

High-Level Synthesis

Editors

High-Level Synthesis

From Algorithm to Digital Circuit

Philippe Coussy • Adam Morawiec

Adam Morawiec
European Electronic Chips & Systems
design Initiative (ECSI)
2 av. de Vignate
38610 Grieres
France
adam.morawiec@ecsi.org

ISBN 978-1-4020-8587-1 e-ISBN 978-1-4020-8588-8

Library of Congress Control Number: 2008928131

c© 2008 Springer Science + Business Media B.V.
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

Philippe Coussy
Université Européenne

BP 92116
56321 Lorient Cedex

Centre de Recherche

philippe.coussy@univ-ubs.fr
France

Laboratoire Lab-STICC
de Bretagne - UBS

Cover illustration: Cover design by Martine Piazza, Adam Morawiec and Philippe Coussy

Foreword

High-level synthesis – also called behavioral and architectural-level synthesis –
is a key design technology to realize systems on chip/package of various kinds,
whether single or multi-processors, homogeneous or heterogeneous, for the embed-
ded systems market or not. Actually, as technology progresses and systems become
increasingly complex, the use of high-level abstractions and synthesis methods
becomes more and more a necessity. Indeed, the productivity of designers increases
with the abstraction level, as demonstrated by practices in both the software and
hardware domains. The use of high-level models allows designers with systems,
rather than circuit, background to be productive, thus matching the trend of industry
which is delivering an increasingly larger number of integrated systems as compared
to integrated circuits.

The potentials of high-level synthesis relate to leaving implementation details
to the design algorithms and tools, including the ability to determine the precise
timing of operations, data transfers, and storage. High-level optimization, coupled
with high-level synthesis, can provide designers with the optimal concurrency struc-
ture for a data flow and corresponding technological constraints, thus providing the
balancing act in the trade-off between latency and resource usage. For complex sys-
tems, the design space exploration, i.e., the systematic search for the Pareto-optimal
points, can only be done by automated high-level synthesis and optimization tools.

Nevertheless, high-level synthesis has been showing a long gestation period.
Despite early results in the 1980s, it is still not common practice in hardware design.
The slow acceptance-rate of this important technology has been attributed to a few
factors such as designers’ desire to micromanage integrated systems by controlling
their internal timing and the lack of a universal standard front-end language. The
former issue is typical of novel technologies: as systems grow in size it will be nec-
essary for designers to show a broader system vision and fewer concerns on internal
timing. In other words, this problem will naturally disappear.

The Babel of high-level modeling languages has been a significant obstacle
to the development of this technology. When high-level synthesis was introduced
in the 1980s, the designer community embraced Verilog and VHDL as specifica-
tion languages, due to their ability to perform efficient simulation. Nevertheless,

v

vi Foreword

such languages were conceived without an intrinsic hardware semantics, making
synthesis more cumbersome.

C-based hardware description languages (CHDLs) surfaced in the 1980s as
well, such as HardwareC and its hardware compiler Hercules. The limitations of
HardwareC and similar CHDLs are rooted in the modification of the C language
semantics to support hardware constructs, thus making each CHDL a different
dialect of C. The introduction of SystemC in the 1990s solved the problem by not
modifying the software programming language (in this case C++) and by introduc-
ing a class library with a well-defined hardware semantics. It is regrettable that the
initial enthusiasm was mitigated by the limited support of high-level synthesis for
SystemC.

The turn of the century was characterized by a renewed interest in CHDLs and
in high-level synthesis from CHDLs. New companies carried the torch of educat-
ing designers with new models and tools for design. Today, there are several offers
in high-level synthesis tools that provide effective solutions in silicon. Moreover,
some of the technical roadblocks to high-level synthesis have been overcome. Syn-
thesis of C-based models with pointers and memory allocators was demonstrated
and patented by Stanford jointly with NEC, thus removing the last hard technical
difficulty to synthesize full C-based models.

At present, the potentials of high-level synthesis are still very good, even though
the designers’ community has not yet converged on a single modeling language
that would lower the entry barrier of tools into the marketplace. This book presents
an excellent collection of contributions addressing different aspects of high-level
synthesis from both industry and academia. This book should be on each designer’s
and CAD developer’s shelf, as well as on those of project managers who will soon
embrace high-level design and synthesis for all aspects of digital system design.

EPF Lausanne, 2008 Giovanni De Micheli

Contents

1 User Needs . 1
Pascal Urard, Joonhwan Yi, Hyukmin Kwon, and Alexandre Gouraud

2 High-Level Synthesis: A Retrospective . 13
Rajesh Gupta and Forrest Brewer

3 Catapult Synthesis: A Practical Introduction to Interactive C
Synthesis . 29
Thomas Bollaert

4 Algorithmic Synthesis Using PICO . 53
Shail Aditya and Vinod Kathail

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 75
Michael Meredith

6 AutoPilot: A Platform-Based ESL Synthesis System 99
Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang,
and Jason Cong

7 “All-in-C” Behavioral Synthesis and Verification
with CyberWorkBench . 113
Kazutoshi Wakabayashi and Benjamin Carrion Schafer

8 Bluespec: A General-Purpose Approach to High-Level Synthesis
Based on Parallel Atomic Transactions . 129
Rishiyur S. Nikhil

9 GAUT: A High-Level Synthesis Tool for DSP Applications 147
Philippe Coussy, Cyrille Chavet, Pierre Bomel, Dominique Heller,
Eric Senn, and Eric Martin

10 User Guided High Level Synthesis . 171
Ivan Augé and Frédéric Pétrot

vii

viii Contents

11 Synthesis of DSP Algorithms from Infinite Precision Specifications . . 197
Christos-Savvas Bouganis and George A. Constantinides

12 High-Level Synthesis of Loops Using the Polyhedral Model 215
Steven Derrien, Sanjay Rajopadhye, Patrice Quinton, and Tanguy Risset

13 Operation Scheduling: Algorithms and Applications 231
Gang Wang, Wenrui Gong, and Ryan Kastner

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis . . . 257
Marı́a Carmen Molina, Rafael Ruiz-Sautua, José Manuel Mendı́as,
and Román Hermida

15 High-Level Synthesis Algorithms for Power and Temperature
Minimization . 285
Li Shang, Robert P. Dick, and Niraj K. Jha

Contributors

Shail Aditya
Synfora, Inc., 2465 Latham Street, Suite #300, Mountain View, CA 94040, USA,
shail.aditya@synfora.com

Ivan Augé
UPMC-LIP6/SoC, Équipe ASIM/LIP6, Université Pierre et Marie Curie, Paris,
France, Ivan.Auge@lip6.fr

Thomas Bollaert
Mentor Graphics, 13/15 rue Jeanne Braconnier, 92360 Meudon-la-Foret, France,
Thomas Bollaert@mentor.com

Pierre Bomel
European University of Brittany – UBS, Lab-STICC, BP 92116, 56321 Lorient
Cedex, France, pierre.bomel@univ-ubs.fr

Christos-Savvas Bouganis
Department of Electrical and Electronic Engineering, Imperial College London,
South Kensington Campus, London SW7 2AZ, UK,
christos-savvas.bouganis@imperial.ac.uk

Forrest Brewer
Electrical and Computer Engineering, University of California, Santa Barbara, CA
93106-9560, USA, forrest@ece.ucsb.edu

Cyrille Chavet
European University of Brittany – UBS, Lab-STICC, BP 92116, 56321 Lorient
Cedex, France, chavet@univ-ubs.fr

ix

x Contributors

Jason Cong
AutoESL Design Technolgoies, Inc., 12100 Wilshire Blvd, Los Angeles, CA
90025, USA

and

UCLA Computer Science Department, Los Angeles, CA 90095-1596, USA,
cong@autoesl.com, cong@cs.ucla.edu

George A. Constantinides
Department of Electrical and Electronic Engineering, Imperial
College London, South Kensington Campus, London SW7 2AZ, UK,
george.constantinides@ieee.org

Philippe Coussy
European University of Brittany – UBS, Lab-STICC, BP 92116, 56321 Lorient
Cedex, France, philippe.coussy@univ-ubs.fr

Steven Derrien
Irisa, universit’e de Rennes 1, Campus de beaulieu, 35042 Rennes Cedex, France,
steven.derrien@irisa.fr

Robert P. Dick
Department of Electrical Engineering and Computer Science, Northwestern
University, Evanston, IL, USA, dickrp@northwestern.edu

Yiping Fan
AutoESL Design Technolgoies, Inc., 12100 Wilshire Blvd, Los Angeles, CA
90025, USA, fanyp@autoesl.com

Wenrui Gong
Department of Electrical and Computer Engineering, University of California,
Santa Barbara, CA 93106, USA, gong@ece.ucsb.edu

Alexandre Gouraud
France Telecom R&D, 38-40 rue du General Leclerc, 92794 Issy Moulineaux
Cedex 9, France, alexandre.gouraud@orange-ftgroup.com

Rajesh Gupta
Computer Science and Engineering, University of California, San Diego, 9500
Gilman Drive, La Jolla, CA 92093-0404, USA, rgupta@ucsd.edu

Guoling Han
AutoESL Design Technolgoies, Inc., 12100 Wilshire Blvd, Los Angeles, CA
90025, USA, leohgl@autoesl.com

Dominique Heller
European University of Brittany – UBS, Lab-STICC, BP 92116, 56321 Lorient
Cedex, France, dominique.heller@univ-ubs.fr

Contributors xi

Román Hermida
Facultad de Informática, Universidad Complutense de Madrid, c/Prof. José Garcı́a
Santesmases s/n, 28040 Madrid, Spain, rhermida@dacya.ucm.es

Niraj K. Jha
Department of Electrical and Engineering, Princeton University, Princeton, NJ
08544, USA, jha@princeton.edu

Wei Jiang
AutoESL Design Technolgoies, Inc., 12100 Wilshire Blvd, Los Angeles, CA
90025, USA, wjiang@autoesl.com

Ryan Kastner
Department of Electrical and Computer Engineering, University of California,
Santa Barbara, CA 93106, USA, kastner@ucsd.edu

Vinod Kathail
Synfora, Inc., 2465 Latham Street, Suite # 300, Mountain View, CA 94040, USA,
vinod.kathail@synfora.com

Hyukmin Kwon
Samsung Electronics Co., Suwon, Kyunggi Province, South Korea,
hm25.kwon@samsung.com

Eric Martin
European University of Brittany – UBS, Lab-STICC, BP 92116, 56321 Lorient
Cedex, France, eric.martin@univ-ubs.fr

José Manuel Mendı́as
Facultad de Informática, Universidad Complutense de Madrid, c/Prof. José Garcı́a
Santesmases s/n, 28040 Madrid, Spain, mendias@dacya.ucm.es

Michael Meredith
VP Technical Marketing, Forte Design Systems, San Jose, CA 95112, USA,
mmeredith@ForteDS.com

Marı́a Carmen Molina
Facultad de Informática, Universidad Complutense de Madrid, c/Prof. José Garcı́a
Santesmases s/n, 28040 Madrid, Spain, cmolinap@dacya.ucm.es

Rishiyur S. Nikhil
Bluespec, Inc., 14 Spring Street, Waltham, MA 02451, USA, nikhil@bluespec.com

Frédéric Pétrot
INPG-TIMA/SLS, 46 Avenue Félix Viallet, 38031 Grenoble Cedex, France,
Frederic.Petrot@imag.fr

Patrice Quinton
ENS de Cachan, antenne de Bretagne, Campus de Ker Lann, 35 170 Bruz Cedex,
France, patrice.quinton@irisa.fr

xii Contributors

Sanjay Rajopadhye
Department of Computer Science, Colorado State University, 601 S. Howes St.
USC Bldg., Fort Collins, CO 80523-1873, USA, Sanjay.Rajopadhye@colostate.edu

Tanguy Risset
CITI – INSA Lyon, 20 avenue Albert Einstein, 69621, Villeurbanne, France,
tanguy.risset@insa-lyon.fr

Rafael Ruiz-Sautua
Facultad de Informática, Universidad Complutense de Madrid, c/Prof. José Garcı́a
Santesmases s/n, 28040 Madrid, Spain, rsautua@fdi.ucm.es

Benjamin Carrion Schafer
EDA R&D Center, Central Research Laboratories, NEC Corp., Kawasaki, Japan,
schaferb@bq.jp.nec.com

Eric Senn
European University of Brittany – UBS, Lab-STICC, BP 92116, 56321 Lorient
Cedex, France, eric.senn@univ-ubs.fr

Li Shang
Department of Electrical and Computer Engineering, Queen’s University, Kingston,
ON, Canada K7L 3N6, li.shang@queensu.ca

Pascal Urard
STMicroelectronics, Crolles, France, pascal.urard@st.com

Kazutoshi Wakabayashi
EDA R&D Center, Central Research Laboratories, NEC Corp., Kawasaki, Japan,
wakaba@bl.jp.nec.com

Gang Wang
Technology Innovation Architect, Intuit, Inc., 7535 Torrey Santa Fe Road,
San Diego, CA 92129, USA, Gang Wang@intuit.com

Changqi Yang
AutoESL Design Technolgoies, Inc., 12100 Wilshire Blvd, Los Angeles, CA
90025, USA, charles@autoesl.com

Joonhwan Yi
Samsung Electronics Co., Suwon, Kyunggi Province, South Korea,
joonhwan.yi@samsung.com, joonhwan.yi@gmail.com

Zhiru Zhang
AutoESL Design Technolgoies, Inc., 12100 Wilshire Blvd, Los Angeles, CA
90025, USA, zhiruz@autoesl.com

List of Web sites

Chapter 2

related to system level design, synthesis and verification. Our recent projects include
the SPARK parallelizing synthesis framework, SATYA verification framework. Ear-
lier work from the laboratory formed the technical basis for the SystemC initiative.
http://mesl.ucsd.edu/

Chapter 3

Catapult Synthesis product information page
The home page for Catapult Synthesis on www.mentor.com, with links to product
datasheets, free software evaluation, technical publications, success stories, testimo-
nials and related ESL product information.
http://www.mentor.com/products/esl/high level synthesis/

Algorithmic C datatypes download page
The Algorithmic C arbitrary-length bit-accurate integer and fixed-point data types
allow designers to easily model bit-accurate behavior in their designs. The data types
were designed to approach the speed of plain C integers. It is no longer necessary to
compromise on bit-accuracy for the sake of speed or to explicitly code fixed-point
behavior using integers in combination with shifts and bit masking.
http://www.mentor.com/products/esl/high level synthesis/ac datatypes

Chapter 4

Synfora, Inc. is the premier provider of PICO family of algorithmic synthesis tools
to design complex application engines for SoCs and FPGAs. Synfora’s technology
helps to reduce design costs, dramatically speed IP development and verification,

xiii

Microelectronic Embedded Systrems Laboratory at UCSD hosts a number of projects

xiv List of Web sites

and reduce time-to-market. For the latest information on Synfora and PICO prod-
ucts, please visit http://www.synfora.com

Chapter 5

More information on Cynthesizer from Forte Design Systems can be found at
http://www.ForteDS.com

Chapter 6

More information on AutoPilotTM from AutoESL Design Technologies can be
found at http://www.autoesl.com and http://cadlab.cs.ucla.edu/soc/

Chapter 7

Home Page for CyberWorkBench from NEC
http://www.cyberworkbench.com

Chapter 8

More information on Bluespec can be found at http://www.bluespec.com
Documentation, training materials, discussion forums, inquiries about Bluespec
SystemVerilog. http://csg.csail.mit.edu/oshd/
Open source hardware designs done by MIT and Nokia in Bluespec SystemVer-
ilog for H.264 decoder (baseline profile), OFDM transmitter and receiver, 802.11a
transmitter, and more.

Chapter 9

GAUT is an open source project at UEB-Lab-STICC. The software for this project
is freely available for download. It is provided with a graphical user interface, a
quick start guide, a user manual and several design examples. GAUT is currently
supported on Linux and Windows. GAUT has already been downloaded more than
200 times by people from industry and academia in 36 different countries. For more
information, please visit:
http://web.univ-ubs.fr/gaut/

List of Web sites xv

Chapter 10

More information can be found on UGH from at UPMC-LIP6/SoC and INPG-
TIMA/SLS at http://www-asim.lip6.fr/recherche/disydent/
This web site contains introduction text, source code and tutorials (through CVS) of
the opensource Dysident framework that includes the UGH HLS tool.

Chapter 11

More information on Chapter 11 can be found at
http://cas.ee.ic.ac.uk/

Chapter 12

More information on MMAlpha can be found at
http://www.irisa.fr/cosi/ALPHA/

Chapter 13

More information Chapter 13 can be found on at
http://www.cse.ucsd.edu/∼ kastner/research/aco/

Chapter 14

More information on Chapter 14 can be found at
http://atc.dacya.ucm.es/

Chapter 15

More information on Chapter 15 can be found at
http://www.princeton.edu/∼jha

Chapter 1
User Needs

Pascal Urard, Joonhwan Yi, Hyukmin Kwon, and Alexandre Gouraud

Abstract One can see successful adoption in industry of innovative technologies
mainly in the cases where they provide acceptable solution to very concrete prob-
lems that this industry is facing. High-level synthesis promises to be one of the
solutions to cope with the significant increase in the demand for design productivity
beyond the state-of-the-art methods and flows. It also offers an unparalleled possibil-
ity to explore the design space in an efficient way by dealing with higher abstraction
levels and fast implementation ways to prove the feasibility of algorithms and
enables optimisation of performances. Beyond the productivity improvement, which
is of course very pertinent in the design practice, the system and SoC companies
are more and more concerned with their overall capability to design highly com-
plex systems providing sophisticated functions and services. High-level synthesis
may considerably contribute to maintain such a design capability in the context of
continuously increasing chip manufacturing capacities and ever growing customer
demand for function-rich products.

In this chapter three leading industrial users present their expectations with
regard to the high-level synthesis technology and the results of their experiments
in practical application of currently available HLS tools and flows. The users also
draw conclusions on the future directions in which they wish to see the high-level
synthesis evolves like multi-clock domain support, block interface synthesis, joint
optimisation of the datapath and control logic, integration of automated testing to
the generated hardware or efficient taking into account of the target implementation
technology for ASICs and FPGAs in the synthesis process.

Pascal Urard
STMicroelectronics

Joonhwan Yi and Hyukmin Kwon
Telecommunication R&D, Samsung Electronics Co., South Korea

Alexandre Gouraud
France Telecom R&D

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

1

2 P. Urard et al.

Keywords: High-level synthesis, Productivity, ESL, ASIC, SoC, FPGA, RTL,
ANSI C, C++, SystemC, VHDL, Verilog, Design, Verification, IP, TLM, Design
space exploration, Memory, Parallelism, Simulation, Prototyping

1.1 System Level Design Evolution and Needs for an IDM Point
of View: STMicroelectronics1

Pascal Urard, STMicroelectronics

The complexity of digital integrated circuits has always increased from a technol-
ogy node to another. The designers often had to adapt to the challenge of providing
commercially acceptable solution with a reasonable effort. Many evolutions (and
sometimes revolutions) occurred in the past: back-end automation or logical syn-
thesis were part of those, enabling new area of innovation. Thanks to the increasing
integration factor offered by technology nodes, the complexity in latest SoC has
reached tens of millions of gates. Starting with 90 nm and bellow, RTL design flow
(Fig. 1.1) now shows its limits.

The gap between the productivity per designer and per year and the increasing
complexity of the SoC, even taking into account some really conservative number
of gates per technology node, lead to an explosion of the manpower for SoCs in the
coming technology node (Fig. 1.2).

There is a tremendous need for productivity improvement at design level. This
creates an outstanding opportunity for new design techniques to be adopted: design-
ers, facing this challenge, are hunger to progress and open to raise the level of
abstraction of the golden reference model they trust.

A new step is needed in productivity. Part of this step could be offered by ESLD:
Electronics System Level Design. This includes HW/SW co-design and High-Level
Synthesis (HLS).

HW/SW co-design deployment has occurred few years ago, thanks to SystemC
and TLM coding. HLS however is new and just starting to be deployed. Figure 1.3
shows the basis of STMicroelectronics C-level design methodology. A bit-accurate
reference model is described at functional level in C/C++ using SystemC or equiv-
alent datatypes. In the ideal case, this C-level description has to be extensively
validated using a C-level testbench, in the functional environment, in order to
become the golden model of the implementation flow. This is facilitated by the sim-
ulation speed of this C model, usually faster than other kinds of description. Then,
taking into account technology constraints, the HLS tool produces an RTL represen-
tation, compatible with RTL-to-GDS2 flow. Verification between C-level model and
RTL is done either thanks to sequential equivalence checking tools, or by extensive
simulations. Started in 2001 with selected CAD-vendors, the research on new flows

1 (C) Pascal Urard, STMicroelectronics Nov. 2006. Extracted for P. Urard presentation at ICCAD,
Nov. 2006, San José, California, USA.

1 User Needs 3

Gates
P&R

+
Layout

SystemSystem
AnalysisAnalysis

Algorithm

GDS2
RTL
code

Design
model

TargetTarget

Asic

Logic
Synthesis

Technology files
(Standard Cells + RAM cuts)

Formal proof
(equivalence

checking)

Fig. 1.1 RTL Level design flow

~300~150~75~60~43~40~40~80~40~10

200k200k200k125k91k56k40k9k6k4k

60M30M15M7.5M4M2.2M1.5M750k250K50K

1.2M600k300k150k80k45k30k15k5k1k

324565900.130.180.250.350.50.7

Men / Years per 50 mm2 Die

#Gates per Designer per year

#Gates / Die (50mm2) conservative numbers

2010200820062004200220001998100619941991

� It is urgent to win some productivity

Fig. 1.2 Design challenges for 65 nm and below

Fig. 1.3 High level synthesis flow

4 P. Urard et al.

Design Productivity vs Manual RTL (base 1)

1X

5X

1/2X

t

%

Behavioral IP Reuse, further improves design productivity

10X

Fig. 1.4 Learning curve

has allowed some deployment of HLS tools within STMicroelectronics starting in
2004, with early division adopters. We clearly see in 2007 an acceleration of the
demand from designers. Those designers report to win a factor ×5 to ×10 in terms
of productivity when using C-level design methodology depending on the way they
reuse in design their IPs (Fig. 1.4). More promising: designers that moved to C-level
design usually don’t want to come back to RTL level to create their IPs. . .

Side benefit of these C-level design automation, the IP reuse of signal processing
IP is now becoming reality. The flow automation allows to have C-IPs quite indepen-
dent of implementation constraints (technology, throughput, parameters), described
at functional level, easy to modify to cope with new specification and easy to re-
synthesize. Another benefit: the size of the manual description (C instead of RTL)
is reduced by roughly a factor 10. This reduces the time to modification (ECO) as
well as the number of functional bugs manually introduced in the final silicon.

The link with Transactional Level Modelling (TLM) platform has to be enhanced.
Prior to HLS flow, both TLM and RTL descriptions where done manually (Fig. 1.5).

HLS tools would be able to produce the TLM view needed for platform vali-
dation. However, the slowing-down of TLM standardization did not allow in 2006
neither H1-2007 to have a common agreement of what should be TLM 2.0 interface.
This lack of standardization has penalized the convergence of TLM platform flow
and C-level HW design flow. Designer community would benefit of such a common
agreement between major players of the SystemC TLM community. More and more,
we need CAD community to think in terms of flows in their global environment, and
not in terms of tools alone.

Another benefit of HLS tools automation is the micro-architecture exploration.
Figure 1.6 basically describes a change of paradigm: clock frequency can be
partially de-correlated from throughput constraints.

This means that, focusing on the functional constraints (throughput/latency),
designer can explore several solutions fulfilling the specifications, but using various
clock frequencies. Thanks to released clock constraint, the low-speed design will
not have the area penalty of the high-speed solution. Combining this exploration

1 User Needs 5

Spec
description

High level
algorithmic
description

C/TLM
model

RTL
model

TLM

TLM Reference
Platform

RTL Verification
Platform

HLS
tool

Compatible
thanks
to TLM 2.0

Fig. 1.5 Convergence of TLM and design flows

Fig. 1.6 One benefit of automation: exploration

to memory partitioning and management exploration leads to some very interesting
solutions. As an example, Fig. 1.7 shows that combining double buffering of an
LDPC encoder to a division by 2 of the clock speed, produces a ×0.63 lower power
solution for a 27% area penalty. The time-to-solution is dramatically reduced thanks
to automation. The designer can then take the most appropriated solution depend-
ing on application constraints (area/power). Currently, power is estimated at RTL
level, on automatically produced RTL, thanks to some specialized tools. Experience
shows that power savings can be greatly improved at architectural level, compared
to back-end design level.

There is currently no real power-driven synthesis solution known to us. This is
one of the major needs we have for the future. Power driven synthesis will have to be
much more than purely based on signals activity monitoring in the SoC buses. It will
need also to take into account leakage current, memory consumption and will have
to be compliant with multi-power-modes solutions (voltage and frequency scaling).
There are many parameters to take into account to determine a power optimized
solution, the ideal tool would have to take care of all these parameters in order to

6 P. Urard et al.

Low Power LDPC Encoder (3 block size * 4 code rates = 12 modes)
240Mhz vs 120Mhz Synthesis time: 5mn

T1
L1

T1
L2

T1
L3

time

T2
L1

Sequential

Specs not met

Task Overlapping

T1
L1

T1
L2

T1
L3

T2
L1

T2
L2

T2
L3

Specs met
(same as manual
implementation)

T1
L1

T1
L2

T1
L3

T2
L1

T2
L2

T1
L3

Task Overlapping
and double buffering

Specs met
(same throughput BUT
with half clock frequency)

T3
L1

T3
L2

T3
L3

240Mhz
0.15mm2

120Mhz
0.19mm2

Automatically

Fig. 1.7 HLS architecture explorations

Radix4

Radix2

-

-

+

-

-j
W

W

+

-

-

-

+

+

-j
W2n

Wn

WW3n

X0

X1

X2

X3

S0

S1

S2

S3

X0

-

+

-

+

WP

-

+

-

+

X1

X2

X3

Wq

-

+

-

+

-

+

-

+

Ws

Wr

X’0

X’1

X’2

X’3

S0

S1

S2

S3

4 multipliers

3 multipliers

Example: FFT butterfly radix2 � radix4

Fig. 1.8 Medium term need: arithmetic optimizations

allow the designer to keep a high level of abstraction and to focus on functionality.
For sure this would have to be based on some pre-characterization of the HW.

Now HLS is being deployed, new needs are coming out for more automation and
more optimization. Deep arithmetic reordering is one of those needs. The current
generation of tools is effectively limited in terms of arithmetic reordering. As an
example: how to go from a radix2 FFT to a radix4 FFT without re-writing the algo-
rithm? Figure 1.8 shows one direction new tools need to explore. Taylor Expansion
Diagrams seems promising in this domain, but up to now, no industrial EDA tool
has shown up.

Finally after a few years spent in the C-level domain, it appears that some of the
most limiting factors to exploration as well as optimization are memory accesses. If
designer chose to represent memory elements by RAMs (instead of Dflip-flop), then
the memory access order needs to be explicit in the input C code, as soon as this is
not a trivial order. Moreover, in case of partial unroll of some FOR loops dealing

1 User Needs 7

with data stored in a memory, the access order has to be re-calculated and C-code
has to be rewritten to get a functional design. This can be resumed to a problem of
memory precedence optimization. The current generation of HLS tools have a very
low level of exploration of memory precedence, when they have some: some tool
simply ignore it, creating non-functional designs! In order to illustrate this problem,
let take an in-place FFT radix2 example. We can simplify this FFT to a bunch of
butterflies, a memory (RAM) having the same width than the whole butterflies, and
an interconnect. In a first trial, with a standard C-code, let flatten all butterflies (full
unroll): we have a working solution shown in Fig. 1.9.

Keep in mind that during third stage, we store the memory the C0 = K.B0 + B4

calculation. Let now try to not completely unroll butterflies but allocate half of them
(partial unroll). Memory will have the same number of memory elements, but twice
deeper, and twice narrower. Calculation stages are shown in Fig. 1.10.

We can see that the third stage has a problem: C0 cannot be calculated in a sin-
gle clock cycle as B0 and B4 are stored at two different addresses of the memory.
With current tools generation, when B0 is not buffered, then RTL is not-functional

X0

X1

X2

X3

X4

X5

X6

X7

A0

A1

A2

A3

A4

A5

A6

A7

B0

B1

B2

B3

B4

B5

B6

B7

C0

C1

C2

C3

C4

C5

C6

C7

C0 = k.B0 + B4

Example: 8 points FFT radix2

Fig. 1.9 Medium term need: memory access problem

X4

X5

X6

X7

A0

A1

A2

A3

A4

A5

A6

A7

B0

B1

B2

B3

B4

B5

B6

B7

Memory access conflict

X0

X1

X2

X3

?

Example: 8 points FFT radix2

C0 = k.B0 + B4

Implementation test case: in-place & 4 data in parallel

Fig. 1.10 Medium term need: memory access problem

8 P. Urard et al.

RTL to
layout

SystemSystem
AnalysisAnalysis

Algorithm

GDS2GDS2
C/C++

SystemC
Code

C/C++
SystemC

Code

Design
model

TargetTarget

Asic

HLS

Technology files
(Standard Cells + RAM cuts)

RTL
TLM
ΣΣΣΣC

RTL
TLM
ΣΣΣC

Formal proof
(sequential
equivalence
checking)

DSE

Implementation
constraints

Formal proof
(sequential
equivalence
checking ?)

Synth.
C/ΣΣΣΣC
code

Synth.
C ΣΣΣΣC
code

/

Fig. 1.11 HLS flow: future enhancements at design space exploration level

because tools have weak check of memory precedence. HLS designers would
need a tool that re-calculate memory accesses given the unroll factors and inter-
face accesses. This would ease a lot the Design Space Exploration (DSE) work,
leading to find much optimized solutions. This could also be part of higher level
optimizations tools: DSE tools (Fig. 1.11).

Capacity of HLS tools is another parameter to be enhanced, even if tools have
done enormous progresses those last years. The well known Moore’s law exists and
even tools have to follow the semi-conductor industry integration capacity.

As a conclusion, let underline that HLS tools are working, are used in production
flows on advanced production chips. However, some needs still exist: enhancement
of capacity, enhancement of arithmetic optimizations, or automation of memory
allocation taking into account micro-architecture. We saw in the past many stand-
alone solutions for system-level flows, industry now needs academias and CAD
vendors to think in terms of C-level flows, not anymore stand-alone tools.

1.2 Samsung’s Viewpoints for High-Level Synthesis

Joonhwan Yi and Hyukmin Kwon, Telecommunication R&D, Samsung
Electronics Co.

High-level synthesis technology and its automation tools have been in the market for
many years. However the technology is not mature enough for industry to widely
accept it as an implementation solution. Here, our viewpoints regarding high-level
synthesis are presented.

The languages that a high-level synthesis tool takes as an input often character-
ize the capabilities of the tool. Most high-level synthesis languages are C-variant
including SystemC [1]. Some tools take C/C++ codes as inputs and some take
SystemC as inputs. These languages differ from each other in several aspects, see

1 User Needs 9

Table 1.1 The differences between C/C++ and SystemC as a high-level synthesis language

ANSI C/C++ SystemC

Synthesizable code Untimed C/C++ Untimed/timed SystemC
Abstraction level Very high High
Concurrency Proprietary support Standard support
Bit accuracy Proprietary support Standard support
Specific timing model Very hard Standard support
Complex interface design Impossible Standard support, but hard
Ease of use Easy Medium

Table 1.1. Based on our experience, C/C++ is good at describing hardware behavior
in a higher level than SystemC. On the other hand, SystemC is good at describing
hardware behavior in a bit-accurate and/or timing-specific fashion than C/C++.
High-level synthesis tools for C/C++ usually provide proprietary data types or
directives because C/C++ has no standard syntax for describing timing. Of course,
the degree of detail in describing timing by the proprietary mean is somewhat lim-
ited comparing to SystemC. So, there exists a trade-off between two languages. A
hardware block can be decomposed into block body and its interface. Block body
describes the behavior of the block and its interface defines the way of communi-
cation with the outer world of the block. A higher level description is preferred for
a block body while a bit-accurate and timing-specific detail description needs to be
possible for a block interface. Thus, a high-level synthesis tool needs to provide
ways to describe both block bodies and block interfaces properly.

Generally speaking, high-level synthesis tools need to support common syntaxes
and commands of C/C++/SystemC that are usually used to describe the hardware
behavior at the algorithm level. They include arrays, loops, dynamic memories,
pointers, C++ classes, C++ templates, and so on. Current high-level synthesis
tools can synthesize some of them but not all. Some of these commands or syntaxes
may not be directly synthesizable.

Although high-level synthesis intends to automatically convert an algorithm level
specification of a hardware behavior to a register-transfer level (RTL) description
that implements the behavior, it requires many code changes and additional inputs
from designers [2]. One of the most difficult problems for our high-level synthesis
engineers is that the code changes and additional information needed for desired
RTL designs are not clearly defined yet. Behaviorally identical two high-level codes
usually result in very different RTL designs with current high-level synthesis tools.
Recall that RTL designs also impose many coding rules for logic synthesis and lint
tools exist for checking those rules. Likewise, a set of well defined C/C++/SystemC
coding rules for high-level synthesis should exist. So far, this problem is handled by
a brute-force way and well-skilled engineers are needed for better quality of results.

One of the most notable limitations of the current high-level synthesis tools
is not to support multiple clock domain designs. It is very common in modern
hardware designs to have multiple clock domains. Currently, blocks with different
clock domains should be synthesized separately and then integrated manually. Our

10 P. Urard et al.

high-level synthesis engineers experienced significant difficulties in integrating syn-
thesized RTL blocks too. A block interface of an algorithm level description is
usually not detailed enough to synthesize it without additional information. Also,
integration of the synthesized block interface and the synthesized block body is done
manually. Interface synthesis [4] is an interesting and important area for high-level
synthesis.

Co-optimization of datapath and control logic is also a challenging problem.
Some tools optimize datapath and others do control logic well. But, to our knowl-
edge, no tool can optimize both datapath and control logic at the same time. Because
a high-level description of hardware often omits control signals such as valid, ready,
reset, test, and so on, it is not easy to automatically synthesize them. Some addi-
tional information may need to be provided. In addition, if possible, we want to
define the timing relations between datapath signals and control signals.

High-level synthesis should take into account target process technology for RTL
synthesis. The target library can be an application specific integrated circuit (ASIC)
or a field programmable logic array (FPGA) library. Depending on the target tech-
nology and target clock frequency, RTL design should be changed properly. The
understanding of the target technology is helpful to accurately estimate the area and
timing behavior of resultant RTL designs too. A quick and accurate estimation of
the results is also useful because users can quickly measure the effects of high-
level codes and other additional inputs including micro architectural and timing
information.

The verification of a generated RTL design against its input is another essential
capability of high-level synthesis technology. This can be accomplished either by a
sequential equivalence checking [3] or by a simulation-based method. If the sequen-
tial equivalence checking method can be used, the long verification time of RTL
designs can be alleviated too. This is because once an algorithm level design Dh and
its generated RTL design DRTL are formally verified, fast algorithm level design ver-
ification will be sufficient to verify DRT L. Sequential equivalence checking requires
a complete timing specification or timing relation between Dh and DRTL. Unless
DRTL is automatically generated from Dh, it is impractical to manually elaborate the
complete timing relation for large designs.

Seamless integration to downstream design flow tools is also very important
because the synthesized RTL designs are usually hard to understand by human. First
of all, design for testability (DFT) of the generated RTL designs should be taken
into account in high-level synthesis. Otherwise, the generated RTL designs cannot
be tested and thus cannot be implemented. Secondly, automatic design constraint
generation is necessary for gate-level synthesis and timing analysis. A high-level
synthesis tool should learn all the timing behavior of the generated RTL designs such
as information of false paths and multi-cycle paths. On the other hand, designers
have no information about them.

We think high-level synthesis is one of the most important enabling technolo-
gies that fill the gap between the integration capacity of modern semiconductor
processes and the design productivity of human. Although high-level synthesis is
suffering from several problems mentioned above, we believe these problems will

1 User Needs 11

be overcome soon and high-level synthesis will prevail in commercial design flows
in a near future.

1.3 High Level Design Use and Needs in a Research Context

Alexandre Gouraud, France Telecom R&D

Implementing algorithms onto electronic circuits is a tedious task that involves
scheduling of the operations. Whereas algorithms can theoretically be described
by sequential operations, their implementations need better than sequential schedul-
ing to take advantage of parallelism and improve latency. It brings signaling into
the design to coordinate operations and manage concurrency problems. These prob-
lems have not been solved in processors that do not use parallelism at algorithm
level but only at instruction level. In these cases, parallelism is not fully exploited.
The frequency race driven by processor vendors shadowed the problem replacing
operators’ parallelism by faster sequential operators. However, parallelism remains
possible and it will obviously bring tremendous gains in algorithms latencies. HLS
design is a kind of answer to this hole, and opens a wide door to designers.

In research laboratories, innovative algorithms are generally more complex than
in market algorithms. Rough approximations of their complexity are often the first
way to rule out candidates to implementation even though intrinsic (and somehow
often hidden) complexity might be acceptable. The duration of the implementation
constrains the space of solutions to a small set of propositions, and is thus a bot-
tleneck to exploration. HLS design tools bring to researchers a means to test much
more algorithms by speeding up drastically the implementation phase. The feasi-
bility of algorithms is then easily proved, and algorithms are faster characterized in
term of area, latency, memory and speed.

Whereas implementation on circuits was originally the reserved domain of
specialists, HLS design tools break barriers and bring the discipline handy to non-
hardware engineers. In signal processing, for instance, it allows faster implementa-
tion of algorithms on FPGA to study their behavior in more realistic environment.
It also increases the exploration’s space by speeding up simulations.

Talking more specifically about the tools themselves, the whole stake is to deduce
the best operations’ scheduling from the algorithm description, and eventually from
the user’s constraints. A trade-off has to be found between user’s intervention and
automatic deduction of the scheduling in such a way that best solutions are not
excluded by the tool and complicated user intervention is not needed.

In particular, state machine and scheduling signals are typical elements that the
user should not have to worry about. The tool shall provide a way to show oper-
ations’ scheduling, and eventually a direct or indirect way to influence it. The
user shall neither have to worry about the way scheduling is implemented nor how
effective this implementation is. This shall be the tool’s job.

12 P. Urard et al.

Another interesting functionality is the bit-true compatibility with the original
model/description. This guarantee spares a significant part of the costly time spent
to test the synthesized design, especially when designs are big and split into smaller
pieces. Whereas each small piece of code needed its own test bench, using HLS
tools allows work on one bigger block. Only one test bench of the global entity is
implemented which simplifies the work.

Models are generally complex, and their writing is always a meticulous task. If
one can avoid their duplication with a different language, it is time saving. This
raises the question whether architectural and timing constraints should be included
inside the original model or not. There is no clear answer yet, and tools propose
various interfaces described in this book. From a user’s perspective, it is important
to keep the original un-timed model stable. The less it is modified, the better it is
manageable in the development flow. Aside from this, evolutions of the architecture
along the exploration process shall be logged using any file versioning system to
allow easy backward substitution and comparisons.

To conclude this introduction, it is important to point out that introduction of
HLS tools should move issues to other fields like dimensioning of variables where
tools are not yet available but the engineer’s brains.

References

1. T. Grotker et al., System design with SystemC, Kluwer, Norwell, MA, 2002
2. B. Bailey et al., ESL design and verification, Morgan Kaufmann, San Mateo, 2007
3. Calypto design systems, available at http://www.calypto.com/products/index.html
4. A. Rajawat, M. Balakrishnan, A. Kumar, Interface synthesis: issues and approaches, Int. Conf.

on VLSI Design, pp. 92–97, 2000

Chapter 2
High-Level Synthesis: A Retrospective

Rajesh Gupta and Forrest Brewer

Abstract High-level Synthesis or HLS represented an ambitious attempt by the
community to provide capabilities for “algorithms to gates” for a period of almost
three decades. The technical challenge in realizing this goal drew researchers from
various areas ranging from parallel programming, digital signal processing, and
logic synthesis to expert systems. This article takes a journey through the years
of research in this domain with a narrative view of the lessons learnt and their impli-
cation for future research. As with any retrospective, it is written from a purely
personal perspective of our research efforts in the domain, though we have made a
reasonable attempt to document important technical developments in the history of
high-level synthesis.

Keywords: High-level synthesis, Scheduling, Resource allocation and binding,
Hardware modeling, Behavioral synthesis, Architectural synthesis

2.1 Introduction

Modern integrated circuits have come to be characterized by the scaling of Moore’s
law which essentially dictates a continued doubling in the capacity of cost-efficient
ICs every so many months (every 18 months in recent trends). Indeed, capacity
and cost are two major drivers of the microelectronics based systems on a chip
(or SOC). A pad limited die of 200 pins on a 130 nm process node is about 50
square millimeters in area and comes to about $5 or less in manufacturing and
packaging costs per part given typical yield on large volumes of 100,000 units or
more. That is area sufficient to implement a large number of typical SOC designs
without pushing the envelope on die size or testing or packaging costs. However,
the cost of design continues to rise. Figure 2.1 shows an estimate of design costs
which were estimated to be around US$15M, contained largely through continuing

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

13

14 R. Gupta and F. Brewer

SOC Design Cost Model

$
3

42
,4

17
,5

7
9

$1
5

,0
6

6
,3

7
3

$10,000,000

$100,000,000

$1,000,000,000

$10,000,000,000

$100,000,000,000

1985 1990 1995 2000 2005 2010 2015 2020
Year

T
o

ta
lD

es
ig

n
C

o
st

(l
o

g
sc

al
e)

RTL Methodology Only

With all Future Improvements

In
-H

ou
se

P
&

R

T
al

lT
hi

n
E

ng
in

ee
r

S
m

al
lB

lo
ck

R
eu

s e

IC
Im

pl
em

en
ta

tio
n

to
ol

s

La
rg

e
B

lo
ck

R
eu

se

In
te

llig
en

tT
es

tb
en

ch

E
S

Le
ve

lM
et

ho
do

lo
gy

Fig. 2.1 Rising cost of IC design and effect of CAD tools in containing these costs (courtesy:
Andrew Kahng, UCSD and SRC)

advances in IC implementation tools. Even more importantly, silicon architectures –
that is, the architecture and organization of logic and processing resources on chip –
are of critical importance. This is because of a tremendous variation in the real-
ized efficiency of silicon as a computational fabric. A large number of studies
have shown that energy or area efficiency for a given function realized on a sili-
con substrate can vary by two to three orders of magnitude. For example, the power
efficiency of a microprocessor-based design is typically 100 million operations per
watt, where as reprogrammable arrays (such as Field Programmable Gate Arrays
or FPGAs) can be 10–20×, and a custom ASIC can give another 10× gain. In a
recent study, Kuon and Rose show that ASICs are 35× more area efficient that
FPGAs [1]. IC design is probably one of the few engineering endeavors that entail
such a tremendous variation in the quality of solutions in relation to the design
effort. If done right, there is a space of 10–100× gain in silicon efficiency when
realizing complex SOCs. However, realizing the intrinsic efficiency of silicon in
practice is an expensive proposition and tremendous design effort is expended to
reach state power, performance and area goals for typical SOC designs. Such efforts
invariably lead to functional, performance, and reliability issues when pushing lim-
its of design optimizations. Consequently, in parallel with the Moore’s law, each
generation of computer-aided design (CAD) researchers has sought to disrupt con-
ventional design methodologies with the advent of high-level design modeling and
tools to automate the design process. This pursuit to raise the abstraction level at
which designs are modeled, captured, and even implemented has been the goal of
several generations of CAD researchers. Unfortunately, thus far, every generation
has come away with mixed success leading to the rise of yet another generation that
seems to have got it right. Today, such efforts are often lumped under the umbrella

2 High-Level Synthesis: A Retrospective 15

term of ESL or Electronic System Level design which in turn means a range of
activities from algorithmic design and implementation to virtual system prototyping
to function-architecture co-design [43].

2.2 The Vision Behind High-Level Synthesis

Mario Barbacci noted in late 1974 that in theory one could “compile” the instruction
set processor specification (then in the ISPS language) into hardware, thus setting up
the notion of design synthesis from a high-level language specification. High-level
Synthesis in later years will thus come to be known as the process of automatic gen-
eration of hardware circuit from “behavioral descriptions” (and as a distinction from
“structural descriptions” such as synthesizable Verilog). The target hardware circuit
consists of a structural composition of data path, control and memory elements.
Accordingly, the process was also variously referred to as a transformation “from
behavior to structure.” By the early eighties, the fundamental tasks in HLS had been
decomposed into hardware modeling, scheduling, resource allocation and binding,
and control generation. Briefly, modeling concerned with capturing specifications
as program-like descriptions and making these available for downstream synthe-
sis tasks via a partially-ordered description that is designed to expose concurrency
available in the description. Task scheduling schedules operations by assigning these
to specific clock cycles or by building a function (i.e., a scheduler) that determines
execution time of each operation at the runtime. Resource allocation and binding
determine the resources and their quantity needed to build the final hardware circuit.
Binding refers to specific binding of an operation to a resource (such as a functional
unit, a memory, or an access to a shared resource). Sometimes module selection has
been used to describe the problem of selecting an appropriate resource type from
a library of modules under a given metric such as area or performance. Finally,
control generation and optimization sought to synthesize a controller to generate
appropriate control signals according to a given schedule and binding of resources.
This decomposition of HLS tasks was for problem solving purposes; almost all of
these subtasks are interdependent.

Early HLS had two dominant schools of thought regarding scheduling: fixed
latency constrained designs (such as early works by Pierre Paulin, Hugo DeMan
and their colleagues) and fixed resource constrained designs (such as works by
Barry Pangrle, Howard Trickey and Kazutoshi Wakabayashi). In the former case,
resources are assigned in a minimal way to meet a clock latency goal, in the
latter, minimal time schedules are derived given a set of pre-defined physical
resources. The advantage of fixed latency is easy incorporation of the resulting
designs into larger timing-constrained constructions. These techniques have met
with success in the design of filters and other DSP functions in practical design
flows. Fixed resource models allowed a much greater degree of designer interven-
tion in the selection and constraint of underlying components, potentially allowing
use of the tools in area or power-constrained situations. They also required more

16 R. Gupta and F. Brewer

complex scheduling algorithms to accommodate the implied constraints inherent
in the chosen hardware models. Improvements in the underlying algorithms later
allowed for simultaneous consideration of timing and resource constraints; however,
the complexity of such optimization limits their use to relatively small designs or
forces the use of rather coarse heuristics as was done in the Behavioral Compiler tool
from Synopsys. More recent scheduling algorithms (Wave Scheduling, Symbolic
Scheduling, ILP and Interval Scheduling) allow for automated exploration of spec-
ulative execution in systematic ways to increase the available parallelism in a design.
At the high end of this spectrum, the distinction between static (pre-determined exe-
cution patterns) and dynamic (run-time determined execution patterns) are blurred
by the inclusion of arbitration and local control mechanisms.

2.3 History

High-level synthesis (HLS) has been a major preoccupation of CAD researchers
since the late 1970s. Table 2.1 lists major time points in the history of HLS research
through the eighties and the nineties; this list of readings would be typical of a
researcher active in the area throughout this period. As with any history, this is by
no means a comprehensive listing. We have intentionally skipped some important
developments in this decade since these are still evolving and it is too early to look
back and declare success or failure.

Early work in HLS examined scheduling heuristics for data-flow designs. The
most straightforward approaches include scheduling all operations as soon as possi-
ble (ASAP) and scheduling the operations as late as possible (ALAP) [5–8]. These
were followed by a number of heuristics that used metrics such as urgency [9] and
mobility [10] to schedule operations. The majority of the heuristics were derived
from basic list scheduling where operations are scheduled relative to an ordering
based on control and data dependencies [11–13]. Other approaches include itera-
tively rescheduling the designs [14] and scheduling along the critical path through
the behavioral description [15]. Research in resource allocation and binding tech-
niques have sought varying goals including reducing registers, reducing functional
units, and reducing wire delays and interconnect costs [3–5]. Clique partitioning and
clique covering were favorite ingredients to solving module allocation problems [6]
and to find the solution of a register-compatibility graph with the lowest combined
register and interconnect costs [16]. Network flow formulations were used to bind
operations and registers at each time step [18] and to perform module allocation
while minimizing interconnect [17].

Given the dependent nature of each task within HLS, researchers have focused on
performing these tasks in parallel, namely through approaches using integer linear
programming (ILP) [19–22]. In the OSCAR system [21], a 0/1 integer-programming
model is proposed for simultaneous scheduling, allocation, and binding. Wilson
and co-authors [22] presented a generalized ILP approach to provide an integrated
solution to the various HLS tasks. In terms of design performance, pipelining

2 High-Level Synthesis: A Retrospective 17

Table 2.1 Major timepoints in the historical evolution of HLS through the 1980s and 1990s

Year Authors

1972–75 Barbacci, Knowles: ISPS description
1978 McFarland: ValueTrace (VT) model for behavioral representation
1980 Snow’s Thesis that was among the first to show use of CDFG as a synthesis

specification
1981 Kuck and co-authors advance compiler optimizations (POPL)
1983 Hitchcock and Thomas on datapath synthesis
1984 Tseng and Siewiorek work on bus-style design generator
1984 Emil Gircyz thesis on using ADA for modeling hardware, precursor to VHDL
1985 Kowalski and Thomas on use of AI techniques for design generation
1985 Pangrle on first look-ahead/clock independent scheduler
1985 Orailoglu and Gajski: DESCART silicon compiler; Nestor and Thomas on synthesis

from interfaces
1986 Knapp on AI planning; Brewer on Expert System; Marwedel on MIMOLA; Parker

on MAHA pipelined synthesis; Tseng, Siewiorek on behavioral synthesis
1987 Flamel by Tricky; Paulin on force-directed scheduling; Ebcioglu on software

pipelining
1988 Nicolau on tree-based scheduling; Brayton and co-authors: Yorktown silicon

compiler; Thomas: System architect’s workbench (SAW); Ku and DeMicheli
on HardwareC; Lam: on software pipelining; Lee on synchronous data flow graphs
for DSP modeling and optimization

1989 Wakabayashi on condition vector analysis for scheduling; Goosens and DeMan on
loop scheduling

1990 Stanford Olympus synthesis system; McFarland, Parker and Camposano overview;
DeMan on Cathedral II

1991 Hilfinger’s Silage and its use by DeMan and Rabaey on Lager DSP Synthesis;
Camposano: Path based scheduling; Stock, Bergamaschi; Camposano and Wolf book
on HLS; Hwang, Lee and Hsu on Scheduling

1992 Gajski HLS book; Wolf on PUBSS
1993 Radevojevic, Brewer on Formal Techniques for Synthesis
1994 DeMicheli book on Synthesis and Optimization covering a good fraction of HLS
1995 Synopsys announces Behavioral Compiler
1996 Knapp book on HLS
. . . . Another decade of various compiler + synthesis approaches
2005 Synopsys shuts down Behavioral Compiler

was explored extensively for data-flow designs [10, 13, 23–25]. Several systems
including HAL [10] and Maha [15] were guided by user-specified constraints such
as pipeline boundaries or timing bounds in order to distribute resources uniformly
and minimize the critical path delay. Optimization techniques such as algebraic
transformations, retiming and code motions across multiplexers showed improved
synthesis results [26–28].

Throughout this period, the quality of synthesis results continued to be a major
preoccupation for the researchers. Realizing the direct impact of how control struc-
tures affected the quality of synthesized circuits, several researchers focused their
efforts on augmenting HLS to handle complex control flow. Tree-based schedul-
ing [29] removes all the join nodes from a design so that the control-data flow graph
(CDFG) becomes a tree and speculative code motion can be applied. The PUBSS

18 R. Gupta and F. Brewer

approach [30] extracts scheduling information in a behavioral finite state machine
(BFSM) model and generates a schedule using constraint-solving algorithms. NEC
created the CVLS approach [31–33] that uses condition vectors to improve resource
sharing among mutually exclusive operations. Radivojevic and Brewer [34] pro-
vide an exact symbolic formulation that schedules each control path independently
and then creates an ensemble schedule of valid control paths. The Waveschedule
approach minimizes the expected number of cycles by using speculative execution.
Several other approaches [35–38] support generalized code motions during schedul-
ing in synthesis systems where operations can be moved globally irrespective of
their position in the input. Prior work examined pre-synthesis transformations to
alter the control flow and extract the maximal set of independent operations [39,40].
Li and Gupta [41] restructure control flow to extract common sets of operations with
conditionals to improve synthesis results.

Compiler transformations can further improve HLS, although they were origi-
nally developed for improving code efficiency for sequential program execution.
Prominent among these were variations on common sub-expression elimination
(CSE) and copy propagation which are commonly seen in software compilers [1,2].
Although the basic transformations such as dead code elimination and copy prop-
agation can be used in synthesis, other transformations need to be re-instrumented
for synthesis by incorporating ideas of mutual exclusivity of operations, resource
sharing, and hardware cost models. Later attempts in the early 2000s explored par-
allelizing transformations to create a new category of HLS synthesis that seeks to
fundamentally overcome limitations on concurrency inherent in the input algorith-
mic descriptions by constructing methods to carry out large-scale code motions
across conditionals and loops [42].

2.4 Successes and Failures

While the description above is not intended to be a comprehensive review of all the
technical work, it does beg an important question: once the fundamental problems
in HLS were identified with cleanly laid out solutions, why didn’t the progress in
problem understanding naturally lead to tools as had been the case with the standard
cell RTL design flows?

There is an old adage in computer science: “Artificial Intelligence can never
be termed a ‘success’ – the techniques that worked such as efficient logic data-
structures, data mining and inference based reasoning became valuable on there
own – the parts that remain unsolved retain the title ‘Artificial Intelligence.”’ In
many ways, the situation is similar in High Level Synthesis; simple-to-apply tech-
niques were moved out of that context and into general use. For example, the Design
Compiler� tool from Synopsys regularly uses allocation and binding optimizations
on arithmetic and other replicated units in conventional ‘logic optimization’ runs.
Some of the more clever control synthesis techniques have also been incorporated
into that tool’s finite state machine synthesis options.

2 High-Level Synthesis: A Retrospective 19

Many of the ideas which did not succeed in the general ASIC context have
made a comeback in the somewhat more predictable application of FPGA synthesis
with tools such as Mentor’s Catapult-C supporting a subset of the C-programming
language for direct synthesis into FPGA designs. A number of products mapping
designs originally specified in MatLab’s M language or in specialized component
libraries for LabView have appeared to directly synthesize designs for digital sig-
nal processing in FPGA’s. Currently, these tools range in complexity from hardware
macro-assemblers which do not re-bind operation instances to the fairly complex
scheduling supported by Catapult-C. The practicality of these tools is supported by
the very large scale of RTL designs that can be mapped into modern large FPGA
devices.

On the other hand, the general precepts of High Level Synthesis have not been
so well adopted by the design community nor supported by existing synthesis sys-
tems. There have been several explanations in the literature: lack of a well-defined
or universally accepted intermediate model for high-level capture, poor quality of
synthesis results, lack of verification tools, etc. We believe the clearest answer is
found in the classical proverb regarding dogs not liking the dogfood. That is, the
circuit designers who were the target of such tools and methods did not really care
about the major preoccupation of solving the scheduling and allocation problems.
For one, this was a major part of the creativity for the RTL implementers who were
unlikely to let go of the control of clock cycle boundaries, that is, the explicit spec-
ification of which operation happened on which cycle. So, in a way, the targeted
users of HLS tools were being told do something differently that they already did
very well. By contrast, tools took away the controllability, and due to the semantic
gap between the designer intent and the high-level specification, synthesis results
often fell short of the quality expectations. A closer examination leads us to point to
the following contributing factors:

a. The so-called high-level specifications in reality grew out of the need for simu-
lation and were often little more than an input language to make a discrete event
simulator reproduce a specific behavior.

b. The complexity of timing constraint specification and analysis was grossly under-
estimated, especially when a synthesizer needs to utilize generalized models for
timing analysis.

c. Design metrics were fairly naı̈ve: the so-called data-dominated versus control-
dominated simplifications of the cost model grossly mis-estimated the true costs
and, thus, fell short on their value in driving optimization algorithms. By contrast,
in specific application areas such as digital signal processing where the input
description and cost models were relatively easier to define, the progress was
more tangible.

d. The movement from a structural to a behavioral description – the centerpiece
of HLS – presented significant problems in how the design hierarchy was con-
structed. The parameterization and dynamic elaboration of the major hierarchy
components (e.g., number of times a loop body is invoked) requires dramati-
cally different synthesis methods that were just not possible in a description that

20 R. Gupta and F. Brewer

essentially looks identical to a synthesis tool. A fundamental understanding of
the role of structure was needed before we even began to capture the design in a
high-level language.

2.5 Lessons Learnt

The notion of describing a design as a high-level language program and then essen-
tially “compiling” into a set of circuits (instead of assembly code) has been a
powerful attractor to multiple generations of researchers into HLS. There are, how-
ever, complexities in this form of specification that can ruin an approach to HLS.
To understand this, consider the semantic needs when building a hardware descrip-
tion language (HDL) from a high-level programming language. There are four basic
needs as shown in Fig. 2.2: (1) a way to specify concurrency in operations, (2)
ensure timing determinism to enable a designer build a “predictable” simulation
behavior (even as the complete behavior is actually unspecified), (3) ensure effective
modeling of the reactive aspects of hardware (non-terminating behavior, event spec-
ifications), and (4) capture structural aspects of a design that enables an architect to
build larger systems by instantiating and composing from smaller ones.

2.5.1 Concurrency Experiments

Of the four requirements listed in Fig. 2.2, concurrency was perhaps the most
dominant preoccupation of HLS researchers since the early years for a good rea-
son: one of the first things that a HLS tool has to do when presented with an

Structural Abstraction
provide a mechanism for building larger systems by
composing smaller ones

Reactive programming
provide mechanism to model non-terminating interaction
with other components, watching, waiting, exceptions

Reactive programming
provide mechanism to model non-terminating interaction
with other components, watching, waiting, exceptions

Timing Determinism
provide a “predictable” simulation behavior

Timing Determinism
provide a “predictable” simulation behavior

Concurrency
model hardware parallelism, multiple clocks

Concurrency
model hardware parallelism, multiple clocks

M
id

2

0
0

0
’s

E
a

r
ly

2
0

0
0

’s
E

a
r

ly
1

9
9

0
’s

M
id

1

9
8

0
’s

M
id

2

0
0

0
’s

E
a

r
ly

2
0

0
0

’s
E

a
r

ly
1

9
9

0
’s

M
id

1

9
8

0
’s

Fig. 2.2 Semantic needs from programming to hardware modeling and time-line over which these
aspects were dominant in the research literature

2 High-Level Synthesis: A Retrospective 21

algorithmic description in a programming language is to extract the parallelism
inherent in the specification. The most common way was to extract data-flow graphs
from the description based on a def-use dependency analysis of operations. Since
these graphs tended to be disjoint making it hard for the synthesis algorithms to
operate, they were often combined with nodes and edges to represent flow of con-
trol. Thus, the combined Control-Data Flow Graphs or CDFG were commonly used.
Most of these models did not capture use of any structured memory blocks, which
were often treated as separate functional or structural blocks. By and large, CDFGs
were used to implement synthesis tasks as graph operations (for example, labeled
graphs representing scheduling, and binding results). However, hierarchical model-
ing was a major issue. Looking back, there were three major lessons that we can
point to. First, not all CDFGs were the same. Even if matched structurally, the
semantic variations on graphs were tremendous: operational semantics of the nodes,
what edges represent, etc. An interesting innovation in this area was the attempt to
move all non-determinism (in operations, timing) to the graph model hierarchy in
the Stanford Intermediate Format (SIF) graph. In a SIF graph, loops and conditions
were represented as separate graph bodies, where a body corresponded to each con-
ditional invocation of a branch. Thus, operationally the uncertainty due to control
flow (or synchronization operations) was captured as the uncertainty in calling a
graph. It also made SIF graphs DAGs, thus enabling efficient algorithms for HLS
scheduling and resource allocation tasks in the Olympus Synthesis System.

The second lesson was also apparent from the Olympus system that employed a
version of C, called HardwareC, which enabled specification of concurrent opera-
tions at arbitrary levels of granularity: two operations could be scheduled in parallel,
sequentially, or in a data-parallel fashion by enclosing them using three different
set of parentheses; and then the composition could also be similarly composed
in one of three ways, and so on. While it enabled a succinct description of com-
plex dependency relationships (as Series-Parallel graphs), it was counter-intuitive to
most designers: a small change on a line could have a significant (and non-obvious)
impact on an operation several pages away from the line changed, leading design-
ers to frustrating simulation runs. Experience in this area has finally resulted in most
HDLs settling for concurrency specification at an aggregate “process” level, whereas
processes themselves are often (though not always, see structural specifications
later) sequential.

The third, and perhaps, the most important lesson we learnt when modeling
designs was regarding methods used to go from a high-level programming language
(HLL) to an HDL. Broadly speaking, there are three ways to do it: (1) as a syntactic
add-on to capture “hardware” concepts in the specification. Examples include “pro-
cess”, “channel” in HardwareC, “signals” in VHDL etc. (2) Overload semantics of
existing constructs in a HLL. A classic example is that an assignment in VHDL
implies placement of an event in future. (3) Use existing language level mecha-
nisms to capture hardware-specific concepts using libraries, operator overloading,
polymorphic types, etc., as is the case in SystemC. An examination of HDL his-
tory would demonstrate the use of these three methods in roughly the same order.
While syntactical changes to existing HLL were common-place in the early years of

22 R. Gupta and F. Brewer

HDL modeling, later years have seen a greater reliance on library-based HDLs due
to a combination of greater understanding of HDL needs combined with advances
in HLLs towards sophisticated languages that provide creative ways to exploit type
mechanisms, polymorphism and compositional components.

2.5.2 Timing Capture and Analysis for HLS

The early nineties saw an increased focus on the capture of timing behavior in HLS.
This was also the time when the term “embedded systems” entered the vocabulary of
researchers in this field, and it consequently caused researchers to look at high-level
IC design as a system design problem. Thus, input descriptions were beginning to
look like descriptions of components in temporal interaction with the environment
as shown in Fig. 2.3 below. Thus, one could specify and analyze timing requirements
separately from the functional behavior of the system design.

Accordingly, the behavioral models evolved: from the early years of function-
ality and timing models to their convergence into single “operation-event” graphs
of Amon and Borriello, we made a full circle to once again separate timing and
functional models. Building upon a long line of research on event graphs, Dasdan
and Gupta proposed generalized task graph models consisting of tasks as nodes
and communications between tasks as edges that can carry multiple tokens. The
nodes could be composed according to a classification of tasks: an AND task rep-
resents actions that are performed after conjunction of its predecessor tasks have
completed, whereas an OR task can initiate once any of its predecessors have com-
pleted execution. The tasks could also optionally skip tokens, thereby capturing
realistic timing response to events. This structure allowed us to generate discrete
event models directly from the task graphs that can be used for “timing simula-
tion” even when the functional behavior of the overall system has not been devised
beyond, of course, the general structure of the tasks (Fig. 2.4).

Works such as this enabled researchers to define and make progress on high-level
design methodologies that were “timing-driven.” While this was a tremendously
useful exercise, its applicability was basically limited by the lack of timing detail

Fig. 2.3 A system design conceptualized as one in temporal interaction with the environment

2 High-Level Synthesis: A Retrospective 23

Fig. 2.4 Conceptual model of Scenic consisting of processes, clocks and reactions

Wheel
Pulses

Ta=[2.28,118.20]mS

Read
Speed

Filter
Speed

Speedometer

Accumulate
Pulses

Compute
Total km

Compute
Partial km

LCD Display
Driver

Lifetime
Odometer

Resetable
Trip Odometer

a b c d

e

f

g

h

j

Td <=10mS

i

Ti = Tj = [1.38,72.00] S

Fig. 2.5 Example of a timing simulation for an automotive information display that uses normally
distributed acceleration and deceleration periods (mean: 20 s, deviation: 1 s). The vehicle response
is normally distributed as well. The simulation has been created directly from the semantics of the
task graph model without detailed functional implementation

available to the system designer at high levels of specification. Consequently, tim-
ing analysis needed a lot of detailed specification (related to timing at the interfaces)
and solved only a part of the synthesis problem. Conversely, to be useful, one was
confronted with the problem of defining time budgets based on sparsely described
timing constraints that needed to be decomposed across a number of tasks. Admit-
tedly, this is a harder problem to solve than the original problem of synthesizing a
structure of components that could be verified to meet a given timing specification.
More importantly, such timing analysis was appearing in the HLS literature around
the time when functional verification had taken a dominant role in the broader CAD
community of researchers. The separation of function from timing was also prob-
lematic for the VLSI system designers that often leverage innovating composition
of functionalities to achieve key performance benefits (Fig. 2.5).

24 R. Gupta and F. Brewer

Predictably, as it had done in modeling embedded software systems about a
decade earlier, the focus on timing behavior gave way to innovations in how reac-
tive behaviors were modeled in a programming language. Inspired by the success of
synchronous programming languages such as Esterel, Lustre, and Signal in build-
ing embedded software and their tools (such as SCADE), the notion of timing
abstraction to construct synchronous behaviors in lieu of detailed timing specifica-
tions (in the earlier discrete event models) drove new ways to specify HDL models.
The new models also crossed paths with the advances in meta-models used in soft-
ware engineering. Scenic [44] (and its follow on SystemC) represented one such
language that provided reactive capture through watching and wait constructs (built
as library extensions). These HDLs which captured the conceptual model of a sys-
tem were rechristened system-level languages to distinguish these from the more
commonly used HDLs such as Verilog and VHDL. While wait represented syn-
chronization with a clock, watching represented asynchronous conditions. In later
years, watching was retired in order to simplify the emerging SystemC language
that enabled specification of both the hardware and software components of system
design.

2.5.3 The Era of Structure: Components, Compositions
and Transactions

This brings us to early 2000 and an era of structural compositions characterized
by composition/aggregation of models, components and even synthesized elements.
UML sought to capture multiple types of relationships among components: asso-
ciation, aggregation, composition, inheritance and refinement to describe a system
behavior in terms of its compositional elements. Several component composition
frameworks appeared in the literature including Polis, Metropolis, Ptolemy, and
Balboa. While a description of these is beyond the scope of this work, a common
theme among all these frameworks has been attempts to raise the abstraction levels
in a way that enables composition of system blocks as robust software components
that can be reused across different designs with minimal or no change. Transaction
modeling has sought to raise the level of abstraction both in functional behavior of
the components as well as their interfaces. Interfaces are constructed to limit the
complexity of sub-system design; or rather they are the abstraction enforcers of the
design world. Protocols of communication are important to interface abstractions.
Early HLS assumed implicit protocols and timing from language level descriptions.
Reactive modeling as described in the previous section improved the situation some-
what from the compositionality perspective. More recent effort in Transaction Level
Modeling or TLM seeks to orthogonalize the levels of abstractions in computa-
tion versus communication in system level models (see Fig. 2.6). This is still an
active area of research. It is clear that there needs to be good structural and timing
abstractions in order for HLS to succeed.

2 High-Level Synthesis: A Retrospective 25

A. "Specification model"
"Untimed functioal models"

B. "Component-assembly model"
"Architecture model"
"Timed functonal model"

C. "Bus-arbitration model"
"Transaction model"

D. "Bus-functional model"
"Communicatin model"
"Behavior level model"

E. "Cycle-accurate computation
model"

F. "Implementation model"
"Register transfer model"

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed E

Cycle-
timed

"

-
"Architecture model"

-

-
"

-
A

D F

- - -

-

-

-

Fig. 2.6 A taxonomy of models based on timing abstraction. Models B, C, D and E are often
classified as transaction level models (courtesy: Daniel Gajski, UC Irvine)

2.6 Wither HLS?

The goal of hardware compilation of designs from behavioral languages has lead
to many valuable contributions in areas beyond the original concept. One example
is the class of synchronous languages such as Esterel and Luster which formalize
sequential behavior and allow formally verifiable synthesis of both hardware and
software (or coupled) systems. While the case for efficient hardware could be dis-
puted, software synthesis from Esterel is an integral part of the control software of
many safety critical systems such as the Airbus airliners.

Another interesting related effort is the BlueSpec hardware compilation system.
Based on an atomic rule-based language scheme, BlueSpec allows for an efficient
description of cycle-based behaviors which are automatically compiled into effi-
cient hardware architectures that can be reasonably compared to human created
designs. Although, in practice, a BlueSpec specification is a mixture of behavior and
structure, the efficacy of the strategy has been well established in terms of designer
efficiency.

On a related tack, SystemC has become the de facto standard for transaction
based system modeling which supporting a semi-behavioral hardware compilation
scheme. Currently, a hierarchy of transaction specifications cannot be directly syn-
thesized; however, the transaction format does offer several improvements on the
procedural languages in early HLS. In particular, they can be annotated with a type
hierarchy allowing inference of interfaces and thus timing constraints without losing
track of the optimization goals or metrics for the system of transactions. Effectively,
alternative interface types offer differing bandwidth and communication latency
while requiring accommodation of their timing constraints. It remains to be seen
whether these or related ideas can be fleshed out to a practical behavioral synthesis
system.

26 R. Gupta and F. Brewer

2.7 Conclusions

This brief retrospective is, more than anything else, a personal perspective. This
is not just a caveat against inevitable omissions of important work in the area
but also an expression of humility for a large number of significant contributions
that have continually enabled newer generations of researchers to see farther than
their predecessors. Looking back, activity in HLS is marked by an early period of
intense activity in synthesis in the eighties, its drop off, divergence from algorithmic
optimizations, and a subsequent reemergence as primarily a modeling and architec-
tural specification challenge. Among some of the most exciting developments in
the recent years are contributions from computer architecture researchers in defin-
ing modeling schemes that rely more on operation-centric behaviors and its early
commercialization as BlueSpec. While it is too early to tell how HLS will emerge
through these efforts, even when it is not called HLS per se, it is clear that the design
decisions that affect code transformations, such as transformations of loops and con-
ditionals, and architectural design, such as pipeline structures, are paramount to a
successful synthesis solution. In other words, the early attempts at optimization from
algorithmic descriptions were somewhat premature and naı̈ve in expectation of a
quick success modeled along the lines of logic synthesis. Indeed, a shift in design
tools and methods does not happen in isolation from the practitioners who must use
these tools. Just as logic synthesis enabled RTL designers to try their hands at what
used to be primarily a circuit design activity, the future adoption of HLS will involve
enabling a new class of practitioners to do things they can not do now. Today, we
have broad categories of pain-points in this area: architects have to deal with too
many design “knobs” that need to be turned to produce a design that is cost/perfor-
mance competitive in silicon, whereas ASIC implementers have to understand and
carefully apply design optimization effort on things that have a significant impact
on the overall system. This is a difficult exercise because the complexity of designs
rules out identification of design optimization areas without extensive simulation or
emulation of system prototypes. Moving forward, HLS can succeed by enabling a
new generation (system architects or ASIC implementers) to do things that they sim-
ply cannot be accomplished today. This also entails a tremendous education effort
to change the vocabulary of the current generation of system architects and ASIC
implementers. Among the number of developments that continue to advance our
understanding of the system design process, it is most heartening to see erstwhile
computer architects take the lead in defining a meaningful set of problems, models
and even solution methods that can lead to design synthesis, design optimization,
and design validation for the next generation of tool developers. Such revitaliza-
tion of the HLS domain holds significant promise for future advancements in how
microelectronic systems are architected and implemented on-chip.

Acknowledgement The authors are grateful to Joel Coburn for his constructive suggestions and
for his help with research in putting this article together.

2 High-Level Synthesis: A Retrospective 27

References

1. Ian Kuon and Jonathan Rose, Measuring the Gap between ASIC and FPGAs, IEEE Transac-
tions on Computer-Aided Design, February 2007.

2. S. Gupta, R.K. Gupta, N.D. Dutt, and A. Nicolau, SPARK: A parallelizing approach to the
high level synthesis of digital circuits, Kluwer, Dordrecht, 2004.

3. G. De Micheli, Synthesis and optimization of digital circuits, McGraw-Hill, New York, 1994.
4. R. Camposano and W. Wolf, High level VLSI synthesis, Kluwer, Dordrecht, 1991.
5. T.J. Kowalski and D.E. Thomas, The VLSI design automation assistant: what’s in a knowledge

base, Design Automation Conference, 1985.
6. C.J. Tseng and D.P. Siewiorek, Automated synthesis of data paths in digital systems,

July 1986.
7. P. Marwedel, A new synthesis for the MIMOLA software system, Design Automation

Conference, 1986.
8. H. Trickey, Flamel: a high-level hardware compiler, IEEE Trans. Comput. Aided Des., 6,

259–269, 1987.
9. E. Girczyc, Automatic generation of micro-sequenced data paths to realize ADA circuit

descriptions, Ph.D. thesis, Carleton University, 1984.
10. P.G. Paulin and J.P. Knight, Force-directed scheduling for the behavioral synthesis of ASIC’s,

IEEE Trans. Comput. Aided Des., 8, 661–678, 1989.
11. C.Y. Hitchcock and D.E. Thomas, A method of automatic data path synthesis, Design

Automation Conference, 1983.
12. H. De Man, J. Rabaey, P. Six, and L. Claesen, Cathedral-II: A silicon compiler for digital

signal processing, IEEE Des. Test Mag., 3, 73—85, 1986.
13. B.M. Pangrle and D.D. Gajski, Slicer: A state synthesizer for intelligent silicon compila-

tion, 1986.
14. I.-C. Park and C.-M. Kyung, Fast and near optimal scheduling in automatic data path synthesis,

Design Automation Conference, 1991.
15. A.C. Parker, J.T. Pizarro, M. Mlinar, “MAHA: a program for datapath synthesis”, Proc. 23rd

IEEE/ACM Design Automation Conference pp. 461–466, Las Vegas NV, June 1986.
16. P.G. Paulin and J.P. Knight, Scheduling and binding algorithms for high-level synthesis, 1989.
17. L. Stok and W.J.M. Philipsen, Module allocation and comparability graphs, IEEE Interna-

tional Sympoisum on Circuits and Systems, 1991.
18. A. Mujumdar, R. Jain, and K. Saluja, Incorporating performance and testability constraints

during binding in high-level synthesis, IEEE Trans. Comp. Aided Des., 15, 1212–1225, 1996.
19. C.T. Hwang, T.H. Lee, and Y.C. Hsu, A formal approach to the scheduling problem in high

level synthesis, IEEE Trans. Comput. Aided Des., 10, 464–475, 1991.
20. C.H. Gebotys and M.I. Elmasry, Optimal synthesis of high-performance architectures, IEEE

J. Solid State Circuits, 1992.
21. B. Landwehr, P. Marwedel, and R. Doemer, Oscar: optimum simultaneous scheduling, allo-

cation and resource binding based on integer programming, European Design Automation
Conference, 1994.

22. T.C. Wilson, N. Mukherjee, M.K. Garg, and D. K. Banerji, An ILP solution for optimum
scheduling, module and register allocation, and operation binding in datapath synthesis, VLSI
Des., 1995.

23. N. Park and A. Parker, Sehwa: A software package for synthesis of pipelines from behavioral
specifications, IEEE Trans. Comput. Aided Des., 1988.

24. E. Girczyc, Loop winding – a data flow approach to functional pipelining, International
Symposium of Circuits and Systems, 1987.

25. L.-F. Chao, A.S. LaPaugh, and E.H.-M. Sha, Rotation scheduling: A loop pipelining algo-
rithm, Design Automation Conference, 1993.

26. M. Potkonjak and J. Rabaey, Optimizing resource utlization using tranformations, IEEE Trans.
Comput. Aided Des., 13, 277–292, 1994.

28 R. Gupta and F. Brewer

27. R. Walker and D. Thomas, Behavioral transformation for algorithmic level IC design, IEEE
Trans. Comput. Aided Des., 1115–1128, 1989.

28. Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker, Critical path optimization using retiming and
algebraic speed-up, Design Automation Conference, 1993.

29. S. Huang et al., A tree-based scheduling algorithm for control dominated circuits, Design
Automation Conference, 1993.

30. W. Wolf, A. Takach, C.-Y. Huang, R. Manno, and E. Wu, The Princeton University behavioral
synthesis system, Design Automation Conference, 1992.

31. K. Wakabayashi and T. Yoshimura, A resource sharing and control synthesis method for
conditional branches, 1989.

32. K. Wakabayashi and H. Tanaka, Global scheduling independent of control dependencies based
on condition vectors, Design Automation Conference, 1992.

33. K. Wakabayashi, C-based synthesis experiences with a behavior synthesizer, “Cyber”, Design,
Automation and Test in Europe, 1999.

34. I. Radivojevic and F. Brewer, A new symbolic technique for control-dependent scheduling,
IEEE Trans. Comput. Aided Des., 15, 45–57, 1996.

35. L.C.V. dos Santos and J.A.G. Jess, A reordering technique for efficient code motion, Design
Automation Conference, 1999.

36. L.C.V. dos Santos, A method to control compensation code during global scheduling,
Workshop on Circuits, Systems and Signal Processing, 1997.

37. L.C.V. dos Santos, Exploiting instruction-level parallelism: A constructive approach, Ph.D.
thesis, Eindhoven University of Technology, 1998.

38. M. Rim, Y. Fann, and R. Jain, Global scheduling with code-motions for high-level synthesis
applications, IEEE Trans. VLSI Syst., 1995.

39. J. Li and R.K. Gupta, HDL optimizations using timed decision tables, Design Automation
Conference, 1996.

40. O. Penalba, J.M. Mendias, and R. Hermida, Maximizing conditional reuse by pre-synthesis
transformations, Design, Automation and Test in Europe, 2002.

41. J. Li and R.K. Gupta, Decomposition of timed decision tables and its use in presynthesis
optimizations, International Conference on Computer Aided Design, 1997.

42. SPARK parallelizing high-level synthesis framework website, http://mesl.ucsd.edu/spark.
43. B. Baily, G. Martin, A. Piziali, ESL design and verification, Academic Press, New York, 2007.
44. S. Liao, S. Tjiang, R. Gupta, An Efficient Implementation of Reactivity for Modeling Hard-

ware in the Scenic Design Environment, Design Automation Conference, 70–75, June 1997.

Chapter 3
Catapult Synthesis: A Practical Introduction
to Interactive C Synthesis

Thomas Bollaert

Abstract The design complexity of today’s electronic applications has outpaced
traditional RTL methods which involve time consuming manual steps such as
micro-architecture definition, handwritten RTL, simulation, debug and area/speed
optimization through RTL synthesis. The Catapult� Synthesis tool moves hard-
ware designers to a more productive abstraction level, enabling the efficient design
of complex ASIC/FPGA hardware needed in modern applications. By synthesizing
from specifications in the form of ANSI C++ programs, hardware designers can
now leverage a precise and repeatable process to create hardware much faster than
with conventional manual methods. The result is an error-free flow that produces
accurate RTL descriptions tuned to the target technology.

This paper provides a practical introduction to interactive C synthesis with
Catapult� Synthesis. Our introduction gives a historical perspective on high-level
synthesis and attempts to demystify the stereotyped views about the scope and appli-
cability of such tools. In this part we will also take a look at what is at stake –
beyond technology – for successful industrial deployment of a high-level synthesis
methodology. The second part goes over the Catapult workflow and compares the
Catapult approach with traditional manual methods. In the third section, we pro-
vide a detailed overview on how to code, constrain and optimize a design with the
Catapult Synthesis tool. The theoretical concepts revealed in this section will be
illustrated and applied in the real-life case study presented in the fourth part, just
prior to the concluding section.

Keywords: High-level synthesis, Algorithmic synthesis, Behavioral synthesis,
ESL, ASIC, SoC, FPGA, RTL, ANSI C, ANSI C++, VHDL, Verilog, SystemC,
Design, Verification, IP, Reuse, Micro-architecture, Design space exploration, Inter-
face synthesis, Hierarchy, Parallelism, Loop unrolling, Loop pipelining, Loop merg-
ing, Scheduling, Allocation, Gantt chart, JPEG, DCT, Catapult Synthesis, Mentor
Graphics

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

29

30 T. Bollaert

3.1 Introduction

There are a few hard, unavoidable facts about electronic design. One of them is the
ever-increasing complexities of applications being designed. With the considerable
amount of silicon real-estate made available by recent technologies, comes the need
to fill it.

Every new wave of electronic innovation has caused a surge in design complexity,
breaking existing flows and commanding change. In the early 1990s, the booming
wireless and computer industries drove chip complexity to new heights, forcing
the shift to new design methods, pioneering the era of register transfer level (RTL)
design.

By fulfilling the natural evolution to raise the design abstraction level every
decade or so (transistors in the 1970s, gates in the 1980s and RTL in the 1990s),
the move to RTL design also implicitly set an expectation: in its turn, the next
abstraction level will rescue stalling productivity.

3.1.1 First-Generation Behavioral Synthesis

If all this sounds familiar, that is because behavioral synthesis – introduced with
much fanfare several years ago – promised such productivity gains. Reality proved
otherwise, however, as designers discovered that behavioral synthesis tools were
significantly limited in what they actually did. Essentially, the tools incorporated a
source language that required some timing as well as design hierarchy and interface
information. As a result, designers had to be intimately familiar with the capa-
bilities of the synthesis tool to know how much and what kind of information to
put into the source language. Too much information limited the synthesis tool and
resulted in poor quality designs. Too little information lead to a design that didn’t
work as expected. Either way, designers did not obtain the desired productivity and
flexibility they were hoping to gain.

These first-generation behavioral synthesis tools left the design community with
two prejudices: an unfulfilled need for improved productivity and preconceived
ideas about the applicability of these tools.

3.1.2 A New Approach to High-Level Synthesis

Acknowledging this unfulfilled need to improve productivity and learning from the
shortcomings of initial attempts, Mentor Graphics defined a new approach to high-
level synthesis based on pure ANSI C++. Beyond the synthesis technology itself, it
was clear that the input language played a pivotal role in the flow and much emphasis
was put on this aspect.

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 31

The drawbacks of structural languages such as VHDL, (System) Verilog or even
SystemC used in first-generation tools are numerous:

• They are foreign to most algorithm developers
• They do not sufficiently raise the abstraction level
• They can turn out to be extremely difficult to write

American National Standards Institute (ANSI) C++ is probably the most widely
used design language in the world. It incorporates all the elements to model
algorithms concisely, clearly and efficiently. A class library can then be used to
model bit-accurate behavior. And C++ has many design and debugging tools
that can be re-used for hardware design. With a majority of algorithm developers
working in pure C/C++, performing high-level synthesis from these representa-
tions allows companies to leverage existing developments and know-how, and to
take advantage of abstract system modeling without teaching every designer a new
language.

In comparison to first-generation behavioral tools, Catapult proposes an approach
where timing and parallelism are removed from the synthesized source language.
This is a fundamental difference with tools based on the structural languages
mentioned previously which all require some forms of hardware constructs. The
Catapult approach allows decoupling implementation information such as com-
plex I/O timing and protocol from the functionality of the source. With this, the
functionality and timing of the design can be developed and verified independently.

The flexibility and ease-of-use offered by the synthesis of pure ANSI C++ and
Catapult Synthesis’ intuitive coding style are a fundamental aspect of this flow.

3.1.3 Datapath Versus Control: Applicability of High-Level
Synthesis

If first-generation tools were far from perfect, they nonetheless did reasonably well
on pure datapath designs. Reputations – that is the negative ones – can be built in a
short lapse of time, and can stick for an inversely long lapse!

Seeing and thinking the world in binary terms is probably too simplistic, if
not harmful. It wasn’t sufficient for behavioral tools to be good only for datapath
designs. They also had to be awful for “control” dominated designs. Insidiously,
this polarized the design world into two domains: datapath and control.

Today, many years after the decline of pioneering behavioral synthesis tools, the
“datapath versus control” cliché still holds strongly, in ignorance of the advances
made by the technology.

But logic designers know that there is more than 1s and 0s to the problem.
Tristate, high and low impedance, dreaded X’s make timing diagrams look much
more. . . colorful. Similarly, the applicability of high-level synthesis goes much
beyond the lazy control/datapath dichotomy.

32 T. Bollaert

Algorithms are often assimilated with datapath dominated designs. But many
algorithms are purely control oriented, involving mostly decision making as opposed
to raw computation. For instance, queuing algorithms such as found in networking
devices or rate-matching algorithms in today’s modems involve virtually no data
processing. They are only about when, where and how to move data; in other words,
they are control-oriented. This class of algorithm flows perfectly through modern
high-level synthesis tools such as Mentor Graphics’ Catapult Synthesis.

It is therefore no surprise that today, industry leaders in electronic design use
Catapult Synthesis for all kinds of blocks and systems, ranging from modems such
as found in mobile or satellite communications to multimedia encoders/decoders for
set-top boxes or smart-phones, and from military devices to security applications.

In Sect. 3.4, we will describe how a complex, hierarchical subsystem consisting
of datapath, mixed datapath and control and pure control units can be synthesized
with the Catapult Synthesis tool.

3.1.4 Industrial Requirements for Modern High-Level Synthesis
Tools

The fact that high-level synthesis tools can provide significant value through faster
time-to-RTL and optimized design results is not to be demonstrated anymore. How-
ever, there is quite a gap between a working tool and a widely adopted solution
which technology alone does not fill.

Saying that a high-level synthesis tool should work doesn’t help much when
identifying the criteria for successful industrial deployment.

While the high-level synthesis promise is well understood, the impact of such
tools on flows and work organizations should not be overlooked. The bottom-line
question is the one of risk and reward. High-level synthesis’ high reward usually
comes through change in existing flows. With millions of dollars at stake on every
project, any methodology change is immediately – and understandably – considered
a major risk factor by potential users.

Risk minimization, risk minimization and risk minimization are, in that order, the
three most important industrial requirements for mainstream adoption of high-level
synthesis. Over a decade of experience in this market has taught Mentor Graphics
important lessons with this regard.

• Local improvements won’t be accepted at the expense of breaking existing
methods, imposing new constraints, forcing new languages.

• Intrusive technologies never make it in the mainstream: in their vast majority,
designers use pure C/C++; this is how they model and this is what they want to
synthesize.

• Non-standard, proprietary language extensions are counter productive and con-
sidered an additional risk factor.

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 33

• High-level synthesis tools are not used in isolation and should not jeopardize
existing flows. They should not only produce great RTL, they should produce
RTL that will seamlessly go through the rest of the flow.

• In the semiconductor industry, endorsements and sign-offs are key. Tool and
library certification by silicon vendors (ASIC and FPGA) provide user with an
important guarantee.

• World class, round the clock, local support is essential to users’ security.
• Considering the financial and methodological investment, the reliability and

financial stability of the tool supplier matters quite a lot.

If technology matters, the key successful deployment lies beyond raw quality or
results. Acknowledging these facts, Mentor Graphics put a lot of emphasis on ease-
of-use and user-experience when shaping the Catapult workflow described in the
following section.

3.2 The Catapult Synthesis Workflow

The Catapult design methodology is illustrated in Fig. 3.1. The main difference with
the traditional design flow is that the manual transformation of the C++ reference
into RTL is bridged by an automated synthesis flow where the designer guides syn-
thesis to generate the micro architecture that meets the desired area/performance/
power goals. Catapult Synthesis generates the RTL with detailed knowledge of the

Fig. 3.1 The catapult synthesis flow

34 T. Bollaert

delay of each component to eliminate much of the guess work involved in the man-
ual generation of the micro architecture and RTL. The advantages of the Catapult
Synthesis flow are reflected both in significantly reduced design times as well as
higher quality of designs and the variety of micro architecture that can be rapidly
explored.

The flow is decomposed in four major steps. Sections 3.2.1–3.2.4 give an
overview of each of these four steps, and Sect. 3.3 walks through a design example,
providing more details on the actual synthesis process.

3.2.1 Writing and Testing the C Code

In the Catapult approach, designers start with describing the desired behavior using
pure, untimed, ANSI C++. This is a fundamental aspect of the flow. This descrip-
tion is a purely algorithmic specification and requires absolutely no timing or
concurrency or target technology information. This makes for far more compact and
implementation-independent representations than traditional RTL or “behavioral”
specifications written in languages such as VHDL, Verilog or SystemC.

The synthesizable C++ design is modeled with either fixed-point, integer and,
in some cases, floating-point arithmetic. Engineers can focus on what matters most:
the algorithm, not the low-level implementation details. The execution speed of
host-compiled C++ programs allows for thorough analysis and verification of
the design, orders of magnitudes more that what can be achieved during RTL
simulations.

3.2.2 Setting Synthesis Constraints

Once satisfied with the algorithm, the designer sets synthesis constraints. This entire
process only takes a few minutes and can be done over and over for the same design.

The first step is to specify the target technology and desired clock frequency.
These details provide Catapult with the needed information to build an optimal
design schedule. The designer also specifies other global hardware constraints such
as reset, clock enable behavior and process level handshake.

As a next step, individual constraints can be applied to design I/Os, loops, stor-
age and design resources. With this set of constraints the designer can explore the
architectural design space. Interface synthesis directives are used to indicate how
each group of data is moved in to or out of the hardware design. Loop directives
are used to add parallelism to the design, and trade power, performance and area.
Memory directives are used to constrain the storage resources and define the mem-
ory architecture. Resource constraints are used to control the number of hardware
resources that are available to the design.

All these constraints can be set either interactively, through the tool’s intuitive
graphical user interface as shown in Fig. 3.2, or in batch mode with Tcl scripts.

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 35

Fig. 3.2 Catapult synthesis – architectural constraints window

3.2.3 Analyzing the Algorithm/Architecture Pair

Catapult Synthesis provides a full set of algorithm and design analysis tools.
Amongst them, the Gantt chart (Fig. 3.3) provides full insight on loop profiles, algo-
rithmic dependencies and functional units in the design. In this view, the algorithm
is always analyzed with respect to the target hardware and clock speed because
these constraints can have major effects on how an algorithm should be structured.
Using the Gantt chart designers can easily get information about how the explored
algorithm/architecture pair performs with respect to actual goals. This view is
also very valuable for tracking design bottlenecks and narrowing on specific areas
requiring optimization.

With these analysis tools, designers can always fully understand why and how
different synthesis constraints impact the design and what the actual results look
like. This “white-box” visibility into the process is an important feature helping
with ease-of-use and shortening the learning curve.

Designers are always in control, interacting and iterating, converging towards
optimal results.

3.2.4 Generating and Verifying the RTL Design

Once the proper synthesis constraints are set, Catapult generates RTL code suitable
for either ASIC or FPGA synthesis tools. In traditional flows, generation of the RTL
from the specification is done manually, a process that may require several months

36 T. Bollaert

Fig. 3.3 The Gantt chart

to complete. In the Catapult flow, the generation of RTL is accomplished in a matter
of minutes.

Catapult generates VHDL, Verilog or SystemC netlists, based on user settings.
Various reports are also produced providing both hardware-centric and algorithm-
centric information about the design’s characteristics.

Finally, Catapult provides an integrated verification flow that automates the pro-
cess of validating the HDL netlist(s) output from Catapult against the original
C/C++ input. This is accomplished by wrapping the netlist output with a SystemC
“foreign module” class and instantiating it along with the original C/C++ code and
testbench in a SystemC design. The same input stimuli are applied to both the orig-
inal and the synthesized code and a comparator at each output validates that the
output from both are identical (Fig. 3.4). The flow automatically generates all of
the SystemC code to provide interconnect and synchronization signals, Makefiles to
perform compilation, as well as scripts to drive the simulation.

3.3 Coding and Optimizing a Design with Catapult Synthesis

This section provides an overview of the various controls the user can leverage to
efficiently synthesize his design.

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 37

Fig. 3.4 Catapult synthesis’ automatic verification flow

3.3.1 Coding C/C++ for Synthesis

The coding style used for functional specification is plain C++ that provides a
sequential implementation of the behavior without any notion of timing or concur-
rency. Both the syntax and the semantics of the C++ language are fully preserved.

3.3.1.1 General Constructs and Statements

Catapult supports a very broad subset of the ANSI C++ language. The C/C++
synthesized top-level function may call other sub-functions, which may be inlined
or may be kept as a level of hierarchy. The design may also contain static vari-
ables that keep some state between invocations of the function. “if” and “switch”
condition statements are supported, as well as “for,” “do” and “while” looping
statements. “break,” “continue” and “return” branching statements are synthesiz-
able as well. The only noticeable restriction is that the code should be statically
determinable, meaning that all its properties must defined at compilation time. As
such, dynamic memory allocation/deallocation (malloc, free, new, delete) is not
supported.

3.3.1.2 Pointers

Pointers are synthesizable if they point to statically allocated objects and there-
fore can be converted into array indexes. Pointer arithmetic is also supported and
a pointer can point to several objects inside of an array.

38 T. Bollaert

Fig. 3.5 Coding style example

3.3.1.3 Classes and Templates

Compound data types such as classes, structs and arrays are fully supported for
synthesis. Furthermore, parameterization through C++ templates is also supported.
The combination of classes and templates provides a powerful mechanism facilitat-
ing design re-use.

The example in Fig. 3.5 gives an overview of some of the coding possibilities
allowed by the Catapult synthesizable subset. A struct is defined to model a RGB
pixel. The struct is templatized so users can define the actual bitwidth of the R,
G and B fields. Additionally, a method is defined which returns a grayscale value
from the RGB pixel. The synthesized design is the “convert to gray” function. It
is implemented as a loop which reads RGB pixels one by one from an input array,
calls the “to gray” method to compute the result and assigns it to the output array
using pointer arithmetic.

3.3.1.4 Bit-Accurate Data Types

Hardware designers are accustomed to bit-accurate datatypes in hardware design
languages such as VHDL and Verilog. Similarly, bit-accurate data types are needed
to synthesize area efficient hardware from C models. The arbitrary-length bit-
accurate integer and fixed-point “Algorithmic C” datatypes provide an easy way
to model static bit-precision with minimal runtime overhead. Operators and meth-
ods on both the integer and fixed-point types are clearly and consistently defined so
that they have well defined simulation and synthesis semantics.

The precision of the integer type ac int<W,S> is determined by template param-
eters W(integer that gives bit-width) and S (a boolean that determines whether the
integer is signed or unsigned).

The fixed-point type ac fixed<W,I,S,Q,O> has five template parameters which
determine its bit-width, the location of the fixed-point, whether it is signed or
unsigned and the quantization and overflow modes that are applied when construct-
ing or assigning to object of its type.

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 39

The advantages of the Algorithmic C datatypes over the existing integer and
fixed-point datatypes are the following:

• Arbitrary-Length: this allows a clean definition of the semantics for all operators
that are not tied to an implementation limit. It is also important for writing general
IP algorithms that don’t have artificial (and often hard to quantify and document)
limits for precision.

• Precise Definition of Semantics: special attention has been paid to define and
verify the simulation semantics and to make sure that the semantics are appro-
priate for synthesis. No simulation behavior has been left to compiler depen-
dent behavior. Also, asserts have been introduced to catch invalid code during
simulation.

• Simulation Speed: the implementation of ac int uses sophisticated template
specialization techniques so that a regular C++ compiler can generate opti-
mized assembly language that will run much faster than the equivalent SystemC
datatypes. For example, ac int of bit widths in the range 1–32 can run 100×
faster than the corresponding sc bigint/sc biguint datatype and 3× faster than
the corresponding sc int/sc uint datatype.

• Correctness: the simulation and synthesis semantics have been verified for many
size combinations using a combination of simulation and equivalence checking.

• Compilation Speed and Smaller Executable: code written using ac int datatypes
compiles 5× faster even with the compiler optimizations turned on (required for
fast simulation). It also produces smaller binary executables.

• Consistency: consistent semantics of ac int and ac fixed.

In addition to the Algorithmic C datatypes, Catapult Synthesis also supports the
C++ native types (bool, char, short, int and long) as well as the SystemC sc int,
sc bigint and sc fixed types and their unsigned version.

3.3.2 Synthesizing the Design Interface

3.3.2.1 Hardware Interface View of the Algorithm

The design interface is how a hardware design communicates with the rest of the
world. In the C/C++ source code, the arguments passed to the top-level function
infer the interface ports. Catapult can infer three types of interface ports:

• Input Ports transfer data from the rest of the world to the design. All inputs are
either non-pointer arguments passed to the function or pointer arguments that are
read only.

• Output Ports transfer data from the design to the rest of the world. Structure or
pointer arguments infer output ports if the design reads from them but does not
write to them.

• Input ports transfer data both to and from the design. These are pointer arguments
that are both written and read.

40 T. Bollaert

3.3.2.2 Interface Synthesis

Catapult builds a correspondence between the arguments of the C/C++ function
and the I/Os of the hardware design. Once this is established, the designer uses
interface synthesis constraints to specify properties of each hardware ports.

With this approach, designers can target and build any kind of hardware interface.
Interface synthesis directives give users control other parameters such as bandwidth,
timing, handshake and other protocols aspects.

This way the synthesized C/C++ algorithm remains purely functional and
doesn’t have to embed any kind of interface specific information. The same code
can be retargeted based on any interface requirement (bandwidth, protocol, etc. . .)

Amongst other transformations and constraints, the user can for instance:

• Define full, partial or no handshake on interface signals
• Map arrays to wires, memories, busses or streams
• Control the bandwidth (bitwidth) of the hardware ports
• Add optional start/done flags to the design
• Define custom interface protocols

Hardware specific I/O signals such as clock, reset, enable or and handshaking
signals do not need to be modeled either and are added automatically based on user
constraints.

3.3.3 Loop Controls

3.3.3.1 Loop Unrolling

Loop unrolling exposes parallelism that exists across different subsequent iterations
of a loop by partially or fully unrolling the loop.

The example in Fig. 3.6 features a simple loop summing two vectors of four
values. If the loop is kept rolled, then Catapult will generate a serial architecture. As
shown on the left, a single adder will be allocated to implement the four additions.
The adder is therefore time-shared, and dedicated control logic is built accordingly.
Assuming the mux, add and demux logic can fit in the desired clock period, four
cycles are needed to compute the results.

On the right-hand side, the same design is synthesized with its loop fully
unrolled. Unrolling is applied by setting a synthesis constraint and has the same
effect as copying four times the loop body. Catapult can now exploit the operation-
level parallelism to build a fully parallel implementation of the same algorithm. The
resulting architecture necessitates four adders to implement the four additions and
has a latency of one clock cycle.

Partial unrolling may also be used to trade the area, power and performance of
the resulting design. In the above example, an unrolling factor of 2 would cause
the loop body to be copied twice, and the number of loop iterations halved. The

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 41

Fig. 3.6 Unrolling defines how many times to copy the body of a loop

synthesized solution would therefore be built with two adders, and have a latency of
two cycles.

3.3.3.2 Loop Merging

Loop merging exhibits loops-level parallelism. This technique applies to sequential
loops and creates a single loop with the same functionality as the original loops.
This transformation is used to reduce latency and area consumption in a design by
allowing parallel execution, where possible, of loops that would normally execute
in series.

With loop merging, algorithm designers can develop their application in a very
natural way, without having to worry about potential parallelism in the hardware
implementation.

In Fig. 3.7, the code contains sequential loops. Sequential loops are very con-
venient to model the various processing stages of an algorithm. By enabling or
disabling loop merging, the designer decides if in the generated hardware, the loops
should run in parallel (merging enabled) or sequentially (merging disabled). With
this technique, the designer maintains the readability and hardware independence
of his source code. The transformation and optimization techniques in Catapult can
produce a parallelized design which would have required a much more convoluted
source description, as shown on the right-hand side.

It should also be noted in this example that Catapult is able to appropriately
optimize the intermediate data storage. When sequentially processing the two loops,
intermediate storage is needed to store the values of “a.” When parallelizing the two
loops, values of “a” produced in the first loop can directly be consumed by the
second loop, removing the need for storage.

42 T. Bollaert

Fig. 3.7 Merging parallelizes sequential loops

Fig. 3.8 Pipelining defines when to initiate the next iteration of a loop

3.3.3.3 Loop Pipelining

Loop pipelining provides a way to increase the throughput of a loop (or decreas-
ing its overall latency) by initiating the next iteration of the loop before the current
iteration has completed. Overlapping the execution of subsequent iterations of a
loop exploits parallelism across loop iterations. The number of cycles between iter-
ations of the loop is called the initiation interval. In many cases loop pipelining may
improve the resource utilization thus increasing the performance/area metric of the
design.

In example Fig. 3.8, a loop iteration consists of four operations: an I/O read
to in[i], a multiplication with coef1, an addition with coef2, and finally an I/O
write to out[i]. Assuming that each of these operations executes in a clock cycle,
and if no loop constraints are applied, the design schedule will look as shown on
the left hand side. Each operation happens sequentially, and the start of a loop
iteration (shown here with the red triangle) happens after the previous iteration

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 43

completes. Conceptually, the pipeline initiation interval is equal to the latency of
a loop iteration, in this case, four cycles.

By constraining the initiation interval with loop pipelining, designers determine
when to start each loop iteration, relative to the previous one. The schedule on the
right hand side illustrates the same loop, pipelined with an initiation interval of one
cycle: the second loop iteration starts one cycle after the first one.

Pipelining a design directly impacts the data rate of the resulting hardware imple-
mentation. The first solution makes 1 I/O access every four cycles, while the second
one will make I/O accesses every cycles. Some applications may require a given
throughput, therefore commanding the initiation interval constraint. Other designs
may tolerate some flexibility, allowing the designers to explore different pipelining
scenarios, trading area, bandwidth utilization as well as power consumption.

3.3.4 Hierarchical Synthesis

The proper integration of individual blocks into a sub-system is one of the major
challenges in chip design. With its hierarchical synthesis capability Catapult Syn-
thesis can greatly simplify the design and integration tasks, building complex
multi-block systems correct-by-construction.

While loop unrolling exploits instruction level parallelism and loop merging
exploits loop level parallelism, hierarchy exploits function level (task-level) paral-
lelism. In Catapult, the user can specify which function calls should be synthesized
as hierarchical units. The arguments of the hierarchical function define the data
flow of the system, and Catapult will build all the inter-block communication and
synchronization logic.

Hierarchy generalizes the notion of pipelining, allowing different functions to run
in a parallel and pipelined manner. In complex systems consisting of various pro-
cessing stages, hierarchy is very useful to meet design throughput constraints. When
pipelining hierarchical systems, Catapult builds a design were the execution of the
various functions overlap in time. As shown in Fig. 3.9, in the sequential source
code, the three functions (stage1, stage2 and stage3) execute one after the other. In

Fig. 3.9 Task-overlapping with hierarchical synthesis

44 T. Bollaert

the resulting hierarchical system, the second occurrence of stage1 can start together
with the first occurrence of stage2, as soon as first occurrence of stage1 ends.

3.3.5 Technology-Driven Scheduling and Allocation

Scheduling and allocation is the process of building and optimizing the design given
all the user constraints, including the specific clock period and target technology.
With the clock period defining the maximum register-to-register path, the tech-
nology defines the logic delay for each design operation. The design schedule is
therefore intimately tied to these clock and technology constraints (Fig. 3.10). This
is fundamental to build optimized RTL implementations, allowing efficient retar-
geting of algorithmic specifications from one ASIC process to another, or even to
FPGAs, with always optimal results.

This capability opens new possibilities in the field of IP and reuse. While RTL
reuse can provide a quick path to the desired functionality, it often comes at the
expense of suboptimal results. RTL IPs maybe reused over many years. Devel-
oped on older processes, IPs will certainly work on newer ones, but without taking
advantage of higher speeds and better densities, therefore resulting in bigger and
slower than needed implementations. In contrast, Catapult can built optimized RTL
designs from functional IPs for each process generation, taking reuse to a new level
of efficiency.

Fig. 3.10 Technology-driven scheduling and allocation

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 45

3.4 Case Study: JPEG Encoder

In this section we will show how a sub-system such as a JPEG encoder can be
synthesized with Catapult Synthesis.

We chose a JPEG encoder design for this case study, as we felt that the applica-
tion would be sufficiently familiar to most readers in order to be easily understood
without extensive explanations. Moreover, such an encoder features a pedagogical
mix of datapath and control blocks, giving a good overview of Catapult Synthesis’
capabilities.

3.4.1 JPEG Encoder Overview

The pixel pipe (Fig. 3.11) of the encoder can be broken down in four main
stages: first RGB to YCbCr color space conversion block, second DCT (discrete
cosine transform), third zigzag reordering combined with quantization and last, the
Huffman encoder.

3.4.2 The Top Level Function

The top level function synthesized by Catapult (Fig. 3.12) closely resembles the
system block diagram. Four sub-functions implement the four processing stages of
the algorithm. The sub-functions simply pass on arrays to each other, mimicking the
system data flow.

3.4.3 The Color Space Conversion Block

The color space conversion unit is implemented as a relatively straightforward
vector multiplication. Different sets of coefficients are used for Y, Cb and Cr
components.

Fig. 3.11 JPEG encoder block diagram

46 T. Bollaert

Fig. 3.12 C++ source code for the synthesized top level

Fig. 3.13 C++ source code for the rgb2ycbcr function

In the C source (Fig. 3.13), the RBG input is modeled as an array of structs.
The rgb t struct contains three fields: r, g and b. By default, Catapult assumes the
R, G and B components are mapped to three different interface resources. Using
interface synthesis constraints, it is possible to merge them all side-by-side on the
same resource and map this resource to a memory.

This way, the color space conversion block will get all its input from a single
memory, with every read returning all three R, G and B color components over a
3×8 = 24 bit data bus (Fig. 3.14).

The function itself is pipelined with an initiation interval of 1, to create a con-
tinuously running design with a throughput of 1 memory access per cycle. By the
same effect, outputs will be produced at a constant rate of one sample per cycle.

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 47

Fig. 3.14 Mapping side-by-side R, G and B pixels in a memory

Fig. 3.15 Gantt chart of the horizontal DCT – throughput 1 sample per cycle

3.4.4 The DCT Block

The DCT is based on a standard 2D 8× 8 Chen implementation. It decomposes in
a vertical and a horizontal pass, with a transpose buffer in between. In this datapath
dominated design, it easily possible to explore different micro-architectures to
trade-off performance (latency and throughput) versus the number of computational
resources such as adders or multipliers.

The smallest implementation allowing a constant throughput of one sample per
cycle can be scheduled with only 2 multipliers and 6 adders, and has an overall
latency of 82 cycles to process a full 8×8 block. Figure 3.15 shows a partial view
of the corresponding Gantt chart. The left column lists the resources used to build
the micro-architecture. The right part shows how and when these operators are used
to cover specific operations from the reference algorithm. The Gantt chart shows
that the two multipliers are time-shared to implement 16 different multiplications.
Similarly, the six adders implement 48 different additions.

48 T. Bollaert

Fig. 3.16 Catapult XY plot and table of results of the horizontal DCT

Fig. 3.17 C++ source code for the reorder and quantize block

After this first implementation is obtained, the user can easily trade area and
latency through simple scheduling options. With the same throughput requirements,
a design with only 74 cycles of latency can be built with eight adders instead of six.

By increasing or decreasing the throughput constraints, it is possible to further
explore the design space. Figure 3.16 shows the full table of results obtained, as well
as a screenshot of the Catapult built-in XY plot tool used to compare and contrast
the various solutions. The last solution, featuring a throughput of eight samples per
cycles is effectively processing entire rows of the 8×8 data set.

3.4.5 The Reorder and Quantize Block

The zigzag reordering and quantization steps are fairly simple. The first step reorders
the DCT results according to a predefined “zigzag” sequence and the second one
quantizes those results based on luminance and chrominance quantization tables.

As shown in Fig. 3.17, these two steps are naturally coded as two sequential
loops, one for each step. Without loop merging, the two loops run sequentially, 135
cycles are required to process a full 8×8 block and the throughput is not constant.

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 49

With loop merging, Catapult is able to fold the two sequential loops into a single
one effectively exploiting loop level parallelism. Once properly pipelined, the result
is a continuously running design which simultaneously reorders and quantizes data
at a constant rate of one sample per cycle and with a latency of only 67 cycles for a
full block.

3.4.6 The Huffman Encoder Block

Compared to the other blocks in the JPEG pixel pipe, the Huffman encoder is much
more of a control-oriented, decision making algorithm. The run-length part of the
encoder scans values as they arrive, counting the number of consecutive zeros.
When a non-zero value is found, it is paired with the number of preceding zeros.
This pair of symbols is then Huffman encoded, forming a bitstream of codewords
(Fig. 3.18). In the C program, the function returns the bitstream as an array of struct.
Catapult interface synthesis directives are used to build a streaming interface with

Fig. 3.18 C++ source code for the run-length encoder

50 T. Bollaert

handshake. Every cycle the encoder outputs a codeword with an additional flag,
indicating whether the current output data is valid or not.

3.4.7 Integrating the Hierarchical System

When performing top-down hierarchical synthesis, Catapult starts by independently
synthesizing each of the four sub-functions. Then Catapult integrates all the sub-
blocks, building the appropriate inter-block communication and creating the needed
synchronization logic. Top-level control structures are synthesized to guarantee safe
and efficient data exchange between blocks.

When two blocks exchange data through an array, Catapult distinguishes two
cases, depending if the producer and consumer access the array in the order or not.
If they do, then a streaming communication can be synthesized. If the two blocks
access the array in different order, then intermediate storage is required to allow the
two blocks to run in parallel. Catapult can automatically build ping-pong memories,
round robin memories and other kinds of interleaved structures.

In our JPEG encoder, the array written by the quantization block and read by
the Huffman encoder is accessed in the same order by blocks, from index 0 up to
63, with constant increments. Catapult will therefore build a streaming connection
between both blocks.

However, while the DCT outputs results from index 0 up to 63, the reordering
block reads those values in a zigzag order. In this case intermediate storage will be
required, for instance in the form of a ping-pong buffer and its associated control
and synchronization logic (Fig. 3.19).

3.4.8 Generating the Design

Catapult outputs VHDL, Verilog and SystemC netlists, both RTL and behavioral, as
well as various scripts and makefile needed to use the design in various simulation
and synthesis tools.

Fig. 3.19 Hardware integration and communication architecture of the JPEG encoder

3 Catapult Synthesis: A Practical Introduction to Interactive C Synthesis 51

Fig. 3.20 Instrumented testbench for automatic verification

In this example, once all the constraints are set, it takes a little over 3 min
of synthesis runtime, on an average workstation, to produce the desired design
implementation, turning 469 lines of C++ code modeling the JPEG encoder into
11,200 lines of RTL VHDL.

3.4.9 Verifying the RTL

Once the RTL is generated, Catapult provides a push-button verification flow allow-
ing simulation of the generated design against the original design and testbench.

For this matter the testbench calling the synthesized C function should be instru-
mented to call the verification infrastructure instead of just the reference algorithm
when running the automatic verification flow (Fig. 3.20).

Besides this simple change, the rest of the flow is fully automated and the user
simply needs to run the Catapult generated makefile which will take core of com-
piling and linking the proper C, SystemC and HDL design files within the specified
simulation environment.

The difference in simulation performance between the C design and the equiva-
lent RTL gives another good idea of the benefits of designing in C instead of HDL.
In this example, a trivial testcase which runs in a 1/10th of a second, runs in about
2:30 min on an average workstation, showing a 1,500× difference. Not only edits
are more quickly done in C than in HDL, they can also be much more rapidly and
thoroughly verified.

3.5 Conclusion

In this paper, we gave in depth overview of Catapult Synthesis, an interactive C
synthesis tool which generates production quality results up to 20× fasters than
with manual approaches.

While much debate has occurred about the applicability and the maturity of
behavioral synthesis tools, the success of Catapult in the market place and its
endorsement by leading semiconductor vendors demonstrate the viability of this
design methodology which is now clearly used beyond the traditional circle of
visionaries and early adopters.

52 T. Bollaert

This success was built on state-of-the-art technology, resulting from many
man/years of internal research and development. But synthesizing RTL from
abstract specifications is not an end in itself. There far more other real-life con-
straints which technology-alone doesn’t address. Mentor Graphics and the Catapult
Synthesis team have always recognized the importance of complying with indus-
trial requirements, such as integration in flows, vendor sign-off, risk-management,
knowledge transfer, reliable support and, last but not least, clear ROI.

Acknowledgments The author would like to acknowledge the Catapult Synthesis team, and
most specifically, Bryan Bowyer, Andres Takach and Shawn McCloud for their direct or indirect
contributions to this work.

Chapter 4
Algorithmic Synthesis Using PICO

An Integrated Framework for Application
Engine Synthesis and Verification from High
Level C Algorithms

Shail Aditya and Vinod Kathail

Abstract The increasing SoC complexity and a relentless pressure to reduce time-
to-market have left the hardware and system designers with an enormous design
challenge. The bulk of the effort in designing an SoC is focused on the design of
product-defining application engines such as video codecs and wireless modems.
Automatic synthesis of such application engines from a high level algorithmic
description can significantly reduce both design time and design cost. This chap-
ter reviews high level requirements for such a system and then describes the PICO
(Program-In, Chip-Out) system, which provides an integrated framework for the
synthesis and verification of application engines from high level C algorithms.
PICO’s novel approach relies on aggressive compiler technology, a parallel exe-
cution model based on Kahn process networks, and a carefully designed hardware
architecture template that is cost-efficient, provides high performance, and is sen-
sitive to circuit level and system level design constraints. PICO addresses the
complete hardware design flow including architecture exploration, RTL design, RTL
verification, system validation and system integration. For a large class of modern
embedded applications, PICO’s approach has been shown to yield extremely com-
petitive designs at a fraction of the resources used traditionally thereby closing the
proverbial design productivity gap.

Keywords: SoC design, ASIC design, ESL synthesis, Algorithmic synthesis, High
level synthesis, Application engine synthesis, C-to-RTL, PICO, Architecture explo-
ration, Soft IP, Kahn process networks, System integration, Software drivers, Sys-
tem modeling, System validation, Transaction level models, Task level parallelism,
Instruction level parallelism, Pipeline of processing arrays, Data streams, RTL
verification, Co-simulation, Reusable hardware interfaces

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

53

54 S. Aditya and V. Kathail

4.1 Introduction

The recent explosion in consumer appliances, their design complexity, and time-
to-market pressures have left the system designers facing an enormous design
productivity gap. System and register-transfer level (RTL) design and verification
are increasingly the bottleneck in the overall product cycle. The EDA community
has been trying to get around this bottleneck for over a decade, first with behavioral
synthesis [1], and then with intellectual property (IP) reuse [2]. However, both those
approaches have their limitations. In general, behavioral synthesis is a very diffi-
cult problem and has yielded poor cost and performance results compared to hand
designs. IP reuse, on the other hand, has worked to a limited extent in System-on-
Chip (SoC) designs, where standard IP blocks on a common embedded platform
may be shared across various generations of a product or even across families of
products.

A typical platform SoC comprises four different types of IP as shown in Fig. 4.1.
These are:

1. Star IP such as CPUs and DSPs: Star IP needs significant investment in terms of
building the hardware, the software tool chain as well as the creation, debugging
and compatibility of operating system and application software. This type of IP
is usually designed manually, doesn’t often change, and is very hard to alter
when it does. Therefore, this IP is typically reused across several generations
of a product.

2. Complex application engines such as video codecs and wireless modems: These
IP blocks are critical for differentiating the end product and change rapidly with
each revision in functionality, target technology, or both. Additionally, signifi-

Fig. 4.1 An SoC embedded platform with application engines

4 Algorithmic Synthesis Using PICO 55

cant investment is continually being made to improve their power, performance
and area across product generations. Therefore, direct reuse of this IP is quite
limited.

3. Connectivity and control IP such as USB port and DMA: This is system level
glue that never defines the functionality nor differentiates the end product. This
IP, therefore, is typically reused to reduce cost and provide standardization. It
does sometimes need a limited amount of tailoring.

4. Memory: Memory takes up the largest amount of silicon area, but also neither
defines the function nor differentiates the end product. Memories are almost
always compiled and built bottom-up. Their models are generated from the
transistor level behavior.

Each of these different types of IP needs to be integrated into an SoC. The avail-
ability of standard interfaces (memory, streaming, bus) based on industry standard
protocols, such as OCP [3], make this integration more straightforward.

Unlike other IP elements of the platform SoC, IP reuse of product-defining
application engines is hard because every new product context requires some spe-
cialization and adaptation to meet the new design objectives. For this reason, and
because they critically define the SoC functionality, the bulk of the SoC design effort
is focused on the design and verification of application engines.

4.1.1 Application Engine Design Challenges

Complex application engines such as multi-standard codec and 3 G wireless modems
used in the next generation consumer devices place extreme requirements on their
designs – they require very high performance at very low power and low area. For
example, software defined radio for 4 G wireless modem requires 10–100 GOPs
(giga operations per second) at a budget of 100–500 mW of power [4] – that is,
about 100 MOPs mW−1. Off-the-shelf solutions such as general-purpose processors
or DSPs cannot satisfy such extreme requirements. Embedded DSPs are unable to
provide the high performance. On the other hand, high end DSPs such as IBM Cell
processor can provide the high performance but their power consumption is very
high (in the 10 MOPs mW−1 range).

The solution is to build application-specific or custom processors, or dedicated
hardware systems to meet the extreme performance-power-area goals. Typically,
direct hardware implementations can achieve 100–1,000 MOPs mW−1 and provide
2–3 orders of magnitude better area and power compared to embedded processors
or DSPs.

Customization, however, has its cost. Manual design of application engines using
current design methodologies is very expensive in terms of both design time and
non-recurring engineering (NRE) cost leading to SoCs that take millions of dollars
and years to design. This is not sustainable for two reasons. First, SoCs are growing
in complexity because of the insatiable demand for more and more features and

56 S. Aditya and V. Kathail

the high degree of chip integration made possible by Moore’s law. For example,
a cell-phone chip now contains multiple modems, imaging pipeline for a camera,
video codecs, music players, etc. A video codec used to be a whole chip a few years
back, and now it is a small part of the chip. Second, there is relentless pressure to
reduce time-to-market and lower prices.

It is clear that automation is the key to success. Automatic application engine
synthesis (AES) from a high level algorithmic description significantly reduces both
design time and design cost. There is a growing consensus in the design community
that hardware/software co-design, high level synthesis, and high level IP reuse are
together necessary to close the design productivity gap.

4.1.2 Application Engine Design Space

Application engines like multi-standard video codecs are large, complex systems
containing a significant number of processing blocks with complex dataflow and
control flow among them. Externally, these engines interact with system CPU, sys-
tem bus and other application engines. The ability to synthesize complex application
engines from C algorithms automatically requires a careful examination of the type
of architectures that lend themselves well to such automation techniques.

Broadly speaking, there are three main approaches for designing application
engines [4] (see Fig. 4.2).

1. Dedicated hardware accelerators: They provide the highest performance and
the lowest power. Typically, they are 2–3 orders of magnitude better in power
and performance than a general purpose processor. They are non-programmable
but can provide limited amount of multi-modal execution based on configuration
parameters. There are two approaches for automatic synthesis of dedicated
hardware blocks:

Hybrid Application
Engines

Behavioral
Synthesis of

Accelerators/FPGAs

Architectural
Synthesis of

Accelerators/FPGAs

Customizable or
Configurable
Processors

Fig. 4.2 The application engine design space

4 Algorithmic Synthesis Using PICO 57

(a) Behavioral synthesis: This is a bottom-up approach in which individual
blocks are designed separately. C statements and basic blocks are mapped to
datapath leading to potentially irregular datapath and interconnect. The dat-
apath is controlled by a monolithic state machine which reflects the control
flow between the basic blocks and can be fairly complex.

(b) Architectural synthesis: This is a top-down approach with two distinguishing
characteristics. First, it takes a global view of the whole application and can
optimize across blocks in order to provide high performance. Second, it uses
an efficient, high performance architecture template to design datapath and
control leading to more predictable results. PICO’s approach for designing
dedicated hardware accelerators falls in this category.

2. Customizable or configurable processors: Custom or application-specific pro-
cessors can give an order of magnitude better performance and power than
general-purpose processor while still maintaining a level of programmability.
This approach is well-suited for the following two cases

(a) The performance requirements are not very high and power requirements are
not very stringent.

(b) Standards or algorithms are still in flux, and flexibility to make algorithmic
changes after fabrication is needed.

3. Hybrid approach: In our view, this is the right approach for synthesizing complex
application engines. An efficient architecture for these engines is a combina-
tion of

(a) Programmable processor(s), typically custom embedded processor, for parts
of the application that don’t require high performance

(b) Dedicated hardware blocks to get high performance at low power and low
area

(c) Local buffers and memories for high bandwidth

This approach allows a full spectrum of designs to be explored that trade-off among
multiple dimensions of cost, performance, power and programmability.

4.1.3 Requirements of a Production AES System

In addition to generating competitive hardware, a high level synthesis system needs
to fit in a SoC design flow for it to be practically useful and of significant benefit
to designers. We can identify a number of steps in the SoC design process. These
steps, along with the capabilities that the synthesis system must provide for each
step, are described below.

1. Architecture exploration for application engines: Architecture and micro-
architecture choices have a great impact on the power, performance and area

58 S. Aditya and V. Kathail

of a design, but there is no way to reliably predict this impact without actually
doing the design. A high level synthesis system makes it possible to do design
space exploration to find an optimal design. However, the system must be struc-
tured to make it easy to explore multiple designs from the same C source code.
For example, a system that requires users to control the scheduling of individual
operations in order to get good results is not very useful for architectural explo-
ration because of the amount of time it takes to do one design. Therefore, design
automation is the key to effective exploration.

2. High level, multi-block IP design and implementation: This is, of course, the
main purpose of a high level synthesis system. It must be able to generate
designs that are competitive with manual designs for it to be widely acceptable
in production environments.

3. RTL verification: It is unrealistic to expect that designers would write test-
benches for the RTL generated by a synthesis system. They should verify their
design at the C level using a C test bench. The synthesis system should then auto-
matically generate either an RTL test bench including test vectors or a C-RTL
co-simulation test bench. In addition, the synthesis system should provide a
mechanism to test corner cases in the RTL that cannot be exercised using the
C test bench.

4. System modeling and validation (virtual platform) support: Currently, designers
have to manually write transaction level models (TLM) for IP they are designing
in order to incorporate them in system level platforms. This is in addition to
implementing designs in RTL. Generating transaction level models directly from
a C algorithm will significantly reduce the development time for building these
models.

5. SoC integration: To simplify the hardware integration of the generated IP into an
SoC, the system should support a set of standard interfaces that remain invariant
over designs. In addition, the synthesis system should provide software device
drivers for easy integration into a CPU based system.

6. RTL to GDSII design flow integration: The generated RTL should seamlessly go
through the existing RTL flows and methodologies. In addition, the RTL should
close timing in the first pass and shouldn’t present any layout problems because
it is unrealistic to expect that designers will be able to debug these problems for
RTL they didn’t write.

7. Soft IP reuse and design derivatives: One of the promised benefits of high level
synthesis system is the ability to reuse the same C source for different designs.
Examples include designs at different performance points (low-end vs. high-end)
across a product family or design migration from one process node to another
process node. As an example of the requirement placed on the tool, support for
process migration requires that there is a methodology to characterize the process
and then feed the relevant information to the tool so that it is retargeted to that
process.

4 Algorithmic Synthesis Using PICO 59

4.2 Overview of AES Methodology

Figure 4.3 shows the high level flow for synthesis of application engines following
the hybrid approach outlined in Sect. 4.1.2. Typically, the first step in the appli-
cation engine design process is high level partitioning of the desired functionality
into hardware and software components. Depending on the application, an engine
may consist of a control processor (custom or off-the-shelf) and one or more cus-
tom accelerator blocks that help to meet one or more design objectives such as
cost, performance, and power. Traditionally, the accelerator IP is designed block by
block either by reusing blocks designed previously or by designing new hardware
blocks by hand keeping in view the budgets for area, cycle-time and power. Then
the engine is assembled together, verified, and integrated with the rest of the SoC
platform, which usually takes up a significant fraction of the overall product cycle.
The bottlenecks and the risks in this process clearly are in doing the design, verifi-
cation and integration of the various accelerator blocks in order to meet the overall
functionality specification and the design objectives. In the rest of the paper, we will
focus our attention on these issues.

In traditional hardware design flows, substantial initial investment is made to
define a detailed architectural specification of various accelerator blocks and their
interactions within the application engine. These specifications help to drive the
manual design and implementation of new RTL blocks and their verification test
benches. In addition, a functional executable model of the entire design may be
used to test algorithmic coverage and serve as an independent reference for RTL
verification.

Fig. 4.3 Application engine design flow

60 S. Aditya and V. Kathail

In design flows based on high level synthesis, on the other hand, an automatic
path to RTL implementation and verification is possible starting from a high level,
synthesizable specification of functionality together with architectural information
that helps in meeting the desired area, performance and power metrics. The addi-
tional architectural information may be provided to a HLS tool in various ways.
One possible approach is to combine the hardware and implementation specific
information together with the input specification. Some tools based on SystemC [5]
require the user to model the desired hardware partitioning and interfaces directly in
the input specification. Other tools require the user to specify detailed architectural
information about various components of the hardware being designed using a GUI
or a separate design file. This has the advantage of giving the user full control of
their hardware design but it increases the burden of input specification and makes
the specification less general and portable across various implementation targets.
It also leaves the tool with very little freedom to make changes and optimizations
in the design in order to meet the overall design goals. Often, multi-block hardware
integration and verification becomes solely the responsibility of the user because the
tool has little or no control over the interfaces being designed and their connectivity.

4.2.1 The PICO Approach

PICO [6] provides a fully automated, performance-driven, application engine syn-
thesis methodology that enables true algorithmic level input specification and yet
is sensitive to physical design constraints. PICO not only produces a cost-effective
C-to-RTL mapping but also guarantees its performance in terms of throughput and
cycle-time. In addition, multiple implementations at different cost and performance
tradeoffs may be generated from the same functional specification, effectively
reusing the input description as flexible algorithmic IP. This methodology also
reduces design verification time by creating customized verification test benches
automatically and by providing a correct-by-construction guarantee for both RTL
functionality and timing closure. Lastly, this methodology generates standard set of
interfaces which reduces the complexity of assembling blocks into an application
engine and final integration into the SoC platform.

The key to PICO’s approach is to use an advanced parallelizing compiler in
conjunction with an optimized, compile-time configurable architecture template to
generate hardware as shown in Fig. 4.4. The behavioral specification is provided
using a subset of ANSI C, along with additional design constraints, such as through-
put and clock frequency. The RTL design creation can then be viewed as a two step
process. In the first step, a retargetable, optimizing compiler analyzes the high level
algorithmic input, exposing and exploiting enough parallelism to meet the required
throughput. In the second step, an architectural synthesizer configures the architec-
tural template according to the needs of the application and the desired physical
design objectives such as cycle-time, routability and cost.

4 Algorithmic Synthesis Using PICO 61

ANSI C Algorithm (e.g. FDE)
Design constraints:
Throughput, clock frequency

Application Engine Synthesis

Verilog RTL HW + SystemC Models

Configurable
Architectural

Template

Advanced
Parallelizing

Compiler

ANSI C Algorithm (e.g. FDE)
Design constraints:
Throughput, clock frequency

Application Engine Synthesis

Verilog RTL HW + SystemC Models

Configurable
Architectural

Template

Advanced
Parallelizing

Compiler

Fig. 4.4 PICO’s approach to high level synthesis

Fig. 4.5 System level design flow using PICO

4.2.2 PICO’s Integrated AES Flow

Figure 4.5 shows the overall design flow for creating RTL blocks using PICO.
The user provides a C description of their algorithm along with performance
requirements and functional test inputs. The PICO system automatically generates
the synthesizable RTL, customized test benches, synthesis and simulation scripts,
as well as software integration drivers to run on the host processor. The RTL imple-
mentation is cost-efficient and is guaranteed to be functionally equivalent to the
algorithmic C input description by construction. The generated RTL can then be
taken through standard simulation, synthesis, place and route tools and integrated
into the SoC through automatically configured scripts.

62 S. Aditya and V. Kathail

Along with the hardware RTL and its related software, PICO also produces
SystemC-based TLM models of the hardware at various levels of abstraction –
untimed programmer’s view (PV), and timed programmer’s view (PV+T). The PV
model can be easily integrated into the user’s virtual SoC platform enabling fast
validation of the hardware functionality and its interfaces in the system context,
whereas the PV+T model enables early verification of the performance, the paral-
lelism and the resources used by the hardware in the system context.

The knowledge of the target technology and its design trade-offs is embed-
ded as part of a macrocell library which the PICO system uses as a database
of hardware building blocks. This library consist of pre-verified, parameterized,
synthesizable RTL components such as registers, adders, multipliers, and intercon-
nect elements that are carefully hand-crafted to provide the best cost-performance
tradeoff. These macrocells are then independently characterized for various target
technology libraries to obtain a family of cost-performance tradeoff curves for var-
ious parametric settings. PICO uses this characterization data for its internal delay
and area estimation.

4.2.3 PICO Results and Experience

The PICO ExpressTM tool incorporating our approach has been used extensively
in production environments. Table 4.1 shows a representative set of designs done

Table 4.1 Some example designs created using PICO ExpressTM

Product Design Area Performance Time vs. hand
design

DVD Horizontal–vertical
filter

60–49 K gates,
40% smaller than
target

Met cycle budget
and frequency
target

v1: 1 month
v2: 3 days vs. 2–3
months

Digital
Camera

Pixel scaler Met the target Multiple versions
designed at
different targets

2–3 weeks
Multiple revisions
within hours

Set-top
box

HD video codec 200 K gates, 5%
smaller than hand
design

Same as hand
design

<2 months to
design and verify

Camcorder High-perf. video
compression

1 M gates, met the
target

Same as hand
design

Same design time
with significantly
less resources

Video
Processing

Multi-standard
deblocking,
deringing and
chroma conversion

Same as hand
design

30% higher than
hand design

3–4× productivity
improvement

Multi-
media cell
phone

High bandwidth
3 G wireless
baseband

400 K gates, same
as hand design

Same as hand
design

2 months vs. >9
months

Wireless
LAN

LDPC encoder for
802.11n

60 K gates, 6%
over hand design

Same as hand
design, low power

<1 month to
design and verify

4 Algorithmic Synthesis Using PICO 63

using PICO Express. These designs range from relatively small horizontal-vertical
filter for a DVD player with ∼49 K gates to large designs with more than 1 M gates
for high performance video compression. In all cases, designs generated using PICO
Express met the desired performance targets with an area within 5–10% of the hand-
design except in one case where the PICO design had significantly less area. In all
cases, PICO Express provided significant productivity improvements ranging from
3–5× for the initial design and more than 20× for derivative designs. As far as we
know, no other HLS tool can handle many of these designs because of their com-
plexity and the amount of parallelism needed to meet performance requirements.
Users’ experience with PICO Express is described in these papers [7, 8].

4.3 The PICO Technology

In this section, we will describe the key ingredients of the PICO technology that
help to meet the application engine design challenges and the requirements of a
high level synthesis tool as outlined in Sect. 4.1.

4.3.1 The Programming Model

The foremost goal of PICO has been to make the programming model for design-
ing hardware to be as simple as possible for a large class of designs. PICO has
chosen C/C++ languages as the preferred mode of input specification at the
algorithmic level. The goal is not to replace Verilog or VHDL as hardware spec-
ification languages necessarily, but to raise the level of specification to a point
where the essential algorithmic content can be easily manipulated and explored
without worrying about the details of hardware allocation, mapping, and scheduling
decisions.

Another important goal for PICO’s programming model is to allow the user to
specify the hardware functionality as a sequential program. PICO automatically
extracts parallelism from the input specification to meet the desired performance
based on its analysis of program dependences and external resource constraints.
However, the functional semantics of the hardware generated still corresponds to
the input sequential program. On one hand, this has obvious advantages for under-
standability and ease of design and debugging, while on the other hand, this allows
the tool to explore and throttle the parallelism as desired since the input specifica-
tion becomes largely independent of performance requirements. This approach also
helps in verifying the final design against the input functional specification in an
automated way.

64 S. Aditya and V. Kathail

L1

L2

L3
time

L1

Sequential

L1
L2

L3

L1
L2

L3

Loop-level
parallelism

L1
L2

L3
L1

L2

L3

Task-level and
Loop-level
parallelism Iteration-level parallelism

1

2

3

Instruction-level
parallelism

Task-level
parallelism

L1

L2

L3

L1

L2

L3

L1

L2

L3

proc

1
2

3
4

5
6

L1
L2

L1

L2

L3
time

L1

L1

L2

L3
time

L1

Sequential

L1
L2

L3

L1
L2

L3

L1
L2

L3

L1
L2

L3

Loop-level
parallelism

L1
L2

L3
L1

L2

L3

L1
L2

L3
L1

L2

L3

Task-level and
Loop-level
parallelism Iteration-level parallelism

1

2

3

1

2

3

Instruction-level
parallelism

Task-level
parallelism

L1

L2

L3

L1

L2

L3

L1

L2

L3

L1

L2

L3

L1

L2

L3

proc
L1L1

L2L2

L3L3

proc

1
2

3
4

5
6

L1
L2

1
2

3
4

5
6

L1
L2

Fig. 4.6 Multiple levels of parallelism exploited by PICO

4.3.1.1 Sources of Parallelism

A sequential programming model may appear to place a severe restriction to the
class of hardware one can generate or the kind of parallelism one can exploit in those
hardware blocks. However, this is not actually so. A very large class of consumer
data-processing applications such as those in the fields of audio, video, imaging,
security, wireless, networking, etc. can be expressed as a sequential C program that
process and transform arrays or streams of data. There is tremendous amount of
parallelism in these applications at various levels of granularity and PICO is able to
exploit them all using various techniques.

As shown in Fig. 4.6, a lot of these applications consist of a sequence of trans-
formations expressed as multiple loop-nests encapsulated in a C procedure that is
designated to become hardware. One invocation of this top level C procedure is
called one task which processes one block of data by executing each loop-nest
once. This would be followed by the next invocation of the code processing another
block of data. PICO, however, converts the C procedure code to a hardware pipeline
where each loop-nest executes on a different hardware block. This enables proce-
dure level task parallelism to be exploited by pipelining a sequence of tasks through
this system, increasing overall throughput considerably.

At the loop-nest level, PICO provides a mechanism to express streaming data that
is synchronized with two-way handshake and flow control in the hardware. In the C
program, this manifests itself simply as an intrinsic function call that writes data to
a stream and another intrinsic function call that reads data from that stream. Streams
may be used to communicate data between any pair of loop-nests as long as temporal
causality between the production and the consumption of data is maintained during

4 Algorithmic Synthesis Using PICO 65

sequential execution. The advantage of the fully synchronized communication in
hardware is that the loop-nests can be executed in parallel with local transaction
level flow control which exploits producer-consumer parallelism at the loop level.

Within a single hardware block implementing a loop-nest, PICO exploits iter-
ation level parallelism, by doing detailed dependence analysis of the iteration
space and transforming the loop-nest to run multiple iterations in parallel even
in the presence of tight recurrences. Subsequently, the transformed loop iteration
code is scheduled using software-pipelining techniques that exploit instruction level
parallelism in providing the shortest possible schedule while meeting the desired
throughput.

4.3.1.2 The Execution Model

Given the parallelism available in consumer application at various levels, the PICO
compiler attempts to exploit this parallelism without violating the sequential seman-
tics of the application. This is accomplished by following the well-defined, parallel
execution model of Kahn process networks [9], where a set of sequential pro-
cesses communicate via streams with block-on-read semantics and unbounded
buffering. Kahn process networks have the advantage that they provide determin-
istic parallelism, i.e., the computation done by the process network is unchanged
under different scheduling of the processes. This property enables PICO to par-
allelize a sequential program with multiple loop-nests to a Kahn process network
implemented in hardware where each loop-nest computation is performed by a cor-
responding hardware block that communicates with other such blocks via streams.
Since the process network is derived from a sequential program, it still retains the
original sequential semantics even under different parallel executions of its hardware
blocks. Each hardware block, in turn, runs a statically parallelized implementa-
tion of the corresponding loop-nest that is consistent with its sequential semantics
using software-pipelining techniques. In this manner, iteration level and instruc-
tion level parallelism are exploited at compile-time within each hardware block,
and producer–consumer and task level parallelism are exploited dynamically across
blocks without violating the original sequential semantics.

The original formulation of Kahn process networks captured infinite computa-
tion using unbounded FIFOs on each of the stream links. However, PICO is able
to restrict the size of computation and buffering provided on each link by impos-
ing additional constraints on the execution model. These constraints are described
below:

• Single-task execution: Each process in a PICO generated process network is
able to execute one complete invocation to completion without restarting. This
corresponds to the single task invocation of the top level C procedure in the
input specification, where each loop-nest in that procedure executes once and
the procedure terminates. In actual hardware execution, multiple tasks may be
overlapped in a pipelined manner depending on resource availability, but this

66 S. Aditya and V. Kathail

constraint ensures that the initiation and termination states of each task are
well-defined, just as they are in C.

• Sequential semantics: By construction, all process networks generated by PICO
have sequential semantics as specified by the input C program, i.e., it is possible
to execute one task by running the various processes to completion in the original
C program order without deadlock, albeit using large stream buffers.

• Self-cleaning: It is required for the PICO input programs to execute such that no
excess tokens are accumulated in any of the inter-process stream buffers between
two tasks. The tool verifies this property during simulation. This property can
also be stated as a constraint where the total number of tokens written to a stream
during a task execution must equal the total number of tokens read out from
that stream during that task. However, any residual state left within the processes
from executing one task can still be carried to the next task via its internal regis-
ters and shared memories. The purpose of this constraint is to ensure that FIFO
queues do not grow unbounded as more and more tasks are run through the sys-
tem. However, it does not constrain the instantaneous access pattern of a stream
during the course of a single task. That constraint is enforced by the following
property.

• Rate-matching: PICO ensures that, on an average, the rate of production and
consumption of tokens in each stream is matched at a granularity that is much
smaller that the entire task. This is achieved by adjusting the rate of computation
of each process by varying the throughput of the pipelined schedule running
within each process. Of course, this is only a heuristic because the actual token
production or consumption may be data dependent. But this analysis ensures that
even during the course of a task the FIFOs can be bounded.

Given the above constraints, it is guaranteed that the size of the buffer needed
on each stream link is bounded for a deadlock-free execution. Furthermore, rate
matching ensures that the required buffer size is proportional to the computation of
a single iteration rather than the entire loop-nest. PICO produced process networks
can then be analyzed (either statically or via simulation) to determine the maximum
size of a FIFO buffer needed on each stream link in order to execute in a deadlock-
free manner. During execution with bounded buffers, the processes may block on
write when the output link’s FIFO buffer is full, but they are guaranteed to make
progress eventually. PICO can also generate models that predict the overall perfor-
mance of the application taking both read and write stalls into account and verify it
against the desired performance specification.

4.3.2 The Architecture Template

The general structure of the hardware generated by PICO from a top level C pro-
cedure is shown in Fig. 4.7. This architectural template is called a pipeline of
processing arrays (PPA). Each of the top level loop-nests in the C procedure is

4 Algorithmic Synthesis Using PICO 67

Fig. 4.7 The pipeline of processing arrays (PPA) architecture template

mapped to a hardware block or a processing array (PA) that communicates with
other PAs via one or more streams, memories or raw signals. The communication is
not restricted to a sequential pipeline – in general, it is a directed graph. However,
the sequential semantics of the original C procedure is preserved by means of a tim-
ing controller that enforces essential control dependencies between the PAs. When
the communication between two PAs is via memories or raw signals, the timing
controller sequentializes the two blocks through handshaking control signals. This
ensures consistent sequential semantics for shared arrays and scalar values that are
produced by the first PA and consumed by the second. However, PAs that commu-
nicate via data streams are allowed to run in parallel because they can synchronize
at the level of individual data elements.

The host interface and the task frame memory shown in Fig. 4.7 serve to provide
smooth integration of the PPA hardware into a SoC using memory mapped IO. The
host interface consists of a slave memory port that presents the local address space
of the PPA at a configurable global memory address. The local address space of
the PPA includes its local data memories and the task frame memory containing
externally visible configuration registers. This IO mapping enables the external host
processor to control and manage the PPA accelerator via an API library that provides
methods to start/stop the PPA and exchange data with it via load/store transactions
to the appropriate addresses.

Figure 4.8 shows the architecture template of an individual processing array.
Each array is structured like a wide Very Long Instruction Word (VLIW) processor
customized to execute only one program – a loop iteration. The control of each array
is optimized into a simple finite-state machine generated according to the operation
schedule, while its datapath is configured to implement the dataflow of the schedule
using RTL components drawn from PICO’s pre-characterized macrocell library.

68 S. Aditya and V. Kathail

Fig. 4.8 The processing array (PA) architecture template

Fig. 4.9 The high level steps in mapping of C to RTL

4.3.3 C-to-RTL Mapping Process

The process of converting a top level C procedure into a PPA is a complex one
with various analysis and transformation steps. The details of this process have
been described in another paper [10], but we will outline the major steps here
(see Fig. 4.9).

4 Algorithmic Synthesis Using PICO 69

1. Preprocessing: The first step in the C-to-RTL conversion process is to analyze the
input program for data dependences and identify which loop-nests can be paral-
lelized and which loop-nests have sequential dependences between them. Within
each loop-nest, extensive loop dependence analysis is done using the Omega
library [11] framework to identify critical recurrences and loop transformations
that help to alleviate those recurrences.

2. Loop perfectization and rate matching: The original C program may consist of
multi-dimensional, non-perfect loop-nests with out-of-loop code and straight-
line code between loops. The PICO compiler analyzes several candidate choices
for creating perfect loop-nests out of this code that are each matched for produc-
tion and consumption rates of streams and budgeted for achieving the desired
overall performance based on data dependences. Out of the succeeding candi-
dates, the one with the least estimated area is chosen for further transformations.

3. Iteration scheduling: The appropriate loop transformations prescribed by the
previous step are carried out. The result is a single-dimension, perfect loop corre-
sponding to each process node that can be scheduled at a steady throughput rate.

4. Operation level optimizations: Several classical and instruction level optimiza-
tions are applied to each loop code using PICO’s extensive instruction level
parallelization technology. This includes transformations to eliminate branches
as well as anti- and output-dependences.

5. Function unit allocation: PICO allocates an optimal set of function units for the
datapath of each PA based on the exact mix of the operations used in the applica-
tion, the desired throughput for each type of operation and the available function
units in the macrocell library that can execute those operations. In addition, sev-
eral heuristics are used to further share the function units based on predicate
analysis.

6. Operation scheduling: Given the set of data function units, the PICO compiler
schedules and maps the operations of each loop into a modulo-schedule [12]
with the desired throughput computed earlier. The scheduler attempts to chain
operations and insert pipeline stages intelligently [13] based on actual delay
characteristics of function unit macrocells for the given target technology library.

7. Register allocation: Following the modulo-schedule, the pipeline structure of
the PA is determined and register allocation of program variables can be under-
taken. PICO uses a specialized, distributed register file structure called ShiftQs
[14] that share registers to store multiple variables, have custom read/write port
connectivity and are optimized for register cost.

8. Netlist generation: The final step in the process is to generate the interconnect
between the function units and the ShiftQs based on the dataflow of the operation
schedule and output the resulting netlist as structural RTL.

4.3.4 Design and Verification Flow

The overall design flow for the PICO tool is shown in Fig. 4.10. The user writes
application code as a top level C procedure that can be functionally verified using a

70 S. Aditya and V. Kathail

Synthesis Flow

Verification
And Performance
Modeling Flow

Fig. 4.10 The synthesis and verification flows in PICO

driver written in C/C++. The user also sets design constraints such as the desired
throughput, target clock frequency, and the target technology library. These con-
straints can be supplied through a GUI or a scripted interface based on TCL. The
tool then sequences through a series of design and verification phases that transform
the input C specification into a RTL implementation.

The synthesis flow performs the C-to-RTL mapping steps described in Sect. 4.3.3.
The preprocess phase performs preprocessing, the schedule phase performs loop
perfectization, rate matching and iteration scheduling, and the synthesis phase
performs the remaining optimization and transformation steps.

Figure 4.10 also shows that several simulation-based verification phases may
be interleaved with the synthesis phases. Multiple verification phases help to catch
bugs early in the design flow and build confidence in the translation process. The
various simulation phases fall into two main categories – C-based simulations,
and SystemC-based simulations. These are described below in the order of their
occurrence in the verification flow:

1. Golden C simulation: This is a direct simulation of the input C code along with
its driver using a standard C compiler such as gcc. The results of this phase serve
as a reference for subsequent phases.

2. Lint simulation: This is a C-based simulation after the preprocessing phase whose
purpose is to check for static and dynamic errors in the user’s specification. This
phase catches errors such as reading uninitialized variables, or out-of-bounds
array access. Certain restrictions on the input C syntax imposed by PICO are also
checked and appropriate warnings or errors are issued. Finally, this phase also
checks for overflow or underflow of variable values from the bitwidth precision
implied by their C data type or specified by the user using pragmas. The usual
C semantics is to follow modulo arithmetic and ignore such precision violations,

4 Algorithmic Synthesis Using PICO 71

but in our experience, these violations are typically a source of bugs in the RTL
implementation. Therefore, it is very useful to flag them early.

3. Bit-accurate SystemC simulation: In the preprocessing phase, PICO also creates a
fast, bit-accurate, single-threaded SystemC model of the hardware block for the
purpose of validating its external interfaces in the system context. This is also
known as the programmer’s view (PV). As the name suggests, the bit-accurate
model models the protocol and bitwidth precision of all external interfaces pre-
cisely at the transaction level. Interfaces such as external memories, streams and
raw signals are modeled as individual channels. This model can be easily inte-
grated into user’s system validation platform for firmware testing long before the
hardware is available.

4. Post-schedule C simulation: As the name suggests, this C-based simulation is
carried out immediately after the schedule phase. Aside from serving to verify the
validity of the transformations performed during the scheduling phase, this phase
also generates input/output functional test-vectors for each PPA task invocation
that are used later for RTL verification.

5. Thread-accurate SystemC simulation: After the schedule phase, PICO generates
a multi-threaded SystemC model that models the process network view of the
PPA hardware accurately. This is also known as the timed programmer’s view
(PV+T). Each loop-nest representing the computation of a PA is encapsulated
in its own SystemC thread and the communication between them is setup using
stream, memory, or register channels. Each such thread executes as a Kahn pro-
cess at an average computation rate prescribed by the rate matching phase. The
thread-accurate model can be used as a fast resource and performance predic-
tion model for architectural exploration because it models all hardware resources
including computation process nodes, memories and stream buffers precisely.
Although the model is not meant to be cycle-accurate so that it can execute
quickly (usually 10–100× over RTL), each thread is synchronized to execute
in line with its prescribed rate of computation. As such, this model provides
an excellent insight into the achievable task and loop level parallelism and the
stream and memory resource contention in the final hardware before the actual
hardware is available.

6. RTL simulation: PICO automatically generates a RTL test-bench along with the
hardware which can run the functional test-vectors collected during the Post-
scheduling C simulation and check them for correct execution. Environmental
variations such as stream handshake delays and abort conditions can also be
added with appropriate randomization in order to test the robustness of the
design.

7. RTL co-simulation: The final test of the generated RTL is to test it within the
context of the original driver code using SystemC. PICO automatically generates
a set of transactors that translate the transaction level interactions to and from
the driver code to signal level interface protocol accepted by the PPA RTL. This
co-simulation tests the PPA interfaces for correctness and provides a view of the
overall performance of the PPA design in the context of its deployment.

72 S. Aditya and V. Kathail

PPA Design

S
ystem

 P
ort

System IF
(Clock,
Reset) M

em
or

y
P

or
t

SRAM/ROM IF

Host Port
Memory-mapped IF

System Bus

Bus
Adapter

Raw Control Port

Task Control IF

Raw Status Port

PSW fields

StreamIn Port

StreamOut Port

Stream IF

RawDataIn Port

RawDataOut Port

Raw Data IF

PPA Design

S
ystem

 P
ort

System IF
(Clock,
Reset) M

em
or

y
P

or
t

SRAM/ROM IF

Host Port
Memory-mapped IF

System Bus

Bus
Adapter

Raw Control Port

Task Control IF

Raw Status Port

PSW fields

StreamIn Port

StreamOut Port

Stream IF

RawDataIn Port

RawDataOut Port

Raw Data IF

Fig. 4.11 Standard interfaces for PICO designed IP

4.3.5 Reusable Interfaces

A key benefit of using a configurable architectural template for RTL design is that
PICO can restrict the generated designs to conform to a small set of interfaces
that are typical of those used in today’s SoC designs. As shown in Fig. 4.11, these
interfaces are currently provided for a memory mapped host processor access chan-
nel (the PPA is a slave on this bus), streaming data input and output, and local
SRAM/ROM. Additional raw control and data interfaces may also be configured
when direct hardware control is desired.

The compiler understands the semantics of these interfaces at the transaction
level and the translation from the C operations to transactions on the appropriate
interfaces. This enables the designer to program at the algorithmic level, that is,
the input specification remains independent of the exact RTL implementation and
signal/cycle level behavior so that it may be reused and retargeted easily to different
cost-performance points.

The interface RTL is designed by configuring a parameterized interface template
which is pre-verified across the range of parameterization. The combination of these
ensures that there will be no protocol errors in the RTL operation. The protocols
used should be familiar to SoC designers. They are easy to adapt to other flavors of
these interfaces or more complex buses. There are many advantages to using these
common interfaces:

• Designers need not spend time redesigning interface protocols, or verifying them;
any adapter to PICO interfaces only needs to be designed and verified once.

• Opportunities for miscommunication in interfacing between blocks are substan-
tially reduced.

4 Algorithmic Synthesis Using PICO 73

• As each interface provides a simple abstraction to the transaction level, PICO
can deliver an automated verification flow where transactions in the C code are
mapped to signal level transfers in the RTL test bench.

• PICO can easily be extended to adapt its native interfaces to any interface proto-
col by creating a protocol adapter as a piece of IP, without the designer needed
to specify the protocol in C.

• Each block designed by PICO will have a common “look and feel” even though
it is highly customized and very efficiently designed; this will reduce effort and
time in design, verification, and integration.

By standardizing and pre-verifying interface designs that historically result in
many defects, the PICO strategy of reusable interfaces supports quality and reusabil-
ity best practices for SoC design.

4.4 Conclusion

PICO takes a novel approach to hardware design from algorithmic specifications,
dramatically improving the cost of design, verification and integration of RTL
blocks into SoC platforms. The approach relies on aggressive compiler technol-
ogy, a parallel execution model based on Kahn process networks, and a carefully
designed architecture template that is cost-efficient, provides high performance, and
is sensitive to circuit level and system level design constraints.

From a user’s perspective, PICO translates a familiar, easy-to-use, general-
purpose programming model to a robust and aggressively parallel hardware exe-
cution model that can be easily explored at the architectural level to generate a
range of cost, performance and power tradeoff points from the same software IP.
The user provides design constraints and architectural guidance to the compiler at a
high level, while the compiler exploits parallelism in the application automatically
to meet those constraints and hides the details of hardware mapping, scheduling and
synchronization.

Finally, the PICO tool addresses the complete hardware design flow including
architecture exploration, RTL design, RTL verification, system validation and sys-
tem integration. We believe that this degree of flow integration is essential for the
success of a high level synthesis tool. For a large class of modern embedded appli-
cations designed using PICO, this approach has been shown to yield extremely
competitive designs at a fraction of the resources used traditionally thereby closing
the proverbial design productivity gap.

Acknowledgments PICO started as a research project at Hewlett-Packard Laboratories in the
mid-1990s under the leadership of (late) Dr. Bob Rau who has done pioneering work in the field
of VLIW computing. A lot of the ideas and the vision of applying that body of work to embedded
system design can be traced back to him. We are also indebted to the founding team of Syn-
fora including Craig Gleason, Darren Cronquist, Mukund Sivaraman, Dave Goldberg, and Jeff
Benis as well as former colleagues at HP Labs including Mike Schlansker and Rob Schreiber for

74 S. Aditya and V. Kathail

contributing towards the PICO technology in very significant ways. Finally, we would like to thank
the entire Synfora team for making the PICO vision a reality and the PICO tool successful in the
EDA marketplace.

References

1. R. Camposano, From behavior to structure: high-level synthesis, IEEE Design & Test, 7(5):
8–19, 1990.

2. W. Savage, J. Chilton, R. Camposano, IP reuse in system on a chip era, in: Proc. Intl. Symp.
System Synthesis, 2000, pp. 2–7.

3. Open Core Protocol Specification, Release 2.2, OCP International Partnership Association,
Inc., http://www.ocpip.org.

4. V. Kathail, C. Gleason, S. Mahlke, M. Kudlur, K. Fan, Automated architecture synthesis from
C algorithms, Tutorial in: Intl. Conf. on Compilers, Architectures and Synthesis for Embedded
Systems (CASES), Seoul, S. Korea, October 2006.

5. SystemC Language Reference Manual, IEEE Std. 1666TM-2005. http://www.systemc.org.
6. V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C. Cronquist, M. Sivaraman, PICO:

Automatically Designing Custom Computers, IEEE Computer, 35(9):39–47, 2002.
7. N. Chawla, R. Guizzetti, Y. Meroth, A. Deleule, V. Gupta, V. Kathail, P. Urard, Multimedia

application specific engine design using high level synthesis, Proc. DesignCon 2008, Santa
Clara, California, February 2008.

8. M. Fillinger, P. Thiruchelvum, Using PICO Express to Reduce Design Time for Complex
Application Engines, in: 10th Sophia Antipolis MicroElectronics Forum (SAME), Sophia-
Antipolis, France, October 2007.

9. G. Kahn, The semantics of a simple language for parallel programming, in: Proc. IFIP
Congress 74, Information Processing, Stockholm, Sweden, 1974, pp. 471–475.

10. R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cronquist, M. Sivaraman,
PICO-NPA: High-level synthesis of non-programmable hardware accelerators, Journal of
VLSI Signal Processing, 31:127–142, 2002.

11. The Omega Project. University of Maryland, http://www.cs.umd.edu/projects/omega.
12. B. R. Rau, Iterative modulo scheduling, International Journal of Parallel Processing, 24:3–64,

1996.
13. M. Sivaraman, S. Aditya, Cycle-time aware architecture synthesis of custom hardware accel-

erators, in: Proc. Intl. Conf. on Compilers, Architectures and Synthesis for Embedded Systems
(CASES), 2002. pp. 35–42.

14. S. Aditya, M. S. Schlansker, ShiftQ: A buffered interconnect for custom loop accelerators, in:
Proc. Intl. Conf. on Compilers, Architectures and Synthesis for Embedded Systems (CASES),
2001, pp. 158–167.

Chapter 5
High-Level SystemC Synthesis with Forte’s
Cynthesizer

Michael Meredith

Abstract This chapter will describe the SystemC-based design style and verification
approach used with the Cynthesizer high-level synthesis product from Forte Design
Systems. It will outline the SystemC and C++ constructs that are supported for
synthesis and cover C++ techniques used for creating modular, reusable interfaces.
Techniques for specifying constraints and controlling the high-level synthesis results
will be described.

Keywords: SystemC, Synthesizable constructs, Modular interfaces, Sockets,
Scheduling, Loop transformations, Verification

5.1 Introduction

Forte uses standard SystemC semantics along with a set of tool-control directives,
a target clock period and a process technology library as input to its Cynthesizer
high-level synthesis tool. Using SystemC allows the synthesis of a broad range
of functionality at multiple levels of abstraction due to the range of hardware
functionality that can be expressed in SystemC.

By using the high-level language constructs of C++ along with the hardware
constructs of SystemC, hardware designers using Cynthesizer are able to design at a
level of abstraction higher than RTL, and maximize their ability to reuse the source
code that is the product of their engineering effort.

The SystemC and C++ constructs that are used to make this possible are
described below, and a number of constructs that cannot be used for synthesis are
identified.

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

75

76 M. Meredith

5.2 C++ Support

Because SystemC is a class library implemented in C++, the advantages of high-
level C++ constructs are available to hardware designers working in SystemC.
Cynthesizer supports a large number of these constructs but, just as there are
SystemVerilog constructs that are only intended for verification, there are C++
constructs that are only appropriate for modeling and testbench construction, not
for synthesis.

5.2.1 Synthesizable High-Level C++ Constructs

The C++ constructs that are within the synthesizable subset can be used in ways
that give SystemC synthesis advantages unattainable in any other hardware design
language.

• Encapsulation: C++ classes can be used in SystemC synthesis to manage the
complexity inherent in hardware design.

Algorithmic functionality can be captured in a class for reuse. Functions
providing a public API for use of the algorithm can be made externally avail-
able using the C++ “public” access control. Internal computation functions and
storage of internal state needed by the algorithm can be made private.

Interface functionality can be encapsulated as discussed earlier creating a
modular, reusable interface. Modular interfaces expose a transaction-level func-
tion call interface to the designer which allows them to be used without requiring
the designer to be expert in the details of the interface protocol.

• Construction of custom data types: Operator overloading is a C++ technique
whereby a class can provide a custom implementation for such built-in opera-
tors as “*” (multiply) and “+” (add). This allows the construction of user defined
datatypes such as for complex arithmetic, and matrix arithmetic. Arithmetic oper-
ations can be performed on these datatypes using conventional C++ syntax,
e.g., a = b + c; which promotes ease-of-use and improves a reader’s ability to
understand the code.

• Development of configurable IP: C++ provides template specialization as a way
to write a single body of code which can represent a wide range of behaviors
depending on the specific template parameters selected. As a simple example,
template specialization can be used to build a filter class that can operate on any
given datatype, including user-defined custom datatypes.

A more sophisticated example is the cynw float parameterized floating-point
class that Forte has developed. It allows the user to specify template parameters
to choose the exponent and mantissa widths as well and configure options such
as normalization and rounding behaviors.

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 77

Supported C++ Constructs

Arithmetic operators Integer data types

 serutcurtS srotarepo lacigoL

References Classes

Statically-determinable pointers Inheritance

if-else statements Operator overloading

switch-case statements Inferring memories from arrays

do, while, and for loops Inferring registers from arrays

break and continue statements Template classes and functions

Template specialization

5.2.2 Non-Synthesizable C++ Constructs

One characteristic of the synthesis process is that it uses the source code of the high-
level design without access to information that can only be determined at simulation
time. In other words, the synthesis process can only take advantage of language
features that can be resolved statically and information that can be determined by
inspection of the source code. This is the source of most of the restrictions on C++
constructs that can be used:

• Pointer arithmetic: In the processor-based execution environment in which the C
and C++ languages were originally envisioned, all variables, structures, arrays
and other storage elements are defined to exist within a single uniform address
space.

A hardware implementation may include multiple separate memories of dif-
ferent kinds as well as storage elements implemented directly with flip-flops.
Clearly, in this environment making decisions based on the value of the address
of a variable is meaningless. Consequently, pointer arithmetic is not supported
for SystemC synthesis.

• Pointer dereferencing: Similarly, accessing a specific storage element by its
address assumes a processor-based execution environment. Therefore, in general,
passing pointers and dereferencing them is not supported for SystemC synthesis.
Nevertheless, under some circumstances the target of the pointer can be unam-
biguously determined by a static analysis of the source code. For instance, if the
address of an array is passed directly to a subroutine it is usually possible to
statically determine the identity of the array in question. In such cases the use of
the pointer will be supported by synthesis.

78 M. Meredith

• Dynamic memory allocation: For reasons similar to those limiting the use of
pointers, allocation of storage elements using malloc(), free(), new, and delete is
not supported for SystemC synthesis. One notable exception is that allocation of
sub-modules using new is supported.

• Virtual functions: Virtual functions select the behavior of a particular object
based upon run-time determination of its class identity. Since this cannot, in
general, be determined statically, use of virtual functions is not supported for
SystemC synthesis.

5.3 Synthesizable Module Structure

Synthesizable SC MODULES can include multiple SC CTHREAD processes, and
multiple SC METHOD processes. In addition they can include submodules along
with signals and channels to provide internal interconnect. Because SC MODULES
are C++ classes, they can also include data members of any synthesizable data type
to provided internal state, and member functions that can be used by the processes
to implement the required behavior.

5.4 Concurrent Processes

Among the required hardware semantics provided by SystemC are process con-
structs that allow a designer to directly express concurrent behaviors. Two of these
process constructs, SC CTHREAD, and SC METHOD, are appropriate for syn-
thesis to hardware and are supported by Cynthesizer. A module may contain any
combination of these. Use of multiple SC CTHREADs and/or SC METHODs in a
single module is fully supported.

This allows SystemC synthesis using Cynthesizer to encompass the areas tra-
ditionally considered separately as the behavioral level and the register-transfer

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 79

level. Using Cynthesizer, an engineer can combine high-level behavioral design with
low-level register-transfer level design.

Ordinarily, an engineer who wants to do a pure RTL design will choose a con-
ventional HDL such as SystemVerilog or VHDL. SystemC is more often used when
high-level synthesis is needed for a substantial part of the design. Typically a com-
plex algorithm or a complex control structure is defined using an SC CTHREAD,
or multiple concurrently executing SC CTHREADs. These are combined with
SC METHODS for implementation of small parts of the design that can be bet-
ter specified at a low level. Examples of these low-level parts of the design might
include the clock boundary crossing logic or an asynchronous bypass path.

5.4.1 SC CTHREAD Processes

The SC CTHREAD construct implements a clocked process. The declaration of
the process includes specification of a signal that will be used as the clock for the
process. The semantics of SC CTHREAD guarantee that the behavior of the process
will be synchronized to this clock.

In addition the reset signal is() function specifies a signal that will be used to
reset the process. Whenever the reset signal is asserted, the process is restarted in its
initial state. This allows explicit initialization behaviors to be written that determine
the state of the flip-flops of the design when it comes out of reset. During simulation,
within the body of the subroutine that is the behavior of the SC CTHREAD process,
execution proceeds sequentially until the process hits a wait() statement upon which
the process is suspended until the next clock cycle.

These characteristics make SC CTHREAD ideal for high-level synthesis of abs-
tract, untimed behaviors combined with detailed cycle-accurate, pin-level interfaces.

Synthesizer interprets all behavior in an SC CTHREAD process that occurs
before the first wait() statement as reset conditions. Synthesis requires that this reset
code be schedulable in a single clock cycle.

void thread_func() {

// reset behavior must be
// executable in a single cycle
reset_behavior();
wait();

// initialization may contain
// any number of wait()s.
// This part is only executed
// once after a reset.
initialization();

// infinite loop – concurrent hardware
while (true) {

rest_of_behavior();
}

}

SC_CTHREAD

reset behavior

while (1) {
main loop

}

post-reset
initialization

module_name.cc

80 M. Meredith

SC MODULE(sub)
{
// ports
sc in clk clk;
sc in<bool> rst;

. . .
SC CTOR(sub)
{
SC CTHREAD(thread func, clk.pos());
reset signal is(rst, 1);

}
void thread func()
{
// reset behavior

. . .
wait();

while(1)
{

. . .
}

}
};

The “SC CTHREAD” statement associates the thread func() function with the
positive edge of the signal clk. Cynthesizer implements such a thread as a circuit
synchronous to that clock edge.

The “reset signal is” statement makes the “1” level of the rst signal reset the
thread.

5.4.2 SC METHOD Processes

The SC METHOD process construct implements a triggered process associated
with a sensitivity list. The SC METHOD declaration includes a set of signals
and rising-edge/falling-edge information that define the sensitivity list of the
SC METHOD. The subroutine associated with the SC METHOD process is exe-
cuted whenever any of the signal transitions in its sensitivity list occurs.

These characteristics make SC METHOD ideal for synthesis of register-transfer
level behaviors.

The SC METHOD construct is used to express design functionality at a low
level equivalent to RTL for synthesis. SC METHOD provides a way to specify a
sensitivity list that a specific clock signal with a thread, and has precise semantics
for reset behavior.

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 81

Cynthesizer can be used to synthesize synchronous SC METHODS using static
sensitivity to a clock as follows.

SC CTOR(sync)
{
CYN DEFAULT INPUT DELAY(.1,"delay");
SC METHOD(sync method);
sensitive pos(clk);
dont initialize();

}
Asynchronous SC METHODS using static sensitivity to a number of inputs can

also be synthesized as follows.

SC CTOR(async)
{
CYN DEFAULT INPUT DELAY(.1,"delay");
SC METHOD(async method);
sensitive << input 1 << input 2;
dont initialize();

}
SystemC semantics for SC METHOD also provide for dynamic sensitivity using

the next trigger() function. Dynamic sensitivity is not supported for synthesis.
SystemC semantics for SC METHOD also provide that each SC METHOD will

be executed once at the beginning of simulation. This is meaningless in the con-
text of synthesis, so disabling this behavior using the dont initialize() function is
recommended.

5.5 Modular Interfaces

In addition to simple signals carrying single-bit or scalar values, designers using
Cynthesizer can implement high-level channels for communication. By encapsulat-
ing the low-level signals, ports, and protocol functions in modular interface socket
classes, the designer is relieved of the tedious connection of individual signals, and
can connect an entire interface, such as a connection to a memory, with a sin-
gle binding function. In addition, the modular interface code can be thoroughly
tested once, and then reused many times without modification, avoiding numerous
common errors and reducing debug time.

These modular interfaces consist of C++ classes containing synthesizable Sys-
temC code using constructs such as signals, ports, and synthesizable protocol code.
Common interfaces are provided by Forte. Interfaces conforming to specific cor-
porate standards can be written in SystemC by a corporate CAD department, and
project-specific interfaces can be written by any engineer.

82 M. Meredith

The abstraction and modularity capabilities of C++ and SystemC offer a unique
advantage for high-level hardware design when they are used in this way to encap-
sulate interfaces for ease-of-use and for reuse.

The key technique is to use the C++ class mechanism to encapsulate the signal-
level connections (i.e., ports) along with the code that implements the signal-level
protocol.

In general, there are two complementary interfaces (e.g., input and output) that
are implemented as two modular interface “socket” classes. These are connected by
binding calls to a modular interface “channel” class. The processes in the modules
containing the sockets call transaction-level interface functions defined in the socket
classes to execute their interface behaviors.

sc_in/out

sc_signal

Module 2

CTHREAD

Module 1

CTHREAD

Modular interface
Channel

Modular interface
Output socket

f1()

Modular interface
Input socket

f2()
g1()
g2()

5.5.1 Modular Output Socket

In its simplest form, an output socket for a ready/valid handshake interface might
look like the following.

// Output socket.
template <class T>
class RV out
{
public:
sc in<bool> rdy;
sc out<bool> vld;
sc out<T> data;

RV out(const char* name=0)
{}

// reset function called from SC CTHREAD
// establishes initial conditions
void reset()

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 83

{
vld = 0;
data = 0;

}

// put function called from SC CTHREAD
// executes output protocol
void put(const T& val)
{
do { wait(); } while (!rdy.read());
data.write(val);
vld = 1;
wait();
vld = 0;

}
};

Note that the sc in/sc out ports are incorporated into the modular interface socket
as data members. The two transactions that the port implements, reset() and put(),
are also implemented as member functions.

5.5.2 Modular Input Socket

The corresponding input socket implements the reciprocal protocol. Note that the
direction of the ports is reversed from that of the output socket.

// Output socket
template <class T>
class RV in
{
public:
RV in(const char* name=0)
{}
sc out<bool> rdy;
sc in<bool> vld;
sc in<T> data;

//
// Protocol transaction functions
//
void reset()
{

rdy = 0;
}

84 M. Meredith

T get()
{

wait();
rdy = 1;
do { wait(); } while (!vld.read());
rdy = 0;
return data.read();

}
};

5.5.3 Use of Modular Interfaces

The modular interface socket can be used in a design in a way that is similar to
how a simple sc in or sc out port would be used. The instantiation and binding
of the socket look just like an sc in or sc out port. To execute the protocol, the
SC CTHREAD calls the transaction functions of the modular interface socket as
follows.

SC MODULE(sub)
{
sc in clk clk;
sc in<bool> rst;
RV in< sc uint<8> > din;
RV out< sc uint<8> > dout;

SC CTOR(sub)
{
SC CTHREAD(thread func, clk.pos());
reset signal is(rst, 1);

}
void thread func()
{
// reset behavior
din.reset();
dout.reset();
wait();

while (1)
{
sc uint<8> d = din.get();
dout.put(d+1);

}
}

};

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 85

5.5.4 Channel

The signals that are needed to provide connectivity for this interface can also be
encapsulated in a channel class as follows.

// Channel class
template <class T>
class RV
{
public:
sc signal<bool> rdy;
sc signal<bool> vld;
sc signal<T> data;

};

5.5.5 Binding

The addition of a couple of binding functions to the modular interface socket allows
the entire interface to be bound using a single function call. This reduces the number
of lines of code needed to use an interface, allows interchange of different inter-
faces with minimal code modification, and prevents trivial errors due to misspelling
and misconnecting individual signals. For our example the binding functions in the
output port are as follows.

// Output socket.
template <class T>
class RV out
{
. . .

//
// Binding functions.
//
template <class C>
void bind(C& c)
{
rdy(c.rdy);
vld(c.vld);
data(c.data);

}

template <class C>
void operator() (C& c)

86 M. Meredith

{
bind(c);

}
};

Note that the addition of these functions allows the binding to be done using the
conventional SystemC port binding syntax:

socket.bind(channel);

or

socket(channel);

Also note that the binding functions are defined as templates. This lets the same
ports and binding functions to be used for port-to-port binding in a hierarchical
design.

5.6 Structural Hierarchy

In addition to the process control constructs, SystemC synthesis supports the Sys-
temC constructs for construction of structural hierarchies. An engineering team can
attack a large design problem using structural decomposition, breaking the problem
down into multiple smaller modules that communicate through user-defined inter-
faces. Individual sub-modules can be assigned to different team members if desired
supporting a conventional team structure and concurrent design approach. Each
module can contain any number of cooperating SC CTHREADs, SC METHODs,
and sub-modules. Communication between modules is achieved using a port-to-
signal binding mechanism of a kind that is familiar to RTL designers, or even
designers using schematics.

Here is an example of a hierarchical design using modular interfaces as described
previously.

SC MODULE(parent)
{
// ports
sc in clk clk;
sc in<bool> rst;
RV in< sc uint<8> > din;
RV out< sc uint<8> > dout;

// submodules
sub module m sub1;
sub module m sub2;

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 87

// signals and channels
RV< sc uint<8> > chan;

SC CTOR(parent)
: m sub1("sub1"),

m sub2("sub2"),
chan("chan")

{
// bind first module using bind() function
m sub1.clk.bind(clk);
m sub1.rst.bind(rst);
m sub1.din.bind(din); // socket-to-socket
m sub1.dout.bind(chan);// socket-to-channel

// bind second module using socket() syntax
m sub2.clk(clk);
m sub2.rst(rst);
m sub2.din(chan);
m sub2.dout(dout);

}
};

This use of SystemC constructs rather than tool constructs for implementation
of hierarchy and communication improves the overall verification process dramat-
ically. The complete structural hierarchy can be simulated at a behavioral level,
accurately representing the concurrency of all the modules and threads, and accu-
rately verifying the pin-level communication protocols between them. This allows
the functional verification to be performed using high-speed behavioral simulation,
and eliminates the need for many slow RTL simulations.

5.7 Creating RTL with Predictable Timing Closure

One of the challenges in RTL design is to ensure that the RTL you have written will
have successful timing closure through logic synthesis at the specified clock rate
when implemented in the chosen process technology. High-level synthesis has to
meet the same challenge to be practical for wide deployment.

Cynthesizer achieves this by combining a number of steps. First, the timing infor-
mation about the cells in the target process technology library are used as an input
to the high-level synthesis process. This information is read in a Liberty format .lib
file provided by the chosen foundry.

Second, Cynthesizer has advanced datapath optimization technology that it uses
to build a library of gate-level functional units such as adders, multipliers, mul-
tiplexors, etc based on the cells available in the target technology .lib file. These

88 M. Meredith

functional units are optimized for a specific clock frequency, and may be imple-
mented in a pipelined manner, where each pipeline stage is designed to fit within
the designated clock period.

Functional unit library compilation is performed in advance of high-level synthe-
sis once per process technology and clock period to speed the synthesis process. All
the tools needed for library compilation to be performed by the user are included
with Cynthesizer. No additional tool needs to be purchased.

Cynthesizer also creates custom functional units as needed during high-level syn-
thesis. These include non-square parts (i.e., a 12-bit by 3-bit adder) as well as parts
to implement more complex expressions. Cynthesizer automatically identifies use-
ful expressions in the algorithm of the design (such as “a+(b∗ c)−3)” and builds
gate-level parts on the fly that implement them.

Third, Cynthesizer uses this detailed timing information when it schedules the
operations of the algorithm to ensure that no combinatorial path in use exceeds
the clock period. Additional user controls are available to allow the user to adjust
the “aggressiveness” with which Cynthesizer fills each clock period with logic.
These controls can be used to make downstream timing closure even easier, thereby
reducing processing time in downstream tools such as logic synthesis.

Cynthesizer produces RTL produced that has a structural character. Adders, mul-
tipliers, multiplexors, etc are instantiated with a finite state machine determining
what values are presented to each instantiated part in each clock cycle. This ensures
that the timing assumptions made during high-level synthesis are maintained during
logic synthesis.

5.8 Scheduling

It has been noted that a primary benefit of using behavioral synthesis is the abil-
ity to write clocked processes whose functionality takes more than one clock cycle.
This gives the user the ability to control the latency and throughput of the result-
ing circuit without performing detailed resource assignment and scheduling by
hand.

At the same time, I/O activity at the ports of the module being synthesized must
conform to a specified protocol in order to have the synthesized block interoperate
with other blocks. The protocol mandates that certain relationships between I/O
events must be held constant. For instance, the data value must be presented on the
data bus in the same cycle as the data valid line is driven to true.

5.8.1 Mixed-Mode Scheduling

Cynthesizer addresses these requirements by providing a number of directives
that give the user high-level control of its scheduling. The Cynthesizer scheduler

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 89

allows different code blocks in a single SC CTHREAD to be scheduled differently
according the user requirements. A “code block” is defined as any section of C++
code delimited by “{” and “}.” Thus it can be a clause of an if-else statement, the
body of a loop, or any other set of statements that the user chooses to group together.

Note that while the protocol can be written in-line as it is shown here, protocols
are typically encapsulated into modular interface classes for ease-of-use and for
ease-of-reuse.

SC_MODULE

SC_CTHREAD

Fi
xe

d
C

on
te

xt

U
nc

on
st

ra
in

ed
 s

ch
ed

ul
in

g
C

on
te

xt

while (1) {
. . .

{ CYN_PROTOCOL(“name1”);
. . . // Get inputs

}

. . . // algorithm

{ CYN_PROTOCOL(“name2”);
. . . // Write output

}
. . .
}

Fi
xe

d
C

on
te

xt

5.8.2 Unconstrained Scheduling

To begin with, it is assumed that all the code in the design, unless otherwise iden-
tified, is completely untimed, and that the scheduler of the high-level synthesis
process has complete freedom to implement the functionality in as many or as
few clock cycles as it chooses. No guarantees of any cycle-by-cycle timing are
made in this unconstrained code, although the order of operations determined by
the dependency relationships within the code is maintained.

By default, without any scheduling constraints, Cynthesizer will optimize for
area, taking as many cycles as necessary to complete the computation with a
minimal set of functional units.

90 M. Meredith

5.8.3 Scheduling for Protocol Accuracy

In order to give the user maximum control of cycle-by-cycle timing for implement-
ing protocols, Cynthesizer allows the specification of cycle-accurate blocks of code
by the use of the CYN PROTOCOL directive. This directive, associated with a par-
ticular code block directs Cynthesizer not to insert any clock cycles within that code
block except for those specified by the user with wait() statements. Within these
protocol blocks, scheduling ensures that the ordering of port and signal I/O and the
given wait()s is held constant.

For some kinds of designs, such close scheduling control is needed that it is
desirable to apply a CYN PROTOCOL directive to the entire body of the while(1)
loop that implements the bulk of behavior of the SC CTHREAD. In this case the
user precisely specifies the cycle-by-cycle I/O behavior of the design. Even with this
tight control, the user benefits from using high-level synthesis because the design is
expressed without an explicit FSM designed by the user. In many cases Cynthesizer
can schedule computations and memory accesses within the constraints of the I/O
schedule as well.

5.8.4 Constraining Scheduling

Scheduling can be constrained to achieve specific latency targets by applying a
CYN LATENCY directive to a specific code block. This directs the scheduler to
ensure that the behavior of the given block is to be scheduled within the number
of cycles specified by the directive. The user is allowed to specify a minimum and
maximum latency to be achieved.

For example, consider the following design which reads in six data values and
outputs a computed result. The data is expressed as a structure:

struct data struct;
{
sc uint<8> A;
sc uint<8> B;
sc uint<8> C;
sc uint<8> D;
sc uint<8> E;
sc uint<8> F;
sc uint<8> G;

}

The module has a modular interface input port and a modular output port:

RV IN<data struct> in port;
RV OUT< sc uint<28> > out port;

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 91

The main while loop of the SC CTHREAD is:

while(true)
{
sc uint<28> X;

// read the data from the input port
struct data struct data = in port.get();

{
// do the computation in 4 cycles
CYN LATENCY(4, 4, "algorithm latency");
X = (A + B + C) * (D + E + F) * G;
}

// write the result to the output port
out port.put(X);

}

This can be implemented by Cynthesizer using two adders and one multiplier to
perform this computation in the specified four cycles using the following schedule.
This produces an overall throughput of one value per six cycles.

+
A

B

C

D

E

F

G

*

+

+

+

* out

1 2 3 4 5

in

in

in

in

in

in

in

6

If, on the other hand a slower circuit were acceptable, a 6-cycle latency for the
computation (resulting in an overall throughput of one value per eight cycles) could
be achieved by specifying:

CYN LATENCY(6, 6, "algorithm latency");

92 M. Meredith

+

*

+

+

+

*

1 2 3 4 5 7

out

A

B

C

D

E

F

G

in

in

in

in

in

in

in

6 8

Cynthesizer could achieve this with the following schedule.
Note that Cynthesizer would automatically produce a new FSM and datapath to

meet the desired latency without the user rewriting the algorithm.
Also note that this example is extremely simplified. In reality, more than one

operation will often be chained within a single clock cycle depending on the rela-
tionships between the required latency, the clock period, the propagation delay
through the adders and multipliers and their relative sizes. For instance, if the clock
cycle were long enough, and the target process technology were fast enough the
design could be scheduled in a single cycle using four adders and two
multipliers.

CYN LATENCY(1, 1, "algorithm latency");

5.9 Loops

Unlike RTL, where loops are seldom used, looping constructs are common in
high-level design. These include loops with non-constant bounds, where the loop
termination condition depends on the state of the design and the input data, as well
as simple for-loops with constant bounds.

5.9.1 Supported Loop and Loop Termination Statements

Cynthesizer supports loops of all forms in the SystemC input code. All the C++
loop statements may be used:

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 93

• “for” loops
• “while” loops
• “do/while” loops

The “continue” and “break” statements may be freely used for loop termination
if desired.

5.9.2 Directives for Loop Control

Loops can be handled in three ways depending on the parallelism desired by the
user.

5.9.3 Default Loop Implementation

The default behavior is for Cynthesizer to implement a loop as a looping structure
in the finite-state machine that is built in the synthesized RTL. In this case there
will be at least one cycle per iteration of the loop. This will introduce the minimum
parallelism with the one instance of the needed hardware being used over and over
for each iteration of the loop.

5.9.4 Unrolling

Unrolling a loop creates additional copies of the hardware that implements the loop
body. These copies can operate in parallel, performing the computation of several
iterations of the loop at the same time.

Loop unrolling is controlled using the CYN UNROLL directive. The simplest
form of the directive

CYN UNROLL(ON,"tag");

specifies that the loop be completely unrolled. As a convenience, ALL can be
specified to completely unroll an entire loop nest.

CYN UNROLL(ALL, "tag")

For example the following would result in four multipliers being used.

for (int i=0; i<4; i++)
{
CYN UNROLL(ON, "example loop");
array[i] = array[i] * 10;

}

94 M. Meredith

As if it had been written as follows:

array[0] = array[0] * 10;
array[1] = array[1] * 10;
array[2] = array[2] * 10;
array[3] = array[3] * 10;

Loops can also be partially unrolled, creating parallel hardware for fewer than the
total number of iterations of the loop using the directive of the form: CYN UNROLL
(CONSERVATIVE, N, “tag”);

So, the following loop

for (int i=0; i<4; i++)
{
CYN UNROLL(CONSERVATIVE, 2, "example loop");
array[i] = array[i] * 10;

}

Would be implemented as if it had been written as follows:

for (int i=0; i<2; i=i+2)
{
array[i] = array[i] * 10;
array[i+1] = array[i+1] * 10;

}

5.9.5 Pipelining

Cynthesizer can automatically perform loop pipelining. This can be applied to any
loop within the design. Pipelining the implementation of an entire thread can be
accomplished by applying the pipelining directive to the while(1) loop that consti-
tutes the bulk of the thread behavior. Consider our earlier example scheduled with a
computational latency of 4. Recall that this consumed two adders and one multiplier
to produce a throughput of one value each six cycles.

We could pipeline this earlier example as follows.

while(true)
{
CYN INITIATE(CONSERVATIVE, 2, "main loop");
struct data struct data = in port.get();
sc uint<28> X = (A + B + C) * (D + E + F) * G;
out port.put(X);

}

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 95

This constrains the synthesis schedule to initiate a new iteration of the loop every
two cycles. This would result in the following schedule.

+
A

B

C

D

E

F

G

*

+

+

+
*out1

1 2 3 4 5

in1

6

in1

in1
in1

in1

in1

in1

+
A

B

C

D

E

F

G

*

+

+

+

* out2

in2

in2

in2
in2

in2

in2

in2

7 8

Note that the maximum resource utilization occurs beginning in cycle 4 where
two adders and one multiplier are used. By pipelining the design, we are able to
achieve a throughput of two values every eight cycles without using any addi-
tional multipliers or adders. This is a 50% increase in throughput with no increase
in computing resources. Note again, this is done without any need to recode the
algorithm.

5.10 Verification

The key verification advantage of SystemC high-level synthesis using Cynthesizer
is that the designer is able to:

• Design at a high level
• Verify the algorithm and the interface protocols using high-speed behavioral

simulation

96 M. Meredith

• Synthesize RTL that implements the SystemC semantics that were simulated
• Use the same testbench for high-level simulation and RTL simulation

The design can comprise a single module or multiple cooperating modules. In
the case of multiple modules, the high-level SystemC simulation ensures that the
modules are operating correctly individually and working together properly. This
simulation validates the algorithms, the protocol implementations at the interfaces,
and the interactions of the modules operating concurrently.

The modules can then be synthesized, and the resulting RTL can be verified
using the same testbench that was used at the high level. This is made possi-
ble by the mixed-mode scheduling described earlier in which the algorithm is
written as untimed SystemC while the interfaces are specified as cycle-accurate
SystemC. Multiple testbench configurations may be constructed to verify various
combinations of high-level modules and RTL modules.

Single SystemC Testbench

RTL

Cynthesizer

Socket
C/C++ Algorithm

Socket

Cynthesizerincorporatesacompletedependencymanagementandprocessautoma-
tion system that automatically generates needed cosimulation wrappers and testbench
infrastructure to automate verification of multiple configurations of high-level and
RTL modules without any need to customize the testbench source code itself.

5.11 Conclusion

This chapter has outlined the synthesizable constructs of C++ and SystemC sup-
ported by the Forte Design Systems in its Cynthesizer product. It has described
specific techniques that can be used to encapsulate synthesizable communication
protocols in C++ classes for maximum reuse and techniques used to automati-
cally produce well-structured RTL for predictable timing closure. Finally, some of

5 High-Level SystemC Synthesis with Forte’s Cynthesizer 97

the user-visible mechanisms for controlling scheduling and the architecture of loop
implementation have been discussed along with a brief discussion of verification
issues automation incorporated in the Cynthesizer product.

Hopefully, this has enabled the reader to understand how SystemC synthesis with
Cynthesizer can be used to implement a broad range of functionality at multiple
abstraction levels and how the use of high-level C++ and SystemC constructs raises
the level of abstraction in hardware design.

Chapter 6
AutoPilot: A Platform-Based ESL
Synthesis System

Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason Cong

Abstract The rapid increase of complexity in System-on-a-Chip design urges
the design community to raise the level of abstraction beyond RTL. Automated
behavior-level and system-level synthesis are naturally identified as next steps to
replace RTL synthesis and will greatly boost the adoption of electronic system-level
(ESL) design. High-level executable specifications, such as C, C++, or SystemC,
are also preferred for system-level verification and hardware/software co-design.

In this chapter we present a commercial platform-based ESL synthesis system,
named AutoPilotTM offered by AutoESL Design Technologies, Inc. AutoPilot is
based on the xPilot system originally developed at UCLA. It automatically gener-
ates efficient RTL code from C, C++ or SystemC descriptions for a given system
platform and simultaneously optimize logic, interconnects, performance, and power.
Preliminary experiments demonstrate very promising results for a wide range of
applications, including hardware synthesis, system-level design exploration, and
reconfigurable accelerated computing.

Keywords: ESL, Behavioral synthesis, Scheduling, Resource binding, Interface
synthesis

6.1 Introduction

The rapid increase of complexity in System-on-a-Chip (SoC) design urges the
design community to raise the level of abstraction beyond RTL. Electronic system-
level (ESL) design automation has been widely identified as the next productivity
boost for the semiconductor industry. However, the transition to ESL design will
not be as well accepted as the transition to RTL in the early 1990s without robust
synthesis technologies that automatically compile high-level functional descriptions
into optimized hardware architectures and implementations.

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

99

100 Z. Zhang et al.

Despite the past failure of the first-generation behavioral synthesis technology
during the mid-1990s, we believe that behavior-level and system-level synthesis
and optimizations are now becoming imperative steps in EDA design flows for the
following reasons:

• Embedded processors are in almost every SoC: With the coexistence of micro-
processors, DSPs, memories and custom logic on a single chip, more software
elements are involved in the process of designing a modern embedded sys-
tem. It is natural to use C-based languages to program software for embedded
processors. Moreover, the automated C-based synthesis allows the designer to
quickly experiment different hardware/software boundaries and explore various
area/power/performance tradeoffs using a single functional specification.

• Huge silicon capacity requires higher level of abstraction: Design abstraction is
one of the most effective methods for controlling rising complexity and improv-
ing design productivity. For example, the study from NEC [10] shows that a
1M-gate design typically requires about 300K lines of RTL code, clearly beyond
what can be handled by a human designer. However, the code density can be
improved by more than 7X when moved to the behavior level. This results in a
human-manageable 40K lines of behavioral description.

• Verification drives the acceptance of SystemC: Transaction-level modeling (TLM)
with SystemC [2] has become a very popular approach to system-level verifica-
tion [8]. Designers commonly use SystemC TLMs to describe virtual software/
hardware platforms, which serve three important purposes: early embedded
software development, architectural modeling and functional verification.

The wide availability of SystemC functional models directly drives the needs
for SystemC-based synthesis solutions, which automatically generate RTL code
through a series of formal constructive transformations. This avoids the slow and
error-prone manual process and simplifies the design verification and debugging
effort.

• Accelerated computing or reconfigurable computing needs C/C++ based
compilation/synthesis to FPGAs: Recent advances in FPGAs have made recon-
figurable computing platforms feasible to accelerate many high-performance
computing (HPC) applications, such as image and video processing, financial
analytics, bioinformatics, and scientific computing applications.

Since HDLs are exotic to most application software developers, it is essential
to provide a highly automated compilation/synthesis flow from C/C++ language
to FPGAs.

In this chapter we present a platform-based ESL synthesis system named
AutoPilotTM, offered by AutoESL Design Technologies, Inc. AutoPilot is capable
of automatically generating efficient RTL code from an untimed or partially timed
C, C++ and SystemC description for the target hardware platform. It performs
platform-based behavioral and system synthesis, tightly integrates with a modern
leading-edge C/C++ compiler, and embodies a class of novel, near-optimal, and
highly-scalable synthesis algorithms.

6 AutoPilot: A Platform-Based ESL Synthesis System 101

The synthesis technology was originally developed in the UCLA xPilot sys-
tem [5], and has been licensed by AutoESL for the commercialization. In its current
stage, AutoPilot exhibits the following key features and advantages:

• Unified C/C++/SystemC design flow: AutoPilot accepts three kinds of stan-
dard C-based design entries: C, C++ and SystemC. It also supports a variety
of abstraction models including pure untimed functional model, partially timed
transactional model, and fully timed behavioral or structural model. The broad
coverage of languages and abstraction models allows AutoPilot to target a
wide range of applications, including hardware synthesis, system-level design
exploration and high-performance reconfigurable computing.

• Utilization of state-of-the-art compiler technologies: AutoPilot incorporates a
leading-edge commercial-strength C/C++ compiler in the synthesis loop. Many
state-of-the-art compiler techniques (intra-procedural and inter-procedural) are
utilized to analyze, transform and aggressively optimize the input behaviors.

• Platform-based and implementation-aware synthesis: AutoPilot takes advantage
of the target platform information to carry out more informed synthesis and opti-
mization. The timing, area and power for the available computation resources
and communication interfaces are all characterized.

In addition, AutoPilot has tight integration with several downstream RTL
synthesis and physical synthesis tools to assure better quality-of-result and higher
degree of automation.

• Interconnect-centric and power-aware optimization: AutoPilot is able to generate
an optimized microarchitecture with consideration of the on-chip interconnects
at the high level and maximize both data locality and communication locality to
achieve faster timing and power closure. Furthermore, it can carry out aggressive
power optimization using fine-grain clock gating and power gating.

The reminder of this paper is organized as follows: Sect. 6.2 presents an overview
of the AutoPilot design flow. Sections 6.3 and 6.4 briefly discuss the system front-
end and highlight the synthesis engine, respectively. The preliminary experimental
results are reported in Sect. 6.5.

6.2 Overall Design Flow

The overall design flow of the AutoPilot synthesis system is shown in Fig. 6.1.
AutoPilot accepts synthesizable C, C++, and/or SystemC as input and performs
four major steps to generate the cycle-accurate RTLs, which includes compilation
and elaboration, advanced code transformation, core behavioral and communication
synthesis, and microarchitecture generation.

In the first step the behavioral description is parsed by a GCC-compatible front-
end compiler, with the extensions to handle the bit-accurate integer data types. For
SystemC designs, elaboration will be invoked to extract processes, ports, channels,
and interconnection topologies and construct a detail-rich system-level synthesis
data model.

102 Z. Zhang et al.

C/C++/SystemCC/C++/SystemC

Timing/Power/Timing/Power/
Layout ConstraintsLayout Constraints

RTL SystemC &RTL SystemC &
RTL HDLsRTL HDLs

Platform
Models

ASICs/FPGAsASICs/FPGAs
ImplementationImplementation

=

S
im

u
latio

n

Compilation & Compilation &
ElaborationElaboration

Advance Code Advance Code
TransformationTransformation

Behavioral & CommunicationBehavioral & Communication
Synthesis and OptimizationsSynthesis and Optimizations

AutoPilotTM

C
o

m
m

o
n

 T
estb

en
c

h

User ConstraintsUser Constraints

E
S

L
 S

yn
th

esis

Design Specification

MicroarchitectureMicroarchitecture
GenerationGeneration

V
erificatio

n

Fig. 6.1 AutoPilotTM design flow

On top of the synthesis data model, AutoPilot applies a set of advanced code
transformations and analyses to optimize the input behavior, including traditional
compilation techniques such as constant propagation and dead code elimination, and
hardware-specific passes such as bitwidth analysis and optimization. The AutoPilot
front-end will be discussed in Sect. 6.3.

The code transformation phase is followed by the core hardware synthesis phase.
AutoPilot performs platform-based synthesis and interconnect-centric optimizations
during scheduling and resource binding; these take into account the user-specified
frequency/latency/throughput/resource constraints and generate optimized microar-
chitectures. We shall discuss more details of the synthesis engine in Sect. 6.4.

At the back-end, AutoPilot outputs RTL VHDL/Verilog code together with con-
straint files (e.g., multicycle path constraints, physical location constraints, etc.) to
leverage the existing logic synthesis and physical design toolset for final imple-
mentation on either ASICs or FPGAs. It is worth noting that RTL SystemC code
is also generated, which can be directly compiled and simulated with the original
C/SystemC test bench to verify the correctness of the synthesized RTLs.

6.3 AutoPilot Front-End

In this section we discuss three major aspects of the AutoPilot front end, i.e., the
language support, compiler optimizations, and the platform modeling.

6 AutoPilot: A Platform-Based ESL Synthesis System 103

6.3.1 Language Coverage

6.3.1.1 C/C++ Support

AutoPilot has a broad coverage of the C and C++ language features. It provides
comprehensive support for most of the commonly-used data types, operators, struct/
class constructs, and control flow constructs. Due to the fundamental difference
between the memory models of software and hardware, AutoPilot currently dis-
allows the usage of dynamic pointers, dynamic memory allocations, and function
recursions.

Designers can fully control the data precisions of a C/C++ specification. AutoPi-
lot directly supports single and double precision floating-point types. In addition, it
adds the capabilities (compared to xPilot) in compiling and synthesizing bit-accurate
fixed-point data types, for which standard C and C++ language lack native support.

• Arbitrary-precision integer (APInt) data types: The user can specify that an inte-
ger type’s precision (bit width) is any number of bits up to eight million. For
example, int24 declares an 24-bit signed integer value. Constant values will be
zero or sign extended to the indicated bit width if necessary.

• Arbitrary-precision fixed point (APFixed) data types: AutoPilot provides a syn-
thesizable templatized C++ library, named APFixed, for the designer to describe
fixed-point math. APFixed library implements the common arithmetic routines
via operator overloading and supports the standard quantization and saturation
modes.

• IEEE-754 standard single and double precision floating point data types are fully
supported in AutoPilot for FPGA platforms. Common floating-point math rou-
tines (e.g., square root, exponentiation, logarithm, etc.) can be also synthesized.

6.3.1.2 SystemC Support

AutoPilot fully supports the OCSI synthesizable subset [1] for the SystemC
synthesis.

Designers can make use of SystemC bit-accurate data types (i.e., sc int/sc uint,
sc bigint/sc biguint, and sc fixed/sc ufixed) to define the data precisions. Multi-
module hierarchical designs can be specified and synthesized with the SC MODULE
constructs. Within each module, multiple concurrent processes can be declared with
the SC METHOD and SC CTHREAD constructs.

6.3.2 Advanced Code Transformations

A variety of compiler optimization techniques are applied to the behavioral descrip-
tion code with the objective to reduce the code complexity, maximize the data
locality, and expose more parallelism. The following transformations and analyses

104 Z. Zhang et al.

are particularly instrumental for AutoPilot hardware synthesis.

• Traditional optimizations such as constant propagation, dead code elimination,
and common subexpression elimination that avoid functional redundancy.

• Strength reductions that replace expensive operations (e.g., multiplications and
divisions) with simpler low-cost operations (e.g., shifts, additions and subtrac-
tions).

• Transformations such as if-conversion and tree height reduction that explicitly
expose fine-grain operator-level parallelism.

• Coarse-grain code restructuring by loop transformations such as loop unrolling,
loop flattening, loop fusion, etc.

• Analyses such as bitwidth analysis, alias analysis, and dependence analysis that
help to reduce the data widths and analyze the data and control dependences.

These transformation are either performed locally within the function bodies, or
applied intraprocedurally across the function call hierarchy.

6.3.3 Platform Modeling

AutoPilot takes full advantage of the target platform information to carry out more
informed synthesis and optimization. The platform specification describes the avail-
abilities and characteristics of the important system building blocks, including the
on-chip computation resources and the selected communication interfaces.

Component pre-characterization is involved in the modeling process. Specifi-
cally, it characterizes the delay, area, and power for each type of hardware resource,
such as arithmetic units (e.g., adders and multipliers), memories (e.g., RAMs,
ROMs and register files), steering logic (multiplexors), and interface logics (e.g.,
FIFOs, and bus interface adapters). The delay/area/power characteristic functions
are derived by varying the bit widths, number of input and output ports, pipeline
intervals and latencies, etc. To facilitate our interconnect-centric synthesis. The het-
erogeneous resources distribution map and the distance-based wire delay lookup
tables are also constructed.

AutoPilot greatly extends the platform modeling capabilities in xPilot. It can sup-
port advanced ASIC process (e.g., TSMC 90 and 65 nm technologies), a wide range
of FPGA device families (e.g., Xilinx Virtex-4/Virtex-5, Altera Stratix II/Stratix
III) and various accelerated computing platforms (e.g., Nallatech [4] and XDI [3]
acceleration boards).

6.4 AutoPilot Hardware Synthesis Engine

This section highlights several important features of the AutoPilot synthesis engine,
including scheduling, resource binding, pipelining, and interface synthesis.

6 AutoPilot: A Platform-Based ESL Synthesis System 105

6.4.1 Scheduling

An efficient and versatile scheduler is implemented in the AutoPilot system to
exploit parallelism in the behavior-level design and determine the time at which
different computations and communications are performed. The core scheduling
algorithm is based on a mathematical programming formulation. It has significant
advantages over the prior approaches in two major aspects:

• Versatility: Our scheduler is able to model a rich set of scheduling constraints
(including cycle time constraint, latency constraints, throughput constraint, I/O
timing constraints, and resource constraints) in the constraint system, and express
different performance metrics (such as worst-case and average-case latency)
in the objective function. Moreover, several important synthesis optimizations
such as operation chaining, structural pipelining, behavioral template, slack
distribution, etc., are all naturally encoded in a single unified mathematical
framework.

• Efficiency and scalability: Our scheduler is highly efficient and scalable when
compared to the other constraint-driven approaches. For instance, typical ILP
formulations uses discrete 0–1 variables to model the assignment relationships
between operations and time steps, this requires lots of variables and complex
equations to express one scheduling constraint since all feasible time steps should
be considered. In our formulation, variables directly represent operation execu-
tion time and are independent of the final schedule latency. This leads to much
more compact constraint system, and the mathematical programming model can
be efficiently solved in a few seconds for very complex designs, as evidenced by
the Xilinx MPEG-4 design (to be discussed in Sect. 6.5).

The first generation of our scheduler was based on the SDC-based scheduling
algorithm and the technical details are available in [7].

6.4.2 Resource Binding

Resource binding determines the numbers of functional units and registers, and the
sharing among compatible operations and data transfers. It has a dramatic impact
on the final design quality as they determine the interconnection network with wires
and steering logic.

AutoPilot is capable of providing optimized binding for various functional units
and memory blocks, such as integer and floating-point arithmetic units, transcen-
dental functions, black-box IP blocks, registers, register files, RAMs/ROMs, etc.
AutoPilot’s binding algorithm can also generate different microarchitectures. For
example, it has an option to generate a distributed register-file microarchitecture
(DRFM) to optimize both data and communication localities.

DRFM has a semi-regular structure which consists of one or multiple islands.
As illustrated in Fig. 6.2, each DRFM island contains a local register file (LRF),

106 Z. Zhang et al.

 Island A

Data-Routing
Logic

Local
Register

File

FUP MUX

Island B

Functional Unit Pool
MUL AL

AL

Island C

Island D

Input

Island E

Island F

Fig. 6.2 Distributed register-file microarchitecture

a functional unit pool (FUP), and data-routing logic. The LRF serves as the local
storage in an island. Each register file allows a variable number of read ports but
only a fixed number (typically one) of write ports. The LRF stores the results pro-
duced from the local computation units in FUP and provides data to both local FUP
and the external islands. By clustering LRF and FUP into a single island, we are
able to maximize both data/computation locality and communication locality. This
also helps us avoid, to a large extent, the centralized memory structures and global
communications which often become the bottlenecks limiting system efficiency in
performance, area, and power. To handle the necessary inter-island communications,
we use the data-routing logic to route data from the external islands.

DRFM is a semi-regular microarchitecture. The configurations of the LRF, FUP
and the data-routing logic are application-specific. One important objective that
DRFM-based resource binding tries to minimize is the inter-island connections.
This will simplify the data-routing logic in each island and reduce the overall
complexity of the resulting datapath.

The technical details of the DRFM-based resource binding algorithm are avail-
able in [6].

6.4.3 Pipelining

AutoPilot’s synthesis engine (during scheduling, resource binding, and microar-
chitecture generation) supports several forms of pipelining to improve the system
performance.

6 AutoPilot: A Platform-Based ESL Synthesis System 107

void b l o c k i d c t (s h o r t i n p u t [8] [8] , s h o r t o u t p u t [8] [8]) {
s h o r t b u f f e r [8] [8] ;
i d c t r o w (i n p u t , b u f f e r) ;
i d c t c o l (b u f f e r , o u t p u t) ;

}

Fig. 6.3 Pseudo-code for an IDCT block

• Loop pipelining allows multiple successive iterations of a loop to operate in par-
allel by executing one iteration before the previous iteration has completed. As a
result, the loop throughput as well as the loop latency can be both improved.

• Hierarchical functional pipelining pipelines a function so that the same func-
tional body can start processing new input data before its completion on the
current data set. Given a target throughput constraint (in terms of the number
of cycles after which new data can be introduced), the pipelining can be applied
hierarchically to the callee functions.

• Multi-function pipelining executes two or more communicating functions con-
currently in a streamed manner. For example, Fig. 6.3 illustrates an 8×8 inverse
discrete cosine transform (IDCT) algorithm. Multi-function pipelining will
pipeline the execution of row-based transform (idct row) and column-based
transform (idct col) and automatically insert the ping-pong memory buffer to
hold the intermediate data produced and consumed by these two functions. With
this pipeline, the overall throughput of the entire block idct function can be
significantly increased.

6.4.4 Interface Synthesis

With AutoPilot’s platform-based synthesis methodology, designers are not required
to hard code any target-specific interface timing behaviors into the source code.

Designers can simply use the standard function parameters to expose the desired
inputs and outputs to the external circuits. AutoPilot interface synthesis is responsi-
ble for converting the parameter reads and writes into the actual interface accesses.
For example, based on the specified communication interfaces in the platform
library, a store operation on a scalar pointer (e.g., ∗p = x) can be turned into a
direct wire connection, or a FIFO write, or even a bus transfer (pipelined transfer
and burst-mode transfer are both supported).

This capability is particularly convenient for the C and C++ design entries.
SystemC-based designs can benefit from this feature as well, although it provides
users an array of language constructs to specify the cycle-true and pin-accurate
interface connections.

108 Z. Zhang et al.

6.5 Experimental Results

We have used AutoPilot to synthesize several real-world complex designs for
both FPGAs and ASICs for a wide range of applications, including multime-
dia image/video processing, digital signal processing, machine learning, financial
engineering, and VLSI CAD algorithms.

In this section we report preliminary synthesis results on FPGAs to demonstrate
the usage of AutoPilot for three important usage models – hardware synthesis,
system-level design exploration, and reconfigurable accelerated computing.

6.5.1 Hardware Synthesis

6.5.1.1 MPEG-4 Simple Profile Decoder

We used AutoPilot to synthesize a real industrial design, the MPEG-4 simple profile
decoder from Xilinx [9]. As shown in Fig. 6.4 (from [9]), the entire design contains
several pipelined modules, which are interconnected by FIFOs or object FIFOs to
form a block-level pipeline.

In our experiments, the same system-level architecture is used, while each
submodule is synthesized by AutoPilot system from a C language specification.
Manual changes are needed only in a few places to convert the dynamic pointers to
synthesizable static pointers.

The synthesis results are reported in Table 6.1. AutoPilot automatically generates
more than 10X lines of VHDL code over the original C specification. Targeting a
Xilinx Virtex II-pro FPGA (v2p30), the total resource usage is around 7K slices.
It is worth mentioning that final area can be significantly reduced with further

Fig. 6.4 Xilinx MPEG-4 simple profile decoder top-level block diagram

6 AutoPilot: A Platform-Based ESL Synthesis System 109

Table 6.1 MPEG-4 simple profile decoder synthesis results

Module C source file C line# VHDL line# Slices

Motion Comp. motion comp.c 312 4,681 899
Parser/VLD bitstream.c 439 6,093

motion decode.c 492 10,934 2,693
parser.c 1,095 12,036
texture vld.c 504 6,089

Texture/IDCT texture idct.c 1,819 11,537 2,032
Copy control/ copy control.c 287 2,815
texture update texture up.c 220 2,736 1,407
Total 5,168 56,921 7,031

Table 6.2 Alternate HW/SW implementations for MPEG-4 decoder

Seven Single PowerPC +
MicroBlazes PowerPC HW MotionComp

Throughput 1.18 3.06 3.53
Speedup – +68.4% +15.3%

code refinement such as bitwidth annotations on the function parameters. The main
purpose of this experiment is to demonstrate that AutoPilot can quickly synthesize
complex vanilla C code into hardware and meet the performance target. We set the
final frequency target as 8 ns, and the Xilinx ISE v8.1 static timing analyzer reports
positive slacks for all the final modules. The final performance can be estimated for
each module using the reported frequency and latency results. Overall, the through-
put requirement of 30 frames per second will be easily achieved for a 352× 288
frame size (CIF format).

6.5.2 System-Level Design Exploration

AutoPilot can also facilitate the quick system-level exploration for embedded
designs. To demonstrate this advantage, we have explored three alternative imple-
mentations of the MPEG-4 simple profile decoder on a Xilinx Virtex II-pro
development board. The first design comprises seven MicroBlaze soft-core proces-
sors, and each processor implements a sub-module of the MPEG-4 decoder. The
second design uses a single PowerPC core on Xilinx FPGAs to execute the entire
MPEG-4 C program. The third implementation is a hybrid hardware/software design
which offloads the motion compensation block onto the FPGA fabrics using the
AutoPilot synthesis.

As shown in Table 6.2, the PowerPC version is about 2.6X faster than the soft-
core processor network. The speedup is primarily due to the higher clock frequency
(up to 450 MHz) of the hard-core PowerPC. Also, the computation workloads on the
seven MicroBlazes are not evenly distributed and thus degrades the performance of
the processor pipeline.

110 Z. Zhang et al.

According to profiling results, the motion compensation module contributes to
approximately 16% of the total software decoding time. After we synthesize this
block on FPGA for the third design, a 15% throughput increase can be observed,
which implies that the latency of the time-consuming motion compensation process
has been effectively hidden by the automatic synthesis. Interestingly, the size of the
resulting hardware block (around 900 slices) is smaller than a MicroBlaze processor.
The performance/area tradeoff of this kind can be easily achieved with the aid of the
AutoPilot synthesis.

6.5.3 FPGA-Based Accelerated Computing

One innovation forefront in the High-Performance Computing (HPC) field is to har-
ness FPGA to accelerate domain-specific applications by one or multiple orders of
magnitude over the general-purpose microprocessors.

The automatic synthesis support of high-level programming languages (such as
C, C++, and FORTRAN) is paramount important to allow the software designs to
develop algorithms and implement on FPGAs.

6.5.3.1 Lithographic Aerial Image Simulation

In this case study we use AutoPilot to accelerate a lithographic aerial image sim-
ulation application, which is an essential component in most DFM (Design for
Manufacturability) flows. The lithography simulation itself is a very computation-
ally demanding process and often requires clusters with hundreds CPUs to achieve
acceptable turn-around time.

The kernel of the simulation engine is a nested loop illustrated in Fig. 6.5.
Abundant data-level parallelism can be exposed by careful loop unrolling and

f o r (x = 0 ; x < p i x e l m a x ; + + x) {
f o r (y = 0 ; y < p i x e l m a x ; + + y) {

/ / I n i t i a l i z e p i x e l i n t e n s i t i e s .
I [x] [y] = 0 ;
f o r (k = 0 ; k < K; + + k) {

/ / I n i t i a l i z e p a r t i a l sum .
I k [x] [y] = 0 ;
/ / Core c o m p u t a t i o n .
f o r (n = 0 ; n < 4 N; + + n) {

addrx = 5 * x − rectx[n] + c ;
addry = 5 * x recty[n] + c ;
I k [x] [y] + = (1)n * k e r n e l [k] [addrx] [addrx] ;

}
I [x] [y] + = I k [x] [y] * I k [x] [y] ;
}

}
}

*

−
−

Fig. 6.5 Pseudo-code for the simulation kernel

6 AutoPilot: A Platform-Based ESL Synthesis System 111

array/memory partitioning. Loop pipelining and multi-function pipelining are also
applied to further increase the performance.

The whole algorithm is written in 2,226 lines of C code and synthesized by
AutoPilot, which generates about 24K lines of VHDL code. The accelerator has
been implemented on XtremeData XD1000TM development system [3]. The devel-
opment system uses a dual OpteronTM motherboard and one of the Opteron proces-
sors is replaced by an XD1000 co-processor module. The XD1000 co-processor is
built around an Altera Stratix II EP2S180, and is compatible with Opteron Socket
940. The FPGA co-processor communicates with the host Opteron CPU via the
HyperTransportTM links.

We use Altera Quartus II v6.0 to implement the generated RTLs on the Stratix
II FPGA. Table 6.3 shows the resource usage of the synthesized accelerator, which
consumes around 30% of the device resources in ALUT logic and memory bits. The
final clock frequency is above 100 MHz.

To measure the performance speedup, we conduct experiments on a 200×
200 um chip layout specified in GDSII format. We divide the image into 1,000×
1,000 nm regions and simulate each region with a kernel look-up table sized
2,000 nm by 2,000 nm. We also generate a number of layouts with different den-
sities (N). The software implementation runs on the AMD Opteron 248 processor at
2.2 GHz with a 4 GB DDR memory. The program is compiled through GCC-O3.

Table 6.3 Resource usage of the synthesized accelerator with 5×5 partitioning

ALUTs Memory bits Fmax (MHz)

Accelerator 23,641 2,883,296 117.01

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180 200

ru
nn

in
g

tim
e

N

with accelerator
without accelerator

Fig. 6.6 Execution time comparison with and without the synthesized accelerator

112 Z. Zhang et al.

Figure 6.6 shows the measured execution time and speedup with different lay-
out densities N. Note that for a very small N, the speedup gets degraded since the
communication time dominates the computation time on the FPGA. For a moderate
N, we can achieve a speedup around 15X even with the communication overhead
between the CPU and the hardware accelerator.

The acceleration on FPGA also provides significant power and energy savings.
According to Altera Quartus II PowerPlay analysis tool, the synthesized hardware
block consumes 6,954 mW, which is 10X smaller than the power consumption of the
AMD Opteron processor (about 70 W). Considering the 15X performance speedup,
we can achieve a 150X energy saving over the CPU.

Acknowledgments The authors would like to thank Xilinx for providing the MPEG-4 decoder
example, XtremeData for lending the XD1000 development platform, and Yi Zou at UCLA for
sharing the lithographic simulation result.

References

1. SystemC Synthesizable Subset (Draft 1.1.18), 2004. Open SystemC Initiative. http://www.
systemc.org

2. IEEE 1666T M–2005 Standard for SystemC, 2005. IEEE and OCSI. http://www. systemc.org
3. XD1000TM FPGA Coprocessor Module for Socket 940, 2006. XtremeData Inc.

http://www.xtremedatainc.com
4. H100 Series FPGA Application Accelerators, 2007. Nallatech. http://www. nallatech.com
5. Cong, J., Fan, Y., Han, G., Jiang, W., and Zhang, Z. (2006). Platform-Based Behavior-Level

and System-Level Synthesis. In Proc. IEEE International SOC Conference, pages 199–202
6. Cong, J., Fan, Y., and Jiang, W. (2006). Platform-Based Resource Binding Using a Dis-

tributed Register-File Microarchitecture. In Proc. International Conference on Computer-
Aided Design, pages 709–715

7. Cong, J. and Zhang, Z. (2006). An Efficient and Versatile Scheduling Algorithm Based on
SDC Formulation. In Proc. Design Automation Conference, pages 433–438

8. Ghenassia, F. (2005). Transaction-Level Modeling with SystemC: TLM Concepts and Appli-
cations for Embedded Systems. Springer, Berlin Heidelberg New York

9. Schumacher, P., Denolf, K., Chilira-RUs, A., Turney, R., Fedele, N., Vissers, K., and Bormans,
J. (2005). A Scalable, Multi-Stream MPEG-4 Video Decoder for Conferencing and Surveil-
lance Applications. In Proc. IEEE International Conference on Image Processing, pages II:
886–889

10. Wakabayashi, K. (2004). C-Based Behavioral Synthesis and Verification Analysis on Indus-
trial Design Examples. In Proc. ASPDAC, pages 344–348

Chapter 7
“All-in-C” Behavioral Synthesis and Verification
with CyberWorkBench
From C to Tape-Out with No Pain and A Lot of Gain

Kazutoshi Wakabayashi and Benjamin Carrion Schafer

Abstract This chapter introduces the benefits of C language-based behavioral syn-
thesis design methodology over traditional RTL-based methods for System LSI, or
SoC designs. A comprehensive C-based tool flow, based on CyberWorkBenchTM

(CWB), developed during the last 20 years at NEC’s R&D laboratories is intro-
duced. This includes behavioral synthesis and formal verification and hardware–
software co-simulation of entire complex SoC. First we introduce the “all-in-C”
concept based on CWB.

Then we discuss the behavioral synthesis for various types of circuits and exam-
ine the advantages of behavioral synthesis on the hand of commercial ICs. We show
that currently entire SoCs are created using this flow in a fraction of the time taken
by traditional approaches.

Behavioral IP and C-based configurable processor synthesis and automatic archi-
tecture exploration is explained next. At the end we demonstrate a real world
example of a mobile phone SoC where most of the modules are synthesized from C
descriptions using CWB.

Keywords: Behavioral synthesis, Control and data intensive flows, All-in-C,
Behavioral C level formal verification, Hardware-software co-simulation, Auto-
matic system exploration, Behavioral IP, Configurable processor

7.1 Introduction

The design productivity gap problem is becoming more and more serious as VLSI
systems become larger. In the mid-1980s, gate-level design shifted to register trans-
fer level (RTL) design for designs that typically exceeded 100K gates (we assume a
hundred thousand gates is the upper limit for hand coded modules to be designed in
several months).

Currently, several million gates circuits are commonly used just for random logic
parts of a design, which equate to more than several hundreds thousand lines of RTL

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

113

114 K. Wakabayashi and B.C. Schafer

code. It is therefore needed to move the design abstraction one more level in order
to cope with this increasing complexity. Behavioral synthesis is a logic way to go as
it allows “less detailed design description” and “higher reusability”.

A higher level of abstraction description requires smaller code and provides faster
simulation times. For example a one million gates circuit requires about 300K lines
of RTL (Verilog or VHDL) code, but only around 40K lines of C code. The RTL
simulation of 300K lines, we observed in [1], is on average 10–100 times slower
than the 40K lines of equivalent behavioral code (it is important to note that in order
to benefit from higher level of abstraction the entire design needs to be modeled at
the behavioral level).

It is sometimes claimed that behavioral synthesis is only useful for dataflow
intensive circuits, but not for control dominated circuits. We believe that behavioral
synthesis can and should be used for all hardware modules in order to truly benefit
from it. We will demonstrate this by an example of a real complex SoC design where
all custom design modules, except the analog ones, have been designed using behav-
ioral synthesis. NEC Electronics adopted behavioral synthesis as standard design
methodology since 2003 and taped out since then several hundreds million Dollars
worth of “C-based” chips every year.

Since the benefits of behavioral synthesis are palpable through multiple com-
mercial chip successes, Behavior Synthesis, or High Level Synthesis, is gaining
acceptance within the design community, especially in Japanese industries. Various
commercial chips for printers, mobile phones, set-top-boxes and digital cameras
are designed using behavioral synthesis these days. ANSI-C is the preferred pro-
gramming language for behavioral synthesis because embedded software is often
described in C and design tools like compilers, debuggers, libraries and editors are
easily available and there is a big amount of legacy code.

In this paper, we first provide an overview of our C-based design flow where
we compare the efficiency and simulation performance against pure RTL as well
as co-simulating it with embedded software. We show the advantages of C-based
behavioral IPs over RTL IPs and how application specific processors can benefit
from it. We present a hardware architecture explorer at the behavioral level allow-
ing a fast and easy way to study the area, performance and power trade-offs of
different designs automatically. Finally we demonstrate on a real complex design,
how behavioral synthesis can be used for any hardware module (data and control
intensive).

7.2 C-Based Design Flow

We have been developing C-based behavioral synthesis called “Cyber” since the late
1980s [2] and developing C-based verification tools such as formal verification and
simulation around Cyber during the last 10 years [3]. All these tools are integrated
into an IDE, where designers execute these tools upon the C-source code. We named
this IDE tool suite “CyberWorkBenchTM”.

7 “All-in-C” Behavioral Synthesis and Verification with CyberWorkBench 115

7.2.1 Basic Concept of CyberWorkBench

The main idea behind CyberWorkBench is an “all-in-C” approach. This is built
around two principal ideas (1) “all-modules-in-C” and (2) “all-processes-on-C”.

(1) All-modules-in-C: means that all modules in a VLSI design, including control
intensive circuits and data dominant circuits, should be described in behavioral
C language. Our system supports legacy RTL or gatenetlist blocks as black
boxes, which are called as C functions. At the same time it allows designers
to create all new parts in C, although this is not recommended as the designer
will need to use two different programming languages and RTL parts will slow
down the simulation.

(2) All-processes-on-C: means that synthesis and verification (including debug-
ging) tasks should be done at the C source code. As an example we can compare
this with a software compiler. In a software compiler, a designer does not have to
debug the generated machine language (or, assembler language) directly. Simi-
larly, in behavioral synthesis, a designer should not have to debug the generated
RTL code. Our CWB environment allows a designer to debug the original C
source code and the CWB model checker allows designer to write properties or
assertions directly on the C source code.

7.2.2 Design Flow Overview

CWB targets general LSI systems which normally contain several CPUs or DSPs,
dedicated hardware modules and some pre-designed or fixed RTL- or gate level IP
modules, which are directly connected or through buses.

Initially, each dedicated hardware module such as an ECC encryption module is
described in behavioral C. Once its functionality is verified using the C simulator
and debugger, the hardware module is synthesized with our behavioral synthesizer.
Configurable processors are also synthesized from their C description in our envi-
ronment. Legend RTL modules are described as function, and handled as a black
box. The CPU bus and bus interface circuits are automatically generated using a
CPU bus library. After synthesizing and verifying each hardware module, our design
environment allows designers to create a cycles-accurate simulation model for the
entire system including CPUs, DSPs and custom hardware modules. With this sim-
ulation model, designers can verify both functionality and performance of their
hardware design as well as the embedded software run on the CPU, DSP and/or
generated configurable processors. Behavioral synthesis is quick enough to allow
designers to repeatedly modify and synthesis the hardware modules and embedded
software. The behavioral C source code can also be debugged with our formal ver-
ification, property/assertion model checker tool. Global properties and in-context
(immediate) assertions are described for/in the C source code. The equivalence
between behavioral C and generated RTL can be verified both in dynamic and static

116 K. Wakabayashi and B.C. Schafer

Fig. 7.1 CyberWorkBenchTM design flow

way, as described later. Currently, the architectural level parallelization is left to the
designer. The designer partitions the C source code into individual hardware mod-
ules and embedded software based on the performance result of the cycle simulation
or FPGA emulation.

7.2.2.1 Synthesis Flow

Our design flow is shown in Fig. 7.1. A hardware design in extended ANSI-C (called
“BDL”, or “Cyber-C”) [4], or SystemC is synthesized into synthesizable RTL with
our “Cyber” behavioral synthesizer [1] with a set of design constraints such as clock
frequencies, number and kind of functional units and memories. Usually RTL is
handled as a black box, but if necessary, the RTL can also be fed to the behavioral
synthesizer. The behavioral synthesizer can insert extra registers to speed up the
original RTL and generate new RTL of smaller delay. It also generates a cycle accu-
rate simulation models in C++ or SystemC. The behavioral synthesis can therefore
be considered as a Verilog, VHDL, C, C++, and SystemC unification step.

The “Library Characterizer” generates delay and area information of the func-
tional units and memories on a particular technology or FPGA.

A Behavioral IP library, called “Cyberware”, is also included in the synthesis
environment. Any part of the behavioral IP can be encrypted for security purposes.

7 “All-in-C” Behavioral Synthesis and Verification with CyberWorkBench 117

Wire delays of global wires between modules need to be analyzed carefully since
those delays can be significant when the connected modules are placed far away. Our
“RTL FloorPlanner [3]” takes the RTL modules generated by the behavioral synthe-
sizer. Accurate timing information is extracted from the floorplanner and fed back to
the behavioral synthesizer. The behavioral synthesizer reads the timing information
and re-schedules the C code considering the timing information.

7.2.2.2 Verification Flow

The functionality of the hardware described in C can be verified at the behav-
ioral level, while performance and timing are verified at the cycle-accurate level
(or RTL) through simulation. Debugging the generated RTL is however not an
easy task since C variables are shared in a register, and various optimizations are
applied. We therefore provide a behavioral C source code debugger linked to our
cycle-accurate simulation and FPGA emulation tool. After verifying each hardware
module, the entire SoC is simulated in order to analyze the performance and/or
to find inter-modules problems such as low performance through bus collision, or
inconsistent bit orders between modules. Since such entire chip performance sim-
ulation is extremely slow in RTL-based HW-SW co-simulation, CWB generates
cycle accurate C++ simulation models which can run up to hundred times faster
than RTL models. Our HW-SW co-simulator [3] uses the generated cycle-accurate
model for this purpose. The simulator allows designers to simulate and debug both
hardware and software at the C source code level at the same time. If any perfor-
mance problems are found, designers can change the hardware-software partitioning
or algorithm directly at the C level, and can then repeat the entire chip simula-
tion. This flow implies a much smaller and therefore faster re-design cycle than in
a conventional RTL methodology. The C description is the only initial and final
SoC description language of the entire design. This entire chip simulation can be
further accelerated using an FPGA emulation board [5]. A “Testbench Generator”
helps designers to run an RTL simulation with test patterns for behavioral C simu-
lation faster and easier. Its inputs are test patterns for the C simulation and output a
Verilog and/or VHDL testbench, which generates stimulus for the RTL simulation.
It also creates a script to run commercial simulators to feed the behavioral test pat-
terns and check the equivalence of outputs patterns between the behavioral and RTL
simulation.

Another important feature of CWB is the formal verification tool, which is tightly
linked to the behavioral synthesizer. With the behavioral synthesis information the
formal verification tools can handle larger circuits than usual RTL tools and have
C-source level debugging capability even though the model checker works on the
generated RTL model. “C-RTL equivalence prover” checks the functional equiv-
alence between a behavioral (un-timed or timed) C description and the generated
RTL, using information of the optimizations performed such as loop unrolling, loop
merge and array expansion performed by the behavioral synthesis. Without such
information, the equivalence check is almost impossible for large circuits.

118 K. Wakabayashi and B.C. Schafer

Designers can specify assertions or properties at the behavioral C level, simi-
lar to our cycle accurate simulator. Such behavioral level properties/assertions are
converted into RTL ones automatically, and are passed to our RTL model checker.

CWB generates a power enhanced RTL model which estimates the power con-
sumed by the design. A set of power libraries for different technology are provided
and used with the generated RTL estimates that power for the selected technology.

A “QoR” synthesis report of the generated circuit shows a quick overview of
the design quality. The report file includes area, number of states, critical path
delay, number of wires and routability. This information is used for quick micro-
architectural exploration as well as system architectural exploration. The system
architecture explorer automatically generates different hardware architectures based
on the preferences and constraints entered by the user (area, latency, power) at the
C level. The designer can analyze the different generated architectures and finally
choose the one that meets the design constraints at the smallest cost.

7.3 Behavioral Synthesis

To support the “all-modules-in-C” paradigm presented before, our behavioral syn-
thesizer must cope with three types of circuits: (i) data-dominated, (ii) control-
dominated, and (iii) control-flow intensive (CFI) ones. Data-dominated descriptions
have many arithmetic operations and less control structures (e.g. only one loop),
while control-dominated descriptions have many control-flow operations such as
I/O activity in every cycle. A CFI description has a mix of arithmetic operations and
control-flow constructs such as loops, conditional operations, jumps (‘goto’ state-
ments) and functions. Our synthesizer has three types of synthesis engines in order
to support these varieties of circuit types: (i) automatic scheduling for CFI and data-
flow circuits, (ii) fixed scheduling for control-dominated circuits, and (iii) pipeline
scheduling for automatic pipelining or loop folding. Figure 7.2 shows a block dia-
gram of CWB’s behavioral synthesizer. CWB supports various C-based language
(e.g. BDL, SystemC, SpecC), and RTL as an input description. BDL is directly
translated into our tree-structured Control Flow Graph (tCFG) [4], which is a kind
of abstract structured expressing control structure of the behavior. Since SystemC
and SpecC have different synthesis semantics than BDL, our “Parser/Translator”
translates them into BDL semantics and generates the tCFG. In the same way,
Verilog-HDL or VHDL is translated into the tCFG. A unique Control Data Flow
Graph [2] is then created from the tCFG. All synthesis tasks are performed on those
two data structures.

Control dominated circuits such as PCI I/F, DMA controller, DRAM controller,
bus bridge, etc, require cycle-by-cycle behavioral description. For this type of cir-
cuits, specifying timing constraints for all inputs and outputs is a tough and complex
job. Our extended C language called BDL can describe clock boundaries in a behav-
ioral description, and is able to express very complex timing behaviors concisely.
Such descriptions are synthesized with a “fixed scheduling” engine, which is fit for

7 “All-in-C” Behavioral Synthesis and Verification with CyberWorkBench 119

Fig. 7.2 Configuration of Cyber Behavior Synthesis

complex control sequence with exceptional tasks with strict timing constraints. For
the circuits, which require fixed sequential communication protocols but all other
computations can be freely scheduled, “automatic scheduling” engine is used for
synthesis.

For CFI circuit synthesis, the “automatic scheduling” engine is used. The quality
of the synthesis is affected by the control flow structure, not just by the data flow.
A smart scheduling algorithm is designed to overcome the effects of the program-
ming style. For instance, Fig. 7.3 shows an example of global parallelization among
multiple data-dependent conditional branches. These two branches cannot be paral-
lelized in the form given in Fig. 7.3a, because of the control dependency between
them. However, if the conditional operations “if (F1)” and “if (F2)” are transformed
while scheduling, then they can be parallelized as shown in Fig. 7.3b. This implies
that the scheduler will have to modify the control logic in order to obtain circuits
with less latency while maintaining the data-flow intact.

Merging two branches into a single one using CDFG transformations is not as
effective because the procedure is complex and the merging does not always lead
to better results. In contrast, our approach uses a systematic scheduling algorithm
without CDFG transformations. In other words, our scheduler schedules all opera-
tions in several basic blocks and several branches at the same time in a unique way,
as if they were all operations in a single basic block. Our approach handles many
other types of speculations, global parallelization with a method called “Generalized
Condition Vector [6]”, which is extended version of “Condition Vector [2]”.

The “Pipeline scheduling” engine generates pipelined circuits from the initial
C code with stall signals, which have various “Data Initial Intervals (DII. It also

120 K. Wakabayashi and B.C. Schafer

Fig. 7.3 Parallelization of multiple branches for control-flow intensive applications (CFI)

speeds up loop execution by folding loop bodies like software loop pipelining.
Global parallelization capabilities are very important even for loop pipelining. Loop
carry variables that will be read in the next loop iteration should be scheduled
into the states within the given DII cycles sequence. Parallelization beyond con-
trol dependencies is one key technique to make loop pipelining possible with a
small DII.

7.4 Behavioral Synthesis Advantages Over Conventional Flows

The next sections describes in detail some of the advantages of behavioral synthe-
sis over conventional RTL methodologies like hardware-software co-design, source
code re-usability, application specific processor optimizations and automatic archi-
tecture exploration.

7.4.1 Shorter Design Period and Less Design Cost

Since C-based behavioral synthesis automates the functional design of hardware, it
shortens the design cycle and at the same time shortens the design time of embedded
software. Figure 7.4 shows the design cycle of two designs. The first uses the tradi-
tional RTL-based design flow and the second the proposed C-based design flow. The
total design period and design men-month for the RTL-based design is larger than
the C-based one, even though the gate size for RTL design (200K) is one third of that

7 “All-in-C” Behavioral Synthesis and Verification with CyberWorkBench 121

Fig. 7.4 Comparison of design periods with C-based and RTL-based design

for the C-based (600K) one. The hardware design period of the C-based design is
1.5 months, much shorter than the RTL-based design which takes 7 months. It needs
to be stressed that the software design in the C-based design takes only 2 months
while it takes 6 months for the RTL-based. This is due to the fact that the embedded
software can be debugged before the IC fabrication using the hardware-software
co-simulator. In RTL design, the software is usually verified on the evaluation board
since RTL co-simulation is too slow even for this size of circuits. Lastly, C-based
design allows very quick generation of simulation models for embedded software
at a very early stage, allowing hardware and software to be concurrently designed
both in C.

7.4.2 Source Code Reusability and Behavioral IPs

Another important aspect of C-based behavioral design is the high-reusability of
behavioral models; we call this “behavioral IPs” or “Cyberware”. An RT level
reusable module, called “RTL-IP”, can be successfully used for circuits of fixed
performance such as bus interface circuits. However, RTL-IPs for general func-
tional circuits such as encryption can only be used for a specific technology, since
the RTL-IP’s “performance” is hard to adapt for newer technologies. For instance,
an encryption RTL-IP at 200 Mbps is difficult to be “upgraded” to perform encryp-
tions at 800 Mbps, because the RTL-IP structure is fixed and the logic synthesis
tool is not able to reduce its delay by a forth. On the contrary, a behavioral IP is
more flexible and more reusable than RTL-IPs, since it can change its structure

122 K. Wakabayashi and B.C. Schafer

Table 7.1 BS broadcast descrambler behavioral IP comparison

Clock frequency (MHz) Generated gate size Generated RTL size Performance (Mbps)

33 57 KG 7.0 KL 80
54 42 KG 5.9 KL 80

108 26 KG 2.5 KL 80

and behavior allowing the synthesis tool can generate circuits of different perfor-
mances by simply changing high level synthesis constraints such as number of
functional units and clock frequencies. Table 7.1 shows how various circuits of dif-
ferent “clock-frequency” can be generated from a single behavioral IP. This IP is a
BS broadcast descramblers (Multi2). All generated circuits satisfy the required per-
formance (more than 80 Mbps) at various frequencies. Note that the highest clock
circuit (108 MHz) uses less number of gates than the slow circuit (33 MHz). This
never happens in RTL-IPs, which follow the area-delay tradeoff relation of logic
synthesis. However, it is natural that a behavioral synthesizer generates a smaller
circuit of higher clock frequency for the same performance, since less parallel
operations are necessary to achieve the same performance at higher clock frequency.

Another important aspect is that for behavioral IPs it is much easier to mod-
ify their “functionality” and “interface” than for RTL-IPs. We designed two types
of “Viterbi” decoders for mobile phone and satellite communications. The two
required different Bit Error Rate, which is defined by several parameters such as
encode rate and constraint bit length. Changing these parameters requires signifi-
cant modification of the RTL-IP; however, only slight modification is necessary for
the behavior IP.

Lastly it has to be noted that behavioral IPs sometimes generates smaller cir-
cuits than RTL IPs as behavioral synthesis shares registers and functional units
for sequential algorithms such as the Viterbi decoder, but recent RTL designers do
not share registers since such time multiplexed sharing makes RTL simulation and
debug very difficult.

7.4.3 Configurable Processor Synthesis

Since chip fabrication cost has risen considerably, SoC are becoming as flexible
as possible. For this purpose, recent SoC usually have several configurable proces-
sors besides a main CPU. These configurable processors should be small, have a
high performance and low power consumption for a specific application. Such a
configurable processor is also called Application Specific Instruction set Proces-
sor (ASIP). ASIPs employ custom instruction-sets to accelerate some applications.
There are several commercial ASIPs, such as Xtensa [7] from Tensilica and Mep [8]
from Toshiba. Their base-processor and co-processors for adding instructions are
described in RTL and they are logic synthesized. In CWB we provide ASIP’s base

7 “All-in-C” Behavioral Synthesis and Verification with CyberWorkBench 123

Table 7.2 Behavioral base-band DSP synthesis results

STB stream Base-band DSP Application DSP
MIPS(clock) 72(108 MHz) 15(15 MHz) 60(60 MHz)

#.of Inst.
Base: 81 Base: 17 Base: 65
+Adding: 24 +Adding: 17 +Adding: 21

Gate size 43K 20K 120K
Behavior 2.1KL 1.3KL 2.5KL
Generated RTL 13.0KL 11.4KL 26.0KL
Man-power 1.5 m-m 0.5 m-m 0.8 m-m

Table 7.3 Behavioral configurable processor synthesis

Behavioral C-based Manual RTL

Code size 1.3 KL (1/7.6) 9.2 KL
Simulation 61.0 Kc/s(203×)

Pentium3@1 GHz
0.3 Kc/s

UltraSparc-II@450 MHz
Gate size 19 KG 18 KG

processor and supplementary instructions that are described fully in behavioral C,
which are behavioral synthesized. This allows the base-processors and the addition
of instructions to share functional units. This sharing leads to much smaller circuits
than the conventional RTL-based ASIPs. For an ASIP base-processor, we added 24
instructions suitable for stream processing, such as CRC calculation, with only 25%
area increase (34KG to 42KG) due to the of FU sharing.

C-based ASIPs are more flexible than RTL-based ones in terms of public register
number, pipeline stages or interrupt policy. In Table 7.2, the synthesis results of three
ASIPs are presented. All ASIPs were relatively small, but had enough performance
to run the specific application due to the addition of custom instructions. All C-based
ASIP designs required only as one tenth man-power of the RTL-based designs.

Table 7.3 shows comparison of C-based and manual RTL design for a config-
urable DSP design. RTL design flow. The two designs had comparable gate size and
delay (RTL design is slightly better). The code efficiency of C-based design flow
is shown to be 7.6 compared to the RTL design flow and a simulation speed-up of
approximate 200, which leads to high reliability. We believe such advantages are
much more important than slight area loss.

7.4.4 Automatic Architecture Exploration

Behavioral synthesis allows the creation of multitude hardware architecture for a
unique C design. The user can specify a set of constraints which all architectures
have to meet (e.g. area, latency, power) and a set of different architectures that meets
those constraints will automatically be generated. The area-performance-power

124 K. Wakabayashi and B.C. Schafer

trade-offs can be easily analyzed and the architecture that meets the constraints with
the lowest cost can be chosen by the designer. This task is extremely time consuming
if it is done at the RTL level as every single architecture requires a major re-work
in the RTL code including component types and number of component instantia-
tions. At the behavioral level this can be done by exploring the C code “attributes”
of the most significant C code operations (those that will have the highest impact
on the final architecture) like functions (e.g. inline expansion, sub-routine), loops
(loop merge, unroll, unroll x-times, unroll completely) and mapping arrays as wired
logic, registers or memories. Another aspect that is explored is the “global” syn-
thesis options. What kind of scheduling policy is performed such as speculative
scheduling, ASAP, ALAP scheduling of inputs and outputs, and which optimiza-
tion algorithms (e.g. area-, latency-, delay-oriented) should be performed during
behavioral synthesis. The third exploration step involves the maximum number of
functional units available. This has a significant effect on the scheduler and therefore
on the final design. To facilitate the trade-off analyzes the different architectures are
displayed as a graph in the IDE’s GUI as shown on Fig. 7.5.

The exploration engine is based on a weighted probabilistic search algorithm,
where the target options (area and performance) entered by the user are the probabil-
ities that a specific synthesis option or attribute is selected. Each possible synthesis
option and attribute has therefore been previously characterized in a library depend-
ing on its “usual” contribution to increase performance or area. A unique list of new
attributes and synthesis options is generated for each new architecture, avoiding
repetition of two equal designs.

Fig. 7.5 Automatic architectures exploration

7 “All-in-C” Behavioral Synthesis and Verification with CyberWorkBench 125

Table 7.4 AES core system exploration example

Design Gates Registers Muxes States Delay (ns)

1 223,973 59,336 135,891 37 2.06
2 304,203 68,774 186,964 62 1.78
3 80,892 29,940 36,265 61 2.74
4 283,687 8,774 184,015 64 1.78
5 244,997 53,150 173,175 67 2.30

Fig. 7.6 Behavioral design flow design example used in a cell phone SoC (gray boxes design using
Cyber)

Table 7.4 shows an example of the architecture exploration of an AES core func-
tion which has about 800 lines of C code. The system explorer generates a user
defined number of unique architectures (five in this case) based on the target selected
by the user (e.g. minimize area, maximize performance).

7.5 System VLSI Design Example Using C-Based Behavioral
Synthesis

Figure 7.6 shows a design example of a real complex SoC used at NECs cell phones
generated with our behavioral synthesizer. This SoC is called MP211, or Medity [9],
which has three ARM cores, one DSP, several dedicated hardware engines and
various applications of mobile phone such as audio and video processing, voice
recognition, encryption, Java and so on.

126 K. Wakabayashi and B.C. Schafer

Wide ranges of circuits including control dominated circuits and data-intensive
circuits were successfully implemented. The grey boxes (including bus) indicate
modules that have been synthesized from C descriptions with the proposed behav-
ioral synthesizer, while the white boxes are IP cores given in RTL format (some
are legacy RTL components and some are commercial ones). All newly developed
modules are designed with our C-based design flow. This example clearly illustrates
that our C-based environment is able to design entire SoC designs, and not only
algorithmic modules. C-based design flow became a standard ASSP development
flow since 2003 at NEC, and several billon dollars worth of ICs have been taped out
since.

7.6 Summary and Conclusions

This paper introduced the advantages of behavioral synthesis over traditional RTL
methodologies in system LSI design on the hand CyberWorkBench. Faster develop-
ment time, hardware-software co-simulation and development, easier and faster
verification as well as automatic system exploration are some of these. Although
many hardware designs are still very skeptical regarding behavioral synthesis the
facts show that it is necessary and will sooner or later be a must in every complex
hardware design flow. Winners will be early adopters of this methodology.

Currently, we are using behavior synthesis for most of our new designs and more
system LSIs are verified with our C-based simulation.

Behavior synthesis tool is as mature as logic synthesis in the late 1980s, when
designers started to use them widely RTL level design flows. However, it is tak-
ing time to make designers adopt this new design paradigm shifting from RTL
“structural” domain thinking to “behavioral” domain thinking. Education and train-
ing on behavioral thinking for RTL designers is a crucial and difficult task.

Acknowledgments The authors would like to acknowledge the work of everyone at EDA R&D
center, Central Research Laboratories at NEC Corporation, and NEC Information Systems Ltd.,
NEC Electronics Corp. NEC-HCL-ST for all their work developing CyberWorkBench and design-
ing various chips with it.

References

1. H. Kurokawa, Y. Ikegami, H. Otsubo, K. Asao, K. Kirigaya, K. Misumi, S. Takahashi,
T. Kawatsu, K. Nitta, K. Ryu, K. Wakabayashi, M. Tomobe, W. Takahashi, A. Mukaiyama,
T. Takenaka, “Study and Analysis of System LSI Design Methodologies Using C-Based
Behavioral Synthesis,” IEICE Trans. Fundamentals, Vol. E85-A, 2002

2. K. Wakabayashi, “Cyber: High Level Synthesis System from Software into ASIC,” Kluwer,
Dordecht, pp. 127–151, 1991

7 “All-in-C” Behavioral Synthesis and Verification with CyberWorkBench 127

3. K. Wakabayashi and T. Okamoto, “C-Based SoC Design Flow and EDA Tools: An ASIC and
System Vendor Perspective,” IEEE Trans. Comput. Aided Design Integr. Syst., Vol. 19, No. 12,
pp. 1507–1522, 2000

4. N. Kobayashi, K. Wakabayashi, H. Tanaka, N. Shinohara, T. Kanoh, “Design Experiences
with High-Level Synthesis System Cyber I and Behavioral Description Language BDL,”
Proceedings of Asia-Pacific Conference on Hardware Description Languages, Oct. 1994

5. Y. Nakamura, K. Hosokawa, I. Kuroda, K. Yoshikawa, T. Yoshimura, “A Fast Hardware/Soft-
ware Co-Verification Method for System-On-a-Chip by Using a C/C++ Simulator and FPGA
Emulator with Shared Register Communication”, pp. 299–304, DAC, 2004

6. K. Wakabayashi, “Unified Representation for Speculative Scheduling: Generalized Condition
Vector”, IEICE Trans. Fundamentals, Vol. E89-A, VLSI Design and CAD Algorithm, pp. 3408–
3415, 2006

7. Xtensa, http://www.tensilica.com
8. Mep, http://www.mepcore.com/english/
9. S. Torii, S. Suzuki, H. Tomonaga, T. Tokue, J. Sakai, N. Suzuki, K. Murakami, T. Hiraga, K.

Shigemoto, Y. Tatebe, E. Ohbuchi, N. Kayama, M. Edahiro, T. Kusano, N. Nishi, “A 600 MIPS
120 mW 70 μA Leakage Triple-CPU Mobile Application Processor Chip”, pp. 136–137,
ISSCC, 2005

Chapter 8
Bluespec: A General-Purpose Approach
to High-Level Synthesis Based on Parallel
Atomic Transactions

Rishiyur S. Nikhil

Abstract Bluespec SystemVerilog (BSV) provides an approach to high-level syn-
thesis that is general-purpose. That is, it is widely applicable across the spectrum of
data- and control-oriented blocks found in modern SoCs. BSV is explicitly paral-
lel and based on atomic transactions, the best-known tool for specifying complex
concurrent behavior, which is so prevalent in SoCs. BSV’s atomic transactions
encompass communication protocols across module boundaries, enabling robust
scaling to large systems and robust IP reuse. The timing model is smoothly refinable
from initial coarse functional models to final production designs. A powerful type
system, extreme parameterization, and higher-order descriptions permit a single
parameterized source to generate any member of a family of microarchitectures with
different performance targets (area, clock speed, power); here, too, the key enabler
is the control-adaptivity arising out of atomic transactions. BSV’s features enable
design by refinement from executable specification to final implementation; archi-
tectural exploration with early architectural feedback; early fast executable models
for software development; and a path to formal verification.

Keywords: High level synthesis, Atomic transactions, Control adaptivity,
Transaction-level modeling, Design by refinement, SoC, Executable specifications,
Parameterization, Reuse, Virtual platforms

8.1 Introduction

SoCs have large amounts of concurrency, at every level of abstraction – at the system
level, in the interconnect, and in every block or subsystem. The complexity of SoC
design is a direct reflection of this heterogeneous concurrency. Tools for high-level
synthesis (HLS) attempt to address this complexity by automating the creation of
concurrent hardware from high-level design descriptions.

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

129

130 R.S. Nikhil

At first glance, it may seem surprising that C, a sequential language, is being used
successfully in some tools for such a highly concurrent target. However, a deeper
understanding of the technology resolves the apparent contradiction. It turns out
that certain loop-and-array computations for signal-processing algorithms such as
audio/video codecs, radios, filters, and so on, can be viewed as equivalent parallel
computations. Their mostly homogeneous and well-structured concurrency can be
automatically parallelized and hence converted into parallel hardware.

Unfortunately, traditional (C-based) HLS technology does not address the many
parts of an SoC that do not fall into the loop-and-array paradigm – processors,
caches, interconnects, bridges, DMAs, I/O peripherals, and so on. One of Blue-
spec’s customers estimated that 90% of their IP portfolio will not be served by
C-based synthesis. These components are characterized by heterogeneous, irregular
and complex parallelism for which the sequential computational model of C is in
fact a liability. High-level synthesis for these components requires a fundamentally
different approach.

In contrast, Bluespec’s approach is fundamentally parallel, and is based first
on atomic transactions, the most powerful tool available for specifying complex
concurrent behaviors. Second, Bluespec has mechanisms to compose atomic trans-
actions across module boundaries, addressing the crucial but often underestimated
complexity that many control circuits fundamentally must straddle module bound-
aries. Handling this fundamental non-modularity smoothly and automatically is key
to system integration and IP reuse. Third, it has a precise notion of mapping atomic
transactions to synchronous logic, and can do so in a “refinable” way; that is, it can
be refined from an initial coarse timing to the final desired circuit timing. Fourth,
it is based on high-level types and higher-order programming facilities more often
found in advanced programming languages, delivering succinctness, parameteriza-
tion, reuse and control adaptivity. Finally, all this is synthesizable, enabling design
by refinement, early estimates of architectural quality, early and fast emulation on
FPGA platforms for embedded software development, and early and high-quality
hardware for final implementations. In this chapter, we provide an overview of this
“whole-SoC” design solution, and describe its growing validation in the field.

8.2 Atomic Transactions for Hardware

In many high-level specification languages for complex concurrent systems, such as
Guarded Commands [6], Term Rewriting Systems [2, 10, 23], TLA+ [11], UNITY
[4], Event-B [17] and others, the concurrent behavior of a system is expressed as a
collection of rewrite rules. Each rule has a guard (a boolean predicate on the cur-
rent state), and an action that transforms the state of the system. These rules can be
applied in parallel, that is, any rule whose guard is true can be applied at any time.
The only assumption is that each rule is an atomic transaction [12,16], that is, each
rule observes and delivers a consistent state, relative to all the other rules. This for-
malism is popular in high-level specification systems because it permits concurrent
behavioral descriptions of the highest abstraction, and it simplifies establishment

8 Bluespec: A General-Purpose Approach to High-Level Synthesis 131

of correctness with both informal and formal reasoning, because atomicity directly
supports the concept of reasoning with invariants. It is also universally applicable
to all kinds of concurrent computational processes, not just “data parallel” appli-
cations. Atomic transactions have been in widespread use for decades in database
systems and distributed systems, and recently there has been a renewed spurt of
interest even for traditional software because of the advent of multithreaded and
multicore processors [8, 22].

When viewed through the lens of atomicity, it suddenly becomes startlingly clear
why RTL is so low-level, fragile, and difficult to reuse. The complexity of RTL is
fundamentally in the control logic that is used to orchestrate movement of data and,
in particular, for access to shared resources – arbitration and flow control. In RTL,
this logic must be designed explicitly by the designer from scratch in every instance.
This is tedious by itself and, because it is ad hoc and without any systematic dis-
cipline, it is also highly error-prone, leading to race conditions, interface protocol
errors, mistimed data sampling, and so on – all the typical difficult-to-find bugs in
RTL designs. Further, this control logic needs to be redesigned each time there is a
small change in the specification or implementation of a module.

Another major problem affecting RTL design arises because atomicity – con-
sistent manipulation of shared state – is fundamentally non-modular, that is, you
cannot take two modules independently verified for atomicity and use them as black
boxes in constructing a larger atomic system. Textbooks on concurrency usually
illustrate this with the following simple example: imagine you have created a “bank
account” module with transactions withdraw() and deposit(), and you have veri-
fied their correctness, that is, that each transaction performs its read-modify-write
atomically. Now imagine a larger system in which there are concurrent activities
that are attempting to perform transfer() operations between two such bank account
modules by withdrawing from one and depositing to the other. Unfortunately there
is no guarantee that the transfer() operation is atomic, even though the withdraw()
and deposit() transactions, which it uses, are atomic. Additional control structure
is needed to ensure that transfer() itself is atomic. The problem gets even more
complicated if the set of shared resources is dynamically determined; if concurrent
activities have to block (wait) for certain conditions before they can proceed; and if
concurrent activities have to make choices reactively based on current availability
of shared resources. This issue of non-compositionality is explored in more detail
in [8] and although explained there in a software context, it is equally applicable to
hardware modules and systems. Atomicity requires control logic, and that control
logic is non-modular.

This leads precisely to the core reason why Bluespec SystemVerilog [3] dramat-
ically raises the level of abstraction – automatic synthesis of all the complex control
logic that is needed for atomicity.

In addition, Bluespec contributes the following:

• Provision of compositional atomic transactions within the context of a familiar
hardware design language (SystemVerilog [9])

• Definition of precise mappings of atomic transactions into clocked synchronous
hardware

132 R.S. Nikhil

• An industrial-strength synthesis tool that implements this mapping, that is,
automatically transforms atomic transaction-based source code into RTL

• Simulation tools based on atomic transactions

The synthesis tool produces RTL that is competitive with hand-coded RTL, and
the simulator executes an order of magnitude faster than the best RTL simulators
(see Sect. 8.9).

We first illustrate the impact of supporting atomicity with a small example, and
then with a larger one. We realize that the small example may seem too low level
and narrow for a discussion on High Level Synthesis, but it is eye-opening to realize
how much complexity in RTL can be attributed to atomicity concerns, even with
such a small example. Ultimately, atomic transactions prove their value when you
scale to larger systems (because atomicity is not too difficult to implement manually
in the small).

Consider the situation in the figure below. Three concurrent activities A, B and
C periodically update the registers x and y. Activity A increments x when condA
is true, B decrements x and increments y when condB is true, and C decrements y
when condC is true. Let us also specify that if both condB and condC are true, then
C gets priority over B, and similarly that B gets priority over A (Fig. 8.1).

The following Verilog RTL is one way to express this behavior. (There are several
alternate styles in which to write the RTL, but every variation is susceptible to the
same analysis below).

always @(posedge CLK) begin
if (condC)
y <= y - 1;

else if (condB) begin
y <= y + 1; x <= x - 1;

end;
if (condA && (!condB | | condC)) // SchedA
x <= x + 1;

end

The conditional statements and their boolean expressions represent control logic
that governs what each register is updated with, and when. Note in particular the
last conditional expression, which is flagged with the comment SchedA. A naı̈ve
coder might have just written (condA && !condB), reflecting the priority of B over

A B C

Priority: C > B > A
condA condB condC

- -++

yx

Fig. 8.1 Small atomicity example – consistent access to multiple shared resources

8 Bluespec: A General-Purpose Approach to High-Level Synthesis 133

A for updating x. But here the designer has exploited the following transitive chain
of reasoning: if condC is true, then B cannot update x even if condB is true because
B must update x and y together and C has priority over B for updating y. Therefore,
it is now ok for A to update x.

Said another way, the competition for resource y shared between atomic trans-
actions B and C can affect the scheduling of the atomic transaction A because of
the competition between A and B for another shared resource, x. In microcosm, this
transitive effect also illustrates why atomicity is fundamentally non-modular; that
is, the control structures for managing consistent access to shared resources require
a non-local view.

Next, we show how the same problem is solved using Bluespec SystemVerilog
(BSV).

rule rA (condA);
x <= x + 1;

endrule

rule rB (condB);
y <= y + 1; x <= x - 1;

endrule

rule rC (condC);
y <= y - 1;

endrule

(* descending urgency = "rC, rB, rA")

Each rule represents an atomic transaction. It has a guard, which is a boolean
condition indicating a necessary (but not sufficient) condition for the rule to fire. It
has a body, or action, which is a logically instantaneous state transition (this can
be composed of more than one sub-action, all of which happen in parallel, as in
rule rB,). The final line expresses, declaratively, the desired priority of the rules.
The textual ordering of the rules and the final phrase is irrelevant, and the textual
ordering of the two actions in the body of rule rB is also irrelevant; in this sense,
it is a highly declarative specification of the solution. From this specification, the
Bluespec compiler (synthesis tool) produces RTL equivalent to that shown earlier;
that is, it produces all the control logic that had to be designed and written explicitly
in RTL, taking into account all the scheduling nuances discussed earlier, including
transitive effects.

The reason a rule’s guard is necessary but not sufficient for its firing is precisely
because of contention for shared resources. For example, condB is necessary for rB,
but not sufficient – the rule should not fire if condC is true.

To drive home the importance of this automation, imagine what modifications
would be needed in the code under the following changes in the specification:

134 R.S. Nikhil

• The priority is changed to A > B > C, or B > A > C. In each case the RTL design
needs an almost complete rethink and rewrite, because the control logic changes
drastically and this must be expressed in the RTL. In the BSV code, however, the
only change is to the priority specification, and the control logic is regenerated
automatically.

• Activity B only decrements x if y is even. In the RTL code, the decrement of x
can easily be wrapped with an “if (even(y). . . ” condition. But now consider the
condition SchedA for the x increment. It changes to the following:

if (condA && (!(condB && even(y)) | | condC))
x <= x + 1;

In other words, A has access to x if condC is true (as before, because then C has
priority for y and so B cannot run anyway), or else if B is not competing for x;
that is, it is not the case that condB is true and y is even.

We can see that the control logic for managing competing accesses to shared
resources gets more and more messy and complex, even in such a small exam-
ple. There is even some repetition in the control expressions, such as the tests for
condB and even(y), leading to the possibility of cut-and-paste errors. The complex-
ity increases when the set of shared resources demanded by an atomic transaction
is dynamic or data dependent, as in the last bullet, where B competed for x with A
only if y was even. A small slip-up in writing one of those complex access condi-
tions results in a race condition, or a protocol error, or dropping a value, or writing
a wrong value into a register – all the common bugs that plague RTL design.

For a larger example, consider a packet switch (perhaps in an SoC interconnect)
that has N input ports and N output ports. Consider that not all inputs may need to
be connected to all outputs, and vice versa. Consider that at the different points in
the switch where packets merge to a common destination, different arbitration poli-
cies may be specified. Consider that for each incoming packet, the set of resources
needed is dependent on the contents of the packet header (destination buffers, uni-
cast vs. multicast, certain statistics to be counted, and so on). When coding in RTL,
the control logic for such a switch is a nightmare. With BSV rules, on the other
hand, the behavior can be elegantly and correctly captured by a collection of atomic
transactions, where each transaction encapsulates all the actions needed for process-
ing packets from a particular input – all the control logic to manage all the shared
resources in the switch is automatically synthesized based on atomicity semantics.

In summary, much of the complexity of coding in RTL, much of the complex-
ity in debugging RTL, and much of its fragility against change or reuse arises from
the ad hoc treatment of concurrent access to shared resources, that is, the lack of
a discipline of atomicity. Further, decades of experience with multithreaded soft-
ware shows clearly that a discipline of atomicity cannot be imposed merely by
programming conventions or style – it needs to be built into the semantics of the lan-
guage, and it needs to be built into implementations – simulation and synthesis tools
(see also [13] and [22]). For this reason, much of this critique also applies to Sys-
temC, which has atomic primitives but not atomic transactions. By making atomic

8 Bluespec: A General-Purpose Approach to High-Level Synthesis 135

transactions part of the semantics and automating the generation of control logic
thereby implied, BSV dramatically simplifies the description and implementation
of complex hardware systems.

8.3 Atomic Transactions with Timing, and Temporal Refinement

Atomic transactions are of course an old idea in computer science [12]. In BSV,
uniquely, they are additionally mapped into synchronous time and this, in turn, pro-
vides the basis for automatic synthesis into synchronous digital hardware. In pure
rule semantics [2, 4, 10, 23], one simply executes one enabled rule at a time, and
hence rules are trivially atomic. In BSV, we have a notion of a global clock (BSV
actually has powerful facilities for multiple clock domains, but this is not neces-
sary for the current discussion). In each “clock cycle”, BSV executes a subset of
the enabled rules – the subset is chosen based on certain practical hardware con-
straints. The BSV synthesis tool compiles parallel hardware for these rules, but it
is always logically equivalent to a serialized execution of the subset. Thus, the par-
allel hardware is true to pure rule semantics, and hence preserves atomicity and
correctness.

Every BSV program has this model of computation, whether it represents an
early, coarse, functional model or a final, silicon-ready, production implementation.
An early functional model may lump all of the computation into a single rule or
just a few rules. Its execution can be imagined to be governed by a clock with a
long time period (in general we may not care much about this “clock” at the stage).
The designer splits rules into finer, smaller rules according to architectural con-
siderations such as pipelining, or concurrency, or iteration, and so on. These later
refinements may be imagined to execute with a faster, finer clock, and permit more
concurrency because of the finer grain. Thus, the process of design involves not only
a refinement of functionality, but also a refinement of time, from the early, coarse,
possibly highly uneven clock (untimed) of an early model to the final, full speed,
evenly-spaced synchronous clock of the delivered digital hardware. At every step
of refinement, the designer can measure latencies and bandwidths, and identify bot-
tlenecks with respect to the current granularity of rule contention. This is a much
more disciplined, realistic and accurate modeling of time compared to the typically
ad hoc mechanisms often used in so-called PVT models (Programmer’s View plus
Timing).

The mapping of a logical ordering of rules into clock cycles can be viewed
as a kind of scheduling. BSV does this scheduling automatically, with occasional
high-level guidance from the designer in the form of assertions about the desired
schedule. There is a full theory of how such schedules can be specified for-
mally to control precisely how rules are mapped into clocks [19]. Because these
scheduling specifications are about timing, they are also known as “performance
specifications”.

136 R.S. Nikhil

8.4 Atomic Transactional Module Interfaces

It is widely accepted that RTL’s signal-level interfaces or SystemC’s sc signal level
interfaces are very low-level. In SystemC modeling, and in SystemVerilog test-
benches, there is a trend towards so-called “transactional” interfaces, which use
an object-oriented “method calling” style for inter-module communication. This is
certainly an improvement, but without atomicity, they are severely limited. Many
interface protocol issues can be traced once again to the lack of a discipline for
atomicity.

Consider a simple FIFO, with the usual enqueue() and dequeue() methods. In
general, we cannot enqueue when a FIFO is full, nor dequeue when it is empty. In a
hardware FIFO, there is also a concept of simultaneity, namely “in the same clock”
(we ignore for now the situation of multiple clock domains), and in this context we
can ask the question: “Can one enqueue and dequeue simultaneously, under what
conditions, and with what meaning?”

One can imagine three different kinds of FIFOs, all of which have exactly the
same set of hardware signals at their interface. Assume all the FIFOs allow simul-
taneous enqueues and dequeues in the non-boundary conditions, that is, when it is
neither full nor empty. The interesting differences are in the boundary conditions:

• The naı̈ve FIFO allows only dequeue if full, and only enqueue if empty. The
reason for the FIFO name is that this is typically the first FIFO designed by an
inexperienced designer!

• The pipeline FIFO, the most common kind, allows only enqueue if empty, but
allows a simultaneous enqueue and dequeue if full. The reason for the name
is that when full, it behaves like a pipeline buffer, that is, a new element can
simultaneously arrive while the oldest value departs.

• The bypass FIFO allows only dequeue if full, but allows a simultaneous enqueue
and dequeue if empty. The reason for the name is that when empty, a new value
can arrive via the enqueue operation and “bypass” through the FIFO to depart
immediately via the dequeue operation.

(Of course, one can imagine a fourth FIFO that has both pipeline and bypass
behavior, but it is not necessary for this discussion.) To illustrate the ad hoc nature
of how this is typically specified, a certain commercial IP vendor’s data sheet for a
pipeline FIFO covers several pages. On one page it states, “An error occurs if a push
[enqueue] is attempted while the FIFO is full”. On another page it states, “Thus,
there is no conflict in a simultaneous push and pop when the FIFO is full”. These
partially contradictory specifications are only given informally in English.

These nuances are not academic. Although these three FIFOs have exactly the
same RTL signals at its module interface, the control logic in a client module gov-
erning access to such a FIFO is different for each of the different types of FIFO.
Every instance of this FIFO imposes a verification obligation on the designer of the
client module to ensure that the operations are invoked correctly, particularly at the
boundary conditions.

8 Bluespec: A General-Purpose Approach to High-Level Synthesis 137

What has all this got to do with atomic transactions? In BSV, interface methods
like enqueue and dequeue are parameterized, invocable, shareable components of
atomic transactions. In other words, an atomic transaction in a client module may
invoke the enqueue or dequeue operation (using standard object-oriented syntax),
and those operations become part of the atomic transaction. If in the current clock
the enqueue operation is not ready (perhaps because the FIFO is full), the atomic
transaction containing the enqueue operation cannot execute. Thus, one can think
of every method as having a condition and an action (just like a rule), and its con-
dition and action become part of the overall condition and action of the invoking
rule. Methods are also shareable. For example, many rules may invoke the enqueue
method of a single FIFO. This, too, plays a role in atomic semantics because in any
given clock cycle, only one of the rules can be invoke the shared method, so if a
particular rule is inhibited for this reason, its other actions should also be inhibited
on that clock (because its actions must be atomic).

Because of atomicity (and its related concept of serializability), there is a precise
and well-defined concept of “logically before” and “logically after”, when rules and
methods are scheduled simultaneously, that is, within the same clock. Given any two
rule executions R1 and R2, either R1 happens before R2 (logically), or it happens
after. This concept directly gives us a formal way to express the differences between
the three kinds of FIFOs. The following table summarizes the terminology, focusing
only on the boundary conditions:

When empty When full

Naı̈ve FIFO enqueue dequeue
Pipeline FIFO enqueue dequeue < enqueue
Bypass FIFO enqueue < dequeue dequeue

In the left-hand column (when empty) the Bypass FIFO allows both operations
“simultaneously”, but it is logically as if the enqueue occurred before the dequeue.
In the logical ordering, the enqueue is ok when the FIFO is empty, and then the
dequeue is ok because logically the FIFO is no longer empty, and, further, it receives
the freshly enqueued value. Similarly, in the right-hand column (when full) the
Pipeline FIFO allows both operations “simultaneously”, but it is logically as if the
dequeue occurred before the enqueue. In the logical ordering, the dequeue is ok
when the FIFO is full, and then the enqueue is ok because logically the FIFO is no
longer full. The oldest value departs and a new value enters.

This discussion gives a flavor of how Bluespec extends atomicity semantics
into inter-module communication, and uses these semantics to capture formally the
“scheduling” properties of the interface methods; in short, the protocol of the inter-
face methods. Given a BSV module, the tool automatically infers properties like
those shown in the table. Then, for every instance of these FIFOs, the tool produces
the correct external control logic, by construction. The verification obligation on the
RTL designer’s shoulders, mentioned earlier, is eliminated completely.

138 R.S. Nikhil

Although transactional interfaces exist in SystemC and in SystemVerilog (and
may not always be synthesizable), it is their atomicity semantics in Bluespec
that gives them tremendous compositional power (scalability of systems) and full
synthesizability.

8.5 A Strong Datatype System and Atomic Transactional
Interfaces

It is well acknowledged that C has a weak type system. C++ has a much stronger
type system, but it is not clear how much of it can be used in the synthesizable
subsets of existing tools. Advanced programming languages like Haskell and ML
have even stronger type systems. The type systems themselves provide abstraction
(abstract types), parameterization and reuse (polymorphism and overloading). Type
checking in such systems is a form of strong static verification.

Bluespec’s type system strengthens the SystemVerilog type system to a level
comparable to C++ and beyond (in fact it is strongly inspired by Haskell). As an
example of this, we show how it is used to provide very high level interfaces and
connections.

We start with an extremely simple interface:

interface Put#(t);
method Action put (t x);

endinterface

This defines a new interface type called Put#(). It is polymorphic; that is, it is
parameterized by another type, t. It contains one method, put(), which takes an argu-
ment x of type t and is of type Action. Action is the abstract type of things that go
into atomic transactions (rules and methods); that is, atomic transactions consist of a
collection of Actions. The method expresses the idea of communicating a value (x)
into a module and possibly affecting its internal state. In C++ terminology, inter-
faces are like virtual classes and polymorphism is the analog of template classes.
Unlike C++, however, BSV’s polymorphic interfaces, modules and functions can
be separately type-checked fully, whereas in C++ template classes can be fully
type-checked only after the templates have been instantiated.

Similar to Put#(), we can also define Get#():

interface Get#(t);
method ActionValue#(t) get();

endinterface

The get() method takes no argument, and has type ActionValue#(t); that is, it
returns a value of type t and may also be an Action – it may also change the state of
the module. It expresses the idea of retrieving a value from a module.

8 Bluespec: A General-Purpose Approach to High-Level Synthesis 139

Interface types can be nested, to produce more complex interfaces. For example:

interface Client#(reqT, respT);
interface Get#(reqT) request;
interface Put#(respT) response;

endinterface

interface Server#(reqT, respT);
interface Put#(reqT) request;
interface Get#(respT) response;

endinterface

A Client#() interface is just one where we get requests and put responses, and
a Server#() interface is just the inverse. Now consider a cache between a processor
and a memory. Its interface might be described as follows:

interface Cache#(memReq, memResp);
interface Server#(memReq, memResp) toCPU;
interface Client#(memReq, memResp) toMem;

endinterface

The cache interface contains a Server#() interface towards the CPU, and a
Client#() interface towards the memory. It is parameterized (polymorphic) on the
types of memory requests and memory responses.

In this manner, it is possible to build up very complex interfaces systematically,
starting with simpler interfaces. Polymorphism allows heavy reuse of common,
standard interfaces (and many are provided for the designer in Bluespec’s standard
libraries).

Next, we consider user-defined overloading. Many pairs of interfaces are natural
“duals” of each other. For example, a module with a Get#(t) interface would natu-
rally connect to a module with a Put#(t) interface, provided t is the same. Similarly,
Client#(t1,t2) and Server#(t1,t2) are natural duals. And this is of course an open-
ended collection – AXI masters can connect to AXI slaves (provided they agree on
address widths, data widths, and other polymorphic parameters), OCP masters to
OCP slaves, my-funny-type-A to my-funny-type-B, and so on.

Of course, a connection is, in general, just another module. It could be as simple
as a collection of wires, but connecting some interfaces may need additional state,
internal state machines and behaviors, and so on.

BSV has a powerful, user-extensible overloading mechanism in its type system,
patterned after Haskell’s overloading mechanism, which allows us to define a single
“design pattern” called mkConnection(i1, i2) to connect an interface of type i1 to
an interface of type i2, for suitable pairs of types i1 and i2, such as Get#(t) and
Put#(t). Note: many languages provide some limited overloading, typically of binary
infix operators, but what is being overloaded here is a module. In BSV, any kind
of elaboration value can be overloaded – operators, functions, modules, rules, and
so on.

140 R.S. Nikhil

As a consequence, the complete top-level structure of a CPU-cache-memory
system can be expressed succinctly and clearly with no more than a few lines of
code:

module mkSystem;
Client#(MReq, MResp) cpu <- mkCPU;
CacheIfc#(MReq, MResp) cache <- mkCache;
Server#(MReq, MResp) mem <- mkMem;
mkConnection (cpu, cache.toCPU);
mkConnection (cache.toMem, mem);

endmodule

In the first line mkCPU instantiates a CPU module which yields a Client interface
that we call cpu. Similarly the next two lines instantiate the cache and the memory.
The fourth line instantiates a module that establishes the cpu-to-cache connection,
and the final line instantiates a module that establishes the cache-to-memory con-
nection. Note that the two instances of mkConnection may be used at different types;
overloading resolution will automatically pick the required mkConnection module.

The final feature of BSV’s type system we wish to mention in this section is
one that deals with the sizes of entities, and the often complex relationships that
exist between sizes. For example, a multiplication operation may take operands of
width m and n, and return a result of width m + n. These are directly expressible
in Bluespec’s type system as three types Int#(m), Int#(n) and Int#(mn) along with
a proviso (a constraint) that m + n = mn. Another example is a buffer whose size
is K, with the implication that a register that indexes into this buffer must have
width log(K). These constraints can be used in many ways. First, they can be used
as pure constraints that are checked statically by the compiler. But, in addition,
they can be solved by the Bluespec compiler to derive some sizes from others. For
example, in designing a module containing a buffer of size K, it can derive the size
of its index register, log(K), or vice versa. These features are extremely useful in
designing hardware, particularly for fixed-point arithmetic algorithms, where each
item is precisely sized to the correct width and all constraints between widths are
automatically checked and preserved by the compiler.

8.6 Control-Adaptive Architectural Parameterization
and Elaboration

In BSV, one can abstract out the concept of a “functional component” as a reusable
building block. Then, separately, one can express how to compose these functional
components into microarchitectures, such as combinational, pipelined, iterative,
or concurrent structures. For example, a function of ActionValue type in BSV
expresses a piece of sequential behavior. A function of type Rule expresses a com-
plete piece of reactive behavior, in fact a complete reactive atomic transaction. All

8 Bluespec: A General-Purpose Approach to High-Level Synthesis 141

these components are “first class” data types, so one can build and manipulate
“collections” such as lists and vectors of ActionValues, Rules, Modules, and so on.

Second, BSV has some powerful “generate” mechanisms that allow one to com-
pose microarchitectures flexibly and succinctly. For example, the microarchitectural
structure can be expressed using conditionals, loops, and even recursion. These can
manipulate lists of rules, interfaces, modules, ActionValues, and so on, in order to
programmatically construct modules and subsystems.

Third, BSV has very powerful parameterization. One can write a single piece
of parameterized code that, based on the choice of parameters, results in differ-
ent microarchitectures (such as pipelined vs. concurrent vs. iterative, or varying a
pipeline pitch, or using alternative modules, and so on.).

Finally, and most important, what makes all this flexibility work is the control-
adaptivity that arises out of the core semantics of atomic transactions. Each change
in microarchitecture from these capabilities of course needs a corresponding change
in the control logic. For example, if two functional components are composed in
a pipelined or concurrent fashion, they may conflict on access to some shared
resource, whereas when composed iteratively, they may not – these require dif-
ferent control logics. When designing with RTL, it is simply too tedious and
error-prone to even contemplate such changes and to redesign all this control logic
from scratch. Because BSV’s synthesis is based on atomic semantics, this control
logic is resynthesized automatically – the designer does not have to think about it.

For example, in a mathematical algorithm, many sections of the code repre-
sent N-way ‘data parallel’ computations, or ‘slices’. We first abstract out this slice
function, and then we can write a single parameterized piece of code that chooses
whether to instantiate N concurrent copies of this slice, or N/2 copies to be used
twice, or N/4 copies to be used four times, and so on. Similarly, each of these
slices could be pipelined, or not. BSV automatically generates all the intermediate
buffering, muxing and control logic needed for this.

So, the designer can rapidly adjust the microarchitecture in response to tim-
ing, area and power estimation results from actual RTL-to-netlist synthesis, and
converge quickly on an optimized design. The baseline atomicity semantics of
BSV is key to preserving correctness and eliminating the effort that would be
needed to redesign the control logic. Reference [5] presents a detailed case study
of an 802.11a (WiFi) transmitter design in BSV using these techniques, includ-
ing a somewhat counter-intuitive result about which micro-architecture resulted
in the least-power implementation. In other words, without the kind of architec-
tural flexibility described in this section, the designer’s intuition may have led to a
dramatically sub-optimal implementation.

8.7 Some Comparisons with C-Based HLS

Having described the various features of the BSV approach, we can now make some
brief comparisons with classical C-based High Level Synthesis.

142 R.S. Nikhil

In classical C-based HLS, the design-capture language is typically C (or C++).
To this are added proprietary “constraints” that specify, or at least guide, the synthe-
sis tool in microarchitecture selection, such as loop unrolling, loop fusion, number
of resources available, technology library bindings, and so on. The synthesis tool
uses these constraints and knowledge about a particular target technology and
technology libraries to produce the synthesized output.

Since the reference semantics for C and C++ are sequential, what C-based HLS
tools do is a kind of automatic parallelization; that is, by analyzing and transform-
ing the intermediate form of Control/Data Flow Graphs (CDFGs), they relax the
reference sequential semantics into an equivalent parallel representation suitable for
hardware implementation. In general, this kind of automatic parallelization is only
successful on well-structured loop-and-array computations, and is not applicable
to more heterogeneous control-dominated components such as processors, caches,
DMAs, interconnect, I/O devices, and so on. Even for loop-and-array computations,
it is rare that an off-the-shelf C code results in good synthesis; the designer often
must spend significant effort “restructuring” the C code so that it is more amenable
to synthesis, often undoing many common C idioms into more analyzable forms,
such as converting pointer arithmetic into array indexing, elimination of global vari-
ables so that the data flow is more apparent, and so on. Reference [20] describes in
detail the kinds of source-level transformations necessary by the designer to achieve
good synthesis, and reference [7] describes in more generality the challenge of
getting good synthesis out of C sources.

As described in the previous section on “Control-Adaptive Architectural Param-
eterization and Elaboration”, in BSV the microarchitecture is specified precisely
in the source, but with such powerful generative and parameterization mechanisms
that a single source can flexibly represent a rich family of microarchitectures, within
which different choices may be appropriate for different performance targets (area,
clock speed, power). Further, the structure can be changed quickly and easily with-
out compromising correctness or hardware quality, in order quickly to converge to
a satisfactory implementation. Thus, BSV provides synthesis from very high level
descriptions but, paradoxically, the microarchitecture is precisely specified in the
parameterized program structure.

Experience has shown that with these capabilities, the BSV approach, although
radically different, easily matches the productivity and quality of results of classi-
cal C-based HLS for well-structured loop-and-array algorithmic codes. But unlike
C-based synthesis, BSV is not limited to such computations – its explicit paral-
lelism and atomic transactions make it broadly suitable to all the different kinds of
components found in SoCs, whether data- or control-oriented.

BSV synthesis is currently technology neutral – it does not try to perform
technology-specific optimizations or retimings (BSV users rely on downstream
tools to perform such technology-specific local retiming optimizations).

These properties of BSV also provide a certain level of transparency, predictabil-
ity and controllability in synthesis; that is, even though the design is expressed at
a very high level, the designer has a good idea about the structure of the generated

8 Bluespec: A General-Purpose Approach to High-Level Synthesis 143

RTL (the synthesis tool is also heavily engineered to produce RTL that is not only
highly readable, but where the correspondence to the source is evident).

Although, as we have discussed, BSV is universal and can be applied to design
all kinds of components in an SoC, there is no reason why BSV cannot be used
in conjunction with classical C-based HLS. Indeed, one of Bluespec’s customers
has implemented a complex “data mover” for multiple video data formats, where
some of the sources and destinations of the data are “accelerators” for various video
algorithms that are implemented using another C-based synthesis tool.

8.8 Additional Benefits

The features of BSV we have described provide a number of additional benefits that
we explore in this section.

Design-by-refinement: Because of the control-adaptiveness of BSV, that is, the
automatic reconstruction of control circuits as microarchitecture changes, BSV
enables repeated incremental changes to a design without damaging correctness.
A common practice is to start by producing a working skeleton of a design, literally
within hours or days, by using the powerful parameterized interfaces and connec-
tions already defined in Bluespec’s standard libraries, such as Client and Server and
mkConnection. This initial approximation already defines the broad architecture of
the design, and the broad outlines of the testbench. Then, repeatedly, the designer
adds or modifies detail, either to increase functionality or to adjust the microar-
chitecture for the existing functionality. At every step, the design is recompiled,
resimulated, and tested – verification is deeply intertwined with design, instead of
being a separate activity following the design.

Because the concept of mapping atomic transactions to synchronous execution is
present from the beginning, the methodology also involves a refinement of tim-
ing. The first, highly approximate and incomplete model itself has a notion of
clocks, and hence abstract timing measurements of latency and throughput can begin
immediately. Bottlenecks can be identified and resolved through microarchitecture
refinement.

As this refinement proceeds, since everything is synthesizable to RTL from the
beginning, one may also periodically run RTL-to-netlist synthesis and power esti-
mation tools to get an early indication of whether one is approaching silicon area,
clock speed and power targets.

Thus the whole process has a smooth trajectory from high level models to final
implementation, without any disruptive transitions in methodology, and with no late
surprises about meeting latency, bandwidth or silicon area and clock speed targets.
Early BSV models can thus also be viewed as executable specifications.

Early fast simulation on FPGAs: Because synthesis is available from the very
earliest approximate models in the above refinement methodology, many BSV
users are able quickly to run their models on FPGA platforms and emulators.
Note, the microarchitecture may be nowhere near the final version, and its FPGA

144 R.S. Nikhil

implementation may run at nowhere near the clock speed of the final version,
but it can still provide, effectively, a simulator that is much faster than software
simulation.

This capability can more rapidly identify microarchitectural problems, and can
provide a fast “virtual platform” early to the software developers.

Formal specification and verification: In the beginning of Sect. 8.2 we mentioned
several well-known formal specification languages that share the same basic com-
putational model as BSV – a collection of rewrite rules, each of which is an atomic
transaction, that collectively express the concurrent behavior of a system. As such,
the vast theory in that field is in principle directly applicable to BSV. In practice,
some individual projects have been done in this area with BSV, notably processor
microarchitecture verification [1], systematic derivation of processor microarchi-
tectures via transformation [15], and the verification of a distributed, directory-
based cache-coherence protocol [21]. We expect that, in the future, BSV tools will
incorporate such capabilities, including integration with formal verification engines.

8.9 Experience and Validation, and Conclusion

Bluespec SystemVerilog is an industrial-strength tool, with research roots going
back at least 10 years, and production-quality implementations going back at least
7 years. It also continues to serve as a fertile research vehicle for Bluespec and
its university partners. Many large designs (from 100 Ks to millions of gates) have
been implemented in Bluespec, and some of them are in silicon in delivered products
today.

Measured over several dozens of medium to large designs, BSV designs have
routinely matched hand-coded RTL designs in silicon area and clock speed. In a few
instances, BSV has actually done much better than hand-coded RTL because BSV’s
higher-level of abstraction permitted the designer clearly to see a better architecture
for implementation, and BSV’s robustness to change allowed modifications to the
design accordingly.

Bluesim, Bluespec’s simulator, is capable of executing an order of magnitude
faster than the best RTL simulators. This is because the simulator is capable of
exploiting the semantic model of BSV, where atomic transactions are mapped into
clocks, to produce significant optimizations over RTL’s fine-grained event-based
simulation model.

Of course BSV has proven excellent for highly control-oriented designs like pro-
cessors, caches, DMA controllers, I/O peripherals, interconnects, data movers, and
so on. But, interestingly, it has also had excellent success on designs that were pre-
viously considered solely the domain of classical High Level (C-based) Synthesis.
These designs include, as examples:

• OFDM transmitter and receiver, parameterized to cover 802.11a (WiFi), 802.16
(WiMax), and 802.15 (WUSB). Reference [5] describes the 802.11a transmitter
part. This BSV code is available in open source, courtesy of MIT and Nokia [18]

8 Bluespec: A General-Purpose Approach to High-Level Synthesis 145

• H.264 decoder [14]. This code is capable of decoding 720 p resolution video
at 75 fps in .18 um technology (about the same computational effort as 1,080 p
at 30 fps). This BSV code is available in open source, courtesy of MIT and
Nokia [18]

• Components of an H.264 encoder (customer proprietary)
• Color correction for color images (customer proprietary)
• MIMO decoder in a wireless receiver (customer proprietary)
• AES and DES (security)

Thus, BSV has been demonstrated to be truly general-purpose, applicable to the
broad spectrum of components found in SoCs. In this sense it can truly be seen as a
high level, next generation tool for whole-SoC design, in the same sense that RTL
was used in the past.

To date, the concept of High Level Synthesis has been almost synonymous with
classical C-based automatic synthesis. This, in turn, has limited its applicability only
to certain components of modern SoCs, those based on structured loop-and-array
computations. We hope this chapter will serve to raise awareness of a very unusual
alternative approach to high level synthesis that is potentially more promising for
the general case and applicable to whole SoCs.

Acknowledgments The original ideas in synthesizing rules (atomic transactions) into RTL were
due to James Hoe and Arvind at MIT. Lennart Augustsson augmented this with ideas on composing
atomic transactions across module boundaries, strong type checking, and higher-order descriptions.
Subsequent development of BSV, since 2003, is due to the team at Bluespec, Inc.

References

1. Arvind and X. Shen, Using Term Rewriting Systems to Design and Verify Processors, IEEE
Micro 19:3, 1998, pp. 36–46

2. F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University Press,
Cambridge, 1998, 300 pp

3. Bluespec, Inc., Bluespec SystemVerilog Reference Guide, www.bluespec.com
4. K.M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley,

Reading, MA, 1988, 516 pp
5. N. Dave, M. Pellauer, S. Gerding and Arvind, 802.11a Transmitter: A Case Study in Microar-

chitectural Exploration, in Proc. Formal Methods and Models for Codesign (MEMOCODE),
Napa Valley, CA, USA, July 2006

6. E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976
7. S.A. Edwards, The Challenge of Hardware Synthesis from C-Like Languages, in Proc. Design

Automation and Test Europe (DATE), Munich, Germany, March 2005
8. T. Harris, S. Marlow, S. Peyton Jones and M. Herlihy, Composable Memory Transactions, in

ACM Conf. on Principles and Practice of Parallel Programming (PPoPP’05), 2005
9. IEEE Standard for SystemVerilog – Unified Hardware Design, Specification, and Verification

Language, IEEE Std 1800-2005, http://standards.ieee.org, November 2005
10. J. Klop, Term Rewriting Systems, in Handbook in Computer Science, S. Abramsky, D.M.

Gabbay and T.S.E. Maibaum, editors, Vol. 2, Oxford University Press, Oxford, 1992,
pp. 1–116

146 R.S. Nikhil

11. L. Lamport, Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers, Addison-Wesley Professional (Pearson Education), Reading, MA, 2002

12. B. Lampson, Atomic Transactions, in Distributed Systems – Architecture and Implementa-
tion, An Advanced Course, Lecture Notes in Computer Science, Vol. 105, Springer, Berlin
Heidelberg New York, 1981, pp. 246–265

13. E.A. Lee, The Problem with Threads, IEEE Comput 39:5, 2006, pp. 33–42
14. C-C. Lin, Implementation of H.264 Decoder in Bluespec System Verilog, Master’s The-

sis, Department of Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, MA, February 2007. Available as CSG Memo-497 at http://csg.csail.
mit.edu/pubs/publications.html

15. M. Lis, Superscalar Processors Via Automatic Microarchitecture Transformation, Master’s
Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, MA, May 2000

16. N. Lynch, M. Merritt, W.E. Weihl and A. Fekete, Atomic Transactions, series in Data
Management Systems, Morgan Kaufman, San Mateo, CA, 1994, 476 pp

17. C. Métayer, J.-R. Abrial and L. Voisin, Event-B Language, rodin.cs.ncl.ac.uk/deliverables/
D7.pdf, May 31, 2005, 147 pp

18. MIT Open Source Hardware Designs, http://csg.csail.mit.edu/oshd
19. D.L. Rosenband and Arvind, Hardware Synthesis from Guarded Atomic Actions with Perfor-

mance Specifications, in Proc. ICCAD, San Jose, November 2005
20. G. Stitt, F. Vahid and W. Najjar, A Code Refinement Methodology for Performance-Improved

Synthesis from C, in Proc. Intl. Conference on Computer Aided Design (ICCAD), San Jose,
November 2006

21. J.E. Stoy, X. Shen and Arvind, Proofs of Correctness of Cache-Coherence Protocols, in For-
mal Methods for Increasing Software Productivity (FME2001), Lecture Notes in Computer
Science, Vol. 2021, Springer, Berlin Heidelberg New York, 2001, pp. 43–71

22. Transactional Memory Online, online bibliography for literature on transactional memory,
www.cs.wisc.edu/trans-memory/biblio

23. Terese, Term Rewriting Systems, Cambridge University Press, Cambridge, 2003, 884 pp

Chapter 9
GAUT: A High-Level Synthesis Tool for DSP
Applications

From C Algorithm to RTL Architecture

Philippe Coussy, Cyrille Chavet, Pierre Bomel, Dominique Heller, Eric Senn,
and Eric Martin

Abstract This chapter presents GAUT, an academic and open-source high-level
synthesis tool dedicated to digital signal processing applications. Starting from an
algorithmic bit-accurate specification written in C/C++, GAUT extracts the potential
parallelism before processing the allocation, the scheduling and the binding tasks.
Mandatory synthesis constraints are the throughput and the clock period while the
memory mapping and the I/O timing diagram are optional. GAUT next generates
a potentially pipelined architecture composed of a processing unit, a memory unit
and a communication with a GALS/LIS interface.

Keywords: Digital signal processing, Compilation, Allocation, Scheduling, Bind-
ing, Hardware architecture, Bit-width, Throughput, Memory mapping, Interface
synthesis.

9.1 Introduction

The technological advances have always forced the IC designers to consider new
working practices and new architectural solutions. In the SoC context, the traditional
design methodology, relying on EDA tools used in a two stages design flow – a
VHDL/Verilog RTL specification, followed by logical and physical synthesis – is no
more suitable. However, the increasing complexity and the data rates of Digital Sig-
nal Processing (DSP) applications still require efficient hardware implementations.
Indeed, concerning DSP applications, pure software solutions based on multi-
processor architectures are not acceptable, and optimized hardware accelerators or
coprocessors – composed of a set of computing blocks communicating through
point-to-point links – are still needed in the final architecture. Thus SoC embed-
ded DSP cores will need new ESL design tools in order to raise the specification
abstraction level up to the “algorithmic one”. Algorithmic descriptions enable an IC
designer to focus on functionality and target performances rather than debugging

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

147

148 P. Coussy et al.

RTL. Designers will spend more time exploring the design space with multiple
“what if” scenarios. They will obtain a range of implementation alternatives, from
which they will select the architecture providing the best power/speed/gate count
trade-off.

This chapter presents GAUT which is an open-source HLS tool dedicated to
DSP applications [1]. Starting from an algorithmic bit-accurate specification writ-
ten in C/C++, a throughput constraint (Initiation Interval) and a clock period, the
tool extracts the potential parallelism before processing the selection, the allocation,
the scheduling and the binding tasks. GAUT generates a potentially pipelined archi-
tecture composed of a processing unit, a memory unit and a communication unit.
Several RTL VHDL models for the logic synthesis and SystemC CABA (Cycle
Accurate Bit Accurate) and TLM-T (Transaction Level Model with Timing) are
automatically generated with their respective test benches.

The chapter is organized as follow: Sect. 9.2 introduces our design flow and
presents the targeted architecture. Section 9.3 details each step of our high-level
synthesis flow. In Sect. 9.4, experimental results are provided.

9.2 Overview of the Design Environment

High-level synthesis enables the (semi) automatic search for architectural solutions
that respect the specified constraints while optimizing the design objectives. To be
efficient, the synthesis must rely on a design method which takes into account the
specificity of the application fields. We have focused on the domain of real-time
digital signal processing and we have formalized a dedicated design approach for
this type of application where the regular and periodic data-intensive computations
dominate.

GAUT [1] takes as input a C description of the algorithm that has to be synthe-
sized. The mandatory constraints are the throughput (specified through an initiation
interval which represents the constant interval between the start of successive iter-
ations) and the clock period. Optional design constraints are the memory mapping
and I/O timing diagram. The architecture of the hardware components that GAUT
generates is composed of three main functional units: a processing unit PU, a mem-
ory unit MEMU and a Communication & Interface Unit COMU (see Fig. 9.1). The
PU is a datapath composed of logic and arithmetic operators, storage elements,
steering logic and a controller (FSM). Storage elements of the PU can be strong
semantic memories (FIFO, LIFO) and/or registers. The MEMU is composed of
memory banks and their associated controllers. The COMU includes a synchroniza-
tion processor and an operation memory which allow to have a GALS/LIS (Globally
Asynchronous Locally Synchronous/Latency Insensitive System) communication
interface.

As described in Fig. 9.2, GAUT first synthesizes the Processing Unit. Then it gen-
erates the Memory Unit and the Communication Unit. During the design of the PU,
GAUT initially selects arithmetic operators and after targets their best use according
to the design constraints and objectives. Then GAUT processes the registers and

9 GAUT: A High-Level Synthesis Tool for DSP Applications 149

Port OUT

Synchronization
processor

Synchronization
processor

Operation memoryOperation memory

Not
empty Pop Push

Not
full

Enable Clock

Port IN

Port OUT
FIFO

LIFO

Registers

FSM controller

RAM Block #1

Gen_@

FSM
RAM

multiplier

...
adder

...

Operation word Operation address

Memory Unit
MEMU

Processing
Unit PU

Communication
Unit COMU

Fig. 9.1 Target architecture

Analysis DFG

C/C++ Specification

Compilation

Constraints

Characterization

Function
library

PU synthesis

MEMU synthesis

COMU synthesis

 VHDL RTL
Architecture

SystemC Simulation
Model (CABA/TLM-T)

 - Throughput
 - Clock period
 - Memory mapping
 - I/O timing diagram

Allocation

Scheduling

Optimization

Binding

Resizing

Clustering
Component

library

Fig. 9.2 Proposed high-level synthesis flow

150 P. Coussy et al.

memory banks, which are part of the memory unit. The register’s optimization,
which is done before the memory optimization, is based on prediction techniques.
The communication paths will then be optimized, followed by the optimization of
the address generators of the memory banks dedicated to the application being con-
sidered. The communication interface is generated next by using the I/O timing
behavior of the component. To validate the generated architecture, a test bench is
automatically generated to apply stimulus to the design and to analyze the results.
The stimulus can be incremental, randomized or user defined values allowing auto-
matic comparison with the initial algorithmic specification (i.e. the “golden” model).
The processing unit can be verified alone. In this case, the memory and communi-
cation units are generated as VHDL components whose behavior is described as
a Finite State Machine with Data path. GAUT generates not only VHDL models
but also scripts necessary to compile and simulate the design with the Modelsim
simulator. It can also compare the results of two simulations (produced by different
timing behaviors (I/O, pipeline. . .)). Both “Cycle Accurate, Bit Accurate” (CABA)
and “Transaction-Level Model with Timing” (TLM-T) simulation models are gen-
erated which allow to integrate the components into the Soclib platform [1]. GAUT
also addresses the design of multi-mode architectures (see [3] for details).

9.3 The Synthesis Flow

9.3.1 The Front End

The input description is a C/C++ function where Algorithmic CTM class library
from Mentor Graphics [5] is used. This allows the designer to specify signed and
unsigned bit-accurate integer and fixed-point variables by using ac int and ac fixed
data types. This library, like SystemC [6], hence SystemC [6], hence provides fixed-
point data-types that supply all the arithmetic operations and built-in quantization
(rounding, truncation. . .) and overflow (saturation, wrap-around. . .) functionalities.
For example, an ac fixed <5,2,true,AC RND,AC SAT> is a signed fixed-point num-
ber of the form bb.bbb (five bits of width, two bits integer) for which the quantization
and overflow modes are respectively set to ‘rounding’ and ‘saturation’.

9.3.1.1 Compilation

The role of the compiler is to transform the initial C/C++ specification into a for-
mal representation which exhibits the data dependencies between operations. The
compiler of GAUT derives gcc/g++ 4.2 [7] to extract a data flow graph (DFG)
representation of the application annotated with the bit-width information (the code
optimizations performed by the compiler will not be presented in this paper). For the
quantization/overflow functionality of a fixed-point variable, the compiler generates
dedicated operation nodes in the DFG. As described later, this allows to share
(i.e. reuse) (1) arithmetic operators between bit-accurate integer operations and

9 GAUT: A High-Level Synthesis Tool for DSP Applications 151

fixed-point operations and (2) quantization/overflow operators between fixed-point
operations. Timing performance optimization is addressed through the operator
chaining.

As detailed in [7], the gcc/g++ compiler includes three main components: a
front end, a middle end and a back end. The front end performs lexical, syntacti-
cal and semantic analysis on the code. The middle end operates code optimizations
on the internal representation named “GIMPLE”. The back end performs hardware
dependent optimizations and finally generates assembly language. The source file
is processed in four main steps: (1) the C preprocessor (cpp) expands the prepro-
cessor directives; (2) the front end constructs the Abstract Syntax Tree (AST) for
each function of the source file. The AST tree is next converted into a CDFG-
like unified form called GENERIC which is not suitable for optimization. The
GENERIC representation is lowered into a subset called GIMPLE form; (3) false
data dependencies are eliminated with Static Signal Assignment and various scalar
optimizations (dead code elimination, value range propagation, redundancy elimi-
nation). Loop optimizations (loop invariant, loop peeling, loop fusion, partial loop
unrolling) are applied; (4) finally the GIMPLE form is translated into the GAUT
internal representation.

9.3.1.2 Bit-Width Analysis

The bit-width analysis which next operates on the DFG is based on the two
following steps:

• Constant bit-width definition: the compiler carries out a DFG representation
where the constants are represented by nodes with a 16, 32 or 64 bit size. This
first analysis step defines for each constant the exact number of bits needed to
represent its value. We use the simple following formula for unsigned and signed
values:

Number o f bits = �log2 |Value|�+ 1 + Signed.

• Bit-width and value range propagation: infers the bit-width of each variables
of the specification by coupling work from [9] and [10]. A bit-width analysis
is hence performed to optimize the word-length of both the operations and the
variables. This step performs a forward and a backward propagation of both the
value ranges and the bit-width information to figure out the minimum number of
bits required.

9.3.1.3 Library Characterization

Library characterization uses a DFG, a technological library and a target technology
(typically the FPGA model). This fully automated step, based on commercial logic
synthesis tools like ISE from Xilinx and Quartus from Altera, produces a library of
time characterized operators to be used during the following HLS steps. The techno-
logical library provides the VHDL behavioral description of operators and the DFG

152 P. Coussy et al.

Fig. 9.3 Propagation time
vs. bit-width for addition-
subtraction and multiplication
operations

Propagation time

0
2
4
6
8

10
12
14
16
18
20
22
24

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Inputs Bitw idth

ns

Add
Mul

Fig. 9.4 Multiplier area vs.
bit-width

0

50

100

150

200

250

300

350

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Inputs Bitwidth

sl
ic

es

Fig. 9.5 Adder area vs.
bit-width

0
2
4

6
8

10
12

14
16
18

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Inputs Bitwidth

sl
ic

es

provides the set of operations to be characterized with their bit-width information.
The characterization step synthesizes each operator from the technological library
which is able to realize one operation of the DFG. It next retrieves synthesis results
in terms of logical cell number and propagation time to generate a characterized
operator library. Figures 9.3–9.5 present results provided by the characterization
step.

9.3.1.4 Operation Clustering

For clustering operations we propose to combine the computational function and the
operation delay. This allows to indirectly consider operation’s bit-width since the
propagation time of an operator depends on its operand’s size. In order to maximize

9 GAUT: A High-Level Synthesis Tool for DSP Applications 153

the use of operators, one operation that belongs to a cluster C1 with a propagation
time t1 can be assigned to operators allocated for a cluster C2 if the propagation
time t2 is greater than t1.

9.3.2 Processing Unit Synthesis

The design of the Processing Unit (PU) integrates the following tasks: resource
selection and allocation, operation scheduling, and binding of operations onto
operators. First, GAUT executes the allocation task, and then executes the schedul-
ing and the assignment tasks (see Figs. 9.2 and 9.6).

Inputs:
DFG, timing constraint and resource allocation

Output:
A scheduled DFG

Begin
cstep = 0;
Repeat until the last node is scheduled

Determine the ready operations RO;
Compute the operations mobility;
While there are RO
 If there are available resources

Schedule the operation with the highest priority;
Remove resource from available resource set;

 If the current operation belongs to a chaining pattern
Update the ready operations RO;
If there are available resources

 Schedule the operations corresponding to the pattern;
 Remove resources from available resource set;

 End if
 End if
 Else

If the operations can be delayed
Delay the operations;

Else
Allocate resources (FUs);
Schedule the operations;

End if
 End if
End while

 Bind all the scheduled operations;
 cstep++;

End

Fig. 9.6 Pseudo code of the scheduling algorithm

154 P. Coussy et al.

9.3.2.1 Resource Allocation

Allocation defines the type and the numbers of operators needed to satisfy the design
constraints. In our approach, in order to respect the throughput requirement specified
by the designer, allocation is done for each a priori pipeline stage. The number of a
priori pipeline stage is computed as the ratio between the minimum latency, Latency,
of the DGF (i.e. the longest data dependency path in the graph) and the Initiation
Interval II (i.e. the period at which the application has to (re)iterate): �Latency/II�.
Thus we compute the average parallelism of the application extracted from the DFG
dated by an As Soon As Possible (ASAP) unconstrained scheduling. The average
parallelism is calculated separately for each type of operation and for each pipeline
stage s of the DGF, comprising the set of the date operations belonging to [s.II,
(s+1).II]. The average number of operators, for a given operation type type, that is
allocated to an a priori pipeline stage is defined as follow:

avr opr(type) =

⎡
⎢⎢⎢

nb ops(type)⌊
II

T (opr)

⌋
∗
⌈

T clk
II(opr)

⌉
⎤
⎥⎥⎥

with Tclk the clock period, nb ops(type) the number of operators of type type that
belong to the current pipeline stage, T(opr) the propagation time of the operator and
II(opr) the iteration period of pipelined operators.

This first allocation is considered as a lower bound. Thus, during the scheduling
phase, supplementary resources can be allocated and pipeline stages may be created
if necessary. This is done subsequently to operation scheduling on the previously
allocated operators.

9.3.2.2 Operation Scheduling

The classical “list scheduling” algorithm relies on heuristics in which the ready
operations (operations to be scheduled) are listed by priority order. An operation
can be scheduled if the current cycle is greater than or equal to its earliest time.
Whenever two ready operations need to access the same resource (this is a so-called
resource conflict), the operation with the highest priority is scheduled. The other is
postponed.

Traditionally, bit-width information is not considered and the priority function
depends on the mobility only. The operation mobility is thus defined as the dif-
ference between the As Late As Possible (ALAP) time and the current c-step (see
Fig. 9.6). In order to optimize the final architecture area, we modified the classical
priority function to take into account the bit-with of the operations in addition to
the mobility. Hence, the priority of an operation is a weighted sum of (1) its timing
priority (i.e. the inverse of its mobility) and (2) the inverse of the over-cost inferred
by the pseudo assignment of the largest operator (returned by the maxsize function)
with the operation.

9 GAUT: A High-Level Synthesis Tool for DSP Applications 155

Priority =
α

mobility
+

1−α
over cost(operation,max size(operator))

,

over cost (ops,opr) = Min

⎧⎨
⎩

(
oprin1 − opsin1

oprin1
+ oprin2 − opsin2

oprin2

)
,(

oprin2 − opsin1
oprin2

+ oprin1 − opsin2
oprin1

)
⎫⎬
⎭ .

The overcost function return the lowest sum of gradients of operation input’s
bit-width and of operator input’s bit-width. This means that for a same mobility,
the priority will be given to the operation that best minimizes the over-cost. For
different mobility, the user defined factor α allows to increase the priority of an
operation O1 having more mobility than an operation O2 if overcost(O1) is less than
overcost(O2). In the over-cost computation, the reuse of an operator (already used)
is avoided through a pseudo-assignment made during the scheduling. A pseudo-
assignment is a preliminary binding which allows to remove the largest operator
from the available resource set.

Once the operations can be no more scheduled in the current cycle, the resource
binding is performed.

Operation Chaining

To respect the specified timing constraints (latency or throughput) while optimiz-
ing the final area, operator chaining can be used. In our approach, the candidate for
chaining are identified by using templates in a library. Through a dedicated specifi-
cation language, the user defines chaining patterns with their respective maximum
delays. These latency constraints are expressed in number of clock cycles which
allows to be bit-width independent in the pattern specification.

In order to allow the sharing of arithmetic operators between bit-accurate and/or
fixed-point operations, the compiler generates for fixed-point operations two nodes
in the DFG: one node for the arithmetic operation and one other for the quantiza-
tion/overflow functionality.

Figure 9.7a depicts a fixed-point dedicated operator where the computational part
is merged with the quantization/overflow functionality. This kind of operator archi-
tecture neither allows to share the arithmetic logic nor the quantization/overflow

+
overflow quantizationoverflow

quantization

x y

z

(a) (b) (c)

+
Register

x y

z

overflow quantizationoverflow

quantization

+

x y

z

overflow quantizationoverflow
quantization

Fig. 9.7 (a) Monolithic fixed-point operator, (b) “Unchained” fixed-point operator and (c) Chained
fixed-point operator

156 P. Coussy et al.

part between bit-accurate and/or fixed-point operations Fig. 9.7b shows the resulting
architecture when the compiler generates dedicated nodes for a fixed-point opera-
tion and when chaining is not used. Figure 9.7c presents an architecture where the
arithmetic part and the quantization/overflow functionality have been chained by
coupling both the compiler results and a fixed-point templates.

9.3.2.3 Resource Binding

The assignment of an available operator with a candidate operation has to respond
to the minimization of interconnections (steering logic) between operators and to
the minimization of the operator’s size. Given the set of allocated Functional Units
FUs, our binding algorithm assigns all the scheduled operations of the current step
(see Fig. 9.6). The pipeline control of each operator is managed by a complementary
priority on assignment. When an operator is allocated, but not yet used, its priority
for assignment is primarily inferior to that of an already bound operator.

The first step consists in constructing a bipartite weighted graph G = (U,FU(V),
E) with:

• U , the set of operations in c-step Sk of the DFG
• FU(V), the set of available FUs in c-step Sk that can implement at least one

operation from V
• E , the set of weighted edges (U,FU(V)) between a pair of operations u ∈U and

a functional unit f u(v) where v ∈V

The edge weight wuv is given by the following equation:

wu,v = β∗con(u,v)+ (1−β)∗dist(u,v),

where:

• con(u,v) is the maximum number of existing connections between f u(v) and
each FUs assigned to the set of predecessors of u

• dis(u,v) is the reciprocal of the positive difference between bit-widths of u and v
operands

• β is user defined factor which allow minimizing either steering logic area or
computational area

The second step consists in finding the maximal weighted edge subset by using
the maximum weighted bipartite matching (MWBM) algorithm described in [8].

Assuming:

• The scheduling and binding of the operations of the DFG in Fig. 9.8a on c-step1
and c-step2, has been already done

• The operations O1 and O4 have been scheduled in c-step3
• Allocated operators are SUB1, SUB2 and ADD1

• O9, O1 have been bound to SUB1

• O3, O0 have been bound to ADD1

9 GAUT: A High-Level Synthesis Tool for DSP Applications 157

o3

o0

o1 o4

o7

o9

+

+

--

-

+

-c-step1

c-step2

c-step3

c-step4

O1

O4

SUB1

SUB2

W11=3

W41=2

W42=0

W12=0

O1

O4

SUB1

SUB2

W11=3

W42=0

(a)

W12=0

W41=2

(b)

(c)

o8

o3

o0

o1 o4

o7

o9

+

+

--

-

+

-c-step1

c-step2

c-step3

c-step4

O1

O4

SUB1

SUB2

W11=3

W41=2

W42=0

W12=0

O1

O4

SUB1

SUB2

W11=3

W42=0

(a)

W12=0

W41=2

(b)

(c)

o8

Fig. 9.8 (a) DFG example, (b) Bipartite weighted graph, (c) Maximal weighted edge matching

We will focus on O1 and O4 binding. Our algorithm first constructs the bipar-
tite weighted graph (Fig. 9.8b) taking β equal to 1 for the sake of simplicity (i.e.
only steering logic is considered). Afterwards, the MBWM algorithm is applied to
identify the best edges.

Thus, operation O1 is assigned to SUB1 thanks to the edge weight w11 = 3.
Nodes connected to w11 are then removed from the bipartite graph and so forward
(Fig. 9.8c). In other word, connection between ADD1 (FU bound to O1 predeces-
sor) and SUB1 is maximized thereby the creation of multiplexers is avoided. Thus
the final architecture has been optimized.

9.3.2.4 Operator Sizing

In this design step the operators have to be sized according to the operations which
have been assigned on. In order to get correct computing results, the width of the
operator inputs/outputs have to be greater or equal to the width of the operation
variables. Operation variables can have different sizes which can greatly impact the
propagation time and the area of the operator.

The input’s width of an operator is used to be the maximum of all its inputs as
described in the available literature (see [9] and and [11] for example). This com-
puting method increases considerably the final area (see Figs. 9.4 and 9.9 and [12]).
However, an operator can have different input width. Thus, the operator sizing task
can optimize the final operator area by (1) computing the maximum width for each
input respectively (Fig. 9.9b) or (2) computing the optimal size for each input by
considering commutativity (Fig. 9.9c). However swapping inputs can infer steering
logic.

Let’s consider a multiplier that executes two operations O1 and O2. Their respec-
tive input widths are (in1 = 8, in2 = 4) and (in1 = 3, in2 = 9) and output width is 12.
Figure 9.9 shows respectively for each approach the synthesis results we obtained
by using a Xilinx Virtex2 xc2v8000 -4 FPGA device and the ISE 8.2 logic synthesis
tool. Considering different widths for each input can thus reduce the operator area.

158 P. Coussy et al.

Fig. 9.9 Operator area vs.
sizing approaches

40 slices 34 slices 24 slices

*

99

*

98

*

49

Max(8,4,3, 9) Max(in1,in2) Best(in1,in2)

40 slices 34 slices 24 slices

*

99

*

98

*

49

Max(8,4,3, 9) Max(in1,in2) Best(in1,in2)

(a) (b) (c)

9.3.2.5 Storage Element Optimization

Because currently there is no feed-back loop in the design flow, the registers opti-
mization has to be done during the conception of the processing unit. The choice of
the location of an unconstrained variable (user can define the location of variables)
in a register or in a memory, has to be done according to the minimization of two
contradictory cost criteria:

• The cost of a register is higher than the cost of a memory point.
• The cost to access data in a register is lower than the cost to access data in

memory (because of the necessity to compute the address).

Two criteria are used to choose the memorization location of the data:

• A variable whose life time is inferior to a locality threshold is stored in a register.
• The location of memorization depends on the class of the variable.

Data are classified into three categories:

• Temporary processing data (declared or undeclared).
• Constant data (read-only).
• Ageing data (which serves to express the recursivity of the algorithm to be

synthesized, via their assignment after having been utilized).

The optimal storage of a given data element depends upon its declaration and its
life time. It can be either stored in a memory bank of the MEMU or in a storage
element of the processing unit PU. The remaining difficulty lies in selecting an
optimal locality threshold which results in minimizing the cost of the storage unit.
The synthesis tool leaves the choice of the value of the locality threshold up to the
user. In order to help the designer, GAUT proposes a histogram of the life time of
the variables, normalized by the utilization frequency, which is calculated from the
scheduled DFG.

The architecture of the processing unit is composed of a processing part and
a memory part (i.e. memory plan) and the associated control state machine FSM
(Fig. 9.1). The memory part of the datapath is based on a set of strong seman-
tic memories (FIFO, LIFO) and/or registers. Spatial adaptation is performed by
an interconnection logic dealing with data dispatching from operators to storage
elements, and from storage elements to operators. Timing adaptation (data-rates,
different input/output data scheduling) is realized by the storage elements. Once the
location of data has been decided, the synthesis of the storage elements located in

9 GAUT: A High-Level Synthesis Tool for DSP Applications 159

Fig. 9.10 Four-step flow

RCG Construction

Binding

Optimization

Generation

Fig. 9.11 Resource compatibility
graph a

d

eL
F

R
F

F
F

R
L

fc
R

R

R R L

F

F

b

the PU is done. This design step inputs data lifetimes resulting from the scheduling
step and spatial information resulting from the binding step of the DFG. The spa-
tial information is the source and destination for each data. First, we formalize both
timing relationships between data (thanks to data lifetimes) and spatial information
through a Resource Compatibility Graph RCG. This formal model is then used to
explore the design space. We named timing relationships and spatial information as
Communication Constraints.

This synthesis task is based on a four-step flow: (1) Resource Compatibility
Graph (RCG) construction, (2) Storage resource binding, (3) Architecture optimiza-
tion and (4) VHDL RTL generation (see Fig. 9.10). During the first step of the
component generation, a Resource Constraints Graph is generated from the com-
munication constraints. The analysis of this formal model allows both the binding
of data to storage elements (queue, stack or register), and the sizing of each storage
element. This first architecture is then optimized by merging storage elements that
have non-overlapping usage time frames.

Formal model: In order to explore the design space of such a component, the
first step consists in generating a Resource Compatibility Graph, from the com-
munication constraints. This RCG specifies through formal modeling the timing
relationship between data that have to be handled by the datapath architecture.

The vertex set V = {v0, . . . ,vn} represents data, the edge set E = {(vi,v j)} repre-
sents the compatibility between the data. A tag ti j ∈ T is associated with each edge
(vi,v j). This tag represents the compatibility type between the two data (i and j),
T = {Register R, FIFO F, LIFO L}, e.g. Fig. 9.11.

160 P. Coussy et al.

In order to assign compatibility tags to edges, we need to identify the timing
relationship that exists between two data. For this purpose we defined a set of rules
based on functional properties of each storage element (FIFO, LIFO, Register). The
lifetime of data a is defined by Γ (a) = [τmin(a), τmax(a)] where τmin(a) and τmax(a)
are respectively the date of the write access of a into the storage element, and the
last date of the read access to a. τ f irst(a) is the first read access to a, τRia is the ith
read access to a, with first ≤ i≤ max.

Rule 1: Register compatibility
I f (τminb ≥ τmaxa) then we create a “Register” tagged edge.
Rule 2: FIFO compatibility
I f [(τminb > τmina) and (τ f isrtb > τmaxa) and (τminb < τmaxa)] then we create a
“FIFO” tagged edge.
Rule 3: LIFO compatibility
I f [[(τminb > τmina) and (τ f irsta > τmaxb)] or [(τRia < τminb < τmaxb < τRi+1a)]] then
we create a “LIFO” tagged edge.
Rule 4: Otherwise, No edge – No compatibility.

An analysis of the communication constraints enables the RCG generation. The
graph construction supposes edge creation between data, respecting a chronologi-
cal order (τmin). If n is the number of data to be handled, the graph may contain:
n(n−1)/2 edges, O(n2).

Storage element binding: The second step consists in binding storage elements
to data thanks to the timing relations modeled by the RCG.

Resource identification: The second step consists in binding storage elements to
data by using the timing relations modeled by the RCG. The aim is to identify and
to bind as many FIFO or LIFO structures as possible on the RCG.

Theorem 1. If a is FIFO compatible with b and b is FIFO compatible with c, then
a is transitively FIFO (or Register) compatible with c.

As a consequence of Theorem 1, a FIFO compatible datapath, PF, is by construc-
tion equivalent to a FIFO compatibility clique (i.e. the data of the PF path can be
stored in the same FIFO).

Theorem 2. If a is LIFO compatible with b and b is LIFO compatible with c, then
a is transitively LIFO compatible with c.

As a consequence of Theorem 2, a LIFO compatible datapath, PL, is by construc-
tion equivalent to a LIFO compatibility clique (i.e. the data of the PL path can be
stored in the same LIFO).

Resource sizing: The size of a LIFO structure equals the maximum number of
data stored by a LIFO compatible data path. So, we have to identify the longest
LIFO compatibility path PL in a LIFO compatibility tree, and then the number of
vertices in PL from the longest LIFO path in the tree equals the maximum number
of data that can be stored in it.

9 GAUT: A High-Level Synthesis Tool for DSP Applications 161

d

L

L
f

b
FIFO3

ec
FIFO2

R

a

dd

L

L
ff

bb
FIFO3

ec
FIFO2

eecc
FIFO2

R

aa

(a) Resulting hierarchical graph

a
b

c

d

time

e

f

FI
FO

3
FI

FO
2

a
b

c

d

time

e

f

FI
FO

3
FI

FO
2

(b) Resulting constraints

Fig. 9.12 A possible binding for graph

The size of a FIFO is the maximum number of data (of the considered path)
stored at the same time in the structure. In fact, the aim is to count the maximum
number of overlapped data (respecting I/O constraints) in the selected path P. These
sizes can be easily extracted from our formal model.

Resource binding: Our greedy algorithm is based on user plotted metrics (mini-
mal amount of data to use a FIFO or a LIFO, average use factor, FIFO/LIFO usage
priority factor. . .) to bind as many FIFO or LIFO structures as possible on the RCG.
A two-steps flow is used: (1) identification of the best structure, (2) merging all the
concerned data in a hierarchical node.

Each node represents a storage element, as shown on Fig. 9.12a (e.g. data a, b and
f are merged in a three-stages FIFO). We say hierarchical node because merging
a set of data in a given node, supposes adding information that will be useful dur-
ing the optimization step: the lifetime of this structure (i.e. the time interval during
which this structure will be used. e.g. Fig. 9.12b).

Let P = {v0, . . . ,vn} be a compatible data path,

• If P is a FIFO compatible path, the structure lifetime will be [τminv0
, τmaxvn

].
• If P is a LIFO compatible path, the structure lifetime will be [τminv0

, τmaxv0
].

Storage element optimization: The goal of this final task is to maximize stor-
age resource usage, in order to optimize the resulting architecture by minimizing
the number of storage elements and the number of structures to be controlled. To
tackle this problem, we built a new hierarchical RCG by using the merged nodes,
and their lifetimes. In order to avoid any conflict, the exploration algorithm of the
optimization step will only search for Register compatibility path, between same
type vertices. When two structures of the same type are Register compatible, they
can be merged.

Let P = {v0 . . .vn} be a Register compatible data path,

• The lifetime of the resulting hierarchical merged structure will be [τminv0
, τmaxvn

]
U . . .U [τminvn

, τmaxvn
].

The algorithm is very similar to the one used during binding step. When there is
no more merging solution, the resulting graph is used to generate the RTL VHDL

162 P. Coussy et al.

Fig. 9.13 Optimization
of Fig. 9.11 graph

a
f

b
FIFO3

d

ec
FIFO2a

f
b

FIFO3

aa
ff

bb
FIFO3

d

ec
FIFO2

dd

eecc
FIFO2

architecture. Figure 9.13 is a possible architectural solution for the Resource Com-
patibility Graph presented in Fig. 9.11. Here, the resulting architecture consist in a
three-stages FIFO that handles three data, and a two-stages FIFO that handles three
data: one memory place has been saved.

9.3.3 Memory Unit Synthesis

In this section, we present two major features of GAUT, regarding the memory sys-
tem. First the data distribution and placement are formalized as a set of constraint
for the synthesis. We introduce a formal model for the memory accesses, and an
accessibility criterion to enhance the scheduling step. Next, we propose a new strat-
egy to implement signals described as ageing vectors in the algorithm. We formalize
the maturing process and explain how it may generate memory conflicts over sev-
eral iterations of the algorithm. The final Compatibility Graph indicates the set of
valid mappings for every signal. Our scheduling algorithm exhibits a relatively low
complexity that allows to tackle complex problems in a reasonable time.

9.3.3.1 Memory Constrained Scheduling

In our approach the data flow graph DFG first generated from the algorithmic speci-
fication is parsed and a memory table is created. This memory table is completed by
the designer who can select the variable implementation (memory or register) and
place the variable in the memory hierarchy (which bank). The resulting table is the
memory mapping that will be used in the synthesis. It presents all the data vertices
of the DFG. The data distribution can be static or dynamic.

In the case of a static placement, the data remains at the same place during
the whole execution. If the placement is dynamic, data can be transferred between
different levels in the memory hierarchy. Thus, several data can share the same loca-
tion in the circuit memory. The memory mapping file explicitly describes the data
transfers to occur during the algorithm execution.

Direct Memory Address (DMA) directives will be added to the code to achieve
these transfers. The definition of the memory architecture will be performed in the
first step of the overall design flow. To achieve this task, advanced compilers such
as Rice HPF compiler, Illinois Polaris or Stanford SUIF could be used [14]. Indeed,
these compilers automatically perform data distribution across banks, determine

9 GAUT: A High-Level Synthesis Tool for DSP Applications 163

Fig. 9.14 Memory constraint
graph

x0

x1

x2

x3

h3

h2

h1

h0

x0

x1

x2

x3

h3

h2

h1

h0

which access goes to which bank, and then schedule to avoid bank conflicts. The
Data Transfer and Storage Exploration (DTSE) method from IMEC and the associ-
ated tools (ATOMIUM, ADOPT) are also a good mean to determine a convenient
data mapping [15].

We modified the original priority list (see Sect. 9.3.2.2) to take into account
the memory constraint: an accessibility criterion is used to determine if the data
involved by an operation is available, that is to say, if the memory where it is stored
is free. Operations are still listed according to the mobility and bit-width criterion,
but all operations that do not match the accessibility criterion are removed. Every
operation that needs to access a busy memory will not be scheduled, no matter its
priority level. Fictive memory access operators are added (one access operator per
access port to a memory). The memory is accessible only if one of its access oper-
ators is idle. Memory access operators are represented by tokens on the Memory
Constraint Graph (MCG): there are as many tokens as access ports to the memory
or bank. Figure 9.14 shows two MCG, for signal samples x[0] to x[3] stored in
bank 1, and coefficients h[0] to h[3] stored in bank 2 (in the case of a four points
convolution filter for instance).

If one bank is being accessed, one token is placed on the corresponding data.
Only one token is allowed for a one port bank. Dotted edges indicate which follow-
ing access will be the faster. In the case of a DRAM indeed, slower random accesses
are indicated with plain edges and faster sequential accesses with dotted edges. Our
scheduling algorithm will always favor fastest sequences of accesses whenever it
has the choice.

9.3.3.2 Implementing Ageing Vector

Signals are the input and output flows of the applications. A mono-dimensional
signal x is a vector of size n, if n values of x are needed to compute the result. Every
cycle, a new value for x (x[n + 1]) is sampled on the input, and the oldest value of x
(x[0]) is discarded. We call x an ageing, or maturing, vector or data. Ageing vectors
are stored in RAM. A straightforward way to implement, in hardware, the maturing
of a vector, is to write its new value always at the same address in memory, at the
end of the vector in the case of a 1D signal for instance. Obviously, that involves
to shift every other values of the signal in the memory to free the place for the new
value. This shifting necessitates n reads and n writes, which is very time and power
consuming. In GAUT, the new value is stored at the address of the oldest one in the

164 P. Coussy et al.

x(0)x(1)x(2)x(3)

3210

x[3]x[2]x[1]x[0]

Iteration 0

x(1)x(2)x(3)x(4)

2103

x[3]x[2]x[1]x[0]

Iteration 1

x(2)x(3)x(4)x(5)

1032

x[3]x[2]x[1]x[0]

Iteration 2

x(3)x(4)x(5)x(6)

0321

x[3]x[2]x[1]x[0]

Itération 3

Logical address @x[]

Algorithm sample x[]

Samples of vector x() x(0)x(1)x(2)x(3)

3210

x[3]x[2]x[1]x[0]

x(0)x(1)x(2)x(3)

3210

x[3]x[2]x[1]x[0]

x(0)x(1)x(2)x(3)

3210

x[3]x[2]x[1]x[0]

x(1)x(2)x(3)x(4)

2103

x[3]x[2]x[1]x[0]

x(1)x(2)x(3)x(4)

2103

x[3]x[2]x[1]x[0]

x(1)x(2)x(3)x(4)

2103

x[3]x[2]x[1]x[0]

x(2)x(3)x(4)x(5)

1032

x[3]x[2]x[1]x[0]

x(2)x(3)x(4)x(5)

1032

x[3]x[2]x[1]x[0]

x(2)x(3)x(4)x(5)

1032

x[3]x[2]x[1]x[0]

x(3)x(4)x(5)x(6)

0321

x[3]x[2]x[1]x[0]

Itération 3

x(3)x(4)x(5)x(6)

0321

x[3]x[2]x[1]x[0]

x(3)x(4)x(5)x(6)

0321

x[3]x[2]x[1]x[0]

Itération 3

Fig. 9.15 Logical addresses evolution for signal x

@x[0] @x[1] @x[2] @x[3]

1, 1 1, 1 1, 1

-3, 1

@x[0] @x[1] @x[2] @x[3]

1, 1 1, 1 1, 1

-3, 1

@x[j]i @x[j]i+1
-1

@x[j]i @x[j]i+1@x[j]i @x[j]i+1
-1

@x[0] @x[1] @x[2] @x[3]

1, 1, 0 1, 1, 0 1, 1, 0

-3, 1, -1

@x[0] @x[1] @x[2] @x[3]

1, 1, 0 1, 1, 0 1, 1, 0

-3, 1, -1

@x[0] @x[1] @x[2] @x[3]

1, 1, 0 1, 1, 0 1, 1, 0

-3, 1, -1

Fig. 9.16 LAG, AG and USG

vector. Only one write is needed. Obviously, the address generation is more difficult
in this case, because the addresses of the samples called in the algorithm change
from one cycle to the other. Figure 9.15 represents the evolution of the addresses for
a L = 4 points signal x from one iteration to the other.

The methodology that we propose to support the synthesis of these complex log-
ical address generators is based on three graphs (see Fig. 9.16). The logical address
graph (LAG) traces the evolution of the logical addresses for a vector during the
execution of one iteration of the algorithm. Each vertices correspond to the logical
address where samples of signal x are to be accessed. Edges are weighted with two
numbers. The first number, fi j, indicates how the logical address evolves between
two successive accesses to vector x. fi j = (j− i)%L (% indicates the modulo). The
second number gi, j indicates the number of iteration between those two successive
accesses.

To actually calculate the evolution of logical addresses of x from one iteration to
the other, we must take into account the ageing of vector x. We introduce the ageing
factor k as the difference between the logical address of element x[i] at the iteration
o and the logical address of element x[i] at the iteration o + 1, so that:

@x[j]i+1 = (@x[j]i− k)%L.

In our example, k = 1. The Ageing Graph (Fig. 9.16) is another representation of
this equation. We finally combine the LAG and the ageing factor to get the Unified
Sequences Graph (USG) (Fig. 9.16). A detailed definition of those three graphs may
be find in [16].

By moving a token in the USG, and by adding to the first logical address for x
the value of weight fi, j minus the ageing factor k, we get the address sequence for
x during the complete execution of the algorithm. Then, the corresponding address
generator is generated.

If a pipelined architecture is synthesized, the ageing factor k is multiplied by
the number of pipeline slices, and as many tokens as pipeline slices are placed and

9 GAUT: A High-Level Synthesis Tool for DSP Applications 165

moved in the USG. Of course, as much memory locations as supplemental tokens
in the USG must be added to guarantee data consistency. Concurrent accesses to
elements of vector x may appear in a pipelined architecture. While moving tokens in
the USG, a Concurrent Accesses Graph is constructed. This graph is finally colored
to obtain the number of memory banks needed to support access concurrency.

9.3.4 Communication and Interface Unit Synthesis

9.3.4.1 Latency Insensitive Systems

Systems on a chip (SoCs) are the composition of several sub-systems exchanging
data. SoC size increase is such that an efficient and reliable interconnection strat-
egy is now necessary to combine sub-systems and preserve, at an acceptable design
cost, the speed performances that the current very deep sub-micron technologies
allow [20]. This communication requirement can be satisfied by a LIS communi-
cation network between hardware components. The LIS methodology enables to
build functionally correct SoCs by (1) promoting pre-developed components inten-
sive reuse (IPs), (2) segmenting inter-components interconnects with relay stations
to break critical paths and (3) bringing robustness to data stream latencies to com-
ponents by encapsulating them into synchronization wrappers. These encapsulated
blocks are called “patient processes”. Patient processes [21] are a key element in the
LIS theory. They are suspendable synchronous components (named pearls) encap-
sulated into a wrapper (named shell) which function is to make them insensible to
the I/O latency and to drive the clock. The decision to drive or not the component’s
clock is implemented with combinatorial logic. The LIS approach relies on a sim-
plifying, but restricting, assumption: a component is activated only if all its inputs
are valid and all its outputs are able to store a result produced at the next clock
cycle. Now, it is frequent that only a subset of the inputs and outputs are necessary
to execute one step of computation in a synchronous block.

To limit the patient process sensitivity to a subset of the inputs and outputs,
in [22] authors suggest to replace the combinatorial logic that drives the clock by
a Mealy type FSM. This FSM tests the state of only the relevant inputs and out-
puts at each cycle and drives the component clock only when they are all ready.
The major drawbacks of FSMs are their difficult synthesis and large silicon size
when communication scenarios are long and complex like for computing intensive
digital signal processing applications. To reduce the hardware cost, in [23] the com-
ponent activation static schedule is implemented with shift registers which contents
drive the component’s clock. This approach relies on the hypothesis that there are
no irregularities in the data streams: it is never necessary to randomly freeze the
components.

166 P. Coussy et al.

9.3.4.2 Proposed Approach

As (1) LIS methodology lacks the ability to dynamically sense I/O subsets, (2)
FSMs can become too large as communication bandwidth does, and (3) shift regis-
ters based synchronization targets only extremely rapid environments, we propose
to encapsulate hardware components into a new synchronization wrapper model
which area is much less than the FSM-based wrappers area, which speed is enhanced
(mostly thanks to area reduction) and synthesizability is guaranteed whatever the
communication schedule is.

The solution we propose is functionally equivalent to the FSMs. This is a specific
processor that reads and executes cyclically operations stored in a memory. We name
it a “synchronization processor” (SP). Figure 9.1 specifies the new synchronization
wrapper structure with our SP.

The SP communicates with the LIS ports with FIFO-like signals. These signals
are formally equivalent to the voidin/out and stopin/out of [19] and valid, ready
and stall of [22]. Number of input and output ports can be any. It drives the com-
ponent’s clock with the enable signal. The SP model is specified by a three states
FSM: a reset state at power up, an operation-read state, and a free-run state. This
FSM is concurrent with the component and contains a data path: this a “concur-
rent FSM with data path” (CFSMD). Operation’s format is the concatenation of
an input-mask, an output-mask and a free-run cycles number. The masks specify
respectively the input and output ports the FSM is sensible to. The run cycles num-
ber represents the number of clock cycles the component can execute until the next
synchronization point. To avoid unnecessary signals and save area, the memory is
an asynchronous ROM (or SRAM with FPGAs) and its interface with the SP is
reduced to two buses: the operation address and operation word. The execution
of the program is driven by an operation “read-counter” incremented modulo the
memory size.

9.4 Experiments

Design synthesis results for Viterbi decoders are presented in this section. Results
are based on a Virtex-E FPGA technology from the hardware prototyping platform
that we used and that we present first.

9.4.1 The Hardware Platform

The Sundance platform [24] we used as an experimental support is composed of the
last generation of C6x DSPs and Virtex FPGAs. Communications between different
functional blocs are implemented with high throughput SDB links [24]. We have
automated the generation of communication interface for software and hardware

9 GAUT: A High-Level Synthesis Tool for DSP Applications 167

components which frees the user from designing the communication interfaces.
At the hardware level the communication between computing nodes is handled by
four-phases handshaking protocols and decoupling FIFOs. The handshaking pro-
tocols synchronize computing with communication and the FIFOs enable to store
data in order to overcome potential data flow irregularities. Handshaking protocols
are used either to communicate seamlessly between hardware nodes or between
hardware and software nodes. Handshaking protocols are automatically refined by
the GAUT tool to fit with the selected (SDB) inter-node platform communication
interfaces (bus width, signal names, etc). To end the software code generation,
platform specific code has to be written to ensure the inter processing elements
communication. The communication drivers of the targeted platform are called
inside the interface functions introduced in the macro-architecture model through
an API mechanism. We provide a specific class for each type of link available on
the platform.

9.4.2 Synthesis Results

The Viterbi algorithm is applicable to a variety of decoding and detection problems
which can be modeled by a finite-state discrete-time Markov process, such as convo-
lutional and trellis decoding in digital communications [25]. Based on the received
symbols, the Viterbi algorithm estimates the most likely state sequence according
to an optimization criterion, such as the a posteriori maximum likelihood criterion,
through a trellis which generally represents the behavior of the encoder. The generic
C description of the Viterbi algorithm allowed us to synthesize architectures using
different values for the following functional parameters: state number and through-
put. A part of synthesis results that have been obtained is given in Fig. 9.17. For each
generated architecture, the table presents the throughput constraint and the com-
plexity of both the algorithm (number of operations) and the generated architecture
(amount of logic elements).

In the particular case of the DVB-DSNG Viterbi decoder (64 states) different
throughput constraints (from 1 to 50 Mbps) have been tested. Figure 9.18 present
the synthesis results.

State number 8 16 32 64 128
Throughput (Mbps) 44 39 35 26 22

Number of operations 50 94 182 358 582
Number of logic

elements 223 434 1130 2712 7051

Fig. 9.17 Synthesis results for different Viterbi decoders

168 P. Coussy et al.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 10 100

Throughput (Mbps)

N
um

be
r o

f l
og

ic
 e

le
m

en
ts

Fig. 9.18 Logic size for different throughputs

9.5 Conclusion and Perspectives

In this chapter, we presented GAUT [1], which is an academic and open source high-
level synthesis tool dedicated to digital signal processing applications. We described
the different tasks that compose the datapath synthesis flow: compilation, operator
characterization, operation clustering, resource allocation, operation scheduling and
binding. Memory and communication interface synthesis has also been described in
this chapter.

Current work targets the area optimization of the architecture generated by
GAUT through an approach based on iterative refinement. The integration of Con-
trol and Data Flow Graph CDFG model to be used as internal representation is
also in progress. The loop transformations will be addressed during the compilation
step thanks to the features provided by the last versions of the gcc/g++ compiler.
An approach to map data in memories will be proposed to limit the access con-
flicts. Automatic algorithm transformation will be addressed through Taylor Expan-
sion Diagram. Multi-clock domain synthesis is also currently considered. Starting
from an algorithmic specification and design constraints a Globally Asynchronous
Locally Synchronous GALS architecture will be automatically synthesized. This
will allow to design high-performance and low-power architectures.

Acknowledgments Authors would like to acknowledge all the GAUT contributors and
more specifically Caaliph Andriamisaina, Emmanuel Casseau, Gwenolé Corre, Christophe Jego,
Emmanuel Juin, Bertrand Legal, Ghizlane Lhairech and Kods Trabelsi.

References

1. http://web.univ-ubs.fr/gaut
2. B. Ramakrishna Rau, “Iterative modulo scheduling: an algorithm for software pipelining

loops”, In Proceedings of the 27th annual international symposium on Microarchitecture,
pp. 63–74, November 30–December 02, 1994, San Jose, CA, United States

9 GAUT: A High-Level Synthesis Tool for DSP Applications 169

3. C. Chavet, C. Andriamisaina, P. Coussy, E. Casseau, E. Juin, P. Urard and E. Martin, “A design
flow dedicated to multi-mode architectures for DSP applications”, In Proceedings of the IEEE
International Conference on Computer Aided Design ICCAD, 2007

4. http://soclib.lip6.fr
5. www.mentor.com
6. www.systemc.org
7. http://gcc.gnu.org
8. Z. Galil, “Efficient algorithms for finding maximum matching in graphs”, ACM Computing

Survey, Vol. 18, No. 1, pp. 23–38, 1986
9. S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber and T. Sherwood, “Bitwidth cognizant

architecture synthesis of custom hardware accelerators”, IEEE Transactions on Computer-
Aided Design of Circuits and Systems, Vol. 20, No. 11, pp. 1355–1371, 2001

10. C. Andriamisaina, B. Le Gal and E. Casseau, “Bit-width optimizations for high-level synthesis
of digital signal processing systems”, In SiPS’06, IEEE 2006 Workshop on Signal Processing
Systems, Banff, Canada, October 2006

11. J. Cong, Y. Fan, G. Han, Y. Lin, J. Xu, Z. Zhang and X. Cheng, “Bitwidth-aware schedul-
ing and binding in high-level synthesis”, In Proceedings of ASPDAC, Computer Science
Department, UCLA and Computer Science and Technology Department, Peking University,
2005

12. N. Herve et al., “Data wordlength optimization for FPGA synthesis”, In IEEE Workshop on
Signal Processing Systems Design and Implementation, pp. 623–628, 2005

13. A. Baganne, J.-L. Philippe and E. Martin, “A formal technique for hardware interface design”,
IEEE Transactions on Circuits and Systems, Vol. 45, No. 5, 1998

14. P. Panda et al., “Data and memory optimization techniques far embedded systems”, Transac-
tions on Design Automation of Electronic Systems, Vol. 6, No. 2, pp. 149–206, 2001

15. F. Catthoor, K. Danckaert, C. Kulkami and T. Omns, “Data Transfer and Storage (DTS)
architecture issues and exploration in multimedia processors”, Marcel Dekker, New York,
2000

16. G. Corre, E. Senn, P. Bornel, N. Julien and E. Martin, “Memory accesses management dur-
ing high level synthesis”, In Proceedings of International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS, 2004, pp. 42–47, 2004

17. P. Bomel, E. Martin and E. Boutillon, “Synchronization processor synthesis for latency insen-
sitive systems”, In Proceedings of the Conference on Design, Automation and Test in Europe,
Vol. 2, pp. 896–897, 2005

18. P. Coussy, E. Casseau, P. Bomel, A. Baganne and E. Martin, “A formal method for hardware
IP design and integration under I/O and timing constraints”, ACM Transactions on Embedded
Computing Systems, Vol. 5, No. 1, pp. 29–53, 2005

19. L. P. Carloni, K. L. McMillan and A. L. Sangiovanni-Vincentelli, “Theory of latency-
insensitive design,” IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, Vol. 20, No. 9, p. 18, 2001

20. International Technology Roadmap for Semiconductors ITRS, 2005 editions
21. L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Coping with latency in SoC design,” IEEE

Micro, Special Issue on Systems on Chip, Vol. 22, No. 5, p. 12, 2002
22. M. Singh and M. Theobald, “Generalized latency-insensitive systems for single-clock and

multi-clock architectures,” In Proceedings of the Design Automation and Test in Europe
Conference (DATE’04), Paris, February 2004

23. M. R. Casu and L. Macchiarulo, “A New Approach to Latency Insensitive Design,” In
Proceedings of the Design and Automation Conference (DAC’04), San Diego, June 2004

24. Sundance Mu1ti-Processor Technology, http://www.sundance.com
25. A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm”, IEEE Transactions on Information Theory, Vol. IT-13, pp. 260–269, 1967

Chapter 10
User Guided High Level Synthesis

Ivan Augé and Frédéric Pétrot

Abstract The User Guided Synthesis approach targets the generation of coproces-
sor under timing and resource constraints. Unlike other approaches that discover
the architecture through a specific interpretation of the source code, this approach
requires that the user guides the synthesis by specifying a draft of its data-path archi-
tecture. By providing this information, the user can get nearly the expected design
in one shot instead of obtaining an acceptable design after an iterative process. Of
course, providing a data-path draft limits its use to circuit designers.

The approach requires three inputs: The first input is the description of the algo-
rithm to be hardwired. It is purely functional, and does not contain any statement or
pragma indicating cycle boundaries. The second input is a draft of the data-path on
which the algorithm is to be executed. The third one is the target frequency of the
generated hardware.

The synthesis method is organized in two main tasks. The first task, called
Coarse Grain Scheduling, targets the generation of a fully functional data-path.
Using the functional input and the draft of the data-path (DDP), that basically is
a directed graph whose nodes are functional or memorization operators and whose
arcs indicate the authorized data-flow among the nodes, this task generates two
outputs:

• The first one is a RT level synthesizable description of the final coprocessor data-
path, by mapping the instructions of the functional description on the DDP.

• The second one is a coarse grain finite state machine in which each operator
takes a constant amount of time to execute. It describes the flow of control with-
out knowledge of the exact timing of the operators, but exhibits the parallelism
among the instruction flow.

The data-path is synthesized, placed and routed with back-end tools. After that, the
timings such as propagation, set-up and hold-times, are extracted and the second
task, called Fine Grain Scheduling, takes place. It basically performs the retiming
of the Coarse Grain finite state machine taking into account the target frequency and
the fine timings of the data-path implementation.

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

171

172 I. Augé and F. Pétrot

Compared to the classical High Level Synthesis approaches, the User Guided
Synthesis induces new algorithmic problems. For Coarse Grain Scheduling, it con-
sists of finding whether an arithmetic and logic expression of the algorithmic input
can be mapped on the given draft data-path or not, and when several mappings are
found, to choose the one that maximizes the parallelism and minimizes the added
resources. So the Coarse Grain Scheduling can be seen as a classical compiler, the
differences being firstly that the target instruction set is not hardwired in the com-
piler but described fully or partially in the draft data-path, and secondly that a small
amount of hardware can be added by the tools to optimize speed.

For Fine Grain Scheduling, it consists of reorganizing the finite state machine to
ensure that the data-path commands are synchronized with the execution delays
of the operators they control. The fine grain scheduling also poses interesting
algorithmic problems, both in optimization and in scheduling.

Keywords: Behavioral synthesis, FSM retiming, Design space exploration,
Scheduling, Resource binding, Compilation

10.1 Introduction

10.1.1 Enhanced Y Chart

The Y chart representation proposed by Gajski [10] can not accurately represent the
recent synthesis and high level synthesis tools. So we have enhanced it as shown
Fig. 10.1. In the enhanced Y chart, a control flow level is inserted between the sys-
tem and data flow levels. It corresponds to the coprocessor synthesis and allows
to distinguish co-design from high level synthesis. In the structural view, a copro-
cessor is usually a data-path controlled by a FSM. There are two possible types of
description in the behavioral view. The synchronized description is more or less a
Register Transfer Language where cycle boundaries are explicitly set by the lan-
guage. The non-synchronized description is based on imperative languages such as
C, PASCAL, and in this type of description, the cycle boundaries are not given.
As shown in the Fig. 10.1, High Level Synthesis consists of making a structural
description of a circuit from a non-synchronized description of a coprocessor. A
usual approach [6, 14, 24] is to generate the synchronized description of the copro-
cessor (plain arrow in Fig. 10.1) and to submit it to a CAD frameworks having an
efficient RTL synthesis tool.

10.1.2 UGH Overview

The multiple arrows noted 1.a, 1.b and 1.c on the Fig. 10.2a describe the User
Guided High level synthesis tool (UGH). It starts from a non-synchronized descrip-
tion of an algorithm and generates a structural description of the coprocessor (arrow

10 User Guided High Level Synthesis 173

co−design

High level synthesis

RTL synthesis

data−path synthesis

FSM synthesis

logic synthesis

circuit synthesis

LOGIC

CIRCUIT

transistors

logic cells

transistors

fonctions

cells

processor

algorithm

system

processors
bus, memories

macro−cells

Physical View

Data−Flow

SYSTEM

Levels of behavioral viewLevels of structural view

control FSM
data path,

ALUs, registers,
memories

control FSM

arithmetic data path

boolean data path

Control Flow

synchronized langage

non−synchronized langage

Fig. 10.1 Enhanced Y chart

ALUs, memories, ...

data path,
FSM

 operators

Moore FSM

functional or sequential

description
non−synchronized

Structural view Behavioral view

11.a
1.a

1.b
1.c

ALUs, memories, ...

data path,
FSM

 operators

Moore FSM

functional or sequential

description

description

non−
synchronized

synchronized

Structural view Behavioral view

11.a
1.a

2
1.b

1.c

SGCfotrahcY)bHGUfotrahcY)a

ALUs, memories, ...

data path,
FSM

 operators

Moore FSM

functional or sequential

synchronized
non−

description

Structural view Behavioral view

c) Y chart of FGS

Fig. 10.2 Y charts of UGH tools

174 I. Augé and F. Pétrot

Fig. 10.3 User view

C description
Draft Data−Path

frequency

physical circuit

library

standard cell

library

macro cell

synthesis
tool

UGH

1.a on the Fig. 10.2a) composed of a data-path controlled by a finite state machine.
The data-path consists of an interconnection of macro-cells that are described in
data flow (arrow 1.b). The finite state machine is described behaviorally (arrow 1.c).

For describing a coprocessor, as illustrated on Fig. 10.3, the user inputs of UGH
are the non-synchronized description in C language, the synthesis constraints (Draft
Data Path or DDP) and the target frequency of the coprocessor. UGH produces the
coprocessor circuit running at the given frequency with the help of a logic and FSM
synthesis framework and a standard cell library. The main features of UGH reside in:

Macro-cell library. UGH synthesis process is based on a macro-cell library con-
taining both functional cells such as and, adder, ALU, multiplier, . . . and sequential
ones such as DFF, input/output ports, RAMs, register files, . . . A macro-cell is
generic, the parameters being the bit size and various others ones depending on
its type. For instance, for a DFF a parameter indicates if it has a synchronous reset,
for a RAM parameters indicate whether there is a single address port for read and
write or not.

A macro-cell is a complex object with different views. The functional view
describes the operation, or the operations for multi-operation cells such as ALU
(plus, minus, logic and, . . .) or register (write, read, set, . . .), the cell performs. The
synthesis view is used to generate the synthesizable VHDL description of a specific
instance of the generic macro-cell. The scheduling view is a time modelization of
the macro cell. As opposed to most current High Level Synthesis tools that use a
propagation delay, it accurately and generically describes the timing behavior of the
macro-cell. For the functional macro-cells, these rules are based on the minimum
and maximum propagation times between every output ports and the input ports.
For the sequential macro-cells, the rules are more complex and take into account
propagation, setup and hold times.

Every C operator has at least a macro-cell implementing it, but some specific
macro-cells such as input/output operations or special shift operations (see 10.3.3.1)
can be explicitly invoked using a procedure call in the C description.

Design space exploration. Design space exploration is a crucial problem of high
level synthesis. The HLS tools usually propose an iterative approach to explore
the design space. The user runs the synthesis, the result being the FSM graph and
various cross-reference tables (between states and source statements, between cells

10 User Guided High Level Synthesis 175

and source statements, . . .). Then, using pragma in the source file, the user can force
“specific” allocations. He runs again the HLS synthesis to get the new results and
so on until he obtains the expected design. This iterative approach is difficult to
use primarily because: (1) For large designs the time between iterations is too long.
(2) The tables are difficult to interpret. The analysis of the results to set judicious
pragmas requires to rebuild the data-path from the cross-reference tables, and this
is a very long and tedious work. (3) This latter work must be done again at each
iteration, because it is not obvious to predict the effect of a change in a pragma. So
the iterative approach is not suited to large designs.

The UGH approach, on the contrary, allows to guide the tool towards the solution
in a single step. It is however only aimed at VLSI designers. The designer does not
have to change his working habits. He provides a data-path and a FSM, the only
difference is that for UGH only a draft of the data-path is needed (see Fig. 10.7
and Sect. 10.3.1) and that the FSM (see Fig. 10.6) is a C program. So designers can
obtain designs very close to the one they would have by RTL flows, but can easily
explore many solutions.

Input frequency. A circuit is most often a piece of a larger system with speci-
fications that determine its running frequency. Most of the HLS tools let the logic
synthesis adapt their RTL outputs to the frequency. This approach neither ensures
that the circuit can be generated (logic synthesis tools may not respect the clock
frequency) nor ensures that the generated circuit is functional at the given clock fre-
quency and even at any frequency if the circuit mixes short and long combinational
paths. Furthermore, this approach generates very large circuits when the logic syn-
thesis tools enter into speculative computation techniques. Taking an opposite view,
UGH adapts the synthesizable description to the given frequency to guarantee that
logic synthesis will be able to produce the circuit and that the circuit will run at the
required frequency.

Input/output. Our point of view is that the synthesis of the communications of
the coprocessor with the external world is not the purpose of the high level synthesis
process. As the imperative languages do, UGH defines input and output primitives
mapped to the macro-cells presented in Fig. 10.4a. These macro-cells implement

Output FIFO

Input FIFO

SROK

SWOK

SDOUTi
SWRITEi

SDINi
SREADi

Processor

SROKREAD

SROK

SWOKWRITE

SWOK

weivgniludehcS)btnenopmoC)a

Fig. 10.4 Input/output macro-cells

176 I. Augé and F. Pétrot

basic asynchronous communication. From the coprocessor side, the data read action
from a FIFO is shown Fig. 10.4b. In the READ state, the coprocessor asserts the
SREAD signal and loads the SDIN signals’ data into an internal register. If SROK
is not asserted, it means the SDIN signals’ data are not significant and the state
must be run again. Otherwise the value loaded from SDIN is significant, and the
producer pops it. The writing action is similar to the reading action. The read and
write primitives are blocking. As shown Fig. 10.4a, if the flow of data is bursty, the
designer can use hardware FIFO to smooth the transfers.

10.2 User Guided HLS Flow

The synthesis process, presented in the Fig. 10.5, is split into three main steps: The
Coarse Grain Scheduling (CGS) generates a data-path and a finite state machine
from the C program and the DDP. This finite state machine does not take the
propagation delays into account. It is more a finite control step machine which
maximizes the parallelism that is possible on the data-path, and we call it CG-
FSM.

Then the mapping is performed. Firstly, the generation of the physical data-path
is delegated to classical back-end tools (logic synthesis, place and route) using a
target cell library. Secondly, the temporal characteristics of the physical data-path
are extracted. At this point, the data-path of the circuit is available.

Finally, the Fine Grain Scheduling (FGS) retimes for the given frequency the
finite control step machine, taking accurately into account the annotated timing
delays of the data-path, and produces the finite state machine of the circuit.

VHDL
Data−Path

Draft

Data−Path

UGH−FGS

Annotations
Timing

Synthesis +
Caracterization

VHDL
Data−Path

Cell
Library

Behavioral
SystemC
subset

accurate
SystemC

Model

Cycle

Depends on the
back−end
synthesis tool

VHDL
CG−FSM

VHDL
FG−FSM

CKUGH−CGS

UGH−MAPPING

Fig. 10.5 User guided high level synthesis flow

10 User Guided High Level Synthesis 177

10.3 Coarse Grain Scheduling

The arrow 1 in the Y chart of the Fig. 10.2b represents CGS. It is similar to the UGH
arrow but the generated circuit is probably not functional.

CGS can also produce a synchronized description functionally and temporally
equivalent to the former (arrow 2 on the Fig. 10.2b). This output is similar to those
generated by usual high level synthesis tools and delegates the main work to a RTL
synthesis tool.

10.3.1 Inputs

The first input (see Fig. 10.6), is the behavior of the coprocessor given as a C pro-
gram. Most C constructs are allowed, but pointers, recursive functions and the use
of standard functions (e.g., printf, strcat, . . .) is forbidden. Furthermore, all vari-
ables must be either global or static unless their assignments can be inlined in the
statements that read them. The basic C types, char, short, int, long and their
unsigned version are extended with intN and uintN, where N is an integer in
range 1–128 which defines the bit-size of the type.

The entry point is the ugh_main function. The ugh inChannelN and
ugh outChannelN types define communication ports compatible with the hard-
ware FIFO components. The ugh_read and ugh_write functions generate the
state and arcs shown in Fig. 10.4b.

The second input (see Fig. 10.7a) is a simplified structural description of the
target data-path called Draft Data-Path (DDP). The DDP is a directed graph
(Fig. 10.7b) whose nodes are functional or memorization operators and whose arcs
indicate the authorized data-flow between the nodes. For instance, the 2 arcs that
point to the a input of the Subst node indicate that in the final data-path the bits of
this input can be driven by: (a) constants, (b) bits of the q port of the x register, (c)
bits of the q port of the y register, (d) any bit-wise combination of the former cases.
Furthermore, the DDP does not express the bit size of the operators associated to
the nodes, nor the bit size of the arcs. Notice that specifying the arcs is optional as
explained in Sect. 10.3.3.2.

#include <ugh.h>
/* communication channels */
ugh_inChannel32 instream;
ugh_outChannel32 outstream;
/* registers */
uint32 x,y;
/* behavior */
void ugh_main()
{

while (1) {
ugh_read(instream,&x);
ugh_read(instream,&y);
while (x!=y) {
if (x<y) y = y - x ;
else x = x - y ;

}
ugh_read(outstream,&x);

}
}

Fig. 10.6 UGH-C for Euclid’s GCD algorithm

178 I. Augé and F. Pétrot

x.d = subst.s, instream;

subst.b = x.q, y.q;

subst.a = x.q, y.q;

outstream = x.q;

SUB subst;

DFF x, y;
{

}

MODEL GCD(IN instream;
OUT outstream)

(a) (c)(b)

y.d = subst.s, instream;

i
n
s
t
r
e
a
m

z
i0

i1

d

i1

i0

qdz

i0

i1

z

i1

i0

a

s

b

z

q z

co

M2

M1

M3

M4 subst

sel_m1 we_ra sel_m4 inf zero

sel_m3we_rbsel_m2ck

din

y

x

dout

s

y

qd

x

d q

subst

z

coa

b

o
u
t
s
t
r
e
a
m

Fig. 10.7 Draft Data-Path of the GCD example

The C input and the DDP are interdependent. A global or static variable (respec-
tively: array) of the C input must correspond to a register (respectively: register file
or static RAM) of the DDP having the same name. For each statement of the C
input there must be at least a sub-graph of the directed graph that can execute the
statement.

10.3.2 CGS Overview

The Coarse Grain Scheduling uses the C input and the draft data-path to produce
firstly the circuit data-path and secondly a coarse grain finite state machine (CG-
FSM).

CGS starts with a consistency check. Enough registers must have been instanti-
ated to store all the non-trivial variables. Each statement of the C description must
correspond to at least one sub-graph of the DDP.

Then the binding takes place: Each node of the DDP corresponds to a macro-cell
of the data-path. Its bit size is deduced from the bit size of the C variables, the input
connectors of the cells are connected to output connectors either directly or using a
multiplexer when inputs are driven by different sources. The resulting data-path of
the GCD example is shown in Fig. 10.7c.

Finally the CG-FSM is elaborated, where coarse grain means that the operations
are only partially ordered like in soft scheduling [26]. This FSM is built using the
following timing constraints: multipliers need 2 cycles, adders and subtracters need
1 cycle, and all other functional cells have negligible propagation times.

10.3.3 Features and Algorithms

10.3.3.1 C Synthesis Rules

The Table 10.1 summarizes the computation of the size of the physical operators
bound to a C operator. A C operator is used either in an assignment, such as

10 User Guided High Level Synthesis 179

Table 10.1 Bit-size of hardware operators

C expression Assignment Other

a∗b sr min(32, sa + sb)
a+b, a−b sr min(32,max(sa, sb)+1)
a, −a min(sr , sa) sa

a < b, a <= b, . . . max(sa, sb)+1 max(sa, sb)+1
a&b min(sr , sa, sb) min(sa, sb)
a|b, ab, a == b, a! = b min(sr ,max(sa, sb)) max(sa, sb)
a! = 0||b! = 0, a! = 0&&b! = 0 1 1
a << b, a >> b max(32, sa) max(32, sa)

“r=a*b+c;” or not, such as “t[a*b+c];” or “if (a<b)”. These cases are
different, because the C language enforces integer promotion in expression, but in
case of assignment the size of the result is known and can be used to minimize the
operator size. In the formula, sa, sb, sr correspond respectively to the size of a, b and
the expected result.

Following the C standard is a bit costly, because only the assignments can be
optimized. For example, in “short t[10],a, b; t[a+b] = 0;”, the +
operator must be 17 bit wide, while four bit would be enough. Using 17 bit
is compulsory because otherwise the hardware and the C will not be equiv-
alent. The shift operator case is quite expensive because in the statement
“char x=1, y=12; x = x << y;”, the C standard indicates to promote
x on 32 bit and set the shift value to y%32 prior to shift, so x is set to
0, while using a 8 bit shifter would lead to set x to 16. One can work
around this problem by asking explicitly for a 8 bit shifter with the statement
“char x=1, y=12; x = ugh_shift(x,y);”.

10.3.3.2 Path Discovery

The DDP can define more or less accurately the data-path. The nodes (functional
and sequential macro-cells except of the multiplexers and logic gates) are mandatory
but the arcs are optional so the minimal description of the DDP presented Fig. 10.7a
is:

MODEL GCD(IN instream;OUT outstream) {
DFF x,y;
SUB subst;

}

CGS starts by adding all the missing arcs such as for instance “instream →
subst.a”. In the following we call the arcs created by CGS added arcs and user
arcs those defined in the DDP description. Note that CGS has an option which
disables the addition of arcs to let one defines the data-path very accurately.

As opposed to the other high level synthesis compilers that build a path for each
expression, CGS must find for every C expression the set of paths in the DDP that

180 I. Augé and F. Pétrot

allow to realize it. It firstly searches paths with only user arcs and if such paths are
not found then it searches paths mixing user and added arcs.

Searching paths is quite difficult due to the commutativity, distributivity, asso-
ciativity, and various equivalences among arithmetic and logic operations. For
instance, the expression a+˜b+1 can be mapped on a subtractor and the expres-
sion (a&0xFF)+(b&0xFF) does not require any & operator. Furthermore, in this
last example, an adder with 8 bit inputs is enough, independently of sa and sb.

To the best of our knowledge, there is no canonical representation for general
arithmetic and logic expressions, identical to what the BDD [2] are for Boolean
expressions. In our implementation, the logical masks with constant values are
replaced by wiring. The path discovery is done by a brute force algorithm which
knows the operators properties and some equivalence rules. After a predefined num-
ber of trials, the algorithm indicates that it cannot find a path. If a path really exists,
the user must help the tool by indicating it explicitly in the C expression. This is
done by reordering the operations and adding parenthesis.

10.3.3.3 Scheduling Algorithm with Register Bindings

Firstly as shown Fig. 10.8, one builds a register transfer flow graph (RFG) [4] from
the C statements which represents a Data Flow Graph in which the binding of the
variables on the registers has been performed, thus mixing data dependencies and
hardware constraints. In such a graph there are three types of relations [20]: the RaW
(read after write) relation is set when the destination node reads a register written by
the source node, the WaR (write after read) relation is set when the destination node
writes a register read by the source node, the WaW (write after write) relation is set
when the destination and source nodes write the same register. All these relations
indicate that the destination node must be scheduled at least one cycle later than the
source node. Secondly, all the execution paths of each register transfer instruction
are computed as explained in Sect. 10.3.3.2.

Then the algorithm schedules the register transfer instructions of the RFG using
a kind of list scheduling [18]. At a given cycle, a node of the RFG can be scheduled
if all its predecessors have been scheduled in the previous cycles and if there is

R1 ←− R10 + R11 -- (a)
R2 ←− R1 + 1 -- (b)
R1 ←− R10 + R12 -- (c)
R3 ←− R1 + 1 -- (d)

a

b

d

c

RaW

WaR

RaW

WaW

Register transfer instructions Graph

Fig. 10.8 Register transfer flow graph

10 User Guided High Level Synthesis 181

one free execution path with all its nodes being free. The main objective of the
algorithm is to obtain the minimal number of cycles and then to minimize the data-
path area. This last objective occurs when there are several free execution paths for
an instruction. In this case, the algorithm chooses the path which minimizes the cell
bit sizes and/or the multiplexer sizes.

It has been shown in [8] that the WaW relation is superfluous, and that the WaR
relations tend to over-constrain the scheduling. So the idea is to start the scheduling
using only the true data dependencies (RaW) and to add the WaR constraints during
the execution of the algorithm to ensure the correctness of the computations. This
allows for more scheduling choices and potentially better solutions.

The algorithm is presented in Algorithm 1. This algorithm may deadlock because
adding the WaR arcs during the scheduling may create cycles in the graph, thus lead-
ing to a scheduling that is not compatible with the register bindings. These cycles
are due to implicit register dependencies. An algorithm that minimizes these depen-
dencies has been devised, but at worst backtracking must be applied, leading to
an exponential computation time. A formal complexity analysis of the scheduling
problem with register bindings as we have defined it has been done in [7]. This work
proves that it is NP-complete to decide if scheduling a given node first will lead to
a deadlock or not.

Nevertheless, the algorithm is usable and fast in practice, even on complex inputs,
as it can be seen in Sect. 10.6.

Algorithm 1 RFG scheduling algorithm
Require: N the set of RFG nodes and R the set of RaW arcs
Ensure: S the set of scheduled nodes

Let Sc the set of nodes scheduled at cycle c, W the set of arcs of type WaR, c the current
scheduling cycle, υ the current node, u a node, s a successor node of υ , w a node that writes into
a register and a(u1 ,u2) an arc from u1 to u2.
c← 0
while N = /0 do

Choose the best node that does not create a conflict using the select function that selects the
node with the lowest mobility
υ ← select({u ∈N such that ∀w ∈ (Sc∪N),a(w,u) /∈ (R∪W)}
if υ = ∅ then

Has a node being chosen for the current cycle ?
Sc← Sc∪{υ}
N←N\{υ}
for all w ∈N such that w has the same destination register than u do

for all s ∈N, s = w and a(υ,s) ∈R do
W←W∪{a(s,w)}

end for
end for

else
c← c+1

end if
end while

182 I. Augé and F. Pétrot

10.3.3.4 Binding of the Combinational Operators

If the scheduling aims at minimizing the global execution time of the circuit,
the combinational operator binding phase aims at minimizing its area once the
scheduling known.

In the user guided synthesis, the operator number and kind are known, so the
only degrees of freedom concern the number of inputs of the added multiplexers
and the bit sizes of the arithmetic and logic operators. Minimizing both has the nice
property that it also lowers the operators propagation time.

Under the assumption that there is a multiplexer in front of each combinational
operator input, the optimization of the binding phase corresponds to minimize the
size of the multiplexers. Each input is connected to a virtual multiplexer with at least
one input, and the binding phase chooses at every cycle the binding that minimizes
the multiplexer cost, computed as the number of inputs times the number of bits.
This simple function allows to rank the solutions correctly, using as cost for the
entire data-path the sum of the mux costs.

It has been shown in [4] that a simple exchange of commutative operators
operands allows to decrease the number of inputs of the multiplexers by 30%. (More
elaborate solutions can reach 40% [5] at a higher computational cost.) For each
control step, the set of possible bindings of the operations and their operands on
the physical operators and their inputs is built. Starting from an initial binding, we
search in the sets a binding that minimizes the cost function, and we apply this
binding. This is repeated until there is no binding that minimizes the cost.

10.4 Data-Path Implementation and Analysis

The link of high level synthesis with low level synthesis tools is seldom described in
the literature. The synthesis tools most often generate a VHDL standard cell netlist.
The circuit is obtained by placing and routing the VHDL netlist. The generated
circuit will probably not run at the expected frequency. The main reasons are that the
FSM has been constructed with estimated operator and connection delays, and that
often the FSM is a Mealy one and its commands may have long delays. Furthermore
it is also possible that the circuit does not run at any frequency if it mixes short and
long paths. This happens frequently in circuits having both registers and register
files.

Of course, these problems also occur with designs done by hand: in that case the
designer solves them by adding states to the FSM, adding buffers to speed up or
down some paths. This is not easy, and it takes time, but it is possible because he
has an intimate knowledge of the design. After high level synthesis, these problems
can not be corrected because the designer has lost the knowledge of the design.

From our point of view this mapping phase is an issue that must be dealt with,
and not a minor one, because the generated circuit must run as it comes out of the
tool. If it is not the case the synthesis tool is simply unusable.

10 User Guided High Level Synthesis 183

In UGH, the mapping is done in three steps:

1. Logic synthesis preparation: The data-path produced by CGS is translated to a
synthesizable VHDL description. The data-path is described structurally as an
interconnection of UGH macro-cells. Every macro-cell is described as a behav-
ior. Furthermore, a shell script is generated to automatically run the synthesis of
each VHDL description using a standard cell library and giving constraints such
as maximum fan out for the connectors.

2. Logic synthesis: The execution of this script invokes a logic synthesis tool to
generate structural VHDL files respecting the given constraints.

3. Delay extraction: For each macro-cell instantiated in the CGS data-path, we
extract the delays from the corresponding VHDL file produced by the logic syn-
thesis. For that, we have the characteristics of the standard cells and we apply
the following rules for computing, in this order, the minimum and maximum
propagation times, the setup and hold times:

tminI�O = min
p∈PI�O

∑
(ci,co)∈p

propmin(ci,co, lci , lco)

tmaxI�O = max
p∈PI�O

∑
(ci,co)∈p

propmax(ci,co, lci , lco)

tsetupI�CK
= max

(ci,cck)∈C
(tmaxI�ci

+ tsetupci�cck
− tmincck�CK)

tholdI�CK = max
(ci,cck)∈C

(tminI�ci
+ tholdci�cck

− tmaxcck�CK)

In these formulae, I, CK and O represent the macro-cell inputs and outputs, Px�y

is the set of paths from the port x to the port y, a path p being a sequence of
couples of ports of the same cell. C is a set of couples of input ports of the
same cell having setup and hold times. propmin and propmax are the functions
characterizing the standard cells taking into account the input and output loads
(lci , lco).

Of course this step may be quite long for large data-paths. For this reason, UGH
gives the possibility to bypass the mapping during design tuning and instead uses
pessimistic estimated delays.

Currently, this delay extraction is implemented for the Synopsys tools. Further-
more, even though the backend tools use VHDL, they use different VHDL dialects.
This requires to adapt the mapping tool to the backend.

10.5 Fine Grain Scheduling

The arrow in the Y chart of the Fig. 10.2c represents FGS. It shows that its job is to
retime [21] a FSM.

We illustrate the algorithm on a small example. The Fig. 10.9 presents the
inputs of Fine Grain Scheduler: (1) a data-path with known electrical (Fig. 10.9a);
(2) the RTL instructions directly extracted from the CG-FSM control-steps

184 I. Augé and F. Pétrot

x0

c1

f gy0 r0

h

h

x

y

S

c0

a) Data-path
t0: r0=f(x0, y0) t2: r0=f(x0, c0)
t1: y =h(c1, g(y0, r0)) t3: x =h(c1, r0)

b) Ordered list of transfers

Fig. 10.9 Inputs of the FGS algorithm

(Fig. 10.9b), those are called transfers, and their order matters; (3) a running
frequency.

FGS deals with the scheduling of basic-blocks. As a reminder, a basic-block is
a sequence of RTL instructions without any control statements, except optionally
the last one. Furthermore, in the global program, there is no branch instruction that
jumps in the basic block, except at its beginning.

The idea behind FGS is to reorganize the basic-blocks of the CG-FSM, mov-
ing instructions from one control-step to either a close control-step or to an added
control-step, and then suppressing the useless control-steps.

10.5.1 Definitions

Transfer A transfer is the motion of data from the outputs of a set of registers to
the input of a target register.

A transfer t is represented as a DAG, Dt(Vt ,At), whose vertices are operations
and arcs are data dependencies as realized on the data-path. The Fig. 10.10a shows
the DAG of the t0 transfer of Fig. 10.9. In this DAG, the rectangles represent the
output of the control unit (memorized in the micro-instruction register MIR), and
the circles represent functional operations. There are three kind of vertices:

COP Concurrent OPerations do not modify the state of the data-path. For instance,
changing the selection command of a multiplexer in a control-step only
assigns MIR. The next control-step may restore the previous value and so
restore the circuit in the previous state. They correspond to a value on bit
fields of MIR. Two COPs are equivalent if they match the same bit field

POP Permanent OPerations always perform the same task and are associated to a
single functional resource

SOP Sequential OPerations modify the state of the data-path. They perform mem-
orization operation: Once done, the overwritten value is lost. They usually
correspond to a data-path register, and a bit field of MIR. Two SOPs are
equivalent if they match the same bit field

10 User Guided High Level Synthesis 185

permanent operation

concurrent operation

sequential operation

r0

y0

f

m

S=0 x0

m

y0 S=0 x0 S=1

r0 r0

m

f

c0

f

g c1

h

y

h

x

c1

t1

t2

t0

t3

a) DAG of the t0 transfer b) transfer graph of Figure 1.9

Fig. 10.10 Transfer DAG and transfer graph

A transfer Dt(V t ,At) has the following structural properties:

– V t
source the set of vertices that have no predecessors. Vt

source only contains COP
and SOP.

– V t
sink the set of vertices that have no successors. |Vt

sink| = 1 and its element is a
SOP.

– V t
operator = Vt − (Vt

source∪Vt
sink). All elements of Vt

operator are POPs.

Transfer Graph A transfer graph is a directed acyclic graph, D(V,A), that rep-
resents the set of transfers that occur in the data-path for a given top level FSM
transition. The transfer graph is the concatenation of all transfers of the input list
in the list order (Fig. 10.9b). The transfer Dt is added to the graph, and the vertices
v ∈ V j

source are merged to the most recently added equivalent vertices. Fig. 10.10b
shows the transfer graph resulting of the example of Fig. 10.9.

Characterized Transfer A characterized vertex is a vertex annotated with delays
(see Fig. 10.11a).

A POP vertex has a value associated to each couple of incoming and out-
going arcs of the vertex. These values represent the set of propagation times of
the corresponding physical cell.

A COP vertex has only one value associated to the outgoing arc, it corresponds
to the propagation time from the clock to the MIR output bits associated to the COP.

A SOP vertex has two values associated to each incoming arc and one for each
outgoing arc. They represent the set-up and hold times from the input relative to the
clock and the propagation time from the clock to the output from the corresponding
physical cell.

These values are delays extracted from the physical placed and routed data-path,
so wire delays are taken into account.

186 I. Augé and F. Pétrot

propagation time

setup time

hold time

r0

y0 S=0 x0

a) Characterized vertex b) Characterized DAG of t0

Fig. 10.11 Characterized vertex

The characterized transfer is obtained by replacing the original transfer vertices
by characterized vertices. Figure 10.11b shows the characterized transfer of the tran-
sfer presented Fig. 10.10a. The values of the characterized vertices are graphically
represented by the length of the plain arrows.

Characterized Transfer Graph It is obtained from the transfer graph by replac-
ing transfers with characterized transfers. Nevertheless other arcs must be added to
correctly model the behavior of the initial transfer sequence. These arcs implement
the WaR and WaW precedence relations.

– The RaW relation denotes the usual data dependencies.
– The WaR relation expresses the fact that two equivalent COPs are used with dif-

ferent values. In our example this occurs for S = 0 in the t0 transfer and S = 1 in
the t2 transfer. S can be set to 1 only when this will not disturb the t0 transfer.
This gives the arc from the r0 hold time to S = 1 propagation time.

– The WaW relation indicates that two equivalent SOPs are used within two differ-
ent transfers. In the example, r0 is used simultaneously in t0 and t2. The SOP of
t2 must be performed after the SOP of t0, because the same register cannot be
loaded twice in the same cycle.

The resulting graph is plotted in Fig. 10.12a, with the previous relations outlined.

10.5.2 Scheduling of a Basic Block

The scheduling rules are:

R1 Load a given register only once in a given cycle
R2 Loading a register must respect its set-up time
R3 Loading a register must not violate the hold time

The clock period defines a grid on the which the SOPs and the COPs must be
snapped. A simple ASAP [19] algorithm with the constraint that all arcs point down-
wards (Fig. 10.12b) produces a scheduling that verifies the scheduling rules. This

10 User Guided High Level Synthesis 187

y0 x0S=0 S=1

h

m m

f

r0
WAW

WAR

m m

f

r0

y

WAR
g

x

h

h

x

h

m m

f

r0

y

g

y0 x0S=0

S=1

m m

f

r0WAR

WAW

WARcycle 1

cycle 2

cycle 0

cycle 3

a) Characterized transfer graph b) Scheduled transfer graph

Fig. 10.12 Characterized and scheduled transfer graph

pointing downwards relation is either combinational when concurrent operations
are involved or sequential when a permanent operation is involved.

Rule R1 is enforced by the arcs implementing the WaW relations. Rule R2
is enforced by RaW relations (data dependencies: the plain arrows). Rule R3 is
enforced by the the arcs implementing the WaR relations.

This scheduling allows all kinds of chaining and especially multi-cycles chaining
without intermediate memorizations.

The only delays not taken into account are the propagation times from the FSM
state register to the data-path. This is solved because the control unit is a Moore
FSM with a MIR that synchronizes the control signals and that we assume that the
delays due to routing capacitances between the MIR and the operator command
inputs are similar. This can be ensured by increasing the fan-out of the MIR buffers.

10.5.3 Optimization of the WaR Relations

The Fig. 10.13 represents the scheduling of our example using a double frequency
comparatively to the scheduling given Fig. 10.12b, only the t0 transfer and the
beginning of t2 transfer are represented.

In the FGS implementation, the arcs expressing the WaR relation do not start
from the hold time of the SOP but from the hold time minus mt (see Fig. 10.13a)
where mt is the minimum propagation time from the COP (S = 0) to the SOP (r0).

188 I. Augé and F. Pétrot

S=1

f

y0 S=0 cycle 0

cycle 1

cycle 2 r0

WAR

mt f

y0 S=0

S=1

cycle 0

cycle 2 r0

mt

WAR

a) b)

Fig. 10.13 Optimized scheduling of transfer graph

This allows when mt is large enough to anticipate the scheduling of the COP (S = 1)
as shown on the Fig. 10.13b and so to get a better scheduling.

Furthermore, this feature allows to automatically schedule wave pipeline [12]
provided that minimum and maximum probation times are close.

10.5.4 Scheduling Quality

The list order is used to set the WaR and WaW relations in the characterized transfer
graph.

Unfortunately, the list of transfers only gives the data dependence relations
(RaW) and thus defines only a partial order on the transfers. This fact induces that
for a given list of transfers, there are in general several characterized transfer graphs,
and as many different valid schedules.

To taxonomize this, we introduce three relations between the transfers.

Ti
DD−→ Tj (data dependent): SOPi belongs to V j

source. It means that Tj uses the
result of Ti. It is the classical RAW relation.

Ti
SD←→ Tj (sequential dependent): SOPi and SOPj are the same and there is no

direct or transitive Ti
DD−→ Tj relation nor Tj

DD−→ Ti relation. It means that the
same resource is used to store two results of potentially concurrent transfers.

Ti
CD←→ Tj (concurrent dependent): there is a COP element of both V i

source and

V j
source which selects a different value and there is no direct or transitive Ti

DD−→ Tj

relation nor Tj
DD−→ Ti relation. It means that the same functional operator is used

in both transfers but performs different functions in each transfer.

These relations allow to define three transfer graph classes.

Sequential-ordered transfer graph: This is the initial data, with all the
DD−→,

SD←→
and

CD←→ relations,

10 User Guided High Level Synthesis 189

Concurrent-ordered transfer graph: It is a sequential-ordered transfer graph

where all the
SD←→ relations have been resolved. Let Xk the transfers verifying

Ti
DD−→ Xk and Yk the one verifying Tj

DD−→ Yk. Resolving a Ti
SD←→ Tj relation

means replacing it by either the pseudo relations Xk
DD−→ Tj or the pseudo relations

Yk
DD−→ Ti as shown Fig. 10.14a2. Note that resolving a

SD←→ adds
DD−→ relations

and may suppress others
SD←→ or

CD←→.
Resolved-ordered transfer graph: It is a concurrent-ordered transfer graph in the

which all the
CD←→ relations have been resolved. Resolving a

CD←→ means replac-

ing it by either the pseudo relations Ti
DD−→ Tj or Tj

DD−→ Ti. Fig. 10.14a3 shows
the two possible resolutions of the sequential ordered graph of Fig. 10.14a1.

Resolving a relation only adds
DD−→, thus the algorithm does not create new relations

to be solved, avoiding cycles. So a sequential-ordered transfer graph gives a set of
concurrent-ordered transfer graphs and each of those gives a set of resolved-ordered
transfer graphs (Fig. 10.14b).

The FGS algorithm is optimum at the level of resolved-ordered transfer graphs. It
will give the same result for all the transfer lists extracted from the resolved-ordered

transfer graph respecting the partial order of
DD−→ relation. Of course, other resolved-

ordered transfer graphs can be obtained from the initial sequential-ordered transfer
graph. Their schedulings may be better or worse.

T0

T1 T2 T4

T3 T0

T1 T2 T4

T3

T0

T1 T2 T4

T3 T0

T1 T2 T4

T3

T0

T1 T2

T3

T4

S/CD

3)

2)

1)

T1 T2 T4

T0 T3

T6

T5CD

T6

T5CD

T1 T2 T4

T0 T3

T4

T3

T6

T5CD

T1 T2

T0
SD

T1 T2 T4

T0 T3

T6

T5

T6

T5

T1 T2 T4

T0 T3

T1 T2 T4

T0 T3

T6

T5

T6

T5

T1 T2 T4

T0 T3

resloved−order

concurrent−order

sequential−order

a) Resolution of SD←→ and CD←→ re-
lations

b) Sequential ordered, concur-
rent ordered and resolved ordered
transfer graphs.

Fig. 10.14 SD←→,
CD←→ relations and transfer graph orders

190 I. Augé and F. Pétrot

10.5.5 Scheduling of an Entire FSM

The previous sections have dealt with the FGS scheduling of a simple basic block.
The FSM of an integrated circuit is however composed of a graph of basic blocks
as shown on Fig. 10.15a. We call this graph G(V,A), where V is the set of basic
blocks and A is the set of transitions. A global approach is needed to optimize the
scheduling.

Transition Function The first problem is to introduce the transition function (the
arcs a ∈ A) in the transfer graph. Actually, we must compute the conditions of the
transition arcs at the end of a basic block. For instance, the basic block BB2 in the
Fig. 10.15a can branch to BB3, to BB4 or to BB5 only once the conditions X +Y < 0
and R = 0 have been evaluated. This problem is solved by adding a transition transfer
that loads the state register. The transition transfer of BB2 is shown on Fig. 10.15b.
The TF operator corresponds to the transition function of the FSM. Once the basic
block is FGS scheduled, the minimal number of cycles of the basic block is given
by the cycle in which the state register is set.

The electrical characteristics (propagation delays) of the TF operator are unknown
in the FGS scheduling. We must set them to arbitrary values, these values becoming
constraints of the FSM synthesis tools. In practice, we set this value to the half of
the cycle time.

Historic Given an integer N, we define historicN as a scheduled transfer graph of
N cycles containing SOPs and COPs that cover all the bits of MIR. In the following,
we build historicN in two ways.

The first way is the worst-historicN presented Fig. 10.16. We use the worst SOP
for the sequential resources, for the COPs we use the value unknown. This worst-
historicN is independent of the basic blocks. The worst SOP of a sequential resource
is the operation that produces the data the latest. For a register that supports the load

BB1

C1: X+Y<0

C3:
C2: not(X+Y<0) and R=0

BB2

BB3 BB4 BB5

C1 C2
C3

not(X+Y<0) and R!=0

==+

y r

TF

state register

x

a) Control graph of basic block
block

b) Transition transfer of the BB2 basic

Fig. 10.15 Handling control

10 User Guided High Level Synthesis 191

Fig. 10.16 Worst-historic2
for the circuit of Fig. 10.9a

x0 y0 r0 x y S=?

cycle 0

cycle 1

Fig. 10.17 S2,x of scheduled
transfer graph of Fig. 10.12b

a) getting existing SOPs and COPs

b) adding missing SOPs and COPs

x

cycle 0 (2) yr0

x

cycle 0 (2) y S=1x0 y0 r0

cycle N−1 (3)

cycle N−1 (3)

and the clear operations, it is the operation that has the greatest propagation time.
Normally a COP can be shared by several transfers. The unknown COP value (S =?
in the figure) indicates that this COP cannot be used by a transfer.

The second way is the current-historicN,b of the basic block b. Let P : {p ∈
V |(p,b) ∈ A} the set of direct predecessors of b and SN,x the historicN summarizing
the x basic block. The steps for building SN,x are given below and illustrated by
the Fig. 10.17 for the scheduled basic block of the Fig. 10.12b and for N = 2. In
this figure, the numbering of the cycles in parenthesis refers to the cycles of the
Fig. 10.12b.

1. Perform the FGS scheduling of x basic block to get the scheduled transfer graph.
2. Take the COPs and SOPs of the last N cycles of the scheduled transfer graph, as

shown in Fig. 10.17a.
3. Place the latest SOPs and COPs of the scheduled transfer graph except the

formers on the first cycle of SN,x (Fig. 10.17b).

The current-historicN,b consists of merging the SN,p. Merging means choosing the
latest worst SOP for a sequential resource, and the latest COP for a concurrent
resource. If there are two latest COPs with different values, the value of the COP is
set to unknown.

FGS Scheduling with an Historic The scheduling of a basic block using an his-
toric is similar to the algorithm presented in Sect. 10.5.2. When the transfer graph is
build, the transfers are attached to the historic COPs and SOPs, and the scheduling
must respect the following rules: The SOPs and COPs of the historic are already
on the grid and must not be changed. The SOPs of the basic block must not be

192 I. Augé and F. Pétrot

scheduled in the cycle of the historic. So the COPs may be scheduled in the historic,
allowing to start the transfers in its predecessor basic blocks. The resulting sched-
uled transfer graphs do not directly correspond to the circuit FSM. Actually, the
historic cycles must be suppressed and the COPs of these cycles must be transferred
in the cycles of the preceding basic blocks.

Global Scheduling The algorithmic principles are presented in Algorithm 2. The
main idea is to schedule each basic block taking in account the scheduling of its
predecessors to start the scheduling of its transfers as soon as possible. Let p a
predecessor of two basic blocks b1 and b2, the scheduling of b1 can alter the historic
of p, and so does the scheduling of b2. We must ensure that after scheduling, the
historic of p does not have different values for the same COP. This is done by the
point noted {†} in the algorithm.

This algorithm may not converge if a cycle is present in G. To avoid endless itera-
tions, it is necessary to break the loop after a predefined number of iterations. In our
implementation, we break the loop by forcing the scheduling of one of the unsched-
uled basic blocks (new and old historics are different) with the worst-historic,
suppressing it from G and then restarting the loop. The pseudo-topological-sort
used in the algorithm labels the nodes so that the number of return arcs is minimal. It
allows to schedule the maximum of basic blocks with their actual current-historicN

at the first iteration.

Algorithm 2 Global scheduling algorithm
Record couple: {basic block b, historic h}
Require: G the graph of basic blocks
Ensure: S the set of couples

S←∪b∈G{(b,worst-historic)}
S← pseudo-topological-sort(S)
for all c ∈ S do

c.b← schedule c.b with c.h
end for
end← f alse
while not end do

end← true
for c ∈ S do

c.b← schedule c.b with c.h
h← current-historic of c.b
if h = c.h then

c.h← h
c.b← schedule c.b with c.h
transfer the COPs of [0,N−1] cycles of c.b into the {p ∈V |(p,c.b) ∈ A} {†}
end← f alse

end if
end for

end while

10 User Guided High Level Synthesis 193

10.6 Experimentation

The UGH approach has been applied to the synthesis of several examples from var-
ious sources. Some are from the multimedia application field: the MPEG Variable
Length Decoder [9], and a Motion-JPEG decoder [1]. Some are from the commu-
nication area: DMA controller for the PCI bus. And others are synthetic dataflow
benchmarks.

The Table 10.2 summarizes the synthesis results and runtimes. The 4 first
columns characterize the complexity of the design, in number of lines of the input
C code, in circuit size in terms of inverters, and in FSM state number. The ugh col-
umn gives the runtime of both CGS and FGS, the mapping column gives the time
required to generate the data-path including the UGH mapping (see Sect. 10.4) and
the RTL synthesis. These results show that the tools are able to handle large descrip-
tions and can produce circuits of more than 100,000 gates. They also show that the
approach is usable for pure data-flow (i.e., IDCT), control oriented (i.e., VLD) or
mixed (i.e., LIBU) type of algorithms. The CGS and FGS tools run very fast even
for large designs, making the flow suitable for exploring several architectural solu-
tions. The mapping is quite long and 95–99% of its time is due to RTL synthesis.
However, this stage can be skipped during design space exploration and debug by
using default delays.

The Table 10.3 details two implementations of the IDCT based on Loffler algo-
rithm [16]. The first implementation is area optimized. The algorithm is
straightforward sequential C code. Regarding the second implementation, it is opti-
mized for speed. The parallelism has been implicitly exposed by unrolling the loops
and introducing variables to make pipelining and parallelism possible. The design
work to obtain this second implementation is not trivial. These two implementations
are extremes, but all intermediates implementations can be described. This shows
that UGH allows to cover the whole design space.

Table 10.2 Results and runtimes for a complete synthesis

Module Complexity Size (in FSM Data Time
(in lines) inverters) (in states) flow ugh (s) Mapping

MPEG VLD 704 10.060 109 No 11 0h40

M-JPEG VLD 513 182.102 167 No 18 1h57
IQ 93 12.520 38 Yes 3 1h00
ZZ 44 49.645 14 Yes 7 1h31

IDCT 186 73.776 113 Yes 47 1h08
LIBU 170 47.331 43 Mix 22 0h22

FD FD 1 144 47.644 32 Yes 30 0h55
FD 2 144 51.826 32 Yes 35 0h50
FD 3 144 9.371 32 Yes 1 0h13

DMA TX 346 48.536 442 No 1 0h15
RX 287 40.730 111 No 1 0h21
WD 212 16.394 43 No 1 0h18

194 I. Augé and F. Pétrot

Table 10.3 Illustration of UGH synthesis tuning capabilities

Clock FSM Execution Execution Area
period (ns) states cycles time (μs) (mm2)

Area 17 90 1,466 24.92 10.9
Speed 17 460 460 7.82 18.4

Table 10.4 Impact of the binding constraints

Links Clock FSM Execution Execution Area
period states cycles time Inverter
(ns) (μs) (mm2) number

All 5 109 6.530.912 32.6 1.13 10.060
Some 5 112 6.905.663 34.5 1.14 10.168
None 5 115 6.936.683 34.6 1.14 10.134

In our approach, the data-path is fixed, so we fundamentally perform FSM retim-
ing. Using the usual HLS approaches means that the logic synthesis tool has to
perform data-path retiming for a given finite state machine. This is fine when the
data-path is not too complex, however when logic synthesis enters procrastination
and gate duplications techniques [23], the number of gates increases drastically and
leads to unacceptable circuits.

We have experimented UGH with various levels of constraints in the DDP on
several examples. The DDP is fully given (registers, operators and links between
the resources), minimally given (registers and operators, no links at all), or partially
given (registers, operators and links expected to be critical). Most of the time, their
impact is weak, as illustrated by the Motion-JPEG VLD example whose synthe-
sis results are given in Table 10.4. So given a sequential behavior, the functional
operators and the registers with the allocation of the variables of the behavior, we
conjecture that a unique optimal data-path exists.

10.7 Conclusion and Perspectives

UGH produces circuits better or similar in quality compared to other recent high
level synthesis tools (see Chap. 7 of [8] for these comparisons), without using classic
constraint or unconstrained scheduling algorithms such as list scheduling [11], force
directed scheduling [22] or path scheduling [3] but by introducing the draft data-path
and the retiming of the finite state machine.

The introduction of the DDP allows the circuit designer to target directly the
circuit implementation he wants. This is to compare to the other high level synthesis
tools that usually need a lot of lengthy iterations to achieve acceptable solutions. So
UGH is dedicated to circuit designers. The most important point is that UGH does
not disturb the designer working habits, as opposed to all other HLS tools. Indeed,
the DDP is more or less the back of the envelope draft that any designer does before

10 User Guided High Level Synthesis 195

starting the description of the design. This part of the designer work is the more
creative and the most interesting one. UGH leaves this to the designer, and handles
the unrewarding ones automatically.

The introduction of the retiming of the finite state machine guarantees that the
generated circuits run at the required frequency, as opposed to the vast majority
of HLS tools for which frequency is a constraint given to the data-path synthesis
tools. More often, data-path synthesis tools enter into procrastination algorithms to
obey the frequency constraint and lead to unacceptable circuits. The retiming of the
finite state machine just adds a few states which do not change significantly the cir-
cuit size. The only disadvantage is that the generated circuit requires asynchronous
inputs and outputs.

UGH gives very good results for control dominated circuits. It does not imple-
ment, as dedicated data-flow synthesis tools do, neither the usual techniques such
as loop folding and unrolling and unnesting nor the usual scheduling algorithms for
pipelining data-flow blocks. Dedicated data-flow synthesis tools such as [13,15,17,
25] implement these techniques and algorithms but have difficulties to handle con-
trol dominated circuits. This is an handicap for the usage of data-flow oriented tools,
because most circuits mix control and data flow parts.

For a circuit mixing control and data-flow parts, one can apply the specific data-
flow techniques and algorithms by hand on the data-flow parts and make a UGH
description (C program + DDP) of the circuit. So UGH inputs are at an adequate
level for the outputs of a HLS compiler mixing both data and control parts. Such
a compiler taking as input a C description could make the data-flow specific treat-
ments on the data-flow parts and generate a UGH description as a C program and
a DDP.

Finally, to make a parallel with a software compiler (compilation, assembly and
link), for us UGH is at the assembly and link level. Indeed, it treats the electrical
and timing aspects, and links with the back-end tools.

References

1. Augé, I., Pétrot, F., Donnet, F., and Gomez, P. (2005). Platform-based design from parallel
C specifications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 24(12):1811–1826.

2. Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computer, C-35(8):677–691.

3. Camposano, R. (1991). Path-based scheduling for synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 10(1):85–93.

4. Chang, E.-S. and Gajski, D. D. (1996). A connection-oriented binding model for binding
algorithms. Technical Report ICS-TR-96-49, UC Irvine.

5. Chen, D. and Cong, J. (2004). Register binding and port assignment for multiplexer optimiza-
tion. In Proc. of the Asia and South Pacific Design Automation Conf., pages 68–73, Yokohama,
Japan. IEEE.

6. Coussy, P., Corre, G., Bomel, P., Senn, E., and Martin, E. (2005). High-level synthesis under
I/O timing and memory constraints. In Proc. of the Int. Symp. on Circuits and Systems,,
volume 1, pages 680–683, Kobe, Japan. IEEE.

196 I. Augé and F. Pétrot

7. Darte, A. and Quinson, C. (2007). Scheduling register-allocated codes in user-guided high-
level synthesis. In Proc. of the 18th Int. Conf. on Application-specific Systems, Architectures
and Processors, pages 219–224, Montreal, Canada. IEEE.

8. Donnet, F. (2004). Synthése de haut niveau contrôlée par l’utilisateur. PhD, Université Pierre
et Marie Curie (Paris VI).

9. Dwivedi, B. K., Hoogerbrugge, J., Stravers, P., and Balakrishnan, M. (2001). Exploring design
space of parallel realizations: Mpeg-2 decoder case study. In Proc. of the 9th Int. Symp. on
Hardware/Software Codesign, pages 92–97, Copenhagen, Denmark. IEEE.

10. Gajski, D. D., Dutt, N. D., Wu, Allen C.-H., and Lin, S. Y.-L. (1992). High-Level Synthesis:
Introduction to Chip and System Design. Berlin Heidelberg New York. Springer.

11. Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. Journal of Applied
Mathematics, 17:416–429.

12. Gray, C. T., Liu, W., and Cavin, R. K. III (1994). Timing constraints for wave-pipelined
systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
13(8):987–1004.

13. Guillou, A.-C., Quinton, P., and Risset, T. (2003). Hardware synthesis for multi-dimensional
time. In Proc. of the Int. Conf. on Application-Specific Systems, Architectures, and Processors,
pages 40–50. IEEE.

14. Huang, S.-H., Cheng, C.-H., Nieh, Y.-T., and Yu, W.-C. (2006). Register binding for clock
period minimization. In Proc. of the Design Automation Conf., pages 439–444, San Francisco,
CA. IEEE.

15. Ko, M.-Y., Zissulescu, C., Puthenpurayil, S., Bhattacharyya, S. S., Kienhuis, B., and Depret-
tere, E. F. (2007). Parameterized loop schedules for compact representation of execution
sequences in dsp hardware and software implementation. IEEE Transactions on Signal
Processing, 55(6):3126–3138.

16. Loeffler, C., Ligtenberg, A., and Moschytz, G. S. (1989). Practical fast 1-D DCT algorithms
with 11 multiplications. In Proc. of the Int. Conf. on Acoustics, Speech and Signal Processing,
volume 2, pages 988–991, Glasgow, UK.

17. Martin, E., Sentieys, O., Dubois, H., and Philippe, J.-L. (1993). An architectural synthesis
tool for dedicated signal processors. In Proc. of the European Design Automation Conf., pages
14–19.

18. Michel, P., Lauter, U., and Duzy, P. (1992). The synthesis approach to digital system design,
chapter 6, pages 151–154. Dordrecht. Kluwer Academic.

19. Micheli, De G. (1994). Synthesis and Optimization of Digital Circuits, chapter 9, page 441.
New York. McGraw-Hill.

20. Pangrle, B. M. and Gajski, D. D. (1987). Design tools for intelligent silicon compilation. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 6(6):1098–1112.

21. Parameswaran, S., Jha, P., and Dutt, N. (1994). Resynthesizing controllers for minimum exe-
cution time. In Proc. of the 2nd Conf. on Computer Hardware Description Languages and
Their Applications, pages 111–117. IFIP.

22. Paulin, P. G. and Knight, J. P. (1989). Force-directed scheduling for the behavioral synthesis of
asics. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 8(6):661–
679.

23. Srivastava, A., Kastner, R., Chen, C., and Sarrafzadeh, M. (2004). Timing driven gate
duplication. IEEE Trans. on Very Large Scale Integration Systems, 12(1):42–51.

24. Toi, T., Nakamura, N., Kato, Y., Awashima, T., Wakabayashi, K., and Jing, L. (2006). High-
level synthesis challenges and solutions for a dynamically reconfigurable processor. In Proc.
of the Int. Conf. on Computer Aided Design, pages 702–708, San José, CA. ACM.

25. van Meerbergen, J. L., Lippens, P. E. R., Verhaegh, W. F. J., and van der Werf, A.
(1995). Phideo: High-level synthesis for high throughput applications. Journal of VLSI Signal
Processing, 9(1–2):89–104.

26. Zhu, J. and Gajski, D. D. (1999). Soft scheduling in high level synthesis. In Proc. of the 36th
Design Automation Conf., pages 219–224, New Orleans, LA.

Chapter 11
Synthesis of DSP Algorithms from Infinite
Precision Specifications

Christos-Savvas Bouganis and George A. Constantinides

Abstract Digital signal processing (DSP) technology is the core of many modern
application areas. Computer vision, data compression, speech recognition and syn-
thesis, digital audio and cameras, are a few of the many fields where DSP technology
is essential.

Although Moore’s law continues to hold in the semiconductor industry, the com-
putational demands of modern DSP algorithms outstrip the available computational
power of modern microprocessors. This necessitates the use of custom hardware
implementations for DSP algorithms. Design of these implementations is a time
consuming and complex process. This chapter focuses on techniques that aim to
partially automate this task.

The main thesis of this chapter is that domain-specific knowledge for DSP
allows the specification of behaviour at infinite precision, adding an additional ‘axis’
of arithmetic accuracy to the typical design space of power consumption, area, and
speed. We focus on two techniques, one general and one specific, for optimizing
DSP designs.

Keywords: DSP, Synthesis, Infinite precision, 2D filters.

11.1 Introduction

The aim of this chapter is to provide some insight into the process of synthesis-
ing digital signal processing circuits from high-level specifications. As a result,
the material in this chapter relies on some fundamental concepts both from sig-
nal processing and from hardware design. Before delving into the details of design
automation for DSP systems, we provide the reader with a brief summary of the nec-
essary prerequisites. Much further detail can be found in the books by Mitra [14]
and Wakerly [18], respectively.

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

197

198 C.-S. Bouganis and G.A. Constantinides

Digital Signal Processing refers to the processing of signals using digital elec-
tronics, for example to extract, suppress, or highlight certain signal properties. A
signal can be thought of as a ‘wire’ or variable, through which information is passed
or streamed. A signal can have one or many dimensions; a signal that represents
audio information is a one-dimensional signal, whereas a signal that represents
video information is a two dimensional signal.

A discrete-time signal x is usually represented by using the notation x[n]. The
value x[n] of the signal x refers to the value of the corresponding continues-time
signal at sampling time nT , where T denotes the sampling period.

The z transform is one of the main tools that is used for the analysis and
processing of digital signals. For a signal x[n], its z transform is given by (11.1).

X(z) =
∞

∑
n=−∞

x[n]z−n (11.1)

The chapter will mainly focus on linear time invariant (LTI) systems, thus it is
worthwhile to see how the z transform is useful for such systems. The output signal
y[n] of an LTI system with impulse response h[n] and input signal x[n] is given by
the convolution of the input signal and the impulse response (11.2).

y[n] =
∞

∑
k=−∞

h[k]x[n− k] (11.2)

Using the z transform, (11.2) can be written as (11.3), where Y (z), H(z), and
X(z) are the z transforms of the y[n], h[n] and x[n] signals, respectively.

Y (z) = H(z)X(z) (11.3)

Thus convolution in the time domain is equivalent to multiplication in the z
domain, a basic result used throughout this chapter.

11.1.1 Fixed Point Representation and Computational Graphs

In this chapter, the representation of DSP algorithm is the computational graph, a
specialization of a data flow graph graph of Lee et al. [12]. In a computational graph
each element in the set V corresponds to an atomic computation or input/output port,
and S⊆V ×V is the set of directed edges representing the data flow. An element of
S is referred as a signal.

In the case of an LTI system, the computations in a computational graph can only
be one of several types: input port, output port, gain (constant coefficient multiplier),
addition, unit-sample delay and a fork (branching of data). These computations
should satisfy the constrains of indegree and outdegree given in Table 11.1. A
visualization of the different node types is shown in Fig. 11.1. An example of a
computational graph is shown in Fig. 11.2.

11 Synthesis of DSP Algorithms from Infinite Precision Specifications 199

Table 11.1 Degrees of a node in a computational graph

Type Indegree Outdegree

Inport 0 1
Outport 1 0
Add 2 1
Delay 1 1
Gain 1 1
Fork 1 ≥ 2

Fig. 11.1 Type of nodes

Z-1COEFF

ADD GAIN DELAY FORK

Fig. 11.2 An example of a
computation graph

Z-1

COEFF

Fig. 11.3 Word-length repre-
sentation [6]

S

p

n

In digital hardware, the traditional number representations are floating-point and
fixed-point. The former representation is typically used in the general purpose pro-
cessing units, whereas the latter is commonly adopted by the DSP processors due to
the low area requirements and high throughput that can be achieved. The representa-
tion, introduced in [6], that is used in this is the multiple word-length representation,
an extension of fixed-point for parallel hardware design.

According to this scheme, each signal j ∈ S in a computation graph G(V,S) has
two parameters n j and p j. The first parameter, n j, specifies the number of bits in the
representation of the signal (excluding the sign bit), while the second parameter, p j,
represents the displacement of the binary point from the sign bit. Figure 11.3 shows
an example of a signal j.

Figure 11.4 illustrates the same system using (a) a fixed-point representation and
(b) a multiple word-length representation. In the first case all the signals use the
same number of bits (∀i, j ∈ S.ni = n j) and scale (∀i, j ∈ S.pi = p j). In the multiple
word-length example, each signal can use a different representation.

200 C.-S. Bouganis and G.A. Constantinides

Z-1

COEFF
(n,0) (n,0) (n,0)

(n,0)

(a)

Z-1

COEFF
(a,w) (b,x) (c,z)

(d,y)

(b)

Fig. 11.4 An example of a system using (a) fixed-point representation and (b) multiple word-
length representation

11.1.2 Peak Value Estimation

In order to make efficient use of the available resources, the scaling of each signal
should be selected appropriately. The chosen representation should not be over-
wasteful, by allowing the representation of values that are impossible to ever occur,
but at the same time should not allow overflow errors to regularly occur.

If the absolute maximum value Pof a signal is known, a scaling of p = �log2 P�+ 1
should be used since a power of two multiplication is cost free in bit-parallel
hardware.

There are three main approaches that can be applied in order to estimate the
maximum value of the signals in a system. These are analytic peak estimation, range
propagation, and simulation based approaches. We shall briefly elaborate on each of
these schemes, below.

11.1.2.1 Analytic Peak Estimation

In the case of an LTI system, the peak value of each signal in the system can be
estimated analytically. This is achieved by calculating the transfer function from
each primary input to each signal. In the case where the system in non-recursive
(i.e. the computational graph does not contain cycles), the calculation of the transfer
function is a simple task, leading to polynomials in z−1.

In the case of a recursive system, the calculation of the transfer function is more
complex. The set of nodes whose outputs correspond to a system state should be
identified. In this context, this set of nodes is the one which if removed from the
computation graph it will break all the cycles. After breaking up the feedback loops,
the transfer function matrix S(z) from each input signal to the output of each of
these state nodes is expressed as a function of the transfer function matrix A(z)
between state nodes and state nodes, and the transfer function matrix B(z) between
the primary inputs and state nodes as in (11.4).

S(z) = A(z)S(z)+ B(z) (11.4)

H(z) = C(z)S(z)+ D(z) (11.5)

11 Synthesis of DSP Algorithms from Infinite Precision Specifications 201

The transfer function matrix H(z) is calculated as in (11.5), where C(z) is the
transfer function matrix between the state-nodes outputs and the outputs of all
nodes, where D(z) is the transfer function matrix between the primary inputs and
the outputs of all nodes. For a more detailed description for the calculation of H(z),
the reader is referred to [7].

Given the transfer function matrix H(z), with associated impulse response h[t] =
Z−1{H(z)}, the worst-case peak value Pj of any signal j can be found by maximiz-
ing the convolution sum (11.6) [14], where xi[t] is the value of input i at time index t.
Solving this maximization problem leads to (11.7), where Mi is the maximum
absolute value of the signal xi[t].

Pj =±∑
i∈VI

max
xi [t′]

(
Ni j−1

∑
t=0

xi[t ′ − t]hi j[t]

)
(11.6)

Pj = ∑Mi

∞

∑
t=0
|hi j[t]| (11.7)

11.1.2.2 Data Range Propagation

In the case where the system under consideration is not linear, or is not time-
invariant, one mechanism to estimate the maximum value of the signals is by
considering the propagation of data ranges. It should be noted that this approach
is only applicable in the case of non-recursive systems.

Under this mechanism, the data ranges are propagated through the operations of
the system. This approach has been formally stated in terms of interval analysis [2].
It should be noted that this mechanism can lead to pessimistic results in the case
where the system includes data branches which later reconverge.

11.1.2.3 Simulation Driven Analysis

Another approach is to use simulation to estimate the peak value of each signal in
a system. In this case, the system is simulated using as representative input data
as possible and the maximum values for each signal are recorded. After the end of
the simulation, the recorded peak values are multiplied by a user-supplied ‘safety-
factor’ k > 1, in order to accommodate for values of the signal that did not occur
during the simulation, but may occur in practice leading to overflow. More complex
forms of the safety-factor have also been considered by researchers in the field [10].

This approach is more suitable for non-linear or time-varying systems where the
propagation range methodology provides overly pessimistic results (such as recur-
sive systems). The dependence of the final result on the input data is the main
drawback of this approach.

Summarizing, there are three methodologies that can be applied for determining
the peak value of the signals in the system. In the case where the system is LTI, the

202 C.-S. Bouganis and G.A. Constantinides

analytic method provides a tight bound on the peak value estimation of the signals.
In the case where the system is nonlinear or time-variant, and non-recursive the
propagation range method can be applied to provide an upper bound on the peak
value of the signals. In the general case, simulation methods can always be applied,
which provide a lower bound on the estimation of the peak value of the signals.

11.2 Word-Length Optimization

The previous section has focused on the scale determination of each signal in the
system. This section concentrates on the estimation of the remaining parameter: the
word-length of the signals.

In order to optimize the word-length of each signal in the system, a model that
determines the error at the outputs of the system for a given set of word-length and
scaling parameters is required. We call this problem error estimation. Given an error
estimation model, the problem of word-length optimization reduces to a problem of
utilizing the available resources, the area of the design in our case, satisfying a set
of constraints for the outputs of the system.

11.2.1 Error Estimation Model

The quality of a fixed-point algorithm implementation is usually measured using the
signal-to-noise ratio (SNR). The fixed-point error is calculated by subtracting the
output sequence of the system under a fixed-point implementation from the output
sequence of the same system under an infinite precision implementation. The ratio
of the output power resulting from an infinite precision implementation to the fixed-
point error power defines the signal-to-noise ratio. In this chapter we assume that
the signal powers at the outputs are fixed, since they are determined only by the
input signal statistics and the computation graph. Thus, it is sufficient to concentrate
on noise power estimation.

11.2.2 Word-Length Propagation

In order to predict the quantization effects in the system, we need to propagate the
word-length and scaling parameters from the inputs of each atomic operation to
its outputs. Table 11.2 summarizes the word-length and scaling propagation rules
for the different atomic operations. The superscript q denotes the signal before the
quantization take place, i.e. without loss of information.

In a multiple word-length implementation, it is important to ensure that sub-
optimal implementations are avoided. For example, consider the case of a GAIN

11 Synthesis of DSP Algorithms from Infinite Precision Specifications 203

Table 11.2 Word-length and scaling propagation

Type Propagation rules

GAIN For input (na, pa) and coefficient (nb, pb):
p j = pa + pb
nq

j = na +nb

ADD For inputs (na, pa) and (nb, pb):
p j = max(pa , pb)+1
nq

j = max(na,nb + pa− pb)−min(0, pa− pb)+1
(for na > pa− pb or nb > pb− pa)

DELAY or FORK For input (na, pa):
p j = pa

nq
j = na

node where the input signal j1 is (n j1 , p j1), and the coefficient has format (n, p). If
the output signal j2 has n j2 > n j1 + n, then this choice is suboptimal since at most
n j1 + n bits are required for representing the results in full precision. Ensuring that
these cases do not arise, is referred to as ‘conditioning’ of the annotated computation
graph [7]. During the optimization process, ill-conditioned computation graphs may
rise, which should be transformed to well-conditioned ones [7].

11.2.3 Linear Time Invariant Systems

We will first address the error estimation model for linear time-invariant systems.
In this case, we can derive analytic models of how the noise due to truncation of a
signal is propagated through the computation graph to its outputs.

11.2.3.1 Noise Model

A common approach in DSP is that a truncation or roundoff operation will be
performed after a multiplication or a multiplication-accumulation operation. This
corresponds to the case of a processor where the result of an n-bit signal multiplied
by an n-bit signal, which is a 2n-bit signal, should be truncated to n-bits in order to
fit in an n-bit register. Thus, for a two’s complement representation, the error that is
introduced to the system assuming p = 0 ranges between 0 and 2−2n− 2n ≈ −2n.
As long as the 2n-bit result has sufficient dynamic range, it has been observed that
the values in that range are equally likely to happen [13, 15]. This leads to the for-
mulation of a uniform distribution model of the noise with variance σ2 = 1

12 2−2n,
when p = 0 [13]. Moreover, it has been observed that the spectrum of the noise
tends to be white, due to the fact the the truncation occurs in the low significant bits
of the signals, and that roundoff errors that occur at different parts of the system are
uncorrelated.

204 C.-S. Bouganis and G.A. Constantinides

However, in our case the above noise model cannot be applied. Consider the
truncation of a signal (n1, p) to a signal (n2, p). In the case where n1 ≈ n2, the
model will suffer in accuracy due to the discretization of the error probability density
function. Also, the lower bound of the error can not be simplified as before since
2−n2 − 2−n1 ≈ −2−n1 no longer holds. Moreover, in the case of a branching node
where the output signals can be truncated to different lengths, the preceding model
does not consider the different error signals.

The solution to the above problems comes by considering a discrete probability
distribution for the injected signals [5]. In the case of a truncation of a signal (n1, p)
to a signal (n2, p), the error that is inserted to the system is bounded by (11.8).

−2p(2−n2−2−n1)≤ e[t]≤ 0 (11.8)

Assuming, as before, that e[t] takes values from the above range with equal prob-
ability, the expectation of e[t], E{e[t]} and its variance σ2

e are given by (11.9) and
(11.10) respectively.

E{e[t]} = − 1
2n1−n2

2n1−n2−1

∑
i=0

i ·2p−n1

= −2p−1(2−n2−2−n1) (11.9)

σ2
e =

1
2n1−n2

2n1−n2−1

∑
i=0

(i ·2p−n1)2−E{e[t]}

=
1

12
22p(22n2−22n1) (11.10)

11.2.3.2 Noise Propagation

By considering a computation graph, the truncation of a signal j from (n j, p j) to
(nq

j , p j) in the graph injects a noise in the system according to (11.10). The appli-
cation of this model is straight forward apart from the case of a fork. Figure 11.5
shows two different approaches for modelling the truncation of the signals. In the
first approach, noise is injected at each output of the fork, leading to correlated
injected noise. In the second approach, there is cascaded noise injection, leading to
a less correlated noise injection, which is in line with the assumption about the noise
propagation model.

Given an annotated graph, a set F = {(σ2
p ,Rp)} of injected input variances, σ2

p ,
and their transfer functions to the primary outputs, Rp(z), can be constructed. From
this set, and under the assumption that the noise sources have white spectrum and
are uncorrelated, L2 scaling [14] can be used to estimate the power of the injected
noise at each output k of the system according to (11.11). The L2 scaling of a transfer
function is given in (11.12), where Z−1{·} denotes the inverse z-transform.

11 Synthesis of DSP Algorithms from Infinite Precision Specifications 205

(n1,w)

(a) (b)

(n2,w)

(n3,w)

(n4,w)

(n1,w) (n2,w)

(n3,w)

(n4,w)

e0[t]

e1[t]

e2[t]

(c)

(n1,w) (n2,w)

(n3,w)

(n4,w)

e0[t]

e1[t]

e2[t]

Fig. 11.5 Approaches for modelling post-FORK truncation

Ek = ∑
(σ 2

p ,Rp)∈F

σ2
pL2

2{Rpk} (11.11)

L2{H(z)}=

(
∞

∑
n=0

|Z−1{H(z)}[n]|2
) 1

2

(11.12)

11.2.4 Extension to Non-Linear Systems

The same methodology can be applied in an approximate way for non-linear sys-
tems, by linearizing the system around some operating point. In the DSP domain,
the most common occurrence of non-linearities is from the introduction of gen-
eral multipliers, which can be found, for example, in adaptive filter systems. A
way to approach the problem is by approximating these non-linearities by using the
first terms of a Taylor expansion, an idea that is derived from small-signal analysis
usually found in analog electronics [17].

Let us consider an n-input function Y [t] = f (X1[t],X2[t], . . . ,Xn[t]), where t is the
time index. If we consider a small perturbation xi in variable Xi, then the perturba-
tion y[t] on variable Y [t] can be approximated as y[t] ≈ x1[t]

∂ f
∂X1

+ x2[t]
∂ f
∂X2

+ . . . +

xn[t]
∂ f
∂Xn

.
This approximation is linear in each xi, but the coefficients may vary with time

since ∂ f
∂Xi

is a function of X1,X2, . . . ,Xn. Using the above approximation we have
managed to transform a non-linear time-invariant system into a linear time-varying
system. This linearity allows us to predict the error at the output of the system due
to any scaling of a small perturbation of a signal s analytically, given the simulation-
obtained error by a single such perturbation at s.

For the case of a general multiplier, f (X1,X2) = X1X2, ∂ f
∂X1

= X2 and ∂ f
∂X2

= X1.
Within a synthesis tool, such Taylor coefficients can be recorded during a simu-

lation run through the modification of the computational graph to include so-called
monitors [5]. These data can then be used later for the error calculation step. Figure
11.6 shows a multiplier node and its transformation prior to simulation where the
appropriate signals for monitoring the derivatives have been inserted.

206 C.-S. Bouganis and G.A. Constantinides

c

a

b

c

a

b

dc_db

dc_da

Fig. 11.6 Transformation of a multiplier node to insert derivative monitors [5]

c

a

b

c

a

b

dc_db

dc_da

Fig. 11.7 Transformation of a multiplier node to produce a linear model [5]

11.2.4.1 Linearization

The linearization of the general multiplier is performed by transforming the gen-
eral multiplier component in the computational graph into its Taylor approximation
component as it is shown in Fig. 11.7. Note that the model still has a general mul-
tiplier node, however one input is external to the model ensuring linearity. These
new added external signals to the system read data from the derivative monitor files
created by the above large-scale simulation.

11.2.4.2 Noise Injection

In the case of a linear time-invariant system, the L2 scaling was used to analytically
estimate the variance of the noise at the outputs of the system. In this section, an
extension of this approach is proposed for the case of non-linear systems.

The advantage of transforming the non-linear components of the system to linear
components in the small-signal model is that if the variance of an output signal is
V when it is excited by an error with variance σ2 that it is injected to a signal of

11 Synthesis of DSP Algorithms from Infinite Precision Specifications 207

the system, then the same output signal will have a variance aV when the injected
error has variance aσ2. This implies that if we can calculate the variance of an
output signal for a given known variance of the injected error only once through
simulation, then we can analytically calculate the variance of the output signal for
any variance of the injected error.

In order to achieve that, an additional adder node is added in the system, which
injects the error to the signal under investigation, and a simulation is performed for
a known error variance. In the simulation, the error that is injected to the system due
to truncation of two’s complement signal is independent and identically distributed
over the range [−2

√
3,0]. The selection of unit variance for the injected noise allows

us to make the measured output response an unscaled ‘sensitivity’ measure. To final-
ize the small-signal model, zeros are propagated through the original inputs of the
system during the simulation leading to faster simulation results [1].

11.2.5 Word-Length Optimization Algorithm

Given a computation graph G(V,S) of a system, Sect. 11.1.2 has already described
how a scaling vector p can be derived. The total required area of the system can
be expressed by a single metric AG(n,p), which combines the area models of the
components of the system. Finally, the error variances of the output of the system
can be combined in a single vector EG(n,p).

The Word-length optimization problem can be formulated as follows: Given a
computation graph G(V,S), select n such that AG(n,p) is minimized subject to n ∈
N|S| and EG(n,p) < E where E is a vector that defines the maximum acceptable
error variance for each output of the system.

It can be demonstrated that the error variance at the outputs of the system may
not be a monotonically decreasing function in each internal word-length. Moreover,
it can be shown that error non-convexity may occur, causing the constraint space
to be non-convex in n. As it is demonstrated in [7], as long as the system remains
well-conditioned, increasing the word-length of the output of the node types GAIN,
ADD or DELAY can not lead to an increase of the observed error at the outputs of a
system. However, a computation graph containing a 2-way FORK can exhibit such
behavior that is not monotonic in the word-length vector. Moreover, in the case
of systems that incorporate a 3-way FORK, non-convexity may arise. This non-
convexity makes the word-length optimization problem a harder problem to find
solutions [9].

11.2.5.1 A Heuristic Approach

It has been shown in [4] that the word-length optimization problem is NP-hard.
Thus, a heuristic approach has been developed to find the word-length vector that
minimizes the area of a system given under the set of constraints on the error
variance at the outputs of the system.

208 C.-S. Bouganis and G.A. Constantinides

The method starts from determining the scaling vector p of the system. After
that, the algorithm estimates the minimum uniform word-length that can be used for
all the signals in the system such that the error constraints are not violated. Each
word-length is scaled up by a factor k > 1 which defined the upper bound that the
signal can reach in the final design. A conditioning step is performed to transform
an ill-conditioned graph that may has arise to a well-conditioned one.

In each iteration of the algorithm, each signal is visited in turn and its word-
length is reduced until the maximum reduction in its word-length is found that does
not violate the error constraints. The signal with the largest reduction in the area is
chosen. Each signal’s word-length is explored using binary search.

For completeness, in the case where the DSP system under investigation is an LTI
system, optimum solutions can be found using a Mixed Integer Linear Programming
formulation (MILP). However, it should be noted that the solution time of MILP
formulations render the synthesis of large systems intractable. The interested reader
is referred to [7].

11.2.6 Some Results

Figure 11.8 shows the place-and-routed resource usage versus the specified error
variance at the output of an IIR biquadratic filter. The target device is an Altera
Flex10k. This plot is a representative plot of the plots obtained by many designs. The
plot shows the results obtained when uniform word-length is used in the system and
when the multiple word-length scheme is applied. It can be seen that the multiple
word-length approach results in designs that use between 2 and 15% less area for
the same error specification at the output.

Fig. 11.8 Area resources versus specified error variance for an IIR biquadratic filter [7] (published
with kind permission of Springer Science and Business Media)

11 Synthesis of DSP Algorithms from Infinite Precision Specifications 209

11.3 Synthesis and Optimization of 2D FIR Filter Designs

The previous section discusses the optimization of general DSP designs, focusing
on peak value estimation and word-length optimization of the signals. This section
focuses on the problem of resource optimization in Field Programmable Gate Array
(FPGA) devices for a specific class of DSP designs. The class under consideration
is the class of designs performing two-dimensional convolution, i.e. 2D FIR filters.

The two-dimensional convolution is a widely used operator in image processing
field. Moreover, in applications that require real-time performance, in many cases
engineers select as a target hardware platform an FPGA device due to its fine grain
parallelism and reconfigurability properties. Contrary to the firstly introduced FPGA
devices consisting of reconfigurable logic only, modern FPGA devices contain a
variety of hardware components like embedded multipliers and memories.

This section focuses on the optimization of a pipelined 2D convolution filter
implementation in a heterogeneous device, given a set of constraints regarding the
number of embedded multipliers and reconfigurable logic (4-LUTs). As before, we
are interested in a “lossy synthesis” framework, where an approximation of the
original 2D filter is targeted which minimizes the error at the output of the sys-
tem and at the same time meets the user’s constraints on resource usage. Contrary
to the previous section, we are not interested in the quantization/truncation of the
signals, but to alter the impulse response of the system optimizing the resource
utilization of the design. The exploration of the design space is performed at a
higher level than the word-length optimization methods or methods that use com-
mon subexpressions [8,16] to reduce the area, since they do not consider altering the
computational structure of the filter. Thus, the proposed technique is complementary
to these previous approaches.

11.3.1 Objective

We are interested to find a mapping of the 2D convolution kernel into hardware that
given a bound on the available resources, it achieves a minimum error at the output
of the system. As before, the metric that is employed to measure the accuracy of the
result is the variance of the noise at the output of the system.

From [14] the variance of a signal at the output of a LTI system, and in our
specific case of a 2D convolution, when the input signal is a white random process
is given by (11.13), where σ2

y is the variance of the signal at the output of the system,
σ2

x is the variance of the signal at the input, and h[n] is the impulse response of the
system.

σ2
y = σ2

x

∞

∑
n=−∞

|h[n]|2 (11.13)

Under the proposed framework, the impulse response of the new system ĥ[n] can
be expressed as the sum of the impulse response of the original system h[n] and an

210 C.-S. Bouganis and G.A. Constantinides

Fig. 11.9 The top graph
shows the original system,
where the second graph
shows the approximated
system and its decomposi-
tion to the original impulse
response and to the error
impulse response

h[n]
x[n] y[n]

h[n]
x[n] y[n]

e[n]

h[n]

error impulse response e[n] as in (11.14).

ĥ[n] = h[n]+ e[n] (11.14)

The new system can be decomposed into two parts as shown in Fig. 11.9. The first
part has the original impulse response h[n], where the second part has the error
impulse response e[n]. Thus, the variance of the noise at the output of the system
due to the approximation of the original impulse response is given by (11.15), where
SSE denotes the sum of square errors in the filter’s impulse response approximation.

σ2
noise = σ2

x

∞

∑
n=−∞

|e[n]|2 = σ2
x ·SSE (11.15)

It can be concluded that the uncertainty at the output of the system is proportional
to the sum of square error of the impulse response approximation, which is used as
a measure to access the system’s accuracy.

11.3.2 2D Filter Optimization

The main idea is to decompose the original filter into a set of separable filters, and
to one non-separable filter which encodes the trailing error of the decomposition.

A 2D filter is called separable if its impulse response h[n1,n2] is a separable
sequence, i.e.

h[n1,n2] = h1[n1]h2[n2].

The important property is that a 2D convolution with a separable filter can be
decomposed into two one-dimensional convolutions as y[n1,n2] = h1[n1]⊗(h2[n2]⊗
x[n1,n2]). The symbol ⊗ denotes the convolution operation.

The separable filters can potentially reduce the number of required multiplica-
tions from m× n to m+ n for a filter with size m×n pixels. The non-separable part
encodes the trailing error of the approximation and still requires m× n multiplica-
tions. However, the coefficients are intended to need fewer bits for representation
and therefore their multiplications are of low complexity. Moreover, we want a
decomposition that that enforces a ranking on the separable levels according to their
impact on the accuracy of the original filter’s approximation.

11 Synthesis of DSP Algorithms from Infinite Precision Specifications 211

The above can be achieved by employing the Singular Value Decomposition
(SVD) algorithm, which decomposes the original filter into a linear combination
of the fewest possible separable matrices [3].

By applying the SVD algorithm, the original filter F can be decomposed into a
set of separable filters A j and into a non-separable filter E as follows:

F =
r

∑
j=1

A j + E (11.16)

where r notes the levels of decompositions. The initial decomposition levels capture
most of the information of the original filter F.

11.3.3 Optimization Algorithm

This section describes the optimization algorithm which has two stages. In the first
stage the allocation of reconfigurable logic is performed, where in the second stage
the constant coefficient multipliers that require the most resources are identified and
mapped to embedded multipliers.

11.3.3.1 Reconfigurable Logic Allocation Stage

In this stage the algorithm decomposes the original filter using the SVD algorithm
and manifests the constant coefficient multiplications using only reconfigurable
logic. However, due to the coefficient quantization in a hardware implementation,
quantization error is inserted at each level of the decomposition. The algorithm
reduces the effect of the quantization error by propagating the error inserted in
each decomposition level to the next one during the sequential calculation of the
separable levels [3].

Given that the variance of the noise at the output of the system due the quanti-
zation of each coefficient is proportional to the variance of the signal at the input of
the coefficient multiplier, which is the same for the coefficients that belong to the
same 1D filter, the algorithm keeps the coefficients of the same 1D filter to the same
accuracy. It should be noted that only one coefficient for each 1D FIR filter is con-
sidered for optimization at each iteration, leading to solutions that are computational
efficient.

11.3.3.2 Embedded Multipliers Allocation

In the second stage, the algorithm determines the coefficients that will be placed
into embedded multipliers. The coefficients that have the largest cost in terms of
reconfigurable logic in the current design and reduce the filter’s approximation

212 C.-S. Bouganis and G.A. Constantinides

error when are allocated to embedded multipliers, are selected. The second con-
dition is necessary due to the limited precision of the embedded multipliers (e.g. 18
bits in Xilinx devices), which in some cases may restrict the approximation of the
multiplication and consequently to violate the user’s specifications.

11.3.4 Some Results

The performance of the proposed algorithm is compared to a direct pipelined imple-
mentation of a 2D convolution using Canonic Signed Digit recoding [11] for the
constant coefficient multipliers. Filters that are common in the computer vision field
are used to evaluate the performance of the algorithm (see Table 11.3). The first fil-
ter is a Gabor filter which yields images which are locally normalized in intensity
and decomposed in terms of spatial frequency and orientation. The second filter is a
Laplacian of Gaussian filter which is mainly used for edge detection.

Figure 11.10a shows the achieved variance of the error at the output of the fil-
ter as a function of the area, for the described and the reference algorithms. In all

Table 11.3 Filters tests

Test number Description

1 9×9 Gabor filter

F(x,y) = α sinθe−ρ2(α
σ)2

,ρ2 = x2 + y2,θ = αx,
α = 4,σ = 6

2 9×9 Laplacian of Gaussian filter

LoG(x,y) =− 1
πσ4 [1− x2+y2

2σ2]e−
x2+y2

2σ 2 ,
σ = 1.4

−30 −25 −20 −15 −10 −5 0 5
0

2000

4000

6000

8000

10000

12000

C
os

t (
in

 s
lic

es
)

Variance of noise (log
10

)
−20 −15 −10 −5 0 5
15

20

25

30

35

40

45

50

Variance of noise (log
10

)

G
ai

n
in

 s
lic

es
 (

%
)

(a) (b)

Fig. 11.10 (a) Achieved variance of the noise at the output of the design versus the area usage
of the proposed design (plus) and the reference design (asterisks) for Test case 1. (b) illustrates
the percentage gain in slices of the proposed framework for different values of the variance of the
noise. A slice is a resource unit used in Xilinx devices

11 Synthesis of DSP Algorithms from Infinite Precision Specifications 213

cases, the described algorithm leads to designs that use less area than the reference
algorithm, for the same error variance at the output. Figure 11.10b illustrates the
relative reduction in area achieved. An average reduction of 24.95 and 12.28% is
achieved for the Test case 1 and 2 respectively. Alternative, the proposed method-
ology produces designs with up to 50 dB improvement in the signal to noise ratio
requiring the same area in the device with designs that are derived from the reference
algorithm. Moreover, Test filter 1 was used for evaluation of the performance of the
algorithm when embedded multipliers are available. Thirty embedded multipliers of
18×18 bits are made available in the algorithm. The relative percentage reduction
achieved by the algorithm between designs that use the embedded multipliers and
designs that realized without any embedded multiplier is around 10%.

11.4 Summary

This chapter focused on the optimization of the synthesis of DSP algorithms
into hardware. The first part of the chapter described techniques that produce
area-efficient designs from general block-based high level specifications. These
techniques can be applied to LTI systems as well as to non-linear systems. Examples
of these systems vary from finite impulse response (FIR) filters and infinite impulse
response (IIR) filters to polyphase filter banks and adaptive least mean square (LMS)
filters. The chapter focused on peak value estimation, using analytic and simulation
based techniques, and on word-length optimization.

The second part of the chapter focused on a specific DSP synthesis problem,
which is the efficient mapping into hardware of 2D FIR filter designs, a widely-
used class of designs in the image processing community. The chapter described a
methodology that explores the space of possible implementation architectures of 2D
FIR filters targeting the minimization of the required area and optimizes the usage
of the different components in a heterogeneous device.

References

1. Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading, MA.

2. Benedetti, K. and Prasanna, V. K. (2000). Bit-width optimization for configurable dsps by
multi-interval analysis. In 34th Asilomar Conference on Signals, Systems and Computers.

3. Bouganis, C.-S., Constantinides, G. A., and Cheung, P. Y. K. (2005). A novel 2d filter design
methodology for heterogeneous devices. In IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 13–22.

4. Constantinides, G. A. and Woeginger, G. J. (2002). The complexity of multilple wordlength
assignment. Applied Mathematics Letters, 15(2):137–140.

5. Constantinides, George A. (2003). Perturbation analysis for word-length optimization. In 11th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

214 C.-S. Bouganis and G.A. Constantinides

6. Constantinides, George A., Cheung, Peter Y. K., and Luk, Wayne (2002). Optimum
wordlength allocation. In 10th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 219–228.

7. Constantinides, George A., Cheung, Peter Y. K., and Luk, Wayne (2004). Synthesis and
Optimization of DSP Algorithms. Kluwer, Norwell, MA, 1st edition.

8. Dempster, A. and Macleod, M. D. (1995). Use of minimum-adder multiplier blocks in FIR
digital filters. IEEE Trans. Circuits Systems II, 42:569–577.

9. Fletcher, R. (1981). Practical Methods of Optimization, Vol. 2: Constraint Optimization.
Wiley, New York.

10. Kim, S., Kum, K., and Sung, W. (1998). Fixed-point optimization utility for C and C++
based digital signal processing programs. IEEE Transactions on Circuits and Systems II,
45(11):1455–1464.

11. Koren, Israel (2002). Computer Arithmetic Algorithms. Prentice-Hall, New Jersey, 2nd edition.
12. Lee, E. A. and Messerschmitt, D. G. (1987). Synchronous data flow. IEEE Proceedings, 75(9).
13. Liu, B. (1971). Effect of finite word length on the accuracy of digital filters – a review. IEEE

Transactions on Circuit Theory, 18(6):670–677.
14. Mitra, Sanjit K. (2006). Digital Signal Processing: A Computer-Based Approach. McGraw-

Hill, Boston, MA, 3rd edition.
15. Oppenheim, A. V. and Schafer, R. W. (1972). Effects of finite register length in digital filtering

and the fast fourier transform. IEEE Proceedings, 60(8):957–976.
16. Pasko, R., Schaumont, P., Derudder, V., Vernalde, S., and Durackova, D. (1999). A new algo-

rithm for elimination of common subexpressions. IEEE Transactions on Computer-Aided
Design of Integrated Circuit and Systems, 18(1):58–68.

17. Sedra, A. S. and Smith, K. C. (1991). Microelectronic Circuits. Saunders, New York.
18. Wakerly, John F. (2006). Digital Design Principles and Practices. Pearson Education, Upper

Saddle River, NJ, 4th edition.

Chapter 12
High-Level Synthesis of Loops Using
the Polyhedral Model

The MMAlpha Software

Steven Derrien, Sanjay Rajopadhye, Patrice Quinton, and Tanguy Risset

Abstract High-level synthesis (HLS) of loops allows efficient handling of inten-
sive computations of an application, e.g. in signal processing. Unrolling loops, the
classical technique used in most HLS tools, cannot produce regular parallel archi-
tectures which are often needed. In this Chapter, we present, through the example
of the MMAlpha testbed, basic techniques which are at the heart of loop analysis
and parallelization. We present here the point of view of the polyhedral model of
loops, where iterative calculations are represented as recurrence equations on inte-
gral polyhedra. Illustrated from an example of string alignment, we describe the
various transformations allowing HLS and we explain how these transformations
can be merged in a synthesis flow.

Keywords: Polyhedral model, Recurrence equations, Regular parallel arrays, Loop
transformations, Space–time mapping, Partitioning.

12.1 Introduction

One of the main problems that High Level Synthesis (HLS) tools have not solved yet
is the efficient handling of nested loops. Highly computational programs occurring
for example in signal processing and multimedia applications make extensive use of
deeply nested loops. The vast majority of HLS tools either provide loop unrolling to
take advantage of parallelism, or treat loops as sequential when unrolling is not pos-
sible. Because of the increasing complexity of embedded code, complete unrolling
of loops is often impossible. Partial unrolling coupled with software pipelining tech-
niques has been successfully used, in the Pico tool [29] for instance, but a lot of
other loop transformations, such as loop tiling, loop fusion or loop interchange,
can be used to optimize the hardware implementation of nested loops. A tool able
to propose such loop transformations in the source code before performing HLS

should necessarily have an internal representation in which the loop nest structure

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

215

216 S. Derrien et al.

is kept. This is a serious problem and this is why, for instance, source level loop
transformations are still not available is commercial compilers, whereas the loop
transformation theory is quite mature.

The work presented in this chapter proposes to perform HLS from the source lan-
guage ALPHA. The ALPHA language is based on the so-called polyhedral model
and is dedicated to the manipulation of recurrence equations rather than loops.
The MMAlpha programming environment allows a user to transform ALPHA pro-
grams in order to refine the ALPHA initial description until it can be translated
down to VHDL. The target architecture of MMAlpha is currently limited to regu-
lar parallel architectures described in a register transfer level (RTL) formalism. This
paradigm, as opposed to the control+datapath formalism, is useful for describing
highly pipelined architectures where computations of several successive samples
are overlapped.

This chapter gives an overview of the possibilities of the MMAlpha design envi-
ronment focusing on its use for HLS. The concepts presented in this chapter are not
limited to the context were a specification is described using an applicative language
such as ALPHA: they can also be used in a compiler environment as it has been done
for example in the WraPit project [3].

The chapter is organized as follows. In Sect. 12.2, we present an overview of
this system by describing the ALPHA language, its relationship with loop nests,
and the design-flow of the MMAlpha tool. Section 12.3 is devoted to the front-end
which transforms an ALPHA software specification into a virtual parallel architec-
ture. Section 12.4 shows how synthesizable VHDL code can be generated. All these
first sections are illustrated on a simple example of string alignment, so that the
main concepts are apparent. In Sect. 12.5, we explain how the virtual architecture
can be further transformed in order to be adapted to resource constraints. Implemen-
tations of the string alignment application are shown and discussed in Sect. 12.6.
Section 12.7 is a short review of other works in the field of hardware generation for
loop nests. Finally, Sect. 12.8 concludes the chapter.

12.2 An Overview of the MMAlpha Project

Throughout this chapter, we shall consider the running example of a string matching
algorithm for genetic sequence comparison, as shown in Fig. 12.1. This algorithm is
expressed using the single-assignment language ALPHA. Such a program is called
a system. Its name is sequence, and it makes use of integral parameters X and
Y. These parameters are constrained (line 1) to satisfy the linear inequalities 3≤ X
and X≤ Y−1. This system has two inputs: a sequence QS (for Query Sequence) of
size X and a sequence DB (for Data Base sequence) of size Y. It returns a sequence
res of integers. The calculation described by this system is expressed by equations
defining local variables M and MatchQ as well as result res. Each ALPHA variable
is defined on the set of integral points of a convex polyhedron called its domain. For
example, M is defined on the set {i, j|0 ≤ i ≤ X ∧ 0 ≤ j ≤ Y}. The definition of M

12 High-Level Synthesis of Loops Using the Polyhedral Model 217

system sequence :{X,Y | 3<=X<=Y-1}1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(QS : {i | 1<=i<=X} of integer;

DB : {j | 1<=j<=Y} of integer)

returns (res : {j | 1<=j<=Y} of integer);

var

M : {i,j | 0<=i<=X; 0<=j<=Y} of integer;

MatchQ : {i,j | 1<=i<=X; 1<=j<=Y} of integer;

let

M[i,j] =

case

{| i=0} | {| 1<=i; j=0} : 0;

{| 1<=i; 1<=j} : Max4(0, M[i,j-1] - 8,

M[i-1,j] - 8, M[i-1,j-1] + MatchQ[i,j]);

esac;

MatchQ[i,j] = if (QS[i] = DB[j]) then 15 else -12;

res[j] = M[X,j];

tel;

Fig. 12.1 ALPHA program for the string alignment algorithm

is given by a case statement, each branch of which covers a subset of its domain.
If i = 0 or if j = 0, then its value is 0. Otherwise, it is the maximum of four quan-
tities: 0, M[i,j-1]− 8, M[i-1,j]− 8, and M[i-1,j-1]+MatchQ[i,j].
This definition represents a recurrence equation. Its last term depends on whether
the query character QS[i] is equal to the data base sequence character DB[j].
Such a set of recurrences is often represented as a dependence graph as shown in
Fig. 12.2. It should be noted, however that the ALPHA language allows one to repre-
sent arbitrary linear recurrences, which in general, cannot be represented graphically
as easily. ALPHA allows structured systems to be described: a given system can be
instantiated inside another one, by using a use statement which operated as a higher
order map operator. For example

use {k | 1<=k<=10} sequence[X,Y] (a, b) returns (res)

would allow ten instances of the above sequence program to be instantiated. For the
sake of conciseness, we do not detail in this chapter structured systems and refer the
reader to [12].

Figure 12.3 shows the typical design flow of MMAlpha. MMAlpha allows
ALPHA programs to be transformed, under some conditions, into a VHDL synthe-
sizable program. The input is nested loops which, in the current tools, are described
as an ALPHA program, but could be generated from loop nests in an imperative lan-
guage (see [16] for example). After parsing, we get an internal representation of the
program as a set of recurrence equations. Scheduling, localization and space–time
mapping are then performed to obtain the description of a virtual architecture also
described using ALPHA: all these transformations form the front-end of MMAlpha.
Several steps allow the virtual architecture to be transformed to synthesizable VHDL

218 S. Derrien et al.

X

j

0 i

Y

Fig. 12.2 Graphical representation of the string alignment. Each point in the graph represents a
calculation M[i,j] and the arcs show dependences between the calculations

VHDL

Nested loops

Virtual Architecture

Parsing and Code Analysis

Space−time mapping

F
ro

nt
−

en
d

Scheduling

Localization

Hardware−mapping

Structured HDL Generation

VHDL generationB
ac

k−
en

d

Fig. 12.3 Design flow of MMAlpha

code: hardware-mapping identifies ALPHA constructs with basic hardware elements
such as registers, multiplexers, and generates boolean signal control instead of
linear inequalities constraints. Then a structured HDL description incorporating a
controller and data-path cells is produced. Finally, VHDL is generated.

12 High-Level Synthesis of Loops Using the Polyhedral Model 219

In Sect. 12.3, we shall survey the front-end transformations whereas back-end
will be presented in Sect. 12.4.

12.3 The MMAlpha Front-End: From Initial Specifications
to a Virtual Architecture

The front-end of MMAlpha contains several tools to perform code analysis and
transformations.

Code analysis and verification: The initial specification of the program, called
here a loop nest, is translated into an internal representation in form of recurrence
equations. Thanks to the polyhedral model, some properties of the loop nest can
be checked by analysis: one can check for example that all elements of an array
(represented by an ALPHA variable) are defined and used in a system, by means
of calculations on domains. More complex properties of code can also be checked
using verification techniques [8].

Scheduling: This is the central step of MMAlpha. It consists in analyzing the
dependences between the variables, and deriving for each variable, say V[i,j]
a timing-function tV(i, j) which gives the time instant at which this variable
can be computed. Timing-functions are usually affine, of the form tV(i, j) =
αVi+βV j+γV with coefficients depending on variable V. Finding out a schedule
is performed by solving an integer linear problem using parameterized integer
programming and is described in [17]. More complex schedules can be found:
multi-dimensional timing functions, for example, allow some forms of loop tiling
to be represented, but code generation is still not available for such functions.

Localization: It is an optional transformation (also sometimes referred to as
uniformization or pipelining) that helps removing long interconnections [28].
It is inherited from the theory of systolic arrays where data which are re-
used in a calculation should be read only once from memory, thus saving
input–outputs. MMAlpha performs automatically many such localization trans-
formations described in the literature.

Space–time mapping: Once a schedule is found, the system of recurrence equa-
tions is rewritten by transforming indexes of each variable, say V[i,j], in a new
reference index set V[t,p]where t is the schedule of the variable instance and p
is the processor where it can be executed. The space–time mapping amounts for-
mally to a change of basis of the domain of each variable. Finding out the basis is
done by algebraic methods described in the literature (unimodular completion).
Simple heuristics are incorporated in MMAlpha to discover quickly reasonable,
if not always optimal, changes of basis.

After front-end processing, the initial ALPHA specification becomes a virtual
architecture where each equation can be interpreted in term of hardware. To illus-
trate this, consider a sketch of the virtual architecture produced by the front-end
from the string alignment specification as shown in Fig. 12.4. In this program, only

220 S. Derrien et al.

system sequence :{X,Y | 3<=X<=Y-1}
(QS : {i | 1<=i<=X} of integer;
DB : {j | 1<=j<=Y} of integer)

returns (res : {j | 1<=j<=Y} of integer);
var
QQS_In : {t,p | 2p-X+1<=t<=p+1; 1<=p} of integer;
...

M : {t,p | p<=t<=p+Y; 0<=p<=X} of integer;
...

let
...
M[t,p] =

case
{ | p=0} : 0;
{ | t=p; 1<=p} : 0;
{ | p+1<=t; 1<=p} :

Max4(0[],
M[t-1,p] - 8,
M[t-1,p-1] - 8,
M[t-2,p-1] + MatchQ[t,p]);

esac;
QQS[t,p] =

case
{ | t=p+1} : QQS_In;
{ | p+2<=t} : QQS[t-1,p];

esac;

...
tel;

Fig. 12.4 Sketch of the virtual parallel architecture produced by the front-end of MMAlpha. Only
variables M and QQS are represented. Variable QQS was produced by localization to propagate the
query sequence to each cell of this array

the declaration and the definition of variable M (present in the initial program) and
of a new QQS variable are kept. In the declaration of M, we can see that the domain
of this variable in now indexed by t and p. The constraints on these indexes let us
infer that the calculation of this variable is going to be done on a linear array of
X +1 processors. The definition of M reveals several informations. It shows that the
calculation of M[t,p] is the maximum of four quantities: the constant 0, the pre-
vious value M[t-1,p] which can be interpreted as a register in processor p, the
previous value M[t-1,p-1] which was held in neighboring processor p−1, and
value M[t-2,p-1], also held in processor p− 1. All these informations can be
directly interpreted in term of hardware elements. However, the linear inequalities
guarding the branches of this definition are much less straightforward to translate
into hardware. Moreover, the number of processors of this architecture is directly
linked to the size parameter X, which may not be appropriate for the requirements
of a practical application: this is the rôle of the back-end of MMAlpha to trans-
form this virtual architecture into a real one. The QQS variable requires some more

12 High-Level Synthesis of Loops Using the Polyhedral Model 221

explanations, as it is not present in the initial specification. It is produced by the
localization transformation, in order to propagate the query value QS from proces-
sor to processor. A careful examination of its declaration and its definition reveals
that this variable is present only in processors 1 to X and initialized by reading the
value of another variable QQS In when t = p + 1, otherwise, it is kept in a register
of processor p. As for M, the guards of this equation must be translated into simpler
hardware elements.

12.4 The Back-End Process: Generating VHDL

The back-end of MMAlpha comprises a set of transformations allowing a vir-
tual parallel architecture to be transformed into a synthesizable VHDL descrip-
tion. These transformations can be regrouped into three parts (see Fig. 12.3):
hardware-mapping, structured HDL Generation, and VHDL generation.

In this section, we review these back-end transformations as they are imple-
mented in MMAlpha by highlighting the concepts underlying them rather than the
implementation details.

12.4.1 Hardware-Mapping

The virtual architecture is essentially an operational parallel description of the
initial specification: each computation occurs at a particular date on a particular pro-
cessor. The two main transformations needed to obtain an architectural description
are: control signal generation and simple expression generation. They are imple-
mented in the hardware-mapping component which produces a subset of ALPHA

traditionally referred to as ALPHA0.

12.4.1.1 Control Signal Generation

It consists in replacing complex, linear inequalities by the propagation of simple
control signals and is better explained here on an example. Consider for instance
the definition of the QQS variable in the program of Fig. 12.4. It can be interpreted
as a multiplexer controlled by a signal which is true at step t=p in processor number
p (Fig. 12.5a). It is easy to see intuitively that this control can be implemented by
a signal initialized in the first processor (i.e., value 1 at step 0 in processor 0) and
then transmitted to the neighboring processor with a one cycle delay (i.e., value 1
at step 1 in processor 1, and so on). This is illustrated on Fig. 12.5b: the control
signal QQS ctl is inferred and is pipelined through the array. This is what the
control signal generation achieves: to produce a particular cell (the controller) at
the boundary of the regular array and to pipeline (or broadcast) this control signal
through the array.

222 S. Derrien et al.

Max

QQS

t == p

Proc p

M
uxQQS_In Max

QQS_ctrl

QQS_In

QQSProc p

M
ux

a) b)

Fig. 12.5 Control signal inference for QQS updating

QQSReg6[t,p] = QQS[t-1,p];
QQS_In[t,p] = QQSReg6[t,p-1];
QQS[t,p] =

case
{ | 1<=p<=X;} : if (QQSXctl1) then

case
{ | t=p+1;} : QQS_In;
{ | p+2<=t<=p+Y;} : 0[];

esac else
case

{ | t=p+1; } : 0[];
{ | p+2<=t<=p+Y; } : QQSReg6;

esac;
esac;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Fig. 12.6 Description in ALPHA0 of the hardware of Fig. 12.5b

12.4.1.2 Generation of Simple Expressions

This transformation deals with splitting complex equations in several simpler equa-
tions so that each one corresponds to a single hardware component: a register, an
operator or a simple wire.

In the ALPHA0 subset of ALPHA, the RTL architecture can be very easily deduced
from the code. For instance Fig. 12.6 shows three equations which represent: a reg-
ister (line 1), a connexion between two processors (line 2) and a multiplexer (lines
3–14). They are interconnected to produce the hardware shown in Fig. 12.5b.

12.4.2 Structured HDL Generation

The second step of the back-end deals with generating a structured hardware
description from the ALPHA0 format so that the re-use of identical cells explicitly
appears in the structuration of the program and provision is made to include other
components in the description. The subset of ALPHA which is used at this level is
called ALPHARD and is illustrated in Fig. 12.7. Here, we have a module including

12 High-Level Synthesis of Loops Using the Polyhedral Model 223

Cell BCell B

Module

Start

clk

...
Module CCell A

Inputs Outputs

clk−enable
Controller

reset
Cell B

Fig. 12.7 An ALPHARD program is a complex module containing a controller and various
instantiations of cells or modules

a local controller, a single instance of a A cell, several instances of a B cell and an
instance of another module. Cells are simple data-paths whereas modules include
controllers and can instantiate other cells and modules. Thanks to the hierarchical
structure of ALPHA, it is easy to represent such a system in our language while
keeping its semantics.

In the case of the string alignment application, the hardware structure contains,
in addition to the controller, an instance of a particular cell representing processor
p = 0, and X − 1 instances of another cell representing processors 1 to X . It is
depicted in Fig. 12.8. (for the sake of clarity the controller and the control signal are
not represented).

The main difficulty of this step is to uncover, in the set of recurrence equations
of ALPHA0, the least number of common cells. To this end, the polyhedral domains
of all equations are projected on the space indexes and combined to form space
maximal regions sharing the same behavior. Each such region defines a cell of the
architecture. This operation is made possible thanks to the polyhedral model which
allows projection, intersection, unions, etc. of domains to be computed easily.

12.4.3 Generating VHDL

The VHDL generation is basically a syntax-directed translation of the ALPHARD

program as each ALPHA construct corresponds to a VHDL construct. For instance,
the VHDL code that corresponds to the ALPHA0 code shown in Fig. 12.6 is given
in Fig. 12.9. Line 1 is a simple connexion, line 3 represents a multiplexer and lines
5–8 model a register. One can notice that the time index t disappears (except in the
controller) as it is implemented by the clk and a clock enable signal.

If the variable sizes are not specified in the ALPHA program, the translator
assumes 16-bit fixed-point arithmetics (using std logic vector VHDL type)
but other signal types can be specified. VHDL test benches are also generated to ease
the testing of the resulting VHDL.

224 S. Derrien et al.

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

1
5

8 8

8 8

0
0

_
1

2

1
5

_
1

2

1
5

_
1

2

!) #

!) #

!) #!) #

- - -

!) #

-

!) #

,

!) #

, P
ro

c
0

P
ro

c
1

P
ro

c
X

M

Q
S

D
B

Mux Mux

Mux

Mux

Mux

MuxMux

Mux

+ +

X
−1

 ti
m

es

=

8 8

+ + +

0

F
ig

.1
2.

8
A

rc
hi

te
ct

ur
e

of
th

e
st

ri
ng

m
at

ch
in

g
ap

pl
ic

at
io

n

12 High-Level Synthesis of Loops Using the Polyhedral Model 225

QQS_In <= QQSReg6_In;

QQS <= QQS_In WHEN QQSXctl1 = ‘1’ ELSE QQSReg6;

PROCESS(clk) BEGIN IF (clk = ‘1’ AND clk’EVENT) THEN
IF CE=‘1’ THEN QQSReg6 <= QQS; END IF;

END IF;
END PROCESS;

1

2

3

4

5

6

7

8

Fig. 12.9 VHDL code corresponding to the ALPHA0 code shown in Fig. 12.6

12.5 Partitioning for Resource Management

In MMAlpha, the choice of the various scheduling and/or space–time mappings can
be seen as a design space exploration step. However there are practical situations in
which none of the virtual architectures obtained through the flow matches the user
requirements. This is often the case when iteration domains involved in the loop
nests are very wide: in such situations, the mapping may result in an architecture
with a very large number of processing elements, which often exceeds the allowed
silicon budget. As an example, assuming a string alignment program with a query
size X = 103, the architecture corresponding to the mapping proposed in Sect. 12.3
and shown in Fig. 12.4 would result in 103 processing elements, which represents a
huge cost in term of hardware resources.

Many methods can be used to overcome such a difficulty. In the context of regular
parallel architectures, partitioning transformations are the method of choice. Here,
we consider a processor array partitioning transformation, which can be applied
directly on the virtual architecture (i.e., at the RTL level).

Partitioning is a well studied problem [14, 25] and it is essentially based on
the combination of two techniques. Locally Sequential Globally Parallel (LSGP)
partitioning consists in merging several virtual PE into a single PE with modi-
fied time-sliced schedule. Locally Parallel Globally Sequential (LPGS) partitioning
consists in tiling the virtual processor array into a set of virtual sub-arrays, and in
executing the whole computations as a sequence of passes on the sub-array.

In the following, we present an LSGP technique based on serialization [13]:
serialization merges σ virtual processors along a given processor axis into a single
physical processor. One can show that a complete LSGP partitioning can be obtained
through the use of successive serializations along the processor space axis.

To explain the principles of serialization, consider the processor datapath of the
string alignment architecture shown in Fig. 12.10. We distinguish temporal registers
(shown in grey) which have both their source and sink in the same processor, and
spatial registers, the source and sink of which are in distinct processors. (We assume
that registers have always a single sink, which is easy to ensure by transformation if
needed.) Besides we assume that the communications between processing elements
are unidirectional and pipelined.

226 S. Derrien et al.

Max

15

−12

8

8

0

i,j

i,j M

DB

QS

 M

i,j

i,j

i,j

i,j

i,j

QS

 M

DBi,j

 M

m
ux

=

m
ux

m
ax

+
m

ax

m
ax

sub
sub

Fig. 12.10 Original datapath of the string alignment processor

Under these assumptions, serialization can be done in two steps:

– Any temporal register is transformed into a shift register line of depth σ .
– A one cycle delay feedback loop is associated to each spatial register; this feed-

back loop is controlled (through an additional multiplexer) by a signal activated
every σ cycles.

Obviously, a serialization by a factor σ replaces an array of X processors by
a partitioned array containing �X/σ� processors. Figure 12.11 shows the effect of
a serialization with σ = 3. This kind of transformation can be used to adjust the
number of processors to the needs of the application. It can also be combined with
various other transformations to cover a large set of potential hardware configura-
tions. An example of hardware resource exploration for a bioinformatics application
is presented in [11].

12.6 Implementation and Performance

To illustrate the typical performance of a parallel implementation of an applica-
tion, we implemented on a Xilinx Virtex-4 device several configurations of string
alignment with or without partitioning. The results are shown in Table 12.1. For
each configuration, the number X of processors, the total resources of the device,
– look-up tables, flip-flops and number of slices – the clock frequency and the
performance, in Giga Cell Update per second (GCUps) are given. The last four
lines present partitioned versions. As a reference, we show the typical performance
of a software implementation of the string aligment on a desktop computer which

12 High-Level Synthesis of Loops Using the Polyhedral Model 227

Max

8

8

0

−12

15

 M

=

m
ux

i,j

i,j

QS

 M

DBi,j

m
ux

DB

QSi,j

i,j

m
ux

m
ux

sub
sub

i,j

i,j M

 M

m
ux

m
ax

+
m

ax

m
ax

i,j

Fig. 12.11 The string alignment processor datapath after serialization by σ = 3

Table 12.1 Performance of various string alignment hardware configurations measured in Giga
Cell Updates per seconds

Description LUT/DFF/Slices Clock (MHz) Perf. (GCUps)

Software – – 0,1
X = 10 1,047/1,619/1,047 110 1.1
X = 50 8,088/4,130/4,771 110 5.5
X = 100 16,300/8,233/9,542 110 11
X = 100,σ = 2 10.8K/4,308/6,628 95 5.5
X = 100,σ = 10 2K/1K/1,543 102 ≈1.0
X = 100,σ = 20 1.2K/550/931 93 ≈0.45
X = 100,σ = 50 5.6K/231/517 98 ≈0.2

LUT is the number of look-up tables, DFF is the number of data flip-flops,
and Slices is the number of Virtex-4 FPGA slices used by the designs

achieves 100 MCUps. The speed-up factor reaches up to two orders of magnitude
depending on the number of processors. It is also noteworthy that the derived archi-
tecture is scalable: the achievable clock period does not suffer from an increase in
the number of processing elements, and the hardware resource cost grows linearly
with that number.

12.7 Other Works: The Polyhedral Model

The polyhedral model has been used for memory modeling [9, 15], communi-
cation modeling [33], cache misses [24], but its most important use was done in
parallelizing compilers and HLS tools.

228 S. Derrien et al.

There is an important trend in commercial high-level synthesis tools to perform
hardware synthesis from C programs: CatapultC (Mentor Graphics), Pico (Syn-
fora) [30], Cynthesizer (Forte Design System) [18], and Cascade (Critical Blue) [4].
However all these tools suffer from inefficient handling of arbitrary nested loops
algorithms.

Academic HLS tools are numerous and reflect the focus of recent researches on
efficient synthesis of application-specific algorithms. Among the most important
tools: Spark [19], Compaan/Laura [32], ESPAM [27], MMAlpha [26], Paro [6],
Gaut [31], UGH [2], Streamroller [22], xPilot [7]. Compaan, Paro and MMAlpha
have focused of the efficient compilation of loops, and they use the polyhedral
model to perform loop analysis and/or transformations. Another formalism, called
Array-OL, has been used for multidimensional signal processing [10] and revisited
recently [5].

Parallelizing compiler prototypes have also provided a lot of research results on
loop transformations [23]: Tiny [34], LooPo [20], Suif [1] or Pips [21]. Recently,
WraPit [3], integrated in the Open64 compiler, proposed an explicit polyhedral
internal representation for loop nest, very close to the representation used by
MMAlpha.

12.8 Conclusion

We have shown the main principles of high-level synthesis for loops targeting par-
allel architectures. Our presentation has used the MMAlpha tools as an example to
explain the polyhedral model, the basic loops transformations, and the way these
transformations may be arranged in order to produce parallel hardware. MMAlpha
uses the ALPHA single-assignment language to represent the architecture, from its
initial specification to its practical, synthesizable hardware implementation.

The polyhedral model, which underlies the representation and transformation of
loops, is a very powerful vehicle to express the variety of transformations that can
be used to extract parallelism et take benefit of it for hardware implementations.
Future SoC architectures will increasingly need such techniques to exploit available
multi-core architectures. We therefore believe that it is a good basis for carrying
research on HLS whenever parallelism is considered.

References

1. S. Amarasinghe et al. Suif: An Infrastructure for Research on Parallelizing and Optimizing
Compilers. Technical report, Stanford University, May 1994.

2. I. Augé, F. Pétrot, F. Donnet, and P. Gomez. Platform-Based Design From Parallel C Speci-
fications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24(12):1811–1826, 2005.

3. C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Putting Polyhedral Loop
Transformations to Work. In LCPC, pages 209–225, 2003.

12 High-Level Synthesis of Loops Using the Polyhedral Model 229

4. Critical Blue. Boosting Software Processing Performance With Coprocessor Synthesis, 2005.
http://www.criticalblue.com.

5. P. Boulet. Array-OL Revisited, Multidimensional Intensive Signal Processing Specification.
Research Report 6113, INRIA, February 2007.

6. M. Bednara and J. Teich. Automatic Synthesis of FPGA Processor Arrays from Loop
Algorithms. Journal of Supercomputer, 26(2):149–165, 2003.

7. J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. Platform-Based Behavior-Level and System-
Level Synthesis. In International SOC Conference, pages 199–202. IEEE, 2006.

8. D. Cachera and K. Morin-Allory. Verification of Safety Properties for Parameterized Regular
Systems. Transaction on Embedded Computing Systems, 4(2):228–266, May 2005.

9. F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappelle.
Custom Memory Management Methodology. Kluwer Academic Publishers, 1998.

10. A. Demeure and Y. Del Gallo. An Array Approach for Signal Processing Design. In SAME
98, October 1998.

11. S. Derrien and P. Quinton. Parallezing HMMER for Hardware Acceleration on FPGAs. In
ASAP07, pages 10–17, Montreal, Quebec, July 2007.

12. F. Dupont de Dinechin, P. Quinton, and T. Risset. Structuration of the Alpha Language. In Int.
Conf. on Massively Parallel Programming Models, Berlin, Germany, October 1995.

13. S. Derrien, S. V. Rajopadhye, and S. Sur-Kolay. Combined Instruction and Loop Parallelism
in Array Synthesis for FPGAs. In ISSS’01 : Proceedings of the International Symposium on
System Synthesis, pages 165–170, 2001.

14. A. Darte, R. Schreiber, B. R. Rau, and F. Vivien. Constructing and Exploiting Linear Schedules
with Prescribed Parallelism. ACM Trans. Des. Autom. Electron. Syst., 7(1):159–172, 2002.

15. A. Darte, R. Schreiber, and G. Villard. Lattice-Based Memory Allocation. IEEE Transactions
on Computers, 54(10):1242–1257, 2005.

16. P. Feautrier. Dataflow Analysis of Array and Scalar References. Int. J. Parallel Programming,
20(1):23–53, February 1991.

17. P. Feautrier. Some Efficient Solutions to the Affine Scheduling Problem, Part I, One
Dimensional Time. Int. J. of Parallel Programming, 21(5), October 1992.

18. Forte Design Systems. Cynthesizer Closes the ESL-to-Silicon Gap. http://www.forteds.com/
products/cynthesizer.asp.

19. S. Gupta, R. Gupta, N. Dutt, and A. Nicolau. SPARK: A Parallelizing Approach to the High-
Level Synthesis of Digital Circuits. Kluwer Academic, 2004.

20. M. Griebl and C. Lengauer. The Loop Parallelizer LooPo. In M. Gerndt, editor, Proceed-
ings of Sixth Workshop on Compilers for Parallel Computers, volume 21 of Konferenzen des
Forschungszentrums Jülich, pages 311–320. Forschungszentrum Jülich, 1996.

21. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical Interprocedural Parallelization: An Overview
of the PIPS Project. In ACM International Conference on Supercomputing, ICS’91, Cologne,
June 1991.

22. M. Kudlur, K. Fan, and S. Mahlke. Streamroller: Automatic Synthesis of Prescribed Through-
put Accelerator Pipelines. In CODES+ISSS ’06: Proceedings of the 4th International Confer-
ence on Hardware/Software Codesign and System Synthesis, pages 270–275, New York, NY,
USA, 2006. ACM Press, New York.

23. C. Lengauer. Loop Parallelization in the Polytope Model. In E. Best, editor, CONCUR’93,
Lecture Notes in Computer Science 715, pages 398–416. Springer, Berlin Heidelberg New
York, 1993.

24. V. Loechner, B. Meister, and P. Clauss. Precise Data Locality Optimization of Nested Loops.
The Journal of Supercomputing, 21(1):37–76, 2002.

25. D. I. Moldovan and J. A. B. Fortes. Partitioning and Mapping Algorithms into Fixed Size
Systolic Arrays. IEEE Transactons on Computers, 35(1):1–12, 1986.

26. A. Mozipo, D. Massicotte, P. Quinton, and T. Risset. Automatic Synthesis of a Parallel
Architecture for Kalman Filtering using MMAlpha. In International Conference on Paral-
lel Computing in Electrical Engineering (PARELEC 98), pages 201–206, Bialystok, Poland,
September 1998.

230 S. Derrien et al.

27. H. Nikolov, T. Stefanov, and E. Deprettere. Efficient Automated Synthesis, Programming, and
Implementation of Multi-Processor Platforms on FPGA Chips. In 16th International Con-
ference on Field Programmable Logic and Applications (FPL’06), pages 323–328, Madrid,
Spain, August 2006.

28. P. Quinton and V. Van Dongen. The Mapping of Linear Recurrence Equations on Regular
Arrays. The Journal of VLSI Signal Processing, 1:95–113, 1989.

29. R. Schreiber et al. PICO-NPA: High-Level Synthesis of Nonprogrammable Hardware Accel-
erators (HPL-2001-249), October 2001.

30. R. Schreiber, S. Aditya, B. R. Rau, V. Kathail, S. Mahlke, S. Abraham, and G. Snider. High-
Level Synthesis of Nonprogrammable Hardware Accelerators. In ASAP’00: Proceedings of
the IEEE International Conference on Application-Specific Systems, Architectures, and Pro-
cessors, page 113, Washington, DC, USA, 2000. IEEE Computer Society, Washington, DC.

31. O. Sentieys, J. P. Diguet, and J. L. Philippe. GAUT: A High Level Synthesis Tool Dedicated
to Real Time Signal Processing Application. In European Design Automation Conference,
September 2000. University booth stand.

32. T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere. System Design Using
Kahn Process Networks: The Compaan/Laura Approach. In DATE ’04: Proceedings of the
Conference on Design, Automation and Test in Europe, page 10340, Washington, DC, USA,
2004. IEEE Computer Society, Washington, DC.

33. A. Turjan, B. Kienhuis, and E. F. Deprettere. Translating Affine Nested-Loop Programs to
Process Networks. In International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 220–229, 2004.

34. M. Wolfe. A Loop Restructuring Research Tool. Technical Report CSE 90-014, Oregon
Graduate Institute, August 1990.

Chapter 13
Operation Scheduling: Algorithms
and Applications

Gang Wang, Wenrui Gong, and Ryan Kastner

Abstract Operation scheduling (OS) is an important task in the high-level synthe-
sis process. An inappropriate scheduling of the operations can fail to exploit the
full potential of the system. In this chapter, we try to give a comprehensive cov-
erage on the heuristic algorithms currently available for solving both timing and
resource constrained scheduling problems. Besides providing a broad survey on
this topic, we focus on some of the most popularly used algorithms, such as List
Scheduling, Force-Directed Scheduling and Simulated Annealing, as well as the
newly introduced approach based on the Ant Colony Optimization meta-heuristics.
We discuss in details on their applicability and performance by comparing them
on solution quality, performance stability, scalability, extensibility, and computation
cost. Moreover, as an application of operation scheduling, we introduce a novel uni-
formed design space exploration method that exploits the duality of the time and
resource constrained scheduling problems, which automatically constructs a high
quality time/area tradeoff curve in a fast, effective manner.

Keywords: Design space exploration, Ant colony optimization, Instruction
scheduling, MAX–MIN ant system

13.1 Introduction

As fabrication technology advances and transistors become more plentiful, modern
computing systems can achieve better system performance by increasing the amount
of computation units. It is estimated that we will be able to integrate more than a half
billion transistors on a 468 mm2 chip by the year of 2009 [38]. This yields tremen-
dous potential for future computing systems, however, it imposes big challenges on
how to effectively use and design such complicated systems.

As computing systems become more complex, so do the applications that can
run on them. Designers will increasingly rely on automated design tools in order

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

231

232 G. Wang et al.

to map applications onto these systems. One fundamental process of these tools is
mapping a behavioral application specification to the computing system. For exam-
ple, the tool may take a C function and create the code to program a microprocessor.
This is viewed as software compilation. Or the tool may take a transaction level
behavior and create a register transfer level (RTL) circuit description. This is called
hardware or behavioral synthesis [31]. Both software and hardware synthesis flows
are essential for the use and design of future computing systems.

Operation scheduling (OS) is an important problem in software compilation and
hardware synthesis. An inappropriate scheduling of the operations can fail to exploit
the full potential of the system. Operation scheduling appears in a number of dif-
ferent problems, e.g., compiler design for superscalar and VLIW microprocessors
[23], distributed clustering computation architectures [4] and behavioral synthesis
of ASICs and FPGAs [31].

Operation scheduling is performed on a behavioral description of the application.
This description is typically decomposed into several blocks (e.g., basic blocks), and
each of the blocks is represented by a data flow graph (DFG).

Operation scheduling can be classified as resource constrained or timing con-
strained. Given a DFG, clock cycle time, resource count and resource delays, a
resource constrained scheduling finds the minimum number of clock cycles needed
to execute the DFG. On the other hand, a timing constrained scheduling tries to
determine the minimum number of resources needed for a given deadline.

In the timing constrained scheduling problem (also called fixed control step
scheduling), the target is to find the minimum computing resource cost under a
set of given types of computing units and a predefined latency deadline. For exam-
ple, in many digital signal processing (DSP) systems, the sampling rate of the input
data stream dictates the maximum time allowed for computation on the present data
sample before the next sample arrives. Since the sampling rate is fixed, the main
objective is to minimize the cost of the hardware. Given the clock cycle time, the
sampling rate can be expressed in terms of the number of cycles that are required to
execute the algorithm.

Resource constrained scheduling is also found frequently in practice. This is
because in a lot of the cases, the number of resources are known a priori. For
instance, in software compilation for microprocessors, the computing resources are
fixed. In hardware compilation, DFGs are often constructed and scheduled almost
independently. Furthermore, if we want to maximize resource sharing, each block
should use same or similar resources, which is hardly ensured by time constrained
schedulers. The time constraint of each block is not easy to define since blocks are
typically serialized and budgeting global performance constraint for each block is
not trivial [30].

Operation scheduling methods can be further classified as static scheduling and
dynamic scheduling [40]. Static operation scheduling is performed during the com-
pilation of the application. Once an acceptable scheduling solution is found, it is
deployed as part of the application image. In dynamic scheduling, a dedicated
system component makes scheduling decisions on-the-fly. Dynamic scheduling

13 Operation Scheduling: Algorithms and Applications 233

methods must minimize the program’s completion time while considering the
overhead paid for running the scheduler.

13.2 Operation Scheduling Formulation

Given a set of operations and a collection of computational units, the resource con-
strained scheduling (RCS) problem schedules the operations onto the computing
units such that the execution time of these operations are minimized, while respect-
ing the capacity limits imposed by the number of computational resources. The
operations can be modeled as a data flow graph (DFG) G(V,E), where each node
vi ∈ V (i = 1, . . . ,n) represents an operation opi, and the edge ei j denotes a depen-
dency between operations v j and vi. A DFG is a directed acyclic graph where the
dependencies define a partially ordered relationship (denoted by the symbol �)
among the nodes. Without affecting the problem, we add two virtual nodes root
and end, which are associated with no operation (NOP). We assume that root is the
only starting node in the DFG, i.e., it has no predecessors, and node end is the only
exit node, i.e., it has no successors.

Additionally, we have a collection of computing resources, e.g., ALUs, adders,
and multipliers. There are R different types and r j > 0 gives the number of units for
resource type j (1 � j � R). Furthermore, each operation defined in the DFG must
be executable on at least one type of the resources. When each of the operations is
uniquely associated with one resource type, we call it homogenous scheduling. If
an operation can be performed by more than one resource types, we call it hetero-
geneous scheduling [44]. Moreover, we assume the cycle delays for each operation
on different type resources are known as d(i, j). Of course, root and end have zero
delays. Finally, we assume the execution of the operations is non-preemptive, that
is, once an operation starts execution, it must finish without being interrupted.

A resource constrained schedule is given by the vector

{(sroot , froot),(s1, f1), . . . ,(send , fend)}

where si and fi indicate the starting and finishing time of the operation opi. The
resource-constrained scheduling problem is formally defined as min(send) with
respect to the following conditions:

1. An operation can only start when all its predecessors have finished, i.e., si � f j

if op j � opi

2. At any given cycle t, the number of resources needed is constrained by r j, for all
1 � j � R

The timing constrained scheduling (TCS) is a dual problem of the resource
constrained version and can be defined using the same terminology presented
above. Here the target is to minimize total resources ∑ j r j or the total cost of the
resources (e.g., the hardware area needed) subject to the same dependencies between
operations imposed by the DFG and a given deadline D, i.e., send < D.

234 G. Wang et al.

13.3 Operation Scheduling Algorithms

13.3.1 ASAP, ALAP and Bounding Properties

The simplest scheduling task occurs when we have unlimited computing resources
for the given application while trying to minimize its latency. For this task, we can
simply solve it by schedule an operation as soon as all of its predecessors in the DFG
have completed, which gives it the name As Soon As Possible. Because of its ASAP,
nature, it is closely related with finding the longest path between an operation and
the starting of the application oproot . Furthermore, it can be viewed as a special case
of resource constrained scheduling where there is no limit on the number computing
unit. The result of ASAP provides the lower bound for the starting time of each
operation, together with the lower bound of the overall application latency.

Correspondingly, with a given latency, we have the so called As Late As Possible
(ALAP) scheduling, where each operation is scheduled to the latest opportunity.
This can be done by computing the longest path between the operation node and
the end of the application opend . The result scheduling provides a upper bound for
the starting time of each operation given the latency constraint on the application.
However, different from ASAP, it typically does not have any significance regarding
to how efficient the resources are used. On the contrary, it often yields a bad solution
in the sense of timing constrained scheduling since the operations tends to cluster
towards the end.

Though not directly useful in typical practice, ASAP and ALAP are often critical
components for more advanced scheduling methods. This is because their combined
results provide the possible scheduling choices for each operation. Such range is
often referred as the mobility of an operation.

Finally, the upper bound of the application latency (under a given technology
mapping) can be obtained by serializing the DFG, that is to perform the opera-
tions sequentially based on a topologically sorted sequence of the operations. This
is equivalent to have only one unit for each type of operation.

13.3.2 Exact Methods

Though scheduling problems are NP-hard [8], both time and resource constrained
problems can be formulated using integer linear programming (ILP) method [27],
which tries to find an optimal schedule using a branch-and-bound search algo-
rithm. It also involves some amount of backtracking, i.e., decisions made earlier
are changed later on. A simplified formulation of the ILP method for the time
constrained problem is given below:

First it calculates the mobility range for each operation M = {S j|Ek � j � Lk},
where Ek and Lk are the ASAP and ALAP values respectively. The scheduling
problem in ILP is defined by the following equations:

13 Operation Scheduling: Algorithms and Applications 235

Min(
n

∑
k=1

(Ck ·Nk)) while ∑
Ei� j�Li

xi j = 1

where 1 � i � n and n is the number of operations. There are 1 � k � m operation
types available, and Nk is the number of computing units for operation type k, and
Ck is the cost of each unit. Each xi j is 1 if the operation i is assigned in control step j
and 0 otherwise. Two more equations that enforce the resource and data dependency
constraints are: ∑n

i=1 xi j � Ni and ((q ∗ x j,q)− (p ∗ xi,p)) � −1, p � q, where p and
q are the control steps assigned to the operations xi and x j respectively.

We can see that the ILP formulation increases rapidly with the number of control
steps. For one unit increase in the number of control steps we will have n additional
x variables. Therefore the time of execution of the algorithm also increases rapidly.
In practice the ILP approach is applicable only to very small problems.

Another exact method is Hu’s algorithm [22], which provides an optimal solution
for a limited set of applications. Though can be modified to address generic acyclic
DFG scheduling problem, the optimality only applies when the DFG is composed
of a set of trees and each unit has single delay with uniformed computing units.
Essentially, Hu’s method is a special list scheduling algorithm with a priority based
on longest paths [31].

13.3.3 Force Directed Scheduling

Because of the limitations of the exact approaches, a range of heuristic methods
with polynomial runtime complexity have been proposed. Many timing constrained
scheduling algorithms used in high level synthesis are derivatives of the force-
directed scheduling (FDS) algorithm presented by Paulin and Knight [34, 35].
Verhaegh et al. [45, 46] provide a theoretical treatment on the original FDS algo-
rithm and report better results by applying gradual time-frame reduction and the use
of global spring constants in the force calculation.

The goal of the FDS algorithm is to reduce the number of functional units used
in the implementation of the design. This objective is achieved by attempting to uni-
formly distribute the operations onto the available resource units. The distribution
ensures that resource units allocated to perform operations in one control step are
used efficiently in all other control steps, which leads to a high utilization rate.

The FDS algorithm relies on both the ASAP and the ALAP scheduling algo-
rithms to determine the feasible control steps for every operation opi, or the time
frame of opi (denoted as [tS

i ,tL
i] where tS

i and tL
i are the ASAP and ALAP times

respectively). It also assumes that each operation opi has a uniform probability of
being scheduled into any of the control steps in the range, and zero probability of
being scheduled elsewhere. Thus, for a given time step j and an operation opi which
needs�i � 1 time steps to execute, this probability is given as:

236 G. Wang et al.

p j(opi) =
{

(∑�i
l=0 hi(j− l))/(tL

i − tS
i + 1) if tS

i � j � tL
i

0 otherwise
(13.1)

where hi(·) is a unit window function defined on [tS
i ,tL

i].
Based on this probability, a set of distribution graphs can be created, one for each

specific type of operation, denoted as qk. More specifically, for type k at time step j,

qk(j) = ∑
opi

p j(opi) if type of opi is k (13.2)

We can see that qk(j) is an estimation on the number of type k resources that are
needed at control step j.

The FDS algorithm tries to minimize the overall concurrency under a fixed
latency by scheduling operations one by one. At every time step, the effect of
scheduling each unscheduled operation on every possible time step in its frame
range is calculated, and the operation and the corresponding time step with the
smallest negative effect is selected. This effect is equated as the force for an unsched-
uled operation opi at control step j, and is comprised of two components: the
self-force, SFi j, and the predecessor–successor forces, PSFi j.

The self-force SFi j represents the direct effect of this scheduling on the overall
concurrency. It is given by:

SFi j =
tL
i +�i

∑
l=tS

i

qk(l)(Hi(l)−pi(l)) (13.3)

where, j ∈ [tS
i ,tL

i], k is the type of operation opi, and Hi(·) is the unit window
function defined on [j, j +�i].

We also need to consider the predecessor and successor forces since assigning
operation opi to time step j might cause the time frame of a predecessor or successor
operation opl to change from [tS

l ,tL
l] to [̃t S

l , t̃ S
l]. The force exerted by a predecessor

or successor is given by:

PSFi j(l) =
t̃ L
i +�l

∑
m=t̃ S

i

(qk(m) · p̃m(opl))−
tL
i +�l

∑
m=tS

i

(qk(m) ·pm(opl)) (13.4)

where p̃m(opl) is computed in the same way as (13.1) except the updated mobility
information [̃tS

l , t̃S
l] is used. Notice that the above computation has to be carried for

all the predecessor and successor operations of opi. The total force of the hypothet-
ical assignment of scheduling opi on time step j is the addition of the self-force and
all the predecessor–successor forces, i.e.,

total forcei j = SFi j +∑
l

PSFi j(l) (13.5)

13 Operation Scheduling: Algorithms and Applications 237

where opl is a predecessor or successor of opi. Finally, the total forces obtained
for all the unscheduled operations at every possible time step are compared. The
operation and time step with the best force reduction is chosen and the partial
scheduling result is incremented until all the operations have been scheduled.

The FDS method is “constructive” because the solution is computed without per-
forming any backtracking. Every decision is made in a greedy manner. If there are
two possible assignments sharing the same cost, the above algorithm cannot accu-
rately estimate the best choice. Based on our experience, this happens fairly often
as the DFG becomes larger and more complex. Moreover, FDS does not take into
account future assignments of operators to the same control step. Consequently, it is
likely that the resulting solution will not be optimal, due to the lack of a look ahead
scheme and the lack of compromises between early and late decisions.

Our experiments show that a baseline FDS implementation based on [34] fails
to find the optimal solution even on small testing cases. To ease this problem, a
look-ahead factor was introduced in the same paper. A second order term of the
displacement weighted by a constant η is included in force computation, and the
value η is experimentally decided to be 1/3. In our experiments, this look-ahead
factor has a positive impact on some testing cases but does not always work well.
More details regarding FDS performance can be found in Sect. 13.4.

13.3.4 List Scheduling

List scheduling is a commonly used heuristic for solving a variety of RCS prob-
lems [36, 37]. It is a generalization of the ASAP algorithm with the inclusion of
resource constraints [25]. A list scheduler takes a data flow graph and a priority list
of all the nodes in the DFG as input. The list is sorted with decreasing magnitude of
priority assigned to each of the operation. The list scheduler maintains a ready list,
i.e., nodes whose predecessors have already been scheduled. In each iteration, the
scheduler scans the priority list and operations with higher priority are scheduled
first. Scheduling an operator to a control step makes its successor operations ready,
which will be added to the ready list. This process is carried until all of the opera-
tions have been scheduled. When there exist more than one ready nodes sharing the
same priority, ties are broken randomly.

It is easy to see that list scheduler always generates feasible schedule. Further-
more, it has been shown that a list scheduler is always capable of producing the
optimal schedule for resource-constrained instruction scheduling problem if we
enumerate the topological permutations of the DFG nodes with the input priority
list [25].

The success of the list scheduler is highly dependent on the priority function and
the structure of the input application (DFG) [25,31,43].One commonly used priority
function assigns the priority inversely proportional to the mobility. This ensures that
the scheduling of operations with large mobilities are deferred because they have
more flexibility as to where they can be scheduled. Many other priority functions

238 G. Wang et al.

have been proposed [2, 5, 18, 25]. However, it is commonly agreed that there is no
single good heuristic for prioritizing the DFG nodes across a range of applications
using list scheduling. Our results in Sect. 13.4 confirm this.

13.3.5 Iterative Heuristic Methods

Both FDS and List Scheduling are greedy constructive methods. Due to the lack of
a look ahead scheme, they are likely to produce a sub-optimal solution. One way to
address this issue is the iterative method proposed by Park and Kyung [33] based
on Kernighan and Lin’s heuristic [24] method used for solving the graph-bisection
problem. In their approach, each operation is scheduled into an earlier or later
step using the move that produces the maximum gain. Then all the operations are
unlocked and the whole procedure is repeated with this new schedule. The qual-
ity of the result produced by this algorithm is highly dependent upon the initial
solution. There have been two enhancements made to this algorithm: (1) Since the
algorithm is computationally efficient it can be run many times with different ini-
tial solution and the best solution can be picked. (2) A better look-ahead scheme
that uses a more sophisticated strategy of move selection as in [kris84] can be used.
More recently, Heijligers et al. [20] and InSyn [39] use evolutionary techniques like
genetic algorithms and simulated evolution.

There are a number of iterative algorithms for the resource constrained problem,
including genetic algorithm [7, 18], tabu search [6, 44], simulated annealing [43],
graph theoretic and computational geometry approaches [4, 10, 30].

13.3.6 Ant Colony Optimization (ACO)

ACO is a cooperative heuristic searching algorithm inspired by ethological studies
on the behavior of ants [15]. It was observed [13] that ants – who lack sophisti-
cated vision – manage to establish the optimal path between their colony and a food
source within a very short period of time. This is done through indirect communi-
cation known as stigmergy via the chemical substance, or pheromone, left by the
ants on the paths. Each individual ant makes a decision on its direction biased on
the “strength” of the pheromone trails that lie before it, where a higher amount of
pheromone hints a better path. As an ant traverses a path, it reinforces that path with
its own pheromone. A collective autocatalytic behavior emerges as more ants will
choose the shortest trails, which in turn creates an even larger amount of pheromone
on the short trails, making such short trails more attractive to the future ants. The
ACO algorithm is inspired by this observation. It is a population based approach
where a collection of agents cooperate together to explore the search space. They
communicate via a mechanism imitating the pheromone trails.

13 Operation Scheduling: Algorithms and Applications 239

One of the first problems to which ACO was successfully applied was the Travel-
ing Salesman Problem (TSP) [15], for which it gave competitive results comparing
with traditional methods. Researchers have since formulated ACO methods for a
variety of traditional NP-hard problems. These problems include the maximum
clique problem, the quadratic assignment problem, the graph coloring problem,
the shortest common super-sequence problem, and the multiple knapsack problem.
ACO also has been applied to practical problems such as the vehicle routing prob-
lem, data mining, network routing problem and the system level task partitioning
problem [12, 48, 49].

It was shown [19] that ACO converges to an optimal solution with probability
of exactly one; however there is no constructive way to guarantee this. Balancing
exploration to achieve close-to-optimal results within manageable time remains an
active research topic for ACO algorithms. MAX–MIN Ant System (MMAS) [42] is
a popularly used method to address this problem. MMAS is built upon the original
ACO algorithm, which improves it by providing dynamically evolving bounds on
the pheromone trails so that the heuristic never strays too far away from the best
encountered solution. As a result, all possible paths will have a non-trivial prob-
ability of being selected; thus it encourages broader exploration of the search
space while maintaining a good differential between alternative solutions. It was
reported that MMAS was the best performing ACO approach on a number of classic
combinatory optimization tasks.

Both time constrained and resource constrained scheduling problems can be
effectively solved by using ACO. Unfortunately, in the consideration of space, we
can only give a general introduction on the ACO formulation for the TCS prob-
lem. For a complete treatment of the algorithms, including detailed discussion on
the algorithms’ implementation, applicability, complexity, extensibility, parameter
selection and performance, please refer to [47, 50].

In its ACO-based formulation, the TCS problem is solved with an iterative
searching process. the algorithms employ a collection of agents that collaboratively
explore the search space. A stochastic decision making strategy is applied in order
to combine global and local heuristics to effectively conduct this exploration. As
the algorithm proceeds in finding better quality solutions, dynamically computed
local heuristics are utilized to better guide the searching process. Each iteration
consists of two stages. First, the ACO algorithm is applied where a collection of
ants traverse the DFG to construct individual operation schedules with respect to
the specified deadline using global and local heuristics. Secondly, these scheduling
results are evaluated using their resource costs. The associated heuristics are then
adjusted based on the solutions found in the current iteration. The hope is that future
iterations will benefit from this adjustment and come up with better schedules.

Each operation or DFG node opi is associated with D pheromone trails τi j , where
j = 1, . . . ,D and D is the specified deadline. These pheromone trails indicate the
global favorableness of assigning the ith operation at the jth control step in order
to minimize the resource cost with respect to the time constraint. Initially, based on
ASAP and ALAP results, τi j is set with some fixed value τ0 if j is a valid control
step for opi; otherwise, it is set to be 0.

240 G. Wang et al.

For each iteration, m ants are released and each ant individually starts to con-
struct a schedule by picking an unscheduled instruction and determining its desired
control step. However, unlike the deterministic approach used in the FDS method,
each ant picks up the next instruction for scheduling decision probabilistically. Once
an instruction oph is selected, the ant needs to make decision on which control
step it should be assigned. This decision is also made probabilistically as illustrated
in (13.6).

ph j =

⎧
⎨
⎩

τh j(t)α ·ηβ
h j

∑l(τα
hl(t)·η

β
hl)

if oph can be scheduled at l and j

0 otherwise
(13.6)

Here j is the time step under consideration. The item ηh j is the local heuristic for
scheduling operation oph at control step j, and α and β are parameters to control
the relative influence of the distributed global heuristic τh j and local heuristic ηh j.
Assuming oph is of type k, ηh j to simply set to be the inverse of the distribution
graph value [34], which is computed based on partial scheduling result and is an
indication on the number of computing units of type k needed at control step j. In
other words, an ant is more likely to make a decision that is globally considered
“good” and also uses the fewest number of resources under the current partially
scheduled result. We do not recursively compute the forces on the successor nodes
and predecessor nodes. Thus, selection is much faster. Furthermore, the time frames
are updated to reflect the changed partial schedule. This guarantees that each ant
will always construct a valid schedule.

In the second stage of our algorithm, the ant’s solutions are evaluated. The quality
of the solution from ant h is judged by the total number of resources, i.e., Qh = ∑k rk.
At the end of the iteration, the pheromone trail is updated according to the quality
of individual schedules. Additionally, a certain amount of pheromone evaporates.
More specifically, we have:

τi j(t) = ρ · τi j(t)+
m

∑
h=1

Δτh
i j(t) where 0 < ρ < 1. (13.7)

Here ρ is the evaporation ratio, and

Δτh
i j =

{
Q/Qh if opi is scheduled at j by ant h
0 otherwise

(13.8)

Q is a fixed constant to control the delivery rate of the pheromone. Two important
operations are performed in the pheromone trail updating process. Evaporation is
necessary for ACO to effectively explore the solution space, while reinforcement
ensures that the favorable operation orderings receive a higher volume of pheromone
and will have a better chance of being selected in the future iterations. The above
process is repeated multiple times until an ending condition is reached. The best
result found by the algorithm is reported.

13 Operation Scheduling: Algorithms and Applications 241

Comparing with the FDS method, the ACO algorithm differs in several aspects.
First, rather than using a one-time constructive approach based on greedy local deci-
sions, the ACO method solves the problem in an evolutionary manner. By using
simple local heuristics, it allows individual scheduling result to be generated in a
faster manner. With a collection of such individual results and by embedding and
adjusting global heuristics associated with partial solutions, it tries to learn during
the searching process. By adopting a stochastic decision making strategy consid-
ering both global experience and local heuristics, it tries to balance the efforts of
exploration and exploitation in this process. Furthermore, it applies positive feed-
back to strengthen the “good” partial solutions in order to speed up the convergence.
Of course, the negative effect is that it may fall into local minima, thus requires com-
pensation measures such as the one introduced in MMAS. In our experiments, we
implemented both the basic ACO and the MMAS algorithms. The latter consistently
achieves better scheduling results, especially for larger DFGs.

13.4 Performance Evaluation

13.4.1 Benchmarks and Setup

In order to test and evaluate our algorithms, we have constructed a comprehen-
sive set of benchmarks named ExpressDFG. These benchmarks are taken from one
of two sources: (1) popular benchmarks used in previous literature; (2) real-life
examples generated and selected from the MediaBench suite [26].

The benefit of having classic samples is that they provide a direct comparison
between results generated by our algorithm and results from previously published
methods. This is especially helpful when some of the benchmarks have known opti-
mal solutions. In our final testing benchmark set, seven samples widely used in
instruction scheduling studies are included. These samples focus mainly on fre-
quently used numeric calculations performed by different applications. However,
these samples are typically small to medium in size, and are considered somewhat
old. To be representative, it is necessary to create a more comprehensive set with
benchmarks of different sizes and complexities. Such benchmarks shall aim to:

– Provide real-life testing cases from real-life applications
– Provide more up-to-date testing cases from modern applications
– Provide challenging samples for instruction scheduling algorithms with regards

to larger number of operations, higher level of parallelism and data dependency
– Provide a wide range of synthesis problems to test the algorithms’ scalability

For this purpose, we investigated the MediaBench suite, which contains a wide
range of complete applications for image processing, communications and DSP
applications. We analyzed these applications using the SUIF [3] and Machine SUIF
[41] tools, and over 14,000 DFGs were extracted as preliminary candidates for our

242 G. Wang et al.

Table 13.1 ExpressDFG benchmark suite

Benchmark name No. nodes No. edges ID

HAL 11 8 4
horner bezier† 18 16 8
ARF 28 30 8
motion vectors† 32 29 6
EWF 34 47 14
FIR2 40 39 11
FIR1 44 43 11
h2v2 smooth downsample† 51 52 16
feedback points† 53 50 7
collapse pyr† 56 73 7
COSINE1 66 76 8
COSINE2 82 91 8
write bmp header† 106 88 7
interpolate aux† 108 104 8
matmul† 109 116 9
idctcol 114 164 16
jpeg idct ifast† 122 162 14
jpeg fdct islow† 134 169 13
smooth color z triangle† 197 196 11
invert matrix general† 333 354 11

Benchmarks with † are extracted from MediaBench

benchmark set. After careful study, thirteen DFG samples were selected from four
MediaBench applications: JPEG, MPEG2, EPIC and MESA.

Table 13.1 lists all 20 benchmarks that were included in our final benchmark set.
Together with the names of the various functions where the basic blocks originated
are the number of nodes, number of edges and instruction depth (assuming unit
delay for every instruction) of the DFG. The data, including related statistics, DFG
graphs and source code for the all testing benchmarks, is available online [17].

For all testing benchmarks, operations are allocated on two types of computing
resources, namely MUL and ALU, where MUL is capable of handling multipli-
cation and division, and ALU is used for other operations such as addition and
subtraction. Furthermore, we define the operations running on MUL to take two
clock cycles and the ALU operations take one. This definitely is a simplified case
from reality. However, it is a close enough approximation and does not change
the generality of the results. Other choices can easily be implemented within our
framework.

13.4.2 Time Constrained Scheduling: ACO vs. FDS

With the assigned resource/operation mapping, ASAP is first performed to find the
critical path delay Lc. We then set our predefined deadline range to be [Lc,2Lc], i.e.,

13 Operation Scheduling: Algorithms and Applications 243

from the critical path delay to two times of this delay. This results 263 testing cases
in total. For each delay, we run FDS first to obtain its scheduling result. Following
this, the ACO algorithm is executed five times to obtain enough data for performance
evaluation. We report the FDS result quality, the average and best result quality for
the ACO algorithm and the standard deviation for these results. The execution time
information for both algorithms is also reported.

We have implemented the ACO formulation in C for the TCS problem. The evap-
oration rate ρ is configured to be 0.98. The scaling parameters for global and local
heuristics are set to be α = β = 1 and delivery rate Q = 1. These parameters are
not changed over the tests. We also experimented with different ant number m and
the allowed iteration count N. For example, set m to be proportional to the average
branching factor of the DFG under study and N to be proportional to the total oper-
ation number. However, it is found that there seems to exist a fixed value pair for m
and N which works well across the wide range of testing samples in our benchmark.
In our final settings, we set m to be 10, and N to be 150 for all the timing constrained
scheduling experiments.

Based on our experiments, the ACO based operation scheduling achieves bet-
ter or much better results. Our approach seems to have much stronger capability in
robustly finding better results for different testing cases. Furthermore, it scales very
well over different DFG sizes and complexities. Another aspect of scalability is the
pre-defined deadline. The average result quality generated by the ACO algorithm
is better than or equal to the FDS results in 258 out of 263 cases. Among them,
for 192 testing cases (or 73% of the cases) the ACO method outperforms the FDS
method. There are only five cases where the ACO approach has worse average qual-
ity results. They all happened on the invert matrix general benchmark. On average,
we can expect a 16.4% performance improvement over FDS. If only considering the
best results among the five runs for each testing case, we achieve a 19.5% resource
reduction averaged over all tested samples. The most outstanding results provided
by the ACO method achieve a 75% resource reduction compared with FDS. These
results are obtained on a few deadlines for the jpeg idct ifast benchmark.

Besides absolute quality of the results, one difference between FDS and the
ACO method is that ACO method is relatively more stable. In our experiments, it is
observed that the FDS approach can provide worse quality results as the deadline is
relaxed. Using the idctcol as an example, FDS provides drastically worse results for
deadlines ranging from 25 to 30 though it is able to reach decent scheduling qual-
ities for deadline from 19 to 24. The same problem occurs for deadlines between
36 and 38. One possible reason is that as the deadline is extended, the time frame
of each operation is also extended, which makes the force computation more likely
to clash with similar values. Due to the lack of backtracking and good look-ahead
capability, an early mistake would lead to inferior results. On the other hand, the
ACO algorithm robustly generates monotonically non-increasing results with fewer
resource requirements as the deadline increases.

244 G. Wang et al.

13.4.3 Resource Constrained Scheduling: ACO vs. List Scheduling
and ILP

We have implemented the ACO-based resource-constrained scheduling algorithm
and compared its performance with the popularly used list scheduling and force-
directed scheduling algorithms.

For each of the benchmark samples, we run the ACO algorithm with different
choices of local heuristics. For each choice, we also perform five runs to obtain
enough statistics for evaluating the stability of the algorithm. Again we fixed the
number of ants per iteration 10 and in each run we allow 100 iterations. Other
parameters are also the same as those used in the timing constrained problem. The
best schedule latency is reported at the end of each run and then the average value
is reported as the performance for the corresponding setting. Two different exper-
iments are conducted for resource constrained scheduling – the homogenous case
and the heterogenous case.

For the homogenous case, resource allocation is performed before the operation
scheduling. Each operation is mapped to a unique resource type. In other words,
there is no ambiguity on which resource the operation shall be handled during the
scheduling step. In this experiment, similar to the timing constrained case, two types
of resources (MUL/ALU) are allowed. The number of each resource type is prede-
fined after making sure they do not make the experiment trivial (for example, if we
are too generous, then the problem simplifies to an ASAP problem).

Comparing with a variety of list scheduling approaches and the force-directed
scheduling method, the ACO algorithm generates better results consistently over all
testing cases, which is demonstrated by the number of times that it provides the best
results for the tested cases. This is especially true for the case when operation depth
(OD) is used as the local heuristic, where we find the best results in 14 cases amongst
20 tested benchmarks. For other traditional methods, FDS generates the most hits
(ten times) for best results, which is still less than the worst case of ACO (11 times).
For some of the testing samples, our method provides significant improvement on
the schedule latency. The biggest saving achieved is 22%. This is obtained for the
COSINE2 benchmark when operation mobility (OM) is used as the local heuris-
tic for our algorithm and also as the heuristic for constructing the priority list for
the traditional list scheduler. For cases that our algorithm fails to provide the best
solution, the quality of its results is also much closer to the best than other methods.

ACO also demonstrates much stronger stability over different input applications.
As indicated in Sect. 13.3.4, the performance of traditional list scheduler heavily
depends on the input application, while the ACO algorithm is much less sensitive to
the choice of different local heuristics and input applications. This is evidenced by
the fact that the standard deviation of the results achieved by the new algorithm is
much smaller than that of the traditional list scheduler. The average standard devia-
tion for list scheduling over all the benchmarks and different heuristic choices is 1.2,
while for the ACO algorithm it is only 0.19. In other words, we can expect to achieve

13 Operation Scheduling: Algorithms and Applications 245

high quality scheduling results much more stably on different application DFGs
regardless of the choice of local heuristic. This is a great attribute desired in practice.

One possible explanation for the above advantage is the different ways how the
scheduling heuristics are used by list scheduler and the ACO algorithm. In list
scheduling, the heuristics are used in a greedy manner to determine the order of the
operations. Furthermore, the schedule of the operations is done all at once. Differ-
ently, in the ACO algorithm, local heuristics are used stochastically and combined
with the pheromone values to determine the operations’ order. This makes the solu-
tion exploration more balanced. Another fundamental difference is that the ACO
algorithm is an iterative process. In this process, the pheromone value acts as an
indirect feedback and tries to reflect the quality of a potential component based on
the evaluations of historical solutions that contain this component. It introduces a
way to integrate global assessments into the scheduling process, which is missing
in the traditional list or force-directed scheduling.

In the second experiment, heterogeneous computing units are allowed, i.e., one
type of operation can be performed by different types of resources. For exam-
ple, multiplication can be performed by either a faster multiplier or a regular one.
Furthermore, multiple same type units are also allowed. For example, we may have
three faster multipliers and two regular ones.

We conduct the heterogenous experiments with the same configuration as for
the homogenous case. Moreover, to better assess the quality of our algorithm, the
same heterogenous RCS tasks are also formulated as integer linear programming
problems and then optimally solved using CPLEX. Since the ILP solution is time
consuming to obtain, our heterogenous tests are only done for the classic samples.

Compared with a variety of list scheduling approaches and the force-directed
scheduling method, the ACO algorithm generates better results consistently over all
testing cases. The biggest saving achieved is 23%. This is obtained for the FIR2
benchmark when the latency weighted operation depth (LWOD) is used as the local
heuristic. Similar to the homogenous case, our algorithm outperforms other meth-
ods in regards to consistently generating high-quality results. The average standard
deviation for list scheduler over all the benchmarks and different heuristic choices
is 0.8128, while that for the ACO algorithm is only 0.1673.

Though the results of force-directed scheduler generally outperform the list
scheduler, our algorithm achieves even better results. On average, comparing with
the force-directed approach, our algorithm provides a 6.2% performance enhance-
ment for the testing cases, while performance improvement for individual test
sample can be as much as 14.7%.

Finally, compared to the optimal scheduling results computed by using the inte-
ger linear programming model, the results generated by the ACO algorithm are
much closer to the optimal than those provided by the list scheduling heuristics
and the force-directed approach. For all the benchmarks with known optima, our
algorithm improves the average schedule latency by 44% comparing with the list
scheduling heuristics. For the larger size DFGs such as COSINE1 and COSINE2,
CPLEX fails to generate optimal results after more than 10 h of execution on a
SPARC workstation with a 440 MHz CPU and 384 MB memory. In fact, CPLEX

246 G. Wang et al.

crashes for these two cases because of running out of memory. For COSINE1,
CPLEX does provide a intermediate sub-optimal solution of 18 cycles before it
crashes. This result is worse than the best result found by the ACO algorithm.

13.4.4 Further Assessment: ACO vs. Simulated Annealing

In order to further investigate the quality of the ACO-based algorithms, we com-
pared them with a simulated annealing (SA) approach. Our SA implementation
is similar to the algorithm presented in [43]. The basic idea is very similar to the
ACO approach in which a meta-heuristic method (SA) is used to guide the search-
ing process while a traditional list scheduler is used to evaluate the result quality.
The scheduling result with the best resource usage is reported when the algorithm
terminates.

The major challenge here is the construction of a neighbor selection in the SA
process. With the knowledge of each operation’s mobility range, it is trivial to see
the search space for the TCS problem is covered by all the possible combinations of
the operation/timestep pairs, where each operation can be scheduled into any time
step in its mobility range. In our formulation, given a scheduling S where operation
opi is scheduled at ti, we experimented with two different methods for generating a
neighbor solution:

1. Physical neighbor: A neighbor of S is generated by selecting an operation opi

and rescheduling it to a physical neighbor of its current scheduled time step ti,
namely either ti + 1 or ti− 1 with even possibility. In case ti is on the boundary
of its mobility range, we treat the mobility range as a circular buffer;

2. Random neighbor: A neighbor of S is generated by selecting an operation and
rescheduling it to any of the position in its mobility range excluding its currently
scheduled position.

However, both of the above approaches suffer from the problem that a lot of
these neighbors will be invalid because they may violate the data dependency posed
by the DFG. For example, say, in S a single cycle operation op1 is scheduled at
time step 3, and another single cycle operation op2 which is data dependent on
op1 is scheduled at time step 4. Changing the schedule of op2 to step 3 will create
an invalid scheduling result. To deal with this problem in our implementation, for
each generated scheduling, we quickly check whether it is valid by verifying the
operation’s new schedule against those of its predecessor and successor operations
defined in the DFG. Only valid schedules will be considered.

Furthermore, in order to give roughly equal chance to each operation to be selec-
ted in the above process, we try to generate multiple neighbors before any tempera-
ture update is taken. This can be considered as a local search effort, which is widely
implemented in different variants of SA algorithm. We control this local search
effort with a weight parameter θ . That is before any temperature update taking
place, we attempt to generate θN valid scheduling candidates where N is the number

13 Operation Scheduling: Algorithms and Applications 247

of operations in the DFG. In our work, we set θ = 2, which roughly gives each
operation two chances to alter its currently scheduled position in each cooling step.

This local search mechanism is applied to both neighbor generation schemes
discussed above. In our experiments, we found there is no noticeable difference
between the two neighbor generation approaches with respect to the quality of
the final scheduling results except that the random neighbor method tends to take
significantly more computing time. This is because it is more likely to come up
with an invalid scheduling which are simply ignored in our algorithm. In our final
realization, we always use the physical neighbor method.

Another issue related to the SA implementation is how to set the initial seed
solution. In our experiments, we experimented three different seed solutions: ASAP,
ALAP and a randomly generated valid scheduling. We found that SA algorithm with
a randomly generated seed constantly outperforms that using the ASAP or ALAP
initialization. It is especially true when the physical neighbor approach is used. This
is not surprising since the ASAP and ALAP solutions tend to cluster operations
together which is bad for minimizing resource usage. In our final realization, we
always use a randomly generated schedule as the seed solution.

The framework of our SA implementation for both timing constrained and
resource constrained scheduling is similar to the one reported in [51]. The accep-
tance of a more costly neighboring solution is determined by applying the Boltz-
mann probability criteria [1], which depends on the cost difference and the annealing
temperature. In our experiments, the most commonly known and used geometric
cooling schedule [51] is applied and the temperature decrement factor is set to 0.9.
When it reaches the pre-defined maximum iteration number or the stop temperature,
the best solution found by SA is reported.

Similar to the ACO algorithm, we perform five runs for each benchmark sample
and report the average savings, the best savings, and the standard deviation of the
reported scheduling results. It is observed that the SA method provides much worse
results compared with the ACO solutions. In fact, the ACO approach provides better
results on every testing case. Though the SA method does have significant gains on
select cases over FDS, its average performance is actually worse than FDS by 5%,
while our method provides a 16.4% average savings. This is also true if we consider
the best savings achieved amongst multiple runs where a modest 1% savings is
observed in SA comparing with a 19.5% reduction obtained by the ACO method.
Furthermore, the quality of the SA method seems to be very dependent on the input
applications. This is evidenced by the large dynamic range of the scheduling quality
and the larger standard deviation over the different runs. Finally, we also want to
make it clear that to achieve this result, the SA approach takes substantially more
computing time than the ACO method. A typical experiment over all 263 testing
cases will run between 9 to 12 h which is 3–4 times longer than the ACO-based
TCS algorithm.

As discussed above, our SA formulation for resource constrained scheduling is
similar to that studied in [43]. It is relatively more straight forward since it will
always provide valid scheduling using a list scheduler. To be fair, a randomly gen-
erated operation list is used as the seed solution for the SA algorithm. The neighbor

248 G. Wang et al.

solutions are constructed by swapping the positions of two neighboring operations in
the current list. Since the algorithm always generates a valid scheduling, we can bet-
ter control the runtime than in its TCS counterpart by adjusting the cooling scheme
parameter. We carried experiments using execution limit ranging from 1 to 10 times
of that of the ACO approach. It was observed that SA RCS algorithm provides poor
performance when the time limit was too short. On the other hand, once we increase
this time limit to over five times of the ACO execution time, there was no significant
improvement on the results as the execution time increased. It is observed that the
ACO-based algorithm consistently outperforms it while using much less computing
time.

13.5 Design Space Exploration

As a direct application of the operation scheduling algorithms, we examine the
Design Space Exploration problem in this section, which is not only of theoretical
interest but also encountered frequently in real-life high level synthesis practice.

13.5.1 Problem Formulation and Related Work

When building a digital system, designers are faced with a countless number of
decisions. Ideally, they must deliver the smallest, fastest, lowest power device that
can implement the application at hand. More often than not, these design parameters
are contradictory. Designers must be able to reason about the tradeoffs amongst a set
of parameters. Such decisions are often made based on experience, i.e., this worked
before, it should work again. Exploration tools that can quickly survey the design
space and report a variety of options are invaluable.

From optimization point of view, design space exploration can be distilled to
identifying a set of Pareto optimal design points according to some objective func-
tion. These design points form a curve that provides the best tradeoffs for the
variables in the objective function. Once the curve is constructed, the designer can
make design decisions based on the relative merits of the various system configu-
rations. Timing performance and the hardware cost are two common objectives in
such process.

Resource allocation and scheduling are two fundamental problems in construct-
ing such Pareto optimal curves for time/cost tradeoffs. By applying resource con-
strained scheduling, we try to minimize the application latency without violating
the resource constraints. Here allocation is performed before scheduling, and a dif-
ferent resource allocation will likely produce a vastly different scheduling result.
On the other hand, we could perform scheduling before allocation; this is the time
constrained scheduling problem. Here the inputs are a data flow graph and a time
deadline (latency). The output is again a start time for each operation, such that the
latency is not violated, while attempting to minimize the number of resources that

13 Operation Scheduling: Algorithms and Applications 249

are needed. It is not clear as to which solution is better. Nor is it clear on the order
that we should perform scheduling and allocation.

Obviously, one possible method of design space exploration is to vary the con-
straints to probe for solutions in a point-by-point manner. For instance, you can
use some time constrained algorithm iteratively, where each iteration has a different
input latency. This will give you a number of solutions, and their various resource
allocations over a set of time points. Or you can run some resource constrained
algorithm iteratively. This will give you a latency for each of these area constraints.

Design space exploration problem has been the focus in numerous studies.
Though it is possible to formulate the problems using Integer Linear Program (ILP),
they quickly become intractable when the problem sizes get large. Much research
has been done to cleverly use heuristic approaches to address these problems. Actu-
ally, one major motivation of the popularly used Force Directed Scheduling (FDS)
algorithm [34] was to address the design space exploration task, i.e., by performing
FDS to solve a series timing constrained scheduling problems. In the same paper,
the authors also proposed a method called force-directed list scheduling (FDLS) to
address the resource constrained scheduling problem. The FDS method is construc-
tive since the solution is computed without backtracking. Every decision is made
deterministically in a greedy manner. If there are two potential assignments with the
same cost, the FDS algorithm cannot accurately estimate the best choice. Moreover,
FDS does not take into account future assignments of operators to the same control
step. Consequently, it is possible that the resulting solution will not be optimal due to
it’s greedy nature. FDS works well on small sized problems, however, it often results
to inferior solutions for more complex problems. This phenomena is observed in our
experiments reported in Sect. 13.4.

In [16], the authors concentrate on providing alternative “module bags” for
design space exploration by heuristically solving the clique partitioning problems
and using force directed scheduling. Their work focuses more on the situations
where the operations in the design can be executed on alternative resources. In the
Voyager system [11], scheduling problems are solved by carefully bounding the
design space using ILP, and good results are reported on small sized benchmarks.
Moreover, it reveals that clock selection can have an important impact on the final
performance of the application. In [14, 21, 32], genetic algorithms are implemented
for design space exploration. Simulated annealing [29] has also been applied in this
domain. A survey on design space exploration methodologies can be found in [28]
and [9].

In this chapter, we focus our attention on the basic design space exploration prob-
lem similar to the one treated in [34], where the designers are faced with the task
of mapping a well defined application represented as a DFG onto a set of known
resources where the compatibility between the operations and the resource types has
been defined. Furthermore, the clock selection has been determined in the form of
execution cycles for the operations. The goal is to find the a Pareto optimal tradeoff
amongst the design implementations with regard to timing and resource costs. Our
basic method can be extended to handle clock selection and the use of alternative
resources. However, this is beyond the scope of this discussion.

250 G. Wang et al.

13.5.2 Exploration Using Time and Resource Constrained Duality

As we have discussed, traditional approaches solve the design space exploration task
solving a series of scheduling problems, using either a resource constrained method
or a timing constrained method. Unfortunately, designers are left with individual
tools for tackling either problem. They are faced with questions like: Where do we
start the design space exploration? What is the best way to utilize the scheduling
tools? When do we stop the exploration?

Moreover, due to the lack of connection amongst the traditional methods, there
is very little information shared between time constrained and resource constrained
solutions. This is unfortunate, as we are throwing away potential solutions since
solving one problem can offer more insight into the other problem. Here we pro-
pose a novel design exploration method that exploits the duality of the time and
resource constrained scheduling problems. Our exploration automatically constructs
a time/area tradeoff curve in a fast, effective manner. It is a general approach and
can be combined with any high quality scheduling algorithm.

We are concerned with the design problem of making tradeoffs between hardware
cost and timing performance. This is still a commonly faced problem in practice, and
other system metrics, such as power consumption, are closely related with them.
Based on this, we have a 2-D design space as illustrated in Fig. 13.1a, where the x-
axis is the execution deadline and the y-axis is the aggregated hardware cost. Each
point represents a specific tradeoff of the two parameters.

For a given application, the designer is given R types of computing resources
(e.g., multipliers and adders) to map the application to the target device. We define
a specific design as a configuration, which is simply the number of each specific
resource type. In order to keep the discussion simple, in the rest of the paper we

14 16 18 20 22 24 26 28 30
deadline (cycle)

50

100

150

200

250

300

350

co
st

design space

L

c1

t1 t2

(m1,a1) (m2,a2)

F

U

deadline (cycle)

co
st

design space

L

TCSTCSTCS

RCS

RCS

(m1,a1)

(m2,a2)

(m3,a3)

(m?,a?)

t1t2-1t3-1 t2t3

F

U

(a) (b)

Fig. 13.1 Design space exploration using duality between schedule problems (curve L gives the
optimal time/cost tradeoffs)

13 Operation Scheduling: Algorithms and Applications 251

assume there are only two resource types M (multiply) and A (add), though our
algorithm is not limited to this constraint. Thus, each configuration can be specified
by (m,a) where m is the number of resource M and a is the number of A. For each
specific configuration we have the following lemma about the portion of the design
space that it maps to.

Lemma 1. Let C be a feasible configuration with cost c for the target application.
The configuration maps to a horizontal line in the design space starting at (tmin,c),
where tmin is the resource constrained minimum scheduling time.

The proof of the lemma is straightforward as each feasible configuration has a
minimum execution time tmin for the application, and obviously it can handle every
deadline longer than tmin. For example, in Fig. 13.1a, if the configuration (m1,a1)
has a cost c1 and a minimum scheduling time t1, the portion of design space that
it maps to is indicated by the arrow next to it. Of course, it is possible for another
configuration (m2,a2) to have the same cost but a bigger minimum scheduling time
t2. In this case, their feasible space overlaps beyond (t2,c1).

As we discussed before, the goal of design space exploration is to help the
designer find the optimal tradeoff between the time and area. Theoretically, this
can be done by finding the minimum area c amongst all the configurations that are
capable of producing t ∈ [tasap,tseq], where tasap is the ASAP time for the applica-
tion while tseq is the sequential execution time. In other words, we can find these
points by performing time constrained scheduling (TCS) on all t in the interested
range. These points form a curve in the design space, as illustrated by curve L in
Fig. 13.1a. This curve divides the design space into two parts, labeled with F and U
respectively in Fig. 13.1a, where all the points in F are feasible to the given applica-
tion while U contains all the unfeasible time/area pairs. More interestingly, we have
the following attribute for curve L:

Lemma 2. Curve L is monotonically non-increasing as the deadline t increases.1

Due to this lemma, we can use the dual solution of finding the tradeoff curve by
identifying the minimum resource constrained scheduling (RCS) time t amongst all
the configurations with cost c. Moreover, because the monotonically non-increasing
property of curve L, there may exist horizontal segments along the curve. Based
on our experience, horizontal segments appear frequently in practice. This moti-
vates us to look into potential methods to exploit the duality between RCS and TCS
to enhance the design space exploration process. First, we consider the following
theorem:

Theorem 1. If C is a configuration that provides the minimum cost at time t1, then
the resource constrained scheduling result t2 of C satisfies t2 � t1. More importantly,
there is no configuration C′ with a smaller cost that can produce an execution time
within [t2,t1].2

1 Proof is omitted because of page limitation.
2 Proof is omitted because of page limitation.

252 G. Wang et al.

This theorem provides a key insight for the design space exploration problem. It
says that if we can find a configuration with optimal cost c at time t1, we can move
along the horizontal segment from (t1,c) to (t2,c) without losing optimality. Here
t2 is the RCS solution for the found configuration. This enables us to efficiently
construct the curve L by iteratively using TCS and RCS algorithms and leveraging
the fact that such horizontal segments do frequently occur in practice. Based on
the above discussion, we propose a new space exploration algorithm as shown in
Algorithm 1 that exploits the duality between RCS and TCS solutions. Notice the
min function in step 10 is necessary since a heuristic RCS algorithm may not return
the true optimal that could be worse than tcur.

By iteratively using the RCS and TCS algorithms, we can quickly explore the
design space. Our algorithm provides benefits in runtime and solution quality com-
pared with using RCS or TCS alone. Our algorithm performs exploration starting
from the largest deadline tmax. Under this case, the TCS result will provide a con-
figuration with a small number of resources. RCS algorithms have a better chance
to find the optimal solution when the resource number is small, therefore it pro-
vides a better opportunity to make large horizontal jumps. On the other hand, TCS
algorithms take more time and provide poor solutions when the deadline is uncon-
strained. We can gain significant runtime savings by trading off between the RCS
and TCS formulations.

The proposed framework is general and can be combined with any scheduling
algorithm. We found that in order for it to work in practice, the TCS and RCS
algorithms used in the process require special characteristics. First, they must be
fast, which is generally requested for any design space exploration tool. More
importantly, they must provide close to optimal solutions, especially for the TCS
problem. Otherwise, the conditions for Theorem 1 will not be satisfied and the gen-
erated curve L will suffer significantly in quality. Moreover, notice that we enjoy the
biggest jumps when we take the minimum RCS result amongst all the configurations

Algorithm 1 Iterative design space exploration algorithm

procedure DSE
output: curve L

1: interested time range [tmin, tmax], where tmin � tasap and tmax � tseq.
2: L = φ
3: tcur = tmax

4: while tcur � tmin do
5: perform TCS on tcur to obtain the optimal configurations Ci.
6: for configuration Ci do
7: perform RCS to obtain the minimum time t i

rcs
8: end for
9: trcs = mini (t i

rcs) /* find the best rcs time */
10: tcur = min(tcur, trcs)−1
11: extend L based on TCS and RCS results
12: end while
13: return L

13 Operation Scheduling: Algorithms and Applications 253

that provide the minimum cost for the TCS problem. This is reflected in Steps 6–9
in Algorithm 1. For example, it is possible that both (m,a) and (m′,a′) provide the
minimum cost at time t but they have different deadline limits. Therefore a good
TCS algorithm used in the proposed approach should be able to provide multiple
candidate solutions with the same minimum cost, if not all of them.

13.6 Conclusion

In this chapter, we provide a comprehensive survey on various operation schedul-
ing algorithms, including List Scheduling, Force-Directed Scheduling, Simulated
Annealing, Ant Colony Optimization (ACO) approach, together with others. We
report our evaluation for the aforementioned algorithms against a comprehensive set
of benchmarks, called ExpressDFG. We give the characteristics of these benchmarks
and discuss suitability for evaluating scheduling algorithms. We present detailed
performance evaluation results in regards of solution quality, stability of the algo-
rithms, their scalability over different applications and their runtime efficiency. As
a direct application, we present a uniformed design space exploration method that
exploits duality between the timing and resource constrained scheduling problems.

Acknowledgment This work was partially supported by National Science Foundation Grant
CNS-0524771.

References

1. Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzmann Machines: A Stochastic
Approach to Combinatorial Optimization and Neural Computing. Wiley, New York, NY.

2. Adam, T. L., Chandy, K. M., and Dickson, J. R. (1974). A comparison of list schedules for
parallel processing systems. Communications of the ACM, 17(12):685–690.

3. Aigner, G., Diwan, A., Heine, D. L., Moore, M. S. L. D. L., Murphy, B. R., and Sapuntzakis,
C. (2000). The Basic SUIF Programming Guide. Computer Systems Laboratory, Stanford
University.

4. Aletà, A., Codina, J. M., and and Antonio G., Jesús S. (2001). Graph-Partitioning Based
Instruction Scheduling for ClusteredProcessors. In Proceedings of the 34th Annual ACM/IEEE
International Symposium on Microarchitecture.

5. Auyeung, A., Gondra, I., and Dai, H. K. (2003). Integrating random ordering into multi-
heuristic list scheduling genetic algorithm. Advances in Soft Computing: Intelligent Systems
Design and Applications. Springer, Berlin Heidelberg New York.

6. Beaty, Steve J. (1993). Genetic algorithms versus tabu search for instruction scheduling.
In Proceedings of the International Conference on Artificial Neural Networks and Genetic
Algorithms.

7. Beaty, Steven J. (1991). Genetic algorithms and instruction scheduling. In Proceedings of the
24th Annual International Symposium on Microarchitecture.

8. Bernstein, D., Rodeh, M., and Gertner, I. (1989). On the Complexity of Scheduling Problems
for Parallel/PipelinedMachines. IEEE Transactions on Computers, 38(9):1308–1313.

254 G. Wang et al.

9. C. McFarland, M., Parker, A. C., and Camposano, R. (1990). The high-level synthesis of
digital systems. In Proceedings of the IEEE, vol. 78, pp. 301–318.

10. Camposano, R. (1991). Path-based scheduling for synthesis. IEEE Transaction on Computer-
Aided Design, 10(1):85–93.

11. Chaudhuri, S., Blythe, S. A., and Walker, R. A. (1997). A solution methodology for exact
design space exploration in a three-dimensional design space. IEEE Transactions on very
Large Scale Integratioin Systems, 5(1):69–81.

12. Corne, D., Dorigo, M., and Glover, F., editors (1999). New Ideas in Optimization. McGraw
Hill, London.

13. Deneubourg, J. L. and Goss, S. (1989). Collective Patterns and Decision Making. Ethology,
Ecology and Evolution, 1:295–311.

14. Dick, R. P. and Jha, N. K. (1997). MOGAC: A Multiobjective Genetic Algorithm for the Co-
Synthesis of Hardware-Software Embedded Systems. In IEEE/ACM Conference on Computer
Aided Design, pp. 522–529.

15. Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant System: Optimization by a Colony
of Cooperating Agents. IEEE Transactions on Systems, Man and Cybernetics, Part-B,
26(1):29–41.

16. Dutta, R., Roy, J., and Vemuri, R. (1992). Distributed design-space exploration for high-level
synthesis systems. In DAC ’92, pp. 644–650. IEEE Computer Society Press, Los Alamitos,
CA.

17. ExpressDFG (2006). ExpressDFG benchmark web site. http://express.ece.ucsb.edu/
benchmark/.

18. Grajcar, M. (1999). Genetic List Scheduling Algorithm for Scheduling and Allocationon
a Loosely Coupled Heterogeneous Multiprocessor System. In Proceedings of the 36th
ACM/IEEE Conference on Design Automation Conference.

19. Gutjahr, W. J. (2002). Aco algorithms with guaranteed convergence to the optimal solution.
Information Processing Letters, 82(3):145–153.

20. Heijligers, M. and Jess, J. (1995). High-level synthesis scheduling and allocation using
genetic algorithms based on constructive topological scheduling techniques. In International
Conference on Evolutionary Computation, pp. 56–61, Perth, Australia.

21. Heijligers, M. J. M., Cluitmans, L. J. M., and Jess, J. A. G. (1995). High-level synthesis
scheduling and allocation using genetic algorithms. p. 11.

22. Hu, T. C. (1961). Parallel sequencing and assembly line problems. Operations Research,
9(6):841–848.

23. Kennedy, K. and Allen, R. (2001). Optimizing Compilers for Modern Architectures: A
Dependence-basedApproach. Morgan Kaufmann, San Francisco.

24. Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49(2):291–307.

25. Kolisch, R. and Hartmann, S. (1999). Heuristic algorithms for solving the resource-
constrained project scheduling problem: classification and computational analysis. Project
Scheduling: Recent Models, Algorithms and Applications. Kluwer Academic, Dordrecht.

26. Lee, C., Potkonjak, M., and Mangione-Smith, W. H. (1997). Mediabench: A tool for evaluating
and synthesizing multimedia and communications systems. In Proceedings of the 30th Annual
ACM/IEEE International Symposium on Microarchitecture.

27. Lee, J.-H., Hsu, Y.-C., and Lin, Y.-L. (1989). A new integer linear programming formulation
for the scheduling problem in data path synthesis. In Proceedings of ICCAD-89, pp. 20–23,
Santa Clara, CA.

28. Lin, Y.-L. (1997). Recent developments in high-level synthesis. ACM Transactions on Design
of Automation of Electronic Systems, 2(1):2–21.

29. Madsen, J., Grode, J., Knudsen, P. V., Petersen, M. E., and Haxthausen, A. (1997). LYCOS:
The Lyngby Co-Synthesis System. Design Automation for Embedded Systems, 2(2):125–63.

30. Memik, S. O., Bozorgzadeh, E., Kastner, R., and MajidSarrafzadeh (2001). A super-scheduler
for embedded reconfigurable systems. In IEEE/ACM International Conference on Computer-
Aided Design.

13 Operation Scheduling: Algorithms and Applications 255

31. Micheli, G. De (1994). Synthesis and Optimization of Digital Circuits. McGraw-Hill, New
York.

32. Palesi, M. and Givargis, T. (2002). Multi-Objective Design Space Exploration Using Genet-
icAlgorithms. In Proceedings of the Tenth International Symposium on Hardware/Software-
Codesign.

33. Park, I.-C. and Kyung, C.-M. (1991). Fast and near optimal scheduling in automatic data path
synthesis. In DAC ’91: Proceedings of the 28th conference on ACM/IEEE design automation,
pp. 680–685. ACM Press, New York, NY.

34. Paulin, P. G. and Knight, J. P. (1987). Force-directed scheduling in automatic data path
synthesis. In 24th ACM/IEEE Conference Proceedings on Design Automation Conference.

35. Paulin, P. G. and Knight, J. P. (1989). Force-directed scheduling for the behavioral synthesis
of asic’s. IEEE Transactions on Computer-Aided Design, 8:661–679.

36. Poplavko, P., van Eijk, C. A. J., and Basten, T. (2000). Constraint analysis and heuris-
tic scheduling methods. In Proceedings of 11th Workshop on Circuits, Systems and Signal
Processing(ProRISC2000), pp. 447–453.

37. Schutten, J. M. J. (1996). List scheduling revisited. Operation Research Letter, 18:167–170.
38. Semiconductor Industry Association (2003). National Technology Roadmap for Semiconduc-

tors.
39. Sharma, A. and Jain, R. (1993). Insyn: Integrated scheduling for dsp applications. In DAC, pp.

349–354.
40. Smith, J. E. (1989). Dynamic instruction scheduling and the astronautics ZS-1. IEEE

Computer, 22(7):21–35.
41. Smith, M. D. and Holloway, G. (2002). An Introduction to Machine SUIF and Its Portable

Librariesfor Analysis and Optimization. Division of Engineering and Applied Sciences,
Harvard University.

42. Stützle, T. and Hoos, H. H. (2000). MAX–MIN Ant System. Future Generation Computer
Systems, 16(9):889–914.

43. Sweany, P. H. and Beaty, S. J. (1998). Instruction scheduling using simulated annealing. In
Proceedings of 3rd International Conference on Massively Parallel Computing Systems.

44. Topcuouglu, H., Hariri, S., and you Wu, M. (2002). Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed
Systems, 13(3):260–274.

45. Verhaegh, W. F. J., Aarts, E. H. L., Korst, J. H. M., and Lippens, P. E. R. (1991). Improved
force-directed scheduling. In EURO-DAC ’91: Proceedings of the Conference on European
Design Automation, pp. 430–435. IEEE Computer Society Press, Los Alamitos, CA.

46. Verhaegh, W. F. J., Lippens, P. E. R., Aarts, E. H. L., Korst, J. H. M., van der Werf, A.,
and van Meerbergen, J. L. (1992). Efficiency improvements for force-directed scheduling.
In ICCAD ’92: Proceedings of the 1992 IEEE/ACM international Conference on Computer-
Aided Design, pp. 286–291. IEEE Computer Society Press, Los Alamitos, CA.

47. Wang, G., Gong, W., DeRenzi, B., and Kastner, R. (2006). Ant Scheduling Algorithms for
Resource and Timing Constrained Operation Scheduling. IEEE Transactions of Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 26(6):1010–1029.

48. Wang, G., Gong, W., and Kastner, R. (2003). A New Approach for Task Level Computa-
tional ResourceBi-partitioning. 15th International Conference on Parallel and Distributed
Computing and Systems, 1(1):439–444.

49. Wang, G., Gong, W., and Kastner, R. (2004). System level partitioning for programmable plat-
forms using the ant colony optimization. 13th International Workshop on Logic and Synthesis,
IWLS’04.

50. Wang, G., Gong, W., and Kastner, R. (2005). Instruction scheduling using MAX–MIN ant
optimization. In 15th ACM Great Lakes Symposium on VLSI, GLSVLSI’2005.

51. Wiangtong, T., Cheung, P. Y. K., and Luk, W. (2002). Comparing Three Heuristic Search
Methods for FunctionalPartitioning in Hardware-Software Codesign. Design Automation for
Embedded Systems, 6(4):425–49.

Chapter 14
Exploiting Bit-Level Design Techniques
in Behavioural Synthesis

Marı́a Carmen Molina, Rafael Ruiz-Sautua, José Manuel Mendı́as,
and Román Hermida

Abstract Most conventional high-level synthesis algorithms and commercial tools
handle specification operations in a very conservative way, as they assign opera-
tions to one or several consecutive clock cycles, and to one functional unit of equal
or larger width. Independently of the parameter to be optimized, area, execution
time, or power consumption, more efficient implementations could be derived from
handling operations at the bit level. This way, one operation can be decomposed
into several smaller ones that may be executed in several inconsecutive cycles and
over several functional units. Furthermore, the execution of one operation fragment
can begin once its input operands are available, even if the calculus of its pre-
decessors finishes at a later cycle, and also arithmetic properties can be partially
applied to specification operations. These design strategies may be either exploited
within the high-level synthesis, or applied to optimize behavioural specifications or
register-transfer-level implementations.

Keywords: Scheduling, Allocation, Binding, Bit-level design

14.1 Introduction

Conventional High-Level Synthesis (HLS) algorithms and commercial tools derive
Register-Transfer-Level (RTL) implementations from behavioural specifications
subject to some constraints in terms of area, execution time, or power consump-
tion. Most algorithms handle specification operations in a very conservative way. In
order to reduce one or more of the already mentioned parameters, they assign oper-
ations to one or several consecutive clock cycles, and to one functional unit (FU) of
equal or larger width. These bindings represent quite a limited subset of all possible
ones, whose consideration would surely lead to better designs.

If circuit area becomes the parameter to be minimized, then conventional HLS
algorithms usually try to balance the number of operations executed per cycle, as

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

257

258 M.C. Molina et al.

well as keep HW resources busy in most cycles. Since a perfect distribution of oper-
ations among cycles is nearly impossible to be reached, some HW waste (idle HW
resources) appears in almost every cycle. This waste is mainly due to the following
two factors: operation mobility (range of cycles in which every operation may start
its execution, subject to data dependencies and given timing constraints), and speci-
fication heterogeneity (in function of the number of different types, widths, and data
formats present in the behavioural specification).

Operation mobility influences the HW waste because a limited mobility makes
perfect distributions of operations among cycles unreachable. Even in the hypothet-
ical case of specifications without data dependencies, some waste appears as long
as the latency is not a divisor of the number of operations.

Specification heterogeneity influences the HW waste because HLS algorithms
usually treat separately operations with different types, data formats or widths, pre-
venting them from sharing the same HW resource. In consequence, a particular
mobility dependent waste emerges for every different (type, data format, width)
triplet in the specification. This waste exists even if more efficient HLS algorithms
are used. For example, many algorithms are able to allocate operations of different
widths to the same FU. But if an operation is executed over a wider FU (extending
its arguments) it is partially wasted. Besides, in most cases, the cycle length is longer
than necessary because the most significant bits (MSB) of the calculated results are
discarded. The HW waste also arises in implementations with arithmetic-logic units
(ALU) able to execute different types of operations. In this case, part of the ALU
always remains unused while it executes any operation.

On one hand, the mobility dependent waste could be reduced through the balance
in the number of bits of every different operation type calculated per cycle, instead
of the number of operations. In order to obtain homogeneous distributions, some
specification operations should be transformed into a set of new ones, whose types
and widths might be different from the original. On the other hand, the heterogeneity
dependent waste could be reduced if all compatible operations were synthesized
jointly (two operations are compatible if they can be executed over same type FUs
and some glue logic). To do so, algorithms able to fragment compatible operations
into their common operative kernel plus some glue logic are needed.

In both cases, each operation fragment inherits the mobility of the original opera-
tion and is scheduled separately. Therefore, one original operation may be executed
across a set of cycles, not necessarily consecutive (saving the partial results and
carry outs calculated in every cycle), and bound to a set of linked HW resources
in each cycle. It might occur that the first operation fragment executed is not the
one that uses the least significant bits (LSB) of the input operands, although this
feature does not imply that the MSB of the result can be calculated before its LSB.
In the datapaths designed following these strategies the number, type, and width of
the HW resources are, in general, independent of the number, type, and width of the
specification operations and variables.

The example in Fig. 14.1 illustrates the main features of these design strate-
gies. It shows a fragment of a data flow graph obtained from a multiple precision
specification with multiplications and additions, and two schedules proposed by

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 259

Fig. 14.1 DFG of a behavioural specification, conventional schedule, and more efficient schedule
based on operation fragmentations

a conventional algorithm and by a HLS algorithm including some fragmentation
techniques. While every operation is executed in a single cycle in the conventional
schedule, some operations are executed during several cycles in the second one.
However, this feature should not be confused with multi cycle operators. The main
advantages of this new design method follow below: one operation can be sched-
uled in several non consecutive cycles, different FUs can be used to compute every
operation fragment, the FUs needed to execute every fragment are narrower than
the original operation, and the storage of all the input operand bits is not needed all
the time the operation is being executed. In the example, the addition R = P + Q is
scheduled in the first and second cycles, and the multiplication N = L×M in the
first and third cycles. In this case, the set of cycles selected to execute N = L×M
are not consecutive. Note also that the multiplication fragment scheduled in the first
cycle (L×M11..8) is not the one that calculates the LSB of the original operation.

Table 14.1 shows the set of cycles and FUs selected to execute every specification
operation. Operations I = H×G, N = L×M, and R = P+Q have been fragmented
into several new operations as shown in the table. In order to balance the computa-
tional cost of the operations executed per cycle, N = L×M and R = P+Q have been
fragmented by the proposed scheduling algorithm into seven and two new opera-
tions, respectively. And in order to minimize the FUs area (increasing FUs reuse),
I = H×G has been fragmented into five new operations, which are then executed
over three multipliers and two adders. Figure 14.2 illustrates how the execution of
N = L×M, that begins in the first cycle, is completed in the third one over three
multipliers and three adders.

260 M.C. Molina et al.

Table 14.1 Schedule and binding based on operation fragmentations

Operation Fragmentation Cycle 1 Cycle 2 Cycle 3

E = A×B ⊗4×4

F = C×D ⊗4×4

G = E+F ⊕8

I = H×G I1 = H×G3..0 ⊗8×4
I2 = H3..0×G7..4 ⊗4×4
I3 = H7..4×G7..4 ⊗4×4
I4 = I111..4 + I2 ⊕8
I5 = (‘000’ & I48..4)+ I3 ⊕8

L = J+K ⊕8

N = L×M N1 = L×M11..8 ⊗8×4
N2 = L×M3..0 ⊗8×4
N3 = L3..0×M7..4 ⊗4×4
N4 = L7..4×M7..4 ⊗4×4
N5 = N3+N211..4 ⊕8
N6 = N4+ (‘000’ & N58..4) ⊕8
N7 = N1+ (‘000’ & N6) ⊕12

R = P+Q R1 = P11..0 +Q11..0 ⊕12
R2 = P23..12 +Q23..12 ⊕12

Fig. 14.2 Execution of operation N = L×M in cycle 3

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 261

Table 14.2 Main features of the synthesized implementations

Conventional Proposed Saved (%)

Datapath FUs ⊗12×8, ⊗4×4, ⊕24 ⊗8×4, 2⊗4×4, ⊕12, 2⊕8 –
FU’s area 1,401 inverters 911 inverters 35
Circuit area 3,324 inverters 2,298 inverters 30.86
Cycle length 23.1 ns 21.43 ns 7.22

In the second implementation of this example every datapath FU is used once
per cycle to execute one operation of its same width, and therefore the HW waste
present in the conventional implementation has been totally removed. The circuit
area (including FUs, registers, multiplexers, and controller) and the cycle length
have been reduced around 31 and 7%, respectively, as summarized in Table 14.2.

14.2 Design Techniques to Reduce the HW Waste

The first step to reduce the HW waste present in conventional implementations
becomes the extraction of the common operative kernel of operations in the behavi-
oural specification. This implies the fragmentation of compatible operations (that
can be executed over FUs of a same type) into their common operative kernel plus
some glue logic. These transformations can be applied not only to trivial cases like
the compatibility between additions and subtractions, but to more complex ones
like the compatibility between additions and multiplications. The common oper-
ative kernel extraction increments the number of operations that can be executed
over the same HW resources, and in consequence, helps augment the FUs reuse.

In addition to the extraction of the common operative kernels, several other
advanced design techniques can be applied during the scheduling or allocation
phases to further reduce the HW waste. These new methods handle specification
operations at the bit level, and produce datapaths where the number, type, and width
of the HW resources do not depend on the number, type, and width of the specifica-
tion operations and variables. This independence from the description style used in
the specification brings the applicability of HLS closer to inexperienced designers,
and offers expert ones more freedom to specify behaviours.

14.2.1 Kernel Extraction of Compatible Operations

Compatible operations can be executed over the same FUs in order to improve HW
reuse, provided that their common operative kernel has been extracted in advance.
This kernel extraction can be applied to the behavioural specifications as a pre-
processing phase prior to the synthesis process. This way, additive operations such
as subtractions, comparisons, maximums, minimums, absolute values, data format
converters, or data limiters can be substituted for additions and logic operations.

262 M.C. Molina et al.

And more complex operations like multiplication, division, MAC, factorial or power
operations can be decomposed into several multiplications, additions, and some
glue logic.

In order to increase the number of operations that may share one FU, it is also
desirable the unification of the different representation formats used in the specifica-
tion. Signed operations can be transformed into several unsigned ones, e.g. a two’s
complement signed multiplication of m× n bits (being m ≥ n) is transformed
using a variant of the Baugh and Wooley algorithm [1] into one multiplication of
(m−1)× (n−1) bits, and two additions of m and n + 1 bits. Some of the transfor-
mations that can be applied to homogenize operation types and data representation
formats have been described by Molina et al. [2].

14.2.2 Scheduling Techniques

The HW waste present in conventional implementations can be reduced in the
scheduling phase if we balance the computational cost of the operations executed
per cycle (number of bits of every different operation type) instead of the number of
operations. In order to obtain homogeneous distributions, some specification oper-
ations must be transformed into a set of new ones, whose types and widths may be
different from the original.

Operation fragments inherit the mobility of the original operation and are sched-
uled separately, in order to balance the computational cost of the operations executed
per cycle. Therefore, one original operation may be executed across a set of cycles,
not necessarily consecutive (saving the partial results and carry information calcu-
lated in every cycle). This implies that every result bit is available to be used as input
operand the cycle it is calculated in, even if the operation finishes at a later cycle.
Also each fragment can begin its execution once its input operands are available,
even if its predecessors finish at a later cycle. It can also occur that the first opera-
tion fragment executed is not the one that uses the LSB of the input operands. This
feature does not imply that the MSB of the result can be calculated before its LSB
in the case of operations with rippling effect.

The set of different fragmentations to be applied in every case mainly depends
on the type and width of the operation. In the following sections a detailed anal-
ysis of the different ways to fragment additions and multiplications is presented.
Other types of operations could also be fragmented in a similar one. However,
its description has been omitted as most of them can be reduced to multiplica-
tions, additions, and logic operations and the remaining ones are less common in
behavioural specifications.

14.2.2.1 Fragmentation of Additions

In order to improve the quality of circuits, some specification additions can be
fragmented into several smaller additions and executed across several not neces-
sarily consecutive cycles. In this case the new data dependences among operation

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 263

fragments (propagation of carry signals) obliges to calculate the LSB of the oper-
ation in the earliest cycle and the MSB in the latest one. The application of this
design technique provides many advantages in comparison to previous ones, such
as chaining, bit-level chaining, multicycle, or non-integer multicycle. Some of them
are summarized below:

(a) Area reduction of the required FUs. The execution of the new operation frag-
ments can be performed using a unique adder. The adder width must equal the
width of the biggest addition fragment, which is always narrower than the origi-
nal operation length. In general, the routing resources needed to share the adder
among all the addition fragments do not waste the benefits achieved by the FU
reuse. Aside from the remaining additions present in the specification, the best
area reduction is obtained when all the fragments have similar widths due to the
HW waste minimization, which is also applicable to the routing resources.

In the particular case that the addition fragments are scheduled in consecu-
tive cycles, this design technique may seem similar to the multicycle technique.
However, the main difference resides on the required HW, as the width of the
multicycle FU must match the operation width, meanwhile in our case must
equal the widest fragment.

(b) Area reduction of the required storage units. As well as all the input operand bits
of a fragmented addition are not required in the first of its execution cycles, the
already summed up operand bits are not longer necessary in the later ones. That
is, every input operand bit is needed just in one cycle, and it has to be stored only
until that cycle. The storage requirements are quite smaller than when the entire
operation is executed at a later cycle, because this implies to save the complete
operands during several cycles. In the case of multicycle operators, the input
operands are necessary all the cycles that last its execution.

(c) Cycle length reduction. The reduction of the addition widths, consequence of
the operation fragmentations, directly involves a reduction of their delays, and
in many cases, it also results in considerable cycle length reductions. However,
this reduction is not achieved in a forthright manner, because it also depends
on both the schedule of the remaining specification operations and the set of
operations chained in every cycle.

(d) Chaining of uncompleted operations. Every result fragment calculated can be
used as input operand in the cycle it has been computed in. This allows the
beginning of a successor operation in the same cycle. This way, the calculus of
addition fragments is less restrictive than the calculus of complete operations,
and therefore extends the design space explored by synthesis algorithms.

Figure 14.3 shows graphically the schedule of one n bits addition in two incon-
secutive cycles. The m LSB are calculated in cycle i, and the remaining ones in cycle
i + j. The input operand bits computed in cycle i are not required in the following
ones, and thus the only saved operands are An−1...m and Bn−1...m. A successor oper-
ation requiring A + Bm−1...0 can begin as soon as cycle i. Although this example
corresponds to the most basic fragmentation of one addition in two smaller ones,
many others are also possible, including the ones that produce a bigger number of
new operations.

264 M.C. Molina et al.

Fig. 14.3 Execution of one addition in two inconsecutive cycles

14.2.2.2 Fragmentation of Multiplications

The multiplications can also be fragmented in smaller operations to be executed in
several not necessarily consecutive cycles, with the same aim of reducing the circuit
area. In this case, two important differences with the addition fragmentation arise:

– The fragmentation of one multiplication not only produces smaller multiplica-
tions but also additions, needed to compose the final result from the multiplica-
tion fragments.

– The new data dependences among the operation fragments also oblige to calcu-
late the LSB before the MSB. However, this need does not imply that the LSB
must be calculated in the first cycle in this case. In fact, the fragments can be
computed in any order as there are not data dependences among them. Only the
addition fragments that produce the result bits of the original multiplication must
keep their order to propagate adequately the carry signals.

The advantages of this design technique are quite similar to the ones mentioned in
the above section dealing with additions. For this reason just the differences between
them are cited in the following paragraphs.

(a) Area reduction in the required FUs. The execution of the new operation frag-
ments can be performed using a multiplier and an adder, whose widths must
equal the widths of the biggest multiplication and addition fragments, respec-
tively. The total area of these two FUs and the required routing resources to
share them across its execution cycles is usually quite smaller than the area of
one multiplier of the original multiplication width.

(b) Area reduction in the required storage units. Although several multiplication
fragments may require the same input operands, they are not needed all along
every cycle of its execution. Every input operand bit may be available in sev-
eral cycles, but it only needs to be stored until the last cycle it is used as input
operand. The storage requirements are reduced compared to the execution of
the entire operation at a later cycle, or the use of a multicycle multiplier, where
the operand bits must be kept stable during the cycles needed to complete the
operation.

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 265

Fig. 14.4 Executions of one multiplication in three inconsecutive cycles

Figure 14.4 illustrates two different schedules of one m×n bits multiplication in
three inconsecutive cycles. The LSB are calculated in cycle i+ j, and the remaining
ones in cycle i+ j+k. Note that in both cases the multiplication fragment scheduled
in cycle i does not produce any result bit. However, if the execution cycles of the
fragments assigned to cycles i and i+ j were changed, the schedules would produce
result bits in cycles i and i+ j + k. In both schedules some of the input operand bits
computed in cycle i are not required in cycle i + j, and none of them are required
in cycle i + j + k. Although these examples correspond to basic fragmentations of
one multiplication into two smaller ones and one addition, other more complex ones
(that produce more fragments) are also possible.

14.2.3 Allocation and Binding Techniques

The allocation techniques to reduce the HW waste are focused on increasing the
bit level reuse of FUs. The maximum reuse of functional resources occurs when all
the datapath FUs execute an operation of its same type and width in every cycle (no
datapath resource is wasted). If the allocation phase takes place after the scheduling,
then the maximum degree of FUs reuse achievable depends on the given schedule.
Note that the maximum bit level reuse of FUs can only be reached once a totally
homogeneous distribution of operation bits among cycles is provided.

In order to get the maximum FUs reuse for a given schedule, the specification
operations must be fragmented to obtain the same number of operations of equal
type and width in every cycle. These fragmentations include the transformations of
operations into several simpler ones whose types, representations, and widths may
be different from those of the original. These transformations imply that one original
operation will be executed distributed over several linked FUs. Its operands will also
be transmitted and stored distributed over several routing and storage resources,
respectively. The type of fragmentation performed is different for every operation
type.

266 M.C. Molina et al.

Fig. 14.5 Execution of one addition in two adders, and two additions in one adder

14.2.3.1 Fragmentation of Additions

The minimum HW waste in datapath adders occurs when all of them execute addi-
tions of their same width at least in one cycle. For every different schedule there
may exist several implementations with the minimum HW waste, and thus sim-
ilar adders area. The main difference resides on the fragmentation degree of the
implementations. These circuits may present some of the following features:

(a) Execution of one addition over several adders. The set of adders used to execute
every addition must be linked to propagate the carry signals.

(b) Execution of one addition over a wider adder. This requires the extension of
the input operands and the discard of some result bits. This technique is used to
avoid the excessive fragmentation in cycles with smaller computational cost.

(c) Execution of several additions in the same adder. Input operands of different
operations must be separated with zeros to avoid the carry propagation, and the
corresponding bits of the adder result discarded. At least one zero must be used
to separate every two operations, such that the minimum adder width equals the
sum of the additions widths to the number of operations minus one.

Figure 14.5 shows the execution of one addition over two adders as well as the
execution of two additions over the same adder. These trivial examples provide the
insight of how these two design techniques can be applied to datapaths with more
adders and operations.

14.2.3.2 Fragmentation of Multiplications

Like additions, the minimum HW waste in datapath multipliers occurs when all of
them calculate multiplications of their same width at least in one clock cycle. Some
of the desirable features of one implementation with minimum HW waste are:

(a) Execution of one multiplication over several multipliers and adders. The set of
multipliers used to execute every multiplication must be connected to adders

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 267

Fig. 14.6 Execution of one multiplication over two multipliers and one adder, and two multiplica-
tions in one multiplier

in some way (either chained or via intermediate registers) in order to sum the
partial results and get the final one.

(b) Execution of one multiplication over a wider multiplier. This technique is used
to avoid the excessive fragmentation of multiplications in cycles with smaller
computational cost.

(c) Execution of several multiplications in the same multiplier. The input operands
of different operations must be separated with several zeros to avoid interfer-
ences in the calculus matrix of the different multiplications. As the amount of
zeros needed equals the operands widths, this technique seems only appropriate
when the computational costs of the multiplications scheduled in every cycle
are quite different.

Figure 14.6 shows the execution of one multiplication over two multipliers and
one adder as well as the execution of two multiplications over the same multiplier.
Note here that the unification of operations to be executed in the same FU produces
an excessive internal waste of the functional resource, what makes this technique
unviable in most designs. By contrast, the fragmentation does not produce any addi-
tional HW waste, and can be used to reduce the area of circuits with some HW waste
in all the cycles.

14.3 Applications to Scheduling Algorithms

The scheduling techniques proposed to reduce the HW waste can be easily imple-
mented in most HLS algorithms. This requires the common kernel extraction of
specification operations and its successive transformations into several simpler ones
to obtain balanced distributions in the number of bits computed per cycle.

268 M.C. Molina et al.

This section presents a variant of the classical force-directed scheduling algo-
rithm proposed by Paulin and Knight [4] that includes some bit-level design tech-
niques to reduce the HW waste [3]. The intent of the original method is to minimize
the HW cost subject to a given time constraint by balancing the number of operations
executed per cycle. For every different type of operations the algorithm successively
selects, among all operations and all execution cycles, an (operation, cycle) pair
according to an estimate of the circuit cost called force.

By contrast, the intent of the proposed variant is to minimize HW cost by bal-
ancing the number of bits of every different operation type calculated per cycle.
This method successively selects, among all operations (multiplications first and
additions afterwards) and all execution cycles, a pair formed by an operation (or
an operation fragment) and an execution cycle, according to a new force defini-
tion that takes into account the widths of operations. It also uses a new parameter,
called bound, to decide whether an operation should be either scheduled complete,
or fragmented and just one fragment scheduled in the selected cycle.

14.3.1 Force Calculation

Our redefinition of the force measure used in the classical force-directed algo-
rithm does not consider all operations equally. Instead, it gives a different weight
to every operation in function of its computational cost, leading to a more uniform
distribution of the computational costs of operations among cycles.

The proposed algorithm calculates the forces using a set of new distribution
graphs (DGs) that represent the distribution of the computational cost of operations.
For each DG, the distribution in clock cycle c is given by:

DG(τ,c) = ∑
op∈EOPτ

c

(COST(op) ·P(op,c)) ,

where

• COST(op): computational cost of operation op. For additions it is defined as the
width of the widest operand, and for multiplications as the product of the widths
of its operands.

COST(op) =
{

Max(width(x),width(y)) op≡ x + y
width(x) ·width(y) op≡ x× y

• P(op,c): probability of scheduling operation op in cycle c. It is similar to the
classical method.

• EOPτ
c (estimated operations of type τ in cycle c): set of operations of type τ

whose mobility makes their scheduling possible in cycle c.

Except for the DG redefinition, the force associated with an operation to cycle
binding is calculated like the classical method. The smaller or more negative the

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 269

force expression is, the more desirable an operation to cycle binding becomes. In
each iteration, the algorithm selects the operation and cycle with the lowest force,
thus scheduling first operations with less mobility in cycles with smaller sum of
computational costs, i.e. with smaller DG(τ,c).

14.3.2 Bound Definition

Our algorithm binds operations (or fragments) to cycles subject to an upper bound
that represents the most uniform distribution of operation bits of a certain type
among cycles reachable in every moment. It is used to decide if an operation should
be fragmented and how. Its initial value corresponds to the most uniform distribution
of operation bits of type τ among cycles, without data dependencies:

bound =
∑

op∈OPτ
COST(op)

λ
,

where

OPτ: set of specification operations of type τ.
λ: circuit latency.

The perfect distribution defined by the bound is not always reachable due to data
dependencies among operations and given time constraints. Therefore it is updated
during the scheduling in the way explained below.

If the number of bits already scheduled in the selected cycle c plus the compu-
tational cost of the selected operation op is equal or lower than the bound, then the
operation is scheduled there.

CCS(τ,c)+ COST(op)≤ bound,

where

• CCS(τ,c): sum of the computational costs of type τ operations scheduled in
cycle c

CCS(τ,c) = ∑
op∈SOPτ

c

COST(op).

• SOPτ
c: set of operations of type τ scheduled in cycle c.

Otherwise the operation is fragmented and one fragment scheduled in the selected
cycle (the remaining fragments continue unscheduled). The computational cost of
the fragment to be scheduled CCostFrag equals the value needed to reach the bound
in that cycle.

CCostFrag = bound−CCS(τ,c).

In order to avoid a reduction in the mobility of the predecessors and successors of
the fragmented operation, they are also fragmented.

270 M.C. Molina et al.

14.3.3 Bound Update

Once an operation (or a fragment) has been scheduled in a cycle c, it is checked if the
distribution defined by the actual value of the bound is still reachable. Otherwise the
value of the bound is updated with the next most uniform distribution still reachable.
This occurs when:

• The sum of the computational costs of operations scheduled in cycle c does not
reach the bound and there are not new operations left that could be scheduled in
it, either because they are already scheduled, or their mobilities have changed.

(CCS(τ,c) < bound)∧ (UOPτ
c = φ),

where
UOPτ

c : set of unscheduled operations of type τ whose mobility makes their
scheduling possible in cycle c.

The new bound value is the previous one plus the value needed to reach the
bound in cycle c divided by the number of open cycles (included in the mobility
of the unscheduled operations).

NewBound = bound +
bound−CCS(τ,c)

‖OC‖ where, OC = {c ∈ N |UOPτ
c = φ } .

• The sum of the computational costs of the operations scheduled in cycle c equals
the bound and there exists at least one unscheduled operation whose mobility
includes cycle c, but even fragmented cannot be scheduled in its mobility cycles.

(CCS(τ,c) = bound)∧
(
∃op ∈ UOPτ

c | ∑
c∈μop

(bound−CCS(τ,c)) < width(op)

)
,

where
μop: set of cycles included in the mobility of operation op.
The new bound value is the old one plus, for every operation satisfying the above

condition, the computational cost of the operation fragment that cannot be scheduled
divided by the number of cycles of its mobility.

NewBound = bound +
COST(op)− ∑

c∈μop
(bound−CCS(τ,c))

∥∥μop
∥∥ .

14.3.4 Operation Fragmentation

In order to schedule an addition fragment in a certain cycle, it is not necessary to
define the portion of the addition to be calculated in that cycle. It will be fixed once

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 271

the operation has been completely scheduled, i.e. when all the addition fragments
have been scheduled. Then the algorithm selects the LSB of the operation to be exe-
cuted in the earliest of its execution cycles, and so on until the MSB are calculated
in the last cycle. Due to carry propagations among addition fragments, any other
arrangement of the addition bits would require more computations to produce the
correct result. The number of bits executed in every cycle coincides with the width
of the addition fragment scheduled in that cycle

Unlike additions, the algorithm must select the exact portion of the multiplica-
tion that will be executed in the selected cycle. To do so, it transforms the operation
into a set of smaller multiplications and additions. One of these new multiplications
corresponds to the fragment to be scheduled there, and the other fragments continue
unscheduled. The selection of every fragment type and width is required to calculate
the mobility of the unscheduled part of the multiplication, and of the predecessors
and successors of the original operation as well. Thus, it must be done immedi-
ately after scheduling a multiplication fragment in order to avoid reductions in the
mobility of all the affected operations.

Many different ways can be found to transform one multiplication into several
multiplications and additions. However, it is not always possible to obtain a multi-
plication fragment of a certain computational cost. In these cases, the multiplication
is transformed in order to obtain several multiplication fragments whose sum of
computational costs equals the desired cost.

In order to avoid reductions in the mobility of the successors and predecessors
of fragmented operations, these must be fragmented too. In the case of additions,
every predecessor and successor is fragmented into two new operations, one of
them as wide as the scheduled fragment. The mobility of each immediate prede-
cessor ends just before where the addition fragment is scheduled, and the mobility
of each immediate successor begins in the next cycle. The remaining fragments of its
predecessors and successors inherit the mobility of their original operations. These
fragmentations divide the computational path into two new independent ones, where
the two fragments of a same operation have different mobility.

In the case of multiplications, their immediate successors and predecessors may
not become immediate successors and predecessors of the new operations. Data
dependencies among operations are not directly inherited during the fragmenta-
tion. Instead, the immediate predecessors and successors of every fragment must
be calculated after each fragmentation.

14.4 Applications to Allocation Algorithms

The proposed techniques to reduce the HW waste during the allocation phase can be
easily implemented in most algorithms. This chapter presents a heuristic algorithm
that includes most of the proposed techniques [2]. First it calculates the mini-
mum set of functional, storage, and routing units needed to allocate the operations
of the given schedule, and afterwards, it successively transforms the specification

272 M.C. Molina et al.

operations to allocate them to the set of FUs. The set of datapath resources can also
be modified in the allocation to avoid the HW waste. These modifications consist
basically on the substitution of functional, storage, or routing resources for several
smaller ones, but do not represent an increment of the datapath area.

This algorithm also exploits the proposed allocation techniques to guarantee the
maximum bit-level reuse of storage and routing units. In order to minimize the stor-
age area, some variables may be stored simultaneously in the same register (wider
than or equal to the sum of the variables widths), and some variables may be frag-
mented and every fragment stored in a different register (the sum of the registers
widths must be greater than or equal to the sum of the variables widths). And
to achieve the minimal routing area, some variables may be transmitted through
the same multiplexer, and some variables may be fragmented and every fragment
transmitted through a different multiplexer.

The proposed algorithm takes as input one scheduled behavioural specification
and outputs one controller and one datapath formed by a set of adders, a set of
multipliers, a set of other types of FUs, some glue logic needed to execute additive
and multiplicative operations over adders and multipliers, a set of registers, and a
set of multiplexers. The algorithm is executed in two phases:

(1) Multiplier selection and binding. A set of multipliers is selected and some
specification multiplications are bound to them. Some other multiplications are
transformed into smaller multiplications and some additions in order to increase
the multipliers reuse, and the remaining ones are converted into additions to be
allocated during the next phase.

(2) Adder selection and binding. A set of adders is selected and every addition
bound to it. These additions may come from the original specification, the trans-
formation of additive operations, or the transformation of multiplications into
smaller ones or directly into additions.

The next sections explain the central phases of the algorithm proposed, but first
some concepts are introduced to ease their understanding.

14.4.1 Definitions

• Internal Wastage (IW) of a FU in a cycle: percentage of bits discarded from the
result in that cycle (due to the execution of one operation over a wider FU).

• Maximum Internal Wastage Allowed (MIWA): Maximum average IW of every
multiplier in the datapath allowed by the designer. A MIWA value of 0% means
that no HW waste is permitted (i.e. every multiplier in the datapath must execute
one operation of its same width in every cycle).

• Multiplication order: One multiplication of width m×n (being m≥ n) is bigger
than other one of width k× l (being k≥ l) if either (m > k) or (m = k and n > l).

• Occurrence of width n in cycle c: number of operations of width n scheduled in
cycle c.

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 273

• Candidate: set of operations of the same type which satisfy the following
conditions:

– all of them are scheduled in different cycles
– (m≥ n) for every width n of the candidate operations, where m is the width of

the biggest operation of the candidate

There exist many different bit alignments of the operations comprised in a can-
didate. In order to reduce the algorithm complexity, only those candidates with
the LSB and the MSB aligned are considered. Thus, if one operation is executed
over a wider FU the MSB or the LSB of the result produced are discarded.

• Interconnection saving of candidate C (IS): sum of the number of bits of the
operands of C candidate operations that may come from the same sources, and
the number of bits of the results of C candidate operations which may be stored
in the same registers.

IS(C) = BitsOpe(C)+ BitsRes(C),

where
BitsOpe(C): number of bits of the left and right operands that may come from
the same sources.
BitsRes(C): number of bits of the C candidate results that may be stored in the
same set of storage units.

• Maximum Computed Additions Allowed per Cycle (MCAAC): maximum number
of addition bits computed per cycle. This parameter is calculated once there are
not unallocated multiplications left, and it is obtained as the maximal sum of the
addition widths in every cycle.

14.4.2 Multiplier Selection and Binding

In order to avoid excessive multiplication transformations, and thus obtain more
structured datapaths, this algorithm allows some HW waste in the instanced multi-
pliers. The maximum HW waste allowed by the designer in every circuit is defined
by the MIWA parameter. This phase is divided into the following four steps, and fin-
ishes when either there are not remaining unallocated multiplications left, or when
it is not possible to instance a new multiplier without exceeding MIWA (due to the
given scheduling). This check is performed after the completion of every step. The
steps 1–3 are executed until it is not possible to instance a new multiplier with a valid
MIWA. Then, step 4 is executed followed by the adder selection and binding phase.

14.4.2.1 Instantiation and Binding of Multipliers Without IW

For every different width m×n of multiplications, the algorithm instances as many
multipliers of that width as the minimum occurrence of multiplications of that width

274 M.C. Molina et al.

per cycle. Next, the algorithm allocates operations to them. For every instanced mul-
tiplier of width m×n, it calculates the candidates formed by as many multiplications
of the selected width as the circuit latency, and the IS of every candidate. The algo-
rithm allocates to every multiplier the operations of the candidate with the highest
IS. Multipliers instanced in this step execute one operation of its same width per
cycle, and therefore their IW is zero in all cycles.

14.4.2.2 Instantiation and Binding of Multipliers with Some IW

The set of multiplications considered in this step may come from either the orig-
inal specification, or the transformation of multiplications (performed in the next
step). For every different width m× n of multiplications, and from the biggest, the
algorithm checks if it is possible to instance one m× n multiplier without exceed-
ing MIWA. It considers in every cycle the operation (able to be executed over an
m× n multiplier) that produces the lowest IW of an m× n multiplier. After every
successful check the algorithm instances one multiplier of the checked width, and
allocates operations to it. Now the candidates are formed by as many operations as
the number of cycles in which at least there is one operation that may be executed
over one m× n multiplier. The width of the candidate operation scheduled in cycle
c equals the width of the operation used in cycle c to perform the check, such that
each candidate has the same number of operations of equal width. Once all can-
didates have been calculated, the algorithm computes their corresponding IS, and
allocates the operations of the candidate with the highest IS. Multipliers instanced
in this step may be unused during several cycles, and may also be used to execute
narrower operations (being the IW average of these multipliers in compliance with
MIWA).

14.4.2.3 Transformation of Multiplications into Several Smaller
Multiplications

This step is only performed when it is not possible to instance a new multiplier
of the same width as any of the yet unallocated multiplications without exceeding
MIWA. It transforms some multiplications to obtain one multiplication fragment of
width k× l from each of them. These transformations increase the number of k× l
multiplications, which may result in the final instance of a multiplier of that width
(during previous steps). First the algorithm selects both the width of the operations
to be transformed and the fragment width, and afterwards a set of multiplications of
the selected width, which are finally fragmented.

The following criteria are used to select the multiplication and fragment widths:

(1) The algorithm selects as m×n (width of the operations to be transformed) and
k× l (fragment width), the widths of the two biggest multiplications that satisfy
the following two conditions:

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 275

• There is at least one k× l multiplication, being k× l < m× n, that can be
executed over one m×n multiplier (i.e. m ≥ k and n ≥ l).

• At least in one cycle there is one m×n multiplication scheduled and there are
not k× l multiplications scheduled.

(2) The algorithm selects two different widths as the widths of the operations to
be fragmented, and a fragment width independent of the remaining unallocated
multiplications. The widths selected of the operations to be fragmented m×n
and k× l, are those of the biggest multiplications that satisfy the following
conditions:

• m×n = k× l
• At least in one cycle there is one m×n multiplication scheduled and there are

not k× l multiplications scheduled.
• At least in one cycle there is one k× l multiplication scheduled and there are

not m× n multiplications scheduled.

In this case the fragment width equals the maximum common multiplicative kernel
of m×n and k× l multiplications, i.e. min(m,k)×min(n, l).

Next the algorithm selects the set of operations to be fragmented. In the first case
it is formed by one m× n multiplication per every cycle where there are not k× l
multiplications scheduled. And in the second one, it is formed by either one m× n
or one k× l multiplication per cycle. In the cycles where there exist operations of
both widths scheduled, only one multiplication of the largest width is selected. Once
the set of operations to be fragmented and the desired fragment width are selected,
the algorithm decides which one out of the eight different possible fragmentations
is selected, according to the following criteria:

• The best fragmentations are the ones that obtain, in addition to one multiplication
fragment of the desired width, other multiplication fragments of the same width
as any of the yet unallocated multiplications.

• Among the fragmentations with identical multiplication fragments, the one that
requires the lowest cost in adders is preferable.

Figure 14.7 illustrates the eight different fragmentations of one m×n multiplica-
tion explored by the algorithm to obtain one k× p multiplication fragment.

Fig. 14.7 Multiplication fragmentations explored by the algorithm

276 M.C. Molina et al.

14.4.2.4 Transformation of Multiplications into Additions

Due to the given schedule it is not always possible to instance a new multiplier
without exceeding MIWA. Therefore, unallocated multiplications are transformed
into several additions.

14.4.3 Adder Selection and Binding

14.4.3.1 Instantiation and Binding of Adders Without IW

The set of additions considered here may come from the original specification, the
transformation of multiplications (performed in the previous phase), or the transfor-
mation of additions (step 4.3.3). For every different width n of unallocated additions,
the algorithm instances as many adders of that width as the minimum occurrence of
additions of that width per cycle. Next, operations are allocated to them. For every
instanced adder of width n, it calculates the candidates formed by as many additions
of the selected width as the circuit latency, and the IS of every candidate. The algo-
rithm allocates to every adder the operations of the candidate with the highest IS.
The IW of the adders instanced here is zero in all the cycles.

14.4.3.2 Instantiation and Binding of Adders with Some IW

For every different width n of unallocated additions, and from the biggest, the algo-
rithm checks if it is possible to instance one n adder without exceeding MCAAC. It
considers in every cycle the operation (able to be executed over an n adder) that pro-
duces the lowest IW of an n bits adder. After every successful check, the algorithm
instances one adder of the checked width, and allocates operations to it. Now the
candidates are formed by as many operations as the number of cycles where there is
at least one operation that may be executed over one n bits adder. The width of the
candidate operation scheduled in cycle c equals the width of the operation used in
cycle c to perform the check. Once all candidates are calculated, their corresponding
IS are computed, and the additions of the candidate with the highest IS allocated.
Adders instanced in this step may be unused during several cycles, and may also be
used to execute narrower operations (being the IW of these adders in compliance
with MCAAC).

14.4.3.3 Transformation of Additions

This step is only performed when it is not possible to instance a new adder of the
same width as any of the yet unallocated additions without exceeding MCAAC.
Some additions are transformed to obtain one addition fragment of width m from

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 277

each of them. These transformations increase the number of m bits additions, which
may result in the final instance of an adder of that width (during previous steps).

First the algorithm selects both the set of the operations to be transformed and the
fragment width, and afterwards it performs the fragmentation of the selected addi-
tions. The fragment size is the minimum width of the widest unallocated operation
scheduled in every cycle. A maximum of one operation per cycle is fragmented each
time, but only in cycles without unallocated operations of the selected width. The
set of fragmented operations is formed by the widest unallocated addition scheduled
in every cycle without operations of the selected width. Every selected addition is
decomposed into two smaller ones, being one of fragments of the desired width.
These fragmentations produce the allocation of at least one new adder of the selected
width during the execution of the previous steps, and may also contribute to the
allocation of additional adders.

14.5 Analysis of the Implementations Synthesized Using
the Proposed Techniques

This section presents some of the synthesis results obtained by the algorithms
described previously which include some of the bit level design techniques pro-
posed in this chapter. These results have been compared to those obtained by a HLS
commercial tool, Synopsys Behavioral Compiler (BC) version 2001.08, to evaluate
the quality of the proposed methods and their implementations in HLS algorithms.

The area of the implementations synthesized is measured in number of inverters,
and includes the area of the FUs, storage and routing units, glue logic, and controller.
The clock cycle length is measured in nanoseconds. The RT-level implementations
produced have been translated into VHDL descriptions to be processed by Synopsys
Design Compiler (DC) to obtain the area and time reports. The design library used
in all the experiments is VTVTLIB25 by Virginia Tech. based on 0.25μm TSMC
technology.

14.5.1 Implementation Quality: Influential Factors

The main difference between conventional synthesis algorithms and our approach is
the number of factors that influence the quality of the implementations obtained. The
implementations proposed by conventional algorithms depend on the specification
size, the operation mobility, and the specification heterogeneity, measured as the
number of different triplets (type, data format, width) present in the original specifi-
cation divided by the number of operations. Otherwise, our algorithms minimize the
influence of data dependencies and get implementations totally independent from
the specification heterogeneity, i.e. from the number, type, data format, and width
of the operations used to describe behaviours.

278 M.C. Molina et al.

Just to illustrate these influences we have synthesized different descriptions of the
same behaviour, shown in Table 14.3, first with the proposed algorithms, and after-
wards with BC. These descriptions have been created by progressively transforming
(from circuit A to G) some of the specification operations into several smaller ones,
in order to increase the number of operations of every different type and width, such
that the specification heterogeneities of these descriptions have been progressively
reduced from A to G. Circuit A is the original specification formed by 30 opera-
tions with six different operation types (MAC, multiplication, addition, subtraction,
comparison, and maximum), two different data formats (unsigned and two’s com-
plement), and eight different operation widths (4, 8, 12, 16, 24, 32, 48, and 64 bits).
And circuit G is the specification obtained after the last transformation. It consists
of 86 unsigned multiplications and additions of 26 different widths, thus being the
description with the smallest heterogeneity. Table 14.3 shows the number of opera-
tions (# Operations), the number of different operation types (# Types), the number
of different data formats (# Formats), and the number of different operation widths
(# Widths) present in each synthesized specification. The latency in all cases is equal
to ten cycles. The amount of area saved by the algorithm grows, in general, with the
specification heterogeneity. In the circuits synthesized, the homogeneous distribu-
tion of the computational costs among cycles achieved by our algorithm has also
resulted in substantial clock cycle length reductions. Figure 14.8 shows in this set
of examples the amount of area and clock cycle length saved by our approach in
function of the heterogeneity.

Table 14.3 Features of the synthesized descriptions

Circuit # Operations # Types # Formats # Widths Heterogeneity

A 30 6 2 8 0.7
B 36 6 2 10 0.55
C 44 5 2 12 0.45
D 52 4 1 15 0.42
E 65 3 1 19 0.35
F 73 3 1 22 0.32

Fig. 14.8 Experimental area and execution time of different descriptions of one specification

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 279

Table 14.4 Area results of the synthesis of some modules of the ADPCM decoder algorithm

ADPCM decoder Datapath Commercial tool Fragmentation techniques
module resources (# inverters) (# inverters)

IAQ FUs 388 234
IAQ Controller 60 62
IAQ Multiplexers 158 166
IAQ Registers 189 192
IAQ Total area 798 664 (16.7% saved)
OPFC+SCA FUs 928 478
OPFC+SCA Controller 62 66
OPFC+SCA Multiplexers 418 470
OPFC+SCA Registers 461 475
OPFC+SCA Total area 1,873 1,503 gates (19.7% saved)
TTD FUs 681 285
TTD Controller 60 63
TTD Multiplexers 220 232
TTD Registers 261 273
TTD Total area 1,226 865 (29.4% saved)

Total all modules 3,897 3,032 (22.2% saved)

14.5.2 An Application Example

As an example of a real circuit, we have synthesized the following modules of the
ADPCM decoding algorithm described in the Recommendation G.721 of CCITT:

• Inverse Adaptative Quantizer (IAQ)
• Output PCM Format Conversion (OPFC)
• Synchronous Coding Adjustment (SCA)
• Tone and Transition Detector (TTD)

Table 14.4 compares the area of the modules synthesized by our approach and BC
for a fixed value of the circuit latency. The amount of area saved by our algorithm
averages 22%.

OPFC and SCA modules have been synthesized together, and IAQ and TTD inde-
pendently. Better results could be obtained if all modules were synthesized together,
because it would increase the number of operations that could be executed over the
same FU, and the number of variables that could be stored in the same register.

14.5.3 Synthesis of Non Heterogeneous Specifications

As shown in previous sections, our algorithm substantially reduces the area of cir-
cuits synthesized from heterogeneous specifications, as compared with commercial
tools and previous known approaches. But the application method is not just lim-
ited to heterogeneous specifications. Important area reductions can also be achieved
when specifications formed by operations with the same data formats and widths are

280 M.C. Molina et al.

synthesized. Indeed, our algorithm becomes the best choice for non heterogeneous
specifications where the latency, number of operations, and data dependencies pre-
vent reaching homogeneous distributions of operations among cycles. The areas
of conventional implementations synthesized from non heterogeneous specifica-
tions may be slightly smaller than ours, but only where conventional algorithms
are able to find nearly homogeneous distributions of the number of operations of
every different type and width executed per cycle, and for a similar reason as
for heterogeneous specifications. The implementations obtained synthesizing non
heterogeneous specifications satisfy the following features:

• The amount of cycle length saved increases in inverse ratio to the latency. As
latency decreases the number of chained operations that have to be executed in a
cycle grows, as well as the potential benefit from distributing over several cycles
the execution of certain operations.

• The amount of area saved increases in direct proportion to the circuit latency.
As the number of cycles grows, more uniform distributions in the computational
costs of operations may be found among them by our algorithm.

In order to illustrate the effectiveness of our method with non heterogeneous
specifications, we have synthesized the fifth order elliptic wave filter formed by 34
unsigned operations (26 additions and 8 multiplications). In this specification all
variables, input and output ports are 16 bits wide. The implementations obtained
have been compared to the ones produced by BC. Table 14.5 shows the area and
cycle length of the implementations obtained for three different latencies: 8, 11 and
16 cycles. Our algorithm saves up to 36% of cycle length and 27% of area for 8 and
16 clock cycles, respectively.

14.6 Further Applications of the Proposed Techniques

The proposed design techniques have been implemented in HLS algorithms. How-
ever, they can also be applied before or after the synthesis process to optimize
behavioural descriptions or RT implementations, respectively. In these cases, con-
ventional HLS algorithms could be used to synthesize the specifications, taking
advantage of further improvements in HLS. The transformation of RT implemen-
tations usually results more complex than the behavioural optimization, as some
design decisions taken during the HLS process might need to be undone. How-
ever, the optimization of the behavioural descriptions may produce some different
implementations in function of the diverse HLS algorithms used. In order to take
advantage of the behavioural optimization, the transformations performed should be
in concordance with the design strategies implemented in the HLS algorithms, what
requires a previous analysis of the algorithms used to perform the synthesis process.

Circuit area is the optimization parameter discussed along this chapter, but these
design techniques can be used to optimize the execution time or power consumption
as well.

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 281

Table 14.5 Area and time results of the synthesis of the fifth order elliptic wave filter

Circuit latency Datapath
resources

Commercial tool Fragmentation techniques

8 FUs 3,876 inverters 3,530 inverters
8 Controller 135 inverters 138 inverters
8 Multiplexers 1,696 inverters 1,732 inverters
8 Registers 1,932 inverters 1,974 inverters
8 Total area 7,654 inverters 7,398 inverters (4% saved)
8 Cycle length 58, 63 ns 37, 27 ns (36% saved)

11 FUs 3,552 inverters 2,893 inverters
11 Controller 179 inverters 192 inverters
11 Multiplexers 1,552 inverters 1,632 inverters
11 Registers 1,771 inverters 1,693 inverters
11 Total area 7,065 inverters 6,438 inverters (19% saved)
11 Cycle length 51, 59 ns 41, 81 ns (9% saved)
16 FUs 3,390 inverters 1,937 inverters
16 Controller 194 inverters 208 inverters
16 Multiplexers 1,752 inverters 1,680 inverters
16 Registers 1,449 inverters 1,098 inverters
16 Total area 6,794 inverters 4,953 inverters (27% saved)
16 Cycle length 32, 27 ns 31, 13 ns (4% saved)

Conventional HLS scheduling synthesis algorithms are very conservative when
dealing with Read-After-Write dependences, as the execution of one operation is
allowed once all its predecessors have been calculated. However, in the execution
of arithmetic operations some bits are required later than others, and also some
bits are produced earlier than others. The design methods exposed in this chapter
may be adapted to ease Read-After-Write dependences in order to improve the cir-
cuit performance as has been recently shown by Ruiz-Sautua et al. [5]. A previous
analysis of the critical path at bit-granularity must be performed to estimate the
most appropriate values of both the cycle length and latency, in order to minimize
the slack times wasted in cycles where the results calculated have smaller arrival
times than the cycle length. These estimations result quite appropriate to guide the
decompositions of operations into sub-words fragments, allowing their execution
in different cycles to speed up the circuit execution times. This way the execution
of one operation may begin before the calculus of its predecessors has been com-
pleted. This becomes feasible when the execution of the predecessor has begun in
the selected cycle or in a previous one, and even if it will finish in a posterior cycle.
These schedules are out of the current HLS boundaries. The state of the art schedul-
ing techniques (pipelining, chaining, bit-level chaining, multicycle, and non-integer
multicycle) cannot achieve designs with these features.

The application of these techniques to reduce the power consumption includes
the minimization of both static and dynamic consumptions. On one hand, the static
consumption optimization is directly obtained from the circuit area reduction. On
the other hand, the minimization of the dynamic dissipation requires the previous
data profiling of the circuit input signals. It is obtained by means of simulations

282 M.C. Molina et al.

of the behavioural description, provided normal operation mode. The analysis of
the switching activity information at the bit level become the appropriate param-
eter to guide the fragmentation of specification operations, in order to reduce the
number of commutations occurred in datapath resources. Fragmentation allows the
partial application of arithmetic properties, different bit alignments in the execution
of operation fragments, and the distributed execution of operations over different
FUs. Furthermore, this last feature lets different fragments of the same operation
share their functional, storage and routing resources with different specification
operations. All these features significantly expand the design space explored by
conventional algorithms, resulting in substantial power consumptions savings.

14.7 Conclusions

Several bit-level design techniques have been proposed to improve the quality of the
circuits resulting from behavioural synthesis. These techniques are non-compliant
with the assertion assumed by conventional HLS algorithms that states the indivisi-
bility of operations. Otherwise, the fragmentation of operations is the method used
to expand the design space explored in HLS. These techniques provide several chal-
lenges to improve the circuit area, execution time, or power consumption, thanks to
some design features infeasible with previous approaches, like the execution of one
operation across several inconsecutive cycles, the ease of Read-After-Write depen-
dences, the distributed execution of operations among several functional, storage
and routing resources, the reuse of FUs to execute compatible operations, and the
partial application of arithmetic properties.

The proposed design methods can be efficiently applied either during architec-
tural synthesis, or to optimize behavioural specifications or RT-level implemen-
tations. In this chapter, some of these techniques have been applied during the
synthesis process to reduce the circuit area. In particular, the operation fragmen-
tation has been used during the scheduling phase to balance the computational cost
of the operations executed in every cycle, and during the HW allocation and bind-
ing phase to minimize the HW waste of instanced resources. The set of experiments
performed show great area savings in comparison to conventional algorithms, as
well as additional reductions in the execution time. Finally, they also demonstrate
the independency from the design style used in the specification achieved by the use
of these design methods. Therefore, the designer skills become no longer a decisive
factor on the quality of the synthesized circuits.

References

1. C.R. Baugh and B.A. Wooley. “A Two’s Complement Parallel Array Multiplication Algorithm”,
IEEE Transactions on Computers, Vol. 22 (12) (1973), pp. 1045–1047

2. M.C. Molina, J.M. Mendı́as, R. Hermida, “Behavioural Specifications Allocation to Minimise
Bit Level Waste of Functional Units”, IEE Proceedings-Computers & Digital Techniques, Vol.
150 (5) (2003), pp. 321–329

14 Exploiting Bit-Level Design Techniques in Behavioural Synthesis 283

3. M.C. Molina, R. Ruiz-Sautua, J.M. Mendı́as, R. Hermida, “Bitwise Scheduling to Balance the
Computational Cost of Behavioural Specifications”, IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, Vol. 25 (1) (2006), pp. 31–46

4. P.G. Paulin and J.P. Knight, “Force-Directed Scheduling for the Behavioral Synthesis of
ASICS”, IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
Vol. 8 (6) (1989), pp. 661–679

5. R. Ruiz-Sautua, M.C. Molina, J.M. Mendı́as “Exploiting Bit-Level Delay Calculations in
Behavioural Synthesis”, IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems, Vol. 26 (9) (2007), pp. 1589–1601

Chapter 15
High-Level Synthesis Algorithms for Power
and Temperature Minimization

Li Shang, Robert P. Dick, and Niraj K. Jha

Abstract Increasing digital system complexity and integration density motivate
automation of the integrated circuit design process. High-level synthesis is a promis-
ing method of increasing designer productivity. Continued process scaling and
increasing integration density result in increased power consumption, power den-
sity, and temperature. High-level synthesis for integrated circuit (IC) power and
thermal optimization has been an active research area in the recent past. This chap-
ter explains the challenges power and temperature optimization pose for high-level
synthesis researchers and summarizes research progress to date.

Keywords: Behavioral synthesis, High-level synthesis, Power, Temperature, Ther-
mal modeling, Reliability

15.1 Power and Temperature Optimization

In this section, we give an overview of the key motivations for, and challenges of,
optimizing power consumption and temperature during high-level synthesis.

15.1.1 Brief Introduction to High-Level Synthesis

High-level synthesis [1–4] is the process of automatically converting a behav-
ioral, algorithmic, specification to an optimized register-transfer level digital design.
The specification indicates the behavior of an algorithm and available hardware
resources such as multipliers and multiplexers, but does not indicate the manner in
which the algorithm should be implemented. A high-level synthesis algorithm auto-
matically selects the set of hardware resources to use, determines the connections
between them, binds operations to functional units such as multipliers, determines
a clock frequency, and produces a schedule of operations. High-level synthesis can

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

285

286 L. Shang et al.

therefore be formulated as an optimization problem with functionality constraints.
Performance, power consumption, temperature, IC area, reliability, or other metrics
may be optimized or constrained [5–15].

15.1.2 Importance of Power Consumption and Temperature

Power is the source of the greatest problems facing IC designers. High-power
ICs rapidly deplete battery energy. Rapid changes in power consumption result in
on-chip voltage fluctuations that lead to transient errors. High spatial and tempo-
ral power densities lead to high temperatures, which result in decreased lifetime
reliability. High temperatures also increase leakage power consumption, thereby
closing a self-reinforcing power–temperature feedback loop. The effects of increas-
ing power consumption, power variation, and power density are expensive to handle.
The wages of power are bulky short-lived batteries, huge heatsinks, large on-die
capacitors, high server electric bills, and unreliable ICs. The only alternative is
optimizing IC power consumption, temperature, and reliability. Power optimization
within high-level synthesis has a long history, which we will review in this chapter.
In contrast, temperature optimization during high-level synthesis began to receive
widespread attention fairly recently, although some researchers foresaw the coming
importance of the problem a decade ago.

Temperature is increased by both IC dynamic and leakage power. In addition, IC
on-die temperature profiles depend on the temporal and spatial distribution of IC
power as well as the packaging and cooling solution. Increasing IC power con-
sumption increases IC peak temperature as well as on-die spatial and temporal
thermal variation, which have significant impact on IC power consumption, temper-
ature, reliability, cooling cost, and performance. A high IC temperature increases
charge carrier concentrations, resulting in increased subthreshold leakage power
consumption. In addition, it decreases charge carrier mobility, decreasing transistor
and interconnect performance, and decreases threshold voltage, increasing transis-
tor performance. Moreover, temperature heavily influences the fault processes, i.e.,
electromigration, dielectric breakdown, and power–thermal cycling, that lead to a
large number of IC permanent faults. Finally, increasing IC power density requires
the use of more effective cooling and packaging solutions to ensure IC reliable run-
time operation, resulting in a significant increase in cooling and packaging cost. In
summary, thermal issues have become a major concern in IC design. Modeling and
optimizing IC thermal properties is thus essential for reliability, power consumption,
and performance.

15.1.3 Power Analysis and Optimization

IC power analysis and optimization have been an active research areas for decades.
Researchers developed power modeling techniques at all levels of the IC design

15 High-Level Synthesis Algorithms for Power and Temperature Minimization 287

hierarchy. High-level synthesis poses unique challenges for IC power modeling
and analysis. During behavioral synthesis, the lack of low-level implementation
details, such as interconnect length and timing information permitting estimation
of transient glitches, makes accurate power analysis challenging. In addition, power
optimization during high-level synthesis typically involves the evaluation of numer-
ous optimization decisions, requiring highly-efficient power analysis techniques.
Most existing power-aware high-level synthesis systems use microarchitectural or
structural power modeling methods to permit fast power estimation. These model-
ing methods are capable of approximately estimating the relative power savings of
behavioral optimization decisions, but unable to characterize the accurate IC power
profile.

Power optimization has been a primary focus of high-level synthesis for more
than a decade. A variety of power optimization techniques have been proposed to
tackle IC dynamic and leakage power consumption during high-level synthesis. IC
dynamic power consumption can be reduced by attacking supply voltage, capaci-
tance, switching activity, and frequency. Among these, voltage scaling is the most
promising technique for reducing IC dynamic power consumption, due to the fact
that IC dynamic power is quadratically proportional to supply voltage. Techniques,
such as voltage and frequency scaling, multi-Vdd, and voltage islands, have been
widely adopted by recently-developed low-power high-level synthesis systems.
However, voltage reduction has a negative impact on circuit performance. Moreover,
the effectiveness of voltage scaling diminishes as the supply voltage of nanometer-
scale ICs approaches the sub-volt range. IC leakage power consumption was once
a second-order consideration. However, it is becoming increasingly significant as a
result of continued IC process scaling. Leakage accounts for 40% of the power con-
sumption of today’s high-performance microprocessors [16]. Leakage power can be
the primary limitation on the lifetime of battery-powered systems. Leakage power
optimization techniques, such as body biasing and transistor sizing, have been used
in several high-level synthesis systems [17–20]. IC subthreshold leakage increases
superlinearly with temperature. Due to the increase of IC power density and ther-
mal effects, thermal-aware leakage analysis has gained prominence in high-level
synthesis [21, 22].

15.1.4 Thermal Analysis and Optimization

An IC’s thermal profile is a complex, time-varying function of its power consump-
tion profile. The chip average temperature is determined by IC average power
density and cooling package efficiency. The run-time chip thermal profile, on the
other hand, depends on IC spatial and temporal power variation. The occurrence of
on-die hotspots is often the result of transient activation of functional units with a
high power density.

Behavioral design changes alone cannot effectively solve the IC temperature
optimization problem. IC thermal analysis requires detailed physical information,

288 L. Shang et al.

i.e., IC floorplan, interconnect, and chip-package configuration. IC thermal
optimization requires the use of behavioral power optimization techniques to min-
imize IC average power density and temperature-aware physical design to balance
and optimize the chip thermal profile. A unified high-level and physical analysis and
optimization flow is critical for IC thermal optimization.

One primary challenge of IC thermal optimization comes from the high com-
putational complexity of IC thermal analysis. IC thermal analysis is the process
of characterizing the three-dimensional temperature profile of IC chip and cool-
ing package. It requires a detailed simulation of heat conduction from an IC’s
power sources, i.e., transistors and interconnects, through cooling package lay-
ers, to the ambient environment, which can be described using the following
equation:

ρc
∂T (r,t)

∂ t
=�· (k(r)�T(r,t))+ p(r,t), (15.1)

where ρ is the material density, c is the mass heat capacity, T (r,t) and k(r) are
the temperature and thermal conductivity of the material at position r and time t,
and p(r,t) is the power density of the heat source. Steady-state thermal analysis
characterizes the chip temperature distribution when the IC power consumption
does not vary with time, i.e., when the heat capacity, c, is neglected. Dynamic
thermal analysis is used to characterize the temporal variations of the IC thermal
profile. This problem is analogous to transient analysis of an electrical circuit [23],
with electrical resistance and capacitance replaced with thermal resistance and heat
capacity. The rate of temperature change in response to a change in power den-
sity is related to the thermal RC time constant of the IC region of interest. The
major challenges of numerical IC thermal analysis are high computational complex-
ity and memory usage. For steady-state thermal analysis, high modeling accuracy
requires fine-grain modeling of IC chip and cooling package, resulting in high mem-
ory usage and long analysis time. For dynamic thermal analysis using time-domain
methods, such as the fourth-order Runge-Kutta method, higher modeling accuracy
requires fine spatial and temporal discretization granularity, increasing computa-
tional overhead and memory usage. Recent IC thermal analysis techniques use
spatially and temporally adaptive numerical modeling methods to control the com-
putational complexity and memory usage of IC thermal analysis while maintaining
high accuracy [24].

15.2 High-Level Synthesis Algorithms for Power Optimization

Research on power-aware high-level synthesis can be traced back to the early
1990s. This section reviews existing low-power high-level design methodologies
and synthesis tools.

15 High-Level Synthesis Algorithms for Power and Temperature Minimization 289

15.2.1 Dynamic Power Optimization in High-Level Synthesis

In the past, IC power consumption was dominated by dynamic power. Therefore,
early research on low-power synthesis focused on dynamic power optimization.
IC dynamic power consumption is a quadratic function of supply voltage. Volt-
age scaling is therefore the most effective dynamic power optimization technique.
However, voltage scaling may have a negative impact on circuit performance. There-
fore, the tradeoff between power and performance has been a central theme in
power-aware high-level synthesis. Johnson and Roy developed MESVS, a behav-
ioral scheduling algorithm, that minimizes IC power consumption by using multiple
supply voltages [25]. This work uses integer linear programming to produce an
optimal schedule with discrete voltage-level assignment under timing constraints.
Unfortunately, optimal integer linear programming formulations generally cannot
be used for large problem instances due to high computational complexity. Raje
and Sarrafzadeh proposed a heuristic to solve the voltage assignment problem [26].
The computational complexity of this method is O(N2). Chang and Pedram devel-
oped a dynamic programming technique to solve the multi-voltage scheduling
problem [27]. This technique reduces supply voltages along non-critical paths to
optimize IC power consumption and minimize performance impact. Hong et al.
designed a multi-voltage scheduling algorithm to minimize the power consumption
of core-based systems-on-a-chip [28]. Helms et al. propose a behavioral synthesis
system which uses multi-voltage assignment and adaptive body biasing to mini-
mize IC power consumption [29]. These studies demonstrate that voltage scaling can
reduce IC power consumption. However, the extra power saving decreases with the
number of voltage levels. Recently, Liu et al. propose an approximation algorithm
for IC power optimization using multiple supply voltages [30]. The computational
complexity of the proposed approximation algorithm is O(dkN), where d and k are
small constants. This work shows significant runtime advantage over the past work.

IC dynamic power consumption can be reduced by minimizing circuit capac-
itance and run-time switching activity. Chatterjee and Roy designed a behav-
ioral synthesis system, which uses architectural transformation to minimize circuit
switching activity [31]. Raghunathan and Jha developed the first optimal, ILP-
based formulation of high-level synthesis for switching power minimization [32].
Chandrakasan et al. developed HYPER-LP, a high-level synthesis system using
algorithmic transformation to reduce circuit capacitance, thereby reducing IC power
consumption [9]. Chang and Pedram developed an low-power allocation and res-
ource binding technique to minimize the switching activity in registers [11] and
datapath functional components [33]. In this work, the power-optimal register
and functional component assignment problem is formulated as a max-cost flow
problem. Dasgupta and Karri developed binding and scheduling techniques to
minimize the switching activity of buses [6]. Musoll and Cortadella developed
a high-level synthesis system, which uses loop interchange, operand reordering,
operand sharing, idle units, and operand correlation, for reducing the activities
of IC functional units [34]. Raghunathan and Jha designed SCALP, an iterative-
improvement-based high-level synthesis system [13], which integrates a variety

290 L. Shang et al.

of power optimization techniques, including architectural transformation, schedul-
ing, clock selection, module selection, and hardware allocation and assignment.
Lakshminarayana et al. proposed a power-aware register binding technique for
high-level synthesis, which provides the first formulation of a perfect power man-
agement philosophy, i.e., no functional unit that does not need to be active in a
given cycle should consume any switching power in that cycle [35]. Dasgupta
and Karri developed a high-level synthesis system for IC energy and reliability
optimization [36]. They proposed a resource binding and scheduling algorithm
to minimize circuit switching activity, thereby optimizing IC power consumption
and minimizing electromigration-induced failure effects in on-chip buses. Erce-
govac et al. proposed a behavioral synthesis system [37] that uses multi-gradient
search for system resource allocation using multiple-precision arithmetic units.
Karmarkar-Karp’s number partitioning heuristic is used to determine task assign-
ment. Lakshminarayana et al. proposed a high-level power optimization technique
which extracts common-case behavior from the given behavioral description and
then synthesizes an RTL implementation of the common-case circuit, which is a
much smaller than the circuit that implements the complete behavior and runs most
of the time [38]. Wang et al. proposed a high-level design methodology for IC
energy and performance optimization [39] called input space adaptive design. This
technique identifies the behavioral equivalence among sub-circuits and eliminates
redundant logical operations, thereby optimizing IC energy and performance.

15.2.2 Leakage Power Optimization in High-Level Synthesis

IC leakage power consumption is becoming increasingly significant as a result of
technology scaling. Therefore, leakage power optimization during high-level syn-
thesis has drawn significant attention. Khouri and Jha [17] developed a behavioral,
iterative algorithm to minimize IC leakage power consumption using dual-Vth tech-
nology. The proposed algorithm is a greedy approach that iteratively identifies the
operation with the maximum leakage power reduction potential and binds it with a
high-Vth implementation. Gopalakrishnan and Katkoori developed a leakage-aware
resource allocation and binding algorithm using multi-Vth technology [18]. This
algorithm seeks to maximize the idle time slots of datapath components. Idle func-
tional modules are scheduled to enter the sleep mode at runtime to minimize the
IC leakage power consumption. Tang et al. formulated the leakage optimization
problem as the maximum weight independent set problem [19]. A heuristic was
proposed to identify the datapath components with maximum or near-maximum
leakage reduction potentials, which are then replaced with low-leakage alterna-
tives. Dal et al. developed a low-power high-level synthesis algorithm using power
islands [20]. The supply voltage of each power island can be controlled indepen-
dently. The proposed algorithm conducts circuit partitioning and assigns circuit
components with overlapping idle times to the same power island. Idle power islands
are then scheduled to be power-gated to minimize leakage power consumption.
IC sub-threshold leakage power is a strong function of chip temperature. Therefore,

15 High-Level Synthesis Algorithms for Power and Temperature Minimization 291

thermal effects must be considered during leakage power optimization. We will later
survey thermal-aware leakage optimization techniques.

15.2.3 Importance of Incorporating Physical Design
Within High-Level Synthesis

It is becoming increasingly important to consider physical design decisions within
high-level synthesis. Interconnect power consumption and delay are increasing rel-
ative to logic delay. Increasing power densities are making it necessary to determine
and optimize the IC thermal profile at design time; computing a thermal profile
requires a power profile. Determining the interconnect structure and power profile
depends on the knowledge of the IC floorplan. As a result, a number of researchers
have considered the impact of physical details, e.g., floorplanning information, on
high-level synthesis [40–46].

Taking interconnect power consumption and delay into consideration during
high-level synthesis has attracted significant attention. In previous work [47–51],
the number of interconnects or multiplexers was used to estimate the intercon-
nect cost. The performance and power impact of the interconnect and interconnect
buffers are now first-order considerations [52]. It is no longer possible to accurately
predict the power consumption and performance of a design without first knowing
enough about its floorplan to predict the structure of its interconnect. This change
has complicated both design and synthesis. For this reason, a number of researchers
have worked on interconnect-aware high-level synthesis algorithms [53–55]. These
approaches typically use a loosely coupled independent floorplanner for physical
estimation. This technique has the advantage of allowing estimation of physical
properties but has a drawback. Creating a floorplan from scratch for each high-level
synthesis move is inefficient, given the fact that the new floorplan frequently has
only small differences with the previous one. The constructive approach works for
small problem instances but is unlikely to scale to large designs. New techniques for
tightly coupling behavioral and physical synthesis that dramatically improve their
combined performance and quality are now necessary.

Incremental automated design promises to build tighter relationship between
high-level synthesis and physical design, improving the quality of each [56, 57].
A number of high-level synthesis algorithms are based on incremental optimiza-
tion and are therefore amenable to integration with incremental physical design
algorithms. This has the potential of improving both quality and performance. Incre-
mental methods improve quality of results by maintaining important properties
across consecutive physical estimations during synthesis. Moreover, they shorten
CPU time by reusing and building upon previous high-quality physical design solu-
tions that required a huge amount of effort to produce. Recent work has proposed
unified incremental behavioral synthesis and floorplanning to permit more accu-
rate communication delay, communication power consumption, and power profile
estimation [58].

292 L. Shang et al.

15.3 Modeling and Optimizing Temperature in High-Level
Synthesis

This section introduces the main challenges of temperature-aware high-level syn-
thesis and describes a number of recent techniques to overcome them.

15.3.1 Thermal Model Selection for Use in High-Level Synthesis

It is important to select appropriate thermal modeling and analysis techniques for
use in temperature-aware high-level synthesis. In reality, ICs experience temporal
and spatial temperature variation. However, accurately modeling spatial and tem-
poral variation during thermal analysis can be the most time consuming part of
high-level synthesis. Given a fixed amount of time for synthesis, there is a trade-off
between the amount of time spent on thermal analysis and the number of tentative
behavioral synthesis solutions that can be considered. Therefore, it is important to
model temporal and spatial temperature variation with as much detail as necessary
for accuracy, but no more.

A number of high-level synthesis formulations consider energy consumption or
average power consumption. This is equivalent to optimizing temperature while
neglecting temporal and spatial variation in temperature. In some applications, this
is legitimate. In others, it can result in extremely large errors. Let us now consider
the circumstances in which it is necessary to model spatial and temporal variation
in temperature.

IC packaging has a strong influence on heat flow, and therefore on the impor-
tance of modeling spatial temperature variation. Packaging and cooling solutions
that more efficiently remove heat tend to be more expensive. In order to minimize
cost, it is reasonable to select a cooling solution that permits the temperature to
approach its constraint under worst-case or average-case conditions. As a result, in
low power density designs the package will have poor thermal conductance, e.g.,
a plastic package without heatsink. Is this case, the conductance between differ-
ent points on the silicon die is high relative to the conductance between a point on
the die, through the package, to the ambient. As a result, the temperature of the
active layer will generally be fairly uniform despite spatial variation in power den-
sity. For this reason, a simple thermal model is sufficient for low power density ICs
using low thermal conductance packages and cooling solutions [59,60]. High power
density designs require more efficient packaging and cooling solutions to maintain
safe temperatures. As a result, the thermal conductance between different points
on the silicon die can decrease relative to the thermal conductance to the ambient.
In this case, spatial variation in the power profile will result in spatial variation in
temperature.

The properties of temporal variation in IC power consumption have a
strong influence on the thermal modeling requirements. Most existing work on

15 High-Level Synthesis Algorithms for Power and Temperature Minimization 293

temperature-aware high-level synthesis assumes that power density does not vary
with time and uses steady-state thermal analysis based on the temporal averages of
power density. This is legitimate when the temporal variation of power densities
occurs in a much shorter timescale than the IC thermal RC time constants, e.g., a
high-frequency periodic system in which power density does not change on long
time scales due to changing input data. However, it is not legitimate when there are
long time scale changes in power density. If the interval of change in power density
is long relative to the thermal RC time constants, it may be possible to accurately
approximate the temperature by conducting steady-state analysis for each power
density phase. However, in general, accurately modeling the thermal impact of time-
varying power profiles requires dynamic thermal analysis, which is generally much
more time-consuming than steady-state analysis.

Thus far, we have considered the conditions in which spatial and temporal ther-
mal variation can be entirely neglected. However, once the decision is made to
model spatial and/or temporal variation, it is still necessary to determine the required
modeling resolution. Increasing the number of thermal elements or temperature
evaluation time instants can dramatically increase the run-time of thermal analysis.

The required thermal model spatial resolution depends on material properties,
cooling environment, and power density variation. During thermal analysis, it is
common for an IC to be partitioned into multiple elements, each of which is assumed
to be isothermal, i.e., to have internally-uniform temperature. To minimize analysis
time, thermal elements should generally be as large as possible while still honor-
ing the isothermal assumption. Note that an element with uniform power density
does not necessarily honor the isothermal assumption because its neighboring ther-
mal elements may have different temperatures, resulting in a substantial temperature
gradient. The architectural thermal analysis tools commonly used in high-level syn-
thesis thermal analysis support manual [61] or automatic [60] adaptation of spatial
modeling granularity.

Dynamic thermal analysis is frequently formulated as a time-domain initial
value problem in which the thermal profile is iteratively updated at increasing time
instants. There is a tradeoff between the number of time instants, at which the tem-
perature is explicitly evaluated, and accuracy. Assuming a constant error bound,
the duration between explicit temperature evaluations depends on the rate and com-
plexity of changes in the power profile. Therefore, dynamic adaptation is required to
minimize analysis time under a constraint on maximum error. The thermal analysis
tools commonly used in high-level synthesis support dynamic temporal adaptation
to varying degrees [60, 61].

15.3.2 High-Level Synthesis Algorithms for Temperature
Optimization

Temperature-aware high-level synthesis is currently a thriving research area, with
new work appearing monthly in top conferences and journals. Ten years ago, Weng

294 L. Shang et al.

and Parker were the first to address the problem by moving high power density
functional units away from high-temperature areas to reduce the spatial power
density and introducing redundant operators to reduce the temporal power den-
sity [62]. It is interesting to note that Prakash and Parker were also the first to
formulate the system-level heterogeneous distributed system synthesis problem,
also 10 years before it became a highly-active research area [63]. Mukherjee et al.
proposed to incrementally improve binding decisions to reduce the temperature of
the hottest functional unit, thereby reducing both dynamic and leakage power con-
sumption [21]. Gu et al. designed TAPHS, a temperature-aware unified physical
and behavioral synthesis system [64]. TAPHS integrates behavioral and physical
thermal optimization techniques, including voltage assignment, voltage island gen-
eration, and floorplanning, to optimize chip temperature, power, performance and
area. Lim and Kim propose a network flow based method for temperature-aware
binding that minimizes both peak and average switched capacitance [65]. Ni and
Öğrenci Memik proposed a technique to reduce leakage power consumption using
selective resource redundancy [22].

15.4 Conclusions

This chapter has described the current state-of-the-art in high-level synthesis algo-
rithms that optimize power consumption and temperature. International Technology
Roadmap for Semiconductors imply that power consumption will continue to be a
primary concern for IC designers. Emerging power and power-induced problems,
such as process variation influenced IC leakage power consumption, IC leakage-
thermal coupling, and power–thermal dependent IC lifetime reliability problems,
further exacerbate the challenges for high-level synthesis algorithms. On the other
hand, power optimization techniques that were widely used in the past, such as volt-
age scaling and body biasing, will soon start running out of steam as a result of
continued process scaling. Moreover, as power-aware unified architectural–physical
design flows cease to be luxuries and become necessities, it will become neces-
sary to cooperatively solve many problems that were once orthogonal to high-level
synthesis. These challenges may require fundamental changes to existing high-level
synthesis flows.

References

1. R. Camposano and W. Wolf, High Level VLSI Synthesis. Kluwer, MA, 1991
2. D. C. Ku and G. D. Micheli, High Level Synthesis of ASICs Under Timing and Synchronization

Constraints. Kluwer, MA, 1992
3. D. Gajski, N. Dutt, A. Wu and S. Lin, High-Level Synthesis: Introduction to Chip and System

Design. Kluwer, MA, 1992
4. A. Raghunathan, N. K. Jha and S. Dey, High-Level Power Analysis and Optimization. Kluwer,

MA, 1998

15 High-Level Synthesis Algorithms for Power and Temperature Minimization 295

5. R. Mehra and J. Rabaey, “Behavioral level power estimation and exploration,” in Proc. Int.
Wkshp Low Power Design, Apr. 1994, pp. 197–202

6. A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for power minimization
during microarchitecture synthesis,” in Proc. Int. Symp. Low-Power Design, Apr. 1994

7. L. Goodby, A. Orailoglu and P. M. Chau, “Microarchitecture synthesis of performance-
constrained, low-power VLSI designs,” in Proc. Int. Conf. Computer Design, Oct. 1994

8. A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,” in Proc. Int. Conf.
Computer Design, Oct. 1994, pp. 318–322

9. A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey and R. Brodersen, “Optimizing power
using transformations,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 14, no. 1, pp. 12–31, 1995

10. R. S. Martin and J. P. Knight, “Power profiler: Optimizing ASICs power consumption at the
behavioral level,” in Proc. Design Automation Conf., June 1995

11. J. M. Chang and M. Pedram, “Register allocation and binding for low power,” in Proc. Design
Automation Conf., June 1995

12. N. Kumar, S. Katkoori, L. Rader and R. Vemuri, “Profile-driven behavioral synthesis for low-
power VLSI systems,” IEEE Design Test, vol. 12, no. 3, pp. 70–84, 1995

13. A. Raghunathan and N. K. Jha, “SCALP: An iterative-improvement-based low-power data
path synthesis system,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 16, no. 11, pp. 1260–1277, 1997

14. K. S. Khouri, G. Lakshminarayana and N. K. Jha, “High-level synthesis of low power control-
flow intensive circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 18, no. 12, pp. 1715–1729, 1999

15. H. P. Peixoto and M. F. Jacome, “A new technique for estimating lower bounds on latency for
high level synthesis,” in Proc. Great Lakes Symp. VLSI, Mar. 2000, pp. 129–132

16. S. Naffziger et al., “The implementation of a 2-core, multi-threaded Itanium family processor,”
IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 197–209, 2006

17. K. S. Khouri and N. K. Jha, “Leakage power analysis and reduction during behavioral syn-
thesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 10, no. 6, pp. 876–885, 2002

18. C. Gopalakrishnan and S. Katkoori, “KnapBind: An area-efficient binding algorithm for low-
leakage datapaths,” in Proc. Int. Conf. Computer Design, Oct. 2003, pp. 430–435

19. X. Tang, H. Zhou and P. Banerjee, “Leakage power optimization with dual-Vth library in
high-level synthesis,” in Proc. Design Automation Conf., June 2005, pp. 202–207

20. D. Dal, A. Nunez and N. Mansouri, “Power islands: A high-level technique for counteracting
leakage in deep sub-micron,” in Proc. Int. Symp. Quality of Electronic Design, Mar. 2006,
pp. 165–170

21. R. Mukherjee, S. Öğrenci Memik and G. Memik, “Temperature-aware resource allocation and
binding in high-level synthesis,” in Proc. Design Automation Conf., June 2005

22. M. Ni and S. Öğrenci Memik, “Thermal-induced leakage power optimization by redundant
resource allocation,” in Proc. Int. Conf. Computer-Aided Design, Nov. 2006, pp. 297–302

23. G. S. Ohm, “The Galvanic circuit investigated mathematically,” in Die galvanische Kette:
mathematisch bearbeitet, 1827

24. Y. Yang, C. Zhu, Z. P. Gu, L. Shang and R. P. Dick, “Adaptive multi-domain thermal modeling
and analysis for integrated circuit synthesis and design,” in Proc. Int. Conf. Computer-Aided
Design, Nov. 2006, pp. 575–582

25. M. Johnson and R. K. Roy, “Optimal selection of supply voltages and level conversion during
datapath scheduling under resource constraints,” in Proc. Int. Conf. Computer Design, Oct.
1996, pp. 72–77

26. S. Raje and M. Sarrafzadeh, “Variable voltage scheduling,” in Proc. Int. Symp. Low Power
Electronics & Design, Aug. 1995, pp. 9–14

27. J. Chang and M. Pedram, “Energy minimization using multiple supply voltages,” in Proc. Int.
Symp. Low Power Electronics & Design, Aug. 1996, pp. 157–162

296 L. Shang et al.

28. I. Hong, D. Kirovski, G. Qu, M. Potkonjak and M. B. Srivastava, “Power optimization of vari-
able voltage core-based systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, no. 12, pp. 1702–1714, 1999

29. D. Helms, O. Meyer, M. Hoyer and W. Nebel, “Voltage- and ABB-island optimization in high
level synthesis,” in Proc. Int. Symp. Low Power Electronics & Design, Aug. 2007, pp. 153–158

30. H. Liu, W. Lee and Y. Chang, “A provably good approximation algorithm for power opti-
mization using multiple supply voltages,” in Proc. Design Automation Conf., June 2007,
pp. 887–890

31. A. Chatterjee and R. K. Roy, “Synthesis of low power linear DSP circuits using activity
metrics,” in Proc. Int. Conf. VLSI Design, Jan. 1994, pp. 261–264

32. A. Raghunathan and N. K. Jha, “An ILP formulation for low power based on minimizing
switched capacitance during datapath allocation,” in Proc. Int. Symp. Circuits & Systems, May
1995, pp. 1069–1073

33. J. Chang and M. Pedram, “Module assignment for low power,” in Proc. European Design
Automation Conf., Sept. 1996, pp. 376–381

34. E. Musoll and J. Cortadella, “High-level synthesis techniques for reducing the activity of
functional units,” in Proc. Int. Symp. Low Power Electronics & Design, Aug. 1995, pp. 99–104

35. G. Lakshminarayana, A. Raghunathan, N. K. Jha and S. Dey, “A power management
methodology for high-level synthesis,” in Proc. Int. Conf. VLSI Design, Jan. 1998

36. A. Dasgupta and R. Karri, “High-reliability, low-energy microrchitecture synthesis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 17,
pp. 1273–1280, 1998

37. M. Ercegovac, D. Kirovski and M. Potkonjak, “Low-power behavioral synthesis optimization
using multiple precision arithmetic,” in Proc. Design Automation Conf., June 1999, pp. 568–
573

38. G. Lakshminarayana, A. Raghunathan, K. S. Khouri, N. K. Jha and S. Dey, “Common case
computation: A high-level power-optimizing technique,” in Proc. Design Automation Conf.,
June 1999

39. W. Wang, A. Raghunathan, G. Lakshminarayana and N. K. Jha, “Input space adaptive
design: A high-level methodology for energy and performance optimization,” in Proc. Design
Automation Conf., June 2001, pp. 738–743

40. M. C. McFarland and T. J. Kowalski, “Incorporating bottom-up design into hardware synthe-
sis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9,
no. 9, pp. 938–950, 1990

41. J.-P. Weng and A. C. Parker, “3D scheduling: High-level synthesis with floorplanning,” in
Proc. Design Automation Conf., June 1991, pp. 668–673

42. D. W. Knapp, “Fasolt: A program for feedback-driven data-path optimization,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 11, no. 6,
pp. 677–695, 1992

43. J. P. Weng and A. C. Parker, “3D scheduling: High-level synthesis with floorplanning,” in
Proc. Design Automation Conf., June 1992

44. Y. M. Fang and D. F. Wong, “Simultaneous functional-unit binding and floorplanning,” in
Proc. Int. Conf. Computer-Aided Design, Nov. 1994

45. M. Xu and F. J. Kurdahi, “Layout-driven RTL binding techniques for high-level synthesis
using accurate estimators,” ACM Transactions on Design Automation Electronic Systems,
vol. 2, no. 4, pp. 312–343, 1997

46. W. E. Dougherty and D. E. Thomas, “Unifying behavioral synthesis and physical design,” in
Proc. Design Automation Conf., June 2000

47. P. G. Paulin and J. P. Knight, “Scheduling and binding algorithms for high-level synthesis,” in
Proc. Design Automation Conf., June 1989, pp. 1–6

48. C. A. Papachristou and H. Konuk, “A linear program driven scheduling and allocation method
followed by an interconnect optimization algorithm,” in Proc. Design Automation Conf., June
1990

49. T. A. Ly, W. L. Elwood and E. F. Girczyc, “A generalized interconnect model for data path
synthesis,” in Proc. Design Automation Conf., June 1990

15 High-Level Synthesis Algorithms for Power and Temperature Minimization 297

50. S. Tarafdar and M. Leeser, “The DT-model: High-level synthesis using data transfer,” in Proc.
Design Automation Conf., June 1998

51. C. Jego, E. Casseau and E. Martin, “Interconnect cost control during high-level synthesis,” in
Proc. Design Circuits & Integration Systems Conf., Nov. 2000

52. R. Ho, K. Mai and M. Horowitz, “The future of wires,” Proceedings of the IEEE, vol. 89,
no. 4, pp. 490–504, 2001

53. P. Prabhakaran and P. Banerjee, “Simultaneous scheduling, binding and floorplanning high-
level synthesis,” in Proc. Int. Conf. VLSI Design, Jan. 1998

54. L. Zhong and N. K. Jha, “Interconnect-aware low power high-level synthesis,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 3,
pp. 336–351, 2005

55. A. Stammermann, D. Helms, M. Schulte, A. Schulz and W. Nebel, “Binding, allocation and
floorplanning in low power high-level synthesis,” in Proc. Int. Conf. Computer-Aided Design,
Nov. 2003

56. O. Coudert, J. Cong, S. Malik and M. Sarrafzadeh, “Incremental CAD,” in Proc. Int. Conf.
Computer-Aided Design, Nov. 2000, pp. 236–244

57. W. Choi and K. Bazargan, “Hierarchical global floorplacement using simulated annealing and
network flow migration,” in Proc. Design, Automation & Test in Europe Conf., Mar. 2003

58. Z. P. Gu, J. Wang, R. P. Dick and H. Zhou, “Unified incremental physical-level and high-level
synthesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2007

59. G. Paci, P. Marchal, F. Poletti and L. Benini, “Exploring “temperature-aware design” in low-
power MPSoCs,” in Proc. Design, Automation & Test in Europe Conf., Mar. 2006

60. Y. Yang, Z. P. Gu, C. Zhu, R. P. Dick and L. Shang, “ISAC: Integrated Space and Time
Adaptive Chip-Package Thermal Analysis,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2007

61. W. Huang et al., “HotSpot: A compact thermal modeling methodology for early-stage VLSI
design,” IEEE Transactions on VLSI Systems, vol. 14, no. 5, pp. 501–524, 2006

62. J.-P. Weng and A. C. Parker, “Taking thermal considerations into account during high-level
synthesis,” VLSI Design, vol. 5, no. 2, pp. 183–193, 1997

63. S. Prakash and A. Parker, “Synthesis of application-specific multiprocessor architectures,” in
Proc. Design Automation Conf., June 1991

64. Z. P. Gu, Y. Yang, J. Wang, R. P. Dick and L. Shang, “TAPHS: Thermal-aware unified
physical-level and high-level synthesis,” in Proc. Asia & South Pacific Design Automation
Conf., Jan. 2006, pp. 879–885

65. P. Lim and T. Kim, “Thermal-aware high-level synthesis based on network flow method,” in
Proc. Int. Conf. Hardware/Software Codesign and System Synthesis, Oct. 2006

	cover.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf

