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Foreword

Single-threaded software applications have ceased to see significant gains in per-
formance on a general-purpose CPU, even with further scaling in very large scale
integration (VLSI) technology. This is a significant problem for electronic design
automation (EDA) applications, since the design complexity of VLSI integrated
circuits (ICs) is continuously growing. In this research monograph, we evaluate
custom ICs, field-programmable gate arrays (FPGAs), and graphics processors as
platforms for accelerating EDA algorithms, instead of the general-purpose single-
threaded CPU. We study applications which are used in key time-consuming steps
of the VLSI design flow. Further, these applications also have different degrees of
inherent parallelism in them. We study both control-dominated EDA applications
and control plus data parallel EDA applications. We accelerate these applications
on these different hardware platforms. We also present an automated approach for
accelerating certain uniprocessor applications on a graphics processor.

This monograph compares custom ICs, FPGAs, and graphics processing units
(GPUs) as potential platforms to accelerate EDA algorithms. It also provides details
of the programming model used for interfacing with the GPUs. As an example of a
control-dominated EDA problem, Boolean satisfiability (SAT) is accelerated using
the following hardware implementations: (i) a custom IC-based hardware approach
in which the traversal of the implication graph and conflict clause generation are
performed in hardware, in parallel, (ii) an FPGA-based hardware approach to accel-
erate SAT in which the entire SAT search algorithm is implemented in the FPGA,
and (iii) a complete SAT approach which employs a new GPU-enhanced variable
ordering heuristic.

In this monograph, several EDA problems with varying degrees of control and
data parallelisms are accelerated using a general-purpose graphics processor. In par-
ticular we accelerate Monte Carlo based statistical static timing analysis, device
model evaluation (for accelerating circuit simulation), fault simulation, and fault
table generation on a graphics processor, with speedups of up to 800×. Addition-
ally, an automated approach is presented that accelerates (on a graphics proces-
sor) uniprocessor code that is executed multiple times on independent data sets
in an application. The key idea here is to partition the software into kernels in an
automated fashion, such that multiple independent instances of these kernels, when
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viii Foreword

executed in parallel on the GPU, can maximally benefit from the GPU’s hardware
resources.

We hope that this monograph can serve as a valuable reference to individuals
interested in exploring alternative hardware platforms and to those interested in
accelerating various EDA applications by harnessing the parallelism in these plat-
forms.

College Station, TX Kanupriya Gulati
College Station, TX Sunil P. Khatri
October 2009



Preface

In recent times, serial software applications have no longer enjoyed significant
gains in performance with process scaling, since microprocessor performance gains
have been hampered due to increases in power and manufacturability issues, which
accompany scaling. With the continuous growth of IC design complexities, this
problem is particularly significant for EDA applications. In this research mono-
graph, we evaluate the feasibility of hardware platforms such as custom ICs, FPGAs,
and graphics processors, for accelerating EDA algorithms. We choose applications
which contribute significantly to the total runtime of the VLSI design flow and
which have varied degrees of inherent parallelism in them. We study the acceler-
ation of such algorithms on these alternative platforms. We also present an auto-
mated approach to accelerate certain specific types of uniprocessor subroutines on
the GPU.

This research monograph consists of four parts. The alternative hardware plat-
forms, along with the details of the programming model used for interfacing with
the graphics processing units, are discussed in the first part of this monograph.
The second part of this monograph studies the acceleration of an algorithm in
the control-dominated category, namely Boolean satisfiability (SAT). The third part
studies the acceleration of some algorithms in the control plus data parallel cate-
gory, namely Monte Carlo based statistical static timing analysis, circuit simulation,
fault simulation and fault table generation. In the fourth part of the monograph, we
present the automated approach to generate GPU code to accelerate certain software
subroutines.

Book Outline

This research monograph is organized into four parts. In Part I of this research
monograph, we discuss alternative hardware platforms. We also provide details of
the programming model used for interfacing with the graphics processor. In Chap-
ter 2, we compare and contrast the hardware platforms that are considered in this
monograph. In particular, we discuss custom-designed ICs, reconfigurable architec-
tures such as FPGAs, and streaming processors such as graphics processing units
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x Preface

(GPUs). This comparison is performed over various criteria such as architecture,
expected performance, programming model and environment, scalability, time to
market, security, and cost of hardware. In Chapter 3, we describe the programming
environment used for interfacing with the GPUs.

In Part II of this monograph we present hardware implementations of a control-
dominated EDA problem, namely Boolean satisfiability (SAT). We present
approaches to accelerate SAT using each of the three hardware platforms under
consideration. In Chapter 4, we present a custom IC-based hardware approach to
accelerate SAT. In this approach, the traversal of the implication graph and con-
flict clause generation are performed in hardware, in parallel. Further, we propose a
hardware approach to extract the minimum unsatisfiable core for any unsatisfiable
formula. In Chapter 5, we discuss an FPGA-based hardware approach to accelerate
SAT. In this approach, we store the clauses in the FPGA slices. In order to solve
large SAT instances, we partition the instance into ‘bins,’ each of which can fit in
the FPGA. The solution of SAT clauses of any bin is performed in parallel. Our
approach also handles (in hardware) the fact that the original SAT instance is par-
titioned into bins. In Chapter 6, we present a SAT approach which employs a new
GPU-enhanced variable ordering heuristic. In this approach, we augment a CPU-
based complete procedure (MiniSAT), with a GPU-based approximate procedure
(survey propagation). In this manner, the complete procedure benefits from the high
parallelism of the GPU.

In Part III of this book, we study the acceleration of several EDA problems,
with varying amounts of control and data parallelism, on a GPU. In Chapter 7, we
exploit the parallelism in Monte Carlo based statistical static timing analysis and
accelerate it on a graphics processor. In this approach, we map the Monte Carlo
based SSTA computations to the large number of threads that can be computed in
parallel on a GPU. Our approach performs multiple delay simulations of a single
gate in parallel and further benefits from a parallel implementation of the Mersenne
Twister pseudo-random number generator on the GPU, followed by Box–Muller
transformations (also implemented on the GPU). In Chapter 8, we study the accel-
eration of fault simulation on a GPU. Fault simulation is inherently parallelizable
and requires a large number of gate evaluations to be performed for each gate in
a design. The large number of threads that can be computed in parallel on a GPU
can be employed to perform a large number of these gate evaluations in parallel. We
implement a pattern and fault parallel fault simulator, which fault-simulates a circuit
in a levelized fashion. We ensure that all threads of the GPU compute identical
instructions, but on different data. We study the generation of a fault table using a
GPU in Chapter 9. We employ a pattern parallel approach, which utilizes both bit
parallelism and thread-level parallelism. In Chapter 10, we explore the GPU-based
acceleration of the model card evaluation of a circuit simulator. Our resulting code
is integrated into a commercial fast SPICE tool, and the overall speedup obtained
is measured. With careful engineering, we maximally harness the GPU’s immense
memory bandwidth and high computational power.

In Part IV of this book, we present an automated approach to accelerate unipro-
cessor subroutines which are required to be executed multiple times within an
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application, on independent data sets. The target hardware platform is a general-
purpose graphics platform. The key idea here is to partition the subroutine into
kernels in an automated fashion, such that multiple instances of these kernels, when
executed in parallel on the GPU, can maximally benefit from the GPU’s hardware
resources. This approach is detailed in Chapter 11.

The approaches presented in this monograph collectively aim to contribute
toward enabling the VLSI CAD community to accelerate EDA algorithms on dif-
ferent hardware platforms.

College Station, TX Kanupriya Gulati
College Station, TX Sunil P. Khatri
October 2009
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Part I
Alternative Hardware Platforms

Outline of Part I

In this research monograph, we explore the following hardware platforms for accel-
erating EDA applications:

• Custom-designed ICs are arguably the fastest accelerators we have today, easily
offering several orders of magnitude speedup compared to the single-threaded
software performance on the CPU.These chips are application specific, and
thus deliver high performance for the target application, albeit at a high cost.

• Field-programmable gate arrays (FPGAs) have been popular for hardware pro-
totyping for several years now. Hardware designers have used FPGAs for imple-
menting system-level logic including state machines, memory controllers, ‘glue’
logic, and bus interfaces. FPGAs have also been heavily used for system pro-
totyping and for emulation purposes. More recently, high-performance systems
have begun to increasingly utilize FPGAs. This has been made possible in part
because of increased FPGA device densities, by advances in FPGA tool flows,
and also by the increasing cost of application-specific integrated circuit (ASIC)
or custom IC implementations.

• Graphics processing units (GPUs) are designed to operate in a single instruction
multiple data (SIMD) fashion. The key application of a GPU is to serve as a
graphics accelerator for speeding up image processing, 3D rendering operations,
etc., as required of a graphics card in a CPU. In general, these graphics acceler-
ation tasks perform the same operation (i.e., instructions) independently on large
volumes of data. The application of GPUs for general-purpose computations has
been actively explored in recent times. The rapid increase in the number and
diversity of scientific communities exploring the computational power of GPUs
for their data-intensive algorithms has arguably had a contribution in encourag-
ing GPU manufacturers to design easily programmable general-purpose GPUs
(GPGPUs). GPU architectures have been continuously evolving toward higher
performance, larger memory sizes, larger memory bandwidths, and relatively
lower costs.
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Part I of this monograph is organized as follows. The above-mentioned hardware
platforms are compared and contrasted in Chapter 2, using criteria such as architec-
ture, expected performance, programming model and environment, scalability, time
to market, security, and cost of hardware. In Chapter 3, we describe the program-
ming environment used for interfacing with the GPU devices.



Chapter 1
Introduction

With the advances in VLSI technology over the past few decades, several software
applications got a ‘free’ performance boost, without needing any code redesign.
The steadily increasing clock rates and higher memory bandwidths resulted in
improved performance with zero software cost. However, more recently, the gain
in the single-core performance of general-purpose processors has diminished due to
the decreased rate of increase of operating frequencies. This is because VLSI system
performance hit two big walls:

• the memory wall and
• the power wall.

The memory wall refers to the increasing gap between processor and memory
speeds. This results in an increase in cache sizes required to hide memory access
latencies. Eventually the memory bandwidth becomes the bottleneck in perfor-
mance. The power wall refers to power supply limitations or thermal dissipation
limitations (or both) – which impose a hard constraint on the total amount of power
that processors can consume in a system. Together, these two walls reduce the
performance gains expected for general-purpose processors, as shown in Fig. 1.1.
Due to these two factors, the rate of increase of processor frequency has greatly
decreased. Further, the VLSI system performance has not shown much gain from
continued processor frequency increases as was once the case.

Further, newer manufacturing and device constraints are faced with decreasing
feature sizes, making future performance increases harder to obtain. A leading pro-
cessor design company summarized the causes of reduced speed improvements in
their white paper [1], stating:

First of all, as chip geometries shrink and clock frequencies rise, the transistor leakage
current increases, leading to excess power consumption and heat ... Secondly, the advan-
tages of higher clock speeds are in part negated by memory latency, since memory access
times have not been able to keep pace with increasing clock frequencies. Third, for certain
applications, traditional serial architectures are becoming less efficient as processors get
faster (due to the so-called Von Neumann bottleneck), further undercutting any gains that
frequency increases might otherwise buy. In addition, partly due to limitations in the means
of producing inductance within solid state devices, resistance-capacitance (RC) delays in
signal transmission are growing as feature sizes shrink, imposing an additional bottleneck
that frequency increases don’t address.

K. Gulati, S.P. Khatri, Hardware Acceleration of EDA Algorithms,
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2 1 Introduction

Fig. 1.1 CPU performance growth [3]

In order to maintain increasing peak performance trends without being hit by
these ‘walls,’ the microprocessor industry rapidly shifted to multi-core processors.
As a consequence of this shift in microprocessor design, traditional single-threaded
applications no longer see significant gains in performance with each processor
generation, unless these applications are rearchitectured to take advantage of the
multi-core processors. This is due to the instruction-level parallelism (ILP) wall,
which refers to the rising difficulty in finding enough parallelism in the existing
instructions stream of a single process, making it hard to keep multiple cores busy.
The ILP wall further compounds the difficulty of performance scaling at the applica-
tion level. These walls are a key problem for several software applications, including
software for electronic design.

The electronic design automation (EDA) field collectively uses a diverse set
of software algorithms and tools, which are required to design complex next-
generation electronics products. The increase in VLSI design complexity poses a
challenge to the EDA community, since single-thread performance is not scaling
effectively due to reasons mentioned above. Parallel hardware presents an opportu-
nity to solve this dilemma and opens up new design automation opportunities which
yield orders of magnitude faster algorithms. In addition to multi-core processors,
other hardware platforms may be viable alternatives to achieve this acceleration as
well. These include custom-designed ICs, reconfigurable hardware such as FPGAs,
and streaming processors such as graphics processing units. All these alternatives
need to be investigated as potential solutions for accelerating EDA applications.
This research monograph studies the feasibility of using these alternative platforms
for a subset of EDA applications which

• address some extremely important steps in the VLSI design flow and
• have varying degrees of inherent parallelism in them.
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The rest of this chapter is organized as follows. In the next section, we briefly
introduce the hardware platforms that are studied in this monograph. In Sec-
tion 1.2 we discuss the EDA applications considered in this monograph. In Sec-
tion 1.3 we discuss our approach to automatically generate graphics processing unit
(GPU) based code to accelerate uniprocessor software. Section 1.4 summarizes this
chapter.

1.1 Hardware Platforms Considered in This Research
Monograph

In this book, we explore the three following hardware platforms for accelerating
EDA applications. Custom-designed ICs are arguably the fastest accelerators we
have today, easily offering several orders of magnitude speedup compared to the
single-threaded software performance on the CPU [2]. Field-programmable gate
arrays (FPGAs) are arrays of reconfigurable logic and are popular devices for hard-
ware prototyping. Recently, high-performance systems have begun to increasingly
utilize FPGAs because of improvements in FPGA speeds and densities. The increas-
ing cost of custom IC implementations along with improvements in FPGA tool
flows has helped make FPGAs viable platforms for an increasing number of applica-
tions. Graphics processing units (GPUs) are designed to operate in a single instruc-
tion multiple data (SIMD) fashion. GPUs are being actively explored for general-
purpose computations in recent times [4, 6, 5, 7]. The rapid increase in the number
and diversity of scientific communities exploring the computational power of GPUs
for their data-intensive algorithms has arguably had a contribution in encouraging
GPU manufacturers to design easily programmable general-purpose GPUs (GPG-
PUs). GPU architectures have been continuously evolving toward higher perfor-
mance, larger memory sizes, larger memory bandwidths, and relatively lower costs.

Note that the hardware platforms discussed in this research monograph require
an (expensive) communication link with the host processor. All the EDA applica-
tions considered have to work around this communication cost, in order to obtain
a healthy speedup on their target platform. Future-generation hardware architec-
tures may not face a high communication cost. This would be the case if the host
and the accelerator are implemented on the same die or share the same physical
RAM. However, for existing architectures, it is important to consider the cost of
this communication while discussing the feasibility of the platform for a particular
application.

1.2 EDA Algorithms Studied in This Research Monograph

In this monograph, we study two different categories of EDA algorithms, namely
control-dominated and control plus data parallel algorithms. Our work demon-
strates the rearchitecting of EDA algorithms from both these categories, to max-
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imally harness their performance on the alternative platforms under considera-
tion. We chose applications for which there is a strong motivation to accelerate,
since they are used in key time-consuming steps in the VLSI design flow. Fur-
ther, these applications have different degrees of inherent parallelism in them,
which make them an interesting implementation challenge for these alternative
platforms. In particular, Boolean satisfiability, Monte Carlo based statistical static
timing analysis, circuit simulation, fault simulation, and fault table generation are
explored.

1.2.1 Control-Dominated Applications

In the control-dominated algorithms category, this monograph studies the imple-
mentation of Boolean satisfiability (SAT) on the custom IC, FPGA, and GPU
platforms.

1.2.2 Control Plus Data Parallel Applications

Among EDA problems with varying amounts of control and data parallelism, we
accelerated the following applications using GPUs:

• Statistical static timing analysis (SSTA) using graphics processors
• Accelerating fault simulation on a graphics processor
• Fault table generation using a graphics processor
• Fast circuit simulation using graphics processor

1.3 Automated Approach for GPU-Based Software Acceleration

The key idea here is to partition a software subroutine into kernels in an automated
fashion, such that multiple instances of these kernels, when executed in parallel
on the GPU, can maximally benefit from the GPU’s hardware resources. The soft-
ware subroutine must satisfy the constraints that it (i) is executed many times and
(ii) there are no control or data dependencies among the different invocations of this
routine.

1.4 Chapter Summary

In recent times, improvements in VLSI system performance have slowed due to
several walls that are being faced. Key among these are the power and memory
walls. Since the growth of single-processor performance is hampered due to these
walls, EDA software needs to explore alternate platforms, in order to deliver the
increased performance required to design the complex electronics of the future.
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In this monograph, we explore the acceleration of several different EDA algo-
rithms (with varying degrees of inherent parallelism) on alternative hardware plat-
forms. We explore custom ICs, FPGAs, and graphics processors as the candidate
platforms. We study the architectural and performance tradeoffs involved in imple-
menting several EDA algorithms on these platforms. We study two classes of EDA
algorithms in this monograph: (i) control-dominated algorithms such as Boolean
satisfiability (SAT) and (ii) control plus data parallel algorithms such as Monte Carlo
based statistical static timing analysis, circuit simulation, fault simulation, and fault
table generation. Another contribution of this monograph is to automatically gener-
ate GPU code to accelerate software routines that are run repeatedly on independent
data.

This monograph is organized into four parts. In Part I of the monograph, different
hardware platforms are compared, and the programming model used for interfacing
with the GPU platform is presented. In Part II, we present techniques to acceler-
ate a control-dominated algorithm (Boolean satisfiability). We present an IC-based
approach, an FPGA-based approach, and a GPU-based scheme to accelerate SAT.
In Part III, we present our approaches to accelerate control and data parallel appli-
cations. In particular we focus on accelerating Monte Carlo based SSTA, fault sim-
ulation, fault table generation, and model card evaluation of SPICE, on a graphics
processor. Finally, in Part IV, we present an automated approach for GPU-based
software acceleration. The monograph is concluded in Chapter 12, along with a brief
description of next-generation hardware platforms. The larger goal of this work is
to provide techniques to enable the acceleration of EDA algorithms on different
hardware platforms.
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Chapter 2
Hardware Platforms

2.1 Chapter Overview

As discussed in Chapter 1, single-threaded software applications no longer obtain
significant gains in performance with the current processor scaling trends. With the
growing complexity of VLSI designs, this is a significant problem for the elec-
tronic design automation (EDA) community. In addition to multi-core processors,
hardware-based accelerators such as custom-designed ICs, reconfigurable hardware
such as FPGAs, and streaming processors such as graphics processing units (GPUs)
are being investigated as a potential solution to this problem. These platforms allow
the CPU to offload compute-intensive portions of an application to the hardware for
a faster computation, and the results are transferred back to the CPU upon com-
pletion. Different platforms are best suited for different application scenarios and
algorithms. The pros and cons of the platforms under consideration are discussed in
this chapter.

The rest of this chapter is organized as follows. Section 2.2 discusses the hard-
ware platforms studied in this monograph, with a brief introduction of custom
ICs, FPGAs, and GPUs in Section 2.3. Sections 2.4 and 2.5 compare the hard-
ware architecture and programming environment of these platforms. Scalability
of these platforms is discussed in Section 2.6, while design turn-around time on
these platforms is compared in Section 2.7. These platforms are contrasted for
performance and cost of hardware in Sections 2.8 and 2.9, respectively. The imple-
mentation of floating point operations on these platforms is compared in Sec-
tion 2.10, while security concerns are discussed in Section 2.11. Suitable applica-
tions for these platforms are discussed in Section 2.12. The chapter is summarized in
Section 2.13.

2.2 Introduction

Most hardware accelerators are not stand-alone platforms, but are co-processors to
a CPU. In other words, a CPU is needed for initial processing, before the compute-
intensive task is off-loaded to the hardware accelerators. In some cases the hardware
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accelerator might communicate with the CPU even during the computation. The
different platforms for hardware acceleration in this monograph are compared in
the following sections.

2.3 Hardware Platforms Studied in This Research Monograph

2.3.1 Custom ICs

Traditionally, custom ICs are included in a product to improve its performance. With
a high production volume, the high manufacturing cost of the IC is easily amortized.
Among existing hardware platforms, custom ICs are easily the fastest accelerators.
By being application specific, they can deliver very high performance for the target
application. There exist a vast literature of advanced circuit design techniques which
help in reducing the power consumption of such ICs while maintaining high perfor-
mance [36]. Some of the more well-known techniques to reduce power consumption
(both dynamic and leakage) are design and protocol changes [31, 20], reducing sup-
ply voltage [17], variable Vt devices, dynamic bulk modulation [39, 40], power gat-
ing [18], and input vector control [25, 16, 41]. Also, newer gate materials which help
achieve further performance gains at a low power cost are being investigated [32].
Due to their high performance and small footprint, custom ICs are the most suitable
accelerators for space, military, and medical applications that are compute intensive.

2.3.2 FPGAs

A field-programmable gate array (FPGA) is an integrated circuit which is designed
to be configured by the designer in the field. The FPGA is generally programmed
using a hardware description language (HDL). The ability of the user to program
the functionality of the FPGA in the field, along with the low non-recurring engi-
neering costs (relative to a custom IC design), makes the FPGA an attractive plat-
form for many applications. FPGAs have significant performance advantages over
microprocessors due to their highly parallel architectures and significant flexibility.
Hardware-level parallelism allows FPGA-based applications to operate 1 to 2 orders
of magnitude faster than equivalent applications running on an embedded processor
or even a high-end workstation. Compared to custom ICs, FPGAs have a somewhat
lower performance, but their reconfigurability makes them an easy choice for several
(particularly low-volume) applications.

2.3.3 Graphics Processors

General-purpose graphics processors turn the massive computational power of a
modern graphics accelerator into general-purpose computing power. In certain
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applications which include vector processing, this can yield several orders of magni-
tude higher performance than a conventional CPU. In recent times, general-purpose
computation on graphics processors has been actively explored for several scientific
computations [23, 34, 29, 35, 24]. The rapid increase in the number and diversity of
scientific communities exploring the computational power of GPUs for their data-
intensive algorithms has arguably had a contribution in encouraging GPU manu-
facturers to design GPUs that are easy to program for general-purpose applications
as well. GPU architectures have been continuously evolving toward higher perfor-
mance, larger memory sizes, larger memory bandwidths, and relatively lower costs.
Additionally, the development of open-source programming tools and languages
for interfacing with the GPU platforms, along with the continuous evolution of the
computational power of GPUs, has further fueled the growth of general-purpose
GPU (GPGPU) applications.

A comparison of hardware platforms considered in this monograph is presented
next, in Sections 2.4 through 2.12.

2.4 General Overview and Architecture

Custom-designed ICs have no fixed architecture. Depending on the algorithm, tech-
nology, target application, and skill of the designers, custom ICs can have extremely
diverse architectures. This flexibility allows the designer to trade off design param-
eters such as throughput, latency, power, and clock speed. The smaller features also
open the door to higher levels of system integration, making the architecture even
more diverse.

FPGAs are high-density arrays of reconfigurable logic, as shown in Fig. 2.1 [14].
They allow a designer the ability to trade off hardware resources versus perfor-
mance, by giving the hardware designers the choice to select the appropriate level
of parallelism to implement an algorithm. The ability to tradeoff parallelism and
pipelining yields significant architectural variety. The circuit diagram for a typical
FPGA logic block is shown in Fig. 2.2, and it can implement both combinational
and sequential logic, based on the value of the MUX select signal X. The lookup
table (LUT) in this FPGA logic block is shown in Fig. 2.3. It consists of a 16:1
MUX circuit, implemented using NMOS passgates. This is the typical circuit used
for implementing LUTs [30, 21]. The circuit for the 16 SRAM configuration bits
(labeled as ‘S’ in Fig. 2.3) is shown in Fig. 2.4. The DFF of Fig. 2.2 is implemented
using identical master and slave latches, each of which has an NMOS passgate con-
nected to the clock and a pair of inverters in a feedback configuration to implement
the storage element.

In the FPGA paradigm, the hardware consists of a regular array of logic blocks.
Wiring between these blocks is achieved by reconfigurable interconnect, which can
be programmed via passgates and SRAM configuration bits to drive these passgates
(and thereby customize the wiring).

Recent FPGAs provide on-board hardware IP blocks for DSP, hard processor
macros, and large amounts of on-chip block RAM (BRAM). These hardware IP
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blocks allow a designer to perform many common computations without using
FPGA logic blocks or LUTs, resulting in a more efficient design.

One downside of FPGA devices is that they have to be reconfigured every time
the system is powered up. This requires the use of either a special external memory
device (which has an associated cost and consumes real estate on the board) or an
on-board microprocessor (or some variation of these techniques).

GPUs are commodity parallel devices which provide extremely high memory
bandwidths and a large number of programmable cores. They can support thou-
sand of simultaneously issued software threads operating in a SIMD fashion. GPUs
have several multiprocessors which execute these software threads. Each multipro-
cessor has a special function unit, which handles infrequent, expensive operations,
like divide and square root. There is a high bandwidth, low latency local memory
attached to each multiprocessor. The threads executing on that multiprocessor can
communicate among themselves using this local memory. In the current genera-
tion of NVIDIA GPUs, the local memory is quite small (16 KB). There is also a
large global device memory (over 4 GB in some models) of GPU cards. Virtual
memory is not implemented, and so paging is not supported. Due to this limitation,
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all the data has to fit in the global memory. The global device memory has very
high bandwidth (but also has high latency) to the multiprocessors. The global
device memory is not directly accessible by the host CPU nor is the host memory
directly accessible to the GPU. Data from the host that needs to be processed by
the GPU must be transferred via DMA (across an IO bus) from the host to the
device memory. Similarly, data is transferred via DMA from the GPU to the CPU
memory as well. GPU memory bandwidths have grown from 42 GB/s for the ATI
Radeon X1800XT to 141.7 GB/s for the NVIDIA GeForce GTX 280 GPU [37].
A recent comparison of the performance in Gflops of GPUs to CPUs is shown in
Fig. 2.5. A key drawback of the current GPU architectures (as compared to FPGAs)
is that the on-chip memory cannot be used to store the intermediate data [22] of a
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computation. Only off-chip global memory (DRAM) can be used for storing inter-
mediate data. On the FPGA, processed data can be stored in on-chip block RAM
(BRAM).

2.5 Programming Model and Environment

Custom-designed ICs require several EDA tools in their design process. From func-
tional correctness at the RTL/HDL level to the hardware testing and debugging of
the final silicon, EDA tools and simulators are required at every step. For certain
steps, a designer has to manually fix the design or interface signals to meet timing or
power requirements. Needless to say, for ICs with several million transistors, design
and testing can take months before the hardware masks are finalized for fabrica-
tion. Unless the design and manufacturing cost can be justified by large volumes or
extremely high performance requirements, the custom design approach is typically
not practical.

FPGAs are generally customized based on the use of SRAM configuration cells.
The main advantage of this technique is that new design ideas can be implemented
and tested much faster compared to a custom IC. Further, evolving standards and
protocols can be accommodated relatively easily, since design changes are much
simpler to incorporate. On the FPGA, when the system is first powered up, it
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can initially be programmed to perform one function such as a self-test and/or
board/system test, and it can then be reprogrammed to perform its main task. FPGA
vendors provide software and hardware IP cores [3] that implement several common
processing functions. More recently, high-end FPGAs have become available that
contain one or more embedded microprocessors. Tasks that used to be performed by
an external microprocessor can now be moved into the FPGA core. This provides
several advantages such as cost reduction, significantly reduced data transfer times
from FPGA to the microprocessor, simplified circuit board design, and a smaller,
more power-efficient system. Debugging the FPGA is usually performed using
embedded logic analyzers at the bitstream level [26]. FPGA debugging, depend-
ing on the design density and complexity, can easily take weeks. However, this is
still a small fraction of the time taken for similar activities in the custom IC
approach. Given these advantages, FPGAs are often used in low- and medium-volume
applications.

In the recent high-level languages released for interfacing with GPUs, the hard-
ware details of the graphics processor are abstracted away. High-level APIs have
made GPU programming very flexible. Existing libraries such as ACML-GPU [2]
for AMD GPUs and CUFFT and CUBLAS [4] for NVIDIA GPUs have inbuilt effi-
cient parallel implementations of commonly used mathematical functions.
CUDA [10] from NVIDIA provides guidelines for memory access and the usage
of hardware resources for maximal speedup. Brook+ [2] from AMD-ATI provides
a lower level API for the programmer to extract higher performance from the hard-
ware. Further, GPU debugging and profiling tools are available for verification and
optimization. In comparison to FPGAs or custom ICs, using GPUs as accelerators
incurs a significantly lower design turn-around time.

General-purpose CPU programming has all the advantages of GPGPU program-
ming and is a mature field. Several programming environments, debugging and
profiling tools, and operating systems have been around for decades now. The vast
amount of existing code libraries for CPU-based applications is an added advantage
of system implementation on a general-purpose CPU.

2.6 Scalability

In high-performance computing, scalability is an important issue. Combining mul-
tiple ICs together for more computing power and using an array of FPGAs for
emulation purposes are known techniques to enhance scalability. However, the extra
hardware usually requires careful reimplementation of some critical portions of the
design. Further, parallel connectivity standards (PCI, PCI-X, EMIF) often fall short
when scalability and extensibility are taken into consideration.

Scalability is hard to achieve in general and should be considered during the
architectural and design phases of FPGA-based or custom IC-based algorithm accel-
eration efforts. Scalability concerns are very specific to the algorithm being targeted,
as well as the acceleration approach employed.
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For graphics processors, existing techniques for scaling are intracluster and inter-
cluster scaling. GPU providers such as NVIDIA and AMD provide multi-GPU solu-
tions such as [12] and [1], respectively. These multi-GPU architectures claim high
scalability, in spite of limited parallel connectivity, provided the application lends
itself well to the architecture. Scalability requires efficient use of hardware as well
as communication resources in multi-core architectures, custom ICs, FPGAs, and
GPUs. Architecting applications for scalability remains a challenging open problem
for all platforms.

2.7 Design Turn-Around Time

Custom ICs have a high design turn-around time. Even for modest sized designs, it
takes many months from the start of the design to when the silicon is delivered. If
design revisions are required, the cost and design turn-around time of custom ICs
can become even higher.

FPGAs offer better flexibility and rapid prototyping capabilities as compared to
custom designs. An idea or concept can be tested and verified in an FPGA without
going through the long and expensive fabrication process of custom design. Further,
incremental changes or design revisions (on an FPGA) can be implemented within
hours or days instead of months. Commercial off-the-shelf prototyping hardware
is readily available, making it easier to rapidly prototype a design. The growing
availability of high-level software tools for FPGA design, along with valuable IP
cores (prebuilt functions) for several commonly used control and signal processing
tasks, makes it possible to achieve rapid design turn-arounds.

GPUs and CPUs allow for a far more flexible development environment and
faster turn-around times. Newer compilers and debuggers help trace software bugs
rapidly. Incremental changes or design revisions can be compiled much faster than
in custom IC or FPGA designs. Code profiling technique for optimization purposes
is a mature area [15, 10]. Thus, a software implementation can easily be used to
rapidly prototype a new design or to modify an existing design.

2.8 Performance

Depending on the application, custom-designed ICs offer speedups of several orders
of magnitude as compared to the single-threaded software performance on the CPU.
However, as mentioned earlier, the time taken to design an IC can be prohibitive.
FPGAs provide a performance that is intermediate between that of custom ICs
and single-threaded CPUs. Hardware-level parallelism allows some FPGA-based
applications to operate 1–2 orders of magnitude faster than an equivalent applica-
tion running on a higher-end workstation. More recently, high-performance sys-
tem designers have begun to explore the capabilities of FPGAs [28]. Advances
in FPGA tool flows and the increasing FPGA speed and density characteristics
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(shown in Fig. 2.6) have made FPGAs increasingly popular. Compared to custom-
designed ICs, FPGA-based designs yield lower performance, but the reconfigurable
property gives it an edge over custom designs, especially since custom ICs incur
significant NRE costs.

When measured in terms of power efficiency, the advantages of an FPGA-based
computing strategy become even more apparent. Calculated as a function of mil-
lions of operations (MOPs) per watt, FPGAs have demonstrated greater than 1,000×
power/performance advantages over today’s most powerful processors [5]. For this
reason, FPGA accelerators are now being deployed for a wide variety of power-
hungry computing applications.

The power of the GPGPU paradigm stems from the fact that GPUs, with their
large memories, large memory bandwidths, and high degrees of parallelism, are
readily available as off-the-shelf devices, at very inexpensive prices. The theoretical
performance of the GPU [37] has grown from 50 Gflops for the NV40 GPU in
2004 to more than 900 Gflops for GTX 280 GPU in 2008. This high computing
power mainly arises due to a heavily pipelined and highly parallel architecture, with
extremely high memory bandwidths. GPU memory bandwidths have grown from 42
GB/s for the ATI Radeon X1800XT to 141.7 GB/s for the NVIDIA GeForce GTX
280 GPU. In contrast, the theoretical performance of a 3 GHz Pentium4 CPU is 12
Gflops, with a memory bandwidth of 8–10 GB/s to main memory. The GPU IC is
arguably one of the few VLSI platforms which has faithfully kept up with Moore’s
law in recent times. Recent CPU cores have 2–4 GHz core clocks, with single- and
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multi-threaded performance capabilities. The Intel QuickPath Interconnect (4.8
GT/s version) copy bandwidth (using triple-channel 1,066 MHz DDR3) is 12.0
GB/s [7]. A 3.0 GHz Core 2 Quad system using dual-channel 1,066 MHz DDR3
achieves 6.9 GB/s. The level 2 and 3 caches have 10–40 cycle latencies. CPU cores
today also support a limited amount of SIMD parallelism, with SEE [8] instructions.

Another key difference between GPUs and more general-purpose multi-core pro-
cessors is hardware support for parallelism. GPUs have a hardware thread control
unit that manages the distribution and assignment of thread blocks to multiproces-
sors. There is additional hardware support for synchronization within a thread block.
Multi-core processors, on the other hand, depend on software and the OS to perform
these tasks. However, the amount of power consumed by GPUs for executing only
the accelerated portion of the computation is typically more than twice that needed
by the CPU with all its peripherals. It can be argued that, since the execution is
sped up, the power delay product (PDP) of a GPU-based implementation would
potentially be lower. However, such a comparison is application dependent, and
thus cannot be generalized.

2.9 Cost of Hardware

The non-recurring engineering (NRE) expense associated with custom IC design far
exceeds that of FPGA-based hardware solutions. The large investment in custom IC
development is easy to justify if the anticipated shipping volumes are large. How-
ever, many designers need custom hardware functionality for systems with low-to-
medium shipping volumes. The very nature of programmable silicon eliminates the
cost for fabrication and long lead times for chip assembly. Further, if system require-
ments change over time, the cost of making incremental changes to FPGA designs
are negligible when compared to the large expense of redesigning custom ICs. The
reconfigurability feature of FPGAs can add to the cost saving, based on the applica-
tion. GPUs are the least expensive hardware platform for the performance they can
deliver. Also, the cost of the software tool-chain required for programming GPUs is
negligible compared to the EDA tool costs incurred by custom design and FPGAs.

2.10 Floating Point Operations

In comparison to software-based implementations, a higher numerical precision
is a bigger problem for FPGAs and custom ICs. In FPGAs, for instance, on-chip
programmable logic resources are utilized to implement floating point functional-
ity for higher precisions [19]. These implementations consume significant die-area
and tend to require deep pipelining before acceptable performance can be obtained.
For example, hardware implementations of double precision multipliers typically
require around 20 pipeline stages, and the square root operation requires 30–40
stages [38].
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GPUs targeting scientific computations can handle IEEE double precision float-
ing point [6, 13] while providing peak performance as high as 900 Gflops. GPUs,
unlike FPGAs and custom ICs, provide native support for floating point operations.

2.11 Security and Real-Time Applications

In industry practice, design details (including HDL code) are typically documented
to make reuse more convenient. At the same time, this makes IP piracy and infringe-
ment easier. It is estimated that the annual revenue loss due to IP infringement in
the IC industry is in excess of $5 billion [42]. The goals of IP protection include
enabling IP providers to protect their IPs against unauthorized use, protecting all
types of design data used to produce and deliver IPs, and detecting and tracing the
use of IPs [42].

FPGAs, because of their re-programmability, are becoming very popular for cre-
ating and exchanging VLSI IPs in the reuse-based design paradigm [27]. Existing
watermarking and fingerprinting techniques embed identification information into
FPGA designs to deter IP infringement. However, such methods incur timing and/or
resource overheads and cause performance degradation. Custom ICs offer much
better protection for intellectual property [33].

CPU/GPU software IPs have higher IP protection risks. The emerging trend is
that most IP exchange and reuse will be in the form of soft IPs because of the
design flexibility they provide. The IP provider may also prefer to release soft IPs
and leave the customer-dependent optimization process to the users [27]. From a
security point of view, protecting soft IPs is a much more challenging task than
protecting hard IPs. Soft IPs are hard to trace and therefore not preferred in highly
secure application scenarios.

Compared to a CPU/GPU-based implementation, FPGA and custom IC designs
are truly hard implementations. Software-based systems like CPUs and GPUs, on
the other hand, often involve several layers of abstraction to schedule tasks and
share resources among multiple processors or software threads. The driver layer
controls hardware resources and the operating system manages memory and pro-
cessor utilization. For a given processor core, only one instruction can execute at
a time, and hence processor-based systems continually run the risk of time-critical
tasks pre-empting one another. FPGAs and custom ICs, which do not use operating
systems, minimize these concerns with true parallel execution and dedicated hard-
ware. As a consequence, FPGA and custom IC implementations are more suitable
for applications that demand hard real-time computation guarantees.

2.12 Applications

Custom ICs are a good match for space, military, and medical compute-intensive
applications, where the footprint and weight constraints are tight. Due to their high
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performance, several DSP-based applications make use of custom-designed ICs.
A custom IC designer can create highly efficient special functions such as arithmetic
units, multi-port memories, and a variety of non-volatile storage units. Due to their
cost and high performance, custom IC implementations are best suited for high-
volume and high-performance applications.

Applications for FPGA are primarily hybrid software/hardware-embedded appli-
cations including DSP, video processing, robotics, radar processing, secure commu-
nications, and many others. These applications are often instances of implementing
new and evolving standards, where the cost of designing custom ICs cannot be jus-
tified. Further, the performance obtained from high-end FPGAs is reasonable. In
general, FPGA solutions are used for low-to-medium volume applications that do
not demand extreme high performance.

GPUs are an upcoming field, but have already been used for accelerating scien-
tific computations in fluid mechanics, image processing, and financial applications
among other areas. The number of commercial products using GPUs is currently
limited, but this might change due to newer architectures and high-level languages
that make it easy to program the powerful hardware.

2.13 Chapter Summary

In recent times, due to the power, memory, and ILP walls, single-threaded appli-
cations do not see any significant gains in performance. Existing hardware-based
accelerators such as custom-designed ICs, reconfigurable hardware such as FPGAs,
and streaming processors such as GPUs are being heavily investigated as potential
solutions. In this chapter we discussed these hardware platforms and pointed out
several key differences among them.

In the next chapter we discuss the CUDA programming environment, used for
interfacing with the GPUs. We describe the hardware, memory, and programming
models for the GPU devices used in this monograph. This discussion is intended to
serve as background material for the reader, to ease the explanation of the details
of the GPU-based implementations of several EDA algorithms described in this
monograph.
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Chapter 3
GPU Architecture and the CUDA Programming
Model

3.1 Chapter Overview

In this chapter we discuss the programming environment and model for pro-
gramming the NVIDIA GeForce 280 GTX GPU, NVIDIA Quadro 5800 FX, and
NVIDIA GeForce 8800 GTS devices, which are the GPUs used in our implementa-
tions. We discuss the hardware model, memory model, and the programming model
for these devices, in order to provide background for the reader to understand the
GPU platform better.

The rest of this chapter is organized as follows. We introduce the CUDA pro-
gramming environment in Section 3.2. Sections 3.3 and 3.4 discuss the device hard-
ware and memory models. The programming model is discussed in Section 3.5.
Section 3.6 summarizes the chapter.

3.2 Introduction

Early computing systems were designed such that the rendering of the computer
display was performed by the CPU itself. As displays became more complex, with
higher resolutions and color depths, graphics accelerator ICs were developed to
handle the graphics processing for computer displays. These ICs were initially quite
primitive, with dedicated hardwired units to perform the display-rendering func-
tionality. As more complex graphics abilities were demanded by the growing gam-
ing industry, the first graphics processing units (GPUs) came into being, to replace
the hardwired logic with a multitude of lightweight processors, each of which per-
formed display manipulation of the computer display. These GPUs were natively
designed as graphics accelerators for image manipulations, 3D rendering opera-
tions, etc. These graphics acceleration tasks require that the same operations are
performed independently on different regions of the display. As a result, GPUs were
designed to operate in a SIMD fashion, which is a natural computational paradigm
for graphical display manipulation tasks.

Recently, GPUs are being actively exploited for general-purpose scientific com-
putations [3, 5, 4, 6]. The growth of the general-purpose GPU (GPGPU) applications
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stems from the fact that GPUs, with their large memories, large memory band-
widths, and high degrees of parallelism, are readily available as off-the-shelf devices,
at very inexpensive prices. The theoretical performance of the GPU [7] has grown
from 50 Gflops for the NV40 GPU in 2004 to more than 900 Gflops for GTX
280 GPU in 2008. This high computing power mainly arises due to a heavily
pipelined and highly parallel architecture. The GPU IC is arguably one of the
few VLSI platforms which has faithfully kept up with Moore’s law in recent
times. Further, the development of open-source programming tools and languages
for interfacing with the GPU platforms has further fueled the growth of GPGPU
applications.

CUDA (Compute Unified Device Architecture) is an example of a new hardware
and software architecture for interfacing with (i.e., issuing and managing computa-
tions on) the GPU. CUDA abstracts away the hardware details and does not require
applications to be mapped to traditional graphics APIs [2, 1]. CUDA was released by
NVIDIA corporation in early 2007. The GPU device interacts with the host through
CUDA as shown in Fig. 3.1.

GPU’s Memory GPU

Copy Result
Instruct the

Main Memory CPU

Data
Copy Processing

Processing

Process Kernel

Fig. 3.1 CUDA for interfacing with GPU device

3.3 Hardware Model

As shown in Fig. 3.2, the GeForce 280 GTX architecture has 30 multiprocessors
per chip and 8 processors (ALUs) per multiprocessor. The Quadro 5800 FX has
the same hardware model as the 280 GTX device. The 8800 GTS, on the other
hand, has 16 multiprocessors per chip. During any clock cycle, all the processors of
a multiprocessor execute the same instruction, but may operate on different data.
There is no mechanism to communicate between the different multiprocessors.
In other words, no native synchronization primitives exist to enable communica-
tion between multiprocessors. We next describe the memory organization of the
device.
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Fig. 3.2 Hardware model of the NVIDIA GeForce GTX 280

3.4 Memory Model

The memory model of NVIDIA GTX 280 is shown in Fig. 3.3. Each multiprocessor
has on-chip memory of the following four types [2, 1]:
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Fig. 3.3 Memory model of the NVIDIA GeForce GTX 280

• One set of local 32-bit registers per processor. The total number of registers per
multiprocessor in the GTX 280 and the Quadro 5800 is 16,384, and for the 8800
GTS it is 8,192.

• A parallel data cache or shared memory that is shared by all the processors of a
multiprocessor. The size of this shared memory per multiprocessor is 16 KB and
it is organized into 16 banks.

• A read-only constant cache that is shared by all the processors in a multiproces-
sor, which speeds up reads from the constant memory space. It is implemented as
a read-only region of device memory. The amount of constant memory available
is 64 KB, with a cache working set of 8 KB per multiprocessor.

• A read-only texture cache that is shared by all the processors in a multiprocessor,
which speeds up reads from the texture memory space. It is implemented as a
read-only region of the device memory.



3.4 Memory Model 27

The local and global memory spaces are implemented as read–write regions of
the device memory and are not cached. These memories are optimized for different
uses. The local memory of a processor is used for storing data structures declared in
the instructions executed on that processor.

The pool of shared memory within each multiprocessor is accessible to all its pro-
cessors. Each block of shared memory represents 16 banks of single-ported SRAM.
Each bank has 1 KB of storage and a bandwidth of 32 bits per clock cycle. Further-
more, since there are 30 multiprocessors on a GeForce 280 GTX or Quadro 5800
(GTS 8800), this results in a total storage of 480 KB (256 KB) per multiprocessor.
For all practical purposes, this memory can be seen as a logical and highly flexible
extension of the local memory. However, if two or more access requests are made
to the same bank, a bank conflict results. In this case, the conflict is resolved by
granting accesses in a serial fashion. Thus, shared memory must be accessed in a
fashion such that bank conflicts are minimized.

Global memory is read/write memory that is not cached. A single floating point
value read from (or written to) global memory can take 400–600 clock cycles. Much
of this global memory latency can be hidden if there are sufficient arithmetic instruc-
tions that can be issued while waiting for the global memory access to complete.
Since the global memory is not cached, access patterns can dramatically change
the amount of time spent in waiting for global memory accesses. Thus, coalesced
accesses of 32-bit, 64-bit, or 128-bit quantities should be performed in order to
increase the throughput and to maximize the bus bandwidth utilization.

The texture cache is optimized for spatial locality. In other words, if instructions
that are executed in parallel read texture addresses that are close together, then the
texture cache can be optimally utilized. A texture fetch costs one memory read from
device memory only on a cache miss, otherwise it just costs one read from the
texture cache. Device memory reads through texture fetching (provided in CUDA
for accessing texture memory) present several benefits over reads from global or
constant memory:

• Texture fetching is cached, potentially exhibiting higher bandwidth if there is
locality in the (texture) fetches.

• Texture fetching is not subject to the constraints on memory access patterns that
global or constant memory reads must respect in order to get good performance.

• The latency of addressing calculations (in texture fetching) is better hidden, pos-
sibly improving performance for applications that perform random accesses to
the data.

• In texture fetching, packed data may be broadcast to separate variables in a single
operation.

Constant memory fetches cost one memory read from device memory only on a
cache miss, otherwise they just cost one read from the constant cache. The memory
bandwidth is best utilized when all instructions that are executed in parallel access
the same address of the constant memory. We next discuss the GPU programming
and interfacing tool.
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3.5 Programming Model

CUDA’s programming model is summarized in Fig. 3.4. When programmed through
CUDA, the GPU is viewed as a compute device capable of executing a large number
of threads in parallel. Threads are the atomic units of parallel computation, and the
code they execute is called a kernel. The GPU device operates as a coprocessor to the
main CPU or host. Data-parallel, compute-intensive portions of applications running
on the host can be off-loaded onto the GPU device. Such a portion is compiled into
the instruction set of the GPU device and the resulting program, called a kernel, is
downloaded to the GPU device.

A thread block (equivalently referred to as a block) is a batch of threads that
can cooperate together by efficiently sharing data through some fast shared memory
and synchronize their execution to coordinate memory accesses. Users can specify
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Fig. 3.4 Programming model of CUDA
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synchronization points in the kernel, where threads in a block are suspended until
they all reach the synchronization point. Threads are grouped in warps, which are
further grouped in blocks. Threads have identifying numbers (threadIDs) which can
be viewed as a one-, two-, or three-dimensional value. All the warps composing a
block are guaranteed to run on the same multiprocessor and can thus take advantage
of shared memory and local synchronization. Each warp contains the same num-
ber of threads, called the warp size, and is executed in a SIMD fashion; a thread
scheduler periodically switches from one warp to another to maximize the use of
the multiprocessor’s computational resources. In case of the NVIDIA GPUs dis-
cussed in this monograph, the warp size is 32. Thread blocks have restrictions on
the maximum number of threads in them. The maximum number of threads grouped
in a thread block, for all GPUs in this monograph, is 512. The number of threads in
a thread block, dimblock, is decided by the programmer, who must ensure that (i)
the maximum number of threads allowed in the block is 512 and (ii) the dimblock is
a multiple of the warp size.

A thread block can be executed by a single multiprocessor. However, blocks of
same dimensionality (i.e., orientation of the threads in them) and size (i.e., number
of threads in them) that execute the same kernel can be batched together into a
grid of blocks. The number of blocks in a grid is referred to as dimgrid. A grid of
thread blocks is executed on the device by executing one or more blocks on each
multiprocessor using time slicing. However, at a given time, at most 1,024 (768)
threads can be active in a single multiprocessor on the 280 GTX or the Quadro
5800 (8800 GTS) GPU devices. When deciding the dimblock and dimgrid values,
the restriction on the number of registers being used in a single multiprocessor has
to be carefully monitored. If this limit is exceeded, the kernel will fail to launch.

In NVIDIA’s current GPU devices, the synchronization paradigm is local to a
thread block and is very efficient. However, threads belonging to different thread
blocks of even the same grid cannot synchronize.

CUDA has several advantages over traditional GPGPU using graphics APIs.
These are as follows:

• CUDA allows code to read from arbitrary addresses in memory – i.e., scattered
reads are allowed.

• CUDA exposes a fast shared memory region (16 KB in size) that can be shared
amongst threads. This can be used as a user-managed cache, enabling higher
bandwidth than is possible using texture lookups.

• CUDA allows faster downloads and readbacks to and from the GPU.
• CUDA supports integer and bitwise operations completely, including integer tex-

ture lookups.

The limitations of CUDA are as follows:

• CUDA uses a recursion-free, function-pointer-free subset of the C language, plus
some simple extensions. However, a single process must run spread across mul-
tiple disjoint memory spaces, unlike other C language runtime environments.
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• The double precision support has some deviations from the IEEE 754 standard.
For example, only two IEEE rounding modes are supported (chop and round-to-
nearest even). Also, the precision of division/square root is slightly lower than
IEEE single precision.

• CUDA threads should be running in groups of at least 32 for best performance,
with the total number of threads numbering in the thousands. If–else branches in
the program code do not impact performance significantly, provided that each of
the 32 threads takes the same execution path.

• CUDA-enabled GPUs are only available from NVIDIA (GeForce 8 series and
above, Quadro, and Tesla).

3.6 Chapter Summary

In this chapter we discussed the hardware and memory models for the NVIDIA GPU
devices used for experiments in this monograph. These devices are the GeForce
280 GTX, the Quadro 5800 FX, and the GeForce 8800 GTS. This discussion was
provided to help the reader understand the details of our GPU-based algorithms
described in the later chapters. We also described the CUDA programming model
in detail, listing its advantages and disadvantages as well.
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Part II
Control-Dominated Category

Outline of Part II

Part I of this monograph discussed the alternative hardware platforms being consid-
ered for accelerating EDA applications. In Part II of this monograph we focus on
accelerating Boolean satisfiability (SAT) using these platforms. SAT is an example
of an EDA application which is control dominated.

SAT is a classic NP-complete problem and has been widely studied in the past.
Given a set V of variables, and a collection C of conjunctive normal form (CNF)
clauses over V , the SAT problem consists of determining whether there is a satisfy-
ing truth assignment for C. Given the broad applicability of SAT to several diverse
application domains such as logic synthesis, circuit testing, verification, pattern
recognition, and others, there has been much effort devoted to devising efficient
heuristics to solve SAT. In this monograph we present hardware solutions to the
SAT problem, with the main goals of scalability and speedup.

Part II of this book is organized as follows. In Chapter 4, we discuss a custom
IC-based hardware approach to accelerate SAT. In this approach, the traversal of the
implication graph as well as conflict clause generation is performed in hardware, in
parallel. We also propose a hardware approach to extract the minimum unsatisfiable
core (i.e., the sub-formula consisting of the smallest set of clauses of the initial
formula which is unsatisfiable) for any unsatisfiable formula. We store the clause lit-
erals in specially designed clause cells and implement the clauses in banks, such that
clauses of variable widths can be accommodated in these banks. We also perform an
up-front partitioning of the SAT problem in order to better utilize these banks. Our
custom IC-based solution demonstrates significantly larger capacity than existing
hardware SAT solvers and is scalable in the sense that several ICs can be effectively
used to simultaneously operate on the same large SAT instance. We conducted lay-
out and SPICE studies to estimate the area, power, and speed of this solution. Our
approach has been functionally validated in Verilog. Our experiments show that
instances with approximately 63K clauses can be accommodated on a single IC of
size 1.5 cm×1.5 cm. Our custom IC-based SAT solver results in over 3 orders of
magnitude speed improvement over BCP-based software SAT approaches. Further,
the capacity of our approach is significantly higher than all existing hardware-based
approaches.
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In Chapter 5, we discuss an FPGA-based hardware approach to accelerate SAT.
In this approach, we store the clause literals in the FPGA slices. In order to solve
large SAT instances, we partition the clauses into ‘bins,’ each of which can fit in the
FPGA. This is done in a pre-processing step. In general, these bins may share vari-
ables and hence do not solve independent sub-problems. The FPGA operates on one
bin at a time. All the bins of the partitioned SAT problem are stored in the on-chip
block RAM (BRAM). The embedded PowerPC processor on the FPGA performs
the task of loading the appropriate bin from the BRAM. Conflict clause generation
and Boolean constant propagation (BCP) are performed in parallel in the FPGA
hardware. The entire flow, which includes the preprocessing step, loading of the
BRAM, programming the PowerPC, and the subsequent communication between
partitions (which is required for BCP, conflict clause generation, and both inter- and
intra-bin non-chronological backtracking), has been automated and verified for cor-
rectness on a Virtex-II Pro (XC2VP30) FPGA board. Experimental results and their
analysis, along with the performance models, are discussed in detail. Our results
demonstrate that an order of magnitude improvement in runtime can be obtained
over the best-in-class software-based approach, by using a Virtex-4 (XC4VFX140)
FPGA device. The resulting system can handle instances with as many as 10K vari-
ables and 280K clauses.

In Chapter 6, we present a SAT approach which employs a new GPU-enhanced
variable ordering heuristic. In this approach, we augment a CPU-based complete
procedure, with a GPU-based approximate procedure (which benefits from the high
parallelism of the GPU). The CPU implements MiniSAT, while the GPU imple-
ments SurveySAT. The SAT instance is read and the search is initiated on the CPU.
After a user-specified fraction of decisions have been made, the CPU invokes the
GPU-based SurveySAT procedure multiple times and updates its variable ordering
based on any decisions made by SurveySAT. This approach retains completeness
(since it is implements a complete procedure) but has the potential of high speedup
(since the approximate procedure is executed on a highly parallel graphics processor
based platform). Experimental results demonstrate an average 64% speedup over
MiniSAT, for several satisfiable and unsatisfiable benchmarks.



Chapter 4
Accelerating Boolean Satisfiability
on a Custom IC

4.1 Chapter Overview

Boolean satisfiability (SAT) is a core NP-complete problem. Several heuristic
software and hardware approaches have been proposed to solve this problem. In this
work, we present a hardware solution to the SAT problem. We propose a custom IC
to implement our approach, in which the traversal of the implication graph as well
as conflict clause generation is performed in hardware, in parallel. Further, extract-
ing the minimum unsatisfiable core (i.e., the formula consisting of the smallest set
of clauses of the initial formula which is unsatisfiable) is also a computationally
hard problem. Our proposed hardware approach, in addition to solving SAT, also
efficiently extracts the minimum unsatisfiable core for any unsatisfiable formula. In
our approach, clause literals are stored in specially designed clause cells. Clauses
are implemented in banks, in a manner that allows clauses of variable width to
be accommodated in these banks. To maximize the utilization of these banks, we
initially partition the SAT problem. Our solution has significantly larger capacity
than existing hardware SAT solvers and is scalable in the sense that several ICs can
be used to simultaneously operate on the same SAT instance. Our area, power, and
performance figures are derived from layout and SPICE (using extracted parasitics)
estimates. The approach presented in this work has been functionally validated
in Verilog. Experimental results demonstrate that our approach can accommodate
instances with approximately 63K clauses on a single IC of size 1.5 cm×1.5 cm. Our
hardware-based SAT solving approach results in over 3 orders of magnitude speed
improvement over BCP-based software SAT approaches (1–2 orders of magnitude
over other hardware SAT approaches). The capacity of our approach is significantly
higher than most hardware-based approaches. Further, the worst case power con-
sumption was found to be ≤ 1 mW for our implementation.

The rest of this chapter is organized as follows. The motivation for this work
is described in Section 4.2. Related previous approaches are discussed in Sec-
tion 4.3. Section 4.4 describes the hardware architecture employed in our approach.
It includes a discussion on the generation of implications and conflicts (which is
done in parallel), along with the hardware partitioning utilized, the communica-
tion protocol that banks implement, and the generation of conflict-induced clauses.
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An example of conflict clause generation is described in Section 4.5. Section 4.6
describes the up-front clause partitioning methodology, which targets maximum
utilization of the hardware. Section 4.7 describes our approach to finding the unsat-
isfiable core. The experimental results we have obtained are reported in Section 4.8.
Section 4.9 summarizes the chapter with some directions for future work in this area.

4.2 Introduction

Boolean satisfiability (SAT) [8] is a classic NP-complete problem, which has been
widely studied in the past. Given a set V of variables, and a collection C of conjunc-
tive normal form (CNF) clauses over V , the SAT problem consists of determining
whether there is a satisfying truth assignment for C and reporting it. If no such
assignment exists, C is called an unsatisfiable instance. A subset of C, such that
this subset is also an unsatisfiable instance, is called an unsatisfiable core. For-
mally, given a formula ψ , the formula ψC is an unsatisfiable core for ψ iff ψC

is unsatisfiable and ψC ⊆ ψ . Computing or extracting the minimum unsatisfiable
core of a given unsatisfiable instance is also reported to be a computationally hard
problem [26, 19].

Given the broad applicability of the SAT and the unsatisfiable core extraction
problems to several diverse application domains such as logic synthesis, circuit test-
ing, verification, pattern recognition, and others [13], there has been much effort
devoted to devising efficient heuristics to solve them. Some of the more well-known
software approaches for SAT include [28, 21, 11] and [16].

There has been much interest in the hardware implementation of SAT solvers as
well. An excellent survey of existing hardware approaches to solve the SAT problem
is found in [29]. Although several hardware implementations of SAT solvers have
been proposed, there is, to the best of our knowledge, no hardware approach for
extracting the unsatisfiable core. We therefore claim this work to be the first to
present a hardware-based solution for minimum unsatisfiable core extraction.

Numerous applications can benefit from the ability to speedily obtain a small
unsatisfiable core from an unsatisfiable Boolean formula. Applications like planning
an assignment [18] can be cast as a SAT instance (equivalently referred to as a CNF
instance in the sequel). The satisfiability of this instance implies that there exists
a viable scheduling solution. On the other hand, if a planning is proven infeasible
due to the SAT instance being unsatisfiable, a small unsatisfiable core can help in
locating the reason for infeasibility. Similarly, an unsatisfiable instance in FPGA
routing [23] implies that the channel is unroutable. A smaller unsatisfiable core in
this case would be a geometrically smaller region, with potentially fewer routes,
such that the routing is infeasible in this region. Quickly identifying the reason
for unroutability is of importance in routing. Further, SAT-based unbounded model
checking [20] also requires the efficient extraction of small unsatisfiable cores. Most
approaches for extracting the unsatisfiable core are broadly based on the conflict
analysis procedure described in [28].
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The key motivation for using a hardware approach for SAT or unsatisfiable core
extraction is speed. Therefore, in the bigger picture, the context in which our work
would find its usefulness is one in which SAT checking or unsatisfiable core extrac-
tion is to be sped up, compared to the best-in-class software or hardware approaches.
Our hardware-based SAT solver and unsatisfiable core extractor would be well
suited for applications wherein the same instance or a slight modification of the
instance is solved repeatedly. This property is found in applications like routing,
planning, or SAT-based unbounded model checking, logic synthesis, VLSI test-
ing, and verification. The cost of initial CNF partitioning and of loading the CNF
instance onto the hardware is incurred only once, and the speedup obtained with
repeated SAT solving would amply recover this cost. Even a modest speedup of such
SAT-based algorithms is of great interest to the VLSI design automation community,
since the fraction of the time spent performing SAT checks in these algorithms is
very high.

A key requirement for any hardware approach for Boolean satisfiability or unsat-
isfiable core extraction is capacity and scalability. By the capacity of a hardware
SAT approach, we mean the largest size of a SAT instance (in terms of number of
clauses) that can fit in the hardware. Our proposed solution has significantly larger
capacity than existing hardware-based solutions. In our approach, a single IC of
size 1.5 cm×1.5 cm can accommodate CNF instances containing ∼63,000 clauses
(along with the logic required for solving the instance). This is significantly larger
than the capacity of previous hardware approaches for Boolean satisfiability. By the
scalability of a hardware SAT approach, we mean that multiple hardware SAT units
can be easily made to operate in tandem, to tackle larger SAT instances.

In this work, we propose an approach that utilizes a custom IC to accelerate
the SAT solution and the unsatisfiable core extraction processes, with the goal of
speedily solving large instances in a scalable fashion. The hardware implements a
variant of GRASP [28] (i.e., a slightly modified strategy of conflict-driven learning
and non-chronological backtracking compared to [28]) . For the extraction of the
unsatisfiable core, the hardware approach is augmented to implement the approach
described in [19]. In this IC, literals and their complement are implemented as cus-
tom cells. Clauses of variable width are implemented in banks. Any row of a bank
can potentially accommodate more than one clause. The SAT problem is mapped to
this architecture in an initial partitioning step, in a manner that maximizes hardware
utilization. Experimental results are obtained using area, power, and performance
figures derived from layout and SPICE (using extracted layout-level parasitics)
estimates. Our hardware approach performs, in parallel, both the tasks of implicit
traversal of the implication graph and conflict clause generation. The contribution of
this work is to come up with a high capacity, fast, scalable hardware SAT approach.
We do not claim to propose any new SAT solution or unsatisfiable core extraction
heuristics in this work. Note that although we used a variant of the BCP engine of
GRASP [28] in our hardware SAT solver, the hardware approach can be modified to
implement other BCP engines as well. The BCP logic of any BCP-based SAT solver
can be ported to HDL and directly synthesized in our approach.
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4.3 Previous Work

There have been several hardware-based SAT solvers reported in the literature,
which are summarized and compared in [29]. Among these approaches, [34, 35] uti-
lize configurable processors to accelerate SAT, demonstrating a maximum speedup
of 60× using a board with 121 configurable processors. The largest example mapped
to this structure had 24,700 clauses. In [37] and [38], the authors describe an FPGA-
based SAT accelerator. The speedup obtained was 30×, with 64 FPGA boards
required to handle an example containing 1,280 clauses. The largest example that
the approach of [25] handles has about 1,300 clauses, with an average speedup of
10×. This work states that the hardware approaches reported in [4], [31], and [5]
do not handle large SAT problems.

In [30] and [27], the authors present a software plus configurable hardware (con-
figware) based approach to accelerate SAT. Software is used to do conflict diag-
nosis, backtrack, and clause management. Configware is used to do implication
computation and next decision variable assignment. The speedup over GRASP [28]
is between 1 and 2 orders of magnitude for the accelerated fraction of the SAT
problem. The largest problem tackled has 214,304 clauses [27] (after conversion to
3-SAT, which can double the number of clauses [30]). In contrast, our approach
performs all tasks in hardware, with a corresponding speedup of 1–2 orders of mag-
nitude over the existing hardware approaches, as shown in the sequel. In most of
the above approaches, the capacity of the proposed approaches is clearly limited,
and scalability is a significant problem. The approach in this work is inspired by
the requirement of handling significantly larger problems on a single die and also
with the need to allow the design to scale more elegantly. By utilizing a custom
IC approach, a single die can accommodate significantly larger SAT instances than
most of what the above approaches report.

The previous approaches for the extraction of an unsatisfiable core have been
software-based techniques. The complexity of this problem has been well studied
and algorithms have been reported in [7, 9, 10] and [26]. Some of the proposed
solutions with experimental data to support their algorithms include [6], in which
an adaptive search is conducted, guided by clauses’ hardness. References [12, 24]
and [33] report resolution-based techniques for generating the empty clause. The
unsatisfiable core reported in these cases is the set of clauses involved in the deriva-
tion of the empty clause. The minimum unsatisfiability prover from [15] improves
upon the existing approaches by removing unnecessary clauses from unsatisfiable
sub-formulas to make them minimal.

The approach in [19] attempts to find the minimum unsatisfiable core for a given
formula. The augmentation of our hardware architecture for extracting the unsatisfi-
able core is in accordance with this approach. Broadly speaking, [19] employs a SAT
solver to search for the minimum unsatisfiable core. This allows a natural match to
our hardware-based SAT engine. Resolution-based techniques for unsatisfiable core
extraction are not a natural fit to our approach, since resolution is inherently a serial
process.
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Extended abstracts of the work described in this chapter can be found in [32, 14].

4.4 Hardware Architecture

We next discuss the hardware architecture of our approach, starting with an overview.

4.4.1 Abstract Overview

Figure 4.1 shows an abstract view of our approach, to illustrate the main concept,
and to explain how Boolean constraint propagation (BCP) [28] is carried out. Note
that the physical implementation we use is different from this abstracted view, as
subsequent sections will describe. In Fig. 4.1, the clause bank stores all clauses (a
maximum of n clauses on m variables). In the hardware there are n · m clause cells,
each of which stores a single literal of the SAT instance. The bank architecture
is capable of implicitly storing the implication graph and consequently generating
implications and conflicts. A variable is assigned by the decision engine and the
assignment is communicated to the clause bank via the base cells. The clause bank,
in turn, generates implications and possible conflicts due to this assignment. This is
done in parallel, at hardware speeds. The base cells sense these implications and
conflicts and in turn communicate them back to the decision engine. The decision
engine accordingly assigns the next variable or, in case of a conflict, generates a
conflict-induced clause and backtracks non-chronologically [28].
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Fig. 4.1 Abstracted view of the proposed idea

As seen in Fig. 4.1, a column in the bank corresponds to a variable, a row corre-
sponds to a clause, and a clause cell corresponds to a literal (which can be positive,
negative, or absent) in the clause. The clause cell is central to our idea and provides
the parallelism obtainable by solving the satisfiability problem in hardware.
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The overall flow for solving any SAT instance S consists of first loading S into
the clause bank. The hardware then solves S, after which a new SAT instance may
be loaded and solved.

4.4.2 Hardware Overview

The actual hardware architecture of our SAT IC differs from the abstracted view
of the previous section. The differences are not functional, rather they are induced
by circuit partitioning and speed considerations. The different components of the
hardware SAT IC are briefly described next.

The hardware details are presented in the following order. The finite state
machine for the decision engine is explained in Section 4.4.3.1. The core circuit
structure of our implementation, the clause cell, is capable of computing the impli-
cation graph implicitly and also helps in generating implications and conflicts, all
in parallel. This is explained in Section 4.4.3.2. The implications and conflicts are
sensed and forwarded to the decision engine by the base cells. The base cell and
its interaction with the decision engine are explained in Section 4.4.3.3. In prac-
tice, we do not have a single clause bank as shown in Fig. 4.1. Rather, clauses are
arranged in several banks, with a limited number of rows (clauses) and columns
(variables). Each bank has several strips, which partition the columns of the bank
into smaller groups. Between strips, we have special cells which allow us to imple-
ment arbitrarily long rows (clauses). The bank and strip structures are explained
in Section 4.4.3.4. Because we partition the hardware into many banks, it is pos-
sible that a particular variable occurs in several banks. Therefore, implications or
assignments on such variables, generated in a bank bi, must be communicated to
other banks bj where the same variable occurs. This communication is performed
by a hierarchical arrangement of communication units, arranged in a tree fashion.
The details of this inter-bank communication are provided in Section 4.4.3.5. Fig-
ure 4.2 describes the banks and the inter-bank communication units. It also shows
the centrally located BCP engine, as well as the banks for storing conflict-induced
clauses.

Clause banks

Banks for conflict

Decision engine and

induced clauses

Primary communication

Secondary communication
unit (level 0)

units (level 1)

Fig. 4.2 Generic floorplan
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4.4.3 Hardware Details

4.4.3.1 Decision Engine

Figure 4.3 shows the state machine of the decision engine. To begin with, the CNF
instance is loaded onto the hardware. Our hardware uses dynamic circuits so all
signals are initialized into their precharged or predischarged states (in the refresh
state). The decision engine assigns the variables in the order of their identification
tag, which is a numerical ID for each variable, statically assigned such that most
commonly occurring variables are assigned a lower tag. The decision engine assigns
a variable (in assign_next_variable state) and this assignment is forwarded to the
banks via the base cells. The decision engine then waits for the banks to compute
all the implications during wait_for_implications state. If no conflict is generated
due to the assignment, the decision engine assigns the next variable. If there is a
conflict, all the variables participating in the conflict clause are communicated by
the banks to the decision engine via the base cell. Based on this information, during
the analyze_conflict state, the base cell generates the conflict-induced clause and
then stores it in the clause bank. Also it non-chronologically backtracks according
to the GRASP [28] algorithm. Each variable in a bank retains the decision level
of the current assignment/implication. When the backtrack level is lower than this
stored decision level, then the stored decision level is cleared before further action
by the decision engine during the execute_conflict state. After a conflict is analyzed,
the banks are again refreshed (in the precharge state) and the backtracked decision
is applied to the banks. If all the variables have either been assigned or implied with
no conflicts (this is detected from the assignment on the last level), the CNF instance
is reported to be ‘satisfiable’ (in the satisfied state of the decision engine finite state

analyze_conflict

satisfied

assign_next_variable

wait_for_implications

unsatisfiable

execute_conflict

precharge

refresh

idle

conflict

var_implied

0th level

last level

no_conflict

implication

Fig. 4.3 State diagram of the decision engine
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machine). On the other hand, if the decision engine has already backtracked on the
variable at the 0th level and a conflict still exists, the CNF instance is reported to be
‘unsatisfiable’ (in the unsatisfiable state).

4.4.3.2 Clause Cell

Figure 4.4 shows the signal interface of a clause cell. Figure 4.5 provides details
of the clause cell structure. Each column (variable) in the bank has three signals –
lit, lit_bar, and var_implied, which are used to communicate assignments, impli-
cations, and conflicts on that variable. Each row (clause) in the bank has a signal
clausesat_bar to indicate if the clause is satisfied. The 2-bit free_lit_cnt signals
serve as an indicator of the number of free literals in the clause. If the literal in
the clause cell is free (indicated by iamfree) then out_free_lit_cnt is one more than
in_free_lit_cnt. The imp_drv and cclause_drv signals facilitate generation of impli-
cations and conflict clauses, respectively. Also, each row has a termination cell at its
end (which we assume is at the right side of the row) which drives the imp_drv and
cclause_drv signals. We next describe the encoding of these signals and how they
are employed to perform BCP.

lit var_implied

wr

lit_bar

precharge

in_free_lit_cnt
out_free_lit_cnt

imp_drv

cclause_drv

clausesat_bar

Fig. 4.4 Signal interface of the clause cell

Note that the signals lit, lit_bar, var_implied, and cclause_drv are predischarged
and clausesat_bar is a precharged signal. Also, each clause cell has two single-bit
registers namely reg and reg_bar to store the literal of the clause. The data in these
registers can be driven in or driven out on the lit and lit_bar signals.

A variable is said to participate in a clause if it appears as a positive or nega-
tive literal in the clause. The encoding of the reg and reg_bar bits is as shown in
Table 4.1. The iamfree signal for a variable indicates that the variable has not been
assigned a value yet, nor has it been implied.

The assignments and failure-driven assertions [28] are driven on lit, lit_bar, and
var_implied signals by the decision engine whereas implications are driven by the
clause cells. Communication in both directions (i.e., from clause cell to the decision
engine and vice versa) is performed via the base cells using the above signals. There
exists a base cell for each variable. Table 4.2 lists the encoding of the lit, lit_bar,
and var_implied signals.



4.4 Hardware Architecture 41

QDQD

Participate

iamfree

reg_bar

reg

precharge

imp_drv

iamfree

imply

Vcc

cclause_drv

drv_data

lit lit_bar var_implied

!imply

VccVccVcc

reg

wrwr reg_bar

in_free_lit_cnt[1]

out_free_lit_cnt[0]

out_free_lit_cnt[1]

in
_f

re
e_

lit
_c

nt
[0

]
clausesat_bar

reg

drv_data drv_data

reg_bar

iamfree

lit

lit_b

!participate

cclause_drv

imp_drv
var_implied

lit_bar
lit

Fig. 4.5 Schematic of the clause cell

Table 4.1 Encoding of {reg,reg_bar} bits

Encoding Meaning

00 Variable does not participate in clause
10 Variable participates as a positive literal
01 Variable participates as a negative literal
11 Illegal

If a variable Vi participates in clause Cj and no value has been assigned or implied
on the lit and lit_bar signals for Vi, then Vi is said to contribute a free literal to
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Table 4.2 Encoding of {lit,lit_bar} and var_implied signals

Encoding Meaning

00 0 Variable is neither assigned nor implied
01 0 Value 0 is assigned to the variable
10 0 Value 1 is assigned to the variable
01 1 Value 0 is implied on the variable
10 1 Value 1 is implied on the variable
11 1 0 as well as 1 implied, i.e., conflict
11 0 Variable participates in conflict-induced clause
00 1 Illegal

clause Cj. This is indicated by the assertion of the signal iamfree for the (j,i)th
clause cell. Also, a clause is satisfied when variable Vi participates in clause Cj

and the value on the lit and lit_bar signals for Vi matches the register bits in clause
cell cji. In such a case, the precharged signal clausesat_bar for Cj is pulled down
by cji.

If clause Cj has only one free literal and Cj is unsatisfied, then Cj is called a
unit clause [28]. When Cj becomes a unit clause with cji as the only free literal,
its termination cell senses this condition by monitoring the value of free_lit_cnt
and testing if its value is 1. If free_lit_cnt is found to be 1, the termination cell
asserts the imp_drv signal. When cji (which is the free literal cell) senses the
assertion of imp_drv, then it drives out its reg and reg_bar values on the lit and
lit_bar wires and also asserts its var_implied signal, indicating an implication on
variable Vi.

A conflict is indicated by the assertion of the cclause_drv signal. It can be
asserted by the termination cell or a clause cell. The termination cell asserts
cclause_drv when free_lit_cnt indicates that there is no free literal in the clause
and the clause is unsatisfied (indicated by clausesat_bar staying precharged). A
participating clause cell cji asserts cclause_drv for clause Cj when it detects a con-
flict on variable Vi and senses imp_drv. When cclause_drv is asserted for clause Cj,
all the clause cells in Cj drive out their respective reg and reg_bar values on the
respective lit and lit_bar wires. In other words the drv_data signal for the (j,i)th
clause cell is asserted (or reg and reg_bar are driven out on lit and lit_bar) when
either (i) cclause_drv is asserted or (ii) imp_drv is asserted, and the current clause
cell has its iamfree signal asserted. Thus, if two clauses cause different implica-
tions on a variable, both clauses will drive out all their literals (which will both be
high, since lit and lit_bar are predischarged signals). This indicates a conflict to the
decision engine, which monitors the state of lit, lit_bar, and var_implied for each
variable. This can trigger a chain of cclause_drv assertions leading to backtracking
of the implication graph in parallel, which causes all the variables taking part in the
conflict clause to be identified.

Figure 4.6 shows the layout view of our clause cell. The layout, generated in a
full-custom manner, had a size of 12 μm by 9 μm and was implemented in a 0.1 μm
technology.
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Fig. 4.6 Layout of the clause cell

4.4.3.3 Base Cell

There is one base cell for each variable in a bank. The base cell performs several
functions. It stores information about its variable (its identification tag, value, deci-
sion level, and assigned/implied state). It also detects an implication on the variable,
participates in generating the conflict-induced clause, and helps in performing non-
chronological backtrack. These aspects of the base cell functionality are discussed
next, after an explanation of its signal interface.

• Signal Interface
Figure 4.7 shows the signal interface of the base cell. The signals lit, lit_bar, and
var_implied in the base cell are bidirectional and are the means of communication
between the decision engine and the clause bank. This communication is directed
by the base cell. The signal curr_lvl stores the value of the current decision level.
The base cell of each variable keeps track of any decision or implication on its

var_impliedlit_barlit

curr_lvl

assign_val
imply_val

new_impli

bck_lvl

clk
clr

identify_cclause

Fig. 4.7 Signal interface of the base cell
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variable through the signals assign_val and imply_val, respectively. The signal
identify_cclause is used during conflict analysis as described later. The bck_lvl
signal indicates the level that the engine backtracks to, in case of a conflict. The
new_impli signal is driven when an implication is detected.

• Detecting Implications
Figure 4.8 shows the circuitry in the base cell to generate the new_impli signal,
which is high for one clock cycle when an implication occurs (this constraint
is required for the decision engine to remain in the state wait_for_implications
while there are any new implications (indicated by new_impli)). This is done as
follows. Initially both the flip-flop outputs are low. When the var_implied signal
is high during the positive edge of a clock pulse, the flip-flop labeled A has its
output driven high. This causes the output of the AND gate feeding the wired-OR
to be driven high. In the next clock pulse, the flip-flop labeled B has its output
driven high. This signal pulls the output of the AND gate (feeding the wired-OR)
low. Thus, due to a var_implied signal, the new_impli is high for exactly one
clock pulse. The flip-flops are cleared using the clr signal which is controlled by
the decision engine. The clr is asserted during the refresh state for all base cells
and during the execute_conflict state (for base cells having a decision level higher
than the current backtrack level bck_lvl).

clr

var_implied

clr

new_impli

clk

A B
Q

Q

D

CK

Q

Q

D

CK

Fig. 4.8 Indicating a new implication

• Conflict Clause Generation
The base cell also has the logic to identify a conflict clause literal and appro-
priately communicate it to the clause banks (for the purpose of creating a new
conflict clause). During the analyze_conflict state, the decision engine sets the
identify_cclause signal high. The base cell then records the current values of
lit, lit_bar, and var_implied. If the tuple is equal to 110, the base cell drives
the complement of this variable to the clause bank and asserts the clause write
signal (wr) for the next available clause. This ensures that the conflict clause
is written into the clause bank. Thus, any variable participating in the current
conflict and having its lit, lit_bar, and var_implied as 110 is recorded and hence
the conflict-induced clause is generated.
As the conflict-induced clauses are generated dynamically, the width of the con-
flict clause banks cannot be fixed while programming the CNF instance in the
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hardware. Therefore, the width of conflict-induced clause banks is kept equal
to the number of variables in the given CNF instance. The decision engine can
still pack more than one conflict-induced clause in one row of the conflict clause
banks. To be able to use the space in the conflict-induced clause banks effectively,
we propose to store only the clauses having fewer literals than a predetermined
limit, updated in a first-in-first-out manner (such that old clauses are replaced by
newly generated clauses). Further, we can utilize the clause banks for regular or
conflict clauses, allowing our approach to devote a variable number of banks for
conflict clauses, depending on the SAT instance.

• Non-chronological Backtrack
The decision level to which the SAT solver backtracks, in case of a conflict, is
determined by the base cell. The schematic for this logic is described next. Fig-
ure 4.9 shows the circuitry in the base cell to determine the backtrack level [28].
The signal my_lvl is the decision level associated with the variable. The signal
bck_lvl (backtrack level) is a wired-OR signal. The variable which has the highest
decision level among all the variables participating in a conflict sets the value of
bck_lvl to its my_lvl. This is done as follows. Let the set of variables participating
in the conflict be called C. Let vmax be the variable with the highest decision
level among all variables v ∈ C. Each bit of every variable v’s decision level is
XNORed with the corresponding bit of the current value of bck_lvl. If the most
significant bits my_lvl[k] and bck_lvl[k] are equal (which makes the output of
the corresponding XNOR high) then the output of the XNOR of the next most
significant bits is checked and so on. If for a certain bit i, my_lvl[i] is low and
bck_lvl[i] is high, then the value of bck_lvl is higher than this variable’s my_lvl.
The output of the XNOR of the rest of the lesser significant bits (j < i) for this
variable is ignored. This is done by ANDing the output of the ith bit’s XNOR with
the my_lvl[i−1] bit, to get a ‘0’ result which is wire-ORed into bck_lvl[i−1]. This
in turn gets trickled down to the my_lvl of the least significant bit. On the other
hand, in case my_lvl[i] is high and bck_lvl[i] is low, then the AND gate feeding
the wired-OR for the ith bit would drive a high value to the wired-OR and hence
update bck_lvl[i] to high. The above continues until all the bits of bck_lvl are
equal to the corresponding bits of vmax’s decision level.

Our hardware SAT solver, consisting of clause banks, clause cells, base cells,
decision engine, conflict generation, BCP, and non-chronological backtracking, has
been implemented in Verilog and has been simulated and verified for correctness.

4.4.3.4 Partitioning the Hardware

In a typical CNF instance, a very small subset of variables participate in a sin-
gle clause. Thus, putting all the clauses in one monolithic bank, as shown in the
abstracted view of the hardware (Fig. 4.1), results in a lot of non-participating clause
cells. For the DIMACS [1] examples, on average, more than 99% of the clause cells
do not participate in the clauses if we arrange all the clauses in one bank. Therefore
we partition the given CNF instance into disjoint subsets of clauses and put each
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Fig. 4.9 Computing backtrack level

subset in a separate clause bank. Though a clause is fully contained in one bank,
note that a variable may appear in more than one banks.

Figure 4.10 depicts an individual bank. Each bank is further divided into strips to
facilitate a dense packing of clauses (such that the non-participating clause cells are
minimized). We try to fit more than one clause per row with the help of strips. This
is achieved by inserting a column of terminal cells between the strips. Figure 4.11
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Fig. 4.10 (a) Internal structure of a bank. (b) Multiple clauses packed in one bank-row
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Fig. 4.11 Signal interface of the terminal cell

describes the signal interface of the terminal cell, while Fig. 4.12 shows the detailed
schematic of the terminal cell. Each terminal cell has a programmable register bit
indicating if the cell should act as a mere connection between the strips or act as
a clause termination cell. While acting as a connection, the terminal cell repeats
the clausesat_bar, cclause_drv, imp_drv, and free_lit_cnt signals across the strips,
thereby expanding a clause over multiple strips. However, while acting as a clause
termination cell, it generates imp_drv and cclause_drv signals for the clause being
terminated. A new clause can start from the next strip (the strip to the right of the
terminal cell).

The number of clause cell columns in a bank (or a strip) is called the width of
a bank (or a strip) and the number of rows in a bank is called the height of a bank.
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On the basis of extensive experimentation, we settled on 25 rows and 6 columns in
a strip. With the help of terminal cells, we can connect as many strips as needed in
a bank. Consequently, a bank will have 25 rows but its width is variable since the
bank can have any number of strips connected to each other through the terminal
cells.

The algorithm for partitioning the problem into banks and for packing the clauses
of any bank into its strips (to minimize the number of non-participating cells) is
described in Section 4.6. Also, experimental results and optimal dimensions of the
banks and strips are presented in Section 4.8.
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4.4.3.5 Inter-bank Communication

Since a variable may appear in multiple banks (we refer to such variables as repeated
variables), implications on such variables need to be communicated between the
banks. Also, the assignments done by the decision engine need to be communicated
to the banks and the implications or conflict clauses generated in the bank need to
be communicated back to the decision engine.

In our design, we employ a hierarchical arrangement of communication units to
perform this communication between the banks and the decision engine, as depicted
in Fig. 4.13. Each column in the bank has a base cell that actually drives and senses
the lit, lit_bar, and var_implied signals for that variable and communicates with the
decision engine through a hierarchy of communication units. As seen in Fig. 4.13,
the communication units and base cells form a tree structure. The communication
unit directly interacting with the decision engine is said to be at 0th level of hierarchy
and base cells are said to be at the highest level of hierarchy.

Highest level

1st level

0th level

One base cell per column

Clause Bank

Communication units

Fig. 4.13 Hierarchical structure for inter-bank communication

Each variable is associated with an identification tag as explained in
Section 4.4.3.1. Every base cell has a register to store the identification tag of the
variable it represents. The base cells and the decision engine use the identification
tags to communicate assignments, implications, conflict clause variables, and back-
track level. A base cell also has a programmable register bit named repeat bit and
a register named repeat level. The repeat bit indicates if the variable represented by
the base cell is a repeated variable. The repeat level register for any variable v is
pre-programmed with the hierarchy level of the communication unit that forms the
root of the subtree containing all the base cells containing that repeated variable v. If
the repeat bit for variable v is set, and an implication has occurred on v, the base cell
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of the variable v communicates the implied value, its identification tag, and its repeat
level to the communication unit C at the next lower level of hierarchy. The commu-
nication unit C communicates these data to other communication units at lower
levels if the repeat level of the implied variable v is lower than its own hierarchy
level. In this way, the inter-bank implication communication is completed using the
smallest possible communication subtree, allowing for maximal parallelism during
inter-bank communication.

The assignments made by the decision engine are broadcast to all levels. The
variables participating in the conflict-induced clause are also communicated to the
decision engine via this hierarchy.

Figure 4.2 shows the proposed floorplan. The decision engine is at the center
of the chip surrounded by the clause banks. Additional banks required to store the
conflict-induced clauses are also near the center of the chip. Each communication
unit resides at the center of the chip area occupied by the banks in its communication
subtree, as shown in Fig. 4.2.

4.5 An Example of Conflict Clause Generation

Figure 4.14 shows an example CNF instance, its implication graph, and how it is
implicitly traversed in this scheme. c1, . . . , c6 are the clauses as shown in Fig. 4.14b.
Let us call the lit, lit_bar, and var_implied signals for a variable as a signal triplet.
Initially all signal triplets are predischarged and held at high impedance. The impli-
cation graph in Fig. 4.14a shows a conflict occurring at decision level 7. a = 0,
b = 0, p = 1, and f = 1 are the assignments made before level 7 and q = 0
and y = 1 are the implications caused by them. Figure 4.14c shows the transitions
occurring on the signal triplet of each variable. Decisions are reflected as logic low
and implication as logic high on the var_implied signal. The decision c = 0 at level
7 causes implications on d and e due to clauses c1 and c2, respectively. It results in
c3 and c4 imposing conflicting requirements on the value of z. Therefore, c3 drives
011 and c4 drives 101 on the signal triplet of z, and the resultant status on z becomes
111. Note that triplet signals that are 0 are initially predischarged, so that they can be
driven to 1 during the implication graph analysis. After the occurrence of a conflict,
an implicit process of back-traversal of the graph starts in hardware. The conflict on
z causes the assertion of the cclause_drv signal in c3 and c4 which in turn causes
the data in their registers to be driven on the lit and lit_bar signals. Thus, 111 gets
driven on the signal triplets of d due to c4, and e and q due to c3 (as they are implied
variables). The 111 on d causes the assertion of cclause_drv in c1, resulting in 110
on a and c as they are decision variables. Similarly 110 is driven on b and c due to
c2 and on p due to c5. And thus the variables taking part in the conflict clause are
a, b, c, and p and the conflict clause is formed by inverting their assigned values,
i.e., (a+ b+ c+ p̄). Also, it can be seen that the status on f and y does not change
as they are not part of the conflict graph. Thus implications and conflict clauses are
implicitly generated and in parallel, and hence the process is quite fast.



4.6 Partitioning the CNF Instance 51

e=1 @7

z=0 @7

c1

c1

c2

c2

c5
c6

c3

c3

d=1 @7

z=1 @7

p=1 @4

f=1 @2 y=1 @2

c4

b=0 @3

c=0 @7

a=0 @1

conflict

q=0 @4

(a) Implication Graph

c1 (a+ c+ d)
c2 (b+ c+ e)
c3 ( z̄+ ē+ q)
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Fig. 4.14 Example of implicit traversal of implication graph

In case of multiple conflicts, our approach would create a single conflict clause
which is the disjunction of all the new conflict clauses. This leads to lesser pruning
of the search space as compared to storing the new conflict clauses individually.

In the current form, our hardware SAT solver only records the last row of the
table (only the variables with decisions) in the conflict clause. A possible extension
of our approach for generating smaller clauses (with fewer literals) is to store a row
which is below the row corresponding to the conflict (i.e., row 7 of Figure 4.14c)
and has the smallest number of entries (excluding the entry for the variable on which
the conflict is detected). For example, the literals of row 8 of Figure 4.14c would
yield a conflict clause (d + e + q). Variable z would not be added in this conflict
clause since it is the variable on which the conflict is detected. Adding this variable
would not help in pruning the search space efficiently.

4.6 Partitioning the CNF Instance

This section describes the algorithms used to partition the given CNF instance into
banks and strips. We cast these problems as hypergraph partitioning problems and
use hMetis [17] to solve them.



52 4 Accelerating Boolean Satisfiability on a Custom IC

To partition the CNF instance into multiple banks, we represent the clauses
as vertices in the hypergraph and variables as hyperedges. Let C = c1,c2, . . . ,cn

be the set of all clauses and V = v1,v2, . . . ,vm be the set of all variables in
the given CNF instance. Then the resultant hypergraph is G = (U,E), where
U = u1,u2, . . . ,un is a set of n vertices each corresponding to a clause in C
and E = e1,e2, . . . ,em is a set of m hyperedges each corresponding to a vari-
able in V . Edge ei connects vertex uj if and only if variable vi participates in
clause cj. This hypergraph is partitioned with hMetis such that each balanced par-
tition contains k vertices and the number of hyperedges cut due to partitioning is
minimized.

To partition a bank into strips, we represent the clauses as hyperedges and
variables as vertices in the hypergraph. Similar to the above construction, let
Ci = c1,c2, . . . ,ck be the set of clauses and Vi = v1,v2, . . . ,vl be the set of vari-
ables in bank Bi. Then the resultant hypergraph is Gi = (Ui,Ei), where Ui =
u1,u2, . . . ,ul is a set of l vertices each corresponding to a variable in Vi and
Ei = e1,e2, . . . ,ek is a set of k hyperedges each corresponding to a clause in Ci.
Edge ep ∈ Ei connects vertex uq ∈ Ui if and only if variable vq participates in
clause cp.

After each bank is partitioned into strips, we need to order the strips so as to
minimize the number of rows required to fit the clauses in the bank. For this purpose,
we use a two-dimensional graph bandwidth minimization heuristic along with a
greedy bin packing approach to pack the clauses in the rows. Figure 4.10b illustrates
the packing of multiple clauses in one row. We perform bandwidth minimization on
the matrix corresponding to the clauses of a bank. The bandwidth minimization
problem consists of finding a permutation of the rows (clauses) and the columns
(literals) of a matrix that keeps all the non-zero elements in a band that is as close as
possible to the main diagonal. We use the following heuristic approach to perform
bandwidth minimization.

For each clause Ci in the strip, we assign it a gravity G(Ci) which is computed as
follows: G(Ci) =

∑
Cj∈R(Ci) (P(Cj) · S(Ci,Cj)).

Here, R(Ci) is the set of clauses which have at least one variable common with
clause Ci and P(Cj) is the index of the current row of Cj and S(Ci,Cj) is the number
of common variables between clauses Ci and Cj.

The exact dual is used for computing the gravity of every variable in the cur-
rent strip. The pseudocode for the bandwidth minimization algorithm is shown in
Algorithm 1.

As shown in Algorithm 1, we alternate the gravity computation and rearrange-
ment between clauses and variables. With every rearrangement of clauses and
variables within bank s in an increasing order of gravity, we compute a new cost.
The cost of the arrangement is the number of rows required to fit the clauses
(of bank s). The greedy bin packing step simply packs the rearranged clauses
of a bank into its rows, such that each clause uses an integral number of
strips.
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Algorithm 1 Pseudocode for Bandwidth Minimization
Best_Cost = Infinity
for i = 1; i ≤ Number of iterations; i++ do

Compute gravity of all clauses in bank s
Rearrange clauses in increasing order of gravity
Compute gravity of all variables in bank s
Rearrange variables in increasing order of gravity
Perform greedy bin packing of clauses into strips
Compute cost of current arrangement Costi
if (Best_Cost ≥ Costi) then

Best_Cost = Costi
Store current arrangement

end if
end for
return(Stored Arrangement)

4.7 Extraction of the Unsatisfiable Core

The work in [19] proposes a SAT-based algorithm for computing the minimum
unsatisfiable core. The approach of [19] in brief is as follows: Given a Boolean
formula ψ defined over n variables, X = x1,...,xn, such that ψ has m clauses,
� = ω1,...,ωm, the approach begins with the definition of a set S of m new variables
S = s1,...,sm, and the creation of a new formula ψ ′ defined on n+m variables, X∪S,
with m clauses�

′ = ω′1,...,ω
′
m. Each clause ω

′
i ∈ ψ

′
is derived from a corresponding

clause ωi ∈ ψ as ω
′
i = ¬si + ωi. For a certain assignment to the variables in S,

ψ
′

can be satisfiable or unsatisfiable. The minimum unsatisfiable core is obtained
from the unsatisfiable sub-formula with the least number of S variables assigned to
value 1.

The model of [19] can be seamlessly implemented in our hardware architecture.
This is because this model simply extends the SAT problem. Since our approach
exploits the parallelism which is inherent in any SAT problem, the two approaches
can be naturally integrated. The experimental results reported in [19] are strongly
limited by the number of variables and clauses in the problem instances. Although
they compute the minimum unsatisfiable core, which was not reported by earlier
approaches, the complexity of the model is significant for a software-based SAT
solver. Testing on bigger instances was limited due to the inability of software SAT
solvers to handle such instances. This is where our hardware-based SAT solver
fits in. It elegantly complements their approach by providing a fast and scalable
SAT solver to find the unsatisfiable core. Pseudocode for this algorithm is shown in
Algorithm 2.

The following changes are made to our architecture to implement the above
approach. In order to introduce the set S of m new variables (m is the initial number
of clauses), the number of base cells is increased by m. The identification tag of
any new variables (which is also the decision level of the new variables) is set to
be lower than all the variables in the original SAT instance. Also since we add a
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Algorithm 2 Pseudocode for Extracting the Minimum Unsatisfiable core
min_unsat_core(ψ(X,Ω)){
S← add_new_variables(|Ω|) // add variables s1, s2, ... ,sm
ψ
′ ← Φ

for i = 1;i ≤ |Ω|;i++ do
ω
′
i ← ¬si + ωi

ψ
′ ← ψ

′ ∪ ω′i
end for
min_clause_solve(ψ

′
) // explained in text

}

new variable to each clause, we have to add a new clause cell in each of the m
clauses. Since we use efficient SAT instance partitioning, clause bank partitioning,
and clause packing techniques, the overhead in terms of new clause cells required
is ≤ m2. The extraction procedure (min_clause_solve(ψ

′
)) for the unsatisfiable core

proceeds as follows. We perform repeated invocations of the hardware SAT solver
with a different set of variables S

′ ⊆ S being assigned to 1. For a certain run, prior
to the first assignment made by the decision engine, the signals lit, lit_bar, and
var_implied for all the variables in S

′
are driven to 100 (i.e., forcing a decision of

1 on all variables si ∈ S
′
). If the SAT solver reports the SAT instance as unsatis-

fiable, the clauses containing si ∈ S
′

are recorded. The corresponding clauses of
the original SAT instance together make one unsatisfiable core. Next, a new clause
consisting of all the variables in S

′
is added to the clause bank in a manner similar

to adding a conflict-induced clause. In other words, we add a clause
∑

(¬si), where
si ∈ S

′
, to the instance. This new clause avoids generating the same unsatisfiable

core in future runs. Amongst all the unsatisfiable cores, the core with the smallest
number of clauses is the minimum unsatisfiable core and is finally reported.

Other existing optimization techniques which are discussed in [19] can also be
easily grafted in the modified hardware SAT solver. For example, any conflict-
induced clause containing only variables si ∈ S also generates an unsatisfiable core.
This is because the clauses of the original SAT instance, corresponding to the clauses
which contain si, represent an unsatisfiable core and can be recorded.

4.8 Experimental Results

To validate our ideas, we tested several examples from the DIMACS [1] test suite
and from the SAT-2004 [3] competition benchmark suite. The examples we used
are listed in Table 4.3, along with the number of clauses and variables (columns
1 through 3). For an IC of size 1.5 cm on a side, we can accommodate 1.875
million clause cells. The total number of strips in the IC is therefore 12,500. The
IC implements a total of six hierarchical levels in the inter-bank communication
methodology.

We tested the functionality of the clause and termination cells, the implication
generation, and conflict clause generation logic in Verilog. The chip-level perfor-



4.8 Experimental Results 55

Table 4.3 Partitioning and binning results

Instance #Clauses #Vars PF (initial) PF (opt.) #Strips Avg #Strips per cl.

par16-3 3,344 1,014 379 9.53 486 1.93
ii8b4 8,214 1,067 474 14.68 1,548 2.19
am 7,814 2,268 835 8.42 1,021 2.04
par32-5 10,325 3,175 1,183 9.01 1,426 1.76
ii16a1 19,368 1,649 719 25.71 10,514 2.87
ii32c4 20,862 758 137 12.45 8,178 4.57
dekker 58,308 19,472 8,346 10.40 8,084 1.78
frg2mul 62,943 10,313 3,063 8.68 10,514 2.41

mance estimates were obtained by running SPICE [22], using layout-extracted par-
asitics. The hardware SAT IC was implemented in a 0.1 μm process, with a VDD of
1.2 V.

For all the examples listed in Table 4.3, we performed partitioning (into banks)
and binning (into strips) as described in Section 4.6. The initial partitioning was
performed to create banks with 200 clauses. We define the packing factor (PF) as a
figure of merit for the partitioning and binning procedure:

PF = Total # of cells

# of participating cells

The PF before partitioning and binning is shown in column 4. This corresponds
to the PF of a monolithic implementation. Note that this can be as high as ∼8,300.
The PF after partitioning and binning is shown in column 5, and it is about 10 on
average. Attempting to lower the PF beyond this value results in several variables
appearing in multiple banks. The total number of strips for all the examples is shown
in column 6. Note that all examples require less than 12,500 strips, indicating that
they would fit on our IC. This is a dramatic improvement in capacity over existing
monolithic hardware-based SAT approaches, which can handle between 1,280 and
24,700 clauses with 64 FPGA boards or 121 configurable processors, respectively,
as opposed to about 63,000 clauses on a single IC for our approach. Further, the
total runtime for the partitioning (using hMetis [17]), diagonalization, and greedy
bin packing for the examples listed in Table 4.3 ranged from 8 to 200 s on a 3.6 GHz,
3 GB machine running Linux. These runtimes are significantly lower than the BCP-
based software SAT runtimes for these examples. Even if the partitioning runtimes
were higher, the time spent in partitioning is amply recovered when multiple SAT
calls need to be made for the same instance.

The delay of each bank (the difference between the time a new decision variable
is driven to the time the last implication is driven out by the bank) was computed via
SPICE simulations to beΔB = 3 ns (for a bank with 3 strips, which is approximately
the average number of strips per clause as indicated in column 7 of Table 4.3). We
also estimated the delay due to the inter-bank communication via SPICE simula-
tions. To do this, we first found the average number of implications caused by any
decision, over all the examples under consideration. The average number of impli-
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cations per decision was found to be about 21. For the computation of delay due to
inter-bank communication, we conservatively assumed that the average number of
implications per decision was 25. We assumed the worst-case situation (where each
of these 25 implications is on variables that repeat across banks, with a repeat level
of 0). This results in the slowest inter-bank communication scenario. Using SPICE
delay values (computed using layout-extracted wiring parasitics), we obtained the
values of the delay between communication units at level i and i+ 1. Let this delay
be denoted by Δi. Then the total delay is estimated as

ΔC = 2 · 25 ·�5
i=0(Δi)+ΔB

Note that long wires (between communication units at different repeat levels) are
optimally buffered for minimal delay. Using the values of Δi that we obtained, ΔC

is computed to be 27 ns. Using this estimate, we compute the time for the solving of
the SAT problem in our hardware SAT engine as

Our Runtime = Number of Decisions ·ΔC

The worst-case time to generate and communicate implications (ΔC) dominates
the conflict analysis time, and hence our runtime estimates are based on ΔC alone.
Our runtime is compared, in Table 4.4, against MiniSAT[2], a state-of-the-art BCP-
based software SAT solver. We modified MiniSAT in two ways, in order to estimate
the runtime of our hardware approach. First, we modified MiniSAT to implement a
static decision strategy which is the same as the decision strategy used in our hard-
ware engine. MiniSAT performs a smart conflict clause simplification by applying
subsumption resolution [36] and caching of intermediate results. So, in our second
modification of MiniSAT, we disabled any simplification of the conflict clauses. This
variant of MiniSAT (modified in the above two ways) is referred to as MiniSAT∗ in
the sequel. The number of decisions made by MiniSAT∗ was used in computing our
runtime using the above equation. Columns 2 and 3 of Table 4.4 list the number
of decisions and the number of conflicts reported by MiniSAT. Column 4 lists the
MiniSAT runtimes. The MiniSAT runtimes for these instances were obtained on a
3.6 GHz, 3 GB machine running Linux. Columns 5 and 6 list the number of deci-
sions and the number of conflicts reported by MiniSAT∗. Our estimated runtimes are
reported in column 7. The speedup obtained over MiniSAT is reported in column 8.
The average speedup over MiniSAT obtained is 1.84×103.

In other words, our approach yields over 3 orders of magnitude improvement in
runtime over an advanced BCP-based software SAT solver. It achieves 1–2 orders of
magnitude speedup over other hardware SAT approaches as well. Other hardware
SAT approaches have significant capacity problems, making them impractical for
large instances. Our approach has a large capacity and is highly scalable, and hence
is ideally suited for large SAT instances.

In order to estimate the power consumption of our approach, we conducted
additional SPICE simulations. These simulations were performed for computing
the average power required for a single implication within a bank and the average
power required for communicating this implication to every other bank. The power
consumption for the long wires (between communication units at different repeat
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levels) for the latter experiment was computed using layout-extracted wiring para-
sitics. The value obtained was Pcomm.

single = ∼3.69 nW. Again assuming the worst-case
situation (where each of the 25 implications/decision is on variables that repeat
across banks, with a repeat level of 0), the total power required for all communi-
cations per decision (per clock cycle) is

Pcomm. = Pcomm.
single · 25 = 92.25 nW

The average power consumed by the clause bank for generating an implication,
Pimp

single, was obtained to be about 0.363 μW. The total number of banks per IC would
be at most 64 (since only 6 levels of hierarchy are present in the IC). In the worst
case, assume that the partitions obtained from hMetis repeat a single variable v over
all the 64 banks. Now suppose that there is an implication on v in every bank. For
driving an implication, as explained in the previous sections, only one of the lit or
lit_bar signal along with the var_implied signal is driven. For a conflict, on the other
hand, all three signals are driven. Therefore the average power consumption for
driving a single conflict literal (Pconf

single) is (3/2) ·Pimp
single. Since there are on average 25

implications per decision, and assuming each decision leads to a conflict involving
each of the 25 implications, there are in the worst case 25 implied variables that can
participate in analyzing the conflict. Hence the average power for the BCP engine
(which performs implication/conflict analysis) per clock cycle is

PBCP = Pconf
single · 25 · Number of Banks = 871.2 μW

The worst-case power per cycle for our hardware SAT solver is therefore

Pavg = PBCP + Pcomm. = 871.3 μW

Note that this low power arises from the fact that in practice, there is very little
conflict activity whenever any decision is made. A majority of the clause cells do
not participate in a conflict, thereby keeping the worst-case power consumption low.

For the examples listed in Table 4.3 we compared the BCP-based software SAT
runtimes with or without a limit on the number and width of the conflict clauses.
The purpose of this experiment was to determine if limiting the number and width
of conflict clauses significantly affects SAT runtimes. The number and width of
clauses corresponded to a single row of clause banks in the center of the chip. With
this limit, we noted a negligible difference in the SAT runtimes compared to the
case when there was no limit (for a timeout of 1 h). Since our clause banks can be
interchangeably used for conflict clause storage and regular clause storage, we can
handle larger SAT instances by storing fewer conflict clauses in the IC.

Larger designs can be handled elegantly by our approach, since multiple SAT ICs
can be connected to work cooperatively on a single large instance. A pair of such ICs
would effectively implement an additional level in the inter-bank communication
tree. The only wires that are shared between two such ICs are those implementing
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inter-bank communication. By implementing these using fast board-level IO, the
system of cooperating SAT ICs can be made to operate extremely fast. The decision
engine of each IC other than the root IC behaves as a communication unit, in such a
scenario.

4.9 Chapter Summary

In this chapter, we have presented a custom IC implementation of a hardware SAT
solver and also augmented it for extracting the minimum unsatisfiable core. The
speed and capacity for our SAT solver obtained are dramatically higher than those
reported for existing hardware SAT engines. The speedup comes from performing
the tasks of computing implications and determining conflicts in parallel, using a
specially designed clause cell. Approaches to partition a SAT instance into banks
and bin them into strips have been developed, resulting in a very high utilization of
clause cells. Also, through SPICE simulations we determined that the average power
consumed per cycle by our SAT solver is under 1 mW which further strengthens the
practicality of our approach. Note that although we used a variant of the BCP engine
of GRASP [28] in our hardware SAT solver, the hardware approach can be modified
to implement other BCP engines as well. For extracting the unsatisfiable core, we
implemented the approach described in [19] since our architecture naturally com-
plements the technique proposed in [19]. Also the additional optimizations of [19]
can be seamlessly implemented in our architecture.
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Chapter 5
Accelerating Boolean Satisfiability on an FPGA

5.1 Chapter Overview

In this chapter, we propose an FPGA-based SAT approach in which the traversal of
the implication graph as well as conflict clause generation is performed in hardware,
in parallel. In our approach, clause literals are stored in the FPGA slices. In order
to solve large SAT instances, we heuristically partition the clauses into a number
of ‘bins,’ each of which can fit in the FPGA. This is done in a preprocessing step.
These bins may share variables and hence are not independent sub-problems. The
FPGA operates on one bin at a given instant, and the FPGA hardware also co-
ordinates the handling of the bins of the entire instance. An on-chip block RAM
(BRAM) is used for storing all the bins (or caching a portion of the bins) of a parti-
tioned CNF problem. The embedded PowerPC processor on the FPGA performs the
task of loading the appropriate bin from the BRAM. The core routines of conflict
clause generation and Boolean constant propagation (BCP) are performed in paral-
lel in the hardware (implemented in Verilog). The entire flow, which includes the
preprocessing step, loading the BRAM, programming the PowerPC, and the sub-
sequent communications between partitions (which is required for BCP, conflict
clause generation, and non-chronological backtracking (both inter- and intra-bin)),
has been automated and verified for correctness using a Virtex-II Pro
(XC2VP30) FPGA board. The experimental results and their analysis, along with
the performance models derived from these results, are discussed in detail. Fur-
ther, we show that an order of magnitude improvement in runtime can be obtained
over MiniSAT (the best-in-class software-based approach) by using a Virtex-4
(XC4VFX140) FPGA device. The resulting system can handle instances with as
many as 10K variables and 280K clauses.

The rest of this chapter is organized as follows. The motivation for this work is
described in Section 5.2. Section 5.3 discusses previous FPGA-based SAT solvers.
Section 5.4 describes the hardware architecture employed in our approach. A gen-
eral flow for solving a CNF instance which is partitioned into bins is described
in Section 5.5. Section 5.6 describes the up-front clause partitioning methodology,
which targets maximum utilization of the hardware with low variable overlap. The
hardware details for our approach are explained in Section 5.7. Section 5.8 reports
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our current implementation on a low-end FPGA evaluation board, followed by pro-
jected performance numbers on a high-end FPGA board. These projections are
derived based on a performance model extracted from detailed performance data
from our current system. Section 5.9 summarizes the chapter.

5.2 Introduction

As mentioned in the last chapter, Boolean satisfiability (SAT) [3] is a core NP-
complete problem, and hence there is a strong motivation to accelerate SAT. In
this work, we propose an FPGA-based approach to accelerate the SAT solution
process, with the goal of speedily solving large instances in a scalable fashion.
By scalable, we mean that the same platform can be easily made to work on
larger SAT instances. The FPGA-based hardware implements the GRASP [11]
strategy of non-chronological backtracking. In our approach, a predetermined num-
ber of clauses of fixed width are implemented on the FPGA. The SAT problem
is mapped to this architecture in an initial step which partitions the original SAT
instance into bins which can be solved on the FPGA. Further, inter-bin (as well
as intra-bin) non-chronological backtrack is implemented in our approach. Our
hardware approach performs, in parallel, both the tasks of implicit traversal of the
implication graph and conflict clause generation. The contribution of this work is
to come up with a high capacity, fast, scalable FPGA-based SAT approach. We
do not claim to propose any new SAT solution heuristics in this work. Similar
to our custom IC-based SAT solver described in the last chapter, we have used
the GRASP [11] engine in our FPGA-based SAT solver. As before, the hardware
approach can be modified to implement other BCP engines, since the BCP logic of
any BCP-based SAT solver can be ported to an HDL and directly synthesized in our
approach.

Our approach is implemented and tested on a Xilinx Virtex-II Pro evaluation
board. Experimental results on LUT utilization and performance figures are derived
from an actual implementation using an XC2VP30 Virtex-II Pro based FPGA plat-
form. The results from these experiments are projected to an industrial strength
FPGA system and indicate a 17× speedup over the best-in-class software approach.
The resulting system can handle instances with as many as 10K variables and 280K
clauses.

5.3 Previous Work

In addition to the existing work discussed in the previous chapter, several FPGA-
based SAT solvers have been reported in the past. We classify them into instance-
specific and application-specific approaches. In instance-specific approaches the
hardware is recompiled for every instance. This is a key limitation, since compi-
lation times for an FPGA can take several hours. The speedup numbers reported
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in the instance-specific approaches, however, do not present the compilation and
configuration times. Approaches which are not instance specific are application
specific.

Instance-specific approaches reported in literature are [14, 6, 13, 2, 7]. Among
these approaches, as reported in [6], the largest example that can be handled has
about 1,300 clauses with an average speedup of 10×. Our approach, in contrast, is
application specific and thus the same device, once configured, can be used multiple
times for different instances. Further, our approach can obtain a 17× speedup over
the best-in-class software approach, with a capacity of 10K variables and 280K
clauses.

The multi-FPGA approach described in [15] demonstrates non-chronological
backtracks and dynamic addition of conflict-induced clauses. However, the approach
is instance specific and requires re-synthesis, remapping, and regeneration and
reconfiguration of the bit stream, each time a conflict-induced clause is added to
the clause database. The approach claims to perform these repeated tasks in an
incremental fashion which is possible due to a regular hardware structure. The
new compile times (obtained with the incremental tasks) are a few orders of mag-
nitude higher than the actual runtime for most instances reported in their results.
Our approach, in contrast, uses a single FPGA device. For problem instances which
cannot be accommodated in a monolithic fashion in a single FPGA, we partition the
instance into ‘bins’ of clauses (which may share common variables). This allows our
approach to scale elegantly and solve large SAT problems, unlike previous reconfig-
urable approaches. Each partition is then solved for satisfiability, while maintaining
consistency with the existing global decisions and assignments. This may require
backtracking to a previous bin. Backtracking in our approach is performed in a
non-chronological fashion, even across bins. No other existing application-specific
hardware or reconfigurable SAT solver exhibits a non-chronological backtrack and
dynamic addition of conflict-induced clauses, carried out entirely in hardware.

All existing application-specific hardware or reconfigurable approaches eventu-
ally run into the problem of an instance not fitting in a single FPGA or recon-
figurable device. The approach of [5, 7] implements the prototype on a Pamette
board containing four Xilinx XC4028 FPGAs. These approaches do not propose
anything for solving problem instances whose size exceeds the board capacity.
The application-specific approach in [8], like [13, 16], employs several interlinked
FPGAs, but assumes that the FPGA resources are sufficient for solving a SAT
instance. Also, the runtimes they reported were achieved based on software sim-
ulations.

There are some application-specific approaches which can handle instances that
do not fit in a single FPGA device. The approaches described in [9, 10], like our
approach, are implemented on a single FPGA board. However, in these approaches,
the memory module storing the instance has to be reconfigured for different prob-
lem instances (or independent sub-instances for large instances). Their authors do
not clarify the procedure followed when independent sub-instances of feasible sizes
cannot be obtained. The consistency of assignments across sub-instances is not triv-
ial to maintain in hardware, but this is not addressed. Our approach maintains this
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consistency, and backtracks to a previous partition (bin) non-chronologically, in
case the offending decision was not made in the current partition. The approach
of [12] creates a matrix (where rows are clauses and column are variables) from
the problem instance and searches for a ternary vector orthogonal to every row, in
order to satisfy the instance. For larger instances, it attempts at solving the prob-
lem in software, until the sub-instance size is accommodable in the FPGA. In our
approach, software is used only for the initial partitioning and clause transfer; there-
after, all steps are performed entirely in hardware. Further, the speedups reported
in this paper against GRASP are nominal and only for the holex benchmarks. Our
approach reports speedup against MiniSAT [1], which is known to be significantly
faster than GRASP. Our results are presented over a variety of benchmarks.

The work presented in this chapter is an FPGA version of the custom IC-based
SAT solver described in the previous chapter. However, the custom IC approach
solves the entire instance in a monolithic fashion. Our FPGA-based approach, on
the other hand, partitions a CNF instance into bins and is required to maintain con-
sistency in assignments across all bins while solving one bin at a time. This requires
several changes in the preprocessing step, the hardware design, and the overall flow.
An extended abstract of our FPGA-based SAT solver is described in [4].

5.4 Hardware Architecture

5.4.1 Architecture Overview

Figure 5.1 shows the hardware architecture of our application-specific (i.e., not
instance-specific) approach. We use an FPGA board that has a duplex communi-
cation link with the host system. The FPGA is first loaded with the configuration
information for our SAT engine. No instance information is loaded at this stage.
Since most practical-sized CNF instances would not readily fit on the FPGA fabric,
we heuristically partition the original CNF into smaller CNFs, called bins, such that
their inter-dependence is reduced. In other words, we aim at reducing the number
of common variables across bins. Also, each of these bins is sized such that the
bin can individually fit in the FPGA fabric. This partitioning is performed as a
preprocessing step on the host system, before loading the bins to the FPGA board.
In reality, multiple CNF instances (each in its respective partitioned ‘bin’ format)
are stored in a 512 MB DDR DRAM memory card which is on the FPGA board.
These partitioned CNF instances are first loaded onto the on-board DRAM from the
host system using board-level I/O. Next, all the bins of one of these CNF instances
are loaded in the on-chip block RAM (BRAM). This is the instance which is being
currently processed, and we refer to it as the current instance in the sequel. Note
that bins can potentially be cached in the BRAM, enhancing scalability. The FPGA
is then loaded with one of the bins of the current instance. This is done using an
embedded PowerPC processor, which transfers the bin data from the BRAM to
the FPGA fabric. The on-chip PowerPC manages both the loading of the current
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instance from the DRAM to the BRAM and the loading/unloading of bins from
BRAM onto the FPGA (as dictated by the hardware). These transfers are performed
using bus transfer protocol IPs provided by Xilinx. These IPs allow transfers across
the processor local bus (PLB) and on-chip peripheral bus (OPB). After the bin is
loaded into the FPGA fabric, the FPGA starts to perform implication and conflict
clause generation in parallel. The next section discusses our approach of solving a
CNF instance (which is partitioned across several bins) in our FPGA-based hard-
ware SAT solver.

5.5 Solving a CNF Instance Which Is Partitioned into Several
Bins

As mentioned above, the original CNF instance C is initially partitioned into smaller
bins, b1, b2, . . ., bn. Our hardware engine tries to satisfy each bin bi, using the stored
global assignments on the variables. In this section our flow for solving a partitioned
SAT instance is explained. Implementation details are given in the sequel.

The variables V of the CNF C are statically awarded a decision level once the
bins have been created. Along with each bin bi, we load the decision levels of the
variables Vi ⊆ V it contains, along with the current state of every variable v ∈ Vi.
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The global state of all variables V is stored in the on-chip BRAM. The state of a
variable consists of the following information:

• whether the variable has been decided (assigned or implied);
• the current decision on the variable;
• if the variable has been decided, the decision level it was decided at;
• if the variable has been decided, the bin it was decided in; and
• if the decision on this variable is the highest decision level we backtracked on.

We begin by solving the first bin. After any bin is solved, it results in a par-
tial_SAT or partial_UNSAT condition. Partial_SAT indicates that the current bin
has all clauses satisfied, with no conflicts with the current status of any variable
in V . A partial_UNSAT indicates the opposite. If a bin bi is partial_SAT, we first
update the states of the variables v ∈ Vi into the global state. Also, any learned
clauses generated during the operation on bi are appended to the clauses of bin bi

in the BRAM. We then load the FPGA with the clauses of bin bi+1 and the states
of the variables v ∈ Vi+1. The SAT engine then attempts to partial_SAT this new
bin. With every partial_SAT outcome on bin j, we proceed in a sequential manner
from bin bj to bj+1. If the last bin is also partial_SAT, we declare the instance to be
global_SAT or satisfiable.

In case there is a conflict with an existing state of variables {vc}, we non-
chronologically backtrack on vbkt, which is the variable with the highest decision
level among {vc}. If the variable vbkt was assigned in the current bin itself, we
simply revert our decision. If the variable vbkt was implied in the current bin, we
backtrack on the variable which caused the implication. On the other hand, if the
variable vbkt was assigned or implied in a previous bin, we declare the current bin
to be partial_UNSAT. Using the information contained in the state of this variable,
we obtain the bin number we need to backtrack to, in order to revert the decision
on vbkt. This allows us to backtrack across bins. In other words, we perform non-
chronological backtrack within bins and also across bins, ensuring the completeness
of our SAT procedure. Let the new bin be bj. Now we load the FPGA with the
clauses of bj and the states of the related variables v ∈ Vj. On reverting the decision
on vbkt (which could require recursive backtracking), we delete the decisions on all
variables with a decision level higher than vbkt’s decision level. We then continue as
usual with the updated state of variables. As before, if bin bj is now partial_SAT, we
next load the FPGA with bin bj+1. During conflict analysis, if the earliest decision
level has been backtracked on, and the current status of the variables still leads to a
conflict, we declare the instance to be global_UNSAT or unsatisfiable.

In our approach, the FPGA hardware performs the satisfiability check of a bin,
as well as non-chronological (inter and intra-bin) backtrack. The software (running
on the embedded PowerPC) simply loads the next bin as requested by the hardware.

Each time a bin is loaded onto the FPGA, we say that the bin has been ‘touched,’
in the sequel. The flow explained above allows us to perform BCP and non-
chronological backtrack. The next section details the algorithm used for partitioning
the CNF instance across bins.
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5.6 Partitioning the CNF Instance

To partition a given CNF instance into multiple bins of bounded size (which can
fit in the FPGA fabric) we use a two-dimensional graph bandwidth minimiza-
tion algorithm, followed by greedy bin packing. Let us view the CNF instance
as a matrix whose columns are labeled as variables and rows as clauses. The
bandwidth minimization algorithm attempts to diagonalize this matrix. For each
clause Ci, we assign it a gravity G(Ci) which is computed as follows: G(Ci) =∑

Cj∈R(Ci) (P(Cj) · S(Ci,Cj)).
Here, R(Ci) is the set of clauses which have at least one variable common with

clause Ci and P(Cj) is the index of the current row of Cj and S(Ci,Cj) is the number
of common variables between clauses Ci and Cj.

The exact dual is used for computing the gravity of every variable in the CNF
instance. The pseudocode for the bandwidth minimization algorithm is shown in
Algorithm 3.

Algorithm 3 Pseudocode for Bandwidth Minimization
Best_Cost = Infinity
for i = 1; i ≤ Number of iterations; i++ do

Compute Gravity of all clauses
Rearrange Clauses in increasing order of gravity
Compute Gravity of all variables
Rearrange Variables in increasing order of gravity
Greedy Bin packing for creating Bins
Compute cost of current arrangement Costi
if (Best_Cost ≥ Costi) then

Best_Cost = Costi
Store current arrangement

end if
end for
return(Stored Arrangement)

As shown in Algorithm 3, we alternate the gravity computation and rearrange-
ment between clauses and variables. With every rearrangement of clauses and vari-
ables in an increasing order of gravity, we compute a new cost. The cost of the
arrangement is the equally weighted sum of the following:

• Number of bins. A smaller number of bins would reduce the overhead involved
with loading the FPGA with a new bin and also reduce communication while
solving the instance.

• The sum, across all variables v in the CNF instance, of the number of bins in
which v occurs. The intuition for this cost criterion is to reduce the overlap of
variables across bins. A larger overlap would require more consistency checks
and possibly more backtracks across bins.

• The sum across all variables v in the CNF instance, of the number of bins v spans.
By span we mean the difference between the largest and the smallest bin index,
in which v occurs. While backtracking, we delete the intermediate decisions and
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variables. Therefore, this criterion would help us reduce the amount of data dele-
tion which may be possibly done during backtracks.

The greedy bin packing step simply packs the rearranged CNF instance into bins
which have a predetermined maximum number of clauses Cmax and variables Vmax
(such that any bin can fit monolithically in the FPGA fabric). We take k ≤ Cmax
clauses and assign them to a new bin provided the variable support of these clauses
is less than or equal to Vmax.

The hardware details of our implementation are discussed in the next section.

5.7 Hardware Details

Our FPGA-based SAT solver is based partly on the custom IC approach presented
in Chapter 4. Hence, the reader is referred to the previous chapter for some details
of the hardware. In particular, the abstract view of our SAT solver for a single bin
is identical to the abstract view of the monolithic ‘clause bank’ described in the
last chapter. Also, the clause cell and its implementation for generating implications
and conflict-induced clauses for a single bin is identical to the clause cell described
in the previous chapter. The only differences between the clause bank in the last
chapter and the single bin in the current chapter are as follows:

• There is no precharge logic in the FPGA-based approach.
• There are no wired-OR signals in the FPGA-based approach.
• Each bidirectional signal in the clause cell described in Chapter 4 is replaced by

a pair of unidirectional in (input) and out (output) signals.
• There is no termination cell in the FPGA approach. This type of cell was used

to allow more than one clause to reside on the same row of the clause bank in
Chapter 4.

• In the FPGA approach, the learned clauses for bin bi are updated into the bin bi.
In Chapter 4, learned clauses were simply added to the clause bank. However, in
the FPGA-based approach, in order for a subsequent load of some bin i to take
advantage of a previously computed conflict-induced clause for that bin, these
learned clauses are added to the clause database of bin i in the BRAM.

The decision engine state machine in the current FPGA-based approach is
enhanced in order to process a CNF instance in a partitioned fashion. This is dis-
cussed next.

Figure 5.2 shows the state machine of the decision engine. To begin with, the
first bin of the current CNF instance is loaded onto the hardware. All signals are
initialized to their refresh state. The decision engine assigns the variables in the
order of their identification tag, which is a numerical ID for each variable, statically
assigned such that most commonly occurring variables are assigned a lower tag.
The decision engine assigns a variable (in the assign_next_variable state) and this
assignment is forwarded to all the clauses of the bin. The decision engine then waits
for the bin to compute all the implications during the wait_for_implications state.
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For bins other than the first bin, the decision engine at first just propagates any
existing decisions on any of the variables of this bin, in the ascending order of their
decision levels. All variables implied due to these existing assignments store the
decision level of the existing assignment due to which they were implied. Similarly,
all variables implied due to a new assignment store the decision level of the newly
assigned variable as their decision level. All implied variables store the current bin
number in their state information.

When an assignment is made, if no conflict is generated due to the assignment,
the decision engine assigns the next unassigned variable in the current bin. If the
next unassigned variable v does not occur in any of the clauses of the current bin,
or all clauses containing v are already satisfied, the decision engine skips an assign-
ment on this variable and proceeds to the next variable. This helps in avoiding an
unnecessary decision on a variable which could lead to a backtrack from another
bin in the future. If all the clauses of the current bin bi are satisfied and there are no
conflicts, then bi is declared to be partial_SAT. A new bin, bi+1, is loaded on to the
FPGA along with the states of its related variables. If the last bin is partial_SAT, the
given CNF instance is declared to be global_SAT or satisfiable.

If there is a conflict in bi, all the variables participating in the conflict clause are
communicated by the clauses in the bin, to the decision engine. Based on this infor-
mation, during the analyze_conflict state, the conflict-induced clause is generated
and stored in the FPGA fabric, just like regular clauses. Also the decision engine
non-chronologically backtracks according to the GRASP [11] algorithm. Using the
information contained in the state of a variable, the engine can compute the latest
assignment among the variables participating in the conflict and the bin (backtrack
bin) where the assignment on this variable was made. When the backtrack bin is the
current bin, and the backtrack level is lower than a variable’s stored decision level,
then the stored decision level is cleared before further action by the decision engine
during the execute_conflict state. When the backtrack bin is not the current bin,



72 5 Accelerating Boolean Satisfiability on an FPGA

the decision engine goes to the partial_UNSAT state, causing the required bin to be
loaded. After a conflict is analyzed, the backtracked decision is applied. The variable
to be backtracked on is flagged with this information. At any given instance, only
the flag of the lowest indexed variable is recorded. If a backtrack has been requested
on every variable involved in a conflict, and a conflict exists even by backtracking on
the earliest decision, the given CNF is declared as global_UNSAT or unsatisfiable.

Our FPGA-based SAT solver is a GRASP [11] based algorithm with static selec-
tion of decision variables. Just like GRASP, it performs non-chronological back-
tracking and dynamic addition of conflict-induced clauses. As a result, it retains
(within as well as across bins) the completeness property of GRASP.

5.8 Experimental Results

The experimental results are discussed in the following sections. Section 5.8.1 dis-
cusses our current implementation briefly. Our working system is implemented on
an FPGA evaluation board. In order to obtain projected performance numbers on a
high-end FPGA board, we first extract detailed performance data from our system.
Using this data, we develop a mathematical performance model, in Section 5.8.2,
which estimates the bin size, numbers of bins touched, and communication speeds
as a function of SAT problem. Using this performance model, we project the system
performance (using our existing performance data) for industrial-strength FPGA
boards, in Section 5.8.3.

5.8.1 Current Implementation

To validate our approach, we have implemented our hardware SAT solver on a Xil-
inx XC2VP30 device-based evaluation board using ISE 8.2i for hardware (Verilog)
and EDK 8.2i for instantiating the PowerPC, processor local bus (PLB), on-chip
peripheral bus (OPB), BRAM, and PLB2OPB bridge cores. Our current implemen-
tation can solve CNF instances of size 8K variables and 31K clauses. If we were to
cache the bins in BRAM, then the capacity of the system increases to 77K clauses
over 8K variables. The size of a single bin is 16 variables and 24 clauses. Of these,
four clauses are designated as learned clauses. The FPGA device utilization with this
configuration, including the EDK cores, is ∼70%. With larger FPGAs, significantly
larger CNFs can be tackled.

Our current implementation correctly solves several non-trivial CNF instances.
Our regression suite consists of about 10,000 satisfiable and unsatisfiable instances.
To validate intermediate assignments and decisions at the bin level, we performed
aggressive testing. Each partial bin assignment is verified against MiniSAT [1]. This
is done as follows: Say the mth bin is part_SAT and let the set of current assignments
be pm. A CNF instance C is created which includes all clauses from bins 1 through
m and single literal clauses using the current assignments, i.e., set pm:
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C = [
∏m

i=1 (bini)]·pm

The CNF instance, C, thus generated is solved using MiniSAT and verified to be
satisfiable. Similarly, if the nth bin is part_UNSAT, a CNF instance D, s.t.
D = [

∏n
i=1 (bini)]·pn

is generated and solved using MiniSAT. This should be unsatisfiable. Several of our
regression instances touch thousands of bins and the assignments until each bin is
verified in this fashion. As mentioned previously, several CNF instances, after being
partitioned into bins, are loaded onto the board DRAM. Typically hundreds of such
instances are loaded at a time and tested for satisfiability one after another. Only the
current instance resides completely in the on-chip BRAM.

5.8.2 Performance Model

5.8.2.1 FPGA Resources

We conducted several FPGA synthesis runs, using different bin sizes, to obtain the
dependence of FPGA resource utilization on bin size. The aim of this experiment
was to quantify the FPGA resource utilization as a function of

• number of variables of the bin and
• number of clauses in the bin.

Based on several experiments, we conclude that the LUT utilization is 20·V ·C +
300·V , where V and C are the number of variables and the number of clauses per bin,
respectively. Figures 5.3 and 5.4 graphically show the increase in number of LUTs
used, with an increase in number of clauses and an increase in number of variables,
respectively. The X-axis of Fig. 5.3 represents the number of clauses in a single bin
which is currently stored in the FPGA fabric. The X-axis of Fig. 5.4 represents the
number of variables in a single bin, configured onto the FPGA fabric. The Y-axis on
both graphs is the number of LUTs used in case of XC2VP30 device. From these
graphs, we conclude that the LUT utilization increases as per the expression above.

Fig. 5.3 Resource utilization for clauses
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Fig. 5.4 Resource utilization for variables

The LUT utilization graphs for a Virtex-II Pro (XC2VP30) were identical to those
obtained for Virtex-4 (XC4VFX140) device.

5.8.2.2 Clauses/Variable Ratio

We conducted another set of experiments to find the golden ratio (Ag), of the maxi-
mum number of clauses to the maximum number of variables in a bin. If the number
of variables in a bin is too high (low) compared to the number of clauses, the bin
utilization can be quite low. Bin utilization here is defined as follows: if a single bin
is viewed as a matrix, with clauses for rows and variables for columns, bin utiliza-
tion is the number of filled matrix entries over the total available matrix entries. For
example, consider a bin with three clauses over three variables. If we store clauses
(a + b) and (b + c) in this bin, our utilization is 4

9 . For a set of 20 examples (taken
from different CNF benchmark suites), we performed several binning runs using the
cost function explained in Section 5.6. For a given number of variables we varied the
number of clauses in a bin and obtained the μ, μ+ σ , and μ− σ of bin utilization
over all the benchmarks. The number of variables was 8, 12, 16, 36, 75, and 95.
Two sample plots, for number of variables equal to 16 and 36, are shown in Fig. 5.5
and 5.6, respectively. From the six plots obtained by this exercise, for a 60% bin
utilization, Ag was found to be 2

3 .

5.8.2.3 Cycles Versus Bin Size

In order to study the effect of increasing bin size on runtime, we experimentally
tried to obtain the number of hardware instructions executed as a function of bin
size. We ran several satisfiable and unsatisfiable designs on our hardware platform,
with different numbers of variables V and clauses C = Ag · V in a bin. The ratio of
the total number of hardware instructions executed to the number of bins was found
to be roughly constant for different (V , Ag ·V) values. In other words, the number of
hardware instructions per bin is roughly independent of the bin size. This constant
was found to be∼125 cycles/bin. The intuition behind this behavior is that if the bin
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size is large, the total number of hardware cycles decreases because the number of
bins touched decreases, yielding a net constant number of hardware cycles per bin.

5.8.2.4 Bins Touched Versus Bin Size

It is important to quantify the number of bins touched as a function of the bin
size. We ran several satisfiable and unsatisfiable designs, through our hardware
platform, and recorded the backtracks required for completely solving the instance.
For a given bin size, we simulated whether each of these backtracks would have
resulted in a new bin being touched. A subset of the results is shown in Table 5.1.
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Table 5.1 Number of bins touched with respect to bin size

Instance Bins
Number of bins touched by
increasing bin size

1× 5× 10× 20×
cmb 15 308 94 49 0
sct 57 1,193 295 174 111
cc 27 48 11 6 3
cordic 58 1,350 341 158 122
Reductions 1× 3.98× 8.33× 21.45×

Column 1 lists the instance name, while column 2 lists the number of bins obtained
after bandwidth minimization. Column 3 lists the number of bins touched in order
to completely solve the instance. Columns 4, 5, and 6 display the number of bins
touched if the bin size is increased by 5×, 10×, and 20×, respectively. The average
reduction in the number of bins touched for the last four columns is displayed in
the last row. This experiment concludes that the number of bins touched reduces
linearly with an increase in bin size.

5.8.2.5 Bin Size

Our current implementation uses a Xilinx XC2VP30 FPGA, which contains about
30K LUTs. An industry-strength implementation of our FPGA SAT solver would
be done using best-in-class FPGA boards that are in the market today, which are
based on the XC4VFX60 and XC4VFX140 FPGAs. These contain 60K and 140K
LUTs, respectively. We therefore estimate the bin size for these boards. Table 5.2
tabulates the distribution of the LUTs in each of these devices over portions of our
design that scale with bin size and also those portions of the design that do not scale
with bin size. The non-scaling parts are those for which the LUT utilization does
not increase while increasing the bin size. These include the Xilinx cores for DDR,
DCM, PowerPC, BRAM, PLB, OPB, and the finite state machine for the decision
engine. The scaling parts are those for which the device utilization increases with
an increase in bin size. These include the clauses of the bin. Column 2 in Table 5.2
tabulates this distribution for our current XC2VP30-based board. Out of the total
30K available LUTS, and assuming a 70% device utilization, only 14K LUTs can be

Table 5.2 LUT distribution for FPGA devices

FPGA device XC2VP30 XC4VFX60 XC4VFX140
Total logic cells (L) 30K 60K 140K

Xilinx cores
7K 7K 7K(DDR + DCM + PowerPC

+ BRAM + PLB + OPB) and
decision engine
Available (0.7L–7K):

14K 35K 91K
clause of bin
(Vdevice, Ag · Vdevice) (16, 10) (36, 24) (75, 50)
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used for storing the clauses of the bin. In case of the XC4VFX60 FPGA, as shown in
column 3, about 35K LUTs can be used for the clauses of the bin. Similarly, column
4 lists the available LUTs for clauses of the bin, for the XC4VFX140 FPGA.

Using the resource utilization for a single clause and a single variable, together
with the available resources for clauses of a bin, we can compute the maximum size
of a bin which can be contained in the bigger FPGAs mentioned above. Say a bin of
size C clauses and V variables can be configured into an FPGA device Device. We
know that the number of LUTs of Device utilized for clauses of the bin is 300·V +
20·V · C. Since C = 2

3 · V based on the golden ratio Ag, we have 300·V + 20· 23 · V2

= Available LUTs in Device.
Solving this quadratic equation for V gives us the size of the bin (V , Ag · V)

that can be accommodated in any FPGA device. The last row of Table 5.2 lists the
bin sizes for the FPGA devices XC2VP30, XC4VFX60, and XC4VFX140. These
calculated bin sizes have been verified by synthesizing the design netlist generated
for these bin sizes using the Xilinx ISE 8.2i tool, for the corresponding device.

5.8.3 Projections

Detailed runtime data (for software and hardware portions of our design) were
extracted using the XC2VP30 university evaluation board. Using the performance
model of the previous section, we project these runtimes for a Xilinx XC4VFX140
device.

From the performance models in Section 5.8.2, we can project the system per-
formance (from the current implementation on the XC2VP30 device) as follows:

• Number of bins in the design are projected to grow as VXC2VP30
VDevice

.
This is because the number of bins required for a CNF instance is inversely pro-
portional to the bin size.

• Number of bins touched grows as VXC2VP30
VDevice

.
From our discussion on bins touched versus bin size in Section 5.8.2, the number
of bins touched is inversely proportional to bin size, which in turn is proportional
to the number of variables in a bin.

• Software (PowerPC) runtimes improve as FDevice
FXC2VP30

· VDevice
VXC2VP30

· 50.
This expression can be analyzed in three parts:

– Software runtime is inversely proportional to the device frequency.
– If the number of bins touched is reduced, the number of bin transfers directed

by the PowerPC is reduced proportionately.
– The bus transfer rate using Xilinx bus transfer protocols is about 50 cycles

per word in our current implementation. This transfer rate can be reduced to 1
cycle per word, by writing a custom bus transfer protocol.

• Hardware (Verilog) runtimes improve as FDevice
FXC2VP30

· VDevice
VXC2VP30

· ( cycles
bin )XC2VP30

( cycles
bin )Device

.

Again, this expression can be analyzed in three parts:
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– Hardware runtime is inversely proportional to the device frequency.
– If the number of bins touched is reduced, the total number of hardware cycles

required for solving the instance is reduced proportionately. This factor is
VDevice

VXC2VP30
.

– The total number of hardware cycles required is proportional to the number of
cycles required to solve a single bin.

Using the above expressions for the scaling of the hardware and software run-
times, the projected runtimes for a XC4VFX140-based system are shown in
Table 5.3. Note that the results in Table 5.3 are obtained by taking actually the
hardware and software runtimes of our XC2VP30-based platform and projecting
these numbers to an industry-strength XC4VFX140-based platform. Column 1 lists
the instance name, and columns 2 and 3 list the number of variables and clauses,
respectively, in the instance. Column 4 lists the number of bins obtained after the
CNF partitioning is performed on the host machine. Column 5 lists the number
of bins ‘touched’ by the XC4VFX140-based hardware for solving this instance.
The runtimes (in seconds) are listed in columns 6, 7, and 8. Column 6 reports the
software runtime of our approach (i.e., the time taken by the PowerPC at 450 MHz
to perform the bin transfers). Column 7 reports the hardware runtime (i.e., hardware
runtime over all bins). The runtimes for the preprocessing step are not considered,
since they are negligible with respect to the hardware or software runtime. Even
if the preprocessing runtimes were higher, the time spent in partitioning the CNF
instance is amply recovered when multiple SAT calls need to be made for the same
instance, which commonly occurs in CAD-based SAT instances. Finally, the last
column reports the MiniSAT runtimes obtained on a 3.6 GHz Pentium IV machine
with 3 GB of RAM, running Linux.

Over all test cases, the net speedup over MiniSAT is 90×, and for benchmarks
in which more than 4,500 bins are touched, the speedup is about 17×. Also, for
benchmarks which fit in a single bin, the speedup is 2.85×104.

The capacity of the XC4VFX140-based system can be computed as follows.
Assume that we cache 500 bins in the BRAM. Each bin has 50 variables and 75
clauses. The number of clauses Ctot on the number of variables Vtot that can be
accommodated in this system is obtained by solving the following equation:

BRAMSIZE = (500 · 50 · 2 · 75)+ ( Ctot
Ag
· log2 (Vtot))+ Vtot · (4+ log2 (Vtot)+ log2 ( Ctot

Ag·VDevice
)

The first term in the above equation represents the number of BRAM bits
required to cache 500 bins. The second term represents the number of BRAM bits
required to store the variable indices across all the bins. The third term represents
the number of BRAM bits required to store the global state of all the variables in
the design. This is split into three smaller terms:

• The first term requires 4 bits in total. This is to record the decision on the variable
(2 bits) and the assigned/implied status of the variable (1 bit) and whether it is
the earliest indexed variable that we have backtracked on (1 bit).

• The second term represents the number of bits required to record the decision
level (log2 (Vtot) bits).



5.8 Experimental Results 79

Ta
bl

e
5.

3
R

un
tim

e
co

m
pa

ri
so

n
X

C
4V

FX
14

0
ve

rs
us

M
in

iS
A

T

In
st

an
ce

na
m

e
N

um
.v

ar
s

N
um

.c
ls

.
N

um
bi

ns
B

in
s

to
uc

he
d

T
im

e
(s

)
Po

w
er

PC
V

er
ilo

g
M

in
iS

A
T

m
ux

_u
13

3
50

4
13

1
1.

24
×1

0−
8

1.
43
×1

0−
9

9.
39
×1

0−
4

cm
b

62
14

7
4

66
6.

90
×1

0−
6

2.
84
×1

0−
5

1.
01
×1

0−
3

ch
t_

u
64

7
2,

16
4

48
6

9.
32
×1

0−
7

1.
00
×1

0−
6

1.
97
×1

0−
3

fr
g1

_u
31

0
2,

36
2

71
1

1.
79
×1

0−
7

5.
02
×1

0−
7

1.
03
×1

0−
3

ttt
2_

u
87

4
3,

28
4

84
4

9.
24
×1

0−
7

6.
77
×1

0−
7

9.
98
×1

0−
4

te
rm

1_
u

1,
28

8
4,

28
8

11
4

3
1.

06
×1

0−
6

3.
72
×1

0−
7

1.
99
×1

0−
3

x4
_u

1,
76

4
5,

77
2

13
8

12
2.

24
×1

0−
6

2.
67
×1

0−
6

2.
99
×1

0−
3

x3
_u

3,
30

1
10

,0
92

25
7

18
3.

84
×1

0−
6

3.
39
×1

0−
6

3.
01
×1

0−
3

ai
m

-5
0-

2_
0-

ye
s1

-2
0

50
10

0
3

3
2.

99
×1

0−
7

1.
49
×1

0−
6

1.
84
×1

0−
4

ho
le

s6
42

13
3

3
4,

60
0

5.
00
×1

0−
4

2.
23
×1

0−
3

8.
98
×1

0−
3

ho
le

s8
72

29
7

5
27

6,
75

1
3.

04
×1

0−
2

1.
21
×1

0−
1

1.
49

uu
f1

00
-0

45
7

10
0

43
0

17
43

,8
06

4.
39
×1

0−
3

2.
58
×1

0−
2

1.
90
×1

0−
2

uu
f1

25
-0

7
12

5
53

8
21

11
,2

0,
47

1
1.

35
×1

0−
1

9.
03
×1

0−
1

2.
01
×1

0−
2

G
eo

.m
ea

n
1.

31
×1

0−
5

2.
27
×1

0−
5

3.
78
×1

0−
3



80 5 Accelerating Boolean Satisfiability on an FPGA

• The third term represents the number of bits required to record the index of the
bin in which the variable was assigned or implied, which requires as many bits
as the logarithm of the number of bins (log2 ( Ctot

Ag·VDevice
)).

The total BRAMSIZE for the XC4VFX140 part is 9.936 Mb. Solving the above
equation, using a maximum number of variables (Vtot) of 10K, gives Ctot = 280K
clauses, the capacity of the system.

5.9 Chapter Summary

In this chapter, we have presented an FPGA-based approach for Boolean satisfi-
ability, in which the traversal of the implication graph as well as conflict clause
generation is performed in hardware, in parallel. In our approach, clauses are stored
in FPGA slices. In order to solve large SAT instances, we heuristically partition
the clauses into a number of bins, each of which can fit in the FPGA. This is done
in a preprocessing step. The entire instance is solved using both intra- and inter-
bin non-chronological backtrack, which is implemented in hardware. The on-chip
BRAM is used for storing all the bins of a partitioned CNF problem. The embedded
PowerPC processor on the FPGA performs the task of loading the appropriate bin
from the BRAM, as requested by the hardware. Our entire flow has been verified
for correctness on a Virtex-II Pro based evaluation platform. We project the run-
times obtained on this platform to an industry-strength XC4VFX140-based system
and show that a speedup of 17× can be obtained over the best-in-class software
approach. The projected system can handle instances with as many as 280K clauses
on 10K variables.
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Chapter 6
Accelerating Boolean Satisfiability
on a Graphics Processing Unit

6.1 Chapter Overview

In this chapter we present a Boolean satisfiability solver with a new GPU-enhanced
variable ordering heuristic. Our approach is implemented in a CPU-based procedure
and leverages the parallelism of a graphics processing unit (GPU). The CPU imple-
ments a complete procedure (MiniSAT), while the GPU implements an approximate
procedure (an implementation of survey propagation – SurveySAT). The SAT search
is initiated on the CPU, and after a user-specified fraction of decisions have been
made, the GPU-based SurveySAT engine is invoked. The decisions made by this
engine are returned to MiniSAT, which now updates its variable ordering by giving
a higher preference to the decision variables returned by the GPU. This procedure
is repeated until a solution is found. Our approach retains completeness (since it
is based on a complete procedure) but has the potential of high speedup since the
incomplete SurveySAT procedure that enhances the variable ordering in the com-
plete procedure is implemented on a parallel platform. Our results demonstrate that
over several satisfiable and unsatisfiable benchmarks, our technique (referred to as
MESP) performs better than MiniSAT. We show a 64% speedup on average, over
several benchmarks from the SAT race (2006) competition.

The rest of this chapter is organized as follows. The motivation for this work is
described in Section 6.2. Section 6.3 reports some related previous work. Section 6.4
describes our SAT algorithm. This section first briefly describes our GPU-based
implementation of SurveySAT. We then present the details of MESP. Experimental
results are reported in Section 6.5. Section 6.6 summarizes this chapter.

6.2 Introduction

In addition to well-known complete approaches to solve SAT such as [20, 18, 13, 14]
and [1], several incomplete or stochastic heuristics have been presented in the past.
A partial list of these is [3, 2, 19, 7, 8]. These heuristics are iterative and usually very
effective for random SAT instances. For structured SAT instances (such as those that
arise out of VLSI logic circuits), their performance is mixed. For example survey
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propagation based techniques [7, 8] can return a non-convergent or a contradiction
result, both of which give the user no conclusive indication of the satisfiability or
unsatisfiability of the instance. The advantage, however, of these incomplete tech-
niques is that they are inherently amenable to parallelization. In this work we present
a complete algorithm for Boolean satisfiability. Our algorithm implements a com-
plete procedure (MiniSAT), which leverages the speed of an incomplete procedure
(survey propagation), to augment the variable ordering heuristic of the complete
procedure. Our approach retains completeness (since it implements a complete pro-
cedure) but has the potential of high speedup (since the approximate procedure is
executed on a highly parallel graphics processor based platform).

This work is based on the implementation of a new variable ordering approach
in a complete procedure (MiniSAT [1]), which runs on the CPU. This instance of
MiniSAT is guided by a survey propagation based (SurveySAT) procedure which
is implemented on the GPU. Our new algorithm is referred to as MESP (MiniSAT
enhanced with survey propagation) in the sequel. The GPU is ideally suited for the
(independent) variables to clauses (V → C) and clauses to variables (C → V)
computations that need to be performed in the SurveySAT procedure. Note that in
our approach, the set of clauses C on the GPU contains a subset of the recent learned
clauses that were generated in MiniSAT, in addition to the original problem’s clause
database. Using the partial assignments of the CPU-based MiniSAT procedure, the
GPU (in parallel) computes certain new variable assignments and returns these to
the CPU. The CPU-based procedure now gives a higher preference to these variables
during the next set of decisions it makes. The intuition behind our approach is that
the assignments from the (GPU-based) survey propagation augment the variable
ordering heuristic of MiniSAT with the more global view of the clause database
(including recent learned clauses) that the SurveySAT procedure has. This procedure
is repeated until the instance is proven satisfiable or reported as unsatisfiable. In
this manner, MESP retains the best features of the ‘complete’ procedure and also
takes advantage of a GPU-based accelerated implementation of the ‘incomplete’
procedure.

The key contributions of the work described in this chapter include the following:

• This is the first approach to present a CPU + GPU-based complete SAT decision
procedure.

• Our SAT solver (MESP) retains the best features of a CPU-based complete
SAT procedure and a GPU implementation of a highly parallel SurveySAT
procedure.

• Our solver frequently refreshes the learned clause database on the GPU with
the recently generated learned clauses on CPU, and thus takes advantage of
the advanced learned clause generation and resolution heuristics existing in
MiniSAT.

• Our GPU implementation of the SurveySAT procedure is 22× faster than a CPU-
based SurveySAT implementation for several hard random benchmarks. On these
random benchmarks, MiniSAT times out after several hours.
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• Over several structural benchmarks from the SAT07 competition, on average
MESP shows a 64% speedup when compared to MiniSAT (which was run on
the CPU).

6.3 Related Previous Work

Existing SAT solvers can be categorized into complete, stochastic, hybrid, and par-
allel techniques. The complete techniques [10, 20, 18, 13, 14, 1] either provide
a satisfying assignment for the SAT instance or report the instance to be unsat-
isfiable. Stochastic techniques [3, 2, 19, 7, 8] may be able to quickly provide a
satisfying solution for certain SAT instances. However, they cannot prove that a
SAT instance is unsatisfiable. Also, for a satisfiable instance, these solvers are not
guaranteed to find a solution. Hybrid techniques [11] aim at borrowing ideas from
complete and stochastic approaches to improve the overall performance. Parallel
SAT solvers [6, 21, 12, 9] use multi-threaded or MIMD machines for their imple-
mentations, but require dynamic work load balancing heuristics which can be expen-
sive. Our approach falls under the hybrid category, making use of the immense paral-
lelism available in a GPU. Our approach is a complete technique, targeting structural
SAT instances (in addition to random instances). To the best of our knowledge, there
is no existing complete SAT solver, hybrid or otherwise, which employs the GPU
for improving its performance. Some of the existing work in Boolean satisfiability
is outlined next.

Among the complete approaches, the DPLL technique [10] was the first branch
and search algorithm developed for solving a SAT instance. GRASP [20] aug-
mented DPLL with non-chronological backtracking when a conflict was detected.
SAT solvers like [18, 13, 14] inherited the features of GRASP and improved the
search heuristics by employing concepts like 2-literal watching and learned clause-
aging [18], improved decision strategies [13], and stronger conflict clause analy-
sis [14]. MiniSAT [1] is a more recent SAT solver which performs a smart conflict
clause simplification by applying subsumption resolution [22] and caching of inter-
mediate results. MiniSAT has been recognized to be among the best SAT solvers in
recent SAT competitions [4]. Our approach therefore employs MiniSAT as the base-
line complete SAT technique and further improves its performance by employing a
fast (albeit incomplete) SAT solver while retaining completeness.

A few examples of stochastic techniques for solving a SAT instance are dis-
cussed next. WalkSAT [3] and GSAT [2] are heuristic approaches which start by
assigning a random value to each variable. If the assignment satisfies all clauses,
the algorithm terminates, returning the assignment. Otherwise, a variable is flipped
and the above step is repeated until all the clauses are satisfied. WalkSAT and GSAT
differ in the methods used to select which variable to flip. GSAT uses a probabilistic
heuristic to flip a variable, which minimizes the number of unsatisfied clauses (in the
new assignment). WalkSAT first picks a clause which is unsatisfied by the current
assignment, then flips a variable within that clause. This clause is generally picked at
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random among unsatisfied clauses. The variable is heuristically chosen (with some
probability of picking one of the variables at random), with the aim that the variable
flip will result in the fewest previously satisfied clauses becoming unsatisfied. Note
that WalkSAT is guaranteed to satisfy the current unsatisfied clause. WalkSAT has to
do less calculation than GSAT when selecting a variable to flip, because the number
of variables being considered by WalkSAT is fewer. Note that both WalkSAT and
GSAT may restart with a new random assignment, if no solution has been found
after several flips. This is done in order to escape out of a local minimum.

Discrete Lagrangian-based global search methods such as [19] avoid getting
stuck in a local trap by using Lagrange multipliers to force the current assignment
out of the current local minimum. Survey propagation [7, 8] is an iterative ‘message-
passing’ algorithm designed to solve hard random k-SAT problems. Experimental
results suggest that it may be an effective technique even for problems that are close
to the hard satisfiability threshold [16]. However, it is an incomplete technique and
is not effective for most hard structural SAT problems. In [17], a GPU-based imple-
mentation of survey propagation is presented. In contrast to our approach, [17] does
not present a complete procedure. The authors demonstrate a 9× speedup over a
CPU-based implementation of survey propagation [7]. However, [17] is an incom-
plete procedure, frequently returning a non-convergent or contradiction result on
real SAT problems which are structural. Our GPU-based implementation of survey
propagation is 22× faster compared to [7].

The approach of [11] is an hybrid technique which, like our approach, integrates
a stochastic approach and a DPLL-based approach. A stochastic search is used
to identify a subset of clauses to be passed to a DPLL SAT solver. Over several
benchmarks, [11] reports on average 39% speedup against MiniSAT; however, for
their unsatisfiable benchmarks their performance shows up to a 4× slowdown. Our
approach, on the other hand, accelerates the stochastic approach using a GPU and
our results show on average 64% speedup over several satisfiable and unsatisfiable
benchmarks.

Among existing parallel SAT approaches, [6] is the first parallel implementation
of the DPLL procedure on a message-based MIMD machine. The input formula is
dynamically divided into disjoint sub-formulas, which are solved by a DPLL-based
procedure running on every processor. The approach also discusses dynamic load
balancing techniques to obtain higher parallelizing efficiency. However, only ran-
dom instances or unsatisfiable graph problems are discussed in the results provided
by [6]. No intuition of the performance on structural SAT problems is provided.
Our technique on the other hand employs a SIMD machine (GPU) for improving
the performance of a complete procedure for structural and random SAT instances.
PSATO [21] is a DPLL solver for distributed architectures, and it introduces a tech-
nique to define non-overlapping portions of the search space to be examined. Ref-
erence [15], a parallel-distributed DPLL solver, improves the workload balancing
of [6] by using a master–slave communication model and work stealing. The authors
emphasize the ping-pong phenomenon which may occur in workload balancing.
Unlike these techniques, our technique does not require any work load balancing
heuristics.
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A parallel multi-threaded SAT solver is presented in [12]. It is implemented on
a single multiprocessor workstation with a shared memory architecture. It shows
the negative effect of parallel backtrack-search algorithm on a single multiproces-
sor workstation, due to increased cache misses. Our approach implements a survey
propagation based technique on a SIMD GPU machine and employs it in conjunc-
tion with a complete DPLL-based solver (MiniSAT [1]). Survey propagation, as
shown in the sequel, is highly amenable to parallelization and therefore allows us to
obtain high overall speedups.

GridSAT [9], also a DPLL solver, is designed to run on a large number of widely
distributed and heterogeneous resources: the Grid. Its key philosophy is to keep the
execution as sequential as possible and to use parallelism only when required. The
underlying solver is [18] and it implements a distributed learning clause database
system on different but non-dedicated nationally distributed Grids. Our approach
uses off-the-shelf graphics cards for accelerating Boolean satisfiability and is there-
fore extremely cost effective. To the best of our knowledge, there is no existing
complete SAT solver which employs the GPU for obtaining a performance boost.

6.4 Our Approach

Our implementation of survey propagation on the GPU is explained in Section 6.4.1
and the MESP (MiniSAT enhanced with survey propagation) approach is described
in Section 6.4.2.

6.4.1 SurveySAT and the GPU

In Section 6.4.1.1, we first describe the survey propagation based SAT procedure,
followed by a discussion of our implementation (SurveySAT) of this approach on
the GPU in Section 6.4.1.2. Finally, we present some results of our GPU-based
SurveySAT engine (Section 6.4.1.3). These results are presented to illustrate the
potential and the shortcomings of SurveySAT and motivate our MESP procedure.

6.4.1.1 SurveySAT

Survey propagation based SAT solvers are based on an iterative message-passing
paradigm. The survey propagation algorithm is shown in Algorithm 4. Consider a
SAT instance consisting of clauses C on a set of variables V . The SAT instance can
be graphically represented by a Factor Graph, which is a bipartite graph with two
kinds of nodes – variable nodes and function nodes or clause nodes. An undirected
edge is present between variable node v and function node c iff the variable v is
present in the clause c (in either polarity). The factor graph is cyclic in general,
although it can be a tree. Survey propagation is exact on factor graphs that are
trees [7].
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Algorithm 4 Pseudocode for Survey Propagation Based SAT Solver
1: survey_SAT(C,V)
2: Set η’s to random values
3: while converge(C,V) do
4: Sort V in order of the absolute difference in their bias values
5: Fix variables v∗ ∈ V s.t. |W(+)

v∗ −W(−)
v∗ | > τ . If contradiction, exit

6: if all variables fixed then
7: Problem SAT
8: exit
9: end if

10: if Σ∀a,j
(ηa→j) < δ then

11: call walksat()
12: end if
13: end while
14:
15: converge(C,V)
16: repeat
17: Compute Π ’s (Equations 6.1 through 6.3)
18: Compute η’s (Equation 6.4)
19: ε = max∀a,j

|ηold
a→j − ηa→j|

20: iter++; ηold ← η

21: until (iter < MAX || ε > EPS)
22: if ε ≤ EPS then
23: return 1
24: else
25: return 0
26: end if

The SurveySAT algorithm consists of clauses sending surveys or messages
(ηc→v ∈ [0,1]) to their variables. These surveys are probability values. A high value
of ηc→v indicates that the clause c needs variable v to satisfy it.

For the remainder of the discussion, let i, j be variables and a, b be clauses. We
denote C(j) as the set of clauses that contain the variable j. Let Cu

a(j) be the set of
clauses that contain the variable j in the opposite polarity as it appears in clause
a. Similarly, let Cs

a(j) be the set of clauses that contain the variable j in the same
polarity as it appears in clause a. Also, let V(a) be the variables that appear in clause
a.

Survey propagation begins by setting η values randomly (line 2). Then we
attempt to converge on values of the variables (line 3). Each call to the conver-
gence routine computes the survey values ηa→i. To do this, we first compute three
messages from each variable j ∈ V(a) \ i to the clauses that contain variable j in
either polarity (line 17). These message computations are shown in Equations 6.1
through 6.3. Equation (6.1) is explained below. The survey from variable j to clause
a has a high value when

• other clauses (which contain variable j in the opposite polarity as clause a) have
computed a high value of the survey (first square parenthesis expression) and
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• other clauses (which contain variable j in the same polarity as clause a) have
computed a low value of the survey (second square parenthesis expression).

Equation (6.2) can be explained similarly:

Πu
j→a = [1− Π

b∈Cu
a(j)

(1− ηb→j)][ Π
b∈Cs

a(j)
(1− ηb→j)] (6.1)

Π s
j→a = [1− Π

b∈Cs
a(j)

(1− ηb→j)][ Π
b∈Cu

a(j)
(1− ηb→j)] (6.2)

Π0
j→a = [ Π

b∈C(j)\a(1− ηb→j)] (6.3)

Once we have computed Π s
j→a, Πu

j→a, and Π0
j→a, we compute the survey ηa→i

as shown in Equation (6.4) (line 18). The survey ηa→i has a large value if Πu
j→a is

large, thereby, clause a indicates to the variable i that it needs to be set in the polarity
that would satisfy clause a. Note that if V(a) \ i is empty, then ηa→i = 1:

ηa→i = Π
j∈V(a)\i

[
Πu

j→a

Πu
j→a +Π s

j→a +Π0
j→a

]

(6.4)

Note that if any of the sets Cs
a(j), Cu

a(j), or C(j) are empty, then their corre-
sponding product term takes on a value 1. Equation (6.3) in the denominator of
Equation (6.4) avoids a possibility of a division by 0 in Equation (6.4).

After computing the ηs, we check for convergence, by computing the maximum
of the absolute value of the difference between ηa→i and ηold

a→i (from the last itera-
tion) in the converge() routine (line 19). If the largest entry of this vector of abso-
lute differences is smaller than a user-defined value EPS (line 22), then we declare
convergence (line 23). If convergence has not occurred after MAX iterations, we
return a 0 (line 25) and the survey_SAT() returns unsuccessfully (line 3) with a non-
convergent status. The converge() routine is iterated until convergence is achieved
or a user-specified number of iterations MAX is reached. We use MAX = 1,000 in
all our experiments and EPS = 0.01.

Upon convergence, we compute two bias values for each variable and sort the
variable list in the descending order of the absolute difference in their bias values
(line 4). There are two biases W(+)

i and W(−)
i that are computed, as shown in Equa-

tions (6.5) and (6.6). The intuition behind the computation of these two values is
similar to that of the computation of surveys ηa→i, except for the fact that the biases
are computed for each variable. Also, the Π values that the bias computations are
based on (Equations (6.7) through (6.9)) are computed for all clauses C+(i) (C−(i))
which contain the variable i in the positive (negative) polarity, using the converged
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values of the surveys (η∗a→i). C(i) is the set of clauses which contain the variable i
in either polarity.

W(+)
i = Π̂+i

Π̂+i + Π̂−i + Π̂0
i

(6.5)

W(−)
i = Π̂−i

Π̂+i + Π̂−i + Π̂0
i

(6.6)

Π̂+i = [1− Π
a∈C+(i)

(1− η∗a→i)][ Π
a∈C−(i)

(1− η∗a→i)] (6.7)

Π̂−i = [1− Π
a∈C−(i)

(1− η∗a→i)][ Π
a∈C+(i)

(1− η∗a→i)] (6.8)

Π̂0
i = [ Π

a∈C(i)
(1− η∗a→i)] (6.9)

All variables with the absolute difference in bias values |W(+)
i − W(−)

i | > τ (a
user-specified value) are fixed (line 5). If all variables are fixed, then the problem
is SAT and declared as such and we exit (lines 6–8). If all surveys are trivial (line
10) then we call a local search process (WalkSAT() [3] in this instance). If neither
condition above holds, we run the converge() routine again. In subsequent runs of
the converge routine, variables that were previously fixed do not participate in the
computation of Πs (Equations (6.1) through (6.3) and (6.7) through (6.9)). Sim-
ilarly, clauses that are satisfied as a consequence of fixing some variable do not
participate in the computation of ηa→i and the bias values (Equations (6.4), (6.5),
and (6.6)).

Note that the survey_SAT algorithm can fail in two ways – it can fail to achieve
convergence or it can converge such that the set of fixed variables is inconsistent
although the problem is satisfiable (returning a contradiction status in this case).

6.4.1.2 SurveySAT on the GPU

Note that the survey_SAT() procedure is naturally amenable for GPU implemen-
tation. Both the Π and η computations are inherently parallelizable since the Π
and η values are computed using independent data. In our implementation of sur-
vey_SAT() on the GPU, we restrict the SAT instance to be a 3-SAT instance. We
compute Πs (line 17) by issuing |V| parallel threads on the GPU, followed by a



6.4 Our Approach 91

thread synchronization command. Next we compute the surveys ηa→i (line 18) by
issuing |C| threads on the GPU (each of which computes the ηa→i values for all
the three variables in its clause). The convergence check (line 19) is performed
by computing a sum Z = Σ∀a,j

[(|ηold
a→j − ηa→j|) ≤ EPS?0:1]. If any ηa→j has not

converged, then Z > 0. Hence convergence is checked by computing Z using an
integer add operation over all variables in all the clauses, using a reduction-based
addition subroutine. On the GPU, line 21 similarly becomes

until (iter < MAX || Z > 0)
Also, the check of line 22 becomes
if Z = 0 then.
The test for trivial convergence (when all ηs are close to 0) (line 10) is performed

using a reduction-based floating point add operation on the GPU. Both bias values
(for all variables) are computed by issuing 2|V| threads on the GPU, and they are
sorted using a parallel bitonic sorting operation on the GPU [5] (line 4). The fixing
of variables (line 5) is performed on the CPU.

The data structures on the GPU corresponding to the SAT instance are shown
in Fig. 6.1. The static information about the SAT instance is stored in two sets of
arrays:

• Static per-variable data is stored in three arrays. Each array is indexed by the
variable number. For each variable, the arrays store the indices of the clauses it
appears in, the polarity of each appearance, and the literal number of this variable
in each clause that it appears in.

• Static per-clause data is stored in two arrays. Note that each clause has at most
three variables. Each array is indexed by the clause number. For each clause, the
two arrays store the variable index and polarity of each literal in that clause.

There are two additional sets of arrays that store the information computed during
the survey_SAT computations. The first set of two arrays stores the Π

b∈C+(j)
(1−ηb→j)

and Π
b∈C−(j)

(1 − ηb→j) values for each variable. These arrays are written by the

variables and read by the clauses. Another array stores the ηa→j values, which are
written by the clauses and read by the variables.

All the above data is stored in global memory on the GPU. Note that there is
a single burst transfer from the CPU to the GPU, to transfer the static information
mentioned above. During the computation of the Π and η quantities, there are no
transfers between the GPU and the CPU. The information that is transferred from
the GPU to the CPU is the list of variables sorted in decreasing order of the absolute
difference of their bias values (|W(+)

i − W(−)
i |). After the CPU has fixed any vari-

ables, it returns to the GPU a list of variables that are fixed (these do not participate
in the η computations any more) and the clauses that are satisfied as a result (these
do not participate in Π computations any more).

The size of thread blocks on the GPU must be a multiple of 32. As a result,
all the arrays shown in Fig. 6.1 are padded to the next highest multiple of 32 in
our implementation. The reduction-based add and sort operations are most efficient
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1 2 3 4 .......
polarity

variable #

Per−clause data (static)

polarity

clause #

literal #

1 2 3 .......

Per−variable data (static)

1 2 3 4 ......

1 2 3 4 .......

|C |

|V |

|V |

Π
b∈C− ( j)

(1 − ηb→ j)

Π
b∈C+ ( j)

(1 − ηb→ j)

Π ’s (written by variables, read by clauses)

|C |

η’s (written by clauses, read by variables)

ηb→ j

Fig. 6.1 Data structure of the SAT instance on the GPU

for arrays whose size is a power of 2. For this reason, the arrays of the absolute
difference of bias values and the predicate value of |ηold

a→j − ηa→j| ≤ EPS are also
padded to the next highest power of 2.

The NVIDIA GTX 280 has 1 GB of on-board memory. With the above memory
organization, we can easily fit SAT instances with up to 1M variables and 10M
clauses.

6.4.1.3 SurveySAT Results on the GPU

The SurveySAT algorithm described in Section 6.4.1.2 was implemented in CUDA.
It was run on a GTX 280 GPU card from NVIDIA which has 1 GB on-board (global)
memory and runs at a frequency of 1.4 GHz. The results obtained for SurveySAT
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(on the GPU) were compared against a CPU implementation of SurveySAT [7] and
MiniSAT which was also run on the CPU. The CPU used in our experiments is a
2.67 GHz, Intel i7 processor with 9 GB RAM, and running Linux.

Table 6.1 compares MiniSAT (on the CPU) with SurveySAT (on the CPU) and
SurveySAT (on the GPU) over five random and three structural benchmarks. Col-
umn 1 lists the random and structural benchmarks. All random benchmarks are sat-
isfiable. The first structural problem is satisfiable and the remaining two are unsat-
isfiable. Columns 2 and 3 report the number of variables and clauses in each of the
benchmarks. Column 4 reports the MiniSAT runtimes (in seconds) on these bench-
marks on the CPU and GPU, respectively. Columns 5 and 6 report the SurveySAT
runtimes (in seconds) for the same benchmarks on the CPU and GPU, respectively.
A ‘–’ implies that the procedure either did not converge in MAX iterations (MAX =
1,000) or reported a contradiction. Column 6 reports the speedup of SurveySAT on
the GPU compared to SurveySAT on the CPU.

For random benchmarks, SurveySAT is several orders of magnitude faster than
MiniSAT; however, for structural examples the performance is mixed. In particu-
lar, for unsatisfiable benchmarks, the response from SurveySAT (on the CPU or
the GPU) is non-conclusive. Our GPU-based SurveySAT is on average 22× faster
than the CPU implementation of SurveySAT, over the instances for which Sur-
veySAT successfully completes. In summary, even though SurveySAT can perform
extremely well for random instances, for structural instances its performance is
mixed, and therefore the technique is not useful for practical SAT instances. In the
next section, we discuss our algorithm that retains the completeness of MiniSAT,
while speeding it up with guidance obtained by SurveySAT (on the GPU).

6.4.2 MiniSAT Enhanced with Survey Propagation (MESP)

In our MESP approach we implement a CPU-based complete SAT solver with a
new GPU-enhanced variable ordering heuristic. In MiniSAT, the inbuilt variable
ordering heuristic (which determines what variable will be assigned next) is the vari-
able state independent decaying sum (VSIDS) heuristic. VSIDS makes a decision
based on the activity value of a variable. The activity is a literal occurrence count,
with a higher weight placed on variables of the more recently added clauses. The
activity of all variables present in the resolvent clauses, during conflict resolution
and learned clause generation, is incremented by fixed amount Fm. If any variable’s
score becomes too high, the activity of all variables is uniformly decayed. In MESP,
we update the activities of certain variables based on the guidance obtained from
the (incomplete) survey propagation (on the GPU). This is explained next.

In MESP, we first start the search in MiniSAT, after reading in the given SAT
instance. The SAT instance is also copied over to the GPU, organized in the man-
ner illustrated in Fig. 6.1. After MiniSAT has made some progress (measured by
whether the number of decisions it has made equals D% of the number of vari-
ables in the instance), it makes a call to SurveySAT. MiniSAT transfers the current
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assignments and a subset of the recent learned clauses onto the GPU. In our imple-
mentation, learned clauses with length less than 50 literals are transferred to the
GPU. We augment the clause database on the GPU with 3 sets of learned clauses
(set C1 with ≥0 and <10 literals, set C2 with ≥10 and <25 literals, and set C3 with
≥25 and<50 literals). Storage for learned clauses is statically allocated in the global
memory on the GPU. The routine converge(C,V) in SurveySAT is now modified to
converge(C, C1, C2, C3, V), where the η computations (over the clauses) are done
in four separate kernels. Note that the η computation over all clauses is not done
as a single kernel in order to avoid underutilized threads due to the large variance
in the length of the learned clauses. Further, unless at least 256 learned clauses are
transferred to the GPU in any of the 3 sets, the kernel for η computation for the
corresponding set is not invoked. The number of clauses in each set Ci was set to
8K.

After SurveySAT has converged and fixed a set of variables U (variables whose
absolute difference of bias values is greater than τ ) on the GPU, it returns. MiniSAT
now increments the activity of all variables in the set U by Fsp and continues with
its search. The idea is that since the instance converged (over all clauses as well as
a subset of the recent learned clauses) in SurveySAT by fixing the variables in set
U with no contradiction, an earlier decision on the variables in U would enable a
better search in the CPU-based MiniSAT procedure.

After MiniSAT makes more decisions (and implications), and another D% of the
number of variables in the instance have been decided, the GPU-based survey prop-
agation algorithm is invoked again. The total number of such calls to the SurveySAT
routine is limited to P, which is user specified. At every invocation of SurveySAT,
any existing variable assignments on the GPU are erased.

In the original MiniSAT approach, after a fixed number of conflicts R are detected
(or learned clauses are computed), the solver is restarted from the root of the deci-
sion tree. This is done in order to allow the solver to start afresh with the guidance
of the learned clauses and the activities of the variables. Also the number of allowed
conflicts R is incremented by a factor of 1.5 upon each such restart. In our approach,
each time SurveySAT is invoked, the current allowable number of conflicts (or the
maximum number of stored learned clauses) in the MiniSAT portion of MESP is
incremented (by a factor of 1.5, based on the existing strategy in MiniSAT). Thus our
solver is not ‘restarted’ from the root of the decision tree as often as the CPU-based
MiniSAT.

When the SurveySAT routine returns from the GPU after the ith call, four out-
comes are possible:

• The SurveySAT routine converges, and based on the absolute difference of the
biases of each variable, a set of variables U is found. These variables are passed
along to MiniSAT, which now increments their activity by an amount Fsp and
continues the search.

• The SurveySAT routine converges, and based on the absolute difference of the
biases of each variable, no variables can be fixed. In this case, it returns an empty
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set U to MiniSAT. In this case MiniSAT continues its search as it would have if
there had been no call to SurveySAT.

• The SurveySAT routine does not converge, or converges to a state which is incon-
sistent. In this case also it returns an empty set U to MiniSAT.

• The SurveySAT routine converges and heuristically determines that the factor
graph is a tree. On calling WalkSAT, if a satisfying solution is found we are done
and the satisfiability of the instance is determined by SurveySAT. If WalkSAT is
unable to find a satisfying solution, the SurveySAT routine returns the set U to
MiniSAT. The CPU-based MiniSAT now increments the activity of the variables
in the set U by Fsp and continues its search.

In the next section we discuss the experimental setup and compare the perfor-
mance of MESP to MiniSAT.

6.5 Experimental Results

Table 6.2 compares the performance of our MESP technique with MiniSAT [1] on
several structural instances (both satisfiable and unsatisfiable) from the SAT RACE
2006 and SAT 2004 [4] benchmark suite. The CPU used in our experiments is a
2.67 GHz, Intel i7 processor with 9 GB RAM, running Linux. The GPU used is the
NVIDIA GeForce 280 GTX.

Columns 1 lists the benchmark name and column 2 reports if the instance is satis-
fiable or unsatisfiable. The numbers of variables and clauses in the original instance
(referred to as k-SAT) are reported in columns 3 and 4, respectively. Column 5
reports the MiniSAT runtime on the k-SAT version of the example (in seconds).
All k-SAT instances are converted to 3-SAT using a Perl script, before we can run
MESP. This is because MESP only handles 3-SAT instances. The numbers of vari-
ables and clauses in the 3-SAT version of the instances are reported in columns 6
and 7. The MiniSAT runtime (in seconds) for the 3-SAT version of the problem
is reported in column 8. Column 9 reports the runtime (in seconds) of the MESP
approach, on the 3-SAT version of the problem. Columns 10 and 11 report the ratio
of the runtimes of MiniSAT (on the k-SAT instance) to MESP and of MiniSAT (on
the 3-SAT instance) to MESP, respectively.

The various parameters of MESP were set as follows: MAX = 1,000, EPS = 0.01,
τ = 0.1, D = 1, Fsp = Fm = 1, and maximum number of GPU calls (P) = 20. In MESP
we refreshed the learned clauses on the GPU on every 5th invocation of SurveySAT.
During the other invocations the learned clauses from a previous iteration were used.
On the GPU we statically allocate memory for 3 sets of 8K learned clauses, of
length <10 literals, ≥10 literals and <25 literals, and ≥25 literals and <50 literals.
In all our benchmarks, the final decision of reporting the instance to be satisfiable
or unsatisfiable was made by the MiniSAT (CPU) portion of MESP. In other words,
for these structural benchmarks, the SurveySAT routine was never able to exit early
by determining a satisfying assignment using WalkSAT.
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Over our benchmarks, on average, MESP for the 3-SAT version of the instances
showed a 64% speedup compared to MiniSAT which was run on the original prob-
lem instances (k-SAT). When compared to MiniSAT runtimes for the 3-SAT ver-
sion of the SAT instances, MESP is on average about 2× faster. We could have
implemented our SurveySAT approach on the GPU with the maximum length of
the (regular) clauses being >3 and obtained higher speedups in comparison to the
MiniSAT runtimes for the original (k-SAT) version of the instances.

6.6 Chapter Summary

In this chapter, we have presented a complete Boolean satisfiability approach with
a new GPU-enhanced variable ordering heuristic. Our approach is implemented
in a CPU-based complete procedure, which leverages the parallelism of a GPU
to aid the complete algorithm. The CPU implements MiniSAT, a complete proce-
dure, while the GPU implements SurveySAT, an approximate procedure. When a
problem instance is read in, the SAT search is initiated on the CPU. After a user-
specified fraction of decisions have been made, the GPU-based SurveySAT engine
is invoked. The decisions, if any, made by this engine are returned to MiniSAT,
which now updates its variable ordering by incrementing the activity of the decision
variables returned by the GPU. This procedure is repeated until a solution is found.
Our approach retains completeness (since it implements a complete procedure) but
has the potential of high speedup (since the incomplete procedure is executed on a
highly parallel graphics processor platform). Experimental results demonstrate that
over several satisfiable and unsatisfiable benchmarks, our approach performs better
than MiniSAT. On average, we demonstrate a 64% speedup over several benchmarks
when compared with MiniSAT runtimes (MiniSAT was run on the original versions
of the instances). When compared with MiniSAT runtimes for the 3-SAT version of
the problems, our approach yields a speedup of about 2×.
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Part III
Control Plus Data Parallel Applications

Outline of Part III

In Part I of this monograph, we discussed candidate hardware platforms for EDA
algorithm acceleration. In Part II, we presented approaches to accelerate Boolean
satisfiability (SAT), a control-dominated EDA application. We used three hardware
platforms – a custom IC, an FPGA, and a GPU – for accelerating SAT. In Part III
of this monograph, we present the acceleration of several EDA applications, with
varying degrees of inherent parallelisms. In particular, we accelerated the following
applications using GPUs:

• Statistical Static Timing Analysis
With the diminishing minimum feature sizes of VLSI fabrication processes, the

impact of process variations is becoming increasingly significant. The resulting
increase in delay variations significantly affects the timing yield and the max-
imum operating frequency of designs. Static timing analysis (STA) is heavily
used in a conventional VLSI design flow to estimate circuit delay and the max-
imum operating frequency of the design. Statistical STA (SSTA) was developed
to include the effect of process variations, in order to analyze circuit delay more
accurately. Monte Carlo based SSTA is a simple and accurate method of per-
forming SSTA. However, its main drawback is its high runtime. We exploit the
inherent parallelism in Monte Carlo based SSTA and present its implementation
on a GPU in Chapter 7. In this approach we map Monte Carlo based SSTA to
the large number of threads that can be computed in parallel on a GPU. Our
approach performs multiple delay simulations of a single gate in parallel. Our
approach further benefits from a parallel implementation of the Mersenne Twister
pseudo-random number generator on the GPU, followed by Box – Muller trans-
formations (also implemented on the GPU). These are used for generating gate
delay numbers from a normal distribution. We only need to store the μ and σ
of the pin-to-output delay distributions for all inputs and for every gate. This
data is stored in fast cached memory on the GPU, and we thereby leverage the
large memory bandwidth of the GPU. All threads compute identical instructions,
but on different data, with no control or data dependency, as required by the
SIMD programming semantics of the GPU. Our approach is implemented on an
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NVIDIA GeForce GTX 280 GPU card. Experimental results indicate that this
approach can obtain an average speedup of about 818× as compared to a serial
CPU implementation. With the recently announced cards with quad GTX 280
GPUs, we estimate that our approach would attain a speedup of over 2,400×.

• Accelerating Fault Simulation on a Graphics Processor
In today’s complex digital designs, with possibly several million gates, the

number of faulty variations of the design can be dramatically higher. Fault sim-
ulation is an important but expensive step of the VLSI design flow, and it helps
to identify faulty designs. Given a digital design and a set of input vectors V
defined over its primary inputs, fault simulation evaluates the number of stuck-at
faults Fsim that are tested by applying the vectors V . The ratio of Fsim to the
total number of faults in the design Ftotal is a measure of the fault coverage.
The task of finding this ratio is often referred to as fault grading in the industry.
Given the high computational cost for fault simulation, it is extremely important
to explore ways to accelerate this application. The ideal fault simulation approach
should be fast, scalable, and cost effective. In Chapter 8, we study the accelera-
tion of fault simulation on a GPU. Fault simulation is inherently parallelizable,
and the large number of threads that can be executed in parallel on a GPU can be
employed to perform a large number of gate evaluations in parallel. We imple-
ment a pattern and fault parallel fault simulator, which fault-simulates a circuit
in a levelized fashion. We ensure that all threads of the GPU compute identical
instructions, but on different data. Fault injection is also performed along with
gate evaluation, with each thread using a different fault injection mask. Since
GPUs have an extremely large memory bandwidth, we implement each of our
fault simulation threads (which execute in parallel with no data dependencies)
using memory lookup. Our experiments indicate that our approach, implemented
on a single NVIDIA GeForce GTX 280 GPU card, can simulate on average 47×
faster when compared to an industrial fault simulator. On a Tesla (8-GPU) sys-
tem, our approach is potentially 300× faster.

• Fault Table Generation Using a Graphics Processor
A fault table is essential for fault diagnosis during VLSI testing and debug.

Generating a fault table requires extensive fault simulation, with no fault drop-
ping. This is extremely expensive from a computational standpoint. We explore
the generation of a fault table using a GPU in Chapter 9. We employ a pattern
parallel approach, which utilizes both bit parallelism and thread-level parallelism.
Our implementation is a significantly modified version of FSIM, which is pattern
parallel fault simulation approach for single-core processors. Like FSIM, our
approach utilizes critical path tracing and the dominator concept to reduce run-
time by pruning unnecessary simulations. Further modifications to FSIM allow
us to maximally harness the GPU’s immense memory bandwidth and high com-
putational power. In this approach we do not store the circuit (or any part of
the circuit) on the GPU. We implement efficient parallel reduction operations to
speed up fault table generation. In comparison to FSIM∗, which is FSIM modi-
fied to generate a fault table on a single-core processor, our approach on a single
NVIDIA Quadro FX 5800 GPU card can generate a fault table 15× faster on
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average. On a Tesla (8-GPU) system, our approach can potentially generate the
same fault table 90× faster.

• Fast Circuit Simulation Using Graphics Processor
SPICE-based circuit simulation is a traditional workhorse in the VLSI design

process. Given the pivotal role of SPICE in the IC design flow, there has been sig-
nificant interest in accelerating SPICE. Since a large fraction (on average 75%) of
the SPICE runtime is spent in evaluating transistor model equations, a significant
speedup can be availed if these evaluations are accelerated. We study the speedup
obtained by implementing the transistor model evaluation on a GPU and porting
it to a commercial fast SPICE tool in Chapter 10. Our experiments demonstrate
that significant speedups (2.36× on average) can be obtained for the commercial
fast SPICE tool. The asymptotic speedup that can be obtained is about 4×. We
demonstrate that with circuits consisting of as few as 1,000 transistors, speedups
in the neighborhood of this asymptotic value can be obtained.



Chapter 7
Accelerating Statistical Static Timing Analysis
Using Graphics Processors

7.1 Chapter Overview

In this chapter, we explore the implementation of Monte Carlo based statistical static
timing analysis (SSTA) on a graphics processing unit (GPU). SSTA via Monte Carlo
simulations is a computationally expensive, but important step required to achieve
design timing closure. It provides an accurate estimate of delay variations and their
impact on design yield. The large number of threads that can be computed in parallel
on a GPU suggests a natural fit for the problem of Monte Carlo based SSTA to
the GPU platform. Our implementation performs multiple delay simulations for a
single gate in parallel. A parallel implementation of the Mersenne Twister pseudo-
random number generator on the GPU, followed by Box–Muller transformations
(also implemented on the GPU), is used for generating gate delay numbers from
a normal distribution. The μ and σ of the pin-to-output delay distributions for all
inputs of every gate are obtained using a memory lookup, which benefits from the
large memory bandwidth of the GPU. Threads which execute in parallel have no
data/control dependencies on each other. All threads compute identical instructions,
but on different data, as required by the single instruction multiple data (SIMD)
programming semantics of the GPU. Our approach is implemented on an NVIDIA
GeForce GTX 280 GPU card. Our results indicate that our approach can obtain an
average speedup of about 818× as compared to a serial CPU implementation. With
the quad GTX 280 GPU [6] cards, we estimate that our approach would attain a
speedup of over 2,400×. The correctness of the Monte Carlo based SSTA imple-
mented on a GPU has been verified by comparing its results with a CPU-based
implementation.

The remainder of this chapter is organized as follows. Section 7.2 discusses the
motivation behind this work. Some previous work in SSTA has been described
in Section 7.3. Section 7.4 details our approach for implementing Monte Carlo
based SSTA on GPUs. In Section 7.5 we present results from experiments which
were conducted in order to benchmark our approach. We summarize this chapter in
Section 7.6.

K. Gulati, S.P. Khatri, Hardware Acceleration of EDA Algorithms,
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7.2 Introduction

The impact of process variations on the timing characteristics of VLSI design is
becoming increasingly significant as the minimum feature sizes of VLSI fabrication
processes decrease. In particular, the resulting increase of delay variations strongly
affects timing yield and reduces the maximum operating frequency of designs. Pro-
cessing variations can be random or systematic. Random variations are indepen-
dent of the locations of transistors within a chip. An example is the variation of
dopant impurity densities in the transistor diffusion regions. Systematic variations
are dependent on locations, for example exposure pattern variations and silicon-
surface flatness variations.

Static timing analysis (STA) is used in a conventional VLSI design flow to esti-
mate circuit delay, from which the maximum operating frequency of the design
is estimated. In order to deal with variations and overcome the limitations due to
the deterministic nature of traditional STA techniques, statistical STA (SSTA) was
developed. The main goal of SSTA is to include the effect of process variations
and analyze circuit delay more accurately. Monte Carlo based SSTA is a simple
and accurate method for performing SSTA. This method generates N samples of
the gate delay random variable (for each gate) and executes static timing analysis
runs for the circuit using each of the N sets of the gate delay samples. Finally, the
results are aggregated to produce the delay distribution for the entire circuit. Such
a method is compatible with the process variation data obtained from the fab line,
which is essentially in the form of samples of the process random variables. Another
attractive property of Monte Carlo based SSTA is the high level of accuracy of the
results. However, its main drawback is the high runtime. We demonstrate that Monte
Carlo based SSTA can be effectively implemented on a GPU. We obtain a 818×
speedup in the runtime, with no loss of accuracy. Our speedup numbers include the
time incurred in transferring data to and from the GPU.

Any application which has several independent computations that can be issued
in parallel is a natural match for the GPU’s SIMD operational semantics. Monte
Carlo based SSTA fits this requirement well, since the generation of samples and
the static timing analysis computations for a single gate can be executed in parallel,
with no data dependency. We refer to this as sample parallelism. Further, gates at
the same logic level can execute Monte Carlo based SSTA in parallel, without any
data dependencies. We call this data parallelism. Employing sample parallelism and
data parallelism simultaneously allows us to maximally exploit the high memory
bandwidths of the GPU, as well as the presence of hundreds of processing elements
on the GPU. In order to generate the random samples, the Mersenne Twister [22]
pseudo-random number generator is employed. This pseudo-random number gen-
erator can be implemented in a SIMD fashion on the GPU, and thus is well suited
for our Monte Carlo based SSTA engine. The μ and σ for the pin-to-output falling
(and rising) delay distributions are stored in a lookup table (LUT) in the GPU device
memory, for every input of every gate. The large memory bandwidth allows us to
perform lookups extremely fast. The SIMD computing paradigm of the GPU is thus
maximally exploited in our Monte Carlo based SSTA implementation.
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In this work we have only considered uncorrelated random variables while imple-
menting SSTA. Our current approach can be easily extended to incorporate spatial
correlations between the random variables, by using principal component analysis
(PCA) to transform the original space into a space of uncorrelated principal compo-
nents. PCA is heavily used in multivariate statistics. In this technique, the rotation
of axes of a multidimensional space is performed such that the variations, projected
on the new set of axes, behave in an uncorrelated fashion. The computational tech-
niques for performing PCA have been implemented in a parallel (SIMD) paradigm,
as shown in [18, 13].

Although our current implementation does not incorporate the effect of input
slew and output loading effects while computing the delay and slew at the output of
a gate, these effects can be easily incorporated. Instead of storing just a pair of (μ
and σ) values for each pin-to-output delay distribution for every input of every gate,
we can store K · P pairs of μ and σ values for pin-to-output delay distributions for
every input of every gate. Here K is the number of discretizations of the output load
and P is the number of discretizations of the input slew values.

To the best of our knowledge, this is the first work which accelerates Monte Carlo
based SSTA on a GPU platform. The key contributions of this work are as follows:

• We exploit the natural match between Monte Carlo based SSTA and the capabil-
ities of a GPU, a SIMD-based device. We harness the tremendous computational
power and memory bandwidth of GPUs to accelerate Monte Carlo based SSTA
application.

• The implementation satisfies the key requirements to obtain maximal speedup on
a GPU:

– Different threads which generate normally distributed samples and perform
STA computations are implemented so that there are no data dependencies
between threads.

– All gate evaluation threads compute identical instructions but on different data,
which exploits the SIMD architecture of the GPU.

– The μ and σ for the pin-to-output delay of any gate, required for a single
STA computation, are obtained using a memory lookup, which exploits the
extremely large memory bandwidth of GPUs.

• Our Monte Carlo based SSTA engine is implemented in a manner which is aware
of the specific constraints of the GPU platform, such as the use of texture memory
for table lookup, memory coalescing, use of shared memory, and use of a SIMD
algorithm for generating random samples, thus maximizing the speedup obtained.

• Our implementation can obtain about 818× speedup compared to a CPU-based
implementation. This includes the time required to transfer data to and from the
GPU.

• Further, even though our current implementation has been benchmarked on a sin-
gle NVIDIA GeForce GTX 280 graphics card, the NVIDIA SLI technology [7]
supports up to four NVIDIA GeForce GTX 280 graphic cards on the same moth-
erboard. We show that Monte Carlo based SSTA can be performed about 2,400×
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faster on a quad GPU system, compared to a conventional single-core CPU-based
implementation.

Our Monte Carlo based timing analysis is implemented in the Compute Unified
Device Architecture (CUDA) framework [4, 3]. The GPU device used for our imple-
mentation and benchmarking is the NVIDIA GeForce 280 GTX. The correctness of
our GPU-based timing analyzer has been verified by comparing its results with a
CPU-based implementation of Monte Carlo based SSTA. An extended abstract of
this work is available in [17].

7.3 Previous Work

The approaches of [11, 19] are some of the early works in SSTA. In recent times, the
interest in this field has grown rapidly. This is primarily due to the fact that process
variations are growing larger and less systematic, with shrinking feature sizes.

SSTA algorithms can be broadly categorized into block based and path based. In
block-based algorithms, delay distributions are propagated by traversing the circuit
under consideration in a levelized breadth-first manner. The fundamental operations
in a block-based SSTA tool are the SUM and the MAX operations of the μ and
σ values of the distributions. Therefore, block-based algorithms rely on efficient
ways to implement these operations, rather than using discrete delay values. In
path-based algorithms, a set of paths is selected for a detailed statistical analysis.
While block-based algorithms [27, 20] tend to be fast, it is difficult to compute an
accurate solution of the statistical MAX operation when dealing with correlated
random variables or reconvergent fanouts. In such cases, only an approximation
is computed, using the upper bound or lower bound of the probability distribution
function (PDF) calculation or by using the moment matching technique [25]. The
advantage of path-based methods is that they accurately calculate the delay PDF of
each path since they do not rely on statistical MAX operations and can account for
correlations between paths easily.

Similar to path-based SSTA approaches, our method does not need to perform
statistical MAX and SUM operations. Our method is based on propagating the fron-
tier of circuit delay values, obtained from the μ and σ values of the pin-to-output
delay distributions for the gates in the design. Unlike path-based approaches, we do
not need to select a set of paths to be analyzed.

The authors of [14] present a technique to propagate PDFs through a circuit
in the same manner as arrival times of signals are propagated during STA. Prin-
cipal component analysis enables them to handle spatial correlations of the process
parameters. While the SUM of two Gaussian distributions yields another Gaussian
distribution, the MAX of two or more Gaussian distributions is not a Gaussian dis-
tribution in general. As a simplification, and for ease of calculation, the authors
of [14] approximate the MAX of two or more Gaussian distributions to be Gaussian
as well.
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A canonical first-order delay model is proposed in [12]. Based on this model,
an incremental block-based timing analyzer is used to propagate arrival times and
required times through a timing graph. In [10, 8, 9], the authors note that accurate
SSTA can become exponential. Hence, they propose faster algorithms that compute
only the bounds on the exact result.

In [15], a block based SSTA algorithm is discussed. By representing the arrival
times as cumulative distribution functions and the gate delays as PDFs, the authors
claim to have an efficient method to do the SUM and MAX operations. The accuracy
of the algorithm can be adjusted by choosing more discretization levels. Recon-
vergent fanouts are handled through a statistical subtraction of the common mode.
The authors of [21] propagate delay distributions through a circuit. The PDFs are
discretized to help make the operation more efficient. The accuracy of the result in
this case is again dependent on the discretization. The approach of [16] automates
the process of false path removal implicitly (by using a sensitizable timing analysis
methodology [24]). The approach first finds the primary input vector transitions that
result in the sensitizable longest delays for the circuit and then performs a statistical
analysis on these vector transitions alone.

In contrast to these approaches, our approach accelerates Monte Carlo based
SSTA technique by using off-the-shelf commercial graphics processing units (GPUs).
The ubiquity and ease of programming of GPU devices, along with their extremely
low costs, makes GPUs an attractive choice for such an application.

7.4 Our Approach

We accelerate Monte Carlo based SSTA by implementing it on a graphics processing
unit (GPU). The following sections describe the details of our implementation. Sec-
tion 7.4.1 discusses the details of implementing STA on a GPU, while Section 7.4.2
extends this discussion for implementing SSTA on a GPU.

7.4.1 Static Timing Analysis (STA) at a Gate

The computation involved in a single STA evaluation at any gate of a design is as
follows. At each gate, the MAX of the SUM of the input arrival time at pin i plus
the pin-to-output rising (or falling) delay from pin i to the output is computed. The
details are explained with the example of a NAND2 gate.

Consider a NAND2 gate. Let ATfall
i denote the arrival time of a falling signal at

node i and AT rise
i denote the arrival time of a rising signal at node i. Let the two

inputs of the NAND2 gate be a and b and the output be c.
The rising time (delay) at the output c of a NAND2 gate is calculated as shown

below. A similar expression can be written to compute the falling delay at the
output c:
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AT rise
c = MAX[(AT fall

a + MAX(D11→00,D11→01)),

(AT fall
b + MAX(D11→00,D11→10))]

where, MAX(D11→00,D11→01) is the pin-to-output rising delay from the input a,
while MAX(D11→00,D11→10) is the pin-to-output rising delay from the input b.

To implement the above computation on the GPU, a lookup table (LUT) based
approach is employed. The pin-to-output rising and falling delay from every input
for every gate is stored in a LUT. The output arrival time of an n-input gate G is then
computed by calling the 2-input MAX operation n−1 times, after n computations of
the SUM of the input arrival time plus the pin-to-output rising (or falling) gate delay.
The pin-to-output delay for pin i is looked up in the LUT at an address corresponding
to the base address of gate G and the offset for the transition on pin i. Since the LUT
is typically small, these lookups are usually cached. Further, this technique is highly
amenable to parallelization as will be shown in the sequel.

In our implementation of the LUT-based SSTA technique on a GPU, the LUTs
(which contain the pin-to-output falling and rising delays) for all the gates are stored
in the texture memory of the GPU device. This has the following advantages:

• Texture memory on a GPU device is cached unlike shared or global memory.
Since the truth tables for all library gates easily fit into the available cache size,
the cost of a lookup will typically be one clock cycle.

• Texture memory accesses do not have coalescing constraints as required for
global memory accesses. This makes the gate lookup efficient.

• The latency of addressing calculations is better hidden, possibly improving per-
formance for applications like STA that perform random accesses to the data.

• In case of multiple lookups performed in parallel, shared memory accesses might
lead to bank conflicts and thus impede the potential improvement due to parallel
computations.

• In the CUDA programming environment, there are built-in texture fetching rou-
tines which are extremely efficient.

The allocation and loading of the texture memory requires non-zero time, but is
done only once for a library. This runtime cost is easily amortized since several
STA computations are done, especially in an SSTA setting.

The GPU allows several threads to be active in parallel. Each thread in our
implementation performs STA at a single n-input gate G by performing n lookups
from the texture memory, n SUM operations, and n− 1 MAX operations. The data,
organized as a ‘C’ structure type struct threadData, is stored in the global mem-
ory of the device for all threads. The global memory, as discussed in Chapter 3, is
accessible by all processors of all multiprocessors. Each processor executes mul-
tiple threads simultaneously. This organization thus requires multiple accesses to
the global memory. Therefore, it is important that the memory coalescing constraint
for a global memory access is satisfied. In other words, memory accesses should
be performed in sizes equal to 32-bit, 64-bit, or 128-bit values. The data structure
required by a thread for STA at a gate with four inputs is
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typedef struct __align__(8){
int offset; // Gate type’s offset
float a; float b; float c; float d; // input arrival times
} threadData;

The first line of the declaration defines the structure type and byte alignment
(required for coalescing accesses). The elements of this structure are the offset in
texture memory (type integer) of the gate, for which this thread will perform STA,
and the input arrival times (type float).

The pseudocode of the kernel (the code executed by each thread) for the static
timing analysis of an inverting gate (for a rising output) is given in Algorithm 5. The
arguments to the routine static_timing_kernel are the pointers to the global memory
for accessing the threadData (MEM) and the pointers to the global memory for
storing the output delay value (DEL). The global memory is indexed at a location
equal to the thread’s unique threadID = tx, and the threadData data for any gate
is accessed from this base address in memory. Suppose the index of input x of the
gate is i. Since we handle gates with up to 4 inputs, 0≤ i ≤3. The pin-to-output
rising (falling) delay for an input x of an inverting gate is accessed by indexing the
LUT (in texture memory) at the sum of the gate’s base address (offset) plus 2 · i
(2 · i+1) for a falling (rising) transition. Similarly, the pin-to-output rising (falling)
delay for an input x for a non-inverting gate is accessed by indexing the LUT (in
texture memory) at the sum of the gate’s base address (offset) plus 2 · i+1 (2 · i) for
a rising (falling) transition.

The CUDA inbuilt one-dimensional texture fetching function tex1D(LUT ,index)
is next invoked to fetch the corresponding pin-to-output delay values for every input.
The fetched value is added to the input arrival time of the corresponding input. Then,
using n− 1 MAX operations, the output arrival time is computed.

In our implementation, the same kernel implements gates with n = 1, 2, 3, or
4 inputs. For gates with less than four inputs, the extra memory in the LUT stores
zeroes. This enables us to invoke the same kernel for any instance of a 2-, 3-, or
4-input inverting (non-inverting) gate.

Algorithm 5 Pseudocode of the Kernel for Rising Output STA for Inverting Gate
static_timing_kernel(threadData ∗MEM,float ∗ DEL){
tx = my_thread_id;
threadData Data = MEM[tx];
p2pdelay_a = tex1D(LUT ,MEM[tx].offset + 2× 0);
p2pdelay_b = tex1D(LUT ,MEM[tx].offset + 2× 1);
p2pdelay_c = tex1D(LUT ,MEM[tx].offset + 2× 2);
p2pdelay_d = tex1D(LUT ,MEM[tx].offset + 2× 3);
LAT = fmaxf (MEM[tx].a+ p2pdelay_a,MEM[tx].b+ p2pdelay_b);
LAT = fmaxf (LAT ,MEM[tx].c+ p2pdelay_c);
DEL[tx] = fmaxf (LAT ,MEM[tx].d + p2pdelay_d);
}
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7.4.2 Statistical Static Timing Analysis (SSTA) at a Gate

SSTA at a gate is performed by an implementation that is similar to the STA imple-
mentation discussed above. The additional information required is the μ and σ of
the n Gaussian distributions of the pin-to-output delay values for the n inputs to
the gate. The μ and σ used for each Gaussian distribution are stored in LUTs (as
opposed to storing a simple nominal delay value as in the case of STA).

The pseudo-random number generator used for generating samples from the
Gaussian distribution is the Mersenne Twister pseudo-random number generation
algorithm [22]. It has many important properties like a long period, efficient use of
memory, good distribution properties, and high performance.

As discussed in [5], the Mersenne Twister algorithm maps well onto the CUDA
programming model. Further, a special offline library called dcmt (developed in [23])
is used for the dynamic creation of the Mersenne Twister parameters. Using dcmt
prevents the creation of correlated sequences by threads that are issued in parallel.

Uniformly distributed random number sequences, produced by the Mersenne
Twister algorithm, are then transformed into the normal distribution N(0,1) using the
Box–Muller transformation [1]. This transformation is implemented as a separate
kernel.

The pseudocode of the kernel for the SSTA computations of an inverting gate
(for the rising output) is given in Algorithm 6. The arguments to the routine
statistical_static_timing_kernel are the pointers to the global memory for accessing
the threadData (MEM) and the pointers to the global memory for storing the output
delay value (DEL). The global memory is indexed at a location equal to the thread’s
unique threadID = tx, and the threadData data of the gate is thus accessed. The μ
and σ of the pin-to-output rising (falling) delay for an input x of an inverting gate are
accessed by indexing LUTμ and LUTσ, respectively, at the sum of the gate’s base
address (offset) plus 2 · i (2 · i+1) for a falling (rising) transition.

The CUDA inbuilt one-dimensional texture fetching function tex1D(LUT ,index)
is invoked to fetch the μ and σ corresponding to the pin-to-output delay’s μ and
σ values for every input. Using the pin-to-output μ and σ values, along with the
Mersenne Twister pseudo-random number generator and the Box–Muller transfor-
mation, a normally distributed sample of the pin-to-output delay for every input is
generated. This generated value is added to the input arrival time of the correspond-
ing input. Then, by performing n − 1 MAX operations, the output arrival time is
computed.

In our implementation of Monte Carlo based SSTA for a circuit, we first levelize
the circuit. In other words, each gate of the netlist is assigned a level which is one
more than the maximum level of its fanins. The primary inputs are assigned a level
‘0.’ We then perform SSTA at all gates with level i, starting with i=1. Note that we
do not store (on the GPU) the output arrival times for all the gates at any given
time. We use the GPU’s global memory for storing the arrival times of the gates in
the current level that are being processed, along with their immediate fanins. We
reclaim the memory used by all gates which are not inputs to any of the gates at
the current or a higher level. By doing this we incur no loss of data since the entire
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Algorithm 6 Pseudocode of the Kernel for Rising Output SSTA for Inverting Gate
statistical_static_timing_kernel(threadData ∗MEM,float ∗ DEL){
tx = my_thread_id;
threadData Data = MEM[tx];
p2pdelay_aμ = tex1D(LUTμ,MEM[tx].offset + 2× 0);
p2pdelay_aσ = tex1D(LUTσ ,MEM[tx].offset + 2× 0);
p2pdelay_bμ = tex1D(LUTμ,MEM[tx].offset + 2× 1);
p2pdelay_bσ = tex1D(LUTσ ,MEM[tx].offset + 2× 1);
p2pdelay_cμ = tex1D(LUTμ,MEM[tx].offset + 2× 2);
p2pdelay_cσ = tex1D(LUTσ ,MEM[tx].offset + 2× 2);
p2pdelay_dμ = tex1D(LUTμ,MEM[tx].offset + 2× 3);
p2pdelay_dσ = tex1D(LUTσ ,MEM[tx].offset + 2× 3);
p2p_a = p2pdelay_aμ + ka × p2pdelay_aσ ; // ka, kb, kc, kd
p2p_b = p2pdelay_bμ + kb × p2pdelay_bσ ; // are obtained by Mersenne
p2p_c = p2pdelay_cμ + kc × p2pdelay_cσ ; // Twister followed by
p2p_d = p2pdelay_dμ + kd × p2pdelay_dσ ; // Box-Muller transformations.
LAT = fmaxf (MEM[tx].a+ p2p_a,MEM[tx].b+ p2p_b);
LAT = fmaxf (LAT ,MEM[tx].c+ p2p_c);
DEL[tx] = fmaxf (LAT ,MEM[tx].d + p2p_d);
}

approach is carried out in a single pass and we do not revisit any gate. Although our
current implementation simultaneously simulates all gates with level i, the number
of computations at each gate is large enough to keep the GPU’s processors busy.
Hence, we could alternatively simulate one gate at a time on the GPU. Therefore,
our implementation poses no restrictions on the size of the circuit being processed.

GPUs allow extreme speedups if the different threads being evaluated have no
data dependencies. The programming model of a GPU is the single instruction mul-
tiple data (SIMD) model, under which all threads must compute identical instruc-
tions, but on different data. Also, GPUs have an extremely large memory bandwidth,
allowing multiple memory lookups to be performed in parallel.

Monte Carlo based SSTA requires multiple sample points for a single gate being
analyzed. By exploiting sample parallelism, several sample points can be analyzed
in parallel. Similarly, SSTA at each gate at a specific topological level in the circuit
can be performed independently of SSTA at other gates. By exploiting this data
parallelism, many gates can be analyzed in parallel. This maximally exploits the
SIMD semantics of the GPU platform.

7.5 Experimental Results

In order to perform S gate evaluations for SSTA, we need to invoke S statistical_
static_timing_kernels in parallel. The total DRAM on an NVIDIA GeForce GTX
280 is 1 GB. This off-chip memory can be used as global, local, and texture memory.
Also the same memory is used to store CUDA programs, context data used by the
GPU device drivers, drivers for the desktop display, and NVIDIA control panels.
The wall clock time taken for 16M executions of statistical_static_timing_kernels
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(by issuing 16M threads in parallel) is 0.023 s. A similar routine using the conven-
tional implementation on a 3.6 GHz CPU with 3 GB RAM, running Linux, took
21.82 s for 16M calls. Thus asymptotically, the speedup of our implementation is
∼950×. The allocation and loading of the texture memory is a one time cost of about
0.18 ms, which is easily amortized in our implementation. Note that the Mersenne
Twister implementation on the GTX 280, when compared to an implementation on
the CPU (3.6 GHz CPU with 3 GB RAM), is by itself about 2 orders of magnitude
faster. On the GTX 280, the Mersenne Twister kernel generates random numbers at
the rate of 2.71 ×109 numbers/s. A CPU implementation of the Mersenne Twister
algorithm, on the other hand, generates random numbers at the rate of 1.47 ×107

numbers/s. The results obtained from the GPU implementation were verified against
the CPU results.

We ran 60 large IWLS, ITC, and ISCAS benchmark designs, to compute the
per-circuit speed of our Monte Carlo based SSTA engine implemented on a GPU.
These designs were first mapped in SIS [26] for delay optimality. The Monte Carlo
analysis was performed with 1M samples. The results for 30 representative bench-
mark designs for our GPU-based SSTA approach are shown in Table 7.1. Column 1
lists the name of the circuit. Columns 2, 3, and 4 list the number of primary inputs,
primary outputs, and gates in the circuit. Columns 5 and 7 list the GPU and CPU
runtime, respectively. The time taken to transfer data between the CPU and GPU
was accounted for in the GPU runtimes listed. In particular, the data transferred
from the CPU to the GPU is the arrival times at each primary input and the μ
and σ information for all pin-to-output delays of all gates. The data returned by
the GPU are the 1M delay values at each output of the design. The runtimes also
include the time required for the Mersenne Twister algorithm and the computation
of the Box–Muller transformation. Column 8 reports the speedup obtained by using
a single GPU card.

Using the NVIDIA SLI technology with four GPU chips on a single mother-
board [7] allows for a 4× speedup in the processing time. The transfer times,
however, do not scale. Column 6 lists the runtimes obtained when using a quad
GPU system [7] and the corresponding speedup against the CPU implementation is
reported in Column 9.

We also compared the performance of our Monte Carlo based SSTA approach
(implemented on the GeForce 280 GTX) with a similar implementation on (i)
Single-core and Dual-core Intel Conroe (Core 2) processors operating at 2.4 GHz,
with 2 MB cache (implemented in a 65 nm technology) and (ii) Single-core, Dual-
core, and Quad-core Intel Penryn (Core 2) processors operating at 3.0 GHz, with
3 MB cache (implemented in a 45 nm technology). The implementations on the
Intel processors used the Intel Streaming SIMD Extensions (SSE) [2] instruction
set which consists of 4-wide integer (and floating point) SIMD vector instructions.
These comparisons were performed over 10 benchmarks. The normalized perfor-
mance for all architectures is plotted in Fig. 7.1. The performance of the 280 GTX
implementation of Monte Carlo based SSTA is on average 61× faster than Conroe
(Single), the Intel Core 2 (single core) with SSE instructions.
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Fig. 7.1 Comparing Monte Carlo based SSTA on GTX 280 GPU and Intel Core 2 processors (with
SEE instructions)

7.6 Chapter Summary

In this chapter, we have presented the implementation of Monte Carlo based SSTA
on a graphics processing unit. Monte Carlo based SSTA is computationally expen-
sive, but crucial for design timing closure since it enables an accurate analysis of
the delay variations. Our implementation computes multiple timing analysis evalu-
ations of a single gate in parallel. We used a SIMD implementation of the Mersenne
Twister pseudo-random number generator, followed by Box–Muller transforma-
tions, (both implemented on the GPU) for generating delay numbers in a normal
distribution. The μ and σ of the pin-to-output delay numbers, for all inputs and for
every gate, are obtained using a memory lookup, which exploits the large mem-
ory bandwidth of the GPU. Threads which execute in parallel do not have data
or control dependencies. All threads execute identical instructions, but on different
data. This is in accordance with the SIMD programming semantics of the GPU. Our
results, implemented on an NVIDIA GeForce GTX 280 GPU card, indicate that
our approach can provide about 818× speedup when compared to a conventional
CPU implementation. With the quad 280 GPU cards [7], our projected speedup is
∼2,400×.
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Chapter 8
Accelerating Fault Simulation Using Graphics
Processors

8.1 Chapter Overview

In this chapter, we explore the implementation of fault simulation on a graphics
processing unit (GPU). In particular, we implement a parallel fault simulator. Fault
simulation is inherently parallelizable, and the large number of threads that can be
computed in parallel on a GPU results in a natural fit for the problem of parallel fault
simulation. Our implementation fault-simulates all the gates in a particular level of
a circuit, including good- and faulty-circuit simulations, for all patterns, in parallel.
Since GPUs have an extremely large memory bandwidth, we implement each of
our fault simulation threads (which execute in parallel with no data dependencies)
using memory lookup. Fault injection is also done along with gate evaluation, with
each thread using a different fault injection mask. All threads compute identical
instructions, but on different data, as required by the single instruction multiple
data (SIMD) programming semantics of the GPU. Our results, implemented on an
NVIDIA GeForce GTX 280 GPU card, indicate that our approach is on average 47×
faster when compared to a commercial fault simulation engine. With the NVIDIA
Tesla cards (which can house eight 280 GTX GPU cards) our approach would be
potentially 300× faster. The correctness of the GPU-based fault simulator has been
verified by comparing its result with a CPU-based fault simulator.

The remainder of this chapter is organized as follows: Section 8.2 discusses the
motivation to accelerate fault simulation. Some previous work in fault simulation
has been described in Section 8.3. Section 8.4 details our approach for implementing
LUT-based fault simulation on GPUs. In Section 8.5 we present results from exper-
iments which were conducted in order to benchmark our approach. We summarize
the chapter in Section 8.6.

8.2 Introduction

Fault simulation is an important step of the VLSI design flow. Given a digital design
and a set of input vectors V defined over its primary inputs, fault simulation evalu-
ates the number of stuck-at faults Fsim that are tested by applying the vectors V . The
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ratio of Fsim to the total number of faults in the design Ftotal is a measure of the fault
coverage. The task of finding this ratio is often referred to as fault grading in the
industry. For today’s complex digital designs with N logic gates (N is often in several
million), the number of faulty variations of the design can be dramatically higher.
Therefore, it is extremely important to explore ways to accelerate fault simulation.
The ideal fault simulation approach should be fast, scalable, and cost effective.

Parallel processing of fault simulation computations is an approach that has
routinely been invoked to reduce the compute time of fault simulation [8]. Fault
simulation can be parallelized by a variety of techniques. The techniques include
parallelizing the fault simulation algorithm (algorithm-parallel techniques [6, 4, 5]),
partitioning the circuit into disjoint components and simulating them in parallel
(model-parallel techniques [13, 20]), partitioning the fault set data and simulating
faults in parallel (data-parallel techniques [18, 9, 15, 14, 19, 11, 7]), and a com-
bination of one or more of these techniques [12]. Data-parallel techniques can be
further classified into fault-parallel methods, wherein different faults are simulated
in parallel, and pattern-parallel approaches, wherein different patterns of the same
fault are simulated in parallel. In this chapter, we present an accelerated fault sim-
ulation approach that invokes data parallelism. In particular, both fault and pattern
parallelism are exploited by our method. The method is implemented on a graphics
processing unit (GPU) platform.

Fault simulation of a logic netlist effectively requires multiple logic simulations
of the netlist, with faults injected at various gates (typically primary inputs and
reconvergent fanout branches). An approach for logic simulation (which can also
be used for fault simulation) uses lookup table (LUT) based computations. In this
approach the truth table for all the gates in a library is stored in the memory, and
multiple processors perform multiple gate-level (logic) simulations in parallel. This
is a natural match for the GPU capabilities, since it exploits the extremely high
memory bandwidths of the GPU and also simultaneously utilizes the large number
of computational elements on the GPU. Several faults (and several patterns for these
faults) can be simulated simultaneously. In this way, both data parallelism and pat-
tern parallelism are employed. The key point to note is that the same operation (of
looking up gate output values in the memory) is performed on independent data (dif-
ferent faults and different patterns for every fault). In this way, the SIMD computing
paradigm of the GPU is exploited maximally by fault simulation computations that
are LUT based.

This work is the first approach, to the best of the authors’ knowledge, which
accelerates fault simulation on a GPU platform. The key contributions of this work
are as follows:

• We exploit the novel match between data- and pattern-parallel fault simulation
with the capabilities of a GPU (a SIMD-based device) and harness the computa-
tional power of GPUs to accelerate parallel fault simulation.

• The implementation satisfies all the key requirements which ensure maximal
speedup in a GPU:
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– The different threads, which perform gate evaluations and fault injection, are
implemented so that there are no data dependencies between threads.

– All gate evaluation threads compute identical instructions, but on different
data, which exploits the SIMD architecture of the GPU.

– The gate evaluation is done using a LUT, which exploits the extremely large
memory bandwidth of GPUs.

• Our parallel fault simulation algorithm is implemented in a manner which is
aware of the specific constraints of the GPU platform, such as the use of texture
memory for table lookup, memory coalescing, and use of shared memory, thus
maximizing the speedup obtained.

• In comparison to a commercial fault simulation tool [1] our implementation is
on average ∼47× faster for fault simulating 32K patterns for each of 25 IWLS
benchmarks [2].

• Further, even though our current implementation has been benchmarked on a
single NVIDIA GeForce GTX 280 graphics card, the commercially available
NVIDIA Tesla cards [3] allow up to eight NVIDIA GeForce GTX 280 devices
on the same motherboard. We project that our implementation, on a Tesla card,
performs fault simulation on average ∼300× faster, when compared to the com-
mercial tool.

Our fault simulation algorithm is implemented in the Compute Unified Device
Architecture (CUDA), which is an open-source programming and interfacing tool
provided by NVIDIA corporation, for programming NVIDIA’s GPU devices. The
GPU device used for our implementation and benchmarking is NVIDIA GTX 280
GPU card. The correctness of our GPU-based fault simulator has been verified by
comparing its results with a CPU-based serial fault simulator. An extended abstract
of this work is available in [10].

8.3 Previous Work

Over the last three decades, several research efforts have attempted to accelerate the
problem of fault simulation in a scalable and cost-effective fashion, by exploiting
the parallelism inherent in the problem These efforts can be divided into algorithm
parallel, model parallel, and data parallel.

Algorithm-parallel efforts aim at parallelizing the fault simulation algorithm, dis-
tributing workload, and/or pipelining the tasks, such that the frequency of commu-
nication and synchronization between processors is reduced [12, 6, 4, 5]. In contrast
to these approaches, our approach is data parallel. In [12], the authors aim at heuris-
tically assigning fault set partitions (and corresponding circuit partitions) to several
medium-grain multiprocessors. This assignment is based on a performance model
developed by comparing the communication (message passing or shared memory
access) to computation ratio of the multiprocessor units. The results reported in [12]
are based on an implementation of fault simulation on a multiprocessor prototype
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with up to eight processing units. Our results, on the other hand, are based on off-
the-shelf GPU cards (the NVIDIA GeForce GTX 280 GPU). The authors of [6]
present a methodology to predict and characterize workload distribution, which
can aid in parallelizing fault simulation. The approach discussed in [4] suggests
a pipelined design, where each functional unit performs a specific task. MARS [5],
a hardware accelerator, is based on this design. However, the application of the
accelerator to fault simulation has been limited [12].

In a model-parallel approach [13, 20, 12], the circuit to be simulated is partitioned
into several (possibly non-disjoint) components. Each component is assigned to one
or more processors. Further, in order to keep the partitioning balanced, dynamic
re-partitioning [16, 17] is performed. This increases algorithm complexity and may
impact simulation time [16, 17].

Numerous data-parallel approaches for fault simulation have been developed in
the past. These approaches use dedicated hardware accelerators, supercomputers,
vector machines, or multiprocessors [18, 9, 15, 14, 19, 11, 7]. There are several
hardware-accelerated fault simulators in the literature, but they require specialized
hardware, significant design effort and time, and non-trivial algorithm and software
design efforts as well. In contrast to these approaches, our approach accelerates fault
simulation by using off-the-shelf commercial graphics processing units (GPUs).
The ubiquity and ease of programming of GPU devices, along with their extremely
low costs compared to hardware accelerators, supercomputers, etc., make GPUs an
attractive alternative for fault simulation.

8.4 Our Approach

GPUs allow extreme speedups if the different threads being evaluated have no data
dependencies. The programming model of a GPU is the single instruction multiple
data (SIMD) model, under which all threads must compute identical instructions, but
on different data. Also, GPUs have an extremely large memory bandwidth, allowing
multiple memory lookups to be performed in parallel.

Since fault simulation requires multiple (faulty) copies of the same circuit to be
simulated, it forms a natural match to the capabilities of the GPU. Also, each gate
evaluation within a specific level in the circuit can be performed independently of
other gate evaluations. As a result, if we perform each gate evaluation (for gates
with the same topological level) on a separate GPU thread, these threads will nat-
urally satisfy the condition required for speedup in the GPU (which requires that
threads have no data dependencies). Also, we implement fault simulation on the
GPU, which allows each of the gate evaluations in a fault simulator to utilize the
same thread code, with no conditional computations between or within threads. In
particular, we implement pattern-parallel and fault-parallel fault simulation. Fault
injection is also done along with gate evaluation, with each thread using a differ-
ent fault injection mask. This maximally exploits the SIMD computing semantics
of the GPU platform. Finally, in order to exploit the extreme memory bandwidths
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offered by GPUs, our implementation of the gate evaluation thread uses a memory
lookup-based logic simulation paradigm.

Fault simulation of a logic netlist consists of multiple logic simulations of the
netlist with faults injected on specific nets. In the next three subsections we discuss
(i) GPU-based implementation of logic simulation at a gate, (ii) fault injection at a
gate, and (iii) fault detection at a gate. Then we discuss (iv) the implementation of
fault simulation for a circuit. This uses the implementations described in the first
three subsections.

8.4.1 Logic Simulation at a Gate

Logic simulation on the GPU is implemented using a lookup table (LUT) based
approach. In this approach, the truth tables of all gates in the library are stored in a
LUT. The output of the simulation of a gate of type G is computed by looking up
the LUT at the address corresponding to the sum of the gate offset of G (Goff) and
the value of the gate inputs.

1 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1

NOR2
offset

INV
offset

NAND3
offset

AND2
offset

Fig. 8.1 Truth tables stored in a lookup table

Figure 8.1 shows the truth tables for a single NOR2, INV, NAND3, and AND2
gate stored in a one-dimensional lookup table. Consider a gate g of type NAND3
with inputs A, B, and C and output O. For instance if ABC = ‘110,’ O should be
‘1.’ In this case, logic simulation is performed by reading the value stored in the
LUT at the address NAND3off + 6. Thus, the value returned from the LUT will be
the value of the output of the gate being simulated, for the particular input value.
LUT-based simulation is a fast technique, even when used on a serial processor,
since any gate (including complex gates) can be evaluated by a single lookup. Since
the LUT is typically small, these lookups are usually cached. Further, this technique
is highly amenable to parallelization as will be shown in the sequel. Note that in
our implementation, each LUT enables the simulation of two identical gates (with
possibly different inputs) simultaneously.

In our implementation of the LUT-based logic simulation technique on a GPU,
the truth tables for all the gates are stored in the texture memory of the GPU device.
This has the following advantages:

• Texture memory of a GPU device is cached as opposed to shared or global mem-
ory. Since the truth tables for all library gates will typically fit into the available
cache size, the cost of a lookup will be one cycle (which is 8,192 bytes per mul-
tiprocessor).
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• Texture memory accesses do not have coalescing constraints as required in case
of global memory accesses, making the gate lookup efficient.

• In case of multiple lookups performed in parallel, shared memory accesses might
lead to bank conflicts and thus impede the potential improvement due to parallel
computations.

• Constant memory accesses in the GPU are optimal when all lookups occur at the
same memory location. This is typically not the case in parallel logic simulation.

• The latency of addressing calculations is better hidden, possibly improving per-
formance for applications like fault simulation that perform random accesses to
the data.

• The CUDA programming environment has built-in texture fetching routines
which are extremely efficient.

Note that the allocation and loading of the texture memory requires non-zero time,
but is done only once for a gate library. This runtime cost is easily amortized since
several million lookups are typically performed on a given design (with the same
library).

The GPU allows several threads to be active in parallel. Each thread in our imple-
mentation performs logic simulation of two gates of the same type (with possibly
different input values) by performing a single lookup from the texture memory.

The data required by each thread is the offset of the gate type in the texture
memory and the input values of the two gates. For example, if the first gate has a 1
value for some input, while the second gate has a 0 value for the same input, then the
input to the thread evaluating these two gates is ‘10.’ In general, any input will have
values from the set {00, 01, 10, 11}, or equivalently an integer in the range [0,3]. A
2-input gate therefore has 16 entries in the LUT, while a 3-input gate has 64 entries.
Each entry of the LUT is a word, which provides the output for both the gates. Our
gate library consists of an inverter as well as 2-, 3-, and 4-input NAND, NOR, AND,
and OR gates. As a result, the total LUT size is 4+4×(16+64+256) = 1,348 words.
Hence the LUT fits in the texture cache (which is 8,192 bytes per multiprocessor).
Simulating more than two gates simultaneously per thread does not allow the LUT
to fit in the texture cache, hence we only simulate two gates simultaneously per
thread.

The data required by each thread is organized as a ‘C’ structure type struct
threadData and is stored in the global memory of the device for all threads. The
global memory, as discussed in Chapter 3, is accessible by all processors of all mul-
tiprocessors. Each processor executes multiple threads simultaneously. This orga-
nization would thus require multiple accesses to the global memory. Therefore, it
is important that the memory coalescing constraint for a global memory access is
satisfied. In other words, memory accesses should be performed in sizes equal to
32-bit, 64-bit, or 128-bit values. In our implementation the threadData is aligned at
128-bit (= 16 byte) boundaries to satisfy this constraint. The data structure required
by a thread for simultaneous logic simulation of a pair of identical gates with up to
four inputs is
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typedef struct __align__(16){
int offset; // Gate type’s offset
int a; int b; int c; int d;// input values
int m0; int m1; // fault injection bits
} threadData;

The first line of the declaration defines the structure type and byte alignment
(required for coalescing accesses). The elements of this structure are the offset in
texture memory (type integer) of the gate which this thread will simulate, the input
signal values (type integer), and variables m0 and m1 (type integer). Variables m0
and m1 are required for fault injection and will be explained in the next subsection.
Note that the total memory required for each of these structures is 1 × 4 bytes
for the offset of type int + 4 × 4 bytes for the 4 inputs of type integer and 2
× 4 bytes for the fault injection bits of type integer. The total storage is thus 28
bytes, which is aligned to a 16 byte boundary, thus requiring 32 byte coalesced
reads.

The pseudocode of the kernel (the code executed by each thread) for logic simu-
lation is given in Algorithm 7. The arguments to the routine logic_simulation_kernel
are the pointers to the global memory for accessing the threadData (MEM) and the
pointer to the global memory for storing the output value of the simulation (RES).
The global memory is indexed at a location equal to the thread’s unique threadID
= tx, and the threadData data is accessed. The index I to be fetched in the LUT (in
texture memory) is then computed by summing the gate’s offset and the decimal sum
of the input values for each of the gates being simultaneously simulated. Recall that
each input value ∈ {0, 1, 2, 3}, representing the inputs of both the gates. The CUDA
inbuilt single-dimension texture fetching function tex1D(LUT,I) is next invoked to
fetch the output values of both gates. This is written at the tx location of the output
memory RES.

Algorithm 7 Pseudocode of the Kernel for Logic Simulation
logic_simulation_kernel(threadData ∗MEM, int ∗RES){
tx = my_thread_id
threadData Data = MEM[tx]
I = Data.offset + 40 × Data.a+ 41 × Data.b+ 42 × Data.c+ 43 × Data.d
int output = tex1D(LUT ,I)
RES[tx] = output
}

8.4.2 Fault Injection at a Gate

In order to simulate faulty copies of a netlist, faults have to be injected at appropriate
positions in the copies of the original netlist. This is performed by masking the
appropriate simulation values by using a fault injection mask.



126 8 Accelerating Fault Simulation Using Graphics Processors

Our implementation parallelizes fault injection by performing a masking opera-
tion on the output value generated by the lookup (Algorithm 7). This masked value
is now returned in the output memory RES. Each thread has it own masking bits
m0 and m1, as shown in the threadData structure. The encoding of these bits are
tabulated in Table 8.1.

Table 8.1 Encoding of the mask bits

m0 m1 Meaning

– 11 Stuck-at-1 mask
11 00 No fault injection
00 00 Stuck-at-0 mask

The pseudocode of the kernel to perform logic simulation followed by fault injec-
tion is identical to pseudocode for logic simulation (Algorithm 1) except for the last
line which is modified to read

RES[tx] = (output & Data.m0) ‖ Data.m1
RES[tx] is thus appropriately masked for stuck-at-0, stuck-at-1, or no injected

fault. Note that the two gates being simulated in the thread correspond to the same
gate of the circuit, simulated for different patterns. The kernel which executes logic
simulation followed by fault injection is called fault_simulation_kernel.

8.4.3 Fault Detection at a Gate

For an applied vector at the primary inputs (PIs), in order for a fault f to be detected
at a primary output gate g, the good-circuit simulation value of g should be different
from the value obtained by faulty-circuit simulation at g, for the fault f .

In our implementation, the comparison between the output of a thread that is
simulating a gate driving a circuit primary output and the good-circuit value of this
primary output is performed as follows. The modified threadData_Detect structure
and the pseudocode of the kernel for fault detection (Algorithm 8) are shown below:

typedef struct __align__(16) {
int offset; // Gate type’s offset
int a; int b; int c; int d;// input values
int Good_Circuit_threadID; // The thread ID which computes
//the Good circuit simulation
} threadData_Detect;

The pseudocode of the kernel for fault detection is shown in Algorithm 8. This
kernel is only run for the primary outputs of the design. The arguments to the rou-
tine fault_detection_kernel are the pointers to the global memory for accessing the
threadData_Detect structure (MEM), a pointer to the global memory for storing
the output value of the good-circuit simulation (GoodSim), and a pointer in mem-
ory (faultindex) to store a 1 if the simulation performed in the thread results in
fault detection (Detect). The first four lines of Algorithm 8 are identical to those
of Algorithm 7. Next, a thread computing the good-circuit simulation value will
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Algorithm 8 Pseudocode of the Kernel for Fault Detection
fault_detection_kernel(threadData_Detect ∗MEM, int ∗GoodSim, int ∗Detect,int ∗faultindex){
tx = my_thread_id
threadData_Detect Data = MEM[tx]
I = Data.offset + 40 × Data.a+ 41 × Data.b+ 42 × Data.c+ 43 × Data.d
int output = tex1D(LUT ,I)
if (tx == Data.Good_Circuit_threadID) then

GoodSim[tx] = output
end if
__synch_threads()
Detect[faultindex] = ((output ⊕ GoodSim[Data.Good_Circuit_threadID])?1:0)
}

write its output to global memory. Such a thread will have its threadID identical
to the Data.Good_Circuit_threadID. At this point a thread synchronizing routine,
provided by CUDA, is invoked. If more than one good-circuit simulation (for more
than one pattern) is performed simultaneously, the completion of all the writes to
the global memory has to be ensured before proceeding. The thread synchronizing
routine guarantees this. Once all threads in a block have reached the point where this
routine is invoked, kernel execution resumes normally. Now all threads, including
the thread which performed the good-circuit simulation, will read the location in
the global memory which corresponds to its good-circuit simulation value. Thus, by
ensuring the completeness of the writes prior to the reads, the thread synchronizing
routine avoids write-after-read (WAR) hazards. Next, all threads compare the output
of the logic simulation performed by them to the value of the good-circuit simula-
tion. If these values are different, then the thread will write a 1 to a location indexed
by its faultindex, in Detect, else it will write a 0 to this location. At this point the
host can copy the Detect portion of the device global memory back to the CPU. All
faults listed in the Detect vector are detected.

8.4.4 Fault Simulation of a Circuit

Our GPU-based fault simulation methodology is parallelized using the two data-
parallel techniques, namely fault parallelism and pattern parallelism. Given the large
number of threads that can be executed in parallel on a GPU, we use both these
forms of parallelism simultaneously. This section describes the implementation of
this two-way parallelism.

Given a logic netlist, we first levelize the circuit. By levelization we mean that
each gate of the netlist is assigned a level which is one more than the maximum
level of its input gates. The primary inputs are assigned a level ‘0.’ Thus, Level(G)
= max(∀i∈fanin(G)Level(i)) + 1. The maximum number of levels in a circuit is referred
to as L. The number of gates at a level i is referred to as Wi. The maximum number
of gates at any level is referred to as Wmax, i.e., (Wmax = max(∀i(Wi))). Figure 8.2
shows a logic netlist with primary inputs on the extreme left and primary outputs
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Fig. 8.2 Levelized logic netlist

on the extreme right. The netlist has been levelized and the number of gates at any
level i is labeled Wi. We perform data-parallel fault simulation on all logic gates in
a single level simultaneously.

Suppose there are N vectors (patterns) to be fault simulated for the circuit. Our
fault simulation engine first computes the good-circuit values for all gates, for all
N patterns. This information is then transferred back to the CPU, which therefore
has the good-circuit values at each gate for each pattern. In the second phase, the
CPU schedules the gate evaluations for the fault simulation of each fault. This is
done by calling (i) fault_simulation_kernel (with fault injection) for each faulty gate
G, (ii) the same fault_simulation_kernel (but without fault injection) on gates in the
transitive fanout (TFO) of G, and (iii) fault_detection_kernel for the primary outputs
in the TFO of G.

We reduce the number of fault simulations by making use of the good-circuit
values of each gate for each pattern. Recall that this information was returned to the
CPU after the first phase. For any gate G, if its good-circuit value is v for pattern
p, then fault simulation for the stuck-at-v value on G is not scheduled in the second
phase. In our experiments, the results include the time spent for the data transfers
from CPU ↔ GPU in all phases of the operation of out fault simulation engine.
GPU runtimes also include all the time spent by the CPU to schedule good/faulty
gate evaluations.

A few key observations are made at this juncture:

• Data-parallel fault simulation is performed on all gates of a level i simultaneously.
• Pattern-parallel fault simulation is performed on N patterns for any gate simulta-

neously.
• For all levels other than the last level, we invoke the kernel fault_simulation_kernel.

For the last level we invoke the kernel fault_detection_kernel.
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• Note that no limit is imposed by the GPU on the size of the circuit, since the
entire circuit is never statically stored in GPU memory.

8.5 Experimental Results

In order to perform TS logic simulations plus fault injections in parallel, we need
to invoke TS fault_simulation_kernels in parallel. The total DRAM (off-chip) in
the NVIDIA GeForce GTX 280 is 1 GB. This off-chip memory can be used as
global, local, and texture memory. Also the same memory is used to store CUDA
programs, context data used by the GPU device drivers, drivers for the desk-
top display, and NVIDIA control panels. With the remaining memory, we can
invoke TS = 32M fault_simulation_kernels in parallel. The time taken for 32M
fault_simulation_kernels is 85.398 ms. The time taken for 32M fault_detection_
kernels is 180.440 ms.

The fault simulation results obtained from the GPU implementation were verified
against a CPU-based serial fault simulator and were found to verify with 100%
fidelity.

We ran 25 large IWLS benchmark [2] designs, to compute the speed of our GPU-
based parallel fault simulation tool. We fault-simulated 32K patterns for all circuits.
We compared our runtimes with those obtained using a commercial fault simulation
tool [1]. The commercial tool was run on a 1.5 GHz UltraSPARC-IV+ processor
with 1.6 GB of RAM, running Solaris 9.

The results for our GPU-based fault simulation tool are shown in Table 8.2.
Column 1 lists the name of the circuit. Column 2 lists the number of gates in the
mapped circuit. Columns 3 and 4 list the number of primary inputs and outputs for
these circuits. The number of collapsed faults Ftotal in the circuit is listed in Column
5. These values were computed using the commercial tool. Columns 6 and 7 list
the runtimes, in seconds, for simulating 32K patterns, using the commercial tool
and our implementation, respectively. The time taken to transfer data between the
CPU and GPU was accounted for in the GPU runtimes listed. In particular, the data
transferred from the CPU to the GPU is the 32 K patterns at the primary inputs and
the truth table for all gates in the library. The data transferred from GPU to CPU is
the array Detect (which is of type Boolean and has length equal to the number of
faults in the circuit). The commercial tool’s runtimes include the time taken to read
the circuit netlist and 32K patterns. The speedup obtained using a single GPU card
is listed in Column 9.

By using the NVIDIA Tesla server housing up to eight GPUs [3], the available
global memory increases by 8×. Hence we can potentially launch 8× more threads
simultaneously. This allows for a 8× speedup in the processing time. However, the
transfer times do not scale. Column 8 lists the runtimes on a Tesla GPU system. The
speedup obtained against the commercial tool in this case is listed in Column 10.
Our results indicate that our approach, implemented on a single NVIDIA GeForce
GTX 280 GPU card, can perform fault simulation on average 47× faster when
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compared to the commercial fault simulation tool [1]. With the NVIDIA Tesla card,
our approach would be potentially 300× faster.

8.6 Chapter Summary

In this chapter, we have presented our implementation of a fault simulation engine
on a graphics processing unit (GPU). Fault simulation is inherently parallelizable,
and the large number of threads that can be computed in parallel on a GPU can
be employed to perform a large number of gate evaluations in parallel. As a con-
sequence, the GPU platform is a natural candidate for implementing parallel fault
simulation. In particular, we implement a pattern- and fault-parallel fault simula-
tor. Our implementation fault-simulates a circuit in a levelized fashion. All threads
of the GPU compute identical instructions, but on different data, as required by
the single instruction multiple data (SIMD) programming semantics of the GPU.
Fault injection is also done along with gate evaluation, with each thread using a
different fault injection mask. Since GPUs have an extremely large memory band-
width, we implement each of our fault simulation threads (which execute in parallel
with no data dependencies) using memory lookup. Our experiments indicate that
our approach, implemented on a single NVIDIA GeForce GTX 280 GPU card can
simulate on average 47× faster when compared to the commercial fault simulation
tool [1]. With the NVIDIA Tesla card, our approach would be potentially 300×
faster.
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Chapter 9
Fault Table Generation Using Graphics
Processors

9.1 Chapter Overview

In this chapter, we explore the implementation of fault table generation on a graphics
processing unit (GPU). A fault table is essential for fault diagnosis and fault detec-
tion in VLSI testing and debug. Generating a fault table requires extensive fault
simulation, with no fault dropping, and is extremely expensive from a computa-
tional standpoint. Fault simulation is inherently parallelizable, and the large number
of threads that a GPU can operate on in parallel can be employed to accelerate
fault simulation, and thereby accelerate fault table generation. Our approach, called
GFTABLE, employs a pattern-parallel approach which utilizes both bit parallelism
and thread-level parallelism. Our implementation is a significantly modified version
of FSIM, which is pattern-parallel fault simulation approach for single-core proces-
sors. Like FSIM, GFTABLE utilizes critical path tracing and the dominator concept
to prune unnecessary simulations and thereby reduce runtime. Further modifications
to FSIM allow us to maximally harness the GPU’s huge memory bandwidth and
high computational power. Our approach does not store the circuit (or any part of the
circuit) on the GPU. Efficient parallel reduction operations are implemented in our
implementation of GFTABLE. We compare our performance to FSIM∗, which is
FSIM modified to generate a fault table on a single-core processor. Our experiments
indicate that GFTABLE, implemented on a single NVIDIA Quadro FX 5800 GPU
card, can generate a fault table for 0.5 million test patterns, on average 15.68× faster
when compared with FSIM∗. With the NVIDIA Tesla server, our approach would
be potentially 89.57× faster.

The remainder of this chapter is organized as follows. The motivation for this
work is described in Section 9.2. Previous work in fault simulation and fault table
generation has been described in Section 9.3. Section 9.4 details our approach for
implementing fault simulation and table generation on GPUs. In Section 9.5 we
present results of experiments which were conducted in order to benchmark our
approach. We summarize the chapter in Section 9.6.

K. Gulati, S.P. Khatri, Hardware Acceleration of EDA Algorithms,
DOI 10.1007/978-1-4419-0944-2_9,
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9.2 Introduction

With the increasing complexity and size of digital VLSI designs, the number of
faulty variations of these designs is growing exponentially, thus increasing the time
and effort required for VLSI testing and debug. Among the key steps in VLSI testing
and debug are fault detection and diagnosis. Fault detection aims at differentiating
a faulty design from a fault-free design, by applying test vectors. Fault diagnosis
aims at identifying and isolating the fault, in order to analyze the defect causing the
faulty behavior, with the help of test vectors which detect the fault. Both detection
and diagnosis [4, 23, 24] require precomputed information about whether vector
vi can detect fault fj, for all i and j. This information is stored in the form of a
precomputed fault table. In general, a fault table is a matrix [aij] where columns
represent faults, rows represent test vectors, and aij = 1 if the test vector vi detects
the fault fj, else aij = 0.

A fault table (also called a pass/fail fault dictionary [22]) is generated by exten-
sive fault simulation. Given a digital design and a set of input vectors V defined
over its primary inputs, fault simulation evaluates (for all i) the set of stuck-at faults
Fi

sim that are tested by applying the vectors vi ∈ V . The faults tested by each vector
are then recorded in the matrix format of the fault table described earlier. Since
the detectability of every fault is evaluated for every vector, the compute time for
generating a fault table is extremely large. If a fault is dropped from the fault list as
soon as a vector successfully detects it, the compute time can be reduced. However,
the fault table thus generated may be insufficient for fault diagnosis. Thus, fault
dropping cannot be performed during the generation of the fault table. For fault
detection, we would like to find a minimal set of vectors which can maximally
detect the faults. In order to compute this minimal set of vectors, the generation of a
fault table with limited or no fault dropping is required. From this information, we
could solve a unate covering problem to find the minimum set of vectors that detects
all faults. For these reasons, fault table generation without fault dropping is usually
performed. As a result, the high runtime of fault table generation becomes a key
concern, making it important to explore ways to accelerate fault table generation.
The ideal approach should be fast, scalable, and cost effective.

In order to reduce the compute time for generating the fault table, parallel imple-
mentations of fault simulation have been routinely used [9]. Fault simulation can
be parallelized by a variety of techniques. These techniques include parallelizing
the fault simulation algorithm (algorithm-parallel techniques [7, 3, 6]), partitioning
the circuit into disjoint components and simulating them in parallel (model-parallel
techniques [17, 25]), partitioning the fault set data and simulating faults in par-
allel (data-parallel techniques [20, 10, 18]), and a combination of one or more
of these [16]. Data-parallel techniques can be further classified into fault-parallel
methods, wherein different faults are simulated in parallel, and pattern-parallel
approaches, wherein different input patterns (for the same fault) are simulated in
parallel. Pattern-parallel approaches, as described in [15, 19], exploit the inherent bit
parallelism of logic operations on computer words. In this chapter, we present a fault
table generation approach that utilizes a pattern-parallel approach implemented on
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graphics processing units (GPUs). Our notion of pattern parallelism includes bit
parallelism obtained by performing logical operations on words and thread- level
parallelism obtained by running several GPU threads concurrently.

Our approach for fault table generation is based on the fault simulation algorithm
called FSIM [15]. FSIM was developed to run on a single-core CPU. However, since
the target hardware in our case is a SIMD GPU machine, and the objective is to
accelerate fault table generation, the FSIM algorithm is augmented and its imple-
mentation significantly modified to maximally harness the computational power and
memory bandwidth available in the GPU. Fault simulation of a logic netlist effec-
tively requires multiple logic simulations of the true value (or fault-free) simula-
tions, and simulations with faults injected at various gates (typically primary inputs
and reconvergent fanout branches as per the checkpoint fault injection model [11]).
This is a natural match for the GPU’s capabilities, since it exploits the extreme
memory bandwidths of the GPU, as well as the presence of several SIMD processing
elements on the GPU. Further, the computer words on the latest GPUs today allow
32- or even 64-bit operations. This facilitates the use of bit parallelism to further
speed up fault simulation. For scalability reasons, our approach does not store the
circuit (or any part of the circuit) on the GPU.

This work is the first, to the best of the authors’ knowledge, to accelerate fault
table generation on a GPU platform. The key contributions of this work are as
follows:

• We exploit the match between pattern-parallel (bit-parallel and also thread-
parallel) fault simulation with the capabilities of a GPU (a SIMD-based device)
and harness the computational power of GPUs to accelerate fault table genera-
tion.

• The implementation satisfies the key requirements which ensure maximal speedup
in a GPU. These are as follows:

– The different threads which perform gate evaluations and fault injections are
implemented such that the data dependency between threads is minimized.

– All threads compute identical instructions, but on different data, which con-
forms to the SIMD architecture of the GPU.

– Fast parallel reduction on the GPU is employed for computing the logical OR
of thousands of words containing fault simulation data.

– The amount of data transfer between the GPU and the host (CPU) is min-
imized. To achieve this, the large on-board memory on the recent GPUs is
maximally exploited.

• In comparison to FSIM∗ (i.e., FSIM [15] modified to generate the fault dictio-
nary), our implementation is on average 15.68× faster, for 0.5 million patterns,
over the ISCAS and ITC99 benchmarks.

• Further, even though our current implementation has been benchmarked on a
single NVIDIA Quadro FX 5800 graphics card, the NVIDIA Tesla GPU Com-
puting Processor [1] allows up to eight NVIDIA Tesla GPUs (on a 1U server). We
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estimate that our implementation, using the NVIDIA Tesla server, can generate a
fault dictionary on average 89.57× faster, when compared to FSIM∗.
Our fault dictionary computation algorithm is implemented in the Compute Uni-

fied Device Architecture (CUDA), which is an open-source programming and inter-
facing tool provided by NVIDIA corporation, for programming NVIDIA’s GPU
devices. The correctness of our GPU-based fault table generator, GFTABLE, has
been verified by comparing its results with the results of FSIM∗ (which is run on
the CPU). An extended abstract of this work can be found in [12].

9.3 Previous Work

Efficient fault simulation is a requirement for generating a fault dictionary. We dis-
cussed some previous work in accelerating fault simulation in Chapter 8. We devote
the rest of this section to a brief discussion on FSIM [15], the algorithm that our
approach is based upon.

The underlying algorithm for our GPU-based fault table generation engine is
based on an approach for accelerating fault simulation called FSIM [15]. FSIM is
a data-parallel approach that is implemented on a single-core microprocessor. The
essential idea of FSIM is to simulate the circuit in a levelized manner from inputs
to outputs and to prune off unnecessary gates as early as possible. This is done
by employing critical path tracing [14, 5] and the dominator concept [8, 13], both
of which reduce the amount of explicit fault simulation required. Some details of
FSIM are explained in Section 9.4. We use a modification of FSIM (which we call
FSIM∗) to generate the fault table and compare the performance of our GPU-based
fault-table generator (GFTABLE) with that of FSIM∗. Since the target hardware in
our case is a GPU, the original algorithm is redesigned and augmented to maximally
exploit the computational power of the GPU.

The approach described in Chapter 8 accelerates fault simulation by employing a
table lookup-based approach on the GPU. Chapter 8, in contrast to the current chap-
ter, does not target a fault table computation, but only accelerates fault simulation.

An approach which generates compressed fault tables or dictionaries is described
in [22]. This approach focuses on reducing the size of the fault table by using
compaction [4, 26] or aliasing [21] techniques during fault table generation. Our
approach, on the other hand, reduces the compute time for fault table generation by
exploiting the immense parallelism available in the GPU, and is hence orthogonal
to [22].

9.4 Our Approach

In order to maximally harness the high computational power of the GPU, our fault
table generation approach is designed in a manner that is aware of the GPU’s
architectural, functional features and constraints. For instance, the programming
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model of a GPU is the single instruction multiple data (SIMD) model, under which
all threads must compute identical instructions, but on different data. GPUs allow
extreme speedups if the different threads being evaluated have minimal data depen-
dencies or global synchronization requirements. Our implementation honors these
constraints and maximally avoids data or control dependencies between different
threads. Further, even though the GPU’s maximum bandwidth to/from the on-board
memory has dramatically increased in recent GPUs (to∼ 141.7 GB/s in the NVIDIA
Quadro FX 5800), the GPU to host communication in our implementation is done
using the PCIe 2.0 standard, with a data rate of ∼500 MB/s for 16 lanes. Therefore,
our approach is implemented such that the communication between the host and the
GPU is minimized.

In this section, we provide the details of our GFTABLE approach. As mentioned
earlier, we modified FSIM [15] (which only performs fault simulation) to generate
a complete fault table on a single-threaded CPU and refer to this version as FSIM∗.
The underlying algorithm for GFTABLE is a significantly re-engineered variant of
FSIM∗. We next present some preliminary information, followed by a description
of FSIM∗, along with the modifications we made to FSIM∗ to realize GFTABLE,
which capitalizes on the parallelism available in a GPU.

9.4.1 Definitions

We first define some of the key terms with the help of the example circuit shown
in Fig. 9.1. A stem (or fanout stem) is defined as a line (or net) which fans out to
more than one gate. All primary outputs of the circuit are defined as stems. For
example in Fig. 9.1, the stems are k and p. If the fanout branches of each stem are
cut off, this induces a partition of the circuit into fanout-free regions (FFRs). For
example, in Fig. 9.1, we get two FFRs as shown by the dotted triangles. The output
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of any FFR is a stem (say s), and the FFR is referred to as FFR(s). If all paths
from a stem s pass through a line l before reaching a primary output, then the line
l is called a dominator of the stem s. If there are no other dominators between the
stem s and dominator l, then line l is called the immediate dominator of s. In the
example, p is an immediate dominator of stem k in Fig. 9.1. The region between
a stem s and its immediate dominator is called the stem region (SR) of s and is
referred to as SR(s). Also, we define a vector as a two-dimensional array with a
length equal to the number of primary inputs and a width equal to P, the packet size.
In Fig. 9.1, the vectors are on the primary inputs a, b, c, d, and e. The packet size
is P = 4. In other words, each vector consists of P fault patterns. In practice, the
packet size for bit-parallel fault simulators is typically equal to the word size of the
computer on which the simulator is implemented. In our experiments, the packet
size (P) is 32.

If the change of the logic value at line s is observable at line t, then detectability
D(s, t) = 1, else D(s, t) = 0. If a fault f injected at some line is detectable at line t, then
fault detectability FD(f , t) = 1, else FD(f , t) = 0. If t is a primary output, the (fault)
detectability is called a global (fault) detectability. The cumulative detectability of
a line s, CD(s), is the logical OR of the fault detectabilities of the lines which merge
at s. The ith element of CD(s) is defined as 1 iff there exists a fault f (to be simulated)
such that FD(f , s) =1 under the application of the ith test pattern of the vector.
Otherwise, it is defined as 0. The following five properties hold for cumulative
detectabilities:

• If a fault f (either s-a-1 or s-a-0) is injected at a line s and no other fault propagates
to s, then CD(s) = FD(f , s).

• If both s-a-0 and s-a-1 faults are injected at a line s, CD(s) = (11 . . . 1).
• If no fault is injected at a line s and no other faults propagate to s, then CD(s) =

(00. . .0).
• Suppose there is a path from s to t. Then CD(t) = CD(s) · D(s, t), where · is the

bitwise AND operation.
• Suppose two paths r → t and s → t merge. Then CD(t) = (CD(r)D(r, t) +

CD(s)D(s, t)), where + is the bitwise OR operation.

Further details on detectability and cumulative detectability can be found in [15].
The sensitive inputs of a unate gate with two or more inputs are determined as

follows:

• If only one input k has a dominant logic value (DLV), then k is sensitive. AND
and NAND gates have a DLV of 0. OR and NOR gates have a DLV of 1.

• If all the inputs of a gate have a value DLV , then all inputs are sensitive.
• Otherwise no input is sensitive.

Critical path tracing (CPT), which was introduced in [3], is an alternative to
conventional forward fault simulation. The approach consists of determining paths
of critical lines, called critical paths, by a backtracing process starting at the POs
for a vector vi. Note that a critical line is a line driving the sensitive input of a gate.
Note that the POs are critical in any test. By finding the critical lines for vi, one
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can immediately infer the faults detected by vi. CPT is performed after fault-free
simulation of the circuit for a vector vi has been conducted. To aid the backtracing,
sensitive gate inputs during fault-free simulation are marked.

For FFRs, CPT is always exact. In both approaches described in the next section,
FSIM∗ and GPU-TABLE, CPT is used only for the FFRs. An example illustrating
CPT is provided in the sequel.

9.4.2 Algorithms: FSIM∗ and GFTABLE

The algorithm for FSIM∗ is displayed in Algorithm 9. The key modifications for
GFTABLE are explained in text in the sequel. Both FSIM∗ and GFTABLE maintain
three major lists, a fault list (FL), a stem list (STEM_LIST), and an active stem list
(ACTIVE_STEM), all on the CPU. The stem list stores all the stems {s} whose cor-
responding FFRs ({FFR(s)}) are candidates for fault simulation. The active stem list
stores stems {s∗} for which at least one fault propagates to the immediate dominator
of the stem s∗. The stems stored in the two lists are in the ascending order of their
topological levels.

It is important to note that the GPU can never launch a kernel. Kernel launches
are exclusively performed by the CPU (host). As a result, if (as in the case of
GFTABLE) a conditional evaluation needs to be performed (lines 15, 17, and 25
for example), the condition must be checked by the CPU, which can then launch the
appropriate GPU kernel if the condition is met. Therefore, the value being tested in
the condition must be transferred by the GPU back to the CPU. The GPU operates
on T threads at once (each computing a 32-bit result). Hence, in order to reduce the
volume of data transferred and to reduce it to the size of a computer word on the
CPU, the results from the GPU threads are reduced down to one 32-bit value before
being transferred back to the CPU.

The argument to both the algorithms is the number of test patterns (N) over which
the fault table is to be computed for the circuit. As a preprocessing step, both FSIM∗
and GFTABLE compute the fault list FL, award every gate a gate_id, compute the
level of each gate, and identify the stems. The algorithms then identify the FFR and
SR of each stem (this is computed on the CPU). As discussed earlier, the stems and
the corresponding FFRs and SRs of these stems in our example circuit are marked
in Fig. 9.1. Let us consider the following five faults in our example circuit: a s-a-0,
c s-a-1, c s-a-0, l s-a-0, and l s-a-1, which are added to the fault list FL. Also assume
that the fault table generation is carried out for a single vector of length 5 (since there
are 5 primary inputs) consisting of 4-bit-wide packets. In other words, each vector
consists of four patterns of primary input values. The fault table [aij] is initialized to
the all zero matrix. In our example, the size of this matrix is N × 5. The above steps
are shown in lines 1 through 5 of Algorithm 9. The rest of FSIM∗ and GFTABLE
are within a while loop (line 7) with condition v < N, where N is the total number
of patterns to be simulated and v is the current count of patterns which are already
simulated. For both algorithms, v is initialized to zero (line 6).
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Algorithm 9 Pseudocode of FSIM∗
1: FSIM∗(N){
2: Set up Fault list FL.
3: Find FFRs and SRs.
4: STEM_LIST← all stems
5: Fault table [aik] initialized to all zero matrix.

6: v=0
7: while v < N do
8: v=v + packet width
9: Generate one test vector using LFSR

10: Perform fault free simulation
11: ACTIVE_STEM← NULL.
12: for each stem s in STEM_LIST do
13: Simulate FFR using CPT
14: Compute CD(s)
15: if (CD(s) �= (00...0)) then
16: Simulate SRs and compute D(s, t), where t is the immediate dominator of s.
17: if (D(s, t) �= (00...0)) then
18: ACTIVE_STEM← ACTIVE_STEM + s.
19: end if
20: end if
21: end for

22: while (ACTIVE_STEM �= NULL) do
23: Remove the highest level stem s from ACTIVE_STEM.
24: Compute D(s, t), where t is an auxiliary output which connects all primary outputs.
25: if (D(s, t) �= (00...0)) then
26: for (each fault fi in FFR(s)) do
27: FD(fi, t) = FD(fi, s) · D(s, t).
28: Store FD(fi, t) in the ith row of [aik]
29: end for
30: end if
31: end while

32: end while
33: }

9.4.2.1 Generating Vectors (Line 9)

The test vectors in FSIM∗ are generated using an LFSR-based pseudo-random num-
ber generator on the CPU. For every test vector, as will be seen later, fault-free and
faulty simulations are carried out. Each test vector in FSIM∗ is a vector (array) of
32-bit integers with a length equal to the number of primary inputs (NPI). In this
case, v is incremented by 32 (packet width) in every iteration of the while loop
(line 8).

Each test vector in GFTABLE is a vector of length NPI and width 32× T , where
T is the number of threads launched in parallel in a grid of thread blocks. Therefore,
in this case, for every while loop iteration, v is incremented by T × 32. The test
vectors are generated on the CPU (as in FSIM∗) and transferred to the GPU memory.
In all the results reported in this chapter, both FSIM∗ and GFTABLE utilize identical



9.4 Our Approach 141

test vectors (generated by the LFSR-based pseudo-random number generator on
the CPU). In all examples, the results of GFTABLE matched those of FSIM*. The
GFTABLE runtimes reported always include the time required to transfer the input
patterns to the GPU and the time required to transfer results back to the CPU.

9.4.2.2 Fault-Free Simulation (Line 10)

Now, for each test vector, FSIM∗ performs fault-free or true value simulation. Fault-
free simulation is essentially the logic simulation of every gate, carried out in a
forward levelized order. The fault-free output at every gate, computed as a result of
the gate’s evaluation, is recorded in the CPU’s memory.

Fault-free simulation in GFTABLE is carried out in a forward levelized manner
as well. Depending on the gate type and the number of inputs, a separate kernel
on the GPU is launched for T threads. As an example, the pseudocode of the
kernel which evaluates the fault-free simulation value of a 2-input AND gate is
provided in Algorithm 10. The arguments to the kernel are the pointer to global
memory, MEM, where fault-free values are stored, and the gate_id of the gate being
evaluated (id) and its two inputs (a and b). Let the thread’s (unique) threadID be
tx. The data in MEM, indexed at a location (tx + a × T), is ANDed with the
data at location (tx + b × T) and the result is stored in MEM indexed at loca-
tion (tx + id × T). Our implementation has a similar kernel for every gate in our
library.

Since the amount of global memory on the GPU is limited, we store the fault-free
simulation data in the global memory of the GPU for at most L gates1 of a circuit.
Note that we require two copies of the fault-free simulation data, one for use as a
reference and the other for temporary modification to compute faulty-circuit data.
For the gates whose fault-free data is not stored on the GPU, the fault-free data is
transferred to and from the CPU, as and when it is computed or required on the
GPU. This allows our GFTABLE approach to scale regardless of the size of the
given circuit.

Figure 9.1 shows the fault-free output at every gate, when a single test vector of
packet width 4 is applied at its 5 inputs.

Algorithm 10 Pseudocode of the Kernel for Logic Simulation of 2-Input AND Gate
logic_simulation_kernel_AND_2(int ∗MEM, int id, int a, int b){
tx = my_thread_id
MEM[tx + id ∗ T] = MEM[tx + a ∗ T] ·MEM[tx + b ∗ T]
}

1 We store fault-free data for the L gates of the circuit that are topologically closest to the primary
inputs of the circuit.
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9.4.2.3 Computing Detectabilities and Cumulative Detectabilities
(Lines 13, 14)

Next, in the FSIM∗ and GFTABLE algorithms, for every stem s, CD(s) is com-
puted. This is done by computing the detectability of every fault in FFR(s) by using
critical path tracing and the properties of cumulative detectabilities discussed in
Section 9.4.1.
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Fig. 9.2 CPT on FFR(k)

This step is further explained by the help of Fig. 9.2. The FFR(k) from the exam-
ple circuit is copied four times,2 one for each pattern in the vector applied. In each
of the copies, the sensitive input is marked using a bold dot. The critical lines are
darkened. Using these markings, the detectabilities of all lines at stem k can be
computed as follows: D(a, k) = 0001. This is because out of the four copies, only in
the fourth copy a lies on the sensitive path (i.e., a path consisting of critical lines)
backtraced from k. Similarly we compute the following:
D(b, k) = 1000; D(c, k) = 0010; D(i, k) = 1001; D(j, k)=0010; D(k, k) = 1111; D(a,
i) = 0111; D(b, i) = 1010; and D(c, j) = 1111

Now for the faults in FFR(k) (i.e., a s-a-0, c s-a-0, and c s-a-1), we compute the
FDs as follows:
FD(a s-a-0, k) = FD(a s-a-0, a) · D(a, k)
For every test pattern, the fault a s-a-0 can be observed at a only when the fault-free
value at a is different from the stuck-at value of the fault. Among the four copies in
Fig. 9.2, only the first and third copies have a fault-free value of ‘1’ at line a, and
thus fault a s-a-0 can be observed only in the first and third copies. Therefore FD(a
s-a-0, a) = 1010. Therefore, FD(a s-a-0, k) = 1010 · 0001 = 0000. Similarly, FD(c
s-a-0, k) = 0010 and FD(c s-a-1, k) = 0000.

2 This is because the packet width is 4.
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Now, by definition
CD(k) = (CD(i) · D(i, k) + CD(j) · D(j, k)) and CD(i) = (CD(a) · D(a, i) + CD(b) ·
D(b, i))
From the first property discussed for CD, CD(a) = FD(a s-a-0, a) = 1010, and by
definition CD(b) = 0000. By substitution and similarly computing CD(i) and CD(j),
we compute CD(k) = 0010.

The implementation of the computation of detectabilities and cumulative
detectabilities in FSIM∗ and GFTABLE is different, since in GFTABLE, all compu-
tations for computing detectabilities and cumulative detectabilities are done on the
GPU, with every kernel executed on the GPU launched with T threads. Thus a single
kernel in GFTABLE computes T times more data, compared to the corresponding
computation in FSIM∗. In FSIM∗, the backtracing is performed in a topological
manner from the output of the FFR to its inputs and is not scheduled for gates driving
zero critical lines in the packet. We found that this pruning reduces the number of
gate evaluations by 42% in FSIM∗ (based on tests run on four benchmark circuits).
In GFTABLE, however, T times more patterns are evaluated at once, and as a result,
no reduction in the number of scheduled gate evaluations were observed for the
same four benchmarks. Hence, in GFTABLE, we perform a brute-force backtracing
on all gates in an FFR.

As an example, the pseudocode of the kernel which evaluates the cumulative
detectability at output k of a 2-input gate with inputs i and j is provided in Algo-
rithm 11. The arguments to the kernel are the pointer to global memory, CD, where
cumulative detectabilities are stored; pointer to global memory, D, where detectabil-
ities to the immediate dominator are stored; the gate_id of the gate being evaluated
(k) and its two inputs (i and j). Let the thread’s (unique) threadID be tx. The data
in CD and D, indexed at a location (tx + i × T) and (tx + j × T), and the result
computed as per
CD(k) = (CD(i) · D(i, k) + CD(j) · D(j, k))
is stored in CD indexed at location (tx + k × T). Our implementation has a similar
kernel for 2-, 3-, and 4-input gates in our library.

Algorithm 11 Pseudocode of the Kernel to Compute CD of the Output k of 2-Input
Gate with Inputs i and j

CPT_kernel_2(int ∗ CD,int ∗ D,inti,intj,intk){
tx = my_thread_id
CD[tx + k ∗ T] = CD[tx + i ∗ T] · D[tx + i ∗ T]+ CD[tx + j ∗ T] · D[tx + j ∗ T]
}

9.4.2.4 Fault Simulation of SR(s) (Lines 15, 16)

In the next step, the FSIM∗ algorithm checks that CD(s) �= (00...0) (line 15), before
it schedules the simulation of SR(s) until its immediate dominator t and the compu-
tation of D(s, t). In other words, if CD(s) = (00...0), it implies that for the current
vector, the frontier of all faults upstream from s has died before reaching the stem
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s, and thus no fault can be detected at s. In that case, the fault simulation of SR(s)
would be pointless.

In the case of GFTABLE, the effective packet size is 32 × T . T is usually set
to more than 1,000 (in our experiments it is ≥10K), in order to take advantage of
the parallelism available on the GPU and to amortize the overhead of launching a
kernel and accessing global memory. The probability of finding CD(s) = (00...0) in
GFTABLE is therefore very low (∼0.001). Further, this check would require the
logical OR of T 32-bit integers on the GPU, which is an expensive computation.
As a result, we bypass the test of line 15 in GFTABLE and always schedule the
computation of SR(s) (line 16).

In simulating SR(s), explicit fault simulation is performed in the forward lev-
elized order from stem s to its immediate dominator t. The input at stem s during
simulation of SR(s) is CD(s) XORed with fault-free value at s. This is equivalent to
injecting the faults which are upstream from s and observable at s. After the fault
simulation of SR(s), the detectability D(s, t) is computed by XORing the simulation
output at t with the true value simulation at t. During the forward levelized simu-
lation, the immediate fanout of a gate g is scheduled only if the result of the logic
evaluation at g is different from its fault-free value. This check is conducted for
every gate in all paths from stem s to its immediate dominator t. On the GPU, this
step involves XORing the current gate’s T 32-bit outputs with the previously stored
fault-free T 32-bit outputs. It would then require the computation of a logical reduc-
tion OR of the T 32-bit results of the XOR into one 32-bit result. This is because
line 17 is computed on the CPU, which requires a 32-bit operand. In GFTABLE,
the reduction OR operation is a modified version of the highly optimized tree-based
parallel reduction algorithm on the GPU, described in [2]. The approach in [2] effec-
tively avoids bank conflicts and divergent warps, minimizes global memory access
latencies, and employs loop unrolling to gain further speedup. Our modified reduc-
tion algorithm has a key difference compared to [2]. The approach in [2] computes
a SUM instead of a logical OR. The approach described in [2] is a breadth-first
approach. In our case, employing a breadth-first approach is expensive, since we
need to detect if any of the T × 32 bits is not equal to 0. Therefore, as soon as we
find a single non-zero entry we can finish our computation. Note that performing this
test sequentially would be extremely slow in the worst case. We therefore equally
divide the array of T 32-bit words into smaller groups of size Q words and compute
the logical OR of all numbers within a group using our modified parallel reduction
approach. As a result, our approach is a hybrid of a breadth-first and a depth-first
approach. If the reduction result for any group is not (00...0), we return from the
parallel reduction kernel and schedule the fanout of the current gate. If the reduction
result for any group, on the other hand, is equal to (00...0), we compute the logical
reduction OR of the next group and so on. Each logical reduction OR is computed
using our reduction kernel, which takes advantage of all the optimizations suggested
in [2] (and improves [2] further by virtue of our modifications). The optimal size of
the reduction groups was experimentally determined to be Q = 256. We found that
when reducing 256 words at once, there was a high probability of having at least one
non-zero bit, and thus there was a high likelihood of returning early from the parallel
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reduction kernel. At the same time, using 256 words allowed for a fast reduction
within a single thread block of size equal to 128 threads. Scheduling a thread block
of 128 threads uses 4 warps (of warp size equal to 32 threads each). The thread block
can schedule the 4 warps in a time-sliced fashion, where each integer OR operation
takes 4 clock cycles, thereby making optimal use of the hardware resources.

Despite using the above optimization in parallel reduction, the check can still be
expensive, since our parallel reduction kernel is launched after every gate evaluation.
To further reduce the runtime, we launch our parallel reduction kernel after every
G gate evaluations. During in-between runs, the fanout gates are always scheduled
to be evaluated. Due to this, we would potentially do a few extra simulations, but
this approach proved to be significantly faster when compared to either performing
a parallel reduction after every gate’s simulation or scheduling every gate in SR(s)
for simulation in a brute-force manner. We experimentally determined the optimal
value for G to be 20.

In the next step (lines 17 and 18), the detectability D(s, t) is tested. If it is not
equal to (00...0), stem s is added to the ACTIVE_STEM list. Again this step of the
algorithm is identical for FSIM∗ and GFTABLE; however, the difference is in the
implementation. On the GPU, a parallel reduction technique (as explained above) is
used for testing if D(s, t) �= (00...0). The resulting 32-bit value is transferred back
to the CPU. The if condition (line 17) is checked on the CPU and if it is true, the
ACTIVE_STEM list is augmented on the CPU.
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Fig. 9.3 Fault simulation on SR(k)

For our example circuit, SR(k) is displayed in Fig. 9.3. The input at stem k is
0010 (CD(k) XORed with fault-free value at k). The two primary inputs d and e
have the original test vectors. From the output evaluated after explicit simulation
until p, D(k,p) = 0010 �= 0000. Thus, k is added to the active stem list.

CPT on FFR(p) can be computed in a similar manner. The resulting values are
listed below:
D(l, p)=1111; D(n, p)=1111; D(d, p)=0000; D(m, p)=0000; D(e, p)=0000; D(o,p)
=0000; D(d, n)=0000; D(l, n)=1111; D(m, o)=0000; D(e, o)=1111; FD(l s-a-0,
p)=0000; FD(l s-a-1, p)=1111; CD(d) = 0000; CD(l)=1111; CD(m)=0000; CD(e)
=0000; CD(n)=1111; CD(o)=0000; and CD(p)=1111.
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Since CD(p) �= (0000) and D(p, p) �= (0000), the stem p is added to ACTIVE_STEM
list.

9.4.2.5 Generating the Fault Table (Lines 22–31)

Next, FSIM∗ computes the global detectability of faults (and stems) in the backward
order, i.e., it removes the highest level stem s from the ACTIVE_STEM list (line 23)
and computes its global detectability (line 24). If it is not equal to (00. . . 0) (line 25),
the global detectability of every fault in FFR(s) is computed and stored in the [aij]
matrix (lines 26–28).

The corresponding implementation in GFTABLE maintains the ACTIVE_STEM
on the CPU and, like FSIM∗, first computes the global detectability of the highest
level stem s from ACTIVE_STEM list, but on the GPU. Also, another parallel reduc-
tion kernel is invoked for D(s, t), since the resulting data needs to be transferred to
the CPU for testing whether the global detectability of s is not equal to (00. . . 0)
(line 25). If true, the global detectability of every fault in FFR(s) is computed on
the GPU and transferred back to the CPU to store the final fault table matrix on the
CPU.

The complete algorithm of our GFTABLE approach is displayed in Algorithm 12.

9.5 Experimental Results

As discussed previously, pattern parallelism in GFTABLE includes both bit-
parallelism, obtained by performing logical operations on words (i.e., packet size
is 32), and thread-level parallelism, obtained by launching T GPU threads concur-
rently. With respect to bit parallelism, the bit width used in GFTABLE implemented
on the NVIDIA Quadro FX 5800 was 32. This was chosen to make a fair comparison
with FSIM∗, which was run on a 32-bit, 3.6 GHz Intel CPU running Linux (Fedora
Core 3), with 3 GB RAM. It should be noted that Quadro FX 5800 also allows
operations on 64-bit words.

With respect to thread-level parallelism, launching a kernel with a higher number
of threads in the grid allows us to better take advantage of the immense parallelism
available on the GPU, reduces the overhead of launching a kernel, and hides the
latency of accessing global memory. However, due to a finite size of the global
memory there is an upper limit on the number of threads that can be launched
simultaneously. Hence we split the fault list of a circuit into smaller fault lists. This
is done by first sorting the gates of the circuit in increasing order of their level. We
then collect the faults associated with every Z (=100) gates from this list, to generate
the smaller fault lists. Our approach is then implemented such that a new fault list
is targeted in a new iteration. We statically allocate global memory for storing the
fault detectabilities of the current faults (faults currently under consideration) for all
threads launched in parallel on the GPU. Let the number of faults in the current
list being considered be F, and the number of threads launched simultaneously
be T , then F × T × 4 B of global memory is used for storing the current fault
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Algorithm 12 Pseudocode of GFTABLE
GFTABLE(N){
Set up Fault list FL.
Find FFRs and SRs.
STEM_LIST← all stems
Fault table [aik] initialized to all zero matrix.

v=0
while v < N do

v=v + T × 32
Generate using LFSR on CPU and transfer test vector to GPU
Perform fault free simulation on GPU
ACTIVE_STEM← NULL.
for each stem s in STEM_LIST do

Simulate FFR using CPT on GPU // bruteforce backtracking on all gates
Simulate SRs on GPU
// check at every Gth gate during
// forward levelized simulation if fault frontier still alive,
// else continue with for loop with s← next stem in STEM_LIST
Compute D(s, t) on GPU, where t is the immediate dominator of s. // computed using
hybrid parallel reduction on GPU
if (D(s, t) �= (00...0)) then

update on CPU ACTIVE_STEM← ACTIVE_STEM + s
end if

end for

while (ACTIVE_STEM �= NULL) do
Remove the highest level stem s from ACTIVE_STEM.
Compute D(s, t) on GPU, where t is an auxiliary output which connects all primary out-
puts. // computed using hybrid parallel reduction on GPU
if (D(s, t) �= (00...0)) then

for (each fault fi in FFR(s)) do
FD(fi, t) = FD(fi, s) · D(s, t). // computed on GPU
Store FD(fi, t) in the ith row of [aik] // stored on CPU

end for
end if

end while

end while
}

detectabilities. As mentioned previously, we statically allocate space for two copies
of fault-free simulation output for at most L gates. The gates of the circuit are topo-
logically sorted from the primary outputs to the primary inputs. The fault-free data
(and its copy) of the first L gates in the sorted list are statically stored on the GPU.
This further uses L × T × 2 × 4 B of global memory. For the remaining gates, the
fault-free data is transferred to and from the CPU as and when it is computed or
required on the GPU.

Further, the detectabilities and cumulative detectabilities of all gates in the
FFRs of the current faults, and for all the dominators in the circuit, are stored
on the GPU. The total on-board memory on a single NVIDIA Quadro FX 5800
is 4 GB. With our current implementation, we can launch T = 16K threads in
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Table 9.1 Fault table generation results with L = 32K

Circuit # Gates # Faults GFTABLE FSIM∗ Speedup GFTABLE-8 Speedup

c432 196 524 0.77 12.60 16.43× 0.13 93.87×
c499 243 758 0.75 8.40 11.20× 0.13 64.00×
c880 443 942 1.15 17.40 15.13× 0.20 86.46×
c1355 587 1,574 2.53 23.95 9.46× 0.44 54.03×
c1908 913 1,879 4.68 51.38 10.97× 0.82 62.70×
c2670 1,426 2,747 1.92 56.27 29.35× 0.34 167.72×
c3540 1,719 3,428 7.55 168.07 22.26× 1.32 127.20×
c5315 2,485 5,350 4.50 109.05 24.23× 0.79 138.48×
c6288 2,448 7,744 28.28 669.02 23.65× 4.95 135.17×
c7552 3,719 7,550 10.70 204.33 19.10× 1.87 109.12×
b14_1 7,283 12,608 70.27 831.27 11.83× 12.30 67.60×
b14 9,382 16,207 100.87 1,502.47 14.90× 17.65 85.12×
b15 12,587 21,453 136.78 1,659.10 12.13× 23.94 69.31×
b20_1 17,157 31,034 193.72 3,307.08 17.07× 33.90 97.55×
b20 20,630 35,937 319.82 4,992.73 15.61× 55.97 89.21×
b21_1 16,623 29,119 176.75 3,138.08 17.75× 30.93 101.45×
b21 20,842 35,968 262.75 4,857.90 18.49× 45.98 105.65×
b17 40,122 69,111 903.22 4,921.60 5.45× 158.06 31.14×
b18 40,122 69,111 899.32 4,914.93 5.47× 157.38 31.23×
b22_1 25,011 44,778 369.34 4,756.53 12.88× 64.63 73.59×
b22 29,116 51,220 399.34 6,319.47 15.82× 69.88 90.43×
Average 15.68× 89.57×

parallel, while using L = 32K gates. Note that the complete fault dictionary is
never stored on the GPU, and hence the number of test patterns used for gen-
erating the fault table can be arbitrarily large. Also, since GFTABLE does not
store the information of the entire circuit on the GPU, it can handle arbitrary-sized
circuits.

The results of our current implementation, for 10 ISCAS benchmarks and 11
ITC99 benchmarks, for 0.5M patterns, are reported in Table 9.1. All runtimes
reported are in seconds. The fault tables obtained from GFTABLE, for all bench-
marks, were verified against those obtained from FSIM∗ and were found to ver-
ify with 100% fidelity. Column 1 lists the circuit under consideration; columns
2 and 3 list the number of gates and (collapsed) faults in the circuit. The total
runtimes for GFTABLE and FSIM∗ are listed in columns 4 and 5, respectively.
The runtime of GFTABLE includes the total time taken on both the GPU and
the CPU and the time taken for all the data transfers between the GPU and
the CPU. In particular, the transfer time includes the time taken to transfer the
following:

• the test patterns which are generated on the CPU (CPU→ GPU);
• the results from the multiple invocations of the parallel reduction kernel (GPU
→ CPU);

• the global fault detectabilities over all test patterns for all faults (GPU→ CPU);
and
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• the fault-free data of any gate which is not in the set of L gates (during true value
and faulty simulations) (CPU↔ GPU).

Column 6 reports the speedup of GFTABLE over FSIM∗. The average speedup over
the 21 benchmarks is reported in the last row. On average, GFTABLE is 15.68×
faster than FSIM∗.

By using the NVIDIA Tesla server housing up to eight GPUs [1], the available
global memory increases by 8×. Hence we can potentially launch 8× more threads
simultaneously and set L to be large enough to hold the fault-free data (and its copy)
for all the gates in our benchmark circuits. This allows for a ∼8× speedup in the
processing time. The first three items of the transfer times in the list above will not
scale, and the last item will not contribute to the total runtime. In Table 9.1, column
7 lists the projected runtimes when using a 8 GPU system for GFTABLE (referred
to as GFTABLE-8). The projected speedup of GFTABLE-8 compared to FSIM∗ is
listed in column 8. The average potential speedup is 89.57×.

Tables 9.2 and 9.3 report the results with L = 8K and 16K, respectively. All
columns in Tables 9.2 and 9.3 report similar entries as described for Table 9.1. The
speedup of GFTABLE and GFTABLE-8 over FSIM∗ with L = 8K is 12.88× and
69.73×, respectively. Similarly, the speedup of GFTABLE and GFTABLE-8 over
FSIM∗ with L = 16K is 14.49× and 82.80×, respectively.

Table 9.2 Fault table generation results with L = 8K

Circuit # Gates # Faults GFTABLE FSIM∗ Speedup GFTABLE-8 Speedup

c432 196 524 0.73 12.60 17.19× 0.13 98.23×
c499 243 758 0.75 8.40 11.20× 0.13 64.00×
c880 443 942 1.13 17.40 15.36× 0.20 87.76×
c1355 587 1,574 2.52 23.95 9.52× 0.44 54.37×
c1908 913 1,879 4.73 51.38 10.86× 0.83 62.04×
c2670 1,426 2,747 1.93 56.27 29.11× 0.34 166.34×
c3540 1,719 3,428 7.57 168.07 22.21× 1.32 126.92×
c5315 2,485 5,350 4.53 109.05 24.06× 0.79 137.47×
c6288 2,448 7,744 28.17 669.02 23.75× 4.93 135.72×
c7552 3,719 7,550 10.60 204.33 19.28× 1.85 110.15×
b14_1 7,283 12,608 70.05 831.27 11.87× 12.26 67.81×
b14 9,382 16,207 120.53 1,502.47 12.47× 21.09 71.23×
b15 12,587 21,453 216.12 1,659.10 7.68× 37.82 43.87×
b20_1 17,157 31,034 410.68 3,307.08 8.05× 71.87 46.02×
b20 20,630 35,937 948.06 4,992.73 5.27× 165.91 30.09×
b21_1 16,623 29,119 774.45 3,138.08 4.05× 135.53 23.15×
b21 20,842 35,968 974.03 4,857.90 5.05× 170.46 28.50×
b17 40,122 69,111 1,764.01 4,921.60 2.79× 308.70 15.94×
b18 40,122 69,111 2,100.40 4,914.93 2.34× 367.57 13.37×
b22_1 25,011 44,778 647.15 4,756.53 7.35× 113.25 42.00×
b22 29,116 51,220 915.87 6,319.47 6.90× 160.28 39.43×
Average 12.88× 69.73×
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Table 9.3 Fault table generation results with L = 16K

Circuit # Gates # Faults GFTABLE FSIM∗ Speedup GFTABLE-8 Speedup

c432 196 524 0.73 12.60 17.33× 0.13 99.04×
c499 243 758 0.75 8.40 11.20× 0.13 64.00×
c880 443 942 1.03 17.40 16.89× 0.18 96.53×
c1355 587 1,574 2.53 23.95 9.46× 0.44 54.03×
c1908 913 1,879 4.68 51.38 10.97× 0.82 62.70×
c2670 1,426 2,747 1.97 56.27 28.61× 0.34 163.46×
c3540 1,719 3,428 7.92 168.07 21.22× 1.39 121.26×
c5315 2,485 5,350 4.50 109.05 24.23× 0.79 138.48×
c6288 2,448 7,744 28.28 669.02 23.65× 4.95 135.17×
c7552 3,719 7,550 10.70 204.33 19.10× 1.87 109.12×
b14_1 7,283 12,608 70.27 831.27 11.83× 12.30 67.60×
b14 9,382 16,207 100.87 1,502.47 14.90× 17.65 85.12×
b15 12,587 21,453 136.78 1,659.10 12.13× 23.94 69.31×
b20_1 17,157 31,034 193.72 3,307.08 17.07× 33.90 97.55×
b20 20,630 35,937 459.82 4,992.73 10.86× 80.47 62.05×
b21_1 16,623 29,119 156.75 3,138.08 20.02× 27.43 114.40×
b21 20,842 35,968 462.75 4,857.90 10.50× 80.98 59.99×
b17 40,122 69,111 1,203.22 4,921.60 4.09× 210.56 23.37×
b18 40,122 69,111 1,399.32 4,914.93 3.51× 244.88 20.07×
b22_1 25,011 44,778 561.34 4,756.53 8.47× 98.23 48.42×
b22 29,116 51,220 767.34 6,319.47 8.24× 134.28 47.06×
Average 14.49× 82.80×

9.6 Chapter Summary

In this chapter, we have presented our implementation of fault table generation on
a GPU, called GFTABLE. Fault table generation requires fault simulation without
fault dropping, which can be extremely computationally expensive. Fault simulation
is inherently parallelizable, and the large number of threads that can be computed
in parallel on a GPU can therefore be employed to accelerate fault simulation and
fault table generation. In particular, we implemented a pattern-parallel approach
which utilizes both bit parallelism and thread-level parallelism. Our implementation
is a significantly re-engineered version of FSIM, which is a pattern-parallel fault
simulation approach for single-core processors. At no time in the execution is the
entire circuit (or a part of the circuit) required to be stored (or transferred) on (to) the
GPU. Like FSIM, GFTABLE utilizes critical path tracing and the dominator concept
to reduce explicit simulation time. Further modifications to FSIM allow us to maxi-
mally harness the GPU’s computational resources and large memory bandwidth. We
compared our performance to FSIM∗, which is FSIM modified to generate a fault
table. Our experiments indicate that GFTABLE, implemented on a single NVIDIA
Quadro FX 5800 GPU card, can generate a fault table for 0.5 million test patterns, on
average 15× faster when compared with FSIM∗. With the NVIDIA Tesla server [1],
our approach would be potentially 90× faster.
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Chapter 10
Accelerating Circuit Simulation Using Graphics
Processors

10.1 Chapter Overview

SPICE [14] based circuit simulation is a traditional workhorse in the VLSI design
process. Given the pivotal role of SPICE in the IC design flow, there has been sig-
nificant interest in accelerating SPICE. Since a large fraction (on average 75%) of
the SPICE runtime is spent in evaluating transistor model equations, a significant
speedup can be availed if these evaluations are accelerated. This chapter reports on
our efforts to accelerate transistor model evaluations using a graphics processing
unit (GPU). We have integrated this accelerator with OmegaSIM, a commercial fast
SPICE [6] tool. Our experiments demonstrate that significant speedups (2.36× on
average) can be obtained. The asymptotic speedup that can be obtained is about 4×.
We demonstrate that with circuits consisting of as few as about 1,000 transistors,
speedups of ∼3× can be obtained. By utilizing NVIDIA Tesla GPU systems [5],
this speedup could be enhanced further, especially for larger designs.

The remainder of this chapter is organized as follows. Section 10.2 introduces cir-
cuit simulation along with the motivation to accelerate it. Some previous work in cir-
cuit simulation has been described in Section 10.3. Section 10.4 details our approach
for implementing device model evaluation on a GPU. In Section 10.5 we present
results from experiments which were conducted after implementing our approach
and integrating it in OmegaSIM. We summarize the chapter in Section 10.6.

10.2 Introduction

SPICE [14] is the de facto industry standard for circuit-level simulation of VLSI
designs. SPICE simulation is typically infeasible for designs larger than 20,000
devices. With the rapidly decreasing minimum feature sizes of devices, the number
of devices on a single chip has significantly increased. As a result, it becomes criti-
cally important to run SPICE on larger portions of the design to validate their elec-
trical and timing behavior before tape-out. Further, process variations increasingly
impact the electrical behavior of a design. This is often tackled by performing Monte
Carlo SPICE simulations, requiring significant computing and time resources.
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As a result, there is a significant motivation to speed up SPICE simulations with-
out losing accuracy. In this chapter, we present an approach to accelerate the com-
putationally intensive component of SPICE, by exploiting the parallelism available
in graphics processing units (GPUs). In particular, our approach parallelizes and
accelerates the transistor model evaluation in SPICE, for BSIM3 [1] models. Our
benchmarking shows that BSIM3 model evaluations comprise about 75% of the
SPICE runtime. By accelerating this portion of SPICE, therefore, a speedup of up
to 4× can be obtained in theory. Our results show that in practice, our approach
can obtain a speedup of about 2.36× on average, with a maximum speedup of
3.07×. The significance of this is further underscored by the fact that our approach
is implemented and integrated in OmegaSIM [6], a commercial SPICE accelerator
tool, which presents significant speed gains over traditional SPICE implementations,
even without GPU-based acceleration.

The SPICE algorithm and its variants simulate the non-linear time-varying
behavior of a design, by employing the following key procedures:

• formulation of circuit equations using modified nodal analysis [16] (MNA) or
sparse tableau analysis [13] (STA);

• evaluating the time-varying behavior of the design using numerical integration
techniques, applied to the non-linear circuit model;

• solving the non-linear circuit model using Newton–Raphson (NR) based itera-
tions; and

• solving a linear system of equations in the inner loop of the engine.

The main time-consuming computation in SPICE is the evaluation of device
model equations in different iterations of the above flow. Our profiling experiments,
using BSIM3 models, show that on average 75% of the SPICE runtime is spent
in performing these evaluations. This is because these evaluations are performed
for each device and possibly repeated for each time step, until the convergence of
the NR-based non-linear equation solver. The total number of such evaluations can
easily run into the billions, even for small- to medium-sized designs. Therefore,
the speed of the device model evaluation code is a significant determinant of the
speed of the overall SPICE simulator [16]. For more accurate device models like
BSIM4 [2], which account for additional electrical behaviors of deep sub-micron
(DSM) devices, the fraction of the total runtime which model evaluations require is
even higher. Thus the asymptotic speedup that can be obtained by accelerating these
evaluations is more than 4×.

This chapter focuses on the acceleration of SPICE by performing the transistor
model evaluations on the GPU. An industrial design could require several thousand
device model evaluations for a given time step. These evaluations are independent.
In other words the device model computation requires that the same set of model
equations be evaluated, possibly several thousand times, for different devices with
no data dependencies. This property of the device model evaluations matches well
with the single instruction multiple data (SIMD) computational paradigm that GPUs
implement. Our current implementation handles BSIM3 models. However, using
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the approach described in the chapter, we can easily handle BSIM4 models or a
combination of different models.

Our device model evaluation engine is implemented in the Compute Unified
Device Architecture (CUDA) framework, which is an open-source programming
and interfacing tool provided by NVIDIA for programming their GPU devices.
The GPU device used for our implementation and benchmarking is the NVIDIA
GeForce 8800 GTS.

Performing the evaluation of device model equations for several thousand devices
is a natural match for capabilities of the GPU. This is because such an application
can exploit the extreme memory bandwidths of the GPU, as well as the presence of
several computation elements on the GPU. To the best of the authors’ knowledge,
this work is the first to accelerate circuit simulation on a GPU platform.

An extended abstract of this work can be found in [12]. The key contributions of
this work are as follows:

• We exploit the match between parallel device model evaluation and the capabili-
ties of a GPU, a SIMD-based device. This enables us to harness the computational
power of GPUs to accelerate device model evaluations.

• Our implementation caters to the key features required to obtain maximal speedup
on a GPU:

– The different threads, which perform device model evaluations, are imple-
mented so that there are no data or control dependencies between threads.

– All device model evaluation threads compute identical instructions, but on
different data, which exploits the SIMD architecture of the GPU.

– The values of the device parameters required for evaluating the model equa-
tions are obtained using a texture memory lookup, thus exploiting the extremely
large memory bandwidth of GPUs.

• Our device model evaluation is implemented in a manner which is aware of the
specific constraints of the GPU platform such as the use of (cached) texture mem-
ory for table lookup, memory coalescing for global memory accesses, and the
balancing of hardware resources used by different threads. This helps maximize
the speedup obtained.

• Our approach is integrated into a commercial circuit simulation tool OmegaSIM
[6]. A CPU-only implementation of OmegaSIM is on average 10–1,000× faster
than SPICE (and about 10× faster than other fast SPICE implementations). With
the device model evaluation performed using our GPU-based implementation,
OmegaSIM is sped up by an additional factor of 2.36×, on average.

10.3 Previous Work

Several fast SPICE implementations depend upon hierarchical isomorphism to
increase performance [7, 4, 3]. In other words they extract hierarchical similarities
in the design and avoid redundant simulations. This approach works well for regular
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designs such as memories, which exhibit a high degree of repetitive and hierarchical
structure. However, it is less successful for random logic or other designs without
repetitive structures. This approach is not efficient for simulating a post place-and-
routed design, since back-annotated capacitances vary significantly so that repetitive
blocks of hierarchy can no longer be considered to be identical in terms of their elec-
trical behavior. Our approach parallelizes device model evaluations at each time step
and hence exhibits a healthy speedup regardless of the regularity (or lack thereof) in
a circuit. As such, our approach is orthogonal to the hierarchical isomorphism-based
techniques.

A transistor-level engine targeted for interconnect analysis is proposed in [11].
It makes use of the successive chord (SC) integration method (as opposed to NR
iterations) and a table lookup model to determine Ids currents. The approach reuses
LU factorization results across multiple time steps and input stimuli. As noted by the
authors, the SC method does not provide all desired convergence properties of the
NR method for general analog simulation analysis. In contrast, our approach speeds
up device model evaluation for arbitrary circuits in a classical SPICE framework,
due to its robustness and industry-wide popularity. Our early experiments demon-
strate that model evaluation comprises the majority (∼75%) of the total circuit
simulation runtime. Our approach is orthogonal to the non-linear system solution
approach and can thus be used in tandem with the approach of [11] if desired.

The approach of [8] proposed speeding up device model evaluation by using the
PACE [9] distributed memory multiprocessor system, with a four-processor clus-
ter. They targeted transient analysis in ADVICE, an AT&T circuit simulation pro-
gram similar to SPICE, which is available commercially. Our approach, in contrast,
exploits the parallelism available in an off-the-shelf GPU for speeding up device
model evaluations. Further, their experimental results discuss the speedup obtained
for device model evaluation (alone) to be about 3.6×. Our results speed up device
model evaluation by 30–40× on average. The speedup obtained using our approach
for the entire SPICE simulation is 2.36× on average. Further, their target multi-
processor system requires the user to perform load balancing up-front. The CUDA
architecture and its instruction scheduler (which handles the GPU memory accesses)
together abstract the problem of load balancing away from the user. Also, the thread
scheduler on the GPU periodically switches between processors to efficiently and
dynamically balance their computational resources, without user intervention.

The authors of [17] proposed speeding up circuit simulation using a shared mem-
ory multiprocessor system, namely the Alliant FX/8 with a six-processor cluster.
They too target transient analysis in ADVICE, but concentrate on two routines –
(i) an implicit numerical integration scheme to solve the time-varying non-linear
system and (ii) a modified approach for solving the set of non-linear equations.
In contrast, our approach uses a commercial off-the-shelf GPU to accelerate only
the device model evaluations, by exploiting the SIMD computing paradigm of the
GPU. During numerical integration, the authors perform device model evaluation
by device type. In other words, all resistors are evaluated at once, then all capacitors
are evaluated followed by MOSFETs, etc. In order to avoid potential conflicts due to
parallel writes, the authors make use of locks for consistency. Our implementation



10.4 Our Approach 157

faces no such issues, since all writes are automatically synchronized by the sched-
uler and are thus conflict-free. Therefore, we obtain significantly higher speedups.
The experimental results of [17] indicate a speedup for device model evaluation
of about 1–6×. Our results demonstrate speedups for device model evaluation of
about 30–40×. The authors of [17] do not report runtimes or speedup obtained
for the entire circuit simulation. We improve the runtime for the complete circuit
simulation by 2.36× on average.

The commercial tool we used for integrating our implementation of GPU-based
device model evaluation is OmegaSIM [6]. OmegaSIM’s core is a multi-engine,
current-based architecture with multi-threading capabilities. Other details about the
OmegaSIM architecture are not pertinent to this chapter, since we implement only
the device model evaluations on the GPU.

10.4 Our Approach

The SPICE [15, 14] algorithm simulates the non-linear time-varying behavior of a
circuit using the following steps:

• First, the circuit equations are formulated using modified nodal analysis (MNA).
This is typically done by stamping the MNA matrix based on the types of devices
included in the SPICE netlist, as well as their connectivity.

• The time-varying behavior of the design is solved using numerical integration
techniques applied to the non-linear circuit model. Typically, the trapezoidal
method of numerical integration is used, although the Gear method may be
optionally used. Both these methods are implicit methods and are highly stable.

• The non-linear circuit model is solved using Newton–Raphson (NR) based iter-
ations. In each iteration, a linear system of equations needs to be solved. During
the linearization step, device model equations need to be evaluated, to populate
the coefficient values in the linear system of equations.

• Solving a linear system of equations forms the inner loop of the SPICE engine.

We profiled the SPICE code to find the fraction of time that is spent performing
device model evaluations, on several circuits. These profiling experiments, which
were performed using OmegaSIM, showed that on average 75% of the total simula-
tion runtime is spent in performing device model evaluations for industrial designs.
As an example, for the design Industry_1, which performs the functionality of a Lin-
ear Feedback Shift Register (LFSR), 74.9% of the time was spent in BSIM3 device
model evaluations. The Industry_1 design had 324 devices and required 1.86×107

BSIM3 device model evaluations over the entire simulation.
We note that the device model evaluations can be performed in parallel, since

they need to be evaluated for every device. Further, these evaluations are possibly
repeated (with different input data) for each time step until the convergence of the
NR-based non-linear equation solver. Therefore, billions of these evaluations could
be required for a complete simulation, even for small to medium designs. Also,
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these computations are independent of each other, exposing significant parallelism
for medium- to large-sized designs. The speed of execution of the device model
evaluation code, therefore, significantly determines the speed of the overall SPICE
simulator. Since the GPU platform allows significant parallelism, it forms an ideal
candidate platform for speeding up transistor model evaluations. Since device model
evaluations consume about 75% of the runtime of a CPU-based SPICE engine, we
can obtain an asymptotic maximum speedup of 4× if these computations are paral-
lelized. This is in accordance with Amdahl’s law [10], which states that the overall
algorithm performance is limited by the portion that is not parallelizable. In the
sequel we discuss the implementation of the GPU-based device model evaluation
portion of the SPICE flow.

Our implementation is integrated into an industrial accelerated SPICE tool called
OmegaSIM. Note that OmegaSIM, running in a CPU-only mode, obtains significant
speedup over competing SPICE offerings. Our implementation, after integration
into OmegaSIM, results in a CPU+GPU implementation which is 2.36× faster on
average, compared to the CPU-only version of OmegaSIM.

10.4.1 Parallelizing BSIM3 Model Computations on a GPU

Our implementation supports BSIM3 models. In this section, we make several
observations about the careful engineering required in order to parallelize BSIM3
device model computations on a GPU. These ideas are implemented in our approach
and together help us achieve the significant speedup in BSIM3 model computations.
Note that BSIM4 device model computations can be parallelized in a similar man-
ner.

10.4.1.1 Inlining if–then–else Code

The BSIM3 model evaluation code consists of several if–then–else statements,
with a maximum nesting depth of 4. This code does not contain any while or for
loops. The input to the BSIM3 device model evaluation routine is a number of
device parameters, some of which are unchanged during the model evaluation (these
parameters are referred to as runtime parameters), while others are computed during
the model evaluation. The key task is to perform these computations on a GPU,
which has a SIMD computation model. For instance, a code fragment such as

Codefragment1()
if(cond){ CODE-A; }
else{ CODE-B; }

would be converted into the following code fragment for execution on the GPU:
Codefragment2()

CODE-A;
CODE-B;
if(cond){ return result of CODE-A; }
else{ return result of CODE-B; }
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As mentioned, the programming paradigm of a GPU is the single instruction
multiple data (SIMD) model, wherein all threads must compute identical instruc-
tions, but on different data. The different threads being computed in parallel should
have no data or control dependency among them, to obtain maximal speedup. GPUs
also have an extremely large memory bandwidth, which allows multiple memory
accesses to be performed in parallel. The SIMD paradigm is thus an appropri-
ate match for performing several device model evaluations in parallel. Our code
(restructured as shown in Codefragment2()) can be executed in a SIMD fashion on
a GPU, with all kernels executing the same instruction in lock-step, but on different
data. Of course, this code fragment requires the GPU to perform more instructions
than is the case with the original code fragment. However, the large degree of paral-
lelism on the GPU overcomes this disadvantage and yields impressive speedups, as
we will see in the sequel. The above conversion is handled by the CUDA compiler.

10.4.1.2 Partitioning the BSIM3 Code into Kernels

The key task in implementing the BSIM3 device model evaluations on the GPU
is the partitioning of the BSIM3 code into smaller fragments, with each fragment
being implemented as a GPU kernel.

In the limit, we could implement the entire BSIM3 code in a single kernel, which
includes all the device model evaluations required for a BSIM3 model card. How-
ever, this would not allow us to execute a sufficiently large number of kernels in
parallel. This is because of the limitation on the hardware resources available for
every multiprocessor on the GPU. In particular, the limitation applies to registers
and shared memory. As mentioned earlier, the maximum number of registers for
a multiprocessor is 8,192. Also, the maximum amount of shared memory for a
multiprocessor is 16 KB. If any of these resources are exceeded, additional kernels
cannot be run. Therefore, if we had a kernel with 4,000 registers, then no more than
2 kernels can be issued in parallel (even if the amount of shared memory used by
these 2 kernels is much less than 16 KB). In order to achieve maximal speedup, the
GPU code needs to be implemented in a manner that hides memory access latencies,
by issuing hundreds of threads at once. In case a single thread (which implements
all the device model evaluations) is launched, it will not leave sufficient hardware
resources to instantiate a sufficient number of additional threads to execute the same
kernel (on different data). As a result, the latency of accessing off-chip memory will
not be hidden in such a scenario. To avert this, the device model evaluation code
needs to be partitioned into smaller kernels. These kernels are of an appropriate
size such that a large number of them can be issued without depleting the registers
or shared memory of the multiprocessor. If, on the other hand, the kernels are too
small, then large amounts of data transfer will be required from one kernel to another
(this transfer is done via global memory). The data that is written by kernel k, and
needs to be read by kernel k + j, will be stored in global memory. If the kernels
are extremely small, a large amount of data will have to be written and read to/from
global memory, hampering the performance. Hence, in the other extreme case of
very small kernels, we may run into a performance bottleneck as well.
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Therefore, keeping in mind the limited hardware resources (in terms of registers
and shared memory), and the global memory latency and bandwidth constraints,
the device model evaluations are partitioned into appropriately sized kernels which
maximize parallelism and minimize the global memory access latency. Satisfying
both these constraints for a kernel is important in order to maximally exploit the
speedup obtained on the GPU.

Our approach for partitioning the BSIM3 code into kernels first finds the control
and dataflow graph (CDFG) of the BSIM3 code. Then we find the disconnected
components of this graph, which form a set D. For each component d ∈ D, we parti-
tion the code of d into smaller kernels as appropriate. The partitioning is performed
such that the number of variables that are written by kernel k and read by kernel
k + j is minimized. This minimizes the number of global memory accesses. Also,
the number of registers R used by each kernel is minimized, since the total number of
threads that can be issued in parallel on a single multiprocessor is 8,192/R, rounded
down to the nearest multiple of 32, as required by the 8800 architecture. The number
of threads issued in parallel cannot exceed 768 for a single multiprocessor.

10.4.1.3 Efficient Use of GPU Memory Model

In order to obtain maximum speedup of the BSIM3 model evaluation code, the
different forms of GPU memory need to be carefully utilized. In this section, we
discuss the approach taken in this regard:

• Global Memory
At a coarse analysis level, the device model evaluations in a circuit simulator are
divided into

– creating a DC model for the device, given the operating voltages at the device
terminals, and

– calculating the different output values that are part of the BSIM3 device eval-
uation code. These are the values that are returned by the BSIM3 device eval-
uation code, to the calling routine.

In order to minimize the data transfers from GPU (device) to CPU (host), the
results of the set of kernels that compute the DC model parameters are stored
in global memory and are not returned back to the host. Next, when the kernels
which calculate the values that need to be returned by the BSIM3 model evalu-
ation routine are executed, they can read (or write) the global memory to fetch
the DC model parameters. GPUs have an extremely large memory bandwidth as
discussed earlier, which allows multiple memory accesses to the global memory
to be performed in parallel and their latencies to be hidden.

• Texture Memory
In our implementation, the values of the parameters (referred to as runtime
parameters) required for performing device model evaluations are stored in the
texture memory and are accessed by performing a texture memory lookup. Using
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the texture memory (as opposed to global, shared, or constant memory) has the
following advantages:

– Texture memory of a GPU device is cached as opposed to shared or global
memory. Hence we can exploit the benefits obtained from the cached texture
memory lookups.

– Texture memory accesses do not have coalescing constraints as required in
case of global memory accesses, making the runtime parameters lookup effi-
cient.

– In case of multiple lookups performed in parallel, shared memory accesses
might lead to bank conflicts and thus impede the potential speedup.

– Constant memory accesses in the GPU, as discussed in Chapter 3, are optimal
when all lookups occur at the same memory location. This is typically not the
case in parallel device model evaluation.

– The CUDA programming environment has built-in texture fetching routines
which are extremely efficient.

Note that the allocation and loading of the texture memory requires non-zero
time, but this cost is easily amortized since several thousand lookups are typically
performed from the same runtime parameter data.

• Constant Memory
Our implementation makes efficient use of the constant memory for storing phys-
ical constants such as π , εo required for device model evaluations. Constant
memory is cached, and thus, performing several million device model evalua-
tions in the entire circuit simulation flow allows us to exploit the advantage of a
cached constant memory. Since the processors in any multiprocessor of the GPU
operate in a SIMD fashion, all lookups for the constant parameters occur at the
same memory location at the same time. This results in the most optimal usage
of constant memory.

10.4.1.4 Thread Scheduler and Code Statistics

Once the threads are issued to the GPU, an inbuilt hardware scheduler performs the
scheduling of these threads.

The blocks that are processed by one multiprocessor in one batch are referred to
as active. Each active block is split into SIMD groups of threads called warps. Each
of these warps contains the same number of threads (warp size) and is executed
by the multiprocessor in a SIMD fashion. Active warps (i.e., all the warps from all
the active blocks) are time-sliced – a thread scheduler periodically switches from
one warp to another to maximize the use of the multiprocessor’s computational
resources.

The statistics for our implementation of the BSIM3 device model evaluation code
are reported next. The warp size for an NVIDIA 8800 device is 32. Further, the pool
of registers available for the threads in a single multiprocessor is equal to 8,192.
In our implementation, the dimblock size is 32 threads. The average number of
registers used by a single kernel in our implementation is around 12. A register
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count limit of 8,192 allows 640 threads of the possible 768 threads in a single mul-
tiprocessor to be issued, thus having an occupancy of about 83.33% on average.
The multiprocessor occupancy is calculated using the occupancy calculator work-
sheet provided with CUDA. The number of registers used per kernel and the shared
memory per block are obtained using the CUDA compiler (nvcc) with the ‘-cubin’
option.

10.5 Experiments

Our device model evaluation engine is implemented and integrated in a commercial
SPICE accelerator tool OmegaSIM [6]. In this section, we present details of our
experimental setup and results.

In all our experiments, the CPU used was an Intel Core 2 Quad Core (4 proces-
sor) machine, running at 2.40 GHz with 4 GB RAM. The GPU card used for our
experiments is the NVIDIA GeForce 8800 GTS with 512 MB RAM, operating at
675 MHz.

We first profiled the circuit simulation code. Over several examples, we found
that about 75% of the runtime is consumed by BSIM3 device model evaluations.
For the design Industrial_1, the code profiling is as follows:

• BSIM3 device model evaluations = 74.9%.
• Non-accelerated portion of OmegaSIM code = 24.1%.

Thus, by accelerating the BSIM3 device evaluation code, we can asymptotically
obtain around 4× speedup for circuit simulation.

Table 10.1 compares our approach of implementing the device model evaluation
on the GPU with the device model evaluation on the CPU in terms of runtime.
Column 1 reports the number of evaluations performed. Columns 2 and 3 report the
GPU runtimes (wall clock), in ms, for evaluating the device model equations and the
data transfers (CPU→GPU as well as GPU→CPU), respectively. In particular, the
data transfers include transferring the runtime parameters and the operating voltages
at the device terminal (for all evaluations) from CPU to GPU. The data transfers
from the GPU to CPU include the outputs of the BSIM3 device model evaluation
code. Column 4 reports the total (processing+transfer) GPU runtimes (in ms). The
CPU runtimes (in ms) are reported in column 5 and the speedup obtained is reported
in column 6.

Table 10.1 Speedup for BSIM3 evaluation

GPU runtimes (ms)

# Evaluations Processing Transfer Total CPU runtime (ms) Speedup

1M 81.17 196.48 277.65 8,975.63 32.33 ×
2M 184.91 258.79 443.7 18,086.29 40.76 ×
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Table 10.2 Speedup for circuit simulation

OmegaSIM (s) AuSIM (s)

Ckt name # Trans. Total # eval. CPU-alone GPU+CPU SpeedUp

Industrial_1 324 1.86×107 49.96 34.06 1.47 ×
Industrial_2 1,098 2.62×109 118.69 38.65 3.07 ×
Industrial_3 1,098 4.30×108 725.35 281.5 2.58 ×
Buf_1 500 1.62×107 27.45 20.26 1.35 ×
Buf_2 1,000 5.22×107 111.5 48.19 2.31 ×
Buf_3 2,000 2.13×108 486.6 164.96 2.95 ×
ClockTree_1 1,922 1.86×108 345.69 132.59 2.61 ×
ClockTree_2 7,682 1.92×108 458.98 182.88 2.51 ×
Avg 2.36 ×

Table 10.2 compares the runtime of AuSIM (which is OmegaSIM with our
approach integrated. AuSIM runs partly on GPU and partly on CPU against the
original OmegaSIM (running on the CPU alone). Columns 1 and 2 report the cir-
cuit name and the number of transistors in the circuit, respectively. The number of
evaluations required for full circuit simulation is reported in column 3. Columns 4
and 5 report the CPU-alone and GPU+GPU runtimes (in seconds), respectively.
The speedups are reported in column 6. The circuits Industrial_1, Industrial_2,
and Industrial_3 perform the functionality of an LFSR. Circuits Buf_1, Buf_2,
and Buf_3 are buffer insertion instances for buses of three different sizes. Cir-
cuits ClockTree_1 and ClockTree_2 are symmetrical H-tree clock distribution net-
works. These results show that an average speedup of 2.36× can be achieved over
a variety of circuits. Also, note that with an increase in the number of transistors
in the circuit, the speedup obtained is higher. This is because the GPU mem-
ory latencies can be better hidden when more device evaluations are issued in
parallel.

The NVIDIA 8800 GPU device supports IEEE 754 single precision floating
point operations. However, the BSIM3 model code uses IEEE 754 double precision
floating point computations. We first converted all the double precision computa-
tions in the BSIM3 code into single precision before modifying it for use on the
GPU. We determined the error that was incurred in this process. We found that the
accuracy obtained by our GPU-based implementation of device model evaluation
(using single precision floating point) is extremely close to that of a CPU-based
double precision floating point implementation. In particular, we computed the error
over 106 device model evaluations and found that the maximum absolute error was
9.0×10−22 Amperes, and the average error was 2.88×10−26 Amperes. The rela-
tive average error was 4.8×10−5. NVIDIA has announced the availability of GPU
devices which support double precision floating point operations. Such devices will
further improve the accuracy of our approach.

Figures 10.1 and 10.2 show the voltage plots obtained for Industrial_2 and
Industrial_3 circuits, obtained by running AuSIM and comparing it with SPICE.
Notice that the plots completely overlap.
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Fig. 10.1 Industrial_2 waveforms

Fig. 10.2 Industrial_3 waveforms
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10.6 Chapter Summary

Given the key role of SPICE in the design process, there has been significant interest
in accelerating SPICE. A large fraction (on average 75%) of the SPICE runtime
is spent in evaluating transistor model equations. The chapter reports our efforts
to accelerate transistor model evaluations using a GPU. We have integrated this
accelerator with a commercial fast SPICE tool and have shown significant speedups
(2.36× on average). The asymptotic speedup that can be obtained is about 4×. With
the recently announced quad GPU systems, this speedup could be enhanced further,
especially for larger designs.
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5. NVIDIA Tesla GPU Computing Processor. http://www.nvidia.com/object/IO_

43499.html
6. OmegaSim Mixed-Signal Fast-SPICE Simulator. http://www.nascentric.com/

product.html
7. Virtuoso UltraSim Full-chip Simulator. http://www.cadence.com/products/

custom_ic/ultrasim/index.aspx
8. Agrawal, P., Goil, S., Liu, S., Trotter, J.: Parallel model evaluation for circuit simulation on

the PACE multiprocessor. In: Proceedings of the Seventh International Conference on VLSI
Design, pp. 45–48 (1994)

9. Agrawal, P., Goil, S., Liu, S., Trotter, J.A.: PACE: A multiprocessor system for VLSI circuit
simulation. In: Proceedings of SIAM Conference on Parallel Processing, pp. 573–581 (1993)

10. Amdahl, G.: Validity of the single processor approach to achieving large-scale computing
capabilities. Proceedings of AFIPS 30, 483–485 (1967)

11. Dartu, F., Pileggi, L.T.: TETA: transistor-level engine for timing analysis. In: DAC ’98: Pro-
ceedings of the 35th Annual Conference on Design Automation, pp. 595–598 (1998)

12. Gulati, K., Croix, J., Khatri, S.P., Shastry, R.: Fast circuit simulation on graphics processing
units. In: Proceedings, IEEE/ACM Asia and South Pacific Design Automation Conference
(ASPDAC), pp. 403–408 (2009)

13. Hachtel, G., Brayton, R., Gustavson, F.: The sparse tableau approach to network analysis and
designation. Circuits Theory, IEEE Transactions on 18(1), 101–113 (1971)

14. Nagel, L.: SPICE: A computer program to simulate computer circuits. In: University of
California, Berkeley UCB/ERL Memo M520 (1995)

15. Nagel, L., Rohrer, R.: Computer analysis of nonlinear circuits, excluding radiation. IEEE
Journal of Solid States Circuits SC-6, 162–182 (1971)

16. Pillage, L.T., Rohrer, R.A., Visweswariah, C.: Electronic Circuit & System Simulation Meth-
ods. McGraw-Hill, New York (1994). ISBN-13: 978-0070501690 (ISBN-10: 0070501696)

17. Sadayappan, P., Visvanathan, V.: Circuit simulation on shared-memory multiprocessors. IEEE
Transactions on Computers 37(12), 1634–1642 (1988)



Part IV
Automated Generation of GPU Code

Outline of Part IV

In Part I of this monograph candidate hardware platforms were discussed. In Part
II, we presented three approaches (custom IC based, FPGA based, and GPU-based)
for accelerating Boolean satisfiability, a control-dominated EDA application. In Part
III, we presented the acceleration of several EDA applications with varied degrees
of inherent parallelism in them. In Part IV of this monograph, we present an auto-
mated approach to accelerate uniprocessor code using a GPU. The key idea here
is to partition the software application into kernels in an automated fashion, such
that multiple instances of these kernels, when executed in parallel on the GPU, can
maximally benefit from the GPU’s hardware resources.

Due to the high degree of available hardware parallelism on the GPU, these
platforms have received significant interest for accelerating scientific software. The
task of implementing a software application on a GPU currently requires significant
manual effort (porting, iteration, and experimentation). In Chapter 11, we explore
an automated approach to partition a uniprocessor software application into kernels
(which are executed in parallel on the GPU). The input to our algorithm is a unipro-
cessor subroutine which is executed multiple times, on different data, and needs to
be accelerated on the GPU. Our approach aims at automatically partitioning this
routine into GPU kernels. This is done by first extracting a graph which models the
data and control dependencies of the subroutine in question. This graph is then par-
titioned. Various partitions are explored, and each is assigned a cost which accounts
for GPU hardware and software constraints, as well as the number of instances of
the subroutine that are issued in parallel. From the least cost partition, our approach
automatically generates the resulting GPU code. Experimental results demonstrate
that our approach correctly and efficiently produces fast GPU code, with high qual-
ity. We show that with our partitioning approach, we can speed up certain routines
by 15% on average when compared to a monolithic (unpartitioned) implementation.
Our entire technique (from reading a C subroutine to generating the partitioned GPU
code) is completely automated and has been verified for correctness.



Chapter 11
Automated Approach for Graphics Processor
Based Software Acceleration

11.1 Chapter Overview

Significant manual design effort is required to implement a software routine on a
GPU. This chapter presents an automated approach to partition a software appli-
cation into kernels (which are executed in parallel) that can be run on the GPU.
The software application should satisfy the constraint that it is executed multiple
times on different data, and there exist no control dependencies between invoca-
tions. The input to our algorithm is a C subroutine which needs to be accelerated
on the GPU. Our approach automatically partitions this routine into GPU kernels.
This is done as follows. We first extract a graph which models the data and control
dependencies of the target subroutine. This graph is then partitioned using a K-way
partition, using several values of K. For every partition a cost is computed which
accounts for GPU’s hardware and software constraints. The cost also accounts for
the number of instances of the subroutine that are issued in parallel. We then select
the least cost partitioning solution and automatically generate the resulting GPU
code corresponding to this partitioning solution. Experimental results demonstrate
that our approach correctly and efficiently produces high-quality, fast GPU code. We
demonstrate that with our partitioning approach, we can speed up certain routines
by 15% on average, when compared to a monolithic (unpartitioned) implementation.
Our approach is completely automated and has been verified for correctness.

The remainder of this chapter is organized as follows. The motivation for this
work is described in Section 11.2. Section 11.3 details our approach for kernel
generation for a GPU. In Section 11.4 we present results from experiments and
summarize in Section 11.5.

11.2 Introduction

There are typically two broad approaches that have been employed to accelerate sci-
entific computations on the GPU platform. The first approach is the most common
and involves taking a scientific application and rearchitecting its code to exploit
the GPU’s capabilities. This redesigned code is now run on the GPU. Significant
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speedup has been demonstrated in this manner, for several algorithms. Examples
of this approach include the GPU implementations of sorting [9], the map-reduce
algorithm [4], and database operations [3]. A good reference in this area is [8].

The second approach involves identifying a particular subroutine S in a CPU-
based algorithm (which is repeated multiple times in each iteration of the computa-
tion and is found to take up a majority of the runtime of the algorithm) and acceler-
ating it on the GPU. We refer to this approach as the porting approach, since only a
portion of the original CPU-based code is ported on the GPU without any rearchi-
tecting of the code. This approach requires less coding effort than the rearchitecting
approach. The overall speedup obtained through this approach is, however, subject
to Amdahl’s law, which states that if a parallelizable subroutine which requires a
fractional runtime of P is sped up by a factor Q, then the final speedup of the overall
algorithm is

1

(1− P)+ P
Q

(11.1)

The rearchitecting approach typically requires a significant investment of time
and effort. The porting approach is applicable to many problems in which a small
number of subroutines are run repeatedly on independent data values and take up a
large fraction of the total runtime. Therefore, an approach to automatically generate
GPU code for such problems would be very useful in practice.

In this chapter, we focus on automatically generating GPU code for the porting
class of problems. Porting implementations require careful partitioning of the sub-
routine into kernels which are run in parallel on the GPU. Several factors must be
considered in order to come up with an optimal solution:

• To maximize the speedup obtained by executing the subroutine on the GPU,
numerous and sometimes conflicting constraints imposed by the GPU platform
must be accounted for. In fact, if a given subroutine is run without considering
certain key constraints, the subroutine may fail to execute on the GPU altogether.

• The number of kernels and the total communication and computation costs for
these kernels must be accounted for as well.

Our approach partitions the program into kernels, multiple instances of which are
executed (on different data) in parallel on the GPU. Our approach also schedules the
partitions in such a manner that correctness is retained. The fact that we operate on
a restricted class of problems1 and a specific parallel processing platform (the GPU)
makes the task of automatically generating code more practical. In contrast the task
of general parallelizing compilers is significantly harder, There has been significant
research in the area of parallelizing compilers. Examples include the Parafrase For-
tran reconstructing compiler [6]. Parafrase is an optimizing compiler preprocessor

1 Our approach is employed for subroutines that are executed multiple times, on independent data.
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that takes as input scientific Fortran code, constructs a program dependency graph,
and performs a series of optimization steps that creates a revised version of the orig-
inal program. The automatic parallelization targeted in [6] is limited to the loops
and array references in numeric applications. The resultant code is optimized for
multiple instruction multiple data (MIMD) and very long instruction word (VLIW)
architectures. The Bulldog Fortran reassembling compiler [2] is aimed at automatic
parallelization at the instruction level. It is designed to detect parallelism that is not
amenable to vectorization by exploiting parallelism within the basic block.

The key contrasting features of our approach to existing parallelizing compilers
are as follows. First, our target platform is a GPU. Thus the constraints we need
to satisfy while partitioning code into kernels arise due to the hardware and archi-
tectural constraints associated with the GPU platform. The specific constraints are
detailed in the sequel. Also, the memory access patterns required for optimized exe-
cution of code on a GPU are very specific and quite different from a general vector
or multi-core computer. Our approach attempts to incorporate these requirements
while generating GPU kernels automatically.

11.3 Our Approach

Our kernel generation engine automatically partitions a given subroutine S into K
kernels in a manner that maximizes the speedup obtained by multiple invocations of
these kernels on the GPU. Before our algorithm is invoked, the key decision to be
made is the determination of which subroutine(s) to parallelize. This is determined
by profiling the program and finding the set of subroutines Σ that

• are invoked repeatedly and independently (with different input data values) and
• collectively take up a large fraction of the runtime of the entire program. We refer

to this fraction as P.

Now each subroutine S ∈ Σ is passed to our kernel generation engine, which auto-
matically generates the GPU kernels for S.

Without loss of generality, in the remainder of this section, our approach is
described in the context of kernel generation for a single subroutine S.

11.3.1 Problem Definition

The goal of our kernel generation engine for GPUs is stated as follows. Given a
subroutine S and a number N which represents the number of independent calls of S
that are issued by the calling program (on different data), find the best partitioning
of S into kernels, for maximum speedup when the resulting code is run on a GPU.

In particular, in our implementation, we assume that S is implemented in the
C programming language, and the particular SIMD machine for which the kernels
are generated is an NVIDIA Quadro 5800 GPU. Note that our kernel generation
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engine is general and can generate kernels for other GPUs as well. If an alternate
GPU is used, this simply means that the cost parameters to our engine need to be
modified. Also, our kernel generation engine handles in-line code, nested if–then–
else constructs of arbitrary depth, pointers, structures, and non-recursive function
calls (by value).

11.3.2 GPU Constraints on the Kernel Generation Engine

In order to maximize performance, GPU kernels need to be generated in a manner
that satisfies constraints imposed by the GPU-based SIMD platform. In this sec-
tion, we summarize these constraints. In the next section, we describe how these
constraints are incorporated in our automatic kernel generation engine:

• As mentioned earlier, the NVIDIA Quadro 5800 GPU consists of 30 multipro-
cessors, each of which has 8 processors. As a result, there are 240 hardware
processors in all, on the GPU IC. For maximum hardware utilization, it is impor-
tant that we issue significantly more than 240 threads at once. By issuing a large
number of threads in parallel, the data read/write latencies of any thread are hid-
den, resulting in a maximal utilization of the processors of the GPU, and hence
ensuring maximal speedup.

• There are 16,384 32-bit registers per multiprocessor. Therefore if a subroutine
S is partitioned into K kernels, with the ith kernel utilizing ri registers, then we
should have maxi (ri)· (# of threads per MP)≤ 16,384. This argues that across all
our kernels, if maxi (ri) is too small, then registers will not be completely utilized
(since the number of threads per multiprocessor is at most 1,024), and kernels
will be smaller than they need to be (thereby making K larger). This will increase
the communication cost between kernels.
On the other hand, if maxi (ri) is very high (say 4,000 registers for example),
then no more than 4 threads can be issued in parallel. As a result, the latency of
accessing off-chip memory will not be hidden in such a scenario. In the CUDA
programming model, if ri for the ith kernel is too large, then the kernel fails to
launch. Therefore, satisfying this constraint is important to ensure the execution
of any kernel. We try to ensure that ri is roughly constant across all kernels.

• The number of threads per multiprocessor must be

– a multiple of 32 (since 32 threads are issued per warp, the minimum unit of
issue),

– less than or equal to 1,024, since there can be at most 1,024 threads issued at
a time, per multiprocessor.

If the above conditions are not satisfied, then there will be less than complete
utilization of the hardware. Further, we need to ensure that the number of threads
per block is at least 128, to allow enough instructions such that the scheduler can
effectively overlap transfer and compute instructions. Finally, at most 8 blocks
per multiprocessor can be active at a time.
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• When the subroutine S is partitioned into smaller kernels, the data that is written
by kernel k1 and needs to be read by kernel k2 will be stored in global memory. So
we need to minimize the total amount of data transferred between kernels in this
manner. Due to high global memory access latencies, this memory is accessed in
a coalesced manner.

• To obtain maximal speedup, we need to ensure that the cumulative runtime over
all kernels is as low as possible, after accounting for computation as well as
communication.

• We need to ensure that the number of registers per thread is minimized such that
the multiprocessors are not allotted less than 100% of the threads that they are
configured to run with.

• Finally, we need to minimize the number of kernels K, since each kernel has
an invocation cost associated with it. Minimizing K ensures that the aggregate
invocation cost is low.

Note that the above guidelines often place conflicting constraints on the auto-
matic kernel generation engine. Our kernel generation algorithm is guided by a cost
function which quantifies these constraints and hence is able to obtain the optimal
solution for the problem.

11.3.3 Automatic Kernel Generation Engine

The pseudocode for our automatic kernel generation engine is shown in Algo-
rithm 13. The input to the algorithm is the subroutine S which needs to be partitioned
into GPU kernels and the number N of independent calls of S that are made in
parallel.

Algorithm 13 Automatic Kernel Generation(N, S)
BESTCOST ←∞
G(V ,E)← extract_graph(S)
for K = Kmin to Kmax do

P← partition(G,K)
Q← make_acyclic(P)
if cost(Q) < BESTCOST then

golden_config← Q
BESTCOST ← cost(Q)

end if
end for
generate_kernels(golden_config)

The first step of our algorithm constructs the companion control and dataflow
graph G(V ,E) of the C program. This is done using the Oink [1] tool. Oink is a set
of C++ static analysis tools. Each unique line li of the subroutine S corresponds to
a unique vertex vi of G. If there is a variable written in line l1 of S which is read by
line l2 of S, then the directed edge (v1,v2) ∈ E. Each edge has a weight associated
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Fig. 11.1 CDFG example

with it, which is proportional to the number of bytes that are transferred between
the source node and the sink node. An example code fragment and its graph G (with
edge weights suppressed) are shown in Fig. 11.1.

Note that if there are if–then–else statements in the code, then the resulting graph
has edges between the node corresponding to the condition being checked and each
of the statements in the then and else blocks, as shown in Fig. 11.1.

Now our algorithm computes a set P of partitions of the graph G, obtained by
performing a K-way partitioning of G. We use hMetis [5] for this purpose. Since
hMetis (and other graph-partitioning tools) operate on undirected graphs, there is a
possibility of hMetis’ solution being infeasible for our purpose. This is illustrated in
Fig. 11.2. Consider a companion CDFG G which is partitioned into two partitions
k1 and k2 as shown in Fig. 11.2a. Partition k1 consists of nodes a, b, and c, while
partition k2 consists of nodes d, e, and f . From this partitioning solution, we induce a
kernel dependency graph (KDG) GK(VK ,EK) as shown in Fig. 11.2b. In this graph,
vi ∈ VK iff ki is a partition of G. Also, there is a directed edge (vi,vj) ∈ EK iff
∃np,nq ∈ V s.t. (np,nq) ∈ E and np ∈ ki, nq ∈ kj. Note that a cyclic kernel depen-
dency graph in Fig. 11.2b is an infeasible solution for our purpose, since kernels
need to be issued sequentially. To fix this situation, we selectively duplicate nodes
in the CDFG, such that the modified KDG is acyclic. Figure 11.2c illustrates how
duplicating node a ensures that the modified KDG that is induced (Fig. 11.2d) is
acyclic. We discuss our duplication heuristic in Section 11.3.3.1.

In our kernel generation engine, we explore several K-way partitions. K is varied
from Kmin to a maximum value Kmax. For each of the explored partitions of the graph
G, a cost is computed. This estimates the cost of implementing the partition on the
GPU. The details of the cost function are described in Section 11.3.3.2. The lowest
cost partitioning result golden_config is stored. Based on golden_config, we gener-
ate GPU kernels (using a PERL script). Suppose that golden_config was obtained
by a k-way partitioning of S. Then each of the k partitions of golden_config yields a
GPU kernel, which is automatically generated by our PERL script.
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Fig. 11.2 KDG example

Data that is written by a kernel ki and read by another kernel kj (ki, kj< k) is stored
in the GPU’s global memory, in an array of length equal to the number of threads
issued, and indexed at a location which is always aligned to a 32-byte boundary.
This enables coalesced write and read accesses by threads executing kernel ki and
kj, respectively. Since the cached memories are read-only memories, we cannot
use them for communication between kernels. Also, since the given subroutine S
is invoked N times on independent data, our generated kernels do not create any
memory access conflicts when accessing global memory.

11.3.3.1 Node Duplication

To understand our node duplication heuristic, we first define a few terms. A border
node (of a partition m of G) is a node i ∈ V which has an outgoing edge to at least
one node j ∈ V such that j belongs to a partition n �= m.

Our heuristic selectively duplicates border nodes until all cycles are removed.
The duplication heuristic selects a node to duplicate based on the criteria below:

• a border node i ∈ G (belonging to partition m, say) with an incoming edge from
another partition n (which is a part of a cycle that includes m) and
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• if the above criterion is not met, we look for border nodes i belonging to partitions
which are on a cycle in the KDG, such that these nodes have a minimum number
of incident edges (z,i) ∈ E, where z ∈ G belongs to the same partition as i.

11.3.3.2 Cost of a Partitioning Solution

The cost of each partitioning solution is computed using several cost parameters,
which are described next. In particular, our cost function C considers four param-
eters x = {x1,x2, . . . ,x4}. We consider a linear cost function, C = α1x1 + α2x2 +
α3x3 + α4x4.

1. Parameter x1: The first parameter of our cost function is the number of partitions
being used. The GPU runtime is significantly modulated by this term, and hence
it is included in our cost model.

2. Parameter x2: This parameter measures the total time spent in communication
to and from the device’s global memory

x2 =
[∑K

i=1 (Bi)

BW

]

Here Bi is the number of read or write transfers that are required for the par-
tition i, and BW is the peak bandwidth for coalesced global memory transfers.
Therefore the term x2 represents the total amount of time that is spent in com-
municating data, when any one of the N calls of the subroutine S is executed.

3. Parameter x3: The total computation time is estimated in this parameter. Note
that due to node duplication, the total computation time is not a constant across
different partitioning solutions. Let Ci be the number of GPU clock cycles taken
by partition i. We estimate Ci based on the number of clock cycles for various
instructions like integer and floating point addition, multiplication, and division,
library functions for exponential and square root. This information is available
from NVIDIA. Also let F be the frequency of operation of the GPU. Therefore,

the time taken to execute the ith kernel is Ci
F . Based on this, x3 =

∑K
i=1 (Ci)

F .
4. Parameter x4: We also require that the average number of registers over all

kernels is a small number. As discussed earlier, this is important to maximize
speedup. This parameter (for each kernel) is provided by the nvcc compiler that
is provided along with the CUDA distribution.

11.4 Experimental Results

Our kernel generation engine handles C programs. It handles non-recursive function
calls (by value), pointers, structures, and if–else constructs. The kernel generation
tool is implemented in Perl [10], and it uses hMetis [5] for partitioning and Oink [1]
for generating the CDFG.
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11.4.1 Evaluation Methodology

Our evaluation of our approach is performed in steps.
In the first step, we compute the weights α1,α2, . . . ,α4. This is done by using

a set L of benchmarks. For all these C-code examples, we generate the GPU code
with 1, 2, 3, 4, . . ., 20 partitions (kernels). The code is then run on the GPU, and the
values of runtime as well as all the x variables are recorded in each instance. From
this data, we fit the cost function C = α1x1+α2x2+α3x3+α4x4 in MATLAB. For
any partitioning solution, we take the actual runtime on the GPU as the cost C, for
curve-fitting. This yields the values of αi.

In the second step, we use the values of αi computed in the first step and run our
kernel generation engine on a different set of benchmarks which are to be acceler-
ated on the GPU. Again, we create 1, 2, 3, . . ., 20 partitions for each example. From
these, we select the best three partitions (those which produce the three smallest
values of the cost function). The kernel generation engine generates the GPU ker-
nels for these partitions. We determine the best solution among the three (i.e., the
solution which has the fastest GPU runtime) after executing them on the GPU.

Our experiments were conducted over a set of four benchmarks. These were as
follows:

• BSIM3: This code computes the MOSFET model evaluations in SPICE [7]. The
code computes three independent device quantities which are implemented in
separate subroutines, namely BSIM3-1, BSIM3-2, and BSIM3-3.

• MMI: This code performs integer matrix–matrix multiplication. We experiment
with MMI for matrices of various sizes (4× 4 and 8× 8).

• MMF: This code performs floating point matrix–matrix multiplication. We exper-
iment with MMF for matrices of various sizes (4× 4 and 8× 8).

• LU: This code performs LU-decomposition, required during the solution of a
linear system. We experiment with systems of varying sizes (matrices of size
4× 4 and 8× 8).

In the first step of the approach, we use the MMI, MMF, and LU benchmarks
for matrices of size 4 × 4 and determined the values of αi. The values of these
parameters obtained were

α1 = 0.6353,

α2 = 0.0292,

α3 = −0.0002, and

α4 = 0.1140.

Now in the second step, we tested the usefulness of our approach on the remaining
benchmarks (MMI, MMF, and LU for matrices of size 8×8, and BSIM3-1, BSIM3-
2, and BSIM3-3 subroutines).

The results which demonstrate the fidelity of our kernel generation engine are
shown in Table 11.1. In this table, the first column reports the number of partitions
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Table 11.1 Validation of the automatic kernel generation approach

MMI8 MMF8 LU8 BSIM3-1 BSIM3-2 BSIM3-3

GPU GPU GPU GPU GPU GPU
# Part. Pred. time Pred. time Pred. time Pred. time Pred. time Pred. time

1
√

0.88
√

4.12
√

1.64 41.40
√

3.84 53.10
2 0.96 3.13

√
1.77 39.60

√
4.25 40.60

3
√

0.84 4.25 2.76
√

43.70
√

4.34
√

43.40
4

√
0.73

√
6.04

√
6.12 44.10 3.56

√
38.50

5 1.53 7.42 1.42 43.70 3.02
√

42.20
6 1.14 5.06 8.53 43.40 4.33 43.50
7 1.53 6.05 5.69 43.50 4.36 43.70
8 1.04

√
3.44 7.65 45.10 11.32 98.00

9 1.04 8.25 5.13
√

40.70 4.61 49.90
10 1.04 15.63 10.00

√
35.90 24.12 57.50

11 1.04 9.79 14.68 43.40 35.82 43.50
12 2.01 12.14 16.18 44.60 40.18 41.20
13 1.14 13.14 13.79 43.70 17.27 44.00
14 1.55 14.26 10.75 43.90 52.12 84.90
15 1.81 11.98 19.57 45.80 36.27 53.30
16 2.17 12.15 20.89 43.10 4.28 101.10
17 2.19 17.06 19.51 44.20 18.14 46.40
18 1.95 13.14 20.57 46.70 34.24 61.30
19 2.89 14.98 19.74 49.30 35.40 46.80
20 2.89 14.00 19.15 52.70 38.11 51.80

being considered. Columns 2, 4, 6, 8, 10, and 12 indicate the three best partitioning
solutions based on our cost model, for the MMI8, MMF8, LU8, BSIM3-1, BSIM3-
2, and BSIM3-3 benchmarks, respectively. If our approach had perfect prediction
fidelity, then these three partitioning solutions would have the lowest runtimes on
the GPU. Columns 3, 5, 7, 9, 11, and 13 report the actual GPU runtimes for the
MMI8, MMF8, LU8, BSIM3-1, BSIM3-2, and BSIM3-3 benchmarks, respectively.
The three solutions that actually had the lowest GPU runtimes are highlighted in
bold font in these columns.

Generating the partitioning solutions followed by automatic generation of GPU
code (kernels) for each of these benchmarks was completed in less than 5 min on
a 3.6 GHz Intel processor with 3 GB RAM and running Linux. The target GPU for
our experiments was the NVIDIA Quadro 5800 GPU.

From these results, we can see the need for partitioning these subroutines. For
instance in MMI8 benchmark, the fastest result obtained is with partitioning the
code into 4 kernels, which makes it 17% faster compared to the runtime obtained
using one monolithic kernel. Similar observations can be made for all other bench-
marks. On average over these 6 benchmarks, our best predicted solution is 15%
faster than the solution with no partitioning.

We can further observe that our kernel generation approach correctly predicts the
best solution in three (out of six benchmarks), one of the best two solutions in five
(out of six benchmarks), and one of the best three solutions in all six benchmarks. In
comparison to the manual partitioning of BSIM3 subroutines, which was discussed
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in Chapter 10, our automatic kernel generation approach obtained a partitioning
solution that was 1.5× faster. This is a significant result, since the manual partition-
ing approach took us roughly a month for completion. In general, the GPU runtimes
tend to be noisy, and hence it is hard to obtain 100% prediction fidelity.

11.5 Chapter Summary

GPUs are highly parallel SIMD engines, with high degrees of available hardware
parallelism. These platforms have received significant interest for accelerating sci-
entific software applications in recent times. The task of implementing a software
application on a GPU currently requires significant manual intervention, iteration,
and experimentation. This chapter presents an automated approach to partition a
software application into kernels (which are executed in parallel) that can be run on
the GPU. The input to our algorithm is a subroutine which needs to be accelerated on
the GPU. Our approach automatically partitions this routine into GPU kernels. This
is done by first extracting a graph which models the data and control dependencies
in the subroutine in question. This graph is then partitioned. Any cycles in the graph
induced by the partitions are removed by duplicating nodes. Various partitions are
explored, and each is given a cost which accounts for GPU hardware and software
constraints. Based on the least cost partition, our approach automatically generates
the resulting GPU code. Experimental results demonstrate that our approach cor-
rectly and efficiently produces fast GPU code, with high quality. Our results show
that with our partitioning approach, we can speed up certain routines by 15% on
average when compared to a monolithic (unpartitioned) implementation. Our entire
flow (from reading a C subroutine to generating the partitioned GPU code) is com-
pletely automated and has been verified for correctness.
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Chapter 12
Conclusions

In recent times, the gain in single-core performance of general-purpose micropro-
cessors has declined due to the diminished rate of increase of operating frequencies.
This is attributed to the power, memory, and ILP walls that are encountered as VLSI
technology scales. At the same time, microprocessors are becoming increasingly
complex with multiple cores being implemented on the same IC. This problem of
reduced gains in performance in single-core processors is significant for EDA appli-
cations, since VLSI design complexity is continuously growing. In this monograph,
we evaluated the viability of alternate platforms (such as custom ICs, FPGAs, and
graphics processors) for accelerating EDA algorithms. We chose applications for
which there is a strong motivation to accelerate, since they are used several times in
the VLSI design flow, and have varied degrees of inherent parallelism in them. We
studied two different categories of EDA algorithms:

• control dominated and
• control plus data parallel.

In particular, Boolean satisfiability (SAT), Monte Carlo based statistical static tim-
ing analysis, circuit simulation, fault simulation, and fault table generation were
explored.

In Part I of this monograph, we discussed hardware platforms, namely custom-
designed ICs, FPGAs, and graphics processors. These hardware platforms were
compared in Chapter 2, using criteria such as their architecture, expected perfor-
mance, programming model and environment, scalability, design turn-around time,
security, and cost of hardware. In Chapter 3, we described the programming envi-
ronment used for interfacing with the GPU devices.

In Part II of this monograph, three hardware implementations for accelerating
SAT (a control-dominated EDA algorithm) were presented. A custom IC imple-
mentation of a hardware SAT solver was described in Chapter 4. This solver is
also capable of extracting the minimum unsatisfiable core. The speed and capacity
for our SAT solver obtained are dramatically higher than those reported for exist-
ing hardware SAT engines. The speedup was attributed to the fact that our engine
performs the tasks of computing implications and determining conflicts in paral-
lel, using a specially designed clause cell. Further, approaches to partition a SAT
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instance into banks and bin them into strips were developed, resulting in a very high
utilization of clause cells. Also, through SPICE simulations we determined that the
average power consumed per cycle by our SAT solver is under 1 mW, which further
strengthens the practicality of our approach.

An FPGA-based approach for SAT was presented in Chapter 5. In this approach,
the traversal of the implication graph as well as conflict clause generation is per-
formed in hardware, in parallel. In our approach, clause literals are stored in FPGA
slices. In order to solve large SAT instances, we heuristically partitioned the clauses
into a number of bins, each of which could fit in the FPGA. This was done in
a pre-processing step. The on-chip block RAM (BRAM) was used for storing
all the bins of a partitioned CNF problem. The FPGA-based SAT solver imple-
ments a GRASP [6] like BCP engine, which performs non-chronological back-
tracks both within a bin and across bins. The embedded PowerPC processor on
the FPGA performed the task of loading the appropriate bin from the BRAM,
as requested by the hardware. Our entire flow was verified for correctness on a
Virtex-II Pro based evaluation platform. We projected the runtimes obtained on
this platform to an industry-strength XC4VFX140-based system and showed that a
speedup of 17× can be obtained, over MiniSAT [1], a state-of-the-art software SAT
solver. The projected system handles instances with as many as 280K clauses on
10K variables.

A SAT approach with a new GPU-enhanced variable ordering heuristic was
presented in Chapter 6. Our approach was implemented in a CPU-based proce-
dure which leverages the parallelism of a GPU. The CPU implements MiniSAT,
a complete procedure, while the GPU implements SurveySAT, an approximate pro-
cedure. The SAT search is initiated on the CPU and after a user-specified fraction
of decisions have been made, the GPU-based SurveySAT engine is invoked. Any
new decisions made by the GPU-based engine are returned to MiniSAT, which now
updates its variable ordering. This procedure is repeated until a solution is found.
Our approach retains completeness (since it implements a complete procedure) but
has the potential of high speedup (since the incomplete procedure is executed on
a highly parallel graphics processor based platform). Experimental results demon-
strate that on average, a 64% speedup was obtained over several benchmarks, when
compared to MiniSAT.

In Part III of this monograph, several algorithms (with varying degrees of con-
trol and data parallelism) were accelerated using a graphics processor. Monte Carlo
based SSTA was accelerated on a GPU in Chapter 7. In this approach we map Monte
Carlo based SSTA to the large number of threads that can be computed in parallel
on a GPU. Our approach performs multiple delay simulations of a single gate in
parallel. It benefits from a parallel implementation of the Mersenne Twister pseudo-
random number generator on the GPU, followed by Box–Muller transformations
(also implemented on the GPU). We store the μ and σ of the pin-to-output delay
distributions for all inputs and for every gate on fast cached memory on the GPU.
In this way, we leverage the large memory bandwidth of the GPU. This approach
was implemented on an NVIDIA GeForce GTX 280 GPU card and experimental
results indicate that this approach can obtain an average speedup of about 818×
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as compared to a serial CPU implementation. With the recently announced quad
GTX 280 GPU cards, we estimate that our approach would attain a speedup of over
2,400×.

In Chapter 8, we accelerate fault simulation on a GPU. A large number of gate
evaluations can be performed in parallel by employing a large number of threads on
a GPU. We implemented a pattern- and fault-parallel fault simulator which fault-
simulates a circuit in a forward levelized fashion. Fault injection is also performed
along with gate evaluation, with each thread using a different fault injection mask.
Since GPUs have an extremely large memory bandwidth, we implement each of
our fault simulation threads (which execute in parallel with no data dependencies)
using memory lookup. Our experiments indicate that our approach, implemented on
a single NVIDIA GeForce GTX 280 GPU card, can simulate on average 47× faster
when compared to an industrial fault simulator. On a Tesla (8-GPU) system [2], our
approach can potentially be 300× faster.

The generation of a fault table is accelerated on a GPU in Chapter 9. We employ
a pattern-parallel approach, which utilizes both bit parallelism and thread-level
parallelism. Our implementation is a significantly modified version of FSIM [4],
which is a pattern-parallel fault simulation approach for single-core processors.
Our approach, like FSIM, utilizes critical path tracing and the dominator concept
to prune unnecessary computations and thereby reduce runtime. We do not store
the circuit (or any part of the circuit) on the GPU, and implement efficient parallel
reduction operations to communicate data to the GPU. When compared to FSIM∗,
which is FSIM modified to generate a fault table on a single-core processor, our
approach (on a single NVIDIA Quadro FX 5800 GPU card) can generate a fault
table (for 0.5 million test patterns) 15× faster on average. On a Tesla (8-GPU)
system [2], our approach can potentially generate the same fault table 90× faster.

In Chapter 10, we study the speedup obtained when implementing the model
evaluation portion of SPICE on a GPU. Our code is ported to a commercial fast
SPICE [3] tool. Our experiments demonstrate that significant speedups (2.36× on
average) can be obtained for the application. The asymptotic speedup that can be
obtained is about 4×. We demonstrate that with circuits consisting of as few as
about 1,000 transistors, speedups of about 3× can be obtained.

In Part IV of this monograph, we discussed automated acceleration of single-core
software on a GPU. We presented an automated approach for GPU-based software
acceleration of serial code in Chapter 11. The input to our algorithm is a subroutine
which is executed multiple times, on different data, and needs to be accelerated on
the GPU. Our approach aims at automatically partitioning this routine into GPU
kernels. This is done by first extracting a graph, which models the data and con-
trol dependencies of the subroutine in question, and then partitioning it. Various
partitions are explored, and each is assigned a cost which accounts for GPU hard-
ware and software constraints, as well as the number of instances of the subroutine
that are issued in parallel. From the least cost partition, our approach automati-
cally generates the resulting GPU code. Experimental results demonstrate that our
approach correctly and efficiently produces fast GPU code, with high quality. We
show that with our partitioning approach, we can speed up certain routines by 15%
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on average when compared to a monolithic (unpartitioned) implementation. Our
entire technique (from reading a C subroutine to generating the partitioned GPU
code) is completely automated and has been verified for correctness.

All the hardware platforms studied in this monograph require a communica-
tion link with a host processor. This link often limits the performance that can
be obtained using hardware acceleration. The EDA applications presented in this
monograph need to be carefully designed, in order to work around the communica-
tion cost and obtain a speedup on the target platform. Future-generation hardware
architectures may have much lower communication costs. This would be possible,
for example, if the host and the accelerator are to be implemented on the same
die or share the same physical RAM. However, for the existing architectures, it is
crucial to consider the cost of this communication while architecting any hardware-
accelerated application.

Some of the upcoming architectures are the ‘Larrabee’ GPU from Intel and the
‘Fermi’ GPU from NVIDIA. These newer GPUs aim at being more general-purpose
processors, in contrast to current GPUs. A key limiting factor of the current GPUs
is that all the cores of these GPUs can only execute one kernel at a time. However,
the upcoming architectures have a distributed instruction dispatch unit, allowing
more than one kernel to be executed on the GPU at once (as shown conceptually in
Fig. 12.1).

The block diagram of Intel’s Larrabee GPU is shown in Fig. 12.2. This new archi-
tecture is a hybrid between a multi-core CPU and a GPU and has similarities to both.
Like a CPU, it offers cache coherency and compatibility with the x86 architecture.
However, it also has wide SIMD vector units and texture sampling hardware like the
GPU. This new GPU has a 1,024-bit (512-bit each way) ring bus for communication
between cores (16 or more) and to DRAM memory [5].

The block diagram of NVIDIA’s Fermi GPU is shown in Fig. 12.3. In comparison
to G80 and GT200 GPUs, Fermi has double the number of (32) cores per shared
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multiprocessor (SM). The block diagram of a single SM is shown in Fig. 12.4 and
the block diagram of a core within an SM is shown in Fig. 12.5.

With these upcoming architectures, newer approaches for hardware acceleration
of algorithms would become viable. These approaches could exploit the more gen-
eral computing paradigm offered by the newer architectures. For example, the close
coupling between the GPU and the CPU (which reside on the same die) would
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reduce the communication cost. Also, in these upcoming architectures the instruc-
tion dispatch unit is distributed, and the instruction set is more general purpose.
These enhancements would enable a more general computing paradigm (in compar-
ison to the SIMD paradigm for current GPUs), which in turn would enable acceler-
ation opportunities for more EDA applications.

The approaches presented in this monograph collectively aim to contribute
toward enabling the CAD community to accelerate EDA algorithms on modern
hardware platforms. Our work demonstrates techniques to rearchitect several EDA
algorithms to maximally harness their performance on the alternative platforms
under consideration.
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