14)

g(a, b, c, d) � �m(1, 3, 5, 8, 9, 10)
★ b. F(W, X, Y, Z) � �m(1, 5, 7, 8, 10, 11, 12, 14, 15)

G(W, X, Y, Z) � �m(0, 1, 4, 6, 7, 8, 12)
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*Each of the functions and sets of functions was included in the exercises of Chapter 3.
Other exercises from that chapter could also be used here.
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c. f(a, b, c, d) � �m(1, 3, 5, 7, 8, 9, 10)

g(a, b, c, d) � �m(0, 2, 4, 5, 6, 8, 10, 11, 12)

h(a, b, c, d) � �m(1, 2, 3, 5, 7, 10, 12, 13, 14, 15)
★ d. f(a, b, c, d) � �m(0, 3, 4, 5, 7, 8, 12, 13, 15)

g(a, b, c, d) � �m(1, 5, 7, 8, 9, 10, 11, 13, 14, 15)

h(a, b, c, d) � �m(1, 2, 4, 5, 7, 10, 13, 14, 15)

5. For each of the sets of functions of Solved Problem 4, find all
product terms that could be used in a minimum two-level AND/OR
system using iterated consensus.

6. For each of the sets of functions of Solved Problems 4 and 5, find a
set of minimum sum of products expressions, corresponding to a
two-level AND/OR gate (or NAND gate) system. 

a. 3 solutions, 8 gates, 25 inputs 

b. 8 gates, 23 inputs 

c. 2 solutions, 12 gates, 33 inputs

d. 2 solutions, 11 gates, 33 inputs

4.9 CHAPTER 4 TEST (50 MINUTES)*

1. For the following function, find all of the prime implicants using 

a. the Quine-McCluskey method.

b. iterated consensus.

f(w, x, y, z) � �m(0, 2, 3, 6, 8, 12, 15) � �d (1, 5)

2. For the following function,

g(a, b, c, d) � �m(3, 4, 5, 6, 7, 8, 9, 12, 13, 14)

we have found the complete list of prime implicants

a�cd bd'

a�b ac'

bc'

Find both of the minimum sum of products solutions.

3. For the following set of functions, find all terms that can be used in
a minimum two-level AND/OR system using 

a. the Quine-McCluskey method.

b. iterated consensus.

f(w, x, y, z) � �m(1, 2, 5, 7, 10, 11, 13, 15)

g(w, x, y, z) � �m(0, 2, 3, 4, 5, 7, 8, 10, 11, 12)

*The timing assumes that the student will solve either 1a. or 1b. and either 3a. or 3b.
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4. For the following set of functions,

f(a, b, c, d) � �m(2, 3, 4, 6, 7) � �d(0, 1, 14, 15)
g(a, b, c, d) � �m(2, 3, 5, 7, 8, 10, 13) � �d(0, 1, 14, 15)

We found the possible shared terms: a�b�, a�cd, bcd, abc.

Other prime implicants of f are a�d�, a�c, bc.

Other prime implicants of g are a�d, b�d�, bd, acd�.

Find a set of minimum sum of products expressions, corresponding
to a two-level AND/OR gate (or NAND gate) system.
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C H A P T E R

5Designing 
Combinational 
Systems

Until now, we have concentrated on rather small systems—mostly
systems with five or fewer inputs and three or fewer outputs. In
this chapter, we want to expand our horizons. Large systems are

usually designed by breaking them up into smaller subsystems. Indeed,
these subsystems may need to be broken down still further.

In this chapter, we will first look at systems that consist of a number
of identical blocks. (These are sometimes referred to as iterative systems.)
Adders and other arithmetic functions are examples of this type of system.

Because signals in large systems pass through many layers of logic,
the small delay encountered as a signal passes through a single gate adds
up. We will use the design of a multibit adder to illustrate this.

Next, we will look at some common types of circuit—the binary
decoder and encoder, and the multiplexer. Each of these have many
applications in digital system design and are available commercially in a
variety of forms.

Another class of circuits used in the design of medium- and large-
size systems is gate arrays, sometimes referred to as programmable
logic devices (PLDs). As we will discuss in Chapter 7, some PLDs also
contain memory. Gate arrays consist of a set of AND gates and a set of
OR gates connected to form SOP expressions. The basic structure is
standard; some of the connections can be specified by the user. Gate
arrays are commonly available in three forms: read only memory (ROM),
programmable logic array (PLA), and programmable array logic (PAL).

We will also look at issues of testing and simulation of combina-
tional circuits.

We will then look at the design of a decimal adder and a driver for a
seven-segment display. We will use a variety of the techniques of this
chapter and Chapter 3 in these designs. A large number of exercises
(Exercises 20–25) fall into this category.
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250 Chapter 5 Designing Combinational Systems

5.1 ITERATIVE SYSTEMS
We will first look at adders as an example of a system that can be imple-
mented with multiple copies of a smaller circuit. We will use the adder to
illustrate the issue of delay in multiple-level circuits and then discuss
other iterative circuits.

When we add two numbers by hand, we add the two least significant
digits (plus possibly a carry-in) to produce one bit of the sum and a 
carry to the next bit. Such a one-bit adder (referred to as a full adder) is
defined as CE3 and was designed with NAND gates in Example 2.34 
(Section 2.8). If we wish to build an n-bit adder, we need only connect n
of these. A 4-bit version is shown in Figure 5.1.

Full
Adder

Full
Adder

Full
Adder

Full
Adder

a4 b4 a3 b3 b2a2

c1

c1 cina1

s1s2s3s4cout

b1

Figure 5.1 A 4-bit adder.

A

F

X

B

C

(a) (b)

A

B

X

C

F

1 2 4 53

5.1.1 Delay in Combinational Logic Circuits

When the input to a gate changes, the output of that gate does not change
instantaneously, but there is a small delay, �. If the output of one gate is
used as the input to another, the delays add. A block diagram of a simple
circuit is shown in Figure 5.2a and the timing diagram associated with it
in Figure 5.2b.

Figure 5.2 Illustration of gate delay.
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When a change in C causes F to change, F changes one delay time,
�, later, as shown at time 1. If A or B changes, then point X changes one
delay time later, and F changes one time after that, as indicated at time 2.
At time 3, a change in C does not cause a change in F, and at time 4, a
change in B causes a change in X, but not the output. Finally, at time 5,
both B and C change simultaneously. The output F goes to 0 briefly when
the change in C is recognized (� after the change in C), and then F returns
to 1 when the change in B is propagated (2� after the change in B). This
situation is known as a hazard or a glitch.

The output is stable after the longest delay path. We are not usually
interested in the output until it is stable. In this case, that time is 2�. As
a more complex example of delay, we will consider the full adder, the
system of CE3. It adds two 1-bit numbers and a carry input from the next
less significant digit and produces a sum bit and a carry out to the next
more significant digit.

We will now look at the time it takes for the result of an addition to
be available at the two outputs of the full adder. We will assume that all
inputs are available at the same time. Figure 5.3 repeats the adder circuit
of Example 2.34 (from Section 2.8), with the delay (from when inputs a
and b change) indicated at various points in the circuit. Of course, if two
inputs to a gate change at different times, the output may change as late
as � after the last input change.

As shown, the delay from the time inputs a or b change to the time
that the sum is available is 6� and to the time that the carry-out is avail-
able is 5�. If a and b are established,* the delay from the carry-in to the

5.1 Iterative Systems 251

*All of the bits of the two multidigit numbers to be added are normally available at one time.
Thus, after the least significant digit, all of the a’s and b’s are established before cin arrives.

a

b s

cin

cout

�

2�

3�

4�

5�

6�

5�

Figure 5.3 Delay through a 1-bit adder.
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carry-out is only 2�, since cin passes through only two gates on the way
to cout, as shown in the brown path. This latter time is most critical, as we
will see shortly. (Also, the delay from carry-in to sum is 3�.)

We can build an n-bit adder with n copies of the full adder; as shown
in Figure 5.1. The total time required is calculated as the delay from the
inputs to cout (for the least significant bit) plus n � 2 times the delay from
cin to cout (for the middle full adders), plus the longer of the delay from cin

to cout or from cin to s (for the most significant bit). For the multilevel
adder, that equals 5� � 2(n � 2)� � 3� � (2n � 4)�. For a 64-bit
adder, the delay would be 132�.

5.1.2 Adders

As indicated in the previous section, one approach to building an n-bit
adder is to connect together n 1-bit adders. This is referred to as a carry-
ripple adder. The time for the output of the adder to become stable may
be as large as (2n � 4)�. It does not always take that long for all the out-
puts to be set, because, for any bit, if ai and bi are both 1, then a carry-out
is always 1 (independent of the carry-in from lower order bits) and if ai

and bi are both 0, then a carry-out is always 0.
To speed this up, several approaches have been attempted. One

approach is to implement a multibit adder with an SOP expression. After
all, an n-bit adder (with a carry-in to the least significant bit) is just a 
2n � 1 variable problem. In theory, we can construct a truth table for that
and get an SOP (or POS) expression.

The truth table for a 2-bit adder is shown in Table 5.1, where bit 1 is
the low order bit. This can be implemented by an SOP expression. The
(five-variable) maps are shown in Map 5.1. The prime implicants are not
circled because that would make the map unreadably cluttered.

The minimum SOP expressions are

cout � a2b2 � a1b1a2 � a1b1b2 � cinb1b2 � cinb1a2 � cina1b2

� cina1a2

s2 � a1b1a2�b2� � a1b1a2b2 � cin� a1�a2�b2 � cin� a1�a2b2�

� cin� b1�a2�b2 � cin� b1�a2b2� � a1�b1�a2b2�

� a1�b1�a2�b2 � cinb1a2�b2� � cinb1a2b2

� cina1a2�b2� � cina1a2b2

s1 � cin� a1�b1 � cin� a1b1� � cina1�b1� � cina1b1

The equations are very complex, requiring 23 terms with 80 literals. A
two-level solution would require a 12-input gate for s1. Clearly, we could
repeat this process for a 3-bit or 4-bit adder, but the algebra gets very
complex, and the number of terms increases drastically. (We do not have
seven- or nine-variable maps; other methods would work, although it

252 Chapter 5 Designing Combinational Systems
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would be a lengthy process by hand.) We could also manipulate the
algebra to produce multilevel solutions with fewer large gates, but that
would increase the delay. Another problem that we would encounter in
that implementation in the real world is that there is a limitation on the
number of inputs (called fan-in) for a gate. Gates with 12 inputs may not
be practical or may encounter delays of greater than �.

For the 2-bit adder, cout can be implemented with two-level logic
(with a maximum fan-in of seven). Thus, the delay from carry-in to
carry-out of every two bits is only 2� (other than the first 2 and the last
2 bits) producing a total delay of

2� � 2(n�2 � 2)� � 3� � (n � 1)�

about half that of the previous solution.
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Table 5.1 Two-bit adder truth table.

a2 b2 a1 b1 cin cout s2 s1

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0
0 0 1 1 0 0 1 0
0 0 1 1 1 0 1 1
0 1 0 0 0 0 1 0
0 1 0 0 1 0 1 1
0 1 0 1 0 0 1 1
0 1 0 1 1 1 0 0
0 1 1 0 0 0 1 1
0 1 1 0 1 1 0 0
0 1 1 1 0 1 0 0
0 1 1 1 1 1 0 1
1 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 0 0 1 1
1 0 0 1 1 1 0 0
1 0 1 0 0 0 1 1
1 0 1 0 1 1 0 0
1 0 1 1 0 1 0 0
1 0 1 1 1 1 0 0
1 1 0 0 0 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 0 1 0 1
1 1 0 1 1 1 1 0
1 1 1 0 0 1 0 1
1 1 1 0 1 1 1 0
1 1 1 1 0 1 1 0
1 1 1 1 1 1 1 1
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There have been some compromises, where the carry is imple-
mented with a two-level circuit and the sum is a less complex multilevel
circuit. This only increases the delay by a few � (for the last sum), inde-
pendent of n.

There are commercially available 4-bit adders: the 7483, 7483A,
and 74283. Each is implemented differently, with a three-level circuit for
the carry-out. The 7483A and 74283 differ only in pin connections; each

254 Chapter 5 Designing Combinational Systems

00 01 11 10

00

01

11

10

1

1

1

1

00 01 11 10

00

01

11

10 1

1

11

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

1 1

1

1

00 01 11 10

00

01

11

10

1

11

1

1

1

1

1

00 01 11 10

00

01

11

10

1

1

1

00 01 11 10

00

01

11

10

11

1

1

1

1

1

1

11

1

1

1

1

1 1

1

cinb1

b2a1

cinb1

b2a1

cinb1
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cinb1
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cinb1
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s1
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cout

b2a1

cinb1

b2a1

0 1

0 1

0 1

Map 5.1 2-bit adder.
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produces the sum with a four-level circuit, using a mixture of NAND,
NOR, AND, NOT, and Exclusive-OR gates. Thus, the delay from 
carry-in to carry-out is 3� for each four bits, producing a total delay of
(3/4 n � 1)� (an extra delay for the last sum). The 7483 ripples the carry
internally (although it has a three-level chip carry out); it uses an eight-
level circuit for s4.

When larger adders are needed, these 4-bit adders can be cascaded.
For example, a 12-bit adder, using three 4-bit adders (such as the one of
Figure 5.1 or the 7483) is shown in Figure 5.4, where each block repre-
sents a 4-bit adder.
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*For a more detailed discussion of carry-look-ahead adders, see Brown and Vranesic,
Fundamentals of Digital Logic with VHDL Design, 3rd ed., McGraw-Hill, 2009.

Figure 5.4 Cascading 4-bit adders.

a4

cout

a3 a2 a1 b4

a12 b12

b3 b2 b1

s4

s12 s1

s3 s2 s1

cin a4

cout

a3 a2 a1 b4 b3 b2 b1

s4 s3 s2 s1

cin a4

cout

a3 a2 a1 b4 b3 b2 b1

a1 b1

s4 s3 s2 s1

cin

Still another approach is to build a carry-look-ahead adder. Each
stage of the adder produces two outputs: a carry generate signal, g, and a
carry propagate signal, p. The generate signal is 1 if that stage of the
adder has a carry-out of 1, whether or not there was a carry-in. The prop-
agate signal is 1 if that state produces a carry-out of 1 if the carry-in is 1.
For a 1-bit adder,

g � ab p � a � b

We could build a three-level circuit for the carry-out of any stage. For
example, the carry-out of the 4-bit adder we discussed earlier would be

cout � g4 � p4g3 � p4 p3g2 � p4 p3 p2g1 � p4 p3p2p1cin

The carry-out is 1 if the last bit generated a carry, or if it propagated a
carry and the stage below it generated a carry, and so forth. This could be
extended to any number of bits, limited only by the fan-in capabilities of
the logic. (In the 4-bit example, we required a fan-in of five.)*
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5.1.3 Subtractors and Adder/Subtractors

To do subtraction, we could develop the truth table for a 1-bit full sub-
tractor (See Solved Problem 3) and cascade as many of these as are
needed, producing a borrow-ripple subtractor.

Most of the time, when a subtractor is needed, an adder is needed as
well. In that case, we can take advantage of the approach to subtraction
we developed in Section 1.2.4. There, we complemented each bit of the
subtrahend and added 1.

To build such an adder/subtractor, we need a signal line that is 0 for
addition and 1 for subtraction. We will call that a�/s (short for add�/
subtract).* Remembering that

1 � x � x� and 0 � x � x

we can now build the circuit of Figure 5.5, using the 4-bit adder we have
already designed. There needs to be an Exclusive-OR on each input. The
carry-out from one stage is connected directly to the carry-in of the next.
The bi of all stages are connected through Exclusive-OR gates enabled
by a�/s.
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a4

cout

a3 a2 a1 b4 b3 b2 b1

b4

b3

b2

b1

s4 s3 s2 s1

cin
a�/s

*This notation is quite common. The a� indicates that a 0 on this line calls for addition
and the s implies that a 1 on this line calls for subtraction.

Figure 5.5 A 4-bit adder/subtractor.

5.1.4 Comparators

A common arithmetic requirement is to compare two numbers, produc-
ing an indication if they are equal or if one is larger than the other. The
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Exclusive-OR produces a 1 if the two inputs are unequal and a 0,
otherwise. Multibit numbers are unequal if any of the input pairs are
unequal. The circuit of Figure 5.6a shows a 4-bit comparator. The output
of the NOR is 1 if the numbers are equal. In Figure 5.6b, we accom-
plished the same thing with Exclusive-NORs and an AND gate.
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Figure 5.6 Two 4-bit comparators.

a4

a3

a2

a1

b4

b3

b2

b1

(a) Exclusive-OR

a � b

a4

a3

a2

a1

b4

b3

b2

b1

(b) Exclusive-NOR

a � b

These comparators can be extended to any number of bits.
To build a 4-bit comparator that will indicate greater than and less

than, as well as equal to (for unsigned numbers), we recognize that, start-
ing at the most significant bit (a4 and b4),

a �b if a4 � b4 or (a4 � b4 and a3 � b3) or (a4 � b4 and

a3 � b3 and a2 � b2) or (a4 � b4 and a3 � b3 and a2 � b2 and

a1 > b1)

a � b if a4 � b4 or (a4 � b4 and a3 � b3) or (a4 � b4 and

a3 � b3 and a2 � b2) or (a4 � b4 and a3 � b3 and a2 � b2 and

a1 � b1)

a � b if a4 � b4 and a3 � b3 and a2 � b2 and a1 � b1

This can, of course, be extended to any size, or 4-bit comparators can be
cascaded, passing on the three signals, greater than, less than, and equal
to. A typical bit of such a comparator is shown in Figure 5.7.

The 7485 is a 4-bit comparator, with cascading inputs and outputs.
Like the adder, the cascading signals go from lower order module to
higher order module (as opposed to the previous example). It thus com-
putes the greater output as 1 if the a inputs to this module are greater than
the b inputs or if they are equal and the cascading input is greater.
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ba

�

�

�

�

�

�

Figure 5.7 Typical bit of a comparator.

*Although 4 inputs have 16 combinations, some decoders only have 10 outputs.

5.2 BINARY DECODERS
A binary decoder is a device that, when activated, selects one of several
output lines, based on a coded input signal. Most commonly, the input is
an n-bit binary number, and there are up to 2n output lines.* (Some
decoders have an enable signal that activates it; we will get to that shortly.)

The truth table for a two-input (four-output) decoder is shown in
Table 5.2a. The inputs are treated as a binary number, and the output
selected is made active. In this example, the output is active high, that is,
the active output is 1 and the inactive ones are 0. (We will use the terms
active high and active low (active value is 0) to refer both to inputs and
outputs.) This decoder just consists of an AND gate for each output, plus
NOT gates to invert the inputs. (We assume only a and b are available,
not their complements.) The block diagram is given in Figure 5.8a. Out-
put 0 is just a�b�; output 1 is a�b; output 2 is ab�; and output 3 is ab. Each
output corresponds to one of the minterms for a two-variable function.

An active low output version of the decoder has one 0 corresponding
to the input combination; the remaining outputs are 1. The circuit and the
truth table describing it are shown in Figure 5.8b and Table 5.2b. The
AND gates in the previous circuit are just replaced by NANDs.

Most decoders also have one or more enable inputs. When such an
input is active, the decoder behaves as described. When it is inactive, all
of the outputs of the decoder are inactive. In most systems with a single

[SP 1, 2, 3, 4; EX 1, 2, 3, 4, 5, 6; LAB]
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enable input (not just decoders), that input is active low. The truth table,
a block diagram, and the circuit for an active high output decoder with an
active low enable input is shown in Figure 5.9. Note that the enable input
is inverted and connected to each AND gate. When EN� � 1, a 0 is on the
input to each AND gate, and, thus, all of the AND gate outputs are 0.
When EN� � 0, the additional input (beyond those for the circuit without
an enable) is 1, and, thus, the output selected by a and b is 1, as before.
Active low signals are often indicated with a circle (bubble), as shown in
the block diagram in Figure 5.9. In most commercial literature, such sig-
nals are labeled with an overbar (

——
EN ), rather than as EN�.

5.2 Binary Decoders 259

Figure 5.8a An active high decoder. Table 5.2a An active high
decoder.

a b 0 1 2 3

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Figure 5.8b An active low decoder. Table 5.2b An active low
decoder.

a b 0 1 2 3

0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

0

1

2

3

a b

0

1

2

3

a b
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Notice that we have shortened the truth table (from eight rows to
five) by the notation in the first row. That row says that if EN� � 1, we
don’t care what a and b are (X’s); all outputs are 0. That notation will
appear in many places where we discuss commercial circuits.

Larger decoders can be built; 3-input, 8-output as well as 4-input,
16-output decoders are commercially available. The limitation on size is
based on the number of connections to the integrated circuit chip that is
required. A 3-input decoder uses 11 logic connections (three inputs and
eight outputs) in addition to two power connections and one or more
enable inputs.

A truth table for the 74138 one of eight decoders is shown in 
Table 5.3 and the block diagram is shown in Figure 5.10. This chip has
active low outputs and three enable inputs (thus requiring a 16-pin chip),
one of which is active high (EN1) and the other two are active low. Only
when all three ENABLES are active, that is, when

EN1 � 1, EN2� � 0, and EN3� � 0

is the chip enabled. Otherwise, all outputs are inactive, that is, 1.
Notice that in this circuit (and this is true in many of the com-

mercial integrated circuit packages) the inputs are labeled C, B, A (with
C the high-order bit). In previous examples, we have made A the 

260 Chapter 5 Designing Combinational Systems

a

EN�

b

0
1
2
3

0

0

1

0

0

10

b

XX

a

0

0

0

2

0 0

0

3

1

EN �

0

1010 000

00 1 00 1

0 01 0 10 1

0

1

2

3

a bEN�

Figure 5.9 Decoder with enable.

Figure 5.10 The 74138
decoder.
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high-order bit. When using such a device, be sure which input has which
meaning.

Two other commercially available decoder chips are the 74154,
which is a four-input (plus two active low enables), 16-output decoder
(implemented in a 24-pin package), and the 74155, which contains
dual two-input, four-output decoders with common inputs and separate
enables (such that it can be used as a three-input, eight-output
decoder).

One application of decoders is to select one of many devices, each
of which has a unique address. The address is the input to the decoder;
one output is active, to select the one device that was addressed. Some-
times, there are more devices than can be selected with a single decoder.
We will consider two such examples.

5.2 Binary Decoders 261

EXAMPLE 5.1We have available 74138 decoders and wish to select one of 32 devices.
We would need four such decoders. Typically, one of these would select
one of the first eight addressed devices; another would select one of the
next eight, and so forth. Thus, if the address were given by bits a, b, c, d, e,
then c, d, e would be the inputs (to C, B, A in order) for each of the four
decoders, and a, b would be used to enable the appropriate one. Thus, the
first decoder would be enabled when a � b � 0, the second when a � 0
and b � 1, the third when a � 1 and b � 0, and the fourth when a � b � 1.
Since we have two active low enable inputs and one active high enable, only
the fourth decoder would require a NOT gate for the enable input assuming
a� and b� are not available. The circuit is shown next.

Table 5.3 The 74138 decoder.

Enables Inputs Outputs

EN1 EN2� EN3� C B A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 X X X X X 1 1 1 1 1 1 1 1
X 1 X X X X 1 1 1 1 1 1 1 1
X X 1 X X X 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1 1 1 1 1 1
1 0 0 0 0 1 1 0 1 1 1 1 1 1
1 0 0 0 1 0 1 1 0 1 1 1 1 1
1 0 0 0 1 1 1 1 1 0 1 1 1 1
1 0 0 1 0 0 1 1 1 1 0 1 1 1
1 0 0 1 0 1 1 1 1 1 1 0 1 1
1 0 0 1 1 0 1 1 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 1 1 1 1 0
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74138

EXAMPLE 5.2 Sometimes, an extra decoder is used to enable other decoders. If, for
example, we had a two-input, four-output active low decoder with an active
low enable, and needed to select one of 16 devices, we could use one
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Another application of decoders is the implementation of logic
functions. Each active high output of a decoder corresponds to a minterm
of that function. Thus, all we need is an OR gate connected to the appro-
priate outputs. With an active low output decoder, the OR gate is
replaced by a NAND (making a NAND-NAND circuit from an AND-
OR). With more than one such function of the same set of inputs, we still
only need one decoder, but one OR or NAND for each output function.

5.2 Binary Decoders 263

ac

EN�
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000

01

10

11

1
2
3

aa

EN�
bb

0

0

1
2
3

a

EN�
b

0
1
2
3

a

EN�
b

0
1
2
3

a

EN�
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0
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12
13
14
15

0
1
2
3

decoder to choose among four groups of devices, based on two of the
inputs. Most commonly, the first two (highest order) inputs are used, so that
the groupings are devices 0–3, 4–7, 8–11, and 12–15. Then, for each
group, one decoder is used to choose among the four devices in that
group. Such an arrangement is shown below.

f (a, b, c) � 	m(0, 2, 3, 7)

g(a, b, c) � 	m(1, 4, 6, 7)

It could be implemented with either of the decoder circuits shown here.

EXAMPLE 5.3
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g

f
Y0

Y1

Y2
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a
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c

g

Y0

Y1
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Y3

Y4

Y5

Y6

Y7

EXAMPLE 5.4 For the following functions, implement them using only the decoders shown
below and three NAND gates (with as many inputs as necessary). Try to do
it with no NAND gate larger than 8 inputs and only four decoders; it would
be even better to do it with only 4-input NANDs.

00 01 11 10

00

01

11

10

a b

f g h

c d

1 1 11 1

11

1 1 11

1 11

1

1 1 11

1 1 1

11

1 11

00 01 11 10

00

01

11

10

a b
c d 00 01 11 10

00

01

11

10

a b
c d

EN� a b 0 1 2 3

1 X X 1 1 1 1
0 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 0

If we use the layout of Example 5.2, we would need a 9-input NAND for f
and a 10-input gate for g. By using c and d for the inputs to the first 
decoder, we get the layout that follows.
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b
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EN �

EN �

EN �

0

1

2

3
EN �

EN �

c

d

This would still require the same set of NAND gates if we did not take
advantage of the fact that for f, minterms 3, 7, 11, and 15 are all included.
Thus, we can connect the enable input to the fourth decoder directly to the
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f output gate. In the next diagram, we can see that the same approach can
be taken for g and h. All NAND gates now have less than 8 inputs.  Also,
one of the decoders is not necessary (shown in dashed lines), since its out-
puts are not used. That is because the 01 row of the maps either have no
1’s or all 1’s.

4
8
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6

10

14

5
9
13

f

0
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0
1
2
3

EN �

0
1
2
3

EN �

0
1
2
3

EN �

c

d

a

b

0
1
2
3

EN �

0

3
7
11
15

0
1
2
3

EN �

g

h

To implement this with only 4-input NAND gates, we must take a different
approach. The next set of maps shows several groups of four.
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11
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a b
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c d

The brown terms correspond to cd, c�d, and cd�, the 3, 1, and 2 outputs,
respectively, from a decoder with inputs c and d. Similarly, the tan outputs
correspond to b�d� and bd�, the 0 and 2 outputs from a decoder with inputs
b and d. The remaining 1’s are covered as before, by adding a second-level
decoder for the 0 and 3 outputs of the cd decoder.
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[SP 5, 6, 7, 8, 14c; EX 7, 8, 9, 10, 16c; LAB]
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5.3 ENCODERS AND PRIORITY ENCODERS
A binary encoder is the inverse of a binary decoder. It is useful when one
of several devices may be signaling a computer (by putting a 1 on a wire
from that device); the encoder then produces the device number. If we
can assume that exactly one input (of A0, A1, A2, A3) is 1, then the truth
table of Table 5.4 describes the behavior of the device.

If, indeed, only one of the inputs can be 1, then this table is adequate
and

Z0 � A2 � A3

Z1 � A1 � A3

This arrangement does not differentiate between device 0 and no device sig-
naling. (If there is no device numbered 0, this is not a problem.) Otherwise,
we could add another output, N, which indicates that no input is active.

N � A�0 A�1A�2A�3 � (A0 � A1 � A2 � A3)�

If more than one input can occur at the same time, then some priority
must be established. The output would then indicate the number of the high-
est priority device with an active input. The priorities are normally arranged
in descending (or ascending) order with the highest priority given to the
largest (smallest) input number. The truth table for an eight-input priority
encoder is shown in Table 5.5, where device 7 has the highest priority.

Table 5.4 A four-line encoder.

A0 A1 A2 A3 Z0 Z1

1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 1 1

Table 5.5 A priority encoder.

A0 A1 A2 A3 A4 A5 A6 A7 Z0 Z1 Z2 NR

0 0 0 0 0 0 0 0 X X X 1
X X X X X X X 1 1 1 1 0
X X X X X X 1 0 1 1 0 0
X X X X X 1 0 0 1 0 1 0
X X X X 1 0 0 0 1 0 0 0
X X X 1 0 0 0 0 0 1 1 0
X X 1 0 0 0 0 0 0 1 0 0
X 1 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0

The output NR indicates that there are no requests. In that case, we
don’t care what the other outputs are. If device 7 has an active signal
(that is, a 1), then the output is the binary for 7, regardless of what the
other inputs are (as shown on the second line of the table). Only when 
A7 � 0 is any other input recognized. The equations describing this
device are

NR � A�0A�1A�2A�3A�4A�5A�6A�7
Z0 � A4 � A5 � A6 � A7
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Z1 � A6 � A7 � (A2 � A3)A�4 A�5
Z2 � A7 � A5A�6 � A3A�4A�6 � A1A�2A�4A�6

The 74147 is a commercial BCD encoder, taking nine active low
input lines and encoding them into four active low outputs. The input
lines are numbered 9� to 1� and the outputs are D�, C�, B�, and A�. Note
that all outputs of 1 (inactive) indicate that no inputs are active; there is no
0� input line. The truth table describing its behavior is shown in Table 5.6.

5.4 Multiplexers and Demultiplexers 269

[SP 9; EX 11]

Table 5.6 The 74147 priority encoder.

1� 2� 3� 4� 5� 6� 7� 8� 9� D� C� B� A�

1 1 1 1 1 1 1 1 1 1 1 1 1
X X X X X X X X 0 0 1 1 0
X X X X X X X 0 1 0 1 1 1
X X X X X X 0 1 1 1 0 0 0
X X X X X 0 1 1 1 1 0 0 1
X X X X 0 1 1 1 1 1 0 1 0
X X X 0 1 1 1 1 1 1 0 1 1
X X 0 1 1 1 1 1 1 1 1 0 0
X 0 1 1 1 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 1 1 1 0

5.4 MULTIPLEXERS AND 
DEMULTIPLEXERS

A multiplexer, often referred as a mux, is basically a switch that passes
one of its data inputs through to the output, as a function of a set of select
inputs. Often, sets of multiplexers are used to choose among several
multibit input numbers.

A two-way multiplexer and its logic symbol are shown in Figure 5.11.

Figure 5.11 Two-way multiplexer.

w

S

x

out

w

S

x

out
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The output, out, equals w if S � 0, and equals x if S � 1.
A four-way multiplexer can be implemented with AND and OR

gates, as shown in Figure 5.12a, or with three two-way multiplexers, as
shown in Figure 5.12b. The logic symbol is shown in Figure 5.12c.

270 Chapter 5 Designing Combinational Systems

Figure 5.12 (a) A four-way multiplexer. (b) From two-way multiplexers. (c) Logic symbol.
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(c)

The output equals input w if the select inputs (S1, S0) are 00, x if they are
01, y if they are 10, and z if they are 11. The circuit is very similar to that
of the decoder, with one AND gate for each select input combination.
Some multiplexers also have enable inputs, such that out is 0 unless the
enable is active.

If the inputs consist of a set of 16-bit numbers, and the control inputs
choose which of these numbers is to be passed on, then we would need
16 multiplexers, one for each bit. We could build 16 of the circuits of 
Figure 5.12a, utilizing 64 three-input AND gates and 16 four-input OR
gates. (Of course, all of the gates could be replaced by NAND gates.)
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The alternative is to use one decoder to drive all the multiplexers. The
first 3 bits of such a circuit are shown in Figure 5.13.

There are still 16 four-input OR gates, but now the AND gates in the
multiplexers require only two inputs. There are, of course, 4 two-input
AND gates in the decoder. The total is then 68 two-input gates for a 
16-bit multiplexer. If we were to implement this with 7400 series inte-
grated circuits, this implementation would require 17 packages of two-
input AND gates (four to a package), whereas the previous solution would
require 22 packages of three-input AND gates (three to a package).
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Figure 5.13 A multibit multiplexer.
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Multiplexers can be used to implement logic functions. The simplest
approach is to use the select inputs to make a decoder and connect the
constants 0 and 1 to the data inputs.

272 Chapter 5 Designing Combinational Systems

A three-variable function can be directly implemented with an eight-way
multiplexer. The three variables go to the control inputs. The truth table for
the function is then connected to the data inputs. 

For f (a, b, c) = �m(0, 1, 2, 5), the truth table is

a b c    f

0 0 0   1
0 0 1   1
0 1 0   1
0 1 1   0
1 0 0   0
1 0 1   1
1 1 0   0
1 1 1   0  

With a mux, it would be implemented by

EXAMPLE 5.5

1

1

1

1

0

0

0

0

f

a b c

We could also use a four-way multiplexer. To do this, we would rewrite the
truth table as follows.

f f
a b c = 0 c = 1

0 0 1 1 1
0 1 1 0 c�
1 0 0 1 c
1 1 0 0 0
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We will briefly describe three of the commercially available multi-
plexer packages. The 74151 is a 1-bit eight-way multiplexer with one
active low enable input, EN�, and both an uncomplemented (active high)
and a complemented (active low) output. The data inputs are labeled A7
through A0 (corresponding to the binary select) and the outputs are Y and
Y�. The select inputs are labeled S2, S1, and S0, in that order.

The 74153 contains two (dual) four-way multiplexers, A and B, each
with its own active low enable (ENA� and ENB�). The inputs to the first
are labeled A3 to A0 and its output is YA; the inputs to the second are B3
to B0, with output YB. There are two select lines (labeled S1 and S0). The
same select signal is used for both multiplexers. This would provide 
2 bits of multiplexer for choosing among four input words.

The 74157 contains four (quad) two-way multiplexers, with a com-
mon active low enable (EN�) and a single common select input (S). The
multiplexers are labeled A, B, C, and D, with inputs A0 and A1 and
output YA for the first multiplexer. This provides 4 bits of a two-way
selection system.

A demultiplexer (demux) is the inverse of a mux. It routes a signal
from one place to one of many. Figure 5.14 shows one bit of a four-way
demux, where a and b select which way the signal, in, is directed. The cir-
cuit is the same as for a four-way decoder with the signal in replacing EN.

0

c

f

a b

1

c �

First, we took the third variable, c (it could have been any of them), and
made an output column for c = 0 and one for c = 1. Then, considering each
row, we created a single output column that was a function of c. For the first
row, f = 1 for both c = 0 and c = 1; thus, f = 1. For the second row, f = c�

since f is only 1 when c = 0. This leads to the following implementation.
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Figure 5.14 A four-way demux.

in a b

out0

out1

out2

out3

[SP 10, 11, 12; EX 12, 13, 14; LAB]

5.5 THREE-STATE GATES
Up to this point, we assumed that all logic levels were either 0 or 1.
Indeed, we also encountered don’t care values, but in any real circuit
implementation, each don’t care took on either the value 0 or 1. Further-
more, we never connected the output of one gate to the output of another
gate, since if the two gates were producing opposite values, there would
be a conflict. (In some technologies, it is possible to connect the output
of two AND gates and achieve a “wired AND” or a “wired OR,” but in
others, there is a real possibility that one or more of the gates would be
destroyed. Thus, we have not suggested this option in anything we have
discussed so far.)

Some design techniques have been used that do allow us to connect
outputs to each other. The more commonly used one today is referred to
as three-state (or tristate) output gates. (We will not discuss other simi-
lar implementations, such as transmission gates and open-collector
gates.)

In a three-state gate, there is an enable input, shown on the side of
the gate. If that input is active (it could be active high or active low), the
gate behaves as usual. If the control input is inactive, the output 
behaves as if it is not connected (as an open circuit). That output is 
typically represented by a Z. The truth table and the circuit representa-
tion of a three-state buffer (with an active high enable) is shown in Fig-
ure 5.15.

1

a

00

EN

0

01

Z

f

Z

0

111

EN

a f

Figure 5.15 A three-state buffer.
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Three-state buffers with active low enables and/or outputs exist; in
the latter case, it is a three-state NOT gate. Three-state outputs also exist
on other more complex gates. In each case, they behave normally when
the enable is active and produce an open circuit output when it is not.
With three-state gates, we can build a multiplexer without the OR gate.
For example, the circuit of Figure 5.16 is a two-way multiplexer. The
enable is the control input, determining whether f � a (EN � 0) or f � b
(EN � 1). The three-state gate is often used for signals that travel
between systems. 

A bus is a set of lines over which data are transferred. Sometimes,
that data may travel in either direction between devices located physi-
cally at a distance. The bus itself is really just a set of multiplexers, one
for each bit in the set.

Figure 5.16 A multiplexer using
three-state gates.

a

EN

b

f

System
A

System
A

System
B

System
B

Enable A

Enable B

Enable A

Enable B

� �

(a) Using AND/OR Gates (b) Using Three-State Gates

�

The following circuits show a bit of two implementations of the bus—one
using AND and OR gates and the other using three-state gates.

The major difference is the two long wires per bit between the systems for
the AND-OR multiplexer compared to only one for the three-state version.
The difference is even greater if what is being transferred between systems
is 32-bit words. In that case, there would be 32 multiplexers. The AND–OR
system would require 64 wires between systems, whereas the three-state
version would require only 32. Further, if the enable signal came from one of
the systems (instead of being generated internally in each), that would only
add one wire, no matter how long the words are.

EXAMPLE 5.6
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*A more general term is a programmable logic device (PLD). That includes all of these,
as well as devices that include gate arrays and memory. The term field programmable
gate array (FPGA) is also commonly used for such devices.

Figure 5.17 Structure of a gate array.

When we discuss gate arrays, both in this chapter and in Chapter 8,
we will see that many systems have three-state output buffers.

5.6 GATE ARRAYS*—ROMs, PLAs, 
AND PALs

Gate arrays are one approach to the rapid implementation of fairly
complex systems. They come in several varieties, but all have much in
common. The basic concept is illustrated in Figure 5.17 for a system
with three inputs and three outputs where the dashed lines indicate
possible connections. (This is much smaller than most real gate arrays.)
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What these devices implement are SOP expressions. (In this case, three
functions of three variables can be implemented. However, since there
are only six AND gates, a maximum of six different product terms can be
used for the three functions.) The array only requires uncomplemented
inputs; there is internal circuitry that produces the complement.

The following circuit shows the implementation of

f � a�b� � abc

g � a�b�c� � ab � bc

h � a�b� � c

using such an array, where the solid lines show the actual connections.

a b

a�b �

a�b �c �

abc

ab

bc

c

c

f g h

EXAMPLE 5.7a
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This version of the diagram is rather cumbersome, particularly as
the number of inputs and the number of gates increase. Thus, rather than
showing all of the wires, only a single input line is usually shown for
each gate, with X’s or dots shown at the intersection where a connection
is made. Thus, the previous circuit can be redrawn as in Example 5.7b.

278 Chapter 5 Designing Combinational Systems

Two things should be noted in this diagram. First, the output of the AND
gate that produces the a�b� is connected to the inputs of two of the OR
gates. That is just sharing the term. Second, the term c, which does not
require a gate in a NAND gate implementation (or in an AND/OR implemen-
tation), does require a term in a logic array. There is no other way to get c to
the output.

a b

a�b �

a�b �c �

abc

ab

bc

c

c

f g h

EXAMPLE 5.7b
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5.6 Gate Arrays—ROMs, PLAs, and PALs 279

Sometimes, the AND and OR gates are not shown but are understood.
(We will see examples of this shortly.)

There are three common types of combinational logic arrays. (We will
discuss those with memory in Chapter 8.) The most general type (the one
we have illustrated so far) is the Programmable Logic Array (PLA). In the
PLA, the user specifies all of the connections (in both the AND array and
in the OR array). Thus, we can create any set of SOP expressions (and
share common terms). The second type is the Read-Only Memory (ROM).
In a ROM, the AND array is fixed. It is just a decoder, consisting of 
2n AND gates for an n-input ROM. The user can only specify the connec-
tions to the OR gate. Thus, he produces a sum of minterms solution. The
third type is the Programmable Array Logic (PAL), where the connections
to the OR gates are specified; the user can determine the AND gate inputs.
Each product term can be used only for one of the sums. We will discuss
each of these in more detail in the sections that follow.

In each case, the base array is manufactured first, with the connec-
tions added later. One option is to have them added by the manufacturer
on the user’s specifications. There are also field programmable versions,
where the user can enter the connections using a special programming
device. The concept behind field programmable devices is to include a
fuse in each connection line. If the user does not want the connection, he
blows the fuse. (A blown fuse produces a 1 input to the AND gates and a
0 input to the OR gates. That fuse may be electronic, in which case it
may be reset.) This sounds more complicated and time consuming than
it is; the programming device does all of this automatically from inputs
describing the desired array. This idea is carried one step further in the
case of ROMs; there are Erasable Programmable Read-Only Memories
(EPROMs). (This does sound like an oxymoron, to have a writable read-
only device, but they do exist.) One type of fuse can be reset by exposing
the device to ultraviolet light for several minutes; another type can be
reset electronically.

In addition to the logic shown above, many field programmable
devices make the output available in either active high or active low
form. (By active low, we really mean the complement of the output, that
is, f � instead of f.) This just requires an Exclusive-OR gate on the output
with the ability to program one of the inputs to 0 for f and to 1 for f �. The
output logic for such a case is shown in Figure 5.18.

f

0 or 1

f � 0 � f
f � 1 � f �

Figure 5.18 A programmable
output circuit.
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Note that if the three-state gate is enabled, the connection from the
OR array to the output and back as an input to the AND array is estab-
lished. If the three-state gate is not enabled, the logic associated with that
OR is disconnected, and this Out/In can be used as just another input to
the AND array.

5.6.1 Designing with Read-Only Memories

To design a system using a ROM, you need only to have a list of
minterms for each function. A ROM has one AND gate for each
minterm; you connect the appropriate minterm gates to each output. This
is really the same type of circuitry as the decoder implementation of a
sum of product expression presented in Example 5.3.
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EN

Out/In

AND Array

Figure 5.19 Three-state output.

Some programmable devices have a three-state buffer at the output,
which may be enabled either by an enable input line or one of the logic
AND gates. This allows the output to be easily connected to a bus.

Sometimes, the output is fed back as another input to the AND array.
This allows for more than two-level logic (most commonly in PALs, as
we will discuss later). It also allows that output to be used as an input
instead of an output, if a three-state output gate is added, as shown in
Figure 5.19.

W ( A, B, C, D) � 	m(3, 7, 8, 9, 11, 15)

X ( A, B, C, D) � 	m(3, 4, 5, 7, 10, 14, 15)

Y ( A, B, C, D) � 	m(1, 5, 7, 11, 15)

The rows of the ROM are numbered (in order) from 0 to 15 for the four-input
ROM shown here. An X or a dot is then placed at the appropriate intersec-
tion. In the following circuit, the connections shown as X’s are built into the
ROM; the user supplied the ones shown as dots to implement the functions
above.

EXAMPLE 5.8
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In spite of the terminology, that is, referring to this device as a
memory, it is really a combinational logic device, as used in a circuit.
The outputs are just a function of the present inputs. In Chapter 8, we
will see programmable devices that do have memory in them. Typical
commercial programmable ROMs have 8 to 12 inputs and 4 to 8 outputs.

5.6.2 Designing with Programmable
Logic Arrays

To design a system using a PLA, you need only find SOP expressions for
the functions to be implemented. The only limitation is the number of
AND gates (product terms) that are available. Any SOP expression for
each of the functions will do, from just a sum of minterms to one that
minimizes each function individually to one that maximizes sharing
(uses the techniques of Section 3.6).

BA C D

W X Y

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Consider the same example we used to illustrate the ROM design:

W ( A, B, C, D) � 	m(3, 7, 8, 9, 11, 15)

X ( A, B, C, D) � 	m(3, 4, 5, 7, 10, 14, 15)

Y ( A, B, C, D) � 	m(1, 5, 7, 11, 15)

EXAMPLE 5.9
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The first set of maps shows the solution considering these as individual
functions. X and Y have two solutions.

00 01 11 10

00

01

11

10

A B

W X Y

C D

1 1 11

1

1

00 01 11 10

00

01

11

10

A B
C D

11 1

1 1

1

1

00 01 11 10

00

01

11

10

A B
C D

1 1 1

11

W � AB�C� � CD

Y � A�BC� � A�CD � ACD� � {BCD or ABC}

Z � A�C�D � ACD � { A�BD or BCD}

If we choose BCD for both Y and Z, this solution requires eight terms.
Otherwise, it requires nine terms.

We can use fewer terms, by treating this as a multiple-output problem,
as shown in the following maps:

00 01 11 10

00

01

11

10

A B

W X Y

C D

1 1 11

1

1

00 01 11 10

00

01

11

10

A B
C D

11 1

1 1

1

1

00 01 11 10

00

01

11

10

A B
C D

1 1 1

11

W � AB�C� � A�CD � ACD

X � A�BC� � ACD� � A�CD � BCD

Y � A�C�D � ACD � BCD

This solution only uses seven terms instead of eight or nine.
The following PLA shows both solutions. In the first set of output

columns, we show the first solution. The first eight terms are used or the

mar91647_c05a_249_285.qxd  11/14/08  12:16 PM  Page 282



5.6 Gate Arrays—ROMs, PLAs, and PALs 283

term BCD (brown dots) can be replaced by ABC in X and A�BD in Z (as
shown with X’s), using a total of nine terms. In the second solution, the sec-
ond term, CD, is not used; only seven product terms are needed. If the PLA
to be used is as big as the one shown, it does not matter which solution is
chosen.

BA C D

W X Y W X Y

AB�C�

CD

A�BC�

A�CD
ACD�

BCD

A�C�D
ACD

ABC

A�BD

We will look at one other example to illustrate what happens when there is
a term with a single literal. In Example 3.38 (Section 3.6), we saw the
following maps:

00 01 11 10

00

01

11

10

A B

F G H

C D

1 1 1

1

1

1

1

111

00 01 11 10

00

01

11

10

A B
C D

1

1

1

1

1

1 1

1

1

00 01 11 10

00

01

11

10

A B
C D

1

1

1

1

1

1

1

We chose the group of eight, C for G, because it did not require an AND gate
and used only one input to the OR. In a PLA, however, even a single literal
term requires a gate, and we are not counting gate inputs. We could reduce

EXAMPLE 5.10
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A typical commercially available PLA (PLS100) has 16 inputs,
48 product terms, and 8 outputs. Each output is programmable to be active
high or low and has a three-state buffer, controlled by a common active low
enable input. Note that this is less than one thousandth the number of prod-
uct terms that would be required for a ROM with 16 inputs.

5.6.3 Designing with Programmable
Array Logic

In a PAL, each output comes from an OR that has its own group of AND
gates connected to it. The layout of a small PAL is shown in Figure 5.20.

For this PAL, there are six inputs and four outputs, with each OR gate
having four input terms. When using a PAL, the output of each AND gate
goes to only one OR. Thus, there is no sharing of terms, and we would
solve each function individually. However, most PALs provide for the pos-
sible feedback of some or all of the outputs to an input. Sometimes this is
internal, that is, the output of some of the OR gates is available as another
input to all of the AND gates. In other cases, an external connection is
made (as implied in Example 5.12). This allows for more terms (more than

284 Chapter 5 Designing Combinational Systems

the number of terms needed by using BC � B�C for G, since B�C was
required for F and BC was required for H. Thus, either set of output columns
in the following PLA diagram would be a solution. Note that the term C is
only used in the first implementation; the second requires one less term.

BA C D

F G H F G H

B�C

AB�C�

A�BD

ABD
BC

C
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four in this example) in a sum of products expression, or for expressions
that are not sum of product, or for sharing a group of terms. Many PALs
have a three-state buffer on the output (before the feedback to the inputs),
allowing that output to be used as an input as well.

Figure 5.20 A PAL.

mar91647_c05a_249_285.qxd  11/14/08  12:16 PM  Page 285



286 Chapter 5 Designing Combinational Systems

We will first return to the example we used for ROMs and PLAs, namely,

W � AB�C� � CD

X � A�BC� � A�CD � ACD� � {BCD or ABC}

Y � A�C�D � ACD� � {A�BD or BCD}

There is no reason to consider sharing. Choosing the first of each of the
optional terms, the implementation is

A B C D

W

X

Y

EXAMPLE 5.11
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h

00 01 11 10

00

01

11

10

a b

c d

11 1

111

1

00 01 11 10

00

01

11

10

a b

f g

c d

11

11

111

00 01 11 10

00

01

11

10

a b

c d

1

1 1

111

1

Note that the three brown terms are essential prime implicants of each func-
tion; the other two are not. This results in the following equations:

f � a�b�c� � a�c�d � b�c�d � abd� � bcd�

g � a�b�c� � a�c�d � b�c�d � abc � acd�

h � a�b�c� � a�c�d � b�c�d � a�cd� � b�cd�

(This solution was obtained by considering each function individually. If we
treated this as a multiple-output problem, we would use the term ab�cd� in
both g and h, rather than acd� in g and b�cd� in h. That would reduce the
number of different terms in the algebraic solution, but it would not change
the number of gates used in the PAL.) The PAL implementation is shown in
the following circuit. The first three terms are implemented in the first OR
gate, the output of which, t, is fed back to the input of one of the AND
gates in each of the other three circuits. Note that the fourth AND gate of
the t circuit has both a and a� connected at its input. Obviously, the output
of that AND gate is 0. Some implementations require the user to connect
unused AND gates in that way. (We did not do that for the other unused
AND gates.)

As an example of a system where feedback is useful, consider the functions
shown in the following maps:

EXAMPLE 5.12
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a b c d t

t

f

g

h

[SP 13, 14; EX 15, 16, 17]
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*For a detailed discussion of Verilog or VHDL, see Brown and Vranesic, Fundamentals
of Digital Logic with Verilog Design, 2nd ed. McGraw-Hill, 2008 or Brown and Vranesic,
Fundamentals of Digital Logic with VHDL Design, 3rd ed. McGraw-Hill, 2009.

5.7 TESTING AND SIMULATION OF
COMBINATIONAL SYSTEMS

After designing a system, it is necessary to test it to make sure that it does
what it was intended to do. For a small system, this means applying all pos-
sible input combinations and comparing the output with what was expected.
As systems get a little larger, that process becomes very time-consuming.
For example, if we are testing the behavior of a 4-bit adder (with carry
input), there are 29 input combinations to test. We can be sure that it works
by trying many fewer input sets, as long as we are careful to make sure that
all parts of the circuit are tested (each sum circuit and each carry circuit).

When building a large system, it is often necessary to break it into
several smaller systems and design and test each subsystem separately.
If you are building a large number of a particular system, you would
normally design an integrated circuit. Before committing to that design,
you must test the design, either by building a circuit using small-scale
components or simulating it.

5.7.1 An Introduction to Verilog

Most design of significant digital systems is done with computer-aided
tools. They allow the user to specify either the behavior of the system or
the structure of the system (or a mixture of the two) using a notation sim-
ilar to a programming language. The two most widely used systems are
Verilog and VHDL. They have many similarities, but differ in detail. In
this section, we will show examples of Verilog code, both structural and
behavioral, but a discussion adequate to allow the user to design using
any HDL is beyond the scope of this book.*

We will first illustrate a structural Verilog description, using the full
adder first discussed in Example 2.34 and shown here as Figure 5.21.

Figure 5.21 A full adder.

a

b
c

s

c_out

x 1

n 1

n 2

n 3

x 2

w 3

w 2

w 1
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The corresponding Verilog code (description) is shown in Figure 5.22.

290 Chapter 5 Designing Combinational Systems

Figure 5.22 Verilog structural description of a full adder.

module full_adder (c_out, s, a, b, c);
input a, b, c;
wire a, b, c;
output c_out, s;
wire c_out, s;
wire w1, w2, w3;
xor x1 (w1, a, b);
xor x2 (s, w1, c);

nand n1 (w2, a, b);
nand n2 (w3, w1, c);
nand n3 (c_out, w3, w2);

endmodule

Figure 5.23 A 4-bit adder.

module  adder_4_bit (c, sum, a, b);
input a, b;
output c, sum;
wire [3:0] a, b, sum;
wire c0, c1, c2, c;
full_adder f1 (c0, sum[0], a[0], b[0], 'b0);
full_adder f2 (c1, sum[1], a[1], b[1], c0);
full_adder f3 (c2, sum[2], a[2], b[2], c1);
full_adder f4 (c, sum[3], a[3], b[3], c2);

endmodule

The first line includes the key word module followed by the name of the
module and the parameters, that is, the outputs and the inputs. Names may
include characters other than spaces; Verilog is case-sensitive, that is x1
means something different from X1. (The symbol _ is used to connect mul-
tiple word names.) Each module ends with the statement endmodule.
Statements within Verilog are ended with a semicolon (;), other than
endmodule. A list of inputs and outputs must be included, and each
gate output must be declared a wire. Structural Verilog includes most
standard gate types, such as and, or, not, nand, nor, xor. They
are indicated by listing the key word (such as xor), a unique name for
each copy of that device, their output wire name, and their inputs, as
shown in Figure 5.22. The connections for the circuit are made exactly as
in Figure 5.21. The order in which the logic statements are written does
not matter. (That is not true in behavioral Verilog.)

A 4-bit adder can be built using the full adder as a building block, as
shown in Figure 5.23. (We will use a full adder for the least significant
bit, although a half adder would do.)
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Some additional notation appears in this example. Multibit wires are
labeled with brackets. The wire [3:0] a, b, sum declaration states
that each of the inputs and the sum output are 4 bits (with the highest num-
ber on the left. When a module is used, such as full_adder, the order of
the parameters is what matters, not the name. Thus, the first copy of the full
adder adds the least significant bits, a[0] and b[0], with a 0 in the carry
position (denoted as 'b0, where the 'b indicates that the number follow-
ing it is binary).

Verilog also provides for the description of the behavior of a system,
without specifying the details of the structure. This is often the first step
in the design of a complex system, made up of a number of modules. The
behavioral description of each module can be completed and tested. That
is often much more straightforward. Once that works, the individual
modules can be designed and described structurally. The structural
description can then replace the behavioral one, one module at a time.
Behavioral Verilog uses notation very similar to the C programming
language. The normal mathematics operators (such as �, �, *, and / )
are available, as are the bitwise logical operators (not: ~, and: &, or: |,
and exclusive or: ^). Two behavioral Verilog descriptions of the full
adder are shown in Figure 5.24.

Figure 5.24 Behavioral Verilog for the full adder.

module full_adder (c_out, s, a, b, c);
input a, b, c;
wire a, b, c;
output c_out, s;
reg c_out, s;
always

begin
s = a ^ b ^ c;
c_out = (a & b) | (a & c_in) | (b & c_in);

end
endmodule

(a) With logic equations.

module full_adder (c_out, s, a, b, c);
input a, b, c;
wire a, b, c;
output c_out, s;
reg c_out, s;
always

{c_out, s} � a � b � c;
endmodule

(b) With algebraic equations.
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Note that values set in behavioral models are referred to as reg, rather
than wire.

5.8 LARGER EXAMPLES
In this section, we will look at the design of three systems that are some-
what larger than any we have considered so far. 

5.8.1 A One-Digit Decimal Adder

We want to design an adder to add two decimal digits (plus a carry-in),
where the digits are stored in 8421 code. This system would have nine
inputs (two coded digits plus the carry-in) and five outputs (the one digit
and the carry-out). Rather than trying to solve a nine-input problem, we
can break it up into smaller parts, using the 4-bit binary adder that we
already designed (or obtained on a single chip). We will assume that
none of the unused inputs ever occur.

Decimal addition can be performed by first doing binary addition.
Then, if the sum is greater than 9, a carry is generated and 6 is added to
this digit. (That is to make up for the six combinations that are not used).
For example,

292 Chapter 5 Designing Combinational Systems

We add the two numbers using a binary adder and detect whether the
sum is greater than 10. If it is, we must add six (0110) to the result. A
block diagram of the decimal adder, using two binary adders, is shown in
Figure 5.25.

The carry detect circuit takes the output of the first adder (including
the carry) and produces a 1 output if that number is greater than 9. That
is the carry output from the decimal adder, as well as the correction indi-
cator. When there is a carry-out, 6 is added to the answer from the first
adder; otherwise, 0 is added. A map for the carry detect circuit is shown
as Map 5.2.

0 1 1

0011 3 0111 7 1000 8

0101 5 0101 5 1001 9

0 1000 8 0 1100 – – 1 0010 1 2

sum � 9 0110 6 0110 6

no correction 1 0010 1 2 1 1000 1 8

mar91647_c05b_286_318.qxd  11/14/08  12:17 PM  Page 292



5.8 Larger Examples 293

Map 5.2 Carry detect.

cout � c � s4 s3 � s4 s2

00 01 11 10

00

01

11

10

s4 s3

1

0

11

1

11

s2 s1
00 01 11 10

00

01

11

10

s4 s3
1

X

X

X

X

X

X

X

X

X

X

X

X

1

1

1

1

c

s2 s1

Figure 5.25 A decimal adder.

Carry
Detect

4-Bit Adder

4-Bit Adder

A�s B�s

s4s3s2s1

Cin

Cout sumignored

c

00
0

5.8.2 A Driver for a Seven-Segment Display

In Chapter 2 (CE4), we introduced the seven-segment display commonly
used for decimal digits. A block diagram of that display system is
repeated as Figure 5.26.
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where the solid lines represent segments to be lit and the dashed ones
segments that are not lit. For digits 6, 7, and 9, two alternative rep-
resentations are shown (that is, one segment of each may or may not be lit).

This display driver is a problem with four inputs, W, X, Y, and Z and
seven outputs, a, b, c, d, e, f, and g. If, indeed, the system is to display only
a decimal digit, and the inputs are limited to only proper codes for those
digits, then only 10 of the possible 16 input combinations can occur. The
others can be treated as don’t cares. In Section 2.1.2, we chose the 8421
code (straight binary) to represent the decimal digits and showed the truth
table under the assumption that a 1 input to the display would cause that
segment to be lit. Although this seems like a natural assumption, displays
are available that require a 0 on a segment input to light that segment.

There are several approaches to this design. There are BCD-to-seven-
segment converters available, such as the 7449, that could be used for this
problem. (There are also chips that produce an active low output.)

We could solve each of these as individual functions (as in Sec-
tion 3.3), or we could treat them as multiple-output problems, as in 
Section 3.6. We could also use a ROM, a PLA, or a PAL to complete the
design. We will design the ROM and PLA solution for this problem.

Solving each as an individual function is very straightforward.
There are several prime implicants that can be shared. The minimum 
is obtained by choosing one of the multiple solutions for g that takes
advantage of sharing. A minimum solution, shown in Map 5.3, is

a � W � Y � XZ � X�Z�

b � X� � YZ � Y�Z�

c � X � Y� � Z

d � X�Z� � YZ� � X�Y � XY�Z

e � X�Z� � YZ�

f � W � X � Y�Z�

g � W � X�Y � XY� � {XZ� or YZ�}

294 Chapter 5 Designing Combinational Systems

Figure 5.26 A seven-segment display and driver.
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Map 5.3 Seven-segment display driver.
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where the shared terms are shown in brown, tan, and gray. There are
eight unique terms requiring gates (since single literal terms do not
require a gate). Thus, this would require a total of 15 gates, assuming all
inputs are available both uncomplemented and complemented. (Other-
wise, four additional NOT gates would be required.) If these were imple-
mented with 7400 series NAND gates, then we would use

296 Chapter 5 Designing Combinational Systems

Type Number Number of modules Chip number

2-in 8 2 7400
3-in 4 1 7410
4-in 3 2 7420

where only one 7410 is required since the extra four-input gate would be
used as the fourth three-input gate. Treating this as a multiple-output prob-
lem, we could save one gate by using XY�Z in function a in place of XZ.

A more interesting problem (in the sense that there is more of an
advantage to treating the problem as a multiple-output one) results if we
demand that all segments be unlit if the code is not one of those used for
a decimal digit. The maps for this, with the minimum solutions circled,
are shown in Map 5.4. All of the don’t cares for minterms 10 to 15 have
become 0’s. (The don’t cares for the alternative representations of 6, 7,
and 9 remain.) The shared prime implicants are shown circled in brown,
tan, and gray. (There are multiple solutions to several of the functions;
the one that provides the maximum sharing is shown.)

One way to display the answer is shown in Table 5.7, with a row for
each product term and a column for each function. An X is placed in the
column if that product term is used in the function.

Table 5.7 Seven-segment display driver (prime implicants only).

a b c d e f g

X�Y�Z� X X X
WX�Y� X X X
W�Y X
W�XZ X
W�Y�Z� X X
W�X� X
W�YZ X
X�Y� X X
W�X X X
W�Z X
W�YZ� X X X
W�X�Y X X
W�XY�Z X
W�XY� X
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Map 5.4 Seven-segment display driver (individual).
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The algebraic expressions can be obtained by just ORing the terms
included in each function. We can count the number of gates (one for
each term, that is, each row and one for each output column). The num-
ber of gate inputs is also easy to compute, since we just add the number
of literals in each term and the number of X’s in each function (corre-
sponding to OR gate inputs). For this example, the total is 21 gates and
62 gate inputs.

We next attempt to solve this by sharing terms wherever possible,
even if the term is not a prime implicant. The first obvious spot is in a,
where the prime implicant W�XZ can be replaced by the term W�XY�Z, a
term we already need for d. Map 5.5 shows a minimum solution, where
terms that are shared are shown circled in brown, tan, and gray. This
results in the solution of Table 5.8.
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This solution requires only 10 terms and thus 17 gates, a savings of
4 gates, and 54 inputs, a savings of 8 gate inputs. The corresponding
equations are thus

a � X�Y�Z� � WX�Y� � W�XY�Z � W�YZ � W�X�Y

b � W�YZ � W�X�Y � W�Y�Z� � X�Y�

c � W�YZ � X�Y� � W�X

d � X�Y�Z� � W�XY�Z � W�X�Y � W�YZ�

e � X�Y�Z� � W�YZ�

f � WX�Y� � W�Y�Z� � W�X

g � WX�Y� � W�X�Y � W�YZ� � W�XY�

If we are to implement each of these with 7400 series NAND gates,
the system would require

Table 5.8 Seven-segment display driver (maximum sharing).

a b c d e f g

X�Y�Z� X X X
WX�Y� X X X
W�XY�Z X X
W�YZ X X X
W�X�Y X X X X
W�Y�Z� X X
X�Y� X X
W�X X X
W�YZ� X X X
W�XY� X
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Map 5.5 Seven-segment display driver (maximum sharing).
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Thus, we save four gates and one module by treating this as a multiple-
output problem.

Notice that these two solutions are not equal. The first treats the
don’t care in d as 0 and the don’t cares in a and f as 1’s; the second treats
the don’t cares in a and d as 0’s and only the one in f as a 1.

We could also implement this problem using the ROM shown in
Figure 5.27. Note that we did not include any of the don’t cares; we
could have made any or all of them 1’s. Notice that this solution is not
equal to either of the other ones, since each of them treat at least one of
the don’t cares as 1.

300 Chapter 5 Designing Combinational Systems

Individually Multiple output

Number Number
Type Chip number Number of modules Number of modules

2-in 7400 6 2 3 1
3-in 7410 10 3 9 3
4-in 7420 5 3 4 2
8-in 7430 0 1 1

Total 21 8 17 7

Figure 5.27 ROM implementation of seven-segment display driver.
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We could implement this system with the PLA of Figure 5.28 with
four inputs, seven outputs, and 14 product terms. If all we had were 
10 product terms, then we must use the minimum solution we found for
the NAND implementation. If we have more terms, then a less minimum
solution could be utilized.

If we wished to implement this with a PAL, we would need seven
OR gates (two of the circuits we discussed in the previous section). There
are a number of variations to this problem, each of which creates a totally
new problem. We could require 0’s to light a segment, in which case the
complement of each of these functions must be found. That would create
a whole new set of maps. Once again, we could demand that the unused
conditions be unlit, or we could allow them to be don’t cares. We could
specify the form for 6, 7, and/or 9, thus eliminating those don’t cares.
That would change the problem slightly. We could make this into a hexa-
decimal display, in which case the last six codes would represent A, B, C,
D, E, and F. Finally, one of the other codes could have been used for the
decimal digits, with each of the variations described earlier. Some of
these are included in the Solved Problems and Exercises.

5.8.3 An Error Coding System

We are designing two systems that are to be used in conjunction with an
error detection and correction system. When data are transmitted (or

Figure 5.28 PLA implementation of seven-segment display driver.

XW Y Z

a b c d e f g

X�Y�Z�

W X� Y�

W�X Y�Z

W�Y Z
W�X�Y

W�Y�Z �

X�Y�

W�X

W�Y Z�

W�X Y�
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stored), errors occur. Richard Hamming developed a technique for coding
data (by adding extra digits) so that a single error (that is, an error in 1 bit)
can be corrected. (This can be extended to double error detection and even
multiple error correction.) To detect an error in a set of bits, a check bit is
created so that the total number of 1’s in the word, including the check bit,
is even.* That bit is referred to as a parity bit. If one error is made, either a 1
will become a 0, or a 0 will become a 1, making the total number of 1’s odd.

The parity bit can be computed by using the Exclusive-OR function
on the bits to be checked. On the receiving end, the checked bits and
the parity bit are Exclusive-ORed; if the result is 0, then the answer is
assumed to be correct.† For error correction, multiple parity bits are
required, each checking a different set of information bits. Data are
coded in such a way that a single error from any transmitted word will
not produce another transmitted word or a word that has a single error
from another transmitted word. (The Hamming distance between words
is the number of digits in which they differ. For single error correction,
transmitted words must be at distance 3.) For a single data bit, two check
bits are required. The two transmitted words would be 000 for data 0 and
111 for data 1. A single error from 000 would produce a word with one
1; thus, all words with zero or one 1 would be decoded as 0 and all words
with two or three 1’s would be decoded as 1.

Hamming showed that for three check bits, we could have up to four
data bits, and that for four check bits, we can have up to 11 data bits. As
an example, we will consider three data bits and three check bits, which
provide for the correction of all single errors and the detection of some
double errors (since some of the possible received words may not corre-
spond to a transmitted word or a single error from one of those words). A
block diagram is shown in Figure 5.29.

*The parity bit could be chosen so as to make the total number of 1’s odd, instead.
†This method is not foolproof. If two errors are made, there will once again be an even
number of 1’s, and it will look like the received word is correct. This approach is used
when the likelihood of multiple errors is very small.

x
y
z

u
v
w

a
b
c

e
d

f
Coder

Error
detector/
corrector

Transmission
media

p

q

r

g

Figure 5.29 Error detection and correction system.

The first check bit, u, checks x and y; v checks x and z; and w checks
y and z. Thus, the coder is just

u � x � y v � x � z w � y � z

The list of transmitted words is shown in Table 5.9.

Table 5.9 Transmitted words.

Data Check

x y z u v w

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 1 0 1
0 1 1 1 1 0
1 0 0 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 1 0 0 0
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For each transmitted word, there are six single errors that will be
decoded to that word (plus the correct word). For example, single errors
from the first word are 100000, 010000, 001000, 000100, 000010, and
000001. Each of these, plus 000000, should be decoded as 000. Map 5.6
shows the maps for p, q, and r—the corrected word—and for g, which is
1 if a multiple error is detected (in which case, p, q, and r are not 

5.8 Larger Examples 303

Map 5.6 Error detector/corrector.
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reliable). The shaded squares correspond to the words with no errors.
The outputs that produce uvw � 000 are shown in brown. Squares that
do not correspond to correct words or single errors are shown as don’t
cares on the first three maps, and as 1’s on the map for g (which indicates
multiple errors). Sum of products expressions for these functions are
very complex, requiring 30 product terms. If implemented with NAND
gates, 22 integrated circuit packages would be needed.

However, the code has been set up in such a way that the correct out-
puts can be determined more easily. Computing the Exclusive-OR of
each check bit with the bits that formed it, we get

t1 � a � b � d

t2 � a � c � e

t3 � b � c � f

That test word indicates which bit is in error (if a single error was made),
as described in Table 5.10.

304 Chapter 5 Designing Combinational Systems

Table 5.10 Bit error.

t1 t2 t3 Error

0 0 0 none
0 0 1 f
0 1 0 e
0 1 1 c
1 0 0 d
1 0 1 b
1 1 0 a
1 1 1 multiple

The decoder circuit can then be built with three 7486 (quad Exclusive-OR)
packages and one three-input/eight-output decoder (such as the one used
in Example 5.3), as shown in Figure 5.30.

Figure 5.30 Error decoder.
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[SP 15, 16, 17, 18; EX 18, 19, 20, 21, 22, 23, 24, 25; LAB]
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5.9 SOLVED PROBLEMS

1. For the following circuit

a. Compute the maximum delay,

i. Assuming that all inputs are available both
uncomplemented and complemented.

ii. Assuming only uncomplemented inputs are available and an
additional gate must be added to complement each input.

b. Compute the maximum delay from input a to the output,
assuming that all inputs are available both uncomplemented
and complemented.

a. i. The signal from the gate whose inputs are b� and d� must
pass through six gates.

ii. Both b and d must be complemented and thus there is a
seventh delay.

b. Signal a passes through only three gates.

2. We want to build a NAND gate circuit to compute the parity of
an n-bit number. The parity is defined as 1 if and only if there
are an odd number of 1’s in the number.* One way of doing this
is to build the circuit 1 bit at a time (as in the adder), such that
the circuit computes the parity after that bit as a function of the

g

e

b
d�

d�

c�

b�

e� a�

a

c

c

b

*This is sometimes referred to as odd parity. However, the terminology is used in two
different ways. Some use odd parity to mean an odd number of 1’s in the word plus the
parity bit (which is, of course, the opposite of what we defined). For our purposes, we
will stick to the definition above.
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parity up to that bit and the one input bit. A block diagram of
the first few bits of such a circuit is shown below.

a. Show a NAND gate circuit to implement 1 bit and compute
the delay for n bits. Assume that inputs are available only
uncomplemented.

b. Reduce the delay by implementing 2 bits at a time.

a. Each block has a truth table

p2 p1

a2 a1 a0

0p0

pi�1 ai pi

0 0 0
0 1 1
1 0 1
1 1 0

that is, the output parity indicates an odd number of 1’s so far
if the input indicated there were an even number of 1’s 
(pi�1 � 0) and this bit (ai) is 1, or if the input indicated there
were an odd number of 1’s (pi�1 � 1) and this bit (ai) is 0. The
logic expression is

pi � p�i�1ai � pi�1a�i

This requires a three-level NAND circuit; it is just an
Exclusive-OR, as shown here

The delay from either input to the output is 3�. If we had an 
n-bit number, the total delay would then be 3n�.

pi

ai

pi – 1 2 �

�

3 �
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b. We can build a block that computes 2 bits of parity at a time.
We will call the inputs a, b, and pin and the output pout. The
truth table is thus*

5.9 Solved Problems 307

a b pin pout

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

The equation for pout is thus

pout � a�b�pin � a�bp�in � ab�p�in � abpin

and the NAND circuit is

where the NOT gate required for pin is shown (but not those
for a and b). The total delay for the 2 bits is 3� and thus the 
n-bit delay is 1.5 n�. We could reduce the delay by building a
separate circuit for p�out in each box. It would also require five
NAND gates, since

p�out � a�b�p�in � a�bpin � ab�pin � abp�in

However, now we do not need the NOT gate for the parity
input, and, thus, these circuits are all two-level. The delay per
two bits is 2�, and the total delay for n bits is n�.

3. Design a full subtractor, that is, a circuit that computes 
a � b � c, where c is the borrow from the next less significant
digit and produces a difference, d, and a borrow from the next
more significant bit, p.

a�
b�

b�

a�
b

a

b
a

pin
pout

2�

�
3�

*Notice that this is the same truth table as the sum in a full adder if we replace pin by cin.
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The truth table for the full subtractor is as follows:

308 Chapter 5 Designing Combinational Systems

a b c p d

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Note that the difference bit is the same as the sum bit for the
adder. The borrow is 1 if there are more 1’s in b and c than in a.
Thus, the equations become

d � a�b�c � a�bc� � ab�c� � abc

p � bc � a�c � a�b

The eight-NAND gate circuit used for the adder could be used
for d. However, the p circuit would be different from cout.

p � bc � a�c � a�b � c�b � a�� � a�b � c�a� � b� � a�b

� c�a � b�� � a�b

This would require two NAND gates and two NOT gates for the
borrow (in addition to the eight NAND gates for the difference).
The timing would be the same as for the adder, except that the
first borrow out delay would now be 6� (an increase of 1).

If we wish to use the minimum number of gates, we would
need to factor a from both functions, rather than c, producing
the equation 

p = a�(b � c) + bc

An extra NAND and a NOT is needed (compared with the
adder). One solution would be

d

p

a

c

b
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The disadvantage of this approach is that the delay from borrow
in to borrow out is 5�.

4. We have two 4-bit comparators that produce greater than (�),
equal (�), and less than (	) outputs. Show the external logic 
that can be used to cascade them.

The output indicates equal if both comparators show equal. It is
greater than if the high-order one is greater than or if it is equal
and the low-order one is greater than. Finally, it shows less than if
the high-order one shows less than or if the high-order one is
equal and the low-order one is less than. (This is how the internal
logic of the 7485 works, although the details of the circuit are
quite different.)
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a4 a3 a2 a1 b4 b3 b2 b1 a4 a3 a2 a1 b4 b3 b2 b1

High Low

� 	� � 	�

�

	

�

5. We have a decoder with three inputs, a, b, and c, and eight
active low outputs, labeled 0 through 7. In addition, there is 
an active low enable input EN�. We wish to implement the
following function using the decoder and as few NAND gates 
as possible. Show a block diagram.

f (a, b, c, e) � 
m(1, 3, 7, 9, 15)

Note that all of the minterms are odd; thus, variable e is 1 for
each of these. If we enable the decoder when e � 1, that is, con-
nect e� to the enable input, and connect a, b, and c to the control
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inputs, the outputs of the decoder will correspond to minterms
1, 3, 5, 7, 9, 11, 13, and 15. Thus, the following circuit solves
the problem:

6. We wish to build a 32-way active high decoder, using only the
four-way decoders shown here.

0
1

4
5
6
7

2
3

a

b

c

EN�

a

b

c

e

f
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EN a b 0 1 2 3

0 X X 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

0

1

2

3

a

b

EN

The inputs are v, w, x, y, and z; the outputs are numbered 0 to 31.

We need eight of these decoders at the output. Each is enabled
based on the first 3 bits of the input. Thus, we need an eight-
way decoder for the enabling. That must be built in two levels,
as shown in the following diagram.

mar91647_c05b_286_318.qxd  11/14/08  12:17 PM  Page 310



7. Professor Smith computes grades as follows: He uses only the
first digit (that is, 9 for averages between 90 and 99). He never
has an average of 100. He gives a P (pass) to anyone with an
average of 60 or above and an F to anyone with an average
below 60. That first digit is coded in 8421 code (that is, straight
binary, 5 as 0101, for example); these are inputs w, x, y, and z.
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Design a circuit using up to two of the decoders with active high
outputs and an active low enable shown below, one NOT gate,
and one OR gate to produce an output of 1 iff the student
passes.
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0
1

4
5
6
7

2
3

a

b

c

EN�

EN� a b c 0 1 2 3 4 5 6 7

1 X X X 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 0 0 0 0 0 1

This problem has two solutions. The more straightforward 
one uses two decoders, where one is enabled when w � 0 and
has outputs corresponding to minterms 0 to 7 and the other is
enabled when w � 1 and has outputs corresponding to minterms
8 to 15 (although only 8 and 9 ever occur). The output is 1 for
minterms 6, 7, 8, and 9.

0
1

4
5
6
7

2
3

a

w

b

c

EN �

0
1

4
5
6
7

2
3

a

b

c

x

y

z

x

y

z

EN � P
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EN a b 0 1 2 3

0 X X 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

Another approach is to recognize that the only inputs that
will lead to P � 0 are minterms 0, 1, 2, 3, 4, and 5. Thus, we
can use just one decoder and the following circuit:

In this case, we OR together the first six outputs of the decoder,
which produces a 1 for grades between 0 and 59 (and a 0 for
passing grades).We then complement it to get the desired output.

8. For the following functions, implement them only using as
many of the decoders shown below as needed and three OR
gates (with as many inputs as necessary). If possible, limit the
OR gates to less than eight inputs and use only four decoders.

0
1

4
5
6
7

2
3

a

b

c

x

y

z

w
EN �

P
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00 01 11 10

00

01

11

10

w x

11

11

1

1

1

1

1

1

1

1

1

1

1

1

y z

g

00 01 11 10

00

01

11

10

w x

1

1

1

y z

h

00 01

f

11 10

00

01

11

10

w x

1

1

1

1

1

1

11

y z
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9. Design a priority encoder with four active high inputs 0, 1, 2,
and 3 and three active high outputs, A and B, indicating the
number of the highest priority device requesting service, and N,
indicating no active requests. Input 0 is the highest priority (and
3 the lowest).

EN

w

x

y

z

EN

EN

01

10

0

1
2
3

EN
f

00

g

h

0

2

7

8

9
10
11

0

1
2
3

0

1
2
3

0

1
2
3

1

Since each function has a column of all 1’s, we can save OR
gate inputs by using the first two variables on the first decoder,
the one that enables the others. Also, since the 11 column has
either all 0’s or all 1’s, we do not need the 11 decoder. Thus, the
circuit becomes
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0 1 2 3 A B N

0 0 0 0 X X 1
1 X X X 0 0 0
0 1 X X 0 1 0
0 0 1 X 1 0 0
0 0 0 1 1 1 0

N is clearly just 

N � 0� 1� 2� 3�

We can map A and B to obtain

A � 0� 1�

B � 0� 1 � 0� 2�

00 01 11 10

00

01

11

10

0 1

1

1

1

1

X

1

2 3

B

00 01

A

11 10

00

01

11

10

0 1

X

1

1

1

2 3

10. We have four 3-bit numbers: w2 � w0, x2 � x0, y2 � y0, and 
z2 � z0. We want to select one of these, based on the input s and
t (where st � 00 selects w, st � 01 selects x, and so forth). The
answer is to appear on output lines f2 � f0. Use the 74153 
multiplexer chip to do this.
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GA 1 5 3

S1 S0

S1 S0

GB

A3
A2
A1
A0

B3
B2
B1
B0

YA f2

f1YB

w2
x2

y2
z2

w1
x1

y1
z1

GA 1 5 3

GB

A3
A2
A1
A0

0

0

0

0

B3
B2
B1
B0

YA f0

not usedYB

w0
x0

t
s

y0
z0

not used

11. Create an eight-way multiplexer using some of the 2-way multi-
plexers of Figure 5.11.

We build two 4-way multiplexers as in Figure 5.12b and use a
third layer of multiplexer to switch those two outputs. Assume
S2 is the high-order select bit.

The 74153 contains two 4-way multiplexers. Since we need
three, we will use two such circuits as shown below. Note that
one-half of the second 74153 is unused.
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S2

out

e

f

g

h

S0

a

b

c

d

S1

S1

12. Implement the function

f (w, x, y, z)  = �m(0, 1, 5, 7, 8, 10, 13, 14, 15)

a. Using two 8-way multiplexers with an active low enable, plus
an OR gate

b. Using one 8-way multiplexer

a. We will enable the first multiplexer if w � 0 and the second if 
w � 1. Thus, the inputs to the first correspond to the first eight
minterms, and those to the second correspond to the second eight. 

1

1

1

1

0

0

0

0

w

x y z

1

1

0

1

1

0

0

1

w �

x y z

f
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b. We can construct an 8-line truth table with columns for w� and
w.  Finally, we add a column that is a function of w.

f f

x y z w = 0 w = 1

0 0 0 1 1 1
0 0 1 1 0 w�
0 1 0 0 1 w
0 1 1 0 0 0
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 0 1 w
1 1 1 1 1 1

That produces the circuit (with no need for an enable):

13. For the three functions of four variables shown on the maps
below,

a. Implement it with the ROM.

b. Find a minimum cost two-level NAND circuit (where
minimum cost is minimum number of gates, and among
those with the same number of gates, minimum number
of gate inputs). Assume all inputs are available both
complemented and uncomplemented. (Minimum is
10 gates.) 

c. Implement with a PAL similar to the one in the text.

d. Implement it with the PLA with eight product terms available
(less may be used).

1

1

w �

1

w

0

0

w

f

x y z
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a. For the ROM, we need a list of minterms, namely,

X(A, B, C, D) � �m(1, 3, 5, 7, 8, 9, 11)

Y(A, B, C, D) � �m(0, 2, 4, 5, 7, 8, 10, 11, 12)

Z(A, B, C, D) � �m(1, 2, 3, 5, 7, 10, 12, 13, 14, 15)

We can then complete the ROM diagram below.

A B C D

X

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Y Z

X Y Z

00 01 11 10

00

01

11

10

A B
C D

11 1

1

11 1

00 01 11 10

00

01

11

10

A B
C D

1

1111

1

1 1

1

00 01 11 10

00

01

11

10

A B
C D

11 1

1

11

1 11

1
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where the terms circled in brown and gray are shared. The
resulting equations are

X � A�D � AB�C� � AB�CD

Y � C�D� � A�BD � B�CD� � AB�CD

Z � A�D � AB � B�CD�

The resulting circuit is 
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Y

A�
B
D

C�

D

B�
C Z
D�

A

B

A
B�

A�

XD

A
B�
C
D

C�

b. The maps below show the minimum cost two-level solution.

00 01 11 10

00

01

11

10

A B
C D

11 1

1

11 1

00 01 11 10

00

01

11

10

A B
C D

1

1111

1

1 1

1

00 01 11 10

00

01

11

10

A B
C D

11 1

1

11

1 11

1
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c. For the PAL, nothing is gained by treating this as a multiple
output problem. Thus, the equations we get solving each
function individually are implemented. 

X � B�D � A�D � AB�C�

Y � C�D� � B�D� � A�BD � AB�C

Z � AB � A�D � B�CD�

A B C D

X

Y

Z

Two of the inputs are not used; the fourth output is not shown.
AND gates that are not used have D and D� connected to their
inputs to produce a 0 output.

d. For the PLA, we also need sum of products expressions, but
are limited to eight terms. The solution used for part c uses
nine terms. We could use B�CD� (which is required for Z ) in
place of B�D� in Y, or we could use the solution to part b; that
solution is shown on the next page. 
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14. We have found a minimum sum of products expression for each
of two functions, F and G, minimizing them individually (no
sharing):

F � WY� � XY�Z

G � WX�Y� � X�Z � W�Y�Z

a. Implement them with a ROM.

b. Implement them with a PLA using no more than four terms.

c. For the same functions, we have available as many of the
decoders described below as we need plus 2 eight-input OR
gates. Show a block diagram for this implementation. All
inputs are available both uncomplemented and
complemented.

A B C D

X

A�D

AB�C�

AB�CD

C�D�

A�BD

B�CD�

AB

Y Z
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EN1� EN2 A B 0 1 2 3

X 0 X X 0 0 0 0
1 X X X 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 0 1 0 0
0 1 1 0 0 0 1 0
0 1 1 1 0 0 0 1

0

1

2

3

A

B

A

B

EN2

EN1�

Note that this chip is enabled only when EN1� � 0 and
EN2 � 1.

a. The first step is to find the minterm numbers. Since we will
need to map the functions for part b, that is the easiest thing
to do now. (We could, of course, expand the functions
algebraically to sum of minterm form.)
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From this, we get 

F(W, X, Y, Z) � �m(5, 8, 9, 12, 13)

G(W, X, Y, Z) � �m(1, 3, 5, 8, 9, 11)

This produces the following ROM diagram:

W X Y Z

F

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

G

F G

00 01 11 10

00

01

11

10

W X
Y Z

1 1 1

11

00 01 11 10

00

01

11

10

W X
Y Z

11 1

1

1 1
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b. For the PLA, we need to find a sum of products solution that
uses only four different terms. The maps below show such a
solution.

The PLA below implements this four-term solution.

c. The straightforward approach is to use W and X to enable
each of four decoders. However, looking at the maps, we see
that the last row of each map contains no 1’s. If we use Y and
Z to enable the decoders, we only need three, enabled on 00,

W X Y Z

F

W Y�

W� X Y� Z

X� Z

W X� Y�

G

F

F � W Y� � W� X Y� Z
G � X� Z � W X� Y� � W� X Y� Z

G

00 01 11 10

00

01

11

10

W X
Y Z

1 1 1

11

00 01 11 10

00

01

11

10

W X
Y Z

11 1

1

1 1

324 Chapter 5 Designing Combinational Systems

mar91647_c05c_319_364.qxd  11/14/08  10:23 AM  Page 324



5.9 Solved Problems 325

01, and 11. The first decoder has active outputs for all of the
minterms that end in 00, that is, 0, 4, 8, and 12. The circuit
then becomes

15. Design a 1-bit decimal adder, where decimal digits are stored in
excess 3 code.

When you add the two codes using a binary adder, the carry is
always correct. The sum must be corrected by adding �3 if
there is no carry or �3 if there is a carry.

0011 0 1010 7

0100 1 1001 6

0 0111 1 0011

�3 1101 +3 0011

(1) 0100 1 0110 13

0

1

2
8

12
3

A

B

W

X

Y

EN2

EN1�

Z �

0

1

2
9

5

1

13
3

A

B

W

X

Y

EN2

EN1�

Z

0

1

2
11

3

3

A

B

W

X

Y �

EN2

EN1�

Z

F

G
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Excess 3 2 of 5
Digit wxyz abcde

0 0011 11000
1 0100 10100
2 0101 10010
3 0110 10001
4 0111 01100
5 1000 01010
6 1001 01001
7 1010 00110
8 1011 00101
9 1100 00011

16. We have two different codes for the decimal digits that we
sometimes use—the excess 3 code and the 2 of 5 code, shown
below.

4-Bit Adder

4-Bit Adder

A�s B�s

s4s3s2s1

cin

cout

sumignored

c

01
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All other combinations of input bits never occur. We wish to
build a box that converts excess 3 code to 2 of 5 code. It thus
has four inputs—w, x, y, and z—and has five outputs—a, b, c, d,
and e. All inputs are available both complemented and
uncomplemented.

a. Map each of the five functions and find all minimum sum of
products and product of sums solutions for each of the five
functions individually.

b. Our building blocks consist of integrated circuit chips. We can
buy any of the following chips:

7404: 6 inverters
7400: 4 two-input NAND gates 7402: 4 two-input NOR gates
7410: 3 three-input NAND gates 7427: 3 three-input NOR gates
7420: 2 four-input NAND gates 7425: 2 four-input NOR gates

All chips cost the same, 25¢ each.
Find one of the least expensive ($1.25) implementations

of the five outputs. (The gates on any chip may be used as
part of the implementation of more than one of the outputs.)
Show the algebraic expression and the block diagram for the
solution. 

c. Find three solutions, one of which uses only 7400 and 7410
packages, one of which uses 7420s also (it must use at least
one four-input gate), and a solution that uses only NOR gates.
Each of these must cost no more than $1.25. (Of course, one
of these is the solution to part b.)

d. Implement this with a ROM.

e. Implement this with a PLA.

a. The maps of the five functions and their complements are
shown next.
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00 01 11 10

00

01

11

10

w x

a � w � x � � w � y � � w � z� a� � w � x y z
a � w � (x � � y � � z�)

y z

1X X

1X

1

X 1 X

X

00 01 11 10

00

01

11

10

w x
y z

X X 1

11X

1 X

X X 1

1

10

1

1

b � x� y� � w � y z b� � w y � x z� � w� y �

b � (w � � y �) (x � � z) (w � y )
                                x z�

b� � w y � x y � �   w � z�

                                y z�

00 01 11

00

01

11

10

w x
y z

1X X

11X

X X1

X

00 01 11 10

00

01

11

10

w x
y z

X X1

11X

X

X X 11

1

00 01 11 10

00

01

11

10

w x
y z

1X X

1X

1 1

X X

X

                                      (x � � z)
b � (w � � y �) (x � � y )   (w � z)
                                       (y � � z)

00 01 11 10

00

01

11

10

w x
y z

X X

1X

11

X X 1

X

00 01 11 10

00

01

11

10

w x
y z

X X1 1

1 1X

X

X X1

1

c � w � y � z� � x y z � w y

c � (w � x) (w � � y ) (y � z�)
(x � � y � � z)

(w � y � � z)

x y z�

w � y z�
c� � w � x� � w y � � y � z �
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10

1

1

00 01 11

00

01

11

10

w x
y z

X X

1X

X X1

X

11 10

X

1

X

X 1

00 01

00

01

11

10

w x
y z

X 1

1X

X

1 1

e� � x� z� � w � y � � w � z
e � (x � z) (w � y ) (w � z�)

e � w z � w x �

10

1

00 01 11

00

01

11

10

w x
y z

X X

1X

X

X X1

1 1 1

d� � w � z� � x � z � x y
d � (w � z) (x � z�) (x � � y �)

00 01 11 10

00

01

11

10

w x
y z

1X X

1X

X X1

X 111

00 01 11 10

00

01

11

10

w x
y z

1X X

11X

X X 1

X

d � w z� �
x y � z
w � y � z

d � (w � z )

x � z
w zd� � w� z� �

w� y
y z

(x � z�)
(w � � z�)

(w � y �)
(y � � z�)

�

w � y z�

x y z�

Note that there are two SOP solutions for d and e, and that
there are four POS solutions for b, two for c, and five for d. 

b. If we were to use the solutions that we found in part a, there
are no common product terms and thus no sharing is possible
in the NAND gate implementation. We would need 10 two-
input gates and 8 three-input gates, for a total of three 7400s
and three 7410s (at a total cost of $1.50). For the NOR gate
solution, we would use the product of sums. There is only
one term that can be shared, w � y, in b and e. There would
be a total of 1 four-input gate, 5 three-input gates, and
12 two-input gates, once again requiring six integrated circuit
packages.

We must then attempt to do sharing. The following maps
show that for the sum of product solutions.
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10

1

00 01 11

00

01

11

10

w x
y z

X X

1 1X

X X 1

X

11 10

X

X

X1

00 01

00

01

11

10

w x
y z

X 1

1X

X

1

d e

a

10

1

00 01 11

00

01

11

10

w x
y z

X X

1X

X

X X

1 1

00 01 11 10

00

01

11

10

w x
y z

X X

1X

X X 1

X 11

00 01 11 10

00

01

11

10

w x
y z

1X X

1X

X X1

X1

b c

a � w � x� � x y � z � w � z�

b � x� y � � w � x� � x y z
c � w � y � z� � x y z � w y
d � w z� � x y � z
e � w z � w x � w � y  z�

In this solution, three terms have been shared (as indicated
by the colored circling and terms). There are some other
choices (w�y�z in place of xy�z in a and d, and xyz� in
place of w�yz� in e), but they would not alter the gate
count. This solution requires 8 two-input gates and 8 three-
input gates and utilizes two 7400s and three 7410s (total
cost $1.25). 

c. The solution to part b could be used as one of the three
solutions to part c, and any of those shown here could have
been used for part b. A solution that requires one less new
product term is

a � w�x� � xy�z � w�y�z� � w�yz�

where the last two terms are required for (and shared with)
c and e, respectively. This saves 1 two-input gate, but
replaces a three-input gate with a four-input one (all in the
implementation of a). This solution requires 1 four-input
gate and 7 each of three-input and two-input gates. It utilizes
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one 7420, two 7430s (using the extra four-input gate for the
seventh three-input one) and two 7400s (total cost $1.25). 

There is also a solution using NOR gates, based on the
product of sums solutions. The maps of the complements
below produce one solution that almost works:

10

1

00 01 11

00

01

11

10

w x
y z

X X

11X

X

X X1 1

1

00 01 11 10

00

01

11

10

w x
y z

X X1 1

1 1X

X X1

X1

00 01 11 10

00

01

11

10

w x
y z

1X X

1 1X

X X 1

X1 1

10

1

00 01 11

00

01

11

10

w x
y z

X X

1X

X X1

X11 1

11 10

X

X

X 1

00 01

00

01

11

10

w x
y z

X 1

11X

X

11

a b

d e

c

a � w�(x� � y� � z�)

b � (x� � y)(w� � y�)(w � y� � z)

c � (w � x)(w� � y)(y � z�)(w � y� � z)

d � (w � z)(x � z�)(x� � y� � z�)

e � (x � z)(w � y)(w � z�)

This solution requires 1 four-input gate, 5 three-input gates,
and 11 two-input gates (utilizing six packages). 

However, if we do not restrict ourselves to two-level
solutions, we could eliminate the four-input gate, by rewriting
c as

c � (w � x)(y � w�z�)(w � y� � z)
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Now, the gate count becomes 6 three-input gates and
10* two-input gates (utilizing five packages). (Similar
manipulation could be done on e, replacing a three-input
gate by a two-input one, but that would not change the
package count.) A block diagram of the circuit is shown
below.

d, e. The implementation with a ROM and a PLA are
rather straightforward. For the ROM, all we need is
the minterms; the don’t cares are ignored. For the PLA,
any of the sum of product solutions can be used, as long
as we have enough terms. The two solutions are shown
below.

c

a
w

y

w

x

w

z

x�

z�
y�

w

z
y�

x

z�
d

e

x

z

w

y

w

z�

b

x�

y

w�

y�

*By doing this, we have saved a two-input gate, since the term w�z� uses the same NOR
gate as the term w � z.
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d. w x y z

a

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

cb ed

17. Design a controller to display an electronic nine-dotted die as
shown next. A set of these could be used to display decimal
numbers and some mathematical equations.

w x y z

a

w�x�

x y�z

w�z�

x�y�

x y z

w�y�z�

wy

wz�

wz

wx

w�yz �

cb ed

mar91647_c05c_319_364.qxd  11/14/08  10:23 AM  Page 333



334 Chapter 5 Designing Combinational Systems

The inputs to the controller represent a 4-bit number, W, X,
Y, Z, which indicates what is to be displayed. They are all
available both uncomplemented and complemented. There are
nine outputs, A, B, C, D, E, F, G, H, J, one for each of the dots. 

The display comes in two types. The first type requires a 1 to
light the display. The second type requires a 0 to light the display.
For the second version, the outputs of the controller are the
complement of the outputs required for the first type of display.

The diagram below shows each of the inputs and the
display that results. A black dot indicates that the bit is lit; a
circle indicates not lit. Note that 0 lights none of the lights;
9 lights all of them.

a. Show the truth table for the controller.

b. Write a minimum sum of products expression for each of the
outputs, treating each output as a separate problem. Show
both maps and algebraic expressions. For each expression,

0000
0

0101
5

1010
�

0001
1

0110
6

1011
�

0010
2

0111
7

1100
.

decimal
point

0011
3

1000
8

1101
�

0100
4

1001
9

Other combinations
(1110, 1111)
will never occur.

A

D

B C

E F

G H J
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all terms must be prime implicants of that function. Sharing
is possible only if a product term is a prime implicant of
more than one function.

c. Assume that the functions found in part b are to be
implemented with a two-level NAND gate circuit. Do not
build two gates with the same inputs. How many two-input
and how many three-input gates are used? (No gates may be
used as NOT gates; there is no need for any gates with more
than three inputs.) If 7400 and 7410 integrated circuit
packages were used, how many of each are used?

d. Show the equations and a block diagram of a minimum cost
two-level NAND gate implementation. (Of course, there will
be sharing, and some of the terms will not be prime implicants
of one or more of the functions for which they are used.) No
gates may be used as NOT gates. How many integrated circuit
packages are needed?

e. We went to implement this but ran into a problem. All we
could find was one 7410 package of three-input NAND gates
(three gates in the package). There were plenty of 7400
packages of two-input gates. Show the equations and a block
diagram for an implementation this way. No gates may be
used as NOT gates. (It is possible to start with either the
solution to part b or d above, or some other set of equations.)
Use as few 7400s as possible.

a. The truth table for the controller with active high outputs is
shown below. (In the output columns of the version with
active low outputs, there would be 0’s where this one has 1’s
and 1’s where this has 0’s. The don’t cares would be the
same.)

W X Y Z A B C D E F G H J

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 1
0 0 1 1 1 0 0 0 1 0 0 0 1
0 1 0 0 1 0 1 0 0 0 1 0 1
0 1 0 1 1 0 1 0 1 0 1 0 1
0 1 1 0 1 0 1 1 0 1 1 0 1
0 1 1 1 1 0 1 1 1 1 1 0 1
1 0 0 0 1 1 1 1 0 1 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1 1
1 0 1 0 0 1 0 1 1 1 0 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1
1 1 0 1 0 0 0 1 1 1 1 1 1
1 1 1 0 X X X X X X X X X
1 1 1 1 X X X X X X X X X
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H J

We can see from the truth table (or from the maps below)
that D and F are identical; obviously, we only need to build
the function once. 

b. We construct the nine maps (although we only will simplify
the eight unique ones). In B, where there are two equally
good solutions, we chose the one that could share a term
with H.
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The equations for the eight functions are

A � W�X � W�Y � WX�Y�

B � WX�Y� � WX�Z�

C � W�X � WX�Y�

D � XY � WX� � WZ

E � Z � WY

G � W�X � WX�Y� � XZ

H � WX�Z� � WY�Z

J � X � WY� � W�Y

c. Note that there are four terms that are shared. This solution
requires 12 two-input gates and 7 three-input gates (three
7400s and three 7410s).

b, c. The maps for the complementary outputs are shown next.
The equations for this active low controller (where we are
implementing the complements) are

A� � W�X�Y� � WX � WY

B� � W� � X � YZ

C� � WX � WY � W�X�

D� � W�X� � W�Y� � WXZ�

E� � Y�Z� � W�Z�

G� � WY � W�X� � WXZ�

H� � W� � YZ � XZ�

J� � W�X�Y� � WY

They require 10 two-input gates and 8 three-input gates
(three 7400s and three 7410s). There is a lot more sharing,
but still six integrated circuit packages are required.

5.9 Solved Problems 337
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338 Chapter 5 Designing Combinational Systems

d. Both versions can be reduced to five packages by treating
this as a multiple output problem. The active low version has
only one small adjustment. In the equation for H�, we can
use the term WXZ�, which has already been implemented for
D� and G�, in place of XZ�. That saves a two-input gate,
reducing the count to nine. Now the ninth three-input gate on

A�

1000 01 11

00

01

11

10

W X
Y Z

1 1 1

1 1 1

X

1 1 X

1 1 1

00 01 11 10

00

01

11

10

W X
Y Z

1 1

1 1

1 X 1

X 11

00 01 11 10

00

01

11

10

W X
Y Z

1 1

11

X 1

X 1

B� C�

D�

1000 01 11

00

01

11

10

W X
Y Z

1 1 1 1

X

1 1 X

00 01 11 10

00

01

11

10

W X
Y Z

1

1 1

1

1

1 X

X1

00 01 11 10

00

01

11

10

W X
Y Z

1 1

1 11

X1

X1

E� F �

G�

1000 01 11

00

01

11

10

W X
Y Z

1 1 1

X

1 1

1 1

1

1

1

X

00 01 11 10

00

01

11

10

W X
Y Z

1

1

1X

X 1

00 01 11 10

00

01

11

10

W X
Y Z

1

11

X1

X1

1

1

H� J�

mar91647_c05c_319_364.qxd  11/14/08  10:23 AM  Page 338



5.9 Solved Problems 339

the 7410 packages can be used as a two-input gate and only
two 7400s are needed.

For the active high version, a considerable amount of
sharing can be achieved. The maps for a minimum solution
are shown below.
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As can be seen on the maps, a number of terms are used
that are not prime implicants of a particular function. Also,
three terms are used for H, rather than two, to avoid building
a new gate for that term. The solution is shown in tabular
form below. Each row corresponds to a product term; each
column to one of the functions. Also shown is the size of the
gate to create the term in each row and to combine the terms
in each column. 

A B C D, F E G H J

W�X 2 X X X
W�Y 2 X X
WX�Y� 3 X X X X X X
WYZ� 3 X X X
XY 2 X
WY�Z 3 X X X
WX� 2 X
Z 0 X
X 0 X

Inputs 3 2 2 3 2 3 3 3

There are 8 three-input gates and 7 two-input gates, requiring
5 modules.

e. We need to go back to the part b solution, since it has
fewer terms and fewer three-literal terms. An active high
solution is

A � W�(X � Y ) � WX�Y�

B � WX�Y� � WX�Z�

C � W�X � WX�Y�

D � W(X� � Z) � XY

E � Z � WY

G � WX�Y� � X(W� � Z )

H � WX�Z� � WY�Z

J � X � (W � Y )(W� � Y�)

Of the 3 three-input gates, two are shared. Note that in the
NAND gate realization shown below, that WY and (W� � Y�)
are implemented by the same gate. In addition to the package
of three-input gates, this realization uses 19 two-input gates. 

The active low solution is 

A� � WX�Y� � W(X � Y )

B� � W� � X � YZ

C� � W(X � Y ) � W�X�

340 Chapter 5 Designing Combinational Systems
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5.9 Solved Problems 341

D� � W�X� � (W� � XZ�)(W � Y�)

E� � Y�Z� � W�Z�

G� � W(Y � XZ�) � W�X�

H� � W� � (X � Z)(Y � Z�)

J� � WX�Y� � WY

It uses seven modules. The circuits are shown below.
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18. You are to design a driver for an eight-segment display as
described below. It has four inputs, a, b, c, d and eight outputs,
X1, . . . , X8.

This is to display the decimal equivalent of a 4-bit binary
number that is in one’s complement format. In one’s
complement, the following values are coded:

0000 0 1000 �7
0001 1 1001 �6
0010 2 1010 �5
0011 3 1011 �4
0100 4 1100 �3
0101 5 1101 �2
0110 6 1110 �1
0111 7 1111 0

(Note that the minus sign (X8) is lit for �1 to �7, but not for
either 0 or for 1 to 7.) Segment X1 may or may not be lit for the
digit 6; segment X6 is not lit for digit 7. All inputs are available
both complemented and uncomplemented.

a. Show the maps, equations, and a block diagram for a
minimum two-level NAND gate solution that treats this as
eight separate problems and uses only prime implicants of
each of the functions. However, the gate implementation
should share gates whenever possible. (Minimum is 36 gates,
107 inputs.)

b. Show the maps, equations, and a block diagram for a
minimum two-level NAND gate solution—but this time gates
are to be shared wherever possible. Restriction: There are no
gates with more than eight inputs. Also, indicate how many
modules you have used. 

c. X4 requires at least eight terms and thus an eight-input
NAND gate for a two-level solution. Find a minimum
solution for X4 that uses only two-input gates. (This must,
of course, be more than two levels.) Note: This part has
nothing to do with part b. No gate may be used as a NOT.

X1

X7

X4

X2X6

X8

X5 X3
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d. Implement these functions using a PLA with as few terms as
possible. Show a PLA diagram.

a. All but X3 and X7 have unique solutions. There are six
solutions for X3, the first three of which can share two terms
with other solutions. The maps for one of the best solutions,
requiring 36 gates and 107 gate inputs, are shown on the next
page. Shared terms are in brown. The list of solutions is given
below. The underlined subscripted terms are shared in this
solution. Other terms that could be shared in a different
solution are underlined:

X1 � b�d� � bd � ac�7 � a�c

X2 � a�b� � ab � c�d�6 � cd

X3 � ab�5 � c�d�6 � a�d � bc

� ab� � bd� � cd � a�c�

� a�b � cd � ad� � b�c�

� b�d � c�d� � a�b � ac

� a�c� � ad� � b�d � bc

� b�c� � ac � bd� � a�d

X4 � a�b�d�4 � b�cd� � a�b�c � a�cd�3 � abc� � abd2

� bc�d � ac�d1

X5 � ac�d1 � abd 2 � a�cd�3 � a�b�d�4
X6 � a�c�d�� a�bc� � a�bd� � ab�d � ab�c � acd

X7 � bc� � b�c � {a�cd�3 or a�bd�} � {ac�d1 or ab�d}

X8 � ab�5 � ac�7 � ad'

The gate count for this solution is

X1: 2 2 2 2 4

X2: 2 2 2 2 4

X3: 2 (2) 2 2 4

X4: 3 3 3 3 3 3 3 3 8

X5: (3) (3) (3) (3) 4

X6: 3 3 3 3 3 3 6

X7: 2 2 (3) (3) 4

X8: (2) (2) 2 3

2�s: 14 7430s: 2 36 gates/107 inputs

3�s: 15 7420s: 3

4�s: 5 7410s: 5

6�s: 1 7400s: 4

8�s: 1
14 chips
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b. The best solution is shown in the following table and maps. It
requires 24 gates with 95 inputs and only 13 chips. 

8-in 1 1

7-in 1 1

6-in 3 3

5-in 1 1

4-in 6 3

3-in 9 3

2-in 3 1

Total 24 13 95 inputs

X1 X2 X3 X4 X5 X6 X7 X8

a�b�c�d� X X X X 4
abc� X X X X X 3
a�b�c X X X X 3
bd X 2
ab�d� X X X 3
a�b�c� X X 3
abd� X X X 3
c�d� X 2
cd X X 2
a�bd� X X X 3
a�bc�d X X X X 4
ab�d X X X X 3
ac�d X X 3
a�cd� X X 3
abcd X X X 4
ab�cd� X X X 4

5 6 7 8 4 6 6 4
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c.

X4 � a�b�d� � b�cd� � a�b�c � a�cd� � abc� � abd � bc�d � ac�d
� a�b�(c � d�) � ab(c� � d) � cd�(a� � b�) � c�d(a � b)
� [a� � b(c� � d)][a � b�(c � d�)]

� [c � d(a � b)][c�� d�(a� � b�)]

d. The solution to part b translates directly into a PLA with 16
product terms (where each row corresponds to a product term).
An equally good solution would be to design the PLA as a
ROM. It, too, would have 16 terms. (Note: The ROM solution
does not work for part b since it would require a 14-input gate
for X3.)

X4
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mar91647_c05c_319_364.qxd  11/14/08  1:50 PM  Page 347



5.10 EXERCISES
1. For the following circuit:

G

D

E�

D�

C�

E

C

A

E

B

B�

A

a. Compute the maximum delay,

i. Assuming that all inputs are available both
uncomplemented and complemented

ii. Assuming only uncomplemented inputs are available and
an additional gate must be added to complement each
input

b. Compute the maximum delay from input C to the output,
assuming that all inputs are available both uncomplemented
and complemented.

�2. We are building an adder to add the 32-bit constant

10101010101010101010101010101010

to an arbitrary 32-bit number. We will implement this with 16
identical adder modules, each of which will add 2 bits of the
number to the constant (10) and a carry from the next lower pair
of bits and produce 2 bits of the sum and the carry to the next 
bits. A block diagram of part of this is shown below:

2-bit
adder

a b
c

s
y

t

E
X

E
R

C
IS

E
S
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5.10 Exercises 349

The problem each 2-bit adder solves is

c

a b

1 0
y s t

a. Show a truth table for that 2-bit adder (it has three inputs, a, b,
and c, and it has three outputs, y, s, and t), and find minimum
SOP expressions for each output.

b. Compute the delay from the c input of each module to the 
y output of that module and the total delay for the 32 bits.

3. We want to build a circuit to compute the two’s complement of
an n-bit number. We will do this with n modules, each of which
complements that bit and then adds the carry from the next lower
bit. Thus, the first three bits of a block diagram of the circuit will
look like

a. Show a block diagram for each of the boxes using NAND
gates. (Design the first—on the right—box specially.) 

b. Compute the delay for n bits.

c. Improve the speed by designing 2 bits at a time. Show a
NAND gate circuit and compute the total delay.

4. We want to build an adder to simultaneously add three multidigit
binary numbers. Design a single bit of that adder. It has three
inputs for that digit, x, y, and z, plus two carry inputs, u and v
(since you may have a carry of 0, 1, or 2). There are three outputs,
a sum, s, and two carries, f and g. Show a truth table and find the
minimum sum of products expressions for the three outputs.

5. Design a circuit to multiply two 2-bit numbers—a, b and c, d and
produce a 4-bit product—w, x, y, z. Show a truth table and the
equations.

c2 1
c1 c0

a2 a1 a0

b2 b1 b0
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6. We need to determine whether a three-bit number, a3, a2, a1, is
equal to another number, b3, b2, b1, or if it is greater than that
number. (We do not need an output for less than.)

a. Show how the 7485 would be connected to accomplish this.

b. Implement this with AND and OR gates.

c. Assuming that the 7485 costs $1, what must 7400 series
AND and OR gate packages cost to make the AND/OR
implementation less expensive?

�7. Consider the following circuit with an active high output decoder.
Draw a truth table for X and Y in terms of a, b, and c.

8. We wish to design a decoder, with three inputs, x, y, z, and eight
active high outputs, labeled 0, 1, 2, 3, 4, 5, 6, 7. There is no enable
input required. (For example, if xyz � 011, then output 3 would be
1 and all other outputs would be 0.)

The only building block is a two-input, four-output decoder
(with an active high enable), the truth table for which is shown
below.

Y

Xa

b

c

0

1

2

3

4

5

6

7

Draw a block diagram of the system using as many of these
building blocks as are needed.

�9. We want to implement a full adder; we’ll call the inputs a, b, and c
and the outputs s and cout. As always, the adder is described by the
following equations:

s(a, b, c) � �m(1, 2, 4, 7)

cout(a, b, c) � �m(3, 5, 6, 7)

To implement this, all we have available are two decoders (as
shown below) and two OR gates. Inputs a and b are available
both uncomplemented and complemented; c is available only

0
1
2
3

A

EN

B

EN A B 0 1 2 3

0 X X 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1
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5.10 Exercises 351

uncomplemented. Show a block diagram for this system. Be sure
to label all of the inputs to the decoders. 

11. Design, using AND, OR, and NOT gates, a priority encoder with
seven active low inputs, 1�, . . . , 7� and three active high outputs,
CBA that indicate which is the highest priority line active. Input 1�
is highest priority; 7� is lowest. If none of the inputs are active, the
output is 000. There is a fourth output line, M, which is 1 if there
are multiple active inputs.

12. Implement the function

f (x, y, z) � �m(0, 1, 3, 4, 7)

using two-way multiplexers.

13. In the following circuit, the decoder (DCD) has two inputs and
four (active high) outputs (such that, for example, output 0 is 1
if and only if inputs A and B are both 0). The three multiplexers
each have two select inputs (shown on the top of the box), four
data inputs (shown on the left) and an active high enable input
(shown on the bottom). Inputs A, B, C, and D are select inputs;
inputs N through Z are data inputs. Complete a truth giving the
value of F for each of the 16 possible select input combinations.
(Comment: For some values, F � 0; for one value, F � W.)

EN� A B 0 1 2 3

1 X X 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 1 0 0 0 1

0
1
2
3

EN �

A

B

10. Show the block diagram for a decoder, the truth table for which
is shown below. The available components are one-, two-, and 
three-input NAND gates. (A one-input NAND is an inverter.)

Inputs Outputs

E1 E2 a b 1 2 3

0 X X X 1 1 1
X 0 X X 1 1 1
1 1 0 0 1 1 1
1 1 0 1 0 1 1
1 1 1 0 1 0 1
1 1 1 1 1 1 0

�
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14. The following circuit includes a multiplexer with select inputs,
A and B, and data inputs, W, X, Y, and Z:

Write an algebraic equation for F.

15. For the following sets of functions, design a system

i. Using a ROM

ii. Using a PLA with the number of product terms shown

iii. Using a PAL

a. F(A, B, C) � �m(3, 4, 5, 7)

G(A, B, C) � �m(1, 3, 5, 6, 7)

H(A, B, C) � �m(1, 4, 5) (4 product terms)

b. W(A, B, C) � �m(0, 1, 4)

X(A, B, C) � �m(0, 3, 4, 7)

Y(A, B, C) � �m(1, 2, 6)

Z(A, B, C) � �m(2, 3, 6, 7) (4 product terms)

W
X

A B

F
Y
Z

N
P

C D

Q
R

S
T

C D

U
V

W
X

C D

Y
Z

A
B

DCD

0
1
2
3

F

E
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E
R
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5.10 Exercises 353

c. f(a, b, c, d ) � �m(3, 5, 6, 7, 8, 11, 13, 14, 15)

g(a, b, c, d ) � �m(0, 1, 5, 6, 8, 9, 11, 13, 14)
(6 product terms)

d. F(A, B, C, D) � �m(1, 2, 6, 7, 8, 9, 12, 13)

G(A, B, C, D) � �m(1, 8, 9, 10, 11, 13, 15)

H(A, B, C, D) � �m(1, 6, 7, 8, 11, 12, 14, 15)
(8 product terms)

16. We have found a minimum sum of products expression for each
of two functions, F and G, minimizing them individually (no
sharing):

F � W�X�Y� � XY�Z � W�Z

G � WY�Z � X�Y�

a. Implement them with a ROM.

b. Implement them with a PLA with four terms.

c. For the same functions, we have available as many of the
decoders described below as are needed plus 2 eight-input
OR gates. Show a block diagram for this implementation. All
inputs are available both uncomplemented and complemented.

A
B

EN1�

EN2

0
1
2
3

EN1� EN2 A B 0 1 2 3

X 0 X X 0 0 0 0
1 X X X 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 0 1 0 0
0 1 1 0 0 0 1 0
0 1 1 1 0 0 0 1

Note that this chip is enabled only when EN1� � 0 and
EN2 � 1.

17. Consider the following three functions, f, g, and h of the four
variables, a, b, c, and d, whose minimum solutions (treating each
as a separate problem) are listed below. Throughout, all variables
are available only uncomplemented:

f � b�c�d� � bd � a�cd

g � c�d� � bc� � bd� � a�b�cd

h � bd� � cd � ab�d

a. Implement them with a ROM.

b. Implement them on a PLA with six terms. 

c. Implement them using only decoders of the type shown below
(as many as needed) and three OR gates (each with as many
inputs as you need). (No other gates are allowed.) Logic 0 and
logic 1 are available.
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18. We have three functions, X, Y, Z of the four variables, A, B, C, D.
Note: Each part can be solved without the other:

X(A, B, C, D) � �m(0, 2, 6, 7, 10, 13, 14, 15)

Y(A, B, C, D) � �m(2, 6, 7, 8, 10, 12, 13, 15)

Z(A, B, C, D) � �m(0, 6, 8, 10, 13, 14, 15)

a. Implement with a two-level NAND gate circuit. This can be
done using only prime implicants of the individual functions
with 13 gates. With sharing, it can be done with 10 gates.
Assume that all variables are available both complemented and
uncomplemented.

b. Implement these functions using a ROM.

c. Implement this with 2 three-input (plus active low enable)
decoders as shown below, plus a minimum number of AND,
OR, and NOT gates.

d. Implement it with a PLA with eight terms. (You may not need
to use all of them.) 

e. Implement them with the PAL shown in the text.

19. Implement the 2-bit adder of Section 5.1.2 using the PAL of
Section 5.6.3. The problem is that one of the output functions
requires 7 terms and another 12. This can be overcome by building
the carry between the 2 bits and using that output as another input
to compute s1 and cout.

20. In Solved Problem 16, we designed a converter from excess 3 to 
2 of 5 code. In this exercise, we want to do the reverse, that is

0
1

4
5
6
7

2
3

a

b

c

EN

A
B

EN1
EN2�

0
1
2
3

EN1 EN2� A B 0 1 2 3

0 X X X 0 0 0 0
X 1 X X 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 0 1 0 0
0 1 1 0 0 0 1 0
0 1 1 1 0 0 0 1

�
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design a converter from 2 of 5 code to excess 3. There will be four
functions of five variables. We will assume that only legitimate
digit codes are input; thus, there will be 22 don’t cares on each
map. All inputs are available both uncomplemented and
complemented.

a. Map each of the four functions and find all minimum sum of
products and product of sums solutions for each of the four
functions individually.

b. Our building blocks consist of integrated circuit chips. We can
buy any of the following chips:

7404: 6 inverters
7400: 4 two-input NAND gates 7402: 4 two-input NOR gates
7410: 3 three-input NAND gates 7427: 3 three-input NOR gates
7420: 2 four-input NAND gates 7425: 2 four-input NOR gates

All chips cost the same, 25¢ each.
Find one of the least expensive ($1.00) implementations

of the four outputs. (The gates on any chip may be used as
part of the implementation of more than one of the outputs.)
Show the algebraic expression and the block diagram for the
solution.

c. Find two solutions, one of which uses only 7400 and 7410
packages, and a solution that uses only NOR gates. Each of
these must cost no more than $1.00. (Of course, one of these is
the solution to part b.)

d. Implement this with a ROM.

e. Implement this with a PLA.

f. Implement this with the PAL described in the text.

21. We have a special eight-segment display, as shown below. 

We want to display the numbers from 0 to 15, as shown on the next
figure, where a dashed line means an unlit segment and a solid line
a lit one. Note that for 6 and 9, one segment each may be lit or
unlit, as you wish.

X1

X7

X4

X2X6

X8

X5 X3
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Design three versions of a system that accepts as an input a
4-bit number, A, B, C, D and produces the eight outputs, X1,
X2, . . . , X8 under each of the following constraints. (All inputs
are available both complemented and uncomplemented.)

a. Each output is minimized independently using a two-level
NAND gate circuit, where minimum is minimum number
of gates, and among those with the same number of gates,
minimum number of gate inputs. (Each function must be a
sum of prime implicants of that function. A gate can be shared
among functions only if it implements a prime implicant of
each function.) (Minimum solution: 32 gates, 95 inputs.)

b. Two-level NAND gates, using a minimum number of the
following modules:

Type 7400: 4 two-input NAND gates

Type 7410: 3 three-input NAND gates

Type 7420: 2 four-input NAND gates

Type 7430: 1 eight-input NAND gate

(There is a solution that uses 11 modules.) (Note: The solution
to part a uses 13 modules.)

c. A PLA with the minimum number of terms.
For parts a and b, show the maps, the equations, and a block
diagram.

22. We have a decimal digit stored in excess 3 code. The bits of the
code are labeled w, x, y, z (from left to right). We wish to display
that digit on a seven-segment display. The layout follows. Note that
there are two ways to display a 6, a 7, and a 9; choose whichever is
most convenient. The display requires a 1 to light a segment and a
0 for it not to be lit.
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5.10 Exercises 357

a

Display
Driver

W

X

Y

Z

a

g
f b

e c

d

d
c

b

e
f
g

Design the four-input, seven-output device that takes the code
for the digit produces the signals to drive the display. If any of the
unused input combinations are applied to your device, the display
is to be blank, that is all the outputs from the device are to be 0.
Assume that the four inputs are available both uncomplemented
and complemented.

We are looking for three different designs for this. For each,
show the maps, the algebraic equations, and a block diagram.
Please use color to make your solutions readable. For the first two
parts, indicate how many of each type of package you need (7400,
7410, 7420, 7430). But minimum is defined as minimum number of
gates, and among those with the same number of gates, minimum
number of gate inputs.

a. First, find a minimum cost two-level NAND gate solution such
that all terms are prime implicants of the individual functions.
Only terms that are prime implicants of each function are to be
shared. When there are multiple solutions, one answer will
often lead to more sharing than others.

b. Second, reduce the number of gates by doing more sharing
(including terms that are not prime implicants). 

c. Third, implement this with a PLA, which has four inputs,
seven outputs, and 12 product terms.

23. For the following three functions (of five variables)

f(a, b, c, d, e) � �m(0, 2, 5, 7, 8, 10, 13, 15, 16, 21,
23, 24, 29, 31)
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g(a, b, c, d, e) � �m(2, 5, 7, 10, 13, 15, 16, 18,
20, 21, 22, 23, 25, 27)

h(a, b, c, d, e) � �m(2, 9, 10, 12, 13, 14, 16, 18,
20, 22, 28, 29, 30, 31)

a. Find a minimum sum of products solution for each. Show the
maps and the algebraic equations for each.

b. Find a minimum solution, assuming a two-level NAND gate
circuit. All variables are available both uncomplemented and
complemented. Show the maps, the equations and a block
diagram of the circuit. Also, indicate how many 7400 series
packages you need (that is 7400, 7410, 7420, 7430). (It can be
done with no more than 12 gates.)

c. Find an implementation that uses as few two-input NAND
gates as possible. No gate may be used as a NOT. Show the
equations and a block diagram of the circuit. (Comment: The
solution may be derived from part a or from part b or some
combination thereof.)

d. Show an implementation with a PLA with five inputs, three
outputs, and 10 product terms.

24. Consider the following three functions:

f(a, b, c, d, e) � �m(2, 3, 4, 5, 8, 9, 12, 20, 21, 24, 25, 31)

g(a, b, c, d, e) � �m(2, 3, 4, 5, 6, 7, 10, 11, 12,
20, 21, 26, 27, 31)

h(a, b, c, d, e) � �m(0, 2, 3, 4, 5, 8, 10, 12, 16, 18,
19, 20, 21, 22, 23, 24, 28, 31)

All variables are available both uncomplemented and
complemented.

a. Consider each as a separate problem and find all the minimum
SOP expression(s). Both f and h have multiple solutions.

b. Assume that 7400, 7410, 7420, and 7430 packages are
available at 25¢ each. Show the number of each size
gate, how many of each package is required, and the total
cost for a two-level solution. (Take advantage of sharing
ONLY if the same term is a prime implicant of more than
one function.)

c. For each function (again using the solutions of part a), find a
solution that only uses 7400 and 7410 packages (25¢ each)
(no four- or eight-input gates). Show the maps, the equations,

358 Chapter 5 Designing Combinational Systems
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indicating sharing, and a block diagram. Show the number of
each size gate, how many of each package is required and the
total cost for a two-level solution.

d. Take maximum advantage of sharing to try to reduce the 
cost of a two-level solution. Use 7400, 7410, 7420, and 
7430 packages (25¢ each). Show the maps, the equations,
indicating sharing, and a block diagram. Show the number 
of each size gate, how many of each package is required, and
the total cost for a two-level solution.

e. Implement this using a ROM and also using a PLA with five
inputs, 12 product terms, and three outputs. 

25. Design a system that has as its inputs a number from 1 to 10 and
provides as its outputs (eight of them) the signals to drive the display
described below. The inputs are labeled W, X, Y, and Z and are
normal binary. The input combinations 0000, 1011, 1100, 1101,
1110, and 1111 will never occur; they are to be treated as don’t
cares. The available building blocks are 7400, 7410, and 7420
integrated circuits. The design should use the minimum number of
packages (which is five for all cases). The solution should include
the maps for each of the functions and a block diagram of the circuit.

The display allows for the representation of Roman numerals
(except that IIX is used to represent 8, whereas it is normally
written as VIII).

There are a total of eight segments in the display, labeled A
through H, as shown below.

Version High: To light a segment, a 1 is placed on the appropriate
display input (A, B, . . . , H ).

Version Low: To light a segment, a 0 is placed on the appropriate
display input (A, B, . . . , H ). Note that for this version, each input
is just the complement of the one for Version High.

There are two ways to represent a 5 on this display. 

Left: Light segments A and C (or E and G).

Right: Light segments B and D (or F and H).

A
CB

D

E

F

G

H
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This is really four separate problems, one for each version of
the design.

5.11 CHAPTER 5 TEST (60 MINUTES)
1. Implement the following functions using only two of the decoders

described below and two 8-input OR gates.

f(w, x, y, z) � �m(0, 4, 5, 6, 7, 12, 15)

g(w, x, y, z) � �m(1, 3, 12, 13, 14, 15)

360 Chapter 5 Designing Combinational Systems

Left

1 2 3 4 5

6 7 8 9 10

Right

1 2 3 4 5

6 7 8 9 10

The following illustration shows all digits as they should be
coded for each of these, with a lit segment represented by a bold
line and an unlit segment represented by a dashed line.E
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5.11 Chapter 5 Test 361

EN1 EN2� a b c 0 1 2 3 4 5 6 7

0 X X X X 0 0 0 0 0 0 0 0
X 1 X X X 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 
1 0 0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0 0 0 0 1

0
1

4
5
6
7

2
3

a
b
c

EN1
EN2�

2. Consider the three functions, the maps of which are shown below:

Implement them on the PLA shown here. Be sure to label the
inputs and the outputs. Full credit if you use eight terms or less.

f

00 01 11 10

00

01

11

10

w x
y z

11

1

1

1

11

111

g

00 01 11 10

00

01

11

10

w x
y z

111

11 1

1

h

00 01 11 10

00

01

11

10

w x
y z

11

1

11

1

11
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3. For the same set of functions, implement them with the ROM
shown. Be sure to label the inputs and the outputs.
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4. For the same set of functions, implement them with the PAL that
follows. Be sure to label the inputs and the outputs.
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5. For the same set of functions, we have available as components
three NAND gates (as many inputs as you need) and some active
low input, active low enable decoders, as shown below (as many
as you need).

EN a b 0 1 2 3

1 X X 1 1 1 1
0 0 0 0 1 1 1
0 0 1 1 0 1 1 
0 1 0 1 1 0 1
0 1 1 1 1 1 0

0
1
2
3

EN �

a

b

Show a diagram of a circuit to implement these functions with only
these components.

5 points extra credit: Show a diagram that uses only 3 eight-input
NAND gates and 4 of these decoders.
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C H A P T E R

6Analysis of
Sequential Systems

Up to now everything has been combinational—that is, the output
at any instant of time depends only on what the inputs are at that
time. (This ignores the small delay between the time the input of

a circuit changes and when the output changes.)
We will now focus on systems that have memory, referred to as

sequential systems or as finite state machines. Thus, the output will
depend not only on the present input but also on the past history—what
has happened earlier.

We will deal primarily with clocked systems (sometimes referred to
as synchronous). A clock is just a signal that alternates (over time)
between 0 and 1 at a regular rate.* Two versions of a clock signal are
shown in Figure 6.1. In the first, the clock signal is 0 half of the time and
1 half of the time. In the second, it is 1 for a shorter part of the cycle. The
same clock is normally connected to all flip flops.

The period of the signal (T on the diagram) is the length of one
cycle. The frequency is the inverse (1/T). A frequency of 200 MHz (mega-
hertz, million cycles per second) corresponds to a period of 5 nsec†

(5 nanoseconds, 5 billionths of a second). The exact values are not
important in most of the discussion that follows.

365

Figure 6.1 Clock signals.

T

*Although the clock is usually a regular waveform as shown, the regularity of the clock is
not crucial to the operation of most sequential systems.

†1/(200 � 106) � (1000/200) � 10�9 � 5 � 10�9 � 5 nsec.

mar91647_c06a_365_372.qxd  11/14/08  11:22 AM  Page 365



In most synchronous systems, change occurs on the transition of the
clock signal. We will look at this in more detail as we introduce the sev-
eral types of flip flops, clocked binary storage devices.

The block diagram of Figure 6.2 is a conceptual view of a synchro-
nous sequential system. A sequential system consists of a set of memory
devices and some combinational logic. This diagram depicts a system
with n inputs (x’s), in addition to the clock, k outputs (z’s), and m binary
storage devices (q’s). Each memory device may need one or two input
signals. Many systems have only one input and one output, although we
will see examples with several of each, and some where there is no input,
other than the clock. Many memory devices provide the complemented
output (q�) as well as q.

366 Chapter 6 Analysis of Sequential Systems

Figure 6.2 Conceptual view of a sequential system.

Combinational Logicxn zk

x1

z1

q1

qm
Memory

Clock

. . .

. . .

. . .

. . .

The inputs to the combinational logic are the system inputs and the
contents of memory; the combinational logic outputs are the system out-
puts and signals to update the memory.

In Section 6.2, we will introduce the simplest storage device, the
latch. It is a static device constructed of gates. The output changes
immediately whenever the input changes; there is no clock involved.
Latches are used primarily for temporary (buffer) storage.

In Section 6.3, we will develop the most common binary storage
device, the flip flop. A flip flop almost always has two outputs, q and q�;
that is, both the bit stored and its complement. It may have one or two
inputs (indeed, they used to make one with three); we will describe sev-
eral types of flip flops.

In Section 6.1, we will introduce state table, state diagrams, and
timing traces. In Section 6.4, we will discuss the analysis of sequential
systems.

6.1 STATE TABLES AND DIAGRAMS
A simple example of a sequential system is the first of a set of contin-
uing examples for sequential systems. (Others will be introduced in
Chapter 7.)
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CE6. A system with one input x and one output z such that z � 1
iff x has been 1 for at least three consecutive clock times.*

For this example, the system must store in its memory information
about the last three inputs and produce an output based on that. What is
stored in memory is the state of the system. Memory consists of a set of
binary devices. They may just store the last few inputs, but it is often
more economical to code the information in a different way. Sometimes,
a finite number of recent inputs is not adequate.

A timing trace is a set of values for the input and the output (and
sometimes the state or other variables of the system, as well) at consecu-
tive clock times. It is often used to clarify the definition of system
behavior or to describe the behavior of a given system. The inputs are an
arbitrary set of values that might be applied to the system, chosen so as
to demonstrate the behavior of the system. For CE6, the timing trace is
shown in Trace 6.1.

6.1 State Tables and Diagrams 367

*In Section 6.3, we will define exactly when during the clock that the input matters.

Trace 6.1 Three consecutive 1’s.

x 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0
z ? 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0

For CE6, the output depends only on the state of the system (not the
present input) and, thus, occurs after the desired input pattern has
occurred. Such a system is called a Moore model, named after 
E. F. Moore. The output for the first input is shown as unknown
because we have no history of what happened before. (If the system
were initialized to indicate that no 1’s had yet occurred, then that out-
put would be 0.) After three consecutive inputs are 1, the system goes
to a state where the output is 1, and remains there as long as the input
remains 1.

Several designs are possible for this system. We will defer until
Chapter 7 our discussion of the techniques for designing a system from a
verbal description. At this point, we will introduce two tools for describing
sequential systems.

A state table shows, for each input combination and each state, what
the output is and what the next state is, that is, what is to be stored in
memory after the next clock.

A state diagram (or state graph) is a graphical representation of the
behavior of the system, showing for each input combination and each
state what the output is and what the next state is, that is, what is to be
stored in memory after the next clock.

Table 6.1 shows an example of a state table, one that does describe
CE6, although that is not obvious at this point.
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We will refer to the present state as q and the next state as q★. (Some
books use Q or q� or q(t � �) to represent the next state.) The next state
is what will be stored in memory after this clock transition. That will
then become the present state at the next clock time. The next state is a
function of the present state and the input, x. The output, in this example,
depends on the present state, but not the present input. The output only
changes when the state changes, at the time of a clock transition. The
first row of the table signifies that if the system is in state A, that is, fact
A is stored in memory and the input is a 0, then the next state is A (that
is, A is to be stored in memory again); and if fact A is stored in memory
and the input is a 1, then the next state is B. Whenever the system is in
state A (or B or C), the output is 0.

The state diagram that corresponds to this state table is shown in
Figure 6.3. Each state is represented by a circle. Also included in the
circle is the output for that state. Each line coming out of a circle repre-
sents a possible transition. The label on the line indicates the input that
causes that transition. There must be one path from each state for each
possible input combination. (In this example, there is only one input;
thus, there are two paths.) Sometimes, the same next state is reached for
both input combinations and a single line is shown either with two labels
or with a don’t care (X). This state diagram contains the identical
information as the state table.

368 Chapter 6 Analysis of Sequential Systems

Figure 6.3 A state diagram.

1

0
0 0

11
B
0

C
0

0

A
0

D
1

1

Table 6.1 A state table.

Present Next state Present
state x � 0 x � 1 output

A A B 0
B A C 0
C A D 0
D A D 1

If we were given the state table or diagram, we can construct the
timing trace. In Trace 6.2, we repeat the previous trace but include the
state.
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Whether we know the initial state or not, the state table and the state
diagram both show that a 0 input takes the system to state A from all
states. From state A, a 1 input takes the system to state B; from B, it goes
to C; from C, it goes to D; and from D, it remains in D.

In some systems, the output depends not only on the present state of
the machine, but also on the present input. This type of system is referred
to as a Mealy model (after G. B. Mealy). The state table has as many out-
put columns as the next state portion (one for each possible input combi-
nation). An example (which we will return to in the next chapter) is
shown in Table 6.2.

6.1 State Tables and Diagrams 369

Trace 6.2 Trace with state.

x 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0
q ? A B C A B C D A A B A B C D D D A A ?
z ? 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0

Figure 6.4 State diagram for the Mealy system of Table 6.2.

0/0

0/0
two or more 1’s

one 1

no 1’s

1/1

0/0

1/0

1/0
B

A

C

Table 6.2 State table for a Mealy model system.

q★ z
q x � 0 x � 1 x � 0 x � 1

A A B 0 0
B A C 0 0
C A C 0 1

The Mealy model state diagram is different from the Moore model.
The output is associated with the transition, rather than the state, as
shown in Figure 6.4. Each path has a double label: the input causing the
transition, followed by a slash and the output that occurs when the sys-
tem is in that state and that is the input. Thus, from state A, the path to
state B is labeled 1/0, meaning that that path is followed when x � 1, and
the output produced is 0.
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The timing trace (Trace 6.3) is constructed in much the same way as for
a Moore model, except that the present output depends on the present
input as well as the present state.

[SP 1; EX 1]

370 Chapter 6 Analysis of Sequential Systems

Trace 6.3 Timing trace.

x 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0
q ? A B C A B C C A A B A B A B C C C C A A
z 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

The analysis and design process for Moore and Mealy machines are
very similar. We will return to that issue in Section 6.4 and again in
Chapter 7.

6.2 LATCHES
A latch is a binary storage device, composed of two or more gates, with
feedback—that is, for the simplest two-gate latch, the output of each gate
is connected to the input of the other gate. Figure 6.5 shows such a latch,
constructed with two NOR gates.

We can write the equations for this system:

P � (S � Q)�

Q � (R � P)�

The normal storage state is both inputs 0 (inactive). If S and R are 0, then
both equations state that P is the opposite of Q, that is,

P � Q� Q � P�

The latch can store either a 0 (Q � 0 and P � 1) or a 1 (Q � 1 and P � 0).
Thus, the P output is usually just labeled Q�. The letter S is used to indicate
set, that is, store a 1 in the latch. If S � 1 and R � 0, then

P � (1 � Q)� � 1� � 0

Q � (0 � 0)� � 0� � 1

Thus, a 1 is stored in the latch (on line Q). Similarly, if the reset line, R,
is made 1 and S � 0,

Q � (1 � P)� � 1� � 0

P � (0 � 0)� � 0� � 1

Finally, the latch is not operated with both S and R active, since, if
S � 1 and R � 1,

P � (1 � Q)� � 1� � 0

Q � (1 � P)� � 1� � 0

Figure 6.5 A NOR gate latch.

P
S

R
Q
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Both outputs would be 0 (not the complement of each other). Further, if
both S and R became inactive (went to 0) simultaneously, it is not clear
to which state the latch would go (since either Q � 0 or Q � 1 would
satisfy the logic equations). What happens would depend on such issues
as whether they go to 0 at exactly the same time or one input goes to 0
ahead of the other, in which case the last 1 will dominate. Otherwise,
such factors that are beyond the normal interest of the logic designer
(such as the stray capacitance or the gain of the individual transistors)
will determine the final state. To avoid this problem, we ensure that both
inputs are not active simultaneously.

More complex latches can also be built. We will look at a gated latch,
as shown in Figure 6.6. When the Gate signal is inactive (� 0), SG and RG
are both 0, and the latch remains unchanged. Only when Gate goes to 1, can
a 0 or 1 be stored in the latch, exactly as in the simpler latch of Figure 6.5.

[SP 2; EX 2] 
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Figure 6.6 A gated latch.

S SG

RG

Gate

R

Q

Q�

*Many flip flops also have asynchronous clear and/or preset inputs that override the clock
and put a 0 (clear) or a 1 (preset) in the flip flop immediately, in much the same way as in
the simple SR latch. We will address that issue shortly.

6.3 FLIP FLOPS
A flip flop is a clocked binary storage device, that is, a device that stores
either a 0 or a 1. Under normal operation, that value will only change on
the appropriate transition of the clock.* The state of the system (that is,
what is in memory) changes on the transition of the clock. For some flip
flops, that change takes place when the clock goes from 1 to 0; that is
referred to as trailing-edge triggered. For others, that change takes place
when the clock goes from 0 to 1; that is referred to as leading-edge
triggered. What is stored after the transition depends on the flip flop data
inputs and what was stored in the flip flop prior to the transition.

Flip flops have one or two outputs. One output is the state of the
flip flop. If there are two, the other output is the complement of the state.
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Individual flip flops almost always have both outputs. However, when
several flip flops are contained in one integrated circuit package, pin
limitations may make only the uncomplemented output available.

A simple SR master/slave flip flop can be constructed with two
gated latches, as shown in Figure 6.7. When the clock is 1, the S and R
inputs establish the values for the first flip flop, the master. During that
time, the slave is not enabled. As soon as the clock goes to 0, the master
is disabled and the slave enabled. The values of the master’s outputs, X
and X�, are determined by the value of S and R just before the trailing
edge. These are the inputs of the slave. Thus, the slave (and the flip flop
output) changes as the clock goes to 0 (on the trailing edge) and remains
that way until the next clock cycle. We could get a leading-edge triggered
flip flop by connecting the clock to the slave and its complement to the
master. The change in the output of the flip flop is delayed from the edge
of the clock (a somewhat longer delay than that through a gate). Com-
mercial flip flops use a more complex but faster circuit.

We will concentrate on two types of flip flops, the D and the JK. The
D flip flop is the most straightforward and is commonly found in pro-
grammable logic devices (Chapter 8). The JK flip flop almost always
produces the simplest combinational logic. We will also introduce the SR
and T flip flops, in between the discussion of the D and JK, since they
naturally lead to the JK.

372 Chapter 6 Analysis of Sequential Systems

Figure 6.7 A master/slave flip flop.
S

R

Clock

Master Slave

X�

X Q�

Q

The simplest flip flop is the D flip flop. The name comes from Delay,
since the output is just the input delayed until the next active clock transi-
tion. The next state of the D flip flop is the value of D before the clock
transition. Block diagrams of D flip flops, both trailing-edge triggered and
leading-edge triggered, are shown in Figure 6.8. The triangle is used
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Figure 6.8 D flip flop diagrams.

D

q

q�

ClockTrailing-edge
triggered

Leading-edge
triggered

D

q

q�

Clock

We will use two forms of a truth table (Table 6.3) and a state dia-
gram to describe the behavior of each type of flip flop. Although these
are particularly simple for the D flip flop, we will show them here as
well. In the first form of the truth table, the flip flop input(s) and the
present state are in the input columns; in the second, only the flip
flop input(s) are needed. The state diagram for a D flip flop is shown in
Figure 6.9. It has two states (for all types of flip flops). The transition
paths are labeled with the input that causes that transition. The output is
not shown in the circle since it is the same as the state.

to indicate which input is the clock. A circle is usually shown on the
clock input of a trailing-edge triggered flip flop. (We will do that consis-
tently.) Caution is in order, however, since some publications do not dif-
ferentiate in the diagram. 

Table 6.3 The D flip flop behavioral tables.

D q q� D q�

0 0 0 0 0
0 1 0 1 1
1 0 1
1 1 1

Figure 6.9 D flip flop state
diagram.

0 1

1

D

0

0 1

The next state of a flip flop can be described algebraically as a func-
tion of its inputs and present state (by obtaining an equation directly
from the first truth table). In the case of the D flip flop, the equation is

q� � D

The behavior of a trailing-edge triggered D flip flop is illustrated in
the timing diagram of Figure 6.10a. Unless we know the initial value of
q, that is, what was stored in the flip flop before we started to look, then
q is unknown until after the first negative-going clock transition. That is
indicated by the slashed section on the timing diagram. When the first
trailing edge of the clock occurs, the state of the flip flop is established.

mar91647_c06b_373_390.qxd  11/14/08  11:37 AM  Page 373



374 Chapter 6 Analysis of Sequential Systems

Figure 6.10 D flip flop timing diagram.

Clock

D

(a)

q

q�

Clock

D

(b)

Since D is 0 at that time, q goes to 0 (and, of course, q� goes to 1). Note
that there is a slight delay in the output. The input, D, usually changes
shortly after the transition, as shown for the first change, but may change
at any time, as long as it has reached the correct value well before the
next active transition. (Note that the second and third changes in D come
later in the clock cycle.) As shown, the q� output is (as the name implies)
the opposite of the q output. At the second trailing edge, D is 1; thus, q is
1 for the next clock period. At the third trailing edge, D is still 1, and q
remains 1 for another clock period. Note that if the D input were to go
back and forth between clock transitions, as shown in Figure 6.10b, the
output would not be affected, since the value of D is only relevant near
the time of a trailing edge. It would be the same as in Figure 6.10a.*

Next, we will look at the behavior of a leading-edge triggered ver-
sion of that flip flop. The tables describing the flip flop need not be mod-
ified; the only difference is when the output changes relative to the clock.
A timing diagram for a leading-edge triggered D flip flop, using the same
input as before, is shown in Figure 6.11. The output (the state of the flip

*In some flip flops, the input must be established by the preceding leading edge. We will
not discuss those further.
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Figure 6.11 Leading-edge triggered D flip flop.

Clock

D

q

Since the behavior of the flip flop at a clock transition depends on
the value of the flip flop inputs prior to that transition, we can connect the
output of one flip flop to the input of another, as shown in Figure 6.12
(with trailing-edge triggered flip flops), and clock them simultaneously.
At a clock transition when flip flop q changes, the old value of q is
used to compute the behavior of r, as indicated in the timing diagram of
Figure 6.13. The input to the first flip flop has not changed from the last
example, and thus, q is the same as it was before. (We have not shown q�
on this diagram.) At the first trailing edge, the input to r (the output of the
q flip flop) is unknown; thus, the output remains unknown after that
clock. At the second trailing edge, the input to r is 0 and thus r goes to 0.
That flip flop q changes from 0 to 1 as a result of this clock edge is not
relevant; it is the value of the input before the clock edge that determines
the behavior of r. The new value of q will be used to determine the 

Figure 6.12 Two flip flops.

Dx

q

q�

Clock

D

r

r �

Figure 6.13 Timing for two flip flops.

Clock

D

q

r

flop) changes shortly after the clock goes from 0 to 1 (based on the input
just before that transition).
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*Preset is sometimes referred to as set, in which case, clear may be referred to as reset.

behavior of r at the next clock transition. The output of flip flop r is a
replica of that of q, delayed by one clock period.

This type of behavior is common throughout sequential systems.
Usually, all flip flops in the system are triggered by the same clock.
Often, the inputs to flip flops are a function of the contents of the flip
flops of the system, as was shown in the global view of a sequential sys-
tem at the beginning of this chapter. 

Before going on to look at other types of flip flops, we will examine
the behavior of flip flops with static (asynchronous) clear* and preset
inputs. Any type of flip flop may have one or both of these available. A D
flip flop with active low (the most common arrangement) clear and pre-
set inputs is shown in Figure 6.14. The version on the left uses overbars
for the complement (the most common notation in the integrated circuit
literature); we will continue to use primes, as on the right, where the
behavior of the flip flop is described by the truth table of Table 6.4. The
clear and preset inputs act immediately (except for circuit delay) and
override the clock, that is, they force the output to 0 and 1, respectively.
Only when both of these static inputs are 1, does the flip flop behave as
before, with the clock transition and the D input determining the behav-
ior. A timing example is shown in Figure 6.15. The clear input becomes
active near the beginning of the time shown, forcing q to 0. As long as
that input remains 0, the clock and D are ignored; thus, nothing changes
at the first trailing edge of the clock that is shown. Once the clear returns
to 1, then the clock and D take over; but they have no effect until the next
trailing edge of the clock. The D input determines the behavior of the flip
flop at the next four trailing edges. When the preset input goes to 0, the
flip flop output goes to 1. When the preset input goes back to 1, the clock
and D once again take over.

Figure 6.14 Flip flop with clear and preset inputs.

D q

CLR
Clock q�

PRE
D q

CLR�
Clock q�

PRE�

Table 6.4 D flip flop with clear and preset inputs
behavioral table.

PRE� CLR� D q q�

0 1 X X 1 static
1 0 X X 0 immediate
0 0 X X — not allowed

1 1 0 0 0
1 1 0 1 0 clocked
1 1 1 0 1 (as before)
1 1 1 1 1
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Table 6.5 SR flip flop behavioral tables.

S R q q� S R q�

0 0 0 0 0 0 q
0 0 1 1 0 1 0
0 1 0 0 1 0 1
0 1 1 0 1 1 — not allowed
1 0 0 1
1 0 1 1
1 1 0 — not
1 1 1 — allowed

6.3 Flip Flops 377

Next, we will look at the SR (Set-Reset) flip flop. It has two inputs,
S and R, which have the same meaning as those for the SR latch. Its
behavior is described by the truth tables of Table 6.5 and state diagram of
Figure 6.16. The Set (S) input causes a 1 to be stored in the flip flop at the
next active clock edge; the Reset (R) input causes a 0 to be stored. The S
and R inputs are never made 1 at the same time. Although that would not
damage the flip flop, as in the case of the latch, it is not certain what hap-
pens when S and R both go back to 0. Note that in the diagram, each label
is two digits; the first is the value of S and the second the value of R. 
Two labels are on the path from 0 to 0 since either 00 or 01 will cause the
flip flop to return to state 0. (There are also two input combinations that
cause the flip flop to go from state 1 to 1.)

In Map 6.1, we map q� (from the first truth table). Notice that two of
the squares are don’t cares, since we will never make both S and R equal
to 1 at the same time. This allows us to write an equation for the next

Figure 6.15 Timing for flip flop with clear and preset.

Clock

D

q

CLR�

PRE�

Figure 6.16 SR flip flop state
diagram.

00
01

00
10

10

S R

01

0 1

Map 6.1 SR flip flop behavioral
map.

00 01 11 10

0

1

S R

q

q★

X1 1

X 1
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The third type of flip flop is the T (Toggle) flip flop. It has one input,
T, such that if T � 1, the flip flop changes state (that is, is toggled), and
if T � 0, the state remains the same. The truth tables describing the
behavior of the T flip flop are given in Table 6.6 and the state diagram is
shown in Figure 6.18.

378 Chapter 6 Analysis of Sequential Systems

state of the flip flop, q�, in terms of the present state, q, and the inputs,
S and R:

q� � S � R�q

The equation says that after the clock, there will be a 1 in the flip flop if
we set it (S � 1) or if there was already a 1 and we don’t reset it (R � 0).
A timing example (where there is only a clear input, not a preset one) is
given in Figure 6.17. Note that we never made both S and R equal to 1 at
the same time. Also, when both S and R are 0, q does not change.

Figure 6.17 SR flip flop timing diagram.

Clock

CLR�

S

R

q

Figure 6.18 T flip flop state
diagram.

0 0

1

T

1

0 1

Table 6.6 T flip flop behavioral tables.

T q q� T q�

0 0 0 0 q
0 1 1 1 q�
1 0 1
1 1 0

*The T flip flop must have static clear or preset, since the next state always depends 
on the previous one. For each of the other types of flip flops, there is at least one input
combination that will force the flip flop to state 0.

The behavioral equation is

q� � T � q

and a timing example is shown in Figure 6.19.*
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Figure 6.19 T flip flop timing diagram.

Clock

CLR�

T

q

The last type of flip flop we will present is the JK (where the letters
are not an acronym), which is a combination of the SR and T, in that it
behaves like an SR flip flop, except that J � K � 1 causes the flip flop to
change states (as in T � 1). The truth tables are given in Table 6.7 and the
state diagram is shown in Figure 6.20. 

Figure 6.20 JK flip flop state diagram.
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10
11

J K
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Map 6.2 JK flip flop behavioral
map.

00 01 11 10

0

1

J K

q

q★

1 1

11

Table 6.7 JK flip flop behavioral tables.

J K q q� J K q�

0 0 0 0 0 0 q
0 0 1 1 0 1 0
0 1 0 0 1 0 1
0 1 1 0 1 1 q�
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

From the first truth table, we can derive Map 6.2 and the equation 
for q�:

q� � Jq� � K�q

A timing example for the JK flip flop is shown in Figure 6.21. Note
that there are times when both J and K are 1 simultaneously; the flip flop
just changes state at those times.

We now have the behavioral aspects of all of the flip flops and can
begin to analyze more complex systems. Before we continue with that,
we will look at some of the commercially available flip flop packages. D
and JK flip flops are the most common. We will look at four packages, all
of which are available in LogicWorks and in the Breadboard simulator
(although the latter two are listed under registers in the simulator).
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[SP 3, 4; EX 3, 4, 5, 6; LAB]

Figure 6.21 Timing diagram for JK flip flop.

Clock

CLR�

J

K

q

The 7473 is a dual JK flip flop package. It contains two independent
JK flip flops, each of which has an active low clear input, and both q and
q� outputs. It is trailing-edge triggered (with separate clock inputs for
each of the flip flops). (Each flip flop has four inputs—J, K, clear, and
clock—and two outputs—q and q�; it fits in a 14-pin integrated circuit
package.)

The 7474 is a dual D flip flop, also in a 14-pin package. Since there
is only one data input per flip flop, there are two available pins; they are
used for active low preset inputs. It is leading-edge triggered (with sepa-
rate clock inputs for each of the flip flops).

There are packages of D flip flops with four or six flip flops. The
74174 is a hex (six) D flip flop package, with only a q output for each flip
flop and a common leading-edge triggered clock. There is a common
active low clear (sometimes referred to as a Master Reset). This is a 16-
pin package.

Lastly, we have the 74175, a quad (four) D flip flop package. Each
flip flop has both a q and q� output. There is a common leading-edge trig-
gered clock and a common active low clear. Once again, this is a 16-pin
package. The pin connections for these are shown in Appendix A.6.

6.4 ANALYSIS OF SEQUENTIAL 
SYSTEMS

In this section, we will examine some small state machines (consisting of
flip flops and gates) and analyze their behavior, that is, produce timing
diagrams, timing traces, state tables, and state diagrams. We will also
look at the relationship between the state table and the timing.

The first example, the circuit of Figure 6.22, is a circuit with two
trailing-edge triggered D flip flops. (We will call the flip flops q1 and q2;
sometimes we will use names, such as A and B.) 
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Figure 6.22 A D flip flop Moore model circuit.
x

z

D q2

q1� q 2�

D q1

Clock

From the circuit, we find

D1 � q1 q2� � x q1�

D2 � x q1

z � q2�

We will first construct the state table. Since this is a Moore model,
there is only one output column. The next state part is particularly easy
for a D flip flop q� � D. We first complete the output (z) column and the
q1

� (� D1) part of the table as shown in Table 6.8a.
Finally, we add q2

�(D2) to produce the complete state table of
Table 6.8b. 

Table 6.8a Partial state table.

q1
� q2

�

q1q2 x � 0 x � 1 z

0 0 0 1 1
0 1 0 1 0
1 0 1 1 1
1 1 0 0 0

Table 6.8b Complete state table.

q1
� q2

�

q1q2 x � 0 x � 1 z

0 0 0 0 1 0 1
0 1 0 0 1 0 0
1 0 1 0 1 1 1
1 1 0 0 0 1 0

Figure 6.23 A Moore state
diagram.

0

0

00

00
1

01
0

10
1

11
0

1

11

1

Figure 6.24 A Moore model circuit.

J

K B�

BJ

K A�

A

Clock

x

z

The corresponding state diagram is shown in Figure 6.23.
We will now look at a Moore model circuit with JK flip flops (See

Figure 6.24).

mar91647_c06b_373_390.qxd  11/26/08  12:16 PM  Page 381



This is a Moore model, since the output z, which equals A � B, is a func-
tion of the state (that is, the contents of the flip flops) and not of the
input x. 

We will now write equations for the flip flop inputs and the output,
and, from them, construct a state table:

JA � x KA � xB�

JB � KB � x � A�

z � A � B

The output column comes directly from the z equation. We can now fill
in the next state section one entry at a time. For the first entry, since x �
A � B � 0, JA � KA � 0 and JB � KB � 1. From the flip flop behavioral
table of Table 6.7 (Section 6.3), we can see that A does not change state,
but B does. Thus, the next state is 0 1. Next, for x � A � 0 and B � 1
(the second row of the first column), JA � KA � 0 and JB � KB � 1.
Again, A does not change state, but once again B does. The resulting next
state is 00. At this point, we have the state table of Table 6.9a. 
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Table 6.9a State table with first
two entries.

A� B�

A B x � 0 x � 1 z

0 0 0 1 0
0 1 0 0 1
1 0 1
1 1 1

Table 6.9b State table with A�

entered.

A� B�

A B x � 0 x � 1 z

0 0 0 1 0
0 1 0 1 1
1 0 1 0 1
1 1 1 1 1

We can continue through the remaining entries, or we can look at
the equations for one flip flop at a time (as we did with the D flip flops).
When x � 0 (no matter what A and B are), JA � KA � 0 and flip flop A
does not change state. Thus, we can complete A� for x � 0, as in
Table 6.9b. When x � 1, JA � 1 and KA � B�. For the two rows where
B � 0 (the first and third), JA and KA are both 1 and A toggles. For the
two rows where B � 1 (the second and fourth), JA � 1 and KA � 0,
putting a 1 in flip flop A. That results in the partial table (where A� has
been filled in) of Table 6.9b.
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Now we can complete the B� section of the table. When A � 0 (the first
two rows of both columns), JB � KB � 1 and B changes state. When
A � 1, JB � KB � x. For x � 0 (the first column, last two rows), B
remains unchanged. Finally, for A � 1 and x � 1, JB � KB � 1 and B
changes, producing the completed Table 6.9c.
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Another technique to construct the state table is to use the equations
we developed in the last section for the next state, namely,

q� � Jq� � K�q

Using the values from this problem, we obtain

A� � JAA� � K�AA � xA� � (xB�)�A � xA� � x�A � AB

B� � JBB� � K�BB � (x � A�)B� � (x � A�)�B

� xB� � A�B� � x�AB

We can now construct the state table as we did with D flip flops. These
equations give exactly the same results as before.

For this example, we will produce a timing trace and a timing dia-
gram if we are given the input x and the initial state.* The values of x and
the initial values of A and B in Trace 6.4 are given. 

Table 6.9c Completed state table.

A� B�

A B x � 0 x � 1 z

0 0 0 1 1 1 0
0 1 0 0 1 0 1
1 0 1 0 0 1 1
1 1 1 1 1 0 1

Trace 6.4 Trace for Table 6.9.

x 0 0 1 0 1 1 0
A 0 0 0 1 1 1 0 0
B 0 1 0 1 1 0 1 0 1

z 0 1 0 1 1 1 1 0 1

→

→

*The process is really a repetition of what we did in Trace 6.2. The major differences 
are that there we had state names and here we have the values of the state variables (flip
flops).
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At the first clock edge, the values in the shaded box determine the next
state (the box to the right) and the present output (the box below). The
next state is obtained from the first row (AB � 00) and the first column
(x � 0), the shaded square in Table 6.9c. The output is just the value of z
in the first row. (Only the state is needed to determine the output.) For the
next column of the timing trace, we start the process over again; this is
effectively a new problem. The state is 01 (second row of the state table)
and the input is 0, giving a next state of 00. This continues through suc-
cessive inputs. The last input shown, a 0 when the system is in state 01
takes the system to state 00. We know that state and that output, even
though we do not know the input any longer. Finally, for this example,
we can determine the output and the value of B for one more clock time,
since, from state 00, the next state is either 01 or 11, both of which have
B � 1 and a 1 output. (We cannot go any further.)

In Figure 6.25, we will next look at a timing diagram for the same
system with the same input sequence. We must look at the value of the
variables (A, B, and x) just before the trailing edge. From that, we know
the present state and the input, and can determine what the values for A
and B must be during the next clock period. At any time that we know A
and B, we can determine z.
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Figure 6.25 Timing diagram for Table 6.9.

Clock

x

A

B

z

We did not need to construct the state table to obtain either the tim-
ing diagram or the trace. We could, at each clock trailing edge, determine
the behavior of each flip flop. The output can then be constructed last,
since it is just the OR of the two state variables (A and B). Thus, when the
first clock edge arrives, A � B � x � 0 and, thus, JA � KA � 0, leaving
A at 0. At the same time, JB � KB � 1 and thus B toggles, that is, goes to
1. We can now shift our attention to the next clock time and repeat the
computations.

At this point, a word is in order about the initial value. For this
example, we assumed that we knew what was stored in A and B when the
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first clock arrived. That may have been achieved using a static clear
input, which was not shown to simplify this problem. In some cases, we
can determine the behavior of the system after one or two clock periods
even if we did not know the initial value. (That will be the case in the
next example.) But, in this problem, we must initialize the system. (Try
the other initial states and note that each follows a completely different
sequence over the time period shown.) Finally, for this problem (a Moore
model), the state diagram is given in Figure 6.26.

Figure 6.26 State diagram for
Table 6.9.

0

0

1

1
1

1

0 0
0

0 1
1

1 1
1

1 0
1

0

0

In some systems, the output depends on the present input, as well as
the state. From a circuit point of view, that just means that z is a function
of x, as well as the state variables. This type of circuit is referred to as a
Mealy model. An example of such a system is shown in Figure 6.27.
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Figure 6.27 A Mealy model.

q2

q2�

D
q1

q1�

D

x
z

Clock
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Note that state 11 is never reached; this problem really only has 3 states
(although when the system is first turned on, it could start in state 11).
But after the first clock, it will leave that state and never return. That
becomes obvious from the state diagram of Figure 6.28. 
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The flip flop input and the output equations are

D1 � xq1 � xq2

D2 � xq�1q�2
z � xq1

Of course, with D flip flops, q� � D. Thus,

q1
� � xq1 � xq2

q2
� � xq�1q�2

From that, we obtain the state table of Table 6.10. Notice that we need
two output columns, one for x � 0 and one for x � 1.

Table 6.10 State table for the Mealy system.

q� z
q x � 0 x � 1 x � 0 x � 1

0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1
1 1 0 0 1 0 0 1

Figure 6.28 State diagram for
a Mealy model.

0/0

0/0

0/0 1/1

1/1

0/0

1/0

1/0
0 1

0 0 1 1

1 0

Notice that there is no path into state 11. Also note that whenever there is
a 0 input, we return to state 00. Thus, even if we do not initialize this sys-
tem, it will behave properly after the first 0 input.

We will next look at the timing trace (see Trace 6.5, where the input
is given and shown in tan) and then at the timing diagram for this system.
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6.4 Analysis of Sequential Systems 387

Even though we do not know the initial state (the ? for q1 and q2), the 0
input forces the system to state 00 at the next clock time and we can com-
plete the trace. Note that the output is known for two clock periods after
the input is not, since the system cannot reach state 10 (the only state for
which there is a 1 output) any sooner than that. A word of caution: The
present state and the present input determine the present output and the
next state, as indicated.

The timing diagram for this example is shown in Figure 6.29. It
illustrates a peculiarity of Mealy systems.* Note that there is a false out-
put (sometimes referred to as a glitch), that is, the output goes to 1 for a
short period even though that is not indicated in the timing trace nor in
the state table.

The output comes from combinational logic; it is just xq1. If the input x
does not change simultaneously with the trailing edge of the clock (as is
the case here), and it remains 1 after q1 goes to 1, the output will go to 1.
But the output indicated by the state table or the timing trace is based
on the value of q1 at the time of the next clock. The false output is not
usually important, since the output of a Mealy system is mainly of inter-
est at clock times (that is, just before the edge on which flip flops might
change state). Furthermore, it is often the case that system inputs change

Trace 6.5 Mealy model timing.

x 0 1 1 0 1 1 1 1 0
q1 ? 0 0 1 0 0 1 1 1 0
q2 ? 0 1 0 0 1 0 0 0 0

z 0 0 0 0 0 0 1 1 0 0 0

→

→

Figure 6.29 Illustration of false output.

Clock

x

q1

q2

z

false output

*In the timing diagram, the delay through the output AND gate is ignored since it is
typically shorter than that of the flip flop.
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simultaneously with the trailing edge of the clock.* The glitch occurred
only because x changed well after the flip flop change. As the change in
x gets closer (in time) to the changes in q (that is, the clock edge), the
glitch gets narrower and if x goes to 0 at the same time that q1 goes to 1,
the false output disappears.

Consider the following circuit with one JK and one D flip flop:EXAMPLE 6.1a

q2

q2�

D
q1

q1�

J

K

x

z

Clock

The output, z � q1q2, does not depend on the input x; thus, this is a Moore
model. (This system also produces an output of 1 if the input is 1 for three
or more consecutive clock periods [CE 6]).

The input equations for the system are

J1 � xq2 K1 � x�

D2 � x(q1 � q�2)

Notice that when x � 0, J1 is 0, K1 is 1, and D2 is 0; thus the system goes
to state 00. When x � 1,

J1 � q2 K1 � 0 D2 � q1 � q�2

Flip flop q1 goes to 1 when q2 � 1 and is unchanged otherwise. (Of course,
q1 remains at 1 in state 10.) Flip flop q2 goes to 1 when q1 � 1 or q2 � 0 and
to 0 only if q1 � 0 and q2 � 1.

We could also use, for q1, the equation

q� � Jq� � K�q

and obtain

q1
� � xq2q�1 � xq1 � x(q2 � q1)

From either approach, we get the following state table: 

*Sometimes, circuitry is added to synchronize the input changes with the clock edge.

q1
★ q2

★

q1 q2 x � 0 x � 1 z

0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 0 1 1 0
1 1 0 0 1 1 1
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6.4 Analysis of Sequential Systems 389

There is never a false output in a Moore model, since the output depends
only on the state of the flip flops, and they all change simultaneously, on the
trailing edge of the clock. The output is valid for a whole clock period, from
just after one negative-going transition to just after the next.

If the AND gate of Example 6.1a had a third input, x�, then z � x�q1q2 and
this would be a Mealy model. The next state portion of the state table and
of the timing diagram would be unchanged. There would be two columns in
the state table.

Clock

x

z

q1

q2

EXAMPLE 6.2

R

D q4

q3�q2� q 4�

S q3
x

T q2

Clock

q1�K

J q1

This is the same state table as in Table 6.1 if we note that A has been coded
as 00, B as 01, C as 10, and D as 11.

This system produces the following timing diagram:

EXAMPLE 6.1b

q1
★ q2

★ z
q1 q2 x � 0 x � 1 x � 0 x � 1

0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
1 0 0 0 1 1 0 0
1 1 0 0 1 1 1 0

The z in the timing diagram would remain 0 until after x goes to 0 (one clock
time later than in Example 6.1a).
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390 Chapter 6 Analysis of Sequential Systems

[SP 5, 6, 7, 8; EX 7, 8, 9; LAB]

Complete the timing trace as far as possible. Assume that the system is
initially in state 0000. The given values are shown in brown.

J1 � K1 � xq4

T2 � q1�

S2 � q2� R2 � q2

D4 � q3

Therefore, 

q1 changes state only when xq4 � 1

q2 changes state only when q1 � 0

q3
� � q2�

q4
� � q3

x 1 1 1 0 1 1

q1 0 0 0 1 1 0 0 0 0

q2 0 1 0 1 1 1 0 1 1 0

q3 0 1 0 1 0 0 0 1 0 0 1

q4 0 0 1 0 1 0 0 0 1 0 0 1

After the first clock, q1 remains at 0, q2 toggles, q3 is loaded with 1 (q2�),
and q4 goes to 0 (from q3). After the last input is known for this circuit, we
can determine the next value of q1 as long as the present value of q4 is 0
(since xq4 will be 0). The next state of each of the other flip flops depends
only on the present state of the one to its left. Thus, we can find a value for
q2 one clock time after q1 is known, for q3 one clock time after that, and for
q4 one additional clock time later.

6.5 SOLVED PROBLEMS

1. For each of the following state tables, show a state diagram and
complete the timing trace as far as possible (even after the input
is no longer known).

a. q1
★ q2

★ z
q1q2 x � 0 x � 1 x � 0 x � 1

0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0
1 0 1 1 0 1 1 1
1 1 1 0 1 0 1 0
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6.5 Solved Problems 391

q★

q x � 0 x � 1 z

A A B 1
B D C 1
C D C 0
D A B 0

x 0 1 0 0 1 1 1 0
q1 0
q2 0
z

b.

x 0 1 0 1 0 1 1 1 0 1 0 0 0 0
q A
z

a. b.
0/0

1/1

X/0 1/1

01

00

10

0/1

1/0
0/1

11
A
1

C
0

0

0

0

1

1

1

0

B
1

D
0

1

Note that in part a, state 01 goes to 00 always (input is don’t
care), and the output is always 0. State 11 always goes to 10,
but the outputs are different for the two different inputs; thus
two labels are shown on that path.

The timing traces are as follows:

a. x 0 1 0 0 1 1 1 0
q1 0 0 1 1 1 0 0 1 1 1
q2 0 0 0 1 0 1 0 0 1 0 1 0
z 0 1 1 1 1 0 1 1 ? 1
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392 Chapter 6 Analysis of Sequential Systems

Since state 11 always goes to state 10 (independent of the
input), we can determine the next state for the second clock
after the input is no longer known. At the first clock after the
last input, the output is unknown, but at the next one, we know
that it must be 1, since the output is 1 from state 10, no matter
what the input is. Note that we can determine q2 for two
additional clock times.

b. x 0 1 0 1 0 1 1 1 0 1 0 0 0 0
q A A B D B D B C C D B D A A A
z 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 1

Since state A goes to either A or B, and the output in each of
those states is 1, we can determine the output for one extra
clock time.

2. Analyze the following latch; give the appropriate inputs and
outputs meaningful labels.

P
A

B
Q

P � (AQ)� Q � (BP)�

If A � B � 0,

P � Q � 1

If A � B � 1,

P � Q� Q � P�

If A � 0 and B � 1,

P � 1 Q � 0

If A � 1 and B � 0,

Q � 1 P � 0

This is an active low input latch, where both inputs active
(A � B � 0) is not allowed. The store state is A � B � 1
(inactive), where the outputs are the complement of each other.
When A is active, P is made 1 (and Q � 0). When B is active,
Q � 1 and P � 0. Thus, we could label the latch as follows:
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S

R

CLR�

Q�

Q

Clock

J

K

Clock

CLR�

PRE�

q�

q

Q�
R�

S�
Q

3. Consider the trailing-edge triggered flip flops shown.

a. b. c.

D

Q�

Q

Clock

a. Show a timing diagram for Q.

Clock

S

R

CLR�

Clock

D

b. Show a timing diagram for Q if

i. there is no CLR� input.

ii. the CLR� input is as shown.

c. Show a timing diagram for Q if

i. there is no PRE� input.

ii. the PRE� input is as shown (in addition to the CLR� input).
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Clock

J

K

CLR�

PRE �

a.

Clock

D

Q

The state of the flip flop is not known until the first trailing
edge. At that point, D determines what is to be stored. Thus,
the first time, Q goes to 1; the second time, Q goes to 0; the
third time, Q goes to (stays at) 0. When D changes between
clock times, that does not affect the behavior; it is the value
just before the trailing edge that matters.

Clock

S

R

Q

Q

CLR �

i.

ii.

b.
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Without the clear, we do not know what Q is until after the
first trailing edge. At that point, since S � 1, Q goes to 1. At
the next clock, both S and R are 0; thus, Q does not change.
Since R � 1 for the next two clock times, Q goes to 0. Then
S � 1, making Q � 1; both are 0 leaving Q at 1; and finally
R � 1, returning Q to 0. With the clear, Q goes to 0 earlier
and the first clock edge is ignored. Thus, Q remains at 0 for
the next three clock times. Then, this part behaves like the
first part. (Once the Q from the second part is the same as
that from the first, the behavior is identical.)

Clock

q

q

J

K

PRE�

CLR�

i.

ii.

c.

The two parts are the same up to the time of the active preset
input. In the second case, the preset overrides the clock and keeps
the output at 1. Then, when the outputs start toggling (since J and
K are 1), the two timing pictures are the opposite of each other.

4. We have a new flip flop with three inputs, S, R, and T (in addition
to a trailing-edge triggered clock input). No more than one of
these inputs may be 1 at any time. The S and R inputs behave
exactly as they do in an SR flip flop (that is, S puts a 1 into the
flip flop and R puts a 0 in the flip flop). The T input behaves as it
does in a T flip flop (that is, it causes the flip flop to change state).

a. Show a state graph for this flip flop.

b. Write an equation for Q★ in terms of S, R, T, and Q.
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010
000

100
000

001
100

S R T

010
001

0 1

00 01 11 10

00

01

11

10

QS
RT

1

1

1

X

X

XX

XX X

X

1

a. b.

Q★
� S � Q�T � QR�T�

5. For the following circuit,

q2

q2�

Dq1

q1�

D

x

Clock

CLR�

a. Ignore the CLR� input. Find a state diagram and a state table.

b. Assume that the flip flops are each initially in state 0 (and
there is no CLR�), complete the timing trace for the states of
the flip flops as far as possible.

x 1 0 1 1 1 0

c. For the following inputs (both x and CLR�), complete the
timing diagram for the state of each flip flop.

Clock

CLR�

x
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a. For this circuit,

D1 � q1q2 � xq�1 D2 � xq1 � q�1q�2

The state table is

q1
★ q2

★

q1 q2 x � 0 x � 1

0 0 0 1 1 1
0 1 0 0 1 0
1 0 0 0 0 1
1 1 1 0 1 1

Since no outputs are shown, we will assume that the state is
the only output. The state diagram becomes

11

10

0

0

0

1

1
0

1

01 1

00

b. The timing trace for the given string is

x 1 0 1 1 1 0

q1 0 1 1 0 1 0 0

q2 0 1 0 1 0 1 0 1

c. The timing diagram is

Clock

q1

q2

x

CLR�
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398 Chapter 6 Analysis of Sequential Systems

The flip flop contents are unknown until the CLR� signal goes 
to 0. The first transition of the clock has no effect. At the second
negative-going transition of the clock, x � 1. Both flip flops go 
to 1. We can evaluate the flip flop inputs at the next three clock
trailing edges and produce the balance of the timing, until CLR�
goes to 0 again. At that time, q1 and q2 go to 0. The clock takes
over again at the last transition.

6. For each of the following circuits, complete the timing diagram
for the state of each flip flop and the output, where shown. All
flip flops are trailing-edge triggered.

Q2

Q2�

J

K

z

Clock

x

CLR�

Q1

Q1�

J

K

Clock

CLR�

x

a.
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C

C�

J

K

Clock

B

B�

S

R

A

A�

T
x

Clock

x

Clock

Q1

Q2

x

CLR�

z

a. For this circuit,

J1 � x�Q�1 K1 � Q�2 J2 � K2 � x � Q�1 z � Q1Q2

The output z is just a function of the state of the flip flops. It
can be determined last (after completing the flip flop outputs).
At the last clock transition, the input is not known and thus J1

is unknown (since Q�1 � 1). Thus, we cannot determine the
next value of Q1. But, J2 � K2 � 1 (no matter what x is) and
thus we can determine the value for Q2.

b. For this circuit,

T � x � C S � A R � A� J � K � B�

b. Assume that the three flip flops are all initially 0.
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We really do not need to think of S and R, since B� � A. The
resulting timing diagram is thus

Clock

x

A

B

C

After we no longer know x, we can still determine the value
for A for one more clock, since

T � x � C � ? � 1 � 1

But, once C goes to 0, then T is unknown. Since the inputs to
B only depend on A, we can determine B for one more clock
than A. Similarly, the input to C depends only on B and thus C
is known for still another clock time.

7. For each of the following circuits and input strings,

i. Construct a state table (calling the states 00, 01, 10, 11).

ii. Show a timing trace for the values of the flip flops and the
output for as far as possible. Assume all flip flops are initially
in state 0.

x

z

T q2

q1�R q 2�

S q1

Clock
x        0 0 1 1 0 0 1 0 0

a.

400 Chapter 6 Analysis of Sequential Systems
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a. S � x R � x�q2 T � q�1 � x z � xq1 � q�1q�2
For x � 0, S � 0 and R � q2. Thus, q1 is unchanged when
q2 � 0 and cleared otherwise. For x � 1, q1 is set. When x � 1
or q1 � 0, q2 toggles; otherwise, it remains unchanged. That
produces the following state table:

6.5 Solved Problems 401

Clock

x       1 1 0 0 1 0 0 0 1

J

q2�K1

q1

T

x

z

b.

q1
� q2

� z
q1q2 x � 0 x � 1 x � 0 x � 1

0 0 0 1 1 1 1 1
0 1 0 0 1 0 0 0
1 0 1 0 1 1 0 1
1 1 0 1 1 0 0 1

x 0 0 1 1 0 0 1 0 0

q1 0 0 0 1 1 1 1 1 0 0

q2 0 1 0 1 0 0 0 1 1 0 1

z 1 0 1 1 0 0 1 0 0 1

Note that at the first clock time when the input is unknown, we
can determine the output even though we do not know the
input, since z � 1 in state 00, for both x � 0 and x � 1. We
know q2 one additional clock time, since 00 goes to states 01
or 11, both of which give q2 � 1.

b. T � xq�2 J � q1 K � 1 z � x�q1 � xq�2

Note that q1 toggles only when x � 1 and q2 � 0; and that q2

toggles when q1 � 1, and goes to 0, otherwise.
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x 1 1 0 0 1 0 0 0 1 1

q1 0 1 0 0 0 1 1 1 1 1 0 0

q2 0 0 1 0 0 0 1 0 1 0 1 0 0

z 1 1 0 0 1 1 1 1 0 1 0

In this example, we can determine the state for two clocks
after the input is no longer known, the value of q2 for a third
(since from state 00, we go either to 00 or 10) and the output
for one clock after the last known input.

8. For the following circuits, complete the timing trace as far as
possible. The state of some flip flops can be determined as many
as five or six clocks after the input is no longer known. Assume
that all flip flops are initially 0.

a.

q1
� q2

� z
q1q2 x � 0 x � 1 x � 0 x � 1

0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0
1 0 1 1 0 1 1 1
1 1 1 0 1 0 1 0

B� C�A�K

T B DJx A

Clock

x        0 1 1 1

C

K q3�q 2�R

J

x

S q2

Clock

x        0 1 1 1 0 0 1

T

q4D q1

b.

402 Chapter 6 Analysis of Sequential Systems
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a. J � x K � B� � C T � A D � C� � B�

x 0 1 1 1

A 0 0 1 0 1 1 0

B 0 0 0 1 1 0 1 1

C 0 1 1 1 0 0 1 0 0

Since flip flop B depends only on A, and C depends only on B,
we know the value of C one clock time after B, and B one
clock time after A. At the first clock time when x (and, thus, J)
is unknown, A contains a 1. If K is 0 (independent of J ), flip
flop A will still have a 1; if K is 1, it will go to 0. Thus, for this
sequence, we are able to determine A for two clock times
when x is unknown.

b. D � xq4 S � x R � x�q1 q3
� � q�2 T � q�3

x 0 1 1 1 0 0 1

q1 0 0 1 1 1 0 0 0 0 0

q2 0 0 1 1 1 0 0 1 1 1 1

q3 0 1 1 0 0 0 1 1 0 0 0 0

q4 0 1 1 1 0 1 0 0 0 1 0 1 0

6.6 Exercises 403

6.6 EXERCISES

1. For each of the following state tables, show a state diagram and
complete the timing trace as far as possible (even after the input
is no longer known).

a. q1
★ q2

★ z
q1q2 x � 0 x � 1 x � 0 x � 1

0 0 0 1 0 0 0 1
0 1 1 0 1 1 0 0
1 0 0 0 0 0 1 1
1 1 0 1 0 1 1 0

x 1 0 1 1 0 0 0 1

q1 0

q2 0

z

E
X

E
R

C
IS

E
S
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★b. q★

q x � 0 x � 1 z

A A B 0
B C B 0
C A D 0
D C B 1

x 1 1 0 1 0 1 0 1 0 0 1 0 1 1

q A

z

c. q★ z
q x � 0 x � 1 x � 0 x � 1

A B C 0 1
B C A 0 0
C A B 1 0

q★ z
q x � 0 x � 1 x � 0 x � 1

A A B 1 0
B C D 0 0
C A B 0 0
D C D 1 0

x 0 0 1 1 1 0 0 0 0 0 1 0

q A

z

d.

x 0 1 0 0 0 1 1 1 1 0 1

q A

z

2. Show the block diagram for a gated latch that behaves similarly
to the one of Figure 6.6, but uses only NAND gates.

E
X

E
R

C
IS

E
S
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3. For the input shown below, show the flip flop outputs.

a. Assume that the flip flop is a D flip flop without a clear or
preset.

b. Assume that the flip flop is a D flip flop with an active low
clear.

c. Assume that the flip flop is a D flip flop with active low clear
and preset inputs.

d. Assume that the flip flop is a T flip flop with the same input as
part a, and that Q is initially 0.

e. Assume that the flip flop is a T flip flop with an active low clear
and the same inputs as part b.

6.6 Exercises 405

Clock

D or T

CLR�

CLR�

PRE �

4. For the following JK flip flops, complete each of the timing
diagrams. First, assume that CLR� and PRE� are inactive (1).
Then, use the values shown.

Clock

J

K

q

q�

CLR�

PRE�

b. and e.

c.

E
X

E
R

C
IS

E
S
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5. Consider the following flip flop circuit

a.

b.

★c.

Clock

J

K

CLR�

J

K

CLR�

PRE�

Q

CLR�

J

K

Clock

IN Q�

x

Q

Complete the timing diagram below if that flip flop is

a. a D flip flop

b. a T flip flop

In both cases, the flip flop starts with a 0 in it.

Clock

x

E
X

E
R

C
IS

E
S
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6. We have a new type of flip flop, with inputs A and B. If A � 0,
then Q★ � B; if A � 1, Q★ � B�.
a. Show a state diagram for this flip flop.

b. Write an equation for Q★ in terms of A, B, and Q.

7. For each of the following circuits, complete the timing diagram
for the state of each flip flop and the output, where shown. All
flip flops are trailing-edge triggered. For those circuits in which
there is no clear input, assume each flip flop starts at 0.

a.

6.6 Exercises 407

Clock

A

D

A� B

D

B�

x

z

Clock

x

E
X

E
R

C
IS

E
S
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★b.

d.

408 Chapter 6 Analysis of Sequential Systems

T q1

q1�

S zx 

R

q2

q 2�

Clock

Clock

x

S q1

q 1�

D
x

R

q2

q2�

J

K

q3

q3�

Clock

CLR�

CLR�

Clock

x

D q1

q1�

J

K

q2

q2�

z

x

Clock

Clock

x

c.

E
X

E
R

C
IS

E
S
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8. For each of the following circuits and input strings

i. Construct a state table (calling the states 00, 01, 10, 11).

ii. Show a timing trace for the values of the flip flops and the
output for as far as possible. Assume that the initial value of
each flip flop is 0.

★a.

6.6 Exercises 409

D q1

q1�

D q2

q2�

z

x

Clock

x       0 0 1 1 0 0 1 1 0 

b.

J B

B�K

J A

A�K

x

Clock

x       0 0 1 1 0 0 1 1 0 

z

E
X

E
R

C
IS

E
S
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d.

q1 q1�

S R

Clock

x        0 0 1 1 0 0 1 1 0

x

z

q2 q 2�

T

c.

J q1

q 1�K K

J q2

z

x

Clock

x        0 1 1 0 1 1 1 1 1 

E
X

E
R

C
IS

E
S
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9. For the following circuits, complete the timing trace as far as
possible. The state of some flip flops and the output can be 
determined for as many as three clocks after the input is no
longer known. Assume that all flip flops are initially 0.
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C �RK

S C

B�

T B

z

x J A

Clock

x        0 1 1 0 1 0 1

R

S C

B�

T B
x

D A

Clock

x        0 1 0 1 0 1 0

b.

a.

E
X

E
R

C
IS

E
S
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6.7 CHAPTER 6 TEST (50 MINUTES)

1. For the following state table, complete the timing trace as far as
you can.

q★ z
q x � 0 x � 1 x � 0 x � 1

A C A 0 0
B A D 1 1
C B C 0 1
D B B 0 0

x 0 0 1 1 0 0 0 1 0 1

q A

z

d. 

R

D q3

q2�q1�K q3�

S q2x J q1

Clock

x        0 0 1 0 0 0

★c.

RK

S C

B�A� C�

J B

x

T A

Clock

x        0 1 1 0 0 1 1 1 0

z E
X

E
R

C
IS

E
S

C
H

A
P

T
E

R
 T

E
S

T
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2. For the following JK trailing-edge triggered flip flop with an 
active low clear, show the timing diagram for Q.

a. Assuming no CLR� input.

b. With the CLR� input shown.

6.7 Chapter 6 Test 413

J

Q�

CLR�

K

Clock

Q

K

J

Q

Q

CLR�

Clock

3. For the following circuit, construct the state table.

B�

T B

x

Clock

A�

D A

z

a.

b.

C
H

A
P

T
E

R
 T

E
S

T
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4. For the following circuit, complete the timing diagram. 

B�

D B

x

Clock

A�

D A

z

x

A

B

z

Clock

C
H

A
P

T
E

R
 T

E
S

T
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*This is very similar to CE6 (introduced in Chapter 6), except that the output goes to 1
simultaneously with the third consecutive 1 (whereas in CE6, the system went to a state
with a 1 output when it received the third 1).

C H A P T E R

7The Design of
Sequential Systems

As in the case of combinational systems, the design process typi-
cally starts with a problem statement, a verbal description of the
intended behavior of the system. The goal is to develop a block

diagram of the system utilizing the available components and meeting
the design objectives and constraints.

We will first present five additional Continuing Examples, which we
will use throughout the chapter to illustrate the design techniques.

Continuing Examples (CE)

CE7. A Mealy system with one input x and one output z such that z � 1
at a clock time iff x is currently 1 and was also 1 at the previous two clock
times.*

CE8. A Moore system with one input x and one output z, the output of
which is 1 iff three consecutive 0 inputs occurred more recently than three
consecutive 1 inputs.

CE9. A system with no inputs and three outputs, that represent a number
from 0 to 7, such that the outputs cycle through the sequence 0 3 2 4 1 
5 7 and repeat on consecutive clock inputs.

CE10. A system with two inputs, x1 and x2, and three outputs, z1, z2, and
z3, that represent a number from 0 to 7, such that the output counts up if
x1 � 0 and down if x1 � 1, and recycles if x2 � 0 and saturates if x2 � 1.
Thus, the following output sequences might be seen

x1 � 0, x2 � 0: 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 . . .

x1 � 0, x2 � 1: 0 1 2 3 4 5 6 7 7 7 7 7 7 7 7 7 . . .

x1 � 1, x2 � 0: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 . . .

x1 � 1, x2 � 1: 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 . . .
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(Of course, x1 and x2 may change at some point so that the output would
switch from one sequence to another.)

CE11. A bus controller that receives requests on separate lines, R0 to R3,
from four devices desiring to use the bus. It has four outputs, G0 to G3,
only one of which is 1, indicating which device is granted control of the
bus for that clock period. (We will consider, in Section 7.4, the design for
such a priority controller, where the low number device has the highest
priority, if more than one device requests the bus at the same time. We
look at both interrupting controllers, where a high priority device can
preempt the bus, and one where a device keeps control of the bus 
once it gets control until it no longer needs the bus.)

In addition to these Continuing Examples, there are three additional
complete examples (from verbal description to final design) in Appen-
dix E.2.

We will next look at the design process for systems similar to those
that we just described. In Chapter 8, we will look at some other tech-
niques that are suitable for larger systems.

Sometimes there may be different ways of storing the necessary infor-
mation. For CE7, we could just store the last two values of the input. If we
know that and we know the current input, then we know if all three have
been 1. But we could also store how many consecutive 1’s there have
been—none, one, or two or more. We can develop the state table either way;
each will produce a properly working circuit. However, the cost might be
quite different. Just consider what would have been the case if we wanted an
output of 1 iff the input was now 1 and was also 1 for the last 27 consecutive
clocks. The first approach would require us to store the last 27 inputs—in
27 flip flops. The second approach would require us to keep track of only
28 things, 0 consecutive 1’s through 27 or more consecutive 1’s. But 28 facts
can be stored using only five binary storage devices, coding none as 00000,
through 27 or more as 11011 (the binary equivalent of 27).

This is the same problem as for combinational systems. Many prob-
lems are stated in such a way that this step is not necessary.

Step 3: Derive a state table or state diagram to describe the
behavior of the system.

Step 2: If necessary, code the inputs and outputs in binary.

Step 1: From a word description, determine what needs to be
stored in memory. That is, what are the possible states?

416 Chapter 7 The Design of Sequential Systems
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In Moore systems, such as CE6 and CE8, the output depends only
on the present state of the system. (The combinational logic that pro-
duces the output is just a function of the contents of the various flip
flops.) (The output does, of course, depend on the input, since the state
depends on the input, but the effect on the output is delayed until after the
next clock.) In other examples, such as CE7, the output depends on the
current input as well as the contents of memory.

Fewer states may mean fewer storage devices. By reducing the num-
ber of flip flops, we also reduce the number of inputs to the combina-
tional logic. Thus, for example, a system with one input and three flip
flops requires four-variable combinational logic, whereas one with
two flip flops would use only three-variable logic. This usually means a
less expensive circuit. (This step could be omitted and a correctly work-
ing system designed.)

Any coding will do, that is, will produce a correct solution. However, a
good choice will often lead to simpler combinational logic (see Chapter 9).

The state table and state assignment produce a table that tells what
is to be stored in each flip flop as a function of what is in memory now
and the system input. This part of the problem is to determine what input
must be applied to each flip flop to get that transition to take place. In this
chapter, we will look at the technique that is required for the various
types of flip flops commonly used.

Step 7: Produce the logic equation and draw a block diagram (as in
the case of combinational systems).

Step 6: Choose a flip flop type and derive the flip flop input maps or
tables.

Step 5: Choose a state assignment, that is, code the states in
binary.

Step 4: Use state reduction techniques (see Chapter 9)* to find a
state table that produces the same input/output behavior but has
fewer states.

Chapter 7 The Design of Sequential Systems 417

*Chapter 9 is available on the student side of the book’s Web site,
http://www.mhhe.com/marcovitz.
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In this chapter, we will be concerned first with Steps 6 and 7; then,
we will return to Step 1. In Chapter 9, we will develop techniques for
state reduction (Step 4) and state assignment (Step 5).

The state table of Table 6.1 and the state diagram of Figure 6.3 are
repeated here as Figure 7.1.

418 Chapter 7 The Design of Sequential Systems

Three state assignments are shown in Table 7.1.*

1

0
0 0

11
B
0

C
0

0

A
0

D
1

1

*We will demonstrate in Chapter 9 that all of the other possible state assignments result in
the same amount of combinational logic as one of these. Each can be obtained either by a
renumbering of the flip flops or the replacement of variables by their complement or both.

Table 7.1 State assignments.

q q1 q2 q q1 q2 q q1 q2

A 0 0 A 0 0 A 0 0
B 0 1 B 1 1 B 0 1
C 1 0 C 1 0 C 1 1
D 1 1 D 0 1 D 1 0

(a) (b) (c)

These assignments were chosen arbitrarily. It is not clear which choice
might lead to the least combinational logic.

From either the state diagram or the state table, we construct the
design truth table of Table 7.2 for the next state. For this first example,
we will use the state assignment of Table 7.1a.

Although the q column is not really needed, it is helpful in the
development of the truth table, particularly if the states are assigned in
some order other than numerical (such as in Tables 7.1b and 7.1c). The
first half of the design truth table corresponds to the first column of the
state table (x � 0). The next state is 00 for the first four rows, since each
of the states go to state A on a 0 input. The second half of the table cor-
responds to x � 1.

For a Moore system, we construct a separate table for the output
(Table 7.3), since it depends only on the two state variables. (As we will

Table 7.2 Design truth table.

q x q1 q2 q1
� q2

�

A 0 0 0 0 0
B 0 0 1 0 0
C 0 1 0 0 0
D 0 1 1 0 0
A 1 0 0 0 1
B 1 0 1 1 0
C 1 1 0 1 1
D 1 1 1 1 1

q�

q x � 0 x � 1 z

A A B 0
B A C 0
C A D 0
D A D 1

Figure 7.1 Design example.
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see shortly, the z column would be included as another column in the
design truth table for a Mealy system.) 

We can now map q1
�, q2

�, and z, as shown in Map 7.1. We prefer to
draw the Karnaugh maps in the vertical orientation for such problems
since the columns correspond to the input and the rows to the states.
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Table 7.3 Output truth table.

q q1 q2 z

A 0 0 0
B 0 1 0
C 1 0 0
D 1 1 1

0 1

00

01

11

10

x

q1 q2

1

1

1

0 1

00

01

11

10

x

q1 q2

1

1

1

0

z

1

0

1

q1

q2

1

Map 7.1 Next state and output maps.

We thus have the equations

q1
� � xq2 � xq1

q2
� � xq�2 � xq1

z � q1q2

(Although we took advantage of the obvious sharing available in this
example, we will not emphasize sharing in the development of flip flop
input equations.) Note that this sum of products solution requires 4 two-
input AND gates and 2 two-input OR gates (or 6 two-input NAND gates
plus a NOT, since z comes from an AND, requiring a NAND followed by
a NOT).*

If we use the state assignment of Table 7.1b, we get the following design
truth table: 

*We assumed that q1 and q2 are available both uncomplemented and complemented, but x
is only available uncomplemented (although the latter is irrelevant in this example).

EXAMPLE 7.1

q1
� q2

�

x q1 q2 q1
� q2

� q q1 q2 z

A 0 0 0 0 0 A 0 0 0
D 0 0 1 0 0 D 0 1 1
C 0 1 0 0 0 C 1 0 0
B 0 1 1 0 0 B 1 1 0
A 1 0 0 1 1
D 1 0 1 0 1
C 1 1 0 0 1
B 1 1 1 1 0
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q1
� � xq1�q2� � xq1q2

q2
� � xq1� � xq2�

z � q1�q2

Note that this implementation requires an extra gate and three extra gate
inputs.

What we have done so far does not depend on the type of flip flop we
will use to implement the system. We will use these results to complete
the design in Section 7.2.

7.1 FLIP FLOP DESIGN TECHNIQUES

The design truth table that we developed for the next state will be used in
conjunction with the appropriate flip flop design table to obtain a truth
table for the flip flop inputs. We will present this approach first and then
look at a map approach that does not require the truth table and finally a
quick method that saves a great deal of work but applies only to JK flip
flops.

The flip flop design table is most readily obtained from the state
diagram. Its general form is shown in Table 7.4. For each line of the truth
table equivalent of the state table, and for each flip flop, we know its
present value and the desired next state. This table allows us to then
determine the inputs.

Although the D flip flop is trivial, we will use that to illustrate the
process. The state diagram for the D flip flop is repeated as Figure 7.2.
The diagram indicates that if the flip flop is in state 0 and the desired next
state is also 0, the only path is D � 0. Similarly, to go from 0 to 1, D must
be 1; from 1 to 0, D must be 0; and from 1 to 1, D must be 1. That pro-
duces the flip flop design table of Table 7.5 for the D flip flop.

The resulting maps for q1
� and q2

� are 

0 1

00

01

11

10

x

q1 q2

1

1

0 1

00

01

11

10

x

q1 q2

1

1

1

q1
★ q2

★

 

[SP 1]

Table 7.4 Flip flop
design
table.

q q� Input(s)

0 0
0 1
1 0
1 1

Figure 7.2 D flip flop state
diagram.

0 1

1

D

0

0 1
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7.1 Flip Flop Design Techniques 421

For the D flip flop, we do not need separate columns in the truth
table for D1 and D2, since they are identical to the q1

� and q2
� columns. We

will use the design table of Table 7.2 as an example throughout this sec-
tion. Thus, for D flip flops,

D1 � x q2 � x q1

D2 � x q2� � x q1

A block diagram of the solution, using D flip flops and AND and OR
gates, is shown in Figure 7.3.

We will now repeat the process for the JK flip flop. The state dia-
gram for the JK flip flop is repeated as Figure 7.4. To go from state 0 to
state 0, we have two choices; we can make J � 0 and K � 0, or J � 0
and K � 1. In other words, J must be 0 and it does not matter what K is,
that is, K is a don’t care. Similarly, to go from 1 to 1, K must be 0 and J
is a don’t care. To go from 0 to 1, J must be 1 and K is a don’t care and
to go from 1 to 0, K must be 1 and J is a don’t care. This results in the
JK flip flop design table of Table 7.6. The truth table for the system
design is thus shown in Table 7.7. Now, the truth table for the design
requires four more columns for the four flip flop inputs. (The q column
with state names has been omitted since the first five columns of this
table are identical to the corresponding columns of Table 7.2.) The
shaded columns, q1 and q1

�, produce the shaded flip flop input columns,
using Table 7.6. The unshaded columns (for flip flop 2) produce the
unshaded flip flop inputs. In each of the first two rows, q1 goes from 0 to 0;
thus, from the first row of the flip flop design table, J1 � 0 and K1 � X.
In the first row, q2 also goes from 0 to 0, producing J2 � 0 and K2 � X.

Figure 7.3 Implementation using D flip flops.

q1

q1�

D

Clock

q2

q 2�

D

z

x

Figure 7.4 JK flip flop state
diagram.

00
01

00
10

10
11

J K

01
11

0 1

Table 7.6 JK flip flop
design table.

q q� J K

0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Table 7.5 D flip flop
design table.

q q� D

0 0 0
0 1 1
1 0 0
1 1 1
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422 Chapter 7 The Design of Sequential Systems

In the second row, q2 goes from 1 to 0; thus, from the third row of the flip
flop design table, J2 � X and K2 � 1. The rest of the table can be com-
pleted in a similar manner.

The resulting maps are shown in Map 7.2. 

Table 7.7 Flip flop input table.

x q1 q2 q1
� q2

� J1 K1 J2 K2

0 0 0 0 0 0 X 0 X
0 0 1 0 0 0 X X 1
0 1 0 0 0 X 1 0 X
0 1 1 0 0 X 1 X 1
1 0 0 0 1 0 X 1 X
1 0 1 1 0 1 X X 1
1 1 0 1 1 X 0 1 X
1 1 1 1 1 X 0 X 0

Map 7.2 JK input maps.

0 1

00

01

11

10

x

q1 q2

J1 K1

X

X

X

X

1

0 1

00

01

11

10

x

q1 q2

X

XX

X

1

1

J2

0 1

1

1

00

01

11

10

x

q1 q2

X X

X X

XX

XX

K2

0 1

00

01

10

10

x

q1 q2

1

1

1

The flip flop input equations are

J1 � xq2 K1 � x� z � q1q2

J2 � x K2 � x� � q�1

This requires just 2 two-input AND gates (including the output gate),
1 two-input OR gate, and a NOT for x�, by far the least expensive
solution. (For NAND gates, we would need 3 two-input gates and
2 NOTs.)

Looking at the JK flip flop input equations, we note that J1 and K1

do not depend on q1, and J2 and K2 do not depend on q2. That is not just
a property of this particular problem, but there is always a minimum
solution for which this is true (no matter how big the system). This can
be seen by looking at the maps for J and K, repeated in Map 7.3. Note
that half of each map contains don’t cares (shown in brown). (Indeed,
sometimes, when all combinations of state variables are not used, there
are even more don’t cares. We will see an example of that later.) Each
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0 1

00

01

11

10

x

q1 q2

J1 K1

X X

XX

1

0 1

00

01

11

10

x

q1 q2

1

XX

XX

1

0 1

00

01

11

10

x

q1 q2

J2 K2

X

XX

X

1

1

0 1

00

01

10

10

x

q1 q2

1

1 1

X

XX

X

x q2 x � q2�

x � q2

x q1�

x q1

x � q1�

x � q1
x  q1�

Map 7.3 Pairing of 1’s and don’t cares in JK flip flop inputs.

of the 1’s on the map has a don’t care in such a position that the 1 can
be combined with the don’t care to eliminate the variable involved.
These are shown circled on the maps and the terms listed below. These
terms are not necessarily prime implicants, but those for J1 and K1 do
not involve q1, and those for J2 and K2 do not involve q2.

In Examples 7.2 and 7.3, we will repeat this process for the SR and
T flip flops.

The state diagram for the SR flip flop is repeated below.

To go from state 0 to state 0 or from state 1 to state 1, we have the same
two choices as for the JK. To go from 0 to 1, S must be 1 and R must be 0,
and to go from 1 to 0, R must be 1 and S must be 0. The resulting SR flip
flop design table is

00
01

00
10

10

S R

01

0 1

EXAMPLE 7.2

q q� S R

0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

Note that S and R will never both be made 1 (whatever values we choose
for the don’t cares). Following the same technique as for JK flip flops, we get
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0 1

00

01

11

10

x

q1 q2

S1 R1

X

X

1

0 1

00

01

11

10

x

q1 q2

X

X

X

1

1

S2

0 1

1

1

00

01

11

10

x

q1 q2

X

X

X

R2

0 1

00

01

10

10

x

q1 q2

1

1

1

x q1 q2 q1
� q2

� S1 R1 S2 R2

0 0 0 0 0 0 X 0 X
0 0 1 0 0 0 X 0 1
0 1 0 0 0 0 1 0 X
0 1 1 0 0 0 1 0 1
1 0 0 0 1 0 X 1 0
1 0 1 1 0 1 0 0 1
1 1 0 1 1 X 0 1 0
1 1 1 1 1 X 0 X 0

The maps for the flip flops inputs (the output z is still q1q2) become

and the input equations are

S1 � xq2 R1 � x� z � q1q2

S2 � xq�2 R2 � x� � q�1q2

This requires 4 two-input AND gates (including the one for the output), 
1 two-input OR gate, and 1 NOT gate for x�. (The NAND solution would
require 3 additional NOT gates, for S1, S2, and for z.)

The state diagram for the T flip flop is 

There is only one way to get from any state to any other state. The flip flop
design table is thus 

0 0

1

T

1

0 1

EXAMPLE 7.3

and the truth table for the system design becomes

q q� T

0 0 0
0 1 1
1 0 1
1 1 0
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The maps for T and the equations are shown below.

0 1

00

01

11

10

x

q1 q2

T1 T2

1

1

1

0 1

00

01

11

10

x

q1 q2

1

1

1

1

1

x q1 q2 q1
� q2

� T1 T2

0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 1 0
0 1 1 0 0 1 1
1 0 0 0 1 0 1
1 0 1 1 0 1 1
1 1 0 1 1 0 1
1 1 1 1 1 0 0

T1 � x�q1 � xq�1q2

T2 � x�q2 � xq�2 � xq�1q2

z � q1q2

This requires 4 two-input AND gates, 1 three-input AND gate, 1 two-input
and 1 three-input OR gate, and a NOT for x. This is the most expensive
solution for this example. (But, there are systems for which the T will result
in a less expensive circuit than D or SR.)

The JK solution never requires more logic than either the SR or the
T. Comparing the maps for the SR and the JK solutions, we see that both
maps have 1’s in exactly the same places. Further, all of the X’s in the SR
solution are also X’s on the JK maps. The JK maps have additional don’t
cares. We could always choose to make those don’t cares 0 and arrive at
the SR solution. But, as we saw above, some of those X’s were useful to
make larger groupings and thus simplify the logic. From a different point
of view, say we were to design a system for SR flip flops and build the
combinational logic. If we then found that all we had available with
which to build it was JK flip flops, we could use the logic and it would
work. Similarly, if we designed for T flip flops, we could connect that
logic to both J and K; the JK flip flop would behave like a T. (As in the
case of the SR, there is often more logic required this way.) The
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426 Chapter 7 The Design of Sequential Systems

relationship between the D and JK design is not quite so clear. However,
if the logic for D is connected to J and the complement of that to K, the
circuit will work. (Again, this might not be the best design for the JK flip
flop; it certainly was not in this example.)

An important point to note is that the input equations for any flip flop
are derived from the q and q� columns for that flip flop. Thus, if two (or
more) different types of flip flops were used, the same truth table would
be developed as we have just done. Then the appropriate flip flop design
table would be used for each flip flop. If, for example, a JK flip flop were
used for q1 and a D for q2, then the logic equations would be

J1 � xq2 K1 � x�

D2 � xq�2 � xq1

z � q1q2

These are the same equations that we obtained for J1, K1, and D2 earlier
in this section.

Let us now go back and look at another approach to solving these
problems without the use of the truth table. If the states are coded in
binary, we can get maps for q1

� and q2
� directly from the state table as

shown in Figure 7.5. 
The columns of the state table shaded in tan produce the map for q1

�

and the gray columns on the truth table produce the map for q2
�. A word

of caution is in order (although it does not come into play in this prob-
lem). The state table has the present state numbered in binary order; the
map, of course, has them numbered appropriately. The last two rows of
the state table must be interchanged when they are copied onto the map.
(Some people prefer to draw the state table in map order to avoid this
problem, that is, 00, 01, 11, 10; that also works.)

0 1

00

01

11

10

x

q1 q2

q1 q2

1

1

1

0 1

00

01

11

10

x

q1 q2

1

1

1

z
x � 1x � 0

0

0

0

1

00

01

10

11

0 1

0

1

1

0

0

0

0

1

1

1

0

0

0

0

q1
★ q2

★

q1
★ q2

★

Figure 7.5 State table to maps.
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0 1

0

1

1

0

x
q1 q2

J1

1

1

1

0 1

00

01

11

10

x
q1 q2

1

XX

XX

K1

0 1

1

1

00

01

11

10

x
q1 q2

X X

XX

0

1

1

0

q1
★

Map 7.4a First column of J1 and K1.

The shaded columns on the q1
� map, together with the JK flip flop design

table (Table 7.6) are used, row by row, to produce the shaded columns on
the J1 and K1 maps. For example, the first two rows have q1 going from 
0 to 0, producing J � 0, K � X. The last two rows have q1 going from 
1 to 0, producing J � X, K � 1. To get the second column of the J1 and
K1 maps, we use the second column of the q1

� map but still the q1 column
(the first column) as shown shaded in Map 7.4b.

0 1

0

1

1

0

x
q1 q2

J1

1

1

1

0 1

00

01

11

10

x
q1 q2

1

XX

XX

K1

0 1

1

1

00

01

11

10

x
q1 q2

X X

XX

0

1

1

0

q1
★

Map 7.4b Second column of J1 and K1.

In the first row, 0 goes to 0, producing JK � 0X; in the second row,
0 goes to 1, producing JK � 1X; in the third and fourth rows, 1 goes to 1,
producing JK � X0. The results are, of course, the same as before.

For D flip flops, we are done, since the maps for q1
� and q2

� are also
the maps for D1 and D2. Map 7.4a contains the maps for q1

�, J1, and K1

(from earlier in the section). 
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0 1

0

0

1

1

x
q1 q2

J2

1

1

1

0 1

00

01

11

10

x
q1 q2

1

1

X

X

K2

0 1

1

1 1

00
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10

10

x
q1 q2

X

XX

X

1

1

0

0

X

X

q2
★

Map 7.4c Computation of J2 and K2.

To find J and K for flip flop q2, we map q2
� and use the q2 column, as

shown in the shading for the first column of J2 and K2 in Map 7.4c. We
then use the same column of q2 with the other column of the q2

� map to
form the second columns of the J2 and K2 maps.

This same technique can be used with the other type of flip flops
(using the appropriate flip flop design table). Caution: The q1 input (the
first input column) is used with both the first and second columns of q1

�

to obtain the inputs to the first flip flop. The q2 input (the second input
column) is used with both the first and second columns of q2

� to obtain
the inputs to the second flip flop.

The quick method for JK flip flop design (it does not apply to the
other types of flip flop) takes advantage of a property of the JK flip flop
input equations, where J1 and K1 do not depend on q1, and J2 and K2 do
not depend on q2. That is not just a property of this particular problem,
but there is always a minimum solution for which this is true (no matter
how big the system). 

We can take advantage of this property by utilizing the equation we
developed in Section 6.3,

q� � Jq� � K�q

Notice that when q � 0,

q� � J · 1 � K� · 0 � J

and when q � 1,

q� � J · 0 � K� · 1 � K�.

Thus, the part of the map of q� (for each variable) for which that vari-
able is 0 is the map for J and the part for which that variable is 1 is the
map for K�. On Map 7.5a, we show q1

� with the q1 � 0 section shaded in
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7.1 Flip Flop Design Techniques 429

tan and the q1 � 1 section shaded in gray. The two smaller maps are then
copied separately to the right. (That is not really necessary; we could
work on the separate sections of the larger map.)

The three variable map has been reduced to 2 two-variable maps, one for
J and the other for K�. The variable q1 has been eliminated; that was used
to choose the section of the original map. (We could have drawn the map
for K; it would just require replacing 0’s by 1’s and 1’s by 0’s.) From
these maps, we see

J1 � xq2 K�1 � x or K1 � x�

These are, of course, the same answer we obtained using the other meth-
ods as in Map 7.2 and Maps 7.4a and 7.4b. Be careful in using the map
for K�1; the two rows are reversed, that is, the q2 � 1 row is on the top.
That does not affect this problem and just requires care in reading the
map in other problems. (We could redraw the map and interchange the
rows.)

We will repeat this process for the second flip flop on Map 7.5b,
since the map geometry is somewhat different.

0 1

0

0

1

1

x
q1 q2

J2 K 2� K2

1

1

1

0 1

0

1

x
q1

1

1

1

1

0

0

0 1

0

1

x
q1

1

0 1

0

1

x
q1

11

1

q2
★

Map 7.5b Computing J2 and K2 using the quick method.
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1

1
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x
q1 q2

J1 K1 �

1

1

1

0 1

0

1

x
q2
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1

1

0
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1

0

x
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1

1
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Map 7.5a Computing J1 and K1 using the quick method.
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430 Chapter 7 The Design of Sequential Systems

The q2 � 0 portion of the map consists of the first and last rows; the
q2 � 1 portion is made up of the middle two rows. The maps for J2, K�2

and then K2 are shown in Map 7.5b. As we found with the other methods,

J2 � x K2 � x� � q�1

For this approach, it is really only necessary to plot maps of q� for each
variable. We do not need the system truth table nor maps for each of the
flip flop inputs.

We will now look at a complete example. The state table and the state
assignment are shown below. 

EXAMPLE 7.4

From these, we create the truth table below, including a column with the
state name.

x q1 q2 q1
� q2

� z

– 0 0 0 X X X
C 0 0 1 1 0 1
B 0 1 0 1 1 1
A 0 1 1 1 0 1
– 1 0 0 X X X
C 1 0 1 1 1 0
B 1 1 0 1 0 0
A 1 1 1 0 1 1

The resulting maps for the output and for D flip flop inputs are shown
below.

The resulting equations are

z � x� � q1q2

D1 � x� � q1� � q2�

D2 � xq2� � x�q2

0 1
x

q1 q2

z

X X XX

1

1

1

1

0 1

00

01

11

10

00

01

11

10

x
q1 q2

11

1

1 1

0 1

1

1

1

00

01

11

10

x
q1 q2

XX

q1
★ q2

★

q� z
q x � 0 x � 1 x � 0 x � 1 q q1 q2

A B C 1 1 A 1 1
B A B 1 0 B 1 0
C B A 1 0 C 0 1
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7.1 Flip Flop Design Techniques 431

Notice that even the maps for D have don’t cares, since one of the combi-
nations of state variables is unused.

Columns for J and K are now added to the truth table, producing

EXAMPLE 7.5

x q1 q2 q1
� q2

� z J1 K1 J2 K2

– 0 0 0 X X X X X X X
C 0 0 1 1 0 1 1 X X 1
B 0 1 0 1 1 1 X 0 1 X
A 0 1 1 1 0 1 X 0 X 1
– 1 0 0 X X X X X X X
C 1 0 1 1 1 0 1 X X 0
B 1 1 0 1 0 0 X 0 0 X
A 1 1 1 0 1 1 X 1 X 0

Even without mapping the functions, we can see that J1 � 1. It is not
unusual for one (or both) of the inputs to a JK flip flop to be 1. It is also note-
worthy that more than half of the entries in the truth table are don’t cares.
The equations for the flip flop inputs follow. (The output is the same for all
types of flip flops.)

J1 � 1 K1 � xq2

J2 � x� K2 � x�

q�

q x � 0 x � 1 z

S1 S2 S1 0
S2 S3 S1 0
S3 S4 S1 0
S4 S4 S5 1
S5 S4 S6 1
S6 S4 S1 1

We could have used the quick method to obtain the JK equations. The maps
for q1

� and q2
� are repeated, with the shading for the quick method.

Of course, we get the same answers.

X X

0 1

00

01

11

10

x
q1 q2

11

1

1 1

0 1

1

1

1

00

01

11

10

x
q1 q2

XX

q1
★ q2

★

To conclude this section, we will look at one larger example. We wish to
design the following system:
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00 01 11 10
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1

00 01 11 10
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B C
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1
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X

00 01 11 10

00
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11

10

x A

B C

1 1 1

1

1

1

X

X X

X

★ ★ ★

1. q A B C

S1 0 0 0
S2 0 0 1
S3 0 1 0
S4 0 1 1
S5 1 0 0
S6 1 0 1

2. q A B C

S1 0 0 0
S2 1 0 1
S3 1 0 0
S4 1 1 1
S5 0 1 1
S6 0 1 0

The first assignment just uses the first six binary numbers; the second uses
an assignment meant to reduce the combinational logic (based on ideas we
will develop in Chapter 9).

For the first assignment, we will consider the use of D and JK flip flops.
It is easy to produce the maps for the three next states, A�, B�, and C�, with-
out first drawing the truth table. The squares on each map correspond to
the present state, as shown below (S1 is 000; S6 is 101; 110 and 111 are
not used.) The left half of the map corresponds to x � 0, and the right half to
x � 1. 

We can now complete the next state maps directly from the state table.
Since S1 goes to S2 when x � 0, the upper left square for the maps become
0, 0, and 1. The complete maps are shown next. 

00 01 11 10

00

01

11

10

x A

B C

S1 S5 S5

S6S6S2

S4 —

—

—

—S3

S1

S2

S4

S3

The first issue is to make a state assignment. We will consider two
different ones, as shown below.
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0 1
A

B C

X

1 X

1

100

01

11

10

These are not only the maps of the next state, but also the D inputs. The
map of the output, which is only a function of the state (since this is a Moore
model), is shown next.

We can now find the input equations and the output.

DA � xAC� � xBC
DB � x�A � x�B � x�C
DC � x�A � x�B � x�C� � AC�

z � A � BC

Using AND and OR gates requires 13 gates (including the NOT for x�) with
30 inputs (including 1 four-input gate and 3 three-input gates).

To implement this with JK flip flops, we will first use the quick method.
On the maps below, the part of the map used for J is shaded. 

00 01 11 10

00

01

11

10

x A

B C

X X

X

X

X

X

X

A★ B★ C★

1

00 01 11 10

00

01

11

10

x A

B C

1

1X

00 01 11 10

00

01

11

10

x A

B C

1

1

X X1

11

1 1 1 1

1 X X

From the shaded parts, we can find the J’s:

JA � xBC JB � x�A � x�C JC � x� � A

For JA, A determines which part of the map is shaded; thus, the first column
is only x� and the last x. Similarly, for B, the first row of the shaded part
corresponds to C� and the second to C. From the 0’s (and X’s) of the
unshaded part, we can find the K’s, or from the 1’s and X’s, we can find K�

and then complement it:

KA � x� � C KB � x KC � x � A�B�

Of course, the output does not depend on the flip flop type and thus

z � A � BC
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This requires 11 gates (including the NOT for x�) and 22 inputs (only 1 three-
input gate).

Next, we will go directly from the maps for Q★ of each flip flop to the
maps for J and K.

As we can see, the map for JA has don’t cares in the two columns for which
A is 1, and the map for KA has X’s in the two columns for which A is 0. Rows
of don’t cares are seen in the maps for B★ and C★. Of course, the equations
are the same.
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Before considering the other state assignment, we will look at a
related problem to this. Say we designed the system as above and found
that we had only one package of two D flip flops and one package of two
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7.1 Flip Flop Design Techniques 435

JK flip flops. We already have done all the design work necessary; we can
use the equation we found for D or those for JK for any of the flip flops.
The table below shows the number of gates and gate inputs used in each
of these arrangements (as well as those using only D or JK flip flops),
including the output gates.

The truth table above shows the next state and the JK inputs for each
of the flip flops. Note that only the first eight rows are completed for the out-
put column z, since z is not a function of the input x.

We can now find expressions for the output (with a three-variable map)
and for the D inputs (using the A�, B�, and C� columns) or for the JK

A B C Gates Inputs

D D JK 13 28
D JK D 13 29
JK D D 12 27
D JK JK 12 25
JK D JK 12 25
JK JK D 12 26
D D D 13 30
JK JK JK 11 22

As one might guess, the best solution uses two JK flip flops. Even the shar-
ing provided by using D’s for B and C requires more gate inputs. The D can
be used equally well for A or B; other arrangements would require an extra
gate and/or gate input(s).

Next, we will consider the solution using the second state assignment.
For this, we will use the truth table approach. When dealing with state
assignments that are not in numeric order, it is still best to list the truth table
in binary order, but to list the state name next to the binary name. In that
way, we can map the appropriate functions most directly.

x A B C z A� B� C� JA KA JB KB JC KC

S1 0 0 0 0 0 1 0 1 1 X 0 X 1 X
— 0 0 0 1 X X X X X X X X X X
S6 0 0 1 0 1 1 1 1 1 X X 0 1 X
S5 0 0 1 1 1 1 1 1 1 X X 0 X 0
S3 0 1 0 0 0 1 1 1 X 0 1 X 1 X
S2 0 1 0 1 0 1 0 0 X 0 0 X X 1
— 0 1 1 0 X X X X X X X X X X
S4 0 1 1 1 1 1 1 1 X 0 X 0 X 0
S1 1 0 0 0 0 0 0 0 X 0 X 0 X
— 1 0 0 1 X X X X X X X X X
S6 1 0 1 0 0 0 0 0 X X 1 0 X
S5 1 0 1 1 0 1 0 0 X X 0 X 1
S3 1 1 0 0 0 0 0 X 1 0 X 0 X
S2 1 1 0 1 0 0 0 X 1 0 X X 1
— 1 1 1 0 X X X X X X X X X
S4 1 1 1 1 0 1 1 X 1 X 0 X 0
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DA � x�

DB � x�B � BC � x�AC�

DC � AB � x�C� � {x�B or x�A�}

This requires a total of 9 gates with 20 inputs (including the NOT for x�).
We could have solved the JK version using the quick method, but for

this example, we have completed the truth table for J and K. We will leave
the maps as an exercise for the reader; the equations are

JA � x� KA � x 

JB � x�AC� KB � xC�

JC � x� KC � B� � xA�

z � B

This requires 5 gates with 10 inputs, significantly better than the D solution.
Both the D and the JK solution for this assignment are considerably less
expensive than the corresponding ones for the first state assignment.
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z � B

[SP 2, 3, 4; EX 1, 2, 3, 4; LAB]

inputs. First, the output map and equation are shown, since they apply to a
solution using any type of flip flop (with this state assignment).
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7.2 The Design of Synchronous Counters 437

7.2 THE DESIGN OF SYNCHRONOUS
COUNTERS

In this section, we will look at the design of a type of synchronous
sequential system referred to as a counter. In the next section, we will
look briefly at asynchronous counters, that is, those that do not require a
clock input. In the next chapter, we will discuss some of the commer-
cially available counters and the application of counters as part of a
larger system.

Most counters are devices with no data input that go through a fixed
sequence of states on successive clocks. The output is often just the state
of the system, that is, the contents of all of the flip flops. (Thus, no out-
put column is required in the state table.) We will also investigate coun-
ters with one or two control inputs that will, for example, determine
whether the sequence is up (to the next larger number) or down.

Our first example, a 4-bit binary counter, has four flip flops that
cycle through the sequence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 . . .

There are really no new techniques required for this design. The state
table and the truth table are the same; they have 16 rows, 4 input columns,
and 4 output columns, as shown in Table 7.8. Note that the flip flops are
labeled D, C, B, and A, which is the common practice.

As can be seen, the next state for state 0 (0000) is 1 (0001), for 1 is
2, and so forth, until the next state for 15 (1111) is 0 (0000).

Table 7.8 A base-16 counter.

D C B A D� C� B� A�

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 1 0 1 0
1 0 1 0 1 0 1 1
1 0 1 1 1 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 1 1 1 0
1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 0

The maps for the four next state functions are shown in Map 7.6.
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That produces

DD � DC� � DB� � DA� � D�CBA

DC � CB� � CA� � C�BA

DB � B�A � BA�

DA � A�

This solution would require 12 gates with 30 gate inputs. If we have
Exclusive-OR gates available, we could simplify the expressions to

DD � D(C� � B� � A�) � D�CBA � D(CBA)� � D�(CBA)

� D � CBA

DC � C(B� � A�) � C�BA � C(BA)� � C�(BA) � C � BA

DB � B�A � BA� � B � A

DA � A�

This would only require two AND gates and three Exclusive-OR gates.
Next, we will look at the JK design, using Map 7.7. (The SR design

is left as an exercise.) Using the quick method, the maps for J are the
shaded parts of the next state maps (and those of K� are unshaded). 
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Map 7.6 D flip flop inputs for 16-state counter.
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Map 7.7 Maps for JK flip flop design.
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7.2 The Design of Synchronous Counters 439

This produces the equations

JD � KD � CBA

JC � KC � BA

JB � KB � A

JA � KA � 1

Note that since J = K for each of the flip flops, they are being used as 
T flip flops (that is, either they remain unchanged or they toggle). We
could extend the design to 5 flip flops, counting to 31 by adding flip flop
E with inputs

JE � KE � DCBA

A circuit to implement this system using JK flip flops is shown in
Figure 7.6. 

JA 1

Clock

K

JB

K

JC

K

JD

OV

K

Figure 7.6 A 4-bit counter.*

The brown AND gate is not necessary if this is a stand-alone counter; the
output of the A flip flop would be connected directly to JB and KB. The
OV output is 1 when the counter is in state 15 (1111). OV could be con-
nected to the JK inputs of another flip flop or, if we built two 4 flip flop
circuits like the one above, we could connect the OV output of one to the
input where a 1 is now connected to construct an 8-bit counter.

We will next look at an up/down counter, that is, one that can count
in either direction, depending upon a control input. We will label that
control input x, such that the counter counts up when x � 0 and down
when x � 1.† The state table for such a counter is shown as Table 7.9. 

*Note that the combinational logic is multilevel. The term CBA is produced by using the
output of the BA AND gate. In this way, we could extend the counter to any number of
bits by adding as many flip flop/AND gate pairs as are needed.

†In commercial counters, this input is often labeled D�U�, where the notation implies that
down is active high and up is active low, just as we defined x.

Table 7.9 An up/down counter.

x C B A C� B� A�

0 0 0 0 0 0 1
0 0 0 1 0 1 0
0 0 1 0 0 1 1
0 0 1 1 1 0 0
0 1 0 0 1 0 1
0 1 0 1 1 1 0
0 1 1 0 1 1 1
0 1 1 1 0 0 0
1 0 0 0 1 1 1
1 0 0 1 0 0 0
1 0 1 0 0 0 1
1 0 1 1 0 1 0
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0
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The maps for C�, B�, and A� are shown in Map 7.8, with the q � 0
section shaded for the quick method with JK flip flops.
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Map 7.8 An up/down counter.

From these maps, we can see that

JA � KA � 1

JB � KB � x�A � xA�

JC � KC � x�BA � xB�A�

Just as in the case of the 4- and 5-bit up counters, this pattern continues,
yielding (if we had two more flip flops)

JD � KD � x�CBA � xC�B�A�

JE � KE � x�DCBA � xD�C�B�A�

A block diagram for the 3-bit counter is shown in Figure 7.7.

JA

A�

1

Clock

x

K

JB

B� K

JC

C� K

Figure 7.7 An up/down counter.
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7.2 The Design of Synchronous Counters 441

We will look next at a decimal or decade counter, one that goes through the
sequence

0 1 2 3 4 5 6 7 8 9 0 1 . . .

The state (truth) table is similar to that for the binary counter, as seen below

EXAMPLE 7.6

D C B A D� C� B� A�

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X
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The next state for the 9 (1001) row is 0 (0000) and the remaining next
states are don’t cares, since states 10 through 15 are never reached. We
have included rows in this table for the unused states because they are
needed to produce don’t cares on the maps. Some may write the state
table without these rows and then convert it to this truth table (as we did in
the last section). The maps for the next state, with the J section shaded for
finding J and K using the quick method, are shown next. 

From this we can see that

JD � CBA KD � A

JC � KC � BA
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JB � D�A KB � A

JA � KA � 1

We will next design a counter that goes through some sequence of states
that are not in numeric order

0 3 2 4 1 5 7 and repeat

(This is CE9.) Note that the cycle is 7 states; it never goes through state 6.
We can now draw the state table (in any order) or go directly to the truth
table, including a row for the unused state. 
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EXAMPLE 7.7

q1 q2 q3 q1
� q2

� q3
�

0 0 0 0 1 1
0 0 1 1 0 1
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 0 1
1 0 1 1 1 1
1 1 0 X X X
1 1 1 0 0 0

The table can be completed either by going through it row by row and see-
ing that state 0 goes to 3, state 1 goes to 5, and so forth, or by following the
sequence, first filling in the next state for row 0 as 3, then a next state of 2
for state 3, and so forth. In the first approach, when we get to state 6, we
find that it is not in the sequence, and thus the next state is don’t cares. In
the second approach, when we get to state 7, we must be sure to enter the
next state as 0. Then, when we get done with the cycle, we find that row 6
is empty and also put in don’t cares. We surely write the truth table in
numeric order.

The table is repeated below with columns for inputs to SR and T flip
flops; we will use the quick method for JK flip flops. 

q1 q2 q3 q1
� q2

� q3
� S1 R1 S2 R2 S3 R3 T1 T2 T3

0 0 0 0 1 1 0 X 1 0 1 0 0 1 1
0 0 1 1 0 1 1 0 0 X X 0 1 0 0
0 1 0 1 0 0 1 0 0 1 0 X 1 1 0
0 1 1 0 1 0 0 X X 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0 X 1 0 1 0 1
1 0 1 1 1 1 X 0 1 0 X 0 0 1 0
1 1 0 X X X X X X X X X X X X
1 1 1 0 0 0 0 1 0 1 0 1 1 1 1

For D flip flops, we just use the q1
�, q2

�, and q3
� columns, producing the

following maps and equations. 
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7.2 The Design of Synchronous Counters 443

D1 � q�2q3 � q2q�3

D2 � q�1q�2q�3 � q�1q2q3 � q1q�2q3

D3 � q�2

This solution requires 4 three-input gates and 3 two-input gates.
The maps and equations for the SR solution follow. Note that for state 6,

where we don’t care what the next state is, we then don’t care what the
inputs are. S and R are both don’t cares for all three flip flops.
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S1 � q2�q3 � q2q3� R1 � q2�q3� � q2q3 � S1�

� q2�q3� � q1q2

S2 � q1�q2�q3� � q1q2�q3 R2 � q1q2 � q2q3�

S3 � q2� R3 � q2

Even taking advantage of the sharing or using a NOT for R1, this requires
more logic than the D solution (10 or 11 gates).

We will compute the T solution; the maps and the equations are shown
next. 
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T1 � q�1q�2q3 � q2q�3 � q1q2 � q1q�3

T2 � q�1q�3 � q1q3

T3 � q�2q�3 � q2q3

This solution requires 11 gates.
Finally, we will solve this system using the quick method for JK flip flops

as shown on the maps and equations below. 
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J1 � q�2q3 � q2q�3 K1 � q�3 � q2

J2 � q�1q�3 � q1q3 K2 � q1 � q�3

J3 � q�2 K3 � q2
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7.2 The Design of Synchronous Counters 445

This solution requires 8 two-input gates, although the gate for K1 could be
replaced by a NOT gate and the gate for K2 could be eliminated, since by
choosing the don’t cares as 1’s in both places, we get

K1 � J�1 and K2 � J2

If we do not have a static clear (or do not use it) and turn the system
on, we do not know in what state each flip flop will be initially. If we
care, we should clear the flip flops or use some combination of clears and
presets to get the system into the proper initial state. Often, all we care
about is that once this is turned on, it goes through the desired sequence
after one or two clocks. That will always happen if it is initialized to one
of the states in the sequence. But, if it is initialized to one of the unused
states, it is not obvious what will happen. When we designed the systems
of the last two examples, we assumed that that state never happened and
thus made the next state a don’t care.

Once we complete the design, there are no longer any don’t cares.
The algebraic expressions (or the block diagrams) specify what happens
for all possible combinations of variables.

We can determine what would happen by assuming we are in state 110.
Thus, we would make q1 � 1, q2 � 1, and q3 � 0 in the equations. For D
flip flops, we would get

D1 � q2�q3 � q2q�3 � 00 � 11 � 1

D2 � q1�q2�q�3 � q1�q2q3 � q1q2�q3 � 001 � 011 � 100 � 0

D3 � q2� � 0

In that case, the system would go to state 4 (100) on the first clock and con-
tinue through the sequence from there. (With the design shown, we would
also go to state 4 with SR flip flops, to state 2 with T flip flops, and to state 0
with JK flip flops.)

If this were not satisfactory, we could go back and redesign the system
by replacing the don’t cares in row 110 of the truth table by the desired next
state.

A state diagram, showing the behavior of the system designed with D
or SR flip flops, including what happens if the system starts in the unused
state, is shown next. 

EXAMPLE 7.7 (Cont.)
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Note that there are no labels on the paths, since there is no input to the sys-
tem, and the output is just equal to the state. (It is a Moore system.)

As a final example in this section, we will consider the design of a 2-bit
up/down, cycling/saturating counter. This counter has two flip flops, A and
B, and thus only four states. It has two control inputs, x and y. If x � 0, it
counts up and if x � 1, it counts down. If y � 0, it cycles, that is, goes 
0 1 2 3 0 1 . . . or 3 2 1 0 3 2 . . . , and if y � 1, it saturates, that is, it
goes 0 1 2 3 3 3 . . . or 3 2 1 0 0 0 . . . . (This is a two-flip flop version
of CE10.) The state table for this counter is
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EXAMPLE 7.8

A� B�

A B xy � 00 xy � 01 xy � 10 xy � 11

0 0 0 1 0 1 1 1 0 0
0 1 1 0 1 0 0 0 0 0
1 0 1 1 1 1 0 1 0 1
1 1 0 0 1 1 1 0 1 0

Since this is a problem with two inputs, there are four input combinations
and thus four columns in the next state section. (If this were a Mealy system,
there would also be four output columns.) This can easily be converted into
a 16-row truth table or directly to maps. The latter is easiest if we are to
implement this with either D or JK flip flops. In going to the maps, care must
be taken since both the rows and columns are in binary order, not map
order. The maps for DA (A�) and DB (B�) are shown below.

The functions are rather complex.

DA � x�A�B � x�AB� � x�yA � xAB � xy�A�B�

DB � x�yA � AB� � x�B� � y�B�

� x�yA � AB� � x�B� � xy�A�B�
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7.3 Design of Asynchronous Counters 447

Even if we were to implement this counter with JK flip flops, there is
a great deal of combinational logic, as can be seen from the maps and
equations below.

JA � x�B � xy�B� KA � xB� � x�y�B

JB � x� � y� � A KB � x � y� � A�

7.3 DESIGN OF ASYNCHRONOUS
COUNTERS

Binary counters are sometimes designed without a clock input. They are
constructed from the same clocked flip flops (typically JK) as syn-
chronous counters, but each flip flop is triggered by the transition of the
previous one. Consider the circuit of Figure 7.8 with two flip flops.

00 01 11 10

00

01

11

10

x y

A B 00 01 11 10

00

01

11

10

x y

A B

111

11

1

1

11

1

1 1

111

1

A B★ ★

[SP 5, 6, 7; EX 5, 6, 7, 8, 9, 10, 11; LAB]

B

K

1

1J A

K

Count

J

Figure 7.8 A 2-bit asynchronous counter.

When the Count signal goes from 1 to 0, flip flop A is triggered. If it
started out at 0, it goes to 1. The 0 to 1 transition on the output of A, and
thus on the clock input of B, has no effect. When the next negative tran-
sition on Count occurs, A will go from 1 to 0 causing the clock input to
B to do the same. Since J and K are 1, flip flop B will change states. Since
there is a delay from the clock edge to the output change, flip flop B is
clocked somewhat later than A and thus its output changes later. This is
emphasized in the timing diagram of Figure 7.9. We assume in this
diagram that flip flops A and B both start at 0.
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448 Chapter 7 The Design of Sequential Systems

There are two things that are different about this timing diagram from the
previous ones. Since the Count signal is not necessarily a clock, it might
be rather irregular.* Second, the first flip flop (A) changes shortly after
the negative edge of the Count (the dashed line), but the second flip flop
(B) does not change until somewhat after A changes, and thus the delay
from the clock is much greater. This becomes more significant as the
changes ripple through several flip flops.

Note that the flip flops (BA) go through the sequence 00, 01, 10, 11,
and repeat. Thus, this is a 2-bit counter. We can obtain a 4-bit counter by
connecting four flip flops in the same fashion. A block diagram is shown
in Figure 7.10.

The timing is shown in Figure 7.11, where there is one unit of delay
through each flip flop and the clock period is 10 units.

Count

A

B

Figure 7.9 Timing delay in an asynchronous counter.

B

K

1

1J A

K

Count

JC

K

1

JD

K

1

J

Figure 7.10 A 4-bit asynchronous counter.

*The Clock input for synchronous counters is really a Count input also. Although the clock
is usually regular, it need not be. The counter will change states on each negative transition.

0

Count

A

B

C

D

100

Figure 7.11 Timing for the 4-bit counter.
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7.3 Design of Asynchronous Counters 449

Notice that A changes one unit of time after the trailing edge of the clock,
B one unit after a trailing edge of A, C after B, and D after C. Thus, the
change in D occurs 4 units after the clock (almost at the next leading
edge in this example).

Notice also that this counter does go through the sequence 0 1 2 3
4 5 6 7 8 9 10 (as far as the timing diagram goes) and would continue
through 11 12 13 14 15 0 . . . .

The advantage of the asynchronous counter is the simplicity of the
hardware. There is no combinational logic required. The disadvantage is
speed. The state of the system is not established until all of the flip flops
have completed their transition, which, in this case, is four flip flop
delays. If the counter were larger or the clock faster, it might not reach
its final state until after the next negative clock transition. In that case,
its value would not be available for other parts of the system at the next
clock. Also, care must be taken when using outputs from this counter
since it goes through unintended states. For example, a close inspection
of the timing diagram as the counter moves from state 7 to state 8, the
shaded area in Figure 7.11, shows that it is in state 6, state 4, and then
state 0 before flip flop D goes to 1 and it reaches state 8. These short
periods are not important if the outputs are used to light a display or as
the inputs to a clocked flip flop, but they could produce spikes that
would trigger a flip flop if used as a clock or Count input.

Design an asynchronous base-12 counter using JK flip flops with active low
clears and NAND gates.

The easiest way to do this is to take the 4-bit binary counter and reset
it when it reaches 12. Thus, the circuit below computes (DC)� and uses that
to reset the counter. 

EXAMPLE 7.9

JD

CLR� K

JC

CLR� K

JB

CLR� K

J 1

Clock

A

CLR� K

As can be seen from the timing diagram below, the counter cycles

0 1 2 3 4 5 6 7 8 9 10 11 (12) 0
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where it remains in state 12 for a short time. Note that there is a delay from
the time that A changes to when B changes and so forth. The count is only
valid after the last flip flop settles down.

450 Chapter 7 The Design of Sequential Systems

0

A

100 200

Clock

B

C

D

[SP 8; EX 12; LAB]

7.4 DERIVATION OF STATE TABLES AND
STATE DIAGRAMS

In this section, we will start with verbal descriptions of sequential
systems and develop state diagrams or tables. In some cases, we will
carry the design further; but that is just a review of the material of earlier
sections.

We will first look at Continuing Examples 6 and 7. Although the
statement of CE6 does not include the term Moore, the wording of
the problem implies a Moore system. That of CE7 is a Mealy model. We
repeat CE6 here.

CE6. A system with one input x and one output z such that z � 1
iff x has been 1 for at least three consecutive clock times.

The timing trace of Trace 6.1 is repeated as Trace 7.1. 

Trace 7.1 Three consecutive 1’s.

x 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0
z ? 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0

The first step in this problem (as it is in many word problems) is to
determine what needs to be stored in memory. In this case, the question
is: What do we need to know about previous inputs to determine whether
the output should be 1 or not, and to update memory? 

There are two approaches to step 1 for this problem. First, we could
store the last three inputs. Knowing them, we could determine the out-
put. For memory, we would just discard the oldest input stored and save
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7.4 Derivation of State Tables and State Diagrams 451

the last two plus the present one. The inputs are already coded in binary
(step 2). If we store the oldest input in q1, the next oldest in q2, and the
most recent one in q3, we get the state table of Table 7.10. 

The new value of q3, q3
� � x; it will hold the most recent input.

Similarly, q2
� � q3 and q1

� � q2. The output is only 1 when the system is
in state 111.

For the second approach, we store in memory the number of con-
secutive 1’s, as follows:*

A none, that is, the last input was 0

B one

C two

D three or more

That, too, is sufficient information, since the output is 1 if and only if
there have been three or more.

The state diagram and the state table are the same as those in Figure 7.1
and are repeated here as Figure 7.12. 

*We will just name the memory contents, that is, the state with letters A, B, C, . . . and
deal with coding these into binary later.

Figure 7.12 State diagram and state table.

1

no 1’s

two 1’s three or
more 1’s

0
0 0

11

one 1

B
0

C
0

0

A
0

D
1

1

q�

q x � 0 x � 1 z

A A B 0
B A C 0
C A D 0
D A D 1

This approach required only four states, whereas the first approach
required eight. The first approach uses three flip flops, whereas the sec-
ond uses only two. This is not much of a difference. Consider, however,
what happens if the problem required a 1 output iff the input has been 1
for 25 or more consecutive clock times. For the first approach, we would
need to save the last 25 inputs, using 25 flip flops. The state table would
have 225 rows. The second approach requires 26 states (no 1’s through 25
or more 1’s). They could be coded with just five flip flops.

The next step in the process is to reduce the state table, if possible,
to one with fewer states. Although we will not be prepared to consider
this step until Chapter 9, it is clear that Table 7.10 has some redundant
states. For example, both states 000 and 100 go to state 000 if the input
is 0; they go to state 001 if the input is 1; both have the same output.

Table 7.10 Three flip flop state
table.

q1
� q2

� q3
�

q1 q2 q3 x � 0 x � 1 z

0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 1 1 0
0 1 0 1 0 0 1 0 1 0
0 1 1 1 1 0 1 1 1 0
1 0 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0
1 1 0 1 0 0 1 0 1 0
1 1 1 1 1 0 1 1 1 1
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Thus, only one of them is needed. Indeed, this table can be reduced to
one with only four states. The state table obtained using the second
approach cannot be reduced.

Even if we do not reduce the table, we can proceed to choose a state
assignment (whether we take advantage of the techniques in Chapter 9 to
choose a “good” assignment or just pick any convenient one) and then
complete the design.  The system might be more expensive than one we
would have obtained, but it will still work correctly.

For the first design, the state assignment has already been made. We
labeled the flip flops q1, q2, and q3. The flip flop inputs require no logic
for D flip flops.

D1 � q2 D2 � q3 D3 � x

For JK flip flops,

J1 � q2 J2 � q3 J3 � x

K1 � q2� K2 � q3� K3 � x�

A NOT gate is needed for x� if we use JK flip flops. For either type of flip
flop, one AND gate is needed for z:

z � q1 q2 q3

For the second approach, we have already constructed the design
truth table for one state assignment in Table 7.2 and found that

D1 � q1
� � xq2 � xq1 or J1 � xq2 K1 � x

D2 � q2
� � xq2� � xq1 or J2 � x K2 � x� � q1

z � q1q2

The corresponding Mealy example is CE7.

CE7. A system with one input x and one output z such that 
z � 1 at a clock time iff x is currently 1 and was also 1 at the previous
two clock times.

Another way of wording this same problem is

CE7#. A Mealy system with one input x and one output z such that
z � 1 iff x has been 1 for three consecutive clock times. 

The timing trace corresponding to this problem is shown in Trace 7.2.

452 Chapter 7 The Design of Sequential Systems

Trace 7.2 Timing trace for CE7.

x 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0
z 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0

There are two approaches for this problem, as well. We need only
store the last two inputs (rather than three for the Moore model). This
produces the state table of Table 7.11. 

mar91647_c07a_415_465.qxd  11/24/08  12:01 PM  Page 452



7.4 Derivation of State Tables and State Diagrams 453

For the second approach, we store in memory the number of con-
secutive 1’s, as follows:

A none, that is, the last input was 0

B one

C two or more

That, too, is sufficient information since the output is 1 if and only if
there were previously two or more 1’s and the present input is a 1. If the
present input is a 0, the next state is A; otherwise, we move from A to B
and from B to C. The state diagram is shown in Figure 7.13.

The description can also be written as a state table, as shown in
Table 7.12.

0/0

0/0
two or more 1’s

one 1

no 1’s

1/1

0/0

1/0

1/0
B

A

C

Figure 7.13 State diagram for three
consecutive 1’s.

Table 7.12 State table for three
consecutive 1’s.

q� z
q x � 0 x � 1 x � 0 x � 1

A A B 0 0
B A C 0 0
C A C 0 1

Table 7.11 State table for saving last two
inputs.

q1
� q2

� z
q1 q2 x � 0 x � 1 x � 0 x � 1

0 0 0 0 0 1 0 0
0 1 1 0 1 1 0 0
1 0 0 0 0 1 0 0
1 1 1 0 1 1 0 1
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To compare the behavior of the Mealy and Moore models, we will
look at the timing diagram for each (using the four-state Moore model
and the three-state Mealy model). 

454 Chapter 7 The Design of Sequential Systems

Clock

x

q

z

z

Mealy

A B C C C C C C A B C A B C C A B

A BADCBACBADDDDDCBq

Moore

*Notice that, in this example, we can determine the output for two or three clocks after the
input is no longer known, since even if both inputs were 1, the output would remain 0 at
least until the clock time after the one shown.

EXAMPLE 7.10

Basically, the Moore model output is the same as the Mealy, but delayed
by one clock period. It does not have any false outputs, since z depends
only on the flip flops, all of which change at the same time.

Design both a Moore and a Mealy system with one input x and one out-
put z such that z � 1 iff x has been 1 for exactly three consecutive clock
times.

A sample input/output trace for such a system is

x 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1

z-Mealy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0*

z-Moore 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

↑ ↑

We cannot tell whether there should be a 1 output when the third consecu-
tive 1 input occurs. The past history and the present input are the same at
the two places indicated with arrows. It is not until the next input arrives that
we know that there have been exactly three 1’s in a row. For the Mealy
model we now need five states,

A none, that is, the last input was 0

B one 1 in a row

C two 1’s in a row

D three 1’s in a row

E too many (more than 3) 1’s in a row
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7.4 Derivation of State Tables and State Diagrams 455

The state diagram begins like that of the previous solution. However,
when we get a third 1 input, we go to state D. From D, a 0 input produces
a 1 output; a 1 input gets us to a new state, E. Sometimes, we think of state A
as nowhere, that is, we are looking for the first 1 to get started on the suc-
cessful path to a 1 output. In that case, state E is worse than nowhere,
since we must first get a 0 before we can even begin to look for three 1’s.
The complete state diagram is shown next.

The implementation of this system requires three flip flops. The design is left
as an exercise.

For the Moore model, we need a state D to indicate exactly three 1’s.
From there, it goes to E on another 1, indicating too many 1’s. State F is
reached on a 0 input; it is the state with a 1 output. The state table is shown
below. (We could have constructed a state diagram for this version or a
state table for the Mealy model.)

0/0

0/0
more than three 1’s

one 1

no 1’s

1/0

1/01/0

1/0

three 1’s

0/0

1/0

0/1

A

B E

C D

two 1’s

q�

q x � 0 x � 1 z

A A B 0
B A C 0
C A D 0
D F E 0
E A E 0
F A B 1

Design a Mealy system whose output is 1 iff the input has been 1 for three
consecutive clocks, but inputs are nonoverlapping. (That means that a 1
input can only be used toward one 1 output.)

EXAMPLE 7.11

mar91647_c07a_415_465.qxd  11/24/08  12:01 PM  Page 455



A sample input/output trace for such a system is

x 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1

z 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0

As in CE7, only three states are needed. From state C, the system returns
to state A whether the input is 0 or 1; the output is 1 if the input is 1 (third in
a row) and 0 if the input is 0.

When the third 1 input occurs, we are, once again, nowhere; we need three
more 1’s to get a 1 output.

In each of the systems that we have considered so far, we have not
worried about initializing the system. They all produce the correct out-
put, once the first 0 input is received. If we are willing to ignore the out-
put prior to that, we do not need to be concerned with initialization. If
we need to know the output from the first input, then we must initialize
the system to state A (or 000 in the first example). The next two exam-
ples do depend upon initializing the system to state A, that is, we need
to know where the starting point is.

Design a Mealy system where the inputs are considered in blocks of three.
The output is 1 iff the input is 1 for all three inputs in a block; obviously, that
1 output cannot occur until the third input is received.

A sample input/output trace for such a system is

x 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1

z 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

where the blocks are indicated by extra space.
The initial state, A, is reached when the system is first turned on and

before each new block (as the next state when the third input in a block is
received). After receiving the first input in a block, the system goes to B if the
input is 1 and C if it is 0; in either case, the output is 0. We could now have
four states after the second input, D and E from B (on a 1 and a 0,
respectively) and F and G from C (on a 1 and a 0, respectively).

0/0

1/1
   0/0

two 1’sone 1

no 1’s

0/0

1/0

1/0
B

A

C
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EXAMPLE 7.12
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7.4 Derivation of State Tables and State Diagrams 457

But that creates two extra states. We only need D for the case where
the first two inputs have been 1, and E for all of the other cases, as shown
in the state diagram below. 

Note that the paths out of C and of E are denoted as X/0, meaning that we
don’t care what the input is; that path is followed, and the output is 0.

Notice that the next state and output sections of the last three rows of
the state table are identical. That indicates that it does not matter whether
the system is in state E, F, or G; it behaves the same in all three cases. As
we will see in Chapter 9, we will be able to reduce the state table by
combining these three rows into one. (Indeed, that is what the state
diagram solution did.)

Design a Mealy system whose output is 1 for every third 1 input (not
necessarily consecutive).

The initial state, A, is used for no 1’s or a multiple of three 1’s. When a
0 is received, the system stays where it is, rather than returning to the initial
state, since a 0 does not interrupt the count of three 1’s. A sample
input/output trace for such a system is

x 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1

z 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

A

1/0 0/0

0/01/0 X/0

X/0
1/1

0/0

CB

ED

EXAMPLE 7.13

q� z
q x � 0 x � 1 x � 0 x � 1

A C B 0 0
B E D 0 0
C G F 0 0
D A A 0 1
E A A 0 0
F A A 0 0
G A A 0 0

A state table for this version, with seven states, is shown below.
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The state diagram is thus

CE8. Design a Moore system whose output is 1 iff three consecutive 0
inputs occurred more recently than three consecutive 1 inputs.* A sample
input/output trace for such a system is

x 1 1 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1

z ? ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

We showed the first three outputs as unknown, assuming that we started
looking at some time when the system was running or that we turned it on
and did not know what state it came up in. The wording implies that when
first turned on, the system should have a 0 output, since there have not
recently been three consecutive 1’s. (This is the same example that we did
at the end of Section 7.1.)

We will call the initial state S1. The first path to develop is to get the out-
put to change from 0 to 1. That part of the state diagram is shown below.

S1

0

S2

0

S4

1

0

0

0

S3

0

0/0

1/1

two 1’s

0/0 0/0

no 1’s

one 1

1/0

1/0
B

A

C

458 Chapter 7 The Design of Sequential Systems

*We are assuming that three means three or more, not exactly three.

EXAMPLE 7.14
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We had reached S1 whenever the input was a 1 and the output was to be 0.
To get the output to change to 1, we need three consecutive 0’s, leading us
to S4. From there, three 1’s will lead us back to S1 as shown below on the
left. On the right, we complete the state diagram, by showing that we return
to S1 when we are looking for 0’s and get a 1 input and return to S4 when
we are looking for 1’s and get a 0 input.

Design a Mealy system whose output is 1 iff there have been exactly two 1’s
followed by a 0 and then a 1.

a. Assume overlapping is allowed.

b. Assume overlapping is not allowed.

The following timing trace depicts the expected behavior for the overlapped
case:

a.

x 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1

z 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0

The underlines indicate the 1101 pattern that is being searched for; the
double underline is not an acceptable pattern since it does not begin with
exactly two 1’s. The behavior in the overlapping case is quite clear. When
the final 1 input that produces a 1 output occurs, that 1 also counts as the

S1

0

S2

0

S4

1

1

1

0

0

0

S3

0

S6

1

1

S5

1

1

0

S1

0

S2

0

S4

1

1
1

0

0

0

1

0

0

S3

0

S6

1

1

S5

1

1
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EXAMPLE 7.15
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first of two consecutive 1 inputs for the next 1 output. The two brown
underlines indicate overlapping patterns.

It is often easiest to begin the state diagram by following a success
path, that is, one leading to the desired output, as shown below.

State A is the nowhere state, where we are looking for the first 1. On
successive 1’s, we move to B and C; a 0 takes us to D and then a 1 pro-
duces the 1 output. Since overlapping is allowed, that 1 is the first 1
toward a new sequence, and we return to state B from D. We must also
complete the failed paths. A 0 in any state other than C (where we are
looking for a 0) returns us to state A. If, after getting two consecutive 1’s,
we get a third, we need another state, E, which indicates that we have too
many 1’s and are waiting for a 0 before we can go back to state A and
start again. The complete state diagram for the overlapped solution is thus
shown below.

1/0

1/0

1/01/1

0/0

0/0

0/0

1/0

0/0

0110

two 1’s
more than two 1’s

0/0

one 1

nowhere, last
input � 0

A

B

C E

D

1/0

1/0

0/0
0110

1/1

one 1

two 1's

nowhere, last
input � 0

C D

0/0

A

B
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7.4 Derivation of State Tables and State Diagrams 461

There are two interpretations to consider in the nonoverlapping
case. The first is shown as b-1. In that case, when a 1 output occurs,
there must be a 0 input before we can have exactly two 1’s. Thus, after the
first 1 output, we do not get started toward another 1 output until after a
0 input.

x 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1

b-1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

A second interpretation (perhaps a little far-fetched) is that once we have
completed a pattern, we need exactly two more 1’s followed by a 10; that
is what accepts the double-underlined sequence.

x 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1

b-2 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0

The two solutions for the nonoverlapping versions are shown next. They
begin exactly like the overlapping version but behave differently when we
get the input that produces a 1 output.

b-2
1/0

1/0

1/0

0/0
1/1

0/0

1/0

0/0

0110

two 1’s

0/0

one 1

nowhere, last
input � 0

A

B

C E

D

0/0

b-1
1/0

1/0

1/0

0/0

0/0

1/0

0/0
1/1

0110

two 1’s

0/0

one 1

nowhere, last
input � 0

A

B

C E

D

0/0

EXAMPLE 7.16
Finally, we will look at the design of the bus controller CE11.

CE11. Design a Moore model bus controller that receives requests on sep-
arate lines, R0 to R3, from four devices desiring to use the bus. It has four
outputs, G0 to G3, only one of which is 1, indicating which device is granted
control of the bus for that clock period. The low number device has the
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highest priority, if more than one device requests the bus at the same time.
We look at both interrupting controllers (where a high priority device can
preempt the bus) and one where a device keeps control of the bus once it
gets it until it no longer needs it.

The bus controller has five states:

A: idle, no device is using the bus

B: device 0 is using the bus

C: device 1 is using the bus

D: device 2 is using the bus

E: device 3 is using the bus

We will first consider the case where once device j gets control of the bus
(Gj � 1), it retains that control until it is no longer requesting it (until Rj � 0).
Further, we will assume that it must return to the idle state for one clock
period between allocations. This results in the following state diagram.

462 Chapter 7 The Design of Sequential Systems

A
0000

0000

1XXX

1XXX X1XX XX1X XXX1

01XX

0XXX

001X XX0X

XXX0

X0XX 0001

C
0100

B
1000

D
0010

E
0001

The system remains in the idle state if there are no requests. It goes to
the highest priority state when there are one or more requests. Thus, it
goes to state B if R0 = 1, no matter what the other R’s are. Once it has
granted the bus, it remains in that state if that device is still requesting the
bus and returns to the idle state otherwise. If there is another request
pending, it is idle for one clock period before granting the next highest
priority request.
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7.4 Derivation of State Tables and State Diagrams 463

If the idle period is not necessary, the state diagram becomes much
more complex. When any device no longer needs the bus, the controller will
return to state A if no other device is requesting it; but it proceeds directly to
granting the highest priority request. A state table for such a system is
shown below.

q q� G0 G1 G2 G3

R0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
R1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
R2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
R3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A A E D D C C C C B B B B B B B B 0 0 0 0
B A E D D C C C C B B B B B B B B 1 0 0 0
C A E D D C C C C B B B B C C C C 0 1 0 0
D A E D D C C D D B B D D B B D D 0 0 1 0
E A E D E C E C E B E B E B E B E 0 0 0 1

Note that in this version, we can go from any state to any other state. There
would be 20 paths on the state diagram. The partial diagram below shows
just the paths to and from state C.

Finally, we will look at a preemptive controller, where a high priority
device will take control from a lower priority one, even if the lower priority
one is still using the bus. For this case (whether we must return to state 0 or
not), we remain in states C, D, and E only if that device is requesting the bus
and no higher priority device is simultaneously requesting it. The state

X1XX

01XX

01XX

10XX

C
0100

B
1000

A
0000

0000
01X0

0001

01XX

001X

E
0001

D
0010

mar91647_c07a_415_465.qxd  11/24/08  12:01 PM  Page 463



Although the state diagram for this version would require the same 20 paths
as was needed for the second version, the logic is much simpler. The
condition for going to state B, from each state is 1XXX (R1), to C is 01XX
(R1�R2), to D is 001X (R1�R2�R3), and to E is 0001 (R1�R2�R3�R4) (the same as the
condition from state A in all of the versions).

464 Chapter 7 The Design of Sequential Systems

[SP 9; EX 13, 14, 15, 16, 17]

A
0000

0000

1XXX

1XXX 01XX 001X

0001
01XX

0XXX

001X

0001

XXX0
1XXX
X1XX
XX1X

XX0X
1XXX
X1XXX0XX

1XXX

C
0100

B
1000

D
0010

E
0001

q q� G0 G1 G2 G3

R0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
R1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
R2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
R3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A A E D D C C C C B B B B B B B B 0 0 0 0
B A E D D C C C C B B B B B B B B 1 0 0 0
C A E D D C C C C B B B B B B B B 0 1 0 0
D A E D D C C C C B B B B B B B B 0 0 1 0
E A E D D C C C C B B B B B B B B 0 0 0 1

diagram for the system that must return to idle for one clock period is
shown first and then the state table for the system that can go directly to the
next state having use of the bus. 

mar91647_c07a_415_465.qxd  11/24/08  12:01 PM  Page 464



7.5 Solved Problems 465

We will first construct a truth table and map the functions.

7.5 SOLVED PROBLEMS

1. For the following state table and state assignment, show
equations for the next state and the output. 

q
q� z

x � 0 x � 1 x � 0 x � 1

A C A 1 0
B B A 0 1
C B C 1 0

q q1 q2

A 0 1
B 1 1
C 0 0

q x q1 q2 z q1
� q2

�

C 0 0 0 1 1 1
A 0 0 1 1 0 0
— 0 1 0 X X X
B 0 1 1 0 1 1
C 1 0 0 0 0 0
A 1 0 1 0 0 1
— 1 1 0 X X X
B 1 1 1 1 0 1

q1
� � x�q�2 � x�q1

q2
� � q1 � x�q�2 � xq2

z � x�q�1 � xq1

2. For each of the following state tables, design the system using 

i. D flip flops

ii. SR flip flops

0 1

00

01

11

10

x
q1 q2

1

X X

1

X X

0 1

00

01

11

10

x
q1 q2

1

11

1

X X

z

0 1

1

00

01

11

10

x
q1 q2

1

1

q1
★ q2

★
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iii. T flip flops

iv. JK flip flops

Show the equations for each and a block diagram for the JK
design (using AND, OR, and NOT gates).

a.

b.
A� B�

A B x � 0 x � 1 z

0 0 1 0 0 0 0
0 1 0 0 1 1 1
1 0 0 1 1 1 1
1 1 1 0 0 1 1

A� B� z
A B x � 0 x � 1 x � 0 x � 1

0 0 0 1 0 0 1 0
0 1 1 1 0 0 1 1
1 1 1 1 0 1 0 1

466 Chapter 7 The Design of Sequential Systems

a. We can map A�, B�, and z directly from the state table, where
the last row of the maps are don’t cares, since state 10 is not
used.

For all types of flip flops, z is the same, namely,

z � x�A� � xB

i. For the D flip flop,

DA � A� � x�B DB � B� � x� � A

0 1
x

A B

1

X

1

X

00

01

11

10

0 1
x

A B

1

1

X

1 1

X

00

01

11

10

0 1
x

A B

1 1

1

X

z

1

X

00

01

11

10

A B★ ★
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7.5 Solved Problems 467

ii. For the SR flip flop, we will use the truth table and the flip flop
design table as follows:

x A B A� B� SA RA SB RB

0 0 0 0 1 0 X 1 0
0 0 1 1 1 1 0 X 0
0 1 0 X X X X X X
0 1 1 1 1 X 0 X 0
1 0 0 0 0 0 X 0 X
1 0 1 0 0 0 X 0 1
1 1 0 X X X X X X
1 1 1 0 1 0 1 X 0

The resulting maps are 

0 1
x

A B

1

X

SA

X

X

00

01

11

10

0 1
x

A B

X

X X

X

RA

1

X

00

01

11

10

0 1
x

A B

X

1

X

SB

XX

X

00

01

11

10

0 1
x

A B

1

X

X

RB

X

00

01

11

10

SA � x�B RA � x SB � x� RB � xA�

We will develop the T maps directly from the next state
maps. If the flip flop is to change, T is 1; otherwise, T is 0.

0 1
x

A B

1

X

TA

TA � x � A� B � x A

1

X

00

01

11

10

TB � x � B� � x A� B

TB

0 1
x

A B

1

1

XX

00

01

11

10
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Finally, we will derive the JK inputs using the quick
method. The maps below show the J section of the map
shaded.

JA � x�B KA � x JB � x� KB � xA�

Note that these are the same equations as those for the SR flip
flop and the same amount of logic as is required for the D flip
flop. Only the T flip flop requires significantly more logic.

A block diagram of the system with JK flip flops follows.

0 1
x

XX

1

00

01

11

10

1

A B 0 1

1

1 1

00

01

11

10

1

XX

x
A B

A B★ ★

J B

B�K

J A

A�K

x

Clock

z

468 Chapter 7 The Design of Sequential Systems

b. We can go to the truth table or we can first map A� and B� to
find the D inputs. The output is only a two-variable problem.
We do not need to map that to recognize that

z � A � B

The truth table is shown (with columns for all types of flip
flops). 
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7.5 Solved Problems 469

Maps for each of the functions are shown below (where DA is
just A�). 

x A B A� B� SA RA SB RB TA TB JA KA JB KB

0 0 0 1 0 1 0 0 X 1 0 1 X 0 X
0 0 1 0 0 0 X 0 1 0 1 0 X X 1
0 1 0 0 1 0 1 1 0 1 1 X 1 1 X
0 1 1 1 0 X 0 0 1 0 1 X 0 X 1
1 0 0 0 0 0 X 0 X 0 0 0 X 0 X
1 0 1 1 1 1 0 X 0 1 0 1 X X 0
1 1 0 1 1 X 0 1 0 0 1 X 0 1 X
1 1 1 0 1 0 1 X 0 1 0 X 1 X 0

0 1

00

01

11

10

x
A B

DA DB SA RA SB RB

1

1

1

1

0 1

00

01

11

10

x
A B

1

11

1

0 1

00

01

11

10

x
A B

1

X

1

X

0 1

00

01

11

10

x
A B

X

1

X

1

0 1

00

01

11

10

x
A B

X

11

X

0 1

00

01

11

10

x
A B

1

XX

1

0 1

00

01

11

10

x
A B

TA TB JA KA JB KB

1

1

1

1

0 1

00

01

11

10

x
A B

1

11

1

0 1

00

01

11

10

x
A B

1

XX

1

X X

0 1

00

01

11

10

x
A B

X X

1

XX

1

0 1

00

01

11

10

x
A B

XX

1 X X1

XX

0 1

00

01

11

10

x
A B

1

XX

1

The corresponding equations are

z � A � B

DA � x�A�B� � x�AB � xA�B � x AB�

DB � xB � AB�

SA � x�A�B� � xA�B RA � x�AB� � xAB

SB � AB� RB � x�B

TA � x�B� � xB TB � x�B � AB�

JA � KA � x�B� � xB JB � A KB � x�

Note that the logic required to implement the JK flip flop solution
is the least, followed by the T and the SR, with the D requiring
the most. A block diagram of the JK solution is shown below. To
make the drawing clearer, we put flip flop B on the left.
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J A

A�K

J B

B�K

x

Clock

z

q x q1 q2 z q1
� q2

�

— 0 0 0 X X X
C 0 0 1 1 1 0
B 0 1 0 1 1 1
A 0 1 1 1 1 0
— 1 0 0 X X X
C 1 0 1 0 1 1
B 1 1 0 0 1 0
A 1 1 1 1 0 1

Comment: In either part of this problem, we could have
specified that flip flop A was one type (say a T ) and the other
was a different type (say a JK). The solutions we have
obtained are correct for each of the flip flops.

3. For each of the following state tables and state assignments, find
the flip flop input equations and the system output equation for
an implementation using

i. D flip flops

ii. JK flip flops

a.

b.

a. We will first produce the truth table. 

q� z
q x � 0 x � 1 x � 0 x � 1

A A B 0 0
B C B 0 0
C A D 0 0
D C B 1 0

q q1 q2

A 1 1
B 1 0
C 0 1

q q1 q2

A 0 0
B 1 1
C 0 1
D 1 0

q� z
q x � 0 x � 1 x � 0 x � 1

A B C 1 1
B A B 1 0
C B A 1 0
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7.5 Solved Problems 471

i. We can now map z, D1 (q1
�) and D2 (q2

�) 

0 1
x

q1 q2

z

z � x� � q1 q2

XX

1

1

1

1

00

01

11

10

D1 � x� � q1� � q2�

D1

X X

0 1

00

01

11

10

x
q1 q2

11

1

1 1

D2 � x� q2� � x q2

D2

0 1

1

1

1

00

01

11

10

x
q1 q2

XX

ii. Using the quick method, we look at the shaded part of the
maps for J and the unshaded parts for K. (z is unchanged.)

0 1
x

q1 q2

J1 � 1    K1 � x q2 J2 � x�     K2 � x�

XX

1

1 1

11

00

01

11

10

X X

0 1

00

01

11

10

x
q1 q2

1

1

1

b. We will first produce the truth table. 

q x q1 q2 z q1
� q2

�

A 0 0 0 0 0 0
C 0 0 1 0 0 0
D 0 1 0 1 0 1
B 0 1 1 0 0 1
A 1 0 0 0 1 1
C 1 0 1 0 1 0
D 1 1 0 0 1 1
B 1 1 1 0 1 1
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We do not need to map z, since it is clear from the truth table
that

z � x�q1 q�2

i. We can now map D1(q1
�) and D2(q2

�)

ii. For JK flip flops, we get

J1 � x K1 � x� J2 � x � q1 K2 � q�1

4. For the state table and each of the state assignments shown,
design a system using D flip flops.

0 1
x

q1 q2

D1 � x D2 � x  q2� � q1

1

1

1

1

00

01

11

10

D2D1

1

0 1

00

01

11

10

x
q1 q2

1 1

11
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a. b. c.

Each part of this is really a separate problem. (As we will see 
in Chapter 9, these are the only three assignments that produce
significantly different hardware. Each of the other possible 
state assignments involve either interchanging variables or
complementing variables or both.) Compare the amount of
combinational logic for each state assignment.

q q1 q2

A 0 0
B 0 1
C 1 0
D 1 1

q q1 q2

A 0 0
B 0 1
C 1 1
D 1 0

y q1 q2

A 0 0
B 1 1
C 1 0
D 0 1

q� z
q x � 0 x � 1 x � 0 x � 1

A B C 1 0
B D A 0 0
C B C 1 1
D D A 1 0
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7.5 Solved Problems 473

a. Since the assignment is in normal binary order, it is easy to go
directly to the maps.

0 1
x

q1 q2

D1 � x� q2 � x q2�

1

1

1

1

00

01

11

10

D1

D2 � x�

D2

1

1

0 1

00

01

11

10

x
q1 q2

1

1

z � x� q1 � x� q2� � q1 q2�

z

1

0 1

00

01

11

10

x
q1 q2

1 1

1

0 1
x

q1 q2

1

1

1

1

00

01

11

10

D1 D2

1 1

0 1

00

01

11

10

x
q1 q2

1 1

D1 � x� q1� q2 � x� q1 q2� � x q1� q2� � x q1 q2

D2 � q1� q2� � q1 q2         z �x� q2� � q1 q2

z

1

0 1

00

01

11

10

x
q1 q2

1

1 1

b. This assignment is in map order and once again we will go
directly to the maps without first producing a truth table.

where the brown terms are shared between D2 and z.

c. For this part, we will first construct the truth table and then go
to the maps.

q x q1 q2 z q1
� q2

�

A 0 0 0 1 1 1
D 0 0 1 1 0 1
C 0 1 0 1 1 1
B 0 1 1 0 0 1
A 1 0 0 0 1 0
D 1 0 1 0 0 0
C 1 1 0 1 1 0
B 1 1 1 0 0 0
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0 1
x

q1 q2

11

1 1

00

01

11

10

D1 D2

1

1

0 1

00

01

11

10

x
q1 q2

1

1

D1 � q2� D1 � x� z � x� q1� � q1 q2�

z

1

1

0 1

00

01

11

10

x
q1 q2

1 1

We really did not need to map D1 and D2; we should be able to
see those from the truth table.

Comparing the three solutions we see a major difference,
based on the three state assignments.

a. 8 gates 16 inputs
b. 11 gates 27 inputs
c. 4 gates 7 inputs

5. Design a synchronous counter that goes through the sequence 

1 3 5 7 4 2 0 6 and repeat

using D flip flops.

The truth table is shown below.

A B C A� B� C�

0 0 0 1 1 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 1 1 0 0

The maps for the D inputs are shown next, with the possible
shared terms circled in brown and tan.

0 1

00

01

11

10

A

B C

1

1

11

0 1

00

01

11

10

A

B C

11

1 1

0 1

00

01

11

10

A

B C

11

1

1

A B C★ ★ ★
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7.5 Solved Problems 475

6. Design a synchronous counter that goes through the sequence

2 6 1 7 5 and repeat

using

i. D flip flops

ii. JK flip flops

Show a state diagram, indicating what happens if it initially is in
one of the unused states (0, 3, 4) for each of the designs.

The truth table is shown below. The next state for unused states is
shown as don’t cares.

A B C A� B� C�

0 0 0 X X X
0 0 1 1 1 1
0 1 0 1 1 0
0 1 1 X X X
1 0 0 X X X
1 0 1 0 1 0
1 1 0 0 0 1
1 1 1 1 0 1

The maps and equations for the D inputs are shown next.

DA � A� � BC

DB � A� � B�

DC � AB � {A�B� or A�C}

There are two equally good solutions for DC; as we will see
shortly, the behavior of the system is different for those choices
if it is initialized to one of the unused states.

0 1

00

01

11

10

A

B C

1

X X

1X

1

X

1

0 1

00

01

11

10

A

B C

11

X X X X

0 1

00

01

11

10

A

B C

1

1

X 1

A B C★ ★ ★

DB is clearly B�.  If we solve for the other two inputs independently,
we get

DA = AC + BC DC = A�C + B�C

But, we can save a gate by sharing in either of two ways:

DA = AC + A�BC DC = A�BC + B�C or

DA = AB�C + BC DC = A�C + AB�C
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Substituting the values for the three states not in the cycle:

0 (000): DA � 1, DB � 1, DC � 1 or DC � 0

3 (011): DA � 1, DB � 1, DC � 0 or DC � 1

4 (100): DA � 0, DB � 1, DC � 0

where the color indicates that the next state depends upon the
choice for the second term of DC.

The state diagrams for the two solutions are shown below.

476 Chapter 7 The Design of Sequential Systems

7

5

2
4

1

6

3

0 7

5

2
4

1

6

0

3

ii. The maps for the JK solution, with the J section shaded, and
the equations are shown below.

JA � 1 KA � B� � C�

JB � 1 KB � A

JC � A KC � AB�

Substituting the values for the three states not in the cycle:

0 (000): JA � KA � 1, JB � 1, KB � 0,

JC � KC � 0 ⇒ 110

3 (011): JA � 1, KA � 0, JB � 1, KB � 0,

JC � KC � 0 ⇒ 111

4 (100): JA � KA � 1, JB � KB � 1,

JC � KC � 1 ⇒ 011

0 1

00

01

11

10

A

B C

1

X X

1X

1

X

1

0 1

00

01

11

10

A

B C

11

X X X X

0 1

00

01

11

10

A

B C

1

1

X 1

A B C★ ★ ★
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This is still a different behavior for the unused states. Now,
state 4 goes to 3 and then, on the next clock, it will get back
into the cycle. The state diagram is shown below.

7. Design a counter with two JK flip flops, A and B, and one input,
x. If x � 0, it counts 0, 1, 2, 3, 3, . . . ; if x � 1, it counts 3, 2, 1,
0, 0, . . . .

This is an up/down saturating counter. The truth table is
shown below.

7

5

2

1

6

0

34

x A B A� B�

0 0 0 0 1
0 0 1 1 0
0 1 0 1 1
0 1 1 1 1
1 0 0 0 0
1 0 1 0 0
1 1 0 0 1
1 1 1 1 0

From this we can develop the maps for the quick method and the
equations for J and K.

JA � x�B KA � xB� JB � x� � A KB � x � A�

0 1

00

01

11

10

A★

x

A B

1

11

1

1

1 1

0 1

00

01

11

10

B★

x

A B

1
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8. Construct a base 60 (0 to 59) asynchronous counter using JK
flip flops. 

We need six flip flops and must detect when the count reaches
60 and reset the counter. (That occurs when FEDC � 1.)

478 Chapter 7 The Design of Sequential Systems

JD

CLR� K

JC

CLR� K

JB

CLR� K

J 1

Clock

A

CLR� K

JE

CLR� K

JF

CLR� K

9. For each of the following problems show a state table or a state
diagram. (A sample input/output trace is shown for each.)

a. A Mealy system that produces a 1 output iff there have been
four or more consecutive 1 inputs or two or more consecutive
0 inputs. (4 states)

x 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 1

z ? 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0

b. A Mealy system whose output is 1 iff the last three inputs
were 010. (3 states)

i. assuming overlapping is allowed

ii. assuming overlapping is not allowed

x 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0

z-i 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0

z-ii 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 

c. A Mealy system whose output is 1 iff the last four inputs were
1100 or the last output was a 1 and it is continuing on that pat-
tern. (7 states)

x 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0

z ? ? 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0

d. A Moore system whose output changes whenever it detects a
sequence 110. (Assume that initially the output is 0.) (6 states)

x 0 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1

z 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1

e. A Moore system whose output is 1 iff the input has been
alternating for at least four clock periods. (8 states)

x 0 0 1 0 1 1 0 1 0 1 0 1 0 0

z ? ? 0 0 0 1 0 0 0 1 1 1 1 1 0
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7.5 Solved Problems 479

f. Show a state table or a state diagram for either a Mealy (6 states)
or a Moore (7 states) system with one input, x, and one output, z,
such that z = 1 if and only if the input has been exactly one or
two 1’s followed immediately by exactly one or two 0’s.

x 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0

Mealy z ? ? 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0

Moore z ? ? ? 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0

We start with a state for which the last input is 0. From
there, we need four consecutive 1’s to get a 1 output or another
0. Thus, on additional 0’s, we loop back to state A. On a 1, we
go to B; on a second 1, we go to C; and on a third 1, we go to
D. In D, additional 1’s produce a 1 output; 0’s return the
system to state A.

b. i.

q� z
q x � 0 x � 1 x � 0 x � 1

A A B 1 0
B A C 0 0
C A D 0 0
D A D 0 1

1/1

1/0

1/0 1/0

0/1

0/0

0/0

0/0

B C

A D

q� z
q x � 0 x � 1 x � 0 x � 1

A B A 0 0
B B C 0 0
C B A 0 1

0/0

1/0

1/0

1/00/0

0/1

B C

A

a.
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State A is the “nowhere” state, where we are looking for
the first 0 in the pattern. A 0 gets us to B and then a 1 gets us to
C. From there, a 0 input produces a 1 output. Since overlapping
is allowed, that 0 input is the first 0 in a new string, and, thus,
we return to state B.

In the case where overlapping is not allowed, we go from
state C back to state A on a 0 input, since we are now nowhere,
looking for a 010 pattern, as shown on the state diagram
below.

c. If we start with the “nowhere” state, that is, where the output
is to be 0 and we are looking for the first 1, the success path
consists of 1 1 0 0, at which point the output goes to 1. If that
is followed by a 1, the output remains 1. It also remains 1 if
there is another 1 input and then a 0 input (which gets the
system back to state D). That produces the following start for
the state diagram.

Now we can complete the failed paths. When we get a 0
while we are looking for 1’s in states A, B, E, and F, we
return to state A. We go next to state C on a 1 from either C
or G (when there are more than two 1’s in a row) and we go
to B from D on a 1. Of course, all of these failed inputs

0/1

0/1

1/1

D E

F

1/1

G

0/0
C

1/0

B

1/0

A

0/0
1/0

1/0

1/0
0/1

0/0

B C

A
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7.5 Solved Problems 481

produce a 0 output. The state diagram and then the state table
are shown below.

C
0

B
0

E
1

D
1

A
0

F
1

1

1

1

1

1

1

0

0 0

0

0

0

q�

q x � 0 x � 1 z

A A B 0
B A C 0
C D C 0
D D E 1
E D F 1
F A F 1

d. For a Moore system, the output is associated with the state.
There are two “nowhere” states, A and D, one for which the
output is 0 and another for which the output is 1. The state
diagram and table are as follows:

0/1

0/1 1/1

D E

F

1/1

G

0/0
C

1/0
1/0

1/0

B

1/0 1/0

A

0/0

0/0

0/0

0/0

q� z

q x � 0 x � 1 x � 0 x � 1

A A B 0 0
B A C 0 0
C D C 0 0
D E B 1 0
E A F 0 1
F A G 0 1
G D C 1 0
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When in the “nowhere” state and the input is 0, the system
remains there. It progresses on the first 1 to B or E and on the
second 1 to C or F. The system remains in C or F if 1’s
continue, and goes to the “nowhere” state with the opposite
output on a 0 input.

e. We start with two “nowhere” states: A when the input has been
0 for two or more consecutive inputs, and B when it has been 1
for two or more consecutive inputs. From each of these there
is a separate success path (from A to C to E to G or from B to
D to F to H). States G and H have a 1 output. If the input
continues to alternate, the system goes back and forth between
these two states.

482 Chapter 7 The Design of Sequential Systems

A
0

B
0

C
0

D
0

0

E
0

F
0

1

1

1

0

0

1

1 0

01

0

G
1

H
1

10

10

f. For both versions, the “nowhere” state, A, is when we are
looking for the first 1 input. The first 1 gets us to B, and the
second, to C. State D is reached when we have had exactly one
or two 1’s (from B or C). In the Mealy version (on the left), the
output is 1 when the system is in state D and the input is 1 or
is 0 followed by a 1. That 1 is treated as the first 1 of a new
input sequence. The Moore version gets to state F after the
same sequence, where the output is 1. After too many 0’s
(from state C), they go to F (Mealy) or G (Moore); after 
more than two 0’s in a row, the systems return to state A.
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7.6 Exercises 483

7.6 EXERCISES

1. Find equations for q★

1, q★

2, and Z for the state table of Figure 7.1,
using the state assignment of Table 7.1c.

2. For each of the following state tables, design the system using

i. D flip flops

ii. SR flip flops

iii. T flip flops

iv. JK flip flops

Show the equations for each and a block diagram for the JK design
(using AND, OR, and NOT gates).

A
0

E
0

 D
0

F
1

B
0

 G 
0

C
0

A

F

B E

C D
0/0

0/0

0/0

0/0

0/0

0/0

1/0 1/0

1/1

1/11/0

1/0

0

0

0

0

1

11
1

1

1

1

0

00

b.

�a.
A� B� z

A B x � 0 x � 1 x � 0 x � 1

0 0 1 1 0 0 0 1
0 1 0 1 0 0 1 0
1 1 0 1 1 1 1 0

A� B� z
A B x � 0 x � 1 x � 0 x � 1

0 0 1 0 1 1 0 0
0 1 0 0 0 1 0 0
1 0 0 1 1 1 1 0
1 1 0 0 0 0 1 1

E
X

E
R

C
IS

E
S
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g.

�f.

e.

d.

c.

484 Chapter 7 The Design of Sequential Systems

A� B�

A B x � 0 x � 1 z

0 0 1 0 0 0 0
0 1 0 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 0 1 1

A� B�

A B x � 0 x � 1 z

0 0 1 1 1 0 0
0 1 1 0 1 0 1
1 0 1 1 0 0 1
1 1 0 1 1 1 1

A� B�

A B x � 0 x � 1 z

0 0 1 0 0 1 1
0 1 1 1 0 0 1
1 0 0 0 1 1 0
1 1 0 1 0 0 0

A� B� C� z
A B C x � 0 x � 1 x � 0 x � 1

0 0 0 0 0 1 0 0 0 1 1
0 0 1 0 1 0 0 0 0 1 1
0 1 0 0 1 1 0 0 0 1 1
0 1 1 1 0 0 0 0 0 1 1
1 0 0 1 0 1 0 0 0 1 1
1 0 1 1 0 1 0 0 0 0 1

A� B�

A B x � 0 x � 1 z

0 0 0 1 0 0 0
0 1 1 1 0 0 1
1 1 0 0 0 1 1

E
X

E
R

C
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E
S
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7.6 Exercises 485

q�

q x � 0 x � 1 z

A C B 1
B C A 1
C A C 0

q q1 q2

A 1 1
B 0 1
C 1 0

q�

q x � 0 x � 1 z

A B C 1
B A B 0
C B A 0

q q1 q2

A 0 0
B 1 0
C 0 1

q� z
q x � 0 x � 1 x � 0 x � 1

A C B 1 1
B A A 1 0
C C A 1 0

q q1 q2

A 0 0
B 1 1
C 0 1

q� z
q x � 0 x � 1 x � 0 x � 1

A B B 0 0
B D A 1 0
C D B 0 0
D C D 1 0

q q1 q2

A 0 0
B 1 1
C 1 0
D 0 1

3. For each of the following state tables and state assignments, find
the flip flop input equations and the system output equation for an
implementation using

i. D flip flops

ii. JK flip flops

a.

b.

c.

d.

b.

�

q� z
q x � 0 x � 1 x � 0 x � 1

A B D 0 0
B D C 1 0
C A B 0 0
D C A 1 0

q q1 q2

A 0 0
B 0 1
C 1 1
D 1 0

e.

E
X

E
R

C
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E
S
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q q1 q2

A 0 0
B 0 1
C 1 0
D 1 1

q q1 q2

A 0 0
B 0 1
C 1 1
D 1 0

q q1 q2

A 0 0
B 1 1
C 1 0
D 0 1

4. a. For the state table and each of the state assignments shown,
design a system using D flip flops.

q� z
q x � 0 x � 1 x � 0 x � 1

A B C 1 0
B A B 0 1
C B B 0 0

q� z
q x � 0 x � 1 x � 0 x � 1

A A C 0 0
B C B 1 1
C A B 1 0

i. ii. iii.

q q1 q2

A 0 0
B 0 1
C 1 0

q q1 q2

A 0 0
B 0 1
C 1 1

q q1 q2

A 0 0
B 1 1
C 1 0

b, c. For each of the state tables and each of the state assignments
shown, design a system using D flip flops.

�b.

q�

q x � 0 x � 1 z

A B D 0
B C A 1
C B B 1
D D C 1

c.

i. ii. iii.

E
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5. Complete the design of the 4-bit binary counter (from the
beginning of Section 7.2) with SR flip flops.

6. If we build the decade counter using JK flip flops, show a state
diagram, including what happens if it initially is in one of the
unused states (10, 11, 12, 13, 14, 15).

7. Design, using

i. D flip flops

ii. JK flip flops
�a. a synchronous base-12 counter, one that goes through the

sequence

0 1 2 3 4 5 6 7 8 9 10 11 . . .

b. a synchronous binary down counter, one that goes through the
sequence

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 . . .

8. Design synchronous counters that go through each of the following
sequences

a. 6 5 4 3 2 1 and repeat
�b. 1 3 4 7 6 and repeat

c. 6 5 4 1 2 3 and repeat

d. 6 5 1 3 7 and repeat

e. 7 4 3 6 1 2 and repeat

f. 1 3 5 7 6 4 2 0 and repeat

using

i. JK flip flops

ii. D flip flops

Show a state diagram, indicating what happens if it initially is in
one of the unused states for each of the designs.

9. Design a counter with two JK flip flops, A and B, and one input, x.
If x � 0, it counts 1 3 0 and repeat; if x � 1, it counts 1 2 3 and
repeat.

a. Assume that x changes only when it is in state 1 or 3 (in which
case there are two combinations which never occur—state 2
and x � 0, and state 0 and x � 1).

b. After building the design of part a (with the two don’t cares),
what happens if somehow x is 0 in state 2 and what happens if
somehow x is 1 in state 0?

10. a. Design a counter with two JK flip flops (A and B) and an input
(x) that counts 0 1 2 3 and repeat when x � 0 and counts 0 1 2
and repeat when x � 1. Design this assuming that x never is 1
when the count is 3. Show the minimum equations for each.

b. What does happen when x goes to 1 when the count is 3?

7.6 Exercises 487
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11. Design the system of CE10, using JK flip flops.

12. Design an asynchronous base-10 counter, using T flip flops with a
static active high clear.

13. Complete the design of CE6 using JK flip flops for the three
different state assignments of Table 7.1.

14. Design the three-state version of CE7, using D flip flops and each
of the following state assignments.

488 Chapter 7 The Design of Sequential Systems

q q1 q2

A 0 0
B 0 1
C 1 0

q q1 q2

A 0 0
B 0 1
C 1 1

q q1 q2

A 0 0
B 1 1
C 0 1

(a) (b) (c)

15. Design a system using JK flip flops that produces a 1 output iff
there have been exactly three 1’s in a row. (See Example 7.10.)

a. Using the Mealy state diagram.

b. Using the Moore state table.

16. For each of the following problems show a state table or a state
diagram. (A sample input/output trace and the minimum number of
states required is shown for each.)

a. A Moore system that produces a 1 output iff the input has been
0 for at least two consecutive clocks followed immediately by
two or more consecutive 1’s. (5 states)

x 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0

z 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

�b. A Moore system, the output of which is 1 iff there have been
two or more consecutive 1’s or three or more consecutive 0’s.
(5 states)

x 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0

z ? ? ? 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0

c. A Mealy system that produces a 1 output iff the input has been
1 for three or more consecutive clock times or 0 for three or
more consecutive clock times. When first turned on, it is in an
initial state A. (There are four additional states.)

x 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1

z 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0

d. A Mealy system that produces a 1 output iff the input has been
either 0 1 0 or 1 0 1. Overlapping is allowed. When first turned
on, it is in an initial state A. (There are four additional states.)
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x 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 0

z 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0

e. A Mealy system that produces a 1 output iff the input is 0 for
the first time after it has been 1 for at least two consecutive
clocks or when it is 1 after having been 0 for at least two
consecutive clocks. Overlapping is allowed. When first turned
on, it is in an initial state A. (There are four additional states.)

x 0 1 0 0 0 1 1 1 1 1 0 0 1 1 0

z 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0

f. A Mealy system, the output of which is 1 iff the input had
been at least two 0’s followed by exactly two 1’s followed by a
0. Overlapping is not allowed. (5 states)

x 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0

z 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

g. A Mealy system, the output of which is 1 iff there have been
exactly two consecutive 1’s followed by at least two
consecutive 0’s. (5 states)

x 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0

z ? 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

h. A Mealy system, the output of which is 1 iff there have been
exactly two consecutive 0’s or exactly two consecutive 1’s.

i. Overlapping is allowed (6 states)

ii. Overlapping is not allowed (6 states)

x 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1

z-i ? ? 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0

z-ii ? ? 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0

i. A Mealy system, the output of which is 1 iff there has been a
pattern of 1 0 1 1.

i. Overlapping is allowed (4 states)

ii. Overlapping is not allowed (4 states)

x 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1

z-i 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0

z-ii 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

j. A Mealy system, the output of which is 0 iff there has been a
pattern of 1 1 0 1. (The output is 1 most of the time.)

i. Overlapping is allowed (4 states)

ii. Overlapping is not allowed (4 states)

7.6 Exercises 489
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x 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1

z-i 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1

z-ii 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

�k. A Mealy system, the output of which is 1 iff the input has
contained an even number of 0’s (including no 0’s) and a
multiple of four 1’s (including no 1’s). When first turned on,
the system is initialized to a state indicating no 0’s and no 1’s
(but that state is reached again later). (8 states)

x 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0

z 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0

�l. A Moore system, the output of which is 1 iff the pattern 1 0 1
has occurred more recently than 1 1 1. (6 states)

x 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 1

z ? ? ? 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0

Determine from the sample whether overlapping is allowed.

m. A Mealy system, the output of which is 1 iff the input is
exactly two 1’s followed immediately by exactly one or 
two 0’s. Full credit for solutions with six or less states.

x 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0

z ? 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n. A Mealy system, the output of which is 1 iff there has been a
pattern of 1 1 0 0 0. (5 states)

x 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1

z ? ? ? 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

o. In this Mealy system, there are two inputs, a and b; they are to
be treated as a binary number, that is 00 is 0, 01 is 1, 10 is 2,
and 11 is 3. The output is to be 1 if the current number is
greater than or equal to the previous one AND the previous
one is greater than or equal to the one before that. It is to be 0
otherwise. There is an initial state for which there have been
no previous numbers. Be sure to explain the meaning of each
state. (8 states in addition to the initial one)

a 0 0 1 0 1 0 0 0 1 1 1 0 1 1

b 1 0 0 1 1 0 0 1 0 1 0 0 1 1

z 0 0 0 0 0 0 0 1 1 1 0 0 0 1
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a. b.

7.7 Chapter 7 Test 491

q�

q x � 0 x � 1 z

A A B 1
B B C 1
C A C 0

q�

q x � 0 x � 1 z

A C B 1
B D D 0
C A D 0
D C B 0

2. For the following state table and state assignment, design a system
using an SR flip flop for q1 and a JK flip flop for q2. Show the flip
flop input equations and the output equation; you do NOT need to
draw a block diagram.

q q1 q2

A 0 0
B 0 1
C 1 0
D 1 1

q q1 q2

A 0 0
B 1 1
C 0 1
D 1 0

c. Show a block diagram for the solution to part b, using AND,
OR, and NOT gates.

7.7 CHAPTER 7 TEST (75 MINUTES)

1. For the following state table, design a system using a D flip flop for
A, a JK flip flop for B, and AND, OR, and NOT gates. Show the
flip flop input equations and the output equation; you do NOT need
to draw a block diagram.

q q1 q2

A 0 0
B 1 0
C 1 1

A�B� z
A B x � 0 x � 1 x � 0 x � 1

0 0 1 1 0 1 0 1
0 1 0 0 1 0 0 0
1 0 1 0 0 1 1 1
1 1 0 1 1 0 1 0

3. For the following state table, design a system using D flip flops for
each of the state assignments. Show equations for D1, D2, and z.
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4. Design a counter that goes through the sequence

1 4 3 6 2 5 and repeat

using a D flip flop for A, a JK flip flop for B, and a T flip flop for C.

Five-point bonus: Show a state diagram, including what happens
if the system is initially in state 0 or 7.

5. a. Show the state table or state diagram for a Mealy system that
produces a 1 output if and only if the input has been 1 0 1 0
for the last four clock times. Overlapping is allowed. (4 states)

b. Show the state table or state diagram for a Mealy system that
produces a 1 output if and only if the input has been 1 0 1 0
for the last four clock times. Overlapping is not allowed. 
(4 states)

Example:

x 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

z-a 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0

z-b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

6. Show the state table or state diagram for a Moore system that
produces a 1 output if and only if the input has been 0 1 1 for the
last three clock times. (4 states)

Example:

x 0 0 1 0 1 1 1 0 0 1 1 0 1 1

z ? 0 0 0 0 0 1 0 0 0 0 1 0 0 1
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493

Solving Larger
Sequential Problems

As we get to larger problems, data are often stored in registers,
rather than individual flip flops. A register is just a collection of
flip flops, often with a common name (using subscripts to indi-

cate the individual flip flops) and usually with a common clock. For
example, in a computer, the two inputs to the adder (say 16 bits each)
may come from two registers, each of which consists of 16 flip flops. It
is nearly impossible to show a block diagram of such a system with all
of the individual flip flops and gates.

In this chapter, we will look first at two classes of commercial
medium-scale integrated circuits*—shift registers and counters. We will
introduce programmable logic devices with memory to implement more
complex problems such as CPLDs and FPGAs. We will then look briefly
at two tools for dealing with these larger systems, ASM (Algorithmic
State Machine) diagrams and HDL (Hardware Design Languages).
Lastly, we will then look at some larger design problems than we could
manage in Chapter 7. We will concentrate on synchronous (clocked)
systems.

8.1 SHIFT REGISTERS

A shift register, in its simplest form, is a set of flip flops, such that the
data moves one place to the right on each clock or shift input. A simple
4-bit shift register is shown in Figure 8.1, using SR flip flops. (Although
shift registers are most commonly implemented with SR flip flops, JK
flip flops could be used in place of the SR’s in the same circuit. D flip
flops could also be used; the q output of one flip flop would be connected
to the D input of the next.) At each clock, the input, x, is moved into q1,
and the contents of each of the flip flops is shifted one place to the right.

*When we look at the details of some of these circuits, we will simplify the logic
somewhat by looking at just one bit and by eliminating some of the double NOT gates
that are used for reducing load.

C H A P T E R

8
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Figure 8.1 A simple shift register.

D q4

q4�

S q3x q2

Clock

S q1

R

S

Rq3�

q4

q4�q2�q1�R

S

R

A sample timing trace is shown in Trace 8.1, assuming that all flip flops
are initially 0. The sample input is shown in brown.

Trace 8.1 Shift register timing.

x 1 0 1 1 1 0 1 1 1 1 0 0 0
q1 0 1 0 1 1 1 0 1 1 1 1 0 0 0
q2 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0
q3 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0
q4 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0

In some commercial shift registers, a NOT gate is added at the clock
input, as shown in Figure 8.2.

Figure 8.2 Leading-edge triggered shift register.
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This accomplishes two things. The shift register is now leading-edge
triggered (since the leading edge of the clock is the trailing edge of the
flip flop input). Also, the clock input signal only goes to the NOT gate.
Thus, this circuit presents a load of 1 to the clock, rather than a load of 4
(if the signal went to all four flip flops). When a trailing-edge triggered
shift register is desired, a second NOT gate is added in series with the
one shown. Sometimes, the x input is first inverted to present only a load
of 1. Both of these changes are shown in the circuit of Figure 8.3.
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This version of the shift register is referred to as serial-in, serial-out
in that only 1 bit (the left bit) may be loaded into the register at a time
and, as shown, only 1 bit (the right bit) may be read. (Only the uncom-
plemented value, q4, may be available or both the uncomplemented and
complemented, q4 and q�4, may be outputs.) The main limitation on the
amount of logic that can fit on a single chip is the number of input and
output connections. Thus, one could build a serial-in, serial-out shift reg-
ister with a nearly unlimited number of bits on a chip, since there are
only three or four logic connections.

One application of a large serial-in, serial-out shift register is a
memory similar to a disk. If the output bit is connected back to the input
as shown in Figure 8.4, when Load is 0, the data circulate around the n
flip flops. It is available only when it is in qn, once every n clock cycles.
At that time it can be modified, by making Load � 1 and supplying the
new value on x. If we needed a series of 8-bit numbers, we could build
eight such shift registers, storing 1 bit in each. As we clocked all the shift
registers, we would obtain 1 byte (8 bits) at a time.

8.1 Shift Registers 495

Figure 8.3 Shift register with load-reducing NOT gates.
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Figure 8.4 Shift register storage.
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To initialize a 4-bit serial-in, serial-out shift register to all 0’s, we
would have to clock it four times, with 0 on input x each time. To avoid
this, most shift registers have an active low (usually static) clear input.
Many shift registers have a parallel output, that is, the contents of each
of the flip flops is available. (Obviously, if we were building this with
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independent flip flops, this would just require connecting a wire to each
flip flop output. If, however, the whole shift register were contained on a
single integrated circuit, each output would require a pin.) There is an
8-bit serial-in, parallel-out shift register on one chip, using D flip flops
(74164); it uses the 12 logic connections for 8 outputs, the clock, the
clear, and 2 for serial input, as shown in Figure 8.5. (The x is replaced by
A B, two inputs into a built-in AND gate.)

496 Chapter 8 Solving Larger Sequential Problems

One application of a serial-in, parallel-out shift register is an input
port from a modem. Data are transmitted serially over telephone lines. It
is clocked into a shift register until a whole byte or word is received.
Only then is there interaction with the computer’s memory; the group of
bits are read in parallel from the shift register and loaded into memory.

A parallel-in shift register allows the register to be loaded in one
step. That, of course, requires an input line for each flip flop, as well as
a control line to indicate load. Sometimes the loading is done statically
(74165), as demonstrated for a typical bit (q2) in Figure 8.6a. Sometimes
it is done synchronously (74166), as shown in Figure 8.6b. Both of these
are serial-out, that is, there is only one output connection, from the right
flip flop. There is a serial input to the left bit for shift operations (going
to the same place in the first flip flop logic that q1 goes to in the typical
bit in Figure 8.6).

For the 74165, the clock input to the flip flops is inverted from the
input to the chip and passed through only when Load� is high (don’t
load) and Enable� is low (enable shift). When Load� is high, both CLR�
and PRE� are high, and the shift works. When Load� is low, the clock is
disabled, IN�2 appears on PRE�, and IN2 appears on CLR�, thus loading
IN2 into the flip flop.

For the 74166, there is an active low static clear, independent of the
load. The clock is inverted when Enable� is 0; otherwise, the flip flops
are not clocked and nothing changes. When enabled and Load� is 0, IN2

is stored in q2; when Load� is 1 (inactive), q1 is shifted into q2.

Figure 8.5 74164 serial-in parallel-out shift register.
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The parallel-in, serial-out shift register is used in the output process
for serial data. A word is loaded (all at once) into the shift register from
the computer. Then, bits are sent to the modem from the right end of the
shift register one at a time.

Parallel-in, parallel-out shift register chips are limited to 4 or 5 bits
because of the number of connections required. The 7495 is very similar
to the 74166 in control structure, except that it has a separate clock input
for shifting and for loading.

In most computers, there are both left and right shift and rotate*

instructions. To implement these, we might use a right/left shift register
(such as the 74194, a synchronous parallel-in, parallel-out 4-bit shift reg-
ister). For this, a three-way multiplexer is needed at each bit, since that
bit can receive the bit to its left, the bit to its right, or the input bit. A truth
table describing the behavior of the shift register is shown in Table 8.1.
Bits are numbered 1 to 4 from left to right.
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Figure 8.6 Parallel-in shift registers.

(a)  74165 (b)  74166
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*A one place right rotate moves every bit one place to the right and moves the right-most
bit back into the left flip flop.

Table 8.1 Right/left shift register.

Clear� S0 S1 q1
� q2

� q3
� q4

�

Static clear 0 X X 0 0 0 0
Hold 1 0 0 q1 q2 q3 q4

Shift left 1 0 1 q2 q3 q4 LS
Shift right 1 1 0 RS q1 q2 q3

Load 1 1 1 IN1 IN2 IN3 IN4
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x A B C D E F G H

ck

Note that when S0 and S1 are both 0, the clock input to the flip flop is 0;
there is no edge, and thus the flip flop holds. Otherwise, the clock is
inverted and thus this is a leading-edge triggered shift register. (Note that
for q1, the left flip flop, RS comes into the top input of the multiplexer,
and for q4, LS comes into the bottom input.)

As an example of an application of shift registers, consider the fol-
lowing problem. 

We want to design a system with one output, z, which is 1 if the input, x,
has been alternating for seven clock times (including the present). We have
available an 8-bit serial-in, parallel-out shift register as shown below:
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Figure 8.7 Right/left shift register.

q1

q3
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IN2 q2�

q2S

R
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Clock

Clear �

EXAMPLE 8.1

Where the INi are the inputs for parallel load, RS is the serial input for a
right shift, and LS is the serial input for a left shift. The hold combination
is really the “don’t shift, don’t load” input. A typical bit (with the control
circuitry) is shown in Figure 8.7.

(The shift register probably also has a static clear input, but it is not needed
for this problem.)
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At any time, the register contains the value of x at the eight most recent
clocks, with the most recent in A and the oldest in H. For this problem, we
only need six of these. The circuit below computes the answer.

8.2 Counters 499

x x

Clock

A B C D E F G H

ck

z

8.2 COUNTERS

In Chapter 7, we discussed the design of counters. In this section, we will
look at some of the commercially available counters and applications of
counters. A counter consists of a register and the associated logic.

Counters may be synchronous or asynchronous and may be base 10,
12, or 16 (that is, cycle through 10, 12, or 16 states on consecutive clock
pulses). Most synchronous counters have parallel loads; they may be
preset to a value, using the load signal and an input line for each bit.
Many also have a clear (or Master Reset) signal to load the register with
all 0’s. These control signals are usually active low; they may be syn-
chronous or asynchronous. Most asynchronous counters just have a
static clear. In addition, some synchronous counters count both up and
down. Most counters have a carry or overflow output, which indicates
that the counter has reached its maximum and is returning to 0 (for up
counters). That may be a logic 1, or it may be a clock pulse coincident
with the pulse that causes the transition back to 0.

We will first look at the 74161 counter, which does synchronous
counting and loading and has an asynchronous (active low) clear. It has
two count enables, ENT and ENP* (both of which must be 1 to enable

[SP 1, 2, 4a; EX 1, 2, 4b; LAB]

*Only ENT enables the overflow output.
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We could use two of these counters to count to 255 (28 � 1) or three
to count to 4095 (212 � 1). The block diagram of Figure 8.9 illustrates
the 8-bit counter, where no parallel load inputs are shown.

If the counter is cleared initially, only the low-order counter (the one
on the right) is enabled for the first 15 clocks. When that counter reaches
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Figure 8.8 The 74161 counter.
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Clock
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counting). Labeling the bits D (high), C, B, and A, a block representation
of the counter and the logic for a typical bit, bit C, is shown in Figure 8.8.
Since the clock is inverted before going to the trailing-edge triggered flip
flop, the counter is leading-edge triggered. The only difference between
bits is the inputs to the brown AND gate. That is the value for the J and
K inputs to each bit when counting (ANDed with the enable). (Thus, D’s
input is A B C, C’s input is A B, B’s input is A, and A’s input is 1.) When
loading (Load� � 0), point x is 1, point y is 1, point z equals IN�C, and
point w equals INC. Thus, the flip flop is loaded with the value on INC.
When Load� � 1, then point x equals 0, points w and z equal 1, and point y
is just the output of the brown AND gate. Thus, J and K are 1 when the
brown gate output is 1, that is, when this flip is to change during the
count.

mar91647_c08_493_542.qxd  11/24/08  10:32 AM  Page 500



D

O7 O6 O5 O4

C B A

ENP

Clock

ENTCLR�

OV High

LD�

D

O3 O2 O1 O0

C B A

1

ENPENTCLR�

OV Low

LD�

15 (1111), the overflow output (OV ) becomes 1. That enables the second
counter. On the next clock, the right counter goes to 0 (returning OV to
0) and the left counter increases by 1. (Thus, the count reaches 16.) Only
the low-order counter increments on the next 15 clocks, as the count
reaches 31. On the 32nd clock, the high-order counter is enabled again.

If we wanted to count through a number of states other than a power of 16,
we would need to reset the counter when we reached the desired maxi-
mum. Since the 74161 counter has a static clear (similar to the asynchro-
nous counter example in Example 7.9), we must count one beyond the
desired maximum and use that to clear the counter. We will thus reach the
extra state for a brief time (before the clear is effective), but that is well
before the next clock time. For example, the counter of Figure 8.9 could be
used to count through 120 states (0 to 119) by adding the NAND gate
shown to clear it when it reaches 120 (01111000).
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Figure 8.9 8-bit counter.
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EXAMPLE 8.2

We do not need to AND O�2, O�1, O�0, or O�7, since we never reach a count
over 120, and thus these are never 1 when O6, O5, O4, and O3 are all 1.
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The 74163 is similar to the 74161, except that the clear is clocked. The
internal structure of the circuit is modified so that an active clear input loads
a 0 into each flip flop on the clock. To use it in a 120 state counter, we need
to detect 119 and reset it on the next clock pulse, as shown below. The
advantage of this approach is that there is no period (not even a short one)
where the counter reaches 120.

502 Chapter 8 Solving Larger Sequential Problems

There are decade counters (counting 0 to 9) similar to the two binary
counters we just described (74160 with a static clear and 74162 with a
clocked clear).

There are both binary (74191 and 74193) and decade (74190 and
74192) up/down counters. The first of each type has a single clock input
and a Down/Up� input (where a 1 indicates down and a 0 indicates up).
The second has two separate clock inputs, one for counting down and the
other for counting up; one of those must be a logic 1 for the other to
work. All of these have static load inputs. Bit C of the 74191 binary
counter is shown in Figure 8.10. When Load� is 0, the preset input is low

Figure 8.10 Typical bit of the 74191 Down/Up� counter.
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D

O7 O6 O5 O4

C B A

ENP

Clock

ENTCLR�

OV High

LD�

D

O3 O2 O1 O0

C B A

1

ENPENTCLR�

OV Low

LD�

mar91647_c08_493_542.qxd  11/24/08  10:32 AM  Page 502



8.2 Counters 503

Figure 8.11 The 74191 Down/Up� counter.
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(active) if INC is 1 and the clear input is low (active) if INC is 0. (There is
no clear input to the counter; that is accomplished by loading 0 into each
bit.) If Load� is 1, then both preset and clear are 1 (inactive) and the clock
controls the counter. Note that J and K are B A when counting up and
B� A� when counting down.

A block diagram and a truth table for the 74191 counter are shown
in Figure 8.11.

The final group of counter we will discuss are asynchronous counters

7490 Base 10 (2 � 5)

7492 Base 12 (2 � 6)

7493 Base 16 (2 � 8)

Each of these is trailing-edge triggered and consists of a single flip flop
and then a 3-bit counter (base 5, 6, and 8, respectively). The output from
the single flip flop must be externally connected to the clock of the 3-bit
counter to achieve the full count. Each has two static clear inputs, both of
which must be 1 to clear all four flip flops. The decade counter also has
a pair of static set inputs, which (when both are 1) sets the counter to 9
(1001); the set overrides the clear.

A simplified block diagram of the 7493 is shown in Figure 8.12.

Figure 8.12 7493 asynchronous binary counter.
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Note that to count to 8, the clock is connected to point X, and the outputs
are from D, C, and B. To count to 16, the clock is connected to point Y,
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EXAMPLE 8.4

and points A and X must be connected (externally from the integrated
circuit, as shown dashed).

We will now look at four solutions, each using a binary counter, to the fol-
lowing problem:

Design a system the output of which is a clock pulse for every ninth
input clock pulse.

For this, the counter must go through nine states. The output is
obtained by ANDing the clock with a circuit that detects any one of the nine
states. One solution is to have the counter sequence

0 1 2 3 4 5 6 7 8 0 . . .

If we use a 74163, which has a clocked clear, the circuit is

D is only 1 in state 8; thus it can be used to reset the counter to 0 and for
the output.

If we use a 74161 with a static clear, then we must count to 9 before
clearing it, as shown below.
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It will remain in state 9 for a short time (depending on the delays in the
circuit). We cannot not use the same output circuit, because we would get a
short output pulse at the beginning of state 9 (as well as the one in state 8),
as shown in the timing diagram below. Instead, we made the output 1 when
the counter was at 7.

Another approach to this problem, using the first counter (74163), is to count

8 9 10 11 12 13 14 15 0 8 . . .

As before, this counter cycles through 9 states. When the count reaches 0,
we load an 8 into the counter. Since the load is synchronous, this occurs on
the next clock pulse. The output can be coincident with the time we are in
state 0 (or any other state). This results in the following circuit, where the
load inputs, IND, INC, INB, and INA, are shown down the right side of the
block. The only state for which D � 0 is state 0; thus, the load is activated
in that state and the output coincides with the clock pulse during that state.
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Clock
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z
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Finally, with the 74163, we could implement this to count the sequence

7 8 9 10 11 12 13 14 15 7 . . .

using the OV output. Since that indicates when the count is 15, we can
invert it to create an active low load signal and connect 0111 to the parallel
input lines, as shown below.

8.3 PROGRAMMABLE LOGIC
DEVICES (PLDs)

Since a sequential system consists of a combination of memory and
combinational logic, one approach to its implementation is to use a PAL
(or other logic array described in Chapter 5) and some flip flops (for the
memory). There are a variety of devices that combine a PAL and some D
flip flops. One family of these devices is the 16R8,* 16R6, and 16R4. A
simplified schematic of a portion of the 16R4 is shown in Figure 8.13.
There are eight external inputs (two of which are shown). The registered
outputs (all eight in the 16R8 and four in the 16R4) come from a flip flop,
driven by a PAL (as shown for the first two outputs in Figure 8.13). Each
PAL has eight AND gates (four of which are shown). There is a common
clock and a common (active low) output enable, providing active low flip
flop outputs (since the three-state gate inverts). Note that Q� is fed back
to the AND array; but, it is then provided both uncomplemented and
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z

ENP

Clock

ENTCLR�

OV
74163

LD�

1

1
1
1
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[SP 3, 4b; EX 3, 4a, 5, 6; LAB]

*The 16 is the number of inputs to the AND array, the R indicates that at least some of
the outputs are registered, that is, come from flip flops, and the 8 is the number of flip
flops.
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complemented, just as are the external AND array inputs. Thus, all the
inputs to the combinational logic are available both uncomplemented
and complemented.

This 16R8, by itself, is sufficient to implement only those sequen-
tial systems whose output is the state of the flip flops, such as counters.
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Figure 8.13 A PLD.
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EXAMPLE 8.5

We developed the following equations for the D inputs in Example 7.8:

DA � x�A�B � x�AB� � x�yA � xAB � xy�A�B�

DB � x�yA � AB� � x�B� � y�B�

(There is no point in considering sharing, since the PAL does not permit it.)
We can obtain the output equations from the state table (or we could con-
struct maps):

F � x�yAB � xyA�B�

G � x�y�AB � xy�A�B�

A block diagram of that PAL, with only the gates that are used included, is
shown next. Note that we did not show the output gates for the flip flops.
We used five of the eight input lines (including one for a 1 to enable the two
outputs). We used only two of the flip flops. This could be implemented with
either a 16R6 or a 16R4.

A� B� F G
A B xy � 00 xy � 01 xy � 10 xy � 11 xy � 00 xy � 01 xy � 10 xy � 11

0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0

Those outputs that are not registered (as shown in the bottom of Fig-
ure 8.13) are enabled by one of the AND gates (and the PAL has only
seven terms). If it is not enabled, that pin can be used as an additional
input (making as many as 12 inputs for the 16R4).

As an example, we will look at the design of the up/down counter from
Example 7.8, where we have added two outputs, F and G, where F indi-
cates that the counter is saturated and G indicates that the counter is recy-
cling (that is, going from 3 back to 0 or from 0 back to 3). The state table is
shown below. 
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The PLDs we have described are useful for relatively small
circuits—typically no more than a total of 32 inputs and outputs.
Although it would theoretically be possible to build them much larger,
other approaches are used.

mar91647_c08_493_542.qxd  11/24/08  10:32 AM  Page 509



510 Chapter 8 Solving Larger Sequential Problems

A complex programmable logic device (CPLD)* incorporates an
array of PLD-like blocks and a programmable interconnection network.
Commercially available CPLDs have as many as a few hundred PLD
blocks.

For larger circuits, field programmable gate arrays (FPGA) are
used. Rather than containing PALs, FPGAs have as their basic building
block a general purpose logic generator (typically three to five variables),
with multiplexers and a flip flop. These blocks are connected by a pro-
grammable routing network, which also connects to input/output blocks.
The logic generator is effectively a lookup table (LUT), often with a flip
flop. A three-variable LUT is shown in Figure 8.14, with a flip flop that
may be bypassed if Control is 0. Each cell can be programmed to a 0 or
a 1; thus, any three-variable function can be created.

*For a more complete discussion of CPLDs and FPGAs, see Brown and Vranesic,
Fundamentals of Digital Logic with VHDL Design, 3rd ed., McGraw-Hill, 2009. 

Figure 8.14 A three-input lookup table.

D
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0/1

0/1

0/1

0/1

0/1

0/1

0/1
z y x Control

f

Out

If, for example, the cells are programmed to 0, 0, 0, 1, 0, 0, 1, 1, then the
function represented is f � x�yz � xyz� � xyz � yz � xy. To illustrate
the interconnection network, Figure 8.15 shows an implementation of
the function

f � x1x2� � x2x3

using two-input LUTs. The brown input/output connectors, connections
(X), and LUTs are active. All of the others are inactive. One LUT
produces f1 � x1x2�, the second produces f2 � x2x3, and the third produces
f � f1 � f2.
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8.4 DESIGN USING ASM DIAGRAMS

As we indicated in Chapter 6, the term state machine, also called finite
state machine or algorithmic state machine (ASM) is the same as
sequential system. A tool that is a cross between a state diagram and a
flow chart is the ASM diagram (sometimes referred to as an ASM chart).
We will first describe the basic elements and compare its structure to that
of a state diagram. Then, we will apply this tool to a controller for a
small system of registers (the place where this tool is most useful).

There are three types of blocks in an ASM diagram. The first is the
state box. It is a rectangle, with one entry point and one exit point, as
shown in Figure 8.16a.

The name of the state is shown above the box, and the output(s)
corresponding to that state is shown in the box. (This is a Moore type
output, one that occurs whenever the system is in that state. We will see
how to indicate a Mealy output shortly.) When an output is listed, it
indicates that the output is 1; any output not listed is 0.

The second type of box is the decision box, as shown in Figure 8.16b,
which allows a two-way branch based on a switching expression.

8.4 Design Using ASM Diagrams 511

Figure 8.15 A section of a programmed FPGA.
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It has one entry point and two exit points, one corresponding to the
expression equal to 0, the other corresponding to a 1. If more than a two-
way branch is needed, the exit of a decision box can go to the entry of
another decision box.

The third type of box is the conditional output box (Figure 8.16c). It
has one entry and one exit. It specifies the output that occurs when that
state transition takes place. (It is the Mealy output.)

An ASM block consists of the state box and all the decision boxes
and conditional output boxes connected to it. There is one entry to the
block, but there may be one or more exits; each of these goes to the entry
of a state box.

There is no symbol for a merge point; two or more exit paths may
go to the same entry point, as will be seen in some examples below. A
typical ASM block (associated with state A) is shown in Figure 8.17.
The output, z, of this system is 1 when the system is in state A and
the input, x, is 1. The system goes to state B when x � 1, and back to
state A when x � 0.

512 Chapter 8 Solving Larger Sequential Problems

Figure 8.17 An ASM block.

z

x
0

A

B

1

We will now look at the ASM diagram for the Moore system with an
output of 1 iff the input has been 1 for at least three consecutive clocks
(as first presented in Section 6.1). The state diagram is shown first in
Figure 8.18 and then the corresponding ASM diagram.

Figure 8.16a State box.

output

name

Figure 8.16b Decision box.

condition
0 1

Figure 8.16c Mealy output box.

output
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8.4 Design Using ASM Diagrams 513

Figure 8.18 Moore state diagram and ASM diagram.
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For the similar Mealy problem, with one input, x, and one output,
z, such that z � 1 iff x has been 1 for three consecutive clock times,
the state diagram (Figure 7.13) and the corresponding ASM diagram is
shown in Figure 8.19. Note that the state assignment may be shown to
the right of the state name, outside the state box.
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Figure 8.19 Mealy state diagram and ASM diagram.
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Finally, we will look at the design for a controller for a serial adder. The num-
bers are each stored in an 8-bit register (with shifting capability), and the
answer is returned to one of those registers, as shown in the diagram below
(a simplified version of this is given in Experiment 24). We will assume that
the two operands are already loaded into registers A and B.

A signal of 1 on line s indicates that the system is to start the addition
process. A 1 (for one clock period) on line d indicates that it is done. An
ASM diagram for a controller for this system follows. The bits of the register
are numbered 7 (left, most significant) to 0. Bits 0 of the numbers and the
carry (c) are added, and the result is loaded into the left bit (bit 7) of B as
both registers are shifted to the right.

Full
Adder

Flip Flop

Registers

...

...

c
A

B

EXAMPLE 8.6
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This controller can be implemented by a sequential machine with three
states. It requires a 3-bit register, N, and an incrementer to count through
the eight add/shift steps. This controller goes from state 00 to state 01
when s � 1 (and remains in state 00, otherwise). It goes from state 01 to 10
when register N contains three 1’s (and returns to state 01, otherwise). It
always goes from state 10 to 00 on the next clock. The design of the
sequential circuit is left as an exercise.

8.5 ONE-HOT ENCODING

Up until now, we have encoded states using the minimum number of flip
flops. Another approach, particularly simple when designing from an
ASM diagram, is to use one flip flop for each state. That flip flop is 1 (or
hot) and all others are 0 when the system is in that state.

For the Moore system of Figure 8.18, we have four states and would
thus have four flip flops. If we labeled them A, B, C, and D, we can see
by inspection that 

A� � x�(A � B � C � D) � x�

s
0

wait

add

1

0 1

done 1 01

0

A <- A[0], A[7:1]
B <- A[0]�B [0]�c, B [7:1]
c <- carry
N <- N�1

0 0

N � 7

c <- 0
N <- 0

d

8.5 One-Hot Encoding 515

[SP 6; EX 7, 8]
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(since one of the state variables must be 1).

B� � x A

(since the condition box indicates that we go to state B when x � 1)

C� � x B

D� � x(C � D)

This produces very simple combinational logic for the next state (although
the savings there is typically not adequate to make up for the cost of extra
flip flops).

The output is 1 only when in state D; thus the output equation is

z � D

This approach is sometimes used in designing large controllers, where
most states produce an output signal. As in the example above, the out-
put signal comes directly from a flip flop, rather than from combinational
logic that decodes the state.

8.6 VERILOG FOR SEQUENTIAL 
SYSTEMS*

In Section 5.7.1, we introduced Verilog constructs for combinational sys-
tems. Here, we will give examples of the use of Verilog for sequential
systems.

We will now look at the structural model for a trailing-edge trig-
gered D flip flop with an active low input, CLR� in Figure 8.20.

516 Chapter 8 Solving Larger Sequential Problems

Figure 8.20 Structural model of a D flip flop.

module D_ff (q, ck, D, CLR);
input ck, D, CLR;
output q;
reg q;
always @ (negedge ck or negedge CLR)

begin
if (!CLR)

q <= 0;
else

q <= D;
end

endmodule

*For a detailed discussion of Verilog, see Brown and Vranesic, Fundamentals of Digital
Logic with Verilog Design, 2nd ed., McGraw-Hill, 2008, or for VHDL, see Brown and
Vranesic, Fundamentals of Digital Logic with VHDL Design, 3rd ed., McGraw-Hill, 2009.
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8.6 Verilog for Sequential Systems 517

Note that q is referred to as a register (reg) rather than a wire, since
it is storage. The symbol @ indicates the time when the following steps
are executed. Only on the trailing edge (negedge) of the clock or the
CLR input will anything happen. The symbol ! indicates not, and the
arrowed equal (<=) is used to indicate time dependence. In the combina-
tional models, an equal sign (=) was used since it did not matter in what
order things happened.

We can use the flip flop we just described to build an 8-bit trailing-
edge triggered shift register (shift right), as shown in Figure 8.21a.

Figure 8.21a Shift register using flip flop module.

module shift (Q, x, ck, CLR);
input x, clock, CLR;
output [7:0]Q;
wire [7:0]Q;
D_ff Stage 7 (Q[7], x, ck, CLR);
D_ff Stage 6 (Q[6], Q[7], ck, CLR);
D_ff Stage 5 (Q[5], Q[6], ck, CLR);
D_ff Stage 4 (Q[4], Q[5], ck, CLR);
D_ff Stage 3 (Q[3], Q[4], ck, CLR);
D_ff Stage 2 (Q[2], Q[3], ck, CLR);
D_ff Stage 1 (Q[1], Q[2], ck, CLR);
D_ff Stage 0 (Q[0], Q[1], ck, CLR);

endmodule 

Figure 8.21b Single module shifter.

module shift (Q, x, ck, CLR);
input x, clock, CLR;
output [7:0]Q;
wire [7:0]Q;
reg [7:0]Q;

always (@ negedge ck)
begin

Q[0] <= Q[1];
Q[1] <= Q[2];
Q[2] <= Q[3];
Q[3] <= Q[4];
Q[4] <= Q[5];
Q[5] <= Q[6];
Q[6] <= Q[7];
Q[7] <= x;

end
endmodule

Another approach is to define the shift register in a single module.

mar91647_c08_493_542.qxd  11/24/08  10:32 AM  Page 517



518 Chapter 8 Solving Larger Sequential Problems

*More information about memory design can be found in Marcovitz, Alan B.,
Introduction to Logic and Computer Design, McGraw-Hill, 2008.

8.7 DESIGN OF A VERY SIMPLE
COMPUTER

In this section, we will look at the design of an overly simplified com-
puter.  It includes a memory of 256 (28) registers often just referred to as
words, 12 bits each, and a rudimentary instruction set. Although this
computer will not solve any real problems, there is enough capability to
understand the basic process of executing a set of instructions.

The memory* stores both instructions and data. To read from it, the
address of the register (an 8-bit number) is connected to the set of eight
input lines, A0, . . . , A7, and a 0 is placed on line r�/w. The contents of that
register are available on the 12-bit bus, D0, . . . , D11. To write to it, the
register address is connected to A, the data to be stored to D, and the line
r�/w is made 1.

There are two 12-bit user addressable registers, B and C. In addition,
there are a few internal registers needed to implement the machine:

R—a 12-bit register to hold the instruction while it is being
decoded and executed

P—an 8-bit register to keep track of the address of the next instruc-
tion

T—a 12-bit register to temporarily hold data

Each instruction fits into one word, and has the following format:

AddressN MOP

0 1 2 3 4 11

where OP specifies one of four operations, N indicates one of two inter-
nal registers, and M specifies (with Address) how the effective address
(the actual location in memory) is computed.

Two addressing modes are included—direct (M = 0), where Address
is the effective address, and indirect (M = 1), where Address contains the
memory location where the effective address is found (in the right 8 bits).

The four instructions are

00 Load register (from the memory location)
01 Store register (in the memory location)
10 Add the number from memory to the one in the register
11 Jump to (get next instruction from) the location

To execute a sequence of instructions, the computer follows this
step-by-step procedure (returning to step 1 after completing each instruc-
tion):
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1. Send the address of the instruction (from the Program Counter, P
in what follows) to memory to fetch the instruction. Save that word
in an internal register of the CPU, sometimes called the Instruction
Register, I, in the description that follows. 

2. Update the Program Counter so that it points to the (first word of
the) next instruction. 

3. Decode the instruction, that is, determine what operation is to be
performed and what operands, if any, are needed. 

4. Obtain the operands. Some may be in registers and others in
memory. In the latter case, the address may need to be computed
and the data fetched from memory into a CPU register.

5. Execute the instruction, that is, do the computation (if any)
required.

6. Store the result, if any, either in memory or in a register. (For jump
instructions, the result may be the address of the next instruction to
be stored in the Program Counter.)

An ASM diagram for the controller of this computer is shown in
Figure 8.22. Rather than showing output boxes, we have labeled each
state box with the steps that are to be performed. In the first step, the pro-
gram counter (which contains the address of the instruction about to be
executed) is connected to the address input and the instruction is read
into I. If I3 is 1, this is indirect addressing, and the right 8 bits of I are
replaced by the contents of the memory location. The Program Counter,
P, is incremented to point to the next instruction, and, based on I1, the
flow branches. To the left, we read data from memory into the temporary
register, T. For Load, it is moved to the appropriate register; for Add, T is
added* to either register B or C. For the right branch, P is changed to the
address portion of I for a jump. For store, the appropriate register is con-
nected to D, the address to A, and r�/w is made 1 (to write the data into
memory). 

This controller implies that the bus D has inputs from memory and
registers B and C. Its contents can be clocked into registers I (or the right
8 bits of I) and T. There is a 12-bit adder, with neither a carry-in nor a
carry-out, that takes one input from T and the other either from B or C
(implying a multiplexer on the second input). The internal transfers
implied are from the right 8 bits of I to P, and from T to B and C.

The state boxes in the ASM diagram have been numbered, and we
then implemented the controller using a one-hot design (where each state
corresponds to a 1 in just one of the flip flops) in Figure 8.23. The clock
inputs have not been connected to the clock in that figure to make it more
readable.

8.7 Design of a Very Simple Computer 519

*We have used the notation ++ to indicate addition (as opposed to OR).
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8.8 OTHER COMPLEX EXAMPLES

As the first example, consider the design of the following system:

The system keeps track of how many consecutive 1 inputs occur on input
line x and then, starting at the first time that the input x is 0, it outputs on
line z that same number of 1’s at consecutive clocks (z is 0 at all other
times).

520 Chapter 8 Solving Larger Sequential Problems

Figure 8.22  ASM diagram for very simple computer.
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A = P

r �/w = 0
I <- D

R3

R1

R0

R2R2

R0

R2

Increment
P

P <- I � 4:11�

B <-T C <-T B <-B ++ T C <-C ++ T
A = I �4:11�

r �/w = 1
D = C      

A = I �4:11�
r �/w = 1
D = B      

A = I �4:11� 
r �/w = 1

T <- D      

A = I �4:11�
r �/w = 0

I �4: 11� <- D �4:11�
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8.8 Other Complex Examples 521

A sample timing trace of the input and output of such a system is shown
in Trace 8.2.

We will first assume that the available components are AND, OR, and
NOT gates, a JK flip flop and a 74191 up/down counter with four out-
puts, labeled D, C, B, A (with D the high-order output). We will use the
counter to count the number of consecutive 1’s (counting up) and then
count down to 0 as the 1’s are output.

We will first look at the simplest solution and then examine the
assumptions that must be made for this to be valid. We will then add
circuitry so as to make the system work for a more general case. The
circuit of Figure 8.24 is our first attempt at a solution. No clear was
provided. Once the system produces its last 1 output, the counter will
be left with 0 in it; so there is no need to clear it. When x is 1, the D/U�
is set to 0, and the counter is enabled; thus, it counts up. When x returns
to 0, it will count down, as long as it is enabled, that is, as long as there

Trace 8.2

x 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0
z 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0

R3

R1

R0

R2 R2

R0

1

2

3

9

10

11

4

5

6

7

8

Figure 8.23  One hot design of controller.
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is a nonzero value in the counter. The output is 1 when x is 0 and there
is a nonzero count. This solution works only if the count never exceeds
15, since on the 16th consecutive 1 input, the counter goes back to 0.
If a larger number were required, we would need one or more addi-
tional counters so as to be able to count higher than 15. An alternative
to that would be to limit the output to a maximum of 15 1’s, even if
the input included more than 15 consecutive 1’s. In that case, we would
disable the counter when we reached 15, if x remains 1. That would
require the circuit of Figure 8.25.

522 Chapter 8 Solving Larger Sequential Problems

Figure 8.25 Example with maximum of 16 outputs of 1.

D C B A

END/U�

x

Clock

z

Figure 8.24 A simple solution with a counter.

D C B A
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x

Clock

z
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8.8 Other Complex Examples 523

*Since the counter is not enabled, it does not matter whether it is set to count up or down.

†If there is only one 1, that will cause the counter to increase to 1, but Q will not be set at
the next clock time, since that is the last time the output is to be 1. The condition to set Q
is just that the count is between 2 and 15, which yields, from the map, D � C � B.
‡When it is counting down (and the output is 1), the input is ignored; it does not matter.

Now the counter is not enabled when the count is 15 (1111) and x
is 1. Thus, if there are a large number of consecutive 1’s, it will count
to 15 and stop until x goes to 0; then it will count down, outputting
fifteen 1’s.

The other unstated assumption that we made was that x remains 0
until the 1 outputs are completed. That was the case in the sample trace.
If that is not true, the counter will start counting up again as soon as x
returns to 1 and the output will be 0. Assuming that we want to ignore the
input until the 1 outputs are completed, we need a flip flop, Q, to keep
track of when the system is counting down and we should ignore x. We
must then consider the following possibilities.

x � 0 Q � 0 count � 0 EN � 0 z � 0 D/U� � X *

x � 0 Q � 0 count � 1† EN � 1 z � 1 D/U� � 1

x � 0 Q � 0 count � 1 EN � 1 z � 1 D/U� � 1 Q �– 1

x � 1 Q � 0 count 	 15 EN � 1 z � 0 D/U� � 0

x � 1 Q � 0 count � 15 EN � 0 z � 0 D/U� � X
x � X ‡ Q � 1 count � 1 EN � 1 z � 1 D/U� � 1

x � X Q � 1 count � 1 EN � 1 z � 1 D/U� � 1 Q �– 0

Flip flop Q will be turned on when x is 0 and the count is not 0 or 1, and
it will be turned off when it is 1 and the output gets down to 1. Thus,

J � x�(D � C � B) K � D�C�B�A

The output is 1 when Q is 1 or when x is 0 and Q is 0 but the count is not
0. Thus,

z � Q � x�Q�(D � C � B � A) � Q � x�(D � C � B � A)

The counter is enabled when x � 1 and the count is not at 15 (as in the
last example, to allow for more than 15 consecutive 1 inputs) or when
z � 1. Thus,

EN � x(ABCD)� � z
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Finally,

D/U� � Q � x�(D � C � B � A)

the same as z, since at the only places where they differ, D/U� is a don’t
care (since the counter is not enabled).

We will now look at the same example, utilizing shift registers
instead of a counter. We need some right/left shift registers (more than 1
if we are to allow more than four consecutive 1 outputs). If we set the
limit at 12, we could use three 74194 shift registers. They would be con-
nected as shown in Figure 8.26, where the parallel inputs are not shown,
since they are not used.

524 Chapter 8 Solving Larger Sequential Problems

Figure 8.26 Circuit using three right/left shift registers.
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S0CLR �
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CLK
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The three shift registers are connected to form one 12-bit shift register.
When x � 1, S0 � 1, and S1 � 0, making the registers shift right. A 1 is
shifted into the leftmost bit. When x � 0, the register shifts left, loading
0’s from the right. After the input has been 0 for several clocks (or if the
shift register is cleared), all bits will be 0. The output is 1 whenever there
is a 1 in the left bit of the shift register and x is 0. Note that if there are
more than 12 consecutive 1 inputs, the shift register will contain all 1’s.
When the input goes to 0, the output will be 1 for 12 clock times. Thus,
this solution handles the situation where there are more 1 inputs than the
register can hold (similar to the second counter design).

If the input could go to 1 again while the output is still 1, we need an
extra flip flop, Q, here, as well. This flip flop is set (J � 1) when x � 0
and q2 of the left shift register is 1 (indicating that there have been at least
two 1’s). It is cleared (K � 1) when q2 is 0 (indicating that there are no
more than one more 1 to be output). S0 becomes xQ� and S1 becomes
x� � Q.
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Design a counter that goes through the following sequence of 16 states

1 2 4 7 11 0 6 13 5 14 8 3 15 12 10 9, and repeat

It does not matter where it starts. For the combinational logic, there
are packages of NAND gates (7400, 7404, 7410, 7420, and 7430) avail-
able at 50¢ each. We will consider two alternative designs and com-
pare them. The first uses four JK flip flops at a total cost of $2.00. The
second uses a 4-bit synchronous counter (such as the 74161) and a com-
binational decoder block. This block takes the output of the counter that
goes 0, 1, 2, 3, 4, . . . and translates the 0 to 1, the 1 to 2, the 2 to 4, and
so forth.

First, we will design the counter using JK flip flops. The state table is
shown below.

8.8 Other Complex Examples 525

D C B A D� C� B� A�

0 0 0 0 0 1 1 0
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 1 1 1 1
0 1 0 0 0 1 1 1
0 1 0 1 1 1 1 0
0 1 1 0 1 1 0 1
0 1 1 1 1 0 1 1
1 0 0 0 0 0 1 1
1 0 0 1 0 0 0 1
1 0 1 0 1 0 0 1
1 0 1 1 0 0 0 0
1 1 0 0 1 0 1 0
1 1 0 1 0 1 0 1
1 1 1 0 1 0 0 0
1 1 1 1 1 1 0 0

EXAMPLE 8.7

We can map these functions and use the quick method to find the JK flip
flop input equations, as shown next. 

00 01 11 10

00

01

11

10

D C
B A

1

1

1

1

111

1

00 01 11 10

00

01

11

10

D C
B A

1

1111

1

11

00 01 11 10

00

01

11

10

D C
B A

1

111

1 11

1

00 01 11 10

00

01

11

10

D C
B A

11

1

1

1

1

1

1

ABC ★D★ ★★
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JD � CA � CB � BA KD � C�B� � C�A � B�A

JC � D�A� � D�B KC � DA� � D�BA

JB � D� � A� KB � D � A�

JA � D�C � DC� KC � D�B� � CB� � DC�B

This would require 18 two-input gates and 5 three-input gates or a total of
7 integrated circuit packages at 50¢ each. Thus, the total cost is $5.50.

For the other approach, we construct the following truth table for the
decoder block:

The output maps are then shown below. 
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D C B A W X Y Z

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 0 1 1 1
0 1 0 0 1 0 1 1
0 1 0 1 0 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 1 1 0 1
1 0 0 0 0 1 0 1
1 0 0 1 1 1 1 0
1 0 1 0 1 0 0 0
1 0 1 1 0 0 1 1
1 1 0 0 1 1 1 1
1 1 0 1 1 1 0 0
1 1 1 0 1 0 1 0
1 1 1 1 1 0 0 1
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00 01 11 10

00

01

11

10

D C
B A

1

X

1

1 1

11

1 1

00 01 11 10

00

01

11

10

D C
B A

1

Y

1

11

11

11

00 01 11 10

00

01

11

10

D C
B A

Z

1 111

11 1 1

W � CB�A� � DB�A � CBA � DBA�

X � DB� � D�B

Y � C�A � CA�

Z � B�A� � BA

This requires 9 two-input gates, 4 three-input gates, and 1 four-input gate.
In addition, we need four NOT gates (a 7404 package), since only the
uncomplemented outputs from the counter (D, C, B, and A) are available.
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[SP 5, 6; EX 6, 9, 10, 11, 12, 13, 14, 15;
LAB]

The total required is six packages. Thus, this approach costs $3.00 plus the
cost of the counter and is less expensive if the counter costs less than
$2.50.

It is interesting to note that if we built the counter using four JK flip
flops, we would only need to create the functions BA and CBA. That would
require just two NOT gates, since (BA)� and (CBA)� are used in W and Z.
Thus, we end up with only six packages and a total cost of $5.00, which is
less expensive than the first solution. This solution is best if the counter
costs more than $2.00.

x x

Clock

A B C D E F G H

z

(We really only needed a 5-bit shift register, but it is easier and
less expensive to use an 8-bit one than to build a 5-bit one with
flip flops.)

2. Design a Moore circuit, using a 74164 shift register and AND,
OR, and NOT gates to produce a 1 output for every eighth 1
input (not necessarily consecutive). We are not concerned about
when the first output comes, as long as there is a 1 for every
eight 1 inputs thereafter.

We will input a 1 to the shift register, clocking it only when the
input is 1. When a 1 reaches the last flip flop, H, the shift register
will be cleared. We can take the output from G (or from any of the

8.9 SOLVED PROBLEMS

1. Design a Mealy system using a 74164 shift register and what-
ever gates are needed to produce an output of 1 when the last
six inputs have been 1, and 0 otherwise.

The shift register stores the previous eight inputs; we only need
the five most recent ones. The circuit is shown below.
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The counter will be reset whenever the input is 0 and will be
allowed to count when the input is 1 until the count reaches 11.
At that point, if the input is 1, there will be a 1 output. A block
diagram is shown below.

Note that the counter is enabled whenever x � 1 and the output
is not already 1; that keeps it from counting beyond 11.

4. Design a system such that when the input, x, goes to 1 during
one clock period, the output, z, will be the next eight consecutive
clocks. z will be 0 at all other times. Assume that x remains 0
throughout the period of nonzero output. Show the block
diagram.

D C B A

z

ENP

Clock

ENTCLR �

x

OV 74161

LD �

1

1

x

x

Clock

A B C D E F G

z

H

CLR�

3. Design a Mealy system, using a 74161 counter and AND, OR,
and NOT gates that produces a 1 output when the input has been
1 for at least 12 consecutive clock times.

first seven flip flops); it goes to 1 on the seventh 1 input and is
cleared shortly after the eighth. A block diagram is as follows:
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Clock

x

z

z

or

Use AND, OR, and NOT gates plus either

a. a trailing-edge triggered 8-bit serial-in, serial-out shift
register with a static, active low clear, CLR�, or

b. a trailing-edge triggered 4-bit counter with a static, active
low clear, CLR�.

Assume either that this has been running for a while or that we
don’t look at the output before the first time x � 1.

a. We will use x to clear the shift register and will clock a 1 into
the leftmost bit at each clock time thereafter. The output will
be taken from the right bit; when it is 0, there will be a clock
pulse.

This circuit produces the second timing picture, since the first
output occurs during the time x is 1. Note that this only uses
the serial output; if H� is available, we do not need the output
NOT gate.

b. For the counter design, we will use x to clear the counter and
let it count as long as the count is less than 8 (that is, D � 0).
Either of the following circuits could be used.

1

x

x

Clock

H

ck CLR�

z
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In both cases, the timing is that of the second drawing.

5. Design a system that counts up from 1 to 6 (and repeat) when
input x is 0 and down from 6 to 1 when x � 1 and displays the
results on a die. The die has seven lights (as shown in the
diagram below).

A 1 for each segment (a, b, c, d, e, f, g) indicates that it is lit; a 0
that it is not. The arrangement for the six numbers on a die are
shown below, where the darkened circles are to be lit.

a

b

c

e

f
d

g

D C B A

z

x

ENP

Clock

ENTCLR �

OV

LD �

1 1 1

D C B A

x

ENP

Clock

ENTCLR �

OV

LD �

z
1 1

1 2 3 4 5 6

Design the counter, using three D flip flops to count from 1
(001) to 6 (110) and repeat. Then, design a decoder/driver that
takes the outputs from the counter and produces the seven
signals (a, b, c, d, e, f, g) to drive the display. Use a 16R4 PLD.
(That works since there are really only four distinct outputs; a
and g, b and f, and c and e are always the same.)

Labeling the flip flops F, G, and H, we get the following
truth table for the system. There are only eight rows for the
display inputs, since they do not depend on x. 
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The maps for the seven functions are shown below.

00 01 11 10

00

01

11

10

x F

DF

G H

X X

1

1

XX 1

111

00 01 11 10

00

01

11

10

x F

DG

G H

X X

1

1

XX 1

11 1

00 01 11 10

00

01

11

10

x F

DH

G H

X X

1 1 1 1

XX 11

0 1

00

01

11

10

F

a � g

G H

X1

1 1

X 1

1

0 1

00

01

11

10

F

b � f

G H

X

1

X

0 1

00

01

11

10

F

c � e

G H

X

1

1

1X

0 1

00

01

11

10

F

d

G H

X1

11

X

DF � x�FG� � xG�H � xFG � x�GH

DG � x�F�H� � x�G�H � xG�H� � xF�H

DH � H�

a � g � F � G c � e � F

b � f � FG d � H

x F G H DF DG DH a � g b � f c � e d

0 0 0 0 X X X X X X X
0 0 0 1 0 1 0 0 0 0 1
0 0 1 0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 1 0 1 0
0 1 0 1 1 1 0 1 0 1 1
0 1 1 0 0 0 1 1 1 1 0
0 1 1 1 X X X X X X X
1 0 0 0 X X X
1 0 0 1 1 1 0
1 0 1 0 0 0 1
1 0 1 1 0 1 0
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 X X X
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1 x

H G F

Q�
F �

G�

H�

a, g

b, f

c, e

d

Q

D

Q�

Q

D

Q�

Q

D

Clock

The PLD diagram is shown next. (Only those gates that are used
are shown.)
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6. We are designing a rather rudimentary alarm system. The first
part of the system includes a flip flop A that is 1 if the alarm is
set (armed) and 0 if it is not, and a keypad (with 10 keys and 
4 output lines). It produces an output of all 1’s if no key is pushed
or 0000 to 1001 if one of keys 0 to 9 are pushed. (You may
assume that two keys are never pushed at the same time and that
the keypad never produces one of the other five combinations.)

To set or clear the alarm, a 3-digit combination must be
entered. Hidden away in the control box is a set of three
10-position switches (that contains the 3-digit alarm code). The
switches each produce a 4-bit number, R1:4, S1:4, and T1:4. As
one pushes the buttons to enter the alarm code, the first digit
will appear on the keypad output for several clock periods,
followed by a hexadecimal F (indicating that no key is pushed)
for several more clock periods, followed by the second digit,
and so on. We must design a system that watches the keypad
and, if the right code is received, complements A. (Note: Like
many alarms, the same code is used to arm the alarm, that is,
put a 1 in A, as to disarm it.) Assume that there is at least one
clock period when no key is pushed between digits. However, if
another key is not depressed within 100 clocks, the system goes
back to looking for the first digit.

The second part of the system is used to sound the alarm.
There is an input signal, D, indicating that a door is open (1) or
closed (0) and an output, N, indicating that the alarm is sounded
(1) or not (0). (Of course, A is also an input to this part of the
system.) When the alarm is first armed, the door must be closed
within 1000 clock pulses or the alarm will sound. (Note that this
gives the user the chance to set the alarm and go out without the
alarm sounding.) Also, if the alarm has been armed for more
than 1000 clock periods and the door is opened, the alarm will
sound if it is not disarmed within 1000 clock periods.

Design both parts of this system. Available components
include trailing-edge triggered JK flip flops, synchronous 4-bit
binary or decimal counters, and whatever gates that are needed.
Show a modular diagram that shows various parts, also a
detailed block diagram or the equations for each part, and an
ASM diagram for the first part.

One approach to the first part uses the following set of states:

1. Waiting for first input digit.

2. Have first input digit, waiting for key to be released.

3. Nothing pushed, but have first digit—waiting for second.

4. Have first two input digits, waiting for key to be released.

5. Nothing pushed, have two digits—waiting for third.

6. Have third input digit, waiting for key to be released.

8.9 Solved Problems 533

mar91647_c08_493_542.qxd  11/24/08  10:32 AM  Page 533



An ASM diagram, ignoring the 100 clock timeout, is shown
below.
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0 1

1 0

0

0

0

0

idle

G

G

0 0 1

first 0 1 0

H

second 1 0 0

F

M

wait2 1 0 1

1
F

1

1

1

1

10
M

third 110

A <- A�

H

wait 0 1 1
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If we call the inputs from the keyboard X1:4, then

Nothing pushed � X1X2X3X4 � F

First Digit � (X1 � R1)�(X2 � R2)�(X3 � R3)�(X4 � R4)� � G

Second digit � (X1 � S1)�(X2 � S2)�(X3 � S3)�(X4 � S4)� � H

Third digit � (X1 � T1)�(X2 � T2)�(X3 � T3)�(X4 � T4)� � M

This is a seven-variable problem—the three states q1, q2,
and q3, and the functions produced by the inputs, F, G, H, and
M. We will code the states in binary (for example, 3 will be
011). We will then produce a table in binary, separating the
three flip flop next state sections. 

8.9 Solved Problems 535

q1
� q2

� q3
�

q1 q2 q3 F G H M # F G H M # F G H M #

0 0 0 X X X X X X X X X X X X X X X
0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1
0 1 0 0 0 X X X 1 1 X X X 1 0 X X X
0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1
1 0 0 1 X 1 X X 0 X 0 X X 1 X 0 X X
1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1
1 1 0 0 X X 1 X 0 X X 1 X 1 X X 0 X
1 1 1 X X X X X X X X X X X X X X X

where # � F�G�H�M�. Note, only one of F, G, H, or M can be 1.
We found expressions for the next state by considering one

column of the table at a time. Although this might not be
minimum, it is close.

q1
� � Fq1q�2 � H(q2 � q�3) � Mq1

q2
� � Fq�1q2 � G(q�1q�2 � q�3) � Mq1

q3
� � F � G(q1 � q2q3) � H(q�1q�2 � q1q3) � Mq�1

� F�G�H�M�

The control flip flop, A, is complemented when this controller
goes from state 5 to 6, that is, on q1q�2q3M. The one thing that
has been omitted so far is the time out. A base 100 counter is
built with two decade counters. It is cleared when going from
state 2 to 3 or from 4 to 5 and is enabled whenever the
controller is in state 2 or 4. It uses the static clear and preset
inputs of the controller flip flops to set the controller to state 1
as the counter rolls over, that is, goes from 99 to 00.

Next we will design the alarm control. When A goes to 1,
a three-digit decade counter will be cleared. When that reaches
1000, a second flip flop, B, will be set. When B is set and D
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In this diagram, all of the clock inputs are connected to the
system clock (but not shown to simplify the diagram). The
two counters are base 1000 (that is, three decade counters
cascaded); all inputs are assumed to be active high. When A
goes to 1, the first counter is cleared. Flip flop B is 0, since it is
cleared whenever A has been 0. It will be set when the counter
reaches 1000. However, the alarm will be sounded if the door is
still open (first counter overflows and door is open). The alarm
flip flop (N) remains set until the code is entered to clear A.
The E flip flop is used to produce a clear signal for the second
counter when the door is first opened. That counter is enabled
when the door is open and B � 1. The alarm will sound if it
has not been disarmed (causing A and B to go to 0) within
1000 clocks.

536 Chapter 8 Solving Larger Sequential Problems

CLR

EN

OV

Counter

CLR

EN OV

Counter

J

A

K

A�

q1

q2� q3

M

J

D

K

E �

J B

K B�

J N

K N �

goes to 1, we will start to count to 1000 again. If, by the time
the counter gets to 1000, A does not go to 0, the alarm will
sound; flip flop N will go to 1. Both B and N are cleared when
A goes to 0. A diagram of the system is shown below.
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8.10 EXERCISES
1. Using a 74164 shift register, design a Mealy system that produces

an output of 1 when the last nine inputs were 0.

2. Using two 74164 shift registers, design a Moore system whose
output is 1 when there have been exactly six 1’s followed by
exactly eight 0 inputs.

3. Design a system using a counter that produces a 1 output when the
input has been 1 for eight or more consecutive clock times.

a. Use a counter with a clocked active low clear and no enable
input.

b. Use a counter with a static active low clear and an active high
enable.

�4. Design a system that has an output of 1 when the input has been
0 for exactly seven clock times. In addition to combinational logic
blocks, one of the following is available:

a. A 4-bit counter

b. An 8-bit shift register

5. Design a sequential system that has a clock pulse input and
produces a pulse that is coincident with every 25th clock pulse.
(We do not care about initializing the system.)

The only available components are

1. AND gates (any number of inputs)

2. Inverters (NOT gates)

3. Two base 16-counters (as described below)

The counter is trailing-edge triggered. It has four outputs—D
(high-order bit), C, B, and A. It has a clock input and an active low
static Clear� input. There is also an active low static Load� input,
along with data input lines, IND, INC, INB, and INA. (Assume that
Clear� and Load� are never both 0 at the same time. When either is
0, it overrides the clock.)

a. Design a system using these components that uses the Clear�
input, but not the Load� input.

b. Design a system using these components that uses the Load�
input, but not the Clear� input.

6. Design a system using

a. a 74190

b. a 74192

plus whatever other logic that is needed (including a flip flop) to go
through the sequence

0 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 (0 1) and repeat

7. Implement the controller for the system of Example 8.6 using
D flip flops and NAND gates.
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�8. Show the ASM diagram for the controller of a system that has a
16-bit register, A, and a 4-bit register, N. When a signal of 1
appears on input line s, the register A is shifted right the number of
places (0 to 15) as specified by N (with 0’s put in the left bits). The
register A can be shifted only one place at a time. The register N
can be decremented (decreased by 1). When shifting is complete, a
1 is to appear on output line d for two clock periods.

�9. Design a system that consists of three components, a counter, a
display driver, and a seven-segment display, as shown below.

a. Design the counter using four JK flip flops, A, B, C, and D,
and a minimum number of NOR gates. The counter is binary
coded decimal, using 2421 code (as described in Table 1.7)
and is to go through the sequence:

0 3 6 9 2 5 8 1 4 7 and repeat

Thus, the counter sequences 0000, 0011, 1100, 1111, 0010,
and so on. After completing the design of this counter, draw a
state graph. Make sure that it shows what happens if the
counter is turned on and comes up in one of the unused states
(for example, 0101).

b. The outputs of the counter are inputs to the display driver. It is
just a four-input, seven-output combinational circuit. If one of
the unused codes turns up (for example, the counter is turned
on and ABCD � 0111), the display should be blank (that is,
all seven inputs should be 0). Find a near minimum sum of
products implementation of X1, X2, X3, X4, X5, X6, and X7.
(Use the versions of 6, 7, and 9 without the extra segment lit.)
(There is a solution with 17 gates and 56 inputs.)

10. We already have a decimal counter that sequences

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 and repeat

It has flip flops W, X, Y, and Z. We still want the display to cycle
through 0, 3, 6, 9, 2, 5, 8, 1, 4, 7, and repeat (as in Exercise 9).
Accomplish this by designing another box to go between the
counter and the display driver of Exercise 9b. Note that this means,
for example, that when the counter has WXYZ � 0010, the display
is to be 6 and thus ABCD � 1100 (6 in 2421 code). Implement this
box with a PLA with four inputs and four outputs.

Display
Driver

Counter

ABCD
X1 : X 7
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11. Show a block diagram of a system whose output, z, is 1 if and only
if at least two of the latest three inputs (including the present one)
are 0. There is no need to show a state table or state diagram. Any
kind of flip flops and gates may be used.

12. Design a sequential system (a counter) with one input line, x, and
three flip flops, A, B, and C. When x � 0, the system sequences
through the states (0, 1, 2, 3, 4), 0, . . . and when x � 1, the system
sequences through the states (2, 3, 4, 5, 6, 7), 2, . . . . If, at any
time, x is 0 when the system is in states 5, 6, or 7, or if x is 1 when
the system is in states 0 or 1, it should go to state 3 on the next
clock.

a. The available components are

7400, 7404, 7410, 7420, and 7430 (NAND
gate packages) 25¢ each

Dual JK trailing-edge triggered flip
flop packages $1.00 each

Dual D flip flop packages cost to be determined

Design the system two ways:

i. First, using JK flip flops

ii. Second, using D flip flops

Show the equations for both designs and a block diagram of
one of them.

b. Determine the price range for the D flip flop packages for
which it would be more economical to use

all JK flip flops

one package of JK and one of D

all D flip flops.

c. We would like to add an output that is 1 whenever the system
is in state 3 and got there because it was out of sequence
(when x is 0 and the system is in states 5, 6, or 7, or if x is
1 and the system is in states 0 or 1). This requires another
flip flop.

d. Design the system of part c using a PLD. (Any of the ones we
described will do.)

13. Design a clock display to show the time in hours, minutes, and
seconds. Assume that we have a clock of exactly 1 KHz (1000
clock pulses per second). It will use 6 seven-segment displays and
operate either in military time (hours 00 to 23) or regular time (1 to
12, with AM and PM). An input line, x, differentiates between the
two. A seventh display is used to show A or P in the latter case; it
is blank otherwise. Assume that there is a BCD-to-seven-segment
decoder driver available; one is needed for each display other than
the AM/PM one.

8.10 Exercises 539

�

E
X

E
R

C
IS

E
S

mar91647_c08_493_542.qxd  11/24/08  10:32 AM  Page 539



a. Design this using asynchronous counters (utilizing the 7490
and 7492). The problem with these is that they can not be set
arbitrarily.

b. Design this using synchronous counters with static load
inputs. (They would require a large number of switches to set
this to some arbitrary time, four for each digit.)

c. For either design, provide a set function for minutes and hours
as follows:

When input f is 0, the clock operates normally; when
f � 1, we can adjust the time.

When f � 1 and g � 1, the hour advances once
every second.

When f � 1 and h � 1, the minute advances once
every second.

Also, when f � 1, the seconds go to 00.

14. Design a counter that goes through the following sequence of
12 states

10 4 5 1 2 8 11 3 9 12 13 0 and repeat

It is not important where it starts. The available packages are
NAND gates (7400, 7404, 7410, 7420, and 7430) at 50¢ each, plus
the storage devices described below.

Consider three alternate designs and compare them. For each,
show the equations and a block diagram. Label the four outputs in
each design W (high-order bit), X, Y, Z.

a. The available storage devices are four JK flip flops at a total
cost of $2.50.

b. The available storage devices are four D flip flops at a cost to
be determined.

c. There is a 74161 4-bit synchronous counter, and we must
build a combinational decoder block. This block takes the
output of the counter that goes 0, 1, 2, 3, 4, . . . and translates
the 0 to 10, the 1 to 4, the 2 to 5, the 3 to 1, the 4 to 2, and so
forth. It must also go back to state 0 from state 11.

Comparing the three designs, how much must the D flip
flops cost for design b to be less expensive than design a, and
how much must the counter cost for design c to be less
expensive than design a?

15. a. Repeat Solved Problem 5, so that we can count to 7, where a
7 lights all of the dots on the die display.

b. Repeat Solved Problem 5, so that we can count from 0 (no
lights lit) to 7, but the counter saturates (that is, it remains at
7 counting up or 0 counting down, rather than recycling).
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8.11 CHAPTER 8 TEST (50 MINUTES)
1. Show two designs for a Mealy system that produces an output of 1

if and only if the input is 0 for exactly seven consecutive clock
times. In addition to AND, OR, and NOT gates, we have available
an 8-bit serial-in, parallel-out shift register, with an active low,
clocked clear (that works whether or not the counter is enabled) for
one and a 4-bit counter with an active low, static clear, and an
active low enable for the other.

2. We wish to implement the following state table.

CLR �

Clock

D C B A

CLR�EN�

Clock

8.11 Chapter 8 Test 541

To implement this, we have the PAL shown. Two of the outputs
are connected to the input of a D flip flop; the third is available
for an output. Label the diagram and show the connections either
with dots or X’s. Note that the PAL has more inputs and gates
than you need; you can ignore the extras.

AB A� B� z
x � 0 x � 1 x � 0 x � 1

0 0 1 1 0 1 1 0
0 1 1 0 0 1 0 0
1 0 0 1 1 1 1 1
1 1 0 0 1 1 0 1

C
H

A
P

T
E

R
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E
S

T
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C H A P T E R

9

9-1

Simplification of
Sequential Circuits

In this chapter, we will first look at a technique to remove redundant
states from sequential systems. We will then introduce the concept of
partitions as another approach to reducing the number of states and

as a technique to find state assignments that reduce the amount of com-
binational logic.

Two states of a sequential system are said to be equivalent if every
input sequence will produce the same output sequence starting in either
state. If the output sequence is the same, then we don’t need to know in
which of the two states we started. That definition is rather hard to apply,
since we must try a very long input sequence or a large number of shorter
sequences to be sure that we satisfied the definition. 

A more practical definition is:

Two states of a sequential system are equivalent if, starting in either state,
any one input produces the same output and equivalent next states.

If two states are equivalent, we can remove one of them and have a sys-
tem with fewer states. Usually, systems with fewer states are less expen-
sive to implement. This is particularly true if the reduced system requires
fewer state variables. For example, reducing a system from six states to
four states reduces the number of flip flops required to store the state
from three to two. If the system is built with JK flip flops and there is
one input, x, and one output, z, we have only five functions to implement
instead of seven. Furthermore, the J and K inputs are two-variable
functions rather than three and the output is also a function of one less
variable (three for a Mealy and two for a Moore system). Fewer variables
usually means less combinational logic. 

Occasionally, we can tell states are equivalent by just inspecting the
state table. We will look at the simple example of Table 9.1 to illustrate
this approach.
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9-2 Chapter 9 Simplification of Sequential Circuits

Note that for states D and E, the next state is the same (A) for x � 0 and
is also the same (B) for x � 1. Also, the outputs are the same for each
state, for both x � 0 and x � 1. Thus, we can delete one of the states. We
will remove state E and obtain Table 9.2.

Table 9.1 A state table.

q� z
q x � 0 x � 1 x � 0 x � 1

A C B 0 0
B E D 0 0
C A D 0 1
D A B 0 1
E A B 0 1

Table 9.2 Reduced state table.

q� z
q x � 0 x � 1 x � 0 x � 1

A C B 0 0
B D D 0 0
C A D 0 1
D A B 0 1

We replaced each appearance of E in the state table by D. Although it is
not obvious, no further reduction is possible. Often, we cannot see the
equivalences so easily. 

EXAMPLE 9.1
q� z

q x � 0 x � 1 x � 0 x � 1

A C B 0 0
B D D 0 0
C A D 0 1
D A C 0 1

States C and D are equivalent. They both have a 0 output for x � 0, and a
1 output for x � 1. Both go to A when x � 0, and they go to either C or D
when x � 1. We could say that C and D are equivalent if D is equivalent to
C; but that is a truism. Thus, this system can be reduced to three states:

q� z
q x � 0 x � 1 x � 0 x � 1

A C-D B 0 0
B C-D C-D 0 0

C-D A C-D 0 1
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where we have named the state resulting from the equivalence of C and D
by a compound name C-D. (We will do that some of the time, but it often
gets cumbersome, and we will name the state in the reduced system using
the name of the first state in the group.)

More commonly, equivalences are not so obvious. Therefore, we
will develop two algorithmic methods in the next two sections.

9.1 A TABULAR METHOD FOR 
STATE REDUCTION

In this section, we will develop a technique using a chart with one square
for each possible pairing of states. We will enter in that square an X if
those states cannot be equivalent because the outputs are different, a √
if the states are equivalent (because they have the same output and go to
the same state or to each other for each input), and otherwise the condi-
tions that must be met for those two states to be equivalent (that is, which
states must be equivalent to make these equivalent). 

The chart has one row for each state except the first and one column
for each state except the last; only the lower half of the chart is necessary
to include all pairs of states. For the state table of Table 9.1, we first get
the chart of Figure 9.1. 

9.1 A Tabular Method for State Reduction 9-3

Figure 9.1 Chart for Table 9.1.

B C E, B D

B D

B D

C

D

E

A B C D

�

In order for states A and B to be equivalent, they must have the same out-
put for both x � 0 and x � 1 (which they do) and must go to equivalent
states. Thus, C must be equivalent to E and B must be equivalent to D, as
shown in the first square. Each square in the balance of that column and
the whole next column contains an X since states A and B have a 0 output
for x � 1 and states C, D, and E have a 1 output. In the CD square, we
place BD since C goes to D and D goes to B when x � 1. That is also the
case in the CE square. Finally, in the DE square, we place a check (√ ),
since both states have the same output and next state for each input. We
must now go back through the table to see if the conditions are met.
Since B cannot be equivalent to D (there is already an X in the BD
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The states D and E can be combined. The reduced table can then be pro-
duced. In the process of doing that, there is a check that there was no
mistake in the first part. As entries are made for combined states (such as
D-E), each of the original states must go to the same state in the reduced
table and they must have the same output. The reduced table was shown
in the last section (Table 9.2).

The process is not always as easy as this. Example 9.2 will illustrate
some further steps that are necessary.

square), none of the three pairs can be equivalent. We thus cross out
those squares, leaving only one check, as shown in Figure 9.2.

9-4 Chapter 9 Simplification of Sequential Circuits

Figure 9.2 Reduced chart with states crossed out.

B C E, B D

B D

B D

C

D

E

A B C D

�

EXAMPLE 9.2
q�

q x � 0 x � 1 z

A B D 1
B D F 1
C D A 0
D D E 0
E B C 1
F C D 0

The chart for this table is

B D, D F

B D, C F

C D, A D C D, D E

B

C

D

C D

A E

E

F

A B C D E
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Note that the first entry could have been written BDF, that is, all three states
must be equivalent. (Indeed, since this is the condition for A and B to be
equivalent, we then require that A, B, D, and F all be equivalent.) Going
through the table, we see that B and D cannot be equivalent; neither can A
and D, nor D and E. That reduces the table to the following:

What remains is that A is equivalent to E if C is equivalent to D and that C is
equivalent to D if A is equivalent to E. That allows us to check off both of
these, producing the reduced table:

B D, D F

B D, C F

C D, A D C D, D E

B

C

D

C D

A E

E

F

A B C D E

9.1 A Tabular Method for State Reduction 9-5

EXAMPLE 9.3

q�

q x � 0 x � 1 z

A-E B C-D 1
B C-D F 1

C-D C-D A-E 0
F C-D C-D 0

Before looking at some more complex examples, we want to empha-
size the effect that the output column has on the process. The state table
and chart of Example 9.3 correspond to a system with the same next state
behavior as that of Example 9.2, but a different output column.

The chart is different, because the pairings that are automatically X’d (due
to the output) are different.

q�

q x � 0 x � 1 z

A B D 1
B D F 1
C D A 1
D D E 0
E B C 0
F C D 0
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None of the conditions can be satisfied, and thus, no states can be com-
bined and the state table cannot be reduced.

Sometimes, when the obvious unequivalences are crossed off, there
may be some doubt as to whether the remaining states can be combined.
We could try to combine them all and develop the reduced state table. If
we were mistaken, it will quickly become evident. Also, if we find one or
more equivalences before completing the process, we can reduce the table
and start the process over. That is somewhat more work, but the chart for
the reduced table is much smaller and may be easier to work with.

B D F

B D, C E

B C DC D E

A B D A F

B

C

D

E

F

A B C D E

9-6 Chapter 9 Simplification of Sequential Circuits

EXAMPLE 9.4
q� z

q x � 0 x � 1 x � 0 x � 1

A F B 0 0
B E G 0 0
C C G 0 0
D A C 1 1
E E D 0 0
F A B 0 0
G F C 1 1

The chart for this table is

E F, B G

B G, C F

E F, B D

A E, B DA C, B GA E, B G

C E

D G D G

B

C

D

E

F

G A F

A B C D E F
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Note that we checked AF, since the requirement that A is equivalent to F is
just that F is equivalent to A. That is always true. We first go through the
chart to find which conditions cannot be met, crossing them out. We also
note that condition AF has already been checked and therefore D and G are
equivalent. During this pass, we may take advantage of the new equiva-
lences and the cross outs or we may wait until the next pass. Waiting until
the next pass, the table becomes

We now have A equivalent to F and D equivalent to G. The latter satisfies the
condition for C being equivalent to E and B being equivalent to E. Finally,
since C and E are equivalent, B is equivalent to C. That makes B, C, and E
all equivalent. Thus, the reduced table has three states—A (A-F ), B (B-C-E ),
and D (D-G).

E F, B G

B G, C F

E F, B D

A E, B DA C, B GA E, B G

C E

D G D G

B

C

D

E

F

G  A F

A B C D E F

�

�

9.1 A Tabular Method for State Reduction 9-7

q� z
q x � 0 x � 1 x � 0 x � 1

A A B 0 0
B B D 0 0
D A B 1 1

q� z
q x � 0 x � 1 x � 0 x � 1

A A B 0 0
B E D 0 0
C C D 0 0
D A C 1 1
E E D 0 0

With the last chart above, we could have reduced the system to one with
five states, just using the equivalences checked (A-F and D-G). That would
produce the new table
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We can now construct a new chart

However, B and D cannot be equivalent; C and E are. Thus, states B, C,
and E can be replaced by one state, B; that will allow us to reduce this table
to the three-state one we have already obtained.

A E, B D

B D

B D C E

B

C

D

E

A B C D

� �

9-8 Chapter 9 Simplification of Sequential Circuits

EXAMPLE 9.5
q� z

q x � 0 x � 1 x � 0 x � 1

A B D 0 0
B E D 1 0
C B C 0 0
D F A 0 0
E A B 1 1
F E C 1 0

We first construct the chart

None of the conditions in the squares are contradicted. The chart says that
for A to be equivalent to C, C must be equivalent to D. That would make A,
C, and D one group. For A to be equivalent to D, B must be equivalent to F,

C D

B

C

D B F B F, A C

E

C DF

BA C D E
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and for B to be equivalent to F, C must be equivalent to D. Finally, C is equiv-
alent to D if B is equivalent to F and A is equivalent to C. All of these can
be true, producing a reduced state table with only three states, A (A-C-D),
B (B-F), and E. (As we construct that table, we can check our conclusions
from the chart by making sure that all states in one group go to a state in a
single group for each input.)

9.1 A Tabular Method for State Reduction 9-9

EXAMPLE 9.6

q� z
q x � 0 x � 1 x � 0 x � 1

A B A 0 0
B E A 1 0
E A B 1 1

As our last example of this technique, we will consider a system with two
inputs, x y. Thus, there are four columns in the next state section of the
table.

The charting problem is really no different than before; we just have more
conditions, since equivalent states must go to equivalent states for all four
input combinations (that is, all four columns). The chart then becomes

None of the groups of three states shown in the chart can be equivalent;
one of each has a different output than the other two. Crossing out those
squares, we have

B E
C D F

A E

B

C

D
A B F
C D

B C D
C F
B D

E A B C

F B D

BA C D E

x y q�

q 0 0 0 1 1 0 1 1 z

A B A F D 1
B E A D C 1
C A F D C 0
D A A B C 1
E B A C B 1
F A F B C 0
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That leaves three pairings intact, A E, B D, and C F. The only requirement
for any of these is that one of the others be equivalent. Thus, we can reduce
this to three states as follows:

B E
C D F

C F
B D

B D

A E

B

C

D

E

F

A B C D E

A B F
C D

B C D A B C

9-10 Chapter 9 Simplification of Sequential Circuits

[SP 1; EX 1]

x y q�

q 0 0 0 1 1 0 1 1 z

A B A C B 1
B A A B C 1
C A C B C 0

9.2 PARTITIONS

A partition on the states of a system is a grouping of the states of that
system into one or more blocks. Each state must be in one and only one
block. For a system with four states, A, B, C, and D, the complete list of
partitions is

P0 � (A)(B)(C)(D) P8 � (AC)(BD)

P1 � (AB)(C)(D) P9 � (AD)(BC)

P2 � (AC)(B)(D) P10 � (ABC)(D)

P3 � (AD)(B)(C) P11 � (ABD)(C)

P4 � (A)(BC)(D) P12 � (ACD)(B)

P5 � (A)(BD)(C) P13 � (A)(BCD)

P6 � (A)(B)(CD) PN � (ABCD)

P7 � (AB)(CD)

This list of partitions does not depend on the details of the state table,
only on the list of states. P0 is the partition with each state in a separate
block; PN is the partition with all of the states in the same block. We will
be concerned with partitions that have special properties for a particular
state table. There are three categories of partitions that will be of interest.
To illustrate these, we will use Table 9.3.
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Any partition with two blocks can be used to assign one of the state
variables. Those states in the first block would be assigned 0 and those in
the second block 1 (or vice versa). P7 through P13 meet that requirement.
(We write partitions in alphabetic order; thus, state A will usually be
assigned all 0’s.) In a four-state system, there are only three pairs of par-
titions that can be used for a two-variable state assignment, P7 and P8, P7

and P9, and P8 and P9. The three are shown in Table 9.4.

9.2 Partitions 9-11

Table 9.5 An unsuccessful
assignment.

q q1 q2

A 0 0
B 1 0
C 0 1
D 1 0

P8 P11

If we try any other pair of two-block partitions, we do not have an ade-
quate state assignment. For example, using P8 and P11, we get the assign-
ment of Table 9.5. Note that states B and D have the same assignment.

A second useful class of partitions are those for which all of the
states in each block have the same output for each of the inputs. Such
partitions are referred to as output consistent. P0 is always output consis-
tent; for Table 9.3, the other output consistent partitions are

P2 � (AC)(B)(D)

P5 � (A)(BD)(C)

P8 � (AC)(BD)

Knowing the block of an output consistent partition and the input is
enough information to determine the output (without having to know
which state within a block). 

For some partitions, knowing the block of the partition and the input
is enough information to determine the block of the next state. Such a
partition is said to have the substitution property and is referred to as an
SP partition. PN is always SP since all states are in the same block, and
P0 is always SP since knowing the block is the same as knowing the state.
Others may be SP, depending on the details of the state table. For this
state table, there are two nontrivial SP partitions (those other than P0 and
PN), namely,

P7 � (AB)(CD)

P9 � (AD)(BC)

If a partition other than P0 is both SP and output consistent, then we
can reduce the system to one having just one state for each block of that
partition. (That should be obvious since knowing the input and the block

Table 9.3 State table to illustrate
types of partitions.

q�

q x � 0 x � 1 z

A C A 1
B D B 0
C A B 1
D B A 0

q q1 q2

A 0 0
B 0 1
C 1 0
D 1 1

P7 P8

(a)

q q1 q2

A 0 0
B 0 1
C 1 1
D 1 0

P7 P9

(b)

q q1 q2

A 0 0
B 1 1
C 0 1
D 1 0

P8 P9

(c)

Table 9.4 State assignments for four states.
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of the partition is all we need to know to determine the output, since it
is output consistent, and to determine the next state, since it is SP). For
this example, neither of the SP partitions is also output consistent. In
Example 9.1, the partition

(A)(B)(CD)

is both SP and output consistent; thus, we were able to reduce the system
to one with only three states.

Before developing a method for finding all SP partitions, we will
look at Example 9.7. It will help us understand the application of the var-
ious categories of partitions.

9-12 Chapter 9 Simplification of Sequential Circuits

EXAMPLE 9.7

For this state assignment, we obtain the output equation and the inputs to
D flip flops

z � q2 � q3

D1 � xq1 � xq3

D2 � x�q�1q�2 � xq�1q�3

D3 � x�q2q3 � x�q1 � xq�1q�3

This requires 11 gates and 25-gate inputs (for either AND and OR or NAND,
including a NOT for x�). We would need four 7400 series integrated circuit
packages to implement the combinational logic with NAND gates. (The
development of the equations and the gate count is left as an exercise.)

If we make the state assignment using the following three partitions:

P1 � (ABC)(DE ) SP

P2 � (AB)(CDE ) SP

P3 � (AE )(BCD) output consistent

we have

q�

q x � 0 x � 1 z

A C D 0
B C E 1
C A D 1
D B E 1
E B E 0

Assignment 1
q q1 q2 q3

A 0 0 0
B 0 0 1
C 0 1 0
D 0 1 1
E 1 0 0

Assignment 2
q q1 q2 q3

A 0 0 0
B 0 0 1
C 0 1 1
D 1 1 1
E 1 1 0

Logic Equations

z � q3
D1 � x
D2 � x � q2�
D3 � x�q1 � x�q�2 � {q�2q�3 or q�1q�3} � xq�1q2
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9.2 Partitions 9-13

This requires only seven gates, 16 inputs, and three 7400 series NAND gate
integrated circuit packages. D3 is the only complex function.

We saw the advantage of using an output consistent partition, that
the output is just equal to that variable or its complement. Thus, z is only
a function of q3.

We saw the advantage of using an SP partition to assign a state vari-
able, that the next state of that variable is only a function of the input, x,
and that variable (no matter how many flip flops are needed to implement
that system). Since q1 and q2 are assigned using SP partitions, D1 is only
a function of x (could also depend on q1), and D2 is only a function of x
and q2. For JK flip flops, the inputs are functions only of x (x, x�, and 1
are the only possibilities). Indeed, we do not need to deal with the whole
state table for the implementation of flip flops assigned according to SP
partitions; we only need a block table. Thus, for the flip flops assigned
according to partition P1 � (ABC)(DE), where the first block is assigned
0, we would have Table 9.6, which gives 

D1 � q1
� � x J1 � x K1 � x�

This is, of course, the same answer we got for D1 before. We could fol-
low this approach for D2 or J2 and K2 as well, but would need the full
four-variable truth table to solve for the inputs to q3.

9.2.1 Properties of Partitions

First, we will define, for pairs of partitions, the relationship greater than
or equal (�) and two operators, the product and the sum.

■ Pa � Pb if and only if all states in the same block of Pb are also in
the same block of Pa.

For example,

P10 � (ABC)(D) � P2 � (AC)(B)(D)

since the only states in the same block of P2 (A and C) are also in the
same block of P10. P0 is the smallest partition; all other partitions are
greater than it. PN is the largest partition; it is greater than all others. Not
all partitions are ordered. For example, P1 is neither � nor � P2.

■ The product of two partitions is written Pc � PaPb.

Two states are in the same block of the product Pc if and only if
they are in the same block of both Pa and Pb.

For example,

P12P13 � {(ACD)(B)}{(A)(BCD)} � (A)(B)(CD) � P6

Table 9.6 Truth table for q1.

x q1 q1
� J K

(ABC) 0 0 0 0 X
(DE ) 0 1 0 X 1
(ABC) 1 0 1 1 X
(DE ) 1 1 1 X 0
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The only states that are in the same block of both P12 and P13 are C and
D; they are then together in the product. The partitions Pa and Pb are
always greater than or equal to the product Pc. If the two partitions are
ordered, the product is equal to the smaller one. For example, P6 � P13

and thus, P6P13 � P6. It is also clear from the definitions that, for any
partition, Pa

PaP0 � P0 and PaPN � Pa

■ The sum of two partitions is written Pc � Pa � Pb.

Two states are in the same block of the sum Pd if they are in the
same block of either Pa or Pb or both.

For example,

P2 � P5 � {(AC)(B)(D)} � {(A)(BD)(C)} � P8 � (AC)(BD)

The sum sometimes brings together states that are not in the same block
of either since whole blocks are combined. Consider the following
example:

Pa � (AB)(C)(DF)(EG)

Pb � (ACD)(BG)(E)(F)

Pa � Pb � (ABCDEFG) � PN

Since A and B are in the same block of Pa and A, C, and D are in the same
block of Pb, then ABCD are in one block of the sum. But F is in the same
block as D in Pa and G is in the same block as B of Pb; so they must be
included with ABCD. Finally, E is in the same block as G in Pa, produc-
ing a sum of PN. The sum Pc is always greater than or equal to both
Pa and Pb. If Pa and Pb are ordered, the sum equals the greater. Thus,
P6 � P13 � P13. Also,

Pa � P0 � Pa and Pa � PN � PN

9.2.2 Finding SP Partitions

The process of finding all SP partitions has two steps.

We must ask what is required to make a partition SP if these two
states are in the same block, that is, what makes these two states equiva-
lent. They must go to equivalent states for each input. We must then
follow through, determining what groupings are forced.

Step 1: For each pair of states, find the smallest SP partition that
puts those two states in the same block.

9-14 Chapter 9 Simplification of Sequential Circuits
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We will use the state table of Table 9.3, repeated here without the
output columns (since that has no relevance to finding SP partitions) as
Table 9.7.

For A to be equivalent to B, C must be equivalent to D. We continue
by checking what conditions are required to make C equivalent to D. In
this example, the only requirement is that A be equivalent to B. Thus, we
have our first SP partition

(AB) → (CD) → → (AB)(CD) � P1

where the right arrow (→) is used to indicate requires, and the double
arrow indicates the smallest SP partition that results. Sometimes, we find
no new conditions and other times the conditions force all of the states
into one block, producing PN.

The next step is

(AC) → (AB) → (CD) → (ABCD) � PN

(Since C must be with A and B must be with A, then A, B, and C must all
be together. But then D must be with C, resulting in PN.) The balance of
step 1 produces

(AD) → (BC) → → (AD)(BC) � P2

(BC) → (AD) → → (AD)(BC) � P2

(BD) → (AB) → → PN

(CD) → (AB) → → (AB)(CD) � P1

In this process, we do not need to find the sum of another partition
with any two-block partition since that always results in either the two-
block partition or PN. Also, if one partition is greater than another, its
sum is always the greater partition. We can omit those additions, too.

For the first example, there are no sums to compute, since the only
two unique nontrivial (that is, other than P0 and PN) SP partitions formed
by step 1 are both two-block.

Step 2: Find the sum of all of the SP partitions found in step 1 and,
if new ones are found, repeat step 2 on these new ones.

9.2 Partitions 9-15

EXAMPLE 9.8

Table 9.7 A state table for
finding SP
partitions.

q�

q x � 0 x � 1

A C A
B D B
C A B
D B A

q�

q x � 0 x � 1 z

A C D 1
B C D 0
C B D 1
D C A 1

Step 1 produces five SP partitions.
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(AB) → √* → → P1 � (AB)(C)(D)

(AC) → (BC), (BC) → ok → → P2 � (ABC)(D)

(AD) → √ → → P3 � (AD)(B)(C)

(BC) → √ → → P4 � (A)(BC)(D)

(BD) → (AD) → (ABD) → → P5 � (ABD)(C)

(CD) → (BC), (AD) → → PN

Step 2 really only requires three sums, although we will show all 10
below:

P1 � P2 � (ABC)(D) → → P2 not needed

P1 � P3 � (ABD)(C) → → P5

P1 � P4 � (ABC)(D) → → P2

P1 � P5 � (ABD)(C) → → P5 not needed

P2 � P3 → → PN not needed

P2 � P4 � (ABC)(D) → → P2 not needed

P2 � P5 → → PN not needed

P3 � P4 � (AD)(BC) → → P6 � (AD)(BC)

P3 � P5 � (ABD)(C) → → P5 not needed

P4 � P5 → → PN not needed

Those partitions shown in bold are two-block and thus never produce
anything new. Only one new SP partition is found by step 2.
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*Here is the first example of a pairing that requires no other states to be combined. It
results in a partition where these two states are in one block and all others are by
themselves.

EXAMPLE 9.9
q�

q x � 0 x � 1 z

A C D 0
B D A 0
C E D 0
D B A 1
E C D 1

Step 1 of the process produces five SP partitions, as follows:

(AB) → (CD)(AD) → (ACD) → (BCE) → → PN

(AC) → (CE ) → → (ACE)(B)(D) � P1

(AD) → (BC) → (DE) → → (ADE)(BC) � P2

(AE ) → √ → → (AE)(B)(C)(D) � P3

(BC) → (ADE) → → P2

(BD) → √ → → (A)(BD)(C)(E ) � P4

(BE) → (ACD) → (BCE ) → → PN

(CD) → (BE)(AD) → (BC) → → PN

(CE) → √ → → (A)(B)(CE )(D) � P5

(DE ) → (BC)(AD) → (ADE) → → P2
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Table 9.9 Reduced state
table.

q�

q x � 0 x � 1 z

A C A 1
B C A 0
C B A 1

For step 2, we add each of the pairs of partitions found in step 1,
except that we do not need to add P2 to anything (since it is two-block) and
P1 need not be added to P3 or P5 (since it is greater than each of them).

P1 � P4 � (ACE )(BD) � P6

P3 � P4 � (AE )(BD)(C) � P7

P3 � P5 � (ACE)(B)(D) � P1

P4 � P5 � (A)(BD)(CE ) � P8

We now add pairs of these new partitions (with the same exceptions as
above); there is only one sum (which does not produce anything new):

P7 � P8 � (ACE )(BD) � P6

If there were new partitions of more than two blocks, they must also be
added.

For this example, there are eight nontrivial SP partitions, of which two
are two-block and none are output-consistent. We will return to this state
table in the next sections when we discuss state reduction and how to
make good state assignments.

9.3 STATE REDUCTION USING 
PARTITIONS

Any partition that is both output consistent and SP can be used to reduce
the system to one with one state for each block of that partition. Just as
there is always a unique largest SP partition (PN), there is always a unique
largest output consistent SP partition. That is the one with the fewest
blocks and thus corresponds to the reduced system with the fewest num-
ber of states.*

For the state table of Example 9.8, repeated here as Table 9.8, the only
SP partition that is output consistent is P3 � (AD)(B)(C); thus, this state
table can be reduced to one with three states (one for each block of P3). 

We will call the combined state A (rather than A-D); the reduced
table is shown in Table 9.9.

We do not need to recalculate all of the SP partitions (although for
this small example, that would be very easy). Any SP partition of the
original system that is greater than (�) the one used to reduce the system
is still SP. For this example, only P5 � P3. Thus, we get one nontrivial SP
partition for the reduced system, namely,

P5
� � (AB)(C)

where AD of the original P5 has been replaced by the new state A. 
The last state table of the previous section, Example 9.9, did not

have any output consistent SP partitions. Thus, it can not be reduced. 

9.3 State Reduction Using Partitions 9-17

[SP 2, EX 2]

*It is possible that PN is output consistent; but that is a combinational system, where the
output does not depend on the state.

Table 9.8 A reducible state
table.

q�

q x � 0 x � 1 z

A C D 1
B C D 0
C B D 1
D C A 1
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We will now look at two state tables with the same next state section, but
different output columns. 
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EXAMPLE 9.10
q�

q x � 0 x � 1 z

A C D 0
B D A 1
C E D 0
D B A 0
E C D 0

q�

q x � 0 x � 1 z

A C D 0
B D A 1
C E D 0
D B A 1
E C D 0

q�

q x � 0 x � 1 z

A-C-E A-C-E D 0
B D A-C-E 1
D B A-C-E 0

The set of SP partitions for these two is the same as those for Example 9.9,
since the substitution property does not depend on the output. Repeating
the complete list here, we have

P1 � (ACE )(B)(D)

P2 � (ADE )(BC)

P3 � (AE )(B)(C)(D)

P4 � (A)(BD)(C)(E )

P5 � (A)(B)(CE )(D)

P6 � (ACE )(BD)

P7 � (AE )(BD)(C)

P8 � (A)(BD)(CE )

In the first table, P1, P3, and P5 are the only output consistent partitions.
Since 

P1 � (ACE )(B)(D)

is greater than either of the others, we will use it to reduce the system to one
with three states, as follows:

(We labeled the combined state with a compound name; we could have just
called it A.) Note that only P6 � P1; thus, the only SP partition of the reduced
system is

P6
� � (A-C-E )(BD)

For the second state table, P1, P3, P4, P5, P6, and P8 are all output
consistent. The largest is 

P6 � (ACE )(BD)

as can be seen from the chart below, where the smaller ones are on the left.
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We can thus reduce the system to one with only two states, A (ACE ) and
B (BD), as shown below. This system requires only one flip flop.

(A E ) (B) (C) (D)

(A C E ) (B) (D)

(A C E ) (B D)(A) (B) (C E ) (D)

(A) (B D) (C E )

(A) (B D) (C) (E )

�

�

�

�

�

�

9.3 State Reduction Using Partitions 9-19

EXAMPLE 9.11

q�

q x � 0 x � 1 z

A A B 0
B B A 1

The computation of all of the SP partitions for a fairly large system
can be quite time-consuming. If our interest is in reducing the system to
one with the minimum number of states, we can do that immediately when
we find an output consistent SP partition. Consider the following example.

As we begin the process of finding SP partitions, we get

(AB) → (BD)(AE ) → (DF )(AG)(CE ) → → PN

(AC) → (BG)(AE ) → (ACE ) → → (ACE )(BG)(D)(F )

This SP partition is also output consistent. Therefore, we could stop and
reduce the system to one with four states (one for each block) and find the
SP partitions of that smaller system.

q�

q x � 0 x � 1 z

A B E 0
B D A 1
C G A 0
D F G 1
E B C 0
F D G 1
G D E 1

q�

q x � 0 x � 1 z

A B A 0
B D A 1
D F B 1
F D B 1
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We can now find the SP partitions of this smaller system

(AB) → (BD) → (DF ) → → PN

(AD) → (AB)*(BF) → → PN

(AF ) → (BD)(AB) → → PN

(BD) → (DF )(AB) → → PN

(BF ) → (AB) → → PN

(DF ) → √ → (A)(B)(DF)

This system can be reduced further, to one with three states, since the SP
partition is also output consistent. The smallest equivalent system is thus 
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EXAMPLE 9.12

*Since we found that the only SP partition that combines A and B is PN, we can stop
looking; this must also produce PN.

q�

q x � 0 x � 1 z

A B A 0
B D A 1
D D B 1

As a final example, consider the following state table, where five dif-
ferent output columns are shown. (This is a Moore system with an output
that does not depend on the input; we will consider the different outputs
as five different problems.)

We will start by finding all of the SP partitions. That, of course, does not
depend upon which output column is used.

(AB) → (BC)(DE ) → (AE ) → → PN

(AC) → (AD) → (AE ) (BC) → → PN

(AD) → (DE)(BC) → → (ADE )(BC) � P1

(AE ) → √ → → (AE )(B)(C)(D) � P2

(BC) → (AE ) → → (AE )(BC)(D) � P3

(BD) → √ → → (A)(BD)(C)(E ) � P4

(BE ) → (BC)(DE ) → (AE ) → → PN

(CD) → (AE )(BC) → → (AE)(BCD) � P5

(CE ) → (AD) → (DE )(BC) → → PN

(DE ) → (BC) → (AE ) → → P1

q�

q x � 0 x � 1 z1 z2 z3 z4 z5

A D B 0 0 0 1 1
B E C 0 0 1 0 1
C A B 1 1 0 0 1
D E C 1 1 1 1 1
E D B 1 0 0 1 1

mar91647_c09_000_000.qxd  11/24/08  12:08 PM  Page 9-20



9.3 State Reduction Using Partitions 9-21

Now, forming sums, we obtain only one new partition

P2 � P4 � (AE)(BD)(C) � P6

Thus, there are six nontrivial SP partitions.
For the first output column, none of the SP partitions are output con-

sistent. Thus, the state table cannot be reduced. (We will return to this
example in the next section and determine a good state assignment.)

For the second output column, only P2 is output consistent. Thus, this
system can be reduced to one with four states (replacing A and E by a state
called A).

q�

q x � 0 x � 1 z3

A B B 0
B A C 0
C A B 1

q�

q x � 0 x � 1 z2

A D B 0
B A C 0
C A B 1
D A C 1

Since any SP partition that is greater than P2 is an SP partition of the
reduced table (with states A and E shown as one, just A), we can see that
the SP partitions are

P1
� � (AD)(BC)

P3
� � (A)(BC)(D)

P5
� � (A)(BCD)

P6
� � (A)(BD)(C)

For the third output column, P2, P4, and P6 are all output consistent.
Since P6 is the largest of these, it is used to reduce the system to one with
only three states.

The only nontrivial SP partition for this system is 

P5
� � (A)(BC)

For the fourth output column, P1 is output consistent, reducing the
state table to one with only two states.
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Finally, for the last output column, there was no need to find the SP
partitions; PN is output consistent; the system is combinational. It does not
depend on the state.

z � 1 

9.4 CHOOSING A STATE ASSIGNMENT

In this section, we will look at a strategy for making a “good” state
assignment. We will first find all of the SP partitions, then reduce the sys-
tem if possible, and finally make a state assignment to solve the problem.
We have three levels of work, depending upon how important it is to
reduce the cost of the combinational logic. If an absolute minimum is
required, we must try all possible sets of two-block partitions for which
the product is P0. For three or four states, there are only three such
assignments, and it is fairly easy to do that. For five states, however, that
number goes up to 140, and this method is not practical. (It rises to 420
for six states, to 840 for seven or eight states, and to over 10 million for
nine states.) If we can use two-block SP partitions for one or more of the
variables, that is almost always preferable (as long as we do not increase
the number of variables). We can then try to group states that are in the
same block of multiblock SP partitions or to use partitions that corre-
spond to one or more of the output columns for the other variables. This
will usually lead to a pretty good solution. Last, and least likely to pro-
duce good results, we could choose an assignment at random, say using
000 for A, 001 for B, and so forth. Sometimes, that will lead to a good
solution. But more often, it will result in a more costly system. 

To illustrate this, we will consider the example in Table 9.10. The
SP partitions are

P1 � (AB)(CD)

P2 � (AD)(B)(C)

P3 � (A)(BC)(D)

P2 � P3 � P4 � (AD)(BC )

There are no output consistent SP partitions. There are two SP partitions
that could be used for state assignment, namely, P1 and P4. That would
produce the assignment of Table 9.11 and the D flip flop input equations
shown.
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Table 9.10 State assignment
example.

q�

q x � 0 x � 1 z

A B C 0
B A D 1
C A D 0
D B C 1

q�

q x � 0 x � 1 z4

A A B 0
B A B 1

[SP 3, EX 3]
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9.4 Choosing a State Assignment 9-23

Since both flip flops were assigned according to an SP partition, the
input equations are very simple. 

If we repeat the design, using the output consistent partition for
q2, we get the state assignment of Table 9.12 and the equations shown
beside it.

Table 9.11 State assignment.

q q1 q2

A 0 0
B 0 1
C 1 1
D 1 0

z � q�1q2 � q1q�2
D1 � x
D2 � q�2

Notice that D1 is unchanged. Since it was assigned according to the same
SP partition as before, its behavior does not depend on the rest of the
assignment. Also, z becomes simple, since q2 is assigned according to
an output consistent partition. This is an extreme case; D2 is particu-
larly complex. If, on the other hand, we assigned q1 according to the
output consistent partition and q2 according to P4 (as in the first exam-
ple), we would get the assignment of Table 9.13 and the equations shown
below.

Table 9.13 State assignment.

q q1 q2

A 0 0
B 1 1
C 0 1
D 1 0

z � q1

D1 � x�q�2 � xq2

D2 � q�2

Table 9.12 State assignment.

q q1 q2

A 0 0
B 0 1
C 1 0
D 1 1

z � q�2
D1 � x
D2 � x�q�1q�2 � x�q1q2 � xq�1q2 � xq1q�2

Now, D1 is more complex, although the total cost of combinational logic
is the same as for the first assignment. Costs do not vary as much in two
flip flop circuits as they do in larger ones.

We will illustrate the procedure with two of the output columns from
Example 9.12. 
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We will first consider the table of Example 9.12 with output column z2.
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EXAMPLE 9.13

q�

q x � 0 x � 1 z2

A D B 0
B E C 0
C A B 1
D E C 1
E D B 0

q�

q x � 0 x � 1 z2

A D B 0
B A C 0
C A B 1
D A C 1

The first step is to see if the system can be reduced. The SP partition,
(AE )(B)(C)(D) is output consistent, and thus this system can be reduced to
one with four states, as shown below.

The SP partitions for this are (as we found earlier)

P1
� � (AD)(BC) P5

� � (A)(BCD)

P3
� � (A)(BC)(D) P6

� � (A)(BD)(C)

The best assignment seems to be the one that uses P1
� and the output

consistent partition (POC � (AB)(CD)). That produces

z � q2

D1 � x

D2 � q�1q�2 � xq2

If, instead, we used output column z1, there could be no reduction, and
three flip flops would be needed. However, there are 2 two-block SP parti-
tions, in addition to the output consistent one, that can be used for the state
assignment.

P1 � (ADE )(BC)

P5 � (AE )(BCD)

POC � (AB)(CDE )

This produces the state assignment

q q1 q2 q3

A 0 0 0
B 1 1 0
C 1 1 1
D 0 1 1
E 0 0 1

and the equations
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z � q3

D1 � x

D2 � x � q�2

D3 � {x�q�1 or x�q�2} � q�1q2 � {q2q�3 or q1q�3}

This requires only five gates plus the NOT gate for x�.

9.4 Choosing a State Assignment 9-25

EXAMPLE 9.14

The nontrivial SP partitions are

P1 � (AB)(C)(DF )(E ) P6 � (AB)(CE )(DF )

P2 � (ABC)(DEF ) P7 � (ABDF )(C)(E )

P3 � (AD)(B)(C)(E )(F ) P8 � (ABDF )(CE )

P4 � (AF)(BD)(C)(E ) P9 � (AD)(BF )(C)(E )

P5 � (A)(BF )(C)(D)(E )

As can be seen, none of these are output consistent; thus the table cannot
be reduced.

For the first two variables, we will use the 2 two-block SP partitions, P2

and P8. The product of these are

P1 � (AB)(C)(DF )(E )

For the third variable, we need a partition that separates A from B and D
from F. There are many that will do that; we chose

P9 � (AF )(BCDE )

because that corresponds to the second output column and will simplify
somewhat the expression for z.

First, we will construct next block tables for q1 and q2.

q� z
q x � 0 x � 1 x � 0 x � 1

A D C 0 1
B F C 0 0
C E A 0 0
D A C 1 0
E C B 1 0
F B C 1 1

q1
�

q1 x � 0 x � 1

0 1 0
1 0 0

q2
�

q2 x � 0 x � 1

0 0 1
1 1 0

This produces

D1 � x�q�1 D2 � xq�2 � x�q2

For q3 and z, we will need the state assignment and truth table:
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(We do not need columns for q1
� and q2

�, since we already computed the
inputs for those flip flops from the next block table.) The resulting maps are

From this, we can find

D3 � x�q�2q�3 � xq�1q2 z � x�q1 � xq3

The advantage of using SP partitions is even more dramatic with JK
flip flops (since J and K do not depend on the state of that flip flop). Thus,
for this example,

J1 = x� K1 = 1
J2 = x K2 = x
J3 = x�q2� + xq1�q2 K3 = 1

If, instead, we used the state assignment

00 01 11 10

00

01

11

10

x q1

q2 q3

X X X

1

X

1 1

00 01 11 10

00

01

11

10

x q1

z

q2 q3

X X X

1

X

1

1 1 1

q3
★

q q1 q2 q3

A 0 0 1
B 0 0 0
C 0 1 0
D 1 0 0
E 1 1 0
F 1 0 1

P2 P8 P9

x q1 q2 q3 q3
� z

B 0 0 0 0 1 0
A 0 0 0 1 0 0
C 0 0 1 0 0 0
— 0 0 1 1 X X
D 0 1 0 0 1 1
F 0 1 0 1 0 1
E 0 1 1 0 0 1
— 0 1 1 1 X X
B 1 0 0 0 0 0
A 1 0 0 1 0 1
C 1 0 1 0 1 0
— 1 0 1 1 X X
D 1 1 0 0 0 0
F 1 1 0 1 0 1
E 1 1 1 0 0 0
— 1 1 1 1 X X

q q1 q2 q3

A 0 0 0
B 0 0 1
C 0 1 0
D 0 1 1
E 1 0 0
F 1 0 1
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we would obtain the equations

z � x�q1 � q1q3 � xq�1q�2q�3 � x�q2q3

D1 � x�q�1q�2q3 � x�q2q�3

D2 � xq3 � x�q�2q�3 � q�1q�2q�3

D3 � x�q�1q�2 + xq1q�3 � x�q1q3

These equations are much more complex than the previous solution. 

9.4 Choosing a State Assignment 9-27

EXAMPLE 9.15

The SP partitions are

P1 � (ABD)(C)(E ) P4 � (A)(B)(CE )(D)

P2 � (ABDE )(C) P5 � (A)(B)(C)(DE )

P3 � (A)(B)(CDE ) P6 � (ABD)(CE )

None of these is output consistent; therefore, the system cannot be
reduced. Although there are 2 two-block partitions, we cannot use both of
them, since their product is P1, which has three states in the same block.
One more two-block partition cannot separate these three states. We can
use P6 and the output consistent partition,

P7 � (ACD)(BE )

for two of the variables. Their product is 

(AD)(B)(C)(E )

We now need to choose one more partition to separate A and D. From the
list of SP partitions, P3 is attractive. It groups C, D, and E. We could use
either

P8 � (AB)(CDE ) or P9 � (A)(BCDE )

The two state assignments are

q�

q x � 0 x � 1 z

A B C 0
B D C 1
C A E 0
D A C 0
E A C 1

q q1 q2 q3

A 0 0 0
B 0 1 0
C 1 0 1
D 0 0 1
E 1 1 1

q q1 q2 q3

A 0 0 0
B 0 1 1
C 1 0 1
D 0 0 1
E 1 1 1
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The resulting sets of equations for the first assignment are

J1 � x K1 � x�

J2 � x�q�3 � xq1 K2 � 1

J3 � x � q2 K3 � x�

z � q2

For the second assignment, J1, K1, J2, K2, and z are unchanged; the others
become

J3 � 1 K3 � x�q�2 � x�q1

If, instead, we use the first five combinations for the five states, the equa-
tions become

J1 � q2q�3 K1 � 1

J2 � x � q3 K2 � x� � q�3

J3 � x�q�1q�2 K3 � x � q2

z � q1 � q�2q3

The cost of this combinational logic is about double that of the first solution.

The choice of state assignment is more of an art than a science.
Surely, we want to use two-block SP partitions when possible. But when
we run out of those, we use the output consistent partition and the group-
ings suggested by other SP partitions (if there are any). 

This approach does not guarantee a minimum solution. The only
way to do that is to try all possible sets of partitions. (In some unusual
circumstances, it may even be possible to find a less costly solution
with an extra flip flop or without reducing the number of states to a
minimum.)

9.5 SOLVED PROBLEMS

1. Reduce each of the following systems to ones with the
minimum number of states using the tabular method.

a. b.
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[SP 4; EX 4, 5, 6, 7]

q�

q x � 0 x � 1 z

A C B 0
B D A 1
C A B 0
D B B 1

q�

q x � 0 x � 1 z

A C D 1
B C C 1
C E B 0
D E A 0
E A B 1
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c. d.

a. We will first construct the chart

Since the AB box already has an X in it, the only equivalent
states are A and C. The state table can be reduced to one with
three states, as follows:

B

C

D A B

A B C

�

9.5 Solved Problems 9-29

q�

q x � 0 x � 1 z

A-C A-C B 0
B D A-C 1
D B B 1

b. The chart for this table is

B C D

C

D

A B C D

A B

E A C, B D A B C

q�

q x � 0 x � 1 z

A E B 0
B D A 1
C F B 0
D E B 1
E D C 1
F D A 1

q�

q x � 0 x � 1 z

A D G 0
B C E 1
C B G 0
D A B 1
E F E 0
F G B 1
G F A 0
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Since for A to be together with B requires C to be grouped
with D, and the CD grouping requires A and B to be together,
both of those can be checked off. A and C cannot be in the
same block of a partition; thus, the other two are crossed off,
resulting in

The reduced state table is thus (where A-B has been called A,
and C-D has been called C)

A C, B D A B C

B

C

D

A B C D

E

�

�

9-30 Chapter 9 Simplification of Sequential Circuits

q�

q x � 0 x � 1 z

A C C 1
C E A 0
E A A 1

c. We get the following chart:

B and F are already grouped; AC and EF also group. That
produces a group with B, E, and F, reducing the table to one

B

E FC

D

B C

A CA B, D E

E

F

A B, D E

A C

D ECA B

�
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with only three states (since AB and BC cannot be grouped):

9.5 Solved Problems 9-31

d. The chart becomes

We can cross out a few squares and obtain

On the first pass, we were able to cross out BE, which then
allowed us to cross out BD and BF. Since those pairs could not

B D

A C, B E

B

C

D

D F, E GE B F, E G

C G, B EF

D F G B F, A G A E

A G 

BA C D E F

�

�

B D

A C, B E

B

C

D

D F, E GE B F, E G

C G, B EF

D FG B F, A G A E

A G

BA C D E F

q�

q x � 0 x � 1 z

A B B 0
B D A 1
D B B 1
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be equivalent, we were then able to eliminate AC, CE, and EG.
At this point, we note that for A and G to be equivalent, D and
F must be equivalent and for D and F to be equivalent, A and
G must be equivalent. We can thus reduce the number of states
by two, reduce the state table and repeat the process, as
follows:
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Of course, we could have determined this from the original
chart, where we have replaced the crossed out squares with X’s
and the two equivalences we had previously determined with
checks.

q�

q x � 0 x � 1 z

A D A 0
B C E 1
C B A 0
D A B 1
E D E 0

The new smaller chart is thus

Only A and E can be equivalent, since B and E are not
equivalent, making B and D not equivalent. Thus, we can
reduce this further to four states, namely,

B D

A C, B E

B

C

D

E B D, A E

BA C D

�

q�

q x � 0 x � 1 z

A D A 0
B C A 1
C B A 0
D A B 1
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9.5 Solved Problems 9-33

From this table, we can see that G and E are equivalent if A
and E are equivalent, grouping A, G, and E. That would
directly produce the same table with four states as above.

2. For the same state tables as in Solved Problem 1, find all of the
nontrivial SP partitions. (Of course, the output columns are not
used.)

a. (AB) → (CD) → → (AB)(CD) � P1

(AC) √ → → (AC)(B)(D) � P2

(AD) → (BC) → (AB) →→ (ABCD) � PN

(BC) → (ABD) →→ PN

(BD) → (AB) →→ PN

(CD) → (AB) →→ (AB)(CD) � P1

b. (AB) → (CD) →→ (AB)(CD)(E) � P1

(AC) → (CE)(BD) →→ (ACE)(BD) � P2

(AD) → (CE) → (AE) →→ PN

(AE) → (AC)(BD) →→ P2

(BC) → (CE)(ABCE) →→ PN

(BD) → (ACE) →→ P2

(BE) → (ABC) →→ PN

(CD) → (AB) →→ P1

(CE) → (AE) → (BD) →→ P2

(DE) → (ABE) →→ PN

c. (AB) → (DE) → (BC) → (DF) →→ (ABC)(DEF) � P1

(AC) → (EF) →→ (AC)(B)(EF)(D) � P2

(AD) √ →→ (AD)(B)(C)(E)(F) � P3

(AE) → (DE)(BC) →→ PN

B

C

D

D F, G EE

F

G A E

BA C D E F

�

�
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(AF) → (DE)(AB) → (BC) →→ PN

(BC) → (DF)(AB)
→ (ABC)(DEF) →→ P1

(BD) → (DE)(AB) → (BC) →→ PN

(BE) → (AC) → (EF) →→ (AC)(BEF)(D) � P4

(BF) → √ →→ (A)(BF)(C)(D)(E) � P5

(CD) → (EF)(AC) →→ (ACD)(B)(EF) � P6

(CF) → (DF)(AB) → (DE) →→ PN

(DE) → (BC) → (DF)(AB) →→ P1

(DF) → (DE)(AB) →→ P1

(EF) → (AC) →→ P2

At this point, we have found six SP partitions. We must now
add each pair, since the sum of SP partitions is also SP. The
only new partitions are

P3 � P4 � P7 � (ACD)(BEF)

P3 � P5 � P8 � (AD)(BF)(C)(E )

No new sums are formed from these two (since P7 is 
two-block). (We will return to this example in later solved
problems.)

d. (AB) → (CD)(EG) → (ABEG)
→ (CDF) →→ (ABEG)(CDF) � P1

(AC) → (BD) → (BE) → (CF) → (BDG) →→ PN

(AD) → (BG) → (CF)(AE) →→ PN

(AE) → (DF)(EG) → (AEG) →→ (AEG)(B)(C)(DF) � P2

(AF) → (BDG) → (ACF)(ABE) →→ PN

(AG) → (DF) →→ (AG)(B)(C)(DF)(E) � P3

(BC) → (GE) → (AE) → (DF) →→ (AEG)(BC)(DF) � P4

(BD) → (AC)(BE) →→ PN

(BE) → (CF) → (BG) → (AE) →→ P1

(BF) → (CG)(BE) → (BF)(AG) →→ PN

(BG) → (CF)(AE) → (DF)(EG) →→ P1

(CD) → (ABG) →→ P1

(CE) → (BF)(EG) →→ PN

(CF) → (BG) → (AE) → (DF)(EG) →→ P1

(CG) → (BF)(AG) →→ PN

(DE) → (AF)(BE) →→ PN

(DF) → (AG) →→ P3

(DG) → (ABF) →→ PN

(EF) → (FG)(BE) → (AB) →→ PN
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(EG) → (AE) →→ P2

(FG) → (AB) →→ PN

The sums produce nothing new. Thus, there are four 
nontrivial SP partitions. 

3. a. Reduce the system of Solved Problem 2a to one with a
minimum number of states if the output column is

A (i) 0 (ii) 1 (iii) 0
B 1 0 0
C 0 0 1
D 1 1 1

b. Reduce the system of Solved Problem 2c to one with a
minimum number of states and find all of the SP partitions of
the reduced system if the output column is

A (i) 0 (ii) 1 (iii) 0
B 1 0 0
C 0 1 1
D 0 0 1
E 0 0 1
F 1 0 0

a. (i) P2 � (AC)(B)(D) is the only output consistent SP
partition. Thus, the system can be reduced to one with
three states:

9.5 Solved Problems 9-35

q�

q x � 0 x � 1 z

A A B 0
B D A 1
D B B 1

(ii) There are no output consistent SP partitions; therefore,
the system cannot be reduced for this output column.

(iii) P1 � (AB)(CD) is the only output consistent SP partition.
Thus, we can reduce the system to one with just two
states:

q�

q x � 0 x � 1 z

A C A 0
C A A 1
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b. (i) The output consistent SP partitions are

P3 � (AD)(B)(C)(E)(F)

P5 � (A)(BF)(C)(D)(E)

P8 � (AD)(BF)(C)(E)

Clearly, P8 is larger than either of the others; it can be
used to reduce the system to one with only four states.
None of the SP partitions is larger than P8; therefore, the
reduced system has no nontrivial SP partitions.
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(ii) The output consistent SP partitions are

P2 � (AC)(B)(D)(EF)

P4 � (AC)(BEF)(D)

P5 � (A)(BF)(C)(D)(E)

P4 is larger than either of the others and can be used to
reduce this to a system with three states:

Since P7 � P4, then P7
� � (AD)(B) is SP.

(iii) The only output consistent SP partition is

P5 � (A)(BF)(C)(D)(E)

Thus, the minimum system requires five states, namely,

q�

q x � 0 x � 1 z

A E B 0
B A A 1
C B B 0
E A C 0

q�

q x � 0 x � 1 z

A B B 1
B D A 0
D B B 0

q�

q x � 0 x � 1 z

A E B 0
B D A 0
C B B 1
D E B 1
E D C 1
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There are three SP partitions for this reduced system,

P4
� � (AC)(BE)(D)

P7
� � (ACD)(BE)

P8
� � (AD)(B)(C)(E)

4. Find good state assignments for each of the following state
tables. (Each of the first four correspond to one of the state
tables from Solved Problem 2.) Compute the input equations for
either D or JK flip flops and the output equation.

a. b.

c. d.

e.

f.

9.5 Solved Problems 9-37

q�

q x � 0 x � 1 z

A C B 0
B D A 1
C A B 0
D B B 0

q�

q x � 0 x � 1 z

A C B 1
B D A 1
C A B 0
D B B 1

q�

q x � 0 x � 1 z

A E B 0
B D A 0
C F B 1
D E B 1
E D C 1
F D A 1

q�

q x � 0 x � 1 z

A E B 0
B D A 0
C F B 1
D E B 1
E D C 0
F D A 1

q� z
q x � 0 x � 1 x � 0 x � 1

A C D 0 0
B E A 1 1
C A D 0 0
D B A 1 0
E B C 1 1

q� z
q x � 0 x � 1 x � 0 x � 1

A C D 0 1
B E A 1 1
C A D 0 0
D B A 1 0
E B C 1 1
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a. P2 � (AC)(B)(D) is output consistent; therefore, this system
can be reduced to one with three states, namely,
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Since the other SP partition is not larger than P2, this system
has no nontrivial SP partitions. There is not a good clue as to
how to choose partitions for a state assignment, other than
choosing the output consistent one to minimize the output
logic. We can try both

i. ii.

For assignment i, we get

D1 � x�q2 D2 � q1 � xq�2 z � q2

and for assignment ii, we obtain

D1 � x�q1 � xq�2 D2 � q1q�2 � xq�2 z � q2

The first assignment requires the least amount of logic. If we
tried the third assignment, we would find that it needs about
the same amount of logic as the second (but uses 2 three-input
gates).

b. This, of course, is the same next state behavior as part a, but
the new output column is such that there are no output
consistent SP partitions. We will implement it with JK flip
flops. We do have one two-block SP partition,

P1 � (AB)(CD)

The two-block output consistent partition is not useful, since
its product with P1 is not P0. We will use for the second
variable

P3 � (AC)(BD)

which takes advantage of the other SP partition,
P2 � (AC)(B)(D), by putting A and C in the same block. This
results in 

J1 � x� K1 � 1 J2 � x K2 � xq�1 z � q�1 � q2

q�

q x � 0 x � 1 z

A A B 0
B D A 1
D B B 0

q q1 q2

A 0 0
B 0 1
D 1 0

q q1 q2

A 0 0
B 1 1
D 1 0
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Each of the other solutions requires very little logic as well.
That will normally be the case with only two flip flops.

c. There are no output consistent SP partitions; thus, this
system cannot be reduced. There are 2 two-block SP
partitions,

P1 � (ABC)(DEF)

P7 � (ACD)(BEF)

which will be used for the first two variables. The output
consistent two-block partition is not useful, since its product
with P1 and P7 is not P0; states E and F would have the same
assignment. We need a partition to separate A from C and E
from F. P3 indicates that A and D should be together; P5

indicates that B and F should be together. One of the partitions
that accomplishes these goals and still produces a product of
P0 with P1 and P7 is

P9 � (ABDF)(CE)*

The resulting state assignment is

9.5 Solved Problems 9-39

*There are others; you should try them as an exercise to see if one of them produces a
less costly solution.

The equations for q1 and q2 can be obtained from just the
block tables; the equation for D3 requires a 16-row truth table
and those for z require an 8-row table. (The work is left as an
exercise for the reader.)

D1 � x� D2 � q�2 z � q1 � q3

D3 � x�q�2q�3 � {xq1q3 or xq2q3}

This solution requires four gates plus the NOT gate. If we used
the straight binary assignment (A: 000, B: 001, . . .), we would
need 13 gates.

d. The next state portion of the table (and thus the list of SP
partitions) is the same as for part c. But, in this case, the
product of the output consistent partition

POC � (ABE)(CDF)

q q1 q2 q3

A 0 0 0
B 0 1 0
C 0 0 1
D 1 0 0
E 1 1 1
F 1 1 0
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with the other two is P0, and we can use it for the third
variable. The inputs to the first two flip flops would be the
same as for part c; the inputs for the third flip flop and the
output would be

D3 � x�q�1q2 � x�q2 � q�1q�3 z � q3

This requires seven gates. As in part c, the straight binary
assignment would be much more expensive (14 gates). 

e. The SP partitions are found as follows (ignoring the output
section, of course):

(AB) → (AD)(CE) → (BC)(CD) →→ PN

(AC) → √ →→ (AC)(B)(D)(E)
� P1

(AD) → (BC) → (ADE) → (AC) →→ PN

(AE) → (BCD) →→ PN

(BC) → (ADE) → (AC) →→ PN

(BD) → (BE) → (AC) →→ (AC)(BDE) � P2

(BE) → (AC) →→ (AC)(BE)(D) � P3

(CD) → (ABD) →→ PN

(CE) → (AB)(CD) →→ PN

(DE) → (AC) →→ (AC)(B)(DE) � P4

Note that both

PN � P2 � P3 � P1 � P0

PN � P2 � P4 � P1 � P0

No additional SP partitions are found by taking the sum of
these.

An inspection of the state table shows that P1 and P3 are
output consistent; thus the system can be reduced (using the
larger of these) to one with three states (combining A with C
and B with E), as follows:
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q� z
q x � 0 x � 1 x � 0 x � 1

A A D 0 0
B B A 1 1
D B A 1 0
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9.5 Solved Problems 9-41

Either directly from the state table or by converting it to a truth
table or directly to maps, we can determine

J1 � K1 � x

The first row of q� is the map for J and the second row is that
for K�. (We can always do a block table for variables assigned
using SP partitions.)

There is no clue from the next state portion as to which
partition to choose for the other variable. However, if we use

P4 � (AD)(B)

(which corresponds to the second column of the output
section), we are assured of a fairly simple output equation,
namely,

z � x�q1 � xq2

If we choose P4 for q2, then the state assignment and the truth
table for the next value of q2 and the output become

q�

q x � 0 x � 1

0(A) 0 1
1(B-D) 1 0

q x q1 q2 z q2
�

A 0 0 0 0 0
— 0 0 1 X X
D 0 1 0 1 1
B 0 1 1 1 1
A 1 0 0 0 0
— 1 0 1 X X
D 1 1 0 0 0
B 1 1 1 1 0

q q1 q2

A 0 0
B 1 1
D 1 0

The only SP partition for this reduced table is

P3
� � (A)(BD)

It can be used for one variable, q1, in the state assignment. For
that variable, we just need a next block table, namely,
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The maps for z and q2 (with the J portion for the quick method
shaded) are

The resulting equations are

z � q2 � x�q1 J2 � x�q1 K2 � x

Note that we have an even simpler version of z than expected.
If we retain the SP partition for assigning the first variable

and use the other two-block partition, P5 � (AB)(D), for q2, we
get

z � x�q2 � q1q�2 J2 � xq�1 K2 � 1

There is not much difference. Finally, if we do not use the SP
partition, but rather use the state assignment

0 1

00

01

11

10

x

z

q1 q2

11

XX

1

0 1

00

01

11

10

x
q1 q2

1

XX

1

q2
★
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we will get

z � q2 � x�q1 J1 � xq�2 K2 � 1 J2 � x�q1

K2 � x

For this simple problem, the state assignment does not make a
major difference.

f. The table of part f has one small change in the output section,
so that there are no longer any output consistent SP partitions.
We now need three variables, only one of which can use an SP
partition. The only two-block SP partition is P2, and we will
use it to assign q1. We will then use P3 to help with the second
variable; it keeps A and C together, and B and E together. We
must group D with AC; otherwise, we would just repeat the

q q1 q2

A 0 0
B 0 1
D 1 0
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same partition as before. Thus, we use 

P5 � (ACD)(BE)

The product of these two is P3 and we must now find a two-
block partition, the product of which with P3 is P0. There are
several possibilities, such as 

P6 � (ABD)(CE)

P7 � (AB)(CDE)

P8 � (AE)(BCD)

P9 � (ADE)(BC)

Any of these might lead to a good solution. Using P2, P5,
and P6, we have the following state assignment and design
tables:

9.5 Solved Problems 9-43

The block table is used to solve for q1 and the truth table
allows us to solve for the other two flip flop inputs and the
system output. The resulting equations are

D1 � xq�1 � x�q1

D2 � x�q1

D3 � x�q�1q�3 � x�q2q�3 � {xq1q3 or xq2q3}

z � q2 � x�q1 � xq�1q�3

requiring nine gates (since x�q1 need only be built once) (plus
a NOT gate to form x�).

q q1 q2 q3

A 0 0 0
B 1 1 0
C 0 0 1
D 1 0 0
E 1 1 1

x q1 q2 q3 q2
� q3

� z

A 0 0 0 0 0 1 0
C 0 0 0 1 0 0 0
— 0 0 1 0 X X X
— 0 0 1 1 X X X
D 0 1 0 0 1 0 1
— 0 1 0 1 X X X
B 0 1 1 0 1 1 1
E 0 1 1 1 1 0 1
A 1 0 0 0 0 0 1
C 1 0 0 1 0 0 0
— 1 0 1 0 X X X
— 1 0 1 1 X X X
D 1 1 0 0 0 0 0
— 1 1 0 1 X X X
B 1 1 1 0 0 0 1
E 1 1 1 1 0 1 1

q1
�

q1 x � 0 x � 1

0 0 1
1 1 0
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we get the equations

D1 � x�q�2q3

D2 � xq�3 � q�1q�2q3

D3 � x�q1 � xq�1q�3 � q2q�3
z � q1 � x�q3 � xq�2

This requires 11 gates (plus the NOT for x�), significantly
more logic than required for the other assignment. The other
assignments with P7, P8, and P9 are left as an exercise.

9.6 EXERCISES
1. Reduce each of the following systems to ones with the minimum

number of states using the tabular method.

a. b.

�c.

d. Same table as c, except that the output for state B is 1.
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q q1 q2 q3

A 0 0 0
B 0 0 1
C 0 1 0
D 0 1 1
E 1 0 0

q�

q x � 0 x � 1 z

A C B 0
B D A 0
C A B 1
D B B 1

q�

q x � 0 x � 1 z

A C B 0
B D C 1
C A B 0
D A B 0

q�

q x � 0 x � 1 z

A C B 0
B D A 0
C E A 1
D E B 1
E D B 1

If, instead, we used the assignment (just the first five
binary numbers)

E
X

E
R

C
IS

E
S
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g.

�h.

i. j.

�k. l.

9.6 Exercises 9-45

q�

q x � 0 x � 1 z

A B C 0
B D E 1
C D F 0
D B E 1
E F C 0
F D A 0

q�

q x � 0 x � 1 z

A E B 0
B C C 1
C D E 1
D F B 0
E A F 1
F D F 1

q�

q x � 0 x � 1 z

A B G 0
B A E 1
C A F 1
D G B 1
E C D 0
F B D 0
G G B 1

q� z
q x � 0 x � 1 x � 0 x � 1

A B D 0 0
B E G 1 0
C G F 0 0
D A C 1 1
E B D 0 0
F G D 0 0
G A B 1 0

q�

q x � 0 x � 1 z

A G B 0
B E C 0
C E B 1
D A B 0
E F D 0
F E D 1
G A B 1

q�

q x � 0 x � 1 z

A G B 0
B E C 1
C E B 1
D A B 1
E F D 1
F E D 1
G A B 0

q�

q x � 0 x � 1 z

A F B 0
B E C 0
C D C 1
D C A 0
E B C 1
F A B 0

e. f.
q�

q x � 0 x � 1 z

A B B 0
B F D 0
C D A 1
D C E 0
E F E 0
F E A 1

E
X

E
R

C
IS

E
S
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2. For each of the state tables of Exercise 1, find all of the nontrivial
SP partitions.

3. a. For state tables a and b of Exercise 2, reduce the system to one
with a minimum number of states if the output column is

A (i) 0 (ii) 1 (iii) 0 (iv) 0

B 1 0 0 1

C 0 0 1 0

D 1 1 1 0

b. Reduce the system of Exercises 1e and 1g to ones with a
minimum number of states if the output column is

A (i) 0 (ii) 1 (iii) 0 (iv) 1

B 1 0 0 0

C 0 1 0 0

D 1 1 1 0

E 0 0 1 0

F 1 1 1 0

�c. Reduce the system of Exercises 1k to one with a minimum
number of states if the output column is

A (i) 0 (ii) 1 (iii) 0 (iv) 1

B 1 0 0 0

C 1 1 1 0

D 1 1 1 1

E 0 0 1 0

F 0 1 0 0

G 0 1 0 1

4. a. For Solved Problem 4c,

i. Find the D’s and z for the straight binary assignment.

ii. Find D3 and z using the two SP partitions for q1 and q2

and using P9 � (ABDE) (CF) for q3.

iii. Find D3 and z using the two SP partitions for q1 and q2

and using P10 � (ADE) (BCF) for q3.

b. Continue the example of Solved Problem 4f, using

P2 � (AC)(BDE ) 

P5 � (ACD)(BE )

and each of

i. P7 � (AB)(CDE )

ii. P8 � (AE)(BCD)

iii. P9 � (ADE)(BC)
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E
X

E
R

C
IS

E
S
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5. For each of the state tables shown below, find a good state
assignment and design the system using JK flip flops. Compare
that design with the state assignment that just uses the binary
numbers in order for the states (that is, A: 000, B: 001,
C: 010, . . .).*

a.

b.

�c. Exercise 1e with output d. Exercise 1k.

column 1

0

0

1

1

0

6. For each of the following output columns, reduce the system if
possible and find a good state assignment

9.6 Exercises 9-47

*Note that part b has the same next state portion as Solved Problem 2d.

q�

q x � 0 x � 1 z

A D B 1
B C D 1
C E D 1
D A B 0
E C D 0

q� z
q x � 0 x � 1 x � 0 x � 1

A D G 1 0
B C E 1 1
C B G 0 1
D A B 0 0
E F E 1 0
F G B 1 1
G F A 1 1

q�

q x � 0 x � 1 z1 z2 z3 z4

A E B 0 0 1 0
B C D 0 0 0 0
C E F 1 1 0 0
D E A 1 0 0 1
E C F 0 1 0 1
F C D 1 0 1 0

E
X

E
R

C
IS

E
S
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9.7 CHAPTER 9 TEST (50 MINUTES)
1. Using the techniques of Section 7.1, reduce the following state

table to one with the minimum number of states.

9-48 Chapter 9 Simplification of Sequential Circuits

2. For the state table of Problem 1,

a. For each of the following partitions, indicate whether or not it
is SP and whether or not it is output consistent.

P1 � (ABCD)(E)

P2 � (ABE)(CD)

P3 � (AC)(BE)(D)

P4 � (AB)(CD)(E)

P5 � (AB)(CDE)

P6 � (A)(B)(C)(D)(E)

b. Using one of these partitions, reduce the system to the
one with the smallest number of states, showing a new state
table.

q� z
q x � 0 x � 1 x � 0 x � 1

A 0 0
B 0 1
C 1 1
D 0 0
E 1 1
F 1 0

q�

q x � 0 x � 1 z

A C B 0
B D A 0
C E A 0
D E B 0
E D B 1

7. Consider the following state table, where the next state is not
specified. Complete the next state portion such that the system can
be reduced to four states (not any smaller) and it is possible to
get from any state to any other state with an appropriate input
sequence.

E
X

E
R

C
IS
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3. For the following state table, find all of the nontrivial SP
partitions.

9.7 Chapter 9 Test 9-49

4. For the following state table,

q�

q x � 0 x � 1 z

A D B 1
B F D 0
C A D 1
D E D 0
E C B 1
F D C 0

q�

q x � 0 x � 1 z

A C B
B D C
C A B
D B C

The following are all of the SP partitions,

P1 � (AE)(CD)(B)(F)

P2 � (AF)(BC)(D)(E)

P3 � (AEF)(BCD)

Make a “good” state assignment and show the output equation
and the input equations for D flip flops.

C
H

A
P

T
E

R
 T

E
S

T
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A
A P P E N D I X

Relating the Algebra
to the Karnaugh Map

Although we use the map without worrying about the algebra, it is
useful to see how some of the properties appear on the map.

Property 9a. ab + ab�� = a

On the left, we have circled w�x and wx. They combine to form the term
x. Two adjacent rectangles combine to form one larger rectangle. 
Another geometry is shown next.

Here, w�y + wy = y.

00 01 11 10

0

1

w x

y

1

1

1

1

00 01 11 10

0

1

w x

y

1

1

1

1

00 01 11 10

0

1

w x

y

11 1 1 11 1 1

00 01 11 10

0

1

w x

y

543
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544 Append ix  A Relating the Algebra to the Karnaugh Map

where y�z + w�xyz = y�z + w�xz.  After factoring out the common z, we
have z (y� + yw�x). Thus, the a of P10 is y�, and the b is w�x.

Property 12a. a + ab = a

where the term xy on the left map is completely contained in the term y,
and can thus be deleted.

Property 10a. a + a��b = a + b

00 01 11 10

0

1

w x

y

1

1

1 1

1

1

00 01 11 10

0

1

w x

y

On the left, we have w�y and w�xy�. Algebraically, we would factor w�
from both terms, leaving w� (y + xy�) = w� (y + y�x). For Property 10a, a
is y, and b is x. Thus, we have w�y + w�x, as shown on the right map. On
the map, this involves one group adjacent to a smaller group. A four-
variable example is shown below.

00 01 11 10

00

01

11

10

w x

y z

1

1

11 1

00 01 11 10

00

01

11

10

w x

y z

1

1

11 1

00 01 11 10

0

1

w x

y

11 1 1 11 1 1

00 01 11 10

0

1

w x

y
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Append ix  A Relating the Algebra to the Karnaugh Map 545

Property 13a. at1 + a��t2 + t1t2 = at1 + a��t2

00 01 11 10

0

1

w x

y

1

1

1

1

00 01 11 10

0

1

w x

y

1

1

1

1

The term wx on the left map is the consensus of xy� and wy, and is thus
removed on the right map. The 1’s of the consensus term are half from
one group and half from the other. A larger example is shown next,

where wy�z is the consensus of xz and wx�y� and has been removed on the
right map.

We will now look at some examples of algebraic reduction, showing
the corresponding maps.

Reduce the following to two terms with four literals.

f = wxy� + yz + xz + w�xy� + w�xy�z�

The function is shown on the first map. After using Property 9a on the first and
fourth term and Property 12a on the last two terms, we get the second map.

00 01 11 10

00

01

11

10

w x

y z

1

1

1

1

1 1

1

00 01 11 10

00

01

11

10

w x

y z

1

1 1

11 1

1

11 1 1

00 01 11 10

00

01

11

10

w x

y z

11

11

00 01 11 10

00

01

11

10

w x

y z

11

1

1 1

1

11

11 1 1

00 01 11 10

00

01

11

10

w x

y z

11

11

EXAMPLE A.1
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546 Append ix  A Relating the Algebra to the Karnaugh Map

f = xy� + xz + yz

But xz is the consensus of xy� and yz, producing

f = xy� + yz

and the third map.

Reduce the following to three terms and seven literals.

G = BC + AC�D + AB�D + A�C�D�

This function is plotted on the first map.

EXAMPLE A.2

00 01 11 10

00

01

11

10

A B

C D

1

1

1

1

1

1

1 1 1 1

1

1

00 01 11 10

00

01

11

10

A B

C D

1 1 1

1 1

1 1

The consensus of the first two terms gives us ABD, as shown on the sec-
ond map. Property 9a then allows us to replace AB�D + ABD by AD (as
shown on the next map) and Property 12a allows us to remove AC�D, finally
reducing the expression to

G = BC + AD + A�C�D�

00 01 11 10

00

01

11

10

A B

C D

1

1

1

1

1

1

1 1 1 1

1

1

00 01 11 10

00

01

11

10

A B

C D

1 1 1

1 1

1 1
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Append ix  A Relating the Algebra to the Karnaugh Map 547

h = wx + wz + w�xz� + x�yz + w�yz�

The first map shows the original terms. Using Property 10a on the first and
third terms produces xz�. Then, wx ¢ xz� = wx and allows us to remove that
term, producing the second map. 

h = wz + xz� + x�yz + w�yz�

Reduce the following to three terms and seven literals. EXAMPLE A.3

00 01 11 10

00

01

11

10

w x

y z

1 1

11

1 1 1

1 11

00 01 11 10

00

01

11

10

w x

y z

1 1

11

1 1 1

1 11

None of the properties other than consensus help, and the only consensus
that exists is

x�yz ¢ w�yz� = w�x�y

If we add that term, as on the next map, we can then compute

00 01 11 10

00

01

11

10

w x

y z

1 1

11

1 1 1

1 11

00 01 11 10

00

01

11

10

w x

y z

1 1

11

1 1 1

1 11

wz ¢ w�x�y = x�yz and xz� ¢ w�x�y = w�yz�

Thus, we can remove x�yz and w�yz�, leaving

h = wz + xz� + w�x�y

as shown on the fourth map.

mar91647_apa_543_547.qxd  12/2/08  11:22 AM  Page 547



B.1 Chapter 1 Answers
1. a. 31 d. 47 h. 0
2. a. 000001001001

e. 001111101000
g. 4200 � 212 � 4096 Thus, can’t represent in 12 bits

3. a. 96B
c. 317

4. c. 1023
5. a. 001111 3 � 12 � 15

d. 000001 51 � 14 � 65 overflow
e. 110010 11 � 39 � 50

6. a. 011001 c. cannot be stored
e. 110001

7. c. �21 d. �28 h. �32
8. c. 10001111

d. cannot store numbers larger than �127
9. a. 000100 �11 � (�15) � �4

d. 010000 �22 � (�26) � overflow
f. 101101 �3 � (�16) � �19

10. b. 111001 i. 17 � 24 � overflow
ii. � 17 � (�24) � �7

c. 110011 i. 58 � 7 � 51
ii. �6 � (�7) � �13

d. 001100 i. 36 � 24 � 12
ii. �28 � (�24) � overflow

11. a. i. 0001 0000 0011
ii. 0001 0000 0011

iii. 0001 0000 0011
iv. 0100 0011 0110
v. 10100 11000 10001

12. i. ii. iii. iv. v. vi.
b. no 18 15 no 27 �27
d. 95 no no 62 149 �107

13. a. ii. 0100010 1001111 1001011 0100010
b. iii. 9/3 � 3

APPENDIX B: ANSWERS TO SELECTED EXERCISES
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Append ix  B Answers to Selected Exercises 549

B.2 Chapter 2 Answers
2. a.

w x y z 1 2 3

0 0 0 0 1 1 1
0 0 0 1 1 1 1
0 0 1 0 1 1 1
0 0 1 1 1 1 1
0 1 0 0 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 1
0 1 1 1 0 1 1
1 0 0 0 0 1 1
1 0 0 1 0 1 1
1 0 1 0 0 1 1
1 0 1 1 0 0 1
1 1 0 0 0 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 0
1 1 1 1 0 1 0

A B C D F

0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

d.
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5. b. f � h, but � g because of row 011
6. b. ii. sum of three product terms

d. iv. product of two sum terms
f. i. product of 1 literal iii. sum of 1 literal

ii. sum of 1 product term iv. product of 1 sum term
g. none

7. b. 4 d. 3 f. 1 g. 6
8. a. � z

d. � a�b� � ac
f. � x�y�� x�z � xy

also � x�y� � yz � xy
9. c. (a � c�) (a�� c) (a�� b�) � (a� c�) (a�� c) (b�� c�)

550 Append ix  B Answers to Selected Exercises

X Y Z F

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

a b c d g

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 X

g.

3. a.

4. a.

b

c

a

a

b

c
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Append ix  B Answers to Selected Exercises 551

11. c. i. h � a�c(b � d) � a (c� � bd)
ii. � a�bc � a�cd � ac� � abd

12. a. f � � (a�� b�� d)(b� c)(a� c�� d�)(a� b�� c� d�)
14. a. f (a, b, c) � �m(1, 5, 6, 7)

g(a, b, c) � �m(0, 1, 4, 5, 6)
b. f � a�b�c � ab�c � abc� � abc

g � a�b�c� � a�b�c � ab�c� � ab�c � abc�

c. f � b�c � ab
g � b� � ac�

d. f �(a, b, c) � �m(0, 2, 3, 4)
g�(a, b, c) � �m(2, 3, 7)

e. f � (a � b � c)(a � b� � c) (a � b� � c�)(a� � b � c)
g � (a � b� � c)(a � b� � c�)(a� � b� � c�)

f. f � (b � c)(a � b�)
g � (a � b�)(b� � c�)

16. a. yes b. no c. yes d. no e. no f. yes
18. a. f � a(bc)� � (c � d�)� � ab� � ac� � c�d

e. f � 1 � (ab � cd) � a�c� � a�d� � b�c� � b�d�

x

y

z

v
w

10. c.
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19. d.

552 Append ix  B Answers to Selected Exercises

20. c. f � b � a�c
21. c. F � W�Z� � Y�Z � WXY

e. G � B�D � BC � A�D
g. g � bc�d � abc � a�bd�

� a�bc� � abd � bcd�

22. a. f � a�b�c� � a�bd � a�cd� � abc � a�c�d
� a�b�d� � a�bc � bcd � bcd�

� bc � a�c�d � a�b�d�

23. b. g � x�y�z� � x�y�z � x�yz� � x�yz � xyz � xy�z�

g(w, x, y, z) � �m(0, 1, 2, 3, 4, 7)
24. c. xy � w�z
25. c. (b� � d)(c � d)(a� � b � d �)(b� � c� � d�)
26. a. f � w(y� � xz�) � z(y� � w�x�)

F
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Append ix  B Answers to Selected Exercises 553

27. a. F � BE(ACD � C�D� � A�C�) � B�(E� � A�C) � CD�E�
3      3     3    2           2       3    2      2     2          3       3 packs

� BE(C�(A� � D�) � ACD) � B�E� � CD�E� � A�B�C
3       2    2         2     3      4    2            3              3     3 packs

d. F � B�[D�(A� � CE) � A�C] � B(AC� � C�D)

A�

D�

C

C

A

E

B

H

C�

B�

D

A

C�

B�

C�

F

A

D

B
E

E

C

C

D�

D�

A�

C�

A�

C E�

A
P

P
E

N
D

IX
 B

: A
N

S
W

E
R

S
 T

O
 S

E
L
E

C
T

E
D

 E
X

E
R

C
IS

E
S

mar91647_apba_548_555.qxd  12/2/08  9:43 AM  Page 553



B.3 Chapter 3 Answers
1. b.

554 Append ix  B Answers to Selected Exercises

00 01 11 10

00

01

11

10

w x

y z

XX

X1

1 1

1

1

11

00 01 11 10

00

01

11

10

a b

c d

1

1

1

1 1

1

1

1

1

1

c.

2. b. g � w�x� � wx � wy g � w�x� � wx � x�y
e. G � X�Z� � W�XZ � WXY�

i. h � pq � qr� � r�s� � p�q�r � prs
h � pq � qr� � r�s� � p�q�r � q�rs
h � pq � qr� � r�s� � q�rs � p�q�s�

l. Prime Implicants: xy, yz, xz, wz, w�x, w�y�z�, x�y�z�, wx�y�

Minimum: g � yz � xy � w�x � wz � x�y�z�

m. H � X�Z� � W�X�Y � W�XZ � WXY�

H � X�Z� � W�YZ � W�XZ � WXY�

H � X�Z� � W�YZ � XY�Z � WXY�

H � X�Z� � W�YZ � XY�Z � WY�Z�

n. f � a�c� � ab� � cd� � bd
f � b�c�� a�b � cd� � ad
f � c�d � ac � a�b � b�d�

f � a�c� � ad � bc � b�d�

f � b�c� � bd � ac � a�d�

f � c�d � bc � ab� � a�d�
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Append ix  B Answers to Selected Exercises 555

p. f1 = a�b�c�d� + a�cd + a�bc + acd� + ab�d + abc� + a�bd
f2 = a�b�c�d� + a�cd + a�bc + acd� + ab�d + abc� + bc�d
f3 = a�b�c�d� + a�cd + a�bc + acd� + ab�d + ac�d + a�bd
f4 = a�b�c�d� + a�cd + a�bc + abd� + ab�c + ac�d + a�bd
f5 = a�b�c�d� + a�cd + a�bc + abd� + ab�c + ac�d + bc�d
f6 = a�b�c�d� + a�cd + a�bc + abd� + ab�c + ab�d + a�bd
f7 = a�b�c�d� + a�cd + bcd� + acd� + ab�d + ac�d + a�bd
f8 = a�b�c�d� + a�cd + bcd� + acd� + ab�d + abc� + a�bd
f9 = a�b�c�d� + a�cd + bcd� + acd� + ab�d + abc� + bc�d
f10 = a�b�c�d� + a�cd + bcd� + ab�c + ab�d + abc� + a�bd
f11 = a�b�c�d� + a�cd + bcd� + ab�c + ab�d + abc� + bc�d
f12 = a�b�c�d� + a�cd + bcd� + ab�c + ab�d + abd� + bc�d
f13 = a�b�c�d� + a�cd + bcd� + ab�c + ac�d + abd� + a�bd
f14 = a�b�c�d� + a�cd + bcd� + ab�c + ac�d + abd� + bc�d
f15 = a�b�c�d� + a�cd + bcd� + ab�c + ac�d + abc� + a�bd
f16 = a�b�c�d� + a�cd + bcd� + ab�c + ac�d + abc� + bc�d
f17 = a�b�c�d� + b�cd + ab�c + bcd� + a�bd + abc� + ac�d
f18 = a�b�c�d� + b�cd + ab�c + bcd� + a�bd + abc� + ab�d
f19 = a�b�c�d� + b�cd + ab�c + bcd� + a�bd + abd� + ac�d
f20 = a�b�c�d� + b�cd + ab�c + abd� + a�bc + bc�d + ac�d
f21 = a�b�c�d� + b�cd + ab�c + abd� + a�bc + bc�d + ab�d
f22 = a�b�c�d� + b�cd + ab�c + abd� + a�bc + ac�d + a�bd
f23 = a�b�c�d� + b�cd + acd� + a�bc + a�bd + abc� + ab�d
f24 = a�b�c�d� + b�cd + acd� + a�bc + a�bd + abc� + ac�d
f25 = a�b�c�d� + b�cd + acd� + a�bc + a�bd + abd� + ac�d
f26 = a�b�c�d� + b�cd + acd� + a�bc + bc�d + abc� + ac�d
f27 = a�b�c�d� + b�cd + acd� + a�bc + bc�d + abc� + ab�d
f28 = a�b�c�d� + b�cd + acd� + a�bc + bc�d + abd� + ac�d
f29 = a�b�c�d� + b�cd + acd� + a�bc + bc�d + abd� + ab�d
f30 = a�b�c�d� + b�cd + acd� + bcd� + a�bd + abc�+ ac�d
f31 = a�b�c�d� + b�cd + acd� + bcd� + a�bd + abc� + bc�d
f32 = a�b�c�d� + b�cd + acd� + bcd� + a�bd + abd� + ac�d

3. b. Prime Implicants: xy, yz, xz, wz, w�x, w�y�z�, x�y�z�, wx�y�

Minimum: g � yz � xy � w�x � wz � x�y�z�

4. b. g � wx � yz � xy � xz � wy � wz
5. c. f1 � ab� � b�d� � cd � a�bc�

f2 � ab� � b�d� � cd � a�bd
f3 � ab� � b�d� � b�c � a�bd

f. f1 � cd� � a�b � b�d� � ac�d
f2 � cd� � a�b � b�d� � ab�c�

f3 � cd� � a�b � a�d� � ab�c�
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6. c. All are different.
f. f2 and f3 are equal; f1 treats m13 differently

7. a. f � A�B � C�D � AD
f � (B � D)(A � B � C�) (A� � D)

d. f1 � a�d� � ad � bc � ab
f2 � a�d� � ad � bc � bd�

f3 � (a� � b � d )(a � c � d�)(a � b � d�)
i. f1 � w�z � wy � xz

f2 � w�z � wy � wx
f3 � w�z � wx � x�z
f4 � w�z � wx � yz
f5 � w�x� � wx � yz
f6 � w�x� � wy � xz
f7 � (w � z)(w� � x � y)

8. a, d. Since there are no don’t cares, all solutions to each problem are
equal.

i. All are different.
9. c. H � AB�E � BD�E� � BCDE � A�CD�E

f. H � V�W�Z � V�WY � VWY� � W�X�Z� � VWXZ
H � V�W�Z � V�WY � VWY� � W�X�Z� � WXYZ

i. H � A�C�D� � CDE� � B�CE � AD�E � {ACD� or ACE�}
H � A�C�D� � CDE� � B�CE � ACD� � C�D�E

n. G � X�Y� � V�XZ � {VWZ or WXZ}
10. b. G � B�C�E�F� � BD�F � AB�C�D� � CDEF� � A�B�C�E

� ABF � BC�F � A�BCDE�

11. a. f � a�b�d � ab�c� � bc�d � acd�

g � a�b � bc�d � acd�

e. F � WY � WZ� � W�XZ � W�X�Y�Z
G � Y�Z� � W�XY � W�X�Y�Z

h. f � c�d� � a�cd � bd
g � bd � a�c�d � ab� � {abc or acd�}
h � b�cd� � bd � a�c�d � a�bc� � {abc or acd�}

j. f � b�c�d � a�b� � a�c�d� or
f � b�c�d � a�b�� bc�d� or
f � b�c�d � b�c � a�c�d�

g � b�c�d � cd�

12. b. F � A�B�C�D � AC�D� � ACD � BCD� � A�BCD
G � A�B�C�D� � BCD� � A�BCD
H � AC�D� � AD � A�BCD � A�B�C�D�

F � A�B�C�D � AC�D� � ACD � BCD� � A�BCD
G � A�B�C�D� � BCD� � A�BCD
H � ACD � AC� � A�BCD � A�B�C�D�
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B.4 Chapter 4 Answers
1., 2. b. w�x� d. r�s� f. a�b h. V�W�X�

wx qr� b�d� W�X�Z�

x�y pq cd� V�W�Z
wy p�q�s� a�c V�YZ

p�q�r a�d� V�WY
prs ac�d V�X�Y
q�rs bc�d VX�Y�Z�

ab�c� VWY�

VWXZ
WXYZ

3. b. g � w�x� � wx � wy
g � w�x� � wx � x�y

d. h � pq � qr� � r�s� � p�q�r � prs
h � pq � qr� � r�s� � p�q�r � q�rs
h � pq � qr� � r�s� � q�rs � p�q�s�

f. f1 � cd� � a�b � b�d� � ac�d
f2 � cd� � a�b � b�d� � ab�c�

f3 � cd� � a�b � a�d� � ab�c�

h. H � V�W�Z � V�WY � VWY� � W�X�Z� � VWXZ
H � V�W�Z � V�WY � VWY� � W�X�Z� � WXYZ

4., 5. b. Prime implicants of F: W�Y�Z, XYZ, WY, WZ�, W�XZ
Prime implicants of G: Y�Z�, W�X�Y�, W�XY, W�XZ�

Shared terms: W�XYZ, W�X�Y�Z, WY�Z�

d. Terms for f only: a�cd, c�d�, bc�

Terms for g only: c�d, ab�, ac, ad
Term for h only: b�cd�

Term for f and g: ab�c�d�

Term for f and h: a�bc�

Terms for g and h: a�c�d, abc, acd�

Term for all three: bd
6. b. F � WY � WZ� � W�XZ � W�X�Y�Z

G � Y�Z� � W�XY � W�X�Y�Z
d. f � c�d� � a�cd � bd

g � bd � a�c�d � ab� � {abc or acd�}
h � b�cd� � bd � a�c�d � a�bc� � {abc or acd�}
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B.5 Chapter 5 Answers
2. a. The truth table for this module is

a b c y s t

0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 0 1
1 1 1 1 1 0

a b c X Y

0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 1
1 1 0 1 0
1 1 1 1 1

y � a � bc s � a�b� � a�c� � abc t � b�c � bc�

b. The delay from c to y is 2 for each module. The total delay is 32 � 1. 

7.

0
1
2
3

b

c

0
1
2
3

s

cout

EN�a

EN�a�

9.
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x

y

y

f

0

1

z

0

1

0

1

1

1

12.

Y

A

A�

B

D�
C

A

B�

C�

Z

D�

D�

A
B

A�
B�
C�
D� X

B
C

D

B�

D�
C

18. a.
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*Solving X7 alone, you would use BD� in place of A�CD�. But, the latter is also a prime
implicant and can be shared, saving one gate and three inputs. Gate count is based on BD�.

b. The solution is straightforward; the diagram is not shown.
c. We need two decoders. A is connected to the enable of the first. The

outputs correspond to the first eight minterms. A� is used to enable the
second, producing the other eight minterms. Only three OR gates are
needed.

d. The solution of part a is implemented on a PLA with seven terms:

X � ABD1 � A�B�C�D�2 � A�BC3 � BCD�4 � B�CD�5
Y � AC�D� � ABD1 � A�BC3 � B�CD�5
Z � ABD1 � A�B�C�D�2 � AB�D� � BCD�4

e. The PAL would be implemented with a solution using only prime
implicants of individual functions:

X � A�B�D� � CD� � ABD � BC
Y � AC�D� � ABD � A�BC � B�CD� or

� A�CD� � BCD � ABC� � AB�D�

Z � B�C�D� � ABD � BCD� � {AB�D� � ACD�}

21. a. X1 � B�D�2 � BD � AC�1 � A�C
X2 � B� � C�D� � AD� � AC�1 � A�CD
X3 � D � B�C� � A�B � AC4 ***
or

� D � A�C� � BC � AB�

X4 � B�D�2 � A�B�C5 � A�CD�6 � BC�D � ABD � AC�1
X5 � B�D�2 � A�CD�6 � AC�D�

X6 � A�BC� � ABC � AB�C� � {B�C�D� or A�C�D�}
� {ACD� or AB�D�} � {BCD� or A�BD�}

X7 � BC� � AC�1 � AB3 � A�B�C5 � {A�CD�6* or BD�}
X8 � AB7 � AC3

Package Count

X1: 2 2 2 2 4
X2: 0 2 2 (2) 3 5
X3: 0 2 2 2 4
X4: (2) 3 3 3 3 (2) 6
X5: (2) (3) 3 3
X6: 3 3 3 3 3 3 6
X7: 2 (2) 2 (3) 2 5
X8: (2) (2) 2

2’s: 13 7430s: 4 32 gates/95 inputs
3’s: 13 7420s: 1
4’s: 2 7410s: 5 (2 left over)
5’s: 2 7400s: 3 (use one 3-input)
6’s: 2 Total: 13 packages
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0
0

0 1

1

1

1

C
0

D
1

A
1

B
0

0

b. X1 � B�D�1 � AC�3 � A'CD2 � BD
X2 � B� � A�CD2 � AC�3 � C�D� � ACD�8
X3 � D � ACD�8 � B�C�D�10 � A�BD�5
X4 � A�B�C4 � B�D�1 � AC�3 � A�CD�7 � A�BC�D6 � ABCD9

X5 � B�D�1 � A�CD�7 � AC�D'
X6 � ACD�8 � B�C�D�10 � ABCD9 � A�BC�D6 � AB�C� � A�BD�5
X7 � A�B�C4 � AC�3 � A�BC�D6 � AB11 � A�BD�5
X8 � AC � AB11

Package Count

X1: 2 2 3 2 4
X2: 0 (3) (2) 2 3 5
X3: 0 (3) 3 3 4
X4: 3 (2) (2) 3 4 4 6
X5: (2) (3) 3 3
X6: (3) (3) (4) (4) 3 (3) 6
X7: (3) (2) (4) 2 (3) 5
X8: 2 (2) 2

2’s: 7 7430s: 4 24 gates /79 inputs
3’s: 9 7420s: 2
4’s: 4 7410s: 3
5’s: 2 7400s: 2
6’s: 2 Total: 11 packages

c. The PLA implementation of part b would require 18 product terms,
one for each of the product terms shown, including the single literal
terms (B' in X2 and D in X3). We could do this with only 16 product
terms if we treated the PLA as a ROM (that is, created the 16 min-
terms). This would not have worked for part b, since it requires gates
of more than eight inputs for those functions with more than 8
minterms (all but X5 and X8).

B.6 Chapter 6 Answers
1. b.

x 1 1 0 1 0 1 0 1 0 0 1 0 1 1
q A B B C D C D C D C A B C D B
z 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0
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q1
�q2

�

q1q2 x � 0 x � 1 z

0 0 1 0 1 0 1
0 1 0 0 1 0 0
1 0 1 1 1 1 1
1 1 0 1 1 1 1

4. c.

Clock

PRE�

CLR�

J

K

Q

7. b.

8. a.

Clock

x

z

q1

q2

x 0 0 1 1 0 0 1 1 0
q1 0 1 1 1 1 0 0 1 1 0 ? 1 ?
q2 0 0 1 1 1 1 0 0 1 1 0 ? 1
z 1 1 1 1 1 0 1 1 1 0 1 1 ?
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9. c. x 0 1 1 0 0 1 1 1 0
A 0 0 0 1 1 1 1 0 1 1 1
B 0 1 1 1 0 0 0 0 1 0 0 0
C 0 1 0 0 1 1 0 0 0 1
z 0 1 0 0 0 0 0 0 0 0 0 0

B.7 Chapter 7 Answers
2. a. The output equation is the same for all types of flip flop:

z � x�B � xB�

DA � x�B� � xA DB � x� � A
SA � x�B� RA � x�B (or x�A) SB � x� RB � xA�

TA � x�A � x�B� TB � x�B� � x A�B
JA � x�B� KA � x� JB � x� KB � xA�

f. z � A�

DA � x�A� � x AB� DB � x�B � xB�

JA � x� KA � x� � B JB � x KB � x
SA � x�A� RA � x�A � AB SB � xB� RB � xB
TA � x� � AB TB � x

J B

B�K

J A

A�K

x

Clock

z

3. c. z � q1�q2�

D1 � x�q1� � xq1 D2 � xq1�q2�

J1 � x� K1 � x� J2 � xq1� K2 � 1
4. b. (i) D1 � xq1�q2�

D2 � q1 � x�q2� � xq2 � q1 � x�q1�q2� � xq2

z � x�q1�q2� � xq2 � x�q1�q2� � xq2

(ii) D1 � xq2�

D2 � q1 � q2� � x 
z � x�q2� � xq1�q2

(iii) D1 � x� � q1� � q2�

D2 � xq1 � xq2�

z � xq2 � x�q1�
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0

2

3

6 7

4
JK

D
2

5

1

Brown path from 0 and 5 when DC � BA � B�A�

7. a. DD � CBA � DB� � DA� JD � CBA KD � BA
DC � D�C�BA � CB� � CA� JC � D�BA KC � BA
DB � B�A � BA� JB � KB � A
DA � A� JA � KA � 1

8. b. DC � BA � {CB� or B�A�} JC � B KC � BA�

DB � B� � CA JB � 1 KB � C� � A�

DA � B� � A� JA � 1 KA � B

10. a. JA � B KA � x � B JB � x� � A� KB � 1
b. 11 → 00 

16. b.

C
1

1

B
0

E
0

D
0

1

A
1

0

0

1

1

1

0

00

B E

D

A

C

0/0

1/0

1/0
0/0

0/0

1/0

1/0

0/1
1/0

0/0

f.
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1/0

C

A

1/0

E

1/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/1

G

1/0

D

B

1/0

1/0

1/1

F

1/0

H

A
01

1

0
0

1

1
0

11

0

0

0

C
0

D
1

B
0

E
1

F
1

k. l.

B.8 Chapter 8 Answers
4. a. Assume CLR� is clocked, but does not require counter to be enabled. 

z

x

D

EN

Clock

CLR�

C B A

b. z � x q1� q2� q3� q4� q5� q6� q7� q8

� x(q1 � q2 � q3 � q4 � q5 � q6 � q7)�q8
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s
0

wait

1

1

1

0

0

N � 0

N �1

d

C

N �� N � 1
A �� 0, A[15:1]

d

9. a. JA � B � C KA � {BD � BC or BD � CD� or BC � C�D}
JB � D KB � C � D
JC � AD� � B�D� KC � A�D � {AD� or BD�}
JD � 1 KD � 1

In some cases, the next state depends on the choice for KA or KC. Those
transitions are shown with dashed lines. In any case, the sequence is
reached within three clocks.

8.
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1101
7

0000
0

1010

0110

1000 0101

0111

0100
4

0001
1

1110
8

1011
5

0011
3

1100
6

1111
9

0010
2

1001

X1 X2 X3 X4 X5 X6 X7

A�B�D� X X X
B�CD X X X X
ABC X X X
ABD X X X
A�C�D� X X X
A�B�C� X X
A�B�C X X
ABD� X X X X
ACD X
BC�D� X

or inputs 4 5 5 3 2 3 4

b. A table for the minimal sum of product expressions is shown.

12. The state table for this counter follows:
a. i. For the D flip flop, we have

DA � A�BC � x AB� � xAC�

DB � B�C � BC� � xA�B� � {AB or AC}
DC � x�AC � xA�B� � xAC� � BC� � A�C�

The NAND gate requirements are 

Size Number Packages

1 1 (x�) 0 (from 4)
2 4 1
3 6 2
4 1 1
5� 1 1
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ii. Using JK flip flops, we get

JA � BC KA � x� � BC
JB � C � xA� KB � A�C
JC � x � A� � B KC � x�A� � xA � {xB or A�B}

For this, the NAND gate requirements are

The two extra NOT gates (1-input) are needed to create the AND
for JA and KB. The cost is thus $1.00 for gates plus $2.00 for the
flip flops, a total of $3.00.

b. Thus, if the D flip flop packages cost less than $0.875, the first solution
is less expensive.

If we can use one D package and one JK package, the best option
is to use the JK package for B and C, and one of the Ds for A (using xB
and a shared xAB� in place of xA in KC). That would require

Size Number Packages

1 3 1
2 8 2
3 2 1

This solution would cost $2.00 plus the cost of the D package. If the D
package cost between $0.75 and $0.875, this solution would be better.

c. This flip flop will be set when the system is in state 5, 6, or 7 and x is
0, or when in state 0 or 1 and the input is 1. It can be cleared whenever
the system is in state 3. Thus, for the new flip flop,

J � xA�B� � x�AB � x�AC
K � A�BC

and the output is just the state of that flip flop.
d. All of the outputs come from flip flops. We can compute the inputs for

a D flip flop for Q using

D � Q� � JQ� � K�Q

Size Number Packages

1 2 0 (from 2’s)
2 5 2
3 6 2

and then simplifying the algebra. The result is

D � AQ � B�Q � C�Q � xA�B� � x�AB � x�AC
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570 Append ix  B Answers to Selected Exercises

B.9 Chapter 9 Answers
1. c.

q�

q x � 0 x � 1 z

A C A 0
C C A 1

q� z
q x � 0 x� 1 x � 0 x � 1

A B D 0 0
B A B 1 0
C B A 0 0
D A C 1 1

k. The system cannot be reduced.

2. c. P1 � (AB)(CD)(E)
P2 � (ABE)(CD)
P3 � (A)(BC)(DE)
P4 � (AB)(CDE)
P5 � (A)(B)(C)(DE)

h. P1 � (AE)(B)(C)(D)(F)(G)
P2 � (AEF)(BG)(C)(D)
P3 � (AE)(BG)(C)(D)(F)

k. P1 � (ADG)(B)(C)(E)(F)
P2 � (AE)(BCD)(FG)
P3 � (AEFG)(BCD)
P4 � (AG)(B)(C)(D)(E)(F)
P5 � (A)(BC)(D)(E)(F)(G)
P6 � (AE)(BCDFG)
P7 � (A)(B)(C)(DG)(E)(F)
P8 � (A)(B)(C)(D)(EF)(G)
P9 � (ADG)(BC)(E)(F)
P10 � (ADG)(B)(C)(EF)
P11 � (AG)(BC)(D)(E)(F)
P12 � (AG)(B)(C)(D)(EF)
P13 � (A)(BC)(DG)(E)(F)
P14 � (A)(BC)(D)(EF)(G)
P15 � (A)(B)(C)(DG)(EF)
P16 � (ADG)(BC)(EF)
P17 � (AG)(BC)(D)(EF)
P18 � (A)(BC)(DG)(EF)

h.
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q�

q x � 0 x � 1 z

A A B 1
B E C 0
C E B 1
E F A 0
F E A 1

q�

q x � 0 x � 1 z

A A B 0
B E C 0
C E B 1
D A B 1
E F D 1
F E D 0

q�

q x � 0 x � 1 z

A A B 0
B E B 0
E E A 1

q�

q x � 0 x � 1 z

A A B 0
B A B 1

3. c. i.     

ii.

iii.

iv.

5. c. The three SP partitions are

P1 � (ABC)(DEF )
P2 � (AF ) (B) (C) (D) (E)
P3 � (A) (BE) (C) (D) (F)

P1 is the only two-block SP partition; it can be used for the first
variable. If we use the output consistent partition, POC � (ADE)(BCF),
for q3, we need another partition that separates D from E, and B from
C. Using P2, we should keep A and F together, and using P3, we should
keep B and E together. Two such partitions for q2 use

P4 � (ACDF)(BE)
P5 � (ABEF)(CD)

producing the assignments

q q1 q2 q3

A 0 0 0
B 0 1 1
C 0 0 1
D 1 0 0
E 1 1 0
F 1 0 1

q q1 q2 q3

A 0 0 0
B 0 0 1
C 0 1 1
D 1 1 0
E 1 0 0
F 1 0 1
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For the first assignment, the equations are

J1 � x� K1 � 1
J2 � xq1q3 � xq1�q3� K2 � x
J3 � x� � q1� � q2 K3 � x�

z � q3�

using four gates with 11 inputs (plus a NOT).
For the second assignment, the equations are

J1 � x� K1 � 1
J2 � xq1q3� � xq1�q3 K2 � xq1

J3 � x� � q2� K3 � x�

z � q3�

using five gates with 12 inputs (plus a NOT).
Using the first six binary numbers, the solution requires 11 gates

with 24 inputs (plus a NOT).

J1 � x�q2� K1 � 1
J2 � xq1q3� � xq1�q3 K2 � xq3

J3 � x� � q1�q2� K3 � x� � q1�

z � q2�q�3 � q2q3

572 Append ix  B Answers to Selected Exercises
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C.1 Chapter 1
1. a. 101011011 b. 533
2. 1 1 1 0 1 1 0 1 1

0 1 0 1 1       1 1              1 0 1 0 1 1     4 3
0 1 1 1 0 1 4              0 1 1 0 0 1     2 5

0 1 1 0 0 1 2 5 1 0 0 0 1 0 0 looks like 4—overflow
3. a.    149 115 b. �107 �115 c. 95 73
4. 1 0 0 1 1 0 1 1 1

1 1 0 0 �4 1 0 1 0 �6 0 1 0 1 �5
1 1 0 1 �3 0 1 1 1 �7 0 0 1 1 �3

(0) 1 0 0 1 �7 (1) 0 0 0 1 �1 (0) 1 0 0 0 overflow
5. a. 13 � 12 � 1 10 � 6 � 4

b. �3 � (�4) � �1 �6 � (�6) � overflow

C.2 Chapter 2

A B C D X Y Z

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 1 0 1
0 1 0 1 0 0 0
0 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 0 0 1 1 0
1 0 0 1 1 0 1
1 0 1 0 0 0 0
1 0 1 1 0 0 1
1 1 0 0 1 1 1
1 1 0 1 1 1 0
1 1 1 0 1 0 1
1 1 1 1 0 0 0

1.

APPENDIX C: CHAPTER TEST ANSWERS
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NOT equal
3. a�c � ab�

574 Append ix  C Chapter Test Answers

a b c f g

0 0 0 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 0 0
1 0 0 0 0
1 0 1 0 0
1 1 0 1 1
1 1 1 1 0

2.

a

d

b

f

b�
c

a

d

4. a.

b.

b�

c

d

a

b

d

f

5. a. f (x, y, z) � �m(0, 2, 3, 5, 7)
b. f � x�y�z� � x�yz� � x�yz � xy�z � xyz
c. f � x�z� � x�y � xz � x�z� � xz � yz
d. f � (x � y � z�) (x� � y � z) (x� � y� � z)
e. f � (x � y � z�) (x� � z)
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7. a. f � (b�d� � b�cd�) � (bc�d � bcd) � ab�d
� b�d� � bd � ab�d
� b�d� � d (b � b�a) � b�d� � bd � ad
� b�(d� � ad) � bd � b�d� � ab� � bd

b. g � (xy�z� � xy�z) � yz � wxy � xz
� xy� � yz � wxy � xz � x (y� � yw) � yz � xz
� xy� � wx � yz � xz
� xy� � wx � yz (consensus)

8. a. a�b�c� � a�b�c � a�bc� � a�bc � ab�c � abc
b. w�x�y� � x�y�z� � wyz

Append ix  C Chapter Test Answers 575

6. a.

b.

c.

w�
x
z

w
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y�

w
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g

w

x
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g
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z�

x�
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w

x
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w�

y�
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w
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C.3 Chapter 3
1. a. f (x, y, z) � �m (1, 2, 7) � �d(4, 5)

b. g � a�c � ab�c�d � a�bd � abc�

576 Append ix  C Chapter Test Answers

9.

10.

f

c

d

b

a�

d�

b�

a

c

g

c

a�

a

d�

e

d�

e�

c

b�

c�

00 01 11 10

0

1

x y

z

X

X

1

1 1

00 01 11 10

00

01

11

10

a b

c d

1

1 1

1

1

11 1
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2. a. wx�y�z� � wyz � w�x b. acd � a�c� � a�d� � ab
3. b�d � bd� � ac � {ab or ad} � {a�b�c� or a�c�d�}
4. wz� � {x�z or wx�} � {xy�z� or w�xy�}
5. f � a�d � {c�d or b�d}

f � d(a� � b�) � d(a� � c�)
6. f � wx � {xy�z or w�y�z} � {wyz or x�yz}

f � (w � z)(x � y){(x � z) or (y� � z)}{(x� � y�) or (w � y�)}
7. A�B�C� � ACE � ABC�D � BCD�E� � {A�B�D�E or B�CD�E}
8. ACE� � CDE � A�C�E� � BC�E � AB�C�

ACE� � CDE � B�C�E� � A�BC� � AC�E
9. a. f � xy�z� � wx� � wz�

g � w�z � w�xy � x�z
b. f � xy�z� � wz� � wx�z

g � w�z � w�xy � wx�z
10. a. f � w�z � w�y � yz � wx�z�

g � w�yz� � xz� � wxy � wy�z�

h � w�z � w�x � xyz � wx�y�z�

b. f � w�z � w�yz� � wx�y�z� � wxyz � x�y
g � w�yz� � xz� � wx�y�z� � wxyz
h � w�z � wx�y�z� � wxyz � w�x

Append ix  C Chapter Test Answers 577

C.4 Chapter 4
1. w�x�, x�y�z�, w�yz�, w�y�z, wy�z�, wxyz

2. g � a�cd � bd� � ac� � {a�b or bc�}

3. terms for both: x�yz�, w�xz, wx�y
f : w�y�z, wyz, xz
g: w�xy�, w�yz, x�z�, y�z�, x�y

4. f � a�d� � a�cd
g � b�d� � bd � a�cd
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f
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2. 

w x y z

f

w�z
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wxyz
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w�x

hg

C.5 Chapter 5
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3.

w x y z

f
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4.

w

w�z

w�y

wx�z�

w�yz�

xz�

wy �z �

w �z

w�x

wx�y �z �

xyz

wxy

yz

x y z
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5.

0

1

2

3

0

2

4

6
b

ax

y

EN�

0
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3

0

b

aw

z

EN�

0

1

2

3

8

10

12

14
b

a

EN�

0

1

2

3

9

11

13

15
b

a

EN�

f

h

g

C.6 Chapter 6

1. x 0 0 1 1 0 0 0 1 0 1
q A C B D B A C B D B D B
z 0 0 1 0 1 0 0 1 0 1 0 1 0
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Clock

K

Q

Q

J

CLR

a.

b.

3. D � xB � x�B� T � A� � x z � A� � B 

4. DA � xB� � x�B DB � x � A� z � AB

2.

A�B� z
AB x � 0 x � 1 x � 1

0 0 1 1 0 1 1
0 1 0 0 1 0 1
1 0 1 0 0 1 0
1 1 0 1 1 0 1

Clock
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C.7 Chapter 7
1. DA � x�B� � xB JB � KB � A� � x z � x�A � xB�

2. S1 � x R1 � x�q2 J2 � xq1 K2 � x� z � q2�

3. a. D1 � x�q1� � x�q2 � q1�q2 � xq1q2�

D2 � x � q1�q2 z � q1�q2�

b. D1 � x � q1q2 D2 � q2� z � q1�q2�

c.

q2

q2�

D

z

q1

q1�

D
x

Clock

4. D � A� J � C� K � A�C� T � A� � B�C�

7 30

6

4

5

2

1

5. a. b.

1/0

0/1

0/0

1/0

0/0

1/0

1/0

0/0

A

CB

D

1/0
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6.

C.8 Chapter 8
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2.

0 1

00
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11
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x

DA DB

DA

A B
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0 1
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= x �A�  +  x A DB
=  x  +  B �

z

0 1
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z  =  x �B� + x A
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C.9 Chapter 9
1.

2. a. P1 � output consistent
P2 � SP
P3 � neither
P4 � SP, output consistent
P5 � SP
P6 � SP, output consistent

b. P4 allows us to reduce the system to that of Problem 1.
3. P1 � (AC)(B)(D)

P2 � (AD)(BC)
P3 � (A)(BD)(C)
P4 � (AC)(BD)

4. Use P3 for q1 and POC � (ACE) (BDF) for q2. The product of these is (AE)
(BD) (C) (E). Using P2, we keep A and F together, and B and C together.
That gives either (ADF) (BCE) or (ABCF) (DE) as good partitions for q3.
Using the latter, we get

D1 � x � q1�

D2 � x�q1�q3� � xq1 � q1q2q3� � xq2�

D3 � x�q1�q3� � xq1 � {q1q3 or q2q3}
z � q2�

q�

q x � 0 x � 1 z

A-B C-D A-B 0
C-D E A-B 0
E C-D A-B 1
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587

In the following sections, we will introduce three tools for imple-
menting or simulating the circuits designed in the text. There will
then be a variety of experiments, keyed to the material in the body of

the text.
First, in D.1, we will describe a setup where integrated circuit pack-

ages will be wired and tested.
Second, in D.2, we will introduce a breadboard simulator that allows

us to do the hardware experiments without requiring the laboratory
equipment. The wiring of Section D.1 is done on a PC screen.

Next, in D.3, we will introduce LogicWorks, so that the behavior of
circuits can be simulated, without actually building them. This will be
particularly valuable to observe the timing behavior of the circuit, with-
out the use of a logic analyzer.

We will then, in D.4, provide a set of experiments that can be
accomplished with each of these systems.

The pin layout of all the integrated circuits referenced in the text is
shown in D.5. Note that different manufacturers use different notations.
We will follow the notation in the text.

D.1 HARDWARE LOGIC LAB

Logic circuits can be built and tested using a small breadboard that allows
the user to plug in integrated circuit chips and wires (without making per-
manent solder connections). The additional equipment needed to per-
form most of these experiments are a 5-volt power supply (or battery),
some switches, some LEDs (lights to display binary values), and a square
wave generator with a 5-volt output (with variable speed capabilities).
Some of the later experiments also use a pair of seven-segment displays
and a pulser. The IDL-800 Logic Lab* provides a convenient way to build
and test small and medium size digital circuits and includes all of the fea-
tures described above and many others.

Circuits are wired on the breadboard, a small portion of which is
shown in Figure D.1. (The breadboard in the next section [Figure D.6] is
a computer simulation of this.) The main part of the breadboard has a

APPENDIX D: LABORATORY EXPERIMENTS

*Manufactured by K & H Mfg. Co., Ltd.
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number of grooves, over which an integrated circuit chip fits, as indi-
cated in Figure D.1. The chip fits in the first of a set of six holes, each of
which is connected together internally. Thus, to connect something to a
pin, the wire is inserted in one of those holes. (Do not put another chip
over the groove next to the first one; the pins of the two chips would be
connected. Immediately above and below the main section on many
boards, there are two busses. One is usually used for ground. The other is
usually used for �5 volts. On some boards, the various sections of the
bus are connected internally; on others, they must be wired together.
Some boards also have, on the bottom of the board, a set of pins in
columns that are internally connected and used mostly for external sig-
nals that are to be connected to several places.

the semicircle) to 7 down the left side and then from 8 to 14 up the right
side. (If there are more pins, the numbering is the same, starting at the
upper left and continuing down the left side and up the right side.)
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Figure D.1 Detail of the breadboard.

IC pin inserted
in hole

Integrated circuit Set of six holes for
wire insertion — all
interconnected internally

Connections to
that pin may
be made in any
of these Groove

The integrated circuit package illustrated has 14 pins (as do all of
them in the experiments in Chapter 2). The orientation of the chip is spec-
ified by the semicircle (at the top). Typically, that is just an indentation in
the plastic shell of the chip. Pins are numbered from 1 (at the top, left of
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D.1 Hardware Logic Lab 589

Figure D.2 Layout of the 7400.
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The first highlights the orientation of the pin connections; the second
emphasizes the individual gates. From a wiring point of view, we are
dealing with the first on the circuit board.

To illustrate the use of the system, consider the implementation of
the function

f � ab� � bc

using NAND gates. The circuit for this is shown in Figure D.3.

Figure D.3 A NAND gate circuit.

f

a

b

c

Since complemented inputs are often not available, b� was created using
a NAND gate. (We could have done this with a NOT gate, but the 7400
has four NAND gates, and we can use the extra one as a NOT.)

In order to wire this, we need to associate each gate with one on the
chip and find the pin numbers. The circuit is redrawn in Figure D.4 with
the pin numbers indicated.

A closer look at the 7400 (with 4 two-input NAND gates) is shown
in Figure D.2 in two formats:
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Now the connections can be made on the breadboard. The circuit of
Figure D.5 shows the appropriate connections for this system. Note that
it does not matter which of the five holes are used to connect something
to a chip’s pin. However, only one wire can fit in a hole; thus, when the
same signal goes to several points, more than one of the holes is used (or
one of the set of holes at the bottom of the board is used). Thus, for
example, input b goes to pins 4, 5, and 13. In Figure D.5, it is connected
directly to pin 4; then a wire is run from pin 4 to pin 5 and from pin 4 to
pin 13. (It could have gone from pin 5 to 13.)

590 Append ix D Laboratory Experiments

Figure D.4 NAND circuit with pins
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Figure D.5 Wiring for 7400 circuit. 
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After the breadboard is wired (and before the power is turned on),
connect the breadboard to the voltages, input switches, and output lights.
The power can then be turned on and the system tested. (Caution: Do not
insert or remove wires while the power is on.)

As an introduction to the system, build this circuit and test it. To test
it, start with the three switches all in the 0 position and observe the out-
put light. Repeat for each of the eight input combinations. Compare that
with the truth table that was constructed based on the algebra.
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D.2 WinBreadboard™ and MacBreadboard™ 591

Seven-segment displays are useful to output decimal results. A
digit (in 8421 code) is input to a decoder/driver, the outputs of which
provide the signals to light the display. The IDL-800 logic lab has two 
seven-segment displays. The BCD inputs to the decoder allow the con-
nection of a BCD number (8421 code) to be displayed on either of the
displays. Below each display, there is an active low enable input for that
display. To use both displays, the inputs must be alternated. (The dis-
plays will look like they are lit even if the inputs are there only half of the
time, as long as they alternate at a rate of about 60 Hz or higher.) If any
code that does not correspond to a decimal digit (1010 and above) is
entered, the display will remain blank. (There is also a P input that lights
a decimal point on the right of the display.)

D.2 WINBREADBOARD™ AND
MACBREADBOARD™*

The MacBreadboard, shown in Figure D.6, (also available for Windows
as WinBreadboard) is a computer simulation of the logic laboratory
described in Section D.1. A picture of the screen before building a circuit
is shown in Figure D.6. 

*Product of Yoeric Software, Chapel Hill, NC. The software can be purchased at http://www.yoeric.com/breadboard.htm.

Figure D.6 Breadboard.
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This looks very similar to the hardware laboratory and has many of
the same features. (Anyone who is not familiar with the hardware labo-
ratory should review Section D.1 before proceeding). The pull-down
menu “chips” provides a selection of more than 70 chips from the 7400
series. When a chip is selected, it is automatically placed* on the left end
of the board. However, it can be moved to any position by clicking on
and dragging it. When the chip is double clicked, the pin layout of that
chip is displayed. 

The top row of holes (labeled X) are connected together; they are
usually connected to �5. Similarly, the bottom row (labeled Y) are con-
nected and are used for ground. A wire connection must be made
between one of the holes in these rows and �5 and ground. To connect a
wire, click on a hole and drag to the other hole to which it is to be con-
nected. Wires only run horizontally or vertically (not diagonally). If the
pointer does not follow a straight line, the wire may zig zag across the
board. To prevent this, hold down the shift key; the wire will then follow
a straight line. On a color display, the wires can be made one of several
colors. Either select the color before drawing the wire or click once on
the wire and then select a color from the “color” pull-down list.

There are a set of four input switches (with uncomplemented and
complemented outputs), labeled D, C, B, and A. There is also another set
of eight switches (L to E) with only uncomplemented outputs. There is a
set of four output LEDs (4 to 1). An active high signal can be connected
to the � side and the other side to ground or an active low signal to the
� side and the � side to 5 volts. There is also a set of 10 logic indicators
(which are just active high output lights). The four switches and four
LEDs can be labeled; those names will appear in the timing diagram.

A circuit with one NAND gate from a 7400 connected (with the
inputs and outputs labeled) and a 7410 place on the board, but not con-
nected is shown in Figure D.7.† If the system is turned on in this position,
LED4 will be lit. 

The breadboard has two seven-segment displays, each with a set of
four inputs. It displays hexadecimal. (Of course, if the inputs are limited
to the ten digits, the display is limited to 0 to 9, BCD in 8421 code.)

Some of the experiments, particularly in Chapters 6, 7, and 8, make
use of the clock and pulser. The clock produces a square wave, the fre-
quency of which can be controlled by the slide. (It has very low frequen-
cies, from about 0.15 to 10 Hz; but that is all one can view.) The “clock”
pull-down menu provides for pulses or steps, so that it is possible to
follow the behavior of the system one clock pulse at a time. A timing
diagram can be displayed (from the clock menu). The clock and all
labeled switches and output LEDs will be displayed. The breadboard cir-

592 Append ix D Laboratory Experiments

*The on/off switch must be in the off position to make any connections on the circuit
board. Click on the switch to change it.

†As the diagrams get more complex, it is particularly important to draw the wires neatly
and to use colors to signify meaning. For example, black is commonly used for ground
and red for �5. (Colors are not obvious in this black and white picture.)
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D.3 Introduction to LogicWorks 593

cuits do not have any delay built into the gates or flip flops; thus, all tim-
ing displays will correspond to the theoretical undelayed ones in the text.

D.3 INTRODUCTION TO LOGICWORKS 

This appendix describes some of the basic features of LogicWorks,
enough to begin using it with the experiments in this text. Version 5.0 for
Windows also has additional features, including the ability to describe
systems with a subset of VHDL.* The basic operation is the same on both
the Windows and Macintosh platforms, but some of the detail differs. We
will show the Windows variations in brown.

To start LogicWorks, double-click on its icon. That produces on the
Macintosh five separate (but related) windows. The main window is the
Circuit Window, where a block diagram of the circuit will be created.
The Tool Palette is on the upper left corner of the screen; it allows us to
draw and erase connections, add names, and probe the circuit. On the
right is the Parts Palette; on that we can select from a variety of gates,

Figure D.7 7400 circuit.

*LogicWorks is a product of Capilano Computing Systems, Ltd. The latest version (5.0)
for Windows is sold exclusively through Prentice Hall Publishing. It is included with a
book, giving full details of the software. The latest Macintosh version (4.5) is available at
http://www.capilano.com/html/lwm.html.
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integrated circuits, inputs, and displays. The bottom of the screen is the
Timing Window, where a trace of the behavior of the circuit over time is
displayed. Finally, in the upper left corner of that, is the Simulator
Palette, that gives control of various features of the timing trace. In
Windows, the Tool Palette and the Simulator Palette are replaced by a
single Tool Bar (with basically the same functionality). We will use the
word palette in the discussion below for both platforms.

We will first build and test a simple combinational logic circuit to
implement

f � ab� � bc.

The block diagram of the circuit as we will construct it is shown in
Figure D.8.

594 Append ix D Laboratory Experiments

Figure D.8 LogicWorks example.

a

b

c

f

To build a model of this circuit with LogicWorks, first go to the parts
palette, then click and drag the mouse on the title to highlight Simulation
Gates.clf. A list of the types of gates that are available will appear. (Win-
dows: All parts are merged into a single list; we will refer to Macintosh
individual palettes in the text below.) For this problem, double-click on
AND-2. When the cursor moves over the circuit window, a picture of the
gate will appear. Move it to the center of the window and click. At that
point, the gate will be fixed on the screen and another copy will appear.
Since a second AND gate is needed, move it to a convenient spot and
click again. When that type of gate is no longer needed, hit the space bar
(or click on the arrow on the Tool Palette). Return to the Parts Palette,
move down to the OR-2, and repeat the process. The final component is
a NOT gate, obtained in the same way, except that we want it pointing
up. To accomplish that, push the up arrow (↑) key while the gate is
selected and then click it into position. Any gate may be highlighted by
clicking on it, and then moved by dragging the mouse. (The orientation
of a gate may be changed when it is highlighted by pulling down the left
box on the Tool Palette and selecting the desired direction. (The side
bubble is relevant only in three-state gates; it may be ignored for now.)
(This can be accomplished in Windows by selecting the Orientation
menu from the Schematic pull-down menu.) The screen should now look
something like Figure D.9.
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Now that all the gates are on the diagram, they need to be connected.
Point to the end of any line and drag it to where it is to be connected.
The path may be varied by depressing the key and/or the option key
(CTRL and/or TAB key). If none of those paths are satisfactory, draw a
line and release the mouse; then start again in another direction. Finally,
a line can be drawn anywhere by clicking on the � cursor on the tool
palette and dragging the mouse where the line is to go. At the end of the
line click once to start a new line or double click to terminate line draw-
ing. To remove a line (or a gate), select the Zap (lightning bolt) tool in the
Tool Palette and point it to what is to be deleted. An alternative is to high-
light the item and use the delete key. To get out of the zap mode, hit the
space bar or the arrow on the Tool Palette.

Next, names can be added to the inputs and outputs (or any point in
the circuit). To do this, use the Text Tool (the A on the Tool Palette).
When that is highlighted, a pencil point is displayed. Move the point to
the line that is to be named and click the mouse. An internal name will be
displayed; just type over that. Move the name to wherever it is most con-
venient by clicking at the point to be named and then dragging to where
the name is to be written. To exit text mode, use the arrow on the Tool
Palette (or select some other tool); the space bar enters a space in the text.

To connect inputs, connect any point to ground or �5 volts, found
on the CONNECT.CLF parts menu or the DemoLib.clf parts menu.
There is also a binary switch (found on the DemoLib.clf parts menu).
Clicking on that switch causes its value to change between 0 and 1.
Finally, the probe tool (shown on the Tool Palette with a ?) can be used
to test the value at any point. With that pointed and the mouse depressed,
type in a 0 or 1 to set the value at that point. The probe will display a Z
for an input that is not connected to anything and an X for a point whose
value is unknown (for example, the output of a gate, the inputs of which
are not specified). The output can be displayed permanently, using the
binary probe from the DemoLib.clf parts menu.

The circuit, as completed, using switches for inputs and the binary
probe for outputs, is shown in Figure D.10, first with all of the switches
in the 0 position (producing a 0 output) and then with a in the 1 position
and b � c � 0 (producing a 1 output).
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Figure D.9 Parts placed.
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596 Append ix D Laboratory Experiments

With switches and the probe in place, it is easy to complete the truth
table for this function. As an introduction to LogicWorks, create this cir-
cuit and test it.

By selecting the 7400DEVS.CLF menu from the Parts Palette, a
logic diagram for that chip appears on the Circuit window. (A large vari-
ety of 7400 series chips are available; we will reference many of them in
the experiments that follow.) It can be clicked in place, just as any of the
other components. Connections can then be made as before. The circuit
for

f � ab� � bc

using 4 two-input NAND gates is shown in Figure D.11.

Figure D.10 Completed circuit with input switches and output display.
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Figure D.11 Circuit using a 7400.
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As before, it can be tested by connecting switches to the inputs or by
connecting each to ground or 5 volts. Try this and see that it also works.

Finally, we will look at one other method of connection. If two
points are given the same name, they are treated as if they are connected
(even though no connection line is drawn). Thus, in the circuit of
Figure D.12, all of the connections of the above diagram are made,
switches are connected to each of the inputs, and a binary probe is con-
nected to the output.
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Parts of a circuit may be highlighted by clicking on them (in point
mode). Hold the shift key down to highlight several parts. Also, by
dragging the mouse from outside one corner of a circuit to outside the
diagonal corner, a box is created such that, when the mouse is released,
everything within the box is selected. To select the whole drawing, pull
down Select All from the Edit menu. The Copy feature can be used to
take this drawing and insert it in another document (perhaps a word
processor). A drawing can also be printed directly from LogicWorks
from the File menu. (All of these also work to copy or print a timing
diagram when the Timing Window is highlighted.)

To examine some of the other ideas, we first need to look at the clock
and the Timing Window. The clock is found on either the DemoLib.clf or
Simulation IO.clf menu. It provides a square wave with a period of
20 units, unless modified (as described below). Any signal that is named
will be displayed in the Timing Window. The speed of the display is con-
trolled on the Simulator Palette (by buttons on the bottom row of the Tool
Bar). By sliding the speed control bar to the left, the display can be
slowed. At the left end, it stops. Click Step (symbol of man standing) to
move from one event to the next. (An event is any point where a signal
might change.) The display can be magnified by clicking on �� or
shrunk by clicking on ��. The clock speed can be controlled by click-
ing on the clock (to highlight it) and pulling down Simulation Params . . .
from the Simulate (Simulation) pull-down menu. Set the time the clock
is low and the clock is high; then exit the menu by hitting return.

Every combinational logic device has a built-in delay of 1 time unit.
That can be seen by connecting the clock to a device and observing the
input and the output of that device. The delay can be changed using
Simulation Params . . . with that device highlighted. To see the behavior,
set up the circuit of Figure D.13 and set the clock to 40 units for both low
and high. Set the delay to 10 units for each gate.
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Figure D.12 Named connections.
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598 Append ix D Laboratory Experiments

Figure D.13 Delay example.
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Figure D.14 Timing diagram.
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Stop the clock by moving the speed bar to the far left. Click on Restart 
( ), which reinitializes the clock. Expand the display by clicking on
��. Then click once or twice on the right arrow of the speed bar to start
the simulation. When it is stopped after 120 units, a display like the one
of Figure D.14 is seen. Note that c is a duplicate of a delayed by 20 units
(after the startup).

D.4 A SET OF LOGIC DESIGN
EXPERIMENTS

Each of the experiments can be implemented on any of the systems with
the modifications indicated. The notation below will be used to indicate
the special needs.

HW: Hardware Logic Lab

BB: Breadboard Simulator

LW: LogicWorks

D.4.1 Experiments Based on Chapter 2 Material

■ 1. For each of the following sets of functions, build each version
using AND, OR, and NOT gates. Test them to show that each
function in a set behaves the same as each of the others in
that set.

a. f � xy�z� � xy�z � xyz
g � xy� � xz
h � x(y� � z)

b. f � a�b�c� � a�b�c � abc� � ab�c�
g � a�b� � ac�
h � (a� � c�)(a � b�)
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D.4 A Set of Logic Design Experiments 599

c. f � x�yz� � xyz� � xy�z
g � yz� � xz�
h � z�(x � y�)

d. f � a�bc� � ab�c� � a�bc � ab�c
g � (a � b)(a� � b�)
h � a�b � ab�

e. f � x�y�z� � x�yz� � xyz � xy�z
g � x�z� � xz
h � (x� � z)(x � z�)

f. f � a�b�c � a�bc � abc
g � a�c � bc
h � c(a� � b)

HW: Use one 7404 (NOT gates) to construct the complement of
the variables. (Use the same 7404 outputs for all three versions.) 

HW, BB: In addition, we have available 7411s (three-input AND
gates), 7408s (two-input AND gates), and 7432s (two-input OR
gates). There are no larger OR gates available and thus we must
construct a multi-input OR gate from two-input gates. Each of
the outputs should go to a different light, but the inputs come
from the same three switches. 

LW: Use individual gates (from Simulation Gates.clf).

■ 2. Implement the systems of Experiment 1 using NAND gates for
the sum of products expressions and NOR gates for the product
of sums expressions. 

HW, BB: Use 7400s, 7410s, 7430s, and 7402s (two-input NOR
gates).

LW: Use individual gates.

■ 3. Implement each of the following expressions (which are already
in minimum sum of products form) using only 7400s (two-input
NAND gates). No gate may be used as a NOT (except to form the
complement of the inputs). Note that these are the functions of
Exercise 25 in Chapter 2, where the number of two-input gates
(not including the NOT gates) is shown in parentheses.

a. f � wy� � wxz� � y�z � w�x�z (7 gates)
b. ab�d� � bde� � bc�d � a�ce (10 gates)
c. H � A�B�E� � A�B�CD� � B�D�E� � BDE�

� BC�E � ACE� (14 gates)
d. F � A�B�D� � ABC� � B�CD�E � A�B�C

� BC�D (11 gates)
e. G � B�D�E� � A�BC�D � ACE � AC�E� � B�CE

(12 gates, one of which is shared)
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600 Append ix D Laboratory Experiments

f. h � b�d�e� � ace � c�e� � bcde (9 gates)

g. F � ABE � AB�C� � A�D � CE� � B�D�E� (10 gates)

h. g � a�c� � a�bd � acd� � ab�c � bce (8 gates if you share)

■ 4. a. Build a full adder using NAND gates. Test it and save it to use
with an experiment from Chapter 5.

b. Build the full adder using Exclusive-OR gates and NAND
gates.

D.4.2 Experiments Based on Chapter 5 Material

■ 5. Connect the 4-bit adder with one number (A4 . . . A1) to four data
switches (with A4 on the left switch) and the other number on the
other four switches. Connect another switch to the carry input
(C0). Connect the five outputs (C4, �4, �3, �2, and �1) to the
right five indicators. Test the circuit by inputting any two 4-bit
numbers plus a carry input and observe the result. Note that bit 4
is the high-order bit and bit 1 the low-order bit.

HW: Use the 7483 adder chip.

BB: Use the 74283 adder chip.

LW: Use the 7483 adder chip and nine data switches. Use binary
probes for the outputs. Note that LogicWorks labels the bits 3 to
0 instead of 4 to 1.

■ 6. In addition to the adder of Experiment 5, connect the 1-bit adder
from Experiment 4 as the high-order bit of a 5-bit adder. Thus,
connect C4 to cin of the adder from Experiment 4. There are 
now 11 inputs (two 5-bit numbers plus a carry in) and 6 outputs
(the cout and s outputs from the 1-bit adder plus the four sum
outputs). Test the circuit by inputting various pairs of 5-bit
numbers and a carry in of either 0 or 1; observe the result on the
indicators. 

HW: There are only 10 switches on the IDL-800 Logic Lab.
Connect C0 to ground or to 5 volts to input a 0 or 1.

■ 7. HW: Take the adder from Experiment 5 and connect the four
sum outputs to the decoder inputs for the seven-segment displays.
Even though the inputs in the IDL-800 are labeled A B C D from
left to right, the most significant bit is D. Thus, connect �4 to D.
Enable one of the displays by connecting its enable input to
ground. (Note that in the IDL-800 there are switches between the
decoder and the displays. They allow specific segments of the
display to be disabled. They should all be in the ON position
(to the right) for all of the experiments.)
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D.4 A Set of Logic Design Experiments 601

BB: Connect the outputs from the adder of Experiment 5 to one
seven-segment display. Try some addition problems such that the
sum is 9 or less and observe the answer on the seven-segment
display. The seven-segment display actually displays hexadeci-
mal. You can connect both displays and show sums from 00 to
1F. (You need only connect input A to the high-order display.) 

LW: Take the adder from Experiment 5 and connect the four
sum outputs to a seven-segment display (found on the Simulation
IO.clf menu) through a 7449 Display driver.

■ 8. We have a 3-bit binary input number (on three of the switches)
and wish to light one of eight output lights. Use a 74138 decoder
to implement this. The decoder should always be enabled.

■ 9. Use two 74138 decoders and two or three 7430s (eight-input
NANDs) to implement the following functions:

a. F(A, B, C, D) � �m(0, 1, 8, 9, 10, 12, 15)

G(A, B, C, D) � �m(0, 3, 4, 5, 7, 9, 10, 11)

b. F(A, B, C, D) � �m(1, 2, 3, 6, 9, 14, 15)

G(A, B, C, D) � �m(0, 1, 2, 8, 9, 12, 13, 15)

c. f (w, x, y, z) � �m(0, 1, 4, 5, 8, 15)

g(w, x, y, z) � �m(1, 2, 3, 7, 8, 10, 11, 14)

h(w, x, y, z) � �m(0, 1, 6, 7, 9, 10, 14, 15)

d. f (a, b, c, d) � �m(0, 3, 4, 5, 7, 8, 12, 13)

g(a, b, c, d) � �m(1, 5, 7, 8, 11, 13, 14, 15)

h(a, b, c, d) � �m(2, 4, 5, 7, 10, 13, 14, 15)

HW, BB: Use switches for inputs and lights for outputs.

LW: Use switches for inputs and binary probes for outputs.

■ 10. The 74161 counter* steps the three inputs through all combi-
nations. The switch on the CLR input is there because the
simulator requires the counter to be cleared; otherwise, the
outputs will be indeterminate. The P and T enable inputs are
active high, and the parallel load is disabled (�5 volts); thus,
the inputs A, B, C, and D need not be connected. 

*We will discuss counters and the 74161 in more detail in Chapter 8; for now, it is a
handy tool to demonstrate some of the properties.
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HW, BB: Set the clock frequency very slow.

LW: Try this with no delay and then with enough delay that its
effect can be seen. 

■ 11. Implement the solutions to parts b and c of Exercise 23 (Chapter 5).

■ 12. Build a 1-digit decimal adder. The inputs are the code for two
decimal digits (in 8421 code) plus a carry in. Assume that none
of the unused combinations exist. The outputs are the code for a
decimal digit plus a carry. (The largest that the answer can be is 19.)
See Section 4.8.1.
a. We will then display the result on five lights.
b. We will display the results on the two seven-segment displays.

HW: For the IDL-800, this requires a multiplexer and clock.
A 74157 multiplexer is used to select one of the digits for
BCD input to the displays. The same signal that selects is also
used to select which display is enabled. Use the square wave
from the function generator for this purpose. Remember that the
displays are active low enabled, and one should be enabled when
the wave is high and the other when it is low. (Note: The function
generator output is not capable of driving the enable inputs; it
must be connected to the enable through two inverters.)

LW: Two 7449 display drivers are needed.

■ 13. Design a seven-segment display decoder using NAND gates for
the second digit of the decimal adder of the previous problem such
that segment a is lit for 6, segment f is lit for 7, and segment d is lit
for 9 (the alternate display for each of these digits).

■ 14. Use two 74151 multiplexers and a NOT gate to implement

f (a, b, c, d) � �m(0, 3, 4, 5, 7, 8, 12, 13)
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D.4.3 Experiments Based on Chapter 6 Material

■ 15. Connect the following circuit, using one half of a 7474 leading-
edge triggered D flip flop.

HW, BB: (a) Follow the sequence of steps listed below and
record what is displayed on the two lights.

BB: Pull down the clock menu and set it to positive pulse.

1. Switch D –> 0 8. Pulse
2. Switch CLR� –> 0 9. Pulse
3. Pulse 10. Switch CLR� –> 1
4. Switch CLR� –> 1 11. Pulse
5. Pulse 12. Pulse
6. Switch D –> 1 13. Switch D –> 0
7. Switch CLR� –> 0 14. Pulse

HW: (b) In place of the pulser, connect the clock input to the
square wave generator output, where it is set to the lowest
frequency. Repeat the patterns for the two switches and observe
what happens.

BB: (b) Set the clock speed fairly slow and change the clock to
Free Run. Reset the timing diagram and try the switches in
various positions. Notice when the outputs change relative to
when the inputs change and when the clock changes.

LW: Note that the preset input must be connected to logic 1
(�5 volts) or to a switch if it is not used. Set the clock at a very
slow speed and observe the behavior of the outputs as the two
switches are changed.* Label the clock, CLR�, D, Q, and Q� and
observe the display as the two switches are manipulated.

■ 16. a. Connect a trailing-edge triggered JK flip flop from a 7473,
using one switch for J and another for K. Devise a test
sequence comparable to the one in Experiment 14 and 
observe the outputs.

DSwitch

Clock/Pulser

Switch

CLR� q�

q

Light

Light

D.4 A Set of Logic Design Experiments 603

*For the switches to work, the clock must be running or step must be clicked, even if
there is nothing labeled and being displayed.
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Clock

x

K1 q2�q1�K

J q2

x

z

J q1

Clock

LW: Be sure that clear is connected and that the flip flop is
initialized.

b. Connect the outputs of one of the JK flip flops (on the 7473)
to the inputs of the next as shown below.

Devise a test sequence and observe the outputs. 

■ 17. Construct the circuit below using a 7473, a 7404, and a 7408.

K q2�q1�K

J q2

x

J q1

Clock

604 Append ix D Laboratory Experiments

HW: Use the pulse switch for the clock, holding it down for a
few seconds. (In that way, what happens on the leading edge is
seen as the pulser is pushed and on the trailing edge as it is
released. Be careful to hold it solidly down; otherwise, it may go
back and forth between 0 and 1.)

BB: Try it both with the clock set on Step and on Free Run at a
slow speed.

Follow the input pattern below. 
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LW: Connect a switch to x and set the clock to the slowest
speed. Label the clock, x, q1, and q2 so that the behavior can be
displayed. Manipulate the switch so that the input pattern
described in the problem is obtained. Stop the display when the
end is reached and print out the timing diagram.*

■ 18. a. Construct the circuit of Exercise 8a (at the end of Chapter 6)
and test it.

b. Construct the circuit of Exercise 8b (at the end of Chapter 6)
and test it.

D.4.4 Experiments Based on Chapter 7 Material

■ 19. For each of the state tables in the following exercises of Chap-
ter 7, design, build, and test a circuit using NAND gates and

i. D flip flops
ii. JK flip flops

a. 7.2a
b. 7.2d
c. 7.2f
d. 7.3c
e. 7.3e

■ 20. Construct a synchronous base-12 counter using JK flip flops and
a NAND gate.

■ 21. Construct a synchronous counter using D flip flops and NAND
gates that goes through the sequence 

i. 1 3 5 7 6 4 2 0 and repeat.
ii. 1 3 4 7 2 6 0 and repeat.
iii. 6 5 4 3 2 1 and repeat.
iv. 1 3 4 7 6 and repeat.
v. 1 2 4 5 0 6 and repeat.

vi. 1 4 0 3 5 2 and repeat.

Set the clock at its lowest speed.

a. Display the results on three lights.
b. Connect the outputs to one of the seven-segment displays.

(Of course, the first bit of the display input is 0. Be sure to
connect the enable input for that display.)

HW: In the IDL-800, the clock speed cannot be made slow
enough. Add a JK flip flop that is connected to change state every
clock period. The output of that flip flop will be a square wave at
half the frequency of the input. Use that to drive the display.

D.4 A Set of Logic Design Experiments 605

*To print, click on the timing display and choose Print Timing from the File menu. It is
also possible to Select All and copy the timing to another document.
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■ 22. Build an asynchronous decade counter using JK flip flops and
NAND gates. 

HW, BB, LW: Display the results on a seven-segment display.

LW: Connect a switch to the CLR� input to reset the counter;
that must be done at the beginning. Set the delay through each
of the flip flops at 3. (Do this by highlighting all of them,
pulling down Simulation Params from the Simulate menu, and
changing the delay from 1 to 3. Watch the timing trace and see
that the counter reaches its state well into the clock period.
Also, the counter reaches 10 and remains there for a short
period.

Magnify the display (by clicking �� on the Simulator
Palette two or three times) and determine when the answer is
stable relative to the trailing edge of the clock and how long the
system stays in state 10. (Note that by clicking on the timing
display, a vertical line will appear at that point. That will help
measure the timing more accurately.)

D.4.5 Experiments Based on Chapter 8 Material

■ 23. Using a 74164 shift register and a minimum number of AND,
OR, and NOT gates, design and build a system that produces
an output of 1 when the last nine inputs were 0. 

HW, BB, LW: Use a pulser for the clock and a switch for the
input.

■ 24. Design a serial adder to add two 4-bit numbers. Each number is
stored in a 7495 shift register.

Full
Adder

Shift Registers

Flip Flop

c
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Load them using the parallel load capability. You must clear
the carry storage flip flop before starting. Use a pulser for
the clock and a switch to control whether it is loading or
shifting. Display the contents of the lower shift register
and the carry flip flop, which will have the result after four
pulses. 

■ 25. Design a counter that goes from 0 to 59 and display the count on
the two seven-segment displays.

HW: Since the displays need a clock to alternate between
the digits much faster than the count clock, there are two
alternatives:
a. Use the pulser to check the counting.
b. Set the frequency of the clock fast enough to get a

good display and then use additional counters to reduce
the frequency. (Remember that the OV output on the
binary counter gives you an output for every 16 clock
inputs.)

■ 26. Build the solution to Exercise 12a in Chapter 8.

D.5 LAYOUT OF CHIPS REFERENCED
IN THE TEXT AND EXPERIMENTS
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A1 is one input to gate 1, B1 is the second input, . . . ; Y 1 is the output.
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*WinBreadboard includes the 7473A, for which the connections for J1 and K1 are
interchanged, as are those for J2 and K2.
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612

E.1 COMBINATIONAL EXAMPLES

The inputs, w, x, y, and z represent a positive binary integer. The output, f,
is 1 iff the input is a prime or a perfect square but is 0 if the input is 0. A prime
number is a positive integer divisible (with no remainder) only by 1 and itself. 
(Although 0 is a perfect square, we have specifically excluded that case.)
Design this system using a minumum number of NAND or NOR gate 
packages.

The following is the truth table:

w x y z f
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Shown next are maps for both f and f�.

APPENDIX E: COMPLETE EXAMPLES
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E.1 Combinational Examples 613

f = w�z + x�z + y�z + w�xy� + w�x�y
f� = wz� + xyz� + wxy + x�y�z�

f = (w� + z) (x� + y� + z) (w� + x� + y�) (x + y + z)

The two-level NAND gate implementation requires 3 two-input gates, 
2 three-input gates, and 1 five-input gate, three packages. The two-level
NOR uses 1 four-input gate, 3 three-input gates, and 1 two-input gate, only
two packages (since the two-input gate uses the leftover four-input one).

The NOR implementation is

f

w �

w �

x �

x �

y �

y �

z

z

y
 z

x

We could reduce the number of packages using NAND gates to two by
factoring z from the second and third terms and w� from the others

f = z (x� + y�) + w� (z + xy� + x�y) 
= z (x� + y�) + w� [z + (x + y) (x� + y�)]

That results in the following circuit, which uses only 7 two-input NAND
gates (two packages).

f

z � w �

x �

y �

z

y

x
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614 Append ix E Complete Examples

The inputs represent a decimal digit in 2421 code (See Table 1.7). In that
weighted code, each of the unused combinations also represent one of the
decimal digits. Design a system with two outputs, f and g, such that f is 1 iff
the digit represented is a multiple of 2 or 3 (or both) and g is 1 if this is not
the normally used code. For example, 7 is normally coded 1101 (2 + 4 + 
0 + 1) and the code 0111 (0 + 4 + 2 + 1) is unused. Thus, f = 0 in both rows,
but g = 0 for row 1101 and g = 1 for row 0111.

A truth table for these functions is shown next.

w x y z Digit f g

0 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 1 0 2 1 0
0 0 1 1 3 1 0
0 1 0 0 4 1 0
0 1 0 1 5 0 1
0 1 1 0 6 1 1
0 1 1 1 7 0 1
1 0 0 0 2 1 1
1 0 0 1 3 1 1
1 0 1 0 4 1 1
1 0 1 1 5 0 0
1 1 0 0 6 1 0
1 1 0 1 7 0 0
1 1 1 0 8 1 0
1 1 1 1 9 1 0

We will start by getting sum of products representations, leading toward
NAND gate solutions. The functions f and g are mapped below.

EXAMPLE E.2
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E.1 Combinational Examples 615

The minimum sum of products expressions for f and g are

f = xz� + w�x�y + wxy + wx�y� + {wz� or yz�}
g = w�xy + w�xz + wx�y� + wx�z�

A two-level solution would require 2 two-input gates, 6 three-input gates
(since we could share the gate producing wx�y�), 1 four-input gate, and 
1 five-input gate. That would require five packages.

We could take advantage of sharing, by using wx�z� instead of the last
term in f. That would save a two-input gate, reducing the package count to
four, since the two-input gate could be implemented using the extra four-
input one.

Each function could be implemented with only two-input gates, shar-
ing two, but requiring a total of 17 gates (five packages):

f = z� (x + y) + [w� +(x + y�) (x� + y)] [w + x�y]
g = w� (xy + xz) + w (x�y� + x�z�)

Another approach, using two- and three-input gates comes from the
following equations:

f = xz� + y (w�x� + wx) + wx� (y� + z�)
g = w�x (y + z) + wx� (y� + z�)

resulting in a circuit using 3 three-input gates and 8 two-input gates, only
three packages. The circuit is shown below.

w �
x �

x �

x �
z �

w
x

y �

y
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f� = w�x�y� + w�xz + xy�z + wx�yz
g� = w�x� + wx + {w�y�z� or xy�z�} + {wyz or x�yz}

or, choosing the first of the alternates,

f = (w + x + y) (w + x� + z�) (x� + y + z�) (w� + x + y� + z�)
g = (w + x) (w� + x�) (w + y + z) (w� + y� + z�)

The two-level solution requires 2 two-input gates, 5 three-input gates, and
3 four-input gates, which could be implemented with four packages. There
is no way to do it with all two-input gates or with less than four packages.
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Next, we will look at product of sums expressions and NOR gate
implementations. The maps of f� and g� are shown next.
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the point of view of this problem). It can be a strike, a foul ball, a ball, or
anything else that will end this batter’s turn (such as a hit or a fly out).

A foul ball is considered a strike, except when there are already two
strikes, in which case the number of strikes remains 2. The output is to
indicate the number of balls and strikes after this pitch unless the bat-
ter’s turn is over. If the batter’s turn is over for any reason, the output
should indicate 0 balls and 0 strikes.

Show the code for the inputs (there should be 6—2 for the what
happened on that pitch, 2 for the number of balls, and 2 for the number
of strikes) and for the outputs (there should be 5—3 for balls and 2 for
strikes). Then show maps and an implementation using NAND gates.

Comment: A more complete problem would include the number of outs,
but that would involve two more inputs for the number of outs before the
pitch and at least one more input column for pitch outcome, since we
would need to differentiate between hits and outs, as well as double
plays and players out stealing.

We will use the first two inputs, a and b, to indicate the number of
balls, the next two, c and d, to indicate the number of strikes (which is
never 3), and the last two, e and f, to indicate the outcome of the pitch,
as follows:

e f Outcome
0 0 Strike
0 1 Foul
1 0 Ball
1 1 Anything else

The outputs, w and x, are the number of balls after the pitch, and y and
z are the number of strikes after the pitch. 

The six variable maps are shown next. The layers correspond to the
number of balls; the columns are the number of strikes. Since there are
never three strikes before a pitch, the 11 column is all don’t cares.

E.1 Combinational Examples 617

The problem is to design a ball and strike counter for baseball. The
inputs are how many balls (0, 1, 2, 3) before this pitch, how many strikes
(0, 1, 2) before this pitch, and what happens on this pitch. The outputs
are how many balls after this pitch (0, 1, 2, 3) or how many strikes after
this pitch (0, 1, 2). In baseball, there are four outcomes of any pitch (from

EXAMPLE E.3
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The resulting minimum sum of product equations are 

w = a�bef� + ab�ef� + ac�e� + ae�f
x = b�ef� + bc�e� + be�f
y = de� + ce�f + a�bcef� + ab�cef�
z = c�d�e� + a�def� + b�def�

There are no common prime implicants that take advantage of sharing (as
in Section 3.8). Implementing them directly requires
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y  

w

x

z

e �

e �

e �

f �

f �

c �
d �
e �

b �

f �

e �

a �

b

b �

a

c        

a        

b        

e        

a        

d        
e        

b        

d

c     

f �

f

e

Gates Packages
Five-input 2 2
Four-input 6 3
Three-input 9 3
Two-input 1 1

for a total of nine packages.
Taking advantage of what is common in the first two terms of w and the

last two terms of y, and also factoring literals in x and z, we can manipulate
them to

w = (a�b + ab�) ef� + ae� (c� + f )
x = b�ef� + be� (c� + f )
y = de� + ce�f + (a�b + ab�) cef� = de� + c [e�f + (a�b + ab�) ef�]
z = c�d�e� + def� (a� + b�)

Noting that the (a�b + ab�) ef� and (c� + f ) terms are shared, this requires
only six packages (where either the extra three- or four-input gate is used for
the 13th two-input one).

Gates Packages
Four-input 1 1
Three-input 5 2
Two-input 13 3

E.1 Combinational Examples 619
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E.2 SEQUENTIAL EXAMPLES

Design a Moore system with one input, x, and one output, z, such that z
changes whenever there have been two consecutive 0 inputs. The system
output is initially 0. Implement it with JK flip flops and NAND.

Sample
x 1  1  0  0  1  0  0  1  0  0  0  1  0  0  1  0  1  0  0  0  0  0  
z 0  0  0  0  1  1  1  0  0  0  1  0  0  0  1  1  1  1  1  0  1  0  1

From the sample timing trace, it is clear that when there are more than two
consecutive 0 inputs, the output keeps changing.

There are two nowhere states, A where the output is 0 and B where 
the output is one. In either of these states, a 1 input leaves the state
unchanged, and a 0 input moves ahead. The other two states are C, where
the output is still 0, but there has been a 0 input and D, where the output is
still 1. This leads to the following state diagram.

EXAMPLE E.4
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With consecutive 0 inputs, we go back and forth between states C and D.
The state table for this is

Q Q� z
x = 0 x = 1

A C A 0
B D B 1
C D A 0
D C B 1

There are three state assignments that we might consider.

a. Q Q1 Q2 b. Q Q1 Q2 c. Q Q1 Q2

A 0 0 A 0 0 A 0 0
B 0 1 B 0 1 B 1 1
C 1 0 C 1 1 C 0 1
D 1 1 D 1 0 D 1 0
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E.2 Sequential Examples 621

*In Chapter 9, we will see that this assignment for Q1 will produce the simplest inputs for
that JK flip flop.

The first and third assignments require no output logic; z = Q2 for assign-
ment a and z = Q1 for assignment c. For assignment b, z = Q1� Q2 + Q1 Q2�,
requiring three gates. We will complete the design using assignments a
and c.

a. c.
x Q1 Q2 Q1

� Q1
� Q1

� Q2
�

0 0 0 1 0 0 1
0 0 1 1 1 1 0
0 1 0 1 1 0 1
0 1 1 1 0 1 0
1 0 0 0 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 1
1 1 1 0 1 1 1

For assignment a, the maps are

0 1

00

01

11

10

x

1

1

1

1

0 1

00

01

11

10

x

Q1 Q2Q1 Q2

1

1

11

Q1
� Q2

�

J1 = x� K1 = x J2 = K2 = x� Q1 z = Q2

This requires 1 two-input NAND and two inverters.*

For assignment c, the maps are

0 1
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11

10

x

1

1 1

1

0 1

00

01

11

10

x

Q1 Q2Q1 Q2

1

1

1

1

J1 = K1 = x� Q2� J2 = x� + Q1 K2 = x� + Q1 z = Q1
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This requires 3 two-input NANDs and two inverters. (Assignment b would
require 4 two-input NANDs and one inverter).

The circuit for assignment a becomes

622 Append ix E Complete Examples

x

Z

CLOCK

CLEAR�

J Q1

Q1
K

J Q2

Q2
K� �

We are designing an automatic light controller for a small room, one that holds
a maximum of three people. There is a signal that is 1 for one clock period on
line x1 whenever someone enters the room and a similar signal on line x2 when
someone leaves. When the room is empty, the light in the room is off; when
anyone is in the room, the light is on. Output z1 controls that light. If the room
is full, a red light, controlled by output line z2, outside the room is lit.

We need an up/down counter, AB, initialized to 0, to keep track of the
number of people in the room. It is somewhat different from the one dis-
cussed in Example 7.8 because there are separate inputs for counting up
and counting down.

The state table is thus

AB x1x2 A� B� z1z2

0 0 0 1 1 0 1 1
0 0 0 0 X X 0 1 0 0 0 0
0 1 0 1 0 0 1 0 0 1 1 0
1 0 1 0 0 1 1 1 1 0 1 0
1 1 1 1 1 0 X X 1 1 1 1

The counter goes up when someone enters (the 10 column) and down
when someone leaves (the 01 column). We assume that no one enters
when the room is full and no one leaves when it is empty (accounting for the
don’t cares). The first output is 1 whenever the count is not 0, and the sec-
ond is 1 when the count is 3. (This is a Moore system.)

The equations for the outputs can read from the state table.

z1 = A + B z2 = AB

EXAMPLE E.5
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where the NOT gate is needed for the inputs to Q2 to create an AND. Also,
a CLEAR� signal is shown to initialize the system to state 00.
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The maps for the next state, with the J sections shaded, are shown next.

00 01 11 10

00

01

11

10

x1 x2 x1 x2

A B

X

1

1 11 X

1 1 1

00 01 11 10

00

01

11

10

A B

1

1 1 X

1

11

1X

A★ B★

JA = x1 x2� B KA = x1� x2 B� JB = KB = x1� x2 + x1 x2�

The circuit is shown next, with a CLEAR� to initialize it.

J B

B�K

J

x2

x1

A

A �K

CLOCK

CLEAR�

z1

z2

Design a Moore system using JK flip flops that produces a 1 output if the
input pattern has been  1 0 1 1

a. If overlapping is NOT allowed (5 states).
b. If overlapping is allowed (5 states).
c. Once the output is 1, it remains 1 as long as the pattern is 

continuing (7 states).

EXAMPLE E.6
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Samples
x 0  0  1  0  1  1  0  1  1  1  0  1  1  0  1  1  0  0  
za ?  0  0  0  0  0  1  0  0  0  0  0  0  1  0  0  0  0  0  0  0
zb ?  0  0  0  0  0  1  0  0  1  0  0  0  1  0  0  1  0  0  0  0
zc ?  0  0  0  0  0  1  1  1  1  0  0  0  1  1  1  1  1  0  0  0

All three start out the same way, where state A is nowhere, looking for
the first 1, state B is reached with the first 1, C is reached with the 0, D on
the second 1, and E is reached when the pattern is complete and the out-
put is 1. The first state diagram shows the answers for parts a and b.

624 Append ix E Complete Examples

0
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0

E
 1 
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(no)

(over)

After getting to state E, a 1 input would be the first 1 in a new sequence
(state B). If overlapping is not allowed, a 0 input leaves us nowhere, back in
state A. If overlapping is allowed, we now have the 10 of a new pattern and
go to state C.

For part c, we need two new states. From E, a 0 input continues the
pattern and should thus produce a 1 output. Then a 1 input keeps it going
(to state G). Finally, another 1 gets us back to state G as shown below.
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We will next look at the implementation of this system using JK flip flops. We
will consider two state assignments:

a. Q q1 q2 q3 b. Q q1 q2 q3

A 0 0 0 A 0 0 0
B 0 0 1 B 0 1 0
C 0 1 0 C 0 0 1
D 0 1 1 D 0 1 1
E 1 0 0 E 1 1 0
F 1 0 1 F 1 0 1
G 1 1 0 G 1 1 1

The first just assigns the states in numerical order. The second uses some
information from Chapter 9. First, we will convert the state diagram to a
state table and then create the truth table using the first assignment.

Q Q� z
x = 0 x = 1

A A B 0
B C B 0
C A D 0
D C E 0
E F B 1
F A G 1
G C E 1
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The design truth table has 16 rows:

x q1 q2 q3 q1
�    q2

� q3
� J1 K1 J2 K2 J3 K3

A 0 0 0 0 0 0 0 0 X 0 X 0 X
B 0 0 0 1 0 1 0 0 X 1 X X 1
C 0 0 1 0 0 0 0 0 X X 1 0 X
D 0 0 1 1 0 1 0 0 X X 0 X 1
E 0 1 0 0 1 0 1 X 0 0 X 1 X
F 0 1 0 1 0 0 0 X 1 0 X X 1
G 0 1 1 0 0 1 0 X 1 X 0 0 X

0 1 1 1 X X X X X X X X X
A 1 0 0 0 0 0 1 0 X 0 X 1 X
B 1 0 0 1 0 0 1 0 X 0 X X 0
C 1 0 1 0 0 1 1 0 X X 0 1 X
D 1 0 1 1 1 0 0 1 X X 1 X 1
E 1 1 0 0 0 0 1 X 1 0 X 1 X
F 1 1 0 1 1 1 0 X 0 1 X X 1
G 1 1 1 0 1 0 0 X 0 X 1 0 X

1 1 1 1 X X X X X X X X X

After mapping these, we get

J1 = x q2 q3 K1 = x� q2 + x� q3 + x q2� q3�

J2 = x� q1� q3 + x q1 q3 K2 = x� q1� q3� + x q1 + x q3

J3 = q1 q2� + x q1� K3 = x + q1 + q2

Z = q1

This requires 8 two-input gates and 8 three-input gates plus the NOT for x�.
Using the second assignment, we get the following design truth table:

x q1 q2 q3 q1
�    q2

� q3
�

A 0 0 0 0 0 0 0
C 0 0 0 1 0 0 0
B 0 0 1 0 0 0 1
D 0 0 1 1 0 0 1

0 1 0 0 X X X
F 0 1 0 1 0 0 0
E 0 1 1 0 1 0 1
G 0 1 1 1 0 0 1
A 1 0 0 0 0 1 0
C 1 0 0 1 0 1 1
B 1 0 1 0 0 1 0
D 1 0 1 1 1 1 0

1 1 0 0 X X X
F 1 1 0 1 1 1 1
E 1 1 1 0 0 1 0
G 1 1 1 1 1 1 0

We will map these and use the quick method.
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E.2 Sequential Examples 627
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Q1
★ Q2

★ Q3
★

xq1 xq1 

q2q3

The J sections of each of the maps are shaded, producing the equations

J1 = x q2 q3 K1 = x q3 + x� q3�

J2 = x K2 = x�

J3 = x� q2 K3 = x� q2� + x q2

Z = q1

This assignment requires only 7 two-input gates and 1 three-input gate plus
the NOT for x� (no three-input gates).
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629

A
absorption, 65
active signals

high, 258
low, 258

adder, 10, 252–255
carry-look-ahead, 255
carry-ripple, 252
cascaded, 255
chip layouts, 607–611
decimal, 292–293
four-bit, 10–11, 30, 264, 267
full, 10, 58, 76–78, 250–252
half, 11
lab experiments, 599–601
multi-bit, 252–255
one-bit, 10, 76–78
serial, 514–515
Verilog, 289–292

adder/subtractor, 266
adjacency, 44–45
adjacent squares, 66
algebra. See switching algebra

Boolean, 78–80
algorithmic state machine (ASM) diagrams,

511–515
Altera tool set, 4
American Standard Code for Information

Interchange (ASCII), 17–18
AND. See also gate

AND/OR/NOT implementation, 48–52
arrays, 276–278
defined, 38–39
gate, 40
wired, 274

arrays. See gate arrays
associative law, 39
asynchronous counters, 447–450, 503–506

B
base, 4
binary arithmetic, 9-15

addition, 9-14
binary to decimal conversion, 4–6
digits, 1, 5
decimal to binary conversion, 6–7
error detecting and correcting codes,

301–304
hexadecimal numbers, 8
integers, 4
signed numbers, 11–14
subtraction, 14–15

binary coded decimal (BCD), 15–16, 22–23
bits, 1, 3
Boole, George, 78
Boolean algebra, 37, 78–80
breadboards, 27

hardware logic, 4, 567–591
Macbreadboard, 4, 591–593
Winbreadboard, 4, 591–593

bubble, 60
bus, 275

controller design, 416, 461–464

C
canonical product, 47
canonical sum, 44
carry-look-ahead adders, 255

INDEX

Note: Page numbers having the format 9-x indicate material in Chapter 9, which can be found online at
http://www.mhhe.com/marcovitz.
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cascaded
adders, 255
comparators, 256–268
counters, 492–494

check bit, 302
chips, 50. See also integrated circuits
circuits

integrated, 50 (see also integrated circuits)
number of levels, 48–49

clear signal, 376–377
clock, 2, 365
clocked, 365
coding 

inputs and outputs, 30, 34–36, 416
states, 417, 9-22 to 9-28

combinational systems, 2
design process for, 29–37

common mistakes, 53, 67, 128
commutative property, 39
comparator, 256–258

chip layout, 608
complement, 44. See also NOT

DeMorgan’s theorem, 52–54
radix, 12
two’s, 11–14

complete examples
combinational, 612–619
sequential, 620–627

complex programmable logic devices (CPLD),
510–511

consensus, 67–70. See also iterated consensus
Continuing Examples (CE)

CE1, 29, 33–34, 57
CE2, 29, 34–35, 57
CE3, 29, 35, 58, 76–78, 250–252
CE4, 29, 35–36, 293–301
CE5, 29, 35
CE6, 366–369, 415n, 450–452, 454
CE7, 415, 452–454
CE8, 415, 458–459
CE9, 415, 442–445

CE10, 415–416, 446–447
CE11, 416, 461–464

convert
binary to decimal, 4–6
binary to hexadecimal, 8
decimal to binary, 6–7
decimal to hexadecimal, 8
hexadecimal to decimal, 8

counter, 437–450
application of, 499–506
asynchronous, 447–450, 503–506
chip layouts, 611
decimal (decade), 441–442, 502–503
enable signals, 499–500
lab experiments, 605–607
synchronous, 437–447, 499–503
up/down, 439–440, 449–450,

502–503
cover, 119
CPLD (complex programmable logic device),

510–511

D
decade counter, 441–442, 502–503
decimal systems

BCD, 16–17 (see also binary 
coded decimal)

decoders, 258–267
chip layouts, 608
enable signals, 258–267
implementation of logic functions,

263–267
lab experiments, 601

delay
adders, 251–255
combinational systems, 250–252

delay flip flops (D), 372–377
analysis, 380–390
design techniques, 420–421
PLDs and, 506–509

630 Index
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DeMorgan’s theorem, 52–54
demultiplexer, 273–274
design process

combinational systems, 29–37
sequential systems, 416–418

design truth table, 418–420
digital systems, 1
distributive, 41–42
don’t care conditions, 32–33, 112

iterated consensus, 206
Karnaugh map, 135–139
Quine-McCluskey, 204

drivers
seven-segment displays, 35–36, 293–301

dual, 40
dual in-line packages (DIPs), 50

E
8421 code, 16
enable signals

counters, 499–503
decoders, 258–267
PLDs, 506–507
shift registers, 496–497

encoders, 268–269
chip layouts, 609
priority, 268–269

English, 3
equivalent, 9-1 to 9-3

partitions, 9-17 to 9-22
tabular reduction, 9-3 to 9-10

erasable programmable read-only memories
(EPROMs), 279

error detection/correction, 301–304
essential prime implicant, 121

don’t care conditions, 135–136
prime implicant tables, 208

excess 3 code, 16–17
Exclusive-NOR gates, 63

comparators, 256–258

Exclusive-OR gates, 63–64
comparators, 269–270

exercises, 7n
expressions

product of sums, 46–47
sum of products, 43

F
factoring, 41
false outputs, 387–389
fan-in, 253
field programmable logic array, 276n, 279, 510
finite state machines (FSMs), 365. See also

state machines, sequential systems
5421 code, 16–17
five-variable maps, 143–149
flip flops, 366, 371–380

asynchronous clear inputs, 376–377
chip layouts, 609–610
delay, 372–377, 420–422 (see also delay flip

flops (D))
design table, 420–425
design techniques for, 420–436
experiments, 603–605
JK, 378–379, 422–423, 425–430 (see also

JK flip flops)
leading-edge triggered, 373–375
master/slave, 372
PLDs, 506–511
quick method, 428–430
registers, 493 (see also registers)
Set-Reset, 377–378, 423–424 (see also Set-

Reset (SR) flip flop)
state, 373
static clear input, 376–377
Toggle, 378–379, 424–425 (see also Toggle

(T) flip flops)
trailing-edge triggered, 371–380

FPGA (field programmable gate array),
276n, 279

Index 631
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full adder, 10, 58, 76–78, 250–252
functionally complete, 59
functions

complement of, 52–54
multiple output, 150–161, 216, 226
simplification, 65–70

fuse, 279

G
gate, 32, 39

AND, 39
chip layouts, 607–608
delay, 250–252
Exclusive-OR, 63
Exclusive-NOR, 63
function implementation, 48–52, 59–65
lab experiments, 598–600
latches, 370–371
NAND, 59–62
NOR, 61–62
NOT, 40
OR, 39

gate arrays, 249, 276–288
field programmable, 276n
PAL design, 286–288
PLA design, 281–284
PLDs, 506–511
ROM design, 280–281

generate, carry, 255
glitch, 251, 387–388
Gray code, 18

H
half adders, 11
Hamming code, 301–304
Hamming distance, 302
hardware design language (HDL), 289–292,

516–517

hazard, 251
hexadecimal, 8
hot, 515

I
idempotency, 41
identity, 41
implicant, 118–119. See also prime implicant
included in, 204–205
Inclusive-OR, 50
incompletely specified functions, 32. See also

don’t care conditions
Instruction Register, 519–521
integrated circuits (ICs), 50

7400 series, 51 (see also 7400 
series chips)

inversion, 40
involution, 41
isolated, 121

Map Method 1, 122–130
iterated consensus, 201

multiple output, 219–222
one output, 204–207
prime implicant tables, 208–216,

222–226
iterative systems, 249, 250–258

J
JK flip flops (JK), 378–377. See also flip flops

analysis, 381–390
design techniques, 422–423, 425–430

K
Karnaugh map, 111–161

algebraic simplification, 543–547
don’t cares, 135–139
five-variable, 143–149
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Map Method 1, 122–130
Map Method 2, 130–135
multiple output, 150–161
product of sums, 140–143
six-variable, 144, 149
sum of products, 122–139

Karnaugh, Maurice, 111

L
laboratory systems, 3

Altera, 4
chip layout, 607–611
experiments, 598–607
hardware, 3, 583–587
LogicWorks, 4, 589–594
MacBreadboard, 4, 587–589
WinBreadboard, 4, 587–589

large-scale integration (LSI), 51
latches, 370–371
levels, 48–49
literal, 43
LogicWorks, 593–598
LUT (lookup table), 510–511

M
MacBreadboard, 4, 591–593
Map Method 1, 122–130
Map Method 2, 130–135
master/slave flip flop, 372
maxterm, 46
Mealy model, 369–370

analysis, 369–370
ASM diagrams, 513–514
false output (glitch), 387–388
state diagrams, derivation of, 452–461

medium-scale integration (MSI), 51
memory, 2, 364–365, 518–521. See also 

sequential systems

minimum
algorithmic minimization, 201–226
don’t care conditions, 135–139
five/six variable maps, 143–149
NAND gate networks, 72–78
product of sums, 47, 140–143
sum of products, 44

don’t cares, 135–139
using the Karnaugh map, 121–135

minterm, 43
Moore model, 367–369

analysis, 367–369
ASM diagrams, 512–513
state diagrams, derivation of, 450–452,

454–455, 458–459, 461–464
multiple output problems

iterated consensus, 219–222
Karnaugh map, 150–161
Quine-McCluskey, 216–222

multiplexers (mux), 269–272

N
NAND gates. See also gate

adders, 76–78 (see also adder)
implementation with, 59–62, 72–78
minimum cost, 154–156

natural language, 3
truth tables for, 33–37

negative logic, 52
negative numbers, 10–15
next state, 367–368
NOR gates, 61–62
NOT. See also gates

defined, 38, 40
gates, 40

null property, 41
number systems, 4–18. See also binary

arithmetic
binary coded decimal (BCD), 16–17
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number systems, continued
hexadecimal (hex), 8
signed numbers, 11–14

O
one-hot encoding, 515–516
OR. See also gate

AND/OR/NOT implementation,
48–52

arrays, 276–288
defined, 38–39
exclusive, 63–64
gate, 39
sum term, 46
wired, 274

output
active high, 258
active low, 258
false, 387–388
multiple, 150–161, 216–226
three-state, 280

output consistent, 9-11
overflow, 10, 13–15

P
PAL (programmable array logic), 249, 279,

286–288
parallel-in

counter, 499–500
shift register, 496–498

parentheses, 40
parity bit, 302
partitions, 9-10 to 9-28

finding, 9-14 to 9-17
output consistent, 9-11 to 9-12
properties of, 9-13 to 9-14
SP, 9-11 to 9-12, 9-14 to 9-17
state assignment, 9-22 to 9-28
state reduction, 9-17 to 9-22

substitution property (SP), 9-11 to 9-12, 9-14
to 9-17

period, 365
Petrick’s method, 210–213
PLA (programmable logic array), 279,

281–284
PLD (programmable logic device), 276n,

506–511
PLS100, 284
positive logic, 52
precedence, 40
preset input, 376–377
prime implicant, 111, 120

don’t cares, 138
essential, 121, 138
iterated consensus, 219–222
Quine-McCluskey, 201–204
tables of, 208–216, 222–226

prime implicates, 140
priority encoder, 268–269
product, 38. See also AND
product of partitions, 9-13 to 9-14
product of standard sum terms, 55
product of sums, 46–47, 48–50, 53–54

implementation, 49–50, 62
Karnaugh map, 140–143

product term, 43
Program Counter, 519–521
programmable array logic, 249
programmable logic array, 249
programmable logic devices, 249, 506–511
propagate, carry, 255

Q
quick method, 428–430
Quine-McCluskey method, 201

multiple output, 216–222
one output, 201–204
prime implicant tables, 208–216,

222–226
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R
radix, 4
radix complement, 12
read-only memory (ROM), 249, 278–281
registered outputs, 506–511
registers, 493

chip layouts, 609–611
counters, 499–506 (see also counter)
Instruction, 519–521
Program Counter, 519–521
shift, 493–499 (see also shift register)

reset, 370. See also flip flops
r�/w�, 518–521 

S
sequential systems, 3

analysis of, 380–390
ASM diagrams, 511–515
asynchronous counters, 447–450,

503–506
derivation of state tables/diagrams,

450–464
design process for, 416–477
design truth table, 418–420
equivalency, 9-1 to 9-3
flip flops, 366, 371–380
hardware design languages, 516–517
lab experiments, 603–607
latches, 370–371
Moore model, 367–369
partitions, 9-10 to 9-28
shift register, 493–499
state assignment, 417, 9-22 to 9-28
state reduction, 417, 9-3 to 9-10, 9-17 to 9-22
synchronous counters, 437–447, 499–503

serial-in, parallel-out shift register, 495–496
serial-in, serial-out shift register, 493–495
set, 370
Set-Reset (SR) latch, 370–371
Set-Reset (SR) flip flop, 377–378, 423–424
seven-segment display, 30, 35–36, 293–301

7400 series chips
chip layouts, 607–611
7400, 64, 607
7402, 64, 607
7404, 51, 607
7408, 51, 607
7410, 64, 608
7411, 51, 608
7420, 64, 608
7421, 51, 608
7427, 64, 608
7430, 64, 608
7432, 51, 607
7449, 294, 608
7473, 380, 609
7474, 380, 609
7476, 609
7483, 254–255, 608
7485, 257, 309, 608
7486, 64, 304, 607
7490, 503, 611
7492, 503, 611
7493, 503–504, 611
7495, 497, 610
7496, 610
74138, 260–262, 608
74147, 269, 609
74151, 273, 609
74153, 273, 315–316, 609
74154, 261, 608
74155, 261, 608
74157, 273, 609
74160, 502, 611
74161, 499–501, 504–505, 611
74162, 502, 611
74163, 502, 504–506, 611
74164, 496, 610
74165, 496–497, 610
74166, 496–497, 610
74174, 380, 610
74175, 380, 610
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7400 series chips, continued
74190, 502, 611
74191, 502–504, 611
74192, 502, 611
74193, 502, 611
74194, 497–498, 610
74283, 254, 608

shift register, 493–499
parallel-in, 496–498
right/left, 497–498
serial-in, parallel-out, 495–496
serial-in, serial-out, 493–495

signed-magnitude, 11
signed numbers, 11–14
simple computer, design of, 518–520
simplification, 45

of switching functions, 65–70
16R4, 506–509
16R6, 506–509
16R8, 506–509
six-variable maps, 144–145, 149
slave. See master/slave flip flop
small-scale integration (SSI), 51
solved problems, 5n, 7n
SR. See Set-Reset (SR) flip flop
standard product term, 43
standard sum term, 46
state, 367
state assignment, 417, 9-22 to 9-28
state diagram, 367–371, 450–464
state graph. See state diagram
state machines, 365. See also sequential systems
state reduction, 417, 9-3 to 9-10, 9-17 to 9-22
state table, 367–371, 450–464
static (asynchronous) clear signals, 376–377
storage

flip flops, 371–380 (see also flip flops)
latches, 370–371
shift register, 495

structural Verilog, 289–291, 516–517
substitution property (SP) partitions, 9-11 to 9-12

finding, 9-14 to 9-17
state assignment, 9-22 to 9-28
state reduction, 9-17 to 9-22

subtractor, 14–15, 256
sum, 38. See also OR
sum of partitions, 9-14
sum of products, 43

implementation, 48–49, 59–60
Karnaugh map, 122–129
minimum, 44
multiple output, 150–161, 216–226
PALs, 286–288
PLAs, 281–284
ROMs, 280–281

sum of standard product terms, 44
sum term, 46
switching algebra, 37–79

absorption (P12), 65, 544–545 
adjacency (P9), 44–45, 543
associative law (P2), 39
basic properties of, 40–43
commutative property (P1), 39
complement (P5), 41, 52–54
consensus (P13), 67–70, 545–546
definition of, 38–40
DeMorgan’s theorem (P11), 52–54
distributive law (P8), 41–42
dual, 40
factoring, 41–42
from truth table, 54–58
function manipulation, 543–48,

65–70
idempotency (P6), 41
identity (P3), 41
involution (P7), 41
map, 543–547
null (P4), 41
precedence, 40
simplification (P10), 45, 544

synchronous systems, 365. See also sequential
systems

T
tables, prime implicant. See prime implicant,

tables of
ten’s complement, 12
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three-state gates, 274–275
timing diagrams

asynchronous counters, 448–449
flip flops, 374–380

timing trace, 367
Toggle (T) flip flops, 378–379, 424–425
traffic controller, 2
transistor-transistor logic (TTL), 51
transitions. See flip flops
tri-state gates. See three-state gates
truth tables, 2, 31

algebraic expressions, 54–58
development of, 33–37
don’t care conditions, 32–33
flip flops, 371–380, 420–425
proof of equality, 42–43

2421 code, 16–17
2 of 5 code, 16–17

two-level circuit, 48–49
two’s complement, 11–14

U
unsigned numbers, 4–7, 11

V
Verilog, 289–292, 516–517
very large-scale integration (VLSI), 51
VHDL, 289

W
weighted codes, 17
WinBreadboard, 4
wired AND/OR, 284
word problems, 29–30, 36–37, 450–464
words, 518
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2.1 The Design Process for Combinational Systems 35

We could have started with some other fixed value, such as switches
b and c up means that the light is on or that switches b and c down means
that the light is on. Either of these would produce the truth table of 
Table 2.5b, which is equally acceptable.

We have already developed the truth table for CE3, the 1-bit binary
full adder, in Section 1.2.2, Table 1.5 (although we did not refer to it as a
truth table at that time).

Although we could easily construct a truth table for CE5, the 4-bit
adder, we would need 512 rows. Furthermore, once we had done this, we
would still find it nearly impossible to simplify the function by hand (that
is, without the aid of a computer). We will defer further discussion of this
problem to Chapter 5.

We will now examine the display driver of CE4.  A block diagram of
the system is shown in Figure 2.3a. The inputs are a code for the decimal
digit and are labeled W, X, Y, and Z. The display driver must provide the
seven inputs to the display, a, b, c, d, e, f, and g. The layout of the display
is shown in Figure 2.3b. How each digit is displayed is shown in Figure
2.3c, where a solid line indicates that the segment is lit, and a dashed line
that it is not lit. Note that various devices use alternative displays for the
digits 6, 7, and 9. For example, segment a is sometimes lit for a 6, and
sometimes it is not.

The first thing that we must do is to select a code for the decimal
digit. That will (obviously) affect the truth table and might make a sig-
nificant difference in the cost of the implementation. For the sake of this
example, we will assume that the digits are stored in 8421 code. (We will
look at variations on this in Chapter 4.) The next thing we need to know
is whether the display requires a 0 or a 1 on each segment input to light
that segment. Both types of displays exist. The design specification must
also indicate which of the alternative displays for 6, 7, and 9 should be
used, or state that it doesn’t matter. Finally, we must decide what to do

Figure 2.3 A seven-segment display.

a

Display
Driver

W

X

Y

Z

a

g
f b

e c

d

d
c

b

e
f
g

(a) (b)
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D q q★

0 0 0
0 1 0
1 0 1
1 1 1

T q q★

0 0 0
0 1 1
1 0 1
1 1 0

q q★ D

0 0 0
0 1 1
1 0 0
1 1 1

q★ � T � q

S R q q★

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 — not
1 1 1 — allowed

J K q q★

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

q q★ J K

0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

q q★ S R

0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

q q★ T

0 0 0
0 1 1
1 0 1
1 1 0

D

q

q�

J

K q�

q

S

R q�

q

T

q

q�

0 1

1

D

0

0 1
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J K
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0 1

00
01
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10

S R 

01

0 1

0 0

1

T

1

0 1

q★ � D

q★ � Jq� � K�q

q★ � S � R�q
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NOR

Exclusive-OR
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SUMMARY OF PROPERTIES OF
SWITCHING ALGEBRA

P1a. a � b � b � a P1b. ab � ba Commutative

P2a. a � (b � c) � (a � b) � c P2b. a(bc) � (ab)c Associative

P3a. a � 0 � a P3b. a � 1 � a Identity

P3aa. 0 � a � a P3bb. 1 � a � a

P4a. a � 1 � 1 P4b. a � 0 � 0 Null

P4aa. 1 � a � 1 P4bb. 0 � a � 0

P5a. a � a� � 1 P5b. a � a� � 0 Complement

P5aa. a� � a � 1 P5bb. a� � a � 0

P6a. a � a � a P6b. a � a � a Idempotency

P7. (a�)� � a Involution

P8a. a(b � c) � ab � ac P8b. a � bc � (a � b)(a � c) Distributive

P9a. ab � ab� � a P9b. (a � b)(a � b�) � a Adjacency

P9aa. a�b� � a�b � ab � ab� � 1 P9bb. (a�� b�)(a�� b)(a� b)(a� b�) � 0

P10a. a � a�b � a � b P10b. a(a� � b) � ab Simplification

P11a. (a � b)� � a�b� P11b. (ab)� � a� � b� DeMorgan

P11aa. (a � b � c. . .)� � a�b�c�. . . P11bb. (abc. . .)� � a� � b� � c�. . .

P12a. a � ab � a P12b. a(a � b) � a Absorption

P13a. at1 � a�t2 � t1t2 � at1 � a�t2 P13b. (a � t1)(a� � t2)(t1 � t2) Consensus
� (a � t1)(a� � t2)

P14a. ab � a�c � (a � c)(a� � b)

GATES

a b a � b

0 0 0
0 1 1
1 0 1
1 1 1

a b ab

0 0 0
0 1 0
1 0 0
1 1 1
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Introduction to Logic Design, Third Edition by Alan Marcovitz—the 
student’s companion to logic design! A clear presentation of fundamentals 
and well-paced writing style make this the ideal companion to any �rst 
course in digital logic. An extensive set of examples—well integrated 
into the body of the text and included at the end of each chapter in 
sections of solved problems—gives students multiple opportunities  
to understand the topics being presented.

In the third edition, design is emphasized throughout, and switching 
algebra is developed as a tool for analyzing and implementing digital 
systems. The design of sequential systems includes the derivation of 
state tables from word problems, further emphasizing the practical 
implementation of the material being presented.

Laboratory experiments are included that also serve to integrate  
practical circuits with theory. Traditional hands-on hardware  
experiments as well as simulation laboratory exercises using popular 
software packages are closely tied to the text material to allow  
students to implement the concepts they are learning.

new to the Third Edition:

•  All of the K map (Karnaugh map) coverage is presented in one  
chapter (chapter 3) instead of coverage appearing in two chapters.

•  New Appendix A (Relating the Algebra to the Karnaugh Map) ties 
together algebra coverage and K map coverage.

•  Additional experiments have been added to Appendix D to allow 
students the opportunity to perform a variety of experiments.

•  New problems have been added in Appendix E for both combinational 
and sequential systems, which go from word problem to circuit all 
in one place.
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