
Studies in Fuzziness and Soft Computing

Pedro Ponce-Cruz
Arturo Molina
Brian MacCleery

Fuzzy Logic
Type 1 and Type 2
Based on
LabVIEW™ FPGA

Studies in Fuzziness and Soft Computing

Volume 334

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Fuzziness and Soft Computing” contains publications on
various topics in the area of soft computing, which include fuzzy sets, rough sets,
neural networks, evolutionary computation, probabilistic and evidential reasoning,
multi-valued logic, and related fields. The publications within “Studies in
Fuzziness and Soft Computing” are primarily monographs and edited volumes.
They cover significant recent developments in the field, both of a foundational and
applicable character. An important feature of the series is its short publication time
and world-wide distribution. This permits a rapid and broad dissemination of
research results.

More information about this series at http://www.springer.com/series/2941

http://www.springer.com/series/2941

Pedro Ponce-Cruz • Arturo Molina
Brian MacCleery

Fuzzy Logic Type 1
and Type 2 Based
on LabVIEW™ FPGA

123

Pedro Ponce-Cruz
Tecnologico de Monterrey
Campus Ciudad de México
Tlalpan, Distrito Federal
Mexico

Arturo Molina
Tecnologico de Monterrey
Campus Ciudad de México
Tlalpan, Distrito Federal
Mexico

Brian MacCleery
National Instruments Corporation
Austin, TX
USA

The Fuzzy Logic Type 1 and Type 2 Based on LabVIEW FPGA Toolkit can be
downloading from the additional material of the book. For decompressing the toolkit you
have to use the password (TOOLKITFPGA@TEC01). On the other hand, it is allowed to use
the toolkit in academic and research implementations based on LabVIEW FPGAs but it has
to be properly referenced. It is not allowed to use it in industrial applications without
permission from the authors.

ISSN 1434-9922 ISSN 1860-0808 (electronic)
Studies in Fuzziness and Soft Computing
ISBN 978-3-319-26655-8 ISBN 978-3-319-26656-5 (eBook)
DOI 10.1007/978-3-319-26656-5

Library of Congress Control Number: 2015955366

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.
LabVIEW™ is a trademark of National Instruments Corporation, 11500 N Mopac Expwy, Austin, TX
78759-3504, USA, http://www.ni.com/.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

http://www.ni.com/

To Norma, Jamie, Pedro, Alize, Jorge, Aura,
and Giovanna. Also, I dedicate this book
to my lovely mother (Margarita) and
grandmother (Catalina Vazquez†) who help
me to dream in fuzzy colors

Pedro Ponce-Cruz

To my father Arturo, in memory of my mother
Rosita and my family, Silvia my lovely wife
and beloved kids Julio and Monse

Arturo Molina

For Eva Jane MacCleery. Most things in life
and science have a fuzzy type of logic.
However, if we listen carefully and are very
fortunate, we find love, a mysterious clarity to
guide us through this fuzzy world

Brian MacCleery

Foreword

Fuzzy logic is widely applied in every aspect of our daily lives. Washing machines,
air conditioners, and vehicles are examples of applications in which fuzzy con-
trollers are embedded to achieve smooth, nonlinear, and robust control. Such
applications depend on a system architecture that is easy to implement, rather than
on a theoretically abstract and complex methodology. Therefore, several tools, such
as the NI LabVIEW PID and Fuzzy Logic Toolkit for Windows, have been pro-
posed to assist developers in implementing fuzzy logic systems. Some tools for this
purpose can even be downloaded for free and come with a user manual. Through
the use of such tools, several successful applications have been demonstrated,
which has further motivated the application of fuzzy logic in practice. However,
most existing fuzzy logic applications in practice use ordinal fuzzy sets. Other fuzzy
set types, such as interval-valued fuzzy sets, type-2 fuzzy sets, and hesitant fuzzy
sets, have seldom been used. This is mainly because of the difficulties associated
with implementing these generalized forms of fuzzy sets. However, several attempts
have indicated that using these generalized fuzzy sets has several advantages. For
example, the uncertainty behind a phenomenon can be more effectively described
using a type-2 fuzzy set.

The authors of this book combined the latest research findings and practical
experience with LabVIEW™ FPGA. I particularly appreciate the perspective on
FPGA’s most recent development strategy. This book also provides information for
engineers seeking to understand fuzzy logic and how it can be applied to their
products or system designs.

Prof. Dr. Tin-Chih Toly Chen
Outstanding Professor
Feng Chia University

Founding Editor-in-Chief
International Journal of Fuzzy System Applications

vii

Preface

This book presents fuzzy logic and LabVIEW FGPA for designing fuzzy logic
controllers. This is a book for implementing fuzzy logic controllers in LabVIEW
FPGAs.

Despite the FPGA’s attractive features, their adoption by industrial control and
signal processing engineers has been slower than processors and DSPs. This is due
to several factors. First, these engineers traditionally programmed processors and
DSPs using higher level languages, such as C. However, FPGAs possessed com-
plex development tool chains that required designs to be specified using hardware
description level (HDL) and register transfer level (RTL) semantics. Furthermore,
traditional FPGA development tools lacked intellectual property (IP) blocks for
common industrial applications, such as ADC and encoder interface logic, PWM
and commutation logic, timing and triggering functions, PID control algorithms,
memory management, and data transfer functions. In addition, FPGAs natively
supported integer data types only which significantly increased development
complexity for analog control and signal processing applications that required math,
control, and digital signal processing algorithms, as opposed to floating point
processors. Also, traditional FPGA simulation tools were operated at the digital
design level and were not interoperable with the type of dynamic simulation tools
used by control systems and signal processing engineers for modeling continuous
time dynamic system response. Moreover, FPGAs compilation times were rela-
tively long, as compared to processors and DSPs. For example, typical FPGA
compilation times today range from 15 to 90 min, whereas processor and DSP
compilations are typically completed in less than one minute. Finally, the sequential
text-based semantics of traditional register level development tools made it rela-
tively difficult to specify timing and concurrency among parallel processing tasks in
a way that leverages the inherent parallel processing capability of FPGA devices.

Despite these traditional development challenges, the successful adoption of
FPGAs in application areas such as consumer electronics, and the resulting drop in
the price of FPGAs has spurred the interest of industrial control design and sim-
ulation vendors. Such vendors are creating the next generation FPGA development

ix

tools that are designed for engineers with little or no digital design expertise.
The goal of these next generation “system-level” graphical design tools is to
empower control, simulation, and signal processing engineers to harness the full
power of the FPGA technology. Graphical system design tools are intended to
provide a more intuitive, high level programming paradigm that simplifies the
creation of complex parallel processing and control applications. Also, they are
intended to provide relatively competitive performance and resource usage, as
compared to traditional HDL development tools.

Graphical data flow programming languages are a natural fit for FPGA devel-
opment due to their inherent sense of parallelism and concurrency that naturally
maps to hardware design. Also, recent technological advances are enabling
designers to place their FPGA code within a high-level dynamic simulation envi-
ronment. This ability to cross the boundary between the digital domain of the FPGA
and the analog multi-physics domain of the system is facilitating a “true” mecha-
tronics approach to development, in which the complex interplay between FPGA
silicon logic, power electronic components, electric motor drives, and mechanical
systems can all be simulated in a virtual environment without the need to wait for
long FPGA compilations.

The ability to quickly iterate and optimize the FPGA logic design in a mecha-
tronics simulation environment, combined with the new high-level programming
tools for FPGAs is reducing dramatically the barriers that prohibited wide adoption
of FPGAs in industrial control.

In addition to the improved design and simulation tools for FPGAs, the next
generation tools are providing a rapidly growing library of IP blocks for common
control and DSP algorithms through code sharing services. On the other hand, the
number of books that present Fuzzy logic Control is big as Fuzzy logic control is
one of the most important control techniques. However, several books are only
mathematical descriptions and are not focused on implementation of fuzzy logic
control. Moreover, there are not enough books that deal with implementing fuzzy
logic controllers in FPGAs. There is still a lot of vagueness and misunderstanding
around the implementation of fuzzy logic controllers implemented in LabVIEW™
FPGA.

Since this book presents a clear description of fuzzy logic control type 1 and 2
that are the most used fuzzy logic representations, the implementation in
LabVIEW™ FPGA can be developed. Several experimental examples are pre-
sented in order to show the potential of Fuzzy Logic controllers implemented in
FPGA.

Finally, a complete LabVIEW™ FPGA toolkit for fuzzy logic type 1 and type 2
is included in the book. This toolkit is based on fix point representation that
LabVIEW™ FPGA needs. This toolkit is developed for working on LabVIEW™
real-time systems.

Pedro Ponce-Cruz
Arturo Molina

Brian MacCleery

x Preface

Acknowledgments

We hereby acknowledge the following organizations for their contributions to this
book: Tecnologico de Monterrey, Campus Ciudad de México and National
Instruments, Austin, Texas.

xi

Contents

1 Literature Review for Digital Implementations of Fuzzy Logic
Type-1 and Type-2. 1
1.1 Advances in Applications of Fuzzy Logic Systems. 1
1.2 FPGA and Microcontrollers Used for Fuzzy

Logic Applications . 6
1.2.1 Microcontroller Application. 7
1.2.2 DSP Application . 7
1.2.3 FPGA Application . 9

1.3 Fuzzy Logic Concepts . 10
1.3.1 Type-1 Fuzzy Set (T1Fs) . 13
1.3.2 Membership Function . 14
1.3.3 Discourse Universe and Membership Degree 20

1.4 Extension Principle . 20
1.4.1 Basic Identities . 22

1.5 Fuzzy Logic Rules . 22
1.6 Defuzzification Methods . 23
1.7 Fuzzy Inference Methods . 25
1.8 Takagi-Sugeno-Kang . 29
1.9 Numerical Example (Mandani) . 32
1.10 Basic Numerical Example (TSK) . 35
1.11 Type-2 Fuzzy Logic Set . 36

1.11.1 Historical Review of Advances 36
1.11.2 Type-2 Fuzzy Sets (T2FS) . 37
1.11.3 Footprint of Uncertainty . 39

1.12 Fuzzy Sets Type 2 Representations . 39
1.12.1 Digital and Continuous Representation 39

1.13 Interval Type 2 Fuzzy Sets (IT2FS) . 42
1.14 Type Reduction and Defuzzification . 44

1.14.1 Karnik–Mendel Iterative Procedure (KM) 44
1.14.2 Wu-Mendel Uncertain Bounds 46
1.14.3 Enhanced Karnik–Mendel Algorithm 47

xiii

http://dx.doi.org/10.1007/978-3-319-26656-5_1
http://dx.doi.org/10.1007/978-3-319-26656-5_1
http://dx.doi.org/10.1007/978-3-319-26656-5_1
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec10
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec10
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec11
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec11
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec12
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec12
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec13
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec13
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec14
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec14
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec15
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec15
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec16
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec16
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec17
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec17
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec18
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec18
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec19
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec19
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec20
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec20
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec21
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec21
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec22
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec22
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec23
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec23
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec24
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec24
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec25
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec25
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec26
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec26
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec27
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec27
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec28
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec28

1.14.4 Type 2 Fuzzy Logic Systems Block Diagram 49
1.14.5 Interval Type 2 Fuzzy Logic Numeric Example 50

1.15 Experimental Implementation of a Fuzzy Logic Controller
Type-2 in Quadrotors . 54
1.15.1 Introduction. 54
1.15.2 Quadrotor Basic Principles . 55
1.15.3 ANFIS . 56

1.16 Design of Fuzzy Logic Controller Tuned by an Expert 57
1.17 Design of Fuzzy Logic Controller Tunned by an Anfis 62
1.18 Experimental Results . 64
References . 67

2 LabVIEW™ FPGA . 71
2.1 Field-Programmable Gate Array (FPGA). 71

2.1.1 How Do FPGA-Based Control Systems Compare
to Processor-Based Systems? . 72

2.1.2 How Do I Program My Control Application
Using the LabVIEW FPGA Module? 74

2.1.3 How Does the LabVIEW Compiler Translate My
Graphical Code into FPGA Circuitry?. 76

2.1.4 FPGAs Are Fast, but How Do Faster Loop Rates
Improve Control System Performance? 77

2.1.5 What FPGA Hardware Targets Are Available
from NI?. 78

2.1.6 What Closed-Loop Control Performance Can I
Achieve?. 80

2.1.7 How Much Jitter Can I Expect in My FPGA-Based
Control Loops? . 81

2.1.8 Creating a New LabVIEW Real-Time Project
and Adding I/O . 82

2.2 Developing the LabVIEW FPGA Application 90
2.3 Compiling the FPGA Application . 101

2.3.1 Understanding the LabVIEW FPGA Compilation
Process . 102

2.3.2 FPGA Clock Speed . 103
2.3.3 The Compilation Report . 103

2.4 Advanced Methods for LABVIEW FPGA. 104
2.4.1 Introduction. 105
2.4.2 Technique 1: Use Single-Cycle Timed Loops

(SCTLs) . 106
2.4.3 Creating Counters and Timers 110
2.4.4 Write Your FPGA Code as Modular,

Reusable SubVIs . 111
2.4.5 Separate Logic from I/O . 114
2.4.6 Holding State Values in a Function Block. 115

xiv Contents

http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec29
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec29
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec30
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec30
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec31
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec31
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec31
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec32
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec32
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec33
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec33
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec34
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec34
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec35
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec35
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec36
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec36
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec37
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Sec37
http://dx.doi.org/10.1007/978-3-319-26656-5_1#Bib1
http://dx.doi.org/10.1007/978-3-319-26656-5_2
http://dx.doi.org/10.1007/978-3-319-26656-5_2
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec7
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec7
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec7
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec8
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec8
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec8
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec9
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec9
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec9
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec10
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec10
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec11
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec11
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec12
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec12
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec12
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec13
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec13
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec14
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec14
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec15
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec15
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec16
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec16
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec17
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec17
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec17
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec18
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec18
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec19
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec19
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec19
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec20
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec20
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec21
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec21

2.4.7 Run-Time Updateable Look-up Table (LUT) 117
2.4.8 Do not Place Delay Timers in the SubVI 119
2.4.9 Reentrancy . 120

2.5 Use Simulation Before You Compile . 122
2.5.1 Providing Tick Count Values for Simulation 123
2.5.2 Test the LabVIEW FPGA Code Using the LabVIEW

Control Design & Simulation Module. 125
2.6 Synchronize Your Loops. 128

2.6.1 Latching Values. 129
2.6.2 Application Example . 130

2.7 Technique 5: Avoid “Gate Hogs”. 132
2.7.1 Avoid Front Panel Arrays for Data Transfer 133
2.7.2 Use DMA for Data Transfer . 134
2.7.3 Use the Minimum Data Type Necessary 135
2.7.4 Optimizing for Size . 135
2.7.5 Additional Techniques to Optimize Your FPGA

Applications . 138
References . 138

3 Real-Time Fuzzy Logic Controllers. 139
3.1 Basic Parts in Real-Time Fuzzy Logic Controllers 139
3.2 Case Study: The Karnik–Mendel Algorithms Performance

Implemented in Real-Time LABVIEW FPGA 140
3.2.1 Interval Type-2 Fuzzy Logic Systems 141
3.2.2 The Karnik–Mendel Algorithm 142
3.2.3 Non-iterative Version . 142
3.2.4 Iterative Version . 144
3.2.5 Enhanced Karnik–Mendel Algorithm 146
3.2.6 Nie-Tan Method . 147

3.3 DC Servomotor . 148
3.3.1 Laplace Transform Model . 149
3.3.2 State-Space Transfer Function 150
3.3.3 Servomotor Control System. 151

3.4 The Hardware Complexity . 152
3.5 Methodology . 153
3.6 Results and Discussion . 155

3.6.1 Reference Tracking . 155
3.6.2 The Hardware Performance . 155

References . 158

4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit. 159
4.1 Type-1 Fuzzy Sets . 159

4.1.1 Membership Function Parameters 160
4.1.2 Normalization . 161

Contents xv

http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec22
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec22
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec23
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec23
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec24
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec24
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec25
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec25
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec26
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec26
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec27
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec27
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec27
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec28
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec28
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec29
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec29
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec30
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec30
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec31
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec31
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec32
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec32
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec33
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec33
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec34
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec34
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec35
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec35
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec36
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec36
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Sec36
http://dx.doi.org/10.1007/978-3-319-26656-5_2#Bib1
http://dx.doi.org/10.1007/978-3-319-26656-5_3
http://dx.doi.org/10.1007/978-3-319-26656-5_3
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec8
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec8
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec11
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec11
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec12
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec12
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec13
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec13
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec14
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec14
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec15
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec15
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec16
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec16
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec17
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Sec17
http://dx.doi.org/10.1007/978-3-319-26656-5_3#Bib1
http://dx.doi.org/10.1007/978-3-319-26656-5_4
http://dx.doi.org/10.1007/978-3-319-26656-5_4
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec3

4.1.3 Membership Degree . 161
4.1.4 Error Handling. 161

4.2 Type-2 Fuzzy Sets . 162
4.2.1 Membership Function Parameters 162
4.2.2 Normalization . 162
4.2.3 Uncertainty Widths . 163
4.2.4 Membership Degrees . 163
4.2.5 Error Handling. 164
4.2.6 Examples . 166

4.3 Creating a Knowledge Base . 169
4.3.1 Building a Rule Set . 169

4.4 The Inferred Set. 171
4.5 Defuzzification . 180

4.5.1 T1 Mamdani Model the Centroid 180
4.5.2 T2 Mamdani Model the Karnik–Mendel Algorithm 181
4.5.3 The Enhanced Karnik–Mendel Algorithm 182
4.5.4 The Nie–Tan Method . 182
4.5.5 The Takagi–Sugeno Model . 183

4.6 Examples . 186
4.7 Study Cases . 187

4.7.1 T1FLS Validation . 187
4.7.2 Electric Wheelchair . 192

4.8 T2FLS Validation . 200
4.9 Performance T1 FLS DC Servomotor . 202

4.9.1 Electric Wheelchair . 203
4.10 T1FLS Versus T2FLS . 204

4.10.1 Noise Response . 204
4.10.2 Response Time . 206
4.10.3 Resource Utilization . 206

4.11 Included Examples . 210
4.11.1 Case Study: Experimental CNC Micromachine

Controlled by Fuzzy Type 2 . 210
4.11.2 Micromachines and Fuzzy Logic 212
4.11.3 Reconfigurable Micromachine Tools 213
4.11.4 Motion Control . 215
4.11.5 Control Design on Real-Time FPGA 217
4.11.6 Experimental Results . 222

References . 228

Index . 231

xvi Contents

http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec4
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec4
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec5
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec5
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec6
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec6
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec7
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec7
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec8
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec8
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec10
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec10
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec11
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec11
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec12
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec12
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec13
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec13
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec14
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec14
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec15
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec15
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec16
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec16
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec17
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec17
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec18
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec18
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec19
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec19
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec20
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec20
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec21
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec21
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec22
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec22
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec23
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec23
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec24
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec24
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec26
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec26
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec28
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec28
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec29
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec29
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec30
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec30
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec31
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec31
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec32
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec32
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec33
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec33
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec34
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec34
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec35
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec35
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec36
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec36
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec36
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec37
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec37
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec38
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec38
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec39
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec39
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec40
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec40
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec41
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Sec41
http://dx.doi.org/10.1007/978-3-319-26656-5_4#Bib1

Chapter 1
Literature Review for Digital
Implementations of Fuzzy Logic Type-1
and Type-2

1.1 Advances in Applications of Fuzzy Logic Systems

Some works are described below where optimization Type-1 and Type-2 FLS have
had relative success according to different areas, illustrating the advantages of using
methods to automate process with fuzzy controllers.

The work of Sudha and Vijai Santhi [1], deals with the load frequency control
(LFC) problem, which has been a major subject in electrical power system such as
design and operation. In practice, LFC systems use simple proportional integral
(PI) controllers. However, it shows that fuzzy logic controller is adaptive in nature
and is applied successfully for power system stabilization control. Authors propose
a type-2 fuzzy approach for load frequency control of two-area interconnected
reheat thermal power system with the consideration of Generation Rate Constraint
(GRC). The performance of the type-2 controller is compared with conventional
controller and Type-1 fuzzy controller with regard to Generation Rate Constraint
(GRC). The system parametric uncertainties are verified by changing parameters by
40% simultaneously from their typical values.

The authors Jammeth and Fleury in their work [2] use an interval Type-2 FLC
that gets better video quality compared with traditional controllers. They also use
Type-1 FLC to show the response in different network scenarios, such like Internet
cross-traffic, video streams occupy on an Internet protocol (IP) network. Type-2
FLC is designed for Internet conditions so they can react successfully to the net-
work conditions of an IP-network. Type-2 FLC resulted in an order of magnitude
performance improvement in comparison with Type-1 FLC.

The work of Lee and Lin [3], proposes a new control scheme using type-2 fuzzy
neural network (type-2 FNN) and adaptive filter for controlling nonlinear uncertain
systems. This type-2 FNN model combines the advantages of type-2 fuzzy logic
systems and neural networks. The type-2 FNN system has the ability of universal
approximation, which identifies nonlinear dynamic systems. The control scheme
consists of a PD-type adaptive FNN controller and a pre-filter. The adaptive filter is

© Springer International Publishing Switzerland 2016
P. Ponce-Cruz et al., Fuzzy Logic Type 1 and Type 2 Based
on LabVIEW™ FPGA, Studies in Fuzziness and Soft Computing,
DOI 10.1007/978-3-319-26656-5_1

1

used to provide better performance under transient response and to treat the
problem of disturbance attenuation. The tuning parameters for the filter and
the type-2 FNN controller will change according to the learning algorithm. By the
Lyapunov stability theorem, the convergence of parameters is given in order to
guarantee the stability of nonlinear uncertain systems.

The work of Biglarbegian et al. [4], present a novel design methodology of
interval Type-2 Takagi Sugeno Kang fuzzy logic controllers for modular and
reconfigurable robot manipulators with uncertain dynamic parameters. Results
show that the developed controller can perform better than some linear and non-
linear controllers for different configurations. Then, the structure can be adopted for
the position control of robots with unknown dynamic parameters in
trajectory-tracking applications.

The work of Koca et al. [5], describes a new control scheme for the robust crank
angular speed control of a four-bar mechanism driven by a DC motor, based on
type-2 fuzzy logic and sliding mode control (SMC) technique. Type-2 fuzzy logic
and SMC can be combined to use the advantages of both methods and thus to
improve the effectiveness of the controllers. One of the most important advantages
of the use of SMC with type-2 FC is to reduce the number of fuzzy rules and to
obtain a simpler and more practical control algorithm to use in real applications.

Poornaselvan et al. [6], focus on an agent-based approach to flight control in
ground. A type-2 fuzzy interval controller can be applied to the autonomous vehicle
in order to handle uncertainty in a better way. Ant colony optimization technique
can be used to optimize path planning in traffic environment. They use a hybrid ant
colony optimization to handle real-time dynamic environment and path planning.
Both agents-based and type-2 fuzzy together with ant colony optimization tech-
nique are used to achieve another level of intelligence.

Zaher and Hagras [7], present a method to generate a type-2 FL model entirely
from data to provide a dynamic footprint of uncertainty for the generated fuzzy set.
The fuzzy model will be used to predict the wind speed experienced by a wind
turbine without the use of sensors. This estimated wind speed is then passed for
another fuzzy controller that changes the pitch angles of the wind turbine blades in
order to track the maximum power available.

In the work of Galluzzo and Cosenza [8], they develop two adaptive type-2 FL
controllers with minimum number of rules, compared by simulation for control of a
bioreactor in which aerobic alcoholic fermentation for the growth of
Saccharomyces cerevisiae takes place. The bioreactor model is characterized by
nonlinearity and parameter uncertainty. The first adaptive fuzzy controller is a
type-2 fuzzy-neuro-predictive controller (T2FNPC) that combines the capability of
type-2 FL to handle uncertainties, with the ability of predictive control to predict
future plant performance making use of a neural network model of the nonlinear
system. The second adaptive fuzzy controller is instead a self-tuning type-2 PI
controller, where the output scaling factor is adjusted online by fuzzy rules
according to the current trend of the controlled process.

The work of Chaoui and Gueaieb [9], a type-2 FL controller is applied to robot
manipulators with joint elasticity and structured and unstructured dynamical

2 1 Literature Review for Digital Implementations of Fuzzy Logic …

uncertainties. The proposed controller is based on a SMC strategy. To enhance its
real-time performance, simplified interval fuzzy sets are used. The efficiency of the
control scheme is further enhanced by using computationally inexpensive input
signals independent of the noisy torque and acceleration signals, and by adopting a
trade-off strategy between the manipulator’s position and the actuators’ internal
stability. The controller is validated through a set of numerical experiments and by
comparing it against its type-1 counterpart. It is shown through these experiments,
the higher performance of the type-2 FLC in compensating for larger magnitudes of
uncertainties with severe nonlinearities.

The work of Petrović et al. [10], deals with the systematic maintenance of
mining machinery and equipment. They present a model of the risk assessment of
technical systems failure based on the fuzzy sets theory, fuzzy logic, and min–max
composition. The risk indicators, severity, occurrence, and detectability are ana-
lyzed. The risk indicators are given as linguistic variables. The model was applied
for assessing the risk level of belt conveyor elements failure which works in severe
conditions in a coal mine.

Baldania et al. [11], focuses on rule base division technique to reduce the power
consumption of the fuzzy logic controller based on different conditions and pri-
orities. A new methodology is developed and implemented successfully to reduce
the power consumption of the fuzzy logic controller, i.e., dynamic rule base
method. The purpose is to solve complex problems efficiently with better accuracy
and fast time being response. Fuzzy logic controller has the potential to solve
problems which have uncertain nature and complex behavior with better, accurate,
and efficient results and also with faster time response as compared to classical
logic-based general purpose controllers or processors like PID controllers. The
development of the fuzzy logic-based controller follows a step-by-step approach
with expertize knowledge. However, there is a lack of power reduction techniques
for fuzzy logic controller when the application is concerned for embedded appli-
cations. As embedded devices are battery operated and have limited power supply,
there is a need of a proper approach and method to reduce the power consumption.

The work of Novak et al. [12], presents three special soft computing software
systems, based on the original results in two areas: fuzzy natural logic and fuzzy
transform. The first software is LFL Controller which is a universal system that can
be used in fuzzy or linguistic control, and in decision making. The system imple-
ments results of fuzzy natural logic, namely the theory of evaluative linguistic
expressions and perception-based logical deduction. The second system is LFL
Forecaster which is a specialized SW for analysis and forecasting of time series.
The analysis is realized using F-transform and forecasting using results of fuzzy
natural logic. The third system is FT-Studio which is specialized for computation of
fuzzy transform of functions that can be defined either using a formula, or given by
data.

In the work of Arbex et al. [13], presents a model which uses fuzzy logic as the
basis for the development of an inference system to aid decision making, which is
based on previous results obtained by different single nucleotide polymorphisms
(SNP) discovery tools and which present possibly conflicting results. A single

1.1 Advances in Applications of Fuzzy Logic Systems 3

difference between base pairs of different aligned sequences is the most common
type of genetic variability and they are called single nucleotide polymorphisms
(SNPs). They are crucial for the study of species variability, since they can cause
functional or phenotypic modifications which, in turn, may imply in evolutionary or
biochemical consequences in the individuals of a given species.

Ai-Zhen and Feng [14], made a fuzzy controller neural network for a washing
machine to reduce the wasting of electric and water. The washing machine fuzzy
controller neural network is researched deeply, which is based on fuzzy logic,
neural network, and its learning algorithm. The BP neural network is combined
with fuzzy control and experiments are simulated by MATLAB. Water level, flow
intensity, and the washing time are preset. Fuzzy control rules and membership
functions are automatically generated. These parameters can be adjusted real-time
to improve the performance of washing machines and achieve better water-saving
effect of energy saving.

The work of Liang and Mendel [15], presents a type-2 fuzzy adaptive filter
(FAF); one that is realized using an unnormalized type-2 Takagi-Sugeno-Kang
(TSK) fuzzy logic system (FLS). They apply this filter to equalization of a nonlinear
time-varying channel and demonstrate that it can implement the Bayesian equalizer
for such a channel, has a simple structure, and provides fast inference. In 2001 [16],
they presented an approach for MPEG variable bit rate (VBR) video modeling and
classification using fuzzy techniques. They demonstrated that a type-2 fuzzy
membership function, i.e., a Gaussian MF with uncertain variance, is most
appropriate to model the log-value of I/P/B frame sizes in MPEG VBR video. The
fuzzy c-means (FCM) method is used to obtain the mean and standard deviation
(std) of T/P/B frame sizes when the frame category is unknown. They proposed to
use type-2 fuzzy logic classifiers (FLCs) to classify video traffic using compressed
data. Five fuzzy classifiers and a Bayesian classifier are designed for video traffic
classification, and the fuzzy classifiers are compared against the Bayesian classifier.
Simulation results show that a type-2 fuzzy classifier in which the input is modeled
as a type-2 fuzzy set and antecedent membership functions are modeled as type-2
fuzzy sets performs the best of the five classifiers when the testing video product is
not included in the training products and a steepest descent algorithm is used to tune
its parameters.

The work of Mitchell [17], introduces a similarity measure for measuring the
similarity, or compatibility, between two type-II fuzzy sets. With this new similarity
measure, he shows that type-II fuzzy sets provide us with a natural language for
formulating classification problems in pattern recognition. Type-II fuzzy sets are a
generalization of the ordinary fuzzy sets in which the membership value for each
member of the set is itself a fuzzy set in [0, 1].

The work of Herman et al. [18], examines the potential of the type-2 FLS
methodology in devising an EEG-based brain–computer interface (BCI). In par-
ticular, a type-2 FLS has been designed to classify imaginary left- and right-hand
movements based on time-frequency information extracted from the EEG with the
short-time Fourier transform (STFT). The type-2 fuzzy classifier has been proven to
outperform its type-1 counterpart on all datasets recorded from three subjects

4 1 Literature Review for Digital Implementations of Fuzzy Logic …

examined. It has also compared favorably to the well-known classifier based on
linear discriminant analysis (LDA). Analysis of the electroencephalogram
(EEG) requires a framework that facilitates handling the uncertainties associated
with the varying brain dynamics and the presence of noise. Recently, the type-2
fuzzy logic systems have been found effective in modeling uncertain data.

In the work of Karnik and Mendel [19], they begin with a type-1 fuzzy logic
system (FLS), trained with noisy data. They demonstrate how information about the
noise in the training data can be incorporated into a type-2 FLS, which can be used
to obtain bounds within which the true (noise-free) output is likely to lie. They do
that with the example of a one-step predictor for the Mackey–Glass chaotic time
series. They also demonstrate how a type-2 FLS can be used to obtain better
predictions than those obtained with a type-1 FLS.

The paper of Ozen and Garibaldi [20], explains how the shape of type-2 fuzzy
membership functions can be used to model the variation in human decision
making. An interval type-2 fuzzy logic system (FLS) is developed for umbilical
acid–base assessment. The influence of the shape of the membership functions on
the variation in decision making of the fuzzy logic system is studied using the
interval outputs. Three different methods are used to create interval type-2 mem-
bership functions. The center points of the primary membership functions are
shifted, the widths are shifted, and a uniform band is introduced around the original
type-1 membership functions. It is shown that there is a direct relationship between
the variation in decision making and the uncertainty introduced to the membership
functions.

The work of Liang and Wang [21], presents a new approach for sensed signal
strength forecasting in wireless sensors using interval type-2 fuzzy logic system
(FLS). They show that a type-2 fuzzy membership function with uncertain mean is
most appropriate to model the sensed signal strength of wireless sensors. They
demonstrate that the sensed signals of wireless sensors are self-similar, which
means they can be forecasted. An interval type-2 FLS is designed for sensed signal
forecasting and is compared against a type-1 FLS. Simulation results show that the
interval type-2 FLS performs much better than the type-1 FLS in sensed signal
forecasting. This application can be further used for power on/off control in wireless
sensors to save battery energy.

The work of Castillo and Melin [22], describes the application of type-2 fuzzy
logic for achieving adaptive noise cancelation. The objective of adaptive noise
cancelation is to filter out an interference component by identifying a model
between a measurable noise source and the corresponding unmeasurable interfer-
ence. They propose the use of type-2 fuzzy logic to find this model. The use of
type-2 fuzzy logic is justified due to the high level of uncertainty of the process,
which makes it difficult to find appropriate parameter values for the membership
functions.

In the work of Lee et al. [23], presents a type-2 fuzzy neural network system
(type-2 FNN) and its learning algorithm using backpropagation algorithm.
The FNN system using type-1 fuzzy logic systems (FLS) is called type-1 FNN
system. It has the properties of parallel computation scheme, easy to implement,

1.1 Advances in Applications of Fuzzy Logic Systems 5

fuzzy logic inference system, and parameters convergence. For considering the
fuzzy rules uncertainties, we use the type-2 FLSs to develop a type-2 FNN system.
The type-2 fuzzy sets let to model and to minimize the effects of uncertainties in
rule-based fuzzy logic systems (FLSs). The previous results of type-1 FNN are
extended to a type-2 one. In addition, the corresponding learning algorithm is
derived by back-program algorithm. Several examples are presented to illustrate the
effectiveness of the model.

The work of Rhee and Hwang [24], presents an interval type-2 fuzzy perceptron
algorithm that is an extension of the type-1 fuzzy perceptron algorithm proposed by
Keller et al. [25]. In their proposed method, the membership values for each pattern
vector are extended as interval type-2 fuzzy memberships by assigning uncertainty
to the type-1 memberships. By doing so, the decision boundary obtained by interval
type-2 fuzzy memberships can converge to a more desirable location than the
boundary obtained by crisp and type-1 fuzzy perception methods.

The work of Agero and Vargas [26], presents an approach of aiming at inferring
the operative configuration (OC) of distribution networks. In order to attain this
objective, the OC problem is decomposed in two parts. The first part, the available
real-time data and expert knowledge are integrated by means of rule-based type-2
FLS. As a result, an approximate initial solution is obtained. In the second part, the
initial solution is dynamically tuned using customer trouble calls. This is done by
means of an approach based on fuzzy relational equations and fuzzy inference. The
performance of the methodology is evaluated on a real distribution feeder and the
results are presented.

1.2 FPGA and Microcontrollers Used for Fuzzy Logic
Applications

Field programmable gate array (FPGA) are two-dimensional arrays of logic blocks
and flip-flops with an electrically programmable interconnection between logic
blocks. The interconnections consist of electrically programmable switches which is
why FPGA differs from custom integrated circuits, as a custom integrated circuit is
programmed using the technology to form metal interconnections between logic
blocks. In an FPGA, logic blocks are implemented using multiple-level low fan in
gates, which gives it a more compact design compared to an implementation with
two-level AND-OR logic [27]. Microcontrollers and FPGA’s provide functional
blocks to build type-1 FLS and type-2 FLS, in which crisp inputs and outputs, and
parameters are defined in 8-bits. It means that in a byte one can spread all inputs or
outputs discourse universe. A crisp input may be defined in speed, pressure, tem-
perature, or another physical variable. When an inferred value is ready, the next step
is to convert it into a physical value so it can be used as the control result applicable
to the plant of the controller. Some applications are described since microcon-
trollers, DSP up to FPGA.

6 1 Literature Review for Digital Implementations of Fuzzy Logic …

1.2.1 Microcontroller Application

The work of Muscato [28], the position control of a planar under actuated
manipulator with two revolute joints is considered. A dynamic model of the system
is presented and a fuzzy control strategy is proposed. Fuzzy logic allows empirical
rules to be translated into a control algorithm. A fuzzy microcontroller is adopted
for the practical implementation of the system. The results of several experiments
are presented and discussed.

The work of Faravelli et al. [29], pursues the numerical testing of a pro-
grammable controller driving an active mass damper (AMD) located at the top of a
frame structure subject to base excitation. Its key features are the fuzzy nature of the
controller and its adaptive characteristics toward fault tolerance. Numerical testing
of microcontrollers is a reasonable way to design their parameters in a consistent
environment. Indeed, in such a way, one avoids unrepairable failures of the device
to be controlled and the consequent costs. A final experimental test will eventually
provide the fine tuning of the parameters.

In the study of El-Nagar and El-Bardini [30], they propose an embedded
real-time interval type-2 fuzzy proportional–integral–derivative (IT2F-PID) con-
troller which is a parallel combination of the interval type-2 fuzzy proportional–
integral (IT2F-PI) controller and the interval type-2 fuzzy proportional–derivative
(IT2F-PD) controller. The proposed IT2F-PID controller is able to handle the effect
of the system uncertainties due to the structure of the interval type-2 fuzzy logic
controller. The proposed IT2F-PID controller is implemented practically using a
low cost PIC microcontroller for controlling the uncertain nonlinear inverted pen-
dulum to minimize the effect of the system uncertainties due to the uncertainty in
the mass of the pendulum, the measurement error in the rotation angle of the
pendulum and the structural uncertainty. The test is carried out using the
hardware-in-the-loop (HIL) simulation. The experimental results show that the
performance of the IT2F-PID controller improves significantly the performance
over a wide range of system uncertainties.

1.2.2 DSP Application

The work of Bal et al. [31], develops a digitally controllable two phase serial
resonant inverter to drive the ultrasonic motor by using a TMS320F243 digital
signal processor. The driving frequency was used as a control input in the position
control loop. The position characteristics obtained from the proposed drive and
control system were demonstrated and evaluated by experiments. The experimental
results verify that the developed position control scheme is highly effective, reliable
and applicable for the ultrasonic motor. Position control of an ultrasonic motor was
implemented on the basis of fuzzy reasoning.

1.2 FPGA and Microcontrollers Used for Fuzzy Logic Applications 7

In the work of Goh et al. [32], they improve the overall performance of an
overcurrent relay for power system protection compared to conventional relay. It is
essential for a relay to work efficiently to trip the circuit breakers in the presence of
faults and at the same time proficient to coordinate well with the networks to avoid
maloperation. There are two different types of fuzzy logic control strategies pro-
posed for the relay, the Fuzzy Logic Controller (FLC) and Fuzzy Bang-Bang
Controller (FBBC). The FBBC is the same as the conventional FLC except that the
defuzzification method uses largest of maxima (LOM). Comparisons between the
fuzzy controllers and conventional relay are based on IEC 255-3 standard. These
relays are implemented on a DSP TMS320F2812 and their performance is evalu-
ated which is based on operation time, DSPs execution time and grading margin.
The results obtained show a significant performance improvement compared to
conventional relay.

Goh et al. as well [33], improve the performance of the relay significantly with
the new numerical relay technology using digital signal processor (DSP). However,
application of DSP in numerical overcurrent relays is limited especially in coor-
dination among the group of relays. The relay must work proficiently to coordinate
with the networks in order to avoid maloperation. Therefore, in this paper, an
implementation of overcurrent relay with improved coordination on a DSP,
TMS320F2812 is described. The fuzzy bang–bang controller is used as the control
strategy for the relay to provide efficient control for overcurrent protection. The
performance evaluation of the proposed system is based on steady-state analysis,
transient state analysis, coordination and lastly the execution time of the DSP. The
results obtained using this new proposed controller is very promising. Overcurrent
relays are very important protection components that require high reliability to
maintain high security in power systems.

The study of Chou et al. [34], proposes a digital signal processor (DSP)-based
complementary sliding mode control (CSMC) with Sugeno type fuzzy neural
network (SFNN) compensator for the synchronous control of a dual linear motors
servo system installed in a gantry position stage. The dual linear motors servo
system comprises two parallel permanent magnet linear synchronous motors
(PMLSMs). The dynamics of the single-axis motion system with a lumped
uncertainty which contains parameter variations, external disturbances, and non-
linear friction force are briefly introduced first. Then, a CSMC is designed to
guarantee the precision position tracking requirement in single-axis control for the
dual linear motors. Moreover, to enhance the robustness to uncertainties and to
eliminate the synchronous error of dual linear motors, the CSMC with a SFNN
compensator is proposed where the SFNN compensator is designed mainly to
compensate the synchronous error. Furthermore, to increase the control perfor-
mance of the proposed intelligent control approach, a 32-bit floating-point DSP,
TMS320VC33, is adopted for the implementation of the proposed CSMC and
SFNN.

8 1 Literature Review for Digital Implementations of Fuzzy Logic …

1.2.3 FPGA Application

The work of Melgarejo and Peña-Reyes [35], presents an architectural proposal for
a hardware-based interval type-2 fuzzy inference system. First, it presents a com-
putational model which considers parallel inference processing and type reduction
based on computing inner and outer bound sets. They infer that a hardware
architecture with several pipeline, stages for full parallel execution of type-2 fuzzy
inferences. The architectural proposal is used for specifying a type-2 fuzzy pro-
cessor with reconfigurable rule base, which is implemented over FPGA technology.

The review of state of the art of FPGA of Sulaiman et al. [27], approach a large
numbers of fuzzy control applications with the physical systems required a real-time
operation to interface high speed constraints; higher density programmable logic
devices such as field programmable gate array (FPGA) can be used to integrate
large amounts of logic in a single integrated circuit (IC). In their review, they focus
on FPGA-based fuzzy logic controller. The paper starts with an overview of FPGA
in order to get an idea about FPGA architecture, and followed by an explanation on
the hardware implementation with both type analog and digital implementation, a
comparison between fuzzy and conventional controller are also provided. A survey
on fuzzy logic controller structure is highlighted with the focus on FPGA-based
design of fuzzy logic controller with different applications. Finally, they provide the
simulation and experimental results from the literature and conclude the main
differences between software-based systems with respect to FPGA-based systems,
and the main features for FPGA technology and its real-time applications.

The work of Ramadan et al. [36], presents an improved adaptive fuzzy logic
speed controller for a DC motor, based on FPGA hardware implementation. The
developed controller includes an adaptive fuzzy logic control algorithm, which is
designed and verified with a nonlinear model of DC motor. Then, it has been
synthesized, functionally verified, and implemented using Xilinx Integrated
Software Environment (ISE) and Spartan-3E FPGA. The performance of the con-
troller has been successfully validated with good tracking results under different
operating conditions.

The work of Messai et al. [37], details the work in which they optimize and
implement a FLC used as a maximum-power-point tracker for a stand-alone PV
system, are presented. The near optimum design for membership functions and
control rules were found simultaneously by genetic algorithms which are search
algorithms based on the mechanism of natural selection and genetics. These are
easy to implement and efficient for multivariable optimization problems such as in
fuzzy controller design. The FLC thus designed, as well as the components of the
PV control unit, were implemented efficiently on a Xilinx reconfigurable FPGA
chip using VHDL Hardware Description Language. The obtained simulation results
confirm the good tracking efficiency and rapid response to changes in environ-
mental parameters.

In the work of Soares dos Santos and Ferreira [38], tests if FPGAs are able to
achieve better position tracking performance than software-based soft real-time

1.2 FPGA and Microcontrollers Used for Fuzzy Logic Applications 9

platforms. For comparison purposes, the same controller design was implemented
in these architectures. A Multi-state Fuzzy Logic controller was implemented both
in a Xilinx® Virtex-II FPGA (XC2v1000) and in a soft real-time platform
NI CompactRIO®-9002. The same sampling time was used. The comparative tests
were conducted using a servo-pneumatic actuation system. Steady-state errors
lower than 4 µm were reached for an arbitrary vertical positioning of a 6.2 kg mass
when the controller was embedded into the FPGA platform. Performance gains up
to 16 times in the steady-state error, up to 27 times in the overshoot, and up to 19.5
times in the settling time were achieved by using the FPGA-based controller over
the software-based FLC controller.

The work of Munoz et al. [39], describes the validation of five dispatching
algorithms for elevator systems that were implemented on Spartan 3 FPGA-based
boards in an integrated approach reducing the area and improving performance. The
overall system is composed of several local control systems (LCS), which imple-
ment the dispatching algorithms, an RS485-based network and a virtual environ-
ment called virtual elevator interface system (VEI), which includes a
simulator/monitoring system and an elevator group control system EGCS-based
on fuzzy logic (FEGCS). The FEGCS runs on a PC and, under different traffic
situations, determines the best algorithm to be run in each LCS in order to reduce
the user waiting time and the power consumption. The novelty of this approach is
that the LCSs are capable to run different dispatching algorithms independently,
that are suitable for specific passenger traffic situations, while the FEGCS only must
determine the best algorithm to be run in each LCS. The VEI allows the designer to
test and validate in a flexible way the algorithm performance for different traffic
situations. Elevator systems are administrated by an EGCS and microprocessed
subsystems implementing a LCS for each elevator.

1.3 Fuzzy Logic Concepts

Lofty Zadeh [40], a computer scientist at the University of California Berkeley,
proposed the fuzzy set theory in 1965. “A fuzzy set is a class of objects with a
continuum of grades of membership.” Lofty defined fuzzy sets as a class of sets
with grades of membership from 0 to 1. Expert Systems, Artificial Neural Networks
and Fuzzy Systems share the property of being model-free approximations, which
means that no exact mathematical model of the physical system to control or to
approximate is needed.

One of the most important areas of implementing fuzzy logic is in control
systems. Fuzzy logic control has been in several real-world applications. The first
Fuzzy logic controller was developed by Mamdani and Assilian in 1975 for con-
trolling a steam generator in a laboratory setting and Blue Circle Cement and SIRA
in Denmark developed a cement kiln controller that is the first industrial application
in 1976. Japan developed several industrial applications using fuzzy logic. For
instance, a water treatment system developed by Fuji Electric. Besides, Hitachi

10 1 Literature Review for Digital Implementations of Fuzzy Logic …

installed a fuzzy logic-based automatic train operation control system into the
Sendai city’s subway system based on fuzzy logic. These applications of fuzzy
logic attracted the attention of many engineers to use fuzzy logic in control systems.

Fuzzy sets intend to model the uncertainty or vagueness associated to the natural
human reasoning, which is based on linguistic words and sentences rather than in
mathematical expressions and relations. Approximate reasoning or fuzzy reasoning
is a mode of reasoning which is neither exact nor inexact [Zade75]. It is supported
on the Fuzzy Logic theory and it offers a realistic framework for representing
human reasoning. Approximate reasoning is the fundament for Fuzzy Inference
Systems. To understand how it is performed, three basic concepts should be
defined:

• Linguistic Variable. A linguistic variable is a variable whose values are words or
sentences in a natural or artificial language rather than numerical. For instance,
the variable speed can be described as it is presented below.

TS speedð Þ ¼ small;medium; bigf g ¼ S;M;Bf g:
• Fuzzy Proposition. Fuzzy proposition is a statement expressed in a natural or

artificial language. In contrast to classical logic propositions, a fuzzy proposition
may adopt a truth-value from the interval [0, 1].For example, Distance is Big.

• Linguistic Rule. A linguistic if-then rule has two parts:

Antecedent part (premise), expressed by: if <fuzzy proposition>,
Consequent part, expressed by: then <fuzzy proposition>,
It is used for setting the actions that can be done in a controller. For instance, if
the distance is big then the controlled speed is big.

A fuzzy set is characterized by a membership function which assigns to each
element a grade of membership. A fuzzy set F is entirely defined by the set of
ordered pairs.

F ¼ x; lF xð Þð ÞjX 2 Uf g and lF:U ! 0; 1½ �;

where x is an element of the universe of discourse U and µF is a membership
function that assigns a degree of membership µF (x) to each element x of F.

In 1996, Zadeh [41] expressed a novel fuzzy logic approximation that is equated
to computing with words (CW). There are two main ideas for computing with
words. Initially, CW is a necessity when the available information is imprecise, and
there is a tolerance for imprecision which can be exploited to achieve tractability,
robustness, low solution cost, and better rapport with reality.

Fuzzy logic gradually emerged as a discipline in Artificial Intelligence, as well as
expert systems and neural network [42]. Fuzzy logic helps solve complex problems,
and it has been applied to several applications [43] like process control [1–9, 11, 14,
44–47], modeling [48], identification [48, 49], medicine [18], science [8, 14, 42,
50–52], and so on. Fuzzy Logic Type-2 is much computationally intensive

1.3 Fuzzy Logic Concepts 11

comparing to its type-1 counterpart. Despite their computation burden, type-2 has
been applied to various type of application such as, neural network [24], signal
processing [15, 16], pattern recognition [17, 18], time series forecasting [19],
wireless communication [21] decision making [20], noise canceling [22], system
identification [23], and power engineering [26].

Fuzzy logic deals with real problems that have imprecise information or
uncertainty. Fuzzy logic is defined as the set of mathematical descriptions based on
degrees of membership. A fuzzy model includes linguistic rules that help to map the
inputs and outputs of the system. Inputs in a Fuzzy logic systems can get mem-
bership values between 0 and 1. In conventional logic, the membership value is
limited to only two values, 0 or 1 [53]. A Type-1 FLS has a grade of membership
that is crisp, whereas Type-2 FLS has grades of membership that are fuzzy. Type-2
FLS has four basic components: fuzzification, evaluation of rules (if-then linguistic
rules) and defuzzification. When membership functions are used, they can describe
real-world situations where it is difficult to use binary membership values (0 or 1).

Two sets are presented in Fig. 1.1, the one on the left side is crisp and an element
defined within a universe can belong or not to the set (element “a” belong the set or
has a membership value of 1 and elements “b” and “c” do not belong and have a
membership value of 0). On the other hand, the fuzzy set has different degrees of
membership. For example, the element f has a lower degree of membership that
elements d and e (if the center of the set represents the maximum membership
value). A fundamental concept in mathematics is the notion of set. A set is a
collection of specific, discernible elements. A set can be finite countable or
uncountable elements and it could be described in two forms:

By naming all its elements:

A ¼ a; b; c; 10;Xf g) a; b; . . .X 2 A; where as f ; b 62 A:

By stating a property for all its elements:

A ¼ xjP xð Þf g; whereP defines the properties of the elements x belonging to

A ði.e.A ¼ fxjxg[3Þ

Fig. 1.1 Crisp set and fuzzy
set

12 1 Literature Review for Digital Implementations of Fuzzy Logic …

On the other hand, fuzzy sets can be represented by discrete or continues rep-
resentation. A notation convention for fuzzy sets when the universe of discourse, X,
is discrete and finite, it is as follows for a fuzzy set A:

~A ¼ l~A x1ð Þ
x1

þ l~A x2ð Þ
x2

þ � � �
� �

¼
X
i

l~A xið Þ
xi

()

If the universe, X, is continuous and infinite, the fuzzy set A is defined by:

~A ¼
Z

l~A xð Þ
x

� �

It can be defined as a Characteristic Function for all the elements x of the
Universe of Discourse U. The set U is also called the Super Set. Therefore, for a set
A belonging to U, the Characteristic Function in a crisp set (This function is called
membership function in Fuzzy Set Theory) can be defined by

lA xð Þ ¼ 1 if x 2 A
0 if x 62 A

�

The membership function of a fuzzy set corresponds to the characteristic
function of a crisp set. However, while the characteristic function of a crisp set can
only take values 0 or 1, the membership function of a fuzzy set can take any value
from the interval [0, 1]. Hence, a fuzzy set is a generalization of the crisp set.

1.3.1 Type-1 Fuzzy Set (T1Fs)

Normally, Human decision thinking is not defined with mathematical methods or
crisp numbers, so fuzzy numbers can be used for solving basic and advanced
problems such as driving a car that deals with vague or ambiguous conditions. For
example, when you are taking a shower and the temperature of the water is very
hot, then your control action will be to close a little the hot water valve and open the
cold water valve moderately; you can use labels like “little” and “moderately” to
describe fuzzy values in the elements. Those elements have a membership value in
a fuzzy set. For example, the label “a little” could mean a value between 10° and
30° degrees of rotation of the valve and “moderately “ a rotation between 20° and
40° of rotation of the valve. Of course, we do not have a mathematical model which
relates the temperature of the water with the rotation of the valves but we can
achieve a comfortable temperature of the water without problems. Fuzzy set can
help solve this description without knowing a mathematical model.

Fuzzy sets are used for describing fuzziness based on degrees of membership
and they can be used in many real situations with linguistic terms: measurement of

1.3 Fuzzy Logic Concepts 13

temperature, speed, distance, height, etc.; for instance: The air is fresh, the electric
vehicle is very fast but it can only achieve short distance trips, Tony is a very tall
guy. But considering these scales, very often it is difficult to distinguish between
memberships of some class of nonmembers. One of the problems that can arise
when fuzzy logic is used is how to determine the values for describing the fuzzy
terms. For example, how long is a short distance trip? It is a question that can
generate several linguistic responses. Fuzzy logic type-2 can deal with this kind of
problems because it can deal with uncertainties in words of different persons.

On the other hand, crisp distinctions are used to model this with conventional or
Boolean sets and it forces an abrupt transition between the members and not
members of a set; for example, we may say that a short trip is less than 100 km
(e.g., 99.9 km) and by deduction, a trip larger than 100.1 km is in a long trip. For
avoiding these inconsistencies, fuzzy logic could be used.

1.3.2 Membership Function

When the Universal Set U is continuous or uncountable rather than discrete,
membership functions can be expressed analytically by using continuous or
piecewise explicit mathematical functions The basic idea of the Boolean logic is
using only two membership values: true (1) or false (0), this Boolean logic cannot
represent values between 1 and 0 that are used for defining with vague concepts. Let
X be a Boolean (crisp) set and x an element of that set, then x belong to X x 2 Xð Þ or
x do not belong to X x 62 Xð Þ. The classical theory imposes a sharp boundary of the
sets and all the values that belong to x have a set value of 1 and the others which do
not belong have a value of 0. However, crisp sets do not deal with membership
values. The principle of a fuzzy set is based on membership values. For instance,
information can be used for describing a table of maximum distances achieved by
electric vehicles, and it is possible to assign a certain degree of membership to each
element. A membership function called “long distance” can be used to describe the
set distance (the description of the fuzzy set can be done by discrete or continues
forms). For illustrative purposes, all the membership functions shown in the fol-
lowing figures will be continuous. Table 1.1 presents a description for variable long
distance.

Using continues approximations, it is possible to get the following representation
(fuzzy membership function) in fuzzy and crisp forms (see Figs. 1.2 and 1.3).

In Fig. 1.2 is shown a fuzzy set for “long distance;” the horizontal axis represents
the universe of discourse in this case which is between 50 and 200 km and the
vertical axis represents the degree of membership; for crisp sets, the transition
between nonmembership value and membership value is abrupt; so a value of 99
will have a degree of membership of 0 while 100 has a value of 1. On the other
hand, for a fuzzy set the transition could have the form of any function; in this case,
a line was selected for simplicity but it can have any shape according to the
suggestions of an expert or a knowledge database, more recently artificial neural

14 1 Literature Review for Digital Implementations of Fuzzy Logic …

networks are combined with fuzzy logic on order to learn from the available data
and derive the value of the fuzzy sets automatically. In the next sections, the most
employed membership function are presented and their mathematical representa-
tion. Figure 1.4 depicts conventional membership functions.

The main parts of the fuzzy membership function can be defined by the fol-
lowing terms (see Fig. 1.15):

Table 1.1 Fuzzy set used for
describing “long distance” in
a discrete form

Vehicle Distance Crisp
value

Fuzzy membership
value

1 80 0 0.2

2 160 1 1

3 90 0 0.3

4 100 1 0.4

5 103 1 0.43

6 70 0 0.1

7 170 1 1

8 190 1 1

9 120 1 0.6

10 144 1 0.84

Fig. 1.2 Fuzzy set for “long distance”

Fig. 1.3 Crisp set for “long distance”

1.3 Fuzzy Logic Concepts 15

The core of a membership function for some fuzzy set A, is defined as that
region of the universe that is characterized by complete and full membership value
lAðxÞ ¼ 1 in the set A. So, the elements in the set A that have a membership value
equal to 1, are the elements that are part of the core.

The support of a membership function for some fuzzy set A is defined as that
region of the universe that is characterized by nonzero membership value in the set A.

The boundaries of a membership function for some fuzzy set A are defined as
that region of the universe containing elements that have a nonzero membership but
not complete membership (Fig. 1.5).

As it was shown, there are several MF which can be used in T1FS; for example,
the next normal membership functions presented above, A normal or conventional
fuzzy set is one whose membership function has at least one element x in the
universe whose membership value is one. The mathematical representation for
some conventional membership functions is presented below.

Triangular MF
A triangular MF is defined by its parameters a; b; c½ � such

lA xð Þ ¼
x�a
b�a a� x� b
c�x
c�b b� x� c

0 x� a _ x� c

8><
>: ð1:1Þ

The shape of this function is shown in Fig. 1.6a.

Fig. 1.4 Different shapes of conventional membership functions

Fig. 1.5 Membership
functions parts

16 1 Literature Review for Digital Implementations of Fuzzy Logic …

Trapezoidal MF
A trapezoidal MF is defined by its parameters a; b; c; d½ � such

lA xð Þ ¼

x�a
b�a a� x� b

1 b� x� c
d�x
d�c c� x� d

0 x� a _ x� d

8>>><
>>>:

ð1:2Þ

The shape of this function is shown in Fig. 1.6b.

S-Shape MF
An S-shape MF is defined by its parameters a; b½ � such

lA xð Þ ¼
x�a
b�a a� x� b

1 b� x
0 x� a

8<
: ð1:3Þ

The shape of this function is shown in Fig. 1.6c.

Z-Shape MF

A Z-shape MF is defined by its parameters c; d½ � such

lA xð Þ ¼
1 x� c

d�x
d�c c� x� d

0 x� d

8><
>: ð1:4Þ

The shape of this function is shown in Fig. 1.6d.

Fig. 1.6 Membership functions shapes

1.3 Fuzzy Logic Concepts 17

Gaussian MF
A Gaussian MF is defined by its parameters c;r½ � such

lA xð Þ ¼ e�
1
2

x�c
rð Þ2 ð1:5Þ

The shape of this function is shown in Fig. 1.6e.

Singleton MF
A singleton MF is defined by its parameter c such as

lA xð Þ ¼ 1 x ¼ c
0 otherwise

�
ð1:6Þ

The shape of this function is shown in Fig. 1.6f.

Interval or Crisp MF
An interval or crisp MF is characterized by an interval [a, b]

lA xð Þ ¼ 1 a� x� b
0 otherwise

�
ð1:7Þ

The shape of this function is shown in Fig. 1.6g; this membership shape is a
particular case of T1FS where the membership is a crisp value as the traditional
Boolean logic.

Such MF’s are widely used in Type-1 FS for the fuzzification process (mapping
from fuzzy to crisp value).

There are more possibly ways to assign membership values or functions to fuzzy
variables than there are to assign probability density functions to random variables.
This assignment process can be intuitive or it can be based on some algorithmic or
logical operations. The following is a short list of methods described in the liter-
ature to assign membership values or functions to fuzzy variables.

1. Intuition—This method is simply derived from the capacity of humans to
develop membership functions through their own innate intelligence and
understanding.

2. Inference—It uses knowledge to perform deductive reasoning. That is to deduce
or infer a conclusion, given a body of facts and knowledge.

3. Rank ordering—Assessing preferences by a single individual, a committee, a
poll, and other opinion methods can be used to assign membership values to a
fuzzy variable.

4. Inductive reasoning—An automatic generation of membership functions can
also be accommodated by using the essential characteristic of inductive rea-
soning, which derives a general consensus from the particular (derives the
generic from the specific). The induction is performed by the entropy mini-
mization principle, which clusters most optimally the parameters corresponding
to the output classes.

18 1 Literature Review for Digital Implementations of Fuzzy Logic …

On the other hand, the operations on fuzzy sets are defined by means of their
membership functions so that the definitions of those operations generalize their
equivalents in crisp set theory.

Intersection: given the fuzzy sets A and B, defined in U with µA and µB
membership functions and their intersection is the fuzzy set:

A\B ¼ fx; ðlA\B xð ÞÞjx 2 Ug; with lA\B xð Þ ¼ lA xð Þ� ^ lB xð Þ

Intersection operators belong to the class of Triangular Norms or T-Norms.
These are binary operators defined in the interval [0, 1] satisfying the following
properties:

T 0; 1ð Þ ¼ T 1; 0ð Þ ¼ T 0; 0ð Þ ¼ 0; T 1; 1ð Þ ¼ 1; agreement with boolean ANDð Þ:
T x; 1ð Þ ¼ x; 8 x 2 0; 1½ �; identityð Þ:
T x; yð Þ ¼ T y; xð Þ; 8 x; y2 0; 1½ �; commutativityð Þ:
T x1; yð Þ� T x2; yð Þ; 8 x1; x2; y 2 0; 1½ �; x1� x2; monotocityð Þ:

Some operators have been proposed like T-Norms. The most used ones are the
following:

min : lA\B xð Þ ¼ lA xð Þ� ^ lB xð Þ ¼ min lA xð Þ; lB xð Þð Þ;
algebraic product : lA\B xð Þ ¼ lA xð Þ� ^ lB xð Þ ¼ lA xð ÞlB xð Þ;

bounded difference : lA\B xð Þ ¼ lA xð Þ� ^ lB xð Þ ¼ max 0; lA xð Þþ lB xð Þ � 1ð Þ;

Union: given the fuzzy sets A and B, defined in U with µA and µB membership
functions and their union is the fuzzy set:

A[B ¼ x; ðlA[B xð ÞÞjx 2 Uf g; and lA[B xð Þ ¼ lA xð Þ� _ lB xð Þ;

Union operators belong to the class of S-Norms or Triangular Co-Norms
(T-Co-Norms). These are binary operators defined in the interval [0, 1] satisfying
the following properties:

S 0; 1ð Þ ¼ S 1; 0ð Þ ¼ S 1; 1ð Þ ¼ 1; S 0; 0ð Þ ¼ 0; agreement with boolean ORð Þ:
S x; 0ð Þ ¼ x; 8 x 2 0; 1½ �; identityð Þ:
S x; yð Þ ¼ S y; xð Þ; 8 x; y 2 0; 1½ �; commutativityð Þ:

S x1; yð Þ� S x2; yð Þ; 8 x1; x2; y 2 0; 1½ �; x1� x2; monotonicityð Þ:

1.3 Fuzzy Logic Concepts 19

Some operators have been proposed as T-CoNorms. The most used are
following:

max : lA[B xð Þ ¼ lA xð Þ� _ lB xð Þ ¼ max lA xð Þ;lB xð Þð Þ;
algebraic sum : lA[B xð Þ ¼ lA xð Þ� _ lB xð Þ ¼ lA xð Þþ lB xð Þ � lA xð ÞlB xð Þ;
bounded sum : lA[B xð Þ ¼ lA xð Þ� _ lB xð Þ ¼ min 1; lA xð Þþ lB xð Þð Þ;

Complement: given the fuzzy set A defined in the Universe of Discourse U, its
complement is the fuzzy set:

A ¼ x; ðlA xð ÞÞjx 2 U
� �

and lA xð Þ ¼ �: lA xð Þð Þ ¼ 1� lA xð Þ

where �: denotes the “fuzzy negation” of a membership function, coincident in
this case with the complement operator for crisp sets. There are others complement
operators �:. In general, they are C-Norms.

1.3.3 Discourse Universe and Membership Degree

If A is a Type-1 FS and each set has a set of membership values lA xið Þ for each xi,
all the values xi 2 X are called the discourse universe, or simply the discourse. The
discourse universe can be a set of ordered or nonordered values.

Each discourse value is mapped by f and f is a function, then each value char-
acterized by f is a membership degree, which is related to the belonging to a certain
set. The membership degree has values in interval (0, 1), where a crisp value can
belong to a set in 100 % if its membership degree is equal to 1 [54].

1.4 Extension Principle

The extension principle is a basic concept of fuzzy sets theory used for generalizing
the crisp mathematical concepts into fuzzy sets. It was implied in the first fuzzy
logic paper [40] and after that some modifications was developed [51, 55] until
reach the present concept.

Consider two universes of discourse X and Y, and a mapping function of the
form y ¼ f ðxÞ. Consider also a collection of elements from the set A which are
defined in the universe x. The extension principle defines the image of fuzzy set
A on Y under the mapping f. If the image is denoted as B. The mapping is B ¼ f ðAÞ.

20 1 Literature Review for Digital Implementations of Fuzzy Logic …

The membership functions which defines B on the universe of a membership
interval [0, 1] is:

lB yð Þ ¼
_

f xð Þ¼y

lA xð Þ

The fuzzy vectors are defined as vector containing membership values that
utilize matrix relations. The fuzzy sets A and B are expressed in vector forms as
follows:

a ¼ a1; . . .; anf g ¼ lA x1ð Þ; . . .; lA xnð Þf g for i ¼ 1; 2; . . .; n

and

b ¼ b1; . . .; bnf g ¼ lB y1ð Þ; . . .; lB ymð Þf g for i ¼ 1; 2; . . .;m

Now the image of the fuzzy set A can be determined through the use of com-
position operators B ¼ A � R, where R is a n	 m fuzzy relation matrix. The
mapping can be defined then as B ¼ f A1;A2; . . .;Anð Þ where the membership
function of the image B is given by:

lB yð Þ ¼ max
y¼f x1;x2;...;xnð Þ

min½lA1
x1ð Þ; lA2

x2ð Þ; . . .; lAn
xnð Þ�� �

The previous equation is called the Zadeh’s extension principle and is expressed
for a discrete-valued function f. If the functions are continuous, the max operator is
replaced by the sup (supremum or last upper bound) operator.

Table 1.2 Basic identities using the basic fuzzy logic operations

Name Symbol

Contradiction A u :A ¼ ;
Excluded middle A t :A ¼ X

Idempotency A u A ¼ A;A t A ¼ A

Involution : :Að Þ ¼ A

Commutativity A u B ¼ B u A;A t B ¼ B t A

Associativity A t Bð Þ t C ¼ A t B t Cð Þ; A u Bð Þ u C ¼ A u B u Cð Þ
Distributivity A t B u Cð Þ ¼ A t Bð Þ u A t Cð Þ;A u B t Cð Þ ¼ A u Bð Þ t A u Cð Þ
Absorption A t A u Bð Þ ¼ A;A u A t Bð Þ ¼ A

Complement
absorption

A t :A u Bð Þ ¼ A t B;A u :A t Bð Þ ¼ A u B

DeMorgan law : A t Bð Þ ¼ :A u :B;: A u Bð Þ ¼ :A t :B

1.4 Extension Principle 21

1.4.1 Basic Identities

Using the basic fuzzy properties [53] and [54], some identities are inherited from
the Boolean logic shown in Table 1.2.

1.5 Fuzzy Logic Rules

An important concept in fuzzy logic is a fuzzy proposition. Fuzzy propositions
represent statements like “V is big,” where “big” is a linguistic label, defined by a
fuzzy set on the universe of discourse of variable V. Fuzzy (linguistic) labels are
also referred to as fuzzy constants, fuzzy terms or fuzzy notions. Fuzzy propositions
connect variables with linguistic labels defined for those variables. Fuzzy relations
can also be assembled from linguistic knowledge, expressed as if—then rules. Such
knowledge may come from experts, from polls, or from consensus building.
Relations also arise from notions of classification where issues associated with
similarity are central to determining relationships among patterns or clusters of data.
By using the basic properties and operations defined for fuzzy sets, any compound
rule structure may be decomposed and reduced to a number of simple canonical
rules. These rules are based on natural language representations and models, which
are themselves based on fuzzy sets and fuzzy logic. The fuzzy level of under-
standing and describing a complex system is expressed in the form of a set of
restrictions on the output based on certain conditions of the input. Restrictions are
generally modeled by fuzzy sets and relations. These restriction statements are
usually connected by linguistic connectives such as ‘‘and,’’ ‘‘or,’’ or ‘‘else.’’ The
restriction R1, R2, …, Rr apply to the output actions, or consequents of the rules.
The fuzzy rules are used for stabilizing a relationship between the inputs and the
outputs, in 1973, Zadeh published [55], in this paper was presented a new approach
for analyzing complex systems based on capturing the human knowledge in the
form of fuzzy rules.

A fuzzy rule can be defined as a conditional statement in the form:

IF x IS A
THEN y IS B

where x is an input variable and A is a defined fuzzy set defined in the discourse X;
on the other hand, y is an output variable and B is its corresponding fuzzy set
defined in the discourse Y.

If the output depends on more than one variable, there must be a relationship
between the inputs; for example, consider a brake system defined from a fuzzy
database with the following rule:

IF speed is high AND breaks_wear is low
THEN braking_force is medium

22 1 Literature Review for Digital Implementations of Fuzzy Logic …

When an operator between the inputs is used, all the parts of the antecedents are
calculated simultaneously.

Another important operator for fuzzy rules is the OR; consider the next example:

IF work is Low OR time_operating a machine is medium
THEN maintenance_schedule is regular

There is also the possibility of having certain situations where more than one
output is activated as:

IF temperature is High
THEN:
hot_water is reduced and cold_water is increased

1.6 Defuzzification Methods

This is the last step in a fuzzy logic inference; for instance, if the actuators of the
system are activated, a crisp value of voltage has to be activated. The defuzzifi-
cation aggregates the outputs into a single crisp number; there are several methods
for doing this and the most commons are the shown below:

Centroid
This is the most widely used defuzzification method in T1FLS, also known as the
Centroid of Area (COA). For this defuzzification method, the shape of the T1
Inferred Set lB yð Þ is needed. Hence, the expression can be expressed by:

y ¼
PN

i¼1 y
lB yð ÞPN
i¼1 lB yð Þ ð1:8Þ

Bisector
This defuzzification method searches for y satisfying the following condition:

Xy0
i¼a

lB yð Þ ¼
Xb
i¼y0

lB yð Þ ð1:9Þ

where a ¼ min Y jlB yð Þ 6¼ 0ð Þ; b ¼ max Y jlB yð Þ 6¼ 0ð Þ, such a; b 2 Y . This means
that a vertical line y ¼ y0 partitions the region between a; b½ � and 0; lB yð Þ½ � into two
regions with the same area.

Mean Of Maximum
Mean of maximum considers the crisp output as the mean of each

1.5 Fuzzy Logic Rules 23

Y 0 ¼ yi; yiþ k

� �
such as:

lB yið Þ ¼ lB yiþ k

� 	 ¼ max lBð Þ :
y ¼ 1

2
yi þ yiþ k

� 	 ð1:10Þ

It must be searched for the first ijyi2Y, such lB yið Þ ¼ max lBð Þ starting from left
to right, i.e. from 1 to N. Also, you must search for the last i ¼ iþ k; kjyiþ k2Y,
such lB yiþ k

� 	 ¼ max lBð Þ starting from right to left, i.e. from N to 1.

Height
The height defuzzifier, also known as the Center Average defuzzifier, searches for
y ¼ yl 2 Y , such lB yl

� 	
is the maximum for each consequent set, i.e., before every

trimmed set is aggregated in the inferred set search. If several values
Y 0 ¼ yj; yk

� � 2 Y , present the maximum membership value for that consequent set,
the average between its ends is selected, i.e.

yl ¼ 1
2

yj þ yk
� 	 ð1:11Þ

Finally, whenever each yl and its corresponding lBl yl
� 	

is already known, then
the centroid is calculated as:

y ¼
PM

l¼1 y
l
 lBl yl

� 	
PM

l¼1 lBl ylð Þ ð1:12Þ

Center Of Sums
This method combines the consequent MF area and its centroid.

For discrete discourse universes Y, such Dy ¼ yi � yi�12Y , the proposed area
can be computed as the sum of each consequent membership degree, i.e.:

aBl ¼
XN
i¼1

lBl yið Þ ð1:13Þ

Then the center of sum can be computed as

ya ¼
PM

l¼1 cBl
 aBlPM
l¼1 aBl

ð1:14Þ

where cBl is the centroid of each consequence.

24 1 Literature Review for Digital Implementations of Fuzzy Logic …

1.7 Fuzzy Inference Methods

Fuzzy inference is defined as the process of mapping an output from a given input
using membership degrees; up to now, there were defined the steps of the inference
models. So, it is required to define a block diagram with all the steps involved in the
fuzzy logic inference. The steps expressed in a block diagram are shown in Fig. 1.7.

The most common fuzzy inference methods are: the Mamdani and Sugeno type
that are shown in Fig. 1.8.

Fig. 1.7 Algorithm structure of Type-1 and Type-2 FLS

Fig. 1.8 Mamdani and Sugeno inference

1.7 Fuzzy Inference Methods 25

Mamdani Inference
Ebrahim Mamdani [44] proposed a controller based on linguistic rules and fuzzy
sets. This is one of the most used inferences methods in fuzzy logic. A rule in the
Type-1 Mamdani Inference Model is expressed as:

if x1 is A1
1 and x2 isA1

2 then y isB ð1:15Þ

where the subindexes in A1
1 refer to the number of the input variable and the

super-indexes refer to the number of the set of the input variable labeled in the
sub-index.

Its inference model could be based on the min–max or max-prod composition
according to the rule set. Generally, the inference model can be performed with any
composition of fuzzy T-Norms and T-Conorms. Generally, the fuzzy composition
can be expressed by:

lR1�R2
x; zð Þ ¼ S T lR1

x; yð Þ; lR2
y; zð Þ� 	� 	 ð1:16Þ

where S is applied to the result of all the T-Norms in the relations. The composi-
tions are constructed by using conjunctions and disjunctions operators, the com-
positions share the properties. From, the expert may create an inference stage of: a
Single Rule with a Single Premise, a single rule with multiple premises and, a
multiple rule with multiple premises [44]. In general, the resulting Type-1 FS
obtained after the T-Norm part can be called as the firing strengths or the fulfillment
degree from each rule.

Type-1 FS is called the Type-1 Inferred Set. Some defuzzification methods can
be used to convert the Type-1 FS into a crisp output, which is the system output.
The previous defuzzification methods are widely used in several applications. Some
of them are more complex to the others. Now, suppose that the output discourse
universe Y is discrete, Y is the crisp output, such y 2 Y where the Type-1 Inferred
Set lB yð Þ resides.

The first inference method, due to Mamdani and Assilian (1975), is the most
common in practice and in the literature.

For clarifying the steps in the Mamdani method, an example is shown below:

Step 1: Fuzzification
It transforms the physical input values (position, voltage, degree, and so on) into a
normalized fuzzy subset consisting of a subset (interval) for the range of the input
values and a normalized membership function describing the degree of membership
of the input belonging to this range. In the example, the first step is to transform the
crisp inputs taken from the sensors, estimators, or measurements x1; y1 and limited
within the universe of discourse X and Y, respectively. The crisp inputs are mapped
to fuzzy values by the membership functions. In Fig. 1.8, a system with two inputs
and one output is shown; the fuzzification consists in finding the membership
values for each input variable. As shown in the example in Fig. 1.9, the system has

26 1 Literature Review for Digital Implementations of Fuzzy Logic …

two inputs x1 and y1 (it can be observed the membership values found by the
membership functions for A1 = 0.5, A2 = 0.2 and A3 = 0 and for Y1 = 0.1 and Y2
= 0.7). Fuzzification implies to select reasonable and good, ideally optimal, and
membership functions under certain convenient criteria meaningful to the devel-
oped application. Hence, a correct selection of shape and number of membership
functions has to be done in this step.

Step 2: Rules evaluation
Designing a good fuzzy logic rule base is key to obtain a satisfactory response for a
particular application. In the example, the rules are evaluated according to the
measurements inputs; in this example, the AND operator is governed by the MIN
T-norm, so when a rule has the AND operator, the value taken for evaluation of the
output is the minimum membership value of the inputs. In the case of the OR
operator, the MAX T-conorm is implemented and therefore the taken value for
evaluation of the outputs is the maximum membership value of the implicated
inputs. The third rule does not relate the inputs and hence the membership value of
the inputs is taken for the evaluation of the output. The mim–max inference is
applied in the example. In the inference method knowledge was used to perform
deductive reasoning. That is, it is based on deduce or infer a conclusion, given a
body of facts and knowledge (rules). The min–max inference approach is a tech-
nique that can be used to evaluate the relationship between premise and antecedents
in a Fuzzy logic system. Figure 1.10 shows the rule evaluation step. The causal
relations between concepts are often defined by linguistic variables, which are
words that describe the strength of the relationship. The min–max inference
approach can be utilized to evaluate these linguistic variables. The minimum value
of the links in a path is considered to be the path strength. If more than one path
exists between the cause variable and the effect variable, the maximum value of all
the paths is considered to be the overall effect. In other words, the indirect effect
amounts to specifying the weakest linguistic variable in a path, and the total effect
amounts to specifying the strongest of the weakest paths.

Fig. 1.9 Fuzzification step

1.7 Fuzzy Inference Methods 27

Step 3: Aggregation of the rules outputs and defuzzification
The defuzzification module is in a sense the reverse of the fuzzification module: it
converts all the fuzzy terms created by the rule base of the fuzzy logic system to
crisp values and then this value can be sent to a physical system (plant, process), so
as to execute the fuzzy logic controller. It creates a crisp, overall output signal, by
combining all possible outputs from the rule base into a weighted average formula,
such as the center of sum. The defuzzification step is illustrated by Fig. 1.11.

Fig. 1.10 Rule evaluation step

Fig. 1.11 Defuzzification step for Mamdani inference model

28 1 Literature Review for Digital Implementations of Fuzzy Logic …

1.8 Takagi-Sugeno-Kang

The Sugeno inference is different from Mamdani because the defuzziciation uses a
polynomial equation. So, the Sugeno if–then rules are described in a different form:
the consequents of those rules could be (linear) functions. Takagi Sugeno and Kang
in 1985 [48], proposed a mathematical model for inference systems based on
polynomials, called the Takagi-Sugeno-Kang Inference Model (TSK). Their pur-
pose was to develop a systematic approach to generate fuzzy rules from a given
input-output dataset. Typically, a T1 TSK rule seems alike:

if x1 is A1
1 AND x2 is A1

2 THEN y ¼ f x1; x2ð Þ ð1:17Þ

Figure 1.12 shows a complete representation of Sugeno inference in this rep-
resentation; it is possible to observe the defuzzification based on polynomials.

where f is a crisp function defined by polynomials of input variable values x1 and
x2, but generally it can be any appropriated function which can satisfy the required
outputs within the fuzzy region specified by the rule premise. Also, each rule may
have a different polynomial. The polynomial can be of any order, but usually the
polynomial can be of second, first, and zero order. The zero-order TSK model can
be considered as a particularity, because this behaves like a Mamdani Inference
model using singletons as consequent sets.

For Type-1 FL, the firing strengths are related to their corresponding polynomials.
The consequent FS yi are polynomials, where I =1, 2,…,M and j = 0, 1,…, p.M is the
total number of firing strengths and p is the total number of crisp input variables.

Fi ¼ T lf 1 x1ð Þ; lf 1 x1ð Þ; . . . lf p xp
� 	
 �

ð1:18Þ

Fig. 1.12 Sugeno inference method

1.8 Takagi-Sugeno-Kang 29

Each firing strength can be computed as

yi ¼
Xp
k¼1

aikx
2
k þ bikxk þ cik

� 	 ð1:19Þ

So, the TSK output is:

yTSK ¼
X
y12Y

. . .
X
yM2Y

X
f 1

. . .
X
f M

PM
i¼1 f

iyiPM
i¼1 f

i
ð1:20Þ

For the purpose of clarifying the TSK inference method an example is shown
below using constant values in the membership functions (singleton functions)

Step 1: Fuzzifier.
As in the Mamdani type, the first step is to evaluate the measured values and obtain
the crisp value. Notice that the definition of the outputs is only a singleton MF, by
doing this the computation of the centroid of mass or any other defuzzification
method is avoided because there is only one value defined for the output (see
Fig. 1.13).

Step 2: Rules evaluation.
The evaluation of the rules is presented in Fig. 1.14. In this rule evaluation, an
inference method is applied (e.g., min-max).

Step 3: Aggregation of the rules outputs anddefuzzification.
The next step consists of the evaluation of the output (see Fig. 1.15). If Z1 = 1,
Z2 = 2, and Z3 = 3.

Fig. 1.13 Fuzzification step

30 1 Literature Review for Digital Implementations of Fuzzy Logic …

The output is calculated by

Output ¼ 0:2
 1ð Þþ 0:1
 2ð Þþ 0:5
 3ð Þ
0:5þ 0:2þ 0:1ð Þ

An example about fuzzy logic control is presented below.

IF TEMPERATUREIS HIGH ANDPRESSURE IS LOWTHEN SET THEVALVE TOK1

The heuristic rule for temperature and pressure control is derived from people
experience. Both, temperature and pressure, and valve setting are the fuzzy vari-
ables that focus on the corresponding fuzzy sets. Low, high, and medium settings

Fig. 1.14 Rule evaluation step

Fig. 1.15 Defuzzification step for TSK inference model

1.8 Takagi-Sugeno-Kang 31

have the characteristic membership functions and also are fuzzy values determined
by the user. Figure 1.16 shows the fuzzy sets of the example, as well as, Fig. 1.17
shows up the crispy sets. Normally, it is easier to adjust the membership functions
and the polynomials in the outputs than membership functions in the input and
outputs, so Sugeno is proposed to be represented by adaptive networks (ANFIS)
that help to design a fuzzy logic controller.

A system rule could be made by:

IF TEMPERATURE\60 �C[25 PSI

THENSETTHEFUE VALVE 40%

where pressure, temperature, and fuel valve settings are the parameters. The rules
processes the logic variables generated by the input conditions. Fuzzy controls
require fewer rules compared to expert system. Systems rules depend on the
parameters established by the user, such like the amount of them.

1.9 Numerical Example (Mandani)

Consider a humidity fuzzy controller of a microbiological incubator. The inputs of
the system are the relative humidity of the air and the temperature. The fuzzy sets of
the input can be seen in the Fig. 1.18.

Fig. 1.16 Fuzzy sets of
temperature

Fig. 1.17 Crispy sets of
temperature

32 1 Literature Review for Digital Implementations of Fuzzy Logic …

The measures taken from the sensors are 61 % for the relative humidity and 29 °
C. Thus, the membership value of the medium set for humidity is cut on 0.58, and
the high set is cut on 0.5. For the temperature, the cold set is cut on 0.2 and the
medium set cut on 0.1. Figure 1.19 shows the membership functions of the output.

l r humidity ¼ lowð Þ ¼ 0

l r humidity ¼ mediumð Þ ¼ 0:58

l r humidity ¼ highð Þ ¼ 0:5

l temperature ¼ coldð Þ ¼ 0:1

l temperature ¼ mediumð Þ ¼ 0:2

l temperature ¼ highð Þ ¼ 0

Consider that the following rules are activated with the activated fuzzy sets of
the inputs:

IF TEMPERATURE IS COLD AND RELATIVE HUMIDITY IS MEDIUM
THEN SPEED IS LOW

Fig. 1.18 Relative humidity
and temperature variables

Fig. 1.19 Speed variable

1.9 Numerical Example (Mandani) 33

lspeed lowð Þ ¼ min½l temperature ¼ coldð Þ; l r humidity ¼ mediumð Þ�
¼ min 0:1; 0:58½ � ¼ 0:1

IF TEMPERATURE IS MEDIUM AND RELATIVE HUMIDITY IS
MEDIUM THEN THE SPEED IS MEDIUM

lspeed mediumð Þ ¼ min½l temperature ¼ mediumð Þ; l r humidity ¼ mediumð Þ�
¼ min 0:2; 0:58½ � ¼ 0:2

IF TEMPERATURE IS HIGH AND RELATIVE HUMIDITY IS HIGH
THEN THE SPEED IS HIGH

lspeed highð Þ ¼ minð½l temperature ¼ highð Þ; l rhumidity ¼ high
� 	�

¼ min 0; 0:5½ � ¼ 0

The outputs are then cut in the membership value (dashed lines) in Fig. 1.20.
And the center of mass can be calculated as it is shown in Fig. 1.21.
The center of mass can be obtained with the Eq. 1.17, then the crisp value of the

output is define.

y ¼ 0þ 10þ 20ð Þ
 0:1þ 30þ 40þ 50þ 60ð Þ
 0:2þ 70þ 80þ 90þ 100ð Þ
 0
0:1þ 0:1þ 0:1þ 0:2þ 0:2þ 0:2þ 0:2þ 0þ 0þ 0þ 0

¼ 34:45

Fig. 1.20 Speed variable

Fig. 1.21 Speed variable

34 1 Literature Review for Digital Implementations of Fuzzy Logic …

1.10 Basic Numerical Example (TSK)

Consider that the previous controller uses a TSK inference model for simplifying
the computation of the output. The same input shapes are used and the rules are the
same. The next figure shows the output points selected:

The following rules are activated and the results are:

IF TEMPERATURE IS COLD AND RELATIVE HUMIDITY IS MEDIUM
THEN SPEED IS LOW

lspeed lowð Þ ¼ min½l temperature ¼ coldð Þ; l r humidity ¼ mediumð Þ�
¼ min 0:1; 0:58½ � ¼ 0:1

IF TEMPERATURE IS MEDIUM AND RELATIVE HUMIDITY IS
MEDIUM THEN THE SPEED IS MEDIUM

lspeed mediumð Þ ¼ min½l temperature ¼ mediumð Þ; l r humidity ¼ mediumð Þ�
¼ min 0:2; 0:58½ � ¼ 0:2

IF TEMPERATURE IS HIGH AND RELATIVE HUMIDITY IS HIGH
THEN THE SPEED IS HIGH

lspeed highð Þ ¼ minð½l temperature ¼ highð Þ; l rhumidity ¼ high
� 	�

¼ min 0; 0:5½ � ¼ 0

The outputs are then cut in the membership value (dashed lines) in Fig. 1.22.
And the crisp output value is computed as follows:

y ¼ 5
 0:1þ 45
 0:2þ 90
 0
0:1þ 0:2þ 0

¼ 31:67

Fig. 1.22 Speed variable

1.10 Basic Numerical Example (TSK) 35

1.11 Type-2 Fuzzy Logic Set

1.11.1 Historical Review of Advances

Fuzzy logic sets [40] were developed by Zadeh and published in 1965 with the
objective of dealing with the uncertainties and imprecision intrinsic in a complex
system where crisp outputs of the traditional logic operators do not express the
desired information that defines the system; instead, he thought that the systems
could be represented with certain degree of membership and established the
mathematical bases for logic operators on a fuzzy environment. His work has been
extensively tasted in fields like control theory and artificial intelligence applications
and its functionality has been proved. However, when more challenging problems
take place like imprecise or noisy input or statistical uncertainties from different
expert’s opinions on the expertise database, the performance of T1 fuzzy logic sets
is not suitable for implementation.

For solving this, Mizumoto and Tanaka [46] studied and presented the basic
algebraic structures for fuzzy sets for the joint, meet, and negation operations
employing the principles of fuzzy sets defined by Zadeh; after that Karnik and
Mendel [56] developed the mathematical bases for the implementation of type 2
fuzzy logic sets. In [56] is defined the concept of footprint of uncertainty, the
mathematical bases for the T-norm and T-conorm and three type reducer techniques
for implementing the defuzzification: centroid, height, and center of sets.

In 1985 and 1988, Takagi Sugeno and Kang [48, 49] proposed a new approach
for developing a systematic methodology for generating fuzzy rules from a given
input–output database of T1FS. Later on, it was also applied for T2FS.

Once the bases of type 2 were published, Gorzalczany [57] published the first
interval type 2 technique and many other authors started implementing it and
continue researching [58–60]. In 2000, Liang and Mendel published the theory and
design of the interval type 2 fuzzy sets [61] and introduced the concept of upper and
lower membership functions; this paper presented an application for performing
time series forecasting with the input signal corrupted by additive noise.

Interval type 2 fuzzy logic has developed quickly due to the fast computation
respect to the general case where the secondary set has a noninterval shape making
the computation much more difficult. The fast success of interval type 2 fuzzy logic
is proved by the raise in the number of publications since 1999 and until present.
Interval type 2 fuzzy logic provides good applications performance and there are
many comparisons with type 1 fuzzy logic; however, the great potential of the
general case gets limited when interval is used for defining the secondary mem-
bership function.

Despite the better performance in terms of computation time of the IT2FLS, for
real-time applications it was not fast enough; so Wu and Mendel [62] worked on a
new method for computing the type reduced set based on uncertain bound sets
avoiding the calculation of the centroid for defuzzification. Mendel [63] continued
working on the improvement of the computation time for IT2FLS with an algorithm

36 1 Literature Review for Digital Implementations of Fuzzy Logic …

based on the symmetrical geometry of the fuzzy sets doing half of the operations
that was made before and therefore reducing the computation time by 50 %. In
2008, Coupland and John [64] published a method fast defuzzification based on
geometric representations and operations which claims to be up to 200,000 times
faster that type reduction in order to implement general T2FLS.

Wu and Tan [45] proposed a new simplification architecture technique for
improving the performance of the traditional type reduction which is prohibit in
real-time applications; later, Wu and Mendel [65] worked together for improving
the original Karnik–Mendel algorithm in terms of number of iteration for conver-
gence, the results show more than 39 % save in computation time and they called it
Enhanced Karnik Mendel (EKM).

Lui [50] proposed a new type reduction method based on a new representation
called α-plane representation in order to greatly reduce the computation complexity
from exponentially to linear. The α-plane representation is the union of all primary
membership functions whose secondary grades are equal or greater than alpha,
which avoid unnecessary computation of the algorithm to converge to a real value.
Recently, Wu et al. published another fast method for computing the centroid of a
type 2 fuzzy set [66]. Which is faster than the EKM and Lui’s method, the concept
of alpha-plane representation is taken from the Lui’s work but they discovered and
applied other useful properties of the α-plane which improve the computation
speed.

1.11.2 Type-2 Fuzzy Sets (T2FS)

T2FS are the natural extension of type 1 but they provide additional information in
the secondary membership function, that is, they not only depend on a variable “x”
but an additional variable “u”, fuzzy sets are represented by ~A [67] :

~A ¼ x; uð Þ; l~A x; uð Þ� 	j 8 x 2 X 8 u 2 Jx� 0; 1½ �� � ð1:21Þ

where l~A x; uð Þ is a type 2 membership function that has a value between
0\l~A x; uð Þ\1.

In order to visualize the new dimension (see Fig. 1.23), for a general case T2FS,
the degree of membership depends on the variables x and u; in order to fast
visualization the T2FS are usually represented in two dimensions and the plane x-
J is shown and the area which is seen is called the footprint of uncertainty. The
additional dimension gives an extra degree of uncertainty and therefore some
positions of the membership function have a higher degree of membership than
others; this can result in an additional problem for computation because of the huge
amount of operations required. For leading with this interval type 2 fuzzy sets
(IT2FS) are the most commonly used shape of T2FS; these are special cases where
the secondary membership degree is constant for all the universe of discourse

1.11 Type-2 Fuzzy Logic Set 37

l~A x; uð Þ ¼ 1. In the past section, we explained the theory for T1FS which are also
special cases of T2FS when the following conditions occur:

l~A x; uð Þ ¼ 1 if u ¼ 0:5

0 otherwise

� �
u ¼ l~A xð Þ

Fig. 1.23 Fuzzy type 2 a 3-D
representation

38 1 Literature Review for Digital Implementations of Fuzzy Logic …

1.11.3 Footprint of Uncertainty

The footprint of uncertainty (FOU) is the union of all the primary membership
function and the bounded region represents the uncertainty in the primary mem-
bership function of a T2FS. There are upper and lower membership functions that
are the bounds of the FOU.

The FOU can be represented by:

FOU ~A
� 	 ¼ [

x2X
Jx ð1:22Þ

where the upper and lower membership functions are two type 1 fuzzy sets which
bound the T2FS (see Fig. 1.24). In most of the literature are noted as: �l~A xð Þ and
l~A

xð Þ for the upper membership function (UMF) and the lower membership
function (LMF), respectively.

�l~A xð Þ ¼ max Jxð Þ 8 x 2 X ð1:23Þ

l~A
xð Þ ¼ min Jxð Þ 8 x 2 X ð1:24Þ

1.12 Fuzzy Sets Type 2 Representations

1.12.1 Digital and Continuous Representation

Similar to the type 1 fuzzy sets, the fuzzy sets type 2 can be represented in discrete
ðPÞ or continues R� 	

representation.

~A ¼
Z
x2X

Z
u2Jx

l~A x; uð Þ
x; uð Þ Jx� 0; 1½ � ð1:25Þ

Fig. 1.24 Fuzzy type 2
membership function, the
gray area is the FOU

1.11 Type-2 Fuzzy Logic Set 39

where the ∫ or ∑ operator means union of all the elements within the rank of x and u.
And Jx is the primary membership of x, the secondary membership correspond

to each primary membership value and have also an interval between 0 and 1. This
additional dimension gives to F2FS the possibility of having additional fuzzy sets
for each value of the function and allows a great degree of uncertainty within a
system. In Fig. 1.15, the membership function does not have a single value for a
specific x value as T1FS; instead, each value intersects vertically many values of the
degree of membership and an amplitude distribution can be assigned for every point
generation a three-dimensional membership function defined for all x 2 X. The type
2 fuzzy sets can be represented by a three-dimensional shape as can be seen in
Fig. 1.14.

Vertical-slice representation
Another important representation of T2FS is the vertical-slice representation which
is used for the computation of general case T2FS. In this kind of representation, the
T2FS is divided in n vertical slides where each slide can be seen as a T2FS for each
value of x. The membership function of each slide can be represented as follows:

l~A x0ð Þ ¼
Z

u2Jx0

fx0 uð Þ
u

ð1:26Þ

where x0 2 X is a defined value within the rank X.
And the set ~A is the union of all the vertical slices:

~A ¼
Z
x2X

l~A xð Þ
x

¼
Z
x2X

R
u2Jx

fx0 uð Þ
u

x
ð1:27Þ

Embedded representation.
Another useful representation is the embedded one, where a collection of several
T1FS or T2FS within the FOU can be embedded into a system. The embedded set
represents a single or a collective perception of a vague concept or idea, that is,
where the opinion of many experts defer and all of them are contributing to the
knowledge database.

The collective perception as an embedded system can be defined as:

~Ae ¼
XN
i¼1

fxi hið Þ
hi

x
8h 2 Jx ð1:28Þ

where hi represents an embedded T1FS.

40 1 Literature Review for Digital Implementations of Fuzzy Logic …

The T1FS which could conform the entire system are defined as:

Ae ¼
X
x2X

hi
x

8 h 2 Jx ð1:29Þ

where Ae represents only an idea of a single expert.

Operations on type 2 fuzzy sets
The theoretic operation of type 2 fuzzy sets are based on the Zadeh’s extension
principle [51]. Considering two T2FS ~A and ~B defined in a universe X with the
associated membership functions l~A xð Þ and l~B xð Þ defined in Jx � 0; 1½ � each set is

represented as l~A xð Þ ¼ P
i

fx uið Þ
ui

and l~B xð Þ ¼ P
j
gx xjð Þ
xj

where ui;xj�J.

Using the extension principle, the membership grades for union, intersection,
and negations of T2FS ~A and ~B can be defined as [68]:

Union:

~A[~B , ~l~A[~B xð Þ ¼ ~l~A xð Þ t ~l~B xð Þ ¼
X
i;j

fx uið Þ
 gx xj
� 	� 	

ui _ xj
ð1:30Þ

Intersection:

~A\~B , ~l~A\~B xð Þ ¼ ~l~A xð Þ u ~l~B xð Þ ¼
X
i;j

fx uið Þ
 gx xj
� 	� 	

ui
 xj
ð1:31Þ

Complement:

~A , ~l�~A xð Þ ¼ :~l�~A xð Þ ¼
X
i

fx uið Þ
i� ui

ð1:32Þ

where _ represent the t-conorm (max) and
 represents the t-norm (min) and the
summations indicate union on discrete time definition.

Join and meet under t-Norm (min)
Those operations are defined by the next theorem [68]:

Theorem 1 Suppose that we have two convex, normal, type 1 real fuzzy sets ~F and
~G characterized by membership functions f and g, respectively. Let v0 2 < and
v1 2 < be such that f ðv0Þ ¼ g v1ð Þ ¼ 1. Then the membership functions of the join
and meet of ~F and ~G using max t-conorm and min t norm can be expressed as:

l~Ft~G hð Þ ¼ f hð Þ ^ g hð Þ; h v0 ¼ g hð Þ; v0 � h� v1 ¼ f hð Þ _ g hð Þ; hh iv1 ð1:33Þ

1.12 Fuzzy Sets Type 2 Representations 41

and

l~Fu~G hð Þ ¼ f hð Þ _ g hð Þ; h v0 ¼ f hð Þ; v0 � h� v1 ¼ f hð Þ ^ g hð Þ; hh iv1 ð1:34Þ

Join and meet under product t-Norm

Theorem 2 Suppose that we have two convex, normal type 1 real fuzzy sets ~F and
~G characterized by membership functions f and g, respectively. Let v0 2 < and
v1 2 < be such that v0 � v1 and f v0ð Þ ¼ g v1ð Þ ¼ 1. Then the membership functions
of the joint ~F and ~G, using max t-conorm and product t-norm, can be expressed as:

l~Ft~G hð Þ ¼ f hð Þg hð Þ; h v0 ¼ g hð Þ; v0 � h� v1 ¼ f hð Þ _ g hð Þ; hh iv1 ð1:35Þ
The meet operation under product t-norm is not well defined but can be

approximated by the following expression:
If there are n Gaussian fuzzy sets ~F1, ~F2, …, ~Fn with means m1;m2; . . .;mn and

standard deviations r1; r1; . . .; rn respectively then

l~F1u~F2u���u~Fn
hð Þ � e�

1
2

h�m1m2 ...mn
r

� 	2

ð1:36Þ

where i ¼ 1; . . .; nð Þ

r ¼
ffi
r21

Y
i;i 6¼1

m2
i þ � � � þ r2j

Y
i;i 6¼j

m2
i þ � � � þ r2n

Y
i;i6¼n

m2
i

s
ð1:37Þ

This approximation is applicable for Gaussian membership functions.

Negation

Therorem 3 If a type 1 fuzzy set ~F has a membership function f vð Þ v2 Kð Þ; :~F has
a membership function f vð Þ v 2 Kð Þ.

The joint, meet, and negation operation can be performed between membership
functions of type 2 sets if unions, intersections and complements the set exists.

1.13 Interval Type 2 Fuzzy Sets (IT2FS)

In spite of the advantages of having fuzzy a third dimension which defines the
degree of membership for every point within a vertical line of the FOU, the
computation required for the general case makes T2FS unenforceable because for
general T2FS is prohibitive to calculate meet operations for each fired rule espe-
cially if the product t-norm is used [54] due to the immense amount of computa-
tional effort required.

For solving this problem, Gorzałczany [57] and latter Mendel [61] proposed a
simple method called interval type 2 fuzzy set (IT2FS) for fast computation

42 1 Literature Review for Digital Implementations of Fuzzy Logic …

applications. IT2FS are a particular case where only the value of 1 defines the
secondary membership function.

As mentioned previously, IT2FS is a special case where l~A x; uð Þ ¼ 1 and
therefore the definition in the integral form is:

~A ¼
Z
x2X

Z
u2Jx

1
x; uð Þ Jx � 0; 1½ � ð1:38Þ

The computation requirements for this method are much lower that for the
general case. The shape of this function is also three dimensional but the secondary
membership value is always 1.

As general case fuzzy sets can be represented as a vertical-slice as follows:

l~A x0ð Þ ¼
Z

u2Jx0

1
u

ð1:39Þ

~A ¼
Z
x2X

l~A xð Þ
x

¼
Z
x2X

R
u2Jx0

1
u

x
ð1:40Þ

And for the embedded set representation as:

~Ae ¼
XN
i¼1

1
hi

h i
x

8 h 2 Jx ð1:41Þ

where each individual T1FS can be represented as:

Ae ¼
X
x2X

hi
x

8 h 2 Jx ð1:42Þ

For IT2FS, the computation time gets reduced dramatically but on the other hand
the potential of embedding a fuzzy system within another fuzzy system is lost;
however, it has been demonstrated [54] in many applications that the IT2FS have a
better performance that T1FS for noisy and not well-defined systems. That is,
although all the secondary fuzzy sets have the same weight, the implementation can
handle uncertainties of the system.

1.13 Interval Type 2 Fuzzy Sets (IT2FS) 43

1.14 Type Reduction and Defuzzification

Type reduction are extended versions of type 1 defuzzification methods. In T1FS,
each fired rule determines the corresponding crisp value of the output. The
defuzzifier somehow combines the output sets corresponding to all the fired rules to
obtain a single output set which is equivalent to have a T1FS.

As in T1FS, the defuzzification consist of obtaining a crisp value based on the
position of the centroid of all the activated output sets. Using the extension prin-
ciple, the centroid can be obtained by the union of all the activated sets within a
defined domain. The calculation of the centroid of a type 2 set leads to a type 1 set
so it is called a “type reduced” set.

For a T1FS the centroid, if the domain is discretized in N pints can be founded as:

CA ¼
PN

i¼1 xilA xið ÞPN
i¼1 lA xið Þ ð1:43Þ

And for a T2FS ~A the output can be obtained using the extension principle:

C~A ¼
R
h1
. . .

R
hN
½lD1 h1ð Þ
 � � �
 lDN hNð ÞPN
i¼1 xihi=

PN
i¼1 hi

ð1:44Þ

where hi 2 Di and
 represents the t-norm used (normally min). Each point xi of the
~A has a type 1 membership degree Di ¼ l~A xið Þ, for finding the centroid all the
combinations from hi to hN are evaluated and a type 1 centroid calculation is
computed assigned a certain degree of membership equal to the t-norm of the
membership grade.

If the domain of ~A is continuous, the number of fuzzy sets embedded is infinite;
therefore, it is necessary to discretize the calculation of C~A using the minimum t
norm for the centroid calculation. If the domain is discretized onto M points and the
possible combinations of thetas is N, the number of operations required is MN,
which is a large number even for small numbers of N and M, so many optimization
algorithms have been developed in order to minimize the number of operations.

Next is shown the most important defuzzification methods.

1.14.1 Karnik–Mendel Iterative Procedure (KM)

This algorithm is the most widely adopted method for type-reducing and IT2FS
[52]. The type reduced new set is a special case of a T1FS called interval set. The
iterative procedure is efficient to find the endpoint of the interval, as there is an
element of approximation in the defuzzified value located at the midpoint. The left

44 1 Literature Review for Digital Implementations of Fuzzy Logic …

and right centroids are founded first and then the center point is obtained by the
average of the obtained centroids.

For this algorithm, the pseudo-program for finding the left centroid cl is the
following:

1. Sort all the discourse universe values yi in ascending order, where
i ¼ 1; 2; . . . ;N, such y1 � y2 � . . .� yN . Associate each yi with its correspond-
ing l~B

yið Þ and �l~B yið Þ
2. Initialize

hi ¼ ~l~B yið Þþ �l~B yið Þ
2

3. Compute

y ¼
PN

i¼1 yihiPN
i¼1 hi

4. Find the switch point k, such 1� k�N � 1 and yk � y� ykþ 1

5. Establish

hi ¼
�l~B yið Þ i� k
l~B

yið Þ otherwise

�

6. Compute

y0 ¼
PN

i¼1 yihiPN
i¼1 hi

7. Check if y0 ¼ y. If true, stop and assign cl ¼ y, else continue.
8. Assign y ¼ y0 y go to step 4.

The next step is to find the right centroid cl and the procedure is the following:

1. Sort all the discourse universe values yi in ascending order, where
i ¼ 1; 2; . . . ;N, such y1 � y2 � . . .� yN . Associate each yi with its correspond-
ing l~B

yið Þ and �l~B yið Þ.
2. Initialize

hi ¼
l~B

yið Þþ �l~B yið Þ
2

3. Compute

y ¼
PN

i¼1 yihiPN
i¼1 hi

4. Find the switch point k, such 1� k�N � 1 and yk � y� ykþ 1

1.14 Type Reduction and Defuzzification 45

5. Establish

hi ¼ l~B
yið Þ i� k

�l~B yið Þ otherwise

�

6. Compute

y0 ¼
PN

i¼1 yihiPN
i¼1 hi

7. Check if y0 ¼ y. If true, stop and assign cr ¼ y, else continue.
8. Assign y ¼ y0 y go to step 4.

Once we obtain both centroids the general centroid can be obtained averaging
the results:

y ¼ cl þ cr
2

ð1:45Þ

1.14.2 Wu-Mendel Uncertain Bounds

In [62] is presented a better proposal that the original Karnik–Mendel first type
reducer algorithm which replace type reducer with lower and upper bounds
(uncertainty bounds) for the end points of the type reducer set, and those bounds,
which are optimal in a minimum–maximum sense, can be computed without per-
forming type reduction [47].

To start, four centroids or boundary T1FS are defined. All of them can be
computed once the left and right points of the activated interval have been com-
puted. yli and yri are defined as the left and right end points of the centroid of the sth
consequence of the IT2FS, previously reordered in ascending order. The centroids
of the boundary T1FS are:

LMFs;Leftf g : y 0ð Þ
l xð Þ ¼

PM
i¼1 f

iyilPM
i¼1 f

i
ð1:46Þ

LMFs;Rightf g : y Mð Þ
r xð Þ ¼

PM
i¼1 f

iyirPM
i¼1 f

i
ð1:47Þ

UMFs;Leftf g : y Mð Þ
l xð Þ

PM
i¼1

�f iyilPM
i¼1

�f i
ð1:48Þ

LMFs;Rightf g : y 0ð Þ
r xð Þ

PM
i¼1

�f iyirPM
i¼1

�f i
ð1:49Þ

46 1 Literature Review for Digital Implementations of Fuzzy Logic …

According to the theorem 3.4 of [47], the endpoints yl xð Þ and yr xð Þ of the type
reduced set of an interval type 2 fuzzy logic controller for the input x, are bounded
from below and above as: yl xð Þ� yl xð Þ ��yl xð Þ and yr xð Þ� yr xð Þ ��yr xð Þwhere:

yl ¼ min Error! Bookmark not defined:

And

yr ¼ maxError! Bookmark not defined:

Then:

yl ¼ yl �
PM

i¼1
�f i � f i

 �
PM

i¼1
�f i
PM

i¼1 f
i
	

PM
i¼1 f

i yil � y1l
� 	PM

i¼1
�f i yMl � yil
� 	

PM
i¼1 f

i yil � y1l
� 	þ PM

i¼1
�f i yMl � yil
� 	

2
4

3
5 ð1:50Þ

yr ¼ yr þ
PM

i¼1
�f i � f i

 �
PM

i¼1
�f i
PM

i¼1 f
i
	

PM
i¼1

�f i yir � y1r
� 	PM

i¼1 f
i yMr � yir
� 	

PM
i¼1

�f i yir � y1r
� 	þ PM

i¼1 f
i yMr � yir
� 	

2
4

3
5 ð1:51Þ

And the defuzzification is obtained averaging the four centroids obtained:

y ¼ 1
4

yl þ yl þ yr þ yr

 �

ð1:52Þ

1.14.3 Enhanced Karnik–Mendel Algorithm

This algorithms was developed and published by Wu and Mendel in [65]. In order
to reduce computational cost of the original algorithm a better initializations is
proposed and the end conditions of the iterations is modified in order to avoid
unnecessary iterations. As the original algorithm, the left and right parts yl and yr
needs to be calculated and then the average of both is the defuzzified crisp value.

The optimal initial switch point for the first iteration can be expressed as:

yl ¼
PN

i¼1 xi
wi þwi

2

h i
PN

i¼1
wi þwi

2

h i ð1:53Þ

where wi the match is weight of the respective xi (the upper membership function
value of the FOU) and wi is the match weigh of the lower membership function
according to Fig. 1.25.

1.14 Type Reduction and Defuzzification 47

When y0 ¼ y, it means that the following iterations is not providing any
improvement to the calculated vale of yl. If y0 ¼ y) k0 ¼ k, but the last compar-
ison saves one iteration, so the criteria for ending the program is k0 ¼ k.

y0 ¼
Pk0

i¼1 xiwi þ
PN

i¼k0 þ 1 xiwiPk0
i¼1 wi þ

PN
i¼k0 þ 1 wi

ð1:54Þ

y ¼
Pk

i¼1 xiwi þ
PN

i¼kþ 1 xiwiPk
i¼1 wi þ

PN
i¼kþ 1 wi

ð1:55Þ

Once the initial value of yl has been calculated the algorithm of the left centroid
can be computed as follow:

1. Sort all the discourse universe values xi in ascending order, where
i ¼ 1; 2; . . . ;N, such that x1 � x2 � . . .� xN . And then match the weights wi

associated with their respective xi:
2. Establish k ¼ round N=2:4ð Þ and compute

a ¼
Xk
i¼1

yi�l~B yið Þþ
XN

i¼kþ 1

yil~B
yið Þ

b ¼
Xk
i¼1

l~B
yið Þþ

XN
i¼kþ 1

l~B
yið Þ

y ¼ a
b

3. Find the switch point k0 2 1;N � 1½ �, such that

yk0 � y� yk0 þ 1

4. Check if k0 ¼ k. If true, stop and assign cl ¼ y; else continue.
5. Compute

Fig. 1.25 Matched weigh for the upper and lower membership functions

48 1 Literature Review for Digital Implementations of Fuzzy Logic …

s ¼ sign k0 � kð Þ

a0 ¼ aþ s
Xmax k;k0ð Þ

i¼min k;k0ð Þ þ 1

y �l~B yið Þ � l~B
yið Þ

h i

b0 ¼ bþ s
Xmax k;k0ð Þ

i¼min k;k0ð Þ þ 1

�l
~B
yið Þ � l~B

yið Þ
h i

and compute again

y0 ¼ a0

b0

6. Assign y ¼ y0; a ¼ a0; b ¼ b0; k ¼ k0 and go to step 3.

1.14.4 Type 2 Fuzzy Logic Systems Block Diagram

Figure 1.26 presents the block diagram for a T2FS which is similar to a traditional
T1FS and is composed with those steps:

Fuzzifier: The fuzzifier maps the read value into the T2DS which activates the
inference system.

Rule base: The antecedents and consequents are related each other by IF-ELSE
language functions.

Inference: This block assign to the fuzzy input a fuzzy output according to the rules
established and operators such as joint (⊔) and meet operators (⊓), those operators
are equivalent to the union and intersection operations but are used in the secondary
membership functions. The definition and explanation can be found in [69].

Type reduction: For some systems it is required to transform the type 2 fuzzy
outputs from the inference engine into T1FS and the result is called a type reduced
set. There most common method for doing this are the Karnik–Mendel iteration
algorithm and the Wu-Mendel uncertainty bounds method. Both are based on the
calculation of centroid of mass.

Defuzzification: Once the outputs have been reduced the defuzzification block
determines the crisp value that will be introduced to the actuator. In some

Fig. 1.26 Block diagram of a type 2 fuzzy logic system

1.14 Type Reduction and Defuzzification 49

applications, where there is not a type reducer block the defuzzification is made
directly from the output of the inference engine.

1.14.5 Interval Type 2 Fuzzy Logic Numeric Example

A micro-manufacturing process is controlled by an IT2FS controller. The position
error and position changes are used for calculate the voltage of a servomotor in
order to modify its cutting speed. The controller algorithm structure is presented in
Fig. 1.27.

INPUT 1: Where the Position Error has the next representation (see Fig. 1.28).

lN ¼ 1
�0:025

þ 1
�0:02

þ 1
�0:015

þ 0:92
�0:01

þ 0:78
�0:005

þ 0:61
0

þ 0:46
0:005

þ 0:3
0:01

þ 0:15
0:015

þ 0
0:02

þ 0
0:025

� �

lN ¼ 1
�0:025

þ 1
�0:02

þ 1
�0:015

þ 0:84
�0:01

þ 0:57
�0:005

þ 0:29
0

þ 0
0:005

þ 0
0:01

þ 0
0:015

þ 0
0:02

þ 0
0:025

� �

lZ ¼ 0
�0:025

þ 0
�0:02

þ 0:25
�0:015

þ 0:5
�0:01

þ 0:75
�0:005

þ 1
0
þ 0:75

0:005
þ 0:5

0:01
þ 0:25

0:015
þ 0

0:02
þ 0

0:025

� �

lZ ¼ 0
�0:025

þ 0
�0:02

þ 0
�0:015

þ 0
�0:01

þ 0
�0:005

þ 1
0
þ 0

0:005
þ 0

0:01
þ 0

0:015
þ 0

0:02
þ 0

0:025

� �

lP ¼ 0
�0:025

þ 0
�0:02

þ 0:15
�0:015

þ 0:3
�0:01

þ 0:46
�0:005

þ 0:61
0

þ 0:78
0:005

þ 0:92
0:01

þ 1
0:015

þ 1
0:02

þ 1
0:025

� �

lP ¼ 0
�0:025

þ 0
�0:02

þ 0
�0:015

þ 0
�0:01

þ 0
�0:005

þ 0:29
0

þ 0:57
0:005

þ 0:84
0:01

þ 1
0:015

þ 1
0:02

þ 1
0:025

� �

Fig. 1.27 Fuzzy logic control type 2 representation

Fig. 1.28 Input variable
ERROR

50 1 Literature Review for Digital Implementations of Fuzzy Logic …

INPUT 2: Where the Position Change has the next representation (see Fig. 1.29).

lN ¼ 1
�0:05

þ 1
�0:04

þ 1
�0:03

þ 0:91
�0:02

þ 0:75
�0:01

þ 0:59
0

þ 0:41
0:01

þ 0:25
0:02

þ 0:08
0:03

þ 0
0:04

þ 0
0:05

� �

lN ¼ 1
�0:05

þ 1
�0:04

þ 1
�0:03

þ 0:87
�0:02

þ 0:61
�0:01

þ 0:38
0

þ 0:12
0:01

þ 0
0:02

þ 0
0:03

þ 0
0:04

þ 0
0:05

� �

lZ ¼ 0
�0:05

þ 0
�0:04

þ 0:15
�0:03

þ 0:44
�0:02

þ 0:72
�0:01

þ 1
0
þ 0:72

0:01
þ 0:44

0:02
þ 0:15

0:03
þ 0

0:04
þ 0

0:05

� �

lZ ¼ 0
�0:05

þ 0
�0:04

þ 0
�0:03

þ 0
�0:02

þ 0:33
�0:01

þ 1
0
þ 0:33

0:01
þ 0

0:02
þ 0

0:03
þ 0

0:04
þ 0

0:05

� �

lP ¼ 0
�0:05

þ 0
�0:04

þ 0:08
�0:03

þ 0:25
�0:02

þ 0:41
�0:01

þ 0:59
0

þ 0:75
0:01

þ 0:91
0:02

þ 1
0:03

þ 1
0:04

þ 1
0:05

� �

lP ¼ 0
�0:05

þ 0
�0:04

þ 0
�0:03

þ 0
�0:02

þ 0:12
�0:01

þ 0:38
0

þ 0:61
0:01

þ 0:87
0:02

þ 1
0:03

þ 1
0:04

þ 1
0:05

� �

Using the two inputs described, it is possible to define the following rules.
IF Position Error is Negative AND Position Change is Positive THEN the output

is Negative

Rule P. Error AND P. Change Output

1 N \ N N

2 N \ Z N

3 N \ P N

4 Z \ N N

5 Z \ Z Z

6 Z \ P P

7 P \ N P

8 P \ Z P

9 P \ P P

The parameters of the output (Voltage) are (see Fig. 1.30).

Fig. 1.29 Input variable
position change

1.14 Type Reduction and Defuzzification 51

lN ¼ 1
�80

þ 1
�64

þ 1
�48

þ 0:86
�32

þ 0:58
�16

þ 0:29
0

þ 0
16

þ 0
32

þ 0
48

þ 0
64

þ 0
80

� �

lN ¼ 1
�80

þ 1
�64

þ 1
�48

þ 0:66
�32

þ 0
�16

þ 0
0
þ 0

16
þ 0

32
þ 0

48
þ 0

64
þ 0

80

� �

lZ ¼ 0
�80

þ 0
�64

þ 0:15
�48

þ 0:43
�32

þ 0:71
�16

þ 1
0
þ 0:71

16
þ 0:43

32
þ 0:15

48
þ 0

64
þ 0

80

� �

lZ ¼ 0
�80

þ 0
�64

þ 0
�48

þ 0
�32

þ 0:33
�16

þ 1
0
þ 0:33

16
þ 0

32
þ 0

48
þ 0

64
þ 0

80

� �

lP ¼ 0
�80

þ 0
�64

þ 0
�48

þ 0
�32

þ 0
�16

þ 0:29
0

þ 0:58
16

þ 0:86
32

þ 1
48

þ 1
64

þ 1
80

� �

lP ¼ 0
�80

þ 0
�64

þ 0
�48

þ 0
�32

þ 0
�16

þ 0
0
þ 0

16
þ 0:66

32
þ 1

48
þ 1

64
þ 1

80

� �

As a numerical example, it is evaluated the Position error in −0.001 and Position
change in 0.001 obtaining with the rules, and applying the minimum T-Norm the
next results are calculated:

Rule P. Error AND P. Change Minimum Output

1 N
(0.92/0.84)

\ N
(0.41/0.12)

Min((0.92/0.84),
(0.41/0.12))

(0.41/0.12)

2 N
(0.92/0.84)

\ Z
(0.72/0.33)

Min((0.92/0.84),
(0.72/0.33))

(0.72/0.33)

3 N
(0.92/0.84)

\ P
(0.75/0.61)

Min((0.92/0.84),
(0.75/0.61))

(0.75/0.61)

4 Z(0.5/0) \ N
(0.41/0.12)

Min((0.5/0), (0.41/0.12)) (0.41/0.12)

5 Z(0.5/0) \ Z
(0.72/0.33)

Min((0.5/0), (0.72/0.33)) (0.5/0)

6 Z(0.5/0) \ P
(0.75/0.61)

Min((0.5/0), (0.75/0.61)) (0.5/0)

7 P(0.3/0) \ N
(0.41/0.12)

Min((0.3/0), (0.41/0.12)) (0.3/0)

(continued)

Fig. 1.30 Input variable
position change

52 1 Literature Review for Digital Implementations of Fuzzy Logic …

(continued)

Rule P. Error AND P. Change Minimum Output

8 P(0.3/0) \ Z
(0.72/0.33)

Min((0.3/0), (0.72/0.33)) (0.3/0)

9 P(0.3/0) \ P
(0.75/0.61)

Min((0.3/0), (0.75/0.61)) (0.3/0)

Then, the aggregation can be performed with the Maximum T-Conorm,
according to the rule set, such as:

Rule P. Error AND P. Change Result Maximum Output

1 N \ N (0.41/0.12) Max((0.41/0.12),
(0.72/0.33),
(0.75/0.61),
(0.41/0.12))

(0.75/0.61)

2 N \ Z (0.72/0.33)

3 N \ P (0.75/0.61)

4 Z \ N (0.41/0.12)

5 Z \ Z (0.5/0) – (0.5/0)

6 Z \ P (0.5/0) Max((0.5/0),
(0.3/0), (0.3/0),
(0.3/0))

(0.5/0)

7 P \ N (0.3/0)

8 P \ Z (0.3/0)

9 P \ P (0.3/0)

With these three values, we can infer the final IT2FS from the Voltage sets (see
Fig. 1.31).

linferred ¼
0:75
�80

þ 0:75
�64

þ 0:75
�48

þ 0:75
�32

þ 0:58
�16

þ 0:5
0

þ 0:5
16

þ 0:5
32

þ 0:5
48

þ 0:5
64

þ 0:5
80

� �

linferred ¼
0:61
�80

þ 0:61
�64

þ 0:61
�48

þ 0:61
�32

þ 0
�16

þ 0
0
þ 0

16
þ 0

32
þ 0

48
þ 0

64
þ 0

80

� �

Fig. 1.31 Inferred set

1.14 Type Reduction and Defuzzification 53

Then, the output centroid is calculated, which means the voltage applied with the
Nie-Tan Method:

YVoltage ¼
PN

i¼1 �lInferred yið Þþ l
Inferred

yið Þ

 �

yiPN
i¼1 �lInferred yið Þþ PN

i¼1 lInferred yið Þ

YDutyCycle ¼ 0:75þ 0:61ð Þ �80ð Þþ 0:75þ 0:61ð Þ �64ð Þþ 0:75þ 0:61ð Þ �48ð Þ 0:75þ 0:61ð Þ �32ð Þþ 0:58þ 0ð Þ �16ð Þ
0:75þ 0:61ð Þþ 0:75þ 0:61ð Þþ 0:75þ 0:61ð Þþ 0:75þ 0:61ð Þþ 0:58þ 0ð Þþ 0:5þ 0ð Þ

þ 0:5þ 0ð Þ 0ð Þþ 0:5þ 0ð Þ 16ð Þþ 0:5þ 0ð Þ 32ð Þþ 0:5þ 0ð Þ 48ð Þþ 0:5þ 0ð Þ 64ð Þþ 0:5þ 0ð Þ 80ð Þ
0:5þ 0ð Þþ 0:5þ 0ð Þþ 0:5þ 0ð Þþ 0:5þ 0ð Þþ 0:5þ 0ð Þ

YVoltage ¼ �21:5%

1.15 Experimental Implementation of a Fuzzy Logic
Controller Type-2 in Quadrotors

1.15.1 Introduction

The study of fuzzy logic controllers for quadrotors have been developed highly in
the last decade. Coza and Macnab presented in 2006 a new robust adaptive fuzzy
control method for quadrotor stabilization. They propose a method using control
and center updates for each axis rotation to approximate the same nonlinear
function as the e-modification method. Results on Simulink showed that this new
method offered a better center tuning than the e-method, obtaining less error in the
steady state although oscillations were present in a range of ±0.2 radians [70].

In 2010 Santos et al. [71] developed a PID-like type-1 fuzzy controller for the
three axes of a Quadrotor and the altitude using trapezoid membership functions.
The controller was tested in Simulink showing a smooth, fast, stable response
Santos [71]. The same year, Kirly et. al. presented their work of the design of a
Fuzzy controller embedded into a TMS320F28335 micro processing unit, testing
the axes separately. They obtained that starting from 3° and 12°, the controller was
able to reach its steady state of ±2° near-horizontal and good response to pertur-
bations. They note also that given the sensitiveness of their inclination sensor,
vibrations given by environmental noises are to be studied extensively [72].

In 2013, Sheikpour and Shouraki published their results of the design of a Fuzzy
controller using the Parallel Distributed Compensation method obtained from a
Takagi-Sugeno fuzzy model of a Quadrotor. They show the viability of this method
obtaining a *1 s response with a *0.1 radians of overshoot [73]. The same year,
Ilhan and Karakose [74] presented their work in Type-2 Fuzzy Logic controller for
a Quadrotor for position and altitude using triangular membership functions. It
showed a very slightly better response than type-1 Fuzzy approach and significantly

54 1 Literature Review for Digital Implementations of Fuzzy Logic …

better than PID. However, it was not delved in the tuning and selection of different
Footprints of Uncertainty [74].

In 2014, was presented a real-time fuzzy controller embedded in a GUMSTIX
Overo FIRESTORM COM microcontroller board. The controller was obtained
using the ANFIS system from test data obtained from a first experiment. The results
showed that fuzzy controller is easily capable of controlling the Quadrotor, with the
advantage that it was self-tuned as opposed to the PD controller. Besides, fuzzy
outperformed PD in certain conditions [75]. Finally, in 2014, a Hybrid method of
backstepping and fuzzy adaptive PID is proposed by Qingji et al. [76]. In it, a fuzzy
inference system is used to tune the parameters Kp, Ki, and Kd of a PID controller.
Simulation and practical results showed that this hybrid controller performed
achieved the stabilization, effectiveness, and robustness desired, with variations of
±1 degree in the steady state and rejection of disturbances of *5° [76].

1.15.2 Quadrotor Basic Principles

It is important to describe how the Quadrotor works in order to design its controller.
The arrangement of motors in the Quadrotor is shown in Fig. 1.32. Each rotor has a
thrust and an angular momentum about its center of rotation, as well as a drag force
opposite to the rotorcraft’s direction of flight [77]. To produce lift, the rotors have to
spin at a certain speed to produce enough thrust. The quantity of thrust will
determine the altitude and speed at which the Quadrotor rises [78]. On the other
hand, the spinning of each motor generates an angular momentum that will try to
rotate the Quadrotor in its yaw angle such as it would happen in a helicopter
without tail propeller. To avoid this effect, two intercalated rotors will spin
clockwise and the other two counterclockwise so that the individual angular

Fig. 1.32 Quadrotor frame and functioning (a clockwise yaw, b anticlockwise yaw, c
anticlockwise roll, d clockwise roll, e anticlockwise pitch, f clockwise pitch)

1.15 Experimental Implementation of a Fuzzy Logic Controller … 55

momentum cancel each other. Therefore, the propellers attached to each motor are
different: two of them are pusher and two are puller, working in contrarotation.

In order to change the angle along pitch and roll axes, and therefore move it in a
certain direction, depending on the desired speed of the displacement, the rotors
orientated toward that direction must change their thrust as seen in the Fig. 1.32, but
always taking care that the sum of angular momentum remains zero so that the
Quadrotor remains in the same altitude and yaw angle.

Basic Diagram for Fuzzy Logic Type 2 using in the Quadrotor
Figure 1.33 shows the main block diagram for a Fuzzy Logic Controller Type- 2
(T2FS), which is similar to a traditional Fuzzy Logic Type 1, presented in this
chapter.

Fuzzifier: The fuzzifier maps the read value into the T2DS
which activates the inference system.
Rule base: The antecedents and consequents are related each other by IF–ELSE

language functions.
Inference: This block assign to the fuzzy input a fuzzy output according to the

rules established and operators such as union (⊔) and intersection operators (⊓);
those operators are equivalent to the union and intersection operations but are used
in the secondary membership functions. The definition and explanation can be
found in the paper presented by Mendel [79].

Type reduction: For some systems, it is required to transform the type 2 fuzzy
outputs from the inference engine into T1FS and the result is called a type reduced
set. The most common methods for doing this are the Mendel 2007 iteration
algorithm and the [79] uncertainty bounds method. Both are based on the calcu-
lation of centroid of mass. Defuzzification: once the outputs have been reduced, the
defuzzification block determines the crisp value that will be send to the actuator 80.

1.15.3 ANFIS

Fuzzy logic and neural networks are complementary tools for building intelligent
systems. While neural networks are low-level computational structures that perform
well when dealing with raw data, fuzzy logic deals with reasoning on a higher level,

Fig. 1.33 Block diagram of a type 2 fuzzy logic system

56 1 Literature Review for Digital Implementations of Fuzzy Logic …

using linguistic information acquired from domain experts. However, fuzzy systems
lack the ability to learn and cannot adjust themselves to a new environment. On the
other hand, although neural networks can learn, they are black boxes to the user.
When a training input–output example is presented to the system, the backpropa-
gation algorithm can compute the system output and compares it with the desired
output of the training example. The error is propagated backward through the
network from the output layer to the input layer. The neuron activation functions
are modified as the error is propagated. To decide the necessary modifications, the
backpropagation algorithm differentiates the activation functions of the neurons.
Figure 1.34 depicts an ANFIS topology [81].

1.16 Design of Fuzzy Logic Controller Tuned
by an Expert

The Fuzzy Logic controller proposed in this paper is a Type-2. To produce the
membership functions and inference rules for the controller; it is also fundamental
to set up the control target: the Quadrotor must be able to keep the requested
orientation of its three rotation angles, so that it follows an established reference
threshold (±10° around the horizontal for the case of x and y axes and the initial
value for the case of z), while it is capable of rejecting external physical distur-
bances of restrained amplitude applied over its axes. Given that the motors are 90°
from each other, it can be assumed that there are two axes with one motor in each
side and that the motors that belong to the same axis turn in the same direction. The
sensor used is aligned in such a way that a rotation in one physical axis of the
Quadrotor provides primarily changes in just one of the measured axes. With this,
so as to vary the rotation in one angle (either x or y from Fig. 1.35), it is just
necessary to adjust the output of the motors attached to the perpendicular axis. In
the case of adjusting the rotation about z, it is necessary to increase equally the

N1

y

N3

N2

N4

1

x2

x1

Layer 2 Layer 5Layer 3 Layer 4 Layer 6 Layer 1

A1

A2

B1

B2

x1 x2

1

2

3

4

2

3

4

Fig. 1.34 Depicts an ANFIS topology

1.15 Experimental Implementation of a Fuzzy Logic Controller … 57

torque of the motors of one axis while reducing in the same value the ones from the
other axis. This variation generates the correction in the z axis and avoids variations
in x and y or the altitude.

From the gyroscope and accelerometer, it is possible to acquire the measure-
ments of rotation angle and differentials of this value. The parameters to be con-
sidered as inputs and outputs are shown in Table 1.3.

According with all the experimentation with fuzzy logic controllers, it is
determined that 7 membership functions for the rotation of each angle, and 5 for the
derivatives will create a sufficient description of the system. This creates the pos-
sibility to use a larger number of functions close to the reference value, since a
significant part of the control takes part over that interval. The latter implies that
while there is a membership function center in zero, the next ones will be close to
this value and the extreme functions will consider an angle value which the
Quadrotor and the controller could not be capable to handle properly anymore
generating an output that will try to correct it. The shape selected for the MFs is the
Gaussian. The MFs are the symmetrical for all the axes because it is expected that
they react in the same manner. The final MFs adjusted are illustrated in Figs. 1.36
and 1.37.

The Linguistic variables that describe each membership function (inputs and
outputs) are illustrated in Table 1.4.

Fig. 1.35 Axes and motors in
the Quadrotor frame

Table 1.3 Inputs and outputs
of the system

x Angle in the roll axis

dx Angular velocity in the roll axis

y Angle in the pitch axis

dy Angular velocity in the pitch axis

z Angle in the yaw axis

dz Angle in the yaw axis

M1 % of PWM for Motor 1

M2 % of PWM for Motor 2

M3 % of PWM for Motor 3

M4 % of PWM for Motor 4

58 1 Literature Review for Digital Implementations of Fuzzy Logic …

For the output, nine singleton MFs were defined. These MFs represent the PWM
percentage value for the motors. The MFs are mounted over a base value of PWM
percentage, which is established to be 60. Since the base value was calibrated for
each motor, the MFs are the same for the four motors. Figure 1.38 shows the final
MFs of the outputs:

As a result, the physical layout of the Quadrotor explained before (See
Fig. 1.35). Table 1.5 shows the mapping for the inference rules that relates the input
MFs with the output MFs. All the rules addressed the general expression (if-then):

If X is A and Y is B then Z is C.
The expert can generate the linguistic rules from the effects generated in the

Quadrotor by each motor; two examples are provided for the case of Motor 2 (see
Fig. 1.39).

If the Quadrotor has a negative large angle (Motor 2 is below the horizontal line,
Fig. 1.39) and the derivative is negative medium (it is rotating in the same direction
of the negative angle), then Motor 2 needs a Positive Extra-large PWM value in

Fig. 1.36 Membership
Functions for x, y and z

Fig. 1.37 Membership
Functions for dx, dy and dz

1.16 Design of Fuzzy Logic Controller Tunned by an Expert 59

order to brake that rotation and try to compensate the angle (Motor 4 will receive
the same value but negative to compensate the torque).

If the Quadrotor has a zero value angle (it is already aligned with the horizontal
reference) and its derivative is zero (it is not rotating), then neither Motor 2 nor
Motor 4 should receive a new value of PWM (see Fig. 1.40).

Table 1.4 Linguistic values
of the MFs

NXL Negative Extra-large

NL Negative large

NM Negative medium

NS Negative small

Z Zero

PS Positive small

PM Positive medium

PL Positive large

PXL Positive extra-large

Fig. 1.38 Membership Functions for M1, M2, M3, and M4

Table 1.5 Inference rules Derivative

Angle NM NS Z PS PM

NL PXL PXL PXL PL PL

NM PXL PXL PL PM PS

NS PXL PL PM PS NS

Z PM PS Z NS NM

PS PS NS NM NL NXL

PM NS NM NL NXL NXL

PL NL NL NXL NXL NXL

60 1 Literature Review for Digital Implementations of Fuzzy Logic …

If all the conditions are evaluated, the inference table is obtained. Table 1.5
illustrates the rules implemented.

The surface generated with the controller designed is shown in Fig. 1.41. The
membership functions proposed allow the system to move smoothly for reaching
the position command signal, so the overshoot is reduced.

Fig. 1.39 Large angle and negative medium derivative

Fig. 1.40 Inference rule example 2

Fig. 1.41 Surface generated

1.16 Design of Fuzzy Logic Controller Tunned by an Expert 61

The motors are affected by the corrective actions of the axis in which they are
(x for motors 2 and 4 and y for motors 1 and 3) and by the corrective action in the z
axis. Therefore, the final value for each motor will be given by the Eq. 1.56

M1 ¼ BV þXcorrectorþ Zcorrector

M2 ¼ BV þ Ycorrector � Zcorrector

M3 ¼ BV � Xcorrectorþ Zcorrector

M4 ¼ BV � Ycorrector � Zcorrector

ð1:56Þ

where BV is the base value of each motor.

1.17 Design of Fuzzy Logic Controller Tunned by an Anfis

If the surface generated by the fuzzy logic controller type 2 (see Fig. 1.41) is used
for training the ANFIS, it is possible to reduce the number of membership functions
and linguistic rules. The training method selected is the backpropagation.
The ANFIS was trained with 3 membership functions in the angle and 3 mem-
bership functions in the derivative. It can be observed that the absolute minimum
error reached is equal to 0.4577, which is a good result for flying the Quadrotor (see
Fig. 1.42). If the number of membership functions is increased, the error decreased
(see Fig. 1.43) but it is not the goal of this proposal. The target is to decrease the
number of membership functions and rules for using lees computational resources.
The final domains for the outputs and inputs trained by the ANFIS are presented in
Figs. 1.44, 1.45, and 1.46.

Fig. 1.42 Absolute minimum error reached with 3 membership functions for the angle and 3
membership functions for the derivative

62 1 Literature Review for Digital Implementations of Fuzzy Logic …

Fig. 1.43 Absolute minimum error reached with 7 membership functions for the angle and 5
membership functions for the derivative

Fig. 1.44 Angle MFs obtained with ANFIS

Fig. 1.45 Derivative MFs obtained with ANFIS

1.17 Design of Fuzzy Logic Controller Tunned by an Anfis 63

1.18 Experimental Results

Experimental results were created with different magnitude of noise added to the
position sensor’s signal (angle and derivative) and initial position equal to 30° is
selected for all the tests. A LabVIEW frontal panel was developed for recording the
information for each test; Fig. 1.47 shows the fontal panel for the Quadrotor.

When the noise was not presented, the error signal from the ANFIS tuned
controller is better than the controller tuned by the expert. Figure 1.48 depicts the
response for the controller tuned by the ANFIS (a) and tuned by the expert (b). It is
observed that the fuzzy logic controller tuned by ANFIS the error is inside a band
(±10°), but the system tuned by the expert some ripples occurred at sec. 22.

Fig. 1.46 Output MFs obtained with ANFIS

Fig. 1.47 LabVIEW frontal panel for the Quadrotor

64 1 Literature Review for Digital Implementations of Fuzzy Logic …

When noise is added in both angle (±5°) and derivative (±10/s°), both controllers
can deal with this noise level. Figure 1.49 shows how the response in the controller
tuned by the ANFIS is degraded and the expert response can tolerate the noise in
the band (±10°).

(a)

(b)

Fig. 1.48 No noise included
in the system, controller tuned
by ANFIS (a) and tuned by
the expert (b)

(b)

(a) Fig. 1.49 Noise included in
the system, controller tuned
by ANFIS (a) and tuned by
the expert (b) medium level of
noise

1.18 Experimental Results 65

When noise is added in both angle (+/-25 degrees) and derivative (±50/s°), the
fuzzy logic controller tuned with ANFIS gives a better response than the controller
tuned by the expert (see Fig. 1.50) which has big ripples in the response.

It can be observed that the fuzzy logic controller tuned by ANFIS gives good
response with no-noise and high level of noise but the response with medium level
of noise is improved by the controller tuned by the expert because the number of
membership functions generate smooth transitions. When more membership
functions are implemented, the transition with medium level of noise is smoother
than fuzzy logic controller tuned by ANFIS.

Table 1.6 shows how the processing time changes when a different fuzzy logic
controller is implemented in the digital micro-controller. The BeagleBone Black
(BBB) was the microprocessor selected. A list of some specifications of the board is
presented below:

• Processor: AM3359 ARM Cortex-A8
• Speed Processor: 1 GHz
• Memory: 512 MB DDR3 (800 MHz x 16), 2 GB on-board storage using eMMC
• Digital pins: 65
• Analog pins: 7
• PWM pins: 8

In this case, it is clear that Type-2 optimized by ANFIS needs a lower processing
time than Type-2 tuned by the expert. It is important to mention that fuzzy logic
controller type 2 tuned by an expert is composed of 7 membership functions for the

(a)

(b)

Fig. 1.50 No noise included
in the system, controller tuned
by ANFIS (a) and tuned by
the expert (b) high level of
noise

66 1 Literature Review for Digital Implementations of Fuzzy Logic …

angle and 5 membership functions for the derivative, while the ANFIS tuned
controller is composed only by 3 membership functions for the angle and 3
membership functions for the derivative.

References

1. K. Sudha, R. Vijaya Santhi, Robust decentralized load frequency control of interconnected
power system with generation rate constraint using type-2 fuzzy approach. Int. J. Electr. Power
Energy Syst. 33, 699–707 (2011)

2. E.A. Jammeh, M. Fleury, C. Wagner, H. Hagras, M. Ghanbari, Interval type-2 fuzzy logic
congestion control for video streaming across IP networks. IEEE Trans. Fuzzy Syst. 17, 1123–
1142 (2009)

3. C.-H. Lee, Y.-C. Lin, An adaptive type-2 fuzzy neural controller for nonlinear uncertain
systems. Cont. Intell. Syst. 33, 13–25 (2005)

4. M. Biglarbegian, W. Melek, J.M. Mendel, Design of novel interval type-2 fuzzy controllers for
modular and reconfigurable robots: theory and experiments. IEEE Trans. Ind. Electron. 58,
1371–1384 (2011)

5. G.O. Koca, Z.H. Akpolat, M. Özdemir, Type-2 fuzzy sliding mode control of a four-bar
mechanism. Int. J. Model. Simul. 31, 60 (2011)

6. K. Poornaselvan, T.G. Kumar, V.P. Vijayan, Agent based ground flight control using type-2
fuzzy logic and hybrid ant colony optimization to a dynamic environment, in First
International Conference on Emerging Trends in Engineering and Technology (ICETET’08),
pp. 343–348 (2008)

7. M. Zaher, H. Hagras, Data generated type-2 fuzzy logic model for control of wind turbines, in
10th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 80–
85 (2010)

8. M. Galluzzo, B. Cosenza, Adaptive type-2 fuzzy logic control of a bioreactor. Chem. Eng. Sci.
65, 4208–4221 (2010)

9. H. Chaoui, W. Gueaieb, Type-2 fuzzy logic control of a flexible-joint manipulator. J. Intell.
Rob. Syst. 51, 159–186 (2008)

Table 1.6 Processing time
for each fuzzy logic controller

Type 2
7 and 5

ANFIS T2
3 and 3

21.1 14.4

21.8 14.7

21.7 14.6

20.9 14.7

20.3 15.2

21.4 13.6

21.0 13.6

20.0 15.4

21.5 14.4

21.6 14.7

Average 21.1 14.5

1.18 Experimental Results 67

10. D.V. Petrović, M. Tanasijević, V. Milić, N. Lilić, S. Stojadinović, I. Svrkota, Risk assessment
model of mining equipment failure based on fuzzy logic. Expert Syst. Appl. 41, 8157–8164
(2014)

11. M. Baldania, D. Sawant, A. Patki, Dynamic rule based approach to reduce power consumption
of the fuzzy logic controller for embedded applications,” in First International Conference on
Networks & Soft Computing (ICNSC), pp. 193–197 (2014)

12. V. Novak, V. Pavliska, R. Valasek, Specialized software for fuzzy natural logic and fuzzy
transform applications, in IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pp. 2337–2344 (2014)

13. W. Arbex, M. Martins, M.V. Silva, L.A. Carvalho, Fuzzy inference to decision support for
SNP discovery, in 7th Iberian Conference on Information Systems and Technologies (CISTI),
pp. 1–6 (2012)

14. W. Ai-Zhen, R.G. Feng, The Design of Neural Network Fuzzy Controller in Washing
Machine, in International Conference on Computing, Measurement, Control and Sensor
Network (CMCSN), pp. 136–139 (2012)

15. Q. Liang, J.M. Mendel, Equalization of nonlinear time-varying channels using type-2 fuzzy
adaptive filters. IEEE Trans. Fuzzy Syst. 8, 551–563 (2000)

16. Q. Liang, J.M. Mendel, MPEG VBR video traffic modeling and classification using fuzzy
technique. IEEE Trans. Fuzzy Syst. 9, 183–193 (2001)

17. H.B. Mitchell, Pattern recognition using type-II fuzzy sets. Inf. Sci. 170, 409–418 (2005)
18. P. Herman, G. Prasad, T. McGinnity, Investigation of the type-2 fuzzy logic approach to

classification in an EEG-based brain-computer interface, in 27th Annual International
Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS 2005),
pp. 5354–5357 (2006)

19. N.N. Karnik, J.M. Mendel, Applications of type-2 fuzzy logic systems to forecasting of
time-series. Inf. Sci. 120, 89–111 (1999)

20. T. Ozen, J.M. Garibaldi, Effect of type-2 fuzzy membership function shape on modelling
variation in human decision making,” in IEEE International Conference on Fuzzy Systems,
pp. 971–976 (2004)

21. Q. Liang and L. Wang, “Sensed signal strength forecasting for wireless sensors using interval
type-2 fuzzy logic system,” in The 14th IEEE International Conference on Fuzzy Systems
(FUZZ’05), pp. 25–30 (2005)

22. O. Castillo and P. Melin, “Adaptive Noise Cancellation Using Type-2 Fuzzy Logic and Neural
Networks,” in Type-2 Fuzzy Logic: Theory and Applications, ed: Springer, 2008, pp. 213–223

23. C.-H. Lee, Y.-C. Lin, W.-Y. Lai, Systems identification using type-2 fuzzy neural network
(type-2 FNN) systems, in IEEE International Symposium on Computational Intelligence in
Robotics and Automation, pp. 1264–1269 (2003)

24. F.-H. Rhee, C. Hwang, An interval type-2 fuzzy perceptron, in Proceedings of the 2002 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE’02), pp. 1331–1335 (2002)

25. J.M. Keller, M.R. Gray, J.A. Givens, A fuzzy k-nearest neighbor algorithm. Syst. Man
Cybern. IEEE Trans. (4), 580–585 (1985)

26. J. Agero, A. Vargas, Using type-2 fuzzy logic systems to infer the operative configuration of
distribution networks,” in Proceedings IEEE Power Engineering Society General Meeting,
pp. 2379–2386 (2005)

27. N. Sulaiman, Z.A. Obaid, M. Marhaban, M. Hamidon, FPGA-based fuzzy logic: design and
applications–a review. IACSIT Int. J. Eng. Technol. 1, 491–503 (2009)

28. G. Muscato, Fuzzy control of an underactuated robot with a fuzzy microcontroller.
Microprocess. Microsyst. 23, 385–391 (1999)

29. L. Faravelli, R. Rossi, G. Torelli, Numerical testing of a programmable microcontroller with
fuzzy and adaptive features. Simul. Model. Pract. Theory 11, 421–431 (2003)

30. A.M. El-Nagar, M. El-Bardini, Practical Implementation for the interval type-2 fuzzy PID
controller using a low cost microcontroller. Ain Shams Eng. J. 5, 475–487 (2014)

68 1 Literature Review for Digital Implementations of Fuzzy Logic …

31. G. Bal, E. Bekiroǧlu, Ş. Demirbaş, I. Colak, Fuzzy logic based DSP controlled servo position
control for ultrasonic motor. Energy Convers. Manag. 45, 3139–3153 (2004)

32. Y.L. Goh, A.K. Ramasamy, F.H. Nagi, A.A. Zainul Abidin, DSP based fuzzy and
conventional overcurrent relay controller comparisons. Microelectron. Reliab. 53, 1029–1035
(2013)

33. Y.L. Goh, A.K. Ramasamy, F.H. Nagi, A.A.Z. Abidin, DSP based overcurrent relay using
fuzzy bang–bang controller. Microelectron. Reliab. 51, 2366–2373 (2011)

34. P.-H. Chou, C.-S. Chen, F.-J. Lin, DSP-based synchronous control of dual linear motors via
Sugeno type fuzzy neural network compensator. J. Franklin Inst. 349, 792–812 (2012)

35. M.A. Melgarejo R, C.A. Peña-Reyes, Hardware architecture and FPGA implementation of a
type-2 fuzzy system, in Proceedings of the 14th ACM Great Lakes Symposium on VLSI,
pp. 458–461 (2004)

36. E. Ramadan, M. El-bardini, M. Fkirin, Design and FPGA-implementation of an improved
adaptive fuzzy logic controller for DC motor speed control. Ain Shams Eng. J. (2014)

37. A. Messai, A. Mellit, A. Guessoum, S. Kalogirou, Maximum power point tracking using a GA
optimized fuzzy logic controller and its FPGA implementation. Sol. Energy 85, 265–277
(2011)

38. M.P. Soares dos Santos, J. Ferreira, Novel intelligent real-time position tracking system using
FPGA and fuzzy logic. ISA Trans. 53, 402–414 (2014)

39. D.M. Munoz, C.H. Llanos, M. Ayala-Rincon, R.H. van Els, Distributed approach to group
control of elevator systems using fuzzy logic and FPGA implementation of dispatching
algorithms. Eng. Appl. Artif. Intell. 21, 1309–1320 (2008)

40. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)
41. L.A. Zadeh, Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)
42. B.K. Bose, Power electronics and variable frequency drives: technology and applications

(IEEE Press, New Jersey, 2010)
43. M. Zamani, H. Nejati, A.T. Jahromi, A. Partovi, S.H. Nobari, G.N. Shirazi, Toolbox for

Interval Type-2 Fuzzy Logic Systems, in 11th Joint International Conference on Information
Sciences (2008)

44. E.H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant,” in
Proceedings of the Institution of Electrical Engineers, pp. 1585–1588 (1974)

45. D. Wu, W.W. Tan, A simplified architecture for type-2 FLSs and its application to nonlinear
control, in IEEE Conference on Cybernetics and Intelligent Systems, pp. 485–490 (2004)

46. M. Mizumoto, K. Tanaka, Some properties of fuzzy sets of type 2. Inf. Control 31, 312–340
(1976)

47. J.M. Mendel, H. Hagras, W.W. Tan, W. Melek, H. Ying, Introduction to Type-2 Fuzzy Logic
Control: Theroy and Applications (Wiley, New York, 2014)

48. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and
control. Systems, IEEE Trans. Man Cybern. 116–132 (1985)

49. M. Sugeno, G. Kang, Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15–33
(1988)

50. F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf.
Sci. 178, 2224–2236 (2008)

51. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning
—I. Inf. Sci. 8, 199–249 (1975)

52. N.N. Karnik, J.M. Mendel, Centroid of a type-2 fuzzy set. Inf. Sci. 132, 195–220 (2001)
53. P. Ponce, Inteligencia artificial con aplicaciones a la ingeniería: Alfaomega (2011)
54. J.M. Mendel, Uncertain Rule-Based Fuzzy Logic System: Introduction and New Directions

(2001)
55. L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision

processes, IEEE Trans. Syst. Man Cybern. 28-44 (1973)
56. N.N. Karnik, J.M. Mendel, Q. Liang, Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7,

643–658 (1999)

References 69

57. M.B. Gorzałczany, A method of inference in approximate reasoning based on interval-valued
fuzzy sets. Fuzzy Sets Syst. 21, 1–17 (1987)

58. D.G. Schwartz, The case for an interval-based representation of linguistic truth. Fuzzy Sets
Syst. 17, 153–165 (1985)

59. I. Türkşen, Fuzzy normal forms. Fuzzy Sets Syst. 69, 319–346 (1995)
60. G.J. Klir, T.A. Folger, Fuzzy Sets, Uncertainty, and Information (1988)
61. Q. Liang, J.M. Mendel, Interval type-2 fuzzy logic systems: theory and design. IEEE Trans.

Fuzzy Syst. 8, 535–550 (2000)
62. H. Wu, J.M. Mendel, Uncertainty bounds and their use in the design of interval type-2 fuzzy

logic systems. IEEE Trans. Fuzzy Syst. 10, 622–639 (2002)
63. J.M. Mendel, On a 50% savings in the computation of the centroid of a< i> symmetrical</i>

interval type-2 fuzzy set. Inf. Sci. 172, 417–430 (2005)
64. S. Coupland, R. John, A fast geometric method for defuzzification of type-2 fuzzy sets. IEEE

Trans. Fuzzy Syst. 16, 929–941 (2008)
65. D. Wu, J.M. Mendel, Enhanced karnik–mendel algorithms. IEEE Trans. Fuzzy Syst. 17, 923–

934 (2009)
66. H.-J. Wu, Y.-L. Su, S.-J. Lee, A fast method for computing the centroid of a type-2 fuzzy set.

IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42, 764–777 (2012)
67. J.M. Mendel, R.B. John, Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10, 117–

127 (2002)
68. N.N. Karnik, J.M. Mendel, Introduction to type-2 fuzzy logic systems,” in The 1998 IEEE

International Conference on Fuzzy Systems Proceedings, IEEE World Congress on
Computational Intelligence, pp. 915–920 (1998)

69. N.N. Karnik, J.M. Mendel, Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 122, 327–348
(2001)

70. C. Coza, C.J.B. Macnab, A new robust adaptive-fuzzy control method applied to quadrotor
helicopter stabilization, in Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual
meeting of the North American, pp. 454–458. IEEE (2006, June)

71. M.L. Santos, Intelligent fuzzy controller of a quadrotor. IEEE, pp. 141–146 (2010)
72. A.R. Kirli, Self tuning fuzzy PD application on TI TMS320F28335 for an experimental

stationary Quadrotor. Yildiz Tech. Univ (2010)
73. S.S. Sheikhpour, a model-based fuzzy controller using the parallel distributed compensation

method for quadrotorattitude stabilization. Sharif University of Technology. Anticlockwise
Roll, D: Clockwise Roll, E: Anticlockwise Pitch, F: Clockwise Pitch (2013)

74. I.K. Ilhan, Type-2 Fuzzy based quadrotorcontrol approach, in 9th Asian Control Conference
(ASCC) (IEEE, Istanbul, 2013), pp. 1–6

75. P. Bhatkhande, T.C. Havens, Real time fuzzy controller for quadrotor stability control, in
Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on, pp. 913–919. IEEE
(2014, July)

76. G.D. Qingji, Research of stability augmentation hybrid controller for quadrotor UAV, in 26th
Chinese Control and Decision Conference (CCDC) (IEEE, Tianjin, 2014), pp. 5224–5229

77. J.M. Brito, Quadrotor Prototype. Dissertação para obtenção do Grau de M[estre. Lisboa:
Universidad Técnica de Lisboa (2009)

78. G.H. Hoffmann, QuadrotorHelicopter Flight Dynamics and Control:Theory and Experiment,
in AIAA Guidance, Navigation and Control Conference and Exhibit (American Institute of
Aeronautics and Astronautics, South Carolina, 2007)

79. J.M. Mendel, R. John, F. Liu, Interval type-2 fuzzy logic systems made simple. Fuzzy Syst.
IEEE Trans. 14(6), 808–821 (2006)

80. J.M. Mendel, Type-2 fuzzy sets and systems: an overview. Comput. Intell. Mag. IEEE2(1),
20–29 (2007)

81. J.-S.R. Jang, ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Trans. Syst.
Man Cybern. 665–685 (1993)

70 1 Literature Review for Digital Implementations of Fuzzy Logic …

Chapter 2
LabVIEW™ FPGA

2.1 Field-Programmable Gate Array (FPGA)

An field-programmable gate array (FPGA) [1] is a device that contains a matrix of
reconfigurable gate array logic circuitry. When an FPGA is configured, the internal
circuitry is connected in a way that creates a hardware implementation of the
software application. Unlike processors, FPGAs use dedicated hardware for pro-
cessing logic and do not have an operating system. FPGAs are truly parallel in
nature, so different processing operations do not have to compete for the same
resources. As a result, the performance of one part of the application is not affected
when additional processing is added. Also, multiple control loops can run on a
single FPGA device at different rates. FPGA-based control systems can enforce
critical interlock logic and can be designed to prevent I/O forcing by an operator.
However, unlike hard-wired printed circuit board (PCB) designs which have fixed
hardware resources, FPGA-based systems can literally rewire their internal circuitry
to allow reconfiguration after the control system is deployed to the field. FPGA
devices deliver the performance and reliability of dedicated hardware circuitry.

A single FPGA can replace thousands of discrete components by incorporating
millions of logic gates in a single integrated circuit (IC) chip. The internal resources
of an FPGA chip consist of a matrix of configurable logic blocks (CLBs) sur-
rounded by a periphery of I/O blocks. Signals are routed within the FPGA matrix
by programmable interconnect switches and wire routes (see Fig. 2.1).

FPGA technology provides the reliability of dedicated hardware circuitry, true
parallel execution, and lightning fast closed-loop control performance. This appli-
cation note provides answers to frequently asked questions (FAQs) regarding the
use of reconfigurable FPGA-based hardware targets for closed-loop control appli-
cations. A compactRIO is shown in Fig. 2.2.

© Springer International Publishing Switzerland 2016
P. Ponce-Cruz et al., Fuzzy Logic Type 1 and Type 2 Based
on LabVIEW™ FPGA, Studies in Fuzziness and Soft Computing,
DOI 10.1007/978-3-319-26656-5_2

71

2.1.1 How Do FPGA-Based Control Systems Compare
to Processor-Based Systems?

Like processor-based control systems, FPGAs have been used to implement all types
of industrial control systems (see Fig. 2.3), including analog process control, discrete
logic, and batch or state machine-based control systems. However, FPGA-based
control systems differ from processor-based systems in significant ways.

Fig. 2.1 Looking inside an FPGA chip

Fig. 2.2 NI CompactRIO is a small, rugged FPGA-based control system

72 2 LabVIEW™ FPGA

When you compile [2] your control application for an FPGA device, the result is
a highly optimized silicon implementation that provides true parallel processing
with the performance and reliability benefits of dedicated hardware circuitry. Since
there is no operating system on the FPGA chip, the code is implemented in a way
that ensures maximum performance and reliability.

In addition to offering high reliability, FPGA devices can perform deterministic
closed-loop control at extremely fast loop rates. In most FPGA-based control
applications, speed is limited by the sensors, actuators, and I/O modules rather than
the processing performance of the FPGA. For example, the proportional-integral-
derivative (PID) control algorithm that is included with the LabVIEW FPGA
Module executes in just 300 ns (0.000000300 s). PID control is commonly used for
regulating analog process values such as pressure, temperature, force, displacement,
fluid flow, or electrical current.

FPGA-based control systems offer deterministic closed control performance at
rates exceeding 1 MHz. In fact, many algorithms can be executed in a single cycle
of the FPGA clock (40 MHz). Processing is done in parallel, so multi-rate control

Fig. 2.3 Performing PID
control in LabVIEW FPGA

2.1 Field Programmable Gate Array (FPGA) 73

systems are easy to implement. Since control logic runs in dedicated hardware
subsystems on the FPGA, applications do not slow down when additional pro-
cessing is added. In many cases, a software-defined gate array in FPGA hardware
can be used to replace a costly and time-consuming custom PCB layout.

FPGAs can digitally process signals at very high speeds and are often used to
reconfigure the I/O module functionality. For example, a digital input module can
be used to simply read the true/false state of each digital line. Alternately, the same
FPGA can be reconfigured to perform processing on the digital signals and measure
pulse width, perform digital filtering, or even measure position and velocity from a
quadrature encoder sensor.

FPGA-based systems often incorporate motion control and motor drive com-
mutation in a single FPGA-based control application. By contrast, processor-based
systems typically offload the motor drive commutation to separate hardware since
motor current or torque control requires fast loop rates (commonly 20 kHz) and
precise timing of the gate drive commutation signals. A comparison between
processors controller and LabVIEW FPGA is presented in Fig. 2.4.

2.1.2 How Do I Program My Control Application Using
the LabVIEW FPGA Module?

The LabVIEW FPGA Module enables you to use high-level graphical dataflow
programming to create a highly optimized gate array implementation of your analog
or digital control logic. You can use normal LabVIEW programming techniques to
develop your FPGA application. When you target FPGA hardware such as a
CompactRIO chassis or R Series intelligent data acquisition (DAQ) device, the
LabVIEW programming palette is simplified to contain only the functions that are
designed to work on FPGAs [3]. The primary programming difference compared to
traditional LabVIEW is that FPGA devices use integer math rather than
floating-point math. Also, there is no notion of multithreading or priorities since
each loop executes in independent dedicated hardware and does not have share
resources—in effect, each loop executes in parallel at “time critical” priority.

Performance limited to 1 kHz

Serial execution, single rate control

Performance slows as app. grows

Operating system runs control logic

I/O modules have fixed functionality

Custom circuitry requires board layout

Separate motion control system

Closed loop performance beyond 1 MHz

Parallel execution, multi-rate control

No slow down as application grows

Control logic in dedicated hardware

I/O functionality is reconfigurable

Software defined gate array

Motion integrated with other control logic

Fig. 2.4 Processor-based control (left) compared to FPGA-based control (right)

74 2 LabVIEW™ FPGA

The LabVIEW FPGA palette contains extensive intellectual property (IP) li-
braries [4]. Table 2.1 shows a list of some of the key function blocks for developing
FPGA-based control systems. For more details, see the LabVIEW FPGA Module
user manual in NI website.

Table 2.1 Lists of some of the key function blocks for developing FPGA-based control systems

Category Key functions for control Common control applications

Programming
structures

For Loop, While Loop, Case
Structure, Feedback Node,
Sequence Structure, Single Cycle
Timed Loop, Shift Register, HDL
Interface Node

Analog process control loops,
state machines, batch control,
sequential function charts, event
response, repeated execution,
signal latching, subroutines,
sequencing, system state control
(power up, shut down, watchdog,
fault, …)

Input/Output Analog Input, Analog Output,
Digital Input, Digital Output,
Digital Port Input, Digital Port
Output

Interfacing to digital I/O, voltage,
current, temperature, load,
pressure, strain, relay, 4–20 mA,
H-bridge, CAN communication,
wireless networking, and other
signals

Analog control Discrete PID, Discrete Control
Filter, Discrete Delay, Discrete
Normalized Integrator, Initial
Condition, Unit Delay,
Zero-Order Hold, Backlash, Dead
Zone, Friction, Memory Element,
Quantizer, Rate Limiter, Relay,
Saturation, Switch, Trigger,
Linear Interpolation, Sine
Generator, Look-Up Table 1D

Analog control algorithms,
filtering of noisy signals, limiting
input/output signals, scaling
nonlinear sensor signals to
engineering unit proportional
values, function generation, sine,
cosine, log, exponential, gain
scheduling, ramp/soak

Discrete logic And, And Array Elements,
Boolean Array To Number,
Boolean To (0,1), Compound
Arithmetic, Exclusive Or, Implies,
Not, Not And, Not Exclusive Or,
Not Or, Number To Boolean
Array, Or, Or Array Elements,
Boolean Crossing

Digital control, digital logic,
Boolean logic, relay ladder logic,
sequence of events, state
transitions, control of 2-state and
3-state discrete devices, edge
detection

Comparison
functions

Equal?, Equal To 0?, Greater?,
Greater Or Equal?, Greater Or
Equal To 0?, Greater Than 0?,
Less?, Less Or Equal?, Less Or
Equal To 0?, Less Than 0?, Not
Equal?, Not Equal To 0?, Select,
Max and Min, In Range and
Coerce, Zero Crossing

Alarming, triggering, event
detection, peak detection, signal
comparison, thresholding, change
of state detection, signal selection
(high, min, max), limit testing,
selector/multiplexer,
heating/cooling split range control

(continued)

2.1 Field Programmable Gate Array (FPGA) 75

2.1.3 How Does the LabVIEW Compiler Translate My
Graphical Code into FPGA Circuitry?

The LabVIEW FPGA module compiles your LabVIEW application to FPGA
hardware using an automatic multistep process [2]. Behind the scenes, your
graphical code is translated to text-based VHDL code. Then industry standard
Xilinx ISE compiler tools are invoked and the VHDL code is optimized, reduced,
and synthesized into a hardware circuit realization of your LabVIEW design. This
process also applies timing constraints to the design and tries to achieve an efficient
use of FPGA resources (sometimes called “fabric”).

A great deal of optimization is performed during the FPGA compilation process
to reduce digital logic and create an optimal implementation of the LabVIEW
application (see Fig. 2.5). Then the design is synthesized into a highly optimized
silicon implementation that provides true parallel processing capabilities with the
performance and reliability of dedicated hardware [5].

The end result is a bit stream file that contains the gate array configuration
information. When you run the application, the bit stream is loaded into the FPGA

Table 2.1 (continued)

Category Key functions for control Common control applications

Math Absolute Value, Add, Compound
Arithmetic, Decrement,
Increment, Multiply, Negate,
Quotient and Remainder, Scale
By Power Of 2, Sign, Subtract,
Saturation Add, Saturation
Multiply, Saturation Subtract,
Join Numbers, Logical Shift,
Rotate, Rotate Left With Carry,
Rotate Right With Carry, Split
Number, Swap Bytes, Swap
Words

Analog signal manipulation,
summing, counter/timers, rate of
change detection, electronic
gearing/camming, accumulator,
averaging, totalizer, digital signal
processing

Data transfer,
timing, triggering
and
synchronization

Global Variable, Local Variable,
FIFO Read, FIFO Write, Memory
Read, Memory Write, Interrupt,
Loop Timer, Tick Count, Wait,
Generate Occurrence, Set
Occurrence, Wait On Occurrence,
First Call?

Watchdogs, timers, accumulators,
pulse width
measurement/generation, timer
on/off delay

NI SoftMotion
module

Motion ControlLoop PID (32-bit),
Spline Engine (Interpolation)

Multiaxis coordinated motion
control, trajectory generation,
straight line moves, jogging, arc
move, contouring, interpolation

Digital filter
design toolkit

Filter Design, Fixed-Point Tools,
Code Generation

Digital filter design, convert
floating-point to fixed-point,
generate LabVIEW FPGA code

76 2 LabVIEW™ FPGA

chip and used to reconfigure the gate array logic. The bit stream can also be loaded
into nonvolatile flash memory and loaded instantaneously when power is applied to
the target. There is no operating system on the FPGA chip; however, execution can
be started and stopped using enable-chain logic that is built into the FPGA
application.

2.1.4 FPGAs Are Fast, but How Do Faster Loop Rates
Improve Control System Performance?

In general, the speed of the control system impacts its performance, stability,
robustness, and disturbance rejection characteristics (see Fig. 2.6). Faster control
systems are typically more stable, easier to tune, and less susceptible to changing
conditions and disturbances.

To provide stable and robust control, a control system must be able to measure
the process variable and set an actuator output command within a fixed period of
time. Systems (plants) that can change quickly require fast control systems to
guarantee reliable performance within acceptable limits. As a rule, the control loop
rate should be at least ten times faster than the time constant of the system (plant).
The time constant is a measure of the speed of the system.

Translation Optimization Synthesis Bit Stream

Timing constraints

VHDL generation

Analysis

Logic reduction

Place and Route

Timing Verification

Generation

Download & Run

Fig. 2.5 LabVIEW FPGA compilation process

Set
Point

Control
Algorithm

Actuator
Output

Process
Variable

System
(Plant)

Sensor
Feedback

-
+

-
+

Error

Disturbance

Fig. 2.6 Typical closed-loop control system

2.1 Field Programmable Gate Array (FPGA) 77

For example, the current in a DC motor may change as fast as 1 A per mil-
lisecond in response to a 24 V output from an H-bridge driver. To precisely control
the motor current, the control system must sample the current quickly and make
frequent adjustments to the actuator output.

2.1.5 What FPGA Hardware Targets Are Available
from NI?

The CompactRIO reconfigurable embedded system (see Fig. 2.7) is a small modular
system for industrial applications that require the highest level of ruggedness and
reliability. CompactRIO is designed for harsh environments and offers a wide
temperature range, high shock and vibration ratings, and an array of industrial
certifications and ratings. CompactRIO is rated for marine environments, Class I,
Division 2 rating for hazardous locations, and offers up to 2300 V of isolation. Like
all FPGA targets from NI, CompactRIO uses the C Series industrial I/O modules for
low-cost connectivity directly to industrial control sensors and actuators. In addi-
tion, there are many third-party vendors around the world that offer C Series I/O and
communication modules.

The NI R Series intelligent DAQ devices are plug-in boards for PCI and PXI/
CompactPCI buses with onboard FPGA hardware for user-defined signal pro-
cessing and control. Up to 8 analog inputs, 8 analog outputs and 160 digital I/O
channels are built into the intelligent DAQ devices. You can also connect an
expansion chassis to any digital port and add C series industrial I/O modules.
The NI intelligent DAQ devices enable you to define your own hardware func-
tionality and offer limitless possibilities for timing, triggering, synchronization,
digital signal processing, and control.

The PXI R Series intelligent DAQ system offers FPGA performance and reli-
ability in the industry standard PXI form factor (see Fig. 2.8). In addition to the
intelligent DAQ devices from NI, hundreds of non-reconfigurable plug-in boards
are available from NI and other vendors around the world. The PXI system can be
booted into Windows or the LabVIEW Real-Time operating system. C Series I/O
modules provide signal conditioning and combine instrumentation grade accuracy

Fig. 2.7 NI CompactRIO
reconfigurable embedded
system

78 2 LabVIEW™ FPGA

with industrial features such as isolation or high current drive capability. The R
Series Expansion Chassis is used to connect C Series modules to intelligent DAQ
devices. For more information, see the online application notes explaining the R
Series Intelligent DAQ devices.

The PCI R Series Intelligent DAQ System enables you to add FPGA-based
control capabilities to any desktop, industrial PC, or single-board computer
(SBC) containing a PCI slot. Like all NI FPGA targets, the intelligent DAQ devices
can load their bit stream instantly at power up from nonvolatile flash storage located
on the plug-in board (see Fig. 2.9).

The National Instruments Compact Vision System (see Fig. 2.10) is a rugged
standalone platform for industrial machine vision and I/O applications such as
robotics, automated test, and automated inspection. All Compact Vision Systems

Fig. 2.8 PXI R series intelligent DAQ system

Fig. 2.9 PCI R series intelligent DAQ system

2.1 Field Programmable Gate Array (FPGA) 79

contain a user-programmable FPGA for implementing custom triggers, counters,
pulse width modulation (PWM), motion, and other digital control operations. NI
Compact Vision systems use IEEE 1394 (FireWire) technology for interfacing to
more than 300 compatible cameras.

2.1.6 What Closed-Loop Control Performance Can I
Achieve?

In most cases, the computational performance of the FPGA is so fast that the
control loop rate is limited only by the sensors, actuators, and I/O modules (see
Fig. 2.11). This is a stark contrast to traditional control systems, where the pro-
cessing performance was typically the limiting factor.

Fig. 2.10 NI compact vision
system

I/O I/O

T

Algorithm

Fig. 2.11 The loop cycle time (T) is the time taken to execute one cycle of a control loop

80 2 LabVIEW™ FPGA

For example, using R Series intelligent DAQ devices, the input/output and
control logic calculations for discrete control applications can all be implemented at
a 20 MHz control loop rate using the 5 V TTL digital I/O lines on the boards. These
digital lines can be accessed from within a LabVIEW single-cycle timed loop
(SCTL) executing at a 25 ns rate. Significant amounts of control logic can usually
be included in a SCTL.

For 24 V discrete logic control applications using high current C Series digital
I/O modules, the loop rate is limited to the update rate of the modules. For example,
the NI 9423 digital input and NI 9474 digital output modules both have 1 μs update
rates, resulting in a maximum 24 V discrete control performance of 500 kHz.

In analog process control applications, the control loop rate is also limited by the
update rate of the I/O modules. The NI 9215 analog input and NI 9263 analog
output modules offer 16-bit resolution and simultaneous sampling capabilities at
10 μs update rates. This results in a closed-loop analog process control performance
of 50 kHz.

2.1.7 How Much Jitter Can I Expect in My FPGA-Based
Control Loops?

A common gauge of control system performance and robustness is jitter (see
Fig. 2.12), which is a measure of the variation of the actual loop cycle time from the
desired loop cycle time. In general, purpose operating systems such as Windows,
the jitter is unbounded so closed-loop control system stability cannot be guaranteed.
Processor-based control systems with real-time operating systems are commonly
able to guarantee control loop jitter of less than 100 μs. In FPGA-based applica-
tions, the control loop does not need to share hardware resources with other tasks
and control loops can be precisely timed using the FPGA clock. The jitter for
FPGA-based control loops depends on the accuracy of the FPGA clock source. In

Desired Loop Time

L
o

o
p

 I
te

ra
ti

o
n 1

2

3

4

5

Maximum

Jitter

Loop Time

Jitter RangeFig. 2.12 To guarantee
stability, control loop jitter
must be bounded

2.1 Field Programmable Gate Array (FPGA) 81

the case of the CompactRIO cRIO-910x reconfigurable chassis, the FPGA clock
jitter is only 250 ps (0.000000000250 s) when using a 40 MHz FPGA clock rate.

2.1.8 Creating a New LabVIEW Real-Time Project
and Adding I/O

Now it is presented how the real-time system is included in a project [6]. This step
allows to configure inputs and outputs (I/O) in real time.

1. Launch NI LabVIEW by clicking on the desktop icon. Then click on the
Real-Time Project (see Fig. 2.13) link to start a new LabVIEW project for
your NI CompactRIO system.
LabVIEW 8.20 has a Real-Time Project Wizard that makes creating and
configuring real-time applications easy. To help you get started, the wizard
enables you to choose an appropriate programming architecture and auto-
matically generates a software template application.

Fig. 2.13 Real-time project

82 2 LabVIEW™ FPGA

2. To select the working folder for your project, click the folder () icon,
navigate to H:\VirtuaLab\CompactRIO and LabVIEW FPGA Getting
Started Tutorial\Exercises, and then click the Current Folder button. Name
your project Custom Trigger. Keep all of the project defaults as shown below
and click the Next button (see Fig. 2.14).

3. Change your Target Configuration to Two loops. Under the Host
Configuration section (see Fig. 2.15), check the Include user interface box.
Then click Next.
The LabVIEW 8.20 Real-Time Project Wizard makes it easy to create a
complete CompactRIO embedded system that includes an FPGA application
(see Fig. 2.16), real-time processor application, and networked Windows host
computer application. After this exercise is complete, you could use the tem-
plate applications created by the wizard to create a complete networked system,
including a deterministic loop running on the real-time controller to commu-
nicate with the FPGA and a lower priority loop to performed network com-
munication, file logging, or additional analysis.

4. Click the Browse button to find the networked target you configured in MAX.
Expand Real-Time CompactRIO folder and wait until your CompactRIO
system is detected (see Fig. 2.17). Highlight your CompactRIO system and
click OK. Then click Next to continue creating the real-time project.

Fig. 2.14 Real-time folder

2.1 Field Programmable Gate Array (FPGA) 83

5. Notice that the project wizard displays a preview of the project you configured.
Click Finish to finalize the creation of the new real-time project and generate
the application template code (see Fig. 2.18).
When code generation is complete, two pre-built template applications will
automatically open. The Windows host application (host–network–RT (sepa-
rate).vi) includes a chart to plot the data sent by the CompactRIO system over

Fig. 2.15 Real-time target configuration

Fig. 2.16 Real-time application

84 2 LabVIEW™ FPGA

the network, and a stop–network shared variable that is used to halt execution
of the real-time embedded application running on the CompactRIO system (see
Fig. 2.19).

6. In the target–multi-rate–variables.vi (see Fig. 2.20) real-time processor
application, navigate to Window≫Show Block Diagram.

Fig. 2.17 CompactRIO detection

Fig. 2.18 Creating a new real-time project

2.1 Field Programmable Gate Array (FPGA) 85

This embedded processor application produces a simulated I/O signal and
sends the data to the Windows host computer using network-published shared
variables. You would place any time critical routines, such as code to interface
with your FPGA application within the top deterministic loop. Any lower
priority non-deterministic tasks such as data logging or additional analysis
would be placed in the bottom lower priority loop.

Fig. 2.19 Host–network–Real Time.vi

86 2 LabVIEW™ FPGA

7. Click the Run button on the real-time processor application (target–
multi-rate–variables.vi). While the embedded application is being deployed,
click the box next to Close on successful completion if it is not already
checked (see Fig. 2.21).

8. Click the Run button on the Windows host application (host–network–RT
(separate).vi). View the sinusoidal waveform displayed on host application
chart (see Fig. 2.22). Click the STOP button on the host application and notice
that the application stops running on both the host and real-time target.

9. In the Project Explorer window (see Fig. 2.23), right-click on the FPGA
Target and select New≫C Series Modules to add your I/O modules to the
project.

10. To automatically detect the I/O modules installed in your chassis (see
Fig. 2.24), expand the C Series Module tab by clicking on the + symbol. Click
Continue when the warning dialog window appears. A pre-built FPGA bit-
stream will be downloaded to auto-detect the installed modules.
Note: If you are working offline without a network connection to your
CompactRIO system, you can still develop your code by selecting New target or
device and manually adding the I/O modules.

Fig. 2.20 Target–multi-rate–variables

2.1 Field Programmable Gate Array (FPGA) 87

Fig. 2.21 Real-time program deployment

Fig. 2.22 Sine waveform displayed

88 2 LabVIEW™ FPGA

11. After the modules are detected, select the modules that will be used in this
exercise (see Fig. 2.25). To do this, first click on the NI 9215 module, then hold
down the Ctrl key and click on the NI 9263 and NI 9401 modules. Click OK
to add all modules to your project.

12. In the Project Explorer window (see Fig. 2.26), right-click on the FPGA
Target and select New≫FPGA I/O to add your I/O channels to the project.
The Analog Input section is highlighted. To highlight all sections, hold down
the Shift key and click on the Digital Port Input and Output section.

13. Next click the Add button to add all of the I/O channels. Then click the OK
button to finish adding the channels to your project (see Fig. 2.27).

Fig. 2.23 Project explorer

2.1 Field Programmable Gate Array (FPGA) 89

14. In the Project Explorer (see Fig. 2.28) window, right-click on the FPGA
Target and select Collapse All. If you click the + symbol next to the FPGA
Target, your LabVIEW Project should appear similar to what is shown below.
Click the Save All button to save the project and all subVIs.

2.2 Developing the LabVIEW FPGA Application

One of the most important steps to build a fuzzy controller is to design an FPGA
application, so the next section describes how an application is designed. When you
finish a FPGA application, the front panel and block diagram of your completed
FPGA application will look like Fig. 2.29.

Fig. 2.24 Adding targets and devices

90 2 LabVIEW™ FPGA

The next step shows how an application is developed. LabVIEW applications
are called “Virtual Instruments” or “VIs.”

1. In the LabVIEW Project Explorer, right-click on the FPGA Target and select
New≫VI to start a new LabVIEW FPGA application. When the VI opens,
navigate to File≫Save. Then browse to the H:\VirtuaLab\CompactRIO and
LabVIEW FPGA Getting Started Tutorial\Exercises folder and save the
application as “Simple AIAO (FPGA)” (see Fig. 2.30).
To make it easier to distinguish the intended execution target, it is recom-
mended that you include the words “FPGA” in the filename of your FPGA
applications.

Fig. 2.25 Modules detected

2.2 Developing the LabVIEW FPGA Application 91

Fig. 2.27 Modules selected in the FPGA

Fig. 2.26 FPGA I/O modules

92 2 LabVIEW™ FPGA

2. Navigate to the block diagram window for your Simple AIAO (FPGA)
application. (You can also make the block diagram appear by selecting
Window≫Show block diagram while viewing the front panel.) Right-click in
the white area of the block diagram to display the Functions palette. Click on
the thumb tack icon in the top left corner of the Functions palette to tack it
down. Then navigate to the Help menu on your VI and select Show context
help.

Fig. 2.28 Project explorer

2.2 Developing the LabVIEW FPGA Application 93

3. Browse through the Functions palette to familiarize yourself with the many IP
blocks that ship with LabVIEW FPGA. Be sure to browse through the
Programming Structures, Timing, Numeric, Boolean logic, Comparison,
FPGA Math and Analysis, FPGA I/O, and Synchronization palettes (see
Fig. 2.31).
If you have the NI SoftMotion Development Module installed, you will see an
additional Spline Engine function under the VisionMotion category that is
used for high-performance multiaxis coordinated motion control. Other motion
control IP blocks, such as a 32-bit motion PID controller function, are located
in the LabVIEW examples directory. To locate these examples, navigate to
Help≫Find Examples. The NI Digital Filter Design Toolkit is another pow-
erful add-on that provides the ability to generate your own custom signal
processing IP blocks for LabVIEW FPGA. For fixed-point filter design, users
can model quantization effects, optimize numeric representation/topology, and
finally deploy the design using automatically generated LabVIEW FPGA code.
A common use for LabVIEW FPGA and RIO hardware is the development of
custom triggering logic. In this exercise, you will program the FPGA to read in
data from an analog channel, compare it to a threshold, and write a
TRUE/FALSE value to a digital channel. If the analog input value exceeds the
threshold then a NI 9401 digital output channel will turn on. You will use the
indicator LED on the module and software front panel indicators on the FPGA
application to view the status.

Fig. 2.29 Font panel and block diagram in FPGA application

94 2 LabVIEW™ FPGA

Fig. 2.30 Project explorer

Fig. 2.31 Functions programming

2.2 Developing the LabVIEW FPGA Application 95

4. We will begin building the application by reading in analog input channel 0 at a
timed interval. First, place a While Loop from the Functions≫Structures
palette on the block diagram.

5. From the Functions≫FPGA I/O palette, place a FPGA I/O Node function
inside the While Loop.

6. Left-click on the I/O Name terminal and select Analog Input≫NI 9215≫AI0
(see Fig. 2.32).

7. Right-click on the AI0 terminal and select Create≫Indicator. Label the
indicator “AI Ch 0”.

8. From the Functions≫Structures palette enclose the FPGA I/O Node and the
AI Ch 0 indicator in a Flat Sequence Structure. Then right-click on the border
of the sequence structure and select Add Frame Before.

9. Expand the left frame to make more room. Then place a Loop Timer function
(Functions≫Time and Dialog) inside the left frame. Select μsec as the counter
units and 32 Bit as the size of the internal counter.

10. Right-click on the left input terminal of the Loop Timer function and select
Create≫Control. Label the control “AI Scan Rate (uS)”. By timing the loop,
this will set the sampling rate of the simultaneous sampling NI 9215 analog
input module. Using the sequence structure, you insure that the timing interval
between samples is correct even on the first few iterations of the loop.

11. Right-click on the conditional terminal of the while loop (see Fig. 2.33) and
select Create≫Constant. Make sure the constant is set to the default value of
FALSE. The FPGA application should appear as shown below.
By placing the loop timing function in the first frame of the flat sequence
structure, we ensure that the correct loop timing occurs on the first iteration of

Fig. 2.32 Analog Input

96 2 LabVIEW™ FPGA

the loop. If no sequence structure was used, the second acquisition would occur
immediately after the first since no delay would be added. That’s because on
first execution, the Loop Timer function sets its internal timing register but
does not add a delay to the loop. In general, for any functions placed in
parallel on the block diagram with no data dependencies, LabVIEW FPGA will
synchronize the start of each parallel function.

12. Place another While Loop structure (Functions≫Structures) on the block
diagram below the analog input loop you just created.

13. Drop down an FPGA I/O Node function (Functions≫FPGA I/O). Left-click
the I/O node and select Analog Output≫NI 9263≫AO0 to access the analog
output channel 0.

14. Right-click on the AO0 terminal and select Create≫Control. Label the control
“AO Ch 0”.

15. Following the same process as you did before, enclose the FPGA I/O Node in
a Flat Sequence Structure, add a frame to the left, and drop in a Loop Timer
function. Select μsec as the counter units and 32 Bit as the size of the internal
counter.

16. Right-click on the input terminal to the Loop Timer2 function and select
Create≫Control. Label the control “AO Scan Rate (uS).” This control will
set the update rate of the NI 9263 analog output module.

17. Right-click on the conditional terminal of the while loop and select
Create≫Constant. Make sure the constant is set to the default value of
FALSE. The FPGA application should appear as shown below in Fig. 2.34.
Note that in LabVIEW FPGA, each loop will execute in parallel. Unlike pro-
cessors, FPGAs use dedicated hardware for processing logic and do not have
an operating system. FPGAs are truly parallel in nature so different processing
operations do not have to compete for the same resources. As a result, the
performance of one part of the application is not affected when additional
processing is added. Also, multiple loops can run on a single FPGA device at
different rates. To learn more, view the FPGA-based Control FAQ.

Fig. 2.33 While loop

2.2 Developing the LabVIEW FPGA Application 97

18. Next we will add another loop to perform custom triggering and digital output.
Drop down an additional While Loop below the first two loops.
In this application, we will look for a trigger condition to see if the analog input
is above or below the threshold. This custom trigger logic is implemented
inside a SCTL, which will execute at a 40 MHz rate. If a change is detected, we
will set a digital output on the NI 9401 module to the appropriate value. The NI
9474 module has a worst-case output propagation delay of 1 μs.

19. Place a Timed Loop (Functions≫Structures≫Timed Structures) inside the
while loop.

20. Right-click on the AI Ch 0 indicator and select Create≫Local Variable. Place
the local variable inside the Timed Loop structure. Right-click on the local
variable and select Change To Read.

21. Drop a Greater? function (Functions≫Comparison) on the block diagram
and wire the AI Ch 0 local variable to the top input terminal. Then right-click
on the lower terminal and select Create≫Control. Label the control
“Threshold.”

22. Right-click on the border of the Timed Loop and select Add Shift Register.
This register will store the value of the comparison function and pass it from
one iteration of the loop to the next. Connect the output of the Greater?
function to the input of the shift register on the right border of the timed loop.

Fig. 2.34 Condition terminal while loop

98 2 LabVIEW™ FPGA

23. Place a Not Equal? function (Functions≫Comparison) to the right of the
Greater? function and connect the green signal wire to the top terminal of the
Not Equal? function. Then wire the Shift Register value from the left side of
the timed loop to the bottom terminal the Not Equal? function. Finally, wire
the output of the Not Equal? function to the conditional terminal of the timed
loop. If the analog in value has risen above or dropped below the threshold
value then we will stop the timed loop and update the digital output (see
Fig. 2.35).
The SCTL structure instructs the LabVIEW compiler to execute the code inside
of it within a single 25 ns clock cycle of the FPGA (40 MHz). Code inside of a
SCTL not only executes faster, but also uses fewer FPGA resources or “slices.”
However, certain functions are not supported in the SCTL such as analog input
and analog output I/O nodes and the Quotient and Remainder function (an
integer math divide function). If you use an unsupported function inside of a
SCTL, you will get a compile error early in the compilation process.

24. Right-click the output of the Shift Register on the right border of the timed
loop and select Create≫Indicator. Name this indicator “Over Threshold.”

25. Drop down an FPGA I/O Node (Functions≫FPGA Device I/O) next to your
Over Threshold indicator (outside of the timed loop). Left-click the FPGA
I/O Node and select Digital Line Input and Output≫NI 9401≫DIO0 to
access the digital output channel 0. Right-click on the FPGA I/O Node and
select Change to Write. Then wire the output signal from the right shift
register to the Digital Output node.

26. Wire a FALSE Boolean Constant to the Loop Condition terminal of the outer
while loop. The FPGA application should appear similar to that shown below in
Fig. 2.36.

Fig. 2.35 Time loop

2.2 Developing the LabVIEW FPGA Application 99

27. Navigate to the front panel of your FPGA application and arrange the controls
and indicators as shown in Fig. 2.37. Set the AI Scan Rate (uS) to 1000. Set
the AO Scan Rate (us) to 10. Set AO Ch 0 to 2000. Then navigate to the Edit
menu and select Make current values default.
This will set the FPGA application so that at startup the analog output loop
runs at 100 kS/s (10 μs) and the analog input loop runs at 1 kS/s (1000 μs).

Fig. 2.36 Loop conditional terminal

100 2 LabVIEW™ FPGA

Setting the Threshold to 0 and the NI 9263 analog output value (AO Ch 0) to
2000 (about 0.653 V) will cause the digital output to go high due to an over
threshold condition when the application starts. For more information about
the scaling from integer values to voltage outputs on the NI 9263, refer to the
NI 9263 Operating Instructions manual.

28. When you are ready to compile navigate to File≫Save All to save all open
applications and the project.

2.3 Compiling the FPGA Application

In this section you will compile the LabVIEW FPGA application and learn more
about the compilation process and view the compilation report.

1. Click the Run button to start the compile process.
2. Sit back and enjoy 5–10 min of relaxation while your LabVIEW FPGA

application compiles. To better understand the LabVIEW FPGA compilation
process, review the information below.

Fig. 2.37 FPGA applications
front panel

2.2 Developing the LabVIEW FPGA Application 101

2.3.1 Understanding the LabVIEW FPGA Compilation
Process

The LabVIEW FPGA Module [7] uses an industry standard Xilinx ISE compiler.
First, your graphical LabVIEW FPGA code is translated to text-based VHDL code.
At this time, the Generating Intermediate Files dialogue is displayed (see
Fig. 2.38).

Then the Xilinx ISE compiler tools are invoked and the VHDL code is optimized,
reduced, and synthesized into a hardware circuit realization of your LabVIEW
design. This process also applies timing constraints on the circuit design that
ensure an efficient use of FPGA resources (sometimes called “fabric”).

A great deal of optimization is performed during the compilation process to
reduce digital logic and create an optimal implementation of the LabVIEW
application. The end result is a highly optimized silicon implementation that pro-
vides true parallel processing with the performance and reliability benefits of
dedicated hardware circuitry. Since there is no operating system on the FPGA chip,
the code is implemented in a way that ensures maximum performance and relia-
bility (see Fig. 2.39).

The end result is a bit stream file that is loaded into your LabVIEW FPGA.VI
file. When you run the application, the bitstream is loaded into the FPGA chip to
configure the gate array logic. While the application is running on the FPGA, data
for the front panel controls and indicators is passed over the network several times
per second to enable Interactive Mode testing of the application. The update rate in
interactive mode communication is typically limited to about 10 S/s. Later you
could build a real-time host interface to the FPGA application that enables
high-speed data transfer and interrupt synchronization between the floating-point
host processor and integer-based FPGA chipset.

The diagram shown in Fig. 2.40 is a summary of the LabVIEW FPGA compi-
lation process. To learn more, click to view an application note on FPGA-based
control.

Fig. 2.38 FPGA compilation
process

102 2 LabVIEW™ FPGA

2.3.2 FPGA Clock Speed

By default, the FPGA clock runs at 40 MHz. This means that one Tick of the FPGA
clock is equal to 25 ns. By changing the compile options, you can increase the
FPGA clock speed up to 200 MHz (5 ns). There are some drawbacks to using
higher clock speeds that you should be aware of before changing the compile
option. For more information, refer to the CompactRIO Technical Developers
Library by visiting [8] or by right-clicking on the 40 MHz Onboard Clock item in
the project and selecting Help.

2.3.3 The Compilation Report

When the compilation is complete, the compile report will be generated. This report
shows the start and end compilation time, the number of SLICEs used, a compiled
clock rate (40 MHz), and an estimated maximum clock rate (see Fig. 2.41).

Fig. 2.39 FPGA compilation server

Fig. 2.40 Summary of the LabVIEW FPGA compilation process

2.3 Compiling the FPGA Application 103

A SLICE is a collection of logic components on the FPGA. The percentage
shown is the percentage of the FPGA used. In most cases, you can actually fit more
onto the FPGA and run the code faster than this report would lead you to believe.
For small applications, the compiler does not “try as hard” to optimize, as long as
the timing and other design constraints are met. As the FPGA reaches greater than
90 % usage, the compiler performs heavy optimization to make the most efficient
use of resources.

2.4 Advanced Methods for LABVIEW FPGA

This section covers a number of advanced tips and tricks to cut your development
time when creating high-performance control systems with LabVIEW FPGA and
CompactRIO. It will be introduced the debugging techniques such as simulation
that will make you confident before you hit the compile button. You will also learn
a number of recommended programming practices, how to avoid common mis-
takes, and numerous methods to create fast, efficient, and reliable LabVIEW FPGA
applications. Throughout this section, we will be walking you a number of
examples that were developed to create a high performance control system for a
brushed DC motor. We will be showing you a variety of the programming tech-
niques that were used in the creation of LabVIEW FPGA subVIs for generating the
PWM Drive signal, decoding the digital pulses from the Quadrature Encoder
sensor, and performing PID control to close the motor position loop. The end result
is a high performance control system with sub-nanosecond timing jitter, multiple
40 MHz processing loops, and that consumes only 17 % of a 3 million gate FPGA.

Fig. 2.41 Compilation report

104 2 LabVIEW™ FPGA

2.4.1 Introduction

To help you understand the role of the FPGA in a typical CompactRIO control
system application, first we will review a typical software architecture (see
Fig. 2.42).

First, the FPGA provides an interface to the I/O modules using an elemental I/O
node interface. In some cases, the I/O is as simple as reading the voltage from an
analog input module. For more complicated I/O types like the Quadrature encoder
sensors that are common in motor control, the FPGA performs additional pro-
cessing to convert raw digital signals into a meaningful measurement, such as the
position and speed of a motor. In addition to I/O, the FPGA is commonly used for
analog PID control, digital true/false logic, and event response.

Sending data from the FPGA to the real-time processor is as simple as creating a
control or indicator on the front panel of the LabVIEW FPGA application. For
high-speed buffered data, you can use DMA to stream data from FPGA memory to
processor memory. The FPGA can also generate interrupts, which cause lower
priority tasks to be interrupted on the host processor. This provides a way for the
FPGA to synchronize the execution of code on the host processor, which can then
perform calculations and respond in a deterministic fashion. In general, the
real-time processor is slower than the FPGA but offers an extensive palette of
floating-point control, math, and signal processing functions.

The CompactRIO processor executes a multithreaded, hard real-time operating
system and is programmed using LabVIEW Real-Time. By multithreaded, we mean
that it can execute multiple pieces of code, or loops, at different priorities. That

LabVIEW
Real-Time

Time-Critical
Processor Loop
• Single-point or DMA
communication
• Interrupt
synchronization
• Floating-point
processing

LabVIEW
FPGA FPGA

Read/Write

Lower-Priority
Processor Loops
• Lower-speed control
• Analysis, alarming
• Data logging
• RT FIFO shared
variables

LabVIEW
Real-Time

Networking and
HMI
• Web browser HMI
• FTP report
generation
• Networked shared
variables (Modbus)

Host PC,
Touch Panel

Networked
Shared

Variables
LabVIEW
Real-Time

FPGA Logic
• I/O and sensor
interface
• Counter/timers
• Analog PID control
• Digital logic
• Event response

Input
I/O

Node
Output

Hardware EnterpriseProcessor

LabVIEW
Real-Time

LabVIEW
FPGA

Shared
Variables

Fig. 2.42 Typical software architecture

2.4 Advanced Methods for LABVIEW FPGA 105

means that you can add functionality to your application, such as data logging,
lower speed control loops, or alarming without interfering with higher priority tasks
that are more time sensitive. You can share data between loops of different priorities
without causing interference using RT FIFO shared variables.

While the CompactRIO system is capable of standalone operation, many
applications involve networking and a human–machine interface, or HMI. The two
easiest ways to communicate with your CompactRIO system are through the web
browser HMI or through file transfer protocol, or FTP. CompactRIO features a
built-in web server that can host the front panel user interface of the lower priority
loops in the embedded application. Alternately, you can use the LabVIEW Touch
Panel module to create a low-cost HMI for your system. CompactRIO also has a
built-in Modbus server that can publish or receive data from networked devices
such as PLCs. Modbus/TCP is one of the most commonly used industrial net-
working protocols over Ethernet.

Let us take a look at five key development techniques that will help you create
reliable and high-performance LabVIEW FPGA applications.

2.4.2 Technique 1: Use Single-Cycle Timed Loops (SCTLs)

The first development technique we will introduce is the use of SCTLs, in
LabVIEW FPGA.

SCTLs work by telling the LabVIEW FPGA compiler to optimize the code
inside, and add the special timing constraint that the code must execute in a single
tick of the FPGA clock. Code compiled inside a SCTL is more optimized and takes
up less space on the FPGA compared to the same code inside of a regular while
loop. Code inside a SCTL also executes extremely fast. At the default clock rate of
40 MHz, one cycle is equal to just 25 ns.

Below are two identical LabVIEW FPGA applications (see Fig. 2.43)—the one
on the left uses normal while loops, while the one on the right uses SCTLs in its
subVIs. This example shows off the power of parallel processing. The upper loop is
reading and processing the digital signals from a quadrature encoder sensor on a
motor and the lower loop is performing PWM, or PWM, to control the amount of
power being sent to the motor. This application is written for the NI 9505 motor
drive module which can control up to 8 A, 30 V brushed DC motors. This code runs
extremely fast—in the application on the right we are running two different loops at
a 40 MHz clock rate.

The results from our compile report are also shown. The application built with
SCTLs uses fewer SLICEs, but it takes longer to compile because the compiler has
to work harder to meeting the timing constraints applied by the SCTL.

Now let us take a look at how the SCTL works in more depth.
When code is compiled in a normal while loop, LabVIEW FPGA inserts

flip-flops to clock data from one function to the next, thereby enforcing the syn-
chronous dataflow nature of LabVIEW and preventing race conditions. The

106 2 LabVIEW™ FPGA

flip-flops are marked here with the FF boxes drawn at the output of each function
(see Fig. 2.44).

Below is the same code compiled into a SCTL. Here you see that only the inputs
and outputs of the loop have flip-flops (see Fig. 2.45). The internal code is
implemented in a more parallel fashion and more logic reduction is done to opti-
mize the code in between the inputs and outputs of the loop.

As you can see, SCTLs are a simple way to optimize your LabVIEW FPGA
code. So what is the catch? Why would not you always use the SCTL? There are
some limitations to the use of SCTLs as it is shown in Table 2.2.

Single-Cycle Timed Loops

Number of SLICEs: 2456 out of 14336 17%

While Loops

Number of SLICEs: 3245 out of 14336 22%

Fig. 2.43 Two loop cycles

Fig. 2.44 Single-cycle time loop

Fig. 2.45 Single-cycle time loop only I/O have flip-flops

2.4 Advanced Methods for LABVIEW FPGA 107

To use the SCTL all operations inside the SCTL must fit within one cycle of the
FPGA clock. In the beginning of the compile process, the code generator will give
an error message if the SCTL cannot generate the proper code for the compiler.
That means that long sequences of serial code may not be able to fit in a SCTL. By
serial code, we mean code where the results of one calculation are needed by the
next operation, preventing the calculations from being executed in parallel. To fix
this you can rewrite the code to make it more parallel. For example, you can insert a

Feedback Node () to pass the results from one calculation to the next on the

following iteration of the loop—this also known as pipelining. You can use the
pipelining technique to reduce the length of each run through the SCTL by breaking
up the code among multiple iterations of the SCTL.

The Quotient and Remainder function is another one that cannot be used in a
SCTL. If you need to divide a number by an integer value, you can use the Scale by
Power of 2 function instead. This function lets you multiply or divide by powers of
two, i.e., 2, 4, 8, 16, 32, etc. For a fixed-point result, you can use the Fixed-Point
Math Library for LabVIEW FPGA. The fixed-point divide subVI and configuration
panel is shown in Fig. 2.46, including the Execution Mode control which enables
the function to be used within a SCTL.

The Fixed-Point math Library contains LabVIEW FPGA IP blocks that imple-
ment a variety of elementary and transcendental math functions. These functions
use the Fixed-point data type introduced in LabVIEW 8.5 extending the current
offering of functions to include Divide, Sine, Cosine, and many more important
math operations. All functions are verified for usage inside and outside a SCTL as
well as in Windows and FPGA simulation on the Development computer. The
toolkit comes with help documentation that includes details for each function to
learn more about individual usage. To download the free toolkit, follow the link
below [9].

If you are trying to make a subVI for use inside of a SCTL, you can use a
feedback node to hold state information in the subVI. This eliminates the need to
use a while loop inside of a SCTL. The LabVIEW FPGA example below calculates
one of the differential equations for a DC motor using functions from the

Table 2.2 Single cycle time loop limitations

Items not allowed in
SCTL

Suggested alternative

Long sequences of
serial code

Make the code more parallel. Insert feedback nodes in the wires to
add pipelining

Quotient and remainder Use a scale by power of 2 to do integer division, or use the
fixed-point math library

Loop timer, wait
functions

Use a tick count function to trigger an event instead

Analog input, analog
output

Place in a separate while loop and use local variables to send data

While loops For nested subVIs, use feedback nodes to hold state

108 2 LabVIEW™ FPGA

fixed-point math library (see Fig. 2.47). After each fixed-point math function, a
feedback node is used to pipeline the result and thereby pass the value from one
iteration to the next. In the upper right corner, a Tick Count function is also used in
combination with a feedback node to calculate the loop rate of the subVI execution.

In Fig. 2.48 you can see the top-level SCTL in the FPGA application, which
calls the motor simulation subVI. Since the subVI is nested within a SCTL, the
Loop Rate (Ticks) value returned is always equal to 1. However, due to pipelining
there is a six-tick latency from the voltage (V) input to the i (A) current output of
the subVI.

In addition to pipelining, you can use a State machine within the SCTL to better
organize your code and run through a sequence of steps. The basic component of the
State machine is a Case structure with each containing one state and using a shift
register to determine the next state after each iteration of the loop. Of course each state
must be able to run in one clock cycle if the subVI is to be placed in a SCTL. In
addition, you can use shift registers and a counter value to implement the functionality
of a For Loop or add a specific number of Wait states to your program execution.

Fig. 2.46 Fixed-point divide

2.4 Advanced Methods for LABVIEW FPGA 109

Note: Adding a loop timer or wait function will cause the code to execute slower
than one tick, and therefore cannot be used within a SCTL. Analog input and
analog output functions also take more than one clock tick to execute and cannot be
used in a SCTL. However, you can put them a normal while loops and use local
variables to share data with the SCTLs.

2.4.3 Creating Counters and Timers

If you need to trigger an event after a period of time, use the Tick Count function to
measure elapsed time as shown in Fig. 2.49. Do not use the iteration terminal that is
built into while loops and SCTLs because it will eventually saturate at its maximum
value. This happens after 2,147,483,647 iterations of the loop. At a 40 MHz clock

Fig. 2.47 DC motor deferential equation

Fig. 2.48 SCTL in the FPGA application

110 2 LabVIEW™ FPGA

rate, this takes only 53.687 s. Instead, make your own counter using an unsigned
integer and a feedback node. The tick count function is to provide time based on the
40 MHz FPGA clock.

By using an unsigned integer for the counter value, elapsed time calculations
will still be correct when the counter rolls over. This is because if you subtract one
count value from another using unsigned integers, you still get the correct answer
even if the counters overflows.

Another common type of counter is an iteration counter that measures the
number of times a loop has executed (see Fig. 2.50). Unsigned integers are typically
preferred for iteration counters because they give the largest range before rolling
over. The unsigned 64-bit integer data type we are using for the counter provides a
huge counting range—equivalent to about 18 billion–billion. Even with the FPGA
clock running at 40 MHz, this counter will not overflow for more than 14,000 years.

Now let us talk about another technique that will help you create well-written
and efficient LabVIEW FPGA code.

2.4.4 Write Your FPGA Code as Modular, Reusable SubVIs

The next major development technique we will suggest is modular development—
break your application into independent functions that can each be individually
specified, designed, and tested. It seems like a simple concept, but for FPGA
development it can have some especially nice benefits. Here is a simple example—a
function designed to measure the rate of the loop in which it is placed and count the
number of time it executes. Inside the loop we have a Tick Count function that
reads the current FPGA clock and subtracts it from the previous value, which is
stored in a shift register. In addition, we have a 64-bit counter that increments each

Fig. 2.49 Tick count function to measure elapsed time

Fig. 2.50 An iteration counter

2.4 Advanced Methods for LABVIEW FPGA 111

time the function is called. This function uses a SCTL so it only takes a single 25 ns
clock tick to execute—therefore, this subVI is designed to be placed inside of a
normal while loop without affecting its execution speed (see Fig. 2.51).

Here is the front panel. The indicators have been assigned to the two right
terminals of the subVI so data can be passed to the upper level LabVIEW FPGA
application in which it is placed.

Fig. 2.52 shows an application example where the function is used. The subVI is
placed inside another loop to measure the execution rate of the top-level code.

Some of the top benefits of writing the code this way are presented in Table 2.3.
Writing modular code is almost always a good idea, but when you are designing

FPGA logic it has extra advantages.

Fig. 2.51 FPGA subVI

Fig. 2.52 The subVI placed inside another loop

112 2 LabVIEW™ FPGA

First, the code is easier to debug and troubleshoot. One big benefit is that the
subVI can be tested on Windows before you compile it for the FPGA. We will
show some examples of that later.

Second, it is easier to document and track changes because the code is modular
and you can include help information in the VI documentation.

Third, the intended functionality of the code is typically cleaner, easier to
understand, and more reusable. The options you want to offer the programmer are
typically made available as terminals on the subVI. Most often the user will not
need to modify the underlying code—they can just use the parameters you provide,
such as in this Pulse Width Modulation (FPGA) example (see Fig. 2.53).

Now let us take a look at some tips for how to create modular, reusable subVIs
for LabVIEW FPGA.

Table 2.3 Top benefits of writing the code

Benefit Explanation

Easier to debug and troubleshoot Code can be tested on Windows before
compiling

Easier to document and track changes Help information can be included in the VI
documentation

Creates a cleaner, more easily understood
top-level diagram

Code is more intuitive to other programmers

Fig. 2.53 PWM example

2.4 Advanced Methods for LABVIEW FPGA 113

2.4.5 Separate Logic from I/O

The first tip is to keep I/O nodes out of your subVIs. This makes them more
modular and portable and makes the top-level diagram more readable. Particularly
for control applications, it is nice to have all of the I/O operations made clearly
visible when viewing the top-level diagram for the application, like we have shown
here in this PWM loop written for the NI 9505 motor drive module (see Fig. 2.54).

Rather than embedding the I/O node into the subVI, a terminal is used to pass the
data from the subVI to the top-level diagram. This makes the FPGA code easier to
debug, since the subVI can be tested individually in Windows using simulated I/O.
This will be explained in more detail in a subsequent section (see Fig. 2.55).

Taking this approach also tends to reduce unnecessary I/O node instances that
might otherwise be included multiple times in the subVI, resulting in unnecessary
gate usage due to the need for the compiler to add the extra arbitration logic
necessary to handle multiple callers accessing the same shared resource.

Finally, this approach makes the top-level application more readable—all I/O
read and write operations are explicitly shown on the top-level diagram and not
hidden from view.

Often when you are writing function blocks like this, the subVI will need some
local memory capability so it can hold state values, such as elapsed time, and pass
that information from one iteration to the next.

Fig. 2.54 PWM example for the NI 9505

Fig. 2.55 PWM SubVI

114 2 LabVIEW™ FPGA

2.4.6 Holding State Values in a Function Block

In the example below, you can see that we have added shift register nodes to our
loop that enable us to pass information from one iteration of the loop to the next.
The iteration counter increments each time the function block is called.

Notice that the Loop Condition terminal has a constant wired to it that causes
the loop to run for only one iteration each time it is called. We are not really looping
in this case—we are simply using the SCTL to optimize the code and to hold the
state values using shift registers (see Fig. 2.56).

Note: It is important to note that the shift register must be un-initialized for the
subVI to hold state this way. On first call the shift register value is the default value
for the data type—for integers that is 0, for Booleans that is False. If you need to
initialize the value to something else, use a First Call? function and a Select
function to initialize the value.

You may be wondering how to create a modular function block that works inside
a SCTL, since you are not allowed to nest one SCTL within another.

To do this, use feedback nodes to accomplish the same task, as shown below.
The main benefit of this approach is that the feedback nodes can be easily ini-
tialized, and the subVI could now be placed within a top-level SCTL because it
contains no nested loop structure (see Fig. 2.57).

A third option is the use of VI-scoped memory (see Fig. 2.58). This is a block of
memory that can be used locally by the subVI and does not have to be manually

Fig. 2.56 Single-cycle timed loop

2.4 Advanced Methods for LABVIEW FPGA 115

Fig. 2.57 Measure loop

Fig. 2.58 VI memory

116 2 LabVIEW™ FPGA

added to the project. This makes the code more modular and portable when moving
it between projects.

In this simple example, using VI-scoped memory is probably overkill for the
application. We only have two memory locations and we are only storing one data
point in each memory location. However, VI-scoped memory is a powerful tool for
applications that need to store arrays of data. In general, you should always avoid
using large front panel arrays as a data storage mechanism—use VI-scoped memory
instead.

2.4.7 Run-Time Updateable Look-up Table (LUT)

A common use for local memory in FPGA-based control applications is to store
table data, such as the calibration table for a nonlinear sensor, a pre-calculated math
formula (such as log or exponential), or an arbitrary waveform that can be replayed
by indexing through the table addresses. Below is an FPGA-based look-up table
(LUT) configured to store 10,000 fixed-point values and perform linear interpola-
tion between stored values. Because VI-scoped memory is used, the LUT values
can be changed while the application is running and without the need to recompile
the FPGA (see Figs. 2.59 and 2.60).

Fig. 2.59 Look-up table

2.4 Advanced Methods for LABVIEW FPGA 117

Let us take a look at the configuration pages for the VI-Scoped Memory block in
this example. You can configure the depth, data type, and even define initial values
for the memory elements (see Fig. 2.61).

Now let us look at another tip for creating modular FPGA subVIs that have to do
with the timing of how the code runs.

Fig. 2.60 Fix point frontal panel and block diagram

118 2 LabVIEW™ FPGA

2.4.8 Do not Place Delay Timers in the SubVI

In general, it is a good idea to avoid using Loop Timer or Wait functions within
your modular subVIs. If the subVI has no delays, it will execute “as fast as pos-
sible” and thereby inherent the timing properties of the calling VI, rather than

Fig. 2.61 Memory properties

2.4 Advanced Methods for LABVIEW FPGA 119

slowing down the caller. Also, code can typically be more easily adapted for use in
a SCTL if it has no internal functions that cause delays (see Fig. 2.62).

Below we have adapted the PWM code on the left to use a Tick Count function
rather than a Loop Timer function. We use a feedback node to hold an elapsed time
count value, and we turn the output on and off at the appropriate times and reset the
elapsed time counter at the end of the PWM cycle. The code may look a bit more
complicated, but it can be dropped inside of a top-level loop without affecting the
overall timing of the loop—it is more portable (see Fig. 2.63).

Now let me share one more tip before we move on to the next topic—how to
make the code so that multiple copies of a subVI can be placed in the same
application and each copy is independent of the others.

2.4.9 Reentrancy

Reentrancy is a setting in the subVI execution properties that enable multiple copies
of the function block to be executed in parallel with distinct and separate data
storage (see Fig. 2.64).

Figure 2.65 shows an example. In this case our subVI is set to reentrant, meaning
all four of these loops will run simultaneously and any internal shift registers, local
variables, or VI-scoped memory data will be unique to each instance.

Fig. 2.62 Do not place delay times

120 2 LabVIEW™ FPGA

In the case of LabVIEW FPGA, it also means that each copy of the function uses
its own FPGA slices—so reentrancy is great for code portability but it does use
more gates.

Note: If you are really squeezed for FPGA gates, you can make your function
multiplexed rather than reentrant. This is an advanced topic we will not cover here
but it basically involves using local memory to store the register values for each of
the calling loops, which identify themselves with an integer “ID tag” value. Since

Fig. 2.64 Reentrancy

Fig. 2.63 Tick count
function

2.4 Advanced Methods for LABVIEW FPGA 121

the loops are all using the same underlying FPGA slices (with different memory
addresses for the data), each caller will block the other callers resulting in slower
execution. However, gate usage is much less since the same hardware SLICE logic
is reused. For many control applications where the FPGA is already much faster
than the I/O, this is a nice option for saving gates. Several functions on the
LabVIEW FPGA palette use multiplexing techniques to enable high channel count
operation with minimal FPGA gate usage. These include the PID, Butterworth
Filter, Notch Filter, and Rational Resampler functions. To see how this works,
drop one of these functions onto the block diagram and configure it for multiple
channels. Then right-click on the function and select Convert to SubVI to reveal
the underlying code.

Now let us take a look at a major development benefit you get from writing your
LabVIEW FPGA code as described in the sections above.

2.5 Use Simulation Before You Compile

This third development technique is really powerful because it provides a way to
get around the longer compilation time and more limited debugging capabilities of
LabVIEW FPGA. One of the most powerful aspects of LabVIEW code for
embedded developers is the portability of the code. Code written for LabVIEW
FPGA is still just LabVIEW code—it can be run on Windows or other devices and
operating systems. The main difference between these processing targets is the
speed at which the code runs and whether they support true parallel processing like

Fig. 2.65 SubVI is set to reentrant

122 2 LabVIEW™ FPGA

an FPGA or simulated parallel processing like a multithreaded operating system for
a microprocessor.

LabVIEW FPGA includes the ability to run the entire LabVIEW FPGA appli-
cation in simulation mode, and this can be done in conjunction with the host
processor application for testing purposes with either random data used for FPGA
I/O read operations or using a custom VI to generate the simulated I/O signals. This
is particularly useful for testing FPGA to host communication including DMA data
transfers.

However, the disadvantage of this approach is that the entire FPGA application
is simulated. For the development and testing of new LabVIEW functions, it can be
advantageous to test the code one function at a time. This section will focus on a
capability called functional simulation, which enables a “divide and conquer”
approach to debugging which allows each function to be tested individually before
compiling to the FPGA. Below are screens from two functional simulation exam-
ples running on Windows that were used for testing and debugging purposes (see
Fig. 2.66).

The example below shows the front panel and block diagram of a test application
used to debug a LabVIEW FPGA subVI for PWM. The test application is located in
theMy Computer section of the LabVIEW project, and when it is opened it runs in
Windows (see Fig. 2.67).

2.5.1 Providing Tick Count Values for Simulation

The Conditional Disable Structure in LabVIEW lets you modify what underlying
code is used when the subVI is compiled for different processing targets. In this
case, I have got a Tick Count function that is executed when the code is compiled
for the FPGA and a front panel control that is executed when the code is executed
on Windows. This lets me use a “simulated” tick count value when I am testing the

Fig. 2.66 FPGA simulation

2.5 Use Simulation Before You Compile 123

code in Windows, providing the ability to create both bit accurate and cycle
accurate simulations (see Fig. 2.68).

This technique is used in the PWM test example above—when the subVI is
executed in Windows a simulated FPGA clock is passed to the subVI using the
Iteration terminal of the top-level while loop.

Fig. 2.67 Debugging a LabVIEW FPGA subVI for pulse width modulation

124 2 LabVIEW™ FPGA

As you have seen, functional simulation lets you test, iterate and be confident in
your FPGA logic before you compile. It also enables you to use the full LabVIEW
debugging toolset while the code is running, and you can create “test patterns” that
enable you to verify the code under a variety of conditions that otherwise might be
hard to test. Here are some of the top benefits of using simulation as a step in your
development process.

• Quickly iterate and add features
• Be confident in your LabVIEW FPGA code before you compile
• Use full LabVIEW debugging capabilities (probes, highlight execution, etc.)
• Verify the code under a variety of conditions

Now let us take simulation a step farther and create a simulation that accurately
mimics the dynamic closed-loop behavior of the physical system within which our
LabVIEW FPGA code will be connected.

2.5.2 Test the LabVIEW FPGA Code Using the LabVIEW
Control Design & Simulation Module

The LabVIEW Control Design & Simulation Module (CD&Sim) includes
state-of-the-art technology for simulating mechatronic systems like the DC motor
we will be controlling with our LabVIEW FPGA application. Figure 2.69 shows the
theoretical model equations for a brushed DC motor driven by a PWM chopper
circuit and connected to a simple inertial load with viscous friction.

This is implemented using a LabVIEW CD&Sim subsystem containing formula
node. The two differential equations shown above are entered into the formula

nodes in text format as shown below. Integrator functions () are used to

convert from higher order derivatives, such as from acceleration to velocity and
from velocity to position (see Fig. 2.70).

The Brushed DC Motor.vi subsystem is placed within a top-level simulation
loop and connected to the LabVIEW FPGA function to simulate the pulsed voltage
signal used to drive the motor. The result is a high fidelity closed-loop simulation of

Fig. 2.68 FPGA code compiled by Windows and FPGA

2.5 Use Simulation Before You Compile 125

how the LabVIEW FPGA code will behave when connected to the real-world
electromechanical system (see Fig. 2.71).

The simulation results have been validated against actual measurements from the
deployed LabVIEW FPGA application controlling a motor using the NI 9505 motor
drive module, which showed a nearly identical match between the simulated and
measured waveforms.

Fig. 2.69 DC drive motor model

Fig. 2.70 DC drive model

126 2 LabVIEW™ FPGA

This approach lets you take code validation way beyond basic functional vali-
dation. Think of this like a virtual machine emulator that lets you anticipate how
your code will perform in the real world. You can use simulation to help make
design decisions, evaluate performance, select components, and test worst-case
conditions. You can even tune the PID control loops for your control system in
simulation and see how well that tuning works with different motors and load
conditions. Simulation can also help you select the right physical components for
your system, such as picking the right motor to meet your performance
requirements.

Fig. 2.71 Brushless motor drive

2.5 Use Simulation Before You Compile 127

2.6 Synchronize Your Loops

Now for our fourth development technique—how to control the timing and syn-
chronization of your LabVIEW FPGA code.

For most control applications, the timing of when the code executes is very
important to the performance and reliability of the system. Fortunately,
LabVIEW FPGA gives you both unprecedented speed and complete control over
the timing of the code. Unlike a processor, an FPGA executes code in a truly
parallel fashion rather than only being able to execute one instruction at a time. That
makes programming easier because you do not have to worry about setting prior-
ities and sharing the processor time among the different tasks. Each control loop is
like a custom designed processor that is completely dedicated to its task. The result
is high reliability and high-performance code. One of the benefits of this perfor-
mance is that control loops are typically more stable, easier to tune, and more
responsive to disturbance when they run at a fast rate.

In this motor control example, we have two different clock signals—a Sample
Clock and a PID Clock. These are Boolean signals we generate in the application to
provide synchronization among the loops. We can trigger on either the rising or
falling edge of these clock signals (see Fig. 2.72).

Now let us take a look at the LabVIEW FPGA code used to monitor these
signals and trigger on either the rising or falling edge.

Typically triggering a loop based on a Boolean clock signal works like this—
first wait for the rising or falling edge to occur, and then execute the
LabVIEW FPGA code that you want to run when the trigger condition occurs.
A sequence structure is often used where the first frame of the sequence is used to
wait for the trigger, and the second frame is used to execute the triggered code, as
shown below.

Rising Edge Trigger: In this case we are looking for the trigger signal to transition
from False (or 0) to True (or 1). This is done by holding the value in a shift register
and using the Greater Than? Function (see Fig. 2.73). (Note: A True constant is
wired to the iteration terminal to initialize the value and avoid an early trigger on
the first iteration.)

Fig. 2.72 Trigger on either the rising or falling edge

128 2 LabVIEW™ FPGA

Falling Edge Trigger: In this case we use a Less Than? function to detect the
transition from True (or 1) to False (or 0) (see Fig. 2.74). (Note: A False constant is
wired to the iteration terminal to initialize the value.)

Analog Level Trigger: Here we use a Greater Than? function to detect when the
analog signal is greater than our analog threshold level, and then use the Boolean
output of the function as our trigger signal (see Fig. 2.75). This case actually a
rising or falling edge detector since we are using the Not Equal? function to detect
any transition.

Now let us take a look at another common triggering use case—this is where we
want to latch the value of a signal when a trigger event occurs.

2.6.1 Latching Values

In this case we use a rising edge trigger to latch the Analog Input (see Fig. 2.76)
value from another loop into the Latched Analog Input register. This value is held
constant until the next trigger event occurs. In this example, the actual analog input
operation is occurring in another loop and we are using a local variable for

Fig. 2.73 Rising edge trigger

Fig. 2.74 Falling edge trigger

2.6 Synchronize Your Loops 129

communication between the loops. (Note: Local variables are a good way to share
data between asynchronous loops in LabVIEW FPGA.)

2.6.2 Application Example

Below is an example (see Fig. 2.77) that shows these triggering and latching
techniques in practice. LabVIEW FPGA offers true parallel execution. In this case
we have three independent loops. This is like having three custom designed pro-
cessors running at the same time within the chip. Each loop is completely dedicated
to its own task—resulting in the highest level of reliability. It also makes pro-
gramming control in an FPGA easier to architect—unlike with a processor, you do
not have to worry your existing code slowing down when you add new code.

Fig. 2.75 Analog level trigger

Fig. 2.76 Latched analog input

130 2 LabVIEW™ FPGA

Observations:

• One loop is used to generate synchronization clocks used by other loops.
• The encoder function needs to run at full speed to avoid missing any digital

pulses. This function runs at 40 MHz but latches the Position (Counts) and
Velocity (Counts/Interval) signals to synchronize the data with the other loops.

• The PID function needs to run at a specific speed (20 kHz or 2000 ticks) and
avoid any jitter in its timing. This is because the integral and derivate gains
depend on the time interval, Ts. If the time interval was varying, or if the same
old value was passed multiple times into the function, the integral and derivative
gains would be incorrect.

• In the bottom loop, you can see that the execution is triggered by the rising edge
of the PID clock signal. We read a local variable for the signal in this SCTL, and
exit the loop when a rising edge is detected. Then we execute the 32-bit PID
algorithm that is included with the NI SoftMotion Development module. This
reads the commanded position, compares it to the position measured by the
encoder, and then generates a command for the PWM loop. In this case, we are
using a Scale by Power of 2 function to divide the PID output signal by 2^−4,
which is equivalent to dividing by 16. This scales the value to the ±2000 ticks
range needed by the PWM function. A value of 1000 ticks is equal to a 50 %
duty cycle since the PWM period is 2000 ticks.

• Note that the upper two loops are running at a 40 MHz loop rate, where the
lower loop is triggered to run at a 20 kHz loop rate by the PWM clock signal.
(When triggered, the SoftMotion PID function takes 36 ticks to execute.)

Fig. 2.77 Triggering and latching techniques

2.6 Synchronize Your Loops 131

2.7 Technique 5: Avoid “Gate Hogs”

Now that you understand four key techniques that are useful for developing
LabVIEW FPGA code, let us talk about one last technique—how to avoid “gate
hogs.” These are often “innocent looking” code that eats up lots of your FPGA
gates (also known as slices). Here are three of the most common offenders.

Large Arrays or Clusters: Creating a large array or cluster with a front panel
indicator or control is one of the most common programming mistakes that eat up
lots of FPGA gates. If you do not need a front panel indicator for communication
with the host processor, then do not create one. If you need to transfer more than a
dozen or so array elements, use DMA instead as a way to pass the data. Also, avoid
using array manipulation functions like this Rotate 1D Array function whenever
possible (see Fig. 2.78).

Quotient and Remainder: This function does integer division. (The quotient
output, floor(x/y), is x divided by y, rounded down to the closest integer. The
remainder output, x-y*floor(x/y), is whatever is left over. For example, 23 divide
by 5 gives a quotient of 4 and a remainder of 3.) This function is gate intensive and
takes multiple clock cycles to execute so it cannot be used in a SCTL. Be sure to
wire up the minimum data type needed to the terminals when using this function
and use constants rather than controls when possible (see Fig. 2.79).

Scale By Power of 2: If the n terminal is positive, this function multiplies the
x input by 2 to the power of n (2^n). If n is negative, the function divides by
2^n. For example, setting n to +4 would multiply by 16, while setting it to −4
would divide by sixteen. This function is much more efficient than the Quotient
and Remainder function. However, use a constant of the minimum data size
needed for the n terminal whenever possible (see Fig. 2.80).

Note: DMA is a better way to send an array of data to the host than creating a
front panel indicator for the array and using the FPGA Read/Write method. Arrays

Fig. 2.78 Rotate 1D array
function

Fig. 2.79 Quotient and remainder

132 2 LabVIEW™ FPGA

are useful for collecting a set of simultaneously sampled data to be fed into a DMA
buffer for transfer to the host computer. It is okay to use an array to collect the data
points together for indexing into the DMA Write function as long as you do not
create a front panel indicator for the array. Using auto-indexing on the for loop used
to write the data into the DMA, buffer is fine as long as you do not create a front
panel indicator for the array because the compiler does a good job of optimizing
arrays passed into For Loops for indexing purposes.

2.7.1 Avoid Front Panel Arrays for Data Transfer

When optimizing your code for the amount of space it uses on the FPGA, you
should consider the front panel controls and indicators you are using. Each front
panel object and the data it represents take up a significant portion of the FPGA
space. By reducing the number of these objects and reducing the size of any arrays
used on the front panel, you can significantly reduce the FPGA space required by
the VI (see Fig. 2.81).

Instead of creating large arrays to store data and transfer it to the host application
(shown above), use DMA to transfer an array of analog input samples to the host
processor as shown in Fig. 2.82.

Fig. 2.80 Scale by power of 2

Fig. 2.81 Optimized FPGA code

2.7 Technique 5: Avoid “Gate Hogs” 133

2.7.2 Use DMA for Data Transfer

DMA uses FPGA memory to store data and then transfer it at high speed to host
processor memory with very little processor involvement. This uses much fewer
processor cycles when sending large blocks of data compared to the front panel
indicator with FPGA Read/Write method (see Fig. 2.83).

Fig. 2.82 DMA FIFO

Fig. 2.83 MDA FIFO host

134 2 LabVIEW™ FPGA

Here are some programming instructions for implementing DMA:

• When setting the FPGA buffer size, you can use the default size (1023).
Creating a larger FPGA memory buffer typically does not have benefits.

• You should set the host buffer size to a large value than the default size. By
default, the host buffer size is 2 times bigger than the FPGA buffer. You should
actually set it to at least two times the Number of Elements you plan to use.

• If you are passing an array of data, the Number of Elements input should
always be an integer multiple of the array size. For example, if you are passing
an array of 8 elements, the Number of Elements should be an integer multiple
of 8 (such as 80, which would give 10 samples of 8 elements each.)

• Each DMA transaction has overhead, so reading larger blocks of data is typi-
cally better. The DMA FIFO.Read function automatically waits until the
Number of Elements you requested become available, minimizing processor
usage.

• Packing 16-bit channel data into a U32 (since DMA uses U32 data type) typ-
ically does not have benefits on CompactRIO, because the PCI bus has very
high bandwidth for sending DMA data, so you most likely are nowhere near to
using up all of the bus bandwidth. Instead, it is typically the processor that is the
bottleneck in processing the data being streamed. Packing the data in the FPGA
means it has to be unpacked on the processor, adding additional processor
overhead. In general, you should send each channel as a U32 even if you are
acquiring 16-bit data.

• The Full output on the DMA FIFO Write function is actually an error indicator.
Under normal operation this should never occur so it is recommended that you
stop the application if this error occurs and reset the FPGA before restarting.

2.7.3 Use the Minimum Data Type Necessary

Remember to use the minimum data type necessary when programming in
LabVIEW FPGA. For example, using an 32-bit integer (I32) to index a Case
Structure is probably overkill since it is unlikely that you will be writing code for 2
billion different cases. Usually, an unsigned 8-bit integer (U8) does the trick, since
it works for up to 256 different cases (see Fig. 2.84).

2.7.4 Optimizing for Size

The FPGA application shown in Fig. 2.85 is too large to compile, because it uses an
array to store sine data.

2.7 Technique 5: Avoid “Gate Hogs” 135

The array is indexed to get a value. In addition, four previous points are stored in
shift registers. The previous four values are averaged. This VI is too large to
compile. What can be done to help optimize this code?

Gate hogs found in the code: Large front panel arrays, Remainder, and Quotient
functions.

To improve the application, we replace the array with a look-up table as shown
below (see Fig. 2.86).

This change alone has allowed us to compile the program and now it uses only
18 % of a 1 million gate FPGA. Can we further optimize the program?

Next we remove both Quotient Remainder (QR) functions. One of the QR
functions was being used to index through the look-up table. This was replaced by a
shift register counter operation. This shift register counter operation is a very

Fig. 2.84 Unsigned 8-bit integer

Fig. 2.85 Array to store sine data

136 2 LabVIEW™ FPGA

common technique in FPGA. The other QR function was replaced by a scale by 2 to
the power of n. Because the scale by 2 has a constant input, it uses very little FPGA
space (see Fig. 2.87). Note: Scale by 2^−2 is equal to dividing by 4.

Now the application takes only 9 % of the FPGA gates.

Fig. 2.86 Look-up table to store sine data

Fig. 2.87 Removed both quotient remainder functions

2.7 Technique 5: Avoid “Gate Hogs” 137

2.7.5 Additional Techniques to Optimize Your FPGA
Applications

For more information on this topic, see the “Optimizing FPGA VIs for Speed and
Size” topic on the NI Developer Zone [10]. The document contains detailed
information on more than ten techniques you can use to optimize your
LabVIEW FPGA applications. Table 2.4 shows some optimization methods for
LabVIEW FPGA that can be implemented in your code.

References

1. http://www.ni.com/
2. http://sine.ni.com/nips/cds/view/p/lang/en/nid/210566
3. http://www.ni.com/example/7781/en/
4. http://www.ni.com/ipnet/
5. http://www.ni.com/fpga-hardware/whatsnew/
6. http://sine.ni.com/nips/cds/view/p/lang/en/nid/11766
7. http://sine.ni.com/nips/cds/view/p/lang/en/nid/11834
8. http://www.ni.com/compactrio
9. http://zone.ni.com/devzone/cda/tut/p/id/7781
10. http://zone.ni.com/reference/en-XX/help/371599D-01/lvfpgaconcepts/optimizing_fpga_vis/

Table 2.4 Optimization methods for LabVIEW FPGA

Optimization technique FPGA speed FPGA size

Reduce combinatorial paths ✓

Use pipelining when appropriate ✓

Use single-cycle timed loops ✓ ✓

Use parallel operations ✓

Select appropriate arbitration options ✓ ✓

Use non-reentrant subVIs ✓

Use reentrant subVIs ✓

Limit the number of front panel objects, such as arrays ✓

Use the smallest data type possible ✓ ✓

Avoid large VIs and functions, if possible ✓ ✓

Schedule timing using handshaking signals ✓ ✓

138 2 LabVIEW™ FPGA

http://www.ni.com/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/210566
http://www.ni.com/example/7781/en/
http://www.ni.com/ipnet/
http://www.ni.com/fpga-hardware/whatsnew/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11766
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11834
http://www.ni.com/compactrio
http://zone.ni.com/devzone/cda/tut/p/id/7781
http://zone.ni.com/reference/en-XX/help/371599D-01/lvfpgaconcepts/optimizing_fpga_vis/

Chapter 3
Real-Time Fuzzy Logic Controllers

3.1 Basic Parts in Real-Time Fuzzy Logic Controllers

Nonlinear control involves a nonlinear relationship between the controller’s inputs
and outputs and is more complicated than linear control; however, it is able to
achieve better performance than linear control for many real-world control appli-
cations. Nonlinear control theory requires more challenging mathematical analysis
and design than does linear control theory. An FLC is a nonlinear controller, that is,
the function f(x) is nonlinear. What distinguishes an FLC, T1 or T2, from other
nonlinear controllers is that it generates its nonlinear mapping function f(x) through
linguistic if-then rules and linguistic terms for the antecedents and consequents of
the rules (e.g., Low Speed, High Speed). Such rules can be (easily) obtained from a
human operator or can be postulated and learned from data. According to Kosko
[1], an FLC is unique in that it ties vague words like Low and High, and common
sense rules, to state-space geometry [2]. Fuzzy logic controllers have two important
advantages over other classes of nonlinear controllers.

• They are able to incorporate linguistic terms in the designs of the input–output
membership functions.

• They are capable of handling uncertainties in inputs and state measurements
more effectively.

Several fuzzy control systems nearly always run on non-real-time systems. If
they do not require fast speed, they can run on conventional non-real-time systems.
They may be able to run simple control systems with few difficulties. In addition,
there are some applications that can run on non-real-time systems. Examples of
non-control online real-time applications include supervision systems, detection
systems, and fault detection. But now that FPGAs are faster than other devices, they
can be implemented in different control systems in real time. Another advantage of
real-time FPGAs is parallel execution. Most fuzzy FPGA systems run in parallel
mode, much faster than sequential programs do. Since parallel programs do not

© Springer International Publishing Switzerland 2016
P. Ponce-Cruz et al., Fuzzy Logic Type 1 and Type 2 Based
on LabVIEW™ FPGA, Studies in Fuzziness and Soft Computing,
DOI 10.1007/978-3-319-26656-5_3

139

backtrack, it is not necessary to keep all data in memory; this means that parallel
systems can run indefinitely without overflowing memory. So real-time FPGA are
great candidates for implementing fuzzy controllers. Typically, a block diagram of
an industrial fuzzy control in real-time system can be represented by four main parts
that are presented below [3]. Those parts have to be programmed in the FPGA.

• A rule base that is a set of if-then linguistic rules. In this part the fuzzy logic
quantification of the expert’s linguistic description about the controller is included.

• An inference mechanism that emulates the expert’s decision-making in inter-
preting and applying knowledge about how best to control the plant.

• A fuzzification interface, which converts controller inputs into information that
the inference mechanism can easily use to activate and apply rules.

• A defuzzification interface, which converts the conclusions of the inference
mechanism into actual inputs for the process.

It is well known that in control programs utilizing the standard type of fuzzy
control rules, which the number of rules goes up exponentially with the number of
input variables, the “combinatorial explosion” problem.

This is because if we have N input variables fuzzified into N linguistic variables
(discrete fuzzy sets describing numbers) withM linguistic terms (fuzzy set members)
each, we construct rules with all combinations of the linguistic terms for each variable.
This gives usM rules for one variable, M2 rules for two variables, andMN rules for N
rules. If the objective of our program is to detect particular events in which we are
interested, we may be able to use rules to detect the events in which we are interested
and to ignoreothers,with a substantial reduction in thenumberof rules required.On the
other hand, uncertainties that sometimes are non-avoided in control systems are:

• Uncertainties about a rule’s consequent, when rules are obtained from a group of
experts, because, as we have mentioned above, experts do not generally all agree
on the same consequent.

• Linguistic uncertainties about the meanings of the words used in a rule’s
antecedent and consequent linguistic terms, because words mean different things
to different people [4].

• Uncertainties associated with noisy training data that may be used to optimize
(learn, tune) the MF parameters of an FLC.

3.2 Case Study: The Karnik–Mendel Algorithms
Performance Implemented in Real-Time LABVIEW
FPGA

Different research works present three KM (Karnik–Mendel) algorithms for the
IT2FLS (interval Type 2 Fuzzy Logic Systems): The non-iterative [2] and the
iterative [3] types that provide the same numerical results; the main difference is the

140 3 Real-Time Fuzzy Logic Controllers

improved total iteration count of the iterative type compared with the non-iterative
one. Actually, both types are outperformed by the enhanced KM algorithm [5]
which needs several initial conditions and lets the system converge faster than the
other ones. These defuzzification methods get the generalized centroid of an
IT2FLS. Different applications require opportune decisions; those decisions which
require the noise immunity that the IT2FLS can provide [6]. The KM algorithms are
very intensive and sometimes they are not appropriated for real-time applications.
When they are dealing with a big amount of data, a late response appears generating
an incorrect decision which cannot be acceptable in real-time hardware systems.
The hardware implementation of IT2FLS offers good results but the software
implementation is not good enough as it was shown in [7]. A hardware imple-
mentation is considered in this work for proving the KM algorithms in real-time
applications.

For this purpose, a DC servomotor is analyzed. The IT2FLS is implemented in
hardware by FPGA (field programmable gate array) based on LabVIEW and each
method was implemented and tested independently. Two hardware considerations
were taken: the first one is the swiftness and the second one is the final resource
utilization. Every algorithm was compared using these two hardware conditions;
also this paper shows a complete chart that presents the complexity of every
algorithm according to the discrete discourse universe points.

This paper defines a new procedure of establishing the hardware implementation
based on LabVIEW FPGA for KM algorithm. According to the results presented,
various KM algorithms are not appropriated for real-time control applications.
Finally, the expert must take into account the ratio between speed and area.

3.2.1 Interval Type-2 Fuzzy Logic Systems

The IT2FLS topology is the same as the T1FLS (type-1 fuzzy logic systems). It
provides the fuzzification, the inference and the defuzzification stages.

The IT2FLS fuzzification maps the crisp values xj into several membership
values according to its membership degree. This means that a crisp value could
belong to more than one IT2FS (interval type-2 fuzzy sets); those two membership
degrees form a FOU (footprint of uncertainty). Each membership obtained after de
fuzzification process is related using fuzzy logic operations as conjunction
(AND) and disjunction (OR). The fuzzy conjunction allows the expert relating all
the implied premises (input sets) and the fuzzy disjunction allows the expert
aggregating all these implied values in order to obtain a specific consequent (output
set). With all these relations a rule set is built. The rule set represents the IT2FLS
conventional configuration.

Figure 3.1 shows a complete picture of the IT2FLS which can be used in
hardware implementations. Each block can be an independent hardware entity. The
inferred set is calculated and stored in a memory location.

3.2 Case Study: The Karnik–Mendel Algorithms … 141

3.2.2 The Karnik–Mendel Algorithm

In previous works [2, 3, 5, 8], the KM algorithm includes several modifications in
order to decrement the impact of the large number of iterations required to generate
a single centroid. This method is computationally exhaustive, different research
works proposed some initial conditions and modifications based on the seminal
algorithm. These modifications have the purpose of decreasing the search space for
both the left and the right centroids.

Assume that the output discourse universe Y is a set of all the possible crisp
outputs that can be obtained from a defuzzification method, i.e., y 2 Y. Now let B be
a consequent set defined along Y. The key offinding each approximated centroid is to
find a switch point where the ES (embedded set) will change from one outer
membership function to another; specifically, the Lower Membership Function
(LMF) or l~B

ðyÞ the Upper Membership Function (UMF) or l~BðyÞ, which comprises
the FOU. Figure 3.2 provides a graphical description of the KM algorithm in general.

3.2.3 Non-iterative Version

The non-iterative KM algorithm [2] creates all the embedded sets θL and θR as
possible from Eq. 3.1 to N. For finding the left and right centroids, the expert must
calculate the following equations:

h
l~BðyiÞ yi � L
l~B

ðyiÞ otherwise

�

Fig. 3.1 Interval type 2 fuzzy logic system with four defuzzification methods: the non-iterative,
iterative and enhanced KM algorithms, and the Nie-Tan method

142 3 Real-Time Fuzzy Logic Controllers

chL ¼
PN

i¼1 yi � lhLðyiÞPN
i¼1 lhLðyiÞ

ð3:1Þ

where, chL 2 Hl

cl ¼ minðHlÞ

chL ¼
PN

i¼1 yi � lhL (yi)PN
i¼1 lhL (yi)

hR ¼ l~B
(yi) yi �R

l~B(yi) otherwise

�

chR ¼
PN

i¼1 yi � lhR (yi)PN
i¼1 lhR(yi)

ð3:2Þ

where,chR 2 H

cr ¼ maxðHrÞ

This non-iterative version creates a vector of left centroids Θl and a vector of
right centroids Θr; from the left centroid vector, the far left centroid (the minimum)
is selected while from the right centroid (maximum) vector, the far right centroid is

Fig. 3.2 The general centroid
search in the KM algorithms.
There is no centroid search for
this algorithm; all the
centroids are computed. This
method is known as the
non-iterative KM algorithm

3.2 Case Study: The Karnik–Mendel Algorithms … 143

selected. Figure 3.3 shows the non-iterative version. Equations 3.1–3.2 can be
rewritten as two summations in the numerator and the denominator as follows:

chL ¼
PL

i¼1 yi � �l~BðyiÞþ
PN

i¼Lþ 1 yi � l~B
ðyiÞPL

i¼1 �l~BðyiÞþ
PN

i¼Lþ 1 l~B
ðyiÞ

ð3:3Þ

where, chL 2 Hl

cl ¼ minðHlÞ

chR ¼
PR

i¼1 yi � l~B
ðyiÞþ

PN
i¼Rþ 1 yi � �l~BðyiÞPR

i¼1 l~B
ðyiÞþ

PN
i¼Rþ 1 �l~BðyiÞ

ð3:4Þ

where, chR 2 Hr

cr ¼ maxðHrÞ

3.2.4 Iterative Version

This iterative version [3, 9, 10] searches for the left and right centroids starting from
a convenient initial embedded set θi. After the initial centroid, the following cen-
troid search of θi for the left and right centroids helps the algorithm to converge to
the final centroid faster than the non-iterative version. Figure 3.4 shows the iterative
KM algorithm. For the KM algorithm, the procedure to find the left and right
centroid ci and cr is the following:

• (step 1) Sort all the discourse universe values yi in ascending order, where i = 1, 2,
…, N, such y1 ≤ y2 ≤… ≤ yN. Associate each yiwith its corresponding l~B

ðyiÞ and
l~BðyiÞ.

• (step 2) Initialize

Fig. 3.3 The non-iterative
KM algorithm performs all
the centroid calculation

144 3 Real-Time Fuzzy Logic Controllers

hi ¼
l~B

ðyiÞþ l~BðyiÞ
2

and compute

y ¼
PN

i¼1 yihiPN
i¼1 hi

ð3:5Þ

• (step 3) Find the switch point k, such 1 ≤ k ≤ N − 1 and yk ≤ yk+1,
• (step 4) Establish

For the left centroid:

¼ l~BðyiÞ i� k
l~B

ðyiÞ otherwise

�

For the right centroid:

¼ l~B
ðyiÞ i� k

l~BðyiÞ otherwise

�

and compute

y ¼
PN

i¼1 yihiPN
i¼1 hi

• (step 5) If y′ = y. If true, then stop and assign cl = y or cr = y, correspondingly,
else continue.

• (step 6) Assign y = y′, y go to step 3.

Fig. 3.4 The iterative KM algorithm. This algorithm is optimized for starting the centroid search
from almost the half of discourse universe

3.2 Case Study: The Karnik–Mendel Algorithms … 145

In both versions, the generalized centroid is calculated simply by averaging both
ci and cr centroids:

y ¼ cl þ cr
2

ð3:6Þ

3.2.5 Enhanced Karnik–Mendel Algorithm

To improve the KM algorithm calculations, the enhanced KM algorithm [5] does
not start only at the initial embedded set; it also starts from a convenient switch
point (See Fig. 3.5).

The algorithm to find the left centroid ci is the following:

• (step 1) Sort all the discourse universe values xi in ascending order, where i = 1,
2, …, N, such y1 ≤ y2 ≤ … ≤ yN. Associate each yi with its corresponding l~B

ðyiÞ
and l~BðyiÞ.

• (step 2) Establish k = round(N/2.4) and compute

a ¼
Xk
i¼1

yil~BðyiÞþ
XN

i¼kþ 1

yil~B
ðyiÞ

b ¼
Xk
i¼1

l~BðyiÞþ
XN

i¼kþ 1

l~B
ðyiÞ

y ¼ a
b

Fig. 3.5 The enhanced KM algorithm. This algorithm is doubly optimized for starting the centroid
search at 8 % around N/2 of discourse universe. That is why some literature use the values 1.7 and
2.4 to start the centroid search

146 3 Real-Time Fuzzy Logic Controllers

• (step 3) Find the switch point k′ 2 [1, N − 1], such

yk0 � y� yk0 þ 1 ð3:7Þ

• (step 4) Checke if k′ = k. If true, stop and assign cl = y; else continue.
• (step 5) Compute

a0 ¼ a�
Xmaxðk;k0Þ

i¼minðk;k0Þ
y l~BðyiÞ � l~B

ðyiÞ
h i

b0 ¼ b�
Xmaxðk;k0Þ

i¼minðk;k0Þ þ 1

l~BðyiÞ � l~B
ðyiÞ

h i

and compute again

y0 =
a0

b0

• (step 6) Assign y = y′, a = a′, b = b′, k = k′ and go to step 3.

Each preliminary definition of kl = N/2.4 and kr = N/1.7 suggests that the initial
centroids can be found ±8 % around the middle of the set support, i.e., kl = (N/
2) − 0.08N and kr = (N/2) + 0.08N. These values were obtained experimentally [5].
This initial search reduces the search of the final centroid.

3.2.6 Nie-Tan Method

Although the NT (Nie-Tan method) is not a KM algorithm derivation, this is used in
the iterative version KM algorithms to find the initial switching point. This method
is discussed in this work because of its simplicity. The simplicity of the algorithm is
based on the average between the LMF and UMF as it is shown in Fig. 3.6.

The NT [11–13] is the simplest and fastest defuzzification method for IT2FLS.
It searches the middle MF θi between UMF and LMF. Its centroid is the

approximated generalized centroid:

hi ¼
l~BðyiÞþ l~B

ðyiÞ
2

ð3:8Þ

y ¼
PN

i¼1 yi � lhðyiÞPN
i¼1 lhðyiÞ

ð3:9Þ

3.2 Case Study: The Karnik–Mendel Algorithms … 147

This method is one of the fastest methods because it requires only a division by 2
(1-position right shift register) and only a single centroid calculation.

Following section explains a hardware overview in FPGA in which the KM
algorithms and the NT were implemented.

3.3 DC Servomotor

This section presents a hardware study between several defuzzification methods for
IT2FLS. For doing this, the DC Servomotor application is proposed. The following
section provides some theory about the DC servomotor plant which is controlled by
the IT2FLS. The DC servomotor model is well defined by conventional differential
equations according to Fig. 3.7. This model contains the complete description of the
servomotor. Normally noise in the control of DC servomotor appears from the
sensors, so a controller that could rid of the noise effect is able to improve the whole
performance of the system. The following figure shows the basic topology of the
DC motor model.

The equations that describe the DC motor performance are presented below.

T ¼ Ke � i ð3:10Þ

ea ¼ Kf � wm ð3:11Þ

T ¼ J � d
dt
wm þ b � wm ð3:12Þ

Fig. 3.6 The Nie-Tan
method

Fig. 3.7 DC servomotor model

148 3 Real-Time Fuzzy Logic Controllers

L � d
dt
iþR � i ¼ V � ea ð3:13Þ

where,

T: motor torque;
Ke: torque constant;
Kf: voltage constant;
i: armature current;
ea: generated voltage;
wm: angular velocity;
J: inertia;
b: damping ratio;
L: armature inductance;
R: armature resistance;
V: input voltage.

3.3.1 Laplace Transform Model

Rearranging Eqs. 3.10–3.13:

K � iðtÞ � b � wmðtÞ ¼ J � d
dt
wmðtÞ ð3:14Þ

VðtÞ � K � wmðtÞ � R � iðtÞ ¼ L � d
dt
iðtÞ ð3:15Þ

Our principal goal is to control the DC servomotor speed by changing the input
voltage V, so the Eqs. 3.14–3.15 can be transformed in terms of voltage V and
angular speed wm.

iðtÞ ¼ J
K
� d
dt
wmðtÞþ b

K
� wmðtÞ ð3:16Þ

Replacing TT 3.16 in Eq. 3.15 we get,

L � J
K

� �
� d2

dt2
wmðtÞþ L � bþR � J

K

� �
� d
dt
wmðtÞþ K2 þR � b

K

� �
�WmðtÞ ¼ VðtÞ

ð3:17Þ

Before applying Laplace transform it is necessary to represent the last equation
in terms of deviation variables,

3.3 DC Servomotor 149

L � J
K

� �
� d2

dt2
wmðtÞþ L � bþR � J

K

� �
� d
dt
wmðtÞþ K2 þR � b

K

� �
�WmðtÞ ¼ 8ðtÞ

ð3:18Þ

where,

WmðtÞ ¼ wmðtÞ � wmð0Þ
8ðtÞ ¼ VðtÞ � Vð0Þ

and wm(0) and V(0) are the initial conditions.
Applying the Laplace transform we get,

L � J
K

� �
� s2wmðsÞþ L � bþR � J

K

� �
� sWmðsÞþ K2 þR � b

K

� �
�WmðsÞ ¼ 8ðsÞ

ð3:19Þ

Rearranging Eq. 3.19, we obtain the transfer function that represents the
servomotor plant in terms of Laplace transform as follows:

WmðsÞ
8ðsÞ ¼ 1

L � J
K

� � � s2 L � b þ R � J
K

� � � s þ K2 þR � b
K

� � ð3:20Þ

3.3.2 State-Space Transfer Function

From Eq. 3.16, it can be defined the state-space model introducing the next
variables:

x1 ¼ wmðtÞ ð3:21Þ

x2 ¼ d
dt
wmðtÞ ð3:22Þ

The model is defined as,

x1 ¼ d
dt
wmðtÞ ¼ x2 ð3:23Þ

x2 ¼ d
dt
wmðtÞ ¼ K

L � J
� �

� VðtÞ � L � bþR � J
L � J

� �
� x2 � K2 þR � b

L � J
� �

� x1
ð3:24Þ

150 3 Real-Time Fuzzy Logic Controllers

y ¼ wmðtÞ ¼ x1 ð3:25Þ

u ¼ VðtÞ ð3:26Þ

Finally, the state-space equations are,

x1
x2

� �
¼ 0 1

� K2 þR � b
L � J

	

� L � b þ R � J

L � J
� �� �

x1
x2

� �
þ 0

K
L � J
� �� �

u½ � ð3:27Þ

y ¼ 1 0½ � x1
x2

� �
ð3:28Þ

And the DC motor model constants are,

A ¼ 0 1
� K2 þ R � b

L � J
	

� L � b þ R � J
L � J

� �� �
ð3:29Þ

A ¼ 0
N
L�J
� �� �

ð3:30Þ

A ¼ 1 0½ � ð3:31Þ

D ¼ 0 ð3:32Þ

3.3.3 Servomotor Control System

The servomotor control systems for the defuzzification method performance com-
parison is shown in Fig. 3.8, where the IT2FLS performs the position control using
the position error θ and the change of the position θ; also, the servomotor plant can
be represented by Eq. 3.20 or Eqs. 3.27–3.28. Figure 3.9 presents some details
about the IT2FLS and its rules; nine rules are performed relating the antecedents to
infer the consequences.

Fig. 3.8 The servomotor control system

3.3 DC Servomotor 151

3.4 The Hardware Complexity

A computational device can manage a real-time application but the device selection
will depend on the latency of that digital system that will manage it. A real-time
application requires fast digital systems (with low latency) because its real-time
characteristic will be defined by its WCET (worst-case execution time).

Fig. 3.9 The fuzzy sets and
the rule set for the servomotor
application

152 3 Real-Time Fuzzy Logic Controllers

The centroid calculation had been considered as a problem in T1FLS, for
real-time applications because of its large latency. Although several applications
were solved without problems with the centroid calculation in T1FLS, the use of
this in the KM algorithms are very common and intensive and therefore the IT2FLS
are hugely more complex than the T1FLS. The search of each centroid for each
embedded set is globally several times more complex compared with the T1FLS.

This is one of the reasons why the IT2FLS are not used as the T1FLS today, and
its robustness capability is not approached. The IT2FLS are often implemented in
hardware such as RT-MCU (real-time microcontroller units) or DSP (digital signal
processors) [14] and FPGA [15], because the rest of the hardware (computers with
sequential program execution) becomes impractical and not feasible for real-time
applications. These digital systems are often more expensive, especially the FPGA,
and commonly this economic reason limits the application implementation in most
cases.

Some of the high-end FPGA hardware elements that can be found in real-time
applications are:

• high-speed dedicated multiplications;
• high-speed dedicated memory;
• DSP blocks;
• real parallelism;
• partial reconfiguration.

Full-customizable multiplications are available in the FPGAs as a solution for
improving the timing performance. Xilinx is the main FPGA brand that is used
widely in several applications along the world. Some Xilinx FPGA families provide
faster multiplication blocks and additional high-performance resources (like DSP
blocks and RT processors in the same land) in their higher end devices. Some
high-speed RAM (Random Access Memory) blocks are available for storing data,
for instance.

These resources help the expert to design high-speed and low-cost T1FLS and
IT2FLS in hardware among the software approaches, because a sequential program
is executed in a fixed computing architecture [7]. If the specific application deserves
the use of IT2FLS, then the expert must take into account how to select the
appropriated defuzzification method that will be used for its real-time application.

3.5 Methodology

The hardware defuzzification method comparisons are performed implementing all
the KM algorithms, the NT method in FPGA hardware; National Instruments
Reconfigurable I/O (compact RIO or cRIO) device is used and LabVIEW FPGA

3.4 The Hardware Complexity 153

module to program every defuzzification stage is enunciated in this paper and all the
IT2FLS architecture. The cRIO device used is the NI-9014 with analog I/O capa-
bilities, the C-series NI-9263 and the NI-9201 modules.

For this reason, the expert may also know some hardware details about the KM
algorithms that will use. For hardware comparison, the DC servomotor application
is proposed as a study case where the rotor position θ is tracked when a signal
generator is introduced and a noise generator is used to disturb the IT2FLS per-
formance, according to Fig. 3.8. Although the servo case is relatively slow, all these
defuzzification methods can be analyzed and compared. Several studies have been
implemented in FPGA hardware for T1FLS [16] and IT2FLS [17]. However, no
comparisons have been presented, in hardware terms, where the most important
defuzzification methods are applied for solving the same problem.

The DC servomotor application, as can be seen in Fig. 3.8. It is an electronic
control training module dedicated for the cRIO device where the user can test
control performance easily. The servomotor moves the rotor position from 0° to
180° according to the REF analog signal; the REF signal is used in the cRIO as an
input to determine the reference that the controller will follow. The feedback
(FDBCK) signal is another analog signal used in the cRIO as an input also; the
difference is that this signal is used to know where the current rotor position is
located.

The control system described in Fig. 3.8 is implemented using the
LabVIEW FPGA module [14], where several diagram blocks are used for the data
acquisition (input nodes), the noise generator summed to the reference signal
(signal generator), the data driving to the servo (output node), and finally the
IT2FLS. The error is computed as the difference between the desired values, such
the reference signal (REF), i.e., the reference and the current position value FDBCK
as can be seen in Fig. 3.8.

The cRIO analog output is used to drive the desired voltage to the servomotor
that is calculated using the fuzzy logic controller presented in Fig. 3.9. This fuzzy
logic controller determines the new position of the rotor. This signal is applied in
the motor input voltage terminals signal (MOT).

Details about the servomotor control training module are not known, although
their general equations are defined (Eqs. 3.20, 3.27–3.28). This is not important for
the fuzzy controller, because the IT2FLS must determine its control law without
knowing the exact system dynamics.

For comparison purposes, the noisy reference signal REF is used so that the
IT2FLS can follow it, the fuzzification and inference processes are previously tuned
and are the same for the four cases. Four signal shapes were tested with the four
methods: the Non-Iterative Karnik–Mendel Algorithm (NI-KM), the Iterative
Karnik–Mendel Algorithm (I-KM), the Enhanced Karnik–Mendel Algorithm
(EKM), and the Nie-Tan Method (NT), as can be seen in Fig. 3.10.

154 3 Real-Time Fuzzy Logic Controllers

3.6 Results and Discussion

3.6.1 Reference Tracking

The final response of the control system using all the defuzzification methods
mentioned is shown in Fig. 3.10. Four signal shapes were used for the IT2FLS
tracking.

The non-iterative KM algorithm is the worst case and its latency makes the
decision to take late decisions. The best results were obtained with the EKM
algorithm and the NT method. This behavior is similar in each case.

3.6.2 The Hardware Performance

The following paragraphs are dedicated to describe the hardware complexity
between every defuzzification method described in the previous sections. NI cRIO
devices are used in conjunction with NI LabVIEW FPGA module.

The following section provides a timing and area performance analysis where
each KM algorithm is analyzed and compared. Also, the NT method is included.

Fig. 3.10 All the KM algorithms and NT method tracking performance comparison in the
presence of noise. Four signal shapes were used to be tracked by the IT2FLS using each algorithm.
The total time for each experimental test is 25.5 s

3.6 Results and Discussion 155

3.6.2.1 Complexity and Arithmetic Related

Assume that each algorithm requires two memories with N locations and each
centroid (either left or right) are computed in parallel. Each element is a byte (8-bit
width). Every memory can be distributed in the FPGA by LUT (Look-Up Tables).

The following chart provides a comparison between the entire KM algorithms
and the NT method.

According to Eqs. 3.1–3.8, the total iteration count can be obtained, as an
approximation if a counter is included in the inner loop of the algorithm and by
observation of the block diagram. In this case, N = 256, where N is the number of
points the discourse universe is divided into. So, the non-iterative KM may last
2N2 + 4N = 2(256)2 + 4(256) = 132.096 iterations for a single defuzzification
without taking into account the iterations required for the T2 fuzzification and T2
inference processes, as can be seen in Table 3.1. For instance, the EKM requires
from 1 up to 0.1764N2 + 2.1N = 0.1764(256)2 + 2.1(256) = 12.098 iterations to find
the final left or right centroid. Due to each left or right centroid calculation pro-
cesses in parallel; it can be seen as a single loop. The Iterative version, which can be
compared with the Non-iterative version and may last the same time to execute with
the difference of the early termination condition, converges slower than the EKM.

The NT method also finishes before, because its implementation requires only a
single centroid calculation and only a single embedded set in the set FOU. Although
the NT method seems to be the fastest, the EKM may find the final centroid in the
first iteration, which is very significant compared to the NT algorithm.

Table 3.1 summarizes the complexity of each defuzzification method, which was
obtained experimentally.

3.6.2.2 Resource Usage

The cRIO device provides several limited resources like multiplications, memories,
amongst others, which provide very high performance, and the expert may use to
build more complex structures like divisions or square roots. LabVIEW FPGA

Table 3.1 Number of iterations per defuzzification method

Element/method Non-iterative KM Iterative KM EKM NT

ES calculation N N N/A N

ES centroid
calculation

N + 3 N + 3 N + 1 N + 3

Total iteration count 2N2 + 4N [N/2, 2N2 + 4N] [1–0.1764N2 + 2.1N] 2N + 3

156 3 Real-Time Fuzzy Logic Controllers

module is a GUI (Graphical User Interface) which provides several basic tools that
can be used to implement high-throughput operations in a RIO device, controls that
let the user modify the input data to the digital system and indicators that let the user
show the output data from the digital system, related to a virtual instrument that
works as the programming unit.

In functional block terms (LabVIEW FPGA module), the KM algorithms and the
NT method were designed, implemented are compared according to the structures
used for being implemented.

After the module compilation, LabVIEW FPGA provides the FPGA resulting
resource utilization. As can be seen in the last chart (Table 3.2), the resource usage
can be useful for comparison purposes. This way, it can be seen that the EKM is the
most expensive, but this is the fastest defuzzification method, but the NT method is
the cheapest method because it requires only one division and one multiplication for
calculating the final centroid. Because this method does not search for several
embedded sets, the final centroid is a single value and that is why it requires a single
centroid calculation unit. The EKM and the I-KM require three centroid calculation
units, while the non-iterative version requires two.

3.6.2.3 Timing and Area Resource Usage

Also, the final timing and resources of each method is presented using the LabVIEW
Tick Count block. And the resource utilization is obtained from the Build
Specifications in LabVIEW FPGA module. The best timing performance is reached
by the EKM algorithm and the second best one is the NT, although the EKM also
presents the worst resource utilization. The non-iterative KM algorithm presents the
worst case, achieving about 20 Fuzzy Logic Inferences Per Second (FLIPS), which
is not practical for the IT2FLS applied in real-time applications. Also, the NT
method presents the best resource utilization. The software VI timing performance
depends on the operating system tick time, which is generally 55 ms per tick, so for
the NI-KM the total ticks are 1.537, then 1.537 × 55 ms = 84.535 ms, as can be seen
in Table 3.3.

Table 3.2 Number of hardware elements used for each defuzzification method

Structure/method Non-iterative KM Iterative KM EKM NT

Multiplications 1 1 6 1

Divisions 1 2 5 1

Sums/subtracts 3 4 17 5

Centroid calculation units 2 3 3 1

Comparator/multiplexers (MUX) 5 9 9 1

3.6 Results and Discussion 157

References

1. B. Kosko, Fuzzy systems as universal approximators. Comp. IEEE Trans. 43(11), 1329–1333
(1994)

2. J.M. Mendel, Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2(1),
20–29 (2007)

3. N.N. Karnik, J.M. Mendel, Q. Liang, Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7,
643–658 (1999)

4. J.M. Mendel, Uncertain rule-based fuzzy logic system: introduction and new directions (2001)
5. H. Wu, J.M. Mendel, Enhanced Karnik-Mendel algorithms. IEEE Trans. Fuzzy Syst. 17, 923–

934 (2009)
6. M. Biglarbegian, W. Melek, J. Mendel, Robustness of interval type-2 fuzzy logic systems, in

IEEE NAFIPS, Canada, 2010
7. N. Manaresi, R. Rovatti, E. Franchi, R. Guerrieri, G. Baccarani, Automatic synthesis of analog

fuzzy controllers: a hardware and software approach. IEEE Trans. Ind. Electron. 43(1), 217–
225 (1996)

8. J. Mendel, X. Liu, Some extensions of the Karnik-Mendel algorithms for computing an
interval type-2 fuzzy set centroid, in IEEE Symposium on Advances in Type-2 Fuzzy Logic
Systems, Paris, France, 11–15 Apr 2011

9. J. Mendel, F. Liu, Super-exponential convergence of the Karnik-Mendel algorithms used for
type-reduction in interval type-2 fuzzy logic systems, in IEEE International Conference on
Fuzzy Systems, Vancouver, BC, Canada, 16–21 July 2006

10. J. Mendel, R.I.B. John, Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–
127 (2002)

11. J.M. Mendel, X. Liu, Simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst.
21(6), 1056–1069 (2013)

12. D. Wu, J.M. Mendel, On the continuity of type-1 and interval type-2 fuzzy logic systems.
IEEE Trans. Fuzzy Syst. 19(1), 179–192 (2011)

13. M. Nie, W.W. Tan, Towards an efficient type-reduction method for interval type-2 fuzzy logic
systems, in IEEE World Congress on Computational Intelligence, Hong Kong, China, 1–6
June 2008

14. R. Lauwereins, M. Engels, J.A. Peperstraete, Parallel processing enables the real-time
emulation of DSP ASICs, in IEEE International Workshop on Rapid System Prototyping,
North Carolina, USA, 4–7 June 1990

15. Y. Chen, V. Dinavahi, Multi-FPGA digital hardware design for detailed large-scale real-time
electromagnetic transient simulation of power systems. IET Gener. Transm. Distrib. 7(5), 451–
463 (2013)

16. M. Cirstea, J. Khor, M. McCormick, FPGA fuzzy logic controller for variable speed generators, in
IEEE International Conference on Control Applications, Mexico, 5–7 Sept 2001

17. M. Melgarejo, C.A. Pena-Reyes, Implementing interval type-2 fuzzy processors. IEEE
Comput. Intell. Mag. 2(1), 63–71 (2007)

Table 3.3 Timing performance and resource utilization per defuzzification method

Resource/methods Non-iterative KM Iterative KM EKM NT

Latency (hardware) in milliseconds 49.48 0.8875 0.1756 0.27

Latency (software) in milliseconds 84.535 1.87 1.43 1.32

Slices 1461 2415 2593 915

Registers 1454 2087 2828 959

LUT 2185 3759 3965 1305

158 3 Real-Time Fuzzy Logic Controllers

Chapter 4
Fuzzy Logic Type 1 and Type 2
LabVIEW FPGA Toolkit

This chapter presents the toolkit developed for LabVIEW FPGA, so that it is
possible to implement Fuzzy Logic systems in LabVIEW FPGA in a fast way by
the Toolkit. The main blocks can be used for implementing complex fuzzy logic
control systems that can be adjusted to different applications according to the user
needs. The theoretical part was covered in chapter one; thus this chapter deals with
the implementation of fuzzy logic systems.

4.1 Type-1 Fuzzy Sets

The FPGA Fuzzy Logic Toolkit developed has functional blocks for mapping crisp
values to membership degrees. This mapping is performed by membership func-
tions, as it was described in Chap. 1. A membership function, or simply MF, is a
convex mathematical function (continuous or noncontinuous) defined over a dis-
course universe R:½�1;1�, i.e., a real set of crisp values which works as the
function domain, that maps their values to its codomain defined in interval R:½0; 1�.
Due to the digital representation of the fuzzy set, membership values are defined in
8-bits, i.e., N: 0; 255½ �. Last definition is valid for continuous or discrete systems. In
the FPGA devices, due to its discrete nature, only discrete MFs are allowed. The
shape of the MF characterizes the fuzzy set. Hence, only for the fuzzy logic toolkit
purposes, the FS will be called MF indistinctly and vice versa.

The available MFs in this toolkit for Fuzzy logic type 1 (T1FLS) are the
following:

• Trapezoidal
• Triangular
• S-Shape
• Z-Shape

A MF can be built according to some basic parameters, just as the
according-to-shape parameters, normalization values, and the uncertainty parame-
ters (type 2). The next sections describe those parameters.

© Springer International Publishing Switzerland 2016
P. Ponce-Cruz et al., Fuzzy Logic Type 1 and Type 2 Based
on LabVIEW™ FPGA, Studies in Fuzziness and Soft Computing,
DOI 10.1007/978-3-319-26656-5_4

159

http://dx.doi.org/10.1007/978-3-319-26656-5_1

4.1.1 Membership Function Parameters

A MF, as described in the first chapter, needs some parameters in order to know
where it is located over its discourse universe. For example, a triangular shaped MF
has three characteristic points which are the parameters that defines where it is
located, its width, and its center. Every MF, regardless its shape, receives an input
cluster with several unsigned 8-bit fixed point controls, which defines the MF
parameters according to its shape. A Trapezoidal MF could have four characteristic
points (a cluster with four unsigned 8-bit fixed point values) which defines how
long its left or right shoulder is and how long is the minor base, i.e., the MF region
where there are more than one maximal, values in its membership degree.

Table 4.1 shows the characteristic points of each available MF and their
meaning.

Table 4.1 Available MF for T1FLS fuzzification

MF shape Symbol Graphical representation Description

Trapezoid Intervals [A, B] and [C,
D] need slope calculation. In
interval [B, C] several
maximal membership values
are present. The MF support is
[A, D]; so for any other
discourse value away from this
interval the membership
degree is equal to zero

Triangular Intervals [A, B] and [B,
C] need slope calculation.
Unlike trapezoidal MF, there
is a single maximal
membership value in B. The
MF support is [A, C]; so for
any other discourse value
away from this interval the
membership degree is equal to
zero

S-shape Interval [A, B] need slope
calculation. After B, for each
discourse value there is a
maximal membership value.
Before A, every membership
degree is equal to zero

Z-shape Alike S-shape MF, interval [A,
B] need slope calculation.
Before A, for each discourse
value there is a maximal
membership value. After B,
every membership degree is
equal to zero

160 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

Figure 4.1 shows a simple VI with several trapezoidal MFs. As you can see, the
MF is four characteristic points as its parameters and its support is over interval
½A;D�. Also, set overlapping is present, e.g., Set 1 and Set 2 are overlapped in
intervals set 1: ½C;D� and set 2: ½A;D�.

4.1.2 Normalization

When an MF whose maximal value is different from zero is called unnormalized
MF, it is called normalized if the maximum value is different from zero.

Every MF has an unsigned 8-bit fixed point control that defines its maximal
value; also each set may have a different normalization value.

4.1.3 Membership Degree

An unsigned 8-bit fixed point indicator is available for displaying the resulting
membership degree.

4.1.4 Error Handling

If you specify an invalid parameter, i.e., if you violate the rule A�B�C�D, the
MF will set a Boolean indicator. Some MFs may generate an infinite slope; e.g., for
the triangular MF, if you make A ¼ B, this can cause a very big slope, and then it is
in error state. The MF has also an Error indicator, which may be useful to catch an

Fig. 4.1 Single variable fuzzification using trapezoidal MFs

4.1 Type-1 Fuzzy Sets 161

invalid parameter definition. Every MF has an unsigned 8-bit fixed point control
that defines its maximal value.

4.2 Type-2 Fuzzy Sets

Alike the T1FS, the FPGA fuzzy logic program has functional T2FS blocks. Unlike
the T1FS, the T2FS has several MFs that describe a higher uncertainty level. In
general, T2FS has a primary membership, where several T1 embedded sets are
defined and forms a Footprint Of Uncertainty (FOU); also has a secondary mem-
bership, where a T1FS determines which embedded set is the most representative.

However, due to the reason that general T2FS and the hardware limitations are
very complex, only the Interval Type-2 Fuzzy Sets (IT2FS) are considered.

The IT2FS maps the crisp input value from a variable and maps it to two
membership degrees, usually the FOU boundary sets, i.e., the Lower Membership
Function (LMF) and the Upper Membership Function (UMF).

Those two MFs are defined exactly as the T1FLS over a discourse universe
R: ½�1;1�, and maps their values to two codomains, also defined in interval
R: ½0; 1�. So, the primary membership is characterized by the boundary sets and the
T1FS of the secondary membership is replaced by an interval set.

This strongly reduces the complexity of the system. From this moment, when we
refer to a T2FS, we will refer it as IT2FS indistinctly.

Alike T1FLS, the available MF for T2FLS are the following:

• Trapezoidal
• Triangular
• S-Shape
• Z-Shape

These T2MFs are very similar to the T1MFs. The only difference is an additional
cluster for the uncertainty width definition and the membership degrees are pre-
sented as a cluster of two indicators.

4.2.1 Membership Function Parameters

Alike the T1FS, the parameters are the same for each MF and they are available for
tuning in a similar cluster of the T1FS.

4.2.2 Normalization

Unlike the T1FS, there is a cluster with two unsigned 8-bit fixed point numerical
control that defines the maximal value of each LMF or UMF, i.e., their heights.

162 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

You must assure that the maximal value of LMF is lower or equal to the maximal
value of UMF. Similarly, a unnormalized MF for a T2FS is defined when the
maximal values of UMF or LMF are not equal to one.

4.2.3 Uncertainty Widths

For each characteristic point in the parameter cluster, there is an uncertainty value.
This value lets the T2FS definition expanding the FOU around the characteristic
point, i.e., a parameter value.

This helps to generate both LMF and UMF, where each one is defined according
to the parameters and uncertainty values. If you specify these values to zero, then
you will create a T1FS.

An additional cluster of four unsigned 8-bit fixed point controls are available for
tuning. The only exception is the triangular MF, because this cluster has only two
unsigned 8-bit fixed point controls, defined for parameters A and C; if you add an
uncertainty value to parameter B, you will convert the triangular MF into trape-
zoidal MF.

Table 4.2 presents another four available MFs for the T2FS. Also, Fig. 4.2 shows
a simple example for the T2FLS defuzzification, similar to the ones described for
T1FLS.

4.2.4 Membership Degrees

The membership values obtained from the T2FS are available as a cluster of two
unsigned 8-bit fixed point indicators, where the upper indicator is the value for the
UMF and the lower for the LMF.

Table 4.2 Four conventional
MFs for type 2 fuzzy system

Membership functions (MFs)

Trapezoid

Triangular

S-shape

Z-shape

4.2 Type-2 Fuzzy Sets 163

4.2.5 Error Handling

According to the T1FS error handling, the T2FS error handling is exactly the same,
because the T2FS are built with T1FS. So, if an invalid parameter set is caught then
its Boolean indicator will set.

In both T1 and T2 FS, the fuzzification process starts when a crisp value, related
to an input variable, is converted to a membership value. These membership values
are used as premises to infer a consequent set.

In the toolkit, each input variable is related to a control (as you can see in
Figs. 4.1 and 4.2) and every input value to the Crisp connection port is linked to it;
so each set shares this control in order to overlap every MF. Also, in Figs. 4.3 and
4.4, each set is overlapped due to their parameter values. Table 4.3 depicts the
membership functions included in the toolkit and a general description.

So, if you need to create two input variables, you will need two unsigned 8-bit
fixed point numerical controls that feeds two groups of FS, each group for each
input variable and every membership values obtained is related to their corre-
sponding input variable (see Figs. 4.3 and 4.4).

Fig. 4.2 Single variable type-2 fuzzification using trapezoidal MFs

164 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

Fig. 4.3 A simple
fuzzification stage with two
input variables and three
T1FS per variable
characterized by T1MFs

Fig. 4.4 A simple
fuzzification stage with two
input variables and three
T2FS per variable
characterized by FOUs

4.2 Type-2 Fuzzy Sets 165

In the following program, the inference process is presented with some rule
examples that show the easy way of building inference machines.

4.2.6 Examples

The FPGA fuzzy logic program includes two fuzzification Vis for each T1FLS and
T2FLS located in the examples\chapter2 directory. These examples let you interact
with all the parameters of the sets and see the response in the corresponding
indicators.

1. Open a new project and add the following VI files:

• T1 fuzzy set example.vi: This VI is useful for users who do not know how to
create an input variable with several T1FS. The user can change the set
parameters and verify from the indicators their corresponding membership
values (see Fig. 4.5).

• T2 fuzzy set example.vi: Similar to the last VI, you can create an input
variable with several T2FS and change the set parameters and uncertainties,
and verify from the indicators their corresponding membership values. In
this case, you can verify that their indicators are clusters of two indicators
(see Fig. 4.6).

Table 4.3 Available MF for T2FLS fuzzification

MF shape Symbol Graphical representation Description

Trapezoid There are two trapezoidal MFs
that fulfill the same restrictions
of the T1 trapezoidal MF,
described in the last section

Triangular There are two triangular MFs
that fulfill the same restrictions
of the T1 trapezoidal MF,
described in the last section.
The value B has not an
uncertainty value. Its
uncertainty cluster is defined
only for A and C parameters

S-shape There are two S-Shape MFs that
fulfill the same restrictions of
the T1 trapezoidal MF,
described in the last section

Z-shape There are two Z-Shape MFs that
fulfill the same restrictions of
the T1 trapezoidal MF,
described in the last section

166 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

• A single T1 fuzzy set example.vi: This VI provides a single T1 fuzzy set
example, used for the Graph a single T1 fuzzy set example.vi.

• A single T2 fuzzy set example.vi: This VI provides a single T2 fuzzy set
example, used for the Graph a single T2 fuzzy set example.vi.

• Graph a single T1 fuzzy set example.vi: This VI let the user interact with the
Type-1 set parameters and normalization values and all the available shapes
in the chapter. The user can verify graphically by means of a waveform chart
its corresponding shape.

• Graph a single T2 fuzzy set example.vi: This VI let the user interact with the
Type-2 set parameters, uncertainties and normalization values and all the

Fig. 4.5 The front panel of the T1 fuzzification stage: note that each variable has their
corresponding FS and each FS has their corresponding membership degrees

Fig. 4.6 The front panel of the T2 fuzzification stage: note that each variable has their
corresponding T2FS and each T2FS has their corresponding membership degrees clustered. Each
membership degree has two numerical indicators: UMF and LMF

4.2 Type-2 Fuzzy Sets 167

available shapes in the program. The user can verify graphically by means of
a waveform chart its corresponding shape (see Fig. 4.7).

2. Add three FIFOs in the FPGA target named MF, UMF, and LMF with the
following characteristics:

• Target-Host DMA FIFO,
• Unsigned 8-bit fixed point data length, 8-bit for the integer part,
• Do not change the memory access arbitration.

3. Compile the following Vis in the current target:

• T1 fuzzy set example.vi
• T2 fuzzy set example.vi
• A single T1 fuzzy set example.vi
• A single T2 fuzzy set example.vi

4. Now, you can execute and interact with the T1/T2 fuzzy sets and see how their
shapes change whenever you change the parameter controls.

For additional information about how to detect the FPGA target and how to
create a FPGA project, please refer to Chap. 2.

Fig. 4.7 This Vis let the user graph their T1 and T2 fuzzy sets according to their corresponding
shape, parameters, uncertainty widths, and normalization values

168 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

http://dx.doi.org/10.1007/978-3-319-26656-5_2

4.3 Creating a Knowledge Base

4.3.1 Building a Rule Set

A linguistic rule that uses the form IF-THEN can be built with the functional blocks
available in the FPGA fuzzy logic toolkit. The set of rules is constructed as was
presented in Chap. 1.

The following procedure can be followed in order to build a knowledge base:

• First, define the number of FS of each input variable,
• Define the number of rules. The number of possible rules is the multiplication of

the total number of FS in each input variable. It does not mean that you have to
define all the rules.

• For each variable, every FS must be connected to the same crisp input and every
FS parameter must lie in the same discourse universe of that variable.

• Imply the premises. All the premises must be related with a conjunction oper-
ation. You have to select a FS from a variable and connect it to one input of the
conjunction operation and select another FS from another variable and connect it
to the other input. If three premises will be implied, then you have to add an
additional conjunction operation where its first input must be connected to the
output of the first conjunction operation; and the third premise must be con-
nected to the second input of the second conjunction operation. This array is
known as cascade (For type-1 rules see Fig. 4.8; for type-2 see Fig. 4.9).

• Aggregate the contributing premises. Every rule consequence must be aggre-
gated with a disjunction operation, always that two or more rules contribute to
the same consequence. If more than one rule contributes to the same rule, then
you have to follow the same cascade array described in step 4 (Also, for type-1
rules see Fig. 4.8; for type-2 see Fig. 4.9).

• Calculate the Inferred Set (IS). The final value obtained from the aggregation is
called the Firing Strength. This determines the influence strength that a rule or a
group of rules have. Each firing strength is useful for cutting the output con-
sequent sets and helps the system contribute in a specific decision related to that
consequence. If you perform a minimum intersection between the consequent
set in question and the firing strength, you will get its real FS shape or MF. After
the firing strengths are used, you must add all the active consequent sets using a
maximum union.

4.3 Creating a Knowledge Base 169

http://dx.doi.org/10.1007/978-3-319-26656-5_1

Fig. 4.8 T1 inference machine. Note that the fuzzification stage is included. Each control in the
VI makes that all the FS generate a membership degree. That membership degree is related using
the minimum intersection according to the rules 3.1–3.3. All the rules are aggregated using the
maximum union. Indicator B are the corresponding T1 firing strength of consequent set B

Fig. 4.9 T2 inference machine. Note that the fuzzification stage is included also. Each control in
the VI makes that all the T2FS generate two membership degrees. UMF and LMF. Those
membership degrees are related using the minimum intersection according to the rules 3.1–3.3. All
the rules are aggregated using the maximum union. Cluster B are the corresponding T2 firing
strength of consequent set B

170 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

4.4 The Inferred Set

The rules process FSs in order to get a specific decision. The output of the inference
machine is also a FS, according to its type, i.e., if the inference machine processes
T1FSs, its output must be a T1FS. Also, if the inference machine processes T2FSs,
its output must be a T2FS, i.e., the Inferred Set (IS).

Sometimes, it is useful to obtain the IS to calculate the generalized centroid for
searching the type-reduced set (for T2FLS) or defuzzification. Some defuzzification
methods or type reducers require the IS shape (see Fig. 4.10).

The FPGA fuzzy logic toolkit includes two functional blocks that calculate the
IS from a T1 or a T2 inference machine.

Consider the rules in Eqs. 3.1–3.3. In this example, there are three input vari-
ables with the following sets: x1:A1

1;A
2
1;A

3
1, x2:A

1
2;A

2
2, and x3:A1

3;A
2
3. They also

have a single consequent set B.
Rule 1 implies three premise sets: A1

1, A
1
2, and A1

3; one per input variable. Each
implication is performed with a conjunction operator. Let us select two minimum
intersection operators for this purpose. Rule 2 implies three premises also, i.e., A2

1,
A2
2, and A2

3; and finally rule 3 implies only two premises, i.e., A1
2 and A2

3 (step 4).

Fig. 4.10 How to connect the firing strengths to a T1 inferred set functional block

4.4 The Inferred Set 171

http://dx.doi.org/10.1007/978-3-319-26656-5_3
http://dx.doi.org/10.1007/978-3-319-26656-5_3

As the three rules have as consequence the set B, their results (contributions) are
aggregated using a disjunction operator; let us select two maximum union operators
for this purpose (step 5).

Those values obtained after the inference step are the firing strengths, as stated
before. With the firing strengths and the consequent set MF, you can build the IS.
Observe that in Figs. 4.13 and 4.14, each firing strength trims their corresponding
consequent set; so the union of all those trimmed consequent sets is the inferred set.

Now, please refer to Figs. 4.10 and 4.11. There are two target VIs provided for
user comprehension about the inferred set calculation: a T1 inferred set example.vi
and a T2 inferred set example.vi. They are part of the execution of a host VI called
Graph a T1 inferred set example.vi and Graph a T2 inferred set example.vi.

For both T1 and T2IS, some specifications must be stated. So, the T1 inferred set
and T2 inferred set functional blocks,

Fig. 4.10 (continued)

172 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

• Can calculate an inferred set for a single output. So, if you need two output
variables you must add two of these blocks to your VI.

• Can process up to 10 consequent sets for a single output.
• Have a single input port (control), i.e., a 10-element fixed array of clusters, one

element per consequent set. So, each array cluster element has the following
characteristics:

Fig. 4.11 Connection of the firing strengths to a T2 inferred set functional block

4.4 The Inferred Set 173

– Has the following elements (please see Fig. 4.12):

1. The Consequent Set Parameters

• Shape: As stated in Chap. 2, there are four MFs available in the
chapter (Z-shape, Triangular, Trapezoidal, and S-shape). They are
presented in a listbox.

• Parameters: For both T1 and T2FLS, the set parameters correspond to
each characteristic point of the selected shape in the listbox. Elements

Fig. 4.12 Parameter meanings for T1 and T2 consequent sets

174 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

http://dx.doi.org/10.1007/978-3-319-26656-5_2

A, B, C, and D are the characteristic points for the trapezoidal MF.
These same elements can describe a triangular MF, so the charac-
teristic point B can be supplied for B and C, i.e., just set B = C equally
for selecting the B parameters of the triangle. Set A and B if you want
to use the S-shape MF leaving the parameters C and D equal to zero.
This is the same for the Z-shape MF; so you must set the parameters
C and D and leave in zero A and D.

• Uncertainty: This is the same for the uncertainty values if you are
using T2FLS. If you elect the trapezoidal MF, please set Sigma A,
Sigma B, Sigma C, and Sigma D; if you select the triangular MF, set
Sigma A and Sigma D; if you select the Z-shape MF, set Sigma C and
Sigma D; and if you select the S-shape MF, set Sigma A and Sigma B

• Normalization: If you are using T1FLS, there is only a normalization
value which defines the set height. For T2FLS, there are two nor-
malization values clustered: one for UMF and the other for LMF.

2. Its corresponding firing strength.

• The T1 firing strengths: For T1FLS, the firing strength is the mem-
bership value obtained from the inference step. This defines an α—cut
where the consequent set will be trimmed.

• The T2 firing strengths: For T2FLS, the firing strength is a cluster of
two membership values obtained from the inference step also. This
provides two α—cuts where the consequent set will be trimmed in
UMF and LMF.

– Describes a single consequent set.
– It is equal to the other elements in the array.

This way, a T1/T2 inferred set functional block must be connected as you can
see in the red dotted lines in both Figs. 4.10 and 4.11. Notice that each consequent
set is an element of the resulting array (Build Array).

A configuration cluster provides to the T1 and T2IS the necessary information
for building the consequent T1 or T2FS, i.e., how much consequent sets are con-
sidered, their shape, distribution, uncertainty (if T2) and height (s). Depending on
the number of consequent sets in the system, there will be that number of firing
strengths. Each configuration cluster and firing strength must be clustered for each
consequent set; also every resulting cluster must be set into an array. So, only one
array is needed to process the IS.

Both examples use an IRQ block and a flat sequence that helps the host com-
puter synchronize with the target FPGA execution. For additional information about
the target synchronization, please refer to Chap. 2.

In hardware terms, searching for the IS requires of a memory whose address
works as the domain (each output discourse universe value represents the memory
location) and the memory content works as the codomain (the IS membership
values are the memory data contained in that location). The FPGA fuzzy logic

4.4 The Inferred Set 175

http://dx.doi.org/10.1007/978-3-319-26656-5_2

chapter uses a single VI-defined Memory (LUT) for the T1 inferred set and; two
VI-defined Memories (LUT) for the T2 inferred set. The generalized centroid is
calculated from these memories.

In some cases, more than one memory is needed, especially when the system is
considered as MIMO or when using T2FLS. Each output should use a memory. The
memory must contain 256 locations or addresses and each location must store
unsigned 8-bit fixed point values. Each location must be addressed from 0 to 255.

The output of a T1 inferred set functional block, is a memory reference. But, in
the case of a T2 inferred set functional block, its output is a cluster of two memory
references. Depending on the type of fuzzy system used, those memory references
can be used to defuzzify and calculate the crisp output.

The next Chapter presents several resources for translating a fuzzy set into a
crisp value, both for T1FLS and T2FLS.

Examples
This chapter includes two examples about T1 and T2 inference machines, which are
located in the examples\chapter4 directory.

Those VI contains a T1 and T2 fuzzification stage whose membership degrees
are used as inputs in their corresponding inference machines.

All you have to do is

1. Create a new FPGA project and select your appropriated FPGA target.
2. Add to the project these files

(a) T1 rule set example VI: This VI helps the user to verify the T1 interference
performance with an interactive front panel which includes its T1 fuzzi-
fication stage (see Fig. 4.13).

(b) T2 rule set example.VI: This VI help the user verify the T2 inference
performance with an interactive front panel which includes also its T2
fuzzification stage (see Fig. 4.14).

3. Compile both VIs.
4. Run them separately with their appropriated set parameters.

Observe the differences between both Vis and notice that a T2 inference machine
can be implemented with two T1 inference machines.

Also, two VI examples are provided for a T1 inferred set and a T2 inferred set
calculation. These examples let you interact with all the parameters of the sets and
see the response in the corresponding indicators.

1. In the same new project, add the following VI files:

• T1 inferred set example.vi: This VI fills the target memory MF in order to
calculate the T1 inferred set.

• T2 inferred set example.vi: Similar to the last VI, this VI fills both target
memory UMF and LMF in order to calculate the T2 inferred set.

• Graph a T1 inferred set example.vi: This VI let the user interact with the
consequent Type-1 inferred set parameters and normalization values, and all

176 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

the available shapes in the chapter. The user can verify graphically by means
of a waveform chart its corresponding shape whenever the firing strength is
changed (see Fig. 4.15).

• Graph a T2 inferred set example.vi: This VI let the user interact with the
consequent Type-2 inferred set parameters and normalization values and all
the available shapes in the chapter. The user can verify graphically by means
of a waveform chart its corresponding shape whenever the firing strength is
changed (see Fig. 4.16).

Fig. 4.13 A T1 inference machine with its fuzzification stage included. Notice that each
membership value is used in the inference machine for consequent selection

4.4 The Inferred Set 177

2. Add three FIFOs in the FPGA target named MF, UMF, and LMF with the
following characteristics:

• Target-Host DMA FIFO,
• Unsigned 8-bit fixed point data length, 8-bit for the integer part,
• Do not change the memory access arbitration.

3. Compile the following Vis in the current target

• T1 inferred set example.vi
• T2 inferred set example.vi

4. Now, you can execute and interact with the T1/T2 inferred sets and see how
their shapes change whenever you change the parameter and firing strength
controls.

Fig. 4.14 A T2 inference machine with its fuzzification stage included. Notice that each
membership value is clustered and each rule association follows this clustering

178 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

Fig. 4.15 This VI graphs the T1 inferred set according to the consequent set parameters and their
corresponding firing strengths

4.4 The Inferred Set 179

4.5 Defuzzification

4.5.1 T1 Mamdani Model the Centroid

As it was explained in chapter one, the T1 inferred set VI is comprised of a LUT
memory which is filled with the membership values according to the firing strengths
and the FS shape. That memory is defined in VI, so that it is not necessary to define
that in the project. The output of that VI is a memory reference, which is used in the
following VI: the Centroid VI. The Centroid VI uses this memory reference for
reading the membership values and calculating the centroid. If the memory is
empty, then the centroid calculation must be 128. The T1 Mamdani model do not
require additional information for calculating the crisp output. All you have to do is

Fig. 4.16 This VI graphs the T2 inferred set according to the consequent set parameters and their
corresponding firing strengths. Notice that their parameters firing strengths and shape differ from
the T1

180 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

to connect the T1 inferred set VI indicator to the Centroid VI control. No matter
how many consequent FSs exists in the variable. If you want to add several output
variables, you will need a T1 inferred set—Centroid pair for each output variable
(Fig. 4.17).

4.5.2 T2 Mamdani Model the Karnik–Mendel Algorithm

The KM VI is designed for the T2FLS defuzzification. In the literature, it is con-
sidered as a Type-Reduction method called as the Karnik–Mendel Algorithm. Two
versions are available: the Non-Iterative KM Algorithm and the Iterative KM
Algorithm.

Their differences lie in the number of iterations the centroid search is performed.
In this case, the use of the Iterative KM Algorithm is recommended.

Alike the T1 Mamdani model (as explained in Chap. 1), the T2 inferred set VI is
comprised of two LUT memories, one for the UMF and another for the LMF. Each
memory contains every membership value that is stored in their corresponding
memory. The output of this VI is a cluster of two memory references.

Once the T2 inferred set is ready, these memory references are connected to the
defuzzification and type-reduction method for calculating the crisp output. The KM
VI has an input cluster that contains the VI-defined memory reference. Each
memory element is used to calculate both left and right centroids.

Alike the T1 Mamdani model, the T2 Mamdani model also do not require
additional information for calculating the crisp output. You just have to set the
appropriated parameters for calculating the T2 inferred set, select the consequent
T2FS shape, and connect the T2 inferred set output indicator to the KM input
control (see Fig. 4.18).

If you want to add several output variables, you will need a T2 inferred set—KM
pair for each output variable.

Fig. 4.17 A T1 Mamdani model using the T1 Inferred set and the Centroid VIs

4.5 Defuzzification 181

http://dx.doi.org/10.1007/978-3-319-26656-5_1

4.5.3 The Enhanced Karnik–Mendel Algorithm

This is the best version of the KM Algorithm, better known as EKM, where the
centroid search is completely optimized. The authors claim that this algorithm
surpasses the original algorithm over 50 %.

The use of the EKM is widely recommended where the time restrictions are
strict. Due to its centroid time reduction, this works better than the Non-Iterative
and Iterative KM Algorithms.

The way you connect this VI is exactly the same as the other two versions.

4.5.4 The Nie–Tan Method

The NT VI is designed also for the T2FLS defuzzification. In the literature, it is
considered as a defuzzification method called as the Nie–Tan Method.

This method accomplishes the type-reduction considering a single embedded set.
This set is located in the middle of both UMF and LMF. After this set is calculated
using

hNT ¼ 1
2

�lþ l
� �

the final output is only a single centroid of that FS. This method is just an
approximation and do not require complex calculations.

Fig. 4.18 A T2 Mamdani model using the T2 inferred set and the KM Vis

182 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

The NT Method.vi is also available in this chapter. You just have to replace the
KM Algorithm.vi in Fig. 4.18 for the Nie–Tan Method.vi as can be seen in
Fig. 4.19.

This method represents the fastest option for Mamdani T2 defuzzification.

4.5.5 The Takagi–Sugeno Model

The Takagi-Sugeno-Kang model, also known as the TSK model, does not use the
FS shape.

As stated in literature, the TSK model is based also on the rule set. Its knowledge
base decides how its behavior will be.

For both T1 and T2FLS, the firing strengths are used. This model differs from
the Mamdani model in the sense of how the consequent FS is used. The consequent

Fig. 4.19 Replacing the KM
algorithm for the NT method.
Notice that you do not require
average the left and right
centroids due to this method
obtains a single output

4.5 Defuzzification 183

FS in the TSK model is a polynomial. Each polynomial corresponds to a
consequence.

For both T1 and T2FLS, you can add up to 64 consequent sets or polynomials
and 16 input variables, as stated in Appendix 2, Section Polynomials. Each poly-
nomial can be of second order at most. Alike the T1 and T2 inferred set, you can
add several output variables adding several T1 TSK or T2 TSK VIs, which are
available also in the toolkit.

After the inference part, you will have several inferred values, which are the
heights of the inferred set when the Mamdani model is used. These values weight
the way each polynomial will contribute for the crisp output.

With the TSK model, it is not necessary to use the T1 or T2 inferred set VI;
however, you must take into account some considerations.

For both T1 TSK and T2 TSK VI, you must prepare an array which must include
the firing strength values and an array which must include their corresponding input
variable and a LUT memory, which can be a project-defined memory or a
VI-defined memory.

That memory must contain the coefficients of each polynomial

Pi: a; b; c½ �8xj ; xj
n o

; fi

where Pi:ajx2j þ bjxj þ cj, and xj is the j-th input variable and a; b; c½ �j is the j-th
coefficient set for its corresponding polynomial, i ¼ 1; 2; . . .M and j ¼ 1; 2; . . .m.

Due to hardware restrictions, M ¼ 64 and m ¼ 16.
Note that each element i in the array selects the i-th firing strength. Please refer to

Appendix 2, Section Polynomials.
The polynomial coefficient is stored into each memory location. Due to the

reason that there can be 3� m�M ¼ 3072 coefficients, you can create up to 64
polynomials for each firing strength. For instance, if you want to represent the
polynomial 2x1 þ x2 þ 3, you can represent the first input variable in the polynomial
2x1 þ 3 with the coefficients 0; 2; 3f g and the rest of the polynomial x2 with the
coefficients 0; 1; 0f g (see Fig. 4.20).

After the polynomial value is calculated, this value is multiplied by its corre-
sponding firing strength fi.

Sometimes, when the TSK model is used, the aggregation part is not included in
the inference step, although they are not necessarily dispensable.

As you can see in Fig. 4.21, the polynomial coefficients are not visible because
they are into the LUT memory for the T1 TSK VI. Note that the firing strength and
the input variable are numerical control in two separated arrays. Also, for accessing
the coefficient of x2 you may modify the location 193. The rest of the coefficients
must be zero if you do not want them to affect the final result.

As you can see in Fig. 4.22, the polynomial coefficients for the T2 TSK VI are
also configured inside the corresponding LUT memory.

184 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

Fig. 4.20 Example of polynomial creation: 2x1 þ x2 þ 3 using a LUT memory. You can type the
coefficient values manually or you can use the Polynomial Generator.vi

4.5 Defuzzification 185

4.6 Examples

The FPGA Fuzzy Logic Chapter includes a defuzzification models VI example for
each T1FLS and T2FLS located in the examples\chapter4 directory. These exam-
ples let you interact with several parameters just as the firing strengths (for the

Fig. 4.21 A T1 TSK model example

Fig. 4.22 A T2 TSK model example

186 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

Mamdani model) and the polynomial coefficients (for the TSK model) and see how
the crisp output is moved along its corresponding output discourse universe.

5. Open a new project and add the following VI files:

• A T1 Mamdani example.vi: This VI let you set the firing strength values, just
as the inference part does it, but you can set them manually. So, you can see
how the crisp output changes as long as the firing strengths are changed (see
Fig. 4.17).

• A T2 Mamdani example.vi: Similar to the last VI, this VI let you set the
firing strength values both for UMF and LMF, just as the inference part does
it, but you can set them manually. So, you can see how the crisp output
changes as long as the firing strengths are changed (see Fig. 4.18).

• A T1 TSK example.vi and A T2 TSK example.vi: These VIs provide you
several controls which let you set the crisp input values, the firing strength
values and their corresponding consequent polynomials (see Figs. 4.21 and
4.22).

6. Add a LUT Memory to the project or insert a VI-defined memory for the
coefficients.

7. Compile the recently added VIs in the current target.
8. Now, you can execute them separately and interact with the Mamdani/TSK

parameters and see how the crisp outputmoves along its output discourse universe.

4.7 Study Cases

This section is dedicated to the FPGA fuzzy logic implementation. Several FPGA
implementations were proposed and proved to be feasible for T1FLS and T2FLS
applications.

Two applications were proposed: a DC servomotor and an electric wheelchair.
Each application is proved with a T1FLS and is demonstrated its efficiency. Also,
for the T2FLS, only the DC servomotor is proved.

At the end of this section, you will understand the advantages and differences
between the T1FLS and T2FLS when they are implemented in FPGAs.

4.7.1 T1FLS Validation

DC Servomotor

Preliminaries

For the servomotor control, you will need several components, modules, and the
FPGA fuzzy logic.

4.6 Examples 187

In this example, the FPGA target used for demonstrating the performance of the
program is a CompactRIO NI cRIO-9014. The NI-9014 has a processor that
manages the communications between a PC and the FPGA device. This commu-
nication is performed by Ethernet. This Ethernet communication is used for pro-
gramming, data exchange, and debugging. In a cRIO, you can connect several
modules which give the ability of processing analog–digital information, and
several additional characteristics. Please visit the NI webpage for additional
information about this cRIO model.

On the other hand, we do not have detailed information about the DC servo-
motor dynamics; the only information we know is the following:

• Supply voltage: 0 5 V
• 0 rads position voltage: 0 V
• π rads position voltage: 5 V

For the position measurement, an encoder was used; its output was driven to a
DAC. Its analog output was driven to a NI-9201. The NI 9201 is an input module
for processing analog information with 8-Ch, which can accept voltages up to
±10 V, process the information with a velocity of 500 kS/s; provides a precision of
12-bit. This module belongs to the C-Series. We will use just a single input channel
of this module.

Due to the position of the servomotor, rotor can be controlled by the voltage
applied to its terminals; the fuzzy controller must provide the necessary voltage in
order to obtain the desired position. For this purpose, a NI-9263 C-Series module is
used. The NI-9263 module has four channels, can process information to a velocity
of 100 kS/s, can process data information of 16-bit, and provide up to ±10 analog
voltage. For our purpose, we will use a single output channel.

Additional information about this and another C-series modules can be found at
http:\\NI.com.

So, in resume, we will need

• NI cRIO-9014,
• NI-9201,
• NI-9263, and
• DC servomotor.

For this application, all the electronic circuitry around the servo was developed.
Figure 4.23 shows a picture of the system and Fig. 4.24 shows all the circuitry and
their connections with the target cRIO.

4.7.1.1 Implementation

The fuzzy logic system that will work as the controller is now proposed. With this
limited information, we can control the servomotor.

188 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

http:\\NI.com

The following steps were followed to design the T1FLS:

1. Define the number of inputs. In this case, we need the current position voltage,
as stated in the last section, for calculating the Position Error

he ¼ href � h

where he is the position error, href is the reference position, and θ is the current
position.

Fig. 4.23 An illustration of the servomotor circuitry and their connections with the cRIO

Fig. 4.24 The connection diagram of the servomotor circuitry and the cRIO

4.7 Study Cases 189

Every time the position of the servomotor rotor changes, the voltage in terminal
FeedBack in Fig. 4.24 changes in interval 0; 5½ � volts.
Also, we need to detect how the position changes in time; this is useful for
calculating if the current rotor position approaches to the reference. For this
variable, name it Position Change, we can perform the derivative of the posi-
tion. A derivative of position can be calculated simply as

dh
dt

¼ h tð Þ � h t � 1ð Þ

The output variable for controlling the servo is the applied voltage, but we want
to move the servo rotor to the left or right in order to get the desired position.
Evidently, these linguistic variables must be related to a voltage; so the output
variable is called Movement.
The set distribution can be seen in Fig. 4.25.

2. Define the number of T1FS per variable. Now that we defined the variables, we
need to think about the possible linguistic variables for each T1FS.

Fig. 4.25 T1FS distribution
for the servomotor control

190 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

For instance, the Position Error (e) may have three states

(a) When the error i is below the reference, i.e., a Positive Error or;
(b) When the error is exactly in the reference, i.e., a Zero Error or;
(c) When the error is over the reference, i.e., a Negative Error.

These linguistic variables are associated to three T1FS, characterized by a
T1MF.
Now, we can use the FPGA fuzzy logic program fuzzification tools: Due to the
positive and negative error tags are the left and right end sets, we can use the T1
Z-Shape MF and T1 S-Shape MF, correspondingly. For the zero error, we can
use the triangular MF.
For the variable Position Change (c), due to the differential is also a subtraction
of two values, we may have also three states

(a) When the rotor movement is increasing in a direction, i.e., a Positive
Change or;

(b) When the rotor movement is not changing, i.e., a Zero Change or;
(c) When the rotor movement is decreasing in the contrary direction, i.e., a

Negative Change.
As proposed for the Position Error variable, the left and right end sets are
related to the positive and negative changes, so we can use the T1 Z-Shape MF
and T1 S-Shape MF, correspondingly. For the zero change, we can use the
Triangular MF also.
For the output variable Movement (M), we may have also three states

(a) When you want to move the rotor to the left, i.e., a Left Movement or;
(b) When you do not want to move the rotor, i.e., a Null Movement or;
(c) When you want to move the rotor to the right, i.e., a Right Movement.

3. After we established that we have three T1FS per variable, we may have up to
nine rules in the rule set. For this purpose, we proposed the rule set presented
below. This rule set can be built in the FPGA.

r1 e : NE u c : NC) v : NV

r2 e : NE u c : ZC) v : NV

r3 e : NE u c : PC) v : NV

r4 e : ZE u c : NC) v : NV

r5 e : ZE u c : ZC) v : ZV

r6 e : ZE u c : PC) v : PV

r7 e : PE u c : NF) v : PV

r8 e : PE u c : ZF) v : PV

r9 e : PE u c : PF) v : PV

4.7 Study Cases 191

4. Now that all the variables, sets, and rules are defined, we proceed to calculate
the crisp output based on the firing strengths fi, the T1 inferred set the conse-
quent T1FS shape using the Centroid defuzzification method.

Finally, the T1FLS for the servomotor is designed as you can see in Fig. 4.26 All
those functional blocks are available in the FPGA fuzzy logic program.

After the T1FLS is built in the target FPGA device, using the FPGA fuzzy logic
program, you can create the control system where you can connect all the variables
with analog inputs and outputs.

You can also use some Magnitude Converters (see Chap. 1 or refer to Appendix
2 for the utility functions) for adjusting the scale and offset of the numerical values.
Figure 4.27 presents the control system where the T1FLS is implemented.

4.7.2 Electric Wheelchair

Preliminaries

For the electric wheelchair, you will need also several components. We used a
wheelchair Quickie model P222-SE. Also, the joystick that provides the user the
desired movement and direction was substituted by the NI-9263; so we can use a
T1FLS for controlling its forward–backward movement, left–right steering and
speed.

The wheelchair has two motors that provide the user the desired movement and
steering. So, if both motors move ahead at same velocity, the wheelchair will move
to the front. If one of the motors decreases its velocity, then the wheelchair will
steer to one side or another.
Now, we have information about the wheelchair also

• Operating voltage: 4.82 6.82 V
• Full-speed forward movement and right steering voltages: 6.82 V
• Full-speed backward movement and left steering voltages: 4.82 V
• Null movement and steering voltages: 5.82

We will use the same target FPGA, the cRIO-9014. Also, we will need the two
analog output channels from the NI-9263 for providing the specific voltages to both
motors.

The purpose of this T1FLS is to make the wheelchair move along unstructured
environments without collisions. Also, it should be able to void static and dynamic
obstacles. For this purpose, we will use three ultrasonic distance sensors, specifi-
cally the Parallax PING))) sensors.

The Parallax PING))) sensor sends an ultrasonic burst to the environment and
whenever the signal bounces in the obstacles, the burst comes back to the sensor;

192 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

http://dx.doi.org/10.1007/978-3-319-26656-5_1

Fig. 4.26 The T1FLS for the servomotor control

4.7 Study Cases 193

then the sensor retrieves a digital pulse that represents the time the burst elapsed in
coming back to the sensor. Due to (70)

d ¼ ct

where c is the sound speed and t is the time in seconds.

Fig. 4.27 The T1FL control system for the servomotor

194 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

After calculations, the pulse is translated into distance. Because of this, we will
need digital inputs and outputs for calculating the distance of each sensor to the
obstacles. The program provides a VI called Parallax Ping))) Sensor Decoder.vi
which performs this translation. You only have to define the clock source, define
the input and outputs DIOs.

The information about the sensors is the following:

• Maximum distance measurement: 373 cm approximately (Fig. 4.28).
• There are three sensors: the left sensor s1, the right sensor s2, and the back sensor

s3. Both side sensors are not exactly oriented perpendicularly. They are located
in both frontal corners (diagonally) of the wheelchair, so additional information
of the frontal obstacles are considered (see Fig. 4.29).

For the sensor measurement, the NI-9401was used. The NI-9401 is another
C-series module that provides eight 5 V/TTL High-Speed Digital I/Os. The PING)))

Fig. 4.28 Bidirectional port to input–output ports conversion for the PING))) ultrasonic sensor

Fig. 4.29 The wheelchair and their ultrasonic sensors

4.7 Study Cases 195

sensor has a single bidirectional port that triggers the measurement (sending the
ultrasonic burst) and at the same time, retrieves the resulting pulse.

Due to the reason that NI-9401 ports cannot be configured as bidirectional, we will
need to use two DIOs, one as input and another for output per sensor. So, we need six
DIOs, three as inputs and three as outputs. Figure 4.30, shows the connection dia-
grams between the wheelchair, the target FPGA (crio-9014) and the PING))) sensors.
Notice that DIO3–DIO0 are configured as inputs and DIO7–DIO4 as outputs.

4.7.2.1 Implementation

Now, we must define the T1FLS for the wheelchair application. The following steps
were followed to design it:

1. Define the number of inputs. All the information that we have in this moment
are the three distance measurements obtained from each PING))) sensor. So, we
have to think about what and how we want the chair to behave in the non-
structured environment.
Prior to defining new variables, let us state the variables s1 as the Left Side
Sensor, s2 as the Right Side Sensor, and s3 as the Back Side Sensor.
As we do not have a reference to follow, since this has no feedback (because the
wheelchair does not know its position in the environment), we need to make the
wheelchair follow something. Because of this, let s be the Middle Trajectory of
the wheelchair; it means that whenever the wheelchair goes ahead it should
force the distance measurements of each s1 and s2 as they equal all the time. This
can be done if

s ¼ s1 � s2 ¼ 0

I/O interface

Wheelchair

Computer

Ultrasonic sensors

S1

S2

S3

24 Vdc

Digital Input
DIO0-DIO2

Digital Output
DIO4-DIO6

Analog Voltage Output
AO0 - AO1

NI cRIO-9014

FPGA

Fig. 4.30 Connection diagram: the wheelchair, the target FPGA and the ultrasonic sensors

196 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

This way, the wheelchair can pass through corridors trying to keep the same
distance in each side.
Also, we need the wheelchair to void dynamical obstacles whenever they cross
in its trajectory. If we use the distance measurements from each side sensor, we
could know how fast or slow a dynamical obstacle approaches to the wheel-
chair; this way the wheelchair could decide how to void it. This can be per-
formed similarly as the servomotor with

ds1
dt

¼ s1 tð Þ � s1 t � 1ð Þ
ds2
dt

¼ s2 tð Þ � s2 t � 1ð Þ

So, the variable names for these are Left Approaching and Right Approaching,
respectively.
Finally, we have six input variables.
The output variables, as stated in previous paragraphs, are the Movement
(M) and the Steering (D).
The set distribution can be seen in Fig. 4.31.

2. Define the number of T1FS per variable. For the variables s1, s2, and s3, two sets
are enough for determining if the obstacle is near or not; so the linguistic
variables are Near (N) and Far (F). For ds1=dt and ds2=dt we need also two
linguistic variables: Getting Slow (GS) and Getting Fast (GF). For all these
variables, their T1FS can be represented with the T1 Z-Shape MF and T1
S-Shape MF. For the variable s, we need three linguistic variables, such as Left
(L), Null (N), and Right (R), which can be represented with a T1 Z-Shape MF, a
T1 triangular MF, and a T1 S-Shape MF, respectively.

3. Then, we propose the rule set for this application. The total number of possible
rules are 2� 2� 2� 2� 2� 3 ¼ 96. Due to the derivative of each s1 and s2
works to detect when an obstacle is approaching fast, we just use the GF set of
each variable. The proposed rule set for this application is presented below.

r1 s1 : Cus2 : Cus3 : C) M : NuD : N

r2 s : Nus1 : Fus2 : C) M : MFuD : L

r3 s : Pus1 : Cus2 : F) M : MFuD : R

r4 s : Nus1 : Cus2 : C) M : BuD : R

r5 s : Zus1 : Cus2 : C) M : BuD : N

r6 s : Pus1 : Cus2 : C) M : BuD : L

r7 s : Nus1 : Fus2 : F) M : FuD : ML

r8 s : Zus1 : Fus2 : F) M : FuD : N

r9 s : Pus : Fus2 : F) M : FuD : MR

r10 ds1 : GFtds2 : GF) M : MFuD : N

4.7 Study Cases 197

4. Now that all the variables, sets, and rules are defined, we proceed to calculate
the crisp output based on the firing strengths fi, the T1 inferred set the conse-
quent T1FS shape using the Centroid defuzzification method approaching fast,
we just use the GF set of each variable.

Fig. 4.31 Set distribution for all the variables of the wheelchair T1FLS

198 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

Finally, the T1FLS for the electric wheelchair is designed as you can see in
Fig. 4.32, with the same program functional blocks, just as the servomotor example.

The resulting T1FLS is then connected in a control system as you can see in
Fig. 4.33, where the magnitude converters are also used.

The purpose of this section is to show the user the ease of building T1FLS with
the functional blocks provided in the program. The following section provides a
guide for building T2FLS; the servomotor study case is retaken and from this a
T2FLS will be created.

Fig. 4.32 The T1FLS for the electric wheelchair control

4.7 Study Cases 199

4.8 T2FLS Validation

DC servomotor

Implementation

As mentioned in the previous section, the servomotor study case is retaken and
some additional parameters are included for the T2FLS implementation: the
uncertainty widths (as stated in the Chap. 1) in order to obtain the FOU.

This FOU is what makes the difference between the T1 and T2FS. Its purpose is
to absorb all the uncertainties due to the set and rule definitions.

All the figures and details about the target FPGA, servomotor details, connection
diagrams, and inclusively the same rule set will be considered in this section. The
only difference will be the FLS used.

See Fig. 4.26. You realize that each set has a parameter set for defining its MF.
Now, for each parameter set you will have an uncertainty width set. This difference
can be seen in Fig. 4.34, but it is not the only difference. Notice that each functional
block dedicated to the FS is a T2FS functional block. This means that a T1 tri-
angular MF can be replaced by a T2 triangular MF, so the other functional blocks.
But if you change each T1FS for T2FS, you will need to add the uncertainty width
sets, and each normalization value now is a cluster of two normalization values, one
for each UMF and LMF.

Also, the conjunction and disjunction operations must be interchanged, e.g., all
the T1 minimum intersection are replaced for their corresponding T2 minimum
intersection functional blocks.

Fig. 4.33 The T1FL control system for the electric wheelchair

200 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

http://dx.doi.org/10.1007/978-3-319-26656-5_1

Fig. 4.34 The T2FLS for the electric servomotor control

4.8 T2FLS Validation 201

The T1 inferred set is also replaced by a T2 inferred set. Also, the parameters
that define the consequent T2FS must include the uncertainty width set and nor-
malization as the fuzzification part needed it.

The Centroid fuzzification method is also replaced by the Karnik–Mendel
Algorithm functional block. Due to the reason that its output delivers two Centroids,
all you have to do is to average them. So, this will be the crisp output.

The T2FLS now can be included to the same control system (Fig. 4.27) as shown
in Fig. 4.35.

Notice that both Figs. 4.27 and 4.35 have a white noise generator and a noise
amplitude control. This is because the purpose of this section is to show the
advantages of the T2FLS against the T1 and it can be discussed based on the results
obtained.

4.9 Performance T1 FLS DC Servomotor

An additional VI was created and added to the project as a host VI called Graph, the
Triangular Response.vi. This VI synchronizes its operation with the target FPGA,
i.e. the cRIO-9014 and the target VI called T1 DC Servo Control.vi. This VI
modifies the value of the reference in the target VI and describes a triangular
reference, which starts from π, decreases, and when the reference is 0, then starts
increasing until π is reached again. This way, the proposed T1FLS (Fig. 4.26) can
be plotted in which presents a great performance (Fig. 4.36), so the response is very
close to the reference. Notice that the noise present is inherent to the data acqui-
sition and the control noise amplitude is set to zero (no additional noise is added).
This control is reserved for the next section.

The set distribution was calculated by trial and error.

Fig. 4.35 The T2FL control system for the servomotor

202 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

4.9.1 Electric Wheelchair

The electric wheelchair was tested in a square maze where it should enter by one
side and exit by the other side without colliding with the walls. Its dimensions are
shown in Fig. 4.37. Its response can also be found in Fig. 4.38.

Their set distribution was also calculated by trial and error. So, its performance
can be improved if an optimization algorithm is used.

Fig. 4.36 Servomotor T1FLS response for a triangular reference

4.9 Performance T1 FLS DC Servomotor 203

The following section provides the T2FLS performance verification, where only
the servomotor case is considered. After this section, the user will understand the
advantages of using T2FLS instead of T1.

4.10 T1FLS Versus T2FLS

4.10.1 Noise Response

For this section, only the servomotor is considered due to its simplicity. Only the
control systems considered are the ones shown in Figs. 4.27 and 4.35. For this case,
the reference is also modified with the same triangular shape as Fig. 4.36, but now
some white noise is aggregated to it in order to introduce some uncertainty. The
noise amplitude control available in both T1 DC Servo Control.vi and T2 DC Servo
Control with KM.vi have the objective of introduce this uncertainty in the system.

3.
72

 m

1.86m 2.48 m

.82 m

E
nd

Starting
position

.62 m

.55 m1.24 m

1.24 m

Fig. 4.37 Dimentions of the
square maze

Fig. 4.38 Electric wheelchair
T1FLS response in a square
maze

204 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

Additionally, the T2 DC Servo Control with NT.vi is provided for comparison
purposes.

Now, let us see how T1FLS and T2FLS behave in the presence of noise. Finally,
you will see the importance of the FOU whenever you change the uncertainty
widths for each parameter.

Notice, in Fig. 4.39, how the noise amplitude control in T1 DC Servo Control.vi,
aggregates noise to the reference. The T1FLS should deal with the uncertainties due

Fig. 4.39 Servomotor T1FLS response in the presence of noise

4.10 T1FLS Versus T2FLS 205

to the linguistic concepts but not necessarily with those related to the set definition
and then if, the crisp inputs present uncertainties. Observe that some regions are
crispy and some delay is introduced to the current position.

The T2FLS, in this case should deal also with those uncertainties in the set
definition. Then, when a crisp input presents uncertainties, i.e., noise, then the
T1FLS should take bad decisions. So, the T2FLS is capable of dealing with this and
take better decisions.

In figure 4.40, the T2FLS clears the noisy reference with the FOU and takes
better decisions improving its response and achieving better position curves. This
T2FLS is performed using the NT method as defuzzification. Due to the reason that
KM Algorithm is too expensive in timing response, the NT method was used. If the
KM Algorithm is used, considering the same set definition, its response is worse, as
can be seen in Fig. 4.41.

The FS definition was calculated by trial and error. An optimization algorithm
can be used to adjust the best parameter set and as a consequence, the best
performance.

It is recommended to start adjusting the T1FLS set parameters and from this
optimal configuration the FOU widths can be tuned in the presence of noise.

4.10.2 Response Time

During every iteration, the KM Algorithm searches a centroid; this iterative KM
version is very slow, performing an inference each 51 ms, i.e., 19.62 FLIPS, the full
KM Algorithm implementation is not practical for real-time applications. Its
reduced version must be implemented for being feasible for this kind of
applications.

Unlike the KM Algorithm, the NT method lasts just 1.82 ms, so it can respond
better in this application and can be compared to the T1FLS response. The T2FLS
implemented with the NT Method can perform 549.45 FLIPS.

By its complexity, the T2FLS are slower than the T1 if the full KM Algorithm is
used, since more data is processed per inference. But, with the NT Method the
T2FLS can compete against the T1FLS, which lasts 1.41 ms per inference, just
slightly faster.

4.10.3 Resource Utilization

Table 4.4 presents information related with the FPGA resource utilization for each
functional block, Table 4.5 shows additional utilities included in the toolkit and
Table 4.6 gives the information about the slices used in the functional blocks.

206 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

Fig. 4.40 Servomotor T2FLS response in the presence of noise using the NT method

4.10 T1FLS Versus T2FLS 207

Fig. 4.41 Servomotor T1FLS response in the presence of noise using the KM algorithm

Table 4.4 FPGA resource usage for several T1FLS and T2FLS design blocks and the proposed
applications

Functional block FLS T2FLS

FPGA resources Logo Total
slices

Slice
registers

Slice
LUTs

Logo Total
slices

Slice
registers

Slice
LUTs

S-shape 659 734 813 846 970 1056

Trapezoidal 891 997 1117 1280 1437 1623

Triangular 830 924 1037 1175 1287 1490

Z-shape 661 734 814 840 963 1050

Support 729 729 1036 725 726 1034

Minimum
intersection

426 513 522 525 596 656

Product
intersection

426 522 506 530 612 627

Bounded
intersection

512 567 650 572 669 720

Drastic intersection 518 552 641 570 650 723

(continued)

208 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

Table 4.4 (continued)

Functional block FLS T2FLS

FPGA resources Logo Total
slices

Slice
registers

Slice
LUTs

Logo Total
slices

Slice
registers

Slice
LUTs

Maximum union 471 515 605 523 594 656

Algebraic sum
union

485 543 605 522 648 613

Bounded union 458 540 546 544 629 676

Drastic union 462 551 564 568 650 718

Inferred set 2540 4126 2728 3500 5728 3858

Centroid 646 818 830 – – – –

Non-iterative
Karnik–Mendel
algorithm

– – – – 1461 1454 2185

Iterative Karnik–
Mendel algorithm

– – – – 2415 2087 3759

Enhanced Karnik–
Mendel algorithm

– – – – 2593 2828 3965

Nie–Tan method – – – – 915 959 1305

TSK 2997 4344 3670 8391 10075 11705

Table 4.5 Utilities

Functional block Logo Total slices Slice registers Slice LUTs

Magnitude to byte 1033 1219 1290

Byte to magnitude 910 1094 1197

Magnitude to magnitude 1184 1518 1537

Parallax PING))) sensor decoder 789 868 1053

Polynomial generator 671 881 710

4.10 T1FLS Versus T2FLS 209

4.11 Included Examples

The FPGA fuzzy logic program includes the application examples for both T1FLS
and T2FLS used to explain this program; they are located in examples\chapter5
directory. These examples let you implement and interact with several parameters in
order to compare both T1 and T2 performances.

You will have to copy the entire project directory to your PC and open the
project. For this purpose, you will have to use the same cRIO device and connect
the C-series modules in the same slots as defined in the project and configure your
device via MAX (Measurement Automation Explorer).

If you want to use another device, you will have to create a new project and
install the C-series module or the pertinent tools for acquiring and provide analog
data for the applications. Finally, you will have to copy and paste the entire user Vis
in the directory.

4.11.1 Case Study: Experimental CNC Micromachine
Controlled by Fuzzy Type 2

Since micromachines have been changing according to new industrial requirements,
a swift technological evolution is required. For instance, a lot of studies about
micromilling processes have shown that new manufacturing demands are increasing
drastically and the real-time controllers play new roles to fullfill those necessities.
Intelligent control systems can deal with manufacturing problems as long as ade-
quate hardware or software platform is selected for implementing the controller’s
algorithm. Hence, Field Programmable Gate Arrays (FPGAs) [1, 2] are key ele-
ments for deploying intelligent controllers because they can make very fast oper-
ations and can include bidirectional data buses. One of the first controllers
implemented in FPGAs was a linear controller but it could not cope with uncer-
tainties that were presented inside the system. In micromilling [3], conventional

Table 4.6 Applications

Functional block Logo Total slices Slice registers Slice LUTs

T1 DC servomotor NA 3849 4299 5011

T1 DC servo control NA 7234 7482 10,442

T2 DC servomotor with KM NA 7761 8101 10,710

T2 DC servomotor with NT NA 7045 7564 9553

T2 DC servo control with KM NA 10,934 11,348 15,816

T2 DC servo control with NT NA 10,381 10,810 14,897

T1 wheelchair NA 7017 7741 9162

T1 wheelchair control NA 9794 9562 14,888

210 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

controllers were applied and they showed good results under linear operation points
[4], yet in some industrial systems do not have ideal conditions in complete
operation range, so the linear controllers cannot get the manufacturing requirements
in each operation range. Hence, the micromachine systems could not achieve high
precision in position loops. Noise and uncertainties in manufacturing systems are
quite serious problems in the position, torque, or speed loops. They can show up
when the environment of manufacturing process is corrupted by electronic and
digital signals, which generate noise in all the frequencies, and the noise isolation in
the environment is not applied because of its expensiveness. On the other hand, the
manufacturing machines require high precision for producing high-quality products
[5]. Fortunately, advanced control algorithms can improve the performance of the
manufacturing machine when noise and uncertainties are in the process. The
manufacturing machines have to achieve high standards. For instance, high preci-
sion in dimensions (between 1 and 999 µm) have to be reached in a correct manner
even if the noise signal occurs. Additionally, the CNC machines are designed for
accomplishing different goals such as speed, precision, metal cutting volume per
unit time, and so on. The controller’s law and the real-time platform have to be
selected according to the mechanical design of the micromachine. If low-cost
position sensors without noise isolation are used in the CNC micromachine, the
input signal of the controller is degraded and the precision of the complete per-
formance of the micromachine is diminished unless the controller implemented can
tolerate noisy conditions. As a result, PID conventional controllers are not a good
option under those conditions for they are not able to deal with uncertainties or
noisy conditions. Usually, conventional manufacturing involves developing specific
work-pieces using regular machine tools, and they use conventional controllers.
However, nonconventional manufacturing systems such as ultraprecision machin-
ing methods, which get high accuracy in dimension standards between 0.05 and
0.005 µm [6], need advanced controllers such as intelligent controllers. This kind of
application requires reducing the indexes of performances by advanced control
techniques. Moreover, high-speed machines require decreasing the machining
process time and increasing the high-quality production [6]. In the case of micro-
machining, the machine tools are very small (around 1 μm overall dimensions) and
the work-pieces are available with tolerances of 10 and 0.01 μm, using high-speed
spindles, usually above 10,000 rpm. The general problem in those machines is to
improve the contour tracking that is linked with the position loop [7]. Nevertheless,
the industrial goals imposed by miniaturization of machines such as speed control
loops, position control loops and torque control loops created a very complex
control system, which requires normally high efforts of the controller. The micro-
machining procedure focus on mechanical microcutting techniques in which the
material is removed by cutting the edges; thus, the fuzzy logic controllers proposed
are designed for accomplishing this kind of mechanical tasks. The aim of this paper
is to generate a fuzzy logic type 2 controller in real-time FPGA, which copes with
noisy signals and uncertainty conditions presented in manufacturing process.
Generally, those conditions are presented in industrial environment and the

4.11 Included Examples 211

conventional controllers such as PID controllers are not able to cope with those
circumstances. The paper also shows the advantages of using real-time FPGA in
manufacturing CNC machines. When the proposed fuzzy logic type 2 controller is
deployed in the CNC micromachine under different cutting trajectories, the
real-time FPGA platform runs the algorithm in deterministic time that increases the
controller’s performance. Furthermore, the paper presents a complete analysis about
the indexes of control performance for linear PID, fuzzy logic type 1 and fuzzy
logic type 2 in order to select the suitable controller according to the manufacturing
requirements.

4.11.2 Micromachines and Fuzzy Logic

The micromachines tendency is to develop manufacturing systems with the ability
to make small pieces (below 4 mm in diameter) in a single setup at low cost [6]. The
method for machining small pieces is based on sliding head-stock machines
because they are the most efficient manner for producing large volumes. This name
was coined from the fact that the sliding head-stock machine was equipped with a
main head function, which uses a guide bush and the material can slide in the
Z-direction in a system of three axes. Hence, high stability condition has to be
achieved. Most sliding head machines are CNC-controlled and they can deal with a
maximum of 32 mm bar diameter [6]. The advantage of using fuzzy logic is to
emulate the human knowledge expressed in linguistic rules; so it is possible to
incorporate fuzzy logic systems when some CNC machines have uncertainties
and/or noise. Zadeh in [8, 9] concluded that fuzzy logic sets are adequate for
modeling the human perception including uncertainties. The Type-2 Fuzzy Set
(T2FS) has a fuzzy domain; this allows improving the ability to cope with uncer-
tainties. Depending on the manufacturing trajectories and noisy signals, the con-
troller selected shows different responses under those conditions. A measured signal
from sensors in a CNC micromachine is normally composed of two components,
one is the meaningful signal, the other is the undesired noise signal, and the
measured signal is then given as the sum of those signals. The measured signal is
one of the inputs to the controller, so in this paper noisy signals are added in the
input signal of the controller. Thus, the controller has to cope with those conditions
to get good manufacturing results. Fuzzy logic type 2 is well known for tackling
noisy conditions [10, 11] and real-time FPGA have been used for deploying
advanced controllers. The complexity of the fuzzy logic type 2 is decreased by
type-reduction type 2 which was proposed by Karnik and Mendel [12] that is an
iterative algorithm for calculating the approximated centroid of an Interval T2FS
(IT2FS). Because of its simplicity, type-reduction algorithm is applied in a large
number of industrial application and fuzzy logic controllers based on type 2 have
solved different manufacturing problems [12]. Mendel and John proposed an easier

212 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

way to represent the T2FS in a three-dimensional function, comprised by the FOU,
which is based on the primary and secondary membership functions that represent
the probability distribution as it was presented in [11, 13, 14]. Furthermore, Wu and
Mendel in [15] proposed a formula to map an IT2FLS using the uncertainty bounds
in an easy manner. Some additional modifications for calculating the output of the
fuzzy controller type 2 claimed to decrease the computational complexity of the
IT2FLS [11, 16–19], and they are used for implementing IT2FLS real-time plat-
forms. The NT Method [15, 20] is applied to FOU sections, if the FOU does not
present inflections; in fact, the FOU inflection must be specially computed by radial
projections from the LMF to the UMF and vice versa [21–23].

4.11.3 Reconfigurable Micromachine Tools

The Reconfigurable Micro Machine Tool (RmMT) has mechanical, electrical and
digital control components. The RmMT is designed to achieve three different
modes and it is configured by changing the basic elements and the cutting tool. The
RmMT configurations are: Lathe, Milling Machine, and Drill [1]. The elements of
the RmMT are made of aluminum 1060 and were designed to be adjusted easily and
the mechanical parts do not let deformations in the mechanical structure. The
volume measurements for vertical configuration in the Milling Machine or Drill are
216 mm × 280 mm × 220 mm, and horizontal dimensions are 216 mm × 280 mm ×
110 mm. The measurements for the Lathe are 216 mm × 280 mm × 110 mm.
The following list shows the elements needed to assemble the RmMT Kit
(see Fig. 4.42).

1. Principal base 11. Linear actuator

2. Support for a vertical reconfiguration 12. Portable actuator

3. Reconfigurable base 13. Clamp cylinder

4. Tower support jaw/spindle 14. Cutting tool (milling machine or drill)

5. Angle (support of axis Y) 15. X-axis motion actuator

6. Base for support of axes 16. Y-axis motion actuator

7. Spindle screw clamp support base 17. Z-axis motion actuator

8. Spindle screw clamp 18. Burin

9. Cutting tool support 19. Spindle

10. Clamp jaw 20. Support burin

Linear actuators [24], based on direct current motors, take over the displacement
of the micromachine tool in order to reach the reference positions. The main ele-
ments of the control system for the RmMT are position sensors (Encoder), limit
sensors (Hall Effect), and hardware real-time platform (FPGA) [2]. In this case, an

4.11 Included Examples 213

accurate tracking performance is essential part in ultra-precision devices [7]. For
this reason, a high performance controller must be included as a core part in the
micromachines. With the purposes of this study, the machine was adapted in the
lathe configuration. The lathe configuration is the simplest one in the RmMT
system, so it uses a minimum number of elements for assembling the machine tool
and it always runs in the horizontal axis. This configuration allows including two
axes of motion [1] (see Fig. 4.43).

In this configuration, the RmMT can manufacture work-pieces by angular dis-
placements, while the actuators move the cutting tool in a controlled manner against
the surface of the work-piece. The work-piece is cut according to the numerical
control specifications [1]. The RmMT has linear motion systems that have direct

Fig. 4.42 Elements that involve the assembly of RmMT

Fig. 4.43 RmMT system in
lathe configuration

214 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

current (DC) motors. The ultra-precise microactuators give high translation stages
that provide linear movement from 0 to 15 mm in a compact package. Table 4.7
illustrates the specifications of the RmMT.

4.11.4 Motion Control

Control of motion is required in several industrial applications, which involve
precise position and speed control loops [23]. As result, there are motion controllers
that run intelligent control techniques to accomplish complex position profiles [25].
Indeed, this CNC machine tool is designed to get high precision in position using
real-time FPGA because FPGA can send control signals at high speed. Some
research papers have been focused on the implementation of new motion controllers
in CNC machine tools. For instance, Professor Koren [26] evaluates
servo-controllers and presents different variables of machining process when the
status of the machine tool is considered into the design process. Yoram classified
servo-controllers as it is shown below but the paper does not study fuzzy con-
troller’s that are excellent control systems. Besides, the fuzzy logic controllers are
based on linguistic rules that can be understood by human operators [27].

• Feedback controllers (P, PI, PID, state-feedback)
• Feed-forward controllers (ZPECT, IKF)
• Cross-coupling controllers (CCC)

Position controllers of servo system are key elements, which determine the
precision and efficiency of the manufacturing process; indeed, it is recommended to
conduct mechanical simulations and to design a controller after an experimental

Table 4.7 Technical
specifications

Parameter Value

Motor type DC motor

Travel range X, Z axes (15 × 15) mm

Design resolution X,
Z axes

0.0085 µm

Max. velocity X, Z axes 2.2 mm/seg

Nominal motor power X,
Z axes

2.0 W

Motor voltage range X,
Z axes

0 to +12 V

Spindle Pneumatic motor

Max. velocity 30,000 rpm

Max. motor power 125 W

Collet chuck Ø 0.5–6.0 mm

Power consumption 92 W

4.11 Included Examples 215

design could be concluded in manufacturing process [26]. Conventional machine
tools started the evolution of micromachine tools, which are presented in [11].
Generally, the control strategies in CNC machine tool are: (a) point-to-point con-
trol, (b) tracking control, and (c) contour control (see Fig. 4.44) in which the
command signal is the desired position of each axis. For instance, one of the
simplest conventional linear controllers is the proportional controller in which the
output signal is proportional to the error input signal but conventional linear pro-
portional controllers are not good alternatives for CNC machines under uncer-
tainties and noisy signals. In a micromachine tool, a particular controller handles
each axis of movement (see Fig. 4.44). Moreover, it is also required to ensure
reasonable precision and high robustness against disturbances during the close loop
operation (see Fig. 4.45).

Fig. 4.44 Control strategies of CNC machine tools. a Point to point control. b Tracking control.
c Contour control

Fig. 4.45 Position control closed loop for machine tools

216 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

4.11.5 Control Design on Real-Time FPGA

There are some implementation of fuzzy logic controllers that are based on con-
ventional proportional-integral (PI) controllers but most of them are focused on
fuzzy type 1 [28]; thus, a complete control design for manufacturing process has to
be done for fuzzy logic type 2. In general, position control of manufacturing
machines used as the main actuators in the position loop DC motors and real-time
systems. The real-time FPGA allows improving the tracking of the reference
position signals. The changes in the torque load conditions generated by the cutting
process (mechanical disturbances for the electric motor) have to be supported by the
controller. This paper proposed a position controller for CNC micromachine that is
based on fuzzy type 2; the controller is able to deal with noisy conditions and
uncertainties [29]. On the other hand, the real-time FPGA hardware platform
selected guarantees that control loops can be completed by a given limit period of
time under deterministic conditions and the control algorithm was done in a
graphical programming (LabVIEW FPGA); thus, reviewing the controller code is
easy [30].

The first controller designed in this paper for controlling position on real-time
FPGA was a discrete PID in a parallel topology that is implemented by its digital
representation [31]. The discrete definition of the PID controller could be derived
by the continues mathematical expression shown in Eq. 4.1.

PID sð Þ ¼ e sð Þ Kp þ Ki

s
þKds

� �
ð4:1Þ

where Kp, Ki and Kd are constant PID values that have to be tuned for accomplished
high control standards [31–33]. A discrete mathematical transformation was done
by Tustin method [31] to get the digital expression illustrated in Eq. 4.2.

KB ¼ 2KiT2
s � 8Kd

2Ts

KC ¼ KiT2
s � 2KpTs þ 4Kd

2Ts

PID zð Þ ¼ e zð Þ KAz2 þKBzþKC

z2 � 1

� � ð4:2Þ

Equation 4.3 shows the recurrence expression for the PID controller.

PID kð Þ ¼ KAe kð ÞþKBe k � 1ð ÞþKCe k � 2ð Þþ PIDðk � 4Þ ð4:3Þ

where K(A, B, C) are the constant values of the PID controller at the current sample
time at Ts interval and the PID tuned values for CNC micromachine are

4.11 Included Examples 217

Kp ¼ 32:2305; Kd ¼ 0:00499939; and Ki ¼ 0:0289997 ð4:4Þ

The fuzzy logic controller type 1 is a particular case of a fuzzy logic controller
type 2 [27] when the uncertainties disappeared, so the same design process is
applied to fuzzy type 1 and type 2. In fact, the fuzzy logic controller type 1 is
reached by removing the FOU. The main blocks in fuzzy type 2 are shown in
Fig. 4.46a in which the selected inputs are the error and change in the position and

Fig. 4.46 a Fuzzy logic type-2 and b fuzzy inference

218 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

Fig. 4.46b illustrates the fuzzy inference. Practically, fuzzy logic type 1 has the
same control blocks but it does not include the type reduce set block which is
located in the output processing diagram (see Fig. 4.46a).

The implementation of the fuzzy logic controller in terms of type 2 fuzzy sets,
could be done by two inputs, the error e(t) that is the difference between the
command signal and the feedback signal from the position sensors, as well as the
position change Δp(t). The complete description of the fuzzy logic type 2 is pre-
sented in Fig. 4.47; if the uncertainty is eliminated, a fuzzy logic controller type 1 is
gotten. The linguistic rules implemented in the fuzzy type 1 and type 2 are illus-
trated in Fig. 4.48; those rules are obtained according to the trajectory described in
each case of the universe of discourse presented by the position control system (see
Fig. 4.48). Not only can nine rules cover the complete linguistic universe of dis-
course for a position controller, but also the number of linguistic rules allows to
keep a simpler control algorithm that is easy to implement in a real-time FPGA
platform, so the fuzzy logic controller is based on simple and compact linguistic
expressions. In addition, the FPGA runs with basic mathematical operations the
fuzzy logic algorithm and the position controller’s performance is improved.

For deploying the controllers, the cRIO-9014 [34] were used, which comprises a
real-time microcontroller, a FPGA backplane chassis, and two C-Series modules
NI-9505 [29, 35] (see Fig. 4.49). The FPGA can acquire the necessary information
from encoders, can process the controller algorithm and can generate the output
voltage signals by pulse width modulation (PWM). cRIO has a finite number of
resources such as multiplications, memories locations, and so on. Thus, the
resources and processing time used in fuzzification, which is the defuzzifier (see
Fig. 4.46a), are key elements that have to be analysed in order to improve the
performance of the fuzzy logic controller. Some research works show results about
decreasing the complexity of defuzzification step but a specific study is obligatory
for using the cRIO-FPGA in a correct manner. The Karnik–Mendel (KM) algorithm

Fig. 4.47 Fuzzy type 2 inference controller

4.11 Included Examples 219

[36] and the Nie–Tan (NT) method [19] were designed, implemented and compared
according to LabVIEW FPGA basic block diagrams.

After the fuzzification algorithms were deployed in the cRIO, the FPGA
resources and time conditions were calculated for selecting the fuzzification
structure. As a result, the enhanced Karnik–Mendel algorithms (EKM) [18] is the
most expensive method in computational terms and NT method is the fastest
method which requires the minimum number of resources because it uses only one
division and one multiplication to calculate the final centroid. Since this method
does not search for several embedded sets, the final centroid is a single value.
The EKM and the Iterative KM [37] require three units of centroids while the

Fig. 4.48 Rules fuzzy type 2 inference controller

Fig. 4.49 c-RIO topology for
the CNC position controller

220 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

non-iterative version only requires two. In addition, the final time and the number of
resources are presented in terms of Tick Count Blocks; the resources used are
calculated by the Build Specifications module in LabVIEW FPGA [30]. Although
the NT is not based on the KM algorithm, it uses an iterative version of KM
algorithm in order to find the initial switching point, so the algorithm runs very fast.
The NT is an algorithm that runs fast, it does not include complex mathematical
blocks for calculating the fuzzification step, and it calculates the average calculation
within the LMF and UMF, so the fuzzy description is acceptable for micromachines
tools. As it is seen in Tables 4.8, 4.9 and 4.10, the NT is the simplest and the fastest
defuzzification method for IT2FLS based on real-time FPGA; as result, the NT
method was implemented in this paper [19].

Table 4.8 Number of iterations (N)

Element/method Non-iterative KM
[36]

Iterative KM
[37]

EKM [18] NT
[19]

ES calculation N N N/A N

ES centroid
calculation

N + 3 N + 3 N + 1 N + 3

Total iteration
count

2N2 + 4N [N/2,
2N2 + 4N]

[1,
0.1764N2 + 2.1N]

2N + 3

Table 4.9 Number of hardware elements used

Structure/method Non-iterative KM
[36]

Iterative KM
[37]

EKM
[18]

NT
[19]

Multiplications 1 1 6 1

Divisions 1 2 5 1

Sums/subtracts 3 4 17 5

Centroid calculation units 2 3 3 1

Comparator/multiplexers
(MUX)

5 9 9 1

Table 4.10 Timing performance and resources used

Resource/methods Non-iterative KM
[36]

Iterative KM
[37]

EKM
[18]

NT
[19]

Latency (hardware) in
milliseconds

49.48 0.8875 0.1756 0.27

Latency (software) in
milliseconds

84.535 1.87 1.43 1.32

Slices 1461 2415 2593 915

Registers 1454 2087 2828 959

LUT 2185 3759 3965 1305

4.11 Included Examples 221

The FPGA is the core element in the real-time system and the following tasks
were programmed on it using LabVIEW real time.

1-To read quadrature encoder values for detecting the real position (see
Fig. 4.50).

To run the controller’s algorithm see Fig. 4.51.
To generate the output voltages signals, PWM voltage signals that drive DC

motors (see Fig. 4.52).
Figures 4.53 and 4.54 illustrate the main block diagram for fuzzy type 1 and 2

and this block diagram is connected with the function panel for running the con-
trollers under different reference signals and noisy conditions.

4.11.6 Experimental Results

This section presents how the position control loop is affected by noisy signals
under different position commands. When a position loop is implemented under

Fig. 4.50 LabVIEW program for reading the quadrature encoder by LabVIEW FPG

Fig. 4.51 LabVIEW program for controlling the position (PID or T1FLS/T2FLS)

222 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

nonideal isolation conditions and the controller does not tolerate the noise inside the
position loop, the precision is degraded dramatically because the complete control
loop is corrupted. However, there are some manufacturing procedures that do not

Fig. 4.52 LabVIEW program for generating the PWM signals

Fig. 4.53 Type-1 and 2 fuzzy logic controller

4.11 Included Examples 223

require high precision, so PID or fuzzy logic controllers type 1 controllers could be
implemented. In fact, the computational cost is lower than fuzzy type 2 and the
speed in the entire manufacturing system is increased. On the contrary, fuzzy logic
type 2 can deal with noisy signals but the computational cost is higher than fuzzy
type 1 and the defuzzification process could be complex if NT method is not
selected (see Tables 4.7, 4.8 and 4.9). The following experimental tests were
designed to cover different levels of noise and diverse position reference signals in
order to capture the performance of each controller. If the controller’s performance
is known, a correct selection about the kind of controller could be done; the
experimental tests were based on the next premises. The CNC micromachine has
three DC motors that take over the position in a 3 dimensional plane (X, Y, and
Z) and the DC motors have the same characteristics and performance; each position
controller used in the CNC micromachine are equal (axis X, Y and Z), so one
electric actuator is only studied and presented. Consequently, the controller was
developed for X dimension (one motor) and replicated to Y and Z dimensions.
Normally, the position control of manufacturing in CNC micromachines can be
divided in two trajectories: large and short. By those trajectories, the position
command signal can cover the requirements during manufacturing operation. The
large position profile moves the actuator through its complete axis and the short
trajectory moves slightly the axis from zero to 0.1 mm. An entire set of experi-
mental tests was developed in order to illustrate a complete study about the con-
troller’s performance. Different reference position signals were applied and the
noise robustness was validated under experimental tests. The first part of the study
was done by large position reference signals, which can go from 0 to 15 mm; a
noisy signal was added to the control input for confirming the robustness of fuzzy
logic controllers and conventional ones. Figure 4.54 depicts the position responses
when a source of noise is included into the input control signal and the controller
has to cope with it. The results show that conventional and fuzzy controllers have
almost the same robustness to the noisy conditions when a large reference of
position was applied. Furthermore, the real-time FPGA helps follow the position
command signals in deterministic time. Although the fuzzy type 2 performance is
diminished due to noisy signals, the performance is good enough for some man-
ufacturing process; in addition, these micromanufacturing machines can be con-
sidered as a high performance CNC machines because the position error is very

Fig. 4.54 Functional Panel

224 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

low. In conclusion, Fig. 4.55 makes available information about the conventional
PID and fuzzy controllers; this information gives the option of using PID con-
trollers running in real-time under large position references or without noisy sig-
nals. The derivative action in conventional controllers normally affects the
performance of the controller when a noisy signal is included [31] but this problem
can be decremented when the derivative action is well tuning for a specific system;
Thus, different techniques for tuning PID controllers are developed [2] but the
complexity of the algorithm increases dramatically and the simplicity of the PID
control law disappears. Thus, the proposed fuzzy logic type 2 is attractive because it
has a simple topology and achieves excellent position results.

In short position references, the DC actuator has to travel from 0 to 0.1 mm; a
noisy signal was also included to evaluate the robustness of the controller.
Figure 4.56 shows the results for small position signals when noisy signal is added;
in contrast, each controller has different position performance and the fuzzy logic
controller type 2 implemented generates excellent performance under short refer-
ences with noisy signals. The main goal of this test is to validate which controller
has the best performance when short position trajectories are applied; short tra-
jectories require high position performance and they are implemented when the
work-piece has complex contours; this experimental test demands robustness and
precision. The results of fuzzy type 2 show the excellent performance that can be
reached when real-time platform is applied. A criterion for selecting, which con-
troller has to be implemented in short position references, is established by indexes
of performance, so Table 4.6 presents a complete list of results based on indexes of
performance. The indexes studied are the following:

• Integral of Squared Error (ISE),
R1
0 eðtÞ2
h i

dt (large errors will increased the ISE

values)

• Integral of Absolute value of the Error (IAE),
R1
0 eðtÞ2
h i

(ISE will favor small

errors)
• Integral of the Absolute value of the Error multiplied by the Time (ITAE),R1

0 t eðtÞ½ �dt (ITAE penalizes heavily errors that do not appear early in time)
• Transient parameters [Rise time in seconds ðtrÞ, Peak time in seconds ðtpÞ and

Settling Times in seconds (ts) and the Overshoot expressed as percentage (PO)].

Summing up, the conventional controller, the fuzzy logic controller type 1 and
type 2 can reach excellent position response when large command position signals
are sent according to Fig. 4.54. Thus, PID and fuzzy logic controllers can be
implemented for this kind of position references and they could be a good alternative
because they have a simple algorithm that is deployed in real time FPGA; however,
in manufacturing systems, short position references are required, so fuzzy logic type
2 has to be considered as the best option under those conditions (see Fig. 4.56).
Undoubtedly, real time FPGA allows to complete the controller’s algorithm in the
time required by deterministic time conditions. This time situations are critical when
short position references are needed in manufacturing process and noise shows

4.11 Included Examples 225

Fig. 4.55 Large travel response with a step response amplitude of 10 mm; the rest position
references have an amplitude of 15 mm

226 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

up. Table 4.11, illustrates that the fuzzy logic type 2 has almost the worst ISE, IAE
and ITAE values when noise is not presented but it gets the best transient response in
the entire set of experiments. When the noise appears, every controller decreases
their performance, and the fuzzy type 2 becomes the best option. One of the main
drawbacks, in the PID and fuzzy type 1 performances, is created by noisy signals
when the amplitude of noise increases, the performance of fuzzy and conventional
PID decrease. On the other hand, fuzzy type 2 copes with noisy signals and the
number of linguistic rules is kept lower. Hence, the FPGA real time gives good

Fig. 4.56 Small position
reference (step amplitude of
0.1 mm)

4.11 Included Examples 227

results as long as the control law is simple and it does not include a big number of
complex calculations. Normally, high performance micromachines require dynamic
position responses that have a minimum transitory and stationary error; hence, the
amplitude of noise was selected according to the real amplitude of noise. The high
performance micromachines do not integrate position sensors that allow limiting the
levels of noise [29, 35].

References

1. M. Ramírez, J. Miranda, O. Davila, G. Tello, A. Molina, Reconfigurable didactic microfactory
with universal numerical control, in 14th IFAC Symposium on Information Control Problems
in, INCOM´2011, vol. 14, pp. 463–468, 2011

2. S.T. Fleming, D.B. Thomas, FPGA based control for real time systems, in 23rd International
Conference on Field Programmable Logic and Applications (FPL), 2013. doi:10.1109/FPL.
2013.6645610

3. J. Paulo Davim, M.J. Jackson, Nano and micromachining (Wiley, New York, 2010), 212
pages

4. O. Iordan, I. Vicol, A.M. Matei, A. Grama, Current state of research in the field on
micromilling, http://mech-ing.com/journal/Archive/2010/6/1.mashini/

5. F. Huo, A.-N. Po, Precision countouring control of machine tools. Int. J. Adv. Manuf.
Technol. 64, 319–333 (2013)

6. P. Piljek, Z. Keran, M. Math, Micromachining. Interdisc. Description Complex Syst. 12(1), 1–
27 (2014)

7. E. Kamenar, S. Zelenika, Micropositioning mechatronics system based on FPGA architecture,
in 36th International Convention on Information & communication Technology electronics &
Microelectronics (MIPRO), pp. 125–130, 2013

8. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning
—I. Inf. Sci. (Ny). 8(3), 199–249 (1975)

9. L.A. Zadeh, 1965 J(Zadeh) Fuzzy Sets.pdf. Inf. Control 8, 338–353 (1965)

Table 4.11 Performance parameters in every controller for the small travel response

Noise
amplitude

Noise
variation
SNR (dB)

ISE IAE ITAE tr (s) tp (s) ts (s) OP (%)

PID

0 ∞ 0.000123 0.002228 0.00019 0.010038 0.085606 0.093939 15.95

0.006667 23.05 0.000135 0.004843 0.000947 0.046212 ∞ ∞ 15.95

0.013333 17.01 0.000196 0.006918 0.0016 0.049053 ∞ ∞ 16.69

T1FLS

0 ∞ 0.000122 0.002183 0.000186 0.009091 0.083523 0.094886 15.95

0.006667 23.05 0.000133 0.004816 0.001021 0.026894 ∞ ∞ 16.69

0.013333 17.01 0.000192 0.007278 0.001747 0.044129 ∞ ∞ 20.92

T2FLS

0 ∞ 0.000158 0.004573 0.00082 0.006061 0.086553 0.104924 11.73

0.006667 23.05 0.000143 0.005157 0.001079 0.010038 ∞ ∞ 10.48

0.013333 17.01 0.000165 0.006128 0.00139 0.017045 ∞ ∞ 8.99

228 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

http://dx.doi.org/10.1109/FPL.2013.6645610
http://dx.doi.org/10.1109/FPL.2013.6645610
http://mech-ing.com/journal/Archive/2010/6/1.mashini/

10. D. Wu, W.W. Tan, A simplified architecture for type-2 FLSs and its application to nonlinear
control, in IEEE Conference Cybernetics and Intelligent Systems 2004, vol. 1, pp. 485–490,
2004

11. S. Coupland, R. John, A fast geometric method for defuzzification of type-2 fuzzy sets. IEEE
Trans. Fuzzy Syst. 16(4), 929–941 (2008)

12. Q. Liang, J.M. Mendel, Interval type-2 fuzzy logic systems: theory and design. IEEE Trans.
Fuzzy Syst. 8(5), 535–550 (2000)

13. J.M. Mendel, L. Fellow, R.I. John, F. Liu, S. Member, Interval type-2 fuzzy logic systems
made simple. Fuzzy Syst. IEEE Trans. 14(6), 808–821 (2006)

14. J.M. Mendel, Uncertainty bounds and their use in the design of interval type-2 fuzzy logic
systems. IEEE Trans. Fuzzy Syst. 10(5), 622–639 (2002)

15. D. Wu, J.M. Mendel, On the continuity of type-1 and interval type-2 fuzzy logic systems.
IEEE Trans. Fuzzy Syst. 19(1), 179–192 (2011)

16. L.A. Lucas, T.M. Centeno, M.R. Delgado, General type-2 fuzzy inference systems: analysis,
design and computational aspects, in IEEE International Conference on Fuzzy Systems, vol. 5,
pp. 1–6, 2007

17. K. Duran, H. Bernal, M. Melgarejo, Improved iterative algorithm for computing the
generalized centroid of an interval type-2 fuzzy set, in NAFIPS 2008–2008 Annual Meeting of
the North American Fuzzy Information Processing Society, pp. 1–5, May 2008

18. D. Wu, J.M. Mendel, Enhanced Karnik–Mendel algorithms. IEEE Trans. Fuzzy Syst. 17(4),
923–934 (2009)

19. M. Nie, W.W. Tan, Towards an efficient type-reduction method for interval type-2 fuzzy logic
systems. IEEE Int. Conf. Fuzzy Syst. 2, 1425–1432 (2008)

20. J.M. Mendel, On a 50 % savings in the computation of the centroid of a symmetrical interval
type-2 fuzzy set. Inf. Sci. (Ny) 172(3–4), 417–430 (2005)

21. J.M. Mendel, L. Fellow, X. Liu, simplified interval type-2 fuzzy logic systems. IEEE Trans.
Fuzzy Syst. 21(6), 1056–1069 (2013)

22. A. Tellez-Velazquez, H. Molina-Lozano, L.A. Villa-Vargas, The Tellez-Molina-Villa
Algorithm, in 2012 Annual Meeting of the North American Fuzzy Information Processing
Society, pp. 1–6, Aug 2012. doi:10.1109/NAFIPS.2012.6291017

23. H.-J. Wu, Y.-L. Su, S.-J. Lee, A fast method for computing the centroid of a type-2 fuzzy set.
IEEE Trans. Syst. Man Cybern. B Cybern. 42(3), 764–777 (2012)

24. Available:http://motionsystems.pi-usa.us/item/tioning-actuators-stages-linear-translation-stages/
tion-micro-translation-stages-with-ballscrew-drive/m-111-2dg

25. T. Dam, P-R. Ouyang, Position domain contour tracking with cross-coupled control, in IEEE
International Symposium on Industrial Electronics (ISIE), pp. 1303–1308, 2012

26. Y. Koren, C.C. Lo, Advanced controllers for feed drives. CIRP Ann.-Manuf. Appl. Int. Conf.
41(2), 689–698 (1992)

27. O. Castillo, P. Melin, Type-2 Fuzzy Logic: Theory and Applications (Springer Science,
Berlin). ISBN: 978-3-540-76283-6

28. X. Ling, Q. Li, T. Wang, J. Dong, Z. Tang, Y. Ding, Research and decision of motion
controller for CNC based on fuzzy PID algorithm with feedforward control, in International
Conference on Control, Automation and Systems Engineering (CASE), pp. 1–4, 2011

29. NI: NI 9505 (FPGA Interface). [Online]. Available: http://zone.ni.com/reference/en-XX/help/
370984R-01/target4devicehelp/9505_io_reference/

30. LabVIEW FPGA website: www.ni.com, revised 2014
31. K. Ogata, Discrete-Time Control Systems, vol. 2. (Prentice Hall, Englewood Cliffs, NJ, 1995)
32. P. An-Hua, Gra-based approach to PID parameter tuning for closed-loop servo systems, in

Control and Decision Conference (CCDC) 25th Chinese, pp. 1628–1633, 2013
33. A.Y. Jaen-Cuellar, R.J. Romero-Troncoso, L. Morales-Velazquez, R.A. Osornio- Rios,

PID-controller tuning optimization with genetic algorithms in servo systems. Int. J. Adv.
Robot. Syst. (2013). doi:10.5772/56697

34. cRIO Manual: (http://www.ni.com/pdf/manuals/374126e.pdf)

References 229

http://dx.doi.org/10.1109/NAFIPS.2012.6291017
http://motionsystems.pi-usa.us/item/tioning-actuators-stages-linear-translation-stages/tion-micro-translation-stages-with-ballscrew-drive/m-111-2dg
http://motionsystems.pi-usa.us/item/tioning-actuators-stages-linear-translation-stages/tion-micro-translation-stages-with-ballscrew-drive/m-111-2dg
http://zone.ni.com/reference/en-XX/help/370984R-01/target4devicehelp/9505_io_reference/
http://zone.ni.com/reference/en-XX/help/370984R-01/target4devicehelp/9505_io_reference/
http://www.ni.com
http://dx.doi.org/10.5772/56697
http://www.ni.com/pdf/manuals/374126e.pdf

35. NI: NI 9505 PWM Generation-Improved. [Online]. Available: http://www.ni.com/example/
30177/en/

36. J.M. Mendel, Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2(1),
20–29 (2007)

37. J. Mendel, F. Liu, Super-exponential convergence of the Karnik–Mendel algorithms used for
type-reduction in interval type-2 fuzzy logic systems, in IEEE International Conference on
Fuzzy Systems, Vanco

230 4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

http://www.ni.com/example/30177/en/
http://www.ni.com/example/30177/en/

Index

A
Add Shift Register, 98
Aggregation of the rules, 28
AI Scan Rate, 100
Analog Input, 129
Analog Level Trigger, 129
ANFIS, 57
Artificial intelligence, 36

B
The BeagleBone Black, 66
Bisector, 23
Bit stream file, 76
Boolean logic, 14
The boundaries, 16
Brushed DC motors, 106
Butterworth Filter, 122

C
Calculate the Inferred, 169
Center Average defuzzifier, 24
Center Of Sums, 24
Centroid, 23, 45
Characteristic Function, 13
Cluster, 200
CNC micromachine, 211
Compact linguistic expressions, 219
Compact Vision System, 79
CompactRIO, 71
Control systems, 80
The core, 16
Crisp function, 29
Crisp set, 13
Crisp value, 30
Cross-coupling controllers, 215
C Series industrial I/O modules, 78
C Series modules, 79
Cutting process, 217

D
DAQ device, 74
DC motor, 78
DC Servomotor, 148
Defuzzification, 12, 23, 29, 30
Degrees of membership, 13
Digital signal processor, 7
Discrete, 39
DMA, 133

E
Electric wheelchair, 203
Embedded processor, 86
Embedded representation, 40
Error, 191
Experimental results, 64
Extension principle, 20

F
FALSE Boolean Constant, 99
FeedBack, 190
Feedback controllers (P, PI, PID,

state-feedback), 215
Feedback Node, 108
Feed-forward controllers (ZPECT, IKF), 215
Field programmable gate array (FPGA), 6, 9,

71
Firing strengths, 169
Footprint of uncertainty (FOU), 39, 206
For Loop, 109
FPGA-based look up table, 117
FPGA chip, 77
FPGA fuzzy logic program, 166
FPGA I/O Node, 99
FPGA resources, 76
Functional block, 200
Fuzzification, 12, 26, 30
Fuzzifier, 30

© Springer International Publishing Switzerland 2016
P. Ponce-Cruz et al., Fuzzy Logic Type 1 and Type 2 Based
on LabVIEW™ FPGA, Studies in Fuzziness and Soft Computing,
DOI 10.1007/978-3-319-26656-5

231

Fuzzy c-means (FCM), 4
Fuzzy constants, 22
Fuzzy inference, 25
Fuzzy logic algorithm, 219
Fuzzy logic control, 10
Fuzzy logic controller, 8, 57
Fuzzy logic controller type 2, 62
Fuzzy logic sets, 36
Fuzzy Logic Toolkit, 159
Fuzzy microcontroller, 7
Fuzzy notions, 22
Fuzzy properties, 22
Fuzzy proposition, 11, 22
Fuzzy region, 29
Fuzzy set, 11, 13
Fuzzy terms, 22

G
Gaussian MF, 18

H
Hardware circuitry, 71
H-bridge driver, 78
Height, 24
High-quality products, 211
Human decision, 13

I
IEEE 1394, 80
Inductive reasoning, 18
Inference, 18, 49
Integral of Squared Error, 225
Integral of the Absolute value, 225
Intersection, 19
Intersection operators, 19
Interval or Crisp MF, 18
Interval type 2 fuzzy logic, 36
Intuition, 18
I/O channels, 78

K
Karnik–Mendel Algorithm, 46, 181
Key function, 75

L
LabVIEW, 74, 81
LabVIEW 8.20 Real-Time Project, 83
LabVIEW FPGA, 97
LabVIEW FPGA applications, 106
LabVIEW FPGA module, 75, 157
LabVIEW FPGA subVIs, 104
LabVIEW Real-Time, 78
Large Arrays or Clusters, 132
Latched Analog Input, 129

Linear controllers, 211
Linguistic Rule, 11
Linguistic Variable, 11, 58, 190
Lofty Zadeh, 10
Loop Rate, 109
Loop Timer function, 97

M
Mamdani, Ebrahim, 10, 25, 26, 29
Mamdani Inference Model, 26
Mathematical operations, 219
Max t-conorm, 42
Mean of Maximum, 23
Membership function, 13, 14, 33
Micro-manufacturing, 50
Mim- max inference, 27
Minimum intersection, 200
Min-max, 30
Min t norm, 41
Motor current, 78

N
Neural networks, 56
NI 9505 motor drive module, 114
NI R Series, 78
Nie-Tan method, 147
Noise, 66
Noise response, 204
Non-Iterative KM Algorithm, 181
Notch Filter, 122

O
Over Threshold, 99

P
Perform digital filtering, 74
PID, 122
PID Clock, 128
Polynomials, 184
Position controller’s performance, 219
Product t-norm, 42
Proportional-integral-derivative, 73
Proportional-integral (PI) controllers, 217
Pulse width modulation, 80, 113
PXI/CompactPCI, 78

Q
Quadrotors, 54
Quotient and Remainder, 132

R
Rank ordering, 18
Rational Resampler, 122
Representation, 39

232 Index

Rising Edge Trigger, 128
Rotate 1D Array, 132
Rule base, 49
Rules evaluation, 27
The rules process, 171

S
Sample Clock, 128
Scale by Power of 2, 131
Set, 12
Shift Register, 99
Single board computer, 79
Single centroid, 142
Single cycle, 73
Single cycle timed loops, 106
Singleton MF, 18
SLICE, 103, 104
Sliding mode control, 8
Spline Engine, 94
S-Shape, 159
S-Shape MF, 17
Sugeno, 25, 29
Sugeno inference, 29
Sugeno type fuzzy, 8
Supervision systems, 139
The support, 16
Surface, 61

T
Takagi Sugeno, 36
Target FPGA, 192
Tick Count, 109
T-conorm, 41
T-CoNorms, 20
T1 fuzzy, 166
T2 fuzzy, 166
Timed Loop, 98
T1 Mamdani model, 180
T2 Mamdani model, 181
Transient parameters, 225
Trapezoidal, 159

Trapezoidal MF, 17
Triangular, 159
Triangular MF, 16
TSK inference model, 35
Type-1 and Type-2 FLS, 1
Type-2 FNN controller, 2
Type 2 fuzzy, 37
Type-2 fuzzy processor, 9
Type 2 fuzzy set, 37
Type reduction, 44
Type-Reduction, 181

U
Ultrasonic sensors, 196
Uncertainties, 140
Union, 19
Unnormalized MF, 161
Unsigned 8-bit fixed point, 161
Utilities, 206

V
Vertical-slice, 43
VHDL code, 76

W
The Wheelchair, 196
With low latency, 152
Worst-case execution time, 152

X
Xilinx ISE compiler, 76, 102

Y
Yoram Koren, 215

Z
Zadeh, 36
Zero order, 29
Z-Shape, 159
Z-Shape MF, 17

Index 233

	Foreword
	Preface
	Acknowledgments
	Contents
	1 Literature Review for Digital Implementations of Fuzzy Logic Type-1 and Type-2
	1.1 Advances in Applications of Fuzzy Logic Systems
	1.2 FPGA and Microcontrollers Used for Fuzzy Logic Applications
	1.2.1 Microcontroller Application
	1.2.2 DSP Application
	1.2.3 FPGA Application

	1.3 Fuzzy Logic Concepts
	1.3.1 Type-1 Fuzzy Set (T1Fs)
	1.3.2 Membership Function
	1.3.3 Discourse Universe and Membership Degree

	1.4 Extension Principle
	1.4.1 Basic Identities

	1.5 Fuzzy Logic Rules
	1.6 Defuzzification Methods
	1.7 Fuzzy Inference Methods
	1.8 Takagi-Sugeno-Kang
	1.9 Numerical Example (Mandani)
	1.10 Basic Numerical Example (TSK)
	1.11 Type-2 Fuzzy Logic Set
	1.11.1 Historical Review of Advances
	1.11.2 Type-2 Fuzzy Sets (T2FS)
	1.11.3 Footprint of Uncertainty

	1.12 Fuzzy Sets Type 2 Representations
	1.12.1 Digital and Continuous Representation

	1.13 Interval Type 2 Fuzzy Sets (IT2FS)
	1.14 Type Reduction and Defuzzification
	1.14.1 Karnik--Mendel Iterative Procedure (KM)
	1.14.2 Wu-Mendel Uncertain Bounds
	1.14.3 Enhanced Karnik--Mendel Algorithm
	1.14.4 Type 2 Fuzzy Logic Systems Block Diagram
	1.14.5 Interval Type 2 Fuzzy Logic Numeric Example

	1.15 Experimental Implementation of a Fuzzy Logic Controller Type-2 in Quadrotors
	1.15.1 Introduction
	1.15.2 Quadrotor Basic Principles
	1.15.3 ANFIS

	1.16 Design of Fuzzy Logic Controller Tuned by an Expert
	1.17 Design of Fuzzy Logic Controller Tunned by an Anfis
	1.18 Experimental Results
	References

	2 LabVIEW2122 FPGA
	2.1 Field-Programmable Gate Array (FPGA)
	2.1.1 How Do FPGA-Based Control Systems Compare to Processor-Based Systems?
	2.1.2 How Do I Program My Control Application Using the LabVIEW FPGA Module?
	2.1.3 How Does the LabVIEW Compiler Translate My Graphical Code into FPGA Circuitry?
	2.1.4 FPGAs Are Fast, but How Do Faster Loop Rates Improve Control System Performance?
	2.1.5 What FPGA Hardware Targets Are Available from NI?
	2.1.6 What Closed-Loop Control Performance Can I Achieve?
	2.1.7 How Much Jitter Can I Expect in My FPGA-Based Control Loops?
	2.1.8 Creating a New LabVIEW Real-Time Project and Adding I/O

	2.2 Developing the LabVIEW FPGA Application
	2.3 Compiling the FPGA Application
	2.3.1 Understanding the LabVIEW FPGA Compilation Process
	2.3.2 FPGA Clock Speed
	2.3.3 The Compilation Report

	2.4 Advanced Methods for LABVIEW FPGA
	2.4.1 Introduction
	2.4.2 Technique 1: Use Single-Cycle Timed Loops (SCTLs)
	2.4.3 Creating Counters and Timers
	2.4.4 Write Your FPGA Code as Modular, Reusable SubVIs
	2.4.5 Separate Logic from I/O
	2.4.6 Holding State Values in a Function Block
	2.4.7 Run-Time Updateable Look-up Table (LUT)
	2.4.8 Do not Place Delay Timers in the SubVI
	2.4.9 Reentrancy

	2.5 Use Simulation Before You Compile
	2.5.1 Providing Tick Count Values for Simulation
	2.5.2 Test the LabVIEW FPGA Code Using the LabVIEW Control Design & Simulation Module

	2.6 Synchronize Your Loops
	2.6.1 Latching Values
	2.6.2 Application Example

	2.7 Technique 5: Avoid ``Gate Hogs''
	2.7.1 Avoid Front Panel Arrays for Data Transfer
	2.7.2 Use DMA for Data Transfer
	2.7.3 Use the Minimum Data Type Necessary
	2.7.4 Optimizing for Size
	2.7.5 Additional Techniques to Optimize Your FPGA Applications

	References

	3 Real-Time Fuzzy Logic Controllers
	3.1 Basic Parts in Real-Time Fuzzy Logic Controllers
	3.2 Case Study: The Karnik--Mendel Algorithms Performance Implemented in Real-Time LABVIEW FPGA
	3.2.1 Interval Type-2 Fuzzy Logic Systems
	3.2.2 The Karnik--Mendel Algorithm
	3.2.3 Non-iterative Version
	3.2.4 Iterative Version
	3.2.5 Enhanced Karnik--Mendel Algorithm
	3.2.6 Nie-Tan Method

	3.3 DC Servomotor
	3.3.1 Laplace Transform Model
	3.3.2 State-Space Transfer Function
	3.3.3 Servomotor Control System

	3.4 The Hardware Complexity
	3.5 Methodology
	3.6 Results and Discussion
	3.6.1 Reference Tracking
	3.6.2 The Hardware Performance
	3.6.2.1 Complexity and Arithmetic Related
	3.6.2.2 Resource Usage
	3.6.2.3 Timing and Area Resource Usage

	References

	4 Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit
	4.1 Type-1 Fuzzy Sets
	4.1.1 Membership Function Parameters
	4.1.2 Normalization
	4.1.3 Membership Degree
	4.1.4 Error Handling

	4.2 Type-2 Fuzzy Sets
	4.2.1 Membership Function Parameters
	4.2.2 Normalization
	4.2.3 Uncertainty Widths
	4.2.4 Membership Degrees
	4.2.5 Error Handling
	4.2.6 Examples

	4.3 Creating a Knowledge Base
	4.3.1 Building a Rule Set

	4.4 The Inferred Set
	4.5 Defuzzification
	4.5.1 T1 Mamdani Model the Centroid
	4.5.2 T2 Mamdani Model the Karnik--Mendel Algorithm
	4.5.3 The Enhanced Karnik--Mendel Algorithm
	4.5.4 The Nie--Tan Method
	4.5.5 The Takagi--Sugeno Model

	4.6 Examples
	4.7 Study Cases
	4.7.1 T1FLS Validation
	4.7.1.1 Implementation

	4.7.2 Electric Wheelchair
	4.7.2.1 Implementation

	4.8 T2FLS Validation
	4.9 Performance T1 FLS DC Servomotor
	4.9.1 Electric Wheelchair

	4.10 T1FLS Versus T2FLS
	4.10.1 Noise Response
	4.10.2 Response Time
	4.10.3 Resource Utilization

	4.11 Included Examples
	4.11.1 Case Study: Experimental CNC Micromachine Controlled by Fuzzy Type 2
	4.11.2 Micromachines and Fuzzy Logic
	4.11.3 Reconfigurable Micromachine Tools
	4.11.4 Motion Control
	4.11.5 Control Design on Real-Time FPGA
	4.11.6 Experimental Results

	References

	Index

