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Preface

Fuzzy control methods represent a rather new approach to the problems of
controlling complex nonlinear systems, the systems whose mathematical model
is difficult or impossible to describe, and the systems with multiple inputs and
outputs characterized by hardly defined internal interference. It must be said that
fuzzy logic control techniques earned respect from the engineering population after
numerous applications on technical and nontechnical systems, especially complex
systems in industry, economy, and medicine.

Fuzzy logic and the theory of fuzzy sets are the result of a broader compre-
hension of practical control problems and control actions, performed by human
operators, which could not have been correctly interpreted by using classical
bivalent logic and conventional methods of automatic control. In the beginning
of his globally successful professional career, “the father of fuzzy logic,” Pro-
fessor Lotfi A. Zadeh, affiliated with the University of California at Berkeley,
USA, realized that the existing control theory was very limited and that it did not
provide real solutions for the above mentioned classes of systems. In the 1960s,
Professor Zadeh made an ingenious shift from standard thinking and interpreta-
tion and created the fundamentals of a new system control theory, which got full
recognition and obtained numerous followers, after almost 20 years of struggle
with fuzzy control opponents. Because most of the opponents were Americans,
the well-known Latin proverb “Nemo propheta in patria sua” proved to be true once
again.

We know today that Professor Zadeh has become one of the most popular sci-
entists in the “fin de siecle” period, spreading the idea of “computing with words” at
world leading scientific gatherings and institutions. As a frequent flyer, he stopped
two times in our homeland Croatia. In 1968 he was in Dubrovnik, which was the
venue of the extremely important scientific symposium that gathered leading con-
trol scientists from the West and the East for the first time after the Second World
War. The authors of this book had the honor of being Professor Zadeh’s hosts at the
9th Mediterranean Conference on Control and Automation MED’01 in Dubrovnik
in 2001, where he delivered a keynote lecture “From Computing with Numbers to
Computing with Words to Computation with Perceptions — A Paradigm Shift.”
We share deep impressions about these few days with Professor Zadeh, while
photographs taken during the event will remain our dearest memories. During a
friendly conversation with Professor Zadeh, he unveiled a very interesting detail —
his lecture in Dubrovnik in 1968 was his first lecture about fuzzy logic delivered
outside of the United States.

v
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vi Preface

The authors of this book have been actively involved in the fuzzy control area
for more than a decade. Having rather good connections with local industry and
attempting to raise interest for fuzzy control technology, we have found that this
technique has not been accepted as readily as it should have due to a heuristic char-
acter of the fuzzy controller design; namely, complex nonlinear control problems
are usually related to critical engineering applications, of which project managers
demand strong guarantees for the stability and functionality of the fuzzy con-
trol system, which are sometimes hard to give. We believe that the gap between
fuzzy control theory and practice can be resolved by developing fuzzy controller
design techniques that are simple enough, easily implemented, and most of all,
effective. The purpose of this book is to present the reader with different tech-
niques of fuzzy controller design that can be applied to a wide range of practical
engineering applications without much difficulty. This book does not pretend to
cover all fuzzy logic control theory but only those fundamentals that are needed
to understand the concept and make a successful design. Most of the attention is
paid to the design of hybrid, adaptive, and self-learning fuzzy control structures.
We explain the strategies of automated fuzzy controller design suitable for off-
line and online operations. Our intention was to create examples that would give
the reader a better insight into the design methodology and the design steps, in
particular.

Professor Lotfi A. Zadeh and the authors of this book with their students at the 9th
Mediterranean Conference on Control and Automation in Dubrovnik, 2001.
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Preface vii

About the Organization of the Book

This book is divided into seven chapters, with contents covering a wide range of
fuzzy controller design topics — from a basic introductory level to a professional
application-oriented level. After a brief introduction and review of fuzzy logic

sets and operators on fuzzy sets. Consequently, we explain the meaning of linguistic
variables, fuzzy rules, fuzzy implications, and inference engines. Then we focus on
the description of the most commonly used fuzzy controller structure — the double
input–single output (DISO) fuzzy controller. We also look into the important issue
of fuzzy control system stability. The heuristic character of fuzzy controller design
causes difficulties in assessing the stability of a closed-loop system. In Chapter 2,
we describe fuzzy controller design methods based on the well-known Lyapunov
theory of stability. We present one method that is suitable for systems that may
be approximated with a second-order process model. We also describe a fuzzy
controller design procedure that exploits geometric properties of state space during
the investigation of system’s stability. We show the practical value of this method
in a particular case when state space is reduced to phase plane (i.e., in the case of
second order systems). In addition, we present a fuzzy controller design method
based on the concept of fuzzy Lyapunov stability criterion utilizing fuzzy numbers
and fuzzy arithmetic. The aim of examples shown in this chapter is to help the
reader understand each design procedure better.

design — its heuristic nature, which turns the tuning of fuzzy controllers into a tedi-
ous and time-consuming job, even when it is done with specialized development
tools. In order to overcome this problem, we describe several easy-to-implement
fuzzy controller design methods that are closely related to the synthesis of well-
known control concepts and existing controllers: fuzzy emulation of P-I-D control
algorithms, model reference-based design, and design by using phase plane trajec-
tories. For better assessment of these methods, we describe their implementation
on a laboratory control process and give useful experimental results. These meth-
ods can be used for the automated initial setting of a fuzzy controller used in
nonlinear inherently stable time varying SISO high-order systems, which can be
linearized in a selected operating point. Examples of such systems may often be
found in the process industry (e.g., control of temperature, pressure, flow, level,
angular speed, and position).

Many practical control systems are nonlinear and work in conditions of continu-
ous process parameter variations, changing operating modes, and in the presence
of external disturbances. Control quality that must be achieved usually cannot be

sibilities of using complex fuzzy controller structures, such as hybrid or adaptive
control structures, which would be able to keep control quality almost unchanged,
regardless of the above mentioned influences. We describe a hybrid fuzzy control-
ler that contains, in addition to a fuzzy controller, other control elements known
from classical control practice. In general, hybrid fuzzy controllers exhibit higher

© 2006 by Taylor & Francis Group, LLC

systems are given in Chapter 1, Chapter 2 describes the basic definitions of fuzzy

Chapter 3 is concerned with the main drawback of standard fuzzy controller

maintained at a desired level with standard controllers. Chapter 4 discusses pos-
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viii Preface

robustness to process parameter variations than standard fuzzy controllers. When
parameter variations become excessive and even hybrid fuzzy controllers cannot
cope with them, then adaptive fuzzy control structures can be useful to solve
the problem. We describe several approaches to an adaptive control design, but
emphasis is on the design of fuzzy model reference adaptive control (FMRAC)
systems. In the first presented adaptive control concept, adaptation is not oriented
toward the fuzzy controller itself, but to the parameters of a lead–lag compensator
added in series with the fuzzy controller. An integral criteria-based and sensitivity
model-based adaptation of lead–lag compensator parameters is explained in detail
and illustrated with worked-out design examples. In this chapter we also describe
the design of FMRAC algorithms, which have a high speed of adaptation, produce
no oscillations in the steady-state, and add an adaptation signal directly to the feed-
back controller input or adjust the value of feedback controller output. Because
every practical fuzzy controller is designed for constrained input and output uni-
verses of discourse, the operating range is also constrained. The operating range
can be extended by applying a multiple fuzzy rule table-based adaptation tech-

of fuzzy adaptive control methods by reading the case studies of FMRAC contact
force control and FMRAC angular speed control.

Adaptive control strategies that employ fuzzy inverse models and so-called
fuzzy adaptation mechanisms are heuristic as they require the user’s active parti-
cipation in the setting of fuzzy control parameters. An alternative to the heuristic
approach lies in the automated online setting of fuzzy controller parameters using
stable and fast convergent self-organizing (self-learning, self-tuning) procedures.
The distinction between classical self-tuning and considered self-learning proced-

we describe several model reference-based self-learning concepts with their com-
mon and specific features: one based on the direct Lyapunov method, another with a
learning mechanism that utilizes a second-order reference model and a polynomial
of the model tracking error, and the third one based on the second-order reference
model and a sensitivity model relating the changes of the system output with the
changes of fuzzy controller parameters. The stability of the first self-organizing
fuzzy control system is assessed by applying a direct Lyapunov method, and stabil-
ity conditions obtained for a selected Lyapunov function are used for determination
of the learning coefficient value. We show that self-organization of a fuzzy rule
table based on the learning algorithm that exploits a third-degree model tracking
error polynomial with “position,” “velocity,” and “acceleration” components can
be synthesized according to the classical Hurwitz stability criteria, provided the
user can foresee the maximal range of process gain variations. A model reference-
based and a sensitivity model-based learning algorithm make changes to the fuzzy
controller parameter vector once in every run of the system. The reason behind
the learning algorithm is that a particular fuzzy controller parameter should be
changed when its influence on the system response is the highest. We show how
the sensitivity model of a DISO fuzzy controller can be derived and how the
second-order reference model is used instead of an unknown control process in

© 2006 by Taylor & Francis Group, LLC

nique described as well in Chapter 4. The reader can gain a deeper understanding

ures is that the former depend on the process model and latter do not. In Chapter 5,
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Preface ix

the learning algorithm. Several worked-out examples applied to demanding non-
linear servo systems demonstrate the effectiveness of self-learning fuzzy control
methods. Taking advantage of the automated fuzzy controller self-organization,
we describe again a multiple fuzzy rule table-based adaptation technique applied to

a self-learning PD-type fuzzy controller capable of compensating for steady-state
errors caused by external disturbances due to the presence of a self-learning integral
term added in parallel. We describe how independent learning of the integral gain
coefficient is organized and what results were achieved in a practical experiment.

Respecting the fact that Matlab®+Simulink® is one of the most popular

worked-out examples of fuzzy control systems in order to make it possible for
readers to test several fuzzy controllers described in the book. They include the

fuzzy controllers — the model tracking error polynomial-based and sensitivity
model-based, both described in Chapter 5. Self-organizing fuzzy controllers are
created as CMEX S-functions PSLFLC and SLFLC contained within the respec-
tive Matlab superblocks. Worked-out examples related to actual demo examples
from Matlab show the effects of considered fuzzy control algorithms. Chapter 6
concludes with an example of a Matlab-based fuzzy controller design project
— the simulation model of an electro hydraulic servo system. Main features of the
project are the distinct complexity of the problem, having to deal with process non-
linearities, and coping with time-varying process parameters. In order to simplify
the reader’s work, some guidelines and useful advice are given.

Although applications are discussed throughout the book illustrating the re-

to industrial applications, particularly to different techniques of fuzzy controller
implementation and different implementation platforms for industrial applications.
Instead of describing many applications, an impossible mission, we focus on gen-
eric fuzzy controller implementation concepts, which can help the reader to make
his or her future fuzzy control designs and implementations. While describing
digital fuzzy controller implementations on the most often used platforms such
as microcomputers, programmable logic controllers, and industrial PCs, we also
describe a few selected applications in more detail to show the versatility of fuzzy
control solutions — from the road tunnel ventilation system to the control of
anesthesia carried out during demanding surgical operations.

Every chapter ends with a selected list of references related to the chapter’s
subject. For easier navigation to subjects, an index is added at the end of the book.

Many individuals have contributed to this book. We are indebted to the stu-
dents who contributed by performing some of the Matlab simulation and practical
experiments while doing their student projects or working on their diploma and
master theses. This list includes, in particular, Dr. Mario Balenović, Tomislav
Reichenbach, Krešimir Petrinec, Mario Punčec, and Bruno Birgmajer. A credit
for technical support during implementation of the industrial PLC-based adaptive
fuzzy condensate level controller goes to Dubravko Lukačević, at that time the

© 2006 by Taylor & Francis Group, LLC

a selected positioning servo system. We conclude Chapter 5 with a description of

simulation software packages in use worldwide, in Chapter 6 we give several

hybrid fuzzy controller described in Chapter 4 and two types of self-organizing

sults obtained with methods presented in each chapter, Chapter 7 is fully dedicated
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x Preface

manager of the thermal power plant, Jertovec, Croatia. Our special thanks to
Dr. Olaf Simanski from the University of Rostock, Germany, who made a valu-
able contribution to the book by describing an anesthesia control system that
employs fuzzy control for controlling the depth of hypnosis of a patient undergoing
a demanding surgical operation.

We would like to thank Professor Frank L. Lewis from the University of Texas,
Arlington, U.S.A., who gave us initial support about the idea of writing a book.
We would also like to thank Professor Robert E. King for his open-minded and
witty comments about the contents, style, and other important things during the
writing of this book.

Last, but not least, we would like to thank our dear families, especially our
wives Dubravka and Jasenka, for their continuous support and encouragement to
finish this book.

© 2006 by Taylor & Francis Group, LLC
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1 Introduction

The ability of a human being to find solutions for particular problematic situations
is called human intelligence. It is founded on the ability of symbolic (exact and
abstract) expression of thoughts and interpretation of sensory stimuli in the form
of movement, speech, writing, or pictures. We know from our experience that
humans have the ability to simultaneously process a large amount of information
and make effective decisions, although neither input information nor consequent
actions are precisely (firmly) defined. Our experience tells us that the level of
knowledge and gained experience has a large impact on the actual success of
human actions. Human thinking and decision making mechanisms represent a per-
fect model, which scientists and engineers attempt to imitate and transform into
practical solutions of diverse technical and nontechnical problems. The results
of striving for such development are numerous procedures called artificial intel-
ligence methods. For example, artificial sight and hearing are based on the use
and processing of information from cameras and microphones — that is, from
technical devices whose functionality matches the human sensory organs — that
is, eyes and ears. We can also include algorithms, which contain elements of the
human way of thinking and problem solving, such as artificial neural networks,
fuzzy logic algorithms, evolutionary or genetic algorithms, and expert systems,
into the basic forms of artificial intelligence.

Fuzzy control emerged on the foundations of Zadeh’s fuzzy set theory [1]. It is
a methodology of intelligent control that mimics human thinking and reacting by
using a multivalent fuzzy logic and elements of artificial intelligence (simplified
deduction principles) [2]. The word “fuzzy” is used here to describe terms that are
either not well-known or not clear enough, or their closer specification depends on
subjectivity, estimation, and even the intuition of the person who is describing these
terms. In everyday life there are a lot of situations characterized by a certain degree
of ambiguity whose description includes terms and expressions such as majority,
many, several, not exactly, or quite possible, all of which can be qualified as “fuzzy
terms.” On the other hand, terms like false, true, possible, necessary, none, or all
reflect crisp meanings, and in such a context, represent “exact terms.”

The fuzzy logic concept had very strong opponents in the beginning. They
believed that any form of vagueness or imprecision could be equally well described
with the theory of probability. Furthermore, opponents claimed that fuzzy logic
theory was only a theory without real potential for practical applications. In the
field of automatic control, the strongest opponents assumed that traditional control
techniques were superior to fuzzy logic or at least equal in effect. In one of his
interviews, Zadeh commented that the process of accepting fuzzy logic as a method

1
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2 Fuzzy Controller Design

of solving technical problems would require long-term education and a change in
the basic approach to scientific analysis and engineering design [3].

These days quite a few engineers know very well that by replacing normally
used numbers and sets with fuzzy numbers and sets, every theory can become fuzzy.
In that sense, the classical theories of numbers and sets we know and use today are
just a boundary form of theories based on fuzzy numbers and sets. For example, in
control literature one may find a representation of a classical proportional-integral
(PI) controller as a boundary form of a fuzzy controller [4–6], and some classical
control methods are analyzed by means of fuzzy logic [7].

While attempting to describe some system, simple or not, one must face
the fact that all possible events or phenomena in the system cannot be identi-
fied. Even if one would be able to do it, a problem could still remain: how
often does a particular event occur in the system? Incomplete knowledge of
events and unpredictable frequency of their occurrences impose the usage of
approximate system models. In control system theory there are excellent tools
for approximate modeling of systems and for design of analytically founded
control algorithms. For the systems, which can be well-described with a linear
second-order model there are a number of procedures for design of PI and PID
controllers, while for the systems modeled with high-order linear models one
can use, for example, pole-placement design methods or methods carried out
in the frequency domain. Also, we can derive control algorithms by optimizing
some criterion (e.g., integral criterion, minimum of variance, etc.). In general,
the better the match-up of a process and a model, the better the response of a
system controlled by control algorithms designed upon an approximate system
model.

The problem arises when the model of a system is unknown or when it is
known, but so complex that the design of a controller by using classic analytical
methods would be totally impractical. There are also situations when the model
of a system is highly nonlinear and where variations of parameters and rates of
parameter changes may be extremely high. Some of these situations can be solved
by using adaptive control methods [8–11], but their basic mathematical apparatus
is rather complex and very often ends in a large number of computing iterations.
Although adaptive control schemes using a reference model and signal adaptation
act instantaneously (in the first iteration), only simplifications and modifications
make their application possible in practice.

A special class of control problems is control of highly nonlinear processes
that are exposed to strong influence of external disturbances. With such systems,
the only remaining solution is actually carried out in practice: such systems are
controlled by operators using their years-long experience and knowledge about
static and dynamic characteristics of the system. The achieved quality of control
is usually proportional to the operators’ knowledge and experience. The oper-
ator’s experience is connected to monitoring of relevant process variables, and
depending on their states and deviations from reference values, operators decide
where, how, and how much they need to act on the process to achieve a given
control goal. In other words, they execute their “program” or “control algorithm”
according to their experience and by applying the following typical pattern of
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Introduction 3

decision making:

IF

such and such states of process variables (i.e., inputs) are

THEN

such and such control actions (i.e., outputs) are needed.

Understanding such a type of control is very easy since there are many examples
from everyday life, such as driving a car, where such a control pattern is regularly
applied. Let us suppose a situation where the driver of a car has just started over-
taking the car in front of him, while another vehicle still far away is approaching
from the opposite direction. Among many possible driver’s actions, let us mention
just a few:

Rule 1 (R1)

IF

the car that is approaching is far away

AND

if the car in front of the driver’s car is driving very slowly

THEN

speed up moderately and pass the car in front.

Rule 2 (R2)

IF

the car that is approaching is far away

AND

if the car in front of the driver’s car is driving at normal speed

THEN

speed up greatly and pass the car in front.

Rule 3 (R3)

IF

the car that is approaching is far away

AND

the speed of the car that is approaching is high

AND

if the car in front of the driver’s car is driving at normal speed

THEN

give up overtaking the car in front and continue driving at the same speed.
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4 Fuzzy Controller Design

From this example we may conclude that a driver of a car must process a
great amount of input information simultaneously and make effective decisions,
although neither input information (distance, speed) nor decided actions are actu-
ally precisely (crisply) determined. Linguistic qualifications far away, high speed,
normal speed, speed up moderately, speed up greatly met in rules R1, R2, and R3

will vary in interpretation from driver to driver, but nevertheless, they are very
effective in practice and car collisions, considering the number of cars driving at
the same time, are very rare. This proves that our human actions are based on very
effective action provocation mechanisms that depend exclusively on imprecise
linguistic qualifications of causes and consequences expressed in the form of very
simple to very complex action rules.

The main problem a control designer is confronted with is how to find a
formal way to convert the knowledge and experience of a system operator into
a well-designed control algorithm. By using multivalent fuzzy logic, linguistic
expressions in antecedent and consequent parts of IF–THEN rules describing the
operator’s actions can be efficaciously converted into a fully-structured control
algorithm suitable for microcomputer implementation or implementation with
specially designed analog (digital) fuzzy processors [12–16]. IF–THEN rules
themselves have already been used in bivalent logic control concepts, but such
gradation of the truth (fulfilment) of antecedent and consequent parts of IF–THEN
rules is a qualitatively new moment brought about by the introduction of fuzzy
logic.

Due to the fact that a fuzzy algorithm has the characteristics of a universal
approximator, a designer is able to model (identify) an unknown process with
a set of IF–THEN fuzzy rules [17–20], which makes possible the introduction of
feed-forward control elements for fuzzy model-based prediction of future system
states [21]. There are also situations when operators are not able to express the
rules of how they are conducting the system (usually they would say — by a
“feeling”). In that case the way out is to identify the control actions and describe
them by using fuzzy rules [22].

It must be noted that application of fuzzy logic is not limited only to systems
difficult for modeling [23–29]. By application of fuzzy logic on systems with
known, but complex mathematical models, the time needed for controller design
and for practical application can be significantly shortened, sometimes up to ten
times [30], although the improvement in achieved control quality may not always
be so high.

The nonlinear character of a fuzzy controller may contribute to a higher robust-
ness of systems, which contain nonlinear elements but otherwise have a simple
structure from the control point of view.

Besides having the role of the principal controller in a control loop, fuzzy
logic algorithms can be equally well used in adaptive control schemes, perform-
ing different tasks like tuning parameters of conventional controllers [31–35]
or working in parallel with other methods of intelligent control like genetic
algorithms [36] or artificial neural networks [37–42]. A very informative review
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Introduction 5

of neuro-fuzzy control structures can be found in Reference 43. What makes
fuzzy logic algorithms attractive for applications is also the fact that the level
of knowledge needed for their design does not have to be as high as it usually
must be for the design of a conventional controller controlling a very complex
system.
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2 Fuzzy Controller Design

In this chapter we describe the basic definitions of fuzzy sets and operators on fuzzy
sets. As they are used throughout the book it is necessary to start by introducing
basic definitions of terms such as linguistic variables, fuzzy propositions, relations,
implications, and inference engines. An emphasis is given to the description of the
fuzzy controller structure that is most commonly used in practice, as well as to the
several ways of defuzzification, that is, calculation of the crisp controller output
value.

2.1 FUZZY SETS

We will use the following example to help us define a fuzzy set. Let A be a set of
all integers greater than 10. We write

A = {x: x ∈ ℵ, x > 10} (2.1)

Let B be a set of all integers much greater than 10. Mathematically, this statement
can be written as

B = {x: x ∈ ℵ, x � 10} (2.2)

The main difference between these two sets is that relation (2.1) completely defines
set A, while relation (2.2) is not sufficient for a complete definition of set B. The
reason is the vagueness of the term much greater. It is clear that 11, 12, 1178, and
2,075 are elements of set A. Most of the people will agree that 11,234 and 2310

undoubtedly belong to set B, but it is doubtful whether 15 or 50 are elements of B.
The problem is how to determine the lowest integer which is much greater than 10.

This problem can be solved if one uses an alternative way of describing a
set. According to traditional set theory, a set can be defined by its characteristic
function. In other words, instead of individually declaring each element of a set
we define a function that can take on values 1 or 0 depending on full membership
or no membership of a particular element, respectively.

Definition 2.1 (Characteristic function, crisp set) Let S be a set from the
domain X . A characteristic function of the set S attains value µS(x) = 1 if x ∈ S,
and µS(x) = 0 if x /∈ S, µ: X → {0, 1}. Set S with its characteristic function is
called a crisp set.

Defined as it is, the characteristic function cannot describe set B, that is, it
cannot cope with the vagueness in determining the lowest integer which would

9
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10 Fuzzy Controller Design

10 110 x

mB(x)
1

0

FIGURE 2.1 A graphical representation of a fuzzy set.

belong to set B. However, broadening the notion of a characteristic function offers
an elegant way to define set B. Instead of determining the lowest integer belonging
to set B, we may say that all integers greater than 10 belong to set B but with a
different membership degree. The characteristic function, obtaining partial, or
graded, values from the interval [0, 1], now becomes a membership function.

Definition 2.2 (Membership function and fuzzy set) Let F be a set from the
domain X. A membership function µF(x) of set F is a function that assigns value,
or membership degree, to every x ∈ F, µ: X → [0, 1]. Then set F is called a
fuzzy set.

Apparently, crisp sets may be treated as a special case of fuzzy sets since the
characteristic function can assume only margin values from the interval [0, 1] on
which membership function is defined.

Now we can completely define fuzzy set B as a set of pairs:

B = {(µB(x), x): x ∈ ℵ}

µB(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, for x < 10
x − 10

100
, for 10 ≤ x ≤ 110

1, for x > 110

(2.3)

From the above definition we can see that numbers with membership degree 0 do
not belong to fuzzy set B. Number 11 is an element of B with membership degree
µB(11) = 0.01, while membership degree of number 100 is µB(100) = 0.9. Fuzzy
set B is pictured in Figure 2.1.

From fuzzy set Definition 2.2, it follows that two fuzzy sets having the same
elements will be equal only if their membership functions are equal. This means
that each element belonging to one fuzzy set must belong to the other fuzzy set
with the same membership degree.

Definition 2.3 (Fuzzy subset) Fuzzy set C is a fuzzy subset of fuzzy set B if

∀x ∈ X: µC(x) ≤ µB(x) (2.4)

© 2006 by Taylor & Francis Group, LLC
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0

FIGURE 2.2 Typical shapes of membership functions: 1 — triangular, 2 — trapezoidal,
3 — Gaussian, 4 — bell-shaped, 5 — singleton.

In fuzzy sets theory, the range of possible quantitative values considered for
fuzzy set members is called universe of discourse. Universe of discourse can
be continuous or discrete. Discrete universe of discourse is normally bounded
and contains a finite number of elements. A fuzzy set with discrete universe of
discourse is called a discrete fuzzy set. The measure of fuzziness of each element is
determined using a membership function spread either over a part or over the entire
universe of discourse. As we have stated, the membership function converts the
degree of fuzziness into the normalized interval [0, 1] where the boundary values
0 and 1 resemble the membership degrees of crisp set members. Membership
functions can attain different forms. However, triangular, trapezoidal, Gaussian,
and bell-shaped forms, shown in Figure 2.2, are used more than others:

µF(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, for x < a
x − a

b − a
, for a ≤ x < b

c − x

c − b
, for b ≤ x ≤ c

0, for x > c

triangular

µF(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for x < a
x − a

b − a
, for a ≤ x < b

1, for b ≤ x < c
d − x

d − c
, for c ≤ x ≤ d

0, for x > d

trapezoidal

µF(x) = e−(x−cF )2/w Gaussian, µF(x) = 1

1 + (x − cF)2
bell-shaped

© 2006 by Taylor & Francis Group, LLC
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12 Fuzzy Controller Design

These fuzzy sets are defined for variable x. Anticipating that different variables,
for example, x and y, may have fuzzy sets with identical names (indices), it is
convenient to introduce modified membership function notation µx

F = µF(x).
Such notation can, for example, discern notation for µ

y
F = µF(y). This allows

further generalizations, such as µx
i = µi(x), i = 1, . . . , l.

Definition 2.4 (Center and nucleus of fuzzy set) A singular value x = cF =
cx

F ∈ F with the maximum degree of membership, µF(cF) = 1, is called the
center of fuzzy set F. If there exists a set of values with the maximum degree of
membership,

nuc(F) = {x ∈ X: µF(x) = 1} (2.5)

then nuc(F) is called the nucleus of fuzzy set F.

The center of fuzzy set F with a nucleus is defined as cx
F = (xa + xb)/2; where

xa and xb are the boundaries of the nucleus. Fuzzy set F, having the center cx
F as

a typical fuzzy set with a singleton (which is often done in the case of output fuzzy
sets of fuzzy controllers), we must decide which value is representative and unique
for different shapes of fuzzy sets, in order to be able to make such a replacement.
Due to the fact that fuzzy sets can be either uniform or not, symmetrical or not,
bounded or not — a good measure of their geometrical shape is the centroid, the
point within a fuzzy set designating its center of gravity (COG). For example, the
centroid of a triangular fuzzy set is the concurrence point of its three medians.

For a symmetrical fuzzy set the projection of its centroid on universe of dis-
course is equal to the center of the fuzzy set. That is why the center cx

F is often
referred to as the centroid. Fuzzy singletons are frequently used in fuzzy controller
design since they reduce calculation efforts and provide shorter control intervals,
which are desirable features in real-time control applications. We shall return to
this issue in the chapters that follow.

Definition 2.5 (Adjacent fuzzy sets) Let two fuzzy sets, F and T , with centers
cx

F and cx
T , cx

F < cx
T , be defined from the same universe of discourse X. If there does

not exist a fuzzy set S, defined from X, with the center cx
S , such that cx

F < cx
S < cx

T ,
then F and T are called adjacent fuzzy sets.

The importance of adjacency will become apparent in the next paragraph where
we describe properties of a set of rules formed by fuzzy sets.

Operations union, intersection, and complement are strictly defined on crisp
sets. They are unambiguous because statements in traditional set theory are formed
by and, or, and not operators which have well-defined semantics. In traditional set
theory statement “x ∈ B and x ∈ C” is true only if both declarations are true. In
other words, a new set can be formed from sets B and C and x will belong to this
new set only in case it is an element of both set B and set C. In fuzzy set theory
the interpretation of statement “(x ∈ B: µB(x) = 0.1) and (x ∈ C: µC(x) = 0.3)”

© 2006 by Taylor & Francis Group, LLC
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is not that simple. Namely, it is not apparent how to determine the membership
degree of x in the new fuzzy set formed by fuzzy sets B and C.

There are many different suggestions for determining the membership function
of a fuzzy set that is the result of union, intersection, and complement of other
fuzzy sets. Zadeh proposed the following definitions of these operations:

µB∩C(x) = min(µB(x), µC(x))

µB∪C(x) = max(µB(x), µC(x))

µB̄(x) = 1 − µB(x)

(2.6)

According to (2.6), statement “(x ∈ B: µB(x) = 0.1) and (x ∈ C: µC(x) =
0.3)” form a new fuzzy set D = B ∩ C with µD(x) = 0.1.

It should be noted that the above definitions are also valid for crisp sets. If a
membership function is replaced with a characteristic function that obtains only
two values, 0 and 1, then Zadeh’s operators will give the same results as standard
and, or, and not operators.

In general, operators on fuzzy sets use triangular norms — a class of binary
functions, which may be divided into T-norms (AND operators) and S-norms (OR
operators) [1,2]. T -norms perform an intersection operation on fuzzy sets and
have a particular importance in fuzzy logic control. T -norm is usually denoted as
T(a, b). S-norms represent a union operation denoted as S(a, b).

Almost all T -norms used in fuzzy control applications can be derived from
four basic T -norms listed below:

1. T(µB, µC) = min(µB, µC)

2. T(µB, µC) = µB · µC

3. T(µB, µC) = max(0, µB + µC − 1)

4. T(µB, µC) =
⎧
⎨

⎩

µB, if µC = 1
µC , if µB = 1
0, if µB, µC < 1

(2.7)

The differences between these four T -norms are shown in the following example.

Example 2.1 Four basic T -norms.

We will now consider two fuzzy sets, B and C, which are defined as:

B = {(µB(x), x): x ∈ ℵ}, µB(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0.1 · x, for x < 10
20 − x

10
, for 10 ≤ x ≤ 19

0, for x > 19

© 2006 by Taylor & Francis Group, LLC
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14 Fuzzy Controller Design

FIGURE 2.3 Fuzzy sets B and C considered in Example 2.1.

C = {(µC(x), x): x ∈ ℵ} µC(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for x < 7

x − 6

12
, for 7 ≤ x ≤ 18

30 − x

12
, for 19 ≤ x ≤ 29

0, for x > 29

Fuzzy sets B and C are pictured in Figure 2.3. Numerical values of the corre-
sponding membership functions and results obtained after the application of four

Membership functions calculated in Table 2.1 for four different T -norms are

2.2 LINGUISTIC VARIABLES

In everyday communication we often use short sentences, which carry the same
amount of information as their longer counterparts. When we say that “the car is far
away” we actually mean that “the car’s distance belongs to the far away (very long)
category.” Even if we knew that the distance was exactly 350 m, in everyday com-
munication we would prefer saying that “the car is far away,” as we would assume
that there is a common understanding what a very long distance in traffic terms
is. The term distance may attain two different values: numerical (350 m) and lin-
guistic (far away). Variables, for which values are words or sentences, rather than
numbers, are called linguistic variables. Continuing with our car analogy — the
driver makes decisions about her/his actions based on imprecise linguistic qualifi-
cations of input information. Therefore, the strategy of driving a car is expressed in
the form of IF–THEN rules, which contain linguistic variables: usually the names
of inputs and outputs, rather than their concrete values (numbers). As Zadeh has
stated, linguistic variables may assume different linguistic values over a specified
universe of discourse. This means that linguistic values defined by an appropriate

© 2006 by Taylor & Francis Group, LLC

basic T -norms are given in Table 2.1.

represented graphically in Figure 2.4.

m
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TABLE 2.1
Numerical Values of Membership Functions Obtained after Application of
Four Basic T -Norms from (Equation 2.7) on Fuzzy Sets B and C

x µB (x) µC (x) min(µB , µC ) µB · µC max(0, µB + µC − 1) T -norm 4

0 0 0 0 0 0 0
1 0.100 0 0 0 0 0
2 0.200 0 0 0 0 0
3 0.300 0 0 0 0 0
4 0.400 0 0 0 0 0
5 0.500 0 0 0 0 0
6 0.600 0 0 0 0 0
7 0.700 0.083 0.083 0.058 0 0
8 0.800 0.167 0.167 0.133 0 0
9 0.900 0.250 0.250 0.225 0.150 0

10 1.000 0.333 0.333 0.333 0.333 0.333
11 0.900 0.417 0.417 0.375 0.317 0
12 0.800 0.500 0.500 0.400 0.300 0
13 0.700 0.583 0.583 0.408 0.283 0
14 0.600 0.667 0.600 0.400 0.267 0
15 0.500 0.750 0.500 0.375 0.250 0
16 0.400 0.833 0.400 0.333 0.233 0
17 0.300 0.917 0.300 0.275 0.217 0
18 0.200 1.000 0.200 0.200 0.200 0.200
19 0.100 0.917 0.100 0.092 0.017 0
20 0 0.833 0 0 0 0
21 0 0.750 0 0 0 0
22 0 0.667 0 0 0 0
23 0 0.583 0 0 0 0
24 0 0.500 0 0 0 0
25 0 0.417 0 0 0 0
26 0 0.333 0 0 0 0
27 0 0.250 0 0 0 0
28 0 0.167 0 0 0 0
29 0 0.083 0 0 0 0
30 0 0 0 0 0 0

semantic rule represent nothing but informative attributes about the physical values
in a part of a specified universe of discourse.

A linguistic variable can be noted in this way:

[x, T , X, M] (2.8)

where x is the name of a linguistic variable, T = {Ti} is the set of linguistic
values which x may attain, i = 1, . . . , l, X is the quantitative universe of discourse

© 2006 by Taylor & Francis Group, LLC
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m1

x10 20 30

mB (x)* mC (x)

m
1

min(mB (x), mC (x))

m
1

x10 20 30
m

1

max(0, mB (x )+mC (x )–1)

FIGURE 2.4 T -norms calculated in Example 2.1.

(continuous or discrete) of x, M is the semantic function which associates linguistic
values in T with the universe of discourse X.

Semantic function M basically describes the distribution of fuzzy sets which
represent linguistic values of the variable x over a range of numerical values that x
may attain. In our example, the variable distance may have linguistic values such
as very long (far away), long, short, close, and very close. These values may be
associated with completely different physical (numerical) values. For example,
the same linguistic value can be used for the distances of 5 km (e.g., in aircraft
control), 10 m (e.g., in car control), or 3 cm (e.g., in servo control).

Definition 2.6 (Fuzzy proposition) Let x ∈ X be a linguistic variable and Ti(x)
be a fuzzy set associated with a linguistic value Ti. Then the structure

Pi: x is Ti (2.9)

written in modified notation also as Px
i : x is Ti, represents a fuzzy proposition.

A fuzzy proposition is interpreted by a process known as fuzzification.

Definition 2.7 (Fuzzification) Let x ∈ X be a linguistic variable and Ti(x) be
a fuzzy set associated with a linguistic value Ti. The conversion of a physical
(numerical) value of x into a corresponding linguistic value by associating a mem-
bership degree, x → µTi(x) is called fuzzification. The membership degree µTi(x)
represents the fuzzy equivalent of the value of x.

The definitions of a linguistic variable, as well as definitions of a fuzzy
proposition and fuzzification are illustrated with the following example.

Example 2.2 Linguistic variable, fuzzy proposition, and fuzzification.

© 2006 by Taylor & Francis Group, LLC
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Suppose that a fuzzy logic controller input takes values from 0 to 100. Then a
possible definition of a fuzzy controller input as a linguistic variable could be:

x: controller input, T : {large, medium, small, zero}, X: [0, 100], and M: X → T

defined as:

large = {(µL(x), x) | x ∈ X}, medium = {(µM(x), x) | x ∈ X}
small = {(µS(x), x) | x ∈ X}, zero = {(µZ(x), x) | x ∈ X}

µL(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, for x < 70
x − 70

20
, for 70 ≤ x ≤ 90

1, for x > 90

µM(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, for x < 30
x − 30

20
, for 30 ≤ x < 50

75 − x

25
, for 50 ≤ x ≤ 75

0, for x > 75

µS(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, for x < 15
x − 15

15
, for 15 ≤ x < 30

45 − x

15
, for 30 ≤ x ≤ 45

0, for x > 45

µZ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, for x < 5
20 − x

15
, for 5 ≤ x ≤ 20

0, for x > 20

According to semantic function M, we can express the fact that the numerical
value of the “controller input” is equal to 55 using a fuzzy proposition

controller input is medium

The fuzzy equivalent of the value 55 is obtained by fuzzification, that is, by
inclusion of 55 in relation that describes the membership function of the fuzzy set
medium(x):

µM(55) = 75 − 55

25
for 50 ≤ x ≤ 75 = 0.8

Fuzzy propositions are the building blocks of a fuzzy controller. They are
elements used for description of someone’s experience or knowledge. Very often,

© 2006 by Taylor & Francis Group, LLC
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18 Fuzzy Controller Design

two or more fuzzy propositions are put in relation (in case of multiple input-
multiple output controller configurations) to describe more complex knowledge
about process control.

Definition 2.8 (Fuzzy relation) Let x ∈ X and y ∈ Y be linguistic variables,
and Ti(x) and Fj(y) be fuzzy sets corresponding to linguistic values Ti and Fj,
respectively. Then the structure

Rij: x is Ti ℘ y is Fj

denoted as

Rij: Px
i ℘ Py

j

(2.10)

represents a two-dimensional fuzzy relation where ℘ represents an operator.

It should be noted that the selection of ℘ directly influences the structure of
the designed fuzzy controller [3,4].

If ℘ were the classical AND operator and the propositions in (2.10) had crisp
sets (with only true or false states), the relation would be true only if both proposi-
tions were true. On the other hand, the degree to which fuzzy relation (2.10) is true
depends on the operator ℘ and the degree of each proposition is determined by
the membership functions µTi(x) and µFi(x). This implies the existence of a fuzzy
relation membership function. Accordingly, fuzzy relation (2.10) can be noted in
the following way:

Rij = {[µRij (x, y), x, y] | x ∈ X, y ∈ Y}

µRij (x, y) = ℘{µTi(x), µFj (y)}
(2.11)

where µRij (x, y): [0, 1] × [0, 1] → [0, 1].
Two-dimensional fuzzy relations are actually two-dimensional fuzzy sets

which can be graphically depicted for Ti(x) = T1(x), Fj(y) = F1(y), as shown in

functions are selected. It may be noted that in this case the membership function
µR11(x, y) represents the surface, which creates a pyramid with the x–y plane.

2.3 FUZZY RULES

We have already mentioned that the goal of fuzzy controllers is to mimic a human
operator’s actions or to make humanlike decisions by using the knowledge about
controlling a target system (without knowing its model). This is achieved with fuzzy
rules that constitute a fuzzy rule base. The fuzzy rule base is a central component
of the fuzzy controller and it represents the “intelligence” in any fuzzy control
algorithm [5–7]. This is the place where the designer’s knowledge and experience
must be correctly interpreted and organized into an appropriate set of rules.

© 2006 by Taylor & Francis Group, LLC

Figure 2.5, where a T -norm min is applied and triangular shapes of membership
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mF1
(y)

mT1
(x)
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(x,y )

mF1
(y �)

mT1
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(x�,y�)

x 

y

m

x�

y �

FIGURE 2.5 A graphical interpretation of a two-dimensional fuzzy relation.

Definition 2.9 (Fuzzy rule) Let A and B be either fuzzy relations or fuzzy
propositions. Then the structure

FR: IF A THEN B (2.12)

is called a fuzzy rule.

As we can see, every fuzzy rule can be divided into an antecedent part (IF . . .)
and a consequent part (THEN . . .), with antecedent parts describing causes and
consequent parts describing consequences relevant for control action [8]. Such
a form of fuzzy rules enables nonlinear mapping of inputs and outputs and thus
enables creation of versatile static nonlinear control functions. The nonlinear char-
acter of these functions allows the fuzzy logic controller to cope successfully with
complex nonlinear control problems.

In case of dealing with the most frequently used two-input one-output fuzzy
controller fuzzy rules that compose the fuzzy rule base have the form of “IF relation
THEN proposition,” which corresponds to the general form (2.12).

The organization of a fuzzy rule base is normally considered to be the most
demanding step in the process of fuzzy controller design. When we consider the
other parts of the fuzzy controller, we may say that they are only a service to
the fuzzy rule base. Besides, the number of input fuzzy sets and the shape of
their membership functions, the way how they are distributed along the universe
of discourse and finally, the choice of a procedure for calculation of the fuzzy
controller output have less influence on the fuzzy control algorithm than the rule
base itself.

The size of the fuzzy rule base depends on the number of fuzzy rules, while
the number of fuzzy rules depends on the number of input and output variables
and on the number of linguistic values (fuzzy sets) associated with each of the
variables. The number of fuzzy rules will decrease if the knowledge base about
process control is incomplete and some fuzzy rules stay undefined.

© 2006 by Taylor & Francis Group, LLC
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In general, the formation of fuzzy rules must follow some common sense
in order to preserve basic fuzzy rule base characteristics such as consistency
(contradiction), continuity, and completeness.

Definition 2.10 (Consistency of fuzzy rule base) A fuzzy rule base is consistent
if it does not include rules FRi and FRj such that

FRi: IF Rpq THEN Pm

FRj: IF Rpq THEN Pn

that is, there are no rules, which have equal antecedent parts and different
consequent parts. A designer should take care that fuzzy rules do not become
contradictory.

Prior to defining continuity of a fuzzy rule base, we need to explain the notion
of adjacent fuzzy rules. Adjacency is related to antecedent parts of fuzzy rules
and it will be explained for rules having the two-dimensional relation (2.10) as
an antecedent part. The extension of this principle to rules with multidimensional
relations is relatively straightforward.

Definition 2.11 (Adjacent fuzzy rules) Let fuzzy rule FRi have an antecedent
relation Rpq: Px

p AND Py
q and fuzzy sets associated with propositions Px

p and Py
q

be Fp(x) and Tq(y), respectively. If there exists fuzzy rule FRj with an antecedent
relation Rvw: Px

v AND Py
w such that a fuzzy set associated with the proposition

Px
v is adjacent to fuzzy set Fp(x) and fuzzy set associated with proposition Py

w is
adjacent to fuzzy set Tq(y), then FRi is adjacent to FRj.

If we think of the rule base as a two-dimensional table, we may figure out from
Definition 2.10 that a fuzzy rule with a two-dimensional antecedent relation can
be surrounded in such a table with eight adjacent rules at most.

Definition 2.12 (Continuity of fuzzy rule base) For a fuzzy rule base to be
continuous propositions in consequent parts of any two adjacent fuzzy rules must
be (i) associated with adjacent fuzzy sets, or (ii) the same.

The continuity of fuzzy rules will provide the continuity of controller output,
which is a desirable feature in all control applications.

Definition 2.13 (Completeness of fuzzy rule base) Fuzzy rule base is com-
plete if for each relation, Rijk..: Px

i ℘ Py
j ℘ Pz

k ℘ · · · , that can be created
from input linguistic variables there exists a fuzzy rule with relation Rijk.. as an
antecedent part.

In practice, the completeness of a fuzzy rule base is rarely achieved [9–11].
For some control problems, only a few rules may be sufficient to provide good
control quality, while in other cases certain combinations of linguistic values at

© 2006 by Taylor & Francis Group, LLC
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controller inputs simply do not or cannot occur. Incompleteness may also reflect
a lack of the operator’s knowledge about process control.

Besides fuzzy propositions and relations, the consequent parts of fuzzy rules
may also have functions and expressions, which explicitly determine the depen-
dence of controller inputs and outputs. This type of controller is often referred to

2, respectively). The rules of such a controller have the form

FRi: IF Rpq THEN ui = ρi(x1, x2, . . . , xn) (2.13)

where ρi is a function and x1, x2, . . . , xn are numerical (quantitative) values of
inputs.

If ρi is a linear function, ρi = a0i +a1ix1 +a2ix2 +· · ·+anixn, and coefficients
a1i = a2i = · · · = ani = 0, then the rules of the Takagi–Sugeno controller become
identical to the rules of a fuzzy controller containing singletons in the consequent
part of the rule

FRi: IF Rpq THEN ui = a0i = Apq (2.14)

where Apq is a fuzzy singleton.
Most fuzzy controllers described in this book have this simple form, usually

called zero-order Takagi–Sugeno controller. Due to its simplicity and efficiency,
this form is prevalent in industrial applications.

Example 2.3 Fuzzy rule base properties.

Let us characterize the behavior of an air-conditioning system, which bases its
actions on outdoor and indoor temperatures, by a fuzzy rule base. We can define
the following linguistic variables:

outdoor temperature = {low, moderate, high}

indoor temperature = {cold, warm, hot}

air-conditioner action = {cool, none, heat}

Fuzzy relations, used for antecedent parts of fuzzy rules, relate two input
variables, OT = outdoor temperature and IT = indoor temperature. The output
variable OA = air-conditioner action will be used in the consequent part of fuzzy
rules.

© 2006 by Taylor & Francis Group, LLC
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Since there are three linguistic values that each input may take, there are nine
possible relations:

R11:   OT is low and IT is cold

R12: OT is low and ITis warm

R13: OT is low and IT is hot

R21: OT is moderate and IT is cold

R22: OT is moderate and IT is warm

R23: OT is moderate and IT is hot

R31: OT is high and IT is cold

R32: OT is high and IT is warm

R33: OT is high and IT is hot

Three linguistic values are defined over the universe of discourse of the output
variable, which means that three propositions can be identified:

P1: OA is cool

P2: OA is none

P3: OA is heat

Having relations and propositions that form antecedent and consequent parts
of fuzzy rules we can now start defining the fuzzy rule base. Based on our exper-
ience we may say, for example, that “If outdoor temperature is low and indoor
temperature is cold then the air-conditioner should heat the room,” or in the form
of fuzzy rule, FR1: IF R11 THEN P3. By following the same reasoning we can
form a fuzzy rule base for air-conditioner functioning, which includes subsequent
rules:

FR2: IF R22 THEN P2

FR3: IF R13 THEN P2

FR4: IF R21 THEN P3

FR5: IF R33 THEN P1

FR6: IF R32 THEN P1

FR7: IF R12 THEN P3

If we analyze properties of a rule base defined in such a way, it becomes clear
that it is not complete since it does not include rules with relations R23 and R31.

© 2006 by Taylor & Francis Group, LLC
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Meanwhile, the fuzzy rule base is consistent as there are no rules with the same
antecedent parts and different consequent parts.

In order to examine continuity, we have to define fuzzy sets associated with
linguistic values of inputs and the output. Let cool, none, and heat be represented
with fuzzy sets OAc, OAn, and OAh having centers at −10, 0, and 10 V, respec-
tively. Fuzzy sets, defined over the universe of discourse of the linguistic variable
OT, are OTl, OTm, and OTh, with centers at 5, 20, and 30◦C, while values of IT
correspond to fuzzy sets ITc, ITw, and ITh having centers at 15, 20, and 24◦C.
Once fuzzy sets are defined, we are able to see that, for example, fuzzy rules
FR3 and FR7 are adjacent. Since fuzzy sets OTm and OTh, associated with their
consequent part propositions, are adjacent, these two rules fulfil the continuity
definition. By going over all adjacent rules we can verify that the fuzzy rule base,
described above, is continuous.

2.3.1 Fuzzy Implication

Whatever form fuzzy rules may have, our main concern is how to interpret
the meaning of each rule, that is, how to determine the influence produced by
the antecedent part of the fuzzy rule on the consequent part of the rule. The pro-
cedure for assessing this influence is called fuzzy implication. As the connotations
of fuzzy propositions and fuzzy relations are expressed by membership functions,
it follows that fuzzy implications, related to rules formed of propositions and
relations, also imply membership functions as a method of interpretation.

There are many possible ways to define a fuzzy implication [13], but in control
applications two of them are preferred: a product (also called Larsen) implication,
and a min or a Mamdani implication:

µFRi = µRpq · µPm

µFRi = min(µRpq , µPm)

(2.15)

Sometimes, index FRi in Equation (2.15) is replaced with index Rpq → Pm

designating more expressively a selected fuzzy rule, FRi: IF Rpq THEN Pm.
The difference between the two implications will be shown in the example that

follows.

Example 2.4 Fuzzy implication.

Let T1 and F1 be discrete fuzzy sets with triangular membership functions
determined as: T1(x) = {(0.25, 2); (0.5, 3); (0.75, 4); (1, 5); (0.75, 6); (0.5, 7);
(0.25, 8)} and F1(y) = {(0.33, 10); (0.67, 11); (1, 12); (0.67, 13); (0.33, 14)}. Let
a fuzzy rule have the form FR1: IF R11 THEN P1, and let relation R11 have
a two-dimensional form, R11: x is T1 AND y is F1. A min operator is used as
a T -norm.

© 2006 by Taylor & Francis Group, LLC



“DK6032_C002” — 2005/11/4 — 17:35 — page 24 — #16
�

�

�

�

�

�

�

�

24 Fuzzy Controller Design

FIGURE 2.6 A fuzzy product implication applied to fuzzy rule FR1.

For the values x = 4, y = 10, the relation R11 will have the following
membership degree:

µR11(4, 10) = min[µT1(4), µF1(10)] = min[0.75, 0.33] = 0.33

We have already mentioned that the procedure which assigns degree of mem-
bership µT1 (4) to the numerical value 4 is called fuzzification. The degrees of
membership µT1(4) = 0.75 and µF1(10) = 0.33 represent fuzzy equivalents of
numbers 4 and 10, respectively.

Let proposition P1 in rule FR1 have a form, P1: u is V1, where u∈U
is a linguistic variable, and V1 is a linguistic value associated with a
fuzzy set V1(x) = {(µV1(u), u): u ∈ U}, V1(x) = {(0.25, 20); (0.5, 30);
(0.75, 40); (1, 50); (0.75, 60); (0.5, 70); (0.25, 80)}. Then the interpretation of
fuzzy rule FR1 will be given by membership function µFR1 obtained after applying
a product implication:

µFR1(4, 10, u) = µR11(4, 10) · µV1(u) = 0.33 · µV1(u)

The fuzzy product implication can be graphically presented as shown in
Figure 2.6.

In a similar way, after applying a min implication, the membership function of
fuzzy rule FR1 assumes the form:

µFR1(4, 10, u) = min[µR11(4, 10), µV1(u)] = min[0.33, µV1(u)]

The difference between the results of two fuzzy implications is obvious. With
the product implication, membership function µFR1(·) is formed by scaling µV1(u)

and it retains a triangular form after the implication, while the min implication
“clips” the original membership function µV1(u) which results in its trapezoidal
form. The difference between the results of implications suggests that the type of
implication used in fuzzy controller design will have an influence on the structure
of the fuzzy control algorithm.

If the THEN part of a fuzzy rule contains a singleton fuzzy set, then the type
of the fuzzy implication (product or min) is insignificant for the result, that is,
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y

mV1
(u )

}min => product

10 50 90

u

mFR
1(4,10,u)

1 4 9 9 12 15

x

mT1
(Y ) mF1

(Y )



“DK6032_C002” — 2005/11/4 — 17:35 — page 25 — #17
�

�

�

�

�

�

�

�

Fuzzy Controller Design 25

FIGURE 2.7 A fuzzy min implication applied to fuzzy rule FR1.

the resulting fuzzy rule membership function will be the same. In our example,

µFR1(4, 10, u) = min[µR11(4, 10), µV1(u)] = min[0.33, 1] = 0.33

µFR1(4, 10, u) = µR11(4, 10) · µV1(u) = 0.33 · 1 = 0.33

As shown in Example 2.9, a fuzzy implication yields a resultant output fuzzy
set for each activated fuzzy rule, but it does not define how this fuzzy set really
contributes to the crisp output value of a fuzzy controller. Namely, the crisp value
of any input variable usually belongs to more than one fuzzy input set which in
turn activates more than one fuzzy rule and, therefore, more than one output fuzzy
set contributes to the output.

In general, there are two principal ways of computing the contribution of each
activated rule: by using either an individual rule-based or a composition-based
inference engine.

The first step of individual rule-based inference, which is predominantly used
in fuzzy controller design, has been described in the previous example. For each
activated rule we first calculate the membership function of the IF part of the rule
(e.g., relation Rpq), and then we calculate the influence on the HEN part of the rule
(e.g., proposition Pm). When this procedure is carried out for all activated fuzzy
rules, a process called aggregation concludes individual rule-based inference with
one output fuzzy set, which may be used thereafter for the computation of crisp
output value [14].

Individual fuzzy rules can be composed in different ways, depending on which
aggregation operator we use. There are different aggregation operators, but the
max operator and the sum operator are the most frequently used operators. Their
definitions follow.

Definition 2.14 (Max–min aggregation) Let r denote a number of fuzzy rules
activated by xk and yk and µFRi(xk , yk , u), i = 1, . . . , r, represent a fuzzy inter-
pretation of the ith rule. If a max operator is used as an aggregation operator, then
the meaning of all fuzzy rules is defined as

µU(xk , yk , u) = µ⋃r
i=1 FRi(xk , yk , u) = max{minr

i=1[µRpq(xk , yk), µPm(u)]}
(2.16)
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26 Fuzzy Controller Design

According to Zadeh, such an aggregation is called a max–min aggregation. If
a min implication is replaced with a product implication, then such an aggregation
is called a max–product aggregation. The resultant output fuzzy set will have a
different form of membership function in accordance with the differences between
the two types of fuzzy implication.

Definition 2.15 (Sum–min aggregation) Let r denote the number of fuzzy rules
activated by xk and yk , and µFRi(xk , yk , u), i = 1, . . . , r, represent a fuzzy inter-
pretation of the ith rule. If a sum operator is used as an aggregation operator, then
the meaning of all fuzzy rules is defined as

µU(xk , yk , u) = µ⋃r
i=1 FRi(xk , yk , u) =

∑
minr

i=1[µRpq(xk , yk), µPm(u)]
(2.17)

This aggregation is called a sum–min aggregation. If a min implication is
replaced with a product implication, then such an aggregation is called a sum–
product aggregation. The membership function of the resultant output fuzzy set
obtained with a sum operator has a special characteristic: its values may exceed
a basic interval [0, 1].

The composition-based inference, rarely applied in control applications, uses
membership functions µFRi(x, y, u), i = 1, . . . , n, for the calculation of one
compositional output membership function µFR(x, y, u):

µFR(x, y, u) = µ⋃n
i=1 FRi(x, y, u) = max{minn

i=1[µRpq(x, y), µPm(u)]} (2.18)

The difference between membership functions (2.16) and (2.18) should be
noted. While the first one is calculated only for rules that have been activated by
a pair of crisp input values xk , yk and it is defined over domain U, the former
represents a function defined over a three-dimensional domain X × Y × U.

Once a compositional membership function µFR(x, y, u) is calculated, the
second step in composition-based inference needs to be taken: the determina-
tion of membership functions of antecedent parts of rules activated by a pair of
crisp input values xk and yk . The output fuzzy equivalent of these inputs is then
calculated as

µU(xk , yk , u) = max{minr
i=1[µRpq(xk , yk), µFR(x, y, u)]}, (2.19)

where r is the number of rules activated by inputs xk and yk , and µRpq(xk , yk) are
fuzzy equivalents of the antecedent parts of activated rules.

The difficulty with composition-based inference lies in the fact that we have to
calculate and store a “massive” compositional membership function µFR(x, y, u)

in order to be able to interpret activated rules. The second drawback is the determi-
nation and computation of membership functions µRpq(x, y) (in case of using a min
T -norm and triangular fuzzy sets they are represented by prismatic surfaces — see

© 2006 by Taylor & Francis Group, LLC
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One can argue that computer memory required for storing µFR(x, y, u) and
computational power necessary for calculations of µRpq(x, y) and µU(x′, y′, u) do
not present a problem for today’s powerful computers. That is true if we fail to
consider the range of cheap and compact microcontroller-based solutions widely
present in industrial applications.

Regarding the decision of which inference engine to use in fuzzy controller
design we should not forget the way we as operators and designers process infor-
mation. It is much easier to understand the combined influence of several rules by
considering each of them first, than try to comprehend a combined action of all
possible rules and then make conclusions about individual influences of several
activated rules.

Example 2.5 Fuzzy inference.

Suppose that two fuzzy rules

FR1: IF x is T0 AND y is F1 THEN u is V1

FR2: IF x is T1 AND y is F1 THEN u is V2

are activated by crisp input values x = 4 and y = 10, where discrete fuzzy sets
T0(x), T1(x), and F1(y) are defined as follows: T0(x) = {(0.25, −2); (0.5, −1);
(0.75, 0); (1, 1); (0.75, 2); (0.5, 3); (0.25, 4)}, T1(x) = {(0.25, 2); (0.5, 3); (0.75, 4);
(1, 5); (0.75, 6); (0.5, 7); (0.25, 8)}, F1(y) = {(0.33, 10); (0.67, 11); (1, 12);
(0.67, 13); (0.33, 14)}, while V1(u) = {(0.25, 20); (0.5, 30); (0.75, 40); (1, 50);
(0.75, 60); (0.5, 70); (0.25, 80)} and V2(u) = {(0.25, 60); (0.5, 70); (0.75, 80);
(1, 90); (0.75, 100); (0.5, 110); (0.25, 120)} are discrete fuzzy sets defined over the
universe of discourse of output variable u.

Let also an output fuzzy set be calculated by using individual rule-base infer-
ence. The procedure can then be split into two consecutive steps. First, we
determine the activation degrees of the antecedent parts of rules FR1 and FR2:

µR01(4, 10) = min[µT0(4), µF1(10)] = min[0.25, 0.33] = 0.25

µR11(4, 10) = min[µT1(4), µF1(10)] = min[0.75, 0.33] = 0.33

Then, after applying the Mamdani (min) implication, activation degrees of the
consequent parts of rules FR1 and FR2 become:

µFR1(4, 10, u) = min[µR01(4, 10), µV1(u)] = min[0.25, µV1(u)]
µFR2(4, 10, u) = min[µR11(4, 10), µV2(u)] = min[0.33, µV2(u)]

© 2006 by Taylor & Francis Group, LLC
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Since fuzzy sets V1(u) and V2(u) have seven elements, fuzzy sets that represent
rules FR1 and FR2 obtain the following form:

FR1(4, 10, u) ={(0.25, 20); (0.25, 30); (0.25, 40); (0.25, 50); (0.25, 60);

(0.25, 70); (0.25, 80)}
FR2(4, 10, u) ={(0.25, 60); (0.33, 70); (0.33, 80); (0.33, 90); (0.33, 100);

(0.33, 110); (0.25, 120)}

Once individual contributions of both rules are determined, we may proceed
with the second step — the aggregation of two fuzzy sets into one output fuzzy
set. By using Equation (2.16) we obtain:

µU12(4, 10, u) = µ⋃2
i=1 FRi(4, 10, u) = max{µFR1(4, 10, u), µFR2(4, 10, u)}

which yields the overall output fuzzy set U12(u):

U12(u) = {(0.25, 20); (0.25, 30); (0.25, 40); (0.25, 50); (0.25, 60); (0.33, 70);

(0.33, 80); (0.33, 90); (0.33, 100); (0.33, 110); (0.25, 120)}

By using Equation (2.17), where a sum aggregation is used, the fuzzy output
set attains the form:

U12(u) = {(0.25, 20); (0.25, 30); (0.25, 40); (0.25, 50); (0.5, 60); (0.58, 70);

(0.58, 80); (0.33, 90); (0.33, 100); (0.33, 110); (0.25, 120)}

Even though only individual rule-base inference is used throughout the rest
of the book, for the sake of comparison we will now show the first step in the
mechanism of compositional rule-base inference. Let us suppose that a rule base
contains only two rules already defined at the beginning of the example. According
to the compositional inference engine defined by Equation (2.18), we need to
calculate the membership functions of all triples (x, y, u) determined by the rules.
As fuzzy sets T0(x), T1(x), V1(u), and V2(u) have seven elements, and set F1(y)
has five elements, we have to evaluate [(7 × 5) × 7] × 2 = 490 values for two

first rule in the rule base.
After calculating 245 values for the first rule, we must calculate another 245

values for the second rule. Then, according to Equation (2.18), a max operation
finally gives a compositional output membership function µFR(x, y, u) with all 450
entries.

This first step in a compositional rule-base inference alone is enough to show
how many calculations and memory this method requires. Obviously, the aggre-
gation of individual rules is much simpler and easier to implement. Moreover,

© 2006 by Taylor & Francis Group, LLC

A graphical presentation of the above procedure is shown in Figure 2.8.

rules. Table 2.2 shows only the first few inputs of the membership function for the
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FIGURE 2.8 A graphical presentation of an individual rule-based inference procedure.

in case a min implication is used, the final result, an output fuzzy set, is the same
for both inference methods. That is yet another reason that justifies our preference
of using individual rule-based inference in fuzzy controller design.

2.3.2 Defuzzification

The result of fuzzy inference is a fuzzy output set. On the other hand, every
control task will imply the existence of crisp value at the fuzzy controller output.
The procedure which extracts crisp output value from a fuzzy output set is called
defuzzification.

There are various types of defuzzification [15]. However, crisp output value is
most frequently calculated according to the center of area (COA) principle:

uFC(xk , yk) =
∑

i ui · µu(xk , yk , ui)
∑

i µu(xk , yk , ui)
(2.20)

where uFC(xk , yk) represents the crisp value of the fuzzy controller output, ui ∈ U
is a discrete element of an output fuzzy set, and µu(xk , yk , ui) is its membership
function.
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TABLE 2.2
A Fraction of Membership Function Values for Compositional
Rule-Base Inference

x y u µ(x) µ(y ) µ(u) min[µ]
−2 10 20 0.25 0.33 0.25 0.25
−2 10 30 0.25 0.33 0.5 0.25
−2 10 40 0.25 0.33 0.75 0.25
−2 10 50 0.25 0.33 1 0.25
−2 10 60 0.25 0.33 0.75 0.25
−2 10 70 0.25 0.33 0.5 0.25
−2 10 80 0.25 0.33 0.25 0.25
−2 11 20 0.25 0.67 0.25 0.25
−2 11 30 0.25 0.67 0.5 0.25
−2 11 40 0.25 0.67 0.75 0.25
−2 11 50 0.25 0.67 1 0.25
−2 11 60 0.25 0.67 0.75 0.25
−2 11 70 0.25 0.67 0.5 0.25
−2 11 80 0.25 0.67 0.25 0.25
−2 12 20 0.25 1 0.25 0.25
−2 12 30 0.25 1 0.5 0.25
−2 12 40 0.25 1 0.75 0.25
−2 12 50 0.25 1 1 0.25
−2 12 60 0.25 1 0.75 0.25
−2 12 70 0.25 1 0.5 0.25
−2 12 80 0.25 1 0.25 0.25
−2 13 20 0.25 0.67 0.25 0.25
−2 13 30 0.25 0.67 0.5 0.25
−2 13 40 0.25 0.67 0.75 0.25
−2 13 50 0.25 0.67 1 0.25
−2 13 60 0.25 0.67 0.75 0.25
−2 13 70 0.25 0.67 0.5 0.25
−2 13 80 0.25 0.67 0.25 0.25

Equation (2.20) is a discrete form of the COA method. In case of a continuous
universe of discourse, sums in the equation should be replaced by integrals.

The other defuzzification method, which is very often used in control applica-
tions, is a COG method. For discrete universe of discourse, fuzzy controller output
uFC is calculated according to the COG principle in the following way:

uFC(xk , yk) =
∑

i ui
∑r

j=1 µFRj (xk , yk , ui)
∑

i
∑r

j=1 µFRj (xk , yk , ui)
(2.21)

where r is the number of fuzzy rules activated by crisp inputs xk and yk .
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From Equation (2.21) it may be seen that the COG method does not require
aggregation since it already works with individual output fuzzy sets obtained after
the processing of fuzzy rules. The COG method’s distinguished features are marked
simplicity and very low computing effort, which enables short control intervals
necessary for the control of highly dynamic systems. This is the main reason why
this method of defuzzification is used for fuzzy controller design throughout this
book. The second reason is that when max aggregation is used and several activated
rules have the same consequent part (or demand the same type of controller action),
only the one with the highest membership function will contribute to crisp output
value, negating others, if COA is used. Ignoring the rules with lower membership
functions creates a situation when greater weight could be given to rules that are
perhaps less important. The COG method takes into account such a situation and
calculates contributions of all activated rules regardless of the fact that consequent
parts may be the same.

Some designers often refer to the COG method as the center of sums defuzzi-
fication method. That is because the sums of membership functions appear in
Equation (2.21). Also, the COG method (2.21) is very often equalled to the COA
method (2.19), which stems from the fact that the COA of a membership function

u k k
COG obtained from Equation (2.21) for individual fuzzy output sets. In the text
that follows we refer to COA and COG as they are defined in Equations (2.20) and
(2.21), respectively.

While we were describing the most frequently used shapes of membership
functions, we stressed the importance of singletons — single-valued fuzzy sets —
in practical control applications. Now we can show that the simplest way of cal-
culating crisp output value is obtained by the substitution of usual (triangular,
trapezoidal, etc.) fuzzy sets with singletons. Singletons have only one element uc

corresponding to the projection of a centroid of a likely fuzzy set on the controller
output universe of discourse. Consequently, there is only one membership function
inside the inner sum of Equation (2.21), while the number of elements in the outer
sums of Equation (2.21) is equal to the number of activated fuzzy rules (i = r),
which yields:

uFC(xk , yk) =
∑r

i=1 uci · µFRi(xk , yk , uci)∑r
i=1 µFRi(xk , yk , uci)

(2.22)

By substituting Ai = uci and µi = µFRi(xk , yk , uci), Equation (2.22) gets a
simpler form:

uFC(xk , yk) =
∑r

i=1 Aiµi
∑r

i=1 µi
=

∣
∣
∣
∣ϕi = µi

∑r
i=1 µi

∣
∣
∣
∣ =

∑r

i=1
Aiϕi (2.23)

where ϕi is a fuzzy basis function describing how much each activated fuzzy rule
contributes to the crisp value of the fuzzy controller output.
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There is a special case when triangular input fuzzy sets are used and when
only two adjacent fuzzy sets overlap with the intersection point value µ(x) = 0.5.
In this case, after the application of the product implication, expression (2.23)
converts into a very simple form:

r∑

j=1

µj = 1, ϕj = µj, uFC =
r∑

j=1

Ajµj (2.24)

Defuzzification which uses singletons corresponds to the method known in
literature as height defuzzification. Having described the most frequently used
defuzzification methods we have covered all the essential terms and elements
necessary for the design and implementation of a fuzzy controller. Before we
focus on the structure of the fuzzy controller itself, and start discussion about
basic directions in controller design in order to achieve desired control quality, we
give an example of the above mentioned defuzzification methods.

Example 2.6 Defuzzification.

Let fuzzy sets FR1(4, 10, u) = {(0.25, 20); (0.25, 30); (0.25, 40); (0.25, 50);
(0.25, 60); (0.25, 70); (0.25, 80)}, and FR2(4, 10, u) = {(0.25, 60); (0.33, 70);
(0.33, 80); (0.33, 90); (0.33, 100); (0.33, 110); (0.25, 120)}, from Example 2.5,
interpret two activated rules. Having those sets, our task is to determine crisp
output value.

Let us first use COA defuzzification. It requires the aggregation of FR1 and FR2

which has been already done in Example 2.5. For max aggregation we obtained

U12(u) = {(0.25, 20); (0.25, 30); (0.25, 40); (0.25, 50); (0.25, 60); (0.33, 70);

(0.33, 80); (0.33, 90); (0.33, 100); (0.33, 110); (0.25, 120)}

The inclusion of these values in Equation (2.19) gives

uFC(4, 10) = [0.25 · 20 + 0.25 · 30 + 0.25 · 40 + 0.25 · 50 + 0.25 · 60

+ 0.33 · 70 + · · · + 0.25 · 120][0.25 + 0.25 + 0.25 + 0.25 + 0.25

+ 0.33 + · · · + 0.25]−1

= 228.5

3.15
= 72.5397

In case sum aggregation is used, the fuzzy output set attains this form:

U12(u) = {(0.25, 20); (0.25, 30); (0.25, 40); (0.25, 50); (0.5, 60); (0.58, 70);

(0.58, 80); (0.33, 90); (0.33, 100); (0.33, 110); (0.25, 120)}

© 2006 by Taylor & Francis Group, LLC
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which yields

uFC(4, 10) = [0.25 · 20 + 0.25 · 30 + 0.25 · 40 + 0.25 · 50 + 0.5 · 60 + 0.58 · 70

+ · · · + 0.25 · 120][0.25 + 0.25 + 0.25 + 0.25 + 0.5 + 0.58

+ · · · + 0.25]−1

= 281

3.9
= 72.0513

Now we can calculate output according to the COG principle. By including
FR1 and FR2 in Equation (2.21), the following crisp value is obtained:

uFC(4, 10) = [0.25 · 20 + 0.25 · 30 + 0.25 · 40 + 0.25 · 50

+ (0.25 + 0.25) · 60 + (0.25 + 0.33) · 70 + · · · + 0.25 · 120]
× [0.25 + 0.25 + 0.25 + 0.25 + (0.25 + 0.25) + (0.25 + 0.33)

+ · · · + 0.25]−1

= 281

3.9
= 72.0513

As we have mentioned earlier, this result confirms that COA and COG methods
yield the same crisp value in case sum aggregation is used.

The difference between calculations of COG and COA when max aggregation
is used is graphically presented in Figure 2.9. We can see that the shaded surface
at the cross section of two fuzzy sets will appear twice in the COG method and
only once in the COA method. From Equation (2.20) we see that the COA is
calculated by multiplying each discrete value ui ∈ U with a membership function
µu(xk , yk , ui) obtained either by individual rule-based or compositional inference
engine, while in Equation (2.21) the COG is calculated by multiplying each discrete
value ui ∈ U with the sum of membership functions of the activated fuzzy rules.
This will cause a difference between two crisp values of controller output, as shown
in the example and depicted in Figure 2.9.

Let us now assume that instead of fuzzy output sets with triangular member-
ship functions, fuzzy output singletons are used; specifically, V1(u) = {(1, 50)}
and V2(u) = {(1, 90)}. By insertion of these singletons into the equations from

FIGURE 2.9 Agraphical presentation of results obtained by COG and COA defuzzification
methods.
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Example 2.5 we have

µFR1(4, 10, u) = min[µR01(4, 10), µV1(u)] = min[0.25, 1] = 0.25

µFR2(4, 10, u) = min[µR11(4, 10), µV2(u)] = min[0.33, 1] = 0.33

Relation (2.22) gives crisp output value

uFC(4, 10) = 0.25 · 50 + 0.33 · 90

0.25 + 0.33
= 42.2

0.58
= 72.7586

It is apparent that the use of singletons enormously simplifies the defuzzifica-
tion process. Crisp output value can be calculated with only a few additions and
multiplications.

We need to point out one more detail. The very small difference between crisp
output numerical results acquired by different methods in this example may lead
to the wrong conclusion that there is not a large difference between COA and
COG. We leave it to the reader to perform an exercise in order to find out that the
activation of two additional rules with the same consequent parts

FR3: IF x is T0 AND y is F0 THEN u is V1

FR4: IF x is T1 AND y is F0 THEN u is V1

where F0(y) = {(0.33, 7); (0.67, 8); (1, 9); (0.67, 10); (0.33, 11)}, shall give COA-
and COG-based crisp output values which differ more than the values in our
example with only two rules.

2.4 FUZZY CONTROLLER STRUCTURE

The kind of a structure a fuzzy controller will have will primarily depend on the
controlled process and the demanded quality of control. Since the application area
for fuzzy control is really wide, there are many possible controller structures, some
differing significantly from each other by the number of inputs and outputs, or less
significantly by the number of input and output fuzzy sets and their membership
functions forms, or by the form of control rules, the type of inference engine, and
the method of defuzzification. All that variety is at the designer’s disposal, and it
is up to the designer to decide which controller structure would be optimal for a
particular control problem [16–19].

For example, if the controlled process exhibits integral behavior (we say it
is astatic), then a so-called non-integral or PD-type fuzzy controller whose crisp
output value represents absolute control input value could provide the required
quality of control. On the other hand, a so-called integral or PI-type fuzzy controller
whose crisp output value represents an increment of control input value could be
a satisfactory solution for the control of static systems [20,21].

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.10 The structure of a fuzzy logic controller.

The usage of fuzzy algorithms is not limited to fuzzy logic controllers. Fuzzy
algorithms can be used equally well as nonlinear adaptation mechanisms, universal
approximators or as auxiliary units added to some conventional control solutions
[12,22–25]. We should not fail to mention that fuzzy controllers are very convenient
as supervisory controllers [26]. Sometimes, fuzzy logic algorithms are also used
as modal or fuzzy state controllers [27].

Despite the variety of possible fuzzy controller structures, the basic form of
all common types of controllers consists of:

• Input fuzzification (binary-to-fuzzy [B/F] conversion)
• Fuzzy rule base
• Inference engine
• Output defuzzification (fuzzy-to-binary [F/B] conversion)

The basic structure of a fuzzy controller is shown in Figure 2.10.
Although there are many analog fuzzy controllers on the market, most of

today’s fuzzy controllers are implemented in digital form (the fuzzy controllers

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.11 A fuzzy rule base displayed as a fuzzy rule table.

described in this book belong to that group as well). This is the reason why
the term B/F conversion is introduced herein, as inputs of a digital fuzzy con-
troller are defined over discrete universes of discourse with the finite number of
elements (integers) obtained after quantization of sensor signals (A/D or f/D con-
version). Also, the output of such a controller has discrete universe of discourse,
while F/B conversion represents deffuzification, which results in digital output
value.

The fuzzy rule base, which reflects the collected knowledge about how a par-
ticular control problem must be treated, is the heart of a fuzzy controller. The other
parts of the controller perform service tasks necessary for the controller to be fully
functional.

2.4.1 Fuzzy Rule Table

The most frequently used structure of a fuzzy controller is the double input–single
output (DISO) structure. In case of designing such a controller, a very convenient
form of displaying the complete fuzzy rule base is a fuzzy rule table (Figure 2.11).
Every rule in the fuzzy rule table is represented by an output fuzzy set engaged
in the THEN part of the rule. The rule position within the fuzzy rule table is
determined by coordinates of inputs fuzzy sets engaged in the IF part of the rule.
Thus the fuzzy rule table provides straight insight into the essence of the fuzzy
rule base and automatically eliminates the creation of contradictory fuzzy rules.
The tabular format also makes an elegant entry of new fuzzy rules possible.

Figure 2.11 shows the fuzzy rule-table of a DISO fuzzy controller with l = 5
triangular fuzzy sets defined for both inputs x and y, and output u as following:
negative large (NL); negative small (NS); around zero (Z); positive small (PS);
and positive large (PL). For the studied l × l = 5×5 table a number of fuzzy rules
may increase up to l2 = 25 rules.
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FIGURE 2.12 Phase trajectories drawn in a fuzzy rule table.

IF x is Z AND y is PS THEN u is PS

A short glance at the table confirms the completeness (all 25 rules are there)
and the continuity of the displayed fuzzy rule-base (consistency is automatically
provided). A fuzzy rule table can also be viewed as the state space of two process
variables x and y (e.g., let x = e(k) — control error, y = �yf (k) — change of a
process output, where k is the substitute for kTd , and Td is a sampling interval).
By using a fuzzy rule table, we get the chance to see the corresponding phase
trajectories resulting from consecutive switching of fuzzy rules (Figure 2.12).

We have already mentioned that the design of a fuzzy controller is actually
a heuristic search for the best fitted static nonlinear mapping function between
controller inputs and outputs. As a result of mapping, every discrete trajectory
[e(k), � yf (k)] has a matching controller output series uFC(k), k = 0, 1, . . . , ∞

space composed of a phase plane and a corresponding fuzzy control surface lying
above the plane. Every controller output sequence uFC(k) belongs to this fuzzy
control surface. Any changes made in the fuzzy rule table during the design process
will change the path of phase trajectories. Therefore, these trajectories are very
useful for getting a better insight into the progress of an ongoing controller design.
By following the trajectory during a transient response one can easily find which
fuzzy control rules are activated and how they contribute to crisp output value.

A fuzzy rule table viewed as a phase plane is frequently used for heuristic
assessment of closed-loop system stability, as it offers an elegant way to investigate
the influence of individual control rules (their THEN parts) on the shape of phase
trajectories [28,29].
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FIGURE 2.13 Phase trajectory with matching fuzzy controller output.

In order to bring more generality into the process of controller design, we
would advise normalization of controller input and output domains. The universe
of discourse of fuzzy controller inputs and outputs varies from one application
to another. To avoid having to make adjustments for each application, inputs and
outputs can be scaled to fit the normalized universes of discourse. When we use the
term normalized fuzzy controller, we have in mind a controller whose fuzzification,
fuzzy rule base and defuzzification parts operate with normalized values usually
lying in the interval [−1, 1].

The normalization of inputs should be performed before proceeding with
fuzzification:

xN(k) = Kxx(k) (2.25)

where x is controller input, xN is normalized controller input, and Kx is the scaling
factor.

Thus, for example, control error e(k) and change in process output �yf (k)

after normalization become

eN(k) = Kee(k)

�yN(k) = K�y�yf (k)

where Ke and K�y are scaling factors.
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TABLE 2.3
Some Commonly Used Fuzzy Controller Inputs

Name of linguistic variable
Continuous fuzzy

controller
Discrete fuzzy

controller

System error, control error e(t) e(k)

Control error derivative: de(t)/dt �e(k), de(k)

control error differential
Control error integral;

∫
e(t) dt

∑
e(k)

control error sum
System output derivative; dyf (t)/dt �yf (k), dyf (k)

system output differential
State variable vector x(t) x(k)

The normalized variable xN(k) is thereafter converted into its fuzzy equivalent.
The impact of input scaling factors on phase trajectories can be quite significant.

without scaling, and the more stretched trajectory 2, obtained by the scaling of
inputs. Normalized trajectory 2 activates nine fuzzy rules, while trajectory 1 only
three. Apparently, different input values trigger different fuzzy control rules, which
eventually result in completely different controller output values. In general, it is
much easier to achieve the desired control quality with a larger number of activated
fuzzy rules. That is why the scaling of inputs should be done carefully so that we can
use the full fuzzy rule base. Because of inadequate scaling, the fuzzy rule table
may be imperfectly partitioned, which may cause many of the rules to remain
inactive even though the rule base is complete.

It is worth mentioning that scaling factors, including controller output scaling
factor Ku, have such a strong impact on the dynamic behavior of a control system
because they directly influence the value of the open-loop gain coefficient.

2.4.2 Choice of Shape, Number, and Distribution of
Fuzzy Sets

Although its rule base is the core of a fuzzy controller, an important issue in
controller design still remains the choice of linguistic values and their member-
ship functions: their shape, number and distribution [30–33]. Before we analyze
the influence of these parameters on fuzzy controller behavior, let us introduce
some commonly used fuzzy controller inputs, displayed in Table 2.3. Variations in
the selection of fuzzy controller inputs arise from the character of the controlled
process and the controller itself, whether it is continuous or discrete.

Control error e(k) is used as an input in almost all fuzzy controllers intended to
replace standard controllers in single input–single output (SISO) control systems.
As the second input of such controllers designers usually choose a differential or

© 2006 by Taylor & Francis Group, LLC
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change of control error de(k) = �e(k) = e(k) − e(k − 1). On the other hand,
the sum of the control error is rarely used since a summed/up horizon tends to
become infinite, which creates problems with calculation making it impractical.
Instead of a summation, an integral term, if needed for a particular application, is
then converted into a more suitable form for calculation. In control systems where
reference input may change extensively, change of a system output, �yf (k), may
be used instead of �e(k). The sudden change of the reference input causes a
considerable change of e(k) and �e(k), which in turn yields a significant change
of the controller output. In case �yf (k) is used, the controller response to an abrupt
change of the reference input would be stress-free. This option is often used in
implementations of standard PID controllers where an input to a derivative term
becomes the system output instead of the control error.

If a fuzzy controller is used as an adaptation mechanism then control error
e(k) is replaced with the reference model tracking error eM(k), which denotes the
difference between reference model and system outputs, eM(k) = yM(k) − yf (k).
This type of a fuzzy controller will be discussed in the chapters that follow.

Regarding fuzzy controller outputs, either an absolute controller output
uFC(t), uFC(k), or controller output increment duFC(t), �uFC(k) are usually gen-
erated. Which type of output will be generated depends on the type of the fuzzy
controller. The output is then fed to the controlled process directly or it is used,
for example, for adaptation.

The number of universes of discourse is equal to the number of fuzzy controller
inputs and outputs. Each input has a given distribution of fuzzy sets on its universe
of discourse. A general rule is that for a given distribution of fuzzy sets, the number
of fuzzy control rules increases geometrically with the number of inputs. The
geometrical progression of the number of rules becomes an obstacle for practical
applications of multi-input fuzzy controllers [34]. Therefore, fuzzy controllers
with two or at most three inputs prevail over others. Although intensive effort has
been put into the development of fuzzy control structures that would solve the
problem of rules explosion, effective solutions that work in engineering practice
are still not available [35].

Another reason why fuzzy controllers with only two or three inputs are used
lies in the fact that human perception is limited. In an everyday decision process we
usually do not take into account more than two or three propositions, very rarely
four, and almost never five or more at the same time. Since the main task of a fuzzy
controller is the interpretation of heuristic knowledge provided by the operator,
two or three inputs are usually enough to summarize the operator’s comprehen-
sion. One good example is driving a car, where due to a lot of information to be
processed the extended driver’s training is required. The number of input variables
affecting driver’s actions may vary depending on the driving conditions. While
simple cruise control is mostly based on the driver’s assessment of the distance
from the leading vehicle, during parking or passing actions the driver must also
consider additional input variables. An on-line adjustment of the fuzzy controller
inputs, which would be responsible for successful decision making in a particular
situation, is the property of a variable structure fuzzy controller.

© 2006 by Taylor & Francis Group, LLC
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Whether we follow an operator’s description of control actions or design a
controller from our experience, our perception of a control problem will govern
the controller’s number of inputs and outputs.

In further examples we shall use inputs designated with the following lin-
guistic variables: “control error,” noted e, “control error change,” noted �e(de),
“system output change,” noted �yf , “tracking error,” noted eM, and “tracking
error change,” noted �eM(deM). Accordingly, the accompanying universes of
discourse E, DE, DYF, EM, and DEM, will be defined if they satisfy conditions
e ∈ E, �e ∈ DE, �yf ∈ DYF, eM ∈ EM, and �eM ∈ DEM.

Usually, but not necessarily, the number of fuzzy sets is set to be equal for
all fuzzy controller inputs. In fuzzy control literature, one will find 5, 7, 9, and
sometimes 11 or more fuzzy sets defined for each input variable. Fuzzy controllers
with seven fuzzy sets are predominant, as they perfectly match a standard human’s
perception of linguistic values: large (L), medium (M), and small (S). If we extend
these qualifications into negative and positive directions and add zero (Z), we get
seven most frequently used linguistic values: NL, negative medium (NM), NS,
zero (Z), PS, positive medium (PM), and PL.

Although it may seem that a larger number of fuzzy sets will result in a better
designed controller, practical experience has proven that the number of fuzzy sets
involved is not so important. Quite to the contrary: every fuzzy controller design
should tend to solve a control problem with a minimal number of fuzzy sets. For
example, by succeeding to solve a problem with a 5 × 5 fuzzy rule table rather
than a 7 × 7 fuzzy rule table, the processing of 25 instead of 49 rules will save a
lot of computing time.

Every controller input is represented by a linguistic variable whose semantic
function (describing the distribution of fuzzy sets over an input domain) and the
shape of fuzzy set membership functions must be defined. Various combinations
of shapes and distributions of fuzzy sets result in a variety of possible control-
ler structures. Most designers use triangular membership functions with a linear
distribution of fuzzy sets [36]. Very often, a polynomial or an exponential law of
distribution is adopted, providing a higher density of fuzzy sets near the origin of

is, the finer the changes of the controller output will be.
Likewise, some fuzzy controller structures have two groups of fuzzy sets with

different distributions of fuzzy sets over the same universe of discourse. For an
input variable larger than the predefined threshold value, one group is used, while
for the input within the threshold bounded area another group takes over. Usu-
ally, these two disjunctive control regions define areas of coarse and fine control,
respectively.

When defining fuzzy membership functions and semantic functions we should
take care to ensure that every quantitative input value is an element of at least one
input fuzzy set defined on the input domain. This is not a problem if fuzzy sets
with Gaussian or bell-shaped membership functions are used, although, in that
case another issue becomes important. Namely, each fuzzy set with a Gaussian or
bell-shaped membership function is defined on the whole universe of discourse,

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.14 Various distributions of membership functions.

and thus for any crisp input all fuzzy rules become active and contribute to the
crisp controller output, but only a few do so to a considerable degree. To deal with
this situation, we can modify the definition of Gaussian and bell-shaped fuzzy sets
as follows:

µx
i = µi(x) =

{
e(x−cx

i )
2/wx

i , for Lx
i ≤ x ≤ Rx

i
0, for x < Lx

i , x > Rx
i

µx
i = µi(x) =

⎧
⎨

⎩

1

1 − (x − cx
i )

2
, for Lx

i ≤ x ≤ Rx
i

0, for x < Lx
i , x > Rx

i

(2.26)

where Lx
i and Rx

i denote left and right margins of the fuzzy set equal to quantitative
values of the variable x which satisfy condition µi(Lx

i ) = µi(Rx
i ) = α; α is a

parameter with small arbitrary value taken usually from the range (0.01 to 0.1),
and i denotes a fuzzy set index.

The described operation on Gaussian and bell-shaped fuzzy sets is called α-cut.
It cuts off values with negligible degrees of membership, achieving, for example,
that only two adjacent fuzzy sets overlap, resulting in the reduction of rules that
contribute to controller output. This simplifies the calculation of crisp controller
output and reduces computing time. Although it is possible, the α-cut operation
on triangular and trapezoidal membership functions does not make sense because
their domain is already strictly bounded.

The requirement that each crisp value of a linguistic variable must be matched
with at least one fuzzy set defined over its universe of discourse brings about
conditions that adjacent fuzzy sets should satisfy.
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mi + 1 mi + 2mi

Li RiLi + 1 Ri + 1 Ri + 2Li + 2

FIGURE 2.15 An arrangement of fuzzy sets that fulfills conditions (2.27) and (2.28).

Referring to (2.26) this condition will always be fulfilled if

Rx
i > Lx

i+1 (2.27)

where Lx
i+1 and Rx

i are left and right margins of adjacent fuzzy sets, that is, inter-
section point x, µi(x) = µi+1(x) must exist. Fuzzy controllers with two fuzzy sets
having more than one intersection point are rare and we do not consider this case
here. Furthermore, fuzzy sets are usually defined so that every quantitative input
value never belongs to more than two fuzzy sets defined on the input domain. In
other words, there should be

Rx
i < Lx

i+2 (2.28)

In that way the number of rules that contribute to crisp output value of a DISO
fuzzy controller can be one, two, or maximally four.

Conditions (2.27) and (2.28) are graphically depicted in Figure 2.15.
As already mentioned, a fuzzy controller will normally have a linear distribu-

tion of input fuzzy sets with triangular or trapezoidal membership functions and
intersection points at µ(x) = 0.5. Usually, the membership functions are symmet-
rical, Rx

i − cx
i = cx

i − Lx
i , and the center and left/right margins of adjacent sets are

equal, cx
i = Rx

i−1 = Lx
i+1.

In some instances, the density of fuzzy sets will need to be increased near
the origins of related domains in order to give a controller the ability for fine and
coarse control.

In case we decide to experiment with other shapes and distributions of fuzzy
sets, we shall find out that keeping the same distribution and changing the shape
of fuzzy sets from one (e.g., triangular) to another (e.g., trapezoidal, bell-shaped,
Gaussian) form will barely affect controller performance. This is true for input
fuzzy sets, but it is even truer for output fuzzy sets. Only if we go to extremes,
for example, by changing input sets from a triangular shape to a trapezoidal shape
with a wide nucleus, we shall induce noticeably different controller behavior. This
can be used for increasing controller robustness, which is discussed in more details

T -norm) does not have a significant influence on fuzzy controller performance.
Nevertheless, variations of the above mentioned elements contribute to a variety
of possible fuzzy controller structures that a designer has at her/his disposal.
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2.5 FUZZY CONTROLLER STABILITY

Although the rigorous mathematical framework of control systems stability theory
in some way opposes the vagueness of fuzzy controller properties, stability remains
a key issue in fuzzy controller design. The main criticism of fuzzy control is related
to its lack of precise stability analysis. That is why efforts have been put into
the investigation of various techniques that have a potential to solve the stability
issue in fuzzy controlled systems [37,38]. The problem is that an operator, whose
experience is the base for a fuzzy control algorithm, can guide a system into the
desired state according to some criterion without knowing why the actions taken
cause the stable behavior of the system. At the same time the operator is aware
that there is a set of manoeuvres which could be a source of instability. From the
operator’s point of view, the stability region is not strictly defined since actions that
lead to the unstable controlled system are described by linguistic values. Being
in the position of a fuzzy controller designer, we should take these descriptive
justifications of forbidden (unstable) actions into account in the final structure
of the controller. In this section we describe techniques for stability analysis of
systems controlled by a fuzzy controller.

Some of techniques have roots in stability analyses of nonlinear control systems
described with their nonlinear mathematical models. Some of the methods being
developed are applicable only to special problematic cases or to strictly determined
structures of fuzzy controllers [39]. For example, in Reference 40 it is shown that
for a class of fuzzy controllers, which can be described as multilevel nonlinear
relay elements, a Nyquist stability criterion can be used for determining the stability
region for a fuzzy controlled system. The procedure is also applicable to MIMO
control systems. This method’s drawback is that it requires knowing the process
transfer function, which represents a problem if the main postulate in fuzzy control
is imposed: knowledge about system models is a priori incomplete or it does not
exist at all.

Stability can be assessed through the analysis of a so-called sliding-mode
operation of a fuzzy controller. So, in Reference 41 a fuzzy sliding mode controller
is proposed and proof of stability of the controlled system is shown. The fuzzy
controller inputs are linear function s = c ·e+e′ and its first derivative s′ (e denotes
the difference between reference input and system output). Since function s is
defined with only two variables, the hyperplane is represented with line s = 0,
which yields c·e =−e′. A system with such a fuzzy controller will best able if fuzzy
controller outputs are determined in a way that condition s · s′ < 0 is permanently
fulfilled. The validity and practical value of this method was demonstrated on a
nonlinear pendulum control problem. The usage of this method does not require
the knowledge of a system model, but it does require a qualitative relation of how
the control signal acts with regards to function s · s′.

On a similar nonlinear system controlled by a variable structure fuzzy controller
of the Takagi–Sugeno type with standard inputs e and e′, in Reference 42 it has been
shown that system stability can also be assessed by using the sliding mode control
principle. A phase plane has been partitioned into nine regions and the linear
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function in the consequent part of fuzzy rules depends on the region the phase
trajectory is in.

A similar partitioning of the phase plane has been made in Reference 43. The
plane was first divided into eight regions and by using the Lyapunov function we
first determined a nonlinear function that guarantees asymptotic stability for every
region, and then put in the consequent part of the corresponding fuzzy rule.

In Reference 44 the fuzzy sensitivity concept has been used to solve a problem
of stability assessment enabling the designer to find out the range of param-
eter variations for which a given fuzzy controller will maintain stable system
performance.

Since fuzzy logic can also be applied for the determination of fuzzy system
models, in References 45 and 46 methods are given that prove the stability of
fuzzy process models. In both cases a Takagi–Sugeno controller is used and it is
shown that by using a Lyapunov function, a fuzzy model will be stable only if
linear models in the consequent parts of the rules are stable.

As methods in fuzzy control literature are dominantly based on Lyapunov’s
theory of stability, here we give the classification of stability according to
Lyapunov:

1. Equilibrium point xe is said to be stable if small changes in the initial
conditions cause small changes in state trajectory x(t), that is,

∀t0, ∀ε > 0; ∃δ > 0: ‖x(t0) − xe‖ < δ ⇒ ‖x(t) − xe‖ < ε, t ≥ t0

2. Equilibrium point xe is said to be asymptotically stable if it is stable and
if it attracts trajectory x(t), that is,

∀t0; ∃δ∗ > 0: ‖x(t0) − xe‖ < δ∗ ⇒ limt→∞ ‖x(t) − xe‖ = 0

3. Equilibrium point xe is said to be globally asymptotically stable if it is
asymptotically stable and δ∗ can be arbitrarily large.

Lyapunov’s formulation of system stability is based on the observation of
energy balance in the system. According to Lyapunov, the system with continuous
dissipation of energy will eventually settle into an equilibrium state. Hence, the
assessment of system stability is regularly made on the basis of some system
energy function, usually called the Lyapunov function or the Lyapunov candidate.
The point here is that for the system under examination we may construct more
such functions (candidates) and examine them before we find the right one which
proves system (in)stability. A Lyapunov function, V (x), should be continuous and
positive definite, V(x) > 0 for x �= 0, and its energy level should vanish in the state
space origin, V (x) = 0 for x = 0. When such a candidate function can be defined
so that it satisfies the condition dV(x)/dt ≤ 0, then according to Lyapunov, such a
system is stable. If dV(x)/dt < 0, the system is asymptotically stable. It should be

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.16 The SISO system with a fuzzy controller.

noted that the impossibility to define a Lyapunov function for a particular system
does not imply that this system is unstable.

The most commonly used Lyapunov function is that of generalized quadratic
form xTPx, where x is a state vector and P is a positive definite matrix (if we choose
P = PT, then P will be positive definite if all of its eigenvalues are positive).
Having defined the Lyapunov function as a quadratic form, the issue of system
stability becomes an issue of finding an appropriate matrix P. Since methods for
the calculation of P are well-described in literature [47], we shall concentrate on a
simple case to present some basic ideas, but will show in detail the procedure for
testing fuzzy control system stability.

Besides system variables, a Lyapunov function may also contain additional
quadratic forms related to fuzzy controller parameters. In that case, stability
analysis may become the basis for the synthesis of a tuning algorithm, that is,
expressions that are found to guarantee system stability may thereafter be used
for tuning controller parameters. Generally very complex, these algorithms are
demanding when it comes to practical implementation. It should be noted that
even though global asymptotic stability regarding the synthesis of a tuning
algorithm is frequently discussed in literature, from a practical point of view,
bounded-input–bounded-output stability is much more important.

Let us observe a SISO system with a DISO fuzzy controller, shown
in Figure 2.16. The reduction of process models to lower-order differential
(difference) equations is regularly made in practice wherever appropriate, as this
allows for faster and simpler analysis. This is the reason why we will consider
a simple case with a second-order process model. This is also the reason why
throughout this book fuzzy controller design is mainly based on second-order
process approximation. The results obtained with second-order process can be
graphically interpreted (and thus better understood), which makes the choice of
such an approach even more logical.

Second-order process is described as

ẋ1 = x2

ẋ2 = f (x1, x2) + b · uFC

yf = x1

(2.29)

© 2006 by Taylor & Francis Group, LLC
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where x1 and x2 are state variables, f (x1, x2) is a nonlinear continuous function,
b > 0 is process gain, and uFC is fuzzy controller output. In general, function f
and gain b change with time and therefore only partially describe the real process.
For now let us assume that they are time invariant.

Let a fuzzy controller be defined as

uFC = ψ(e, ė) (2.30)

that e = ur − yf . If an autonomous case is considered, ur = 0, then we have
e = −yf = −x1. Let the Lyapunov function be defined as

V = xTP x = 1
2

(
p11x2

1 + p22x2
2

)
(2.31)

where P is a diagonal matrix. Then, according to the Lyapunov theory, for the
autonomous case of (2.29) to be asymptotically stable we must have

V̇ = p11x1ẋ1 + p22x2ẋ2 = x2 · (p11x1 + p22ẋ2)

= x2 · [p11x1 + p22(f (x1, x2) + b · ψ(−x1, −x2))] < 0 (2.32)

If we look at Equation (2.32), it becomes clearer how to fulfil the Lyapunov
asymptotic stability condition. In order to keep dV(x)/dt ≤ 0, we must somehow
provide that the input of variables having the sign opposite to the sign of their
derivatives is bigger than the input of variables having the same sign as their
derivatives. It is apparent from Equation (2.32) that this goal can be accomplished
with a suitable definition of matrix P (in our case, of p11 and p22).

Relation (2.32) can be expressed in the form of two conditions that ensure the
asymptotic stability of the system (2.29) when controller (2.30) is used:

x2 < 0 ⇒ p11x1 > −p22[f (x1, x2) + b · ψ(−x1, −x2)]

x2 > 0 ⇒ p11x1 < −p22[f (x1, x2) + b · ψ(−x1, −x2)]
(2.33)

tion f (·) and controller ψ(·) form a surface over a two-dimensional state space.
This surface must be in a particular relation with surface g(x1, x2) = p11x1, for
system (2.29) to be stable. If function f (·) is known, once the fuzzy controller is
designed, parameters p11 and p22 should be determined in order to find out whether
conditions (2.33) are fulfilled. For linear function f (·), the calculation of P can be
done by solving linear matrix inequality, which is straightforward for a second-
order system. Actually, matrix P “rotates” the surface shown in Figure 2.17 around
the equilibrium. In case there exists a positive definite matrix P that adjusts the
surface according to the Lyapunov criterion (2.33), the system is asymptotically
stable.

© 2006 by Taylor & Francis Group, LLC

These two conditions are graphically presented in Figure 2.17. Nonlinear func-

where ψ(·) is a nonlinear fuzzy mapping function. From Figure 2.16 we see
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FIGURE 2.17 A graphical representation of stability conditions for a second-order process.

A problem could arise when f(·) is nonlinear (which is more or less always the
case). In some situations, depending on the type of nonlinearities in f (·), it is very
difficult, if not impossible, to find matrix P. In that case, a generalized quadratic
form is not suitable and a different Lyapunov function candidate should be chosen.
The alternative is partitioning the state space in several regions. Then, linear
process approximations can be used in Equation (2.33) for examining stability in
the region where a particular linear model is valid (indirect Lyapunov method).
Since system inputs and system outputs are bounded in practice, universes of
discourse of x1 and x2 are also bounded. This means that a number of linearized
regions can be restricted to a reasonable number.

Conditions (2.33) can be used not only for the analysis of system stability, but
also for the fuzzy controller design. If we rewrite (2.33) in the form

x2 < 0 ⇒ (p11/p22)x1 + f (x1, x2)

b
> −[ψ(−x1, −x2)]

x2 > 0 ⇒ (p11/p22)x1 + f (x1, x2)

b
< −[ψ(−x1, −x2)]

(2.34)

then, having defined the structure of the fuzzy controller and knowing function
f (·), we can determine fuzzy rules.

Example 2.7 Fuzzy controller stability — the Lyapunov approach.

© 2006 by Taylor & Francis Group, LLC
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We are investigating a nonlinear system described by the following equations:

ẋ1 = x2

ẋ2 = −0.3x1(1 + x2
1) − 3.9x2(1 + x2

2) + b · uFC

y = x1

The equations represent a mechanical system with damper and spring reactive
forces that nonlinearly depend on a speed, x2, and a position, x1, respectively. The
system equilibrium point is xe = [0 0]T.

Let us first examine open-loop stability, that is, uFC = 0. According to
Equation (2.33)

x2 < 0 ⇒ p11x1 > p22[0.3x1(1 + x2
1) + 3.9x2(1 + x2

2)]

x2 > 0 ⇒ p11x1 < p22[0.3x1(1 + x2
1) + 3.9x2(1 + x2

2)]

A graphical representation of the nonlinear function f(x1, x2) with an enlarged

Due to the character of nonlinearities, a generalized quadratic form of the
Lyapunov function cannot be used, so we must linearize the system around the
equilibrium. Linearization gives

x2 < 0 ⇒ p11x1 > p22[0.3x1 + 3.9x2]
x2 > 0 ⇒ p11x1 < p22[0.3x1 + 3.9x2]

For p11 = 1 and p22 = 1/0.3 we have

x2 < 0 ⇒ x1 > [x1 + 13x2]
x2 > 0 ⇒ x1 < [x1 + 13x2]

Hence, the system is asymptotically stable around the equilibrium. The system
response for initial conditions x0 = [1 0]T

Let us now define fuzzy controller structure. Each input is partitioned into
five linguistic values that correspond to five linearly distributed fuzzy sets: NL,
NS, Z, PS, and PL. All fuzzy sets have triangular membership functions. COG
defuzzification method is used.

We will design a fuzzy controller based on a linear model that is valid around
the equilibrium (operating point (0,0)); the universe of discourse for x1 is [−1, 1]
while for x2 we have set a region [−0.5, 0.5]. Input scaling factors are calculated to
map inputs into range [−1, 1], thus, Kx1 = 1 and Kx2 = 2. Using inequalities (2.34)

© 2006 by Taylor & Francis Group, LLC

area around the equilibrium (phase plane origin) is given in Figure 2.18.

is shown in Figure 2.19.
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FIGURE 2.18 A graphical representation of the nonlinear function from Example 2.7.

(assuming b = 1) for control surface design gives

x2 < 0 ⇒ p11

p22
x1 − 0.3x1 − 3.9x2 > −[ψ(−x1, −x2)]

x2 > 0 ⇒ p11

p22
x1 − 0.3x1 − 3.9x2 < −[ψ(−x1, −x2)]

Although each pair (x1, x2) should satisfy the above conditions, we will cal-
culate control surface values only for the centers of corresponding input fuzzy
sets. As the first approximation of fuzzy control surface we use a linear function

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.19 The response of the system from Example 2.7 for x0 = [1 0]T.

ψ(−x1, −x2) ≈ k1x1 + k2x2, which yields

x2 < 0 ⇒ p11

p22
x1 > (0.3 − k1)x1 + (3.9 − k2)x2

x2 > 0 ⇒ p11

p22
x1 < (0.3 − k1)x1 + (3.9 − k2)x2

We can see from the above equations that as far as k1 < 0.3 and k2 < 3.9, the
system is stable according to Lyapunov criteria. In order to move further from the
unstable region, we choose k1 = −1 and k2 = 1, hence, ψ(−x1, −x2) ≈ −x1 +x2.

surface, corresponding to each pair of centers of input membership functions
(values shown in parenthesis) are given. As there are 13 different values, in order
to obtain a good mimic we define 13 linguistic values for controller output. In
the next step of fuzzy controller design we associate each value from the table
with the center of one of the output fuzzy sets that have triangular membership
functions: PLL, PL, PMM, PM, PSS, PS, Z, NS, NSS, NM, NMM, NL, and NLL

System responses with linear control surface and with a fuzzy controller are

controller is stable.
However, we have yet to address a problem related to the stability of the

that position can take value from the interval [−10 cm, 10 cm] while the speed
domain is [−5 cm/sec, 5 cm/sec]. Since the nonlinear function f (·) is known,

© 2006 by Taylor & Francis Group, LLC

In Tables 2.4 and 2.5, the numerical values of points lying on the linear control

(Figure 2.20).

shown in Figure 2.21. It may be seen that the system controlled by the fuzzy

system in case we move further from the equilibrium. From Figure 2.18 we see
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TABLE 2.4
The Numerical Values of Points Lying on the Linear Control Surface

X1

X2 NL (−1) NS (−0.5) Z (0) PS (0.5) PL (1)

NL (−0.5) 0.5 0 −0.5 −1 −1.5
NM (−0.25) 0.75 0.25 −0.25 −0.75 −1.25
Z (0) 1 0.5 0 −0.5 −1
PM (0.25) 1.25 0.75 0.25 −0.25 −0.75
PL (0.5) 1.5 1 0.5 0 −0.5

TABLE 2.5
The Corresponding Fuzzy Sets to the Values
Presented in Table 2.4

X1

X2 NL NS Z PS PL

NL PSS Z NSS NMM NLL
NM PM PS NS NM NL
Z PMM PSS Z NSS NMM
PM PL PM PS NS NM
PL PLL PMM PSS Z NSS

FIGURE 2.20 Fuzzy membership functions for the controller from Example 2.7.
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FIGURE 2.21 Response of the system from Example 2.7 for x0 = [1 0]T with (a) a linear
controller and (b) a fuzzy controller.

FIGURE 2.22 Fuzzy membership functions and the system response for the fuzzy controller
from Example 2.7.

we can set

ψ(−x1, −x2) = 0.3x1(1 + x2
1) + 3.9x2(1 + x2

2) + k1x1 + k2x2

In that case the entire phase plane is covered by the control surface and the
stability of the system depends on k1 and k2. Using the same principle as for
the linearized case, we calculate centers of output fuzzy sets. The membership
functions obtained for k1 = −1 and k2 = 1 are shown in Figure 2.22.

Due to the nonlinearities in the system, we can see that the distribution of output
membership functions is nonlinear. The response of the system for x0 = [1 0 0]T

is shown in Figure 2.22.
We will now go on to describe a procedure that exploits geometric properties

of state space in the investigation of system stability. Although this method is
cumbersome, its practical value becomes clear in the situation when state space
is reduced to a phase plane, which is the case in a second-order system. Then
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x1

x2

FIGURE 2.23 Phase plane velocity vectors.

phase plane analysis offers well-known procedures (especially in case f (·) is
linear) for the determination of system stability.

Equations (2.29) describe the motion of a point along the phase trajectory in
the phase plane x1–x2. The vector of the magnitude

v =
√

ẋ2
1 + ẋ2

2 =
√

x2
2 + (f (x1, x2) + b · uFC)2 (2.35)

and the direction

ϑ = arctan
ẋ2

ẋ1
= arctan

f (x1, x2) + b · uFC

x2
(2.36)

can represent the velocity of this motion.
Velocity vectors are usually represented by arrows on the phase plane

(Figure 2.23).
The examination of the magnitude and the direction of the velocity vectors

can tell us whether the motion of the point on the phase plane is stable. The
analysis gives characteristic objects, points, and curves. The inclusion of ẋ1 = 0
in Equation (2.36) gives a so-called isocline (a set of points where ϑ is constant)
that coincides with the abscissa axis of the phase plane, that is, with the straight
line x2 = 0. In that case

v = f (x1, 0) + b · uFC (2.37)

Another isocline is obtained for ẋ2 = 0, which yields

v = x2 (2.38)

This isocline can be found as the solution of equation

f (x1, x2) + b · uFC = 0 (2.39)

© 2006 by Taylor & Francis Group, LLC
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According to Equation (2.36), all velocity vectors in Equation (2.37) have the
same direction ϑ = π/2 , that changes to ϑ = −π/2; while the direction for the
second isocline is ϑ = 0, which changes to ϑ = π . The change of direction takes
place in the intersection points of two isoclines

f (x1, 0) + b · uFC = 0 (2.40)

Intersection points are called singular points as both velocity components
become equal to 0. This means that the state of the system cannot change without
an external disturbance — singular points represent the equilibrium of the system.
For the systems described by the second-order linear model, only one such point
exists (there is a special degenerated case when such systems have an infinite
number of equilibrium points). If the system is moved from the equilibrium, phase
velocity vectors describe the motion of the point along the trajectory. This motion
may be considered to be driven by the energy conservation law. In that picture,
variables x1 and x2 correspond to potential and kinetic energy, respectively. As
energy may reside in one of these two forms, for x1 = 0 we have potential energy
that vanishes and kinetic energy is at its maximum, while for x2 = 0 all energy
takes the potential form. While moving in the phase plane, the total energy of the
point can (a) dissipate — which guides the point toward equilibrium, (b) remain
constant — which produces cyclic motion of the point around equilibrium, or
(c) grow — which forces the point to move away from the equilibrium. Since the
system is nonlinear, the motion may not be so smooth, that is, energy can grow in
some parts of the phase plane, while in others it dissipates or remains constant.

The characteristic positions of isoclines ẋ1 = 0 and ẋ2 = 0 for the second-
order system (2.29) with a smooth function f (·) and one equilibrium, as well as
for an autonomous case, uFC
the directions of the velocity vectors.

In Equation (2.29) function f (·) can be considered as the measure of the change
in the system’s kinetic energy. Kinetic energy reaches extreme values on the iso-
cline. Hence, by knowing the gradient of function f (·) on the isocline, we are able
to say whether a particular extreme represents the maximum or the minimum of
kinetic energy. The attainment of kinetic energy maximum actually means that
kinetic energy is bounded, which further entails the limitation of the rise in the
system’s potential energy, thus making the overall system stable. It must be noted,
however, that bounded kinetic energy does not necessarily mean that the system is
stable, for example, for f (x1, x2) = 0 kinetic energy is constant and thus bounded,
yet the system is unstable.

Isoclines shown in Figures 2.24([a]–[c]) are associated with stable systems,
while other isoclines represent systems with unstable behavior. Let us consider case
(a), which represents the degenerated situation mentioned earlier. Characteristic
isoclines coincide with axis x1. Hence, phase plane point A(x1A, 0), that lies on axis
x1, belongs to both isoclines. As both ẋ1 and ẋ2 do not depend on x1, the system,
once positioned in point A, will not move — point A represents the equilibrium
of the system. Thus, the system has an infinite number of equilibrium points.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.24 The characteristic positions of isoclines ẋ1 = 0 and ẋ2 = 0 for a second-order system.
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As long as the gradient of function f (·) is negative, the system moves from any
point on the phase plane toward the equilibrium on axis x1.

In case (b), isocline ẋ2 = 0 is represented by the curve extended through
the second and the fourth quadrants. Let us again begin with phase plane point
A(x1A, 0), that lies on axis x1. The velocity vector in this point is defined as

vT
A = [ẋ1A ẋ2A] = [0 f (x1A, 0)] (2.41)

ϑA = π

2
(2.42)

which means that point A initially has the velocity of magnitude vA = f (x1A, 0)

and direction ϑA = π/2 which coincides with the direction of the positive axis x2.
As the point starts to move in the direction of ϑA, x2 starts to increase. Since

we are investigating model (2.29), where ẋ1 = x2, the velocity vector component
also increases in the direction of x1. Due to the negative gradient of f (·) with
respect to x2, the velocity vector component starts to decrease in the direction of
x2. According to (2.36), these changes of velocity vector components cause ϑA to
decline. Eventually, the point arrives and intersects axis x2 in point B(0, x2B) at
speed vT

B = [ẋ1B ẋ2B] = [x2B f (0, x2B)] and direction ϑB. Since the function f (·)
changes the sign on the isocline situated in the second and the fourth quadrants,
we have −(π/2) < ϑB < 0. This means that the next time the system intersects
x1 axis (the state with zero kinetic energy), the remaining potential energy will be
lower than it was at the beginning of movement, that is, in point A. Decreasing
energy level indicates that case (b) system is stable.

Other characteristic cases can be studied in the same manner. The analysis of
systems that have isoclines which pass through more than two quadrants or have
more than one equilibrium can be rather complex. However, the above discussion
and Equation (2.39) show that magnitudes and directions of velocity vectors as
well as positions of equilibrium points and isoclines can be changed by using a
fuzzy controller. In the following example we shall investigate the stability of a
system with an unstable equilibrium and afterwards we shall describe the design
of a fuzzy controller that can stabilize such a system.

Example 2.8 Fuzzy controller stability — phase plane approach.

Let us consider a system described by the following equations:

ẋ1 = x2

ẋ2 = −x1(x
2
1 − 1) − x2 + b · ufc

y = x1

First we will investigate the stability of the autonomous system. Isocline ẋ2 = 0

© 2006 by Taylor & Francis Group, LLC

and velocity vectors are shown in Figure 2.25. As may be seen, the isocline is part
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FIGURE 2.25 Isocline ẋ2 = 0 and velocity vectors for the system from Example 2.8.

of four quadrants and intersects axis x1 (coinciding with isocline ẋ1 = 0) in three
points. Thus, the system has three equilibriums, (1,0), (−1, 0), and (0,0).According
to the discussion related to isocline position and its gradients, the last equilibrium
is unstable since for that point the gradient of function f (x1, x2) with respect to x1
is positive. The other two equilibriums are stable as both gradients of f (x1, x2) are
negative.

System response for the initial condition x0 = [2 0]T

After the completion of transition, the system resides in equilibrium xe = [1 0]T.
Our goal is to design a fuzzy controller which would move the system toward
a single stable equilibrium in the origin of the phase plane and keep it there.
According to Equation (2.39), if we set

uFC = ψ(x1, x2) = 1

b
[−f (x1, x2) + k1x1 + k2x2]

then the isocline ẋ2 = 0 becomes a straight line

x2 = −k1

k2
x1

A system with such an isocline has the equilibrium in the phase plane origin.
By properly setting coefficients k1 and k2, we can position the isocline in the
second and the fourth quadrant and at the same time provide negative gradients
over the whole phase plane, making the system stable. For this purpose, we choose
k1 = −1 and k2 = −1.

The same procedure as the one in Example 2.7 is used for fuzzy controller
design. Domains of input variables, x1 = [−2, 2] and x2 = [−2, 2], are partitioned
in seven fuzzy sets each: NL, NM, NS, Z, PS, PM, and PL. Numerical values of
points at the control surface for each pair of centers (values denoted in parentheses)
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is shown in Figure 2.26.

of input membership functions are given in Tables 2.6 and 2.7.
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FIGURE 2.26 The response of the system from Example 2.8 for initial condition
x0 = [2 0]T.

TABLE 2.6
Numerical Values for a Nonlinear Function Shown in Example 2.8

X1

X2 NL (−2) NM (−1.33) NS (−0.67) Z (0) PS (0.67) PM (1.33) PL (2)

NL (−2) 12 6.37 4.29 4 3.7 1.63 −4
NM (−1.33) 10.67 5.04 2.96 2.67 2.37 0.3 −5.33
NS (−0.67) 9.33 3.7 1.63 1.33 1.04 −1.04 −6.67
Z (0) 8 2.37 0.3 0 −0.3 −2.37 −8
PS (0.67) 6.67 1.04 −1.04 −1.33 −1.63 −3.7 −9.33
PM (1.33) 5.33 −0.3 −2.4 −2.67 −2.96 −5.04 −10.67
PL (2) 4 −1.63 −3.7 −4 −4.29 −6.37 −12

fuzzy sets are used for partitioning the output universe of discourse. The system
response attained with a fuzzy controller and its membership functions are shown

origin. The nonlinear character of the fuzzy controller may be easily recognized
from the rule table.

At the beginning of this section we have mentioned that by using linguistic
values the operator can define not only stabilizing (allowed) actions, but also
destabilizing (forbidden) control actions. The question is: if we replace the crisp
mathematical definition of Lyapunov stability conditions (2.33) with linguistic
terms, can we still treat these conditions as a valid test of stability? The answer to
this query was proposed in Reference 48. Instead of using numbers for calculating
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in Figure 2.27. The system response is stable and the equilibrium is located in the

Although Tables 2.6 and 2.7 contain 49 different numerical values, only nine
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TABLE 2.7
A Rule Table of a Fuzzy Controller Designed in Example 2.8

x1

x2 NL NM NS Z PS PM PL

NL PLL PLL PM PM PM PS NS
NM PLL PM PS PS PS Z NM
NS PL PM PS PS PS NS NL
Z PL PS Z Z Z NS NL
PS PM PS NS NS NS NM NL
PM PM Z NS NS NS NM NLL
PL PS NS NM NM NM NLL NLL

FIGURE 2.27 Fuzzy membership functions and the system response for the fuzzy controller
from Example 2.8.

the derivative of a Lyapunov function, the authors adopted Zadeh’s computing with
words (CW) [49]. It has been shown that only partial knowledge of the system
was enough for the design of a simple fuzzy controller that stabilizes a process (an
inverted pendulum was used as an example). Let us recall the Lyapunov stability
criterion for a second order system

V̇ = p11x1ẋ1 + p22x2ẋ2 = x2 · (p11x1 + p22ẋ2) < 0 (2.43)

If a pendulum angle and a change in pendulum angle are chosen as process
variables x1 and x2, then from the inverted pendulum model we know that ẋ2 is
proportional to controller output uFC, which stands for the force applied to the cart.
By setting p11 = p22 = 1, authors in Reference 48 examined signs of x1 and x2

fulfills inequality (2.43).
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and proposed a fuzzy controller, which has only four rules (Table 2.8) and which
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TABLE 2.8
Control Rules

x1 x2 uFC (∼ẋ2) V̇

Positive Positive Negative big Negative
Positive Negative Zero Negative
Negative Positive Zero Negative
Negative Negative Positive big Negative

From Bogdan, S., Kovačić, Z., and Punčec, M., IEEE 4th Int. Conf. Intell. Syst.
Design Appl., 271–276, 2004. With permission.

Linguistic values for state variables are negative and positive while controller
output is partitioned in negative big, zero, and positive big. Since the proposed
fuzzy controller does not take into account magnitudes of linguistic variables, it
cannot provide fine changes in controller output. Furthermore, by using only the
sign, the number of rules is decreased from the number we would have were we to
use the available information about the process. As the domains of state variables
and controller output are known in advance, there is no reason why we should
not partition these domains in more linguistic values, thus providing more rules
and finer controller output. The extension of a CW design in this direction was
proposed in Reference 50. Instead of using only signs of state variables, the authors
integrated their magnitudes in the form of fuzzy numbers. Before we proceed with
the description of the proposed method, few definitions related to fuzzy numbers
and their arithmetic are given.

A fuzzy number is a special interpretation of a fuzzy set that represents a set of
“numbers close to ς” where ς is the number being fuzzified. We denote a fuzzy
number as ς̃ .

Definition 2.16 (A fuzzy number) A fuzzy number ς̃ is a fuzzy set that has a
bounded domain and a convex and normal membership function µς(x), that is,

µς [λx1 + (1 − λx2)] ≥ min[µς(x1), µς(x2)], ∀x1, x2 ∈ X, λ ∈ [0, 1]
sup[µς(x)] = 1

The most commonly used form of a fuzzy number is the triangular fuzzy
number (L − R fuzzy number). As its name says, the L − R fuzzy number has a
triangular membership function and is written as ς̃ = 〈L, c, R〉, where L is the left
margin, c is the center, and R is the right margin of the number. A general procedure
that provides an extension of crisp mathematical expressions to fuzzy domains is
called the extension principle [51]. It states that having a function y = f (x) and a
fuzzy number ã = {(µa(x), x): x ∈ X}, then

b̃ = f (ã) = {(µa(y), y): y ∈ X} (2.44)

© 2006 by Taylor & Francis Group, LLC
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In other words, the outcome of a mathematical expression (2.44) is a
fuzzy number obtained by computation of the image of the interval while
the membership function is carried through. In case f (x) is a many-to-
one mapping, µa(y) is calculated as the maximum of multiple entries. For
example, if ã = {(0.3, −1), (0.7, 0), (1, 1), (0.6, 2), (0.2, 3)} and f (x) = x2,
since f (x) is a many-to-one mapping (notice that the first and the third element
squared get the same value 1 with different membership degrees), then b̃ =
{(max[0.3, 1], 1), (0.7, 0), (0.6, 4), (0.2, 9)} = {(0.7, 0), (1, 1), (0.6, 4), (0.2, 9)}.

The implementation of the extension principle to arithmetical operations gives
the following definition.

Definition 2.17 (The arithmetic of fuzzy numbers) Let ã and b̃ be two
fuzzy numbers and let “◦” denote any of four basic arithmetic operations
(+, −, ×, /). Then

µa ◦ b(c) = sup
c=a ◦ b

min{µa(x), µb(y)} (2.45)

In α-cuts notation (2.45) gives

aα + bα = [aα + bα , aα + bα]
aα − bα = [aα − bα , aα − bα]
aα × bα = [min(aαbα , aαbα , aαbα , aαbα),

× max(aαbα , aαbα , aαbα , aαbα)]

aα/bα = [aα , aα] ×
[

1

bα

,
1

bα

]

(2.46)

where aα = {x: µa(x) ≥ α} and bα = {x: µb(x) ≥ α} are α-cuts of fuzzy numbers
ã and b̃, and aα = sup(aα), aα = inf (aα), bα = sup(bα), bα = inf (bα). The result
of an arithmetic operation is obtained as the union of all α-cuts.

Let ã = {(0.5, 1), (1, 2), (0.5, 3)} and b̃ = {(0.25, 8), (1, 9), (0.25, 10)}. Then
their sum is calculated as

ã + b̃ = {(0.25, 9), (0.25, 10), (0.25, 11), (0.5, 10), (1, 11), (0.5, 12), (0.25, 11),

(0.25, 12), (0.25, 13)}
= {(0.25, 9), (0.5, 10), (1, 11), (0.5, 12), (0.25, 13)}

Division is undefined for 0 as an element of fuzzy set b̃. If L − R fuzzy num-
bers are used in operations, the results of addition and subtraction are also L − R

© 2006 by Taylor & Francis Group, LLC



“DK6032_C002” — 2005/11/4 — 17:35 — page 63 — #55
�

�

�

�

�

�

�

�

Fuzzy Controller Design 63

numbers. Moreover, in that case if ã = 〈La, ca, Ra〉 and b̃ = 〈Lb, cb, Rb〉 then

c̃ = ã + b̃ = 〈La + Lb, ca + cb, Ra + Rb〉

c̃ = ã − b̃ = 〈La − Rb, ca − cb, Ra − Lb〉
(2.47)

Multiplication and division of L − R fuzzy numbers result in a fuzzy number
that is not a L − R number. However, for engineering purposes, multiplication and
division can be approximated with relations defined in Reference 52

c̃ = ãb̃ = 〈min (LaLb, LaRb, RaLb, RaRb) , cacb, max (LaLb, LaRb, RaLb, RaRb)〉
(2.48)

c̃ = ã/b̃ =
〈

min

(
La

Lb
,

La

Rb
,

Ra

Lb
,

Ra

Rb

)

,
ca

cb
, max

(
La

Lb
,

La

Rb
,

Ra

Lb
,

Ra

Rb

)〉

Having defined arithmetic, another subject we need to address is the compar-
ison of two fuzzy numbers. Since the Lyapunov condition for system stability is
represented by an inequality, if we want to be able to determine whether a system
is stable, we have to define ordering of fuzzy numbers. In other words, we need
to introduce some sort of metrics into the set of fuzzy numbers.

Due to their nature, it is clear that the order of fuzzy numbers can be ascer-
tained in various ways. While relations “greater than” and “less than” exclude
each other for crisp numbers, these two relations may concur for fuzzy numbers,
depending on the ordering function. Generally, we discern two classes of ordering
methods. Methods in the first class are based on an ordering relation proposed in
Reference 53.

Definition 2.18 (The ordering of fuzzy numbers) Let ã and b̃ be two fuzzy
numbers and let �̃ denote the ordering function greater than or equal to. Then
ã �̃ b̃ if and only if aα ≥ bα , ∀α ∈ (0, 1]; aα ≥ bα if and only if aα ≥ bα and
aα ≥ bα .

Unfortunately, the above definition may be inconsistent, that is, for two over-
lapping fuzzy numbers we may get different orderings for different values of α.
Nevertheless, in case of fuzzy numbers that fulfil conditions (2.27) and (2.28),

The ordering methods that belong to the second class can overcome the incon-
sistency problem. They are based on a crisp representation of fuzzy numbers [54].
First, the fuzzy numbers’ counterparts (indices) in the set of real numbers are
determined and the obtained values are compared. Fuzzy numbers are usually
represented by an area or COG (COA) in these methods. Since a weighted area
calculation has many different procedures, the ordering of the set of fuzzy numbers

© 2006 by Taylor & Francis Group, LLC

graphically depicted in Figure 2.15, Definition 2.17 gives exclusive ordering.



“DK6032_C002” — 2005/11/4 — 17:35 — page 64 — #56
�

�

�

�

�

�

�

�

64 Fuzzy Controller Design

TABLE 2.9
Control Rules

x1

x2 NM NS Z PS PM

NM PL PL PM PS Z
NS PL PM PS Z NS
Z PM PS Z NS NM
PS PS Z NS NM NL
PM Z NS NM NL NL

From Bogdan, S., Kovačić, Z., and Punčec, M., IEEE 4th
Int. Conf. Intell. Syst. Design Appl., 271–276, 2004. With
permission.

attained by one method may be different from results obtained by a method that
calculates the area by another principle.

In the text that follows we use ordering according to Definition 2.17 since
it does not require the calculation of a fuzzy number index. Furthermore, fuzzy
sets used in the rest of the book fulfill conditions (2.27) and (2.28) and provide
consistent ordering.

Let us now return to fuzzy controller stability described in Reference 50.
Instead of using only signs of state variables, input domains are partitioned in
five linearly distributed fuzzy sets: NM, NS, Z, PS, and PM. The rules shown
in Table 2.9 are obtained by including these linguistic values into the Lyapunov
stability condition (2.43) and by using fuzzy arithmetic (2.45).

In case x̃1 = NS and x̃2 = NM then x̃2 · (x̃1 + ũFC) = NM · (NS + ũFC) ≺ 0̃
(a set 0̃ is a fuzzy singleton having 0 as its only element). It is clear that the
fulfilment of this inequality, that is, stability, depends on domains of the fuzzy
numbers in question. Since 0 = 0 = 0, that is, both infimum and supremum, of
fuzzy singleton 0̃ are equal to 0, the domain of x̃2 · (x̃1 + ũFC) should be (−∞, 0).
In Reference 50 this fact is stated in the form of a theorem which states that a fuzzy

control system is asymptotically stable if domain of ˜̇V is (−∞, 0), where ˜̇V is a
linguistic value of the Lyapunov function derivative.

It should be noted that the theorem expresses only a sufficient condition for
stability which can be easily checked by consulting the rules in Table 2.9. If inputs
and output are described by linearly distributed triangular fuzzy numbers, then, for
example, a fuzzy Lyapunov criterion in case x̃2 · (x̃1 + ũFC) = PS · (NS + Z) is not
satisfied. However, the proposed controller in Table 2.9 is stable. This situation is
caused by the fact that fuzzy arithmetic does not utilize all available information,
meaning that the imprecision of the obtained results is greater than or equal to the
imprecision of the fuzzy numbers used. In standard fuzzy arithmetic, for example,
ã − ã �= 0 or ã/ã �= 1, which contradicts our intuition (new approaches to fuzzy
arithmetic try to resolve this issue by redefining basic fuzzy arithmetic operations,
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FIGURE 2.28 The ball and beam system. (From Bogdan, S., Kovačić, Z., and Punčec, M.,
IEEE 4th Int. Conf. Intell. Syst. Design Appl., 271–276, 2004. With permission.)

but that subject requires more space than we have, so an interested reader can
advise [55].

In order to overcome problems caused by imprecision, the output of the con-

numbers. In that case, our example, x̃2 · (x̃1 + ũFC) = PS · (NS + Z) becomes
x̃2 · (x̃1 + ũFC) = PS · (NS + 0̃), which is less than 0̃ and the Lyapunov stability
condition is satisfied.

Fuzzy Lyapunov stability, based on fuzzy numbers and fuzzy arithmetic presen-
ted herein, is still being researched and there are many unresolved issues. However,
due to its simplicity this approach may be exploited as the first elementary step in
fuzzy controller design and fuzzy controller stability analysis, especially when only
rudimentary information regarding the controlled process is available. We close
this section with an example of fuzzy controller design based on the described
method.

Example 2.9 Fuzzy controller stability — the fuzzy arithmetic approach.

The system we have chosen to demonstrate fuzzy arithmetic in fuzzy controller
stability analysis is the well-known ball and beam control problem. The system,

The system is challenging from the control point of view as it is unstable and
highly nonlinear. Our goal is to obtain a fuzzy controller that will stabilize the
system around a set point rref . There are many solutions to the problem, from
standard PID algorithms to neural networks [56,57]. Here we will solve the prob-
lem assuming that only basic knowledge about the system is available in the form
of linguistic statements.

By using the Lagrange equation we may obtain a mathematical description of
the system. Although the mathematical model is not used either in stability analysis
or in controller design, it is given here:

(
JB

R2
+ m

)

r̈ = mrθ̇2 − mg sin θ

(mr2 + Jb + JB)θ̈ = τ − 2mrṙθ̇ − mgr cos θ

where m is ball mass, R is ball radius, Jb is ball moment of inertia, JB is beam
moment of inertia around the center, g is the gravitational constant, τ is torque
applied to the beam center, r is ball position, and θ is beam angle.

© 2006 by Taylor & Francis Group, LLC

troller in Table 2.9 may be represented by singletons instead of triangular fuzzy

shown in Figure 2.28, consists of a ball that is free to roll on a beam.
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We know the following facts about the system:

• The range of beam angle θ is ±π /4.
• The ball should be held within ±0.1 m from the center of the beam.
• The ball position and the beam angle are measured.

Although we are assuming that the exact physical law of motion is unknown,
we can, because of experience, distinguish that the ball’s acceleration increases as

angle causes movement in the negative direction). Also, we know that the angular
acceleration of the beam is somehow proportional to the applied torque, θ̈ ≈ τ .
Since the ball position and the beam angle are measured we choose r and θ as
process variables.

Now, let us define L − R fuzzy numbers that will represent the linguistic
values of deviations of process variables from the set points, er = rref − r and
eθ = θref − θ . We define three linguistic values; negative, zero, and positive. The
ranges of r and θ are known, thus

ẽrN = 〈−0.2, −0.1, 0〉, ẽrZ = 〈−0.1, 0, 0.1〉, ẽrP = 〈0, 0.1, 0.2〉
ẽθN = 〈−π/2, −π/4, 0〉, ẽθZ = 〈−π/4, 0, π/4〉, ẽθP = 〈0, π/4, π/2〉

Their derivatives, ėr and ėθ , are approximated by using the difference between
two consecutive measurements (sampling time Td = 10 msec), ėr ≈ edr(k) =
[er(k) − er(k − 1)]/Td and ėrθ ≈ edθ (k) = [eθ (k) − eθ (k − 1)]/Td. Since we
assume that system dynamics are unknown, one of the ways to determine fuzzy
numbers for these two variables is to require that ball velocity and beam angular
velocity should remain inside predefined values. We bound |ṙ| ≤ 0.03 m/sec and
|θ̇ | ≤ π/2 rad/sec, which gives

ẽdrN = 〈−1, −0.03, 0〉, ẽdrZ = 〈−0.03, 0, 0.03〉, ẽdrP = 〈0, 0.03, 1〉
ẽdθN = 〈−π , −π/2, 0〉, ẽdθZ = 〈−π/2, 0, π/2〉, ẽdθP = 〈0, π/2, π〉

Although centers of proposed fuzzy numbers correspond with predefined
boundaries it should be noted that we leave wide margins since actual values
of velocities are unknown. Having defined the deviations of process variables and
their linguistic values we may proceed with the fuzzy Lyapunov stability test. The
Lyapunov function has the following form:

V = 1
2 (e2

r + ė2
r + e2

θ + ė2
θ )

Its derivative gives (recall that r̈ ≈ θ and θ̈ ≈ τ)

V̇ = er ėr + ėr ër + eθ ėθ + ėθ ëθ = er ėr + ėrθ + eθ ėθ − ėθ τ

© 2006 by Taylor & Francis Group, LLC

the beam angle increases, so r̈ ≈ θ (note that according to Figure 2.28 a positive
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FIGURE 2.29 A cascade fuzzy controller used for ball and beam system stabilization.
(From Bogdan, S., Kovačić, Z., and Punčec, M., IEEE 4th Int. Conf. Intell. Syst. Design
Appl., 271–276, 2004. With permission.)

For the system to be asymptotically stable we require V̇ < 0. By using the
extension principle, the inclusion of linguistic values of the variables in the form of
fuzzy numbers in the above equation will give a fuzzy Lyapunov stability criterion
that will eventually define the rules of a fuzzy controller. Since each variable has
three linguistic values, there are 81 possible combinations that should be tested.
Hence, a final fuzzy controller will have 81 rules.  We can take a different approach
in order to reduce the number of rules. Let us study each of the two terms in
the derivative of the Lyapunov function separately. First we determine stability
conditions for er ėr + ėrθ < 0 and then for eθ ėθ − ėθ τ < 0. In that way the fuzzy
controller is split into two parts; the first part, created by the first term, should
generate a set point (commanded beam angle θref ) for the second part, whose
design is based on the second term. The output from the second part of the fuzzy
controller is torque τ applied to the beam. Such a fuzzy controller forms a cascade
control scheme shown in Figure 2.29 [58]. The advantage of this approach is a
significant reduction in the number of rules. While a standard controller contains
81 rules, a cascade fuzzy controller has only 9 + 9 = 18 rules.

The insertion of fuzzy numbers that represent linguistic values of variables
involved in the first term er ėr + ėrθ , results in the following:

ẽdrN(ẽrN + θ̃ref ) ≺ 0̃, ẽdrN(ẽrZ + θ̃ref ) ≺ 0̃, ẽdrN(ẽrP + θ̃ref ) ≺ 0̃,

ẽdrZ(ẽrN + θ̃ref ) ≺ 0̃, ẽdrZ(ẽrZ + θ̃ref ) ≺ 0̃, ẽdrZ(ẽrP + θ̃ref ) ≺ 0̃,

ẽdrP(ẽrN + θ̃ref ) ≺ 0̃, ẽdrP(ẽrZ + θ̃ref ) ≺ 0̃, ẽdrP(ẽrP + θ̃ref ) ≺ 0̃

The range of θref should be the same as the range of θ . In order to get a smooth
control surface, the domain of θref is represented by five fuzzy numbers, NL,
negative, zero, positive, and PL defined as:

θ̃refNL = 〈−1.2, −0.8, −0.4〉, θ̃refN = 〈−0.8, −0.4, 0〉, θ̃refZ = 〈−0.4, 0, 0.4〉,
θ̃refP = 〈0, 0.4, 0.8〉, θ̃refPL = 〈0.4, 0.8, 1.2〉

We need to determine a linguistic value of beam angle set point θref for each of
the inequalities so that all of them are fulfilled. In case we choose θ̃refPL as the first
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TABLE 2.10
Rule Table for the First Part of a Cascade Fuzzy
Controller

er

edr N Z P

N PL P Z
Z P Z N
P Z N NL

Adapted from Bogdan, S., Kovačić, Z., and Punčec, M., IEEE 4th Int.
Conf. Intell. Syst. Design Appl., 271–276, 2004. With permission.

inequality we get

ẽdrN(ẽrN + θ̃refPL) = 〈−1, −0.03, 0〉(〈−0.2, −0.1, 0〉 + 〈0.4, 0.8, 1.2〉)
= 〈−1, −0.03, 0〉〈0.2, 0.7, 1.2〉
= 〈−1.2, −0.021, 0〉 ≺̃ 0̃

thus, the inequality is satisfied and the first rule becomes: “IF er is negative AND
edr is negative THEN θref is positive large.” Other rules can be obtained in the
same manner. The final fuzzy rule table determined according to the first part of
the Lyapunov function derivative is shown in Table 2.10.

Let us now analyze the second part of the Lyapunov function derivative, eθ ėθ −
ėθ τ < 0. As in the previous case, we attain nine inequalities that have to be fulfilled
in order to get stable behavior of the closed loop system

ẽdθN(ẽθN − τ̃ ) ≺ 0̃, ẽdθN(ẽθZ − τ̃ ) ≺ 0̃, ẽdθN(ẽθP − τ̃ ) ≺ 0̃,

ẽdθZ(ẽθN − τ̃ ) ≺ 0̃, ẽdθZ(ẽθZ − τ̃ ) ≺ 0̃ ẽdθZ(ẽθP − τ̃ ) ≺ 0̃,

ẽdθP(ẽθN − τ̃ ) ≺ 0̃, ẽdθP(ẽθZ − τ̃ ) ≺ 0̃, ẽdθP(ẽθP − τ̃ ) ≺ 0̃

The first inequality gives

ẽdθN(ẽθN − τ̃ ) = 〈−π , −π/2, 0〉(〈−π/2, −π/4, 0〉 − τ̃ ) ≺̃ 0̃

which yields

τ̃ ≺̃ 〈−π/2, −π/4, 0〉
The other inequalities make it clear that the value of applied torque for the first

inequality should be the most negative one, that is, we should assign linguistic
value NL with τ̃NL = 〈−3π/4, −π/2, −π/4〉. The corresponding fuzzy rule is

© 2006 by Taylor & Francis Group, LLC
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TABLE 2.11
Rule Table for the Second Part
of a Cascade Fuzzy Controller

eθ

ed θ N Z P

N NL N Z
Z N Z P
P Z P PL

FIGURE 2.30 The response of a ball and beam system controlled with a cascade fuzzy
controller; initial conditions r = 0.1 m and θ = −0.3 rad. (From Bogdan, S., Kovačić, Z.,
and Punčec, M., IEEE 4th Int. Conf. Intell. Syst. Design Appl., 271–276, 2004. With
permission.)

“IF eθ is negative AND edθ is negative THEN τ is negative large.” The obtained
fuzzy rule table for the second part of the fuzzy controller is shown in Table 2.11.

The problem with calculated torque values is that they are based on noth-
ing but the elementary knowledge of the system. It is clear that torque τ̃NL =
〈−3π/4, −π/2, −π/4〉 may not be enough to move the beam in the right direction
if, for example, the ball’s mass is significant. Nevertheless, the obtained fuzzy
controller is a solid first step in stability analysis and design. Once the basic struc-
ture of the controller is known, it is simple to extend the rule table, readjust fuzzy
numbers, or tune input and output scaling factors.

The response of autonomous system (rref = 0) controlled with a cascade
fuzzy controller with initial conditions r = 0.1 m and θ = −0.3 rad are shown in
Figure 2.30 (dotted lines). One may see that the system is stable, but rather slow.
Since the determination of fuzzy numbers representing changes in errors was based
on assessments without knowledge about actual boundaries, we can readjust these
values in order to make system dynamics faster. Division by factor 2 gives the
results shown in Figure 2.30 (solid line). The system remains stable with a faster
response containing a slight overshoot.
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FIGURE 2.31 Tracking performance of a ball and beam system controlled with a cascade
fuzzy controller; initial conditions r = 0.1 m and θ = −0.3 rad, rref = 0.05 sin(0.94t).
(From Bogdan, S., Kovačić, Z., and Punčec, M., IEEE 4th Int. Conf. Intell. Syst. Design
Appl., 271–276, 2004. With permission.)

Tracking performance of the system is tested with signal rref = 0.05 sin(0.94t)
(Figure 2.31), indicating very good control quality and stable system behavior.
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3 Initial Setting of Fuzzy
Controllers

The initial structure of a fuzzy controller depends on the specifics of the controlled
process, desired control quality, and the information obtained from an expert.
Heuristic design and tuning of fuzzy controllers can be a rather demanding and
time consuming job even when using specialized development tools. Very often,
engineers who want to apply fuzzy controllers in industry must first go through
a long negotiation process before their customer accepts a new controller. This is
partly because of insufficient education of field personnel and partly because of a
general suspicion of the new controller’s reliability.

This can be overcome by fuzzy controller design methods, which are closely
related to the synthesis of well-known control concepts and existing controllers.
For example, in Reference 1 a gradient descent method is proposed for tuning a
Takagi–Sugeno set of fuzzy rules while in Reference 2 the same method is applied
to a fuzzy rule base with output singletons. The tuning of fuzzy controller param-
eters can be based on the Hooke–Jeeves pattern search algorithm, as explained
in Reference 3. The implementation of the proposed algorithm shows that this
method is able to tune a fuzzy controller with 9 and 25 rules in order to catch up to
the behavior of a proportional-derivative (PD) controller. A fuzzy version of a well-
known neural network model, a Kohonen’s self-organizing map, is introduced in
Reference 4, where Kohonen’s learning laws are used for tuning the centers of
fuzzy sets and for initialization of fuzzy rules. Dead-beat control philosophy has
been applied in Reference 5 in order to implement a fuzzy logic gain scheduling
algorithm for predicting the next proportional-integral-derivative (PID) controller
output value. The concept of model predictive control may be used for setting
fuzzy PID controllers, which control processes with delays and chaotic behavior
[6]. Proportional-integral (PI) predictive fuzzy controllers may be tuned according
to a so called symmetrical optimum in order to guarantee the desired domain for
the “phase margin” of fuzzy controlled astatic control processes [7].

Although very successful in practice, such fuzzy controller tuning methods are
not simple enough in cases when the tuning of fuzzy controllers must be done by
less well-educated and less experienced field engineers.

We describe three approaches to initial fuzzy controller setting, which result
in easy-to-implement algorithms: design of P-I-D-like fuzzy control algorithms,
model reference-based design, and design using phase plane trajectories. These
methods can be used for automated initial setting of fuzzy controllers used in
nonlinear, inherently stable, time-varying single-input single-output (SISO) high-
order systems, which can be linearized in a selected operating point. Such systems

75
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are often found in the industrial processes (e.g., control of temperature, pressure,
flow, level, angular speed, and position). We also describe the implementation
of three initial setting methods obtained from the above approaches and give
experimental results of controlling a laboratory process.

3.1 FUZZY EMULATION OF P-I-D CONTROL ALGORITHMS

No matter how complicated the control of a plant may seem, the majority of con-
trol loops in industrial control systems utilize standard P, PI, PD, or PID control
algorithms (here denoted as P-I-D) with fixed parameter values set during the com-
missioning. The synthesis of P-I-D controller parameters based on well-known
design methods normally requires a mathematical model, which can precisely
describe the dynamical behavior of a control object. Values of P-I-D controller
parameters obtained in such a way describe a linear control law adequate for a
selected operating point. If such a controller is applied to a nonlinear control
system, the performance of the system will vary depending on the variations of
control object parameters. Also, the usage of a linear control law will cause dif-
ferent responses of a nonlinear system for the same magnitude of positive and
negative reference input changes.

Different design strategies have been developed with the purpose to overcome
the disadvantages of linear P-I-D controllers. Such strategies transform a linear
P-I-D controller into P-I-D-like structures of fuzzy controllers such as PI, PD,
PI+D, PD+I, and PI+PD [8–12]. An informative review of various fuzzy P-I-D-
like controllers can be found in Reference 13. When designing a fuzzy controller by
emulating of a linear P-I-D controller, we assume that the fuzzy controller should
inherit the linear character of its model. In order to evaluate the quality of such
a transformation, different measures of achieved linearity have been introduced
[13–15]. For example, in Reference 13 it has been shown that nonoverlapping of
adjacent output fuzzy sets generally produces higher nonlinearity in fuzzy P-I-D
controller than in the overlapping case.

In terms of the influence that different fuzzy reasoning methods (fuzzy implic-
ations) have on the achieved linearity of PID-like fuzzy controllers, theoretical
results show that the vast majority of fuzzy PI and PID controllers are actually
nonlinear PI (PID) controllers [16–18]. In Reference 17 it has been mathemat-
ically proven that Takagi–Sugeno type of PI (PD) controllers are nonlinear PI
(PID) controllers with P-gain, I-gain, and D-gain changing with the output of the
controlled system, providing that they have at least three trapezoidal or triangular
input fuzzy sets for each input variable, fuzzy rules with a singleton in the con-
sequent part, Zadeh’s AND operator and the centroid defuzzifier. By analyzing
and comparing different fuzzy reasoning methods used for the implementation of
fuzzy PI controllers, it has been found in Reference 18 that fuzzy PI controller
gains do not change if product T -norm is used to assess the antecedent parts of
fuzzy rules, and if Zadeh’s AND operator is used in the process of fuzzy implica-
tion. Moreover, only fuzzy implications that use Mamdani and product T -norms in
combination with a Zadeh’s AND (i.e., min) operator give a sensible control effect
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(other methods either generate an incorrect sign of the fuzzy rule contribution or
drastically change PID controller gains with the changes of the system output).
Another important result presented in Reference 18 is that even in controller con-
figurations acceptable from the control point of view, nonlinear gain increases as
fuzzy controller inputs take larger values, so the control effort produced by a fuzzy
controller becomes stronger than that of the corresponding linear PI controller.

Although the making a perfect fuzzy copy of a linear P-I-D controller could be
an interesting design goal, it is more important to use a linear P-I-D controller as
a starting point for the initial setting of a fuzzy controller, because its prime role
is not to mimic the original, but to use all of the original’s intrinsic nonlinear con-
trol potential. This can be achieved through various adaptive and self-organizing
(self-learning) design concepts. When a more general solution is wanted, then
phase space [15] and phase plane are utilized [19]. So in Reference 19 a minimal
number (only 2) of fuzzy sets has been used to describe the current state vector
[e(k), �e(k)] in its polar coordinates, its magnitude and its argument. In order to
increase the performance of such a PID-like fuzzy controller an auxiliary fuzzy
controller has been used.

When it comes to the stability of fuzzy PID controlled systems, bounded input–
bounded output (BIBO) stability is mainly assessed using the well-known small
gain theorem [17,18,20].

3.1.1 Fuzzy Emulation of a PID Controller

A PID controller has the following form in continuous time domain:

u(t) = KP

[
e(t) + 1

TI

∫ t

0
e(t)dt + TD

de(t)

dt

]
= KPe(t) + KI

∫ t

0
e(t)dt + KD

de(t)

dt
(3.1)

where KP, KI, and KD are constant proportional, integral, and derivative controller
gains, respectively.

Discretization of Equation (3.1) by substituting the integral with the sum of
rectangles of the width Td and height e(iTd), i = 0, 1, 2, . . . , where Td is a sampling
interval, yields a recursive equation of a discrete linear PID controller:

u(k) = KPe(k) + KP
Td

TI

k∑
i=0

e(i) + KP
TD

Td
[e(k) − e(k − 1)]

= KPde(k) + KId

k∑
i=0

e(i) + KDd�e(k) (3.2)

where KPd = KP, KId = KPTd/TI, and KDd = KPTD/Td are corresponding constant
proportional, integral, and derivative gains.
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FIGURE 3.1 A fuzzy PID controller — variant A.
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FIGURE 3.2 A fuzzy PID controller — variant B.

so some steps must be taken to make their structure as close to a linear one as pos-
sible. A discrete form of a PID controller (3.2) is not convenient for implementation
because it contains the sum of all previous control error values. The better solution
is to define the difference between two consecutive values of controller output:

�u(k) = u(k) − u(k − 1) = KIde(k) + KPd�e(k) + KDd[�e(k) − �e(k − 1)]
= KIde(k) + KPd�e(k) + KDd�

2e(k) = �uI(k) + �uP(k) + �uD(k)

(3.3)

where �2e(k) = �e(k) − �e(k − 1).
The form of (3.3) suggests that three possible variants of a fuzzy PID controller

could be implemented:

• Variant A — a fuzzy PID controller having three inputs e, �e, and �2e
and one output �u, as shown in Figure 3.1.

• Variant B — a fuzzy PID controller composed of a linear PID controller
and a SISO fuzzy controller with e(k) and eF(k) as its input and output,
as shown in Figure 3.2.

• Variant C — a fuzzy PID controller composed of fuzzy P + fuzzy I +
fuzzy D controllers having e and �uP, �e and �uI, �2e and �uD, as

© 2006 by Taylor & Francis Group, LLC

In Chapter 2, we have shown that fuzzy controllers are intrinsically nonlinear,

respective inputs and outputs (Figure 3.3).
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FIGURE 3.3 A fuzzy PID controller — variant C.

For all three variants, the total output of the fuzzy PID controller is

u(k) = u(k − 1) + �u(k) (3.4)

Suppose that we have five fuzzy sets defined for each fuzzy PID controller
input. Then variant A will have 5 × 5 × 5 = 125 fuzzy rules, variant B will have
only 5, and variant C will have 3 × 5 = 15 fuzzy rules. Let us now examine in
greater detail what we get by choosing each of the variants as the platform for
fuzzy PID controller design.

3.1.1.1 Fuzzy Emulation of a PID Controller — Variant A

In order to emulate a discrete linear PID algorithm described by Equations (3.3)

e(k), �e(k), and�2e(k) as inputs and�u(k) as an output. By knowing minimal and
maximal values of these variables, we can determine their universes of discourse
and define shapes and distributions of related fuzzy sets. Now, we need to decide
on the form and the distribution of fuzzy sets. Let us choose triangular linearly
distributed input membership functions, where only two membership functions
are overlapping at the intersection point µ = 0.5. Then, after the application of
the product implication, defuzzification according to the center of gravity method
converts into a very simple form (2.24). By using product T -norm for assessing the
antecedent parts of fuzzy control rules, and by having singletons in the consequent
parts of fuzzy control rules, both Zadeh AND operator and product operator will

In Reference 15 it is theoretically proven that the control function of a SISO
fuzzy controller with linearly distributed fuzzy partition E = {TEi}, i = 1, 2, . . . , l,
will be smooth. Also, the control function of a DISO fuzzy controller with linearly
distributed fuzzy partitions E = {TEi}, DE = {TDEj}, i, j = 1, 2, . . . , l, will be
smooth on every peak point �uij = �u(ce

i ,c�e
j ) of a control surface, where ce

i and
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and (3.4) according to the concept shown in Figure 3.1, a fuzzy controller will have

provide the same value of the rule contribution (see Section 2.3.1).



“DK6032_C003” — 2005/11/4 — 17:36 — page 80 — #6
�

�

�

�

�

�

�

�

80 Fuzzy Controller Design

c�e
j are the centers of respective input fuzzy sets TEi and TDEj. The connections

between the nearest peak points (there are up to eight such points) will also be
smooth. By simple extension of the above theoretical results to a three input-single
output fuzzy controller with linearly distributed fuzzy partitions E = {TEi}, DE =
{TDEj}, DDE = {TDDEk}, i, j, k = 1, 2, . . . , l, the corresponding control function
will be smooth on every peak point �uijk = �u(ce

i , c�e
j , c��e

k ) of the control space,

where ce
i , c�e

j , and c��e
k are the centers of respective input fuzzy sets TEi, TDEj,

and TDDEk . Every peak point will be surrounded by maximally 26 other peak
points (eight in the same layer plus nine in the layers above and below), which are
smoothly connected to each other.

The numbers of input variables and their fuzzy sets define the number of rules.
For three input variables with l fuzzy sets, the number of rules is l3. We shall use
singleton sets Aq, 1 ≤ q ≤ l3, whose values correspond with the above-mentioned
peak points �uijk , i, j, k = 1, 2, . . . , l, instead of symmetrical triangular output
fuzzy sets to make the implementation of a fuzzy PID controller simple.

Let TEi, TDEj, and TDDEk be the ith, the jth, and the kth fuzzy set of e(k),
�e(k), and �2e(k), respectively, and let Aq be the qth singleton of fuzzy PID
controller output �u(k). Then the i, j, kth fuzzy rule has the form

FRijk : IF e(k) is TEi AND �e(k) is TDEj AND

�2e(k) is TDDEk THEN �u(k) is Aq (3.5)

Defuzzification will be carried out according to the center of gravity method
described in Equation (2.22). Since only two nearest input membership functions
overlap, maximally one, two, four, or eight fuzzy rules can contribute to crisp
controller output value. If controller input values ei(k), �ej(k), and �2ek(k) are
such that they satisfy µe

i (ei) = 1, µ�e
j (�ej) = 1, and µ��e

j (�2ek) = 1 (which

means that ei(k), �ej(k), and �2ek(k) correspond with centers ce
i , c�e

j , and c��e
k of

the respective ith, the jth, and the kth input fuzzy sets), then regardless of whether
T -norm, min, or product is used, fuzzy PID controller output is determined by
only one rule and its value is equal to

�u =
min

[
µe

i

(
ce

i

)
, µ�e

j

(
c�e

j

)
, µ��e

k

(
c��e

k

)]
Aq

min
[
µe

i

(
ce

i

)
, µ�e

j

(
c�e

j

)
, µ��e

k

(
c��e

k

)] = min [1, 1, 1] Aq

min [1, 1, 1]
= Aq

�u = µe
i

(
ce

i

) · µ�e
j

(
c�e

j

) · µ��e
k

(
c��e

k

) · Aq

µe
i

(
ce

i

) · µ�e
j

(
c�e

j

) · µ��e
k

(
c��e

k

) = 1 · 1 · 1 · Aq

1 · 1 · 1
= Aq

(3.6)

By equating (3.3) with (3.6) we obtain

�u = Aq = KIdce
i + KPdc�e

j + KDdc��e
k (3.7)

© 2006 by Taylor & Francis Group, LLC
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Equation (3.7) defines values of all output singletons Aq, 1 ≤ q ≤ l3 by
inserting earlier determined values of all input fuzzy set centers ce

i , c�e
j , and c��e

k
for i, j, k = 1, 2, . . . , l.

The result is a simple algebraic equation for calculating singleton values that
can be easily implemented in control software. By having calculated these values,
which correspond to peak points �uijk = �u(ce

i , c�e
j , c��e

k ) of the control space,
we can expect a smooth fuzzy PID control function.

Having the initial setting algorithm (3.7) for a P-I-D-like fuzzy controller, it
is easy to derive simpler forms for P-I-, P-D-, or P-like fuzzy controllers. For
example, the algorithm for calculating singleton values for a fuzzy P-I controller
is obtained directly from (3.7) for KDd = 0:

�u = uFC = Aq = KIdce
i + KPdc�e

j (3.8)

where 1 ≤ q ≤ l2 and i, j = 1, 2, . . . , l.
Now let us see how linear PID and fuzzy PID controllers of variant A are

related. Since graphical representations and explanations in three-dimensional
control space are not so practical, we shall explain their basic relations through
the example of two-dimensional linear PI and fuzzy PI controllers. We shall then,
by deduction, draw conclusions for the three-dimensional case.

Since we are using symmetrical triangular input fuzzy sets (Figure 3.4), we can
describe the triangular membership function µi(x) = µ x

i with two membership
functions: one for the left-hand-side domain [L x

i , c x
i ] and the other for the right-

hand-side domain [c x
i , R x

i ]:

µx
Li

= µLi(x) = x − L x
i

c x
i − L x

i
= x − L x

i

w x
i

, x ∈ [
L x

i , c x
i

]

µx
Ri

= µRi(x) = R x
i − x

R x
i − c x

i
= R x

i − x

w x
i

, x ∈ [
c x

i , R x
i

] (3.9)

where the widths of the left-hand-side and the right-hand-side domains are denoted
as w x

i .

FIGURE 3.4 The parameters of a triangular fuzzy set.

© 2006 by Taylor & Francis Group, LLC
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Relations (3.9) indicate that the slopes of the triangular input membership
functions are determined by the width of the fuzzy sets.

Equations (3.9) can be rewritten to reflect the degree of membership with
regards to relative input value x̄i(k) = x(k) − c x

i :

µx
Li

= µLi(x) = x − c x
i + c x

i − L x
i

c x
i − L x

i
= x̄i + w x

i

w x
i

= 1 + x̄i

w x
i

, x ∈[L x
i , c x

i ]

µx
Ri

= µRi(x) = R x
i − c x

i + c x
i − x

R x
i − c x

i
= w x

i − x̄i

w x
i

= 1 − x̄i

w x
i

, x ∈[c x
i , R x

i ]
(3.10)

Similarly, the halves of symmetrical triangular input fuzzy sets TEi and TDEj

are denoted we
i = (Re

i − Le
i )/2 = Re

i − ce
i = ce

i − Le
i and w�e

j = (R�e
j − L�e

j )/2 =
R�e

j −c�e
j = c�e

j −L�e
j , respectively. In case of linear distribution of uniform fuzzy

sets {TEi} and {TDEj}, we
i and w�e

j become constant parameters we and w�e.
Let the universe of discourse of e(k) be E = [emin, emax], and of �e(k)

DE = [�emin, �emax]. For the l input fuzzy sets, we = (emax − emin)/(l − 1),
w�e = (�emax−�emin)/(l−1). Let every input of the fuzzy controller have seven
fuzzy sets, l = 7. Then we get a graphical presentation of the phase plane as shown

�e(k)], lying on the control surface above the phase plane, were created by con-
tributions of maximally four output singletons (peak points). When studying the
control space of a fuzzy PID controller, we should anticipate that each controller
output value �u(k) = ψ [e(k), �e(k), �2e(k)] will be surrounded by maximally

Figure 3.5 shows four singletons Ai, j − Ai+1, j+1 that surround the desig-
nated controller output value �u(k). Singleton Ai, j contributes to �u(k) through
fuzzy rule FRij, Ai, j+1 through fuzzy rule FRi(j+1), Ai+1, j+1 through fuzzy rule
FR(i+1)(j+1), and Ai+1, j through fuzzy rule FR(i+1)j. In this segment of the phase
plane, contributions of singletons to �u(k) are actually determined by the right-
hand sides of µe

i and µ�e
j , and the left-hand sides of µe

i+1 and µ�e
j+1. In other words,

the domain of the phase plane segment is e(k) ∈ [Le
i+1, Re

i ], �e(k) ∈ [L�e
j+1, R�e

j ].
Working with relative fuzzy controller input values ēi(k) = e(k)−ce

i , �ēj(k) =
�e(k) − c�e

j and referring to (3.10) we obtain

µe
Ri

= 1 − ēi

we
, µ�e

Rj
= 1 − �ēj

w�e
, µe

L(i+1)
= 1 + ēi+1

we
, µ�e

L( j+1)
= 1 + �ēj

w�e
(3.11)

Since all adjacent triangular fuzzy sets overlap at crossover value µ = 0.5, the
following holds:

µe
L(i+1)

= 1 − µe
Ri

= ēi

we

µ�e
L(j+1)

= 1 − µ�e
Rj

= �ēj

w�e

(3.12)

© 2006 by Taylor & Francis Group, LLC

in Figure 3.5. One may see that all points on the control curve �u(k) = ψ[e(k),

eight such peak points (see Figure 3.6).
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FIGURE 3.5 The phase plane of a fuzzy PI controller.

By using product T -norm for assessing the antecedent parts of the fuzzy
control rules, and recalling from (2.24) that

∑r
j=1 µj = 1, ϕj = µj, and

�u = ∑r
j=1 Ajµj, then the crisp output of fuzzy controller �u(k) depends on

singletons Ai, j − Ai+1, j+1 in the following way:

�u(k) = µe
Ri

µ�e
Rj

Ai, j + µe
Ri

µ�e
L(j+1)

Ai, j+1 + µe
L(i+1)

µ�e
L(j+1)

Ai+1, j+1

+ µe
L(i+1)

µ�e
Rj

Ai+1, j

= µe
Ri

µ�e
Rj

Ai, j + µe
Ri

(1 − µ�e
Rj

)Ai, j+1 + (1 − µe
Ri

)(1 − µ�e
Rj

)Ai+1, j+1

+ (1 − µe
Ri

)µ�e
Rj

Ai+1, j

= 1

we
[we − ēi(k)]

1

w�e

[
w�e − �ēj(k)

]
Ai, j

+ 1

we
[we − ēi(k)]

1

w�e
�ēj(k)Ai, j+1 + 1

we
ēi(k)

1

w�e
�ēj(k)Ai+1, j+1

+ 1

we
ēi(k)

1

w�e

[
w�e − �ēj(k)

]
Ai+1, j (3.13)

© 2006 by Taylor & Francis Group, LLC

0

0

u(k)

e

e�i
e�i+1

�j
∆e

�j+1
∆e

–∆emax

emax–emax

∆emax

∆e

Ai,j Ai +1,j

Ai,j +1 Ai+1,j +1
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We can rewrite (3.13) in terms of ēi(k) and �ēj(k) in the following way:

�u(k) = 1

wew�e

⎧⎪⎪⎨
⎪⎪⎩

�ēj(k)[ēi(k)Ai+1, j+1 − ēi(k)Ai+1, j − ēi(k)Ai, j+1

+weAi, j+1 + ēi(k)Ai, j − weAi, j]
+ēi(k)(−w�eAi, j + w�eAi+1, j) + wew�eAi, j

⎫⎪⎪⎬
⎪⎪⎭

(3.14)

When designing a fuzzy PI controller, each singleton is calculated according
to expression (3.8). Thus,

Ai, j = KPdc�e
j + KIdce

i

Ai+1, j = KPdc�e
j + KIdce

i+1 = KPdc�e
j + KId(c

e
i + we) = Ai, j + KIdwe

Ai, j+1 = KPdc�e
j+1 + KIdce

i = KPd(c
�e
j + w�e) + KIdce

i = Ai, j + KPdw�e

Ai+1, j+1 = KPdc�e
j+1 + KIdce

i+1 = KPd(c
�e
j + w�e) + KId(c

e
i + we)

= Ai, j + KPdw�e + KIdwe (3.15)

Upon insertion of (3.15) into (3.14) we obtain:

�u(k) = KPd�e(k) + KIde(k) (3.16)

which is the same as the control law of a linear PI controller. In this way we
have provided the equality of the two controllers. Since we are dealing with fuzzy
emulation of linear control laws, all conclusions valid for a two-dimensional PI
controller are also applicable to a three-dimensional PID controller. The only
difference in the proof of equality is that in three dimensions we deal with eight
singletons Ai, j,k – Ai+1, j+1,k+1 (vertices of the prismatic subspace of the control

Another way to design a fuzzy PID controller using variant A is to treat the
PID controller Equation (3.3) in its condensed form

�u(k) = �uP(k) + �uI(k) + �uD(k) (3.17)

where

�uP(k) = KPd [e(k) − e(k − 1)] = KPd�e(k)

�uI(k) = KIde(k)

�uD(k) = KDd [�e(k) − �e(k − 1)] = KDd�
2e(k)

(3.18)

represent controller output increment contributions related to the system error, the
change in error and the change in error rate, respectively.

Since �uP(k), �uI(k), and �uD(k) are proportional to standard fuzzy control
inputs e(k), �e(k), and �2e(k) in (3.18), they can be treated as modified fuzzy

© 2006 by Taylor & Francis Group, LLC

space, see Figure 3.6).
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FIGURE 3.6 The segment of the fuzzy PID control space.

Fuzzy PID controller ∆u

e

∆e

∆2e

KPd

KId

KDd

eP

eI

eD

FIGURE 3.7 A variation of a fuzzy PID controller — variant A.

PID controller inputs eP(k) = �uP(k), eI(k) = �uI(k), and eD(k) = �uD(k),
as shown in Figure 3.7. The difference with respect to the previous fuzzy PID
controller form is in the input universe of discourse. Here, the domains of all
inputs correspond to the domain of fuzzy controller output.

In order to make the fuzzification process linear, we must use evenly distributed
fuzzy sets with uniform triangular membership functions, providing that only two
adjacent membership functions are overlapping with crossover membership degree

fuzzy set N with so-called Z-shape, fuzzy set P with so-called S-shape, and a
predetermined threshold parameter equal to the expected maximum of controller
output increment, uM = max[�u(k)]. Normally, we may also have three, five,
seven, or more fuzzy sets for each input, as shown in Figure 3.8 below (please
notice that NL has a Z-shape and PL has an S-shape).

In the same fashion, we should arrange the even distribution of singletons or
some other symmetrical membership functions along the controller output universe
of discourse defined at interval [−uM, uM]. To create a rational fuzzy rule table, we
would have to define at least three (N, Z, and P) or more controller output fuzzy sets.

Given the membership functions, a linear PID control law can be transformed
into a set of fuzzy control rules. For input fuzzy sets having a form such as for the
simplest case shown in Figure 3.8, we may create a fuzzy rule base with the total

© 2006 by Taylor & Francis Group, LLC

µ = 0.5. The simplest possible case shown in Figure 3.8 has only two fuzzy sets,

k

i

j

Ai,j,k Ai +1,j,k

Ai+1,j,k+1

Ai+1,j +1,k+1

Ai+1,j +1,k

Ai,j+1,k+1

Ai,j,k +1

Ai,j +1,k

∆u(k)
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FIGURE 3.8 Input membership functions: the simplest case (above), a standard case
(below).

of eight fuzzy control rules:

FR1: IF eP is N AND eI is N AND eD is N THEN �u is A1 (e.g., NL)

FR2: IF eP is N AND eI is N AND eD is P THEN �u is A2 (e.g., NS or NM)

...

FR8: IF eP is P AND eI is P AND eD is P THEN �u is A8 (e.g., PL)

Regardless of the number of fuzzy sets defined for each fuzzy PID controller
input, if only two adjacent membership functions are overlapping, maximally eight
fuzzy rules may contribute to fuzzy controller output.

Fuzzy PID controller output increment �u(k) is calculated for the discrete
universe of discourse according to the center of gravity (COG) method in the
following way:

�u(eP, eI, eD, k) =
∑

i �ui
∑r

j=1 µFRj (eP, eI, eD, �ui)∑
i
∑r

j=1 µFRj (eP, eI, eD, �ui)
(3.19)

where r ≤ 8 is the number of fuzzy rules activated by crisp inputs eP(k), eI(k),
and eD(k).

In DISO fuzzy controllers, the fuzzy rule base can be represented by a fuzzy
rule table, while in three-input fuzzy PID controllers (3.17), the input space is a
cube. The cube’s dimension is defined by the inputs constraint uM = max[�u(k)].

If controller input values eP(k), eI(k), and eD(k) are such that they sat-
isfy µ

eP
i (eP) = 1, µ

eI
j (eI) = 1, and µ

eD
k (eD) = 1 (which means that eP(k),

eI(k), and eD(k) correspond to centers ceP
i , ceI

j , and ceD
k of the ith, jth, and the

kth input membership functions, respectively), then just as in the previous case

© 2006 by Taylor & Francis Group, LLC
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(see Equation [3.6]), controller output is determined by only one rule regardless
of the used min or product T -norm. Its value is equal to

uFC = min[µeP
i (ceP

i ), µeI
j (ceI

j ), µeD
j (ceD

k )]Aq

min[µeP
i (ceP

i ), µeI
j (ceI

j ), µeD
j (ceD

k )] = min[1, 1, 1]Aq

min[1, 1, 1] = Aq

uFC = µ
eP
i (ceP

i ) · µ
eI
j (ceI

j ) · µ
eD
j (ceD

k ) · Aq

µ
eP
i (ceP

i ) · µ
eI
j (ceI

j ) · µ
eD
j (ceD

k )
= 1 · 1 · 1 · Aq

1 · 1 · 1
= Aq

(3.20)

By equating (3.17) with (3.20) (having in mind that eP(k) = �uP(k), eI(k) =
�uI(k), and eD(k) = �uD(k)), we obtain

�u = uFC = Aq = ceP
i + ceI

j + ceD
k (3.21)

Equation (3.21) directly defines values of all output singletons Aq, 1 ≤ q ≤ l3

by inserting values of all input membership function centers ceP
i , ceI

j , and ceD
k for

i, j, k = 1, 2, . . . , l .
The result is, as in the first approach, a simple algebraic equation for calculating

singleton values that can be easily implemented into any control software.
The aim of the two described approaches is to get a fuzzy PID controller

which can be further modified by means of various adaptive and self-organizing
algorithms. The only problem is in the large number of fuzzy rules, for i, j, k =
1, 2, . . . , l, l = 5, it reaches 125.

3.1.1.2 Fuzzy Emulation of a PID Controller — Variant B

If our goal is to minimize the number of rules, then we may use a very simple

which contains a SISO fuzzy controller and a standard linear PID controller [13].
The fuzzy controller has e(k) as its input and eF(k) as its output. The number
of input fuzzy sets l defines the total number of fuzzy rules. Providing that we
are using triangular fuzzy sets, where only two adjacent sets are overlapping at

output eF(k). The output eF(k) can be generated according to the COG principle.
Then the output of the SISO fuzzy controller gets the form:

eF(k) = µe
Ri

ceF
i + µe

L(i+1)
ceF
(i+1) (3.22)

where µe
Ri

denotes the right-hand side of the fuzzy set TEi, while µe
L(i+1)

denotes

the left-hand side of the fuzzy set TEi+1. Notations ceF
i and ceF

(i+1) stand for the
centers of output fuzzy sets TEFi and TEFi+1, respectively.

The corresponding widths of the halves of fuzzy sets are we = (emax − emin)/
(l − 1) and weF = (eFmax – eFmin )/(lF − 1) for linearly distributed input and output

© 2006 by Taylor & Francis Group, LLC

configuration of a fuzzy PID controller, shown in Figure 3.2. This is a structure

µ = 0.5 (see Figure 3.9), then maximally two fuzzy rules can contribute to crisp
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FIGURE 3.9 Membership functions of a SISO fuzzy controller.

FIGURE 3.10 Membership functions of a three-rule fuzzy PID controller.

fuzzy sets. Since µe
L(i+1)

= 1 − µe
Ri

, and ceF
(i+1) = ceF

i + weF , by recalling (3.12)
we get:

eF(k) =
(

1 − ēi(k)

we

)
ceF

i + ēi(k)

we
(ceF

i + weF) = ceF
i + weF

we
ēi(k)

→ eF(k) − ceF
i = weF

we
[e(k) − ce

i ] = klF[e(k) − ce
i ] (3.23)

Example 3.1 A three-rule SISO fuzzy PID controller.

Let us consider a SISO fuzzy PID controller whose input and output have only three
linearly distributed triangular fuzzy sets, l = lF = 3, where only two adjacent sets
are overlapping at µ = 0.5. Also, let the input and output universes of discourse
be normalized, as shown in Figure 3.10.

Then the fuzzy rule table has only these three rules:

FR1 : IF e is N THEN eF is N

FR2 : IF e is Z THEN eF is Z

FR3 : IF e is P THEN eF is P

Dealing with normalized input and output universes of discourse and having
l = lF, according to (3.23) we get klF = 1, ceF

i = ce
i , which eventually yields

eF(k) = e(k).

© 2006 by Taylor & Francis Group, LLC
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Then, the output of the SISO fuzzy PID controller gets the form:

�u(k) = KIdeF(k) + KPd�eF(k) + KDd�
2eF(k) = |eF(k) = klFe(k)|klF=1

= KIde(k) + KPd�e(k) + KDd�
2e(k) (3.24)

We have achieved full compatibility of a linear and a fuzzy PID controller, but
it would be much more effective to use a nonlinear potential of the SISO fuzzy
controller (i.e., to adjust the nonlinear input–output mapping gain klF on-line).

3.1.1.3 Fuzzy Emulation of a PID Controller — Variant C

Let us see what we get if we consider a fuzzy PID controller composed of three
parallel SISO fuzzy controllers — fuzzy P, fuzzy I, and fuzzy D — having e(k),
�e(k), and �2e(k) as inputs, and uP(k), uI(k), and uD(k) as respective outputs

described in the previous section, the number of fuzzy sets for each input, le, l�e,
and l��e, will determine the total number of fuzzy rules, equal to le + l�e +
l��e. In this way, for le = l�e = l��e = l, we can have a complete fuzzy rule
base with only 3 × l fuzzy rules. Compared to l3 fuzzy rules of the fuzzy PID
controller — variant A, the number of rules is significantly reduced.

Dealing with three parallel SISO fuzzy controllers, we may apply the same
approach we applied to the analysis of the SISO fuzzy PID controller — variant B.
Generally, we deal with different values of le, l�e, and l��e, and l�uI , l�uP , and
l�uD . The same holds for the corresponding widths of fuzzy sets. Referring to

�uI(k) = µe
Ri

c�uI
i + µe

L(i+1)
c�uI

i+1

�uP(k) = µ�e
Rj

c�uP
j + µ�e

L(j+1)
c�uP

j+1

�uD(k) = µ��e
Rk

c�uD
k + µ��e

L(k+1)
c�uD

k+1

(3.25)

For the given widths and centers of all fuzzy sets, as in Equation (3.23), we get:

�uI(k) − c�uI
i = klI[e(k) − ce

i ]
�uP(k) − c�uP

j = klP[�e(k) − c�e
j ]

�uD(k) − c�uD
k = klD[�2e(k) − c��e

k ]
(3.26)

This configuration allows the designer to adjust three independent input–output
mapping gains klI, klP, and klD to achieve the desired nonlinear effect.

© 2006 by Taylor & Francis Group, LLC

(Figure 3.3). Following the thinking behind the SISO fuzzy PID controller structure

Figure 3.9 and relation (3.22), we obtain:
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3.1.1.4 Sugeno Type of Fuzzy PID Controller

One of the many possibilities in designing a fuzzy controller that behaves as a
linear PID controller is to use the structure of a so-called Sugeno type of fuzzy
PID controller. Namely, the Takagi–Sugeno fuzzy rule has an explicit function in
the consequent (THEN) part of the rule:

FR: IF R THEN f (·)

If that function happens to be a recursive Equation (3.3) of a PID controller:

FR : IF R THEN �u(k) = KIde(k) + KPd�e(k) + KDd�
2e(k) (3.27)

and if there are as many different PID controller functions as there are rules, then we
have the perfect opportunity to change (adapt) the parameters of the PID controller
with respect to the values of fuzzy controller inputs. There are no constraints
regarding the number of inputs: the Sugeno type of fuzzy PID controller may have
a single input (e.g., e(k)), or several inputs (e.g., e(k), �e(k), and �2e(k)).

3.2 Model Reference-Based Initial Setting
of Fuzzy Controllers

In this chapter, we describe the initial setting of a fuzzy rule table by using a second-
order reference model for defining the desired closed-loop system dynamics

yM(k) = aM1yM(k − 1) + aM2yM(k − 2) + bM1ur(k − 1) (3.28)

where yM is the reference model output and ur is the system reference input.
The method is based on the assumption that a controlled process with measur-

able input and output can be appropriately described in a selected operating point
with linear second order approximation:

yA(k) = aA1yA(k − 1) + aA2yA(k − 2) + bA1u(k − 1) (3.29)

where yA is process output and u is control input (e.g., fuzzy controller output). The
former assumption is true for a very large class of linear and nonlinear systems.
Process approximation parameters aA1, aA2, and bA1 can be calculated from the
acquired input–output data by using some of the standard process identification
methods (e.g., the least square method).

The goal of fuzzy controller design is to find a controller that can keep the
difference (i.e., tracking error) between the reference model and the process as
small as possible. Because controller design is based on process approximation
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(3.29), the controller dealing with nonmodeled process dynamics will not be able to
fully eliminate the tracking error. In general, the better the process approximation
is, the lower the tracking error will be.

The problem of fuzzy controller parameter determination is equal to controller
synthesis, which will set closed-loop poles and zeros in the place of reference
model poles and zeros. In the ideal case, closed-loop system behavior will not
vary from the reference model.

Transfer functions of process approximation and of the reference model can
be obtained from (3.28) and (3.29)

GA(z) = YA(z)

U(z)
= BA(z)

AA(z)
= bA1z

z2 − aA1z − aA2

GM(z) = YM(z)

Ur(z)
= BM(z)

AM(z)
= bM1z

z2 − aM1z − aM2

(3.30)

The generic form of a controller with two inputs, reference input ur and
measurement signal yA, and one output u(k), is described with

U(z) = 1

R(z)
[T(z)Ur(z) − S(z)YA(z)] (3.31)

Controller (3.31) is the most frequently used controller in conventional control
systems. It is a two-parameter configuration with system output as its feedback
signal [21]. By selecting polynomials R(z), S(z), and T(z), different structures of
the control algorithm can be obtained depending on the desired dynamic behavior
and the criterion for control quality. Thus, for S = 0, we get feedforward control,
while for S = T the feedforward part is excluded and the control system uses a
feedback signal only.

The degrees of polynomials R(z), S(z), and T(z) (i.e., controller degree) are
defined by the request for causality and stability of a closed-loop system and its
controller (i.e., by the degrees of polynomials AA(z), BA(z), AM(z), and BM(z))
satisfying the following criteria:

deg of R(z) ≥ deg of T(z)

deg of R(z) ≥ deg of S(z)
(3.32)

By insertion of (3.31) into (3.30) we get the well-known equality from which
controller polynomials can be determined:

BA(z)T(z)

AA(z)R(z) + BA(z)S(z)
= BM(z)

AM(z)
(3.33)

In general, before determining controller polynomials, we need to factorize
polynomials B, BM, and R to solve the problem of process zeros, which are placed
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outside the unity circle. With the determination of initial values of the controller’s
output singletons, we make the assumption that the transfer function of the pro-
cess approximation does not contain such zeroes: therefore, factorization is not
needed.

From Equation (3.33) we see that the poles of a closed-loop characteristic
equation are determined by polynomial AM(z). The degree of the model is usually
lower or equal to the degree of the controlled process, so it is convenient to
introduce a new polynomial, A0(z), that multiplies AM(z) and contains poles,
which can be interpreted as poles of an observer. Namely, a controller with a two-
parameter configuration and the system output as the feedback signal implicitly
contains an observer. In order to keep equality (3.33) sustained, polynomial BM(z)
must also be multiplied with A0(z).

Polynomials R(z) and S(z), which determine poles of a closed-loop character-
istic equation, are calculated by solving this polynomial equation

AA(z)R(z) + BA(z)S(z) = A0(z)AM(z) (3.34)

while the solution to the equation

BA(z)T(z) = A0(z)BM(z) (3.35)

determines polynomial T(z).
From Equations (3.34) and (3.35) we may see that the degrees of polynomials

R(z), S(z), and T(z) are determined by the degrees of the respective polynomials
of model and process approximation transfer functions, which must satisfy the
criteria of controller causality and closed-loop system stability (3.32).

In general, solving the polynomial equation (3.34) can be a demanding job.
Since transfer functions (3.30) are very simple, finding the solution can also
become simple if polynomials R(z), S(z), and T(z) are selected as follows:

R(z) = r1z + r0

S(z) = s1z + s0

T(z) = t1z + t0

(3.36)

Since deg{R(z)} = deg{S(z)} = deg{BA(z)} = 1, and deg{AA(z)} =
deg{AM(z)} = 2, A0(z) is chosen to be a first degree polynomial with a pole placed
in the origin of the z-plane, A0(z) = z. In this way, the influence of A0(z) on system
dynamics is reduced to the minimum. By inserting (3.36) and polynomial A0(z)
in Equations (3.34) and (3.35) we get

(z2 − aA1z − aA2)(r1z + r0) + bA1z(s1z + s0) = z(z2 − aM1z − aM2)

bA1z(t1z + t0) = bM1z2 (3.37)
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To find a controller by solving Equations (3.37), let r1 = 1 and r0 = 0. Then
controller polynomials are

R(z) = z

S(z) = aA1 − aM1

bA1
z + aA2 − aM2

bA1

T(z) = bM1

bA1
z

(3.38)

Upon the insertion of polynomials of Equation (3.38) into controller equa-
tion (3.31), we obtain

U(z) = bM1

bA1
Ur(z) −

[
aA1 − aM1

bA1
+ aA2 − aM2

bA1
z−1

]
YA(z) (3.39)

The inverse Z-transformation of (3.39) gives a recursive controller equation

u(k) = bM1

bA1
ur(k) − aA1 − aM1

bA1
yA(k) + aA2 − aM2

bA1
yA(k − 1) (3.40)

From controller equation (3.40) we may see that when the reference model and
process approximation dynamics are equal, signals u(k) = ur(k) are equal. The
most frequent form of fuzzy controllers has control error e(k) and change of control
error �e(k) as its inputs. In order to get the form of controller (3.40) compatible
with the form of the fuzzy controller, we must transform Equation (3.40) so that
it includes fuzzy controller inputs e(k) and �e(k). As e(k) = ur(k) − yA(k),
Equation (3.40) obtains the following form:

u(k) = aA1 + aA2 − aM1 − aM2

bA1
e(k) + aM2 − aA2

bA1
�e(k)

+aM1 − aA1 + bM1

bA1
ur(k) + aM2 − aA2

bA1
ur(k − 1) (3.41)

Assuming that reference input signal ur(k) has a constant value or that it is
changing slowly (i.e., ur(k) = ur(k − 1)), Equation (3.21) becomes

u(k) = k1e(k) + k2�e(k) + k3ur(k) (3.42)

where

k1 = aA1 + aA2 − aM1 − aM2

bA1

k2 = aM2 − aA2

bA1

k3 = aM1 − aA1 + bM1 + aM2 − aA2

bA1

(3.43)
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As in Equation (3.40), one may see from (3.42) and (3.43) that signals u(k) and
ur(k) will be equal if process approximation and the reference model are equal.

Controller (3.42) can be split into two parts

u(k) = uFC(k) + uFF(k) (3.44)

where

uFC(k) = k1e(k) + k2�e(k) (3.45)

uFF(k) = k3ur(k) (3.46)

Coefficient k3 represents feedforward gain coefficient and Equation (3.46)
represents the feedforward part of a controller that works in parallel with the
“fuzzy” part of controller (3.45). As assumed, the controlled process is stable (i.e.,
it does not contain integral behavior) and since we are dealing with a PD-type of
fuzzy controller, it is necessary to include a feedforward path in the controller that
will compensate for static error. As a consequence, it is essential to determine the
correct value for k3. We may see from Equation (3.43) that if we have a reference
model with unity gain (bM1 = 1), k3 is equal to an inverse value of the process
gain coefficient.

Equation (3.45) becomes the basis for model reference-based fuzzy controller
design. We may notice a great similarity with Equation (3.8) obtained for the
design of a fuzzy P-I controller. If only two nearest input fuzzy sets overlap,
maximally one, two, or four fuzzy rules can contribute to crisp controller output
value. Following the same idea which has been used for the determination of the
fuzzy rule table that emulates P-I-D and P-I algorithms (see Equations [3.7] and
[3.8] in Section 3.1.2), we may choose the values of controller inputs ei(k) and
�ej(k) such that µe

i (ei) = 1 and µ�e
j (�ej) = 1 (which means that ei(k) and

�ej(k) correspond with the centers ce
i , c�e

j of the ith and the jth input fuzzy sets,
respectively). In that case crisp fuzzy controller output is determined by only one
fuzzy rule, that is,

uFC = k1ce
i + k2c�e

j = Aq (3.47)

Equation (3.47) directly defines values of all output singletons Aq, 1 ≤ q ≤ l2

by inserting values of all input fuzzy set centers ce
i and c�e

j for i, j = 1, 2, . . . , l.
By solving polynomial Equation (3.44) for second-order process (3.40), we

have derived a controller whose aim is to enforce a closed-loop system to
follow reference model dynamics. The result is the sum of the reference model-
dependent feedforward term and the algebraic equation (3.47) similar in form to
Equation (3.8). This algebraic expression, which includes parameters of the refer-
ence model, is used for the calculation of controller output singleton values. Due
to its simplicity, it can be implemented into control software easily.

A large number of industrial processes that feature dead time Tm can be
described with the recursive equation (3.29). However, it is necessary to modify
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the delay of signal u(k) for the number of control intervals equal to d = Tm/Td:

yA(k) = aA1yA(k − 1) + aA2yA(k − 2) + bA1du(k − 1 − d) (3.48)

We can also use the model reference-based method for the initial setting of
the fuzzy rule table for this class of systems. Besides the feedforward term, new
elements related to the previous states of controller output u(k) will appear:

u(k) = uFC(k) + uFF(k) + k4u(k − 1) + k5u(k − 2) + · · · + kd+2u(k − d + 1)

(3.49)

These changes occur because the fuzzy controller part (3.45) does not contain
memory elements, that is, its output does not depend on its previous states, due to
the purely static character of the fuzzy controller input–output mapping function.
When controlling systems with dead time, memory elements must be added to
ensure causality (feasibility) of the controller.

3.3 PHASE PLANE-BASED INITIAL SETTING OF

FUZZY CONTROLLERS

Fuzzy rule tables obtained by emulating linear controllers and by using reference
models can be characterized as “linear” due to the linear character of their initial
setting algorithms by Equations (3.7), (3.8), and (3.47). This is a severe constraint
if we wish to mimic human operator decisions or existing nonlinear controller
actions while they control a process. Phase plane-based initial setting of the fuzzy
controller is proposed as a solution to this problem.

As discussed in Section 2.4.1, the fuzzy rule table can also be viewed as the
phase plane, while singleton values in the fuzzy rule table, depending on a type of
defuzzification, form the control surface ψ above the phase plane. Provided that
the controller inputs and output are measurable, we can extract (record) triples
of the form [u(k), e(k), �e(k)] or [�u(k), e(k), �e(k)] in every control interval,
depending on whether the controlled process is astatic or static. Triples often have
the form [u(k), e(k), �yf (k)] or [�u(k), e(k), �yf (k)] where a change of control
error �e(k) has been replaced with the change of measured system output �yf (k).
By using triples acquired under different operating conditions of a mimicked con-
troller, we may form a set of phase plane trajectories and accompanying controller
output responses (series of connected discrete points), which not only belong to but
also constitute fuzzy control surface ψ . The main advantage of phase plane-based
synthesis of a fuzzy controller is that it does not depend on the type of a mimicked
controller. The mimicked controller can be any type of linear or nonlinear control-
ler that includes a system operator, which means that the controller is treated as a
“black box.”

We shall describe phase plane-based synthesis of the fuzzy rule table by using
triples [u(k), e(k), �e(k)]. The procedure is, moreover, applicable to all the other
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FIGURE 3.11 The determination of output singletons by using phase plane trajectory.
(From Bogdan, S. and Kovačić, Z., IEEE Conf. Control Appl., 648–652, 1998. With
permission.)

forms we have described. Accordingly,

uFC = ψ[e, �e] (3.50)

where ψ[e, �e] is calculated according to the center of gravity method described
in Equation (2.23).

To simplify fuzzy controller design we can start by defining the number of
membership functions and their shapes for inputs e(k) and �e(k), as well as their
distribution on the universes of discourse. In that case, the tuning of the controller
can be reduced to the tuning of output singletons, parameters that will model the
control surface ψ .

Let the jth trajectory (partly shown in Figure 3.11) contain a series of n points
expressed with triples [uj(1), e(1), �e(1)], [uj(2), e(2), �e(2)], . . . , [uj(ρ), e(ρ),
�e(ρ)], [uj(ρ+1), e(ρ+1), �e(ρ+1)], . . . , [uj(ρ+m), e(ρ+m), �e(ρ+m)], . . .
, [uj(n), e(n), �e(n)]. By writing Equation (3.50) for each trajectory point and
assuming that both input variables have the same number of l fuzzy sets, we get a
set of n equations with l2 unknowns.

Because of overlapping fuzzy controller membership functions, several fuzzy
rules contribute to crisp output value. In our case, this means that several output
singletons contribute to it. Providing that only two neighboring input membership
functions overlap, which is often the case, we can write Equation (2.23) for the
ρth trajectory point as

Ai
qϕq(ρ + i) + Ai

q+1ϕq+1(ρ + i) + Ai
q+2ϕq+2(ρ + i) + Ai

q+3ϕq+3(ρ + i)

= ψ[e(ρ + i), �e(ρ + i)] = uFC(ρ + i) for i = 0, 1, 2, . . . , m (3.51)

© 2006 by Taylor & Francis Group, LLC

TEi

TDEi

∆e

e

Aq

�+m �+1
�



“DK6032_C003” — 2005/11/4 — 17:36 — page 97 — #23
�

�

�

�

�

�

�

�

Initial Setting of Fuzzy Controllers 97

where m is the number of trajectory points that activate the same fuzzy rule FRq

Finding the solution for the set of m equations of form (3.51) is rather complex.
The condition for the solution’s existence is that every rule involved must be acti-
vated at least three times for every trajectory. That is not often the case, especially
if the controller has many rules. This is why we need to apply a procedure for
the approximate determination of output singletons in order to get an approximate
model of the control surface ψ .

Among n points of the jth trajectory there exist m of them that activate the qth
fuzzy rule FRq. This fuzzy rule has singleton Aq in its consequent part. Among
those m points let us find the point on which singleton Aq has the largest influence
(i.e., the largest fuzzy basis function)

ϕj
q(ρ + ϑ) = sup

ρ≤i≤ρ+m
{ϕj

q(i)} (3.52)

and let us assume that the contributions of other rules may be neglected. Then, we
get an approximate relation:

Aj
qϕ

j
q(ρ + ϑ) = uj(ρ + ϑ) (3.53)

Accordingly, the value of output singleton Aq determined by the jth trajectory
is approximately determined as

Aj
q = uj(ρ + ϑ)

ϕ
j
q(ρ + ϑ)

(3.54)

Essentially, this described method represents the search for a trajectory point
that has the greatest influence on a particular fuzzy rule. When interpreting the
method graphically, we may say that we are looking for the trajectory point, which
lies nearest to singleton Aq. The more accurate the result of this simple algorithm,

the larger the fuzzy basis function ϕ
j
q(ρ + ϑ) will be with respect to its counterparts

from other contributing rules. To do this, we can embed a mechanism in the
initial setting algorithm. This mechanism would take into consideration only those
trajectory points which contribute to singleton Aq significantly more than other
points.

In case that fuzzy rule FRq has been activated by more than one trajectory, the
final value of singleton Aq is equal to the mean value of singletons obtained from
(3.54):

Aq =
∑ξ

j=1 Aj
q

ξ
(3.55)

where ξ is the number of trajectories that activated fuzzy rule FRq.
The method requires several different trajectories because the points of one

trajectory activate only a subset of fuzzy rules, not all of them. If some rules remain
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idle after the determination of output singletons, the corresponding empty places
in the fuzzy rule table can be filled by other initial setting procedures described in
the previous chapters, or they can be left empty.

Phase plane-based initial setting method requires real-time operation of the
control system. This can become advantageous in those systems which are already
in routine exploitation and which are controlled, for example, by conventional
linear controllers. The method of phase plane-based initial setting of the fuzzy
rule table by using relations (3.52) to (3.55) can be easily implemented. As such,
it is intended to mimic and replace various existing controllers in industry (in
Section 7.2.3 we shall show how this method of initial setting has been effec-
tively used in a fuzzy controller function block for industrial programmable logic
controllers [PLCs]).

3.4 PRACTICAL EXAMPLES: INITIAL SETTING OF

A FUZZY CONTROLLER

The aim of the three methods described in Sections 3.1 to 3.3 is to allow for auto-
mated initial setting of the fuzzy controller rule base assuming that the designer
has already defined the number of membership functions and their shapes for
inputs e(k) and �e(k), as well as their distribution on the universes of discourse.
This means that a selected initial setting method is supposed to be implemen-
ted as a part of the fuzzy controller algorithm, that is, as its additional feature,
which would partly or completely substitute the heuristic way of fuzzy controller
commissioning [22].

Let us show step-by-step how each of the three methods were worked out

Process simulator Feedback PCS 327 enabled the physical simulation of a linear
high-order controlled process with the following transfer function,

Gp(s) = 0.94

(1 + 0.5s)(1 + s)(1 + 3s)
(3.56)

Controller output voltage was fed to the process through a 12-bit digital-to-
analog (D/A) output channel, while the voltage value of the process output was
taken from the simulator panel and fed to a 12-bit analog-to-digital (A/D) input
channel of the PC I/O board. The voltage range of A/D and D/A converters was
±9 V, which determined input and output universes of discourse on the interval
[−2048, 2047]. Control algorithms were implemented into a personal computer
and executed in real time with control interval Td = 200 msec. A noise generator
was used to add white noise to the system output, simulating noise picked up by a
sensor and wiring. Noise amplitude was set to 5% of reference input magnitude.

We usually design controllers around a selected operating point. In the control
of nonlinear systems, the higher the system nonlinearity is, the narrower operating
range of a linear controller will be. The same holds for determining the universe
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FIGURE 3.12 A laboratory setup for the experimental validation of methods for the initial
setting of a fuzzy controller’s fuzzy rule table.

FIGURE 3.13 The distribution of input membership functions.

of discourse of compatible fuzzy controllers. In our example, we expect inputs to
take values from the constrained voltage range ±0.88 V that defines input domains
e ∈ [−200, 200] and �e ∈ [−30, 30] from the characteristics of the A/D converter.
Over these domains, a fuzzy controller has seven linearly distributed triangular
fuzzy sets for both inputs, as shown in Figure 3.13. The input values that exceed
the limits of the specified input domains belong only to boundary fuzzy sets with
the maximum degree of membership. COG defuzzification method was used in
all experiments.
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3.4.1 Emulation of a PI Controller

In the first experiment we shall test the performance of a control system that
contains a simulated process (3.56) and a fuzzy controller whose fuzzy rule table
emulates a linear PI controller according to the relation (3.8). Among many possible
ways, the synthesis of PI controller parameters may be carried out according to the
so-called technical optimum criterion. The idea of this criterion is to compensate
the dominant time constant in a control loop with an integral time constant TI,
which in our case implies TI = 3 sec. Gain coefficient KP can be determined from
Bode plots of open loop frequency characteristics by applying the following useful
approximate relation for high-order control systems

γ [◦] + σm[%] ≈ 63 (3.57)

which connects values of phase margin γ expressed in degrees and a percentage
of an overshoot in the system response σm.

In our case, overshoot was set to be σm = 5%, which yielded phase margin
γ = 58◦, and eventually, gain coefficient value KP = 2.2. By insertion of TI and
KP in Equation (3.8) for the given control interval Td = 200 msec, we obtained

�u = uFC = Aq = KPdc�e
j + KIdce

i = 2.2c�e
j + 0.1467ce

i (3.58)

The insertion of the centers of input fuzzy sets eci={ − 200, −133,
−67, 0, 67, 133, 200} and �ecj = {−30, −20, −10, 0, 10, 20, 30} into the initial
setting algorithm (3.58) yields the values of output singletons appearing in the

least significant bits (LSB) with respect to the full range of a 12-bit D/A converter
[−2048, 2047]. These singletons form an initial fuzzy control surface tailored to
emulate PI controller function on the defined constrained universe of discourse
associated with a selected operating point.

The controller was analyzed in operating point ur = 0.6 V (digital value 2200),
with imposed change of reference input �ur = 0.88 V (200 LSB). For the sake

system responses together with an open-loop system response. We may see that
the difference between the responses (mainly in the overshoot of the response) is
tolerable.

We may ask what kind of a performance can be expected from a fuzzy-emulated
PI controller designed for constrained input domains when input values notably
exceed the limits of these domains. This may occur, among other reasons, due to
a greater change of reference input (in our case for ur > 0.88 V) or to a greater
influence of external disturbance. In that case, input values will belong to boundary
fuzzy sets with the maximum degree of membership. From the control point of
view, this can be interpreted as the effect of saturation. This will cause slower
build-up of the fuzzy-emulated PI controller output in comparison to standard PI
controller output, eventually resulting in slower closed-loop system responses.
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of comparison, Figure 3.14 shows fuzzy PI-controlled and standard PI-controlled
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TABLE 3.1
A Fuzzy Rule Table Obtained by the Emulation of a
PI Controller

e

de NLE NME NSE ZE PSE PME PLE

NLDE −95 −85 −76 −66 −56 −46 −37
NMDE −73 −64 −54 −44 −34 −24 −15
NSDE −51 −42 −32 −22 −12 −2 7

ZDE −29 −20 −10 0 10 20 29
PSDE −7 2 12 22 32 42 51

PMDE 15 24 34 44 54 64 73
PLDE 37 46 56 66 76 85 95

FLC
PI controller
Open loop response

B
its

Samples

2450.00

2400.00

2350.00

2300.00

2250.00

2200.00
150.00 170.00 190.00 210.00 230.00 250.00 270.00 290.00

FIGURE 3.14 Comparison of transient responses in fuzzy emulation of a PI controller.
(From Bogdan, S. and Kovačić, Z., IEEE Conf. Control Appl., 648–652, 1998. With
permission.)

As far as linear systems are concerned, the solution for the saturation problem
can be in the definition of larger input domains. The largest one will be equal to the
entire input range of the A/D converter, which in our example is ±9 V or digitally,
[−2048, 2047]. Accounting for the linear law of initial setting (3.8), input values
(e.g., for �ur = 8.8 V) that are ten times greater should result in controller output
values that are also approximately ten times greater.

In terms of nonlinear systems, a fuzzy-emulated PI controller designed for
constrained input domains can satisfy the control quality criterion only if it is in
the vicinity of a selected (nominal) operating point. If we wish to use the same
fuzzy emulated PI controller on the entire input range of theA/D converter, we must

© 2006 by Taylor & Francis Group, LLC
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be aware that the performance of such a controller worsens as the system departs
from the nominal operating point. The solution may be in splitting the nonlinear
system characteristic into a number of linear segments, each of them controlled
by a corresponding gain-varying fuzzy-emulated PI controller (designed on the
constrained portion of the input domain). This technique is known in control as
gain-scheduling.

If we wish to control a nonlinear system on the entire input domain using
a single fuzzy controller which should provide uniform control quality, using a
fuzzy-emulated PI controller is not the best solution. However, we may use this
type of a controller as the first step of heuristic or self-organizing fuzzy controller
design, which will be the subject of the chapters that follow.

3.4.2 Model Reference-Based Initial Setting

The initial setting of a fuzzy rule table by using a second-order reference model for
the defining a desired closed-loop system dynamics is based on the assumption that
a high-order controlled process with measurable input and output can be described
in a selected operating point with linear second-order approximation

GP(s) = Yf (s)

U(s)
≈ K

T2
A · s2 + 2 · ξ · TA · s + 1

= GA(s) (3.59)

For the processes with the aperiodic type of response, GA(s) may assume the
form

GA(s) = K

(1 + T1s)(1 + Ts)
(3.60)

In that case, we can use graph-analytical methods, which determine the approx-
imate process transfer function from an open-loop process response like the one

process with dead time is replaced by a second-order process with dead time.
Suppose that we have a graph of the process transient response in a selec-

ted operating point, as the one shown in Figure 3.15. If we draw a tangent
in the inflection point, we will be able to determine parameters of the tran-
sient response (Tp, τ , K , yin, tin) whose values after using diagrams shown in

function [23].
By applying this method to our third-order process (3.56) we get:

GA(s) = 0.94

(1 + 3.66s)(1 + 1.46s)

After applying an Euler discretization which substitutes dy/dt with
(y(k) − y(k − 1))/Td and d2y/dt2 with (y(k) − 2y(k − 1) + y(k − 2))/T2

d , and

© 2006 by Taylor & Francis Group, LLC

shown in Figure 3.15. In doing that, we should make certain that a high-order

Figure 3.16 yield the parameters of an approximate second-order process transfer
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FIGURE 3.15 The determination of parameters of a linear second-order process
approximation.

FIGURE 3.16 Diagrams for the determination of parameters of a linear second-order
process approximation.

by accounting for the given control interval value Td = 200 msec, we get the
discrete form of GA(s):

GA(z) = 0.00587z

z2 − 1.8277z + 0.834
(3.61)

© 2006 by Taylor & Francis Group, LLC
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The desired closed-loop dynamics is defined with a second-order reference
model (3.28). But we must first determine the reference model parameters such as
overshoot σm and peak time tm. In our example, let σm = 5%, tm = 5 sec. Then
from equations

ξ =
√

ln2(σm[%]/100)

π2 + ln2(σm[%]/100)
, ωn = π

tm
√

1 − ξ2
(3.62)

we can determine damping coefficient ξ and natural frequency ωn which figure as
parameters in the reference model transfer function

GM(s) = YM(s)

Ur(s)
= ω2

n

s2 + 2ξωns + ω2
n

(3.63)

After applying an Euler discretization for Td = 200 msec, we get the discrete
form of GM(s):

GM(z) = 0.0237z

z2 − 1.7638z + 0.7875
(3.64)

From Equations (3.61) and (3.64) we can read the values of transfer function
parameters GA(z) and GM(z) denoted in Equation (3.30): aA1 = 1.8277, aA2 =
−0.834, bA1 = 0.00587, aM1 = 1.7638, aM2 = −0.7875, and bM1 = 0.0237. These
parameters define the coefficients of controller (3.39) as well as the coefficients of
controller (3.42): k1 = 2.9642, k2 = 7.9216, and k3 = 1.0733. Since the reference
model has a unity gain coefficient, the value of coefficient k3 is reciprocal to the
value of the process gain coefficient. By inserting k1 and k2 in Equation (3.47), we
obtain

uFC = 2.9642ce
i + 7.9216c�e

j = Aq (3.65)

The insertion of centers of input fuzzy sets ce
i = {−200, −133, −67, 0, 67, 133,

200} and c�e
j = {−30, −20, −10, 0, 10, 20, 30} into the initial setting algorithm

(3.65) yields the values of output singletons, which appear in the fuzzy rule table

the full range of a 12-bit D/A converter [−2048, 2047]. These singletons form an
initially set fuzzy control surface tailored to enforce the desired system dynamics on
the defined constrained universe of discourse associated with a selected operating
point.

The model reference-based initially set fuzzy controller was analyzed in oper-
ating point ur = 0.6 V (digital value 2200), with the imposed change of reference
input �ur
the reference model and system responses together with an open-loop system
response. We may see that the difference between peak values of model and pro-
cess responses is especially noticeable, which is the result of reducing high-order

© 2006 by Taylor & Francis Group, LLC

shown in Table 3.2. The values are expressed as the number of LSB with respect to

= 0.88 V (200 LSB). For the sake of comparison, Figure 3.17 shows
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TABLE 3.2
The Fuzzy Rule Table Obtained by Model Reference-Based
Initial Setting of a Fuzzy Controller

e

de NLE NME NSE ZE PSE PME PLE

NLDE −830 −631 −436 −237 −39 156 355
NMDE −751 −552 −357 −158 40 235 434
NSDE −672 −473 −277 −79 119 315 513

ZDE −592 −394 −198 0 198 394 592
PSDE −513 −315 −119 79 277 473 672

PMDE −434 −235 −40 158 357 552 751
PLDE −355 −156 39 237 436 631 830

FIGURE 3.17 The comparison of transient responses in model reference-based initial set-
ting of a fuzzy controller. (From Bogdan, S. and Kovačić, Z., IEEE Conf. Control Appl.,
648–652, 1998. With permission.)

system dynamics to second-order. The imprecision of the graph-analytical method
of process identification may also contribute to the difference.

Despite its imperfection, the method is simple enough to be implemen-
ted into almost any hardware. The differences in dynamics can be eas-
ily corrected, for example, by automatically changing the output scaling
factor ku or by further heuristic or self-organization-based intervention in the
controller.

A fuzzy controller obtained by model reference-based synthesis can be seen as
a “linear” controller due to the linear character of the initial setting algorithm

© 2006 by Taylor & Francis Group, LLC
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FIGURE 3.18 The comparison of transient responses in phase plane-based initial setting of
a fuzzy controller. (From Bogdan, S. and Kovačić, Z., IEEE Conf. Control Appl., 648–652,
1998. With permission.)

(3.47). Therefore, this type of controller is just as appropriate for the con-
trol of nonlinear processes as the fuzzy controller obtained by emulating a
PI controller.

3.4.3 Phase Plane-Based Initial Setting

Let a third-order process (3.56) be controlled by a PID controller having the fol-
lowing parameter values: KR = 3, TI = 3 sec, and TD = 0.2 sec. From the
closed-loop system response on a stepwise change of the reference input shown
in Figure 3.18 and from the PID controller output response, we can generate a
series of triples [�u(k), e(k), and de(k)] representing the discrete record of a
phase trajectory and the corresponding control curve lying above it. This phase
trajectory will serve as a basis for the determination of output singletons in the
fuzzy rule table by using relations (3.52) to (3.55). Output singleton values shown

a 12-bit D/A converter [−2048, 2047]. By comparing the PID controlled system
response and the response of a phase plane-based initially set fuzzy controller, we
may see that there is apparent resemblance between them (only a small difference
may be noticed in their peak values).

increments of controller output �uFC(k) indicate that the two fuzzy rule tables are
different. The results obtained clearly show the practical value of all these methods.

© 2006 by Taylor & Francis Group, LLC

in Table 3.3 are expressed as the number of LSB with respect to the full range of
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TABLE 3.3
The Fuzzy Rule Table Obtained by Phase Plane-Based
Setting of a Fuzzy Controller

e

de NLE NME NSE ZE PSE PME PLE

NLDE −330 −300 −230 90 110 150 200
NMDE −360 −260 −200 70 130 184 300
NSDE −355 −230 −170 20 140 200 340
ZDE −350 −210 −150 0 150 210 350
PSDE −340 −200 −140 −20 170 230 355
PMDE −300 −184 −130 −70 200 260 360
PLDE −200 −150 −110 −90 230 300 330

For a given process, reference model and a PI(D) controller, phase plane-based
initial setting seemed to give the best results. In general, it is difficult to say which
method is better. This may depend on the type of the process, the operating point,
the accuracy of process approximation, the number of input fuzzy sets, etc. The
choice of the initial setting method is completely up to the designer, but any of the
methods presented here will lead to an operative fuzzy controller in less time and
design effort than when using heuristic trial-and-error procedure.
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4 Complex Fuzzy
Controller Structures

It happens very often in practice that a designed controller works satisfactorily in
one operating regime, but not in the other. For another type of controller it could
be quite contrary. For example, the PD-type controllers usually cannot maintain
the steady-state accuracy if they control a static control process, while the PI-
type controllers can do that very well. Having that in mind, new, hybrid types of
controllers can be designed. By combining different types of controllers into more
complex structures, a design objective is to join good control characteristics of
each controller into overall characteristics of a hybrid controller.

In the previous chapters, we have shown that the design of fuzzy controllers
can end up with a versatility of control functions (i.e., control surfaces in the case
of double input–single output [DISO] fuzzy controllers). It must be noted that such
controllers do not have some a priori recognized inherent features (like robustness,
for example), as these features primarily depend on a design procedure carried out.

Fuzzy controllers can be easily combined with traditional controllers thus mak-
ing various combinations of complex or so-called hybrid fuzzy control schemes
[1–4]. One possible way to go is to combine fuzzy and linear (P, PI, PID) control-

a fuzzy controller in parallel with a PI controller has been adopted as a standard
industry solution (e.g., in Reference 5). By adding a nonlinear component to the
existing PI controller, a new controller can cope much better with process nonlin-
earities in a certain range around the operating point. In this chapter, we go a little
bit further and describe a design of a multimode hybrid controller where parallel
work of PI and fuzzy controllers is just one of operating modes. We show that in
a selected servo control application, design of such a controller can ensure high
robustness to moderate parameter variations and fair robustness to large parameter
variations.

FIGURE 4.1 Combined linear + fuzzy control of nonlinear control processes.
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FIGURE 4.3 Supervisory or adaptive complex fuzzy control systems.

Thanks to the variety of control problems, fuzzy controllers can form more
complex control schemes, such as modal control systems (control of process
state variables) or cascade control systems (control of process variables) shown
in Figure 4.2. The basic structure of the fuzzy controller can also be used for
implementation of a supervisory algorithm in supervisory control schemes or an
adaptation algorithm in adaptive control schemes (Figure 4.3). The most frequently
used adaptation technique is gain-scheduling, where, depending on the operat-
ing point, gain coefficients of conventional controllers are changed according to
the designed nonlinear fuzzy mapping function(s) [6–8]. In that case, the fuzzy
algorithm acts on the control loop as an external control element.

In the complex fuzzy control systems, we can count all forms of fuzzy control-
lers combined with conventional nonlinear controllers, as well as all combinations
of fuzzy control algorithms and other intelligent control techniques. Neural
Networks (NN) and Genetic Algorithms (GA) are most often used to enhance
the control characteristics of the fuzzy controller. NN-fuzzy and GA-fuzzy control
algorithms have proved to be effective in many practical applications [9–15]. In
this chapter, we shall focus on some hybrid and adaptive fuzzy control structures,
which are, due to their simplicity and effectiveness, attractive for implementation
in industrial control systems.

4.1 HYBRID FUZZY CONTROL

This chapter covers the design of fuzzy control schemes that contain, besides a
fuzzy controller, other control elements known from the classical control practice.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.4 Structure of the hybrid fuzzy controller. (From Kovačić, Z. and Bogdan, S.,
Eng. Appl. Artif. Intelligence, 7(5), 501–511, 1994. With permission from Elsevier.)

We discuss typical problems that may occur in cases of a parallel and multimode
operation, such as the chattering problem and the problem of providing bumpless
transitions among controller operating modes.

In order to get control schemes that would be less sensitive to parameter vari-
ations than traditional linear PID controllers, let us analyze the hybrid controller
structure shown in Figure 4.4. As can be seen, it is a controller that contains a
PD-type fuzzy and a linear PI control algorithm. It has a single input, error sig-
nal e(k), which internally yields another fuzzy controller input, change in error
signal �e(k).

This controller is meant as a multimode controller, which has three modes
of operation dictated by the mode of operation selector (Figure 4.4). The change
of modes depends on the magnitudes of fuzzy controller inputs according to the
following set of relations:

1. e(k) ∈ ZE and �e(k) ∈ ZDE ⇒ S1 = OFF, S2 = ON
2. e(k) /∈ ZE and �e(k) ∈ ZDE ⇒ S1 = ON, S2 = ON
3. �e(k) /∈ ZDE ⇒ S1 = ON, S2 = OFF

(4.1)

where ZE and ZDE are zero fuzzy subsets of the fuzzy controller inputs.
The fuzzy control algorithm, activated when switch S1 = “ON,” acts in the

case of sufficiently large reference input changes, while the PI control algorithm,
activated by switch S2, mainly supports steady-state accuracy and cancels distur-
bance effects. Both controllers operate together in the case of moderate control
error values (usually due to the impact of disturbances). Therefore, PI controller
parameters KPI and TPI may be specified, for example, according to the symmet-
rical optimum criterion to ensure optimal compensation of disturbance effects [16].

In a variant of the discussed hybrid fuzzy controller, a PI-type fuzzy controller
can take the role of the PI controller. Then the PD-type fuzzy controller would act
only in the case of sufficiently large reference input changes, while the PI-type
fuzzy controller would overtake the control in other cases. In this way, there would
be only two basic operating modes.

© 2006 by Taylor & Francis Group, LLC
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Regarding the software implementation, special attention must be paid to the
switching of operating modes, as the hybrid fuzzy controller contains two control
algorithms, which may work either separately or together. In order to avoid the
chattering problem of two control algorithms, switching from the integral (PI or
PI-fuzzy) to the nonintegral (PD-fuzzy) mode of operation should be made in such
a way that the controller output value in the previous mode becomes the initial
value for the controller output in the current mode.

Example 4.1 Design of a hybrid fuzzy controller.

Let us demonstrate the effectiveness of a hybrid fuzzy controller design in
the case of controlling the angular speed of a permanent magnet synchronous
motor (PMSM) drive. The performance of the controller is tested and validated by
simulations in Matlab

® +Simulink. The implementation of Matlab+Simulink
simulation models of the hybrid fuzzy controller and the PMSM drive are described

The vector-controlled PMSM drive considered for hybrid fuzzy control is
a nonstationary high-order control system. As it is known from the theory of
electrical machines control, the goal of vector control is to keep the control char-
acteristics of the PMSM as close as possible to the control characteristics of a
DC motor. Instead in the three-phase (R, S, T) coordinate frame, vector control is
performed in two-dimensional d–q coordinate frame, where d denotes the direct
axis, and q the quadrature axis, respectively. A description of the PMSM in d–q
coordinates is obtained by using R–S–T to d–q Park’s transformation [18], which
holds equally for the phase voltages, currents, and flux linkages. During constant
flux operation, the air–gap flux linkage lies in d-axis, while the q-axis stator current
(the torque producing current) is maintained at 90◦ to the air–gap flux.

In case of constant flux (d�m/dt = 0), the PMSM is fully described with the
following state space equations [19]

did
dt

= 1

Ld
(ud − Rid + ωrLqiq)

diq
dt

= 1

Lq
(uq − Riq − ωrLdid − ωr�m)

dωr

dt
= 1

J
(pmτe − pmτl − Bωr)

dθr

dt
= ωr

(4.2)

where ud, uq are the d- and q-axis stator voltages [V]; id, iq, the d- and q-axis stator
currents [A]; R, the stator resistance [�]; Ld, Lq, the stator d and q inductances
[H]; pm, the number of pole pairs; J , the moment of inertia [kg m2]; B, the coef-
ficient of viscous friction [Nmsec]; τe, the electric torque [Nm]; and τl is the load
torque [Nm].

© 2006 by Taylor & Francis Group, LLC

in more detail in Section 6.2.
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The PMSM is producing a torque described as

τe = 3
2 pm[iq�m + (Ld − Lq)idiq]. (4.3)

In case of constant flux (id = 0), torque equation (4.3) attains the form

τe = Kiq (4.4)

where K = 3pm�m/2.
In case of constant flux, torque τe is proportional to the q-axis stator current,

that is, Equation (4.4) attains a form similar to the torque equation of a DC motor.
The PMSM drive considered for servo applications contains a PI controller in the
outer angular speed control loop, and a ramp comparison controller (PWM) in
the inner stator current control loop. Chopper switching frequencies have typical
values of 5 to 20 kHz, thus providing almost instantaneous current control. There-
fore, a closed-current control loop may be approximated by the following transfer
function

Gcc(s) = Iq(s)

U(s)
= Kcc e−Tccs ≈ Kcc

1 + Tccs
(4.5)

where Tcc = 1/fch [sec], and fch is the switching frequency [Hz].
Let us now transform Equations (4.2) and (4.4) by using the Laplace

transformation to get the following transfer functions

�(s) = KM

1 + TMs
[Te(s) − Tl(s)] (4.6)

Te(s) = KIq(s) (4.7)

where KM = 1/B, TM = JT/B.
If combined, transfer functions (4.5–4.7) yield the plant transfer function

Gp(s) = �(s)

U(s)
= Kcc

1 + Tccs

KM

1 + TMs
(4.8)

The angular speed is measured with a tachogenerator. In the case of filter time
constant Tω ≈ 0, the angular speed feedback transfer function may be described
approximately by

Gω(s) = Uω(s)

�(s)
= Kω

1 + Tωs
(4.9)

© 2006 by Taylor & Francis Group, LLC
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The plant transfer function including a feedback path assumes the
following form

Gs(s) = Uω(s)

U(s)
= KccKKMKω

(1 + Tccs)(1 + TMs)(1 + Tωs)
(4.10)

Since the switching frequency fch is rather high, the time constant Tcc is regu-
larly much smaller than other time constants of the controlled system and therefore
it can be neglected in analysis. In this case, the transfer function (4.10) assumes
the following form

Gs(s) = Uω(s)

U(s)
= KccKKMKω

(1 + TMs)(1 + Tωs)
(4.11)

The transfer function of a PI controller has the form

GPI(s) = U(s)

UrA(s)
= KPI

1 + TPIs

TPIs
(4.12)

The PI controller parameters KPI and TPI may be specified according to the tech-
nical or symmetrical optimum criteria [16], that is, the controller may be adjusted to
react optimally to the changes of the reference input ur or the disturbance (load
torque τ�), respectively. If the PI controller parameters were defined according to
the symmetrical optimum criterion, then the transfer function of the closed-loop
angular speed control system would assume the following form

Gcs(s) = Uω(s)

Ur(s)
= Ko(1 + TPIs)

s(1 + TMs)(1 + Tωs) + Ko(1 + TPIs)
(4.13)

In this case, the studied system would have the transfer function of a third-order
system. A  linearized model of the angular speed control system is shown as a part
of the whole fuzzy hybrid control system in Figure 4.5. The parameters that vary
most in the system are the torque coefficient, K and the moment of inertia, JT.
Sometimes it may also be difficult to measure the exact value of the viscous friction
coefficient B. The torque coefficient K changes due to the weakening of magnetic

FIGURE 4.5 A block scheme of the studied hybrid fuzzy control system.

© 2006 by Taylor & Francis Group, LLC
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Uv (V)0.10
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FIGURE 4.6 The measured angular speed responses of the PMSM drive controlled with a
PI controller in the case of: JT (a), 3JT (b), JT/3 (c). (From Kovačić, Z. and Bogdan, S.,
KoREMA, Automatika, 34(3–4), 99–102, 1993. With permission.)

flux in the constant power mode of operation used from the rated to the maximum
angular speed [20]. PMSM servo drives are widely used in robots, where the
moment of inertia is expected to change in value in the range of 1:10 [21].

The values of linearized model parameters were as
follows: Kcc = 1 A/V, Tcc = 50 µsec, K = 0.9837 Vsec, JT = 0.00176 kg m2,
B = 0.000388 Nmsec, TM = JT/B = 4.536 sec, Kω = 0.063 Vsec, and
Tω = 2.5 msec.

Parameters of the PI controller are synthesized for a selected operating point
and their values, KPI = 6 V/V, TPI = 0.013 sec, are associated with the rated
parameter values of the system. The PI controller parameters were specified
according to the symmetrical optimum criterion, which gives 40% of overshoot
in the output response, all in order to obtain quick compensation of load torque
variations. A lower overshoot (in our case 20%) in response to the reference input
changes was achieved by adding an appropriate low-pass filter into the reference
input signal path.

The robustness of PI controllers to parameter variations is rather weak, espe-
cially in cases of large parameter variations. Figure 4.6 shows the measured angular
speed responses obtained for large moment of inertia variations, JT/3 and 3JT. The
change of the dynamic behavior is more than obvious, indicating that PI control
should be replaced with a more effective control.

The fuzzy control algorithm belongs to the group of nonlinear PD-type control
algorithms. Seven linguistic subsets have been defined for both inputs: NL, NM,
NS, Z, PS, PM, and PL. Based on knowledge about the characteristics of the angular
speed control loop, the maximum values for both inputs and the output of the fuzzy
angular speed controller can be estimated. It is assumed that the maximum change
of reference input for the system given in Figure 4.5 is �urm = Kω�ω, where �ω

is taken to be 1 rad/sec, then −0.063 ≤ e(k) ≤ 0.063. The maximum change of

© 2006 by Taylor & Francis Group, LLC

(Figurerated 4.5)
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FIGURE 4.7 Input membership functions of a hybrid fuzzy controller: (up) µ[e(k)], (down)
µ[�e(k)].

error signal during the sampling interval Td = 0.5 msec is estimated to be 0.015,
that is, −0.015 ≤ �e(k) ≤ 0.015. The distribution of membership functions
related to normalized e and �e subsets is shown in Figure 4.7. Different forms of
membership functions can be used, but experiments have proved that trapezoidal
forms contribute the most to achieving lower sensitivity to parameter variations
in the designed fuzzy controller.

The universe of discourse of the fuzzy controller output is discrete and contains
15 uniform fuzzy subsets. The distribution of accompanying membership functions
is symmetrical and slightly nonlinear because of one extra subset added next to
the zero subset to ensure a smooth change of operating modes defined by relations
(4.1). The corresponding centroids have the following values: −1, −0.667, −0.5,
−0.333, −0.167, −0.0083, −0.0042, 0, 0.0042, 0.0083, 0.167, 0.333, 0.5, 0.667,
and 1. It must be noted that these values were normalized with respect to the
maximum controller output value max(uFC) = 0.96 V. Because of simplicity and
good interpolative features, fuzzy controller output uFC(k) is computed according
to the center of gravity principle (2.22).

Experience with the target system helps in the creation of fuzzy control rules,
which are organized in the fuzzy rule table. The goal of such design was to provide
a 5% overshoot in the system response and to get the peak time close to 15 msec.
In the case of defuzzification according to the center of gravity principle, the
controller output fuzzy subsets, which are normally found in the fuzzy rule table,
can be substituted by their centroids (singletons). The fuzzy rule table of the hybrid

controller output responses in the case of stepwise change of the reference input.

© 2006 by Taylor & Francis Group, LLC

fuzzy controller is shown in Table 4.1.
Figure 4.8 and Figure 4.9 show the measured angular speed and hybrid fuzzy

Figure 4.10 shows the time flow of controller output signals following the sequence

–0.6 –0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 e/emax

–0.6 –0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 �e /�demax

NL NM NS Z PS PM PL

m(e)

m(�e)

NL NM NS Z PS PM PL
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TABLE 4.1
The Fuzzy Rule Table of a Hybrid Fuzzy Controller

NLE NME NSE ZE PSE PME PLE

NLDE 1 1 0.667 0.5 0.333 0.0083 0
NMDE 1 1 0.667 0.167 0.0083 −0.0042 −0.0083
NSDE 1 0.667 0.167 −0.333 −0.5
ZDE 0.833 0.333 0.0083 0 0 −0.333 −0.833
PSDE 0.667 0.333 0 −0.0083 −0.167 −0.667 −1
PMDE 0.0083 −0.0083 −0.167 −0.333 −0.667 −1 −1
PLDE −0.0083 −0.167 −0.333 −0.5 −0.667 −1 −1

0.04 0.05
Time (sec)

u v
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V
)

0.06 0.07 0.08 0.09 0.10
0
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0.07

0.01 0.02 0.03

FIGURE 4.8 The measured angular speed response of a hybrid fuzzy control system.

of induced operating mode changes. According to expectations, at the beginning of
transient response only the fuzzy controller is active, then fuzzy and PI controllers
work together, and eventually, the PI controller takes over control in the steady
state. The analysis of responses proves that transitions from one operating mode
to another are smooth, without abrupt changes in the controller output signal.

The designed hybrid fuzzy controller was tested by simulation experiments
in the cases of moderate and very large changes of the moment of inertia JT. As

of the rated value (i.e., JT/2 and 3JT/2), the measured angular speed responses
are almost unaffected by the simulated parameter variations. In cases of very large
changes of moment of inertia (JT/3, 3JT

© 2006 by Taylor & Francis Group, LLC

shown in Figure 4.11, for moderate changes of moment of inertia equal to ±50%

), as shown in Figure 4.12, the overshoot
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FIGURE 4.9 The hybrid fuzzy controller output response.

FIGURE 4.10 The hybrid fuzzy controller output response during the change of operating
modes.
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FIGURE 4.11 The measured angular speed responses of the fuzzy control system for mod-
erate changes of JT. (From Kovačić, Z. and Bogdan, S., Eng. Appl. Artif. Intelligence, 7(5),
501–511, 1994. With permission from Elsevier.)

has remained almost constant, while the rise times have changed noticeably. The

increase of robustness due to usage of the hybrid fuzzy controller.
If we look at amplitude and phase frequency characteristics of such a system,

the ability to keep an almost constant overshoot can be interpreted as an achieve-
ment of a wide region of constant phase margin. This suggests that the change of
controller gain (i.e., output scaling factor Ku) could be sufficient to compensate
for noticed changes of system dynamics.

output. As can be seen, they are smoothly generated by the sequence of controller’s
operating modes.

4.2 ADAPTIVE FUZZY CONTROL

Adaptive control has an important role in modern control systems. During oper-
ation, many controlled processes experience abrupt or continuous parameter
variations, varying external conditions and, in some occasions, alternations of
operating modes. For example, continuous changes of inertial moments and
gravity-dependent loads are affecting robot joint servo control loops. Control
of mass flow in plastic extruders must deal with a gradual change of material
density, temperature, and viscosity as well as varying homogeneity of the material

© 2006 by Taylor & Francis Group, LLC

comparison with the PI-controlled system responses (Figure 4.6) shows significant

Figure 4.13 and Figure 4.14 show the responses of the hybrid fuzzy controller
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FIGURE 4.12 The measured angular speed responses of the fuzzy control system for large
changes of JT. (From Kovačić, Z. and Bogdan, S., Eng. Appl. Artif. Intelligence, 7(5),
501–511, 1994. With permission from Elsevier.)

FIGURE 4.13 The hybrid fuzzy controller responses for moderate changes of JT. (From
Kovačić, Z. and Bogdan, S., Eng. Appl. Artif. Intelligence, 7(5), 501–511, 1994. With
permission from Elsevier.)

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.14 The hybrid fuzzy controller responses for large changes of JT. (From
Kovačić, Z. and Bogdan, S., Eng. Appl. Artif. Intelligence, 7(5), 501–511, 1994. With
permission from Elsevier.)

at machine cross-sections starting from the input to the output. We should not
forget to mention the first big success of adaptive control, which was achieved in
control of guided missiles, rockets, and space ships with mass-varying caused by
fuel consumption and rejection of body parts.

When all aforementioned causes of nonuniform system behavior are not
excessive, then they are usually well handled with standard feedback control-
lers. But, when that is not the case, then standard feedback controllers cannot
maintain the desired control quality and some sort of adaptation to the new
situation in the process is needed. Adaptation may be used for the purpose
of improving system dynamics or to reduce system sensitivity to parameter
variations.

Since the year 1951 when Draper and Li [22] introduced an adaptive control
system, which searched for the optimal operating point of an internal combustion
engine, different adaptive control methods have been developed [23–26], some of
them focused on adapting parameters (so-called parameter adaptation) and some
of them on adapting signals (so-called signal adaptation), and most of them are

uniform dynamic performance of the control system, we need to set a control goal in
the form of a desired control quality criterion. Then we need to gather information
from the control system, for assessment of the achieved control quality. Based on
a difference between them, a decision about necessary changes, either in feedback
controller parameters or in adaptation signal is made. An adaptation law contained

© 2006 by Taylor & Francis Group, LLC

represented with a general structure shown in Figure 4.15. In order to maintain a
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in the adaptation algorithm defines how parameters or signal will be changed. All
these functions together form an adaptation mechanism.

While planning to solve a control problem by using an adaptation mechanism,
we should keep in mind real system characteristics, especially the imposed limits
on key system variables, type of implementation, and the width of operating range.
A digital implementation usually requires a sufficiently fast adaptation algorithm
so that it can be executed within a desired control interval. This in turn imposes a
requirement for the simplest possible design of the adaptation algorithm structure.

4.2.1 Direct and Indirect Adaptive Control

Adaptive systems can be of a direct or an indirect type. A basic structure of
a direct adaptive control system does neither involve identification nor estima-
tion of process parameters, but may involve estimation of process variables. An
adaptation action is formed directly from a specified control quality criterion.
A typical example of direct adaptive control is model reference-based adaptive
control (MRAC), which was first introduced by Whitaker et al. for control of an
aircraft [27]. An aircraft represented a system with large parameter variations, so
a reference model was used for setting desired dynamics and for adaptation of
controller parameters in order to compensate for process parameter variations. In
such control schemes adaptation is based on the current value of the tracking error
eM, which denotes the difference between outputs of the reference model, yM,
and the actual system, yf . MRAC structure with a parallel reference model and

as a basis for generation of an adaptation signal uA, which may be added either to

AMRAC  approach has been widely adopted in fuzzy adaptive control schemes
[28–35]. In fact, the resemblance of classical and fuzzy MRAC control schemes
is absolute; only the way in which the design is carried out is different. In the

© 2006 by Taylor & Francis Group, LLC

parameter adaptation is shown in Figure 4.16. A reference model can also be used

the input or to the output of the feedback controller (Figure 4.17).
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FIGURE 4.15 A general structure of an adaptive control system.
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FIGURE 4.16 The structure of a model reference adaptive control system with parameter
adaptation.
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FIGURE 4.17 The structure of a model reference adaptive control system with signal
adaptation.

following sections we explain the differences and describe how particular fuzzy
MRAC schemes can be designed for selected control problems.

The concept of Variable Structure Systems (VSS) is another popular approach
to a direct adaptive control design, which was first introduced by Emelyanov [36].
Very often, this type of control is called Sliding Mode Control (SMC). The goal of
the VSS adaptive system is to make the system insensitive to parameter variations
and external disturbances by changing the control law, depending on the current
state of system state space vector. Parameter variations and disturbances cause
deviations from a desired quality of control and the idea of the VSS approach is
to push the disturbed control system first toward the point of equilibrium defined
by a desired control quality criterion (this action is called the reaching mode
of operation), and then keep the system there by using a switching type of an
adaptation law function. This eventually leads to the so-called sliding mode of

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.18 Switching laws in variable structure system adaptive control systems.

operation. Let n denote the number of inputs of the sliding mode controller. When
SMC with only one input is considered (e.g., system error e), then a sliding mode
is associated with a switching line

S|n=1 = s = e (4.14)

If two inputs are considered (e.g., e and de/dt), then a sliding mode is associated
with a switching plane

S|n=2 = e + λ
de

dt
(4.15)

For a multi-input sliding mode controller, under the assumption that parameter
variations and external disturbances are bounded (which is true for real systems),
a sliding mode operation is associated with a predefined bounded hyperplane S|n
of the state space. Once the sliding mode is reached, staying in it implies that
we have ensured stability of an SMC system in the equilibrium point, which may
be achieved by providing that the product of switching hyperplane S|n and its
derivative d(S|n)/dt is always negative

S|n · d(S|n)
dt

< 0 (4.16)

The switching carried out on hyperplane S|n should enforce the point on the
hyperplane defined by current system dynamics to slide down the hyperplane to the
equilibrium point defined by the origin of all coordinates. The problem with SMC
systems lies in switching control laws having a form of a discontinuous signum
function (see Figure 4.18)

u = −c sign(s) (4.17)

© 2006 by Taylor & Francis Group, LLC
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what may induce a serious chattering problem and may excite unmodelled sys-
tem dynamics. Therefore, in alternative SMC solutions, the signum function is
usually replaced with a continuous saturation function. Besides the form with a
constant gain

u = − c

s0
s (4.18)

for various s values can also be used.
AVSS adaptive control approach, due to its operation on a predefined bounded

hyperplane of the state space, is very convenient for introduction of fuzzy logic.
For example, in single input control systems we may reduce the SMC problem
to control of a system error phase trajectory. Then, instead of defining exact gain
coefficients for various s values in the switching algorithm, nonlinear interpolating
characteristics of a fuzzy control algorithm can contribute to a smooth online tuning
of the saturation gain coefficient on the basis of heuristic statements such as “If s is
high then increase the gain,” or “If s is low then decrease the gain.” Such reasoning
has been adopted and successfully applied in different applications [37–42].

Indirect adaptive control involves identification and estimation of process
parameters, which are thereafter used for the synthesis of controller parameters
or for generation of an adaptation signal. Indirect adaptive control can be recog-
nized in the concept of a dynamic programming of Bellman and Feldbaum, who
introduced the so-called dual control that included two parts, an identification
(parameter estimation) part and a control part [43,44]. On the same track, Astrom
and Wittenmark introduced self-tuning regulators [45,46], which first performed
identification of process parameters by using, for example, a recursive least squares
(RLS) method of parameter estimation and then, based on these parameter values,
did the synthesis of controller parameters using methods such as Ziegler–Nichols,
Takahashi, and Dahlin procedures [47–49].

Indirect adaptive control schemes are usually more complex than direct control
schemes and demand more computational effort. The structure of a self-tuning

In practice, adaptation is used for improving control of nonlinear systems,
and therefore, adaptation algorithms are usually nonlinear. The nonlinear control
theory, although well developed, still does not have answers to all questions regard-
ing a practical adaptive controller design. Mainly, the theory is concerned with a
problem of system stability, and the synthesis of adaptation algorithms is guided
by the idea of satisfying a certain stability criterion. Such a design results in the
required form of an adaptation mechanism, but it does not give answers about exact
values of adaptation mechanism parameters. The designer becomes responsible
for their determination, which presents, although theoretically guided, actually a

A problem arises when the controlled process contains more dominant non-
linearities, making things even worse if they were periodic or discontinuous. Good

© 2006 by Taylor & Francis Group, LLC

shown in Figure 4.18 (recall that s = e), other saturation forms with different gains

controller is shown in Figure 4.19.

heuristic intervention (see discussion about stability issues in Section 2.5).
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FIGURE 4.19 The structure of a self-tuning controller.

examples are robot joint positioning servo systems affected by periodic gravity-
dependent loads and discontinuous static friction forces (not to neglect possible
shaft elasticity and torsion effects). The design of adaptive controllers is based on
a mathematical model of the system, and for such nonlinear systems the synthesis
can be very demanding and sometimes very difficult from a practical point of
view. Very often, in order to be able to find out a suitable adaptation law, observers
need to be used to generate those signals from the process, which are not directly
measurable (e.g., acceleration in a robot joint).

Because the fuzzy control design is primarily a model-free design, indi-
rect adaptive fuzzy control schemes with implemented process identification and
parameters estimation parts are rarely or never used in practice. Indeed, the math-
ematical model of a process can be replaced with a general (e.g., operator’s)
knowledge about the process reaction to certain control actions, and this know-
ledge may be used, for example, for generation of a fuzzy process model, but it
cannot be used for determination of feedback controller parameters without large
involvement of heuristics.

In the following sections, we describe a design of several direct adaptive fuzzy
control schemes, which utilize a reference model in different ways for enforce-
ment of the closed-loop control system to reach a desired level of performance.
Elaborated design examples should help in clarifying some design issues, showing
advantages and some drawbacks, as well as a practical value of each described
method.

4.2.2 Model Reference Fuzzy Adaptive Control Systems

a second-order reference model. We have also mentioned that a model reference-
based approach has been adopted in fuzzy adaptive control schemes. The goal of
a model reference adaptive fuzzy controller design is to find a controller capable
to keep a difference (i.e., a tracking error) between the reference model and the
process as small as possible. This goal can be accomplished in several possible

© 2006 by Taylor & Francis Group, LLC

ways, as shown in Figure 4.20. One possible way is an adaptation of a fuzzy

In Section 3.2, we have described the initial setting of a fuzzy rule table by using
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FIGURE 4.20 The structure of a fuzzy MRAC system.

feedback controller by using some of, say, classical adaptation methods. The other
is the implementation of a fuzzy adaptation mechanism by using a form of the
standard fuzzy control algorithm for this purpose. There is also a possibility to
combine both ways and adapt a fuzzy feedback controller with a fuzzy adaptation
mechanism.

Likewise in classical model reference adaptive control structures, a reference
model determines a desired dynamic behavior of the closed-loop control system.
As we know, at least from the experience of how a controlled process responds
to its control input, when determining the reference model we must value that
experience and try to pick the right dimension (order) of the reference model and
the right values of its parameters.

Many practical systems allow insertion of a test signal in a selected operating
point, so that we can draw conclusions about open-loop process dynamics. There
are no constraints on the selection of the reference model type, so it may be linear,
nonlinear, with a dead time, etc. However, in principle, we define the simplest
possible form, which properly describes what we want from the closed-loop sys-
tem. Under assumption that the controlled process is nonlinear, but linearizable in
a selected operating point, then the reference model can also be a linear one.

From a theoretical point of view, determination of any linear reference model
is not a problem. From a practical point of view, conditions in the field may not
always be in favor of easy assessment of process dynamics, so determination of
the recursive equation coefficients of a higher-order reference model could be a
problem. Therefore, the definition of reduced-order reference models is advised
[50]. For the plants with a relative degree not greater than 2, a second-order
reference model becomes a preferable choice because of its simplicity and easy
way of definition.

A recursive equation (3.28) describes a second-order reference model ready
for implementation in a microcomputer. In order to get values of coefficients aM1,
aM2, and bM1, we must first determine the value of control interval Td and values of
reference model parameters. The easiest way, even for a nonexpert, is to determine

© 2006 by Taylor & Francis Group, LLC
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“obvious” model response parameters such as overshoot σm and peak time tm,
which uniquely define a second-order model. Then from Equations (3.62), which
we repeat here for convenience

ξ =
√

ln2(σm[%]/100)

π2 + ln2(σm[%]/100)
, ωn = π

tm
√

1 − ξ2
(4.19)

we can determine damping coefficient ξ and natural frequency ωn. They figure as
parameters in the reference model transfer function (3.63), which can be
rewritten as

GM(s, λM) = YM(s, λM)

UR(s)
= 1

(s2/ω2
n) + (2ξ/ωn)s + 1

= 1

(TM/KM) · s2 + (1/KM) · s + 1
(4.20)

where λM = [KM TM]T, KM = ωn/2ξ , TM = (1/2ξωn) are the model gain and
the time constant, respectively.

After applying an Euler discretization for the given control interval Td, we first
get a discrete form GM(z) and then a recursive equation (3.28).

Care must be taken to avoid unrealistic settings of model dynamics that would
be too far from the achievable process dynamics (e.g., with inappropriate model
settings we might induce saturation of the control input that would prevent the
system from following the model). Also, at first we must observe whether the
process possesses a significant delay, and if that is the case, then we must account
for it either by including the delay in the reference model or by changing the
feedback controller.

If a model reference fuzzy adaptive controller is thought of as a ready-to-use
function block for industry applications, setting the overshoot σm and peak time
tm must cover both aperiodic and oscillatory reference model responses. The way
in which this can be done is described in the case study in Section 7.2.3.

contains also an adaptation algorithm, whose input signal is model tracking error
eM. In general, the positive sign of eM means that in this particular moment the
system is lagging behind the model, for the negative sign it is just the opposite.
For a given model and a process, eM can change its sign an arbitrary number of
times during a transient response. How can the model tracking error eM then be
used for adaptation? If eM is constantly positive, this normally means that we
need to increase the control input to speed up the system response and cancel the
steady-state error. If eM is constantly negative, we need to slow down, that is, we
must decrease the control input.

If a reduced-order (e.g., second-order) reference model is used to dictate
dynamics of a high-order controlled process, due to the influence of unmodeled
dynamics, we can never fulfill the requirement eM = 0, as there will always be

© 2006 by Taylor & Francis Group, LLC

As depicted in Figure 4.6, besides a reference model, an adaptation mechanism
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some error. Therefore, we set a design goal

{|eM(t)|, |eM(k)|} < εM (4.21)

that should keep the model tracking error within the specified boundary εM.

4.2.2.1 Sensitivity Model-Based Adaptation

A decision on which algorithm would be appropriate for adaptation of the target
control system depends on many factors; desired system precision and dynamics,
online computational power, noise level, nonlinearities encountered in the system,
accuracy of the linearized model, etc. We may use a whole palette of design
possibilities already discussed in Section 4.2.1, but if we think of fuzzy control as
a model-free control, then we do not want to use adaptation methods based on the
system’s mathematical model.

Let us consider an adaptation of fuzzy control systems with unknown, time-
varying, probably nonlinear, and stable processes, whose dynamics in a selected
operating point can be approximated with a second-order transfer function (3.59).

For the purpose of adaptation, a second-order reference model (4.20) will be
used to define the desired (nominal) behavior of the adaptive fuzzy control system.

By changing the operating point, nonlinear system parameters will also change.
This will impose the need for adjustment of fuzzy controller parameters in various
operating points. Instead of adapting a fuzzy controller, let us add a lead–lag
compensator in series to the fuzzy controller and adapt its parameters, as shown
in Figure 4.21.

The lead–lag compensator is described with a transfer function

Gf (s) = U(s)

Uc(s)
= Kf · Tf · s + 1

TM · s + 1
(4.22)

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.21 The structure of the adaptive control system.
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where Kf is a gain coefficient and Tf is a lead-time constant, while TM refers to
the reference model time constant.

Lead–lag compensators are quite extensively used in control. A lead com-
pensator can increase the stability or speed of the system’s response; a lag
compensator can reduce (but not eliminate) the steady-state error. A lead–lag com-
pensator combines the effects of the lead compensator with those of the lag com-
pensator, allowing the user to adjust frequency characteristics of the open-loop
control system in order to obtain required closed-loop performance. The result is a
system with improved transient response, stability, and reduced steady-state error.

By observing a difference between reference model and system outputs, our
intention is to adapt Kf and Tf so that the model tracking error satisfies condition
(4.21). In order to do that, one possible way is to build a sensitivity model that
would describe the dependence of yf on Kf and Tf . Then we can use the sensitivity
functions obtained in that way [51,52] as a basis for adaptation. Since the sensitivity
functions are the measure of how yf changes when Kf and Tf change, this imposes
differentiability of functions describing the relations of yf on Kf and Tf .

When only influence on yf is considered, like in our case, then the Kokotović
method of sensitivity points is preferable to the computationally more demanding
canonical system sensitivity model, due to its simplicity and parallel computation
of all sensitivity functions [52,53]. The idea of using a sensitivity model as a
basis for adaptation has its roots in classical control, let us just mention that the
Kokotović sensitivity model with output sensitivity functions has been effectively
used for the synthesis and adjustment of standard linear and dead-beat control
algorithm parameters [54–56].

Denoting the controller parameter vector as λc, the lead–lag compensator
parameter vector as λf , and the process parameter vector as λP, the system output
depends on the controlled system parameter vector λ = [λc λf λP]T in the
following way:

Yf (s, λ) = Gcl(s, λ)Ur(s) = Go(s, λ)

1 + Go(s, λ)
Ur(s) (4.23)

where Gcl(s, λ) is the closed-loop transfer function, Go(s, λ) = Gc(s, λc)Gf (s, λf )

GP(s, λP) is the open-loop transfer function, Gc(s, λc) is the transfer function of
the feedback (fuzzy) controller, Gf (s, λf ) is the transfer function of the lead–lag
compensator, and GP(s, λP) is the transfer function of the process.

A semirelative sensitivity function describes the dependence of Yf (s, λ) on the
relative variation of particular system parameter λi:

η̃i(s, λ) = ∂Yf (s, λ)

∂ ln λi

∣∣∣∣
λ

= λi
∂Yf (s, λ)

∂λi

∣∣∣∣
λ

= λi
∂Gcl(s, λ)

∂λi

∣∣∣∣
λ

Ur(s)

= 1

1 + Go(s, λ)
Si(s)Yf (s, λ)

(4.24)
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FIGURE 4.22 A sensitivity model of the controlled system.

where Si(s) = (λi/Go(s, λ))/(δGo(s, λ)/δλi) is a so-called Bode sensitivity
transfer function.

Since we want to compensate all changes in system parameters by changes
of Kf and Tf , the first step in the adaptive control design is using the Kokotović
method of sensitivity points in order to get Bode sensitivity transfer functions
related to Kf and Tf :

SKf (s, λ) = Kf

Go(s, λ)

∂Go(s, λ)

∂Kf
= Kf

Go(s, λ)

∂Go(s, λ)

∂Gf (s, λf )

∂Gf (s, λf )

∂Kf
= 1

STf (s, λ) = Tf

Go(s, λ)

∂Go(s, λ)

∂Tf
= Tf

Go(s, λ)

∂Go(s, λ)

∂Gf (s, λf )

∂Gf (s, λf )

∂Tf
= Tf s

1 + TMs

(4.25)

The block diagram of the corresponding sensitivity model is shown in
Figure 4.22. Because the transfer function of the controlled process is unknown
(it is known only in terms of desired system dynamics defined by reference model
[4.20]), and because the feedback controller is treated as a black box, the system
sensitivity model cannot be determined.

Instead of deriving an unknown sensitivity model of the controlled system, we
can derive a sensitivity model of reference model (4.20) and use the so-obtained
semirelative sensitivity functions

η̃KM(s, λM) = ∂YM(s, λM)

∂KM/KM
and η̃TM(s, λM) = ∂YM(s, λM)

∂TM/TM

© 2006 by Taylor & Francis Group, LLC
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in place of η̃Kf and η̃Tf for adaptation of Kf and Tf . For the given model and its
parameters, semirelative sensitivity functions have the following form:

η̃Mi(s, λM) = λMi

δYM(s, λM)

δλMi

= 1

1 + GoM(s, λM)
SMi(s)YM(s, λM) (4.26)

where

SMi(s, λM) = λMi

GoM(s, λM)

δGoM(s, λM)

δλMi

GoM(s, λM) = KM

s(1 + TMs)

λM = [KM TM]T

(4.27)

Sensitivity functions are obtained in the sensitivity points of the sensitivity
model by adding Bode transfer functions blocks SKM(s) and STM(s). For reference
model (4.20), we get

SKM(s) = 1, STM(s) = − TMs

1 + TMs
(4.28)

Once we have reference model sensitivity model (4.28) derived, we can use
it as an approximation of an unknown system sensitivity model. As shown in
Figure 4.23, we can feed process output Yf (s, λ) into the reference model sen-
sitivity model, generating approximate semi-relative sensitivity functions η̃KfM

and η̃TfM , which may be used instead of the real ones, that is, η̃Kf ≈ η̃KfM

and η̃Tf ≈ η̃TfM .

FIGURE 4.23 An approximate sensitivity model of the high-order control process.
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By switching to the discrete time domain, changes of system output yf (k)

due to small variations of the lead–lag compensator parameters are given by
the following:

�yκ+1
f (k, λκ

f ) =
∑

i

η̃κ+1
λfMi

(k)
�λκ+1

fi

λκ
fi

= η̃κ+1
KfM

(k)
�Kκ+1

f

Kκ
f

+ η̃κ+1
TfM

(k)
�Tκ+1

f

Tκ
f

(4.29)

Kκ+1
f = Kκ

f + �Kκ+1
f

Tκ+1
f = Tκ

f + �Tκ+1
f

(4.30)

where κ denotes the number of the tuning iteration, and �Kκ+1
f and �Tκ+1

f are
respective changes of lead–lag compensator parameters.

Initially (κ = 0), K0
f = 1, and T0

f = TM, so that the lead–lag compensator has
no influence on the control loop dynamics at the beginning of adaptation. As κ is
increasing and Kf is changing, the open-loop gain of the control system is expected
to converge to the value of reference model gain KM. Similarly, lead-time constant
Tf is expected to converge to the value of a dominant process time constant, so that
lag time constant TM determined by the reference model becomes a dominant one.

In order to get better control over the tuning algorithm dynamics (speed of
convergence), let us make the following modification of tuning algorithm (4.30):

Kκ+1
f = Kκ

f + γK · �Kκ+1
f

Tκ+1
f = Tκ

f + γT · �Tκ+1
f

(4.31)

where γK and γT are tuning coefficients.
There are two problems related to the viability of the tuning law (4.31): how

�Kκ+1
f and �Tκ+1

f should vary with �yκ+1
f (k), and how to find tuning coeffi-

cients γK and γT, which guarantee convergence of tuning and thus provide overall
stability of the closed-loop system.

Lead–lag compensator parameter variations �Kκ+1
f and �Tκ+1

f , which
provide desired changes of system response �yκ+1

f (k), may be computed directly
from (4.30) if semirelative sensitivity functions η̃κ+1

KfM
(k) and η̃κ+1

TfM
(k) are known.

The following strategy is adopted: �Kκ+1
f is calculated in the moment k = km

when η̃κ+1
KfM

(k) reaches its maximum, while �Tκ+1
f is calculated in the moment

kTd = tm when system output yκ+1
f (k) reaches the peak value:

�Kκ+1
f = �yκ+1

f (km)

max
[
ηκ+1

KfM
(km)

]Kκ
f

�Tκ+1
f = �yκ+1

f (tm)

ηκ+1
TfM

(tm)
Tκ

f

(4.32)
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FIGURE 4.24 The block diagram of an adaptation algorithm.

During execution of tuning algorithm (4.32) we must pay attention to avoid
possible division by zero. This can be handled by setting minimal threshold values
for the sensitivity functions η̃κ+1

KfM
(k) and η̃κ+1

TfM
(k). For the sensitivity functions’

values, below these threshold values the tuning algorithm will not be executed and
Kf and Tf will not change.

Given change of the system output �yκ+1
f (k) coincides in the model reference

control concept with model tracking error eκ+1
M (k) = yκ+1

M (k) − yκ+1
f (k). Thus

�yκ+1
f (k) in (4.32) must be replaced with eκ+1

M (k).
Now remains the definition of tuning coefficients γK and γT . In general, larger

values of tuning coefficients cause larger changes of Kf and Tf . Care must be taken
to choose a value of γT, which would not cause a negative value for Tf . This would
change the structure of the lead–lag compensator and make the closed-loop system
unstable.

The structure of the adaptation mechanism is shown in Figure 4.24.

Example 4.2 Sensitivity model-based adaptation of the fuzzy controller.

In order to examine the efficacy of the reference model and the sensitivity
model-based adaptation algorithm in so-called “ideal conditions,” the adaptive
control loop contains only a lead–lag compensator and time-varying second-order
process Gp(s). The second-order reference model is defined with maximum over-
shoot σm = 5.5% and peak time tm = 0.025 sec, which yields KM = 121,
TM = 4.3 msec. The lead–lag compensator parameters were initially set to K0

f = 1
and T0

f = TM. Tuning coefficients have been set to γK = 0.4 and γT = 0.3.
In the simulation experiment, both process parameters have been changed to

a large extent, KP = KM/3, TP = 3 · TM. The responses of the adaptive control

Although changes of both process parameters are assumed to be very large,
convergence of adaptation in the case of controlling a second-order process is very

Now, let us test the adaptive fuzzy logic controller in a linearized model of
a high-order process — a servo system with a permanent magnet synchronous

values of process parameters are as follows: Kch = 0.9837 V/V — chopper gain,
Tch = 0.05 msec — chopper time constant, J = 0.00176 kg m2 — moment of
inertia, K = 0.000388 Vsec — motor constant, Kt = 0.063 Vsec — tachometer
gain, Tt = 0.0025 sec — tachometer time constant.

© 2006 by Taylor & Francis Group, LLC

system during the adaptation process are shown in Figure 4.25.

fast, as indicated in Figure 4.26.

motor. The structure of the controlled process is shown in Figure 4.27. Nominal
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FIGURE 4.25 Process and reference model responses from the start of adaptation, KP =
KM/3, TP = 3 · TM. (From Kovačić, Z., Bogdan, S., and Punčec, M., IEEE Intl. Conf.
Industr. Technol. ICIT’03, 321–326, 2003. With permission.)
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FIGURE 4.26 Convergence of lead–lag compensator gain Kf and lead-time constant Tf ,
KP = KM/3, TP = 3 · TM. (From Kovačić, Z., Bogdan, S., and Punčec, M., IEEE Intl.
Conf. Industr. Technol. ICIT’03, 321–326, 2003. With permission.)

The second-order reference model (4.20) defined with maximum overshoot
σM = 5.5% and peak time tm = 0.025 sec describes a desired closed-loop behavior.
The control surface of the fuzzy controller has been set by emulation of the PI
controller according to (3.8). PI controller parameters were determined for nominal
process parameters. The lead–lag compensator parameters were initially set to

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.27 The structure of the controlled process. (From Kovačić, Z., Bogdan, S., and
Punčec, M., IEEE Intl. Conf. Industr. Technol. ICIT’03, 321–326, 2003. With permission.)
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FIGURE 4.28 Process and reference model responses from the start of adaptation,
J = 5 · Jn. (From Kovačić, Z., Bogdan, S., and Punčec, M., IEEE Intl. Conf. Industr.
Technol. ICIT’03, 321–326, 2003. With permission.)

K0
f = 1 and T0

f = TM. Tuning coefficients have been set to γK = 0.4 and
γT = 0.3.

Simulation experiments have a goal to test adaptation to large variations of the
moment of inertia. In the first experiment, J has been set five times larger than

n
process and reference model responses from the start to the end of adaptation.

A very large initial tracking error eM = yM − yf is reduced several times after

parameters converge to their steady-state values in four iterations.
In the experiment that follows, the open-loop gain Ko has been increased five

© 2006 by Taylor & Francis Group, LLC

the nominal value, J = 5 · J . Figure 4.28 and Figure 4.29 show development of

only two iterations. One can see in Figure 4.30 that values of lead–lag compensator

times. A rapid improvement of process responses is shown in Figure 4.31 resulting
in the close follow-up of the reference model (Figure 4.32) providing rather swift

Kch

1+Tchs

1
Js

K t

1+Tts
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Process
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FIGURE 4.29 Process and reference model responses before and after adaptation,
J = 5 · Jn. (From Kovačić, Z., Bogdan, S., and Punčec, M., IEEE Intl. Conf. Industr.
Technol. ICIT’03, 321–326, 2003. With permission.)
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FIGURE 4.30 Convergence of the lead–lag compensator gain coefficient Kf and lead-time
constant Tf , J = 5 · Jn. (From Kovačić, Z., Bogdan, S., and Punčec, M., IEEE Intl. Conf.
Industr. Technol. ICIT’03, 321–326, 2003. With permission.)

reduction of the tracking error. Also, initial oscillations in the system response
have been completely eliminated.

Convergence of parameter values is rather fast and completed in approximately

© 2006 by Taylor & Francis Group, LLC

ten iterations (Figure 4.33). Adaptation is stopped when the average sum of last
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FIGURE 4.31 Process and reference model responses from the start of adaptation,
5 · Kon. (From Kovačić, Z., Bogdan, S., and Punčec, M., IEEE Intl. Conf. Industr. Technol.
ICIT’03, 321–326, 2003. With permission.)
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FIGURE 4.32 Process and reference model responses before and after adaptation,
5 · Kon. (From Kovačić, Z., Bogdan, S., and Punčec, M., IEEE Intl. Conf. Industr. Technol.
ICIT’03, 321–326, 2003. With permission.)

n values of �Kκ+1
f and �Tκ+1

f drops below specified threshold values. It should be
noted that faster convergence could be obtained with larger γK and γT, but then ada-
ptation might not be so smooth and might become unstable in the final instance.
Therefore, system stability conditions should be worked out in terms of finding
the tuning coefficients, which would guarantee the overall stability of the adaptive
control system.

© 2006 by Taylor & Francis Group, LLC



“DK6032_C004” — 2005/11/4 — 17:36 — page 139 — #31
�

�

�

�

�

�

�

�

Complex Fuzzy Controller Structures 139

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

Kf
Tf /Tm

FIGURE 4.33 Convergence of the lead–lag compensator gain coefficient Kf and lead-time
constant Tf , 5 · Kon. (From Kovačić, Z., Bogdan, S., and Punčec, M., IEEE Intl. Conf.
Industr. Technol. ICIT’03, 321–326, 2003. With permission.)

4.2.2.2 Integral Criterion-Based Adaptation

Besides the model tracking error eM and the sensitivity model used in the adaptive

performance indices to find �Kκ+1
f and �Tκ+1

f in the tuning law (4.31). Very often
integral criteria are used, such as the integral of squared error ISE = ∫ T

0 e2
M(t) dt,

the integral of absolute error magnitude IAE = ∫ T
0 |eM(t)| dt, the integral of time-

weighted absolute error ITAE = ∫ T
0 t|eM(t)| dt, and the integral of time-weighted

squared error ITSE = ∫ T
0 te2

M(t) dt. The goal of adaptation is to adjust system
parameters so that the selected integral criterion depending on the model tracking
error eM reaches a minimum value. In such case, an adaptive system is considered
an optimal control system.

Instead of the above commonly used integral criteria, let us observe a per-
formance criterion calculated as the ratio of integrals (areas) determined by the
reference model output response yM and the system output response yf reaching
a specified portion of a complete transient response (we assume that system noise
has characteristics of white noise):

ρy =
∫ tyf

0 yf (t) · dt∫ tyM
0 yM(t) · dt

= Iyf (tyf )

IyM(tyM)
(4.33)

where yf (tyf ) = yM(tyM) = a · yf (t)|t→∞ = a · yM(t)|t→∞, a ∈ [0.5, 0.9].
© 2006 by Taylor & Francis Group, LLC

control scheme shown in Figure 4.24, we can also use other reference model-based
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FIGURE 4.34 A reference model output integral (IyM ) and a closed-loop system integral
(Iyf ) for a = 0.63.

In order to get a broader range of values of ρy, a good choice is to calculate
ρy during the rise time interval, when the picture of system dynamics is very clear
(Figure 4.34).

For tuning law (4.31), we must find an adaptation algorithm, which will change
Kf and Tf with respect to changes of ρy. For a given parameter a, IyM(tyM) is
always constant, while Iyf (tyf ) and ρy vary with system dynamics. Treatment
of the process as a black box, does not allow us to relate varying performance
index ρy with the nominal process dynamics. However, we can search for an
approximate solution in the reference model counterpart. Namely, variations of
reference model parameters KM and TM will cause variations of IyM(tyM) similarly
as process parameter variations will cause variations of Iyf (tyf ). So, if we apply an
integral criterion (4.33) to the closed-loop system having a form of a second-order
reference model (4.20), we obtain:

ρyM =
∫ tyM +�tyM

0 yM(t, KM + �KM, TM + �TM) · dt∫ tyM
0 yM(t, KM, TM) · dt

= I�yM(tyM + �tyM)

IyM(tyM)

(4.34)

The question arises how to find functions that describe dependence of ρyM

on KM(�KM) and TM(�TM) for different values of KM and TM (i.e., different
values of damping coefficient ξ and natural frequency ωn), so that we can find
inverse functions �KM = f (ρyM) and �TM = f (ρyM). While the way from σm
and tm to ξ and ωn (KM and TM) and time tyM is straightforward, the way back
is not that elegant. Namely, for detected tyM we do not know the exact values of
ξ and ωn. Therefore, we cannot know the exact values of KM and TM as they
both depend on ξ and ωn. Instead, we must use a computer and calculate functions
describing dependence of ρyM on KM(�KM) and TM(�TM) obtained by simulation
of the reference model (4.20) and by calculation of ρyM for different values of KM

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.35 Relations between performance index ρyM and model gain coefficient KM
(left) and model time constant TM (right). (From Kovačić, Z., Bogdan, S., and Punčec, M.,
2000 IEEE Intl. Symp. Intell. Ctrl., 55–60, 2000. With permission.)

and TM. These functions are graphically presented in Figure 4.35. One can see
that, for example, for ρyM = 0.5, KM must be decreased two times in order
to reestablish the nominal value ρyM = 1, that is, the relation �KM = f (ρyM)

could be interpolated with a hyperbolic function. In the same time, the relation
�TM = f (ρyM) is almost linear. It must be pointed out that these two relations
can be calculated either before (i.e., off-line) or during the startup of the controller
(i.e., on-line).

Having ρyM calculated, relations �KM/KM = f (ρyM) and �TM/TM = f (ρyM)

exactly determine how much KM and TM must be changed to enforce a second-
order system (4.20) to have ρy = ρyM = 1. In order to be able to use relations
derived for the second-order system for adaptation of a suitable high-order closed-
loop system, we must replace �KM and �TM with �Kf and �Tf , and ρyM with ρy.
New forms of relations �Kf = f (ρy) and �Tf = f (ρy) represent an adaptation
law, which determines the sign and magnitude of �Kf and �Tf , needed to push ρy
toward the unity value. Because of using relations originally derived for a second-
order system, even in the case of nominal system dynamics there will be some
error, that is, |ρy − 1| < ερ , where ερ is a small positive parameter. The bigger
the ερ , the greater will be the influence of the adaptation algorithm in the case of
nominal system dynamics.

Likewise in the sensitivity model-based adaptation algorithm, initial values
of lead–lag compensator parameters are set to K0

f = 1 and T0
f = TM, while

tuning coefficients γK and γT should provide a smooth convergence of adaptation
(recommended range 0 < γK, γT ≤ 1).

Example 4.3 Integral criterion-based adaptation of fuzzy controller.

It consists of a hybrid fuzzy logic controller described in Section 4.1, a lead–lag
compensator, a second-order reference model, and an adaptation mechanism [57].

© 2006 by Taylor & Francis Group, LLC

The structure of the adaptive fuzzy control system is shown in Figure 4.36.
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FIGURE 4.36 The structure of an adaptive fuzzy control system. (From Kovačić, Z.,
Bogdan, S., and Punčec, M., 2000 IEEE Intl. Symp. Intell. Ctrl., 55–60, 2000. With
permission.)

FIGURE 4.37 An adaptive control strategy. (From Kovačić, Z., Bogdan, S., and Punčec, M.,
2000 IEEE Intl. Symp. Intell. Ctrl., 55–60, 2000. With permission.)

The fuzzy logic controller has two inputs, e(k) = ur(k) − y(k) and �e(k) =
e(k)−e(k−1) and one output calculated according to the center of gravity principle
(2.22). The universes of discourse for both input variables are normalized in the
range [−1, 1] and split into seven fuzzy sets with triangular, linearly distributed
membership functions. The output universe of discourse contains seven linearly
distributed singleton sets.

We assume that the process approximation determined in a selected operating
point is accurate enough so that a hybrid fuzzy logic controller, designed on the
basis of that process approximation, can act on system output response yf and
make it follow reference model response yM (Figure 4.37).

If we describe a hybrid fuzzy logic controller as a nonlinear mapping function
ψh, that is, u(k) = ψh[e(k), �e(k)], then we are looking for adaptive nonlin-
ear mapping function ψhA, which would move the closed-loop system dynamics
arbitrarily close to the reference model dynamics (ρy ≈ ρyM ).

© 2006 by Taylor & Francis Group, LLC
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The adaptation algorithm is based on model reference-based relations �Kf =
f (ρy) and �Tf y
logic controller parameters it tunes lead–lag compensator parameters according to
tuning law (4.31). The aim of the method is to tune coefficient Kf to enforce the
open-loop system gain coefficient to converge to reference model gain coefficient
KM and to bring up lead-time constant Tf to the value that would cancel a dominant
process time constant so that system dynamics become primarily determined with
reference model time constant TM. Tuning coefficients γK and γT are chosen to be
equal to one.

The adaptive fuzzy logic controller has been tested by computer simulation in
the same linearized model of a PMSM servo system as in Example 4.2. The nominal
values of process parameters are the same, only the second-order reference model
(4.20) has slightly different given maximum overshoot σm = 5% and peak time
tm = 0.02 sec. This yields reference model parameter values KM = 157.25 and
TM = 0.0033 sec.

Figure 4.38 shows system output and reference model output responses at the
beginning of adaptation. The hybrid fuzzy controller parameters are determined
for nominal process parameters. As the moment of inertia has been increased
five times with respect to its nominal value, the maximal tracking error value

reference model output responses obtained after the process of parameter adapta-

reference model closely. Tracking error eM
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FIGURE 4.38 The process and model responses at the beginning of adaptation, J = 5 · Jn.
(From Kovačić, Z., Bogdan, S., and Punčec, M., 2000 IEEE Intl. Symp. Intell. Ctrl., 55–60,
2000. With permission.)
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= f (ρ ) shown in Figure 4.35, and instead of changing fuzzy

(Figure 4.39) at the beginning of the adaptation is very large. System output and

, shown in Figure 4.41, is reduced and
tion is finished are shown in Figure 4.40. One can see that the system follows the
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FIGURE 4.39 The tracking error at the beginning of the adaptation, J = 5 · Jn. (From
Kovačić, Z., Bogdan, S., and Punčec, M., 2000 IEEE Intl. Symp. Intell. Ctrl., 55–60, 2000.
With permission.)
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FIGURE 4.40 The process and model responses at the end of the adaptation, J = 5 · Jn.
(From Kovačić, Z., Bogdan, S., and Punčec, M., 2000 IEEE Intl. Symp. Intell. Ctrl., 55–60,
2000. With permission.)

of controller output from the beginning until the end of adaptation. Convergence
of Kf and Tf
are changing smoothly and they reach stationary values in about seven tuning
iterations.

The results obtained confirm efficacy of the integral criterion-based adaptation
of the fuzzy controller by adapting parameters of the added lead–lag compensator.

© 2006 by Taylor & Francis Group, LLC

its maximal value is less than 15%. Figure 4.42 and Figure 4.43 show the evolution

during the adaptation process is shown in Figure 4.44. Parameters
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FIGURE 4.41 The tracking error at the end of the adaptation, J = 5·Jn. (From Kovačić, Z.,
Bogdan, S., and Punčec, M., 2000 IEEE Intl. Symp. Intell. Ctrl., 55–60, 2000. With
permission.)
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FIGURE 4.42 The controller output at the beginning of the adaptation, J = 5 · Jn. (From
Kovačić, Z., Bogdan, S., and Punčec, M., 2000 IEEE Intl. Symp. Intell. Ctrl., 55–60, 2000.
With permission.)

4.2.2.3 Model Reference Adaptive Control with
Fuzzy Adaptation

The MRAC schemes compare responses of controlled system variables with
responses of accompanying reference model variables and then use the consequent

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.43 The controller output at the end of the adaptation, J = 5 · Jn. (From
Kovačić, Z., Bogdan, S., and Punčec, M., 2000 IEEE Intl. Symp. Intell. Ctrl., 55–60,
2000. With permission.)
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FIGURE 4.44 Convergence of lead–lag compensator gain coefficient Kf and lead-time
constant Tf , J = 5 · Jn.
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error signals as inputs to an adaptation mechanism. Adaptation mechanisms are
dominantly nonlinear devices, which may generate an additional signal (signal
adaptation) or change basic controller parameters (parameter adaptation). Signal
adaptation is preferable because of the high speed of adaptation. On the other
hand, signal adaptation causes stationary oscillations in the system response.
These oscillations may be eliminated by modifying a signal adaptation algorithm,
as described in Reference 58, but such modifications cause a steady-state
error.

A full-order reference model can provide the best effectiveness of the adapta-
tion mechanism, but a reduced-order reference model is usually preferred because
of its simpler design and implementation. Very often a second-order reference
model is used to determine the desired dynamic characteristics of the high-order
system. In such cases, unmodelled dynamics and disturbances may have an
undesired influence on the convergence of parameters and the stability of the
system. This can be solved by modifying the parameter-adaptation algorithms, but
such modifications also cause a steady-state error [59].

In this section, we describe a design of a model reference adaptive fuzzy control
algorithm, which has a high speed of adaptation and produces no oscillations in
the steady state. An adaptation signal is added directly to the feedback controller

The fuzzy adaptation mechanism has a PD-type character and its role is to tune
the closed-loop control system input so that the system behaves like the reference
model. The inputs of the fuzzy adaptation mechanism are model tracking error
eM and change of error �eM. The structure of the fuzzy adaptation algorithm is
the same as the structure of a standard fuzzy controller, so adaptation signal uA
is obtained in the same manner as the output of a standard fuzzy controller. This
means that the design goal is to synthesize fuzzy control rules, which would map
observed process response deviation �yf (equal to eM in the MRAC approach)
and its change to adequate changes in the system input:

urA = ur + uA (4.35)

where urA is a modified (adapted) reference input.
The procedure of setting the fuzzy rule table of adaptation algorithm is com-

pletely heuristic. This may seem as a drawback, but may also be an advantage.
Namely, in many practical situations a control designer knows how certain param-
eter changes affect the closed-loop system performance. Moreover, if by chance
the mathematical model of the process is known, like in the electrical drives
and servo control applications described in References 60–64, then using the
computer and running simulations can help a lot with fast setup of fuzzy rules.
Interpretation of the relation between desired system response changes and neces-
sary system input changes is also referred to as a fuzzy inverse model [65,66].
Here, we refer to it as an auxiliary controller, or simply, an adaptation
mechanism.

© 2006 by Taylor & Francis Group, LLC

input (see Figure 4.17).
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FIGURE 4.45 The structure of a fast parameter adaptation fuzzy MRAC system.

Since the structure of the adaptation algorithm resembles the structure of the
standard DISO fuzzy controller, the design steps are also the same. Although a
particular design procedure will depend on a particular application, the job to
be done will not be any more complicated than the design of a standard fuzzy
controller. First, we must define suitable values of input and output scaling factors
for eM, �eM, and uA. Wrong selection of scaling factors may result in a poor
performance of the adaptation mechanism or in excessive value of the adaptation
signal, which may lead to the saturation of control input. We have mentioned
that signal adaptation can be imposed either at the input or at the output of the
feedback controller. The place of adaptation signal addition will affect the values
of scaling factors, as we normally must account for the gain of the feedback
controller.

A special case is adaptation at the output of the feedback controller accom-

a hybrid one, featuring fast parameter adaptation in the manner of signal adapta-
tion by direct change of the adaptation gain kA. Such a concept assumes that the
steady-state value of kA is equal to one. The effectiveness of the fuzzy adapta-
tion mechanism depends on correct estimation of the possible range of variations
for each of the parameters, and on the ability of the system to accept the newly
formed controller output signal without limitations related to the finite capacity of
the energy resources.

The experience with some control systems affected by large parameter vari-
ations indicates that the fuzzy rule table of the adaptation algorithm usually assumes
a nonsymmetrical form. This stems from the fact that a different amount of signal
(parameter) correction is needed to compensate for the same amount of increas-
ing or decreasing parameter variations, especially when more than one parameter
varies at the time.

The role of the fuzzy adaptation algorithm is to stay idle in the steady state and
get active during system transitions. In order to circumvent steady-state oscillations
caused by constant activity of the adaptation signal, the choice of the trapezoidal

© 2006 by Taylor & Francis Group, LLC

plished by gain multiplication, as shown in Figure 4.45. This structure is actually
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FIGURE 4.46 The block scheme of the studied angular speed fuzzy MRAC system.

form of the most inner fuzzy sets covering small values of eM and �eM is recom-
mended. The size of the nuclei of these fuzzy sets will dictate the width of the
dead-zone, which will pacify the adaptation algorithm in the steady state.

Example 4.4 MRAC with fuzzy signal adaptation.

In this example, we describe a design of a fuzzy model reference adaptive
control scheme that contains a commonly used PI feedback controller and a fuzzy
adaptation mechanism, which generates an adaptation signal added to the input
of the PI controller [67]. A second-order reference model is used to describe the
desired performance of the closed-loop system. Such a structure can be classified

The target system for which the design is carried out is an angular speed control
loop of a vector controlled chopper-fed PMSM described in detail in Example 4.1.
Instead of using classical design methods (e.g., by using Lyapunov functions)
suitable for processes with known models, we demonstrate the heuristic design of
a fuzzy adaptation mechanism without knowing the exact model of the process
(care must be taken that nominal dynamics defined by the reference model match
the feasible dynamics of the controlled process).

In this case the studied system would have a transfer function of a third-order
system (4.13). A linearized model of the angular speed control system is shown as
a part of the whole fuzzy adaptive control system in Figure 4.46.

As discussed in Example 4.1, torque coefficient K and moment of inertia JT
are parameters of the target control system that vary the most.

The PI controller parameters were specified according to the symmetrical
optimum criterion, which gives 40% of overshoot in the output response, all in
order to obtain quick compensation of load torque variations. A lower overshoot
(in our case 20%) in response to the reference input changes may be achieved
by adding an appropriate filter into the reference input signal path. The rated val-
ues of linearized model parameters (Figure 4.46) were as follows: Kcc = 1 A/V,
Tcc = 50 µsec, K = 0.9837 Vsec, JT = 0.00176 kg m2, B = 0.000388 Nmsec,
TM = JT/B = 4.536 sec, Kω = 0.063 Vsec, and Tω = 2.5 msec.

© 2006 by Taylor & Francis Group, LLC
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In the case being studied, the desired behavior of the target high-order system
is represented by a reference model of a second-order system. The reference model
is described by means of a transfer function, which is related to the rated parameter
values

GM(s) = UωM

Ur(s)
= 1

(Tp/Kp)s2 + (1/Kp) + 1
(4.36)

where UωM is a reference model output (desired feedback signal), Kp =
KPIKccKKω/TPIB and Tp = Tω.

The robustness of PI controllers to parameter variations is rather weak, espe-
cially in cases of large parameter variations, as it was shown for the target control

The fuzzy adaptation algorithm has a PD-type character, that is, the current
adaptation signal value does not depend on previous output values. The inputs of
the fuzzy adaptation algorithm are tracking error, eM, and its change, �eM. There-
fore, the synthesis of the fuzzy adaptation algorithm is very similar to the synthesis
of a PD-type DISO fuzzy controller. The sign and magnitude of adaptation signal
uA are determined by the signs and magnitudes of inputs eM and �eM via a fuzzy
mapping function.

Seven linguistic subsets are defined for both adaptation algorithm inputs (uni-
verses of discourse EM and DEM): NL, NM, NS, Z, PS, PM, and PL. The design
goal was to generate adaptation signal uA, which would keep model tracking error
eM within ±10% of the imposed change of reference input. Therefore, the maxi-
mum error value was set in the range −0.0063 ≤ eM ≤ 0.0063. The maximum
change of error during control interval Td was estimated from the nominal dyna-
mics and it was in the range −0.0009 ≤ �eM ≤ 0.0009. In general, a nominal
system model and some simulation tools such as Matlab can be very helpful in
determination of correct maximal input values.

The idea of the fuzzy adaptation mechanism design is to create a set of fuzzy
control rules that would continuously issue the signal required for the adjustment
of a PI controller input, in order to ensure that the transient response is minimally
affected by parameter variations. Being further away from the nominal dynamics
requires stronger adaptation effort. On the other hand, being closer to the nominal
dynamics requires finer adaptation. Following that reasoning, we may choose a
trapezoidal form of the outer fuzzy sets and a triangular form of the inner sets. An
exception is a trapezoidal form of the zero sets, which is there to define a zero zone
of uA in the case when both inputs eM and �eM are very close to zero. Thanks to that
zone, the adaptation algorithm will stay passive during steady-state conditions. The
normalized distributions of defined membership functions along eM and �eM axes

with respect to zero sets ZEM and ZDEM and have the same form for both inputs.
The way in which the membership functions overlap ensures that not more than
4 out of 49 possible IF–THEN control rules may contribute to the adaptation

© 2006 by Taylor & Francis Group, LLC

are shown in Figure 4.47. In the presented design, the distributions are symmetrical

system in Figure 4.6 (see Example 4.1).
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FIGURE 4.47 Normalized distributions of membership functions for both inputs of the
fuzzy adaptation algorithm.

TABLE 4.2
The Fuzzy Rule Table of the Fuzzy Adaptation Algorithm

NLEM NMEM NSEM ZEM PSEM PMEM PLEM

NLDEM −0.1 −0.06 −0.04 −0.02 −0.015 −0.01 0
NMDEM −0.06 −0.04 −0.02 −0.015 −0.01 0 0.0075
NSDEM −0.04 −0.02 −0.015 −0.0075 0 0.0075 0.055
ZDEM −0.02 −0.015 −0.0075 0 0.0075 0.055 0.15
PSDEM −0.015 −0.0075 0 0.0075 0.055 0.15 0.3
PMDEM −0.01 0 0.0075 0.055 0.15 0.3 0.4
PLDEM 0 0.01 0.055 0.15 0.3 0.4 0.8

signal value. The signal value is calculated according to the center of gravity
principle (2.22).

The fuzzy rule table of the adaptation algorithm was defined heuristically
and the values of singletons are shown in Table 4.2. In the studied case, one

distributed singletons, with a dominant right-hand side, which enforces eight times
higher adaptation effort for the lagging of system dynamics than for the leading.
Although exact singleton values are dependent on the studied target system, from
their relative values and positions in the universe of discourse, one can get an idea
on how to approach other control design problems.

responses of the nonadaptive PMSM drive, adaptive PMSM drive, and a reference
model. A certain difference between the closed-loop system and the reference
model responses was expected even with nominal parameter values, but the adap-
tation mechanism was very effective and the adaptive system closely follows the
model.

Simulated moderate variations of moment of inertia, JT/2 and 3JT/2, were
almost fully compensated by the adaptation algorithm, as proved by the responses

© 2006 by Taylor & Francis Group, LLC

may see in Figure 4.48 that the adaptation signal domain contains 15 nonlinearly

In the case of nominal parameter values, Figure 4.49 shows the angular speed

shown in Figure 4.50 and Figure 4.51, respectively. The tracking error shown in
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FIGURE 4.48 Distribution of singletons along the adaptation signal universe of discourse.
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FIGURE 4.49 The measured angular speed responses in case of nominal parameters: non-
adaptive PMSM drive (a), adaptive PMSM drive (b), and reference model (c). (From
Kovačić, Z., Bogdan, S., and Crnošija, P., 19th Annu. Conf. IEEE Industrial Electr. Soc., 1,
207–212, 1993. With permission.)

waveforms of adaptation signal uA for both cases. One can notice that the shape
and the magnitude of uA are very suitable for applications of real systems.

Let us check the effectiveness of adaptation for very large variations of JT equal
to JT/3 and 3JT

show the tracking error responses for both cases. As may be seen, the adaptation
mechanism still noticeably improves the quality of the angular speed responses, but
tracking error eM has exceeded the desired range, thus indicating the imperfection
of the designed adaptation algorithm for large parameter variations. This would
require intervention into some of the design steps, but it must be noted that the
simulated change of process parameter is really very large and therefore rare in
most practical control (e.g., servo) applications [68].

© 2006 by Taylor & Francis Group, LLC

Figure 4.52 and Figure 4.53 was kept within ±10% of the imposed change of
the reference input, thus fulfilling the main design goal. Figure 4.54 shows the

. Figure 4.55 and Figure 4.56 show the angular speed responses
of the nonadaptive and adaptive PMSM drive, while Figure 4.57 and Figure 4.58
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FIGURE 4.50 The measured angular speed responses in the case of JT/2: nonadaptive
PMSM drive (a), adaptive PMSM drive (b), and reference model (c). (From Kovačić, Z.,
Bogdan, S., and Crnošija, P., 19th Annu. Conf. IEEE Industrial Electr. Soc., 1, 207–212,
1993. With permission.)
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FIGURE 4.51 The measured angular speed responses in the case of 3JT/2: nonadaptive
PMSM drive (a), adaptive PMSM drive (b), and reference model (c). (From Kovačić, Z.,
Bogdan, S., and Crnošija, P., 19th Annu. Conf. IEEE Industrial Electr. Soc., 1, 207–212,
1993. With permission.)

of load torque τl (active disturbance), �τl = τn/100, where τn is a nominal
motor torque. Although the PI controller parameters were obtained according to
the symmetrical optimum criterion, that is, with the best ability to compensate

© 2006 by Taylor & Francis Group, LLC

Figure 4.59 shows the PMSM drive response in the case of stepwise change
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FIGURE 4.52 The tracking error responses in the case of JT/2: nonadaptive PMSM
drive (a), adaptive PMSM drive (b). (From Kovačić, Z., Bogdan, S., and Crnošija, P.,
19th Annu. Conf. IEEE Industrial Electr. Soc., 1, 207–212, 1993. With permission.)
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FIGURE 4.53 The tracking error responses in the case of 3JT/2: nonadaptive PMSM
drive (a), adaptive PMSM drive (b). (From Kovačić, Z., Bogdan, S., and Crnošija, P., 19th
Annu. Conf. IEEE Industrial Electr. Soc., 1, 207–212, 1993. With permission.)

for disturbance effects, a drop in the angular speed response is much lower in
the case of adaptive control. The oscillations in the response are caused by the
way of designing the fuzzy rule table for the target system. If the adaptation
algorithm is supposed to act equally well in case of the reference input changes

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.54 The adaptation signal responses in the case of JT/2 (a), 3JT/2 (b). (From
Kovačić, Z., Bogdan, S., and Crnošija, P., 19th Annu. Conf. IEEE Industrial Electr. Soc., 1,
207–212, 1993. With permission.)
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FIGURE 4.55 The measured angular speed responses in the case of JT/3: nonadaptive
PMSM drive (a), adaptive PMSM drive (b), and reference model (c). (From Kovačić, Z.,
Bogdan, S., and Crnošija, P., 19th Annu. Conf. IEEE Industrial Electr. Soc., 1, 207–212,
1993. With permission.)
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FIGURE 4.56 The measured angular speed responses in the case of 3JT: nonadaptive
PMSM drive (a), adaptive PMSM drive (b), and reference model (c). (From Kovačić, Z.,
Bogdan, S., and Crnošija, P., 19th Annu. Conf. IEEE Industrial Electr. Soc., 1, 207–212,
1993. With permission.)
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FIGURE 4.57 The tracking error responses in the case of JT/3: nonadaptive PMSM
drive (a) and adaptive PMSM drive (b). (From Kovačić, Z., Bogdan, S., and Crnošija, P.,
19th Annu. Conf. IEEE Industrial Electr. Soc., 1, 207–212, 1993. With permission.)
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FIGURE 4.58 The tracking error responses in the case of 3JT: nonadaptive PMSM drive (a)
and adaptive PMSM drive (b). (From Kovačić, Z., Bogdan, S., and Crnošija, P., 19th Annu.
Conf. IEEE Industrial Electr. Soc., 1, 207–212, 1993. With permission.)

and the disturbance changes, then a sort of trade-off should be included in the
design process, thus consciously narrowing the range of good adaptation.

A heuristic design of the fuzzy adaptation algorithm practically ensures the
stable performance of the adaptive PMSM drive for all reasonable and predictive
system parameter variations. On the other hand, the speed of adaptation is related
to selected control interval Td. In the studied PMSM drive, significantly decreased
moments of inertia create unbalanced relation between the adaptation mechanism
and the system dynamics, and simulations indicate an unstable system operation for
moments of inertia below JT/5. In other words, if parameter variations exceed the
expected range of variations, this would finally produce instability of the system.
Therefore, a possible range of parameter variations must be properly estimated
and thereafter included in the design steps of the fuzzy adaptation algorithm.

The efficacy of adaptation could be determined through assessment of the
relative tracking error value during the transient response. Thus, for 50% changes
of JT, it reaches 10%, while for 300% changes of JT, it reaches 25% of the imposed
change of the reference input. For a 300% increase of JT, the maximal value of
adaptation signal uA is two and a half times higher than the imposed change of the
reference input, while the output of the adaptive PI controller is four times larger
than in the nonadaptive case.

In the case of very large parameter variations the effectiveness of the fuzzy
adaptation algorithm is lower, partly because the range of adaptation signal should
be wider and partly because the adaptation signal is transferred to the process
through the PI controller, which possesses high sensitivity to parameter variations.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.59 The PMSM angular speed responses in the case of active disturbance (load
torque). (From Kovačić, Z., Bogdan, S., and Crnošija, P., 19th Annu. Conf. IEEE Industrial
Electr. Soc., 1, 207–212, 1993. With permission.)

It must be noted that simulations have not included the effects of the posed
limits which are inevitably present in real control applications.

Example 4.5 MRAC with fuzzy parameter adaptation.

In Example 4.1, we have shown that increased robustness of the hybrid fuzzy
controller resulted from the way it has been designed. We have also shown that
in the case of large parameter variations, fuzzy controllers, like conventional
controllers, cannot provide even system responses without the addition of an
adaptation mechanism. Having in mind a completely heuristic fuzzy controller
design, the knowledge about the target control system can be very helpful during
the development of an adaptive fuzzy control algorithm.

In this example, we describe a design of a MRAC scheme that contains a
hybrid fuzzy controller described in Section 4.1, a second-order reference model,
and a fuzzy adaptation mechanism [34,69]. The target system is the same as in
the previous example, that is, we deal with control of the angular speed of a
vector-controlled PMSM drive.

Adaptive tuning is performed by multiplying the hybrid fuzzy controller output
with tuning coefficient kA. Due to the nonintegral character of the fuzzy adaptation
algorithm, such a parameter adaptation has the speed of a signal adaptation. Such

of fuzzy control and adaptation algorithms (they belong to the group of PD-type
fuzzy algorithms).

© 2006 by Taylor & Francis Group, LLC

in Figure 4.45. This is a nonlinear control scheme because of the nonlinear nature
a control structure shown in Figure 4.60 is referring to the control structure shown
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FIGURE 4.60 A block scheme of a studied angular speed fuzzy MRAC system.

In principle, the design of a parameter generating fuzzy adaptation algorithm
is very similar to the design of the signal generating fuzzy adaptation algorithm
presented in Example 4.4. Here we have to define a set of fuzzy control rules,
which would continuously generate the tuning coefficient values required for the
adjustment of a hybrid fuzzy controller output. In order to stay passive in the steady
state, the steady-state output of the adaptation algorithm should be equal to one,
kA = 1.

A fuzzy adaptation mechanism is triggered by its inputs, tracking error eM and
its change �eM. The choice of inputs scaling factors depends on correct estimation
of the possible range of variations for each of the parameters and desired control
quality. In our case we want to keep the tracking error within ±10% of the system
output change, that is, eM ≤ ±0.1�uω. The effectiveness of the fuzzy adaptation
algorithm will depend on the ability of the system to accept the newly formed
controller output signal without reaching physical limits.

The fuzzy adaptation algorithm has seven linguistic subsets defined for both
inputs: NL, NM, NS, Z, PS, PM and PL. The maximum value of error eM is
estimated to be 0.036, that is, −0.036 ≤ eM(k) ≤ 0.036. The maximum change
of error �eM during sampling interval Td = 0.5 msec is estimated to 0.016, that
is, −0.016 ≤ �eM(k) ≤ 0.016. The distribution of membership functions for
normalized subsets of eM and �eM are shown in Figure 4.60. The size of the
input fuzzy subsets has a direct impact on the characteristics of the adaptation
mechanism. In other words, the size of the zero subsets determines the width of
the unity tuning coefficient zone, which guarantees steady-state passivity of the

of membership functions is increasing toward the origin, thus providing the desired
fineness of adaptation. On the other hand, robustness and roughen for cement during
the more demanding transient events in the system are achieved by choosing the
trapezoidal forms of the membership functions, which are related to the medium
and large input values.

The distribution of fuzzy output subsets is nonlinear because this has been
directed by the characteristics of the target system. The corresponding centroids
have the following normalized values (max(kA) = 7): −0.043, −0.029, −0.007,

© 2006 by Taylor & Francis Group, LLC

adaptation mechanism. As can be seen from Figure 4.61, for both inputs the density
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FIGURE 4.61 Distribution of membership functions for a fuzzy adaptation algorithm:
(up) µ[eM(k)], (down) µ[�eM(k)].

TABLE 4.3
The Fuzzy Rule Table of an Adaptation Mechanism

NLE NME NSE ZE PSE PME PLE

NLDE 1 1 0.667 0.5 0.333 0.0083 0
NMDE 1 1 0.667 0.167 0.0083 −0.0042 −0.0083
NSDE 1 0.667 0.167 0.0084 0.0042 −0.333 −0.5
ZDE 0.833 0.333 0.0083 0 0 −0.333 −0.833
PSDE 0.667 0.333 0 −0.0083 −0.167 −0.667 −1
PMDE 0.0083 −0.0083 −0.167 −0.333 −0.667 −1 −1
PLDE −0.0083 −0.167 −0.333 −0.5 −0.667 −1 −1

0.007, 0.036, 0.071, 0.107, 0.129, 0.143, 0.157, 0.214, 0.25, 0.321, 0.428, 0.571,
0.714, and 1. The size and distribution of the input and output fuzzy subsets were
defined by trial and error in order to keep the tracking error within specified limits:
|eM| ≤ 0.1�uω.

The adaptation mechanism output, that is, tuning coefficient kA is computed
according to the center of gravity principle (2.22). The fuzzy rule table of the
adaptation mechanism is shown in Table 4.3.

The proposed adaptive fuzzy controller was tested by simulation experiments
for cases of moderate and very large changes of inertial moment JT. As shown in

© 2006 by Taylor & Francis Group, LLC

NL NM NS Z PS PM PL

0 0.1 0.2 0.3 0.4 0.5–0.1–0.2–0.3–0.4–0.5 0.6–0.6–0.7–0.8 0.7 0.8

0 0.1 0.2 0.3 0.4 0.5–0.1–0.2–0.3–0.4–0.5 0.6–0.6–0.7–0.8 0.7 0.8

m(eM)

m(�eM)

NL NM NS PS PM PLZ

eM /eMm

�eM /�eMm
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FIGURE 4.62 The measured angular speed responses of the adaptive fuzzy control system
for moderate changes of JT. (From Kovačić, Z. and Bogdan, S., Eng. Appl. Artif.
Intelligence, 7(5), 501–511, 1994. With permission from Elsevier.)

Figure 4.62, for moderate changes of inertial moment equal to ±50% of the rated
value (i.e., JT/2 and 3JT/2), the adaptation mechanism has noticeably improved
the quality of measured angular speed responses, that is, the quality is much

of the moment of inertia (JT/3, 3JT

with regard to basic system dynamics, is kept almost unchanged, while the tracking
error is within given limits of 10% of the imposed change of reference input

The responses of other system variables will be given only for large changes

mechanism, that is, tuning coefficient kA that multiplies the hybrid fuzzy controller
output. For 3JT, kA reaches the maximum, kAm = 2.8, while for JT/3, it assumes
values less than one. It may be noticed that the tuning coefficient can assume even
negative values for the smallest value of the moment of inertia to provide for a
possibility of faster braking if it proves necessary. The tuning coefficient assumes
a unity value before and after the transient response, thanks to the zero action
zone, which guarantees that the adaptation mechanism does not affect steady-
state accuracy. This was intentionally built into the fuzzy rule table of the fuzzy
adaptation mechanism. The responses of the adaptive fuzzy controller output are

transient response, thus creating the initial rate of response. Then the influence of

© 2006 by Taylor & Francis Group, LLC

better than in the nonadaptive case (Figure 4.9). In cases of very large changes

nonadaptive case (Figure 4.10), the quality of measured angular speed responses,
), as shown in Figure 4.63, compared to the

(Figure 4.64).

of the moment of inertia. Figure 4.65 shows the output of the fuzzy adaptation

shown in Figure 4.66. The fuzzy controller leads in action at the beginning of the
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FIGURE 4.63 The measured angular speed responses of the adaptive fuzzy control system
for large changes of JT. (From Kovačić, Z. and Bogdan, S., Eng. Appl. Artif. Intelligence,
7(5), 501–511, 1994. With permission from Elsevier.)

FIGURE 4.64 The angular speed tracking error responses in the case of large changes of
the inertial moment. (From Kovačić, Z. and Bogdan, S., Eng. Appl. Artif. Intelligence, 7(5),
501–511, 1994. With permission from Elsevier.)

adaptation mechanism becomes dominant ensuring enforcement or relaxation of
the control effort depending on tracking error eM.

trolled, nonadaptive, and adaptive fuzzy control system, in cases of load torque

© 2006 by Taylor & Francis Group, LLC

Figure 4.67 compares the measured angular speed responses of the PI con-
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FIGURE 4.65 The fuzzy adaptation mechanism output responses in the case of large
changes of the inertial moment. (From Kovačić, Z. and Bogdan, S., Eng. Appl. Artif.
Intelligence, 7(5), 501–511, 1994. With permission from Elsevier.)

FIGURE 4.66 The adaptive fuzzy controller output responses in the case of large changes
of the inertial moment. (From Kovačić, Z. and Bogdan, S., Eng. Appl. Artif. Intelligence,
7(5), 501–511, 1994. With permission from Elsevier.)

change �τl = τn/100, where τn is the nominal motor torque. The drop in speed in
the adaptive system is one-third of the drop in the PI controlled system due to the
dominant influence of the adaptation mechanism at the beginning of the transient
response (kA reaches values up to 4.8). A noticeable decrease of system error e(k)

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.67 The measured angular speed responses of: (a) PI controlled, (b) adaptive
fuzzy control, and (c) nonadaptive fuzzy control system in the case of a load torque
change. (From Kovačić, Z. and Bogdan, S., Eng. Appl. Artif. Intelligence, 7(5), 501–511,
1994. With permission from Elsevier.)

slowed down the integration process in the PI algorithm, causing a rather slow

parameters were obtained according to the symmetrical optimum; that is, the PI
controller was adjusted to react optimally to disturbance effects (load torque). If
a particular application requires faster establishment of the steady state, a load
torque observer could be used to solve the problem.

The simulation results demonstrated a stable operation of the system within
the range of parameter variations being considered. They also proved the high
speed of adaptation, typical of signal adaptation algorithms, and smooth steady-
state operation, typical of parameter adaptation algorithms. Due to the dead-zone
in the adaptation algorithm, which corresponds to the unity value of kA, the
method guarantees that the adaptation mechanism has no influence on the
steady-state accuracy. The overall stability of the adaptive fuzzy system was
accomplished heuristically, but the applied fuzzy reasoning was strongly based
on well-founded knowledge about the target system. In some sense, the design
of the hybrid fuzzy controller is a heuristic emulation of the desired control-
ler performance, which would provide the desired system performance as if
the rated parameter values were used. For the class of high-order systems that
is studied here, it is possible to find a critical value of the open-loop gain.
To ensure the stability of the control system, a fuzzy adaptation mechanism
should not produce values in excess of this critical value. Due to the limited
range of the controller output, the worst case will manifest itself in stationary
oscillations.

© 2006 by Taylor & Francis Group, LLC

approach to the steady state (Figure 4.68). It must be noted that the PI controller
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FIGURE 4.68 The adaptation mechanism output response in the case of a load torque
change. (From Kovačić, Z. and Bogdan, S., Eng. Appl. Artif. Intelligence, 7(5), 501–511,
1994. With permission from Elsevier.)

Since the number of fuzzy subsets and their sizes, as well as the form of fuzzy
control rules, depend exclusively on the designer’s decisions, there is still plenty
of room for further improvement for quality of the achieved system response.

A problem of sufficient resolution of the fuzzy controller and fuzzy adaptation
mechanism inputs seems to be very significant. That is, the system being stud-
ied has very fast responses and the change in error assumes rather small values
immediately after the initial large change. This is even more critical in the imple-
mentation of the fuzzy adaptation mechanism, due to a very slow rate of change of
the model-tracking error. Practical success can be expected with a 12-bit resolution
or better. Regarding the microcomputer-based implementation of angular speed
adaptive fuzzy controller and the obtained experimental results, the reader can

4.2.3 Multiple Fuzzy Rule Table-Based Adaptation

A fuzzy controller is designed to achieve the desired control quality in the con-
strained operating range (region) around the “nominal” operating point. The size
of regions is determined by controller’s input and output universes of discourse.
In the case of controlling a highly nonlinear system, the performance of the fuzzy
controller will deteriorate in the operating regions next to or farther from the
“nominal” one. In order to cover the operating range in the whole, adaptation to
changes of operating points can be accomplished by using multiple fuzzy rule

© 2006 by Taylor & Francis Group, LLC

refer to Section 4.2.5.
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FIGURE 4.69 Adaptation by using multiple fuzzy rule tables.

tables designed for respective operating regions. Figure 4.69 shows the case of
splitting the whole operating range into four such regions.

Regarding the design of multiple fuzzy rule table adaptive controllers, if the
operating range is split into evenly distributed operating subregions, then all fuzzy
controller parameters except output centroids may be the same for all subregions.
With a classical heuristic approach, the concept of multiple fuzzy rule tables would
be rather questionable from the practical point of view. But by using self-organizing

many fuzzy rule tables as needed, which makes this concept so attractive.
The transition from one fuzzy rule table to another should be managed in a

smooth and bumpless way, which can be achieved with overlapping of operating
regions (see Figure 4.69), and with the hysteresis embedded in the algorithm for
switching of adjacent fuzzy rule tables.

© 2006 by Taylor & Francis Group, LLC

fuzzy controller design methods described in Chapter 5, it is very easy to get as
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Example 5.3.3 describes a method of nonlinear position control by using a
self-organizing fuzzy logic controller (SLFLC) with multiple position-dependent
fuzzy rule tables [70]. Implementation and experimental verification of the pro-
posed multiple SLFLC structure have confirmed that the superior fuzzy controller
characteristics exhibited within one operating region have been extended to the
whole operating range.

4.2.4 Fuzzy MRAC Contact Force Control

Most of the presently used machine tools and robotic manipulators are designed as
position and orientation controlled mechanisms. Generally, there are two types of
possible manoeuvres, unconstrained where the mechanism can move freely, and
constrained where restrictions are imposed on the mechanism by the environment.
These restrictions are either sudden (collision with obstacles) or planned (assem-
bling, pulling, pushing, and deburring). Using position controlled mechanisms
can result in destruction of the mechanism or environment objects, due to expect-
able errors in task modelling and limitations of the control quality in the position
control loop. Grinding, cutting, inserting, and drilling are operations where the
contact force between the tool and the workpiece must be constant or must change
according to a planned sequence of operations. If the mechanism is only position
controlled then some operations like edge following of complex form workpieces
may become a problem. If the surface of the manipulated workpiece is very rough,
then position control also becomes ineffective. Another problem arises from the
progressive wear of the abrasive tool. In that case, it is very difficult to maintain a
constant contact force and finally, the tool can lose the contact with the workpiece.

Force control systems have been developed to solve these problems. Force
sensors are mounted at the end effector side to measure the contact force. By
obtaining information about the exerted force, we get a possibility to prevent a
destructive collision with the environment by setting the contact force at the desired
value. In spite of some specific approaches as position/force control via sensor
programming [71,72], discontinuous control [73] or joint torque control [74,75],
most of the control schemes could be divided into two groups (1) hybrid posi-
tion/force control, (2) impedance control. Hybrid position/force control includes
independent force and position control. Force control takes place on the hyper-
plane normal to the constraint surface and position/velocity control occurs on the
tangential hyperplane [76–78].

The example presents position/force control with a completely fuzzified adap-
tive force control system for the single degree of freedom manipulators [79]. As

inner velocity control loop. The velocity control loop contains a standard PD-type
fuzzy controller, and the force control loop contains an adaptive PD-type fuzzy
controller with a model reference-based PD-type fuzzy algorithm for tuning of the
fuzzy force controller output. Adaptive tuning is performed by multiplying the
fuzzy force controller output with tuning coefficient kA, which means that the
studied control structure resembles the MRAC control scheme with the fuzzy

© 2006 by Taylor & Francis Group, LLC

shown in Figure 4.70, the system contains the outer force control loop and the
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FIGURE 4.70 Force control of a single degree of freedom manipulator. (From Bogdan, S.
and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With permission.)

is driven by a vector controlled chopper-fed PMSM drive already described in
Example 4.1.

The contact between the manipulator and the environment is described with

m1ẍ1 + bs(ẋ1 − ẋ2) + Ks(x1 − x2) = F (4.37)

m2ẍ2 + bs(ẋ2 − ẋ1) + Ks(x2 − x1) + Ke(x2 − x3) = 0 (4.38)

τe = F · r (4.39)

ẋ1 = v1, ẋ2 = v2 (4.40)

v1 = ω · r (4.41)

where m1 is the mass of manipulator (without end effector) [kg]; m2, the mass
of end effector [kg]; x1, the position of manipulator [m]; x2, the position of end
effector [m]; x3, the position of workpiece in contact with end effector [m]; v1, the
velocity of manipulator [m/sec]; v2, the velocity of end effector [m/sec]; ω, the
angular velocity of motor [rad/sec]; bs, Ks, the damping and stiffness coefficients
of force sensor; Ke, the stiffness coefficient of environment [N/m]; F, the force

© 2006 by Taylor & Francis Group, LLC

parameter adaptation shown in Figure 4.45. The manipulator’s servomechanism

the following differential equations (see Figure 4.71):
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r Te, v

FIGURE 4.71 Model of a contact between the manipulator and the environment. (From
Bogdan, S. and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With
permission.)

applied to manipulator [N]; τe, the torque needed to produce force F [Nm]; and
r, the reduction gear radius [m].

Torque equation has a form:

τe = JTω̇ + Bω + τl (4.42)

On inserting Equations (4.39)–(4.42) into Equations (4.37) and (4.38), we obtain

v̇1 = 1

Je
[τe − Bev1 + rbsv2 − rKs(x1 − x2)] (4.43)

v̇2 = 1

m2
[bs(v1 − v2) + Ks(x1 − x2) − Ke(x2 − x3)] (4.44)

where Je = (JT/r) + rm1, Be = (B/r) + rbs.
Equations (4.43) and (4.44) include the term Ks(x1 − x2), describing the stiff-

ness force component detected by a force sensor, and the term Ke(x2 − x3),
describing the contact force between the end effector and the workpiece. The force
detected by the force sensor is used as a feedback signal and besides the stiffness
component it also contains the damping component bs(v1 − v2). In the studied
control system, variable x3 is acting as a disturbance, which may be caused by a
rough surface or by a complex form of the workpiece.

The synthesis of the velocity control loop was made under the assumption of
unconstrained manipulator motion, that is, under conditions of position control. In
this case, the terms in Equations (4.43) and (4.44) caused by the contact, disappear.
Masses of the manipulator and the end effector, m1 and m2, together with manipu-
lator’s viscous friction coefficient b are substituted with equivalent values referred
to the motor shaft. Therefore, JT should be replaced with JT + r2(m1 + m2), and
B with B + r2b.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.72 Measured angular speed responses with a PI controller. (From Bogdan, S.
and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With permission.)

The open-loop transfer function of the linearized PMSM angular velocity
control system has the form

Gos(s) = Uω(s)

Eω(s)
= Ko(1 + TPIs)

s(1 + Tccs)(1 + TMs)(1 + Tωs)
(4.45)

where

Ko = KPIKccKKMKω/TPI open-loop gain
KM = 1/(B + r2b) PMSM gain
TM = [JT + r2(m1 + m2)]/(B + r2b) PMSM time constant

In the case of m1 = 10 kg, m2 = 1 kg, r = 0.02 m, and b = 5 Nsec/m, we
obtain KM = 418.76, TM = 2.579 sec, and Ko = 26.254.

The parameters of the PI velocity controller were specified in a way to obtain
the desired control quality, KPI = 15 and TPI = 0.03 sec, which yielded an
overshoot of 20% in the measured angular velocity response (Figure 4.72).

The difference between the commanded velocity and the velocity feedback
signal is related to the motor torque in the following way

G1(s) = Te(s)

Eω(s)
= KPI

1 + TPIs

TPIs
K

Kcc

1 + Tccs
(4.46)

Let us assume that x3 = 0 (no changes in the workpiece profile). If we transform
Equations (4.43) and (4.44) by using the Laplace transformation, we obtain the

© 2006 by Taylor & Francis Group, LLC
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ur v G1(s) G2(s) G4(s)
v1

x1

x2

x3

–

–

1

1

s

s

v2

G3(s)

Te

Ks

Fs

F
Ke

ev

uv

FIGURE 4.73 Open-loop force control system without controller. (From Bogdan, S. and
Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With permission.)

transfer function, which describes the relation between the manipulator velocity
and the motor torque:

G2(s) = V1(s)

Te(s)
= s(m2s2 + bss + Ke + Ks)

a4s4 + a3s3 + a2s2 + a1s + a0
(4.47)

where

a0 = rKsKe, a1 = Ks(Be − rbs) + BeKe
a2 = Ks(Je + rm2) + bs(Be − rbs) + JeKe
a3 = Jebs + Bem2, a4 = Jem2

(4.48)

A velocity feedback path transfer function is defined by

G3(s) = Uω(s)

V1(s)
= Kω

r(1 + Tωs)
(4.49)

The relation between the manipulator and the end effector velocities is
described by the following transfer function

G4(s) = V2(s)

V1(s)
= bss + Ks

m2s2 + bss + Ks + Ke
(4.50)

The transfer function of the open-loop force control system shown in
Figure 4.73 without the force controller has a form

GoF(s) = Fs(s)

Urω(s)
= Ks[1 − G4(s)]1

s

G1(s)G2(s)

1 + G1(s)G2(s)G3(s)
(4.51)

On inserting (4.47)–(4.51), we obtain

GoF(s) = KKsKccKPI(1 + TPIs)(1 + Tωs)(m2s2 + Ke)

TPIs(b6s6 + b5s5 + b4s4 + b3s3 + b2s2 + b1s + b0)
(4.52)

© 2006 by Taylor & Francis Group, LLC
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where

b0 = a0 + K2(Ks + Ke)

b1 = a1 + a0(Tcc + Tω) + K2[bs + (Ks + Ke)TPI]
b2 = a2 + a1(Tcc + Tω) + a0TccTω + K2[m2 + bsTPI]
b3 = a3 + a2(Tcc + Tω) + a1TccTω + K2m2TPI

b4 = a4 + a3(Tcc + Tω) + a2TccTω

b5 = a4 + a3(Tcc + Tω)

b6 = a4TccTω

K2 = KPIKωKccK

TPIr

We choose to use a proportional force controller with gain coefficient KF.
For the given PMSM drive parameter values (see and bs =
1, 000 Nsec/m, Ks = 100, 000 N/m, and Ke = 6, 000 N/m (rubber surface), we
obtain: b0 = 1.7814 × 108, b1 = 6.7015 × 106, b2 = 81436.04, b3 = 436.403,
b4 = 1.064, b5 = 7.585 × 10−4, and b6 = 3.6 × 10−8. A root loci plot for the
transfer function (4.52) in the case of KF = 0.025 is shown in Figure 4.74 (zeros
= o and poles = x). The closed-loop system poles are marked with rectangles. The

300

180

60

Im

–60

–180

–300
–750 –596 –442

Re

–288 –134 20

FIGURE 4.74 The force control system root loci plot for the rubber surface. (From
Bogdan, S. and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With
permission.)

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.75 The responses of the force feedback signal (a) and the contact force (b)
(rubber). (From Bogdan, S. and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129,
2002. With permission.)

poles that are far from the origin have not been displayed, since their influence on
the system dynamics is negligible.

The responses of the force feedback signal and the contact force are shown
in Figure 4.75. As can be seen, an overshoot in the contact force response is
approximately 20% with the time of a maximum of 50 msec. Both signals have
the same steady-state value of 10 N.

shows the root loci in the case of contact with an aluminium surface (Ke = 60000).
Newly obtained values of the parameters are: b0 = 3.6 × 108, b1 = 1.2 × 107,
b2 = 99041.8, b3 = 990.3, b4 = 1.064, b5 = 7.585×10−4, and b6 = 3.6×10−8.
In the case of KF = 0.025 (i.e., the force controller gain defined for the rubber
surface), the poles of the closed-loop force control system are placed in the right-
hand side of the s-plane, and the contact force response has become unstable as

Apparently, the cascade force control system with a P force controller and a
PI angular speed controller cannot cope with large variations of the environment
stiffness. The idea is to replace linear controllers with fuzzy controllers in order
to achieve increased robustness of the target force control system. First let us
substitute the PI angular speed controller with the hybrid fuzzy controller described
in Example 4.1. Due to identical angular speed control loops, the hybrid fuzzy
controller used here is also identical.

During contact with the rubber surface, the force response obtained with the

© 2006 by Taylor & Francis Group, LLC

When the environment stiffness varies, system dynamics vary too. Figure 4.76

shown in Figure 4.77.

hybrid fuzzy angular speed controller (see Figure 4.78) is similar to the force
response shown in Figure 4.71. The force response obtained during contact with
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FIGURE 4.76 The force control system root loci plot for the aluminum surface. (From
Bogdan, S. and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With
permission.)
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FIGURE 4.77 The contact force response in the case of contact with the aluminum surface.
(From Bogdan, S. and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With
permission.)

the force response is stable. Compared to the unstable response obtained with the PI
controller (Figure 4.77), introduction of the hybrid fuzzy controller has contributed
to the stabilization of the system.

the aluminum surface is also shown in Figure 4.78. Despite noticeable oscillations,

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.78 The contact force responses with the P force controller and the hybrid fuzzy
angular speed controller: rubber surface (a) and aluminum surface (b). (From Bogdan, S.
and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With permission.)

Further improvement can be achieved by using a fuzzy controller in the force
control loop. Let us use the nonintegral fuzzy controller designed for the contact
with rubber surface. The maximum change of commanded force was estimated to
be 10 N, and therefore the maximum error value was −10.0 ≤ eF ≤ 10.0. The
maximum error change during control interval Td = 0.5 msec was estimated to
be −0.7 ≤ �eF ≤ 0.7. The distribution of membership functions along eF and
�eF universes of discourse and organization of the fuzzy rule table were the same

singleton values in the fuzzy rule table was different (division by 20), in order to
obtain the desired contact force performance. The force controller output value
was defined by following the center of gravity principle (2.22).

force and angular speed controllers are fuzzy. The overshoot and peak time are

In the case of contact with the aluminium surface, the contact force response

stabilized the system response. Sensitivity to environment stiffness variations has
been noticeably reduced, but there is still the problem of the first maximum, which
is too high.

In order to achieve an almost uniform contact force response in the cases of con-
tact with stiffness-varying environment, let us apply a MRAC scheme with fuzzy

The fuzzy control scheme is equivalent to the adaptive fuzzy control scheme from

© 2006 by Taylor & Francis Group, LLC

as of the hybrid fuzzy angular speed controller (Figure 4.7). Only the scaling of

Figure 4.79 shows the force response in the contact with rubber surface when

almost the same as they were in the case of using standard controllers (Figure 4.75).

Figure 4.45.

parameter adaptation that tunes the fuzzy force controller output (Figure 4.80).

also shown in Figure 4.79 indicates that the fuzzy force controller has further
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FIGURE 4.79 The contact force responses with a fuzzy force controller and a hybrid fuzzy
angular speed controller: rubber surface (a) and aluminum surface (b). (From Bogdan, S.
and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With permission.)
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FIGURE 4.80 Fuzzy model reference-based adaptive force control system. (From
Bogdan, S. and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With
permission.)

The second-order reference model parameters are referred to the contact with
rubber surface. The desired reference model performance indices are overshoot
in the response, σm = 10%, and peak time, tm = 0.075 sec. The responses of the

Likewise in Example 4.5, the main design goal was to create the set of rules
of fuzzy adaptation mechanism, which would generate tuning coefficient values
and adapt the fuzzy force controller output, in order to make the contact force

© 2006 by Taylor & Francis Group, LLC

reference model and the measured force are shown together in Figure 4.81.
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FIGURE 4.81 The reference model and measured force responses in the case of contact
with the rubber surface. (From Bogdan, S. and Kovačić, Z., KoREMA Automatika, 43(3–4),
119–129, 2002. With permission.)

transient response almost unaffected by environment stiffness variations. The
fuzzy adaptation algorithm has a nonintegral character, that is, the current tun-
ing coefficient value is directly determined by the magnitudes of inputs, tracking
error eM = uFM − uF and change of error �eM, where uF is the force feedback
signal, and uFM is the reference model output (desired force feedback signal).

A fuzzy adaptation mechanism has seven linguistic subsets defined for both
inputs (universes of discourse EM and DEM): NL, NM, NS, Z, PS, PM, and PL. For
the studied force control system, the maximum error value was estimated to be 2.5,
that is, −2.5 ≤ eM(k) ≤ 2.5. The maximum error change during control interval
Td = 0.5 msec was estimated to be 0.75, that is, −0.75 ≤ �eM(k) ≤ 0.75. The
distributions of membership functions along eM and �eM universes of discourse

tracking error eM within 20% of the imposed change of the force reference input:
|eM(k)| ≤ 0.2�urF.

ber (Ke = 6000) and aluminum (Ke

cases.
Tuning coefficient kA is oscillatory in the initial part of the response as the

fuzzy-logic tuning algorithm attempts to compensate for the nonmonotonous char-

The tracking error is kept within ±20% of the imposed change of reference

© 2006 by Taylor & Francis Group, LLC

are the same as they were in Example 4.4 (see Figure 4.47). The size of input fuzzy

Figure 4.82 shows the contact force responses in the case of contact with rub-
= 60000) surfaces. Figure 4.83 shows the

tracking error responses, Figure 4.84 shows the tuning coefficient responses, and
Figure 4.85 shows the adapted force controller output responses for both studied

acter of the force feedback sensor response (see Figure 4.75 and Figure 4.81).

sets and output singleton values shown in Table 4.4 were defined in order to keep
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TABLE 4.4
The Fuzzy Rule Table of the Adaptation Mechanism

NLEM NMEM NSEM ZEM PSEM PMEM PLEM

NLDEM −1.0 −1.0 −1.0 −0.5 0.75 0.9 1.0
NMDE −1.0 −0.5 −0.25 0 0.9 1.0 1.1
NSDE −1.0 −0.25 −0.25 0.25 1.0 1.1 1.15
ZDE −0.5 0 0.5 1.0 1.1 1.15 1.3
PSDE 0.5 0.75 1.0 1.1 1.15 1.3 2.0
PMDE 0.9 1.0 1.1 1.15 1.3 1.5 2.0
PLDE 1.0 1.1 1.15 1.3 2.0 2.0 2.0

FIGURE 4.82 The contact force responses with the adaptive force controller in the case
of contact with rubber (a) and aluminium surface (b). (From Bogdan, S. and Kovačić, Z.,
KoREMA Automatika, 43(3–4), 119–129, 2002. With permission.)

force input (�urF = 10 N), thus proving a good adaptation in the case of vary-
ing environment stiffness. Since the reference model is a second-order system
and the linearized model of the studied force control system is a seventh-order
system, the simulation results have shown that fuzzy logic has achieved what
standard MRAC methods could not be expected to achieve. The experiments have
included contact with the rubber and aluminum surfaces, thus showing the ability
of force-controlled mechanism to successfully manipulate workpieces made of
very different materials.

Let us now suppose that the manipulator follows the edge of a workpiece with

to the right with the velocity of 10 cm/sec and simultaneously acts on the workpiece
with a constant contact force of 10 N. In the studied force control system, such

© 2006 by Taylor & Francis Group, LLC

a complex profile, as shown in Figure 4.86. The tool travels along the ordinate axis
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FIGURE 4.83 The tracking error responses with the adaptive force controller in the case
of contact with rubber (a) and aluminum surface (b). (From Bogdan, S. and Kovačić, Z.,
KoREMA Automatika, 43(3–4), 119–129, 2002. With permission.)
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FIGURE 4.84 The tuning coefficient responses in the case of contact with rubber (a) and
aluminum surface (b). (From Bogdan, S. and Kovačić, Z., KoREMA Automatika, 43(3–4),
119–129, 2002. With permission.)

a task may be described as a test of ability of the systems to act in the presence of
disturbance x3

and the actual contact force in case of using standard (a) and adaptive fuzzy (b)

© 2006 by Taylor & Francis Group, LLC

(Figure 4.76).
Figure 4.87 shows the difference between the reference force value (10 N)
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FIGURE 4.85 The adapted force controller output responses in the case of contact with (a)
rubber and aluminum surface (b). (From Bogdan, S. and Kovačić, Z., KoREMA Automatika,
43(3–4), 119–129, 2002. With permission.)

FIGURE 4.86 The profile of manipulated workpiece. (From Bogdan, S. and Kovačić, Z.,
KoREMA Automatika, 43(3–4), 119–129, 2002. With permission.)

controllers for contact with the rubber surface. In both cases the difference is kept
below 5% of the given force value. But if the manipulator is in contact with the

performance, because the system with standard linear controllers has become

© 2006 by Taylor & Francis Group, LLC

aluminum surface (Figure 4.88), the adaptive fuzzy control scheme shows superior
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FIGURE 4.87 The force error response in the case of contact with the rubber surface: profile
following with linear controllers (a) and adaptive fuzzy controllers (b). (From Bogdan, S.
and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With permission.)

FIGURE 4.88 The force error response in the case of contact with the aluminum surface:
profile following with linear controllers (a) and adaptive fuzzy controllers (b). (From
Bogdan, S. and Kovačić, Z., KoREMA Automatika, 43(3–4), 119–129, 2002. With
permission.)

unstable, while the adaptive fuzzy force controller has stabilized the system and
kept the difference within 30% of the given force value.

According to the simulation results, a model reference-based fuzzy adaptation
mechanism is able to keep the error between the reference model and system output

© 2006 by Taylor & Francis Group, LLC
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responses within desired limits. The simulation results further indicate a stable
performance of the force control system for a wide range of environment stiffness
variations. Even though the proposed fuzzy control scheme stabilizes the system
in the case of environment parameter variations, a heuristic nature of its design
makes a rigorous stability analysis very difficult. The stability mainly depends
on designer’s experience with determination of fuzzy controller parameters. The
adaptive fuzzy force control method has also been effective in the case of contact
with a rough surface or a complex form workpiece.

4.2.5 Fuzzy MRAC Angular Speed Control

In this example, we describe a design and a practical implementation of a fuzzy
MRAC scheme in the angular speed control loop of a thyristor converter-fed direct
current motor (DCM) drive [80]. The adaptive fuzzy controller was implemen-
ted in the 32-bit VME-based microcomputer hardware (Motorola 68030). Internal
calculations were performed with the floating point precision, while inputs and

anism is used for gain adjustment of the fuzzy angular speed controller output (see

whose structure is described in detail in Example 4.1.
The rated values of the target system parameters were as follows: KTC = 45 V/V

(converter gain), TTC = 5 msec (converter time constant), Ka = 0.0612 A/V
(armature gain), Ta = 18.4 msec (armature time constant), K = 1.211 Vsec (torque
coefficient), JT = 0.0175 kg m2 (moment of inertia), Kl = 0.01957 Nmsec (load
coefficient), Kω = 0.065 Vsec (filter gain), and Tω = 25 msec (filter time con-
stant). For a single phase fully controlled thyristor bridge, the fuzzy MRAC control
algorithm has been synchronized with the fundamental frequency of 100 Hz (i.e.,
a control interval value is Td = 10 msec).

This is a nonlinear control scheme because it contains nonlinear hybrid fuzzy
control and fuzzy adaptation algorithms. The DCM drive itself is a nonlinear high-
order control object whose dynamic characteristics can be linearized in a selected

FIGURE 4.89 The setup of a thyristor converter-fed DCM drive. (From
Kovačić, Z., Bogdan, S., and Štajdohar, M., 11th IEEE Intl. Symp. Intell. Contr.,
49–54, 1996. With permission.)

© 2006 by Taylor & Francis Group, LLC

Figure 4.45). The angular speed controller being used is a hybrid fuzzy controller,

outputs were handled as 12-bit integers (Figure 4.89). The fuzzy adaptation mech-
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Tacho

RS 232
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FIGURE 4.90 The transient response of the implemented second-order reference model.
(From Kovačić, Z., Bogdan, S., and Štajdohar, M., 11th IEEE Intl. Symp. Intell. Contr.,
49–54, 1996. With permission.)

operating point. Therefore, for a particular operating point, a reference model has
been used to describe a desired dynamic behavior. In the system being studied, the
desired behavior is represented by means of second-order reference model transfer
function (4.20).

The desired reference model performance indices are the response overshoot,
σm = 5%, and the peak time, tm = 0.2 sec. After discretization (Td = 10 msec),
the reference model is described with a recursive equation

uωM(k) = 1.7076uωM(k − 1) − 0.7426uωM(k − 2) + 0.0349ur(k − 2) (4.53)

The transient response of reference model (4.53) implemented in the micro-
controller software is shown in Figure 4.90.

The heuristic synthesis of the fuzzy controller has the goal to find control-
ler parameter values, which would enforce the closed-loop system to follow the
dynamic behavior of reference model (4.53) as close as possible. Hybrid fuzzy
controller inputs, system error e(k) and change of error �e(k), form a system
error phase plane. The universes of discourse for both inputs and controller output
uFC(k) are directly related to the given resolution of 12-bit bipolar A/D and D/A

The error phase plane has been split into several subareas — pages (see
provide fine and coarse fuzzy control in a very

practical way [81]. More details about the fuzzy controller implementation can be
found in the study discussed in Section 7.2.1.

© 2006 by Taylor & Francis Group, LLC

converters (Figure 4.89).

Figure 4.91), all in order to

�T 0.2000 s Trig   AC VERT

50 mV 50 mV 0.1 sec SAVE
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FIGURE 4.91 Division of the first quadrant of the system phase plane into subareas —
pages. (From Kovačić, Z., Bogdan, S., and Štajdohar, M., 11th IEEE Intl. Symp. Intell.
Contr., 49–54, 1996. With permission.)

FIGURE 4.92 Distribution of membership functions for a fuzzy controller.

Fine control is primarily required in the surroundings of the phase plane origin
(i.e., in the first page). Therefore, the universes of discourse of the first page were
divided into seven linguistic subsets, and the triangular forms of their membership
functions were adopted (Figure 4.92).

must be noted that all singleton values in the table are expressed as floating point
numbers of bit units related to the ±11-bit resolution of a 12-bit bipolar D/A
converter (Figure 4.92).

The fuzzy controller output value is computed according to center of gravity
principle (2.22). In the discussed control concept, the appearance of larger fuzzy

© 2006 by Taylor & Francis Group, LLC

The fuzzy rule table associated with the first page is shown in Table 4.5. It

Page

1st

0

de

127 e

2nd

3rd

NL NM NS Z PS PM PL

NL NM NS Z PS PM PL

e

–128

m(e)

m(�e)

0

�e

0–86 43 43 86 128

5 9 16–9 –5–16
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TABLE 4.5
The Fuzzy Rule Table for Fine Control (First Page)

NLE NME NSE ZE PSE PME PLE

NLDE −25.2 −21 16.8 −4.9 −11.2 −8.4 −5.6
NMDE −16.8 −14 −11.2 −2.8 −5.6 −4.2 −2.8
NSDE −8.4 −5.6 −4.2 −2.1 −1.75 0 0.35

ZDE −1.4 −1.05 −0.7 0 0.7 1.05 1.4
PSDE −0.35 0 1.75 2.1 4.2 5.6 8.4

PMDE 2.8 4.2 5.6 2.8 11.2 14.0 16.8
PLDE 5.8 8.4 11.2 4.9 16.8 21 25.2

controller input values that are not lying in the first page is assumed as coarse
fuzzy control. The output of a coarse fuzzy controller is calculated in the following
way. First, larger input values are scaled (divided by two, four, etc.) in order to
fit into the most inner, that is, the first page. Then, calculation of a corresponding
fine control output value is performed. Finally, the coarse control output value
is obtained after reverse scaling (multiplication by two, four, etc.) of the corre-
sponding fine control output value. It should be noted that the so-designed fuzzy
controller has better disposition to control linear and nonlinear systems, because
the impact on the system response caused by magnitude variations of the reference
input has been significantly reduced.

Besides its ability to switch smoothly between coarse and fine control, the fuzzy
controller is also capable of switching its mode of operation between a PD-type
mode and a PI-type mode, depending on the magnitudes of fuzzy controller inputs:

e(k) ∈ ZE or �e(k) ∈ ZDE → PI-type mode
e(k) /∈ ZE and �e(k) /∈ ZDE → PD-type mode

(4.54)

APD-type fuzzy controller is activated during sufficiently large reference input
or system output changes, while a PI-type fuzzy controller, sharing the same fuzzy
rule table with the former one (but with an order of magnitude of lower output
gain coefficient), supports steady-state accuracy and cancels disturbance effects.

ler output with tuning coefficient kA. A nonintegral fuzzy adaptation mechanism
is responding to tracking error eM(k) and its change �eM(k). In the presented
application, it has seven linguistic subsets defined for both inputs in a usual way:
NL, NM, NS, Z, PS, PM, and PL. Distributions of membership functions for the
subsets of eM and deM

The values of singletons in the fuzzy rule table were defined by trial and error in
order to keep the tracking error within the desired design goal, |eM| ≤ 0.1�ur .

© 2006 by Taylor & Francis Group, LLC

Referring to Figure 4.45, adaptation is achieved by multiplying the control-

are shown in Figure 4.93.
The fuzzy rule table of the fuzzy adaptation mechanism is shown in Table 4.6.
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FIGURE 4.93 Distribution of membership functions for a fuzzy adaptation algorithm.

TABLE 4.6
The Fuzzy Rule Table of the Adaptation Mechanism

NLEM NMEM NSEM ZEM PSEM PMEM PLEM

NLDEM 1.3 1.3 1.2 1.1 1.0 0.95 1.0
NMDEM 1.3 1.2 1.1 1.0 0.95 1.0 1.01
NSDEM 1.2 1.1 1.0 0.95 1.0 1.01 1.05
ZDEM 1.1 1.0 0.95 1.0 1.01 1.05 1.2
PSDEM 1.0 0.95 1.0 1.01 1.05 1.2 1.3
PMDEM 0.95 1.0 1.01 1.05 1.2 1.3 1.4
PLDEM 1.0 1.01 1.05 1.2 1.3 1.4 1.5

Three controllers — a standard PI controller (KPI = 0.5, TPI = 0.2 sec),
nonadaptive fuzzy controller, and adaptive fuzzy controller, were tested experi-

compares the measured angular speed and controller output transient responses of
the PI-controlled, fuzzy nonadaptively, and adaptively controlled system, in the
case of rated parameter values. The parameters that vary most in the system are
thyristor converter gain, KTC, and moment of inertia, JT.

The controllers being tested provide almost uniform dynamic behavior of the
system. Although the measured angular speed signal contains noise (caused by
armature current pulsations), adaptation mechanism remains passive during the
steady-state condition, thanks to the zero action zone (kA = 1) in the fuzzy rule
table (please refer to Table 4.6).

© 2006 by Taylor & Francis Group, LLC

mentally in the laboratory setup of a DC motor drive (Figure 4.89). Figure 4.94

NL NM NS Z PS PM PL

NL NM NS Z PS PM PL

eM

m(eM)

m(�eM)

�eM

0 18 32 45–32 –18–45

0 8 20 26–20 –8–26
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FIGURE 4.94 The measured angular speed and controller output responses for the rated
system parameters (a) PI controller, (b) fuzzy controller, and (c) adaptive fuzzy controller.
(From Kovačić, Z., Bogdan, S., and Štajdohar, M., 11th IEEE Intl. Symp. Intell. Contr.,
49–54, 1996. With permission.)
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transient responses of the PI-controlled, nonadaptively, and adaptively fuzzy con-
trolled system, in the case of a two times decreased value of the open-loop gain
coefficient. The PI and nonadaptively fuzzy controlled systems are affected by
parameter variations, because peak time tm has been significantly increased (from
200 to 560 msec). In the same time, the adaptive fuzzy controller has maintained
the desired dynamic behavior, showing a superior performance with respect to
other two controllers.

transient responses of the PI-controlled, nonadaptively, and adaptively fuzzy con-
trolled system, in the case of the two times increased value of the open-loop gain
coefficient (Ks = 2). PI and nonadaptive fuzzy controllers are affected again by
parameter variations, allowing a too high overshoot (PI — 80%, nonadaptive
fuzzy — 40%) and a noticeable decrease of the peak time (from 200 to 100 msec).
The adaptive fuzzy controller provided the best of the three responses, keeping the
response overshoot at 25% and the peak time at 150 msec.

speed and controller output transient responses of the PI-controlled, fuzzy non-
adaptively, and adaptively controlled system, in the case of load torque change �τl.
The results obtained indicate that the nonadaptive fuzzy controller has provided the
worst, while the adaptive fuzzy controller has provided the best angular speed tran-
sient response. Apparently, parameter values of the nonadaptive fuzzy controller
are the result of compromise, which had to be done in favor of acceptable dynamic
behavior when the reference input was changed. On the other hand, these param-
eters are not optimally adjusted to compensate undesired disturbance effects. The
usage of adaptive fuzzy controller solved this problem to a large extent, because
the drop of speed caused by load variations was noticeably reduced, but the
settling time was slightly extended (PI — 0.9 sec, adaptive fuzzy — 1.1 sec).
The problem of slow descent to the steady state has been noticed earlier during
simulation experiments in Example 4.5. This occurred because of the dominant
influence of adaptation mechanism at the beginning of transient response, which
later suppressed the efficiency of the integral mode of operation of the fuzzy
controller.

The experimental results demonstrated that desired dynamic characteristics
of the angular speed response could be successfully maintained even if system
parameter values increased or decreased two times with respect to the rated values.
The accomplished speed of adaptation was fast enough to be effective within
each system output transition. It should be noted that this was achieved with
very simple structures of the fuzzy controller and adaptation algorithms, which
had a linear distribution of triangular fuzzy sets for both of their inputs. The
simplicity of designed structures was preferred because of easier microcomputer
implementation of the adaptive controller. Readers interested in microcomputer
implementation of fuzzy control algorithms can find further details and some code
writing hints in the study discussed in Section 7.2.1.

© 2006 by Taylor & Francis Group, LLC

Figure 4.95 compares the measured angular speed and controller output

Figure 4.96 compares the measured angular speed and controller output

For the rated system parameters, Figure 4.97 compares the measured angular
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FIGURE 4.95 The measured angular speed and controller output responses for the two times
decreased open-loop gain (Ks = 0.5) (a) PI controller, (b) fuzzy controller, and (c) adaptive
fuzzy controller. (From Kovačić, Z., Bogdan, S., and Štajdohar, M., 11th IEEE Intl. Symp.
Intell. Contr., 49–54, 1996. With permission.)
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FIGURE 4.96 The measured angular speed and controller output responses for the two times
increased open-loop gain (Ks = 2) (a) PI controller, (b) fuzzy controller, and (c) adaptive
fuzzy controller. (From Kovačić, Z., Bogdan, S., and Štajdohar, M., 11th IEEE Intl. Symp.
Intell. Contr., 49–54, 1996. With permission.)
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FIGURE 4.97 The measured angular speed and controller output responses for the case
of stepwise load disturbance (a) PI controller, (b) fuzzy controller, and (c) adaptive fuzzy
controller. (From Kovačić, Z., Bogdan, S., and Štajdohar, M., 11th IEEE Intl. Symp. Intell.
Contr., 49–54, 1996. With permission.)
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5 Self-Organizing
Fuzzy Controllers

In order to ease the burden of heuristic adjustment of fuzzy controller parameters,
there are few alternatives to choose from. The first one is to use specialized tools
for graphically oriented heuristic development of fuzzy control systems [1,2].
They give very good results when basic fuzzy logic algorithms are considered,
but problems may arise when more complex or specific control structures are to
be developed. Another alternative is to synthesize fuzzy logic controllers as self-
organizing units capable of using given control quality indicators and acquired
process data as a basis for iterative self-creation of the algorithm core. An auto-
mated fuzzy controller design in the form of fuzzy rule-base self-organization, as
introduced in Mamdani’s early works [3], has been further elaborated by many
authors denoting their self-organizing schemes also as self-tuning, self-learning,
adaptive, and expert algorithms or simply as fuzzy logic algorithms with a varying
rule base [4–10]. In general, the fuzzy controller can learn either off-line or on-
line from identified control system parameters, a given reference model or from
selected performance indices [11,12]. The off-line self-organization ends with
a static nonlinear mapping function prepared for on-line operation. The on-line
self-organization results in dynamic changes of a nonlinear mapping function as
directed by the control system performance.

A self-organization of fuzzy controllers can also be accomplished by using
neural networks, which have learning capability. Such neuro-fuzzy solutions often
use cost functions which need to be optimized. In such a case, stagnation in local
optima arises as a typical problem for gradient-based methods [13–16].

In fuzzy model reference learning control (FMRLC) schemes, model tracking
error eM is fed into a learning mechanism, which establishes an organized iter-

controller’s parameters, the self-organization process enforces the fuzzy control
system to follow the given reference model dynamics [17–19]. To make a distinc-
tion between iterative learning and iterative adaptation control schemes it must
be emphasized that the proper work of fuzzy learning schemes does not depend
on a mathematical model of a control process, though any knowledge about the
control process may be helpful, especially with the determination of the reference
model function or with the estimation of normalizing scaling factors of the fuzzy
controller (related to the estimated dimensions of the universes of discourse).

A fuzzy learning concept based on the use of a fuzzy inverse model and a
knowledge base modifier has been successfully developed and tested by simu-
lation for cargo ship steering [20,21], showing a superior performance of the
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ative way of changing the core of the fuzzy controller (Figure 5.1). By changing
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FIGURE 5.1 A structure of a model reference self-learning fuzzy control system.

FMRLC scheme compared to several conventional MRAC schemes. The fuzzy
inverse model performs the function of mapping the model tracking error and the
changes in the control effort. The knowledge base modifier enforces the changes of
the knowledge base, which should provide a required control effort. The structure
of the fuzzy inverse model resembles the structure of a standard PD-type fuzzy
controller whose parameters are synthesized (optimized) in a heuristic way relying
on the rough knowledge about the plant inverse model. Recalling the discussion

adaptation mechanisms are actually the synonyms for the fuzzy inverse model of
the plant. In Reference 22, a comparative study of several control strategies, which
enhance the performance of the FMRLC has been worked out, showing that the
so-called “dynamically focused learning” may contribute to more effective solv-
ing of demanding control problems such as the magnetic ball suspension system
control.

The self-learning fuzzy controller, which utilizes a sensitivity model and a
second-order reference model, has been effectively introduced for control of non-
linear control systems [23]. In order to determine a sensitivity function, the function
describing the dependence of two variables (or variables and parameters) must
be differentiable. As shown in Reference 23, there is a class of fuzzy controllers
widely used in practical applications, usually called the Takagi–Sugeno zero-order
(or singleton) fuzzy controllers, which can be organized to assume an analytical
and differentiable form.

The self-organization of a fuzzy controller should be a stable and fast conver-
gent process. Most of the stability assessment methods developed for nonlinear
control systems described by nonlinear differential or difference equations have
not been quite appropriate for stability assessment of rule-based nonlinear systems.
Since the structure of a model reference-based self-organizing fuzzy control-
ler resembles the structure of standard model reference adaptive controllers,
there have been attempts to apply well-known stability assessment approaches.

© 2006 by Taylor & Francis Group, LLC
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In Reference 24, the FLC form has been obtained by applying the Lyapunov
function-based stability criteria, but learning required data from the fuzzy iden-
tification algorithm. Learning based on the on-line identification is too slow for
control of systems with high dynamics (e.g., servo systems). In this chapter we
will describe three model reference-based self-learning concepts, one based on
the direct Lyapunov method, another with a learning mechanism that utilizes a
second-order reference model and a polynomial of the model tracking error, and
the third one where learning depends on the second-order reference model and a
sensitivity model related to the fuzzy controller parameters.

5.1 SELF-ORGANIZING FUZZY CONTROL BASED ON THE

DIRECT LYAPUNOV METHOD

Let us consider a SISO process described with the following equation:

y(k) = �Tz(k − 1)+ b1u(k − 1) (5.1)

where y(k) is the process output; �, the process parameter vector; b1, the process
input gain (b1 > 0); z(k), the vector containing measurement signals or signals
that can be derived from measurement signals; and u(k) is the control signal.

Since elements of z(k) could be a nonlinear combination of signals, a process
described with (5.1) may be nonlinear but it should be linear in respect to the
control signal and process parameters.

We define a controller as:

u(k) = θT(k)w(k) (5.2)

where θ(k) is the controller parameter vector and w(k), the vector containing
measurement signals or signals that can be derived from measurement signals.

While the controller structure is predefined and time invariant, controller
parameters are changing with time. Vector w(k) could contain nonlinear com-
bination of process signals, which means that in general, a controller described
with (5.2), may be nonlinear.

By including (5.2) into (5.1) one obtains a closed-loop system equation:

y(k) = �Tz(k − 1)+ b1θ
T(k − 1)w(k − 1) (5.3)

As vectors z(k) and w(k) could have common parameters let us split them in
the following way:

z(k) =
[

z1(k)
z2(k)

]
, w(k) =

[
w1(k)
w2(k)

]
, z2(k) = w2(k) (5.4)

© 2006 by Taylor & Francis Group, LLC
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If we also split process parameter vector � and controller parameter vector
θ(k) as:

�(k) =
[
�1(k)
�2(k)

]
, θ(k) =

[
θ1(k)
θ2(k)

]
(5.5)

then, having in mind that z2(k) = w2(k), we may describe the closed-loop
system as:

y(k) = [�T
1 [b1θ1(k − 1)]T [�2 + b1θ2(k − 1)]T]


 z1(k − 1)

w1(k − 1)
w2(k − 1)


 (5.6)

The goal of an adaptive controller, based on a reference model, is to enforce
that tracking error eM(k)→ 0 as k→∞.

Instead of using a standard reference model, we are using a projection of
vectors z(k) and w(k) to determine yM(k):

yM(k) =
[
�T

M1 �T
M2 �T

M3

] z1(k − 1)
w1(k − 1)
w2(k − 1)


 (5.7)

where �M is the vector of reference model parameters.
For the tracking error asymptotically approaching zero the following relations

have to be satisfied:

�1 = �M1

b1θ1(k − 1)→ b1θ10 = �M2 as k→∞
�2 + b1θ2(k − 1)→ �2 + b1θ20 = �M3 as k→∞

(5.8)

where

θ0 =
[
θ10
θ20

]

represents a controller parameter vector, which enforces the tracking error eM(k)
to vanish.

Having a reference model defined with (5.7) and by using (5.6)–(5.8) to
calculate eM(k), it follows:

eM(k) = b1[θ0 − θ(k − 1)]Tw(k − 1) (5.9)

One can see from (5.9) that tracking error eM(k)will disappear when controller
parameter vector θ(k)will assume value θ0, so the process will follow the reference
model.

© 2006 by Taylor & Francis Group, LLC
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A problem related to determination of the controller defined with relation (5.2)
lies in the fact that the process parameter vector � is generally unknown; hence
vector θ0 cannot be calculated. That is why an adaptation algorithm should be used
for controller parameter vector θ(k) to approach to its final value θ0.

Now let us consider a learning (tuning) algorithm design. The main objective
of the controller design is to guarantee closed-loop stability. For this purpose, let
us define a Lyapunov function candidate as:

V(k) = [θ0 − θ(k)]T[θ0 − θ(k)] (5.10)

In order to set conditions for eM(k) to be bounded, we require that V(k) must
be bounded:

�V(k) = V(k)− V(k − 1) ≤ 0 (5.11)

From (5.10) and (5.11) it follows that:

�V(k) = −2[θ0 − θ(k − 1)]T�θ(k)+�θ(k)T�θ(k) (5.12)

If we choose the parameters tuning law to be

�θ(k) = γ eM(k)

α + w(k − 1)Tw(k − 1)
w(k − 1) (5.13)

then, with relation (5.9) in mind, Equation (5.12) can be written as:

�V(k) = γ e2
M(k)

1

α + w(k − 1)Tw(k − 1)

[
γ

w(k − 1)Tw(k − 1)

α + w(k − 1)Tw(k − 1)
− 2

b1

]
(5.14)

Values for γ and α, which fulfil condition (5.11), can be determined by using
Equation (5.14):

0 < γ <
2

b1
, α ≥ 0 (5.15)

Even though algorithm (5.13), with tuning parameters γ and α defined by
(5.15), guarantees the stability of the closed-loop system, there could still be
a problem related to signals w(k) and eM(k). These signals are obtained by
measurement, which means that they may contain a noise of unknown level and
spectrum. For a practical implementation of the algorithm, filtering of w(k) and

© 2006 by Taylor & Francis Group, LLC
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eM(k) is necessary:

eMf (k) = −
nf∑

i=1

afi eMf (k − i)+ eM(k) (5.16)

wf(k) = −
nf∑

i=1

afi wf(k − i)+ w(k − 1) (5.17)

After multiplying (5.17) from the left-hand side with b1[θ0−θ(k−1)]T, we get:

ε(k) = −
nf∑

i=1

afiε(k − i)+ eM(k)+ η(k) (5.18)

where

ε(k) = b1[θ0 − θ(k − 1)]Twf(k) (5.19)

η(k) = b1

nf∑
i=1

afi

i∑
j=1

�θ(k − j)Twf(k − i) (5.20)

It can be seen that expressions (5.19) and (5.9) are similar in form. If we replace
eM(k) and w(k − 1) in (5.13) with ε(k) and wf(k), the learning law will assume
the form

�θ(k) = γ ε(k)

α + wf(k)Twf(k)
wf(k) (5.21)

while conditions for determination of tuning parameters γ and α will remain
the same.

The main problem arises when calculating ε(k). From (5.20) we may find
that for small changes of controller parameters (small value of �θ), η(k) could
be neglected, that is, η(k) ≈ 0, which means that ε(k) could be substituted with
eMf (k). This leads to the final form of the controller parameters learning (tuning)
algorithm:

�θ(k) = γ eMf (k)

α + wf(k)Twf(k)
wf(k) (5.22)

Example 5.1 Direct Lyapunov method-based self-organizing fuzzy control of a
positioning servo system.

Let us show the effectiveness of a direct Lyapunov method-based fuzzy con-
troller design on the problem of controlling a nonlinear positioning servo system
affected by friction and nonlinear gravity-dependent load. These nonlinearities
are generally considered as difficult to deal with, especially in control of robotic
mechanisms [25–31].

© 2006 by Taylor & Francis Group, LLC
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FIGURE 5.2 A DCM positioning servo system.

The target system shown in Figure 5.2 contains a chopper-controlled DC motor,
a feedback potentiometer, a nonlinear load, and a personal computer with an
A/D–D/A card.

The positioning DCM servo drive can be described with the following set of
equations:

Ua(s) = KcU(s)

E(s) = K
(s)

Ia(s) = Ka[Ua(s)− E(s)]
Tm(s) = KIa(s)

T(s) = Tm(s)− Tl − Tfr

T(s) = Js
(s)

Yf(s) = Ky

s

(s)

Tl = f1(yf)

Tfr = f2(ω)

(5.23)

© 2006 by Taylor & Francis Group, LLC
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FIGURE 5.3 The nonlinear load.

where U(s) is the controller output [V]; Ua(s), the armature voltage [V]; Ia(s), the
armature current [A]; Tm, the motor torque [Nm]; Tl, the load torque [Nm]; Tfr, the
friction torque [Nm]; T , the shaft torque [Nm], ω; 
 the angular speed [rad/sec];
E, the counter-electromotive force [V]; Yf , the system output (the bar position) [◦];
Kc, the chopper gain [V/V]; Ka, the armature constant [A/V]; K , the motor
constant [Nm/A]; J , the moment of inertia [kg m2]; and Ky = 180/π .

A nonlinear load (Figure 5.3) is described with:

Tl = f1(yf) = mgl

N
cos

(
yf
π

180

)
= Tl0 cos

(
yf
π

180

)
(5.24)

where m is the bar and burden mass [kg]; g, the gravitational constant [m/sec2];
l, the distance between the shaft and the center of the bar and burden gravity; N ,
the gear ratio; and Tl0, the maximal load.

Even though the nonlinear load function f1 is deterministic, the parameters m
and l usually change in time, especially in the case of robot control systems. That
is why we consider f1 as an unknown function.

Same as for the nonlinear load, the friction torque characteristic Tfr = f2(ω),

In order to obtain the description of the system in the form (5.1), the process

© 2006 by Taylor & Francis Group, LLC

which is shown in Figure 5.4, is unknown.

is divided on the linear part and the nonlinear part, as shown in Figure 5.5.

r1

z1r2

z2

T

G = mg l

yf
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FIGURE 5.5 The block diagram of the modified process.

The process can be described with the following nonlinear differential equation:

τ1
d2yf(t)

dt2
+ dyf(t)

dt
= K1

{
u(t)− 1

KcKaK

[
f1(yf(t))+ f2

(
1

Ky

dyf(t)

dt

)]}
(5.25)

where K1 = KcKy/K and τ1 = J/(KaK2).
In the case that we know f1(·) and f2(·), by choosing a control law

u(t) = Kpe(t)− Kd
dyf(t)

dt
+ 1

KcKaK
f1[ yf(t)] + 1

KcKaK
f2

[
1

Ky

dyf(t)

dt

]

(5.26)
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FIGURE 5.4 The friction torque characteristic.
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FIGURE 5.6 The structure of the nonlinear controller and process.

where e(t) = ur(t)− yf(t), we obtain the closed-loop system

τ1

K1Kp

d2yf(t)

dt2
+ 1+ K1Kd

K1Kp

dyf(t)

dt
+ yf(t) = ur(t) (5.27)

which allows determination of dynamics by tuning derivative gain Kd and propor-
tional gain Kp. The structure of the nonlinear controller and the process is shown
in Figure 5.6.

Since the controller is realized in the discrete technique, instead of continuous
signal dyf/dt we use (Td is the sampling interval):

dyf(t)

dt

∣∣∣∣
t=kTd

= yf(k)− yf(k − 1)

Td
= �yf(k)

Td
(5.28)

Now we may write a discrete form of the process (5.25)

yf(k) = −a1yf(k − 1)− a2yf(k − 2)− b1
1

KcKaK
f1[yf(k − 1)]

− b1
1

KcKaK
f2

[
1

Ky

�yf(k − 1)

Td

]
+ b1u(k − 1) (5.29)
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where

a1 = −(1+ eTd/τ1), a2 = eTd/τ1 , b1 = K1Td(1+ eTd/τ1) (5.30)

Same as in the continuous case, by defining a discrete form of the controller
(5.26) we may obtain desired closed-loop system behavior by choosing Kp and
Kd. The problem is in generally unknown f1(·) and f2(·), which could be solved
by controller adaptation.

Let us introduce a control law of the following form:

u(k) = Kp(k)e(k)+ gy{k | yf(k)} + g�y{k | �yf(k)} (5.31)

where

gy{k | yf(k)} → 1

KcKaK
f1[yf(k)] as k→∞ (5.32)

g�y{k | �yf(k)} → 1

KcKaK
f2

[
1

Ky

�yf(k)

Td

]
− Kd

�yf(k)

Td
as k→∞ (5.33)

From (5.33) it may be seen that the derivative gain Kd is included in the system
as a part of the function g�y

Having in mind that fuzzy algorithms can be used as universal approxi-
mators [32,33], let us generate functions gy(·) and g�y(·) by using fuzzy
systems:

gy{yf(k)} =
ny∑

i=1

Ayi(k)ϕyi(k), g�y{�yf(k)} =
n�y∑
i=1

A�yi(k)ϕ�yi(k)

(5.34)

where Ayi, A�yi are the output singletons triggered by ith fuzzy rules; ny, n�y, the
numbers of rules; and ϕyi, ϕ�yi, the fuzzy basis functions of ith fuzzy rules.

The distribution of fuzzy membership functions for yf and �yf are shown in

the distribution for yf is linear, the distribution for �yf is nonlinear, that is, finer
for smaller values of the variable.

The controller (5.31) can be written in a matrix form (5.2):

u(k) = θT(k)w(k) =
[
Kp(k) AT

y (k) AT
�y(k)

] e(k)
ϕy(k)
ϕ�y(k)


 (5.35)

From (5.35) it can be seen that the tuning algorithm has to tune proportional
gain Kp and output singletons of fuzzy algorithms that emulate nonlinear functions
gy(·) and g�y(·).

© 2006 by Taylor & Francis Group, LLC

(·) (see Figure 5.6).

Figure 5.7. Membership functions for both variables have a triangular form. While
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FIGURE 5.7 Distribution of fuzzy membership functions. (From Kovačić, Z., Cupec, R.,
and Bogdan, S., IFAC System Structure and Control 2001, Vol. 2. With permission from
Elsevier.)

In order to smooth the signals involved in the tuning algorithm, a discrete
second-order Butterworth filter is used:

Gf(z) = 1

1+ af1z−1 + af2z−2
(5.36)

where af1 = −2e−ζfωf Td cos
(
ωf Td

√
1− ζ 2

f

)
, af2 = e−2ζfωf Td , with ζf as a desired

filter damping ratio and ωf as a desired filter resonance frequency.
From (5.16), (5.17), and (5.36) we obtain

eMf (k) = −af1eMf (k − 1)− af2eMf (k − 2)+ eM(k)

ef(k) = −af1ef(k − 1)− af2ef(k − 2)+ e(k)

ϕyf (k) = −af1ϕyf (k − 1)− af2ϕyf (k − 2)+ ϕy(k)

ϕ�yf (k) = −af1ϕ�yf (k − 1)− af2ϕ�yf (k − 2)+ ϕ�y(k)

(5.37)

Upon including these variables in vector wf and for α = 0, we get the final
form of tuning (learning) algorithm (5.22):

Kp(k) = Kp(k − 1)+ γ eMf (k)

wf(k)Twf(k)
ef(k)

Ay(k) = Ay(k − 1)+ γ eMf (k)

wf(k)Twf(k)
ϕyf (k)

A�y(k) = A�y(k − 1)+ γ eMf (k)

wf(k)Twf(k)
ϕ�yf (k)

(5.38)

© 2006 by Taylor & Francis Group, LLC
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where

wf(k) =

 ef(k)
ϕyf (k)
ϕ�yf (k)


 (5.39)

The desired closed-loop system behavior is described with a linear second-
order reference model, ζM = 0.8, ωM = 7 sec−1.

We treat the process parameters as unknown as well as the parameters that
define the nonlinear functions gy(·) and g�y(·). In order to make the learning
algorithm (5.38) stable it is necessary to find boundaries of the learning coef-
ficient γ . For that purpose we must identify dynamics of the linear part of the
process (5.29), that is, we must identify parameters K1 and τ1. From data obtained
by implementation of a stepwise signal to the process input we have found that
K1 = 110◦/Vsec and τ1 = 0.12 sec.

The controller parameters are as follows: ζf = 0.707, ωf = 25 sec−1, yfm =
140◦, �yfm = 3.5◦ sec−1, Td = 0.02 sec. To keep the learning process in the
stable region Equation (5.15) must be fulfilled. Based on the estimated value of
parameter b1, we have chosen γ = 0.5.

In order to overcome the problem of over-learning, a dead-zone has been
introduced into the learning algorithm. Being in a steady state (reference signal
ur is not persistent), the learning algorithm will remain idle until variable e(k)
becomes larger than threshold value eth. We have adopted eth = 0.5◦.

While in learning algorithm (5.38), the fuzzy basis functions obtain values
between 0 and 1, variable ef(k), which is the component of vector wf(k), can attain
value that is several times larger than 1. This may cause a disproportional tuning
effect, which would end up with values of tuneable parameter Kp several times
larger than the values of fuzzy output singletons Ay and A�y. If we allow this, the
influence of fuzzy algorithms that emulate gy(·) and g�y(·) would be insignificant
and the quality of control would deteriorate. This problem has been solved by
scaling variable ef(k) with respect to its expected maximum value efm = 20◦.

The experimental results obtained at the beginning and at the end of learning
procedure for the set point change from −90 to −60◦

parameter vectors Ay and A�y and the initial value of parameter Kp are set to
0. The system response is stable and the learning algorithm adjusts controller
parameters very fast. The system response at the end of the tuning procedure (after
300 sec) is shown in Figure 5.9. The process output follows the reference model
closely. The final value of Kp is approximately equal to 1.

Very often in robot control applications, when a robot moves from one point
to another, moments of inertia of each robot joint are changing. Furthermore,
a load carried by the robot could also change during operation execution. In
order to investigate the learning algorithm performance in the case of load change,
experiments with a load three times larger than the nominal one were conducted.

© 2006 by Taylor & Francis Group, LLC

are shown in Figure 5.8
and Figure 5.9, respectively. As may be seen from Figure 5.8, initial values of
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FIGURE 5.8 The system output (yf ), the reference model ( yM), the controller output
(u), and the controller proportional gain responses (Kp) in the case of nominal load at
the beginning of learning. (From Kovačić, Z., Cupec, R., and Bogdan, S., IFAC System
Structure and Control 2001, Vol. 2. With permission from Elsevier.)

The structure of the self-learning fuzzy logic controller and the value of learning
coefficient γ remain the same as in the case of nominal load. Initial values of
parameter vectors Ay and A�y and proportional gain Kp are set to 0.

the end of learning in the case of a large load applied to the motor shaft. Even though
at the beginning of learning the controller output has oscillations, the system is
stable and the learning is fast. The parameter Kp approaches its steady-state value
after only one change of system input. Finally, the tracking error eM(k) is very
small and the system follows the reference model (Figure 5.11). The proportional
gain Kp ends with an increased value of 1.75 (for the nominal load that value was 1).

Let us look at the results obtained for an abrupt load change from the three
times nominal load to the no load condition. Initially, the parameter vectors Ay

and A�y and gain Kp have the values obtained for a load three times larger than
the nominal one.

at the beginning of learning but the system remains stable. The controller output
u(k) changes its sign several times, that is, the signal form could be compared with
a bang-bang control. The proportional gain Kp oscillates around its steady-state
value.

© 2006 by Taylor & Francis Group, LLC

Figure 5.10 and Figure 5.11 show the system response at the beginning and at

From Figure 5.12 it may be seen that the process response has oscillations
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FIGURE 5.9 The system output (yf ), the reference model (yM), the controller output (u),
and the controller proportional gain responses (Kp) in the case of nominal load at the end
of learning. (From Kovačić, Z., Cupec, R., and Bogdan, S., IFAC System Structure and
Control 2001, Vol. 2. With permission from Elsevier.)

be seen that due to the learning effect, oscillations of the controller output are
largely reduced. The process response closely follows the reference model. The
proportional gain Kp ends with a decreased value of 0.75.

In order to see more precisely the effects of nonlinear functions gy(·) and g�y(·),

from −90◦ to +90◦ with the motor shaft load three times larger than the nominal
one. The initial values of parameter vectors Ay and A�y and proportional gain Kp
were set to 0.

At the beginning of learning (Figure 5.14) the magnitude of tracking error
eM(k) is close to 50% of system input’s magnitude. As expected, the controller
output has the largest value at the moment when the system set point is 0◦ since
the gravitational torque reaches its maximum. In the set point+90◦ the controller
output contains noise since the fuzzy mapping function responsible for compensa-
tion of nonlinear friction torque has not been estimated yet. At the end of learning

reference model dynamics closely.
The final forms of fuzzy mapping functions representing nonlinear func-

tions gy(·) and g�y

© 2006 by Taylor & Francis Group, LLC

The system responses at the end of learning are shown in Figure 5.13. It may

a large set point change was applied to the input of the system. Figure 5.14 and
Figure 5.15 show the system responses in the case of stepwise set point changes

(Figure 5.15) the tracking error is significantly reduced and the system follows the

(·) are shown in Figure 5.16 and Figure 5.17, respectively.
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FIGURE 5.10 The system output (yf ), the reference model (yM), the controller output (u),
and the controller proportional gain responses (Kp) in the case of three times larger load than
the nominal at the beginning of learning. (From Kovačić, Z., Cupec, R., and Bogdan, S.,
IFAC System Structure and Control 2001, Vol. 2. With permission from Elsevier.)

Fuzzy mapping functions have assumed forms, which were very much alike to

The example presented a model reference-based self-learning fuzzy logic con-

assessed by applying a direct Lyapunov method and stability conditions obtained
for a selected Lyapunov function were used for determination of the allowed range
of learning coefficient values. The experimental results obtained under various
operating conditions confirmed that the analytically founded synthesis of the self-
learning (adaptive) fuzzy logic controller headed to a stable adaptation process
without steady state errors and with very close following of the reference model
dynamics.

5.2 SELF-ORGANIZING FUZZY CONTROL BASED ON THE

HURWITZ STABILITY CRITERIA

In this chapter, we describe self-organization of a fuzzy rule table by using learn-
ing algorithm based on model tracking error eM(k) and so-called “velocity” and
“acceleration” components eM(k−1) and eM(k−2). Second-order reference model
(3.28) is used for defining the desired closed-loop system dynamics.

© 2006 by Taylor & Francis Group, LLC

inverse functions of friction and nonlinear gravity-dependent load (Figure 5.3 and

trol scheme suitable for control of nonlinear systems. The system stability was

Figure 5.4).
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FIGURE 5.11 The system output (yf ), the reference model (yM), the controller output (u),
and the controller proportional gain responses (Kp) in the case of three times larger load
than the nominal at the end of learning. (From Kovačić, Z., Cupec, R., and Bogdan, S.,
IFAC System Structure and Control 2001, Vol. 2. With permission from Elsevier.)

A self-organizing fuzzy controller will be designed for an inherently stable
linearizable nonlinear SISO control object, which has time-varying parameters.
Such a process is given by a set of equations:

ẋ1 = x2
...
ẋn = f (x,λ, t)+ b(t)u+ d(t)
yf = x1

(5.40)

where x is the state vector; f , the unknown nonlinear function; b > 0, the unknown
process gain; u, the control input; d, the measurement noise; yf , the output; and λ,
the parameter vector.

Providing that input and output variables are measurable, an approximate lin-
ear description of the control object (5.40) in a selected operating point can be
obtained by using standard off-line identification methods. A very large number
of linearizable systems can be satisfactorily described with a linear second-order
approximation (3.29).

In Section 3.2 we have shown that ideal control applied to second-order process
approximation (3.29) would synthesize control signal (3.41), which would provide

© 2006 by Taylor & Francis Group, LLC
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FIGURE 5.12 The system output (yf ), the reference model (yM), the controller output (u),
and the controller proportional gain responses (Kp) in the case of change from the three
times nominal load to the no load condition at the beginning of learning.

the equality of process and reference model responses, yM(k) = yA(k). Assuming
that the reference input signal ur(k) has a constant value or that it is changing
slowly (i.e., ur(k) ≈ ur(k− 1)), the controller function becomes a combination of
linear controller function � and feedforward part (3.46):

u(k) = k1e(k)+ k2�e(k)+ k3ur(k)

= �[e(k),�e(k)] + k3ur(k) (5.41)

where k1, k2, and k3 are defined by (3.43).
In the case of controlling nonlinear control objects (5.40), linear controller

(5.41) would have to operate with different values of k1, k2, and k3 in different
operating points. Additional adjustments of controller parameters would be needed
to compensate for continuous system parameter variations. Therefore, instead
of using linear form (5.41), it would be more appropriate to use the following
nonlinear expression:

u(k) = �[e(k),�e(k) | k] + k3(k)ur(k) = uFC(k)+ uF(k) (5.42)
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FIGURE 5.13 The system output (yf ), the reference model (yM), the controller output (u),
and the controller proportional gain responses (Kp) in the case of change from the three
times nominal load to the no load condition at the end of learning.

where � is a nonlinear time-varying fuzzy control function. It must be noted that
k3 in (5.42) is also changing in time, which means that self-organization of a fuzzy
controller should affect this parameter, too.

Model tracking error eM(k) describes the difference between the responses of
reference model and closed-loop system:

eM(k) = yM(k)− yf (k)

= yM(k)− {�[yf (k − 1), yf (k − 2), . . . , yf (k − n) | k] + b(k)u(k)}
(5.43)

where yf (k) is a discrete form of nonlinear system output (5.40).
By combining Equations (3.28), (5.42), and (5.43), eM(k) attains the form:

eM(k) = aM1eM(k − 1)+ aM2eM(k − 2)+ aM1yf (k − 1)+ aM2yf (k − 2)

−�[yf (k − 1), yf (k − 2), . . . , yf (k − n) | k] + [bM1 − b(k)k3(k)]ur(k)

− b(k)�[e(k − 1),�e(k − 1) | k − 1] (5.44)

Considering only initial conditions, ur(k) = 0, and assuming that� is changing
slowly with respect to changes of controller parameters caused by self-organization
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FIGURE 5.14 The system output (yf ), the reference model (yM), the controller output (u),
and the controller proportional gain responses (Kp) in the case of three times nominal load
at the beginning of learning.

(thus being time independent), eM(k) attains the following form:

eM(k) = aM1eM(k − 1)+ aM2eM(k − 2)+ F[yf (k − 1), yf (k − 2), . . . , yf (k − n)]
− b(k)�[e(k − 1),�e(k − 1) | k − 1] (5.45)

where

F = F[yf (k − 1), yf (k − 2), . . . , yf (k − n)]
= aM1yf (k − 1)+ aM2yf (k − 2)−�[yf (k − 1), yf (k − 2), . . . , yf (k − n)]

(5.46)
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FIGURE 5.15 The system output (yf ), the reference model (yM), the controller output (u),
and the controller proportional gain responses (Kp) in the case of three times nominal load
at the end of learning.

In the case that initial conditions of the reference model and the process differ
from each other, fulfilment of the condition

�[e(k − 1),�e(k − 1) | k − 1] = 1

b(k)
F[yf (k − 1), yf (k − 2), . . . , yf (k − n)]

(5.47)

will enforce the model tracking error to diminish with dynamics of the reference
model. In other words, the goal of self-organization is to modify the fuzzy control
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FIGURE 5.16 The shape of a nonlinear function g�y(·) obtained at the end of learning.
(From Kovačić, Z., Cupec, R., and Bogdan, S., IFAC System Structure and Control 2001,
Vol. 2. With permission from Elsevier.)
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FIGURE 5.17 The shape of a nonlinear function gy(·) obtained at the end of learning.
(From Kovačić, Z., Cupec, R., and Bogdan, S., IFAC System Structure and Control 2001,
Vol. 2. With permission from Elsevier.)
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surface � in a way, which will enforce the last term in (5.45) to asymptotically
approach nonlinear function F, thus providing a stable approach of � to its steady-
state form, let us designate it �∗.

We assume that all output fuzzy sets are represented by singletons. Because of
simplicity and good interpolation features, a fuzzy controller output is computed
according to the center of gravity principle (2.22). Referring to (2.23), a particular
singleton Aij will contribute to a crisp controller output value uFC(k) depending
on the degree of contribution described with the fuzzy basis function ϕij:

uFC(k) = �[e(k),�e(k) | k] =
∑
i, j

Aij(k)ϕij[e(k),�e(k)] (5.48)

where Aij(k) is the output singleton activated by (i, j)th fuzzy rule.
Assuming that input membership functions are time-invariant, the intention of

the learning algorithm is to compensate all variations of process parameters by
modifying the fuzzy control surface by varying singletons Aij(k). At this point,
time-dependent variations of system parameters and their impact on feedforward
coefficient k3(k) will be neglected.

After determination of all universes of discourse and after selection of the
number and size of fuzzy input sets (including the shape of membership functions),
the self-organization of the fuzzy rule-table is accomplished by using a learning
algorithm, which utilizes the third-degree model tracking error polynomial as a
measure of control quality and modifies singleton values according to the degree
of their contribution to a crisp controller output:

�Aij(k) = [γ1eM(k)+ γ2eM(k − 1)+ γ3eM(k − 2)]ϕij[e(k),�e(k)]
= �A(k)ϕij[e(k),�e(k)] (5.49)

where γ1, γ2, γ3 are the learning coefficients and�A(k) is the learning mechanism
output.

The considered self-organizing fuzzy control scheme contains a feedforward
element, a fuzzy controller, a reference model, and a model reference-based learn-

cancel disturbance effects, an integral element is added. The integral element is
activated only when both fuzzy controller input values are close to the phase plane
origin (i.e., when they belong to their zero subsets).

It is of practical interest to find values of learning coefficients γ1, γ2, γ3, which
would ensure convergence of the learning process and provide a stable performance
of the control system. Referring to (5.44), let us introduce a steady-state form
of fuzzy controller (5.48), which corresponds to the linear control function �
in (5.41):

�∗[e(k),�e(k) | k] =
∑
i, j

A∗ijϕij[e(k),�e(k)] (5.50)

© 2006 by Taylor & Francis Group, LLC

ing mechanism (Figure 5.18). In order to establish steady-state accuracy and to
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FIGURE 5.18 The structure of self-organizing fuzzy control scheme. (From Kovačić, Z.,
Bogdan, S., and Crnosija, P., 10th IEEE Intl. Symp. Intell. Contr., 389–394, 1995. With
permission from Elsevier.)

where A∗ij is a steady-state value of the output singleton activated by (i, j)th
fuzzy rule.

Having in mind that in the end of learning b(k)�∗ should emulate F (please refer
to [5.47]), the tracking error eM(k) is determined by insertion of (5.48) and (5.50)
into (5.45) as follows:

eM(k) = aM1eM(k − 1)+ aM2eM(k − 2)

+
∑
i, j

[A∗ij − b(k)Aij(k − 1)]ϕij[e(k − 1),�e(k − 1)] (5.51)

Assuming that condition ϕij[e(k − 1),�e(k − 1)] ≈ ϕij[e(k − 2),�e(k − 2)]
always holds for sufficiently short control intervals, the change in error has a form:

�eM(k) = eM(k)− eM(k − 1) = aM1eM(k − 1)+ (aM2 − aM1)eM(k − 2)

− aM2eM(k − 3)−
∑
i, j

b(k)[Aij(k − 1)− Aij(k − 2)]

× ϕij[e(k − 1),�e(k − 1)] (5.52)

Difference Aij(k− 1)−Aij(k− 2) is actually the change of a singleton, which
must be accomplished by using the learning algorithm (5.49). After insertion of

© 2006 by Taylor & Francis Group, LLC

Reference
Model

UF

Fuzzy
Controller

Control
Object

+

–

Learning
Algorithm

Mode
Selector

UFC

eM

YM

YfU

UI

+
+

+
Ur e

k3



“DK6032_C005” — 2005/11/5 — 17:03 — page 221 — #25
✐

✐

✐

✐

✐

✐

✐

✐

Self-Organizing Fuzzy Controllers 221

(5.49) into (5.52), a recursive equation for the model tracking error is obtained:

eM(k) =
{

1+ aM1 − b(k)γ1

∑
i, j

{ϕij[e(k − 1),�e(k − 1)]}2
}

eM(k − 1)

+
{

aM2 − aM1 − b(k)γ2

∑
i, j

{ϕij[e(k − 1),�e(k − 1)]}2
}

eM(k − 2)

−
{

aM2 + b(k)γ3

∑
i, j

{ϕij[e(k − 1),�e(k − 1)]}2
}

eM(k − 3)

(5.53)

The characteristic equation in the z-domain is obtained from (5.53):

R(z) = r3z3 + r2z2 + r1z + r0 = 0 (5.54)

where r3 = 1, and r2, r1, and r0 are time-varying coefficients of the following form:

r0 = aM2 + b(k)γ3

∑
i, j

{ϕij[e(k − 1),�e(k − 1)]}2

r1 = aM1 − aM2 + b(k)γ2

∑
i, j

{ϕij[e(k − 1),�e(k − 1)]}2

r2 = −1− aM1 + b(k)γ1

∑
i, j

{ϕij[e(k − 1),�e(k − 1)]}2
(5.55)

The conditions for the stability of a closed-loop fuzzy control system with char-
acteristic equation (5.54) can be found by applying the Hurwitz stability criterion.
According to the Hurwitz criterion of stability, four conditions must be fulfilled in
order to ensure the absolute stability of eM:

1. R(1) > 0 ⇒ γ1 + γ2 + γ3 > 0

2. R(−1) < 0 ⇒ γ1 − γ2 + γ3 <
2(1+ aM1 − aM2)

b(k)
∑

i, j{ϕij[e(k − 1),�e(k − 1)]}2

3. |r0| < r3 ⇒
∣∣∣∣∣∣b(k)γ3

∑
i, j

{ϕij[e(k − 1),�e(k − 1)]}2 + aM2

∣∣∣∣∣∣ < 1

4. r2
0 − r2

3 < r0r2 − r1r3

(5.56)

These conditions can be further used for determination of learning coefficient
values γ1, γ2, and γ3, but they do not give a unique solution. Different values of γ1,
γ2, and γ3 can still provide a stable learning process. Therefore, the designer must
choose γ1, γ2, and γ3 while paying attention to a desired tracking error response

© 2006 by Taylor & Francis Group, LLC
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and the speed of learning. As found in (5.56), characteristics of a learning process
depend on values of process coefficient b(k) and the sum of squared fuzzy basis
functions.

Most often, gain coefficient b(k) is replaced by an off-line identified approx-
imate value b0. In order to ensure a stable learning process, it is very important to
estimate a possible range of parameter variations that have an impact on b(k). From
the practical point of view, the worst case will happen for the maximal value of
b(k), which will give the minimum values of learning coefficients. The maximum
value of the sum of squared fuzzy basis functions, which depends on the shape of
membership functions and the number of input and output variables, can also be
estimated.

Incorrect determination of feedforward coefficient k3 will cause a static error
unless this coefficient is also adjusted by the self-organization algorithm. The
learning law can resemble in form to the learning law (5.49):

�k3(k) = [γ1eM(k)+ γ2eM(k − 1)+ γ3eM(k − 2)]ur(k) = �A(k)ur(k)

(5.57)

Under assumption that the reference input is changing much slower than fuzzy
controller parameters (ur(k) ≈ ur(k − 1)), the tracking error dynamics assumes
the form:

eM(k) =
{
1+ aM1 − b(k)γ1

∑
i, j

{ϕij[e(k − 1),�e(k − 1)]}2 + u2
r (k)

}
eM(k − 1)

+
{
aM2−aM1−b(k)γ2

∑
i, j

{ϕij[e(k−1),�e(k−1)]}2 + u2
r (k)

}
eM(k−2)

−
{

aM2 + b(k)γ3

∑
i, j

{ϕij[e(k − 1),�e(k − 1)]}2 + u2
r (k)

}
eM(k − 3)

(5.58)

The form of (5.58) is similar to the form of (5.53). The difference between
expressions is in appearance of the new term u2

r (k). Consequently, stability criteria
(5.56) used for determination of learning coefficients assumes the following form:

1. R(1) > 0 ⇒ γ1 + γ2 + γ3 > 0

2. R(−1)<0 ⇒ γ1−γ2+γ3<
2(1+ aM1 − aM2)

b(k)

[∑
i, j{ϕij[e(k − 1),�e(k − 1)]}2 + u2

r (k)

]

3. |r0| < r3 ⇒
∣∣∣∣b(k)γ3

[∑
i, j
{ϕij[e(k − 1),�e(k − 1)]}2 + u2

r (k)

]
+ aM2

∣∣∣∣<1

4. r2
0 − r2

3 < r0r2 − r1r3

(5.59)
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The important result is that learning stability will also depend on the maximal
change of the reference input, which is usually known to the designer.

Special caution has to be taken to avoid the overlearning effect. It must be
noted that self-organization should end when the predefined learning indicator
(threshold) is reached (e.g., an indicator related to the average square model track-
ing error). The introduction of learning indicator elegantly solves the overlearning
problem, declining any need for optimization of appropriate cost functions, which
would otherwise inevitably lead to the problem of stagnation in local optima.

Example 5.2 Hurwitz stability criteria-based self-organizing fuzzy control.

In this example, we shall describe a design and a practical implementation of a
Hurwitz criterion-based fuzzy controller scheme in the angular speed control loop
of a thyristor converter-fed DCM drive [17]. Please note that the same control object
was used in Section 4.2.5 to demonstrate the design and practical implementation
of a fuzzy MRAC scheme.

The identification of DCM drive parameters in a selected operating point
has resulted in the following parameter values: ω = 115 rad/sec: KTC = 108
V/V, TTC = 5 msec, Ka = 0.05 A/V, Ta = 15 msec, K = 0.755 Vsec, JT =
0.157 kg m2, Kl = 0.0098 Nmsec, Kω = 0.065 Vsec, Tω = 25 msec, Td = 10
msec. A linearized block scheme of the control loop is shown in Figure 5.19.

Seven linguistic subsets were defined for both fuzzy controller inputs (universes
of discourse E and DE): NL, NM, NS, Z, PS, PM, PL. Based on the knowledge
about angular speed control loop characteristics, maximum values for both inputs
and the output of the fuzzy controller were estimated. Since only two adjacent input
membership functions are overlapping, maximally four out of forty nine possible
IF–THEN fuzzy control rules can contribute to the crisp controller output. If we
arrange that adjacent membership functions intersect at the halves of the maximum
values (µi = µi+1 = 0.5), then the computation of fuzzy rules’ contribution

The desired reference model performance indices are overshoot in the response,
σm = 5% and peak time, tm = 0.2 sec. Having a control interval Td = 10 msec,

FIGURE 5.19 The structure of the DCM servo drive angular speed control loop. (From
Kovačić, Z., Bogdan, S., and Crnosija, P., 10th IEEE Intl. Symp. Intell. Contr., 389–394,
1995. With permission from Elsevier.)
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factors is even simpler (Figure 5.20).
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NL NM NS Z PS PM PL

m

0

0.5

e/emax

∆e/∆emax–0.33–0.66–1 0.33 0.66 1

FIGURE 5.20 The distribution of fuzzy controller’s input membership functions. (From
Kovačić, Z., Bogdan, S., and Crnosija, P., 10th IEEE Intl. Symp. Intell. Contr., 389–394,
1995. With permission from Elsevier.)

the second-order reference model is described with the recursive equation (4.53).
I = 0.002.

An off-line identification of the studied DCM servo drive in the case of a
stepwise change of the controller output has resulted in the second-order process
approximation:

yA(k) = 1.7225yA(k − 1)− 0.7293yA(k − 2)+ 0.0416u(k) (5.60)

Referring to Equations (3.43), (4.53), and (5.60), coefficients k1, k2, and k3
attain the following values: k1 = 0.6775, k2 = −0.3197, k3 = 0.1629. The impact
of operating point-dependent and time-dependent variations of system parameters
on feedforward coefficient k3 has been ignored.

As mentioned in Section 3.2, if k1 and k2 can be estimated fairly well, then
the self-organization can start from an initially preset fuzzy rule-table. If for some
practical reason such identification is not accomplishable, learning can start from
a blank fuzzy rule-table, provided that at least a control object gain coefficient b0
is known.

Special caution has to be taken to avoid the overlearning effect. For this purpose,
the following learning indicator related to the average square tracking error has
been introduced:

Ie(k) =
∑N−1

i=0 e2
M(k − N + i)

N
(5.61)

For a selected number of samples N , learning is supposed to stop after the
value of learning indicator Ie drops below a predetermined threshold value. At
that moment the learning mechanism is deactivated, remaining idle until triggered
again. In the studied case, for N = 300, the threshold value of Ie has been set to
0.0017.

First, let us test the Hurwitz criterion-based fuzzy control method by a series
of computer simulations for the case of learning with initially preset singleton val-
ues calculated according to the model reference-based presetting algorithm (3.47).

© 2006 by Taylor & Francis Group, LLC

The integral gain coefficient (see Figure 5.18) has been set to K
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TABLE 5.1
Preset (Shaded) andModified by Learning (Unshaded) Fuzzy
Rule-Table (Simulation)

NLE NME NSE ZE PSE PME PLE

NLDE 0 0.05 0.01 0.15 0.2 0.25 0.3
0 0.05 0.01 0.15 0.2 0.24 0.3

NMDE −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.05 0 0.05 0.07 0.15 0.26 0.27

NSDE −0.1 −0.04 0 0.06 0.11 0.16 0.21
−0.09 −0.04 0 0 0.11 0.18 0.25

ZDE −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.2 −0.11 −0.05 0 0.05 0.11 0.2

PSDE −0.21 −0.16 −0.11 −0.06 0 0.04 0.1
−0.26 −0.2 −0.14 −0.05 0 0.04 0.1

PMDE −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05
−0.28 −0.26 −0.19 −0.1 −0.05 0 0.05

PLDE −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0

FIGURE 5.21 The reference model response (a) and the measured angular speed responses
(preset fuzzy rule-table): the 1st run (b), the 15th run (c). (From Kovačić, Z., Bogdan, S.,
and Crnosija, P., 10th IEEE Intl. Symp. Intell. Contr., 389–394, 1995. With permission from
Elsevier.)
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FIGURE 5.22 The tracking error responses (preset fuzzy rule-table): the 1st run (a), the
15th run (b).

algorithms (5.49) and (5.57) have the following values: γ1 = 0.2, γ2 = −0.18,
and γ3 = 0.018.
speed responses obtained after the first and after fifteen runs of the system
(i.e., 30 runs in both directions). In the first run, the dynamic behavior is determined
primarily by the preset controller dynamics and feedforward control signal uF. The
system response differs from the reference model response (σm = 15%), but the
difference is tolerable. After 15 runs, the system follows the reference model
closely, and the maximum tracking error value decreases from initial 15 to 11%
of imposed change of the reference input �ur = 1 V (Figure 5.22). Output of
the learning mechanism �A, as expected, follows the shape of the tracking error

very acceptable nonoscillatory form of fuzzy controller output responses in both
characteristic runs, what is essential for practical control applications.

After 15 runs, the learning process has eventually resulted in the modified fuzzy

lated trajectories have not reached the corners of fuzzy rule-table, those singleton

to 50% of the preset values.
The aim of the next group of simulation experiments was to test the effec-

tiveness of learning starting from a blank fuzzy rule-table. A prerequisite for
such experimenting was the ability to identify the gain coefficient b0, which in

3
reference model response and the measured angular speed responses obtained after

© 2006 by Taylor & Francis Group, LLC

Figure 5.21 shows reference model and measured angular

waveform (Figure 5.23). It may be noticed that peak values of �A are in both
characteristic runs almost the same, that is, �A ≈ 0.01. Figure 5.24 shows a

values have remained almost unchanged, while the other values have changed up

turn enabled the calculation of feedforward coefficient k . Figure 5.25 shows the

These values are displayed shaded in Table 5.1. Learning coefficients in learning

rule-table with singleton values displayed unshaded in Table 5.1. Since the simu-
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FIGURE 5.23 The learning mechanism output responses (preset fuzzy rule-table): the 1st
run (a), the 15th run (b).

FIGURE 5.24 The self-organizing fuzzy controller output responses (preset fuzzy rule-
table): the 1st run (a), the 15th run (b). (From Kovačić, Z., Bogdan, S., and Crnosija, P.,
10th IEEE Intl. Symp. Intell. Contr., 389–394, 1995. With permission from Elsevier.)
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FIGURE 5.25 The reference model response (a) and the measured angular speed responses
(blank fuzzy rule-table): the 1st run (b), the 30th run (c). (From Kovačić, Z., Bogdan, S.,
and Crnosija, P., 10th IEEE Intl. Symp. Intell. Contr., 389–394, 1995. With permission from
Elsevier.)

the first and after thirty runs of the system. In the first run, the dynamic behavior
is primarily determined by feedforward control signal uF. As may be seen, after
thirty runs the maximum tracking error value stepped down from initial 66 to 15%
of imposed change of the reference input�ur

value after 30 runs is almost three times smaller than at the beginning of learning

characteristic runs indicating again a very acceptable form of the control signal
for practical applications.

The centroid values obtained after 15 runs of the learning process are displayed

Exceptions are the values in the fuzzy rule-table corners, which have not been
reached by the simulated trajectories. This has caused a nonmonotonous increase
or decrease of values in the fuzzy rule-table.

The selection of other learning coefficient values, which satisfy stability con-
ditions (5.53) has an influence on the tracking error dynamics and the speed of

e (please refer
to [5.61]) obtained for different sets of learning coefficient values. In general,
the higher the values of learning coefficients, the faster will the indicator Ie drop
below a predetermined triggering value. On the other hand, since one must usually
deal with unknown and time varying control object parameters, it is convenient to
choose smaller values of learning coefficients in order to provide reliable learning

e in the

© 2006 by Taylor & Francis Group, LLC

= 1 V (Figure 5.26). The output of

process and it is comparable in magnitude with the preset controller output values

learning mechanism�A follows the shape of tracking error (Figure 5.27). The peak

(Figure 5.23). Figure 5.28 shows the fuzzy controller output responses in two

in Table 5.2. Similarity with the values obtained in the previous case is obvious.

learning. Figure 5.29 shows the transitions of learning indicator I

under all operating circumstances. Figure 5.29 also shows the transition of I
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FIGURE 5.26 The tracking error responses (blank fuzzy rule-table): the 1st run (a),
the 30th run (b).

FIGURE 5.27 The learning mechanism output responses (blank fuzzy rule-table): the
1st run (a), the 30th run (b).
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FIGURE 5.28 The self-organizing fuzzy controller output responses (blank fuzzy rule-
table): the 1st run (a), the 15th run (b). (From Kovačić, Z., Bogdan, S., and Crnosija, P.,
10th IEEE Intl. Symp. Intell. Contr., 389–394, 1995. With permission from Elsevier.)

TABLE 5.2
The Fuzzy Rule-Table Obtained after Learning
(Simulation)

NLE NME NSE ZE PSE PME PLE

NLDE 0 0 0 0 0 0 0
NMDE 0 0 0 0 0.02 0.08 0.03
NSDE 0 0 0 0 0.14 0.28 0.09
ZDE −0.22 −0.18 −0.11 0 0.1 0.16 0.22
PSDE −0.1 −0.29 −0.14 −0.02 0 0 0
PMDE −0.02 −0.06 −0.02 0 0 0 0
PLDE 0 0 0 0 0 0 0

case of using the preset fuzzy rule-table. The descent to the threshold level is very
fast, the transition starts from markedly lower initial values and, therefore, a much
better performance of the control system is provided in the initial phase of learning.

fuzzy controller in the case of large parameter variations. After completion of
learning for nominal parameter values, the stepwise changes of the moment of
inertia in the range from 3JT (Figure 5.30) to JT/3 (Figure 5.31) were simulated.
These changes were large enough to provoke a new start of self-organization,
which was fully completed in both extreme cases after only several iterations, thus
showing a fairly high robustness to large parameter variations.

© 2006 by Taylor & Francis Group, LLC

Figure 5.30 and Figure 5.31 illustrate the robustness of the self-organizing
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FIGURE 5.29 The transitions of learning indicator Ie: γ1 = 0.1, γ2 = −0.085, γ3 = 0.007
(a), γ1 = 0.2, γ2 = −0.18, γ3 = 0.018 (b), γ1 = 0.8, γ2 = −0.72, γ3 = 0.072 (c),
γ1 = 0.2, γ2 = −0.18, γ3 = 0.018 with a preset fuzzy rule-table (d). (From Kovačić, Z.,
Bogdan, S., and Crnosija, P., 10th IEEE Intl. Symp. Intell. Contr., 389–394, 1995. With
permission from Elsevier.)

FIGURE 5.30 The measured angular speed responses in the case of restarted learning after
a stepwise change of moment inertia J = 3JT.

All practical experiments were made on the laboratory setup of a thyristor

response to a stepwise change of the controller output �u = 0.151 V yielded the
following second-order approximation of the control object:

yA(k) = 1.5499yA(k − 1)− 0.5642yA(k − 2)+ 0.0939u(k) (5.62)

© 2006 by Taylor & Francis Group, LLC

converter-fed DC servo drive (Figure 4.89). An analysis of the angular speed
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FIGURE 5.31 The measured angular speed responses in the case of restarted learning after
a stepwise change of moment inertia J = JT/3.

Experimentally obtained values of k1, k2, and k3 were as follows: k1 = 0.2206,
k2 = −1.9000, k3 = 0.151. Because of using a single-phase thyristor converter,
the angular speed response was noisy and, therefore, it had to be additionally
filtered by calculating the mean value of the last two samples of measured angular
speed uω. In order to cope with a new situation in the control system, reference
input ur(k) in reference model Equation (4.53) was replaced in the algorithm by
the delayed reference input signal ur(k − 1).

The distribution of membership functions remained the same as in the simula-

their triangular form into trapezoidal in order to reduce the impact of the inherent
“noise” in the angular speed feedback signal, which could provoke continuous
triggering of the fuzzy controller output and thus lead to the overlearning effect.

Indicator Ie (see expression [5.61]) had a role to stop the learning process when
its value (obtained for N = 300) had dropped below predetermined threshold
value Ie < 0.0017, which in case of using a bipolar (±10 V) 12-bit A/D converter
corresponded to 81 LSB.

The first group of experiments had the goal to test the performance of the
fuzzy controller when learning had started with a blank fuzzy rule-table. The
learning coefficients had the same values as in simulations: γ1= 0.2, γ2= −0.18,
and γ3= 0.018. The operating point was set to n0= 1000 min−1. The reference
model and the measured angular speed responses obtained in the first run and after

control signal uF has a dominant influence on the system dynamics, while a self-
organizing fuzzy controller prevails in the successive runs, enforcing the system to
follow the reference model dynamics. The corresponding fuzzy controller output

smooth real-time operation. The final result of the self-organization is a fuzzy

corners remained at very low values because of very weak influence of induced
system trajectories on them.

© 2006 by Taylor & Francis Group, LLC

tion experiments (see Figure 5.20). Only zero subsets ZE and ZDE have changed

ten runs in both directions are shown in Figure 5.32. In the first run, feedforward

waveforms shown in Figure 5.33 are nonoscillatory and, therefore, suitable for

rule-table with singleton values displayed in Table 5.3. The values in the table
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FIGURE 5.32 The measured angular speed responses (blank fuzzy rule-table): reference
model (a), the 1st run (b), and the 10th run (c). (From Kovačić, Z., Bogdan, S., and
Crnosija, P., 10th IEEE Intl. Symp. Intell. Contr., 389–394, 1995. With permission from
Elsevier.)

FIGURE 5.33 The fuzzy controller output responses (blank fuzzy rule-table): 1st run (a)
and the 10th run (b).
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TABLE 5.3
The Fuzzy Rule-Table Obtained after Learning (Experiment)

NLE NME NSE ZE PSE PME PLE

NLDE 0 0 0 0 0.06 0.17 0.03
NMDE 0 0 0 0.02 0.33 0.61 0.23
NSDE 0 0 −0.05 −0.21 0.31 0.66 0.86
ZDE −1.14 −0.22 −0.21 0 0.16 0.18 1.08
PSDE −0.88 −0.75 −0.43 0.17 0.04 0 0
PMDE −0.23 −0.6 −0.36 −0.03 0 0 0
PLDE −0.03 −0.17 −0.06 0 0 0 0

TABLE 5.4
Preset (Shaded) and Modified by Learning (Unshaded) Fuzzy Rule-Table
(Experiment)

NLE NME NSE ZE PSE PME PLE

NLDE −0.65 −0.42 −0.19 0.03 0.25 0.48 0.71
−0.64 −0.42 −0.19 −0.06 −0.76 0.42 0.73

NMDE −0.66 −0.43 −0.2 0.02 0.24 0.47 0.7
−0.66 −0.43 −0.21 −0.21 −0.18 0.54 0.78

NSDE −0.67 −0.44 −0.21 0.01 0.23 0.46 0.69
−0.67 −0.44 −0.28 −0.26 0.21 0.51 0.93

ZDE −0.68 −0.45 −0.22 0 0.22 0.45 0.68
−1.09 −0.46 −0.27 0 0.26 0.46 1.11

PSDE −0.69 −0.46 −0.23 −0.01 0.21 0.44 0.67
−0.93 −0.51 −0.21 0.26 0.27 0.44 0.67

PMDE −0.7 −0.47 −0.24 −0.02 0.2 0.43 0.66
−0.79 −0.54 −0.17 0.2 0.21 0.43 0.66

PLDE −0.71 −0.48 −0.25 −0.03 0.19 0.42 0.65
−0.73 −0.44 0.04 0.05 0.19 0.42 0.64

The next group of experiments had the goal to test the performance of a self-
organizing fuzzy controller, when learning starts with a preset fuzzy rule-table.
The singleton values obtained according to the model reference-based presetting

operating point were the same as in the previous experiment. The reference model
and the measured angular speed responses obtained in the first run and after ten

first run are much closer to the reference model dynamics than in the previous
case, which means that the off-line presetting of fuzzy rule-table has significantly

© 2006 by Taylor & Francis Group, LLC

runs in both directions are shown in Figure 5.34. The system dynamics in the

algorithm (33) are displayed shaded in Table 5.4. Learning coefficients and the
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FIGURE 5.34 The measured angular speed responses (preset fuzzy rule-table): reference
model (a), the 1st run (b), and the 10th run (c). (From Kovačić, Z., Bogdan, S., and
Crnosija, P., 10th IEEE Intl. Symp. Intell. Contr., 389–394, 1995. With permission from
Elsevier.)

improved system performance in the initial phase of learning. The fuzzy con-

smooth control. The modified singleton values obtained after learning are dis-

not reached the corners of fuzzy rule-table, those singleton values have remained
almost unchanged, while the other values have been changed up to 50% of the
preset values.

It was observed during experiments that the fuzzy controller starting self-
organization with a blank fuzzy rule-table provided a more balanced (smoother)
approach of the system response to the reference model response than the control-
ler, that developed its control surface from the preset fuzzy rule-table. This can be
explained by the characteristics of the preset control surface and the self-organizing
mechanism, respectively. The singleton values of the preset control surface dif-
fer more or less from the final singleton values of the nonlinear control surface
form. For those values that differ more, the learning mechanism needs more time
to complete their modification, having in mind that learning coefficients usually
(here, too) have rather small values.

5.3 SELF-ORGANIZING FUZZY CONTROL BASED ON

SENSITIVITY FUNCTIONS

In Section 5.2, we have described an analytical self-organization method used
for adjustment of fuzzy controller parameters, which is executed in every control

© 2006 by Taylor & Francis Group, LLC
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FIGURE 5.35 The fuzzy controller output responses (preset fuzzy rule-table): 1st run (a)
and the 10th run (b).

interval Td. In Section 4.2.2.1 we have described a sensitivity model-based adap-
tation method where changes of lead–lag compensator parameters are made in
consecutive system runs (see tuning law [4.30]) in the moments when parameters
have the highest influence on the system response. Applying the same strategy,
here we describe a design of a model reference-based and a sensitivity model-
based learning algorithm, which makes changes to the fuzzy controller parameter
vector λc = [λc1, . . . , λcm] once in every run of the system, creating thus a discrete
system with two sampling rates: a basic control rate and a learning rate.

5.3.1 Basic Concept of System Sensitivity

The fact that the influence of controller parameter λci on the system response
is not the same in the whole state space, and moreover, that it depends on the
current system state, has lead to the strategy that a particular fuzzy controller
parameter should be changed when its influence on the system response is the
highest. This dependence of the fuzzy controlled system response changes on
the changes of fuzzy controller parameters can be analytically expressed with
sensitivity functions [23,34].

The sensitivity theory was developed from calculus as a result of investigation
on the influence of differential equations parameters on their solutions. H.W. Bode
was one of the pioneers in the field who noticed the possibilities that sensitivity
theory offers for analysis and synthesis of control algorithms. We may say that
closing the control loop with a feedback path was initially driven by a wish to
decrease the system sensitivity to parameter variations. Wilkie and Perkins showed

© 2006 by Taylor & Francis Group, LLC
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in Reference 35, a procedure for generation of sensitivity functions. Numerous
contributions followed in 1960s and 1970s, equally from a theoretical [36–40] and
practical aspect [41,42]. Sensitivity functions were used for synthesis of control
algorithms in adaptive control systems [43,44]. Very often, control system syn-
thesis is made based on the simplified models with constant parameter values. On
the other hand, parameter variations cause inevitable changes of system dynam-
ics. Sensitivity theory has had an important role in parameter optimization control
strategies [45–47].

If they can be determined, sensitivity functions will show how and how much
a particular parameter affects the process. Also, sensitivity functions will point
out how and how much a particular parameter should be changed in order a
desired change in process dynamics is achieved. In this way, one may design
sensitivity functions-based parameter identification procedures that are executed
in real-time [44]. This actually means that continuous adjustment of controller
parameters becomes possible.

A sensitivity-based self-learning fuzzy logic control (SLFLC) scheme is
thought for control of a class of unknown time-varying nonlinear high-order SISO
control processes described by (5.40). The fuzzy controller to be organized by on-
line learning is a PD-type Takagi–Sugeno zero-order fuzzy controller described
with fuzzy control rules (2.14).

From the sensitivity theory point of view the system of Equations (5.40) can be
viewed as a description of influence of the parameter vector λ on the state vector x.
If initial state variables values x(t0) = x0, the system structure and the input signal
remain unchanged, then the changes of parameter vector �λ will be reflected in
the changes of state vector �x.

system parameter variations. Trajectory x1 obtained with parameter vector λ1

is different from trajectory x2 obtained with parameter vector λ2. The range of
changes of the state vector �x due to changes of the parameter vector �λ is
uniquely determined by the system of Equations (5.40).

The relation between�x and�λ for small parameter variations around nominal
parameter values vector λ0 is as follows:

�x ≈ S(λ0)�λ =
[

Sij = ∂xi

∂λj

∣∣∣∣
λ0

]
�λ (5.63)

where S is the sensitivity function matrix, and Sij is an element of matrix S.
There are several ways to define system output sensitivity functions. Since

the self-organization process is a real-time process, it is convenient to determine
a sensitivity function vector in the time domain. Let us suppose that the solution
of system (5.40) for nominal parameters has a form:

yf0 = yf(u, t,λ0) (5.64)

© 2006 by Taylor & Francis Group, LLC

Figure 5.36 shows the trace of state vector x in the state space provoked by
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FIGURE 5.36 The influence of the parameter vector on the state variable vector’s
trajectories.

For changed parameter values, system (5.40) has a solution:

yf = yf(u, t,λ) (5.65)

Under assumption that yf is a continuous function of parameter vector λ,
Equation (5.65) can be rewritten in the form of a Taylor series around nominal
solution yf0:

yf = yf0 + ∂yf

∂λ

∣∣∣∣
λ0

�λ+ 1

2

∂2yf

∂λ2

∣∣∣∣
λ0

�λ2 + · · · (5.66)

For small parameter variations around nominal values, high-order Taylor series
components can be neglected, and in that case (5.66) assumes a linear form:

yf = yf0 + ∂yf

∂λ

∣∣∣∣
λ0

�λ (5.67)

Relation (5.67) can be rewritten as:

�yf = yf − yf0 ≈ ∂yf

∂λ

∣∣∣∣
λ0

�λ = ηλ�λ (5.68)

where ηλ is the system output sensitivity function vector of the following form:

ηλ =
[
∂yf

∂λ1

∂yf

∂λ2
· · · ∂yf

∂λv

]
λ0

(5.69)

© 2006 by Taylor & Francis Group, LLC
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Vector ηλ represents a gradient of the system output with respect to system
parameter variations. Although the self-organization method uses vector ηλ, the
method is essentially different from well-known gradient-based optimization meth-
ods [48–51]. Gradient-based self-organizing methods calculate and set up a new
parameter vector in each control interval. The method described here calculates a
new parameter vector in the moments when sensitivity functions in (5.69) reach
their maximum and then sets a new vector up before a new change of the reference
input ur takes place.

Vector ηλ will retain the same form also for discrete control systems providing
that control interval Td is kept constant. In References 52 to 54 one may find
more information about control systems sensitivity to variations of Td. This fact
is important for the design of a digital self-organizing fuzzy controller, as we may
use vector ηλ, which has been found for the corresponding continuous control
system.

We have mentioned that sensitivity functions can be used not only for the
analysis but also for the synthesis of control systems. In general, parameter vectorλ
contains controller parameters λc and process parameters λp. If the response of a
nominal system (5.64) is viewed as a predefined (desired) system response, and the
response (5.65) as an actual system response, then by means of Equation (5.68)
we can search for values of vector �λc components, which would compensate
for variations of λp and gradually push �yf toward zero. This would result in
the system’s follow-up of predefined system dynamics. By that, one must take
care about the system stability, ensuring that values of parameter changes are
much less than nominal parameter values [56].

5.3.2 Synthesis of a Self-Organizing Fuzzy Algorithm

By switching to the discrete time domain, the changes of system output yf(k) due
to small variations of system parameters are given by the following equation:

�yf(k,λ) =
∑

i

ηλi(k)
∣∣
λi
�λi (5.70)

Equation (5.70) can be used as a starting point for determination of vector�λ
whose aim is to produce the required change �yf(k,λ). One way to solve (5.70)
is to write down n equations for n successive control intervals, where n denotes
dimension of parameter vector λ. The other way is to induce the given change of
system output by changing only one parameter λi. Then a new parameter value is
used for calculation of another vector component. The procedure is repeated until
the tracking error assumes an acceptably small value. This method was effectively
applied for determination of dead-beat controller parameters [57,58].

The structure of a self-learning fuzzy controller may vary depending on the type
of process. The structure described by (5.42) contains a PD-type fuzzy controller
and a feedforward control element. In order to establish steady-state accuracy and
to cancel disturbance effects, an integral element can also be added. Let us consider

© 2006 by Taylor & Francis Group, LLC
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the self-organization of a controller with the following structure:

u(k) = �[e(k),�yf(k),λ] + k3(k)ur(k) =
∑

Aiϕi[e(k),�yf(k)] + k3(k)ur(k)

(5.71)

The difference with respect to structure (5.42) is in different fuzzy controller
inputs. The change of error �e(k) applied in (5.42) is replaced in (5.71) by the
change of system output �yf(k). Under assumption of constant or slow-varying
reference input ur(k), �e(k) and �yf(k) are related as

�e(k) = −�yf(k) (5.72)

The change of the sign of one input variable affects fuzzy control rules but it
does not change the structure of the fuzzy controller. The reason why �yf(k) is
preferred to �e(k) is in its more convenient response to stepwise changes of the
reference input. Namely, in the control interval when�ur(k) takes place,�e(1) =
�ur(1), while in the forthcoming intervals �e(1) � �e(2),�e(3), . . . ,�e(k).
This means that�e(1) is excessive in magnitude with respect to “regular” control
error values �e(k), which does not occur with �yf(k).

A sensitivity model of a fuzzy controlled system can be built only if fuzzifi-
cation and defuzzification operations have a form that allows a fuzzy input–output
mapping function to assume an analytical and differentiable form. In this sense,
the inference engine will utilize a product operator:

µj[e(k),�yf(k)] = µe
k[e(k)] · µ�yf

l [�yf(k)],
j = 1, 2, . . . , r, k = 1, 2, . . . , p, l = 1, 2, . . . , q

(5.73)

and input membership functions will also have a differentiable form:

µe
k(x) = e−(x−ce

k)
2/(2(we

k)
2), µ

�yf
l (x) = e−(x−c

�yf
l )2/(2(w

�yf
l )2) (5.74)

where c j
i is the center of a membership function µ j

i , and w j
i is the width of a

membership function µ j
i .

Accordingly, controller parameter vectorλc contains the following parameters:

output singletons Ai, centers of input sets, ce
i and c

�yf
i , and widths of input sets,

we
i and w�yf

i .
The crisp output of the fuzzy controller used in the SLFLC scheme is com-

puted according to the center of gravity principle (2.23). It should be noted that
this defuzzification algorithm has a differentiable form which is convenient for
implementation of the SLFLC algorithm. How much the ith fuzzy control rule
will contribute to a crisp controller output depends on the degree of contribution

© 2006 by Taylor & Francis Group, LLC
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described with the fuzzy basis function:

ϕi[e(k),�yf(k)] = µe
k[e(k)] · µ�yf

l [�yf(k)]∑p
m=1

∑q
n=1 µ

e
m[e(k)] · µ�yf

n [�yf(k)]

= µi[e(k),�yf(k)]∑r
j=1 µj[e(k),�yf(k)] (5.75)

whose form is also differentiable.
We have shown that sensitivity functions can be very useful to express how

much influence some variable or parameter has on the focused variable. In this
sense, sensitivity functions represent information about interactions between
causes and consequences, which may be very useful for planning interventions
in the system.

Having this concept in mind, a total differential of the system output with
respect to small variations of fuzzy controller parameters is determined by

�yf(k,λ) =
n∑
i

ηλci(k)

∣∣∣∣
λci

�λci (5.76)

where ηλci(k), i = 1, . . . , n, are system output sensitivity functions related to fuzzy
controller parameters:

ηλci(k) =
∂yf(k,λ)

∂λci
= ∂yf(k,λ)

∂u(k)

∂u(k)

∂λci
= Gp

∂u(k)

∂λci
(5.77)

where Gp is the process transfer function.
It may be seen that sensitivity functions related to controller parameters λci

depend on generally unknown dynamic characteristics of the control process Gp.
The sensitivity function of the controller output with respect to controller

parameter variations has the form

∂u(k)

∂λci
= ∂

∂λci
{�[e(k),�yf(k),λ]} (5.78)

Insertion of (5.78) into (5.77) and further in (5.76) yields:

�yf(k)
.=

n∑
i=1

Gp

{
∂

∂λci
{�[e(k),�yf(k),λ]}

}
�λci (5.79)

Equation (5.79) can be used for assessment of fuzzy controller parameter vari-
ations that would provide the given change of system output. The experience in
commissioning of fuzzy controllers suggests that output singletons are parameters

© 2006 by Taylor & Francis Group, LLC
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with the largest influence on the fuzzy controller output. Referring to control-
ler function (5.71), system parameter variations will be compensated only by
modifying the fuzzy output singletons Ai and the feedforward coefficient k3 (input
membership functions remain predefined), that is, λc = [A1 A2 · · · Ar k3]T.
Therefore, Equation (5.78) can be split into two parts:

ηAi(k) =
∂yf(k,λ)

∂Ai
= ∂yf(k,λ)

∂u(k)

∂u(k)

∂Ai
= Gp

∂u(k)

∂Ai

ηk3(k) =
∂yf(k,λ)

∂k3
= ∂yf(k,λ)

∂u(k)

∂u(k)

∂k3
= Gp

∂u(k)

∂k3

(5.80)

From (5.71) and (5.75) we can determine controller output sensitivity functions
with respect to the components of vector λc:

∂u(k)

∂Ai
= ∂

∂Ai
{�[e(k),�yf(k),λ]} = ϕi[e(k),�yf(k)]

∂u(k)

∂k3
= ∂

∂k3
[k3ur(k)] = ur(k)

(5.81)

Accordingly, Equation (5.80) assumes the form:

ηAi(k) = Gpϕi[e(k),�yf(k)]
ηk3(k) = Gpur(k)

(5.82)

From (5.82) we can see that the self-organization algorithm is not so demand-
ing from the computational point of view because the reference input ur(k) is
already known, while the fuzzy basis functions are normally calculated during the
calculation of crisp fuzzy controller output (see [2.23]).

Sensitivity functions in (5.82) depend on the dynamic characteristics of the
control process Gp. Since the exact model of the control process (5.40) is unknown
(only a static process gain is directly identifiable), some approximation, denoted
as Gpa, must be used. Among many possible linear process approximations, the
one determined by the reference model dynamics (3.28) could be assumed to
be a reasonable choice. Then Gpa = GM. If such an approximation is adopted,
then the sensitivity functions described by (5.82) have the form (for simplicity,
φi[e(k),�yf(k)] is replaced by φi(k)):

ηAi(k) = aM1 · ηAi(k − 1)+ aM2 · ηAi(k − 2)

+ bM1 · ϕAi(k − 1)+ bM1 · ϕAi(k − 2)

ηk3(k) = aM1 · ηk3(k − 1)+ aM2 · ηk3(k − 2)

+ bM1 · ur(k − 1)+ bM1 · ur(k − 2)

(5.83)

© 2006 by Taylor & Francis Group, LLC
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In general, selected approximations of the control process (5.40) may have
different dynamic characteristics, which would finally result in different dynamic
characteristics of the sensitivity functions (5.83). If such sensitivity functions are
being used in the SLFLC algorithm, then the process approximation Gpa would
act like a filter whose dynamic behavior determines the speed of learning and
thus directly affects the final form of the fuzzy controller. In other words, after
completion of the learning process, different variants of the fuzzy controller will
be obtained for different process approximations.

Let us make the following assumptions: the static part of the control process is
inherently stable, the boundary values (limits) of the system output yf(k) and the
tracking error eM(k) are known, the reference input ur(k) is imposed as a sequence
of alternating step changes. As we have already discussed in Section 4.2.2.1,
the given change of system output�yf(k) coincides in the model reference control
concept with model tracking error eM(k). Therefore, relation (5.76) assumes
the form

eM(k) =
r∑

i=1

ηAi(k)�Ai + ηk3(k)�k3 (5.84)

which can be used for determination of vector �λc. Since tracking error eM(k) is
known in every control interval, Equation (5.84) converts into a learning algorithm
of the form:

�Aκj (k) =
eκM(k)−

∑r
i=1,i �=j η

κ
Ai
(k) ·�Aκi − ηκk3

(k) ·�kκ3
ηκAj
(k)

(5.85)

where κ denotes the current learning iteration (i.e., the current run of the system).
The meaning of this is that singletons Aj are changed only once during each

run of the system. A new run of the system starts with a new change of ur(k).
It must be noted, that approximate equality in (5.79) is intentionally replaced by
normal equality in (5.85) and (5.86).

The modification of the feedforward gain coefficient k3 is always performed
after the modification of all singleton values in the current (kth) learning interval
is completed:

�kκ3 =
eκM(k)−

∑r
i=1 η

κ
Ai
(k) ·�Aκi

ηκk3
(k)

(5.86)

This is done in the moment when the influence of a particular controller param-
eter is the highest, and that is in the maximum of the corresponding sensitivity
function. From (5.75) one can see that fuzzy basis function ϕi is a convex expo-
nential function obtained as a product of two Gaussian membership functions
µe

k and µ�yf
l . From the implementation point of view it is easy to determine the

© 2006 by Taylor & Francis Group, LLC



“DK6032_C005” — 2005/11/5 — 17:03 — page 244 — #48
✐

✐

✐

✐

✐

✐

✐

✐

244 Fuzzy Controller Design

maximum of the Gaussian-type convex function. Sensitivity function ηκk3
(k) is

actually represented by the reference model response. Since we use a stable ref-
erence model, it is sufficient to keep the period of reference input changes long
enough that the reference model reaches the steady state, as the steady-state value
of ηκk3

(k) is equal to the maximal one.
Accordingly,

βκj = ηκAj
(kκj ) = max

[
ηκAj
(k)
]

βκk3
= ηκk3

(kκk3
) = max

[
ηκk3
(k)
] (5.87)

where kκj and kκk3 are the moments when the maximum of corresponding sensitivity
functions are detected.

On insertion of (5.87) into (5.85) and (5.86), the learning laws assume the form

�Aκj (k) =
eκM(k)−

∑r
i=1,i �=j η

κ
Ai
(k) ·�Aκi − ηκk3

(k) ·�kκ3
βκj

(5.88)

�kκ3 =
eκM(k)−

∑r
i=1 η

κ
Ai
(k) ·�Aκi

βκk3

(5.89)

The learning speed depends on dynamic characteristics of the sensitivity func-
tions generated during the system output transient response. By applying maximal
values βκj and βκk3

, division in learning laws (5.88) and (5.89) is thus executed
with larger numbers, which additionally contributes to the smooth convergence of
learning and the stability of self-organization. If we would allow larger changes
of controller parameters, then we would depart from the assumption that we deal
with small parameter changes (see Equations [5.67] and [5.70]). During the learn-
ing interval, it may occur that some sensitivity function reaches a maximum value
lower than the predetermined threshold value βmin. This means that the corre-
sponding singleton has a negligible influence on the process behavior, and so it
will remain unchanged. By introducing a minimal threshold value βmin, we also
avoid a possible problem of division by zero.

The modification of controller parameter vector λκc is executed by using the
standard tuning law

λκ+1
c = λκc +�λκc (5.90)

Normally, learning starts from a blank fuzzy rule-table, and proceeds after each
run of the system by adding changes to the singletons of the activated fuzzy control
rules. Alternatively, learning may start from a preset fuzzy rule-table as discussed

© 2006 by Taylor & Francis Group, LLC
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FIGURE 5.37 The block diagram of the learning mechanism. (From Kovačić, Z.,
Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51, 1998. With
permission.)

learning stoppage criterion must be used. For example, one can use an integral
criterion related to the absolute model tracking error given by

IκeM
=

ks∑
k=0

|eκM(k)| ≤ δ0 (5.91)

where ks is the last control interval of the current learning iteration and δ0 is a
predefined threshold value.

Another possible way among many others is to stop learning by observing the
mean square ratio of parameter changes with respect to their full values:

IκA =
∑r

i=1(�Aκi )
2∑r

i=1(A
κ
i )

2
· 100% ≤ I0 (5.92)

Usually, the threshold value I0 is set to 5 to 10%. In order to safely avoid an
overlearning effect, criteria like (5.91) and (5.92) can be combined together.

The block diagram of the learning mechanism implementing the learning law
(5.88) is shown in Figure 5.37.

Example 5.3 Sensitivity model-based self-organizing fuzzy control — linear
case.

In order to illustrate the effectiveness of a sensitivity model-based self-
organizing fuzzy controller, let us describe the design and implementation for the
case of controlling a third-order linear system (3.56), already used in Section 3.4
for testing several fuzzy controller initial setting methods. For this purpose,
a laboratory process simulator device Feedback PCS 327 will be used.

Each fuzzy controller input has five fuzzy sets, and accordingly, the fuzzy
rule-table has 25 control rules. Input membership functions have a Gaussian form

© 2006 by Taylor & Francis Group, LLC

in Chapter 3. In order to prevent the overlearning problem that may occur, some
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(5.74) and α-cut (α = 0.05) is applied to them (see relation [2.26]). The centers
and widths of input membership functions are the following:

ce
NL = c�yf

NL = −1

ce
NM = c�yf

NM = −0.4

ce
Z = c�yf

Z = 0

ce
PM = c�yf

PM = 0.4

ce
PL = c�yf

PL = 1

we
NL = w�yf

NL = we
PL = w�yf

PL = 0.227

we
NM = w�yf

NM = we
PM = w�yf

PM = 0.048

we
Z = w�yf

Z = 0.01

One can see from the above listed center values that universes of discourse are
scaled to the interval [−1, 1]. Scaling coefficient values are Ke = 1 and K�yf = 25.
The minimal threshold value for the sensitivity functions is set to be βmin = 0.1.

Desired dynamic characteristics of a high-order closed-loop control system are
described by a second-order reference model, whose parameters are determined
according to selected performance indices: the response overshoot, σm = 5%, and
the peak time tm = 5 sec, which yields (sampling interval Td = 0.1 sec):

yM(k) = 1.8799yM(k − 1)− 0.8871yM(k − 2)

+ 0.0036ur(k − 1)+ 0.0035ur(k − 2) (5.93)

The reference model (5.93) also represents process approximation Gpa that is
used for calculation of sensitivity functions (see [5.82] and [5.83]).

The self-organization process is tested first for the nominal feedforward gain
coefficient value k3 = 0.58 (i.e., k3 is reciprocal to the nominal control process
gain). Stepwise changes of the reference input�ur = ±1 V are fed into the system.

error and controller output responses, respectively. In the first run, the dynamic
behavior is determined only by the feedforward control element and the tracking
error exceeds 50% of the imposed change of reference input. In the third run, the
tracking error is already reduced to 10%.

positive and negative runs of the system. The system follows the reference model
very closely and the steady-state tracking error is kept below 5%. The learning pro-
cess converges smoothly, while the controller output (Figure 5.40 and Figure 5.43)
has a desirable nonoscillatory form.

© 2006 by Taylor & Francis Group, LLC

Figure 5.38 shows the reference model and system output responses obtained after
first three runs of the system. Figure 5.39 and Figure 5.40 shows the tracking

Figures 5.41 to 5.43 show the same group of responses obtained after twelve
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FIGURE 5.38 The system output and reference model responses at the beginning of
learning. (From Bogdan, S. and Kovačić, Z., 4th IEEE Mediterr. Symp. Contr. Autom.,
799–804, 1996. With permission.)
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FIGURE 5.39 The tracking error responses at the beginning of learning. (From Bogdan, S.
and Kovačić, Z., 4th IEEE Mediterr. Symp. Contr. Autom., 799–804, 1996. With
permission.)

coefficient k3 remains almost unchanged, that is, unaffected by the learning
algorithm (5.89) operation.

κ
A . One

can notice a very fast and smooth decrease of the criterion (the criterion dropped
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Figure 5.44 shows that for the nominal conditions the feedforward gain

Figure 5.45 shows the transition of the learning stoppage criterion I
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FIGURE 5.40 The self-learning fuzzy controller output responses at the beginning of learn-
ing. (From Bogdan, S. and Kovačić, Z., 4th IEEE Mediterr. Symp. Contr. Autom., 799–804,
1996. With permission.)
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FIGURE 5.41 The system output and reference model responses at the end of learning.
(From Bogdan, S. and Kovačić, Z., 4th IEEE Mediterr. Symp. Contr. Autom., 799–804,
1996. With permission.)

below 10% after five learning iterations). In the steady-state, the criterion varies
around minimal value. The reasons why IκA does not asymptotically approach zero
lie in the usage of an approximate learning algorithm (due to the fact that only two
terms of the Taylor series were taken into account in the derivation of sensitivity
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0.00
–6.00

–2.00

2.00

6.00

U
F

C

10.00 20.00

t (sec)

30.00 40.00



“DK6032_C005” — 2005/11/5 — 17:03 — page 249 — #53
✐

✐

✐

✐

✐

✐

✐

✐

Self-Organizing Fuzzy Controllers 249

0.50

e M
0.30

0.10

– 0.10

– 0.50
360.00 370.00 380.00

t (sec)

390.00 400.00
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FIGURE 5.42 The tracking error responses at the end of learning. (From Bogdan, S. and
Kovačić, Z., 4th IEEE Mediterr. Symp. Contr. Autom., 799–804, 1996. With permission.)
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FIGURE 5.43 The self-learning fuzzy controller output responses at the end of learning.
(From Bogdan, S. and Kovačić, Z., 4th IEEE Mediterr. Symp. Contr. Autom., 799–804,
1996. With permission.)

model-based learning algorithm) and the mismatch of the system and the reference
model (the controlled process is a third-order system, while the reference model is
a second-order system). In spite of the fact that the tracking error cannot be fully
eliminated, the self-learning algorithm continuously attempts to generate singleton
changes that would eliminate the error. This normally leads to the overlearning

© 2006 by Taylor & Francis Group, LLC
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FIGURE 5.44 The transition of the feedforward gain coefficient.

FIGURE 5.45 The transition of the learning stoppage criterion.

problem. As denoted in Figure 5.45, the 10% value of IκA could be used as a
threshold value to stop self-organization and thus prevent overlearning.

In the next experiment, learning has started with a supposed feedforward gain
coefficient value k3
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= 0.7. Figure 5.46 shows the reference model and system
output responses obtained after first three runs of the system. Figure 5.47 and
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FIGURE 5.46 The system output and reference model responses at the beginning of
learning.
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FIGURE 5.47 The tracking error responses at the beginning of learning (k3 = 0.7).

One can see that the maximum tracking error exceeds 60% in the first negative run,
without reaching the steady-state. In the second learning iteration, the maximum
tracking error is already reduced two times. Like with the nominal feedforward gain

© 2006 by Taylor & Francis Group, LLC

Figure 5.48 show the tracking error and controller output responses, respectively.
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FIGURE 5.48 The self-learning fuzzy controller output responses at the beginning of
learning.

coefficient value, output singletons were successfully tuned, keeping the maximal
tracking error value below 5%. The zero steady-state tracking error value indicates
also that the feedforward gain coefficient value is correct.

learning iterations. Likewise in the first experiment, the system follows the ref-
erence model very closely and the steady-state tracking error is kept below 5%.
Different controller output waveforms in opposite transition directions demon-

the feedforward gain coefficient estimation. The comparison of controller output

κ
A . One

coefficient, criterion assumes the value which is below 10% in ten iterations (from
the implementation point of view, we can assume that 10% is a reasonable threshold
value where learning should stop).

There are only minor differences between the output singleton values obtained
for the cases of nominal and estimated values of feedforward gain coefficient k3.
The final form of a fuzzy rule-table for the estimated value k3 = 0.7 is shown in

phase-trajectory. In those parts of the table the system is unstable. The fact that the
trajectory of the fuzzy controlled system did not go through those unstable parts
indicates the stability of the self-organization process itself. One can also notice a
symmetrical form of the table, which was expected due to the linear character of
the controlled process.

© 2006 by Taylor & Francis Group, LLC

Figures 5.49 to 5.51 show the same group of responses obtained after twelve

strate the nonlinear character of control. Figure 5.52 shows fast convergence of

responses (Figure 5.43 and Figure 5.51) indicates their similarity.

can see that regardless of a fairly incorrect initial value of the feedforward gain
Figure 5.53 shows the transition of the learning stoppage criterion I

Table 5.5. Table areas filled with zeros are areas that stood out of reach of the system
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FIGURE 5.49 The system output and reference model responses at the end of learning
(k3 = 0.7).
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FIGURE 5.50 The tracking error responses at the end of learning (k3 = 0.7).

The simulation results describing the performance of a self-organizing fuzzy
controller in the case of controlling a nonlinear second-order process are given
in Reference 59. Likewise in the linear case, the fuzzy controller reduced the
tracking error below 5% of the imposed reference change. Due to the nonlinear
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FIGURE 5.51 The self-learning fuzzy controller output responses at the end of learning.
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FIGURE 5.52 The transition of the feedforward gain coefficient (k3 = 0.7).

character of the system, the process gain varied with the variation of operating
point. Nevertheless, the self-learning procedure determined the value of feedfor-
ward gain coefficient k3 very accurately, so that the steady-state tracking error was
kept below 1%.
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FIGURE 5.53 The transition of the learning stoppage criterion.

TABLE 5.5
The Fuzzy Rule-Table of the Self-Learning Fuzzy
Controller (k3 = 0.7)

NLE NSE ZE PSE PLE

NLDYF −0.321 −0.028 0 0 0
NSDYF −4.302 0.096 0.075 0 0
ZDYF −4.823 −0.178 0 0.780 4.966
PSDYF 0 0 −0.082 −0.320 4.122
PLDYF 0 0 0 0.146 0.301

Since the reference model is also used as a process approximation, the choice
of model parameters has a large influence on the self-organization process. That
influence in the case of controlling a third-order linear system (3.36) is shown in

A discrete form of the ITAE criterion was used as a model tracking quality
criterion:

IκteM
=

ks∑
k=0

kTd|eκM(k)| (5.94)
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Figure 5.54.
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FIGURE 5.54 The influence of reference model parameters on self-organization.

where ks is a number of sampling intervals during one learning iteration in the
positive and negative direction.

The following combinations of reference model parameters were used: (1)
σm = 0.5%, tm = 4 sec; (2) σm = 5%, tm = 5 sec; (3) σm = 0.5%, tm =
6 sec; (4) σm = 0.5%, tm = 8 sec. One can see from Figure 5.54 that the speed
of self-organization, indicated by the criterion value, does not depend much on
the parameters of the reference model. In all four cases, the criterion is reduced
approximately to one-third of its initial value in the first learning iteration, and then

one can also see that self-organization is faster when models are slower.
The self-learning algorithm was derived under the assumption that the con-

trolled process could be described well by its second-order reference model
approximation. For the processes that we know better, other process approxima-
tions rather than a second-order reference model could be used, but experiments in
some study cases showed that changes of self-organization dynamics due to other
process approximations were practically negligible.

A fuzzy controller, whose parameters are synthesized by on-line self-
organization, has a PD character, which means that it cannot eliminate a
steady-state error in static control systems. Instead, a feedforward element takes
care of that thanks to the on-line adjustment of the gain coefficient k3. However,
when disturbance is present, regardless of the presence of the feedforward ele-
ment, a static error will occur. The solution is to add an integral element parallel to
the fuzzy controller [60]. In order to avoid the undesired need for external adjust-
ment of the integral gain coefficient, the self-learning procedure for this purpose
is described in Section 5.3.4.

After simulation experiments, the self-learning fuzzy controller was tested
experimentally on the laboratory process simulator Feedback PCS 327 (see

the experiment are equal to those from simulations. Experiments were conducted
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Figure 3.12). The reference model, sampling interval and all other parameters in

it keeps decreasing with almost the same dynamics. However, from Figure 5.54
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FIGURE 5.55 The system output and reference model responses at the beginning of
learning.

FIGURE 5.56 The self-learning fuzzy controller output responses at the beginning of
learning.

in the operating point yf 0 = 1 V for stepwise changes of the reference input
�ur = ±1 V.

Figure 5.55 and Figure 5.56 show the results obtained in the beginning of
learning with a nominal feedforward gain coefficient value (reciprocal to the known
value of process gain).

The fuzzy rule-table is initially filled with zeros so only the feedforward ele-
ment is acting on the process. This causes a very large tracking error at the
beginning of learning. The results obtained at the end of learning are shown in
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FIGURE 5.57 The system output and reference model responses at the end of learning.

FIGURE 5.58 The self-learning fuzzy controller output responses at the end of learning.

Figure 5.57 and Figure 5.58. From Figure 5.57 we can see that the model track-
ing error is practically negligible. The form of the control input signal shown in

The changes of the nominal (known in advance) feedforward gain coefficient
k3 3 is slightly
varying (1 to 2%) due to the approximate character of the learning algorithm
and the presence of measurement noise. The transition of the learning stoppage
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Figure 5.58 is very similar to the one obtained in simulations (see Figure 5.43).

= 1 are shown in Figure 5.59. It can be noticed that the value of k

criterion (5.92) is shown in Figure 5.60. By comparison of the criterion shown in
Figure 5.60 to the criterion shown in Figure 5.45, one can see that the speed of
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FIGURE 5.59 The transition of the feedforward gain coefficient.

FIGURE 5.60 The transition of the learning stoppage criterion.

fuzzy controller tuning in the simulation and in the experiment is almost identical.
After 6 to 7 iterations the criterion satisfies the condition to stop learning.

The system output and reference model responses obtained at the beginning of
learning with a supposed feedforward gain coefficient value k3 = 0.7 (reciprocal
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to the supposed value of the process gain) are shown in Figure 5.61. A pretty large
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FIGURE 5.61 The system output and reference model responses at the beginning of learning
(k3 = 0.7).

FIGURE 5.62 The system output and reference model responses at the end of learning
(k3 = 0.7).

steady-state error can be seen in the first learning iteration due to an inaccurate
estimation of k3.

Figure 5.62 shows the system output and reference model responses obtained

fuzzy controller output.
The feedforward gain coefficient assumes its final value in a little bit slower
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at the end of learning, while Figure 5.63 shows the responses of the self-learning

manner than in simulations, as shown in Figure 5.64.
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FIGURE 5.63 The self-learning fuzzy controller responses at the end of learning (k3 = 0.7).

FIGURE 5.64 The transition of the feedforward gain coefficient.

The comparison of the learning stoppage criterion transition shown in

mental results.

Example 5.4 Sensitivity model-based self-learning fuzzy control of a position-
ing servo system — nonlinear case I.
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Figure 5.65 with previously obtained criterion transitions (Figures 5.45, 5.53,
and 5.60) indicates their large similarity and match-up of simulation and experi-
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FIGURE 5.65 The transition of the learning stoppage criterion.

FIGURE 5.66 Fuzzy controlled DC servo motor drive.

Let us describe the design, simulation, and experimental verification of a
sensitivity model-based self-learning fuzzy logic controller that was tested in the
position control loop of a laboratory DC servo motor drive ES 130 (Feedback

p = 0.5 V/V (pro-
portional controller gain), Kd = 2.67 V/rad (position feedback gain), Km =
175 rad/Vsec (amplifier and motor gain), Tm = 160 msec (electromechanical
time constant), N = 16 (gear ratio). The drive is affected by a strong impact

◦
(0.0523 rad).

As in the position control scheme here we deal with control of an astatic process,
feedforward and integral control elements responsible for steady-state accuracy in
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Inc.) shown in Figure 5.66. The rated parameter values are: k

of backlash nonlinearity (Figure 5.67). The backlash width is set to �θ = ±3

static control systems (see the controller structure shown in Figure 5.18) are not
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FIGURE 5.67 A backlash nonlinearity.

FIGURE 5.68 The block scheme of a self-learning hybrid fuzzy system.

needed. Since originally the positioning servo system is controlled by a P controller,
in order to improve the control characteristics, let us just add a self-learning fuzzy
controller in parallel to the P controller. In this way, the structure becomes a hybrid
one (see Figure 5.68).

Desired dynamic characteristics of the closed-loop position control system are
described by a second-order reference model, whose parameters are determined
according to selected performance indices: the response overshoot, σm = 1.5%
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and the peak time tm = 0.5 sec, which yields (sampling interval Td = 0.01 sec):

yM(k) = 1.8429yM(k − 1)− 0.8521yM(k − 2)

+ 0.0047ur(k − 1)+ 0.0045ur(k − 2) (5.95)

In accordance with the described design procedure, reference model (5.95) also
represents process approximation Gpa used for calculation of sensitivity functions
(see relations [5.82] and [5.83]). The minimal threshold value for the sensitivity
functions is set to be βmin = 0.1.

Five linguistic subsets have been defined for both fuzzy controller inputs (uni-
verses of discourse E and DYF): NL, NM, Z, PM, and PL. Accordingly, the fuzzy
rule-table has 25 control rules. Input membership functions have a Gaussian form
(5.74) and an α-cut (α = 0.05) is applied to them (see relation [2.26]). The input
fuzzy sets are scaled into interval [−1, 1]. Scaling coefficient values are Ke = 1 and
K�yf = 34. The centers and widths of input membership functions are distributed
in the same way as in the previous example:

ce
NL = c�yf

NL = −1

ce
NM = c�yf

NM = −0.4

ce
Z = c�yf

Z = 0

ce
PM = c�yf

PM = 0.4

ce
PL = c�yf

PL = 1

we
NL = w�yf

NL = we
PL = w�yf

PL = 0.227

we
NM = w�yf

NM = we
PM = w�yf

PM = 0.048

we
Z = w�yf

Z = 0.01

The performance of the self-learning fuzzy controller has been tested in the case
of a series of reference input step changes equal to�ur = ±0.5 V (corresponding to
�θr

◦

clearly seen in the delayed start and trimmed peak values of the system response. In
the first run, due to the empty fuzzy rule-table the dynamic behavior is determined
only by the proportional controller. The tracking error exceeds 30% of the reference
input change. Because of backlash the controller output is different in different
control directions. Improvements in system dynamics and steady-state behavior
can be noticed already in the second learning iteration.

organization was completed (after twelve learning iterations). The system closely

© 2006 by Taylor & Francis Group, LLC

= ±10 ). Figure 5.69 shows the reference model and system output responses,

output responses obtained after first three runs of the system. The backlash effect is
while Figure 5.70 and Figure 5.71 show the respective tracking error and controller

Figures 5.72 to 5.74 show the same group of responses obtained after self-
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FIGURE 5.69 The system output and reference model responses at the beginning of
learning. (From Kovačić, Z., Bogdan, S., and Balenović, M., The IEEE Transac. Energy
Conver., 13(4), 1479–1484, 1999. With permission.)
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FIGURE 5.70 The model tracking error responses at the beginning of learning. (From
Kovačić, Z., Bogdan, S., and Balenović, M., The IEEE Transac. Energy Conver., 13(4),
1479–1484, 1999. With permission.)

follows the reference model and the tracking error never exceeds 5% of the refer-

with a stronger effort in the initial phase of response. The steady-state control error
is kept within ±2%, which is a significant achievement, since the ±3◦ backlash

© 2006 by Taylor & Francis Group, LLC

ence input change. The controller output (Figure 5.74) has a very acceptable form
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FIGURE 5.71 The self-learning fuzzy controller output responses at the beginning of learn-
ing. (From Kovačić, Z., Bogdan, S., and Balenović, M., The IEEE Transac. Energy Conver.,
13(4), 1479–1484, 1999. With permission.)

FIGURE 5.72 The system output and reference model responses at the end of learning.
(From Kovačić, Z., Bogdan, S., and Balenović, M., The IEEE Transac. Energy Conver.,
13(4), 1479–1484, 1999. With permission.)

dead-zone would normally cause a static error within ±15%. The final singleton

Let us present the performance of the self-learning fuzzy controller tested
by a series of experiments on the laboratory servo system Feedback ES 130.

© 2006 by Taylor & Francis Group, LLC

values of the self-organized fuzzy rule-table are shown in Table 5.6.

2.00

1.00

0.00

–1.00

–2.00
0.00 1.00 2.00

t (sec)

3.00 4.00

u 
[V

]

yf0.60

0.20

–0.20

–0.60
36.00 37.00 38.00

t (sec)

39.00 40.00

yM



“DK6032_C005” — 2005/11/5 — 17:03 — page 267 — #71
✐

✐

✐

✐

✐

✐

✐

✐

Self-Organizing Fuzzy Controllers 267

0.50

0.30

0.10

– 0.10

– 0.30

– 0.50
36.00 37.00 38.00

t (sec)
39.00 40.00

e M

FIGURE 5.73 The model tracking error responses at the end of learning. (From Kovačić,
Z., Bogdan, S., and Balenović, M., The IEEE Transac. Energy Conver., 13(4), 1479–1484,
1999. With permission.)

FIGURE 5.74 The self-learning fuzzy controller output responses at the end of learning.
(From Kovačić, Z., Bogdan, S., and Balenović, M., The IEEE Transac. Energy Conver.,
13(4), 1479–1484, 1999. With permission.)

We use the same program (the same structure of the fuzzy controller and the same
reference model) as in simulations. A position feedback signal is obtained by
sampling the servo potentiometer voltage signal fed to the input of a 12-bit bipolar
A/D–D/A card (input range ±9 V, Td = 10 msec). Due to the measurement
noise, the feedback signal is filtered by computing the average of last two acquired
values.
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TABLE 5.6
The Self-Organized Fuzzy Rule-Table

NLE NME ZE PME PLE

NLDYF −0.033 0.125 0 0 0
NMDYF −0.485 0.117 0.107 0 0
ZDYF −1.491 0 0 0.660 1.766
PMDYF 0 0 −0.183 0.022 1.955
PLDYF 0 0 0 −0.286 0.172

The series of reference input changes is generated by a computer program.
Since the ±9 V analog input range is converted into the 12-bit digital input range
(±2048), with feedback gain coefficient Kd = 2.67 V/rad, the change of±300 LSB
corresponds to the angular displacement of about±28◦. As we use the same fuzzy
controller program as in simulations (where inputs are scaled to interval [−1, 1]),
fuzzy controller input variables e(k) and�yf(k) are scaled with respective scaling
factor values Ke = 0.00167 and K�yf = 0.05667. The backlash value identified
in the servo system ES 130 was approximately 5%.

The reference model and the system output responses obtained after first three

seconds as in that moment the first change of the reference input occurred. We can
see that the system is faster than the reference model. Also, we can notice a rather
high peak value (overshoot) and a large steady-state error. In the second learning
iteration, the fuzzy controller already adjusted the rise time dynamics, reduced the
overshoot, and significantly decreased the steady-state error. The tracking error
exceeds 20◦
the first learning iteration the controller output value assumes nonzero values, but
the static friction helps to keep the working mechanism still. In the next iteration
the fuzzy controller already starts contributing to overall stronger control effort

closely follows the reference model and the maximal tracking error is kept within
±3◦ (±10% of the reference input change). The steady-state tracking error value
is very small and comparable to the value of measurement noise. The controller

From the results we can see that the sensitivity model-based self-organization
effectively dealt with backlash nonlinearity and after only 6 to 8 learning iterations
the created fuzzy control surface was good enough to satisfy initial design goals.

The controller synthesis does not require knowledge about the process model
and the type of system nonlinearity. It is sufficient to know an approximate value of
process gain and boundaries of system variables to prevent the self-organization

© 2006 by Taylor & Francis Group, LLC

runs of the system are shown in Figure 5.75. The time scale starts after three

which is more than 30% of the reference input change (Figure 5.6). In

(Figure 5.76).

and tracking error responses obtained after five learning iterations. The system
Figure 5.78 and Figure 5.79 show the system output, reference model output

output, shown in Figure 5.80, is very similar to the controller output obtained in
simulations (Figure 5.74).
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FIGURE 5.75 The system output and reference model responses at the beginning of
learning.
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FIGURE 5.76 The model tracking error responses at the beginning of learning.

algorithm to lead to system instability. The final singleton values of the self-

Example 5.5 Sensitivity model-based self-learning fuzzy control of a position-
ing servo system — nonlinear case II.

Let us present the performance of a sensitivity model-based self-learning
hybrid fuzzy controller controlling the positioning servo system described in detail

© 2006 by Taylor & Francis Group, LLC

organized fuzzy rule-table are shown in Table 5.7.

yf

yM

3.00 4.00 5.00 6.00
t (sec)

7.00 8.00

[°
]

40

20

–20

–40

0



“DK6032_C005” — 2005/11/5 — 17:03 — page 270 — #74
✐

✐

✐

✐

✐

✐

✐

✐

270 Fuzzy Controller Design

FIGURE 5.77 The self-learning fuzzy controller output responses at the beginning of
learning.

FIGURE 5.78 The system output and reference model responses at the end of learning.

in Example 5.1. The block structure of the nonlinear control process shown in

generally assumed as difficult to deal with. A weight attached to the bar represents
a full load weight while the bar itself represents a reduced load weight.

be described as a function of angular displacement measured from the natural

© 2006 by Taylor & Francis Group, LLC

Figure 5.81 represents a position control loop affected by nonlinear friction and a

that from the control point of view these nonlinearities (and backlash as well) are
gravitation-dependent shaft load (see Figure 5.3 and Figure 5.4). We already said

Referring to Figure 5.3, the nonlinear gravitation-dependent load (5.24) can
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FIGURE 5.79 The model tracking error responses at the end of learning.

FIGURE 5.80 The self-learning fuzzy controller output responses at the end of learning.

equilibrium state (θ = yf + π/2 = 0◦):

Tl = f1(θ) = Tl0 sin
(
θ
π

180

)
(5.96)

where θ is the angle expressed in degrees.
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TABLE 5.7
The Self-Organized Fuzzy Rule-Table

NLE NME ZE PME PLE

NLDYF 0.183 0.19 0 0 0
NMDYF 0.145 0.073 0.07 0 0
ZDYF −0.37 −0.13 0 0.16 0.96
PMDYF 0 −0.06 −0.008 −0.008 −0.132
PLDYF 0 0 −0.201 −0.286 −0.272

FIGURE 5.81 The structure of a nonlinear position control loop. (From Kovačić, Z.,
Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51, 1998. With
permission.)

In the synthesis of a self-learning fuzzy controller friction parameters (static,
viscous, and dynamic) are treated as unknown. Although we could easily identify
friction parameters in the controlled system, this is not necessary.

The rated parameter values are: Kp = 2 V/V (P gain), Ks = 0.318 V/rad
(feedback gain), K = 0.191 Nm/A, Ka = 0.106 V/A (armature gain), JT =
2.7E−4 kg m2 (reduced load weight), JT = 1.27E−3 kg m2 (full load weight),
N = 4 (gear ratio). The distance of the load mass center (full load weight) is
l = 26.5 cm, and mass of the weight is m = 0.22 kg.

From two extreme moment of inertia values related to reduced and full load
weights, we can see that parameter JT varies approximately in the range 1:5.

should be noted that because of implemented hardware technology it was not
possible to determine exact values of some process parameters (e.g., chopper gain
Kc, gain coefficient Kv dependent on the internal angular speed controller gain,
current feedback gain Ki). This does not represent a problem for the synthesis of a
self-learning fuzzy controller, since the exact model of the process is not needed.

A personal computer with a 12-bit A/D and D/A converter board has been used
for implementation of the self-learning fuzzy controller. The structure of a fuzzy
controller is the same as in the design example 5.2, that is, five linguistic subsets

© 2006 by Taylor & Francis Group, LLC

Referring to the block diagram of the control process shown in Figure 5.5, it
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are defined for both fuzzy controller inputs (universes of discourse E and DYF):
NL, NM, Z, PM, PL. A linear distribution of corresponding membership functions
(5.74) has been selected. The sampling interval is Td = 10 msec. Parameters
of the second-order reference model are determined according to the selected
performance indices: overshoot in response, σm = 0.5% and peak times: tm =
0.6 sec and tm = 0.4 sec. The reference model is simultaneously used as a process
approximation Gpa in the sensitivity model (5.83).

The self-learning fuzzy control method has been experimentally tested for
a series of step changes of the reference input equal to �θr = ±20◦ in two
intentionally selected operating points, θ0 = 0◦ (the bar is in the bottom vertical
position) and θ0 = −90◦ (the bar is in the left-hand horizontal position), which
correspond to extreme magnitudes of the position dependent load torque Tl =
f1(θ) = Tl0 sin θ . For the given 12-bit A/D and D/A converters changes of the
reference input equal to �θr = ±20◦ correspond with digital values of ±100
LSB. Scaling coefficients are Ke = 0.005 and K�yf = 0.0833.

m = 0.6 sec) and the measured
position responses obtained after two runs of the system (one in each direction)
under full load weight (Tl0 = max) conditions in the operating point θ0 = 0◦.
Effects of friction and nonlinear time-varying load reflect in different dynamics for

show the tracking error and controller output responses. In the first run, the dynamic
behavior is determined only by the proportional controller (see the hybrid fuzzy

change of reference input.

tion of learning (after twelve positive runs of the system). The closed-loop control
system follows the reference model very closely and the maximum tracking error
value is kept below 5%. From the practical point of view, the controller output
has a very acceptable nonoscillatory form and also, the steady-state system error
is kept at zero as required.

The singleton values obtained after completion of the self-learning process are

It should be noticed that the sign of gravity-dependent load Tl (see [5.96])
depends on the direction of bar movement. Moreover, the static friction
value depends on the current bar position (operating point). Since the fuzzy control-
ler does not have an integral character, the role of singleton A33, which contributes
the most to the controller output in moments when input variables belong to their
zero fuzzy sets (see Table 5.8), is to compensate the steady-state error. The result is
that singleton A33 attains the sign and value, which depend on the current operating
point and the sign of reference input.

So in the case of a negative change of the reference input, A33= − 0.28,
while for a positive change, A33 = 0.48. The difference between two values that
appear in Table 5.8 is caused by static friction whose influence is dominant in the
operating point θ0 = 0◦. Different signs of the above two values indicate that A33
compensates the gravitational load, too.

© 2006 by Taylor & Francis Group, LLC

Figure 5.82 shows the reference model (t

each direction and in presence of a steady-state error. Figure 5.83 and Figure 5.84

structure shown in Figure 5.68) and the tracking error exceeds 30% of the imposed

Figures 5.85 to 5.87 show the same group of responses obtained after comple-

shown in Table 5.8. Singleton values are expressed in volts.
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FIGURE 5.82 Reference model and system output; start of learning; full load weight;
θ0 = 0◦. (From Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag.,
18(3), 41–51, 1998. With permission.)

t (sec)

25.00

10.00

0.00

– 10.00

– 20.00
0.00 1.00 2.00 3.00 4.00

e M
 [

°]

FIGURE 5.83 Tracking error; start of learning; full load weight; θ0 = 0◦. (From
Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51, 1998.
With permission.)

In order to check the robustness of the self-learning process, a new experiment
is made in the same operating point θ0 = 0◦, but under reduced load weight
(TL0
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= min) conditions. Figure 5.88 shows the reference model and system output
responses, while Figure 5.89 shows the tracking error response obtained after first

θ

yM

25.00

15.00

5.00

–5.00

–15.00

–25.00
0.00 1.00 2.00

t (sec)
3.00 4.00

[°
]



“DK6032_C005” — 2005/11/5 — 17:03 — page 275 — #79
✐

✐

✐

✐

✐

✐

✐

✐

Self-Organizing Fuzzy Controllers 275

FIGURE 5.84 Controller output; start of learning; full load weight; θ0 = 0◦. (From
Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51, 1998.
With permission.)

FIGURE 5.85 Reference model and system output; end of learning; full load weight;
θ0 = 0◦. (From Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag.,
18(3), 41–51, 1998. With permission.)

two runs of the system. The system dynamics are now faster that the reference
model dynamics. The steady state error (which is now lower because of reduced
bar weight) and varying dynamics exhibited in different movement directions,
caused by the friction and the gravitational load, are clearly seen, and in the initial
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FIGURE 5.86 Tracking error; end of learning; full load weight; θ0 = 0◦. (From Kovačić, Z.,
Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51, 1998. With
permission.)

FIGURE 5.87 Controller output; end of learning; full load weight; θ0 = 0◦. (From
Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51, 1998.
With permission.)

phase of learning, the tracking error has exceeded 25% of the imposed change of
reference input.

learning iterations. As can be seen, the system follows the reference model very
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Figure 5.90 and Figure 5.91 show the same group of responses after twelve

2.00

1.00

0.00

–1.00

–2.00
34.50 35.50 36.50 37.50 38.50

t (sec)

u  
[V

]



“DK6032_C005” — 2005/11/5 — 17:03 — page 277 — #81
✐

✐

✐

✐

✐

✐

✐

✐

Self-Organizing Fuzzy Controllers 277

TABLE 5.8
The Self-Organized Fuzzy Rule-Table

NLE NME ZE PME PLE

NLDYF 0.980 0.295 0 0 0
NMDYF 0.325 −0.013 −0.743 0 0
ZYF 0 −0.334 A33 0.018 0
PMDYF 0 −0.202 0.909 0.066 −0.105
PLDYF 0 0 0 −0.207 −0.783
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FIGURE 5.88 Reference model and system output; start of learning; reduced load weight.
(From Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51,
1998. With permission.)

closely and the maximum tracking error value is kept below 10%, while the steady-
state error is kept at zero.

From the control point of view, the worst case is control of the system under full
load weight conditions in the operating point θ0

◦

error response after first two runs of the system. The system output response clearly
indicates that this is the most difficult starting operating point for the system what
results in the highest tracking error (over 80% due to the presence of active load,
which cannot be compensated only by means of a P controller).

learning iterations. The system follows the reference model very closely and the
maximum tracking error value is reduced almost 15 times and kept below 10%. The
steady-state error is kept at zero indicating that the controller learned to compensate

© 2006 by Taylor & Francis Group, LLC

= −90 . Figure 5.92 shows the
reference model and system output responses, while Figure 5.93 shows the tracking

Figure 5.94 and Figure 5.95 show the same group of responses after fourteen



“DK6032_C005” — 2005/11/5 — 17:03 — page 278 — #82
✐

✐

✐

✐

✐

✐

✐

✐

278 Fuzzy Controller Design

20.00

10.00

0.00

– 10.00

– 20.00
0.00 1.00 2.00

t (sec)

3.00 4.00

e M
 [

°]

FIGURE 5.89 Tracking error; start of learning; reduced load weight; θ0 = 0◦. (From
Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51, 1998.
With permission.)
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FIGURE 5.90 Reference model and system output; end of learning; reduced load weight.
(From Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51,
1998. With permission.)

the influence of all system disturbances. The form of the self-learning fuzzy con-
troller output is different in different movement directions due to the presence of all

ence input, the controller, after short enforcing, starts braking since the direction of
the load torque action coincides with the bar movement direction. The singleton

© 2006 by Taylor & Francis Group, LLC

nonlinearities, as shown in Figure 5.96. In the case of the negative change of refer-
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FIGURE 5.91 Tracking error; end of learning; reduced load weight; θ0 = 0◦. (From
Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51, 1998.
With permission.)
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FIGURE 5.92 Reference model and system output; start of learning; full load weight;
θ0 = −90◦. (From Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag.,
18(3), 41–51, 1998. With permission.)

expressed in volts.
In the case of a negative change of reference input, A33 = −0.945 V, while for

a positive change, A33 = −0.985 V. One can notice that the difference between

© 2006 by Taylor & Francis Group, LLC

values obtained by self-organization are shown in Table 5.9. Their values are
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FIGURE 5.93 Tracking error; start of learning; full load weight; θ0 = −90◦. (From
Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51, 1998.
With permission.)
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FIGURE 5.94 Reference model and system output; end of learning; full load weight;
θ0 = −90◦. (From Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag.,
18(3), 41–51, 1998. With permission.)

these two values is smaller than in the case when operating point θ0 = 0◦. It is due
to variability of static friction with the operating point, caused by a radial influence
of the bar on the bearings and the gear.

rules have different singleton values in two different operating points. In other

© 2006 by Taylor & Francis Group, LLC

By comparison of Tables 5.8 and 5.9 one can find out that corresponding fuzzy
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FIGURE 5.95 Tracking error; end of learning; full load weight; θ0 = −90◦. (From
Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag., 18(3), 41–51, 1998.
With permission.)

FIGURE 5.96 Self-learning fuzzy controller output; end of learning; full load weight;
θ0 = −90◦. (From Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag.,
18(3), 41–51, 1998. With permission.)

words, such controllers are designed for constrained operating ranges around the
operating points, and their operation out of these ranges would most likely start
a new process of self-organization. The influence of operating point changes that

© 2006 by Taylor & Francis Group, LLC

are out of the expected controller’s operating range is shown in Figure 5.97 and
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TABLE 5.9
The Self-Organized Fuzzy Rule-Table

NLE NME ZE PME PLE

NLDYF −0.725 0.594 0 0 0
NMDYF −1.038 −1.288 −1.095 0 0
ZDYF −0.602 −1.499 A33 0 0
PMDYF 0 −1.143 −0.939 −0.545 −1.398
PLDYF 0 −0.941 −0.893 −2.475 −1.578

FIGURE 5.97 Reference model and system output; full load weight; θ0 = −90◦, fuzzy
controller designed for θ0 = 0◦

load torque has a very large impact. In the operating point θ0 = −90◦ if the system
is controlled by the fuzzy rule-table obtained for the operating point θ0 = 0◦, the
steady-state error becomes evident (Figure 5.97). On the other hand, the system
operating in θ0 = 0◦ and controlled by the fuzzy controller obtained for θ0 = −90◦
has become unstable (Figure 5.98).

In order to avoid a start of a new self-organization process every time that it
is triggered by significant changes of the operating point, a corresponding fuzzy
rule-table can be stored in the controller memory and called when it is needed.
Such multiple fuzzy rule-table approach is described in Sections 4.2.3 and 5.3.3.
In this way, the fuzzy controller is synthesized only once for a certain operating

© 2006 by Taylor & Francis Group, LLC

Figure 5.98. From the responses one can see that the nonlinear gravity-dependent

(Table 5.8).
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FIGURE 5.98 Reference model and system output; full load weight; θ0 = 0◦, fuzzy
controller designed for θ0 = −90◦

range and then repeatedly used for this range during the full range operation. The
other possibility is to add load torque observers and thus compensate the nonlinear
load torque impact by applying an adequate compensation signal [61]. Then one
fuzzy rule-table could be sufficient for the whole operating range.

More experiments performed with changed reference model parameters (tm =
0.4; 0.6; 0.8 sec) have indicated that the choice of reference model parameters is
not a critical issue, since it has not influenced much the convergence of the learning

m = 0.4 sec. An attempt to
accomplish further increase in robustness by adding an integral term in parallel to
the P controller and the FLC has shown that the responses obtained in the presence
of an integral term did not differ much from those obtained without it. Namely,
the integral term was activated conditionally (i.e., only if it was necessary) after
the major part of learning process was completed.

Since the selection of process approximation Gpa affects the dynamics of
sensitivity functions, we have investigated the influence of zero-, first-, second-,
and third-order linear process approximations on the performance of learning
mechanism, while keeping the second-order reference model unchanged. It must
be emphasized that all experiments finished successfully indicating a stable conver-
gence of the learning process and providing satisfactory results of model tracking
control.

© 2006 by Taylor & Francis Group, LLC

process, as shown in Figures 5.99 to 5.104 for the case t

(Table 5.9).
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FIGURE 5.99 The reference model and system output responses; start of learning
(full load). (From Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst. Mag.,
18(3), 41–51, 1998. With permission.)
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FIGURE 5.100 The tracking error responses; start of learning (full load weight, faster
reference model). (From Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst.
Mag., 18(3), 41–51, 1998. With permission.)

Although experimental results have confirmed the closed-loop stability, the
described self-learning fuzzy control method lacks a rigorous proof of stability
that would establish criteria for the synthesis of the fuzzy controller.

The obtained experimental results demonstrated the ability of the self-learning
fuzzy controller to track the reference model and simultaneously compensate for
operating point-dependent variations of shaft load. On the other hand, the described

© 2006 by Taylor & Francis Group, LLC
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FIGURE 5.101 The self-learning fuzzy controller output responses; start of learning (full
load weight, faster reference model). (From Kovačić, Z., Balenović, M., and Bogdan, S.,
IEEE Contr. Syst. Mag., 18(3), 41–51, 1998. With permission.)

FIGURE 5.102 The reference model and system output responses; end of learning (full
load weight, faster reference model). (From Kovačić, Z., Balenović, M., and Bogdan, S.,
IEEE Contr. Syst. Mag., 18(3), 41–51, 1998. With permission.)

strategy of learning is not effective for systems exposed to external disturbances,
which do not allow any change of the reference input (usually called stabilization
systems). If such self-learning strategy could be successfully found, it could be
combined with described learning concept to cover a wider spectrum of potential
applications.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 5.103 The tracking error responses; end of learning (full load weight, faster
reference model). (From Kovačić, Z., Balenović, M., and Bogdan, S., IEEE Contr. Syst.
Mag., 18(3), 41–51, 1998. With permission.)

FIGURE 5.104 The self-learning fuzzy controller output responses; end of learning (full
load weight, faster reference model). (From Kovačić, Z., Balenović, M., and Bogdan, S.,
IEEE Contr. Syst. Mag., 18(3), 41–51, 1998. With permission.)

5.3.3 Example: Multiple Fuzzy Rule Table-Based Control

In Example 5.4, we have pointed out that any change of operating point that
lies out of the self-organizing fuzzy logic controller input universes of discourse
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could potentially deteriorate the quality of control and even initiate a new self-
organization process. As described in Section 4.2.3, adaptation to changes of
operating points can be achieved by using multiple fuzzy rule tables designed
for respective operating regions. A heuristic design of a larger number of fuzzy
controllers could be a repulsive job, but self-organization methods could make it
very attractive.

In this example, we demonstrate control of a nonlinear positioning servo system
described in detail in Example 5.1 by using multiple position-dependent fuzzy rule
tables [62]. The block structure of the nonlinear control process affected by static

a gravitational load are described with the sine (cosine) law, that variable changes
not only in a nonlinear way but also periodically. Therefore, instead of using one
fuzzy rule-table for the full range (360◦) positioning, the use of multiple fuzzy
rule tables for selected operating regions is applied. The whole operating range in
the studied example has been split into 12 operating regions. Six regions from 0 to
150◦
fuzzy rule tables cover other six regions from 180 to 330◦. It must be noted that
except output singletons, other fuzzy controller parameters are the same in all
operating regions. Since both positive and negative changes of the reference input
initiate learning iterations, each fuzzy rule-table depicted in Figure 5.105 and
Figure 5.106 actually has two values of the central singleton A33 (please refer for

with a total number of 24 fuzzy rule tables.
The transition from one fuzzy rule-table to another has been managed in a

smooth and bumpless way due to the hysteresis of 2◦ embedded in the algorithm
for switching of adjacent fuzzy rule tables.

The question arises whether the stability of such servo control loop could
be guaranteed or not. In Section 5.1 we showed that the stability of particular
model reference-based adaptive fuzzy control systems can be observed by using
a Lyapunov approach [63]. Here, only practical proofs of stability can be reached
based on the fact that a model reference-based learning process converges, or that
a desired system behavior is provided.

In order to get a better assessment of the self-learning multiple fuzzy rule
table-based control, the servo system has been first controlled with a single fuzzy
rule-table controller obtained after learning around the operating position θ0 = 0◦

negligible in the region around θ0 = 0◦, while in other regions it increases up to
8◦, while the maximum steady-state error reaches 2◦. Very good following of the
reference model dynamics in only one region and deterioration of performance
in other regions clearly shows the motivation for introduction of multiple fuzzy
rule-table control.

in the case of using a multiple fuzzy rule-table controller for the same customized
sequence of reference input changes as in the previous experiment. It must be

© 2006 by Taylor & Francis Group, LLC

friction and nonlinear gravitational load is shown in Figure 5.81. Since changes of

are shown in Figure 5.105. Similarly, as shown in Figure 5.106, corresponding

better understanding to Tables 5.8 and 5.9). This may be perceived as a controller

The responses of a model tracking error are shown in Figure 5.108. The error is
for the customized sequence of reference input changes shown in Figure 5.107.

Figure 5.109 shows the reference model and system output responses obtained
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FIGURE 5.105 Distribution of fuzzy rule tables (controllers) for the operating range 0◦
to 150◦. (From Kovačić, Z., Bogdan, S., and Reichenbach, T., IFAC Robot Contr. 2000,
229–233, 2000. With permission from Elsevier.)

noted that all fuzzy rule tables used in the experiment have had a stationary form
obtained after completion of an earlier learning phase for each operating region.
Also, care has been taken during implementation to ensure bumpless switching
between fuzzy rule tables to prevent a possible chattering problem. The responses

very good following of the reference model dynamics has been achieved over the
full operating range and deterioration of performance is significantly reduced. Thus
the maximum tracking error and the steady-state error are now four times smaller
(2.2◦ and 0.44◦, respectively). The experimental results confirm that introduction

© 2006 by Taylor & Francis Group, LLC

of the reference model tracking error are shown in Figure 5.110. As can be seen,
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FIGURE 5.106 Distribution of fuzzy rule tables (controllers) for the operating range 180◦
to 330◦.

of the multiple fuzzy rule-table controller is justifiable, since it has led to a much
better servo system performance.

From the practical point of view, it is important that the waveform of the
self-learning fuzzy controller output is such that it does not wear the robot joint
actuators and mechanical parts. The multiple fuzzy rule-table controller output is

It can be seen that switching between tables is bumpless, and the controller output
waveform is acceptable for practical servo applications.

© 2006 by Taylor & Francis Group, LLC

shown in Figure 5.111. The adopted numeration of fuzzy rule tables is shown in
Figure 5.112. The sequence of active fuzzy rule tables is depicted in Figure 5.113.
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FIGURE 5.107 Tracking of reference trajectory with the single fuzzy rule-table controller.
(From Kovačić, Z., Bogdan, S., and Reichenbach, T., IFAC Robot Contr. 2000, 229–233,
2000. With permission from Elsevier.)
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FIGURE 5.108 Model tracking error responses with the single fuzzy rule-table controller.
(From Kovačić, Z., Bogdan, S., and Reichenbach, T., IFAC Robot Contr. 2000, 229–233,
2000. With permission from Elsevier.)

After comparison of experimental results obtained in the cases of using a single
fuzzy rule-table and a multiple fuzzy rule-table controller, it has been clearly
demonstrated that the latter controller provides much better performance with
closer tracking of reference model dynamics and very small steady-state errors.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 5.109 Tracking of the reference trajectory for the multiple fuzzy rule-table con-
troller. (From Kovačić, Z., Bogdan, S., and Reichenbach, T., IFAC Robot Contr. 2000,
229–233, 2000. With permission from Elsevier.)
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FIGURE 5.110 Model tracking error responses for the multiple fuzzy rule-table controller.
(From Kovačić, Z., Bogdan, S., and Reichenbach, T., IFAC Robot Contr. 2000, 229–233,
2000. With permission from Elsevier.)

5.3.4 Self-Organizing Fuzzy Control with a
Self-Learning Integral Term

© 2006 by Taylor & Francis Group, LLC

trollers. The basic controller structure described in Section 5.2 (see Figure 5.18)
All self-learning fuzzy logic controllers described in Chapter 5 are PD-type con-
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FIGURE 5.111 The self-learning fuzzy controller output responses. (From Kovačić, Z.,
Bogdan, S., and Reichenbach, T., IFAC Robot Contr. 2000, 229–233, 2000. With permission
from Elsevier.)

FIGURE 5.112 Numerical notation of fuzzy rule tables. (From Kovačić, Z., Bogdan, S., and
Reichenbach, T., IFAC Robot Contr. 2000, 229–233, 2000. With permission from Elsevier.)
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FIGURE 5.113 The fuzzy rule-table switching sequence. (From Kovačić, Z., Bogdan, S.,
and Reichenbach, T., IFAC Robot Contr. 2000, 229–233, 2000. With permission from
Elsevier.)

contains a PD-type self-learning fuzzy controller and a self-learning feedforward
term. Such controller ensures very good reference model tracking but it cannot
compensate a steady-state error caused by external disturbances, which were not
present during the self-organization process.

To cope better with a possible steady-state accuracy problem, as shown in

u(k) = �[e(k),�yf(k),λ] + k3(k)ur(k)+ (1− ξ)ui(k) (5.97)

where ui(k) = ui(k − 1) + kie(k), ki is an integral gain coefficient, and ξ is a
Boolean parameter, which becomes

ξ = 1 if e(k) /∈ ZE ∧�yf(k) /∈ ZDYF

ξ = 0 if e(k) ∈ ZE ∨�yf(k) ∈ ZDYF
(5.98)

Any new parameter introduction into a self-learning fuzzy control scheme
can be justified only if the value of this parameter is determined in an auto-
matic way. The integral gain coefficient ki will be determined by a sensitivity
model-based learning algorithm activated after the completion of main learning
algorithms (5.88) and (5.89). As shown in Figure 5.114, the fuzzy controller struc-
ture contains a mechanism for generation of signal ud, which simulates a persistent
source of disturbance of known magnitude and duration that acts on the con-
trolled process from the controller direction. Instead of learning in the presence

© 2006 by Taylor & Francis Group, LLC

Figure 5.114, an integral term is added to the self-learning fuzzy controller (5.71)
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FIGURE 5.114 The structure of a self-learning fuzzy controller with a self-learning
integral term. (From Kovačić, Z., Bogdan, S., and Reichenbach, T., IFAC Robot Contr.
2000, 229–233, 2000. With permission from Elsevier.)

of stochastic and nonpersistent external disturbances, learning of ki is performed
during a sequence of internally generated alternating step changes of ud(k) added
to the controller output. To ensure a good result of learning, it is essential to make
a fair estimation of a maximally expected magnitude and duration of simulated
disturbance variations. By that process, the reference input ur(k) should be kept
constant. Activation of ud depends on the state of Boolean parameter ζ , which is
set to one during the period of learning ki. Accordingly, during execution of main
learning algorithms (5.88) and (5.89), as well as during routine operation of the
fuzzy controller, ζ is set to zero.

Following the principle applied in the synthesis of main learning algorithms,
the sensitivity function of integral gain coefficient ki can be determined as

ηki(k) =
∂yf(k)

∂ki
= ∂yf(k)

∂u(k)

∂u(k)

∂ki
= Gp

∂u(k)

∂ki
= Gpη

∗
ki
(k) (5.99)

where η∗ki
(k) = η∗ki

(k − 1)+ e(k).
Consequently, the total differential of the system output attains the form

�yf(k) ≈ ζ
n∑

i=1

Gp

{
∂

∂λci

{�[e(k),�yf(k),λ]}
}
�λci + (1− ζ )Gpη

∗
ki
(k)�ki

(5.100)
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FIGURE 5.115 The reference model and system output responses during the start-up
(above) and the end of learning (below) of integral gain coefficient ki. (From Kovačić, Z.,
Bogdan, S., and Reichenbach, T., IFAC Robot Contr. 2000, 229–233, 2000. With permission
from Elsevier.)

where one can see that the change of parameter ζ switches off the tuning of ki during
the tuning of fuzzy controller parameters (including feedforward coefficient k3)
and vice versa.

From (5.100), the total differential of system output during the tuning of ki
(ζ = 0) is

�yf(k) ≈ Gpη
∗
ki
(k)�ki (5.101)

The sensitivity function ηki(k) is calculated in each control interval, while the
increment of gain coefficient ki is calculated at the very end of the learning interval.
Taking into account that in the model reference-based control systems�yf(k) can
be replaced with eM(k), an algorithm for tuning of the integral gain coefficient has
the form:

�ki =
eκM(v

κ
ki
)

ηκki
(vκki

)
(5.102)

where vκki
is the last control interval in the current learning iteration.

During learning intervals the simulated disturbance signal alters between the
constant maximal value and zero. In order to improve learning stability, calculation
of�ki is performed only in the nonzero disturbance intervals. Learning is stopped if
the obtained value of ki satisfactorily cancels the steady-state error in the given time.
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FIGURE 5.116 The system output response in the presence of disturbance obtained with
a self-learning integral term after completion of learning.

FIGURE 5.117 The reference model and system output responses after the end of learning
(above); convergence of integral gain coefficient ki (below). (From Kovačić, Z., Bogdan, S.,
and Reichenbach, T., IFAC Robot Contr. 2000, 229–233, 2000. With permission from
Elsevier.)
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The proposed SLFLC has been tested by simulation in the case of controlling

shows the reference model and system output responses at the start-up and the end
of learning of ki, respectively (please notice that learning of ki started at t = 330 sec,
that is, after completion of the main learning algorithm). The period of simulated
disturbance ud(k) is 30 sec, and its amplitude is Ud = 0.3. The learning algorithm
is executed during the first half of the period, while the second half (15 sec) is
needed to drain the integrator before the next learning iteration. The system output

After inclusion of the self-learning integral term, the system’s response to the
changes of reference input insignificantly changed, having just a little bit higher

i during the learning process is
also illustrated in Figure 5.117. In the studied case, the whole process of learning
ended in six iterations.

The results obtained in the simulated experiments have confirmed a stable
convergence of learning and effective reference model tracking control without
steady state errors in the presence of external disturbance. In Reference 60 it has
been shown that such approach also satisfactorily improves controller robustness
in the case of nonlinear process control.
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44. Crnošija, P., Bogdan, S., and Kovačić, Z., “Sensitivity model and synthesis
of dead-beat algorithms in digital servosystems,” Automatica, 30, 1345–1350,
1994.

45. Rohrer, R.A. and Sobral, M., “Sensitivity considerations in optimal system design,”
IEEE Transactions on Automatic Control, AC-10, 43–48, 1965.

46. Belanger, P.R., “Some aspects of control tolerances and first-order sensitivity in
optimal control systems,” IEEE Transaction on Automatic Control, AC-11, 77–83,
1966.

47. Dorato, P. and Kestenbaum, A., “Application of game theory to the sensitivity
design of optimal systems,” IEEE Transaction on Automatic Control, AC-12,
85–87, February 1967.

48. Frank, P.M., Introduction to System Sensitivity Theory, Academic Press, 1978.
49. Guely, F. and Siarry, P., “A centred formulation of Takagi–Sugeno rules for

improved learning efficiency,” Fuzzy Sets and Systems, 62, 277–285, 1994.
50. Ishibuchi, H., Noyaki, K., Tanaka, H., Hosaka, Y., and Matsuda, M., “Empirical

study on learning in fuzzy systems by rice taste analysis,” Fuzzy Sets and Systems,
64, 129–144, 1994.

© 2006 by Taylor & Francis Group, LLC



“DK6032_C005” — 2005/11/5 — 17:03 — page 300 — #104
✐

✐

✐

✐

✐

✐

✐

✐

300 Fuzzy Controller Design

51. Gürocak, H.B. and de San Lazaro, A., “A fine tuning method for fuzzy rule bases,”
Fuzzy Sets and Systems, 67, 147–161, 1994.

52. Jang, J.-S.R. and Gulley, N., “Fuzzy logic toolbox — for use with Matlab,” The
MathWorks Inc., 1995.

53. Sage, A.P., Optimum Systems Control, Prentice-Hall, New York, 1968.
54. Tomovic, R. and Bekey, G.A., “Adaptive sampling based on amplitude sensitivity,”

IEEE Transaction on Automatic Control, AC-11, 282–284, April 1966.
55. Bekey, G.A. and Tomovic, R., “Sensitivity of discrete systems to variation of

sampling interval,” IEEE Transactions on Automatic Control, AC-11, 284–287,
April 1966.

56. Shane, B.A. and Barnett, S., “Sensitivity of stable linear systems,” IEEE
Transactions on Automatic Control, AC-17, 148–150, February 1972.
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63. Kovačić, Z., Cupec, R., and Bogdan, S., “A servo positioning by using model
reference adaptive fuzzy controller,” CD-ROM Preprints of the 1st IFAC/IEEE
Symposium on System Structure and Control 2001, Prague, 2001.

© 2006 by Taylor & Francis Group, LLC



“dk6032_c006” — 2005/11/4 — 17:41 — page 301 — #1
�

�

�

�

�

�

�

�

6 Fuzzy Controllers as
Matlab

® Superblocks
The usage of simulation software packages for modeling, simulation, and
optimization of control systems has become a part of regular engineering practice.
Recently added features of such software packages like a possibility to gener-
ate real-time executable code directly from simulation models enabled shorter
development times and faster validation of new control solutions. The solutions
developed with the world standard software packages like Matlab, Matrixx , or
Mathematica, become transparent to a large number of users. Respecting the fact
that Matlab+Simulink is one of the most popular and worldwide used simula-
tion software packages, in this chapter we give several worked out examples of
fuzzy control systems whose simulation models are built by using Matlab. Since
Matlab contains the Fuzzy Logic Toolbox (FLT) that allows the designer to create
and test new fuzzy control designs, we give a short description of basic features of
the Matlab Fuzzy Logic Toolbox needed for the successful usage of the tool [1].

In order to make it possible for the readers of this book to test several fuzzy
controllers presented in this book by themselves, the hybrid fuzzy controller
and two types of self-organizing fuzzy controllers (i.e., model tracking error
polynomial-based and sensitivity model-based) are implemented as ready-to-use
Matlab+Simulink function blocks that are compatible with the FLT standards.
Since  new  versions of Matlab are expected to appear, updated versions of function
blocks will be available to interested readers via the World Wide Web [2].

6.1 FEATURES OF MATLAB FUZZY LOGIC TOOLBOX

Matlab FLT is a program tool for working with fuzzy logic systems. FLT contains
four main tools: FIS (Fuzzy Inference System) Editor, Membership Functions
Editor, Rule Editor, and Rule Viewer.

6.1.1 FIS Editor

The FIS Editor is a tool in FLT, where the number of inputs, names of input, and
output variables, as well as the type of fuzzy controller (Mamdani or Sugeno) is

that linguistic values of the output variable are regular fuzzy sets. Selection of a
Sugeno-type fuzzy controller assumes that linguistic values of the output variable
are singletons.

301
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determined (Figure 6.1). Selection of a Mamdani-type fuzzy controller assumes
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FIGURE 6.1 FIS editor.

The FIS editor also serves for selection of a fuzzy inference method and it
enables the choice of aggregation operator that gives a different type of a com-
positional output fuzzy set. The max-type aggregation leads toward the center of
area (COA) defuzzification, while the sum-type aggregation leads toward the cen-
ter of gravity (COG) defuzzification (the reader can refer to the discussion about

The fuzzy controller structure is stored in a so-called FIS matrix. The connec-
tion between FLT and Simulink may be accomplished by reading the FIS matrix
from the Matlab command window: >w = readfis(‘name_of _ file.fis’), followed
by a list of all FIS matrix elements, or by saving the fuzzy controller structure
created with FIS editor into the Matlab workspace.

6.1.2 Membership Function Editor

controller enables definition of membership function forms for the inputs and the
output, and allows settings of boundary parameters for each membership function.
The designer can choose from eleven standard functions (triangle, trapeze, bell,

© 2006 by Taylor & Francis Group, LLC

Membership function editor shown in Figure 6.2 for an example of a DISO fuzzy

different defuzzification methods in Section 2.3.2).
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FIGURE 6.2 Membership function editor.

of the functions range, name of functions, and the range of display. Also, new
membership functions can be added.

6.1.3 Rule Editor

be inserted in forms of text, symbols, or indices. Before insertion of rules, fuzzy
membership functions must be defined.

6.1.4 Rule Viewer

the fuzzy inference process of a DISO fuzzy controller. Each row represents one
fuzzy rule containing two input membership functions and one output member-
ship function. In this way all fuzzy rules create a table with three corresponding
columns. Actual values of fuzzy controller inputs, depending on selected features

© 2006 by Taylor & Francis Group, LLC

Z-shape, �-shape, S-shape, Gauss, etc., see Figure 6.3). The tool allows definition

Rule Editor shown in Figure 6.4 serves for insertion of new fuzzy rules. Rules can

Rule viewer shown in Figure 6.5 is a tool that provides a more detailed insight into
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trapmf gbellmf
1

0

trimf gaussmf gauss2mf smf

1

0

zmf psigmf dsigmf pimf sigmf

FIGURE 6.3 Forms of fuzzy membership functions in FLT.

FIGURE 6.4 Rule editor.

of fuzzy inference, yield different contributions to the crisp fuzzy controller out-
put, which can be simultaneously registered in the Rule Viewer window. This tool
allows the designer to make analysis of the inference system and decide about the
controller parameter settings.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 6.5 Rule Viewer.
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1–0.5 0 0.5–1

FIGURE 6.6 Defuzzification methods in FLT.

6.1.5 Defuzzification Methods in FLT

The FLT provides a set of five defuzzification methods to choose from: centroid,
mom, lom, som, and bisector (see Figure 6.6). Moreover, FLT allows the designer
to create his or her own defuzzification methods. For the Takagi–Sugeno type of
DISO controllers the centroid defuzzification is the most appropriate. The outcome
of centroid defuzzification will depend on the selected type of aggregation. The
usage of max-type aggregation leads to the COA defuzzification method described
with (2.20), while the sum-type aggregation leads to the COG defuzzification
method described with (2.21).

© 2006 by Taylor & Francis Group, LLC
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TABLE 6.1
Several FLT Commands

Command Command description

showfis(w) Display the whole structure of the fuzzy controller
plotmf(w, ‘input’, 1) Display all membership functions for input variable 1
getfis(w) Get fuzzy system properties
plotfis(w) Display FIS input–output diagram
gensurf(w) Generate FIS output surface
deffuzzdm Defuzzification methods
rmmf Remove membership functions from FIS matrix
newfis Create new FIS document
writefis Save FIS document
rmvar Remove variable from FIS matrix

6.1.6 FLT Commands

The FLT stores fuzzy controller data into a ∗.fis file. All parameters can be modified
simply by editing the ∗.fis file. Several FLT commands that belong to the core of
the FLT command set are given in Table 6.1. The reader can find more about FLT
commands in Reference 1.

6.2 HYBRID FUZZY CONTROLLER SUPER-BLOCK FOR MATLAB

The detailed description of hybrid fuzzy controllers is given in Section 4.1. They
usually have several operating modes and therefore switching between operating
modes occurs. In order to prevent a possible chattering problem, implementation
of a hybrid fuzzy controller as a Matlab super-block must provide bumpless
switching of modes.

for angular speed control of a vector-controlled chopper-fed PMSM drive
described in detail in Example 4.1. The fuzzy controller function block contained
within the hybrid fuzzy controller super-block is a standard FLT function block.
One can notice the actual values of fuzzy controller inputs scaling factors, as well as
the actual boundary values of inputs zero subsets ZE and ZDE, respectively. These
values dictate the switching of operating modes. In general, they should be set to
match the dynamic characteristics of the target control system as much as possible.

The bumpless transition between operating modes is accomplished in a way
that the crisp controller output value from the preceding operating mode becomes
the initial controller output value for the current operating mode.

speed control system of the PMSM drive described in Example 4.1. The values of
block parameters are related to the rated values of system parameters.

© 2006 by Taylor & Francis Group, LLC

Figure 6.7 shows a structure of a hybrid fuzzy controller super-block designed

Figure 6.8 shows the simulation block scheme of the hybrid fuzzy angular
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FIGURE 6.7 The structure of the hybrid fuzzy controller superblock for
Matlab+Simulink.

FIGURE 6.8 The simulation scheme of the studied hybrid fuzzy angular speed control
system.

controller output responses in the case of the stepwise change of the reference input.
Figure 6.11 shows a time flow of controller output signals obtained by following
the sequence of induced operating mode changes. According to expectations, at the
beginning of transient response only the fuzzy controller is active, then fuzzy and
PI controllers work together, and eventually, the PI controller takes over control
in the steady state. The analysis of responses proves that transitions from one
operating mode to another are smooth, without abrupt changes in the controller
output signal.

© 2006 by Taylor & Francis Group, LLC

Figure 6.9 and Figure 6.10 show the measured angular speed and hybrid fuzzy
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FIGURE 6.9 The measured angular speed response of a hybrid fuzzy control system.

FIGURE 6.10 The hybrid fuzzy controller output response.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 6.11 The hybrid fuzzy controller output response during the change of operating
modes.

6.3 POLYNOMIAL-BASED PSLFLC MATLAB SUPER-BLOCK

In this section, we demonstrate the performance of a PD type polynomial-based
self-learning fuzzy logic controller (PSLFLC) described in Section 5.2, which has
been implemented as a function block for Matlab+Simulink [3]. The learning
laws (5.49) and (5.57) implemented in the block are based on the usage of a second-
order reference model (3.28) and a third-degree model tracking error polynomial.
The emphasis in this chapter is put on the description of function block parameters
and the way the block is used.

The concept of the PSLFLC block allows control of unknown inherently stable
static and astatic nonlinear systems if the desired closed-loop behavior can be
represented with a linear second-order reference model. The basic structure of
the PSLFLC block contains a PD-type fuzzy controller and a feedforward control

u(k) = � [e(k), de(k), λ] + ξsk3 · ur(k) =
r∑

i=1

Ai · φi [e(k), de(k)] + ξsk3 · ur(k)

(6.1)

where ξs is a Boolean type parameter (ξs = 1 denotes a static type of system).
The user must be aware that most of the FIS matrix parameters including input

and output universes of discourses, as well as the number, size, and shape of the
fuzzy input sets have been selected and determined before starting using the block.

© 2006 by Taylor & Francis Group, LLC

element (Figure 6.12):
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FIGURE 6.12 The structure of a system with PSLFLC. (From Kovačić, Z., Bogdan, S.,
and Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives Power Electr., 93–98, 2000.
With permission.)

FIGURE 6.13 The PSLFLC function block mask. (From Kovačić, Z., Bogdan, S., and
Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives Power Electr., 93–98, 2000. With
permission.)

The PSLFLC function block is written as a CMEX S-function stored as
the pslflc.dll file. The block has a mask in the form of a standard dialog box

influence operation of the block.

© 2006 by Taylor & Francis Group, LLC

(Figure 6.13). The user can set several parameters displayed in Table 6.2 that
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TABLE 6.2
PSLFLC Parameters That User Can Set

PSLFLC parameter Parameter description

Learning coefficients (type: 〈real〉) Values of learning coefficients γ1, γ2,
γ3 that satisfy stability conditions
(5.59)

FISMATRIX (type: 〈name〉) Name of the FIS matrix. The FIS
matrix has a form of a standard
Fuzzy Logic Toolbox v.2.0 fismatrix
[1]

Number of iterations (type: 〈real〉) Maximum number of learning
iterations. Value = 0 means that
learning is disabled

Initial feedforward gain value (type: 〈real〉) If the controlled system is static
(ξs = 1), then an initial value of the
feedforward gain k3 (default
value = 0) can be defined. More
accurate k3 will speed up the
learning process

Controlled system type (type: 〈options dialog〉) Choice of system type with two
options (i) static or (ii) astatic

Save on disk (type: 〈check-box〉) Checking this option enables the
creation of files which store
particularly interesting results of
simulation for a subsequent analysis

can be seen that, besides the PSLFLC function block, the super-block contains
also blocks for scaling of fuzzy controller inputs and a reference model block.

The reference model block represents a unity gain second-order system imple-
mented according to the reference model Equation (3.28). The reference model
block has a mask (dialog box), which allows the user to define essential param-
eters: peak time (time of first maximum) tm, overshoot in response σm, and the
value of control interval. After ZOH-discretization, the resulting coefficients of
the reference model equation (3.28) are available for user’s convenience at the
reference model block output.

Let us demonstrate the effectiveness of the PSLFLC super-block on a model
of a PMSM drive taken from the Matlab–Simulink library of ready-to-use demo

been taken from the Power Systems Toolbox that is also the part of the Matlab–
Simulink software package. This model contains an outer angular speed control
loop and an inner stator current control loop with a PWM stator current controller
and a chopper-fed PMSM.

© 2006 by Taylor & Francis Group, LLC

The internal structure of the PSLFLC super-block is shown in Figure 6.14. It

examples (the directory is denoted in Figure 6.15). The blocks in the model have
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FIGURE 6.14 The structure of the PSLFLC super-block. (From Kovačić, Z., Bogdan, S.,
and Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives Power Electr., 93–98, 2000.
With permission.)

The intention of this example is not to discuss the properties of the Matlab

PMSM drive demo model, but to point out that this model is nonlinear and ori-
ginally controlled by a linear PI angular speed controller. In the new simulation

with the nonlinear PSLFLC super-block.
Seven linearly distributed triangular membership functions have been deter-

mined for both PSLFLC inputs e(k) and �e(k): NLE, NME, NSE, ZE, PSE,
PME, PLE and NLDE, NMDE, NSDE, ZDE, PSDE, PMDE, PLDE, respectively.
Simulations were performed with the simulated change of the angular speed refer-
ence input �ur = ±150 sec−1. Fuzzy input scaling coefficients were estimated at
ke = 1/300, k�e = 1/300. Learning coefficients were set to the following values:
γ1 = 0.02, γ2 = −0.018, γ3 = 0.002. The initial feedforward gain k3 value was
set to zero. Desired performance indices of the reference model were as follows:
σm = 0.5%, tm = 0.01 sec (sampling interval Td is 0.0001 sec).

Figure 6.16 and Figure 6.17 show the reference input, system output, and
reference model responses obtained after two and after six iterations of learning,
respectively. It may be seen that after completion of learning the system follows
the reference model very closely.

Figure 6.18 and Figure 6.19 show the reference model tracking error responses
at the beginning and the end of learning, respectively. In the initial phase, the
tracking error exceeds 100 sec−1, while in the end it drops below 30 sec−1 (less
than 10% of the imposed change of reference input).

Figure 6.20 and Figure 6.21 show the PSLFLC output responses at the begin-
ning and at the end of learning, respectively. The PSLFLC output has a very
acceptable nonoscillatory form, which clearly reflects the nonlinear character of
the target system.

© 2006 by Taylor & Francis Group, LLC

scheme shown in Figure 6.15, the original PI controller block has been replaced
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powerdemo\psbpmmotor.mdl). (From Kovačić, Z., Bogdan, S., and Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives Power Electr., 93–98,
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FIGURE 6.16 Start of learning: the reference input, system output, and reference
model output responses of the PMSM angular speed control system. (From Kovačić, Z.,
Bogdan, S., and Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives Power Electr.,
93–98, 2000. With permission.)

FIGURE 6.17 End of learning: the reference input, system output, and reference model
output responses of the PMSM angular speed control system. (From Kovačić, Z.,
Bogdan, S., and Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives Power Electr.,
93–98, 2000. With permission.)
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FIGURE 6.18 Start of learning: the reference model tracking error responses. (From
Kovačić, Z., Bogdan, S., and Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives
Power Electr., 93–98, 2000. With permission.)

FIGURE 6.19 End of learning: reference model tracking error responses. (From
Kovačić, Z., Bogdan, S., and Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives
Power Electr., 93–98, 2000. With permission.)
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FIGURE 6.20 Start of learning: the PSLFLC output responses. (From Kovačić, Z.,
Bogdan, S., and Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives Power Electr.,
93–98, 2000. With permission.)

FIGURE 6.21 End of learning: the PSLFLC output responses. (From Kovačić, Z.,
Bogdan, S., and Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives Power Electr.,
93–98, 2000. With permission.)
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FIGURE 6.22 End of learning: the graph of the PSLFLC control surface. (From Kovačić, Z.,
Bogdan, S., and Reichenbach, T., KoREMA 11th Intl. Conf. Electr. Drives Power Electr.,
93–98, 2000. With permission.)

Figure 6.22 shows the PSLFLC control surface that was generated after com-
pletion of self-organization. It gives a further insight into the nonlinear character
of the controller.

6.4 SENSITIVITY MODEL-BASED SLFLC MATLAB SUPER-BLOCK

In this section, we demonstrate the performance of a PD type self-learning fuzzy
logic controller (SLFLC) described in Section 5.3, implemented as a function block
for Matlab+Simulink [4]. The learning laws (5.88) and (5.89) implemented in
the block are based on the usage of a second-order reference model (3.28) and a
sensitivity model built with respect to fuzzy controller parameters. Similarly as
for the PSLFLC block, the emphasis is put on the description of function block
parameters and the way the block is used.

The concept of the SLFLC block allows control of unknown inherently stable
static and astatic nonlinear systems providing that a desired closed-loop system
behavior can be represented with a linear second-order reference model. The fuzzy
controller has two inputs e(k) and �yf (k), and one output uFC(k). The basic
structure of the SLFLC block contains a PD-type fuzzy controller, a feedforward

u(k) = �[e(k), �yf (k), λ] + ξsk3 · ur(k) + (1 − ξs)kpe(k)

=
r∑

i=1

Ai · φi[e(k), �yf (k)] + ξsk3 · ur(k) + (1 − ξs)kpe(k) (6.2)

whereas in (6.1), ξs refers to the type of system (1 — static, 0 — astatic).

© 2006 by Taylor & Francis Group, LLC

control element and a P controller (Figure 6.23):
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FIGURE 6.23 The structure of a system with SLFLC. (From Kovačić, Z., Bogdan, S., and
Reichenbach, T., 8th IEEE Mediterr. Conf. Contr. Autom. MED’00, TC-2.5, 2000. With
permission.)

Quite the same as with the PSLFLC block, the SLFLC FIS matrix is fully
compatible with the standard FLT FIS matrix form. Also, most of SLFLC FIS
matrix parameters (input and output universes of discourse, size, and shape of
fuzzy input sets) are determined before using the block. Because of the way how
self-organization is performed, input fuzzy sets take only a differentiable Gaussian
form (5.74). An α-cut operation is applied to all input fuzzy sets (α = 0.05). Since
output fuzzy sets are singletons, a COG defuzzification is used.

The SLFLC function block is written as a CMEX S-function stored as the

of the block.

The structure completely coincides with the structure of the PSLFLC super-block

function block.
Let us demonstrate the effectiveness of the SLFLC super-block on a simulation

model of a closed-loop engine speed control system taken from the Matlab–
Simulink library of ready-to-use demo examples (the directory is denoted in

valve opening. We shall not discuss the properties of the model, which is nonlinear
and originally controlled by a linear PI controller. A block of the hybrid fuzzy

super-block is acting in parallel with the existing PI controller block. This means
that the SLFLC super-block acts like an adaptation mechanism, having a goal to
improve the overall system performance.

© 2006 by Taylor & Francis Group, LLC

slflc.dll file. The block has a mask in the form of a standard dialog box (Figure 6.24).

The internal structure of the SLFLC super-block is shown in Figure 6.25.

shown in Figure 6.14, only the PSLFLC function block is replaced with the SLFLC

Figure 6.26). The control of an engine speed is based on the control of a throttle-

engine speed controller is shown in Figure 6.27. It can be seen that the SLFLC

The user can set several parameters displayed in Table 6.3 that influence operation
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FIGURE 6.24 The mask of the function block SLFLC. (From Kovačić, Z., Bogdan, S., and
Reichenbach, T., 8th IEEE Mediterr. Conf. Contr. Autom. MED’00, TC-2.5, 2000. With
permission.)

Seven Gaussian linearly distributed membership functions have been deter-
mined for both SLFLC inputs e(k) and �yf (k): NLE, NME, NSE, ZE, PSE,
PME, PLE and NLDYF, NMDYF, NSDYF, ZDYF, PSDYF, PMDYF, PLDYF,
respectively. Simulations were performed with a simulated change of the engine
speed reference input �ur = ±1000 rpm. Fuzzy input scaling coefficients were
estimated at ke = 1/100, k�yf = 1/300.Aminimal value of the sensitivity function
has been set to βmin = 0.05, the limit for an allowed change of singletons has been
set to χ = 1, while gain coefficient Ks has been set to 3.0. The proportional gain kp
has been set to zero, because a PI controller is already in the loop. Desired perfor-
mance indices of the reference model were as follows: σm = 0.5%, tm = 0.5 sec
(sampling interval Td is 0.01 sec).

Figure 6.28 and Figure 6.29 show the reference input, system output, and refer-
ence model responses obtained after three and after thirteen iterations of learning,
respectively. It can be seen that after completion of learning the system follows the
reference model much better than only with the PI controller. The original system
with a PI controller reaches the steady state after four seconds, while the hybrid
self-learning fuzzy controller enforces system to reach the steady state in less than

© 2006 by Taylor & Francis Group, LLC
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TABLE 6.3
SLFLC Parameters That User Can Set

SLFLC parameter Parameter description

FISMATRIX
(type: 〈name〉)

Name of the FIS matrix. The FIS matrix has a form of a standard
Fuzzy Logic Toolbox v.2.0 fismatrix [1]

Number of iterations
(type: 〈real〉)

Maximum number of learning iterations. Value = 0 means that
learning is disabled (only feedforward or P control is active)

Ks gain value
(type: 〈real〉)

Gain value determining the relation between the reference model and
the process approximation. Larger Ks will make learning slower, but
smoother and more stable

Allowed change
of centroid
(type: 〈real〉 = χ )

Setting the value of χ according to the following law: Kχ = e(χ |eM|),
defines constraints on singleton changes in one learning iteration,
where Kχ denotes a value, which divides calculated changes of
singletons. Larger Kχ makes learning slower. This parameter is
partly supplementary to the parameter Ks

Value of criterion for
stopping learning
(type: 〈real〉)

Threshold value δ0 of the IAE criterion (5.91) that serves for
stopping learning (for prevention of over-learning). This criterion is
recalculated in each learning iteration

Initial feedforward gain/P
controller gain value
(type: 〈real〉)

For the static type of a controlled system the feedforward gain k3 is
defined. For the astatic type of a controlled system the proportional
gain kp is defined. If k3 = 0, then k3 will change according to the
learning law (5.89) and contribute to the crisp output of the SLFLC.
If kp = 0, then only fuzzy logic control is active

Controlled system type
(type: 〈options dialog〉)

Choice of system type with two options (i) static or (ii) astatic.
This reflects the interpretation of the preceding
SLFLC parameter (k3 or kp)

Save on disk
(type: 〈check-box〉)

Checking this option enables the creation of files, which store
particularly interesting results of simulation for a subsequent
analysis

Minimal sensitivity
value (type: 〈real〉)

Definition of a threshold value βmin, which separates sensitivity
functions that contribute to changes of singletons from those
sensitivity functions (whose maximal values are below the
threshold) that do not contribute

a second. This proves that addition of the SLFLC in parallel to the PI controller
has contributed to a much better quality of the system response.

Figure 6.30 and Figure 6.31 show the hybrid self-learning fuzzy controller
outputs at the beginning (only PI controller is active) and at the end of learning
(both controllers are active), respectively. The final form of the hybrid self-learning
fuzzy controller output clearly indicates that the target system is very nonlinear.

tion of learning. Its form clearly shows that the resulting input–output mapping
function that copes with a nonlinear control process has also a very nonlinear
character.

© 2006 by Taylor & Francis Group, LLC

Figure 6.32 shows the SLFLC control surface that was generated after comple-
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FIGURE 6.25 The structure of the SLFLC super-block. (From Kovačić, Z., Bogdan, S., and Reichenbach, T., 8th IEEE Mediterr. Conf. Contr. Autom.
MED’00, TC-2.5, 2000. With permission.)
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FIGURE 6.26 The Matlab simulation scheme of the closed-loop engine speed control system (directory: \matlab\toolbox\simulink
\simdemos\engine.mdl). (From Kovačić, Z., Bogdan, S., and Reichenbach, T., 8th IEEE Mediterr. Conf. Contr. Autom. MED’00, TC-2.5, 2000.
With permission.)
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FIGURE 6.27 The structure of a hybrid self-learning fuzzy controller (PI + SLFLC). (From Kovačić, Z., Bogdan, S., and Reichenbach, T., 8th IEEE
Mediterr. Conf. Contr. Autom. MED’00, TC-2.5, 2000. With permission.)
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FIGURE 6.28 Start of learning: the reference input, system output, and reference model
output responses of the engine speed control system. (From Kovačić, Z., Bogdan, S., and
Reichenbach, T., 8th IEEE Mediterr. Conf. Contr. Autom. MED’00, TC-2.5, 2000. With
permission.)

FIGURE 6.29 End of learning: the reference input, system output, and reference model
output responses of the engine speed control system. (From Kovačić, Z., Bogdan, S., and
Reichenbach, T., 8th IEEE Mediterr. Conf. Contr. Autom. MED’00, TC-2.5, 2000. With
permission.)
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FIGURE 6.30 Start of learning: the hybrid self-learning fuzzy controller output responses.
(From Kovačić, Z., Bogdan, S., and Reichenbach, T., 8th IEEE Mediterr. Conf. Contr.
Autom. MED’00, TC-2.5, 2000. With permission.)

FIGURE 6.31 End of learning: the hybrid self-learning fuzzy controller output responses.
(From Kovačić, Z., Bogdan, S., and Reichenbach, T., 8th IEEE Mediterr. Conf. Contr.
Autom. MED’00, TC-2.5, 2000. With permission.)
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FIGURE 6.32 End of learning: the graph of the SLFLC control surface.

6.5 DESIGN PROJECT: FUZZY CONTROL OF

A ELECTRO-HYDRAULIC SERVO SYSTEM

Matlab offers a very convenient environment for testing new designs and control
solutions before their practical implementation in real control systems. This refers
also to the design of standard or self-organizing fuzzy controllers described in pre-
vious sections. In this chapter we give a description (mathematical and simulation
model) of a nonlinear electro-hydraulic servo system. The intended project task is
to use the Matlab FLT and design a fuzzy controller which will control the given
electro-hydraulic servo system. For this purpose the standard FLT fuzzy controller
block or PSLFLC and SLFLC super-blocks can be used. Although fuzzy control
does not depend on a mathematical model of the controlled process, it can use it
as a source of useful information for creation of a knowledge base. In our case we
also need a mathematical model for a better (realistic) presentation of an unknown,
inherently stable real control process. The idea is to design a fuzzy controller for
an unknown process and thereafter make experiments for simulated changes of
given control process parameters. It can be helpful to make a plan of experiments
in advance so that a later on analysis of results becomes easier.

6.5.1 Mathematical Model of a Control Process

process with time-varying parameters. The servo system contains a double-acting
200 mm stroke cylinder loaded by a mechanical part of a given mass, elasticity,
and damping, and a current-driven servo valve that controls the flow of the fluid
in the cylinder [5].

© 2006 by Taylor & Francis Group, LLC

A given electro-hydraulic servo system shown in Figure 6.33 is a nonlinear control
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FIGURE 6.33 Electro-hydraulic system.

The electrical part of the electro-hydraulic servo valve can be described with
a second-order transfer function:

Yu(s)

U(s)
= −kω2

n

s2 + 2ζnωns + ω2
n

(6.3)

where Yu is the servo valve spool position, m; U the servo valve input current,
A; k the servo valve gain coefficient, m/A; ωn the servo valve natural frequency,
rad/sec; and ζn the servo valve damping coefficient.

The spool of the servo valve slides in a sleeve, which controls the flows of the
fluid in cylinder chambers. The mass flow rate Q is proportional to the effective
cross-section area S and the square root of pressure difference between the two
points

√
�P. Since the effective area S is proportional to the servo valve spool

position yu (S changes with changes of yu), the mass flow rate through the servo
valve is described with the following equations:

Q1(yu, P1) =
⎧
⎨

⎩

yu · √|Pi − P1| · sign(Pi − P1) for yu ≥ 0

yu · √|P1 − Pa| · sign(P1 − Pa) for yu < 0
(6.4)

Q2(yu, P2) =
⎧
⎨

⎩

−yu · √|P2 − Pa| · sign(P2 − Pa) for yu ≥ 0

−yu · √|Pi − P2| · sign(Pi − P2) for yu < 0
(6.5)

where P1 is the pressure in the left-hand and P2 in the right-hand cylinder chamber.

© 2006 by Taylor & Francis Group, LLC
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Servo valve gain coefficient k already includes a proportional gain associated
with the mass flow rate, so it is omitted in Equations (6.4) and (6.5). Pi is the pres-
sure supplied by the hydraulic pump, and Pa is the tank pressure. An assumption
is made that Pi and Pa have constant values.

For the symmetric servo valve flow stage mass flow rates Q1 and Q2 are equal:

Q1(yu, P1) = −Q2(yu, P2) (6.6)

The cylinder is described with a following thermodynamic equation:

V

B
· dP

dt
+ dV

dt
= Q (6.7)

Parameter B is the bulk isotherm modulus of the fluid (oil), while V , P, and
Q are volume, pressure, and mass flow rate in a cylinder chamber, respectively.
Volumes of two cylinder chambers change with the cylinder rod position y in a
way that:

V1 = V0 + S0y

V2 = V0 − S0y (6.8)

where S0 is the cylinder rod effective area and V0 is the half-volume.
By insertion of (6.8) into (6.7) we get a description of pressure behavior in two

chambers of the cylinder:

dP1

dt
= B

V0 + S0y
(Q1 − S0v) (6.9)

dP2

dt
= B

V0 − S0y
(Q2 + S0v) (6.10)

where v = dy/dt is the cylinder rod speed.
The mechanical part of the system is described with the following dynamic

equation:

(M + M0) · d2y

dt2
= S0 · P1 − S0 · P2 − b · dy

dt
− c · y − Ff (6.11)

where M0 is the cylinder rod mass, M is the mass of the mechanical part, b and c are
viscous coefficient and elasticity of the mechanical part. In the given simulation
model, friction force Ff is neglected.

6.5.2 Simulation Model

The electro-hydraulic system described in Reference 5 has parameter values

Figures 6.34 to 6.37 show Matlab–Simulink simulation models of the
electro-hydraulic system, electro-hydraulic valve, double-acting hydraulic

© 2006 by Taylor & Francis Group, LLC

displayed in Table 6.4.
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TABLE 6.4
Parameters of the Electro-Hydraulic System

Variable Variable description Values SI units

ωn Servo valve natural frequency 500 rad/sec
ξn Servo valve damping coefficient 0.4
k Servo valve gain coefficient 5.1e−5 m/A
Pi Hydraulic pump pressure 280e−5 Pa
Pa Tank pressure 1e−5 Pa
V0 Cylinder half-volume 5e−4 m3

M0 Cylinder rod mass 50 kg
S0 Cylinder rod effective area 1.53e−3 m2

B Bulk isotherm modulus 7e−8 Pa
M Mechanical part mass 20 kg
c Mechanical part elasticity coefficient 1e−5 N/m
b Mechanical part viscous coefficient 5000 Nsec/m

1
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Q1

P2
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Mechanical
load
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Q2

Electro-hydraulic
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Q1

Q2
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P1

P2

F

V1

V2

Cylinder

1
u

FIGURE 6.34 Simulation model of the electro-hydraulic system.

cylinder, and the mechanical part of the system created based on the described
mathematical model.

6.5.3 Fuzzy Controller Design Specifications

For the given electro-hydraulic system the following design specifications should
be taken into account:

1. The range of the signal u fed into the simulation model (see Figure 6.34)
is [−20, 20], which corresponds to the servo valve input current in
milliamps.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 6.35 Simulation model of the electro-hydraulic servo valve.
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FIGURE 6.36 Simulation model of the double-acting hydraulic cylinder.

2. The range of the cylinder rod position signal y at the output of the

the cylinder rod position in millimeters.
3. When designing a fuzzy controller the following steps must be taken:

• Determination of the character of the controlled process (whether
it is static or astatic). This implies the type of the fuzzy controller

© 2006 by Taylor & Francis Group, LLC

simulation model (Figure 6.34) is [−300, 300], which corresponds to
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FIGURE 6.37 Simulation model of the mechanical part of the system.

to be designed, a PI-type or a PD-type, respectively. The character
of the process can be identified by observing an open-loop process
response.

• Determination of a desired control quality. This can be done by
setting second-order reference model parameters (σm, tm).

• Definition of the universes of discourse of input and output vari-
ables of the fuzzy controller. In order to preserve the universality
of the controller, let the fuzzy controller have a normalized form,
that is, let the universe of discourse of each input be [−1, 1]. It
can be useful to observe e − �e or e − �yM trajectories of the
reference model for better estimation of the boundaries of fuzzy
controller input universes of discourse.

• Decision about the number of fuzzy sets (usually 5 or 7 for each
input).

• Selection of the type of fuzzy membership functions (Gaussian
type by default for the SLFLC super-block).

• Definition of fuzzy control rules (normally up to 49 rules).
• Selection of the fuzzy inference mechanism.
• Selection of the defuzzification method (usually COG).
• Determination of a control interval Td. The idea is to set its value

so that the values of �e or �yM have an impact on the fuzzy
control rules. For too small Td, �e or �yM will loose that impact
as they will also be too small. A reference model response can be
taken as a basis for good estimation of Td (e.g., tm/20 < Td <

tm/10).

The control problem can be solved by designing a standard digital DISO type
fuzzy controller or PSLFLC controller with two inputs, error signal e(k) and
change of error �e(k), and one output denoted as u(k). Most often the signals

© 2006 by Taylor & Francis Group, LLC
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TABLE 6.5
Input and Output Universes of Discourse for Different Scaling Factor Values

Resolution of
ADC and DAC

Input scaling
factor K1

Output scaling
factor K2

Input variables
range

Output variables
range

8-bit 12.8 0.078125 [−128, 128] [−128, 128]
12-bit 204.8 0.004882812 [−2048, 2048] [−2048, 2048]

are fed into the digital fuzzy controller through A/D converters (ADC). Accord-

and system feedback signals are also fed into the fuzzy controller through ADCs
and a multiplexer. If the SLFLC function super-block is used, then inputs fed
into the controller become error signal e(k) and change of the system output
�yf (k).

Assuming that the ranges of physical input values are matched with the input
range of ADCs, the value of input scaling factors depends on the actual ADC res-
olution. The scaling factor value for the unipolar 8-bit ADC used in the simulation
scheme shown in Figure 6.38 is K1 = 1/0.078125 = 12.8, where 0.078125 V
represents the physical value of the least significant bit. With 12-bit ADCs this
coefficient takes value K1 = 1/0.004882812 = 204.8. Output scaling is done in a
similar way (e.g., coefficient K2 = 1/12.8 = 0.078125). By deployment of such
scaling factors, the input and output universes of discourse are set as displayed in
Table 6.5.

A better resolution of ADCs can help achieve a better control quality. Higher
resolution also provides better granularity of fuzzy input values, which in return
yields more effective control.

Once the fuzzy controller design is finished, the plan of experiments may
contain the following steps:

• Fuzzy controller sensitivity to process parameter variations (small,
modest, large)

• Variation of the number of input and output fuzzy sets
• Variation of the shape of input membership functions
• Variation of the distribution of input and output fuzzy sets (linear or

nonlinear)
• Variation of fuzzy rules (changes of consequent parts)
• Variation of fuzzy implication operators and defuzzification

methods
• Modification of input and output scaling factors
• Variation of the resolution of A/D and D/A converters (8-, 10-,

12-bit)
• Variation of the process structure (including new “unknown” processes).

© 2006 by Taylor & Francis Group, LLC
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7 Implementation of Fuzzy
Controllers for Industrial
Applications

The fuzzy control technology has emerged as one of the most effective nonlinear
control technologies used in industrial applications. Everything began in 1970s
with pioneering work of E.H. Mamdani and first successful application of fuzzy
logic for steam engine control [1], followed by contributions of many other eminent
fuzzy control scientists and engineers [2–7]. Since then the spectrum of fuzzy
control applications is steadily growing. Thanks to the joint efforts of university
and industry research teams all over the world, in 1980s and 1990s, a “fuzzy boom”
happened in various application fields. For example, fuzzy control found its way
in traffic control and transportation [8–10], process industry [11–15], robotics
[16,17], flight control [18–20], but even more important, in short time the fuzzy
control has become a standard solution in a large number of consumer products
such as photo cameras, washing machines, air-conditioners, and many others. In
this early fuzzy control stage, Japan was leading in the number of registered patents
and launched new products (especially leading companies such as Omron, Fuji,
Hitachi, and Matsushita). Excellent reviews on the historical development of fuzzy
control engineering and numerous applications can be found in References 21
and 22.

These days fuzzy control applications are so widely spread that describing
them all would be impossible. Instead, we shall stay focused on generic fuzzy
controller implementation concepts, which, we believe, might be more helpful to
the reader in his or her future fuzzy control designs and implementations of fuzzy
controller structures described in the book.

In this chapter, we also describe few selected applications, which show the
versatility of fuzzy control solutions, from the control of a road tunnel ventilation
system to the control of anesthesia during demanding surgical operations [23,24].

7.1 BRIEF OVERVIEW OF INDUSTRIAL FUZZY CONTROLLERS

When analyzing the features that an industrial fuzzy controller should have, we
find that it should provide:

• Fast processing of a large number of inputs, outputs, and fuzzy control
rules

• Configurability of controller’s structure

335
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• Programmability of controller parameters
• Short control intervals
• Sufficient resolution of the controlled variable
• Possibility to work in parallel with other types of controllers
• Low power consumption of the fuzzy processing circuitry
• Support for common communication standards (RS232, RS485, CAN,

Profibus, Modbus, Ethernet, Internet, etc.)
• Low-cost control solution

In parallel with the development of fuzzy control theory and new control appli-
cations an intensive development of hardware for fuzzy control processing is going
on. Two concepts of fuzzy controllers’ implementation, analog and digital, are
competing with each other (see Figure 7.1). As a result, there is a variety of
analog, digital, and mixed signal fuzzy controller architectures at the designer’s
disposal for solving both simple and very complex control problems [25–27].

The analog fuzzy controller is interesting in those applications such as the above
mentioned mass produced consumer products where inputs and outputs are ana-
log signals. Some controller structures employ analog circuitry only for input and
output conversion, while fuzzy processing is done digitally with general-purpose
microprocessors or application-specific integrated circuits. Other structures, such
as the complementary metal oxide semiconductors (CMOS) analog fuzzy control-
ler structure developed by Prof. Yamakawa exploits the functional capabilities of
the MOS transistor to implement the fuzzy operators with very simple circuitry
[28]. Although the fuzzy processing is analog, such a controller is programmed

FIGURE 7.1 Different platforms for implementation of a fuzzy controller.
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digitally. The successive CMOS analog fuzzy controller structures were able to
achieve larger operation speeds and lower power consumption [29–39].

Even though very attractive and widely used, analog fuzzy controllers are
characterized by limited precision at one hand, and weak structural flexibility on the
other. The former can be overcome by a careful circuit design, but larger flexibility
and programmability can be achieved only with a fully digital implementation.

implementation techniques and different hardware platforms.
The architecture and functionality of fuzzy processors are very similar to

those of standard microprocessors. The only difference is in enhancement of the
processor core with additional digital circuits and microcoded instructions for exe-
cution of main fuzzy controller operations. Among many different types of fuzzy
processors, let us mention a few: NeuraLogix NLX-230 Fuzzy Microcontroller,
Togai InfraLogic FC110 digital fuzzy processor, Omron FP-3000 fuzzy processor,
SGS Thomson Weight Associative Rule Processor (WARP), and Siemens FUZZY
166 microcontroller (this is a fuzzified version of the 16-bit Siemens microcontrol-
ler family 80C166) [26,40,41]. Fuzzy processors are programmable like standard
microprocessors, but the execution of fuzzy operations is much faster (shorter con-
trol intervals). Only the cost of such processors is slightly higher due to objectively
lower quantities being produced.

General purpose programmable logic controllers (PLCs) designed for closed-
loop process control applications usually have a fuzzy controller function block
as an option that can be purchased separately. The Klöckner–Moeller Corporation
made a fuzzy PLC based on the Siemens FUZZY 166 microcontroller [42], but
otherwise fuzzy PLCs are very rare.

On the other hand, PC-based process control solutions are more and more
present in today’s control practice. The increased reliability of PC operating sys-
tems and the availability of a wide spectrum of PC modules and instruments at
the world market allow an easy integration of a PC-based control system. A large
number of software tools make this option even more attractive. PC-based fuzzy
controllers are designed by using some of the commercially available develop-
ment software programs. Among the many popular tools, let us mention just a
few: fuzzyTech from INFORM Corporation, TILShell from Togai InfraLogic, and
CubiCalc from HyperLogic Corporation. These and similar tools do not only allow
the user to define and tune a fuzzy controller but also generate a high level lan-
guage source code or an optimized assembly code for the PC and various standard
microcontroller families.

The significant increase in operating speed and ability to process a large number
of inputs, outputs, and fuzzy control rules can be accomplished by programming
fuzzy controller operations in programmable logic arrays (PLA) and field pro-
grammable gate arrays (FPGA). The PLA can be used for implementation of a
customized fixed structure of a fuzzy controller [43]. The FPGA is a digital inte-
grated circuit that can be programmed to do any type of digital function. It may
have more than million gates that allow building of large and complex processing
units. Compared to a standard microprocessor, the FPGA can be programmed on

© 2006 by Taylor & Francis Group, LLC
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“DK6032_C007” — 2005/11/4 — 17:42 — page 338 — #4
�

�

�

�

�

�

�

�

338 Fuzzy Controller Design

the fly. This feature is very convenient for execution of customized high-speed
digital functions [44].

7.2 IMPLEMENTATION PLATFORMS FOR INDUSTRIAL FUZZY

LOGIC CONTROLLERS

As we have mentioned above, nowadays, there are too many fuzzy control appli-
cations in the industry to describe all of them. The reader is suggested to refer
for further information about specific application fields in numerous application-
oriented books, journals, and conference proceedings. This book will stay focused
on the elaboration of generic implementation concepts suitable for different imple-
mentation platforms. For this purpose, each implementation concept and platform
included in the chapter are illustrated with an accompanying worked-out example.

We do not pay attention to fuzzy controllers made with commercial fuzzy
controller design tools as such implementations must conform to the given design
rules that are specific for each tool. In such a case, a generated code, even if it
is optimized, is actually constrained by the design procedure and the prescribed
output format.

First we describe an implementation of a fuzzy controller by using a low-
cost 8- or 16-bit microcomputer and executable code written in the assembly
language. Such an implementation platform allows very fast execution of fuzzy
control algorithms providing in turn very short control intervals. This becomes
very interesting in control applications with fast dynamics as in the control of
servo systems.

Installations of PLCs are widely present in today’s process industry. Manu-
facturers build PLCs according to international standards, which enable an easy
buildup of various control solutions. PLC programming can be done with several
standard programming techniques such as ladder diagrams (LD), statement lists
(STL), and function block diagrams (FBD). These techniques allow the PLC pro-
grammer to introduce new control functions by using existing PLC elements or
by creating new ones. In this chapter, we describe a standard PLC-based imple-
mentation of the fuzzy controller in the case of controlling a condenser level in
the thermal power plant.

Besides standard PLC solutions, there are more and more industry applications
based on so-called soft PLC solutions. The main characteristic of a soft PLC is
that its program, usually developed on a PC with adequate programming tool, can
be downloaded as a finalized project into different target platforms (e.g., embed-
ded microcontrollers, PLCs, or industrial PCs). In this chapter, we describe an
implementation of a sensitivity model-based self-learning fuzzy controller (see

description of a multimode operation concept that best suits the needs of a process
operator.

Thanks to a large number of specialized programming tools, high level
language programming (mostly in C and C++) has almost replaced the

© 2006 by Taylor & Francis Group, LLC

Section 5.3) as a new soft PLC function block. We pay more attention to the
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assembly programming. Regardless from the type of programming language, an
implemented fuzzy controller would be more or less unique. Namely, such a way
of implementation gives the programmer a lot of freedom to create a unique fuzzy
controller structure.

7.2.1 Microcomputer-Based Fuzzy Controller
Implementation

As we have mentioned above, high level language programming of popular 8- and
16-bit microcontrollers has become a common practice. Though advantages of
high level language programming are unquestionable, programming in the micro-
controller assembly language can be even more advantageous when issues like
processing of a large number of fuzzy control rules as well as switching between
coarse and fine control regimes are considered. The techniques described here
include a page-wise scaling of inputs and outputs, register-oriented fuzzy encod-
ing of binary input values, and simple direct-access scanning of almost any size
of a fuzzy rule-table.

In order to demonstrate the above mentioned assembly language-based tech-
niques, let us consider an implementation of the hybrid fuzzy controller described
in Section 4.1.

A standard 8- or 16-bit microcomputer-based digital DISO fuzzy controller
that we want to implement performs the following basic operations:

1. Analog-to-digital (A/D) conversion of controller inputs (we assume that
we use a 10-bit ADC).

2. Digital-to-fuzzy conversion of controller inputs (let us suppose the
most frequent fuzzification to seven fuzzy sets), each fuzzy set is nor-
mal and regular, that is, the corresponding membership functions are
symmetrical and they have a unity maximum membership value.

3. Scanning of active fuzzy control rules (we assume that not more than 4
out of 49 rules can be activated in one control interval).

4. Fuzzy inference.
5. Fuzzy-to-digital conversion (defuzzification), that is, computation of

the crisp controller output according to the center of gravity principle
(let us suppose that magnitudes of the controller output are quantized
to 15 singleton values).

6. Digital-to-analog (D/A) conversion of the controller output.

Usually, A/D conversion of controller inputs is performed by using A/D con-
verters, but there are other types of A/D conversion, too. For example, in digitally
controlled electrical drives and servo systems, incremental encoders are used for
a digital measurement of position and angular speed. Also, a digital measure of
an analog signal can be obtained by successive voltage-to-frequency (V/f) and
frequency-to-binary (f/D) conversions. Regardless of the type of A/D conversion
method, the final result is always a digital number with a determined resolution.

© 2006 by Taylor & Francis Group, LLC
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Suppose that we use a 10-bit bipolar A/D converter. Then controller inputs e(k)

and �e(k) create a phase plane e(k)−�e(k) where trajectory points [e(k), �e(k)]
take values from the ±9-bit interval (±512). The lower the input values, the finer
the control. In order to discern fine from coarse control, let us split the phase
plane into a set of disjunctive areas (pages) nested within each other. Similar
concept with nested fuzzy rule-tables for coarse and fine control was presented
in Reference 45. The phase plane shown in Figure 7.2 has four nested pages: the
most inner page (1st page), the middle pages (2nd and 3rd pages), and the most
outer page (4th page). Fine control is active only in the first page. Coarse control
becomes active for trajectory points [e(k), �e(k)] lying in other pages.

One can see that pages are binary proportional (the second page is two times
larger than the first one; the third page is two times larger than the second one,
etc.). Splitting the phase-plane into binary proportional pages can significantly
simplify the switching between fine and coarse control. That is, in such a concept
a fuzzy controller is designed only for the fine control region. When we deal with
coarse control, first we scale trajectory points [e(k), �e(k)] lying in outer (coarse
control) regions into the fine control page. With binary proportional pages scaling
means division by the power of two (two, four, etc.). A most distant trajectory point

FIGURE 7.2  A page-wise representation of a phase plane e(k)−�e(k) in the case of using
a 10-bit bipolar A/D converter.
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determines a scaling factor for all trajectory points. After execution of the fuzzy
control algorithm, we return the crisp output value uFC(k) reversely scaled with
the same factor. Reverse scaling means multiplication by the same scaling factor.
In terms of assembly programming, scaling and reverse scaling mean execution
of simple shift to the right and shift to the left assembly instructions, respectively.
When the controlled process is far from a steady-state condition and the trajectory
points belong to outer pages, division of integer values by the powers of two may
slightly affect the coarse control resolution, but the fine control resolution remains
unaffected.

Reverse scaling of the fuzzy controller output obtained in the fine control
region actually means that the designed nonlinear fuzzy control function is linearly
extended to the coarse control region. It must be noted that such way of handling
fine and coarse control appears very natural and easy to implement for different
types of A/D converters. In our example, the first page would correspond to the
usage of an 8-bit A/D converter and likewise, five pages could be nested in the
case of using a 12-bit A/D converter. In general, pages may have freely determined
dimensions (e.g., 128 × 128 or 128 × 16). The size of the first page will primarily
depend on the desired quality of the control.

The DISO fuzzy controller under consideration has seven fuzzy sets defined
for both inputs. Therefore, the fuzzy rule-table is a 7 × 7 matrix, which may
potentially contain 49 fuzzy control rules. The number of rules that must be pro-
cessed in each control interval is usually a limiting factor, which affects the speed
of microcomputer-based computation. Assuming that only adjacent sets overlap,
maximally 4 out of 49 control rules may contribute to the crisp controller output.

Now let us describe a simple way of scanning a 7 × 7 fuzzy rule-table. Seven
fuzzy sets of each input can be encoded by using 3 bits of the allocated 8-bit register
or memory location. Since both inputs may simultaneously belong to two fuzzy
sets, we use two allocated registers for storing information about the fuzzification
(see Figure 7.3): bits 0, 1, and 2 for the change of error �e(k) and bits 3, 4, and 5

FIGURE 7.3 Encoding of fuzzy input sets by using two 8-bit registers.
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FIGURE 7.4 Fuzzy rule-table addressing in the form of a look-up table.

for the error input e(k). Two spare bits 6 and 7 may be used for encoding of up to
15 fuzzy input sets.

The information packed in the registers actually describes the antecedent parts
of currently activated fuzzy rules. In addition, the contents of registers can be used
to create an index, which, when added to the base look-up table address points at
the memory location with the corresponding output singleton value (Figure 7.4).
Then we can scan the table in the following way

Ad = Ad0 + Ad1 (7.1)

where Ad is the total look-up table address, Ad0 the base look-up table address, and
Ad1 is the index defined by logical combinations of the contents of two registers
(REGISTER 1 and 2).

In case of using seven fuzzy subsets, only 56 bytes of memory (Figure 7.4)
are sufficient to store all singletons from the fuzzy rule-table. In case of using
more than seven subsets (e.g., 11), four bits can be used to scan the fuzzy
rule-table.

The aim of the described assembly language-based techniques and solu-
tions is to simplify time-critical fuzzy controller operations and thus enable the
usage of standard low-cost microcomputers for implementation of fuzzy con-
trollers. Page-wise scaling and register-oriented fuzzy encoding of binary input
values along with direct access scanning of the fuzzy rule-table was successfully
implemented in the microcomputer-based hybrid fuzzy controller described in
Section 4.2.5. This controller was implemented with a 32-bit VME-based micro-
computer hardware (Motorola 68000) and 12-bitA/D converters, and experimental
results proved that the above mentioned implementation techniques were very
effective.
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7.2.2 PLC-Based Fuzzy Gain Scheduling Control of
Condensate Level

Programmable logic controllers have become dominant control devices in process
automation. Capable of operating as standalone devices or elements of distributed
control system networks, PLCs represent a very good basis for various control
solutions. Standard PLCs are almost regularly equipped with standard types of
controllers: P, PI, or PID. Some PLC manufacturers offer fuzzy controllers as
options, which can be ordered separately at additional cost. The reason why fuzzy
controllers are not so widely present in PLC-based applications lies in the fact
that the setting of fuzzy controller parameters requires expertise in fuzzy control
design and adequate commissioning tools.

Different ways of PLC programming allow the programmer to use existing
PLC elements (e.g., function blocks) or to follow instructions and create new
ones. In this chapter, we describe a PLC-based fuzzy controller implementation
by using existing PLC elements.

The fuzzy controller implementation is demonstrated on the problem of con-
densate level control in the thermal power plant at KTE Jertovec, Croatia. Due
to a nonlinear geometry of the drum and nonlinearities induced by a pump and a
valve, the control process is highly nonlinear. In order to avoid these problems and
to improve the control quality, a fuzzy gain scheduling control scheme is designed
and implemented with an industrial PLC Siemens Simatic S7-216 [46].

As one of important components of a thermal power plant, a condenser serves
for indirect heat exchange that occurs during heat transfer from the warmer fluid
(steam) to the cooler fluid (water). During this process, the turbine exhaust steam
is condensing and the condensate is accumulating in a hot well at the bottom of
the condenser and flowing out through a shell fluid outlet [47].

Besides its main function to condense the turbine exhaust steam, the con-
denser’s role is also to maintain a specified vacuum value at the turbine exhaust
in order to keep the power cycle efficiency high, releasing the heat at the low-
est possible temperature. Among various factors that influence that pressure, the
level of condensate plays an important role. The condensate level value should be
constant across the whole range of operating conditions. There are two additional
reasons for keeping the condensate level constant. One of them is that the change
of level can cause a cavitation effect in the pump located behind the hot well,
and due to this effect, the pump can be seriously damaged if the condensate level
drops bellow the lower level limit. Another negative effect can be caused by an
uncontrolled increase of the condensate level. At some point the condensate can
reach the level of condenser pipes and thus impair their cooling ability.

Usually the standard condensate level control loop incorporates a simple con-
troller such as a three-state controller (TSC) with a hysteresis. Even though the
level control loop is slow and the process is well known, in some cases nonlin-
earities encountered in the system may trigger problems. In that case, commonly
used standard control structures experience difficulties in maintaining the desired
control quality.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 7.5 The schematic diagram of the condenser. (From Bogdan, S., Kovačić, Z.,
Lončar, D., and Lukačević, D., KoREMA 9th Mediterr. Conf. Contr. Autom., Session
FM1-A, 2001. With permission.)

The operating conditions of the power plant influence dynamics of the conden-
sate level. In order to compensate this influence, measurement of process variables
that enable estimation of the change of level must be provided. This will allow the
usage of a fuzzy logic algorithm as a gain scheduler [48].

The schematic diagram of the condenser in KTE Jertovec is shown in
Figure 7.5. The condenser consists of two parts: the shell with pipes and the
hot well at the bottom of the shell. Cold water provided by an outside source
(river) flows through the pipes and carries the heat away. The condensed water is
removed from the hot well by the pump.

7.2.2.1 The Condenser Model

As can be seen from Figure 7.5, due to condenser geometry the cross section area
is changing with the condensate level. From the control point of view this should
be considered as the main source of process nonlinearity.

In the simulation analysis that follows, an assumption is made such that con-
densate level dynamics are primarily affected by a flow difference between the
inlet steam flow condensed into fluid and the outlet condensate flow, while other
effects such as cooling water leakages have been neglected.

Under these assumptions [49], we may write the condensate mass balance
equation as

ρ
dV

dt
= min − mout (7.2)

where ρ is the condensate density (kg/m3), V the condensate volume (m3), min
the inlet steam flow (kg/sec), and mout is the outlet condensate flow (kg/sec).

Since the condensate volume is a function of the level, Equation (7.2) can be
rewritten as:

A(h)
ρdh

dt
= min − mout (7.3)

© 2006 by Taylor & Francis Group, LLC



“DK6032_C007” — 2005/11/4 — 17:42 — page 345 — #11
�

�

�

�

�

�

�

�

Fuzzy Controllers for Industrial Applications 345

where h is the condensate level, in m.

A(h − h0) =
{

A, for h ≤ h0

2L
√

2Rh − h2, for h > h0
(7.4)

where A(h) is the area under the condensate (m2), A the hot well area (m2), L the
length of the condenser (m), R is the radius of the condenser (m), and h0 is the hot
well height (m).

From Equation (7.4) it is clear that for the condensate level higher than h0 mass
flow differential equation (7.3) becomes nonlinear.

The water, condensed in the hot well, leaves the condenser through a pump,
which has a nonlinear Q − h characteristic. The third source of nonlinearity is a
valve placed behind the pump, which controls the outlet condensate flow. Assum-
ing that condensate density is constant and valve cross section vs. valve stroke has
a linear characteristic, flow equation assumes the form

mout = αAv(x)
√

2ρ�p = Kv
√

�p (7.5)

where Av is the valve cross section (m2), Kv the valve coefficient, x the valve
position (m), α the flow coefficient, and �p is the pressure difference (N/m2).

The process is modeled in Matlab
® with Equations (7.2) to (7.5) and the

nonlinear Q − h characteristic of the pump taken into account. Mass flow m is
further replaced with notation Q.

7.2.2.2 Standard Condensate Level Control

Standard condensate level control is shown in Figure 7.6. The level h is measured
by a differential pressure gauge and filtered prior to comparison with a reference
level href . Based on the level error, a TSC sets a voltage polarity of a DC servo
motor driving the valve.

FIGURE 7.6 The standard condensate level control scheme. (From Bogdan, S., Kovačić, Z.,
Lončar, D., and Lukačević, D., KoREMA 9th Mediterr. Conf. Contr. Autom., Session
FM1-A, 2001. With permission.)
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h

Qin

Qout

href

Filter

M



“DK6032_C007” — 2005/11/4 — 17:42 — page 346 — #12
�

�

�

�

�

�

�

�

346 Fuzzy Controller Design

FIGURE 7.7 The condensate level response for a 5% decrease of steam flow. (From
Bogdan, S., Kovačić, Z., Lončar, D., and Lukačević, D., KoREMA 9th Mediterr. Conf.
Contr. Autom., Session FM1-A, 2001. With permission.)

The process parameters in the steam power plant at KTE Jertovec, Croatia are
as follows: A = 0.196 m2, L = 4.75 m, R = 1.4 m, h0 = 0.51 m, href = 0.5 m.
Inlet steam temperature is 450◦C. The inlet steam flow rate for the nominal load
is Qin0 = 13.8889 kg/sec, x0 = 40%.

The level transient response in case of a 5% negative change in steam flow is
shown in Figure 7.7. The standard controller compensates the change of level in

in steam flow is positive. It can be seen that the level response is much slower than
in the case of a decreasing steam flow. The speed of level change at the beginning
is comparable with the one shown in Figure 7.7, but once the condensate passes
the line between the hot well and the shell the speed is reduced. The standard
controller needs almost 20 min to compensate a change in the level.

By comparing two responses (Figure 7.7 and Figure 7.8) it is evident that
system nonlinearities have a significant influence on the control quality.

In order to get a better insight into process dynamics it is interesting to see how
the TSC controller handles variations in the steam flow under different operating
conditions.

First we test the performance of the standard controller by changing inlet flow
in the range ±5% of the operating point value (50 t/h). The level reference point
is href = 0.5 m. The condensate level and controller output responses are shown

remains within the range 0.45 to 0.54 m. It can be noticed that level dynamics are
very fast for h < h0, while for h > h0 the response is much slower.

The second test is related to the situation when flow changes from nominal
value to 50% of it and recovers back to the nominal value. The obtained results

© 2006 by Taylor & Francis Group, LLC

approximately 50 sec. Another case is shown in Figure 7.8, where the change

in Figure 7.9(b) and Figure 7.9(c). As can be seen from Figure 7.9(b) the level

are shown in Figure 7.10.
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FIGURE 7.8 The condensate level response for a 5% increase of steam flow. (From
Bogdan, S., Kovačić, Z., Lončar, D., and Lukačević, D., KoREMA 9th Mediterr. Conf.
Contr. Autom., Session FM1-A, 2001. With permission.)

The level drop caused by flow decrease is 9 cm, while during flow recovery
level goes up for 9 cm. As for the particular system level high limit is 0.6 m
(otherwise alarm occurs and control is suspended) the standard control scheme
cannot deal with significant flow change. That is why in such case an operator
must switch from automatic to manual mode of operation.

flow recovery. Since frequent switching affects the actuator durability, one of the
criteria for controller design is its capability of handling the controlled variable in
a desired range with low exertion of the actuator.

7.2.2.3 Fuzzy Gain Scheduling Condensate Level Control

The controller comprises of a gain scheduler, a level derivation estimator, and a
controller with two tunable gains. The controller output is connected with the input
of the standard TSC. Two additional signals are used: measurement of live steam
flow (which is for this particular case equal to inlet steam flow) and measurement of
condensate flow. These two measurements already existed in the standard control
scheme and were used before only for the monitoring purpose.

The fuzzy gain scheduler has two inputs, the steam flow Qin and the change
in steam flow �Qin, and two outputs, gain coefficients Kdh and Ke. The fuzzy
logic-based gain scheduler determines new values of gain coefficients by using a
fuzzy rule-table with nine fuzzy rules. Inputs have three fuzzy sets with triangular

Calculation of outputs is performed according to the center of gravity (COG)
principle described with Equation (2.22).

© 2006 by Taylor & Francis Group, LLC

From Figure 7.10(c), one can notice high valve activity, especially during

The fuzzy gain scheduling (FGS) level control structure is shown in Figure 7.11.

membership functions (Figure 7.12), while outputs are represented with singletons.
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FIGURE 7.9 The level (b) and TSC output (c) responses in case of minor variations of
steam flow (a). (From Bogdan, S., Kovačić, Z., Lončar, D., and Lukačević, D., KoREMA
9th Mediterr. Conf. Contr. Autom., Session FM1-A, 2001. With permission.)
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FIGURE 7.10 The level (b) and TSC output (c) responses in case of major variations of
steam flow (a). (From Bogdan, S., Kovačić, Z., Lončar, D., and Lukačević, D., KoREMA
9th Mediterr. Conf. Contr. Autom., Session FM1-A, 2001. With permission.)
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FIGURE 7.12 Fuzzy membership functions for a gain scheduling algorithm. (From
Bogdan, S., Kovačić, Z., Lončar, D., and Lukačević, D., KoREMA 9th Mediterr. Conf.
Contr. Autom., Session FM1-A, 2001. With permission.)

The estimator calculates the change of the level, dh/dt, based on flow measure-
ments. The calculated value is multiplied with gain Kdh, and added to the signal
formed from the error between the level reference href and the measured level h.
All measured variables are filtered with a first-order filter.

The simulation results obtained for the same steam flow variations as in the

© 2006 by Taylor & Francis Group, LLC

case of a TSC examination are shown in Figure 7.13.
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FIGURE 7.11 The FGS condensate level control scheme. (From Bogdan, S., Kovačić, Z.,
Lončar, D., and Lukačević, D., KoREMA 9th Mediterr. Conf. Contr. Autom., Session
FM1-A, 2001. With permission.)
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FIGURE 7.13 The level (b) and fuzzy adaptive controller output (c) responses in case
of minor variations of steam flow (a). (From Bogdan, S., Kovačić, Z., Lončar, D., and
Lukačević, D., KoREMA 9th Mediterr. Conf. Contr. Autom., Session FM1-A, 2001. With
permission.)
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FIGURE 7.14 The level (b) and fuzzy adaptive controller output (c) responses in case
of major variations of steam flow (a). (From Bogdan, S., Kovačić, Z., Lončar, D., and
Lukačević, D., KoREMA 9th Mediterr. Conf. Contr. Autom., Session FM1-A, 2001. With
permission.)
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After application of FGS control, variations of condensate level have remained
within the range 0.46 to 0.52 m, which is 30% less than in the case of using the TSC

0.3970, while with the TSC, this value is 0.8855. This is more than 50% reduction
without any increase in actuator (servo valve) effort (in both cases the valve was
switched 13 times).

As already mentioned, the main problem in standard condensate level control
is a significant change of steam flow. The results obtained with FGS control in

while in the case of steam flow increase the level reaches 0.545 m (0.59 m with
standard control — see Figure 7.10). The value of the integral quality criterion is
1.0035 for FGS control and 3.5320 for standard TSC, which indicates a reduction
of more than three times.

In the same time the number of relay switches decreases from 33 in the case
of standard TSC to 30 in the case of FGS control. The results of comparison of
two methods are shown in Table 7.1.

TABLE 7.1
Comparison of Two Controllers

Variations Qin = ±5% Increase/decrease Qin 50%

Method # Switching
∫

e(t )2dt # Switching
∫

e(t )2dt

TSC controller 13 0.8855 33 3.5320
FGS controller 13 0.3970 30 1.0035

FIGURE 7.15 Transition of gain coefficient Ke during large changes of steam flow. (From
Bogdan, S., Kovačić, Z., Lončar, D., and Lukačević, D., KoREMA 9th Mediterr. Conf.
Contr. Autom., Session FM1-A, 2001. With permission.)
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(Figure 7.9). Furthermore, the square error integral value with the FGS control is

the condensate level drops 6 cm (9 cm with standard control — see Figure 7.10),
the case of a large steam flow change are shown in Figure 7.14. One can see that
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FIGURE 7.16 Transition of gain coefficient Kdh during large changes of steam flow. (From
Bogdan, S., Kovačić, Z., Lončar, D., and Lukačević, D., KoREMA 9th Mediterr. Conf. Contr.
Autom., Session FM1-A, 2001. With permission.)

The scheduling of gain coefficients Ke and Kdh
Figure 7.16, respectively.

Presented results and field tests showed that the standard TSC loop was unable
to hold the level in the desired region in case of a significant change in inlet
steam flow.

7.2.2.4 PLC Siemens Simatic S7-216 Step 7 Program of FGS
Condensate Level Control

The FGS control structure has been implemented with an industrial PLC Siemens
Simatic S7-216 and successfully tested in the KTE Jertovec.

The structure of the PLC program that executes a FGS control algorithm is

of Siemens) programming tool that is presented in its original PLC project form.
Experimental results obtained in the plant under the same operating conditions

as for the standard TSC confirmed that the usage of FGS controller indicatively
improved control quality while keeping the lowest possible number of actuator
switching.

7.2.3 PLC-Based Self-Learning Fuzzy Controller
Implementation

The goal of any new control methodology is to get successfully transferred
into the control practice. Only real control applications can confirm a real
value of new control methods. Having that in mind, herein we describe an
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is shown in Figure 7.15 and

shown in Figure 7.17. It is followed by a PLC program written in Step 7 (trademark
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FGS
algorithm

Clear accumulator (AC0, AC1, AC2, AC3)

Calculate dh/dt and dQin/dt

Scaling of fuzzy input Qin=> AC2

Calculation of Qin membership functions small, 
medium–, medium+, and Large 

Negative value for ∆Qinmax = > AC0

Scaling of fuzzy input ∆Qin= > AC2

Center of universe of discourse for Qin calculation => 
AC0 

Calculation of ∆Qin membership functions negative,  
zero–, zero+, and positive

Defuzzyfication of FZ_Ke= > COG method for  
determination of adaptive level error gain

Defuzzyfication of FZ_Kdh= > COG method for  
determination of change in level gain

FIGURE 7.17 Flow-chart of the PLC-based fuzzy gain scheduling control algorithm.

Here follows a PLC program presented in its original PLC project written in Siemens step 7

Always_on

Network 1 clear accumulator

Network 2 dh/dt and dQ_in/dt calculation

AND

+0

+0

+0

+0

MOV_DW
EN ENO

AC0

AC1

IN OUT

MOV_DW
EN ENO

IN OUT

MOV_DW
EN ENO

IN OUT

MOV_DW
EN ENO

IN OUT

>

>

AC2

>

AC3

>

Always_on AND

LvI_flt_out

Q_in_flt_out

Q_in_flt_old

LvI_flt_old

LvI_flt_out

Q_in_flt_out

dh_dt

MOV_R
EN ENO

IN OUT

MOV_R
EN ENO

IN OUT

SUB_R
EN ENO

IN1

IN2

OUT

SUB_R
EN ENO

IN1

IN2

OUT

dQ_in_dt

Lv  _flt_old

>

Q_in_flt_old

>

>

>

© 2006 by Taylor & Francis Group, LLC
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Always_on
FZ_Q_in_max

2.0

Always_on
Q_in_flt_out

FZ_K_Q

AC2
AC0
AC2
0.0

< = R

> = R

AND

AC0
>

AC2
>

DIV_R
EN ENO
IN1 OUT
IN2

MUL_R
EN ENO
IN1 OUT
IN2

–1.0
AC0

AC2
AC1

AC1
1.0

0.0

AC1
>

AC1
>

FZ_mi_Q_S
>

FZ_mi_Q_S
>

DIV_R
EN ENO
IN1 OUT
IN2

MUL_R
EN ENO
IN1 OUT
IN2

ADD_R
EN ENO
IN1 OUT
IN2

MOV_R
EN ENO
IN OUT

Network 3 Center of universe of discourse for Q_in calculation => AC0

Network 4 fuzzy input scaling => AC2

Network 5 Q_in memb func small calculation

Network 6

AC2
AC0
AC2
0.0

Q_in memb func medium– calculation

Network 7 Q_in memb func Medium+ calculation

< = R

> = R

AND

AC2
FZ_Q_in_max

AC2
0.0

< = R

> = R

AND

DIV_R
EN ENO
IN1 OUT
IN2
MUL_R

EN ENO
IN1 OUT
IN2

1.0
AC0

AC2
AC1

>
AC1

>
FZ_mi_Q_M

DIV_R
EN ENO
IN1 OUT
IN2

–1.0
AC0

>
AC1

MUL_R
EN ENO
IN1 OUT
IN2

AC2
AC1

>
AC1

ADD_R
EN ENO
IN1 OUT
IN2

AC1
2.0

>
FZ_mi_Q_M

Network 8 Q_in memb func Large calculation

AC2

AC2
AC0

FZ_Q_in_max
< = R AND

> = R

DIV_R
EN
IN1

ENO
OUT

IN2
MUL_R

EN
IN1

ENO
OUT

IN2
ADD_R

EN
IN1

ENO
OUT

IN2
MOV_R

EN
IN

ENO
OUT

1.0

–1.0

0.0

AC0

AC2
AC1

AC1

AC1
>

AC1

FZ_mi_Q_L

>

>

FZ_mi_Q_L
>
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Network 9 Q_in memb func Large calculation

Network 10 Negative value of dQ_in_max calculation = > AC0

MOV_R
EN
IN

ENO
OUT

MUL_R
EN
IN1
IN2

ENO
OUT

FZ_mi_Q_L
>

AC0
>

AC2
FZ_Q_in_max

Always_on

–1.0
FZ_dQ_in_max

> = R
1.0

Network 11

Always_on
dQ_in_dt
FZ_K_dQ

Fuzzy input scaling => AC2

Network 12 dQ_in memb func Negative calculation

Network 13 dQ_in memb func Negative calculation

>
AC2

1.0

1.0

0.0

AC0

AC2
AC1

AC2
AC0

AC2
0.0

AC2
AC0

>
FZ_mi_dQ_N

>
FZ_mi_dQ_N

>
FZ_mi_dQ_N

AC1
>

MUL_R

< = R

< = R

< = R

AND

EN
IN1

ENO
OUT

IN2

MOV_R
EN
IN

ENO
OUT

DIV_R
EN
IN1
IN2

ENO
OUT

MUL_R
EN
IN1
IN2

ENO
OUT

MOV_R
EN
IN

ENO
OUT

Network 14

AC2

AC2
AC0

< = R

> = R

AND
DIV_R

EN
IN1
IN2

ENO
OUT

MUL_R
EN
IN1
IN2

ENO
OUT

ADD_R
EN
IN1
IN2

ENO
OUT

0.0

dQ_in memb func Zero– calculation

Network 15 dQ_in memb func Zero+ calculation

FZ_dQ_in_max
1.0

AC2
AC1

AC1
1.0

>
AC1

>
AC1

>
FZ_mi_dQ_Z

FZ_mi_dQ_Z

DIV_R
EN
IN1
IN2

ENO
OUT1.0

AC0

>
AC1

MUL_R
EN
IN1
IN2

ENO
OUTAC2

AC1

>
AC1

ADD_R
EN
IN1
IN2

ENO
OUTAC1

1.0

>

AC2 < = R AND

< = RAC2
0.0

FZ_dQ_in_max
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Network 17 dQ_in memb func Positive calculation

AC2
FZ_dQ_in_max

> = R
FZ_mi_dQ_P

>

1.0

MOV_R
EN
IN

ENO
OUT

Network 18

Always_on AND

FZ_mi_dQ_N

MUL_R
EN

IN1

ENO

OUT
IN2

MUL_R
EN

IN1

ENO

OUT
IN2

MUL_R
EN

IN1

ENO

OUT
IN2

ADD_R
EN

IN1

ENO

OUT
IN2

ADD_R
EN

IN1

ENO

OUT
IN2

ADD_R
EN

IN1

ENO

OUT
IN2

FZ_mi_dQ_Z
FZ_Ke_out_S

FZ_Ke_out_L

AC1

AC0

AC0

AC2

1.0

FZ_Ke_out

FZ_mi_dQ_P

FZ_Ke_out_M

Defuzzyfication FZ_Ke

>

AC0

>

AC1

>

AC2

>

AC0

>

FZ_Ke_out

>

FZ_Ke_out

Network 19

Always_on AND

FZ_mi_Q_S

MUL_R

EN

IN1

ENO

OUT
IN2

MUL_R

EN

IN1

ENO

OUT

IN2

MUL_R

EN

IN1

ENO

OUT

IN2

ADD_R

EN

IN1

ENO

OUT

IN2

ADD_R

EN

IN1

ENO

OUT

IN2

FZ_mi_Q_M

FZ_Kdh_out_M

FZ_Kdh_out_S

AC1

AC0

AC0

AC2

FZ_mi_Q_L

FZ_Kdh_out_L

defuzzyfication FZ_Kdh

>

AC0

>

AC1

>

AC2

>

AC0

>

FZ_Ke_out

Network 16 dQ_in memb func Positive calculation

AC2

AC2
0.0

FZ_dQ_in_max
< = R

> = R

AND

FZ_dQ_in_max

FZ_mi_dQ_P

FZ_mi_dQ_P

1.0

AC2
AC1

0.0
>

>

>
AC1

DIV_R
EN
IN1

ENO
OUT

IN2
MUL_R

EN
IN1

ENO
OUT

IN2
MOV_R
EN
IN

ENO
OUT
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implementation of the sensitivity model-based self-organizing fuzzy controller
described in Section 5.3, implemented in the form of a function block for a
soft PLC. Besides self-organization, the block also contains an algorithm for a
phase plane-based presetting of the fuzzy control surface described in Section 3.3.
A newly formed function block called phase plane-based self-organizing fuzzy
controller (PPSOFC) is programmed with a soft PLC programming tool IsaGRAF
in accordance to the international standard IEC61131-3 [50]. Since we deal here
with a controller function block designed for open PLCs and industrial PCs, we
pay more attention to the function block structure and its parameters as well as to
the description of several modes of controller operation. Since multimode opera-
tion requires carefully planned control overhead, we provide detailed explanations
of each control mode and conditions for proper switching of modes.

The concept of the PPSOFC function block assumes operation with floating
point instructions due to the complexity of the control algorithm and specifications
on the accuracy of control.

7.2.3.1 PPSOFC — Self-Organizing Fuzzy Controller
Function Block

The control practice says that many nonlinear high-order systems are controlled
with some form of a PID controller. Being aware of that, we logically come to
the conclusion that integration of a standard PID controller into a self-learning
fuzzy controller block PPSOFC is a smart move. This opens the possibilities to
use the PPSOFC block as a direct replacement for the already installed PID con-
trollers. Once we have a PID controller within the block, all necessary conditions
for the implementation of the phase plane-based presetting algorithm are there (see

requires online recording and analysis of controller inputs and output values during
a regular PID control of the target system. Thus obtained error phase plane tra-
jectories and corresponding control curves are then used for creation of a fuzzy
control surface that should mimic the original PID control.

The operation of the PPSOFC block depends on the second-order reference
model Equation (3.28), which describes a desired dynamic behavior of the target

defined with five parameters:

• Magnitude of the imposed change of reference model input �uM = �ur
• Magnitude of the change of reference model output �yM > 0
• Magnitude of the maximum change (peak value) of reference model

output �yMm
• For oscillatory model responses: peak time of the reference model

output tm
• For aperiodic model responses (�yM = �yMm): settling time of the

reference model output ts
• Control interval Td

© 2006 by Taylor & Francis Group, LLC

Section 3.3). As discussed in Section 3.3, the phase plane-based presetting method

system (see Section 3.2). In the PPSOFC block a second-order reference model is
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FIGURE 7.18 The reference model response.

The way of setting the reference model parameters is illustrated with the
example shown in Figure 7.18. Parameter values provided by the user are as fol-
lows: �uM = �ur = 100, �yM = yMs −yM0 = 200, �yMm = yMm −yM0 = 210
(5% overshoot), tm = 4.5 sec, and Td = 0.2 sec. These values are used for cal-
culation of second-order model parameters: aM1 = 1.7201, aM2 = −0.7524, and
bM1 = 0.0646.

The substitution of the PID control with the self-learning fuzzy control should
not jeopardize the continuity of real-time process control; special attention must
be paid to bumpless switching between different operating modes. Integration of
both linear PID and self-organizing fuzzy controllers within the complex function
block PPSOFC ensures elegant switching between two controllers without abrupt
changes of the control value. This should help to make the function block PPSOFC
attractive for standard PID controller users.

tioned above, the block has several operating modes, which depend on the states of
external control signals. We assume that the block is connected to the outer world
via 12-bit A/D and D/A converters. All signals and parameters of the PPSOFC

The PPSOFC function block should be initially put up into manual mode
of operation. Recommended initial settings of PPSOFC inputs, outputs, and

Setting of reference model parameters depends on acquired knowledge about
the dynamics of the controlled process. Dynamic characteristics of typical process

not have enough knowledge about the process, it may happen that inappropriate
values of the reference model parameters are entered. In such case, it is advised to
start setting of the model with larger values of the peak time or settling time, as they
can be gradually decreased during the progress of learning. In addition, setting of
aperiodic reference model response or response with a lower overshoot will make

© 2006 by Taylor & Francis Group, LLC

The outlook of the PPSOFC function block is shown in Figure 7.19. As men-

block are displayed in Tables 7.2 and 7.3.

parameters are displayed in Table 7.4.

variables in different industry applications are shown in Table 7.5. If the user does

yMm

tm t

yMs

yM0

yM
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FIGURE 7.19 Soft PLC function block PPSOFC.

TABLE 7.2
PPSOFC Signals

Signal Characteristics

MANUAL (C) Manual control
PID (C) Standard PID control with user-defined controller parameters
PRESET (C) Preset fuzzy control or phase plane-based presetting of a fuzzy

control surface in conjunction with the PID signal
LEARN (C) Learning (self-organization) of fuzzy controller. A sequence of

varying set point values is expected
X0 (I) Manually set control output → OUT = X0. It can assume

values from MIN to MAX
SP (I) Set point expressed as a 12-bit number. It can assume values

from 0 to 4095
PV (I) Process variable (feedback signal) expressed as a 12-bit

number. It can assume values from 0 to 4095
OUT (O) Controller output expressed as a 12-bit number. It can assume

values from MIN to MAX
INT_ST (O) Internal status: 0 — manual, 1 — PID preset, 2 — PID,

3 — preset fuzzy, 4 — learn, and 5 — self-organizing fuzzy
control

C: control; I: input; O: output.

the convergence of learning process slightly faster (because of faster convergence
of singletons, which lie close to the phase plane origin, i.e., ZE–ZDY area).

Each operating mode of the controller is determined by the current status of
control inputs MANUAL, PID, PRESET, and LEARN. These control inputs have

© 2006 by Taylor & Francis Group, LLC

different levels of priority, as shown in Table 7.6. The control signal MANUAL

PPSOFC

OUT

INT_ST

MIN

MAX

LSF

KP
TD

TI
DUM

DYM
DYMM

TMM
CYCLE

PID PRESET LEARNMANUAL

SP

PV

X0
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TABLE 7.3
PPSOFC Parameters

Parameter Explanation

CYCLE Controller interval
MAX Upper limit for the control signal, MAX ≤ 100
MIN Lower limit for the control signal, 0 ≤ MIN < MAX
LSF Learning safety factor, whose value is directly related to

the estimated range of process gain coefficient variations
in order to ensure the stability of learning. An increase
of LSF slows down the speed of learning

DUM Change of the reference model input
DYM Change of the reference model output (>0)
DYMM Maximum change of the reference model output
TMM Peak time of the reference model output. For aperiodic

model response DYM = DYMM, TMM is a settling
time of the reference model output

KP Gain coefficient of a PID controller
TI Integration time of a PID controller
TD Derivation time of a PID controller

TABLE 7.4
Recommended Initial Status of the PPSOFC Function Block

Parameter Explanation

MANUAL TRUE
PID FALSE
PRESET FALSE
LEARN FALSE
X0 0
CYCLE From TMM/5 to TMM/10 (or from TMM/25 to TMM/50 for aperiodic

response)
MAX 100
MIN 0
LSF From 10 to 30
DUM = DYM 100 (the reference model gain coefficient is mostly set to 1)
DYMM From 100 (suggested) to 130 (from 0 to 30% overshoot in response)

has the highest priority in order to give the user full control over the controller and
the entire control system. The control signal PID has the second highest priority,
which means that the active state of the signal PID enforces PID control regardless
from the current states of control signals PRESET and LEARN. The control signal
PRESET has the second lowest priority, while the control signal LEARN has the

© 2006 by Taylor & Francis Group, LLC
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TABLE 7.5
Dynamic Characteristics of Typical Control
Objects (Processes)

Process Transport delay Time constant

Temperature
Small oven 0.5–1 min 5–15 min
Big oven 1–3 min 10–20 min
Distillation column 1–7 min 40–60 min
Steam heater cca 2 min —
Room heating 1–5 min 10–60 min

Pressure
Gas pipeline — 0.1 sec
Masoot steam boiler — cca 150 sec

Flow
Pipe 0–5 sec 0.2–10 sec

Level
Steam boiler 0.5–1 min —

Angular speed
Small electric drive — 0.2–10 sec
Large electric drive — 5–40 sec

Voltage
Small generator — 1–5 sec
Large generator — 5–10 sec

TABLE 7.6
Levels of Priority of the
PPSOFC Control Inputs

Level of priority Control input

1 MANUAL
2 PID
3 PRESET
4 LEARN

lowest priority of all. This means that active status of the signal PRESET can
interrupt the learning process at any time during the automatic mode of operation
and enforce system control with a preset fuzzy controller.

Although operating modes are normally determined by the current status of
control signals, one of available operating modes, so called user-authorized PID
control and phase plane-based presetting mode of operation will be activated
only by following a certain protocol. The main reason for introduction of such

© 2006 by Taylor & Francis Group, LLC
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TABLE 7.7
Modes of Operation in the PPSOFC Functional Block

Manual PID Preset Learn Mode of operation

TRUE T/F T/F T/F Manual control (INT_ST = 0)
FALSE FALSE FALSE FALSE Routine self-organizing fuzzy control

(INT_ST = 5): If both the user-authorized mode
and self-organizing mode have not been started,
then the controller output will contain only a
feedforward component (open-loop)

FALSE FALSE TRUE T/F Preset fuzzy control (INT_ST = 3): If the
user-authorized phase plane-based presetting mode
has not been started yet, then the controller output
will contain only a feedforward component
(open-loop)

FALSE FALSE FALSE TRUE Self-organizing fuzzy control (INT_ST = 4) starting
from a blank fuzzy rule-table or the last preset
fuzzy rule-table (depending on whether PRESET
was active before or it was not)

FALSE TRUE T/F T/F PID control (INT_ST = 2)
FALSE TRUE TRUE T/F User-authorized PID control and phase plane-based

presetting (INT_ST = 1) (calculation) of a fuzzy
control surface (conditional, i.e., if preceded by
TRUE-to-FALSE transition of the MANUAL
control signal). Before initiating the presetting
procedure, a steady-state of a PID controlled
system must be achieved and maintained for
some time

a protocol is the online character of the phase plane-based presetting of a fuzzy
control surface. Namely, the presetting of the fuzzy control surface is always
performed during closed-loop control, while a request for presetting must be issued
by the user, that is, in the manual (open-loop) control mode. Since very often it
may happen that the user has defined different values of the set point input SP and
the manually set operating point PV (although they are expected to be the same),
switching from open-loop control to closed-loop PID control will then provoke
a transient response of the system output. Without any protocol, the difference
SP−PV could affect the system response internally induced by the stepwise change
of the set point for the purpose of phase plane-based presetting of the fuzzy control
surface.

In order to provide a quick reference to available operating modes, a spectrum
of operating modes and accompanying conditions is displayed in Table 7.7. Some
modes have the same characteristic, which has finally resulted in one manual and
five automatic operating modes available to the user.

© 2006 by Taylor & Francis Group, LLC
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A more detailed description of the protocol for selection of operating
modes available in the PPSOFC function block is presented along with further
explanations related to possible industry applications.

Manual Control (Open-Loop), MANUAL = TRUE

In the manual mode (INT_ST = 0) of control the value of the control output OUT
is determined by the value of the external input X0, which is directly supplied
by the user. The control signal MANUAL, due to the highest level of priority,
makes other control signals in this mode completely ineffective. Each time when
the manual mode is reentered and abandoned, the reference model parameters that
are used in a model reference-based learning mechanism are recalculated.

User-Authorized PID Control and Phase Plane-Based Presetting of the
Fuzzy Controller, First FALSE-to-TRUE Transition of MANUAL, then
PID = PRESET = TRUE, LEARN = FALSE or TRUE, then TRUE-to-
FALSE Transition of MANUAL while Keeping PID = PRESET = TRUE

The user enters the PID control and phase plane-based presetting mode
(INT_ST = 1) by switching to manual mode (FALSE-to-TRUE transition of the
MANUAL signal) and by setting control signals PID = PRESET = TRUE. After
switching to automatic mode (and keeping PID = PRESET = TRUE), true states
of PID and PRESET will initiate PID control and successive phase plane-based
presetting of the fuzzy controller. The presetting procedure requires generation
of internal perturbation of the set point (with respect to the manually set process
value PV) for induction and recording of error phase plane trajectories and corre-
sponding control output curves, used in direct reconstruction of the fuzzy control
surface. After completion of the fuzzy controller presetting procedure, the PID
controller will stay in full control of the system (switching to INT_ST = 2).

It must be noted that each request for this mode of operation has to be author-
ized by the user (i.e., it must be issued from the manual mode). In the PID and
phase plane-based presetting control mode, interrupting the execution of presetting
procedure, before it is completed (i.e., before a PID controller overtakes system
control) is banned.

PID Control (Closed-Loop), MANUAL= FALSE, PID = TRUE, PRESET
and LEARN = TRUE or FALSE

In the PID control mode (INT_ST = 2) closed-loop control is performed by a PID
controller with user-defined parameters. Setting of PRESET or LEARN signal into
the true state will be ignored, because of higher priority level of the PID control
signal. If the user has not defined any of the PID controller parameters, then the
controller output will remain constant (equal to the last control value OUT).

© 2006 by Taylor & Francis Group, LLC



“DK6032_C007” — 2005/11/4 — 17:42 — page 366 — #32
�

�

�

�

�

�

�

�

366 Fuzzy Controller Design

Self-Organizing Fuzzy Control (Closed-Loop), MANUAL= PID = PRESET =
FALSE, LEARN = TRUE

The self-organizing fuzzy control mode (INT_ST = 4) is entered only when the low-
est priority control signal LEARN is active and permitted. There are several pos-
sible ways to enter this mode: directly from the manual mode when self-organizing
fuzzy control will always continue from a blank fuzzy rule-table; after being in the
user-authorized PID and presetting mode when self-organizing fuzzy control will
continue from the preset fuzzy rule-table; and finally, it may be entered or reentered
from other operating modes (PID, preset, or self-learning) and self-organizing
fuzzy control will continue from the fuzzy rule-table, which was last active.

If the self-organizing fuzzy control mode was interrupted by setting the control
signal PRESET into the true state, then the fuzzy rule-table obtained during self-
organization would be cleared (lost) and the latest preset fuzzy rule-table would
overtake control.

Preset Fuzzy Control (Closed-Loop), MANUAL= PID = FALSE, PRESET =
TRUE, LEARN = TRUE or FALSE

The user would enter the preset fuzzy control mode (INT_ST = 3) if it was preceded
at least once by the user-authorized PID and presetting control mode. In such case,
closed-loop system control is performed according to the fuzzy rule-table that was
created and stored during last presetting operation. Setting of LEARN signal into
the true state does not have any effect due to its lower level of priority. If the
user-authorized PID and presetting control mode has not been started yet, then
the controller output will contain only a feedforward component (i.e., open-loop
control).

If the preset fuzzy control mode was entered during the self-organizing fuzzy
control mode, then the fuzzy rule-table obtained during self-organization would
be cleared and the preset fuzzy rule-table would overtake control.

Routine Self-Organizing Fuzzy Control (Closed-Loop), MANUAL and PID
and PRESET and LEARN = FALSE

The user may enter the routine self-organizing fuzzy control mode (INT_ST = 5)
either after completion of the self-organizing fuzzy control mode (INT_ST = 4) or
after abandoning all other operating modes. In such case, closed-loop control is
performed by the “frozen” form of the self-organizing fuzzy controller. If the self-
organizing fuzzy control mode has not been started at all, then the fuzzy controller
output will contain only a feedforward component featuring open-loop control.

Depending on the tolled states of control signals PID, PRESET, and LEARN,
the routine fuzzy control mode can switch again to the PID, preset, or self-
organizing mode of operation.

© 2006 by Taylor & Francis Group, LLC
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7.3 EXAMPLES OF FUZZY CONTROLLER APPLICATIONS IN

PROCESS CONTROL

In Section 7.2 we have treated fuzzy logic applications from the implemen-
tation technology point of view. The presented application examples have
illustrated many possibilities and potential advantages of each implementation
platform.

As already mentioned, fuzzy control has proved to be very effective in numer-
ous applications in most different application areas. In this chapter, we present two
fuzzy process control solutions. The first one deals with the problem of controlling
the road tunnel ventilation system in the tunnel at Učka, Croatia, that connects
Northern Adriatic region Kvarner Bay with Istria. The second one describes the
usage of fuzzy control for control of anesthesia, so important during demand-
ing surgical operations, which is normally performed by a highly-skilled human
operator — anesthetist.

7.3.1 PC-Based Fuzzy-Predictive Control of a Road
Tunnel Ventilation System

Vehicles passing through a tunnel produce various types of poison gasses as well
as soot, especially in the case of heavy vehicles with diesel engines [51]. With new
legislations and demands from tunnel users who are concerned for their health and
safety, more and more sophisticated equipment needs to be installed in the tunnel:
video cameras, refined traffic-sensing devices, more reliable fire detection systems,
and high-sensitive pollution sensors [52]. High standards for air quality and the
need for good visibility require an advanced ventilation system for management
and control of pollution.

Two objectives, opposite in nature, have to be fulfilled simultaneously by
the ventilation system (a) the system should keep visibility (opacity, OP) on a
required level and make certain that pollutants remain within admissible margins
and (b) energy (costs) used for objective (a) should be minimal. Under some cir-
cumstances it is difficult to meet both objectives concurrently by using simple
control algorithms; hence, recently, the procedures that combine artificial intelli-
gence and predictive control are implemented for system supervision [53–55].
Usually, together with these new algorithms, longitudinal ventilation is used,
mostly due to its acceptable cost.

As a solution of the above defined control problem, we describe a fuzzy-
predictive control scheme that includes a feedforward loop based on the traffic
and weather data. The aim of the fuzzy-predictive controller is to replace the
existing ventilation controller in the tunnel at Učka, Croatia [63].

7.3.1.1 The Structure of a Fuzzy-Predictive Controller

seen, the structure consists of predictive, fuzzy and jet-fans controllers, pollutants
measurement, and a reference generation module.

© 2006 by Taylor & Francis Group, LLC

The structure of a fuzzy-predictive controller is shown in Figure 7.20. As can be
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FIGURE 7.20 A structure of the fuzzy-predictive controller. (From Bogdan, S. and
Birgmajer, B., IEEE Intl. Sympos. Industr. Electron. ISIE 2005, 4, 151–156, 2005. With
permission.)

Since the tunnel ventilation system simultaneously takes care of three different
pollutants (CO, NOx , and soot), the reference generation module determines the
actual set point of the control system. The pollutant that differs most from its
required level overtakes the set point. The operator is allowed to override the
automatic generation of the system set point.

The task of the predictive controller is to determine required air flow, which
depends on traffic type, traffic intensity, and weather conditions. Based on that
prediction, an estimation of a number of jet fans, n̂F_est, which would produce
a thrust force sufficient to provide calculated air flow, is carried out. Since the
tunnel model, which is a part of the predictive controller, describes the real tunnel
only to some extent, the fuzzy controller compares the required level of pollutant,
Xadm, with the measured value, Xfb, and adjusts the jet-fans prediction in order to
keep the pollution close to the predefined level. The fuzzy controller output, nF_r,
and predictive controller output, n̂F_est, are fed into the jet-fans controller. Their
sum is compared with the current number of active jet-fans, nF_a. In case nF_r +
n̂F_est > nF_a, the controller sends a request for a jet-fan switch-on; in case nF_r +
n̂F_est < nF_a, the controller sends a request for a jet-fan switch-off. As the energy
consumption of the ventilation system is significant, care must be taken when
switch-on requests are sent to jet-fans. In addition, air velocity within the tunnel
should not rise above an adequate level. These two restrictions, consumed energy
and air velocity, limit the number of currently active jet-fans.

7.3.1.2 Air Flow Prediction

The first step in air flow prediction is calculation of amounts of CO, NOx , and
small, visibility-reducing particles produced by traffic. These amounts depend
on several parameters such as speed and type of vehicles, tunnel length, tunnel
altitude, etc. A total CO produced by vehicles in the tunnel can be calculated as:

QCO_est = qCO · N · L · kaCO · kgCO · ksCO
p0

p
· T

T0
(7.6)
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where qCO is the CO produced by a vehicle, m3/veh/km, N the number of vehicles
per hour, veh/h, L the tunnel length, km, kaCO, kgCO, ksCO the correction factors
for altitude, gradient, and speed, respectively, p0 the normal pressure (1013 hPa),
p the atmospheric pressure, hPa, T0 the normal temperature (273 K), and T is the
atmospheric temperature, K.

Productions of other two pollutants, NOx and small particles are determined
by the following relations:

QNOx_est = qNOx · (NL + 10 · NH) · L · kgNOx
(7.7)

Mp_est = mp · (NH + 0.08 · NL) · L · kap · kgp (7.8)

where qNOx is the NOx produced by a vehicle (m3/veh/km), NL the number of
light vehicles per hour (veh/h), NH the number of heavy vehicles per hour (veh/h),
kgNOx

the correction factor for gradient, mp the mass of particles produced by a
heavy vehicle (mg/veh/km), and kap, kgp are the correction factors for altitude and
gradient, respectively.

Once pollutants productions are known, the predictive controller determines a
required air velocity as

va_est = Qa_est

AT
(7.9)

where AT is the tunnel cross section in square meters. The fresh air flow, Qa_est, is
calculated as

Qa_est = max

(
Mp_est

Mp_adm
,

QCO_est · 106

COadm
,

QNOx_est · 106

NOxadm

)

with Mp_adm as admissible concentration of small particles (mg/m3), COadm as
admissible concentration of CO (ppm), and NOxadm as admissible concentration
of nitrogenous gases (ppm).

7.3.1.3 Prediction of Number of Jet-Fans

In order to predict a number of jet-fans required to provide a pressure rise which
would establish an estimated air velocity, all forces that impact air mass within
the tunnel should be taken into account. The piston effect force, Fpist, caused by a
vehicle drag, has the largest influence on the air flow. Although not so significant,
forces caused by tunnel wall friction, Ff , portal pressure difference, Fp, and inlet
portal losses, Fin, must be integrated into the calculation for an accurate estimation
of jet-fans force, Fjet . When these forces are in balance, that is, the sum of all five
forces is zero; the air mass within the tunnel has a constant velocity.

© 2006 by Taylor & Francis Group, LLC
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The piston effect force for heavy and light vehicles can be calculated as

Fpist_H = NH · CdH · AH · ρa

2
· |vH − va_est| · (vH − va_est)

Fpist_L = NL · CdL · AL · ρa

2
· |vL − va_est| · (vL − va_est)

(7.10)

where CdH is the heavy vehicle drag coefficient, AH the heavy vehicle frontal
area (m2), vH the heavy vehicle velocity (km/h), CdL the light vehicle drag coeffi-
cient, AL the light vehicle frontal area (m2), vL the light vehicle velocity (km/h),
and ρa is the air density (kg/m3).

The force caused by a static pressure difference on the tunnel portals is equal to

Fp = AT · (pin − pout) (7.11)

where pin and pout are the inlet and outlet portal pressures.
The wall friction force, which is obtained from the following equation

Fwf = −kwf · AT · ρa

2
· L

D
· v2

a_est (7.12)

is always opposed to the direction of tunnel air flow, as well as the force caused
by flow separation at the inlet portal

Fin = −kin · AT · ρa

2
· v2

a_est (7.13)

where kwf is the wall friction coefficient, D the tunnel hydraulic diameter (m2),
and kin is the inlet loss coefficient.

As we stated earlier, the goal of the predictive controller is determination of a
number of jet-fans, which establishes the tunnel air velocity equal to va_est. Having
calculated all forces that induce movement of the air within the tunnel, predictive
controller estimates the number of jet-fans as

nF_est =
∑

F

kF · AF · ρa · |vF| · (vF − va_est)
(7.14)

where kF is the pressure-rise coefficient of a jet-fan, AF the discharging area of a
jet-fan (m2), vF the discharging speed of a jet-fan (m/sec), and

∑
F = Fpist_H + Fpist_L + Fp + Fwf + Fin

Due to difficulties with determination of tunnel parameters kwf and kin and
due to dynamic change of drag coefficients CdH and CdL, with respect to the
number and the type of vehicles, one-dimensional force equation describes the
tunnel air mass motion with a limited accuracy. An improvement can be achieved
by using heuristically obtained look-up tables for drag coefficients determination.

© 2006 by Taylor & Francis Group, LLC
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For a precise estimation of tunnel parameters a set of on-site experiments and
simulations should be conducted [56,57].

The other way to overcome the problem of inaccurate estimation is the usage
of a forgetting factor, KJF, in the form of a simple filter

n̂F_est(k) = KJF · n̂F_est(k − 1) + (1 − KJF) · nF_est(k) (7.15)

In case that parameters and coefficients present in estimation equations are
accurate, forgetting factor KJF should be set close to 0. On the other hand, if exact
values are not known, KJF should be just about 1. In that way, influence of the
predictive controller on the final number of active jet-fans can be controlled by
only one parameter, KJF.

7.3.1.4 Tunnel Parameters Identification

Accurate air flow prediction depends on parameters that are present in the tunnel
model. The best way to get the knowledge about parameters values is to perform
experiments within the tunnel. Results obtained during such experiment are shown

FIGURE 7.22 The average air velocity measured during the day.

© 2006 by Taylor & Francis Group, LLC

in Figures 7.21 to 7.24. Each experiment lasted for two hours (120 min). During
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FIGURE 7.21 The average CO level measured during the day.
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FIGURE 7.24 The average air velocity measured during the day.

that time fan groups were switched on and off, while traffic density was more or

experiment. The goal of the experiment was identification of the parameter qCO,
that is, the amount of CO produced by the vehicle per kilometer. At the beginning
of the experiment (t = 0 min) all fan groups were switched off. As a consequence,

15 min, which influenced the CO level in the tunnel; the average value started to
increase. At t = 39 min, four fan groups were switched on, and at t = 63 min,
additional four fan groups were switched on. The air velocity started to increase
(Figure 7.22), thus reducing the level of CO from 15 to 2.5 ppm in the next 25 min.
Having this experiment repeated several times, the average value of parameter qCO
can be calculated.

The other parameter important for design of the prediction algorithm and fuzzy
controller is the pressure rise coefficient of a jet-fan, kF. This parameter has high
influence to the open-loop gain of the system. Results obtained by one of the
conducted experiments are shown in Figure 7.23 and Figure 7.24. The experiments
were undertaken during the night when the traffic density is very low, thus the
influence of the traffic on the air velocity can be neglected. At the beginning of the
experiment all fan groups were switched off. From Figure 7.24 it can be seen that
the average value of the air velocity is approximately 1 m/sec. At t = 72 min, two
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less constant. Figure 7.21 shows an average CO level measured during a daily

the air velocity, shown in Figure 7.22, decreased from 4 to 0.75 m/sec in the next
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FIGURE 7.23 The average CO level measured during the night.
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FIGURE 7.25 Average CO measurements from all five stations during the day.

fan groups were switched on. As a consequence the air velocity started to increase.
For every 15 min in the next hour two additional fan groups were switched on.
It can be seen that the influence of the fan group on air velocity depends on the
number of currently active fan groups, that is, it depends on the actual air velocity,
which is in accordance with Equation (7.14).

In order to get information about the tunnel dynamics, it is interesting to see
how a pollutant propagates through the tunnel. The tunnel Učka has five CO mea-

active and the average level of CO started to decrease on station 1, while it still
increased on other stations (the air flow direction was from station 1 to 5).

Usually the set point of the pollutant controller is determined as the maximal
value of the measured data in a particular moment (station 5 in our example mea-
sured 20 ppm). From Figure 7.25, we can conclude that actions based on that data
would switch on fan groups without a real need for that since the pollutant level
already started to decrease (at stations 1 and 2) and this trend would propagate
through the tunnel in the next 20 min.

The new fuzzy-predictive controller takes into account current measurements
of all stations and combines acquired data in order to form a set point such that it
would save energy and reduce the switching of fan groups.

7.3.1.5 Fuzzy Controller

Prior to the description of the fuzzy controller, let us briefly exemplify details of
the pollution control system currently used in the tunnel Učka. The tunnel, 5028 m
long, is bidirectional with one lane in each direction (Istria ↔ Kvarner). There
are 24 fan groups installed for each direction (three jet-fans form a fan group).
The control algorithm of the old ventilation system is based only on pollutants
measurements. Although distant stations for weather observation and loops for
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surement stations, whose data obtained during the daylight experiment (Figure 7.21
and Figure 7.22) are shown in Figure 7.25. At t = 63 min, eight fan groups were
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TABLE 7.8
Actions Triggered on States

State St0 St1 St2 St3 St4 St5

# Fan groups all 2 2 1 1 1
Action off off off on off on
T (min) 0 15 15 10 30 5

From Bogdan, S. and Birgmajer, B., IEEE Intl. Sympos. Industr. Electr. ISIE 2005, 4,
151–156, 2005. With permission.

TABLE 7.9
Actions Triggered on Thresholds

Threshold Tr1 Tr2 Tr3 Tr4 Tr5

# Fan groups all 2 2 2 1
Action off on off on off

From Bogdan, S. and Birgmajer, B., IEEE Intl. Sympos. Industr. Electr. ISIE 2005, 4,
151–156, 2005. With permission.

measurement of traffic parameters exist, data collected by this equipment is not
considered by the control algorithm (they are used only for monitoring and sta-
tistics). The switching of fan groups is led by pollutant thresholds and predefined
states.

Since the number of thresholds and states, as well as control actions, is
determined heuristically, the quality of ventilation depends on the operator’s exper-
ience. At the beginning of a shift, the operator loads his/her procedure into the
tables depending on the traffic parameters and weather conditions. According to
Tables 7.8 and 7.9, the control algorithm works as follows: thresholds for CO are
defined as Tr1 = 7 ppm, Tr2 = 8 ppm, Tr3 = 9 ppm, Tr4 = 10 ppm, and Tr5 =
12 ppm. Then, CO level is in state St0 if its measured value is less than Tr1, that
is, CO < 7 ppm. If Tr1 < CO < Tr2, then carbon monoxide is in state St1, and so
on. From Table 7.8 we read that while CO level is in state St1 the control algorithm
switches off two fan groups every 15 min. If CO level is in state St3 the control
algorithm switches on one fan group every 10 min. Table 7.9 contains actions
when states change. For example, transition from St1 to St2, that is, positive tran-
sition Tr2, activates two fan groups, whereas changeover from St2 to St1 (negative
transition) does not influence jet-fans. On the other hand, threshold Tr5 activates
the action only in the case of a negative transition (switches off one fan group).

Such a presentation of the control algorithm is very difficult to comprehend.
The number of parameters (thresholds, states, actions, etc.) is large and it is very
difficult to correlate their values with required control quality and system dynamics.
Tabular approach cannot cope with a rapid change of traffic and weather conditions,
as adaptation to new circumstances is done manually by the operator (assuming

© 2006 by Taylor & Francis Group, LLC
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that the operator recognizes a new situation and has prepared a control table for
it). Since the algorithm considers only direction of change (increase or decrease of
CO level) without taking into account the amount of change, the time response
of the ventilation system is rather slow and energy consuming. Furthermore, the
assenting influence of natural ventilation is not incorporated into the algorithm,
thus the number of active jet-fans, in case of a high level of CO and favorable
pressure difference and traffic, is kept high for a much longer period than necessary.
The first step in the improvement of previously used control algorithm is in its
extension with a predictive controller, whereas the second step is substitution of
thresholds and states tables with the fuzzy controller.

In order to take into account the dynamics of CO level transition, the fuzzy
controller has two inputs, the pollutant deviation from a set point, eCO, and the
deviation rate of change, �eCO. One output, �nF_r, in the form of five singleton
fuzzy sets is defined. Since the tunnel ventilation process has a static character,
the final output is formed as

nF_r(k) = nF_r(k − 1) + �nF_r(k) (7.16)

Each input has five fuzzy sets (NL, NS, Z, PS, and PL) defined over its universe

The fuzzy control algorithm, which uses Mamdani implication and calculates
the crisp  controller output according  to  the COG principle, is executed every 30 sec.

7.3.1.6 Simulation Experiments

The tunnel Učka ventilation system, controlled by the fuzzy-predictive controller,
has been simulated and the results are compared with those obtained with the

FIGURE 7.26 Membership functions of the fuzzy controller inputs. (From Bogdan, S. and
Birgmajer, B., IEEE Intl. Sympos. Industr. Electron. ISIE 2005, 4, 151–156, 2005. With
permission.)
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of discourse, as shown in Figure 7.26. The controller rules are shown in Table 7.10.
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TABLE 7.10
Fuzzy Controller Rules

NLE NSE ZE PSE PLE

NLDE 3 3 1 1 0
NSDE 3 1 1 0 −1
ZDE 1 1 0 −1 −1
PSDE 1 0 −1 −1 −3
PLDE 0 −1 −1 −3 −3

Adapted from Bogdan, S. and Birgmajer, B., IEEE Intl. Sympos. Industr. Electr. ISIE
2005, 4, 151–156, 2005. With permission.

FIGURE 7.27 The traffic intensity in the tunnel during simulation. (From Bogdan, S. and
Birgmajer, B., IEEE Intl. Sympos. Industr. Electron. ISIE 2005, 4, 151–156, 2005. With
permission.)

tabular controller. Figure 7.27 shows the number of vehicles in the tunnel in both
directions. The traffic intensity is changing randomly with an average value around
300 veh/h and a slightly higher concentration from the Kvarner portal. Figure 7.28
and Figure 7.29 show the CO concentration and the air velocity, respectively, in
the case when control system is not active, that is, CO is diluted only by natural
ventilation.

The results obtained with the longitudinal ventilation system controlled by the

present the results in the case of fuzzy-predictive control of the tunnel ventilation.
It can be seen that in both cases the CO concentration is considerably reduced.

The value of CO with inactive ventilation system soars over 40 ppm, whereas

© 2006 by Taylor & Francis Group, LLC

tabular controller are shown in Figures 7.30 to 7.32, while Figures 7.33 to 7.35
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FIGURE 7.29 The air velocity in the case of natural ventilation. (From Bogdan, S. and
Birgmajer, B., IEEE Intl. Sympos. Industr. Electron. ISIE 2005, 4, 151–156, 2005. With
permission.)

tabular and fuzzy-predictive controllers keep that value around 9 to 10 ppm.
The average CO concentration is 9.4 ppm for both controllers, but differences

predictive controller reacts instantly to any changes in traffic or weather conditions,

© 2006 by Taylor & Francis Group, LLC

in CO level dynamics are noticeable (Figure 7.30 and Figure 7.33). The fuzzy-

FIGURE 7.28 The CO level in the case of natural ventilation. (From Bogdan, S. and
Birgmajer, B., IEEE Intl. Sympos. Industr. Electron. ISIE 2005, 4, 151–156, 2005. With
permission.)
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FIGURE 7.31 The air velocity in the case of using the tabular controller. (From Bogdan, S.
and Birgmajer, B., IEEE Intl. Sympos. Industr. Electron. ISIE 2005, 4, 151–156, 2005. With
permission.)

before these changes significantly affect the CO concentration. The installed power
of each fan group is 80 kW. During 200 min, which was the period of simulation,
jet-fans, in the case of the tabular controller, have consumed 645 kWh. In the
same time, energy used by the fan groups controlled with the fuzzy-predictive
controller, was 615 kWh, which is around 5% less than in the first case. When

© 2006 by Taylor & Francis Group, LLC

FIGURE 7.30 The CO level in the case of using the tabular controller. (From Bogdan, S.
and Birgmajer, B., IEEE Intl. Sympos. Industr. Electron. ISIE 2005, 4, 151–156, 2005. With
permission.)
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FIGURE 7.33 The CO level in the case of using the fuzzy-predictive controller. (From
Bogdan, S. and Birgmajer, B., IEEE Intl. Sympos. Industr. Electron. ISIE 2005, 4, 151–156,
2005. With permission.)

see that jet-fans are switched on and off twice more often in the case of the tabular
controller, significantly increasing the stress on the supply power grid, because the
fan current drain peaks when it is being switched on.

© 2006 by Taylor & Francis Group, LLC

comparing dynamics of activated jet-fans (Figure 7.32 and Figure 7.35), one can

FIGURE 7.32 The number of active fan groups in the case of using the tabular
controller. (From Bogdan, S. and Birgmajer, B., IEEE Intl. Sympos. Industr. Electron.
ISIE 2005, 4, 151–156, 2005. With permission.)
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FIGURE 7.35 The number of active fan groups in the case of using the fuzzy-predictive
controller. (From Bogdan, S. and Birgmajer, B., IEEE Intl. Sympos. Industr. Electron. ISIE
2005, 4, 151–156, 2005. With permission.)

7.3.1.7 FBD-Based Implementation of a
Fuzzy-Predictive Controller

The fuzzy-predictive controller is implemented on an industrial PC with a Windows
NT-based operating system. The software structure of the control system is shown

© 2006 by Taylor & Francis Group, LLC

FIGURE 7.34 The air velocity in the case of using the fuzzy-predictive controller. (From
Bogdan, S. and Birgmajer, B., IEEE Intl. Sympos. Industr. Electron. ISIE 2005, 4, 151–156,
2005. With permission.)
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FIGURE 7.36 The road tunnel ventilation control system software.

in Figure 7.36. The system is built around a SQL database and server, SCADA for
visualization and control of the system is written in Java, remote station control
software is implemented in C++, while the fuzzy-predictive ventilation control
is written in the Function Block Diagram (FBD) language. A PC-based executable
code is generated by an FBD programming tool.

controller, written in the FBD language. In order to simplify the control over
the distribution of input membership functions, the fuzzy controller has two tun-
able parameters, Kneg and Kpos
only one or both parameters, the user can easily adjust the widths of membership
functions at the negative and positive sides of the input universes of discourse,
respectively.

7.3.2 Fuzzy Control of Anesthesia

The activities of anesthetists include numerous repeated and isolated tasks. Anes-
thetists have to observe and control a great number of different variables of
anesthesia, and vital functions. Anesthesia means an adequate hypnosis, analgesia,
and muscle relaxation for suppression of the effects of surgical manipulations.
In each of these areas the main problem lies in the measurements. The degree
of relaxation can be estimated by different methods such as electromyography
(EMG), mechanomyography (MMG), and acceleromyography (AMG).

Quite often the meaning of anesthesia is erroneously restricted to hypnosis.
Therefore, “the depth of anesthesia” should be replaced correctly by “the depth of
hypnosis” (DOH). Anesthesia consists of the above named three parts. Up to now,
there are only indirect parameters to quantify analgesia.

The introduction of new short-acting compounds of hypnotic drugs needs
a continuous mode both for measurement of control variables and for injection

© 2006 by Taylor & Francis Group, LLC

Figure 7.37 shows the implementation of the fuzzification part of the fuzzy

, for each input (see Figure 7.38). By changing

SCADA

System
configuration

SQL
database

and
server

Remote
station
control

Ventilation
control
(fuzzy)

Control
parameters



“D
K

6032_C
007”

—
2005/11/4

—
17:42

—
page

382
—

#48
�

�

�

�

�

�

�

�

382
Fuzzy

C
ontroller

D
esign

=PC_fz_Kneg_err
D=–2–1

D=1–2

–1

–4

–5
–6 –7

–8 –9 –10

20 1 20 1 20
D=1–22

–2 –3

Z_SUB
IN1 OUT
IN2

20
21
22

20
21
22

2

1

D=0–2

D=2–1

1

2 D=2–2

D=0–2

120 1 20
2

1 20 1 20 5

3
2

=PC_CO_err_mv

Z_COMP
IN1 IN1>IN2
IN2 IN1=IN2

IN1<IN2

Z_COMP
IN1 IN1>IN2
IN2 IN1=IN2

IN1<IN2

20
21
22

D=1–2
1

Z_COMP
IN1 IN1>IN2
IN2 IN1=IN2

IN1<IN2

20
21
22

1
2

D=0–2

Execution order: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
Z_COMP
IN1 IN1>IN2
IN2 IN1=IN2

IN1<IN2

Z_MUL
IN1 OUT
IN2

Z_DIV
IN1 OUT
IN2

Z_MUL
IN1 OUT
IN2

Z_OR
IN1 OUT
IN2

Z_ADD
20IN1 OUT

IN2

Z_SWITCH
S    OUT
IN1
IN2

Z_SWITCH
S    OUT
IN1
IN2

–13
–12

–11

–14

D=0–2
1

3

20
Z_OR
IN1 OUT
IN2

20 5

Z_DIV
IN1 OUT
IN2

FIGURE 7.37 The fuzzification part of the fuzzy controller, written in FBD language.

©
 2006 by T

aylor &
 Francis G

roup, L
L

C

© 2006 by Taylor & Francis Group, LLC



“DK6032_C007” — 2005/11/4 — 17:42 — page 383 — #49
�

�

�

�

�

�

�

�

Fuzzy Controllers for Industrial Applications 383

FIGURE 7.38 Adjustable coefficients, Kneg and Kpos, for changing the distribution of
input.

FIGURE 7.39 Overall control structure with AGPC NMB control end set point (e.g., 90%
NMB), open-loop control of analgesia and closed-loop fuzzy DOH control.

of drugs into the patient. Figure 7.39 shows the overall control structure for the
noted three parts of anesthesia [64]. One can see that the whole control system
consists of the control loop for neuromuscular blockade (NMB) controlled via
adaptive generalized predictive controller (AGPC), open-loop control of anal-
gesia, and closed-loop DOH control via fuzzy controller. Automatic control of
anesthesia supports the anesthetist in his activities. The closed-loop NMB and
DOH control prevents awareness and drug overdoses.

The anesthetist uses different parameters to estimate the depth of hypnosis.
Some of them such as tearing and sweating are not measurable. However, auto-
matic DOH control needs measurable outputs. A direct measurement of the
hypnosis is not yet available. DOH is expected to be reflected in the electroenceph-
alogram (EEG). Different algorithms are known for the estimation of residuals as
indicator for the depth of hypnosis from the raw EEG. The main disadvantage of
the EEG measurement is its variation with different anesthetic agents. One group
of measurement methods is based on the power spectrum. The complexity of the
raw EEG decreases with an increasing DOH. The spectral edge frequency 95%
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(SEF 95) determines a frequency limit, such that 95% of the signal power corre-
sponds to frequencies up to this limit. The median frequency corresponds to 50%
of the power spectrum. The edge frequencies decrease with the increase in DOH.
The correlation between the spectral edge frequencies and the DOH is not clearly
defined. The use of the SEF as a valid measurement for the depth of hypnosis is
contentious [58].

The bispectral (BIS) index has become very popular during the last years
and has been validated in a large number of studies. The BIS index combines
the power spectrum and bispectrum with a burst suppression analysis. The BIS
describes a complex EEG pattern by a simple variable. A good correlation of the
BIS with the plasma concentration of Sevoflurane was described in Reference 58.
Different versions of so-called BIS-monitors vary a lot in measurement and cannot
be compared. Another measurement procedure is the measurement of the EEG
response to stimulation. The evoked potentials reflect the subjective clinical signs
that anesthetists use. They are indicators of the response of the central nervous
system (CNS).Auditory evoked potentials (AEP) are used in different applications
[59]. In the presented control solution, the BIS-monitor Aspect-XP from Aspect
Medical Systems was used for the recording of EEG and DOH estimation. The
daily clinical use of such equipment is simpler than the use of the AEP.

The controlled plant consists of three parts: a drug application unit, the patient,
and a measurement unit. In the presented control solution, the liquid drug propofol
and the BIS-monitor as a measurement device were used. For the application
of liquid drugs, there exist two systems, infusion pumps and infusion pumps
combined with a drug distribution model. The latter are called target controlled
infusion systems (TCI), which can appear in open- and closed-loop configurations
[59]. The TCI system calculates the necessary infusion value with regard to a
target blood concentration. The described controller estimates an infusion value in
mg/kg/h. This value is mapped onto the infusion rate. The syringe pumps (Graseby
3400) as actuators make errors for low infusion rates, so a correction function for
the infusion value was used.

A universal DOH controller has to manage different types of patients. Patients
react in a different way to the injected infusion of propofol and therefore it is dif-
ficult to make a universal model of the DOH. Another reason for difficulties with
modeling lies in the nonlinear operating method of the BIS-monitor. A mixture of
statistic and lookup table calculations ascertains the output value — BIS-index of
the BIS-monitor. Additional sources of ambiguity are still undefined or unquanti-
fied interactions between hypnotic drugs, or the DOH and analgetic drugs, or the
depth of analgesia. Therefore, the design of model-based, robust and predictive
controllers is not a promising way to go. On the other hand, fuzzy controllers,
known for their stable and robust performance, can be developed without numer-
ical models, thereby opening the possibility of implementing expert knowledge
from anesthetists.

filter determines the dynamically filtered and normalized control error and change
of the control error. The fuzzy system has two outputs. One output corresponds

© 2006 by Taylor & Francis Group, LLC

Figure 7.40 shows the structure of a developed Fuzzy PD+ I controller. A pre-
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FIGURE 7.40 Structure of the fuzzy PD + I controller with a prefilter and a compensa-
tion [64].

TABLE 7.11
Fuzzy Rule-Table of the PD-Type Controller

NLE NME NSE ZE PSE PME PLE

NLDE VS VS VS VS S M SB
NMDE VS VS VS S M SB B
NSDE VS VS S M M B VB
ZDE VS VS S M SB B VB
PSDE VS VS M SB SB VB VB
PMDE VS VS M SB B VB VB
PLDE VS S SB B B VB VB

to a PD-type fuzzy controller output, while the other is summed up to generate
an integral controller output. These two parts are superposed to the control signal
[60]. To avoid stability problems with highly sensitive patients, the control signal
is limited by a lower bound of 2 mg/kg/h. Table 7.11 shows the fuzzy rule-table

The designed fuzzy DOH controller is tested by simulation before it is used
in a real situation in the operating theatre. The known pharmacokinetic behavior

Using the notations xi for the drug concentration in the ith compartment at time t,
ẋi for the rate of change and u for the given drug input, the pharmacokinetic model
is described by

ẋ1 = k21x2 + k13x3 − (k10 + k12 + k13)x1 + u (7.17)

ẋ2 = k12x1 − k21x2 (7.18)

ẋ3 = k13x1 − k31x3 (7.19)

Experimental work has shown that a so-called effect compartment should be
added to the pharmacokinetic equations [62]

ẋE = k1Ex1 − kE0xE (7.20)

© 2006 by Taylor & Francis Group, LLC

and Figure 7.41 shows the control surface of the PD-type fuzzy DOH controller.

is described in a linear three-compartment model [61], as shown in Figure 7.42.
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FIGURE 7.42 Compartment model for simulation.

where k10, kE0 denote the elimination rate constants and k12, k21, k13, and k31,
the transfer constants between compartments 1 and 2 or compartments 1 and 3,
respectively.

By combining Equation (7.20) with Equations (7.17) to (7.19) and applying
the Laplace transform we get the transfer function

XE(s)

U(s)
= K(1 + Tv1s)(1 + Tv2s)e−τ s

(1 + T1s)(1 + T2s)(1 + T3s)(1 + T4s)
(7.21)

© 2006 by Taylor & Francis Group, LLC

FIGURE 7.41 Fuzzy control surface of the PD-type controller.
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TABLE 7.12
Statistics of DOH Control

Parameter Mean value ± SD Min Max

tcontrol [min] 81.1 ± 41.6 12 170
Mean DOH [BIS-Index] 39.8 ± 1.1 38.2 44.2
RMSD [BIS-Index] 4.9 ± 2.2 2 11.3

FIGURE 7.43 DOH fuzzy control in practice.

where an additional dead time τ has been introduced to model the transport delay
of the drug.

To complete a propofol nonlinear model, we added a Hill-equation to describe
the relationship between the concentration in the blood and the measured BIS
value [61]:

Eeff = EmaxXα
e

Xα
E + Xα

E (50)
(7.22)

© 2006 by Taylor & Francis Group, LLC
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where XE(50) is the drug concentration at a 50% effect of the final value Emax, XE

the drug concentration and α the Hill coefficient.
After collection of some identification data sets, parameter optimization meth-

ods were used to build a simulation model with the described structure. The
following simulation parameters were calculated:

K = 0.0036 Tv1 = 6.41 min Tv2 = 6.55 min
T1 = 0.46 min T2 = 13.31 min T3 = 11.83 min
T4 = 3.36 min XE(50) = 0.17 µg/mL α = 3.98
τ = 1

3 min

For the DOH control, 25 patients were successfully controlled. The set point for

of 39.8 ± 1.1 was reached. In this study, 25 patients with general and accident
operation were involved. In average, the controller worked 81 ± 41.6 min. Due to
the nonadaptive robust control strategy, the root mean square deviation (RMSD)
(with 4.9 ± 2.2) was high.

In
the experiment, the set point was adjusted to BIS-index 40, where a BIS-index
between 30 and 50 was tolerated. According to the intraoperative patient behavior,
the anesthetist changed the set point in this example to BIS-index 45. This became
necessary because the blood pressure and the hearth frequency decreased as the
consequence of the propofol infusion.
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control of the condensate level,” CD-ROM Proceedings of the 9th Mediterranean
Conference on Control and Automation Control, FM1-A, Dubrovnik, 2001.

47. Ordys, A.W., Pike, A.W., Johnson, M.A., Katebi, R.M., and Grimble, M.J.,
Modelling and Simulation of Power Generation Plants, Springer-Verlag, London,
1994.

48. Lu, C.X., Bell, R.D., and Rees, N.W., “Scheduling control of deaerator plant,”
Proceedings of the IFAC Control of Power Systems and Power Plants, Beijing,
pp. 183–189, 1997.

49. Bell, R.D. and Astrom, K.J., “A fourth order non-linear model for drum-
boiler dynamics,” Proceedings of the IFAC 13th World Congress, San Francisco,
pp. 31–36, 1996.

50. Lewis, R.W., Programming industrial control systems using IEC 61131–3, IEE,
UK, 1998.

51. Modic, J., “Air velocity and concentration of noxious substances in a naturally
ventilated tunnel,” Tunnelling and Underground Space Technology, 18, 405–410,
2003.

52. Bettelini, M., Brandt, R., and Riess, I., “Progress in tunnel ventilation — the
Mont-Blanc tunnel,” Proceedings of the AITES-ITA 2001 World Tunnel Congress,
Milano, 2001.

53. Karakas, E., “The control of highway tunnel ventilation using fuzzy logic,”
Engineering Application of Artificial Intelligence, 16, 717–721, 2003.

54. Hoogendoorn, S., Hoogendoorn-Lanser, S., and Schuurman, H., “Fuzzy perspec-
tives in traffic engineering,” Research Report, TRAIL Research School, Delft,
Report on behalf of Dutch Ministry of Transport, 1998.

55. Mizuno, A. et al., “Evaluation of the performance of control of the road tunnel
ventilation,” Proceedings of the 8th ISAVVT, Liverpool, pp. 903–917, 1994.

56. Jang, H.M. and Chen, F., “On the determination of the aerodynamic coefficients of
highway tunnels,” Journal of Wind Engineering and Industrial Aerodynamics, 90,
869–896, 2002.

57. Bring, A., Malmstrom, T., and Boman, C.A., “Simulation and measurement of road
tunnel ventilation,” Tunneling and Underground Space Technology, 12, 417–424,
1997.

58. Widman, G., Schreiber, T., Rehberg, B., Hoeft, A., and Elger, C.E., “Quantification
of depth of anaesthesia by nonlinear time series analysis of brain electrical activity,”
Physics Review E, 62, 4898–4903, 2000.

59. Kenny, G.N. and Mantzaridis, H., “Closed-loop control of propofol anesthesia,”
British Journal of Anesthesia, 83, 223–228, 1999.

© 2006 by Taylor & Francis Group, LLC



“DK6032_C007” — 2005/11/4 — 17:42 — page 392 — #58
�

�

�

�

�

�

�

�

392 Fuzzy Controller Design

60. Simanski, O., Kähler, R., Pohl, B., Hofmockel, R., and Lampe, B., “Control in
general anaesthesia — a contribution,” in K.P. Adlassnig (Ed.), Proceedings Eunite
Workshop on Intelligent Systems in Patient Care, Vienna, pp. 169–175, 2001.

61. Simanski, O., “Development of a System for Measurement and Control of the
Neuromuscular Blockade and the Depth of Hypnosis,” PhD thesis, Institute of
Automation, University of Rostock, Germany, 2002.

62. Sheiner, L.B., Stanski, D.R., Vozeh, S., Miller, R.D., and Ham, J., “Simul-
taneous modelling of pharmacokinetics and pharmacodynamics: application to
d-tubocurarine,” Clinical Pharmacology and Therapeutics, 25, 358–362, 1979.

63. Bogdan, S. and Birgmajer, B., “Fuzzy predictive control at a road tunnel venti-
lation systems”, Proceedings of the IEEE International Symposium on Industrial
Electronics ISIE 2005, 4, 151–156, Dubrovnik, 2005

64. Simanski, O., Kähler, R., Pohl, B., Hoinfmockel, R., Friedrich, R., and Lampe,
B.P., “Measurement and control of neuromuscular block and depth of hyphosis”
European Journal of Control (submitted for publication).

© 2006 by Taylor & Francis Group, LLC




	Fuzzy Controller Design: Theory and Applications
	Preface
	About the Organization of the Book

	Authors
	Contents

	Table of Contents
	Chapter 1: Introduction
	REFERENCES

	Table of Contents
	Chapter 2: Fuzzy Controller Design
	2.1 FUZZY SETS
	2.2 LINGUISTIC VARIABLES
	2.3 FUZZY RULES
	2.3.1 Fuzzy Implication
	2.3.2 Defuzzification

	2.4 FUZZY CONTROLLER STRUCTURE
	2.4.1 Fuzzy Rule Table
	2.4.2 Choice of Shape, Number, and Distribution of Fuzzy Sets

	2.5 FUZZY CONTROLLER STABILITY
	REFERENCES

	Table of Contents
	Chapter 3: Initial Setting of Fuzzy Controllers
	3.1 FUZZY EMULATION OF P-I-D CONTROL ALGORITHMS
	3.1.1 Fuzzy Emulation of a PID Controller
	3.1.1.1 Fuzzy Emulation of a PID Controller — Variant A
	3.1.1.2 Fuzzy Emulation of a PID Controller — Variant B
	3.1.1.3 Fuzzy Emulation of a PID Controller — Variant C
	3.1.1.4 Sugeno Type of Fuzzy PID Controller


	3.2 Model Reference-Based Initial Setting of Fuzzy Controllers
	3.3 PHASE PLANE-BASED INITIAL SETTING OF FUZZY CONTROLLERS
	3.4 PRACTICAL EXAMPLES: INITIAL SETTING OF A FUZZY CONTROLLER
	3.4.1 Emulation of a PI Controller
	3.4.2 Model Reference-Based Initial Setting
	3.4.3 Phase Plane-Based Initial Setting

	REFERENCES

	Table of Contents
	Chapter 4: Complex Fuzzy Controller Structures
	4.1 HYBRID FUZZY CONTROL
	4.2 ADAPTIVE FUZZY CONTROL
	4.2.1 Direct and Indirect Adaptive Control
	4.2.2 Model Reference Fuzzy Adaptive Control Systems
	4.2.2.1 Sensitivity Model-Based Adaptation
	4.2.2.2 Integral Criterion-Based Adaptation
	4.2.2.3 Model Reference Adaptive Control with Fuzzy Adaptation

	4.2.3 Multiple Fuzzy Rule Table-Based Adaptation
	4.2.4 Fuzzy MRAC Contact Force Control
	4.2.5 Fuzzy MRAC Angular Speed Control

	REFERENCES

	Table of Contents
	Chapter 5: Self-Organizing Fuzzy Controllers
	5.1 SELF-ORGANIZING FUZZY CONTROL BASED ON THE DIRECT LYAPUNOV METHOD
	5.2 SELF-ORGANIZING FUZZY CONTROL BASED ON THE HURWITZ STABILITY CRITERIA
	5.3 SELF-ORGANIZING FUZZY CONTROL BASED ON SENSITIVITY FUNCTIONS
	5.3.1 Basic Concept of System Sensitivity
	5.3.2 Synthesis of a Self-Organizing Fuzzy Algorithm
	5.3.3 Example: Multiple Fuzzy Rule Table-Based Control
	5.3.4 Self-Organizing Fuzzy Control with a Self-Learning Integral Term

	REFERENCES

	Table of Contents
	Chapter 6: Fuzzy Controllers as MATLAB® Superblocks
	6.1 FEATURES OF MATLAB FUZZY LOGIC TOOLBOX
	6.1.1 FIS Editor
	6.1.2 Membership Function Editor
	6.1.3 Rule Editor
	6.1.4 Rule Viewer
	6.1.5 Defuzzification Methods in FLT
	6.1.6 FLT Commands

	6.2 HYBRID FUZZY CONTROLLER SUPER-BLOCK FOR MATLAB
	6.3 POLYNOMIAL-BASED PSLFLC MATLAB SUPER-BLOCK
	6.4 SENSITIVITY MODEL-BASED SLFLC MATLAB SUPER-BLOCK
	6.5 DESIGN PROJECT: FUZZY CONTROL OF A ELECTRO-HYDRAULIC SERVO SYSTEM
	6.5.1 Mathematical Model of a Control Process
	6.5.2 Simulation Model
	6.5.3 Fuzzy Controller Design Specifications

	REFERENCES

	Table of  Contents
	Chapter 7: Implementation of Fuzzy Controllers for Industrial Applications
	7.1 BRIEF OVERVIEW OF INDUSTRIAL FUZZY CONTROLLERS
	7.2 IMPLEMENTATION PLATFORMS FOR INDUSTRIAL FUZZY LOGIC CONTROLLERS
	7.2.1 Microcomputer-Based Fuzzy Controller Implementation
	7.2.2 PLC-Based Fuzzy Gain Scheduling Control of Condensate Level
	7.2.2.1 The Condenser Model
	7.2.2.2 Standard Condensate Level Control
	7.2.2.3 Fuzzy Gain Scheduling Condensate Level Control
	7.2.2.4 PLC Siemens Simatic S7-216 Step 7 Program of FGS Condensate Level Control

	7.2.3 PLC-Based Self-Learning Fuzzy Controller Implementation
	7.2.3.1 PPSOFC — Self-Organizing Fuzzy Controller Function Block


	7.3 EXAMPLES OF FUZZY CONTROLLER APPLICATIONS IN PROCESS CONTROL
	7.3.1 PC-Based Fuzzy-Predictive Control of a Road Tunnel Ventilation System
	7.3.1.1 The Structure of a Fuzzy-Predictive Controller
	7.3.1.2 Air Flow Prediction
	7.3.1.3 Prediction of Number of Jet-Fans
	7.3.1.4 Tunnel Parameters Identification
	7.3.1.5 Fuzzy Controller
	7.3.1.6 Simulation Experiments
	7.3.1.7 FBD-Based Implementation of a Fuzzy-Predictive Controller

	7.3.2 Fuzzy Control of Anesthesia

	REFERENCES


