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Preface

The reader is holding the second volume of a three-volume textbook on solid-
state physics. This book is the outgrowth of the courses I have taught for
many years at Eötvös University, Budapest, for undergraduate and graduate
students under the titles Solid-State Physics and Modern Solid-State Physics.

The main motivation for the publication of my lecture notes as a book
was that none of the truly numerous textbooks covered all those areas that
I felt should be included in a multi-semester course. Especially, if the course
strives to present solid-state physics in a unified structure, and aims at dis-
cussing not only classic chapters of the subject matter but also (in more or
less detail) problems that are of great interest for today’s researcher as well.
Besides, the book presents a much larger material than what can be covered
in a two- or three-semester course. In the first part of the first volume the
analysis of crystal symmetries and structure goes into details that certainly
cannot be included in a usual course on solid-state physics. The same applies,
among others, to the discussion of the methods used in the determination of
band structure, the properties of Fermi liquids and non-Fermi liquids, and the
theory of unconventional superconductors in the present and third volumes.
These parts can be assigned as supplementary reading for interested students,
or can be discussed in advanced courses.

The line of development and the order of the chapters are based on the
prerequisites for understanding each part. Therefore a gradual shift can be
observed in the style of the book. While the intermediate steps of calculations
are presented in considerable detail and explanations are also more lengthy in
the first and second volumes, they are much sparser and more concise in the
third one, thus that volume relies more on the individual work of the students.
On account of the prerequisites, certain topics have to be revisited. This is why
magnetic properties are treated in three, and superconductivity in two parts.
The magnetism of individual atoms is presented in an introductory chapter of
the first volume. The structure and dynamics of magnetically ordered systems
built up of localized moments are best discussed after lattice vibrations, along
the same lines. Magnetism is then revisited in the third volume, where the
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role of electron–electron interactions is discussed in more detail. Similarly, the
phenomenological description of superconductivity is presented in this volume
after the analysis of the transport properties of normal metals, in contrast to
them, while the microscopic theory is outlined later, in the third volume, when
the effects of interactions are discussed.

Separating the material into three similar-sized volumes is a necessity in
view of the size of the material – but it also reflects the internal logical struc-
ture of the subject matter. At those universities where the basic course in
solid-state physics runs for three semesters working through one volume per
semester is a natural schedule. In this case the discussion of the electron
gas – which is traditionally part of the introduction – is left for the second
semester. This choice is particularly suited to curricula in which the course
on solid-state physics is held parallel with quantum mechanics or statistical
physics. If the lecturer feels more comfortable with the traditional approach,
the discussion of the Drude model presented in this volume can be moved to
the beginning of the whole course. Nevertheless the discussion of the Sommer-
feld model should be postponed until students have familiarized themselves
with the fundamentals of statistical physics. For the same reason the lecturer
may prefer to change the order of other chapters as well. This is, to a large
extent, up to the personal preferences of the lecturer.

In presenting the field of solid-state physics, special emphasis has been
laid on discussing the physical phenomena that can be observed in solids.
Nevertheless I have tried to give – or at least outline – the theoretical inter-
pretation for each phenomenon, too. As is common practice for textbooks, I
have omitted precise references that would give the publication data of the
discussed results. I have made exceptions only for figures taken directly from
published articles. At the end of each chapter I have listed textbooks and
review articles only that present further details and references pertaining to
the subject matter of the chapter in question. The first chapter of the first
volume contains a longer list of textbooks and series on solid-state physics.

Bulky as it might be, this three-volume treatise presents only the funda-
mentals of solid-state physics. Today, when articles about condensed matter
physics fill tens of thousands of pages every year in Physical Review alone, it
would be obviously overambitious to aim at more. Therefore, building on the
foundations presented in this series, students will have to acquire a substantial
amount of extra knowledge before they can understand the subtleties of the
topics in the forefront of today’s research. Nevertheless at the end of the third
volume students will also appreciate the number of open questions and the
necessity of further research.

A certain knowledge of quantum mechanics is a prerequisite for study-
ing solid-state physics. Various techniques of quantum mechanics – above
all field-theoretical methods and methods employed in solving many-body
problems – play an important role in present-day solid-state physics. Some
essential details are listed in one of the appendices of the third volume, how-
ever, I have omitted more complicated calculations that would have required
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the application of the modern apparatus of many-body problems. This is
especially true for the third volume, where central research topics of present-
day solid-state physics are discussed, in which the theoretical interpretation
of experimental results is often impossible without some extremely complex
mathematical formulation.

The selection of topics obviously bears the stamp of the author’s own
research interest, too. This explains why the discussion of certain important
fields – such as the mechanical properties of solids, surface phenomena, or
amorphous systems, to name but a few – have been omitted.

I have used the International System of Units (SI), and have given the
equations of electromagnetism in rationalized form. Since nonrationalized
equations as well as gaussian CGS (and other) units are still widely used
in the solid-state physics literature, the corresponding formulas and units are
indicated at the appropriate places. In addition to the fundamental physical
constants used in solid-state physics, the commonest conversion factors are
also listed in Appendix A of the first volume. I deviated from the recom-
mended notation in the case of the Boltzmann constant using kB instead of
k – reserving the latter for the wave number, which plays a central role in
solid-state physics.

To give an impression of the usual values of the quantities occurring in
solid-state physics, typical calculated values or measured data are often tabu-
lated. To provide the most precise data available, I have relied on the Landolt–
Börnstein series, the CRC Handbook of Chemistry and Physics, and other
renowned sources. Since these data are for information only, I have not indi-
cated either their error or in many cases the measurement temperature, and
I have not mentioned when different measurement methods lead to slightly
disparate results. As a rule of thumb, the error is usually smaller than or on
the order of the last digit.

I would like to thank all my colleagues who read certain chapters and
improved the text through their suggestions and criticism. Particular thanks
go to professors György Mihály and Attila Virosztek for reading the whole
manuscript. In spite of all efforts, some mistakes have certainly remained in
the book. Obviously, the author alone bears the responsibility for them.

Special thanks are due to Károly Härtlein for his careful work in drawing
the majority of the figures. The figures presenting experimental results are
reproduced with the permission of the authors or the publishers. The challenge
of translating the first and second volumes of the book from the Hungarian
original was taken up by Attila Piróth. I acknowledge his work.

Finally, I am indebted to my family, to my wife and children, for their
patience during all those years when I spent evenings and weekends with
writing this book.

Budapest, August 2008 Jenő Sólyom
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16

Free-Electron Model of Metals

The first volume of this series was primarily concerned with the structure of
condensed matter. We studied whether an order is present in the arrangement
of the atoms or ions that determine the overall structure of the solid, and then
analyzed the dynamics of crystal lattices in the ordered (crystalline) phase.
Next, we treated a very similar problem presented by magnetically ordered
materials, determining the possible ordered arrangements of localized atomic
magnetic moments and the elementary excitations arising from the dynamics
of the moments. Various thermodynamic and magnetic properties of solids
could be explained in terms of these.

A second constituent of solids, which is perhaps even more important than
the ion cores, is the system of electrons that are not tightly bound in the inner
shells of the ions and that form metallic bonds or valence bonds between ion
cores. In this volume we shall be concerned with the behavior of such electrons
– which participate in bonding, and thus affect substantially the properties
of solids. Throughout, we shall employ the one-particle approximation; the
analysis of the role of electron–electron interactions will be the subject of the
third volume.

Soon after the discovery of the electron,1 a straightforward explanation was
suggested for the most characteristic properties of metals (good electrical and
thermal conductivity) in terms of conduction electrons, i.e., electrons moving
freely in metals. The successful description of the behavior of nearly ideal gases
at the end of the 19th century, due primarily to L. Boltzmann’s contributions
to classical statistical mechanics, enabled P. Drude (1900) to apply a simple
formulation of the kinetic theory of gases to a gas of electrons. This model was
developed further by H. A. Lorentz (1905) to give a more detailed account
of conduction phenomena. This model of the classical gas of free electrons is
called the Drude model or Drude–Lorentz model.

Despite its initial success, the inadequacies of the model soon transpired.
These were rooted in the fact that the gas of electrons – if it can be consid-
1 J. J. Thomson, 1897.
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ered a gas of weakly interacting particles at all – can hardly ever be treated
classically. Electrons, as quantum mechanical objects, obey the Fermi–Dirac
statistics.2 Immediately after the formulation of quantum mechanics, Som-
merfeld and his co-workers gave a much better – albeit still imperfect –
description of the electronic properties of metals based on the new theory.
The present chapter is devoted to this free-electron model. Before turning to
the quantum mechanical treatment, we shall briefly overview the classical de-
scription as its terminology and underlying physical picture are often of great
use even today.

Even though the approximation of lumping all interactions into the colli-
sion time of electrons sounds extremely rough at first, the model nevertheless
provides a surprisingly good explanation of those properties of metals that are
determined by the motion of electrons in applied electric or magnetic fields.
However, it does not explain either the existence of nonmetallic materials
(insulators and semiconductors) or the properties of superconductors.

Throughout the present volume we shall deal with these problems, as-
suming that the interactions between electrons are almost negligible. Among
others, the theories discussed in Volume 3 aim to provide an explanation for
this electron-gas-like behavior, and to point out under what circumstances
interactions between electrons play an important role.

16.1 Classical Drude Model

Calculated from the atomic mass, material density, and the well-known value
of the Avogadro constant, the electron density is estimated to be a few times
1022 per cm3 in simple metals. This is much larger than the usual densities
in gases. If the ideal gas law is assumed to be valid, the pressure of the
electron is found to be on the order of a thousand atmospheres. Despite this
unrealistically high value we shall assume below that electrons in solids behave
like particles of an almost ideal gas confined to a finite box.

16.1.1 Basic Assumptions of the Model

According to Drude’s assumption, Z electrons get detached from each atom,
and in metals they fill the space between atoms essentially uniformly. As they
are responsible for metallic conduction, they are called conduction electrons.
By making the straightforward assumption that core electrons do not con-
tribute to the electrical conductivity, Z can be identified with the number of
valence electrons, that is, electrons on the outermost open shell in the atomic
configuration. The legitimacy of this assumption is supported by the resistiv-
ity data of alkali metals and noble metals that hardly increase with increasing
atomic number.
2 E. Fermi and P. A. M. Dirac, 1926.
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The conduction electrons have strong attractive and repulsive Coulomb
interactions with ion cores and other conduction electrons, respectively. Since
the system as a whole is neutral, it can be assumed that the strong Coulomb
attraction due to ion cores is essentially compensated for by the repulsion due
to other conduction electrons. In this approximation electrostatic forces can
be neglected, and the system of electrons can be considered as a gas of free,
neutral particles. However, this rough picture requires substantial improve-
ment.

The neglect of direct collisions with ions can be justified if the volume
filled by ion cores is small compared to the volume occupied by electrons. To
evaluate their ratio, each atom is associated with a sphere whose volume is
one atom’s share of the total volume. The radius rWS of this Wigner–Seitz
sphere3 is determined from the formula

4πr3WS
3

=
V

N
, (16.1.1)

where V is the volume of the sample and N is the number of atoms. Values of
rWS – either calculated from the lattice constant or obtained from the density,
atomic weight, and the Avogadro constant – are listed in Table 16.1 for some
simple metals.

Table 16.1. Wigner–Seitz radius for some simple metals

Element rWS

(Å) Element rWS

(Å) Element rWS

(Å) Element rWS

(Å) Element rWS

(Å)

Li 1.73 Be 1.25
Na 2.07 Mg 1.78 Al 1.59
K 2.62 Ca 2.18 Cu 1.41 Zn 1.54 Ga 1.67
Rb 2.81 Sr 2.27 Ag 1.60 Cd 1.73 In 1.83
Cs 2.99 Ba 2.47 Au 1.59 Hg 1.76 Tl 1.89

The value of the Wigner–Seitz radius is seen to be usually around 2 Å. How-
ever, in alkali metals, alkaline-earth metals, and other simple metals, which
are all considered to be good metals, the radius of the ion core is around 1 Å
(see Chapter 4 of Volume 1). This implies that only one-eighth to one-tenth
of the total volume of the metal is occupied by ion cores. According to the
model, conduction electrons can move around freely in the remaining volume,
it can therefore be assumed that collisions occur relatively infrequently.

Even though the net Coulomb interaction is weak and collisions with ions
are rare, the finiteness of the metallic conductivity cannot be understood with-
out taking these scattering events into account. We shall discuss in detail the
3 E. P. Wigner and F. Seitz, 1933.
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interaction between electrons and the lattice of ions in later chapters. Below
we shall use the simplification that, just like in the kinetic theory of gases,
these collisions can be characterized by the collision time τ (also known as
the relaxation time or the mean free time). Physically, dt/τ is the probability
that a randomly selected electron experiences a collision in time dt. It also
means that the probability that no collision occurs to the same electron for
time t after (or before) this collision is e−t/τ, while the probability that the
time between two consecutive collisions is between t and t+ dt is e−t/τdt/τ .
This implies that an electron undergoes collisions once every τ on the average.

In this phenomenological treatment the relaxation time τ is a fundamental
parameter of the theory. Instead of trying to derive it from first principles,
we shall determine its value from experiments. Only after the discussion of
scattering processes shall we turn to the quantum mechanical treatment of
the relaxation time (Chapter 24).

According to the laws of classical statistical physics, the velocity distri-
bution of particles in the thermal equilibrium arising from collisions is de-
scribed by the Maxwellian velocity distribution,4 also known as the Maxwell–
Boltzmann distribution.5 The probability that the speed of an electron of
mass me is between v and v + dv in an isotropic system is

f0(v)4πv2dv =
(

me

2πkBT

)3/2

exp
(
−mev

2

2kBT

)
4πv2 dv . (16.1.2)

Denoting the number of electrons per unit volume by ne, the density of elec-
trons of velocity v is

ρe(v) = nef0(|v|) = ne

(
me

2πkBT

)3/2

exp
(
−mev

2

2kBT

)
. (16.1.3)

Using (C.2.5) [see Volume 1], it can be shown that for this classical Maxwell–
Boltzmann distribution

〈v2〉 =

∞∫
0

v2f0(v) 4πv2 dv = 3
kBT

me
, (16.1.4)

that is, the mean kinetic energy of electrons satisfies the equipartition theorem:

〈ε〉 = 1
2me〈v2〉 = 3

2kBT . (16.1.5)

It is readily seen that the heat capacity per electron is then

c = 3
2kB , (16.1.6)

4 J. C. Maxwell, 1859.
5 L. Boltzmann, 1871.
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while the specific heat per unit volume6 is

cel = 3
2nekB . (16.1.7)

At not too low temperatures the specific heat of solids is indeed found to
be independent of the temperature, however the molar heat of divalent metals
is not twice as much as that of monovalent metals. It was shown in Chapter
12 that this temperature-independent contribution to the specific heat does
note come from the motion of electrons but from the vibrations of the lattice.
The electronic contribution to specific heat is much smaller. As mentioned in
connection with Fig. 12.8, this contribution is not constant but proportional to
temperature. It can only be observed at low temperatures where the phonon
contribution is also smaller than the classical value and vanishes as T 3. The
classical model thus badly overestimates the electronic contribution to specific
heat.

Identifying the obtained value of the kinetic energy with the energy of an
electron moving with an average speed of v, we have

v =
(

3kBT
me

)1/2

. (16.1.8)

At room temperature this thermal velocity is around 105 m/s. Moving at this
speed, the electron travels a mean distance of

l = v τ =
(

3kBT
me

)1/2

τ (16.1.9)

between two successive collisions. This is the mean free path of electrons. To
evaluate it, the collision time has to be known. As mentioned above, this can
be derived from the electrical resistivity.

16.1.2 Electrical Conductivity

When a metal is placed into a uniform electric field E, electrons acquire, be-
yond their thermal motion, an additional drift velocity. Following Drude, we
shall assume that the part of the kinetic energy that an electron acquires
from the electric field is entirely lost (dissipated) in the collisions – that
is, immediately after a collision the velocity of electrons is described by the
Maxwell–Boltzmann distribution, which corresponds to thermal equilibrium,
irrespective of the velocity distribution prior to the collision. When averaged
over directions, the mean velocity is zero right after collisions; electrons then
6 Strictly speaking, specific heat capacity (or specific heat) should be used only for

the heat capacity per unit mass. However, we shall follow common practice and
use specific heat in a broader sense, for heat capacity per unit volume and heat
capacity per unit amount of substance (molar heat capacity).
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accelerate for a short time. As we shall see, the drift velocity is much smaller
than the root-mean-square (rms) velocity of thermal motion, therefore the
energy loss is tiny on the thermal energy scale, consequently collisions can be
considered nearly elastic. However, scattering is not strictly elastic, and it is
precisely this inelasticity that leads to the establishment of thermal equilib-
rium.

The electrostatic force on electrons, F = −eE, would change the velocity
of each electron by

vdr(t) = −eEt
me

(16.1.10)

in time t. According to our previous assumptions, regardless of the choice of
the particular moment, the average lapse of time since the last collision is τ ,
so the mean drift velocity of electrons is

vdr = −eEτ
me

. (16.1.11)

In what follows – and especially in the discussion of semiconductors – we shall
repeatedly write the relation between drift velocity and electric field strength
as

vdr = −μE , (16.1.12)

where μ is the carrier mobility. For free electrons μ = eτ/me.
The isotropic thermal motion of electrons gives a vanishing contribution

to electrical conductivity, therefore it can be ignored. Conduction phenomena
can then be treated as if particles of charge −e were drifting with the same
speed vdr opposite to the field direction. In reality, even when thermal mo-
tion is neglected, electrons accelerate in the electric field, stop upon collision,
and then start to accelerate again. This motion can be approximated by a
uniform motion at the average velocity. Note that if each electron collided at
regular intervals τ with the ion cores then the average drift velocity would be
only half of the value given in (16.1.11). Drude used this assumption in his
original calculations. In a more careful calculation the time between collisions
is assumed to follow a Poisson distribution. Because of acceleration, particles
that collide less frequently than the average get much farther and acquire an
above-average terminal velocity. That is why the mean velocity of electrons is
given by (16.1.11).

The description of the average motion of electrons can also be based on a
classical equation of motion that will be used repeatedly later, too. Besides the
electrostatic force that accelerates electrons in the electric field, the expression
contains a phenomenological damping (relaxation) term that describes how
collisions hinder the free motion of electrons and how the drift velocity relaxes
to zero. Since the momentum and energy acquired from the field dissipates
over an average period of τ , the equation of motion reads

me
dvdr

dt
= −eE − mevdr

τ
. (16.1.13)
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When the transients following the switch-on of the electric field have decayed
and a stationary state has been established, (16.1.11) is recovered.

To determine the electric current induced by the field, the number dNe of
particles passing through a surface element dS perpendicular to the propaga-
tion direction of the particles in time dt has to be calculated. According to
the kinetic theory of gases,

dNe = nevdr dS dt . (16.1.14)

The amount of charge passing through the surface in time dt is

dQ = −enevdr dS dt ; (16.1.15)

differentiation with respect to time and surface area then gives the current
density,

j = −enevdr . (16.1.16)

By treating the velocity and current of electrons as vector quantities,

j = −enevdr . (16.1.17)

Through (16.1.11), this leads to

j =
nee

2τ

me
E . (16.1.18)

In an isotropic material Ohm’s law7 can be written in terms of the scalar
resistivity � or the conductivity σ:

E = �j , j = σE . (16.1.19)

It follows from (16.1.18) that in the Drude model, conductivity is given by

σ =
nee

2τ

me
. (16.1.20)

Note that this relation is valid in SI and CGS units alike, however the numeri-
cal value and unit of the elementary charge – and with it, those of conductivity
– are different in the two systems. Apart from very low and very high tem-
peratures (around the melting point), the typical resistivity of metals is on
the order of 1–100 nΩm. As shown in Table 16.2, for most metals this value is
between 10 and 100 nΩm at room temperature, and between 1 and 10 nΩm
at liquid-nitrogen temperature.8

Starting with the above values of resistivity, and using the known value
of the density of conduction electrons, the relaxation (or collision) time can
7 G. S. Ohm, 1827.
8 The liquefaction temperature of nitrogen (77 K) is a standard reference for ex-

periments in solid-state physics, just like the liquid-helium temperature (4.2 K).
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Table 16.2. Resistivity at 77 K and 273 K, and the relaxation (collision) time cal-
culated from it for some metallic elements (10−15 s = 1 fs)

Element
�(77 K) �(273 K) τ(77 K) τ(273K)

(nΩ m) (10−15 s)

Ag 2.8 14.7 200 40
Al 2.3 25.0 65 8.0
Au 4.7 20.5 120 30
Ba 67 500 17 3.8
Bi 350 1068 0.72 0.23
Cu 2.0 16.8 210 27
Fe 6.4 89 32 2.4
Ga 27.5 136 8.8 1.7
Na 8 42 170 32
Pb 47 192 5.7 1.4
Sb 80 370 2.7 0.55
Zn 10.4 54.3 24 4.9

be determined. At room temperature τ ∼ 10−14 to 10−15 s is found, while
at liquid-nitrogen temperature the value is an order of magnitude higher, as
shown in Table 16.2. Thus 10−14 s and 10−13 s can be considered as typical re-
laxation times in good metals. Using (16.1.11), the drift velocity for electrons
can then be estimated. For τ = 10−14 s, in a field of 10−2 V/cm, which is at-
tainable in good metals, the drift velocity is 10−3 m/s, which is indeed several
orders of magnitude smaller than the velocity of thermal motion (105 m/s)
obtained from (16.1.8) at room temperature.

However, more careful studies reveal the inadequacy of this classical pic-
ture. If the mean free path of electrons is calculated using τ = 10−14 s and
vtherm = 105 m/s, we obtain l ∼ 10−9 m = 10Å, which is comparable to the
distance of atoms. This result seems to contradict our previous assumption
about the relatively free propagation of electrons. Such a short electron mean
free path is not compatible with experimental results, either. Resistance mea-
surements at low temperatures show that conductivity depends sensitively on
the purity of the sample, even in samples where the separation of impurities
is much larger than the lattice constant. The temperature dependence is also
problematic. If the mean free path were identified with the atomic spacing,
the temperature dependence of the velocity of thermal motion would give rise
to a factor T−1/2 in the relaxation time – and hence in the conductivity as
well. No such dependence is observed in experiments; moreover, in the T → 0
limit the conductivity of metals tends to a purity-dependent saturation value
– unless they become superconductors.

This means that scattering by relatively distant impurities whose arrange-
ment lacks order plays a more important role in determining resistivity than
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collisions with the atoms of the regular lattice, and the mean free path of
electrons can greatly exceed the lattice constant. It also questions the appli-
cability of the Maxwell velocity distribution for electrons and the classical
method for determining resistivity. In the second part of the chapter, which
goes beyond the classical treatment, we shall demonstrate that the speed of
those electrons that are responsible for electrical resistivity is usually an order
of magnitude higher than the classical value obtained from thermal motion,
and thus even at room temperature the mean free path is much larger than
atomic distances. At low temperatures, where the resistivity of high-purity
copper can be as low as 10−12 Ωm, the mean free path may be on the order
of a few mm.

In Chapter 24 devoted to the study of the transport properties of solids
we shall show that the current of electrons would flow without resistance in
a regular rigid lattice. Resistivity is due to elastic scattering by impurities
(for which momentum conservation is no longer valid) and inelastic scattering
by the regular but vibrating lattice of ions. Nevertheless we shall see that the
expression obtained for the conductivity from a more precise treatment is often
well approximated by (16.1.20), even though the concept of relaxation time
and the electron mass used in the relation have to be refined. If the relaxation
time can be determined for all relevant scattering processes by theoretical
considerations, the resistivity can be obtained – at least, in principle – from
the Drude formula. Quite often the reverse path is taken, just as above: the
relaxation time is determined from the measured value of resistivity.

16.1.3 Heat Conduction

If there is a temperature difference between the two ends of a sample, then
some of the electrons move from the hot side to the cold side via thermal
diffusion, transporting energy. According to Fourier’s law9 of heat conduction,
the heat current jQ resulting from energy transport is proportional to the
temperature gradient ∇T :

jQ = −λ∇T , (16.1.21)

where λ is the thermal (or heat) conductivity of the material. The justifi-
cation of the choice of the negative sign is that λ is then positive, as energy
(heat) flows against the direction of the temperature gradient, from the higher-
temperature part to the lower-temperature one. The room-temperature ther-
mal conductivity of a few metals, semimetals, and semiconductors are listed
in Table 16.3.

It was already mentioned in Chapter 12 in connection with phononic heat
conduction that according to the kinetic theory of gases, the thermal conduc-
tivity λ can be expressed in terms of the mean free path l, the average thermal
speed v of particles and the specific heat c. Instead of (12.4.20), the thermal
conductivity of the system of electrons is now expressed as
9 J. B. J. Fourier, 1822.
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Table 16.3. The room-temperature thermal conductivity of a few metals, semimet-
als, and semiconductors

Element λ (W m−1 K−1) Element λ (W m−1 K−1)

Ag 429 Ge 58.6
Al 237 Sb 25.9
Au 317 Se 2.48
Bi 7.87 Si 83.7
Cu 401 Zn 121

λ = 1
3 l v cel . (16.1.22)

The mean free path is l = vτ , while v is known from (16.1.8) and cel from
(16.1.7). Collecting all these terms, we have

λ =
3
2
neτ

me
k2
BT . (16.1.23)

The thermal conductivity of an electron gas is thus proportional to tempera-
ture.

Thermal conductivity can be related to electrical conductivity in a partic-
ularly simple way. Making use of the result in (16.1.20),

λ

σ
=

3
2

(
kB
e

)2

T . (16.1.24)

The ratio of thermal and electrical conductivity is proportional to temperature
in the Drude model, and the constant of proportionality is independent of the
material properties as it contains only kB and e. This is in good agreement
with an earlier experimental finding, the Wiedemann–Franz law10 – which
states that the ratio of λ and σ, both measured at the same temperature,
is independent of material properties –, and also with L. V. Lorenz’s ob-
servation (1872) that this ratio is proportional to temperature. The constant
of proportionality is called the Lorenz number or Lorenz coefficient. In the
Drude model its value is

L =
3
2

(
kB
e

)2

= 1.11 × 10−8 V2 K−2 . (16.1.25)

As listed in Table 16.4, the experimental value of the Lorenz number is
2–3×10−8 V2 K−2 for most metals. On account of a mistake,11 this was consid-
ered as the most compelling evidence for the correctness of the Drude model.
10 G. Wiedemann and R. Franz, 1853.
11 For the reasons discussed on page 6, Drude’s original formula for the conductiv-

ity contained τ/2 instead of τ , and thus his theoretical estimate for the Lorenz
number was twice as large as the value in (16.1.25).
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Table 16.4. The experimental value of the Lorenz number at 0 ◦C and 100 ◦C for
some simple metals

Metal
L(0◦C) L(100◦C)

Metal
L(0◦C) L(100◦C)

(10−8 V2 K−2) (10−8 V2 K−2)

Ag 2.31 2.38 Li 2.22 2.43
Au 2.35 2.36 Mo 2.61 2.79
Al 2.14 2.19 Pb 2.47 2.53
Cu 2.23 2.29 Pt 2.51 2.60
Fe 2.61 2.88 W 3.04 3.20
Ir 2.49 2.49 Zn 2.28 2.30

This factor aside, the correct order of magnitude of the Lorenz number is still
surprising because the Drude model gives very bad estimates for each of the
three quantities in the thermal conductivity (16.1.22) derived from the kinetic
theory of gases – the mean free path, the mean velocity and the electronic spe-
cific heat12 –, but the errors compensate. To obtain the correct value of the
Lorenz number, a quantum mechanical treatment is necessary. Measurements
at low temperatures would show serious deviations from the values given in the
table. The conditions for the applicability of the Wiedemann–Franz law and
the explanation of the deviations from it require more careful investigations.

16.1.4 Hall Resistance

When a sample in which an electric current is flowing is placed in a magnetic
field that is perpendicular to the current flow, electrons are deviated from their
rectilinear path by the well-known Lorentz force of classical electrodynamics.
Choosing the x-axis along the electric field that drives the current and the
z-axis along the magnetic field, an additional electric field is induced in the
y-direction, as shown in Fig. 16.1. Consequently, a transverse voltage called
the Hall voltage13 is observed across the sample. The ratio of the transverse
voltage and the longitudinal current is the Hall resistance.

Resistivity against a current in the x-direction can be determined from

�(B) =
Ex

jx
. (16.1.26)

In principle, this can be different from the value obtained in the absence of
a magnetic field, leading to the magnetic-field dependence of resistivity. The
12 The Drude model predicts a temperature-independent electronic specific heat

that is several orders of magnitude higher than the experimental value, while
it seriously underestimates the mean electron velocity, which it predicts to be
temperature dependent.

13 E. H. Hall, 1879.
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Fig. 16.1. Measurement setup for the Hall resistance. When the current is along the
x-axis, the electron drift velocity is in the opposite (−x) direction, and a magnetic
field along the z-axis would deviate them in the −y-direction

change in the electrical resistance of a material upon the application of a
magnetic field is called magnetoresistance.

The Hall coefficient is defined by

RH =
Ey

jxB
. (16.1.27)

To evaluate it, the drift velocity in (16.1.17) needs to be specified. In the
presence of a magnetic field its value is obtained from a generalization of the
equation of motion (16.1.13) that takes the Lorentz force into account, too:

me
dvdr

dt
= −e (E + vdr × B) − mevdr

τ
. (16.1.28)

In the stationary state

− e (E + vdr × B) − mevdr

τ
= 0 . (16.1.29)

For notational simplicity, we shall suppress the label “dr” of drift. Writing out
the equation in component form,

vx = − eτ
me
Ex − eB

me
τvy , (16.1.30-a)

vy = − eτ
me
Ey +

eB

me
τvx , (16.1.30-b)

vz = − eτ
me
Ez . (16.1.30-c)

In measurements of the Hall effect current flows only along the x-axis, i.e.,
vy = vz = 0. The transverse Hall voltage must precisely compensate for the
deflection due to the Lorentz force. From (16.1.30-a),

vx = − eτ
me
Ex , (16.1.31)
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which is the same as the form obtained in the absence of the magnetic field.
The x component of the current and thus the resistivity are independent of
the magnetic field applied in the perpendicular direction: �(B) = 1/σ0, where
σ0 is the conductivity given in (16.1.20). Thus the resistivity does not depend
on the magnetic field – i.e., there is no magnetoresistance – in the Drude
model.

However, by eliminating vx in favor of jx in (16.1.30-b), and making use
of (16.1.17),

Ey = Bvx = −B jx
nee

(16.1.32)

is obtained. From the definition (16.1.27) of the Hall coefficient,

RH = − 1
nee

. (16.1.33)

The negative sign is the consequence of the specific choice of the measurement
geometry. When the current flow is along the x-direction, electrons move in
the −x-direction. They are then deflected in the −y-direction by the Lorentz
force – that is, the current is deflected in the y-direction. This is compensated
for by the negative field along the y-axis.

In simple, above all monovalent metals a fairly good agreement is found
between the Hall coefficients determined theoretically from the number of
carriers and measured in experiments: their ratio is close to unity, as can
be inferred for the elements in the first column of Table 16.5. On the other
hand, the fourth column contains some metals for which the agreement is poor:
experimental and calculated values differ not only in magnitude but sometimes
even in sign, as if carriers were positively charged. This observation does not
lend itself to interpretation in the framework of the Drude model.

Table 16.5. Measured and calculated Hall coefficients of some metals in not too
strong magnetic fields around room temperature

Element
Rexp

H Rth
H

Element
Rexp

H Rth
H

(10−10 m3 s−1 A−1) (10−10 m3 s−1 A−1)

Li −1.7 −1.31 Be +2.4 −0.25
Na −2.1 −2.36 Zn +0.63 −0.46
K −4.2 −4.46 Cd +0.59 −0.65
Cu −0.54 −0.74 Pb +0.09 −0.47
Ag −0.84 −1.04 As +450 −0.50
Au −0.71 −1.05 Sb +270 −0.43
Al −0.34 −0.34 Bi −6330 −0.44
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Instead of the Hall coefficient, the Hall effect is sometimes characterized
by the Hall angle θ defined by

tan θ =
Ey

Ex
. (16.1.34)

From (16.1.32) and the expression for the current,

tan θ = − eτ
me
B ≡ −μB . (16.1.35)

Thus the Hall angle is directly related to electron mobility.
In a more general geometry of the measurement setup the relation between

the current and the electric field can be cast in the form

E = �j +RH (B × j) (16.1.36)

in the presence of a magnetic field. This leads to a tensorial relation between
the two quantities even in isotropic systems. When the magnetic field is along
the z-axis, the resistivity tensor is

�̂(B) =

⎛⎜⎝
� −RHB 0

RHB � 0

0 0 �

⎞⎟⎠ . (16.1.37)

Its diagonal elements are the transverse and longitudinal resistivities, while
its off-diagonal elements are related to the Hall coefficient. The conductivity
tensor is its inverse:

σ̂(B) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�

�2 + (RHB)2
RHB

�2 + (RHB)2
0

− RHB

�2 + (RHB)2
�

�2 + (RHB)2
0

0 0
1
�

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (16.1.38)

16.1.5 AC Conductivity

The conductivity in response to an alternating electric field of angular fre-
quency ω can also be determined easily in the Drude model. Just like in
(16.1.13), we start with the equation of motion for electrons, however we are
not seeking stationary solutions now but assume that once transients have
decayed the current is of the same angular frequency ω as the applied electric
field. Assuming the same time dependence, exp(−iωt), for both quantities,
the following equation is obtained for the frequency-dependent amplitudes:

− iωmev(ω) = −eE(ω) − mev(ω)
τ

. (16.1.39)
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Substituting the solution of this equation into (16.1.17), we have

j(ω) = −enev(ω) =
nee

2

me(1/τ − iω)
E(ω) , (16.1.40)

which implies

σ(ω) =
nee

2

me(1/τ − iω)
=

σ0

1 − iωτ
(16.1.41)

for the frequency-dependent (or AC) conductivity. Separating the complex
conductivity into real and imaginary parts,

Reσ(ω) =
σ0

1 + (ωτ)2
, Imσ(ω) =

σ0ωτ

1 + (ωτ)2
. (16.1.42)

Their variations with frequency are shown in Fig. 16.2.

1/�
�

�
Re �

Im�

Fig. 16.2. Semi-logarithmic plot of the frequency dependence of the real and imag-
inary parts of the conductivity in the Drude model

The real part of conductivity is related to resistivity, i.e., the absorption of
energy that gives rise to Joule heating.14 The Lorentzian peak around ω = 0
is called the Drude peak. The full width at half maximum (FWHM) of the
frequency dependence is determined by the relaxation time: Δω ∼ 1/τ . On
the other hand, the imaginary part is inductive in character because of the
phase shift, and has its maximum at ωτ = 1.

In the limit where all scattering processes can be neglected, the relaxation
time tends to infinity (τ−1 → 0). Using (C.3.1-c), it is readily seen from

σ(ω) = i
nee

2

me

1
ω + i/τ

(16.1.43)

that the real part of the conductivity can be written as

Reσ(ω) = Dc δ(ω) , (16.1.44)
14 J. P. Joule, 1840.
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where

Dc = π
nee

2

me
(16.1.45)

is the Drude weight, and the imaginary part is

Imσ(ω) =
nee

2

meω
. (16.1.46)

This form is valid for finite values of τ as well, provided the frequency satisfies
the condition ω � 1/τ .

It should be noted for future reference that the real and imaginary parts
of conductivity are not independent of one another. By extending the formula
(16.1.41) of the frequency-dependent conductivity to complex values of ω, a
pole is found at ω = −i/τ , i.e., in the lower half-plane, while the function
is analytic in the upper half-plane. As it will be shown in Appendix J of
Volume 3, the Cauchy relations for analytic functions imply the Kramers–
Kronig relations between the real and imaginary parts:

Reσ(ω) =
1
π

P

∞∫
−∞

dω′ Imσ(ω′)
ω′ − ω =

2
π

P

∞∫
0

dω′ ω
′ Imσ(ω′)
ω′2 − ω2

,

Imσ(ω) = − 1
π

P

∞∫
−∞

dω′ Reσ(ω′)
ω′ − ω = −2ω

π
P

∞∫
0

dω′ Reσ(ω′)
ω′2 − ω2

,

(16.1.47)

where P stands for the principal value.

16.1.6 High-Frequency Behavior of a Classical Electron Gas

The foregoing analysis is valid only at relatively low frequencies. At higher
frequencies the magnetic component of the electromagnetic field cannot be
neglected, and sometimes even spatial variations need to be taken into ac-
count. In such cases the complete set of Maxwell equations has to be used. In
the customary notation

curlH =
∂D

∂t
+ jext , div D = ρext ,

curlE = −∂B
∂t
, div B = 0 ,

(16.1.48)

where ρext denotes the density of external free charges, and jext their current.
Below we shall determine the high-frequency behavior for a system without

external charges in which the electromagnetic field can nevertheless induce
a spatially and temporally varying charge distribution. This induced charge
gives rise to the difference between the electric displacement and the electric
field. The corresponding Maxwell equation can then be recast in the form
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ε0 div E = div D + ρind . (16.1.49)

In the most general case the relationship between the electric field and the
electric displacement is nonlocal but causal:

D(r, t) =
∫

dr′
t∫

−∞
dt′ ε(r − r′, t− t′)E(r′, t′) . (16.1.50)

Similarly, the relationship between the magnetic field and the magnetic in-
duction is nonlocal:

B(r, t) =
∫

dr′
t∫

−∞
dt′ μ(r − r′, t− t′)H(r′, t′) . (16.1.51)

Since our free-electron model is isotropic, the permittivity relating D and E
and the magnetic permeability relating B and H are both scalars. In fact
this assumption is valid only for uniform electric and magnetic fields. For
electromagnetic radiation propagating in a ponderable medium the propaga-
tion direction singles out a preferred direction, and the D and E (or B and
H) components parallel and perpendicular to this direction are not related
by the same ε (μ) – that is, one has to distinguish longitudinal and transverse
components of the permittivity (permeability) tensor. We shall come back to
this point in Chapter 25 on optical properties. Below we shall work with a
scalar permittivity and permeability.

Taking the Fourier transforms of (16.1.50) and (16.1.51), the following
simple relations are obtained for the Fourier components:

D(q, ω) = ε(q, ω)E(q, ω) , B(q, ω) = μ(q, ω)H(q, ω) . (16.1.52)

We shall therefore assume that the spatial and temporal variations of fields
are specified by a function of the form exp(iq ·r− iωt). The Maxwell equations
then take the form

iq × H = −iωD , iq · D = 0 ,

iq × E = iωB , iq · B = 0 .
(16.1.53)

Rewriting the equation iq · D = 0 as

iε(q, ω)q · E(q, ω) = 0 , (16.1.54)

a trivial solution is found immediately:

q · E(q, ω) = 0 , (16.1.55)

which implies that the electric field is perpendicular to the propagation direc-
tion: E⊥q. Then, just like for electromagnetic radiation in vacuum, transverse
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waves (photons) propagate in the medium. It also follows from the Maxwell
equations that ρind(q, ω) = 0 in this case – that is, the charge distribution
remains uniform. The propagation of photons in condensed matter will be
discussed in more detail in Chapter 25.

Note that (16.1.54) has a longitudinal-field solution (E ‖ q) as well when
charges are induced. Then the Maxwell equations imply B = 0, that is, this
solution does not correspond to an electromagnetic wave but to a pure polar-
ization wave. This wave appears for pairs of q, ωL(q) that satisfy the relation

ε(q, ωL(q)) = ε0εr(q, ωL(q)) = 0 , (16.1.56)

where εr = ε/ε0 is the relative permittivity or dielectric constant. Since it is
a function of q and ω, the term dielectric function is also used. To determine
the frequency ωL, the dielectric function of the ideal gas of electrons has to
be known. We shall start with the Fourier transform of (16.1.49),

iε0q · E(q, ω) = iq · D(q, ω) + ρind(q, ω) . (16.1.57)

Unless q and E are perpendicular,

ε(q, ω) = ε0 + i
ρind(q, ω)
q · E(q, ω)

(16.1.58)

and
εr(q, ω) = 1 + i

ρind(q, ω)
ε0q · E(q, ω)

. (16.1.59)

To ensure charge conservation, the induced charge and the induced current
must be related by the continuity equation

div jind(r, t) +
∂ρind(r, t)

∂t
= 0 , (16.1.60)

whose Fourier transform reads

q · jind(q, ω) = ωρind(q, ω) . (16.1.61)

Expressing the current induced by the electric field in terms of the conduc-
tivity,

jind(q, ω) = σ(q, ω)E(q, ω) . (16.1.62)

Comparison with the continuity equation gives

ρind(q, ω) =
σ(q, ω)
ω

q · E(q, ω) . (16.1.63)

Substituting this form into (16.1.58), the following relationship of the dielec-
tric function and the conductivity is obtained:

εr(q, ω) = 1 + i
σ(q, ω)
ε0ω

. (16.1.64)
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It is readily seen that the real part of the conductivity is related to the imagi-
nary part of the dielectric function, while the imaginary part of the conductiv-
ity is related to the real part of the dielectric function. Just as for conductivity,
the real and imaginary parts of the dielectric function are not independent of
one another. The dielectric function εr – or more precisely, the quantity εr−1,
which vanishes at infinity – also satisfies the Kramers–Kronig relations:

Re εr(q, ω) − 1 =
1
π

P

∞∫
−∞

dω′ Im εr(q, ω′)
ω′ − ω =

2
π

P

∞∫
0

dω′ ω
′ Im εr(q, ω′)
ω′2 − ω2

,

(16.1.65)

Im εr(q, ω) = − 1
π

P

∞∫
−∞

dω′ Re εr(q, ω′) − 1
ω′ − ω = −2ω

π
P

∞∫
0

dω′ Re εr(q, ω′) − 1
ω′2 − ω2

.

The Kramers–Kronig relations for the dielectric function are usually written
in this form – however, they are valid only for insulators and semiconductors
then. This is because the DC conductivity σDC of metals remains finite in the
q → 0 and ω → 0 limits, and thus the imaginary part of the dielectric function
exhibits singular behavior at ω = 0 as shown by (16.1.64); consequently the
Kramers–Kronig relations cannot be written in their customary form. When
the singularity is separated, the remainder,

εr − 1 − i
σDC

ε0ω
, (16.1.66)

is analytic in the upper half-plane, and so the Kramers–Kronig relations can
be formulated. After some algebra the following relations emerge:

Re εr(ω) − 1 =
2
π

P

∞∫
0

dω′ ω
′ Im εr(ω′)
ω′2 − ω2

,

Im εr(ω) =
σDC

ε0ω
− 2ω
π

P

∞∫
0

dω′ Re εr(ω′) − 1
ω′2 − ω2

.

(16.1.67)

After this digression let us turn back to the main line of discussion, and
substitute the long-wavelength formula (16.1.41) of the frequency-dependent
conductivity into expression (16.1.64) of the dielectric function:

εr(ω) = 1 +
iσ0

ε0ω(1 − iωτ)
= 1 +

inee
2τ

ε0meω(1 − iωτ)

= 1 − nee
2

ε0meω(ω + i/τ)
.

(16.1.68)

Introducing the notation
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ω2
p =

σ0

ε0τ
=
nee

2

ε0me
=

4πneẽ
2

me
, (16.1.69)

where ẽ2 = e2/4πε0 in line with (3.1.6), the dielectric function can be written
as

εr(ω) = 1 − ω2
p

ω(ω + i/τ)
. (16.1.70)

For sufficiently high frequencies (ωτ � 1)

εr(ω) = 1 − ω2
p

ω2
. (16.1.71)

The dielectric function vanishes at ω = ωp, thus, according to our previous
considerations, longitudinal vibrations (polarization waves) of this frequency
can appear in the electron gas even in the absence of external excitations. Such
vibrations are in fact the density oscillations of the electron system, which are
similar to the oscillations of charged plasmas, and are called plasma oscilla-
tions, Langmuir oscillations, or Langmuir waves.15 The angular frequency ωp
is called the plasma frequency or Langmuir frequency. In simple metals ωp is
on the order of 1016 s−1, thus, in combination with the previously mentioned
relaxation times, the condition ωpτ � 1 is indeed satisfied.

We shall see in the chapter on the optical properties of solids that the
plasma frequency plays an important role there, too. Electromagnetic radi-
ation in the optical region – whose frequency is lower than the plasma fre-
quency – cannot penetrate into the solid, so it undergoes total reflection. This
causes the characteristic luster of metals. On the other hand, higher-frequency
(higher-energy) quanta of radiation penetrate through the metal freely: metals
are transparent in the ultraviolet region.

16.1.7 Magnetic Properties

It was shown in the discussion of the magnetic properties of core electrons (see
Section 3.2) that the angular frequency of electrons on closed orbits are modi-
fied by the application of a magnetic field, giving rise to Langevin (or Larmor)
diamagnetism. According to the Bohr–van Leeuwen theorem,16 the magnetic
susceptibility of a classical electron gas is zero.17 This can be understood most
simply in the classical picture of a charged particle moving in a circular orbit
15 I. Langmuir, 1928. Irving Langmuir (1881–1957) was awarded the Nobel Prize

in Chemistry in 1932 “for his discoveries and investigations in surface chemistry”.
16 N. Bohr, 1911, and G. van Leeuwen, 1919. Niels Henrik David Bohr (1885–

1962) was awarded the Nobel Prize in 1922 “for his services in the investigation
of the structure of atoms and of the radiation emanating from them”.

17 No reference was made to the Bohr–van Leeuwen theorem in the discussion of
atomic diamagnetism in Section 3.2, as electrons were assumed to be bound to
the atom – and thus we tacitly went beyond the classical theory.
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in a uniform magnetic field: as the particle does not take any energy from the
magnetic field, magnetization – the derivative of the energy with respect to
magnetic field – must vanish. No contradiction arises from Larmor’s theorem,
either, when proper account is taken of the orbiting motion of the electrons:
even though they move on circular orbits around magnetic field lines, and
thus, according to Lenz’s law, induce a magnetic moment opposing the mag-
netic field, the resultant of these moments is precisely compensated for by the
contribution of the electrons precessing in the vicinity of the sample edges. As
shown in Fig. 16.3, such electrons are repeatedly reflected by the boundary
surfaces, and thus traverse their orbit in the opposite sense, so that the an-
gular momenta and magnetic moments associated with such trajectories are
opposite in direction to their counterparts due to the electrons orbiting in the
interior.

Fig. 16.3. Circular orbits of classical electrons moving in an external magnetic field
inside a finite sample and the piecewise circular trajectory of electrons bouncing
back from the boundary surfaces

The intrinsic angular momentum (spin) and the related intrinsic magnetic
moment of electrons were not known at the time when the Drude–Lorentz
model was put forth. Below we shall estimate the magnetic susceptibility of
electrons obeying classical statistics but possessing spin.

Consider an electron with an intrinsic magnetic moment of one Bohr mag-
neton μB. Upon the application of a magnetic field B, its energy changes
by

Δε = − 1
2geμBBσ , (16.1.72)

where σ can take the values ±1, corresponding to the two quantized orien-
tations of the spin. Following common practice, we shall speak of the spin
direction rather than its opposite, the direction of the intrinsic magnetic mo-
ment. The energy of an electron of quantum number σ = 1 – i.e., whose spin
is parallel to the field direction – increases because the g factor of the elec-
tron is negative, ge ≈ −2. Similarly, the energy of an electron whose spin is
antiparallel to the field direction (spin-down electron) decreases.
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It follows from the Maxwell–Boltzmann distribution that the density of
electrons decreases exponentially with increasing energy. For the two spin
directions the number of electrons per unit volume is

n↑ ∝ 1
2ne exp

(
geμBB

2kBT

)
, n↓ ∝ 1

2ne exp
(
−geμBB

2kBT

)
. (16.1.73)

It should be borne in mind that, according to the conversion formulas listed
in Appendix A of Volume 1, only in a strong field of approximately 1 tesla
will the magnetic energy of a magnetic moment of one Bohr magneton be
of the same order as the thermal energy that corresponds to 1 kelvin. Thus,
extremely low temperatures aside, μBB  kBT in the customary magnetic
fields of susceptibility measurements – that is, the variation of the electron
energy is small on the scale of the thermal energy. Consequently,

n↑ ≈ 1
2ne

[
1 +

geμBB

2kBT

]
, n↓ ≈ 1

2ne

[
1 − geμBB

2kBT

]
. (16.1.74)

The magnetic moment per unit volume – i.e., magnetization – is given by

M = 1
2geμB (n↑ − n↓) = 1

2geμBne
geμBB

2kBT
. (16.1.75)

Since magnetization is very small compared to the applied magnetic field,
the equality B = μ0(H + M) can be safely replaced by B ≈ μ0H. In this
approximation, the magnetic susceptibility is

χ = ne
μ0(geμB)2

4kBT
. (16.1.76)

The Curie susceptibility of paramagnets is recognized in this formula. In real-
ity, a very different behavior is observed in metals: measured susceptibilities
are essentially temperature-independent and much smaller. As discussed in
Chapter 14, Curie-law-like behavior is observed only in ferromagnetic metals
or in substances where the atomic core itself is paramagnetic.

16.1.8 Failures of the Drude Model

The failures of the Drude model were already mentioned in connection with
specific properties. Below we shall list them together.

The theory has two fundamental parameters: the density ne of electrons
participating in electrical and heat conduction, and the relaxation time τ .
Both parameters are phenomenological; they have to be determined by other
methods. For elements of group 1 (IA) of the periodic table – alkali metals
– and of the next-to-last group of transition metals [group 11 (IB)] – noble
metals –, in which the outermost incomplete shell contains a single electron,
the assumption of one free electron per atom seems very promising. Good
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agreement is found between experimental and theoretical values for the plasma
frequency, whose formula contains a single free parameter, ne. For multivalent
metals, especially for transition metals and rare-earth metals, it is no longer
clear which electrons should be considered free and which ones bound to the
atomic core. Nevertheless there is no reason to assume that the number of
conduction electrons depends sensitively on temperature.

Unfortunately, nothing can be said about the relaxation time unless the
details of the scattering mechanism are known. This is of particular impor-
tance when the temperature dependence of resistivity is considered because
in the Drude model this can arise only from the temperature dependence
of the relaxation time. According to estimates based on resistivity data, the
mean free path is on the order of atomic dimensions, which leads naturally
to the conclusion that the mean free path is temperature independent. Since
the thermal velocity increases as T 1/2, the relaxation time should vary as
T−1/2. The problem is then twofold. On the one hand, no simple scattering
mechanism is known that would lead to such a relaxation time. On the other
hand, this model cannot account for the measured temperature dependence
of resistivity, either: instead of the T 1/2 dependence, the resistivity of met-
als is observed to be independent of T at low temperatures and to increase
linearly with T around room temperature – while a T 5 dependence is found
in an intermediate region. No remedy is offered by the Drude–Lorentz model,
which is based, instead of the somewhat naive calculations presented above,
on a more rigorous but still classical formulation of the kinetic theory of gases
due to Boltzmann. The problem is rooted in the assumptions that resistivity
is due to the scattering of electrons by atoms arranged in a regular array.

The validity of the Wiedemann–Franz law was considered as a great tri-
umph of the Drude model – but in reality the good agreement came from a
calculation that was a factor of two off. Nor is it precisely true that the ra-
tio of the thermal and the electrical conductivities is directly proportional to
temperature. In most metals this proportionality is observed only at very low
temperatures or above the liquid-nitrogen temperature. In the intermediate
region the temperature dependence is far from linear.

It is even more difficult to interpret the behavior in a magnetic field in the
classical model. Susceptibility was found to be too high and its temperature
dependence too strong. It was also seen in connection with the Hall effect
that for certain multivalent metals the theory cannot even predict the correct
sign of the Hall coefficient. Finally the Drude model has nothing to say about
the reasons why, in addition to metals and insulators, semiconductors and
superconductors also exist.

All this indicates the necessity of going well beyond the Drude model if we
are to provide a theoretical description for the electronic properties of solids
that is in better agreement with experiments.
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16.2 Quantum Mechanical Sommerfeld Model

Apart from collisions occurring once every τ on the average, electrons move
freely, and their motion is described by classical equations of motion in the
classical Drude model. To obtain a better description of the behavior of elec-
trons in solids, the model needs to be improved in two aspects. Firstly, the
quantum nature of electrons has to be taken into account, and secondly, the ef-
fects of the electron–ion (and electron–electron) interactions have to be treated
more precisely.

In the rest of this chapter we shall be concerned with the first aspect. We
shall even neglect the potential due to ions and other electrons, and examine
how the behavior of free electrons is affected by using of a quantum mechanical
approach. Named after its progenitor, this model is called the Sommerfeld
model.18

16.2.1 Quantum Mechanical States of Free Electrons

To determine the states of a system of Ne electrons, the many-particle
Schrödinger equation(

− �
2

2me

Ne∑
i=1

∇2
i

)
Ψ(r1, r2, . . . , rNe) = EΨ(r1, r2, . . . , rNe) (16.2.1)

needs to be solved. Since electron–electron interactions are neglected in the
present treatment, the wavefunction can be constructed from the products of
one-particle states obtained from the one-particle Schrödinger equation:

− �
2

2me
∇2

iψ(ri) ≡ − �
2

2me

(
∂2

∂x2
i

+
∂2

∂y2i
+
∂2

∂z2i

)
ψ(ri) = εψ(ri) . (16.2.2)

Bearing in mind that the wavefunction Ψ of the many-fermion system has to
be antisymmetrized on account of the Pauli exclusion principle – i.e., Ψ has
to change sign upon the interchange of the spatial and spin variables of any
two particles –, an antisymmetrized linear combination of the product of one-
particle wavefunctions is needed. This can be written as a Slater determinant.

As is well known, in a system of infinite volume the wavefunction of a free
particle can be written as a plane wave of wave vector k:

ψk(r) =
1

(2π)3/2
eik·r . (16.2.3)

18 A. Sommerfeld, 1928.
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In a state of wave number k = |k| the de Broglie wavelength is λ = 2π/k.19
In this state the energy of the electron is

εk =
�

2k2

2me
=

�
2

2me
(k2

x + k2
y + k2

z) . (16.2.4)

For simplicity, when the volume V of the sample is finite, we shall examine
an electron system enclosed in a rectangular box of sides Lx, Ly, Lz. Choosing
a more general form would not lead to further physical insight. To determine
the eigenstates, appropriate boundary conditions have to be imposed. One
possibility is to consider the walls of the box as infinitely high potential bar-
riers into which the wavefunction cannot penetrate, i.e., ψ(r) has to vanish
at the boundaries. Solutions satisfying this boundary condition are stationary
waves of the form

ψ(x, y, z) = sin
πnxx

Lx
sin
πnyy

Ly
sin
πnzz

Lz
, (16.2.5)

where nx, ny, and nz are integers. Changing the sign of nα (α = x, y, z) leads
to the same state, thus only nonnegative integers need to be considered. The
energy of such a one-particle state is

ε =
�

2π2

2me

[(
nx

Lx

)2

+
(
ny

Ly

)2

+
(
nz

Lz

)2
]
. (16.2.6)

According to the Pauli exclusion principle, each state can be occupied by
two electrons of opposite spin. Owing to the Fermi–Dirac distribution func-
tion, electrons occupy the lowest-lying states in the ground state of the system
– that is, each state is filled up to a level εmax that depends on the number of
particles, while all higher-lying states are left empty. The quantum numbers
of occupied states fill the interior of one-eighth of an ellipsoid whose semiaxes
are

a =
Lx

π

√
2meεmax

�2
, b =

Ly

π

√
2meεmax

�2
, c =

Lz

π

√
2meεmax

�2
. (16.2.7)

The volume of this one-eighth ellipsoid – and thus the number of states whose
energy is less than or equal to εmax – is

1
8

4π
3
abc =

LxLyLz

6π2

(
2meεmax

�2

)3/2

. (16.2.8)

19 It would be more appropriate to call k the angular or circular wave number,
since the wave number is the reciprocal of the wavelength, 1/λ. It is nonetheless
customary to call 2π/λ the wave number – just as ω is also commonly called the
frequency rather than the angular frequency, although the latter would be more
rigorous.
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The maximum energy εmax is determined by the requirement that all Ne
electrons have to be accommodated on these states – taking into account the
two values of the spin quantum number. That is,

Ne = 2
LxLyLz

6π2

(
2meεmax

�2

)3/2

, (16.2.9)

whence

εmax =
�

2

2me
(3π2ne)2/3 , (16.2.10)

where ne = Ne/V is the electron number density.
The excited states of this system could also be examined, and the thermal

properties could then be determined. However, the highly important transport
phenomena in solids cannot be adequately treated in terms of such stationary
waves. Therefore, instead of a system confined by infinitely high potential
barriers, the periodic (Born–von Kármán) boundary condition introduced in
Chapter 6 of Volume 1 is customarily used in solid-state physics. In this case
the wavefunction has to take the same value on opposite faces of the box, that
is,

ψ(Lx, y, z) = ψ(0, y, z) ,
ψ(x,Ly, z) = ψ(x, 0, z) , (16.2.11)
ψ(x, y, Lz) = ψ(x, y, 0) .

Under such boundary conditions the solutions of the Schrödinger equation
can again be chosen as plane waves, however the usual normalization for a
finite box is

ψk(r) =
1√
V

eik·r , (16.2.12)

and the corresponding eigenvalue is

εk =
�

2k2

2me
=

�
2

2me
(k2

x + k2
y + k2

z) . (16.2.13)

The boundary condition (16.2.11) is satisfied only by a discrete set of
wave vectors, thus the energy spectrum is quantized. Only those k vectors are
allowed whose components satisfy the equations

eikxLx = eikyLy = eikzLz = 1 , (16.2.14)

that is,

kx =
2π
Lx
nx , ky =

2π
Ly
ny , kz =

2π
Lz
nz , (16.2.15)

where nx, ny, and nz are arbitrary integers. The end points of such discrete
vectors
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k =
2πnx

Lx
x̂ +

2πny

Ly
ŷ +

2πnz

Lz
ẑ (16.2.16)

make up a regular lattice of lattice constants 2π/Lx, 2π/Ly, 2π/Lz. This
lattice is shown in Fig. 16.4.

Fig. 16.4. Allowed values of the wave vector

Since each value of k is associated with a volume (2π/Lx)(2π/Ly)(2π/Lz)
in k-space, the number of allowed states in volume dk is20

LxLyLz

(2π)3
dk =

V

(2π)3
dk . (16.2.17)

In addition to the Hamiltonian, plane waves are also eigenstates of the
momentum operator

p =
�

i
∂

∂r
=

�

i
∇ (16.2.18)

with eigenvalues p = �k.21 It should be noted that this relation between the
momentum and wave vector of the particle is rigorously valid only for free
particles.

The quantum mechanical particle-current density is

jn =
�

i
1

2me
(ψ∗∇ψ − ψ∇ψ∗) =

1
V

�k

me
. (16.2.19)

20 Using the variable p = �k instead of k, the density of states in phase space is
V/h3.

21 Theoretical works often use systems of units in which � = 1. In this case k itself
is often referred to as the momentum.
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As jn is the particle current carried by an electron, it is just the velocity of
the electron (divided by a volume factor). Indeed, using

v = ṙ =
i
�
[H, r] (16.2.20)

and the canonical commutation relation [r,p] = i�, the velocity operator of a
free electron is

v =
p

me
=

�

ime
∇ , (16.2.21)

thus the velocity of an electron in the state of wave number k is

vk =
�k

me
. (16.2.22)

Note that the relationship

vk =
1
�

∂εk
∂k

(16.2.23)

between the group velocity and the energy is valid more generally, not only
for free electrons.

16.2.2 Ground State of the Electron Gas

As has been mentioned, the states of a system of Ne particles can be con-
structed from the known one-particle states by taking the antisymmetrized
combination of their products (Slater determinant form). The energy of the
state is the sum of the energies of the occupied one-particle states. In the
ground state electrons occupy the lowest-lying one-particle states. It follows
from (16.2.13) that the wave vectors associated with the occupied states are
inside a sphere in k-space. The radius kF of this Fermi sphere is the Fermi
wave number, and �kF is the Fermi momentum, even though kF is often called
the Fermi momentum, too. Its value is determined by the requirement that
for Ne electrons the number of allowed k states inside the Fermi sphere should
be Ne/2, as two electrons with different spin quantum numbers can have the
same quantum number k. Taking into account the density of k-space points,

Ne

2
=

4πk3
F

3
V

(2π)3
=
k3
F

6π2
V , (16.2.24)

that is,

ne =
Ne

V
=
k3
F

3π2
. (16.2.25)

The set of occupied states inside the Fermi sphere is often referred to as the
Fermi sea. The energy of the highest occupied one-particle level in the ground
state is the Fermi energy εF. This separates the completely filled states from
the completely empty ones in the ground state. For free electrons
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εF =
�

2k2
F

2me
. (16.2.26)

It is the energy of the states on the surface of the Fermi sphere. The velocity
associated with such electrons,

vF =
�kF
me

, (16.2.27)

is the Fermi velocity. The Fermi energy is related to the electron density by

εF =
�

2

2me
(3π2ne)2/3 . (16.2.28)

Note that this relation is the same as (16.2.10), the energy of the highest
occupied state in a system of electrons confined to a box by infinitely high po-
tential barriers. The result is indeed independent of the choice of the boundary
condition.

Even though the quantum mechanical description is based on an extended
wavefunction, the Wigner–Seitz sphere can be defined for conduction electrons
as well: it is a sphere of radius r0 whose volume is equal to the volume per
conduction electron. Thus,

V

Ne
=

1
ne

=
4πr30

3
. (16.2.29)

Comparison with (16.2.25) gives

k3
F

3π2
=

3
4πr30

, (16.2.30)

thus kF and r0 are related by

kF =
(9π/4)1/3

r0
=

1.919
r0

. (16.2.31)

Instead of the parameter r0 of dimension length, its dimensionless ratio with
the Bohr radius a0 = 4πε0�

2/mee
2 = �

2/meẽ
2,

rs = r0/a0 (16.2.32)

is often used to specify the electron density. Table 16.6 contains the calculated
density of electrons, the radius of the spherical volume per electron, as well
as the values of the Fermi wave number, Fermi velocity, and Fermi energy
determined in the free-electron model for some simple metals.

The de Broglie wavelength of an electron with Fermi momentum is

λF =
2π
kF

=
2πr0

(9π/4)1/3
= 3.27 r0 . (16.2.33)
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Table 16.6. The electron density, the radius r0 of the spherical volume per electron,
the dimensionless ratio rs = r0/a0, and the values of the Fermi wave number, Fermi
velocity, and Fermi energy calculated in the free-electron model for some metallic
elements

Element Valence ne

(1022 cm−3)
r0

(Å) rs
kF

(108 cm−1)
vF

(106 m/s)
εF

(eV)

Li 1 4.63 1.73 3.27 1.11 1.29 4.27
Na 1 2.68 2.07 3.92 0.93 1.07 3.24
K 1 1.33 2.62 4.94 0.73 0.86 2.12
Rb 1 1.08 2.81 5.31 0.68 0.81 1.85
Cs 1 0.90 2.99 5.65 0.64 0.75 1.59
Cu 1 8.47 1.41 2.67 1.36 1.57 7.00
Ag 1 5.86 1.60 3.02 1.20 1.39 5.49
Au 1 5.90 1.59 3.01 1.21 1.40 5.53
Ca 2 4.61 1.73 3.27 1.11 1.28 4.69
Zn 2 13.10 1.21 2.30 1.59 1.82 9.47
Cd 2 9.27 1.37 2.59 1.41 1.62 7.47
Hg 2 8.65 1.40 2.65 1.36 1.58 7.13
Al 3 18.06 1.10 2.07 1.75 2.02 11.63
Ga 3 15.30 1.16 2.19 1.66 1.91 10.35
Pb 4 13.20 1.22 2.30 1.58 1.82 9.47

In metals, where the number of conduction electrons per atom is usually of
order unity, r0 is on the order of atomic distances. Using this value on the right-
hand side of the above equation, the wavelength of electrons that primarily
determine the properties of metals is found to be of the same order. Thus
the behavior of electrons in solids cannot be understood adequately without
taking their wave nature into account.

In the ground state the total energy of the electron gas is the sum of the
energies of independent particles inside the Fermi sphere:

E0 =
∑

|k|≤kF

∑
σ

�
2k2

2me
= 2

∑
|k|≤kF

�
2k2

2me
. (16.2.34)

For a macroscopic sample the allowed values of k fill the space densely, the
k-space sum can therefore be replaced by an integral. Exploiting the previous
result asserting that a volume (2π)3/V is associated with each allowed vector
in k-space,

E0 = 2
V

(2π)3

∫
|k|≤kF

�
2k2

2me
dk = 2

V

(2π)3

kF∫
0

�
2k2

2me
4πk2 dk =

V

5π2
k3
F

�
2k2

F
2me

.

(16.2.35)
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Making use of the relationship between the particle number and the Fermi
wave number,

E0 =
3
5

�
2k2

F
2me

Ne =
3
5
εFNe . (16.2.36)

In contrast to a classical gas, the degenerate quantum mechanical electron gas
has an appreciable ground-state energy.

16.2.3 Excited Electron and Hole States

To determine the properties of the electron system, over and above the ground
state the excited states need to be known. With the particle number fixed,
excited states can be generated in the gas of free electrons by raising individual
electrons from the ground-state Fermi sea to higher-lying states whose k vector
is outside the Fermi sphere. One can also say that in the excitation process
holes are created in the Fermi sphere, and some electron states outside the
Fermi sphere are filled.

A more formal formulation can be given most easily in the language of
second-quantized operators. By introducing the creation and annihilation op-
erators of electron states according to the prescriptions of Appendix H, the
Hamiltonian of the noninteracting many-fermion system can be written in the
second-quantized form

H =
∑
k,σ

�
2k2

2me
c†kσckσ . (16.2.37)

Instead of the canonical ensemble, it is more practical to use the grand canon-
ical ensemble, in which the particle number is not kept constant. The Hamil-
tonian has to be complemented by a term −μNe then, where μ is the chemical
potential. Writing the particle number in terms of creation and annihilation
operators, too,

H =
∑
k,σ

(
�

2k2

2me
− μ
)
c†kσckσ . (16.2.38)

At zero temperature the chemical potential is the same as the Fermi energy,

μ(T = 0) = εF =
�

2k2
F

2me
, (16.2.39)

as it separates the occupied and unoccupied levels in the ground state.
New operators can be introduced through the canonical transformation

d†kσ =

⎧⎨⎩c
†
kσ |k| > kF ,
ckσ |k| < kF .

(16.2.40)

For |k| > kF, the operator d†kσ creates an excited electron state, while for
|k| < kF it creates a hole state since by removing an electron from the Fermi
sea a hole is generated. Since the Hermitian adjoint of d†kσ satisfies
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dkσ|Ψ0〉 = 0 (16.2.41)

for any k, where |Ψ0〉 is the ground state of the fermion system, |Ψ0〉 is the
vacuum of the states created by d†kσ. (That is why the notation |0〉 is also
commonly used.) In terms of these operators the Hamiltonian is

H =
∑

|k|<kF,σ

(
�

2k2

2me
− μ
)
dkσd

†
kσ +

∑
|k|>kF,σ

(
�

2k2

2me
− μ
)
d†kσdkσ

(16.2.42)

= E0 −
∑

|k|<kF,σ

(
�

2k2

2me
− μ
)
d†kσdkσ +

∑
|k|>kF,σ

(
�

2k2

2me
− μ
)
d†kσdkσ ,

where

E0 = 2
∑

|k|<kF

(
�

2k2

2me
− μ
)

(16.2.43)

is the energy of the filled Fermi sphere, i.e., the ground-state energy. Intro-
ducing the quantity

ξk =

⎧⎪⎪⎨⎪⎪⎩
μ− �

2k2

2me
|k| < kF ,

�
2k2

2me
− μ |k| > kF ,

(16.2.44)

the Hamiltonian can be written as

H = E0 +
∑
k,σ

ξkd
†
kσdkσ . (16.2.45)

This formula also shows that ξk, which is always positive, is the excitation
energy of states created by the operator d†kσ. The energy of one-particle exci-
tations is shown as a function of the wave number k in Fig. 16.5. Excitations
above the Fermi energy are electron-like, while those below it are hole-like.
The excitation energy vanishes at the Fermi momentum and is linear in its
vicinity.

16.2.4 Density of States of the Electron Gas

To determine the macroscopically observable properties of the electron gas
theoretically, by applying the methods of statistical mechanics, a sum has to
be taken over all occupied electron states. In macroscopic samples the sum over
k-states can be replaced by an integral, just as it was done in the calculation
of the ground-state energy. The substitution
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k
kF

�k

Fig. 16.5. The excitation energy as a function of the wave number for a free-electron
gas. Excitations are electron-like for k > kF and hole-like for k < kF

∑
k

g(k) →
∫
g(k)

(
Lx

2π

)
dkx

(
Ly

2π

)
dky

(
Lz

2π

)
dkz

=
V

(2π)3

∫
g(k) dk

(16.2.46)

can be applied to any function g(k).
If the integrand depends on k only through the energy εk, then the integral

can be simplified further by the introduction of the electronic density of states,
just as it was done for phonons. Allowing for the spin dependence of the energy,
we shall use the notation ρσ(ε)dε for the number per unit volume of electron
states of spin σ in the energy range between ε and ε+dε. Then, by definition,

∑
k

g(εkσ) = V
∫
g(ε)ρσ(ε) dε . (16.2.47)

The total density of states ρ(ε) is the sum of densities of states for the two
spin orientations:

ρ(ε) =
∑

σ

ρσ(ε) . (16.2.48)

In an ideal electron gas those particles whose energy is less than ε (ε+dε)
fill a sphere of radius k (k + dk). The volume difference of the two spheres is

4π(k + dk)3

3
− 4πk3

3
≈ 4πk2 dk . (16.2.49)

The number of allowed k-points in this region is

V

(2π)3
4πk2 dk . (16.2.50)

By taking into account that each point k is associated with two electron states
because of the two spin orientations, the number of states in the energy range
of width dε per unit volume is
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ρ(ε) dε =
2

(2π)3
4πk2 dk . (16.2.51)

On the other hand, the energy–wave number relationship implies

ε =
�

2k2

2me
, ε+ dε =

�
2(k + dk)2

2me
≈ �

2k2

2me
+

�
2k

me
dk , (16.2.52)

that is,

dε =
�

2k

me
dk . (16.2.53)

This leads to

ρ(ε) =
2

(2π)3
4πk2

(
�

2k

me

)−1

=
mek

�2π2
=

1
2π2

(
2me

�2

)3/2 √
ε . (16.2.54)

In what follows, we shall repeatedly refer to the value of the density of states
at the Fermi energy. By exploiting the connection between the particle number
and the Fermi wave number, (16.2.25), the previous formula implies

ρ(εF) =
mekF
�2π2

=
1

2π2

(
2me

�2

)3/2 √
εF =

3ne

2εF
. (16.2.55)

Note that the defining equation (16.2.47) of the density of states leads
formally to

ρσ(ε) =
1
V

∑
k

δ(εkσ − ε) =
1

(2π)3

∫
δ(εkσ − ε) dk . (16.2.56)

For quadratic dispersion relations the evaluation of the integral is straight-
forward, and the result derived above is recovered. The reason why we chose
a seemingly more elaborate method is that the presented argument is more
readily generalized to nonisotropic cases and to dispersion relations that are
not quadratic.

16.2.5 Ideal Electron Gas at Finite Temperatures

Since electrons are fermions, they obey the Fermi–Dirac statistics, and the
occupation probability of electron states in thermal equilibrium at finite tem-
peratures is given by the Fermi–Dirac distribution function

f0(ε) =
1

exp[(ε− μ)/kBT ] + 1
, (16.2.57)

where μ is the chemical potential at temperature T . The distribution function
and its negative derivative with respect to energy are shown in Fig. 16.6. In
the T = 0 limit the derivative is the Dirac delta function:
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lim
T→0

(
−df0(ε)

dε

)
= δ(ε− μ) , (16.2.58)

while at finite temperatures it is sharply peaked at μ with a width of a few
times kBT , and takes practically zero value outside this peak. The Fermi
edge is smeared out over this narrow energy range by the thermally created
electron–hole pairs. The states are neither fully occupied nor completely empty
here. At energies that are farther than a few times kBT from the chemical
potential, states within the Fermi sphere continue to be completely filled, as
if they were frozen in, while states outside the Fermi sphere remain empty.

�F

1

�

f0���

d�
df0���

�

Fig. 16.6. The equilibrium distribution function of particles obeying the Fermi–
Dirac statistics and its derivative with respect to energy

As mentioned above, μ = εF at T = 0. At finite temperatures the value of
the chemical potential can be determined from the requirement

Ne =
∑
k,σ

f0(εk) , (16.2.59)

as the number of electrons is not changed by thermal excitation. If the sum
over k is replaced by an energy integral, division by the volume V leads to
the following implicit equation for the chemical potential:

ne =

∞∫
0

f0(ε)ρ(ε) dε . (16.2.60)

Substituting the density of states from (16.2.54),

ne =
1

2π2

(
2me

�2

)3/2
∞∫
0

√
εf0(ε) dε

= 2
(
mekBT

2π�2

)3/2

F1/2(μ/kBT ) ,

(16.2.61)
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where

F1/2(x) =
2√
π

∞∫
0

y1/2

exp(y − x) + 1
dy (16.2.62)

is the Fermi integral of order j = 1/2. In general, it can be evaluated only
numerically. However, in two limits, for large negative and positive values of
x, closed forms are obtained. These were given in Appendix F of Volume 1.
The condition for the applicability of the asymptotic form (C.2.24) for large
negative values is that exp(μ/kBT )  1. Then the relation

ne = 2
(
mekBT

2π�2

)3/2

eμ/kBT (16.2.63)

leads to the expressions that are valid for classical gases. Obviously, this ap-
proximation is applicable if

ne

2

(
2π�

2

mekBT

)3/2

 1 . (16.2.64)

This condition is met at room temperature by relatively low (< 1019/cm3)
electron densities. As listed in Table 16.6, in good conductors the density of
electrons is three orders of magnitude higher.22

As we shall see, in ordinary metals the thermal energy is at least one order
of magnitude smaller than μ even at the melting point – that is, we are dealing
with the opposite limit, so it is certainly sufficient to keep the first correction
in the asymptotic expression (C.2.25) for large positive values of μ/kBT . From

F1/2(x) ≈ 4
3
√
π
x3/2

[
1 +

π2

8
1
x2

+ . . .
]

(16.2.65)

we get

ne =
1

3π2

(
2meμ

�2

)3/2 [
1 +

π2

8

(
kBT

μ

)2

+ . . .
]
. (16.2.66)

On the other hand, making use of (16.2.28), the density of electrons can be
expressed in terms of the Fermi energy as

ne =
1

3π2

(
2meεF

�2

)3/2

, (16.2.67)

in agreement with the assertion that εF is the zero-temperature limit of the
chemical potential. Comparison of the two formulas leads to an implicit equa-
tion for the chemical potential:
22 The situation is different in semiconductors, thus classical statistics may usually

be applied to them.
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εF = μ
[
1 +

π2

8

(
kBT

μ

)2

+ . . .
]2/3

. (16.2.68)

The first temperature correction to the ground-state value can be determined
from a series expansion, which yields

μ = εF

[
1 − π2

12

(
kBT

εF

)2

+ . . .
]
. (16.2.69)

It is also customary to define the Fermi temperature or degeneracy tempera-
ture as the temperature for which the thermal energy would be equal to the
Fermi energy of the electron system (kBTF = εF).23 In terms of the Fermi
temperature,

μ = εF

[
1 − π2

12

(
T

TF

)2

+ . . .
]
. (16.2.70)

The temperature dependence of the chemical potential is usually very weak,
nevertheless it cannot be neglected completely: only by taking it into account
can the specific heat of the electron system be evaluated correctly.

16.2.6 Sommerfeld Expansion

We shall often encounter integrals of the form

I =

∞∫
0

g(ε)f0(ε) dε , (16.2.71)

which is similar to the Fermi integral but contains some generic function g(ε),
and integrals of the form

I =

∞∫
0

G(ε)
(
−df0(ε)

dε

)
dε , (16.2.72)

which contains the derivative of the Fermi function. Note that the two are
identical provided the functions g(ε) and G(ε) in the integrands are related
by

g(ε) =
dG(ε)

dε
, G(ε) =

ε∫
0

g(ε′) dε′ . (16.2.73)

To demonstrate this, integration by parts is performed on I in (16.2.72):
23 At temperatures above TF the electron gas would behave classically. The condi-

tional is used because even at a Fermi energy of order 1 eV (which is lower than
εF in most metals) this would occur at temperatures above 104 K.
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I = −G(ε)f0(ε)
∣∣∣∣∞
0

+

∞∫
0

dG(ε)
dε

f0(ε) dε . (16.2.74)

The second term is indeed the integral given in (16.2.71), and the integrated
part is zero as f0(ε) vanishes at the upper and G(ε) at the lower limit by
definition.

Expanding the function g(ε) into a series, the asymptotic form (C.2.25)
for Fermi integrals (Fj) can be used in each term. However, a simpler method
put forward by Sommerfeld can be applied to metals.

As was shown in Fig. 16.6, the negative derivative of the Fermi function is
sharply peaked around the chemical potential, and has a sharp cutoff at lower
and higher energies. This implies that only a narrow (a few times kBT wide)
region around μ contributes to (16.2.72), therefore the integral can be formally
extended to the (−∞,+∞) range. By expanding G(ε) in the integrand around
ε = μ as

G(ε) = G(μ) + (ε− μ)G′(μ) + 1
2 (ε− μ)2G′′(μ) + . . . , (16.2.75)

the integral (16.2.72) is written as the series

I = G(μ)

∞∫
−∞

(
−df0(ε)

dε

)
dε+G′(μ)

∞∫
−∞

(ε−μ)
(
−df0(ε)

dε

)
dε+. . . . (16.2.76)

Since ∞∫
−∞

(
−df0(ε)

dε

)
dε = 1 , (16.2.77)

and df0(ε)/dε is even in ε − μ, the odd terms are absent from the series
expansion (16.2.76):

I = G(μ) +
∞∑

n=1

1
(2n)!

d2nG(ε)
dε2n

∣∣∣∣
ε=μ

∞∫
−∞

(ε− μ)2n

(
−df0(ε)

dε

)
dε . (16.2.78)

Let us now introduce the notation

c2n =

∞∫
−∞

x2n

(2n)!

(
− d

dx
1

ex + 1

)
dx (16.2.79)

for the constants arising from the integrals that contain the derivative of the
Fermi function. By making use of (C.2.20) and the parity of the integrand,

c2n = 2
∞∑

l=1

(−1)l+1

l2n
= 2(1 − 21−2n)ζ(2n) , (16.2.80)
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where ζ(x) is the Riemann ζ function. The first few coefficients are c2 = π2/6,
c4 = 7π4/360, and c6 = 31π6/15120.

This leads to

I = G(μ) +
∞∑

n=1

c2n (kBT )2n d2nG(ε)
dε2n

∣∣∣∣
ε=μ

, (16.2.81)

or, in terms of g(ε),

I =

μ∫
−∞

g(ε) dε+
∞∑

n=1

c2n(kBT )2n d2n−1g(ε)
dε2n−1

∣∣∣∣
ε=μ

. (16.2.82)

This is the Sommerfeld expansion. It is usually sufficient to keep the first
temperature correction:

∞∫
0

g(ε)f0(ε) dε =

μ∫
0

g(ε) dε+
π2

6
(kBT )2g′(μ) , (16.2.83)

or, when integrals containing the derivative of the Fermi function are consid-
ered,

∞∫
0

G(ε)
(
−df0(ε)

dε

)
dε = G(μ) +

π2

6
(kBT )2

d2G(ε)
dε2

∣∣∣∣
ε=μ

. (16.2.84)

If the method is applied to the particle number, the density of states
appears in place of g(ε):

ne =

μ∫
0

ρ(ε) dε+
π2

6
(kBT )2ρ′(μ) . (16.2.85)

Except for extremely high temperatures, the chemical potential differs little
from its zero-temperature value, εF. By expanding the upper limit of the
integral about εF, and keeping only the leading temperature correction,

ne =

εF∫
0

ρ(ε) dε+ (μ− εF)ρ(εF) +
π2

6
(kBT )2ρ′(εF) . (16.2.86)

As the integral in front is just the particle number,

μ = εF − π2

6
(kBT )2

ρ′(εF)
ρ(εF)

= εF − π2

6
(kBT )2

d
dε

ln ρ(ε)
∣∣∣∣
ε=εF

. (16.2.87)

Indeed, limT→0 μ = εF, and the chemical potential shows weak temper-
ature dependence due to the slow variations of the density of states in the
vicinity of the Fermi energy. Using (16.2.54) for the density of states of the
ideal electron gas, (16.2.69) is recovered for the temperature dependence of
the chemical potential.
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16.2.7 Specific Heat of the Electron Gas

When the thermal occupation of the quantum mechanical states of electrons
are known, the thermal properties – e.g., the specific heat – and the equation
of state of the electron system can be determined. To evaluate the specific
heat of the ideal electron gas, consider the total internal energy of the system
of electrons at finite temperatures. In terms of the density of states,

E = 2
∑

k

εkf0(εk) = 2
V

(2π)3

∫
εkf0(εk)dk = V

∫
εf0(ε)ρ(ε) dε . (16.2.88)

The last formula does not contain the customary factor of two arising from
the two spin orientations, as that was already included in the density of states.

Employing the Sommerfeld expansion for the energy density E/V ,

E

V
=

∞∫
0

εf0(ε)ρ(ε) dε =

μ∫
0

ερ(ε) dε+
π2

6
(kBT )2

[
d
dε
ερ(ε)

]
ε=μ

. (16.2.89)

Expanding once again μ about εF, and using (16.2.87) for the temperature
dependence of the chemical potential,

E

V
=

εF∫
0

ερ(ε) dε+ (μ− εF)εFρ(εF) +
π2

6
(kBT )2 [ρ(εF) + εFρ′(εF)]

=

εF∫
0

ερ(ε) dε+
π2

6
(kBT )2ρ(εF) . (16.2.90)

The specific heat is then

cel =
1
V

∂E

∂T
=
π2

3
ρ(εF)k2

BT . (16.2.91)

As we shall see, this formula does not apply to free electrons alone but is valid
more generally – provided the appropriate expression is used for the density
of states.

Now consider the density of states of free electrons at the Fermi energy,
ρ(εF) = mekF/(π�)2. Expressing kF in terms of the electron density through
(16.2.25),

cel =
me

3�2

(
3π2ne

)1/3
k2
BT . (16.2.92)

On the other hand, if the density of states is expressed in terms of ne and εF
as ρ(εF) = 3ne/2εF, we have

cel =
π2

2
nekB

kBT

εF
. (16.2.93)
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As mentioned in connection with the Drude model, the classical result
would be cel = 3

2nekB because of the three translational degrees of freedom.
The quantum mechanical value is smaller by a factor of (π2/3)(kBT/εF). This
is because the majority of the electrons are frozen in states well below the
Fermi energy: only electrons in a region of a few times kBT in width around
εF – i.e., about a fraction kBT/εF of all electrons – can be excited thermally,
giving nonvanishing contributions to the specific heat. For most metals εF is
a few eV, thus even at room temperature only 10−2 to 10−3 of the electrons
can be excited, consequently the electronic contribution to the specific heat
is by the same factor smaller than the phonon contribution.

Instead of the electronic heat capacity per unit volume, it is more common
to specify the molar heat capacity, in the form

Cel = γT , (16.2.94)

where γ is the Sommerfeld coefficient. The experimental values of γ are listed
in Table 16.7 for some metals; for comparison, theoretical values are also
indicated for some simple metals.

Table 16.7. Experimental value of the Sommerfeld coefficient (determined from the
temperature dependence of the low-temperature specific heat) for some metals and
so-called heavy-fermion materials, in units of mJ/(mol K2). For simple metals the
theoretical value γth obtained from the free-electron model is also listed

Metal γ γth Metal γ Metal γ

Li 1.63 0.749 Fe 5.0 CeAl3 1600
Na 1.38 1.094 Co 4.7 CeCu6 1500
K 2.08 1.668 Ni 7.1 CeCu2Si2 1100
Cu 0.69 0.505 La 10 CeNi2Sn2 600
Ag 0.64 0.645 Ce 21 UBe13 1100
Au 0.69 0.642 Er 13 U2Zn17 500
Al 1.35 0.912 Pt 6.8 YbBiPt 8000
Ga 0.60 1.025 Mn 14 PrInAg2 6500

Theoretical values calculated from the free-electron model are reasonably
close to experimental results in monovalent metals (alkali metals and noble
metals). The experimental value of γ is usually 10 to 30% above the predic-
tion of the free-electron model, even though in one case the measured value is
somewhat lower than the calculated one. Taking the number (and hence the
density) of conduction electrons as given, the difference between theoretical
and experimental values can be attributed, according to (16.2.92), to a change
in the mass of electrons contributing to the specific heat in solids: these elec-
trons seem to have an effective mass m∗ that is different from the electron
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mass me. In the next chapter we shall see that this increase in the mass is
caused – at least in part – by the potential due to ions that is neglected in
the free-electron model.

In transition metals and rare-earth metals the density of states derived
from specific-heat measurements is much higher than the theoretical predic-
tion of the free-electron model. As we shall see, in addition to s- and p-
electrons, substantial contributions are also due electrons that are on the d-
and f -levels in the free atomic state, although these cannot by any means
be considered free in solids. This is even more so for the materials listed in
the last two columns. One of the big surprises of the late 1970s and 1980s
was the discovery of families of compounds for which γ is two or three or-
ders of magnitude larger than the usual value. For YbBiPt γ is as high as
8 J/(molK2). Converted to the effective mass, the increase compared to the
free-electron value is enormous: for CeAl3 and CeCu6 it is 700-fold. Because
of their large effective mass, these compounds are called heavy-fermion mate-
rials. To understand their behavior, in addition to the potential due to ions,
electron–electron interactions need to be taken into account. We shall revisit
this problem in Chapter 35 of Volume 3.

16.2.8 Equation of State for the Ideal Electron Gas

In a system of fermions each state is either empty or singly occupied when
the spin quantum number σ is also taken into account. The grand canonical
partition function is therefore

Ξ =
∏
k,σ

(
1 + e−(εk−μ)/kBT

)
. (16.2.95)

According to the general relations of thermodynamics, the grand canonical
potential,

Ω = −kBT lnΞ = −kBT
∑
k,σ

ln
(
1 + e−(εk−μ)/kBT

)
, (16.2.96)

is equal to −pV , that is,

pV = kBT
∑
k,σ

ln
(
1 + e−(εk−μ)/kBT

)
. (16.2.97)

Replacing the k-sum by an integral,

pV = kBT
V

(2π)3
∑

σ

∫
dk ln

(
1 + e−(εk−μ)/kBT

)

= kBT
V

(2π)3
∑

σ

∞∫
0

dk 4πk2 ln
(
1 + e−(εk−μ)/kBT

)
.

(16.2.98)
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Integrating by parts, this can be rewritten as

pV = kBT
V

(2π)3
∑

σ

∞∫
0

dk 4π
k3

3
�

2k

kBTme

1
e(εk−μ)/kBT + 1

=
2
3
V

(2π)3
∑

σ

∞∫
0

dk 4πk2 �
2k2

2me

1
e(εk−μ)/kBT + 1

.

(16.2.99)

Note that apart from the factor 2/3, the right-hand side is just the thermal
average of the energy of the electron system, so

pV =
2
3
E . (16.2.100)

This formula could have also been easily derived from the kinetic theory of
gases by determining the pressure from the change in the momentum of par-
ticles hitting the walls and bouncing back elastically.

The leading contribution to the internal energy E is the ground-state en-
ergy of the electron gas, which has already been calculated. Thus, completely
at odds with classical ideal gases, quantum mechanics predicts a finite zero-
temperature pressure in a degenerate electron gas:

p0 =
2
3
E0

V
=

2
5
neεF . (16.2.101)

Inserting (16.2.28) into (16.2.36), the ground-state energy reads

E0 =
3
5
Ne

�
2

2me

(
3π2Ne

V

)2/3

. (16.2.102)

Substituting this into the equation of state, the pressure is readily seen to be
proportional to the −5/3rd power of the volume. The compressibility of the
electron gas is therefore

1
κ

= −V ∂p
∂V

=
5
3
p . (16.2.103)

Making use of the previous formulas this can be rewritten as

1
κ

=
2
3
neεF . (16.2.104)

The entropy of the electron gas is readily derived from the grand canonical
potential (16.2.96). The thermodynamic relation

S = −∂Ω
∂T

, (16.2.105)

implies
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S = kB
∑
k,σ

ln
(
1 + e−(εk−μ)/kBT

)
+ kB

∑
k,σ

(εk − μ)/kBT
e(εk−μ)/kBT + 1

, (16.2.106)

which is customarily written in the equivalent form

S = −kB
∑
k,σ

{
f0(εk) ln f0(εk) +

[
1 − f0(εk)

]
ln
[
1 − f0(εk)

]}
. (16.2.107)

The temperature dependence of the grand canonical potential can be obtained
by applying the Sommerfeld expansion to the integral in (16.2.99). This leads
to

S = V
π2

3
k2
BTρ(εF) . (16.2.108)

This is in agreement with the result that can be obtained by integrating the
specific heat divided by the temperature.

16.2.9 Susceptibility of the Electron Gas

The magnetization of an electron gas in a magnetic field is due to the electrons’
spin or orbital motion. Let us consider the spin contribution first. In a zero
magnetic field the energy of the electrons is independent of the spin quantum
number. States are occupied up to the same energy for both spin orientations.
The presence of a magnetic field changes the energy of the electrons, and
introduces spin dependence. By quantizing the spin along the magnetic field
direction,

εkσ = εk − 1
2geμBBσ , (16.2.109)

where σ takes the values ±1. In what follows, these spin states will be referred
to as ↑ and ↓ states. When the magnetic field is turned on adiabatically, one
would naively think that the energy shift moves the highest occupied level to
different heights for the two spin orientations, as shown in Fig. 16.7. How-
ever, such a state cannot correspond to a thermal equilibrium. In an isolated
electron gas the conservation of magnetization does not allow high-energy
spin-↑ electrons to decay into lower-energy spin-↑ states via spin reversal. The
thermalization, that is, the equalization of the chemical potential between
the spin-↑ and spin-↓ subsystems requires additional interactions in which
electrons flip their spin and transfer the angular momentum to another sub-
system, for example the lattice. Assuming that such a spin–lattice interaction
exists, the redistribution of the filled electron states continues until the ↑ and
↓ states are occupied up to the same field-dependent level μ(B), which differs
from the field-free value of the chemical potential but only slightly.

Since the energy shift of the states depends only on the spin quantum
number but not on the wave vector, the density of states for the two spin
orientations can be expressed in a simple form:
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B�0
���

� ���� � ����� ����

�F 	� �B

	BB 	BB

	BB 	BB� ���� � ���� � ����

B�0 B�0

Fig. 16.7. The electronic density of states for the two spin orientations, in the
absence a magnetic field (left) and in its presence, before spin-flip and spin-transfer
processes occur (middle) and in thermal equilibrium (right)

ρ↑(ε) = 1
2ρ(ε+ 1

2geμBB) ≈ 1
2ρ(ε) + 1

4geμBB
dρ(ε)
dε

,

ρ↓(ε) = 1
2ρ(ε− 1

2geμBB) ≈ 1
2ρ(ε) − 1

4geμBB
dρ(ε)
dε

.

(16.2.110)

The number of occupied states for each orientation is

n↑↓ =
∫
ρ↑↓(ε)f0(ε) dε

= 1
2

∫
ρ(ε)f0(ε) dε± 1

4geμBB

∫
dρ(ε)
dε

f0(ε) dε .
(16.2.111)

The chemical potential μ in f0(ε) can be determined from the requirement
that it should lead to the correct total particle number, i.e., the equality
n↑ + n↓ = ne should hold. Using the previous series expansion and neglecting
the weak quadratic corrections in the temperature, the chemical potential μ
is found to be independent of the magnetic field up to linear order.

The magnetization

M = 1
2geμB (n↑ − n↓) = 1

4g
2
eμ

2
BB

∫
dρ(ε)
dε

f0(ε) dε

= 1
4g

2
eμ

2
BB

∫
ρ(ε)

(
−∂f0(ε)

∂ε

)
dε = 1

4g
2
eμ

2
BBρ(εF)

(16.2.112)

is small even for fields of a few teslas, so B can be replaced by μ0H. The
susceptibility is then

χP = 1
4μ0(geμB)2ρ(εF) . (16.2.113)

This is called the Pauli susceptibility.24 In addition to the temperature-
independent leading term, the T 2 correction can also be determined by em-
ploying the Sommerfeld expansion, but this correction does not have any
practical importance in most metals.
24 W. Pauli, 1926.
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Taking the value of the density of states at the Fermi energy from (16.2.55),

χP =
3
8
ne
μ0(geμB)2

εF
. (16.2.114)

Expressed in terms of the Fermi temperature, the susceptibility of the electron
gas then reads

χP =
3
2
ne
μ0(geμB)2

4kBTF
. (16.2.115)

Comparison with the expression (16.1.76) obtained for a classical electron gas
shows that the susceptibility χ – which obeys the Curie law at high temper-
atures – gets saturated around the Fermi temperature TF, where quantum
effects become important, and the electron gas becomes degenerate.

Just like the Pauli susceptibility, the specific heat is also proportional to
the electronic density of states at the Fermi energy. It is customary to take
their ratio, known as the Wilson ratio25 or Sommerfeld–Wilson ratio

RW =
4π2k2

BT

3μ0(geμB)2
χP

cel
. (16.2.116)

It follows from the previous formulas that in a free-electron gas

RW = 1 . (16.2.117)

It has been mentioned in relation to the specific heat that the measured Som-
merfeld coefficient is often substantially different from the theoretical value
obtained for an ideal electron gas. This difference can be interpreted in terms
of the increase in the effective electron mass due to interactions. A similar ten-
dency is observed for susceptibility. Whether or not the increase in the specific
heat and susceptibility can be described by the same multiplicative factor is
shown by the Wilson ratio. We shall later see that the effects of the interaction
with the atoms of an ordered lattice can often be fairly well characterized by a
single effective mass that appears both in the specific heat and susceptibility.
However, electron–electron interactions give rise to an additional increase in
the susceptibility. Therefore in systems where electron–electron correlations
are important, the Wilson ratio differs significantly from the free-electron
value. The converse of this statement is also true. A substantial deviation of
the experimental value of the Wilson ratio from unity is an indication of strong
electron–electron correlations. (In this respect, a factor of 2 should already be
considered as substantially different from unity.)

In the foregoing we were concerned only with the magnetic moment arising
from spins. However, in the presence of a magnetic field orbital motion can
also give rise to magnetic moment. As mentioned earlier, this orbital moment
vanishes for classical electrons. But the quantum treatment leads to a different
25 K. G. Wilson, 1975.
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result: as will be demonstrated in Chapter 22, a diamagnetic contribution is
found. The diamagnetic susceptibility for free electrons is

χdia = − 1
3χP . (16.2.118)

Because of the factor −1
3 , the overall behavior of the quantum mechanically

treated ideal electron gas is paramagnetic.

16.3 Electric and Heat Currents in an Electron Gas

The thermodynamic equilibrium state hitherto discussed breaks down in the
presence of external disturbances. Such a disturbance can be an electromag-
netic field or a nonuniform temperature distribution. When they are present,
electrons start to move toward lower-potential or colder places, giving rise
to electric or heat currents. If the external driving force is weak, the current
will be linear in it. Once set up, such a current would persist indefinitely in
an ideal electron gas. In reality, electric and heat currents encounter finite
resistance on account of collision processes with ions of the crystal lattice or
impurities, as was discussed in connection with the Drude model. Without
specifying the collision mechanism we shall, again, assume a finite relaxation
time τ for electrons, and study conduction phenomena, using the Fermi–Dirac
statistics this time.

16.3.1 Noninteracting Electrons in a Uniform Electric Field

Electrons in an external electromagnetic field obey simple equations of motion.
This was exploited in the discussion of the Drude model. In the quantum
mechanical description we have to go back to the Schrödinger equation, noting
that when the electric and magnetic fields E and B are specified in terms of
a scalar potential ϕ and a vector potential A as

E = − gradϕ− ∂A

∂t
, B = curlA , (16.3.1)

then the canonical momentum p = −i�∇ should be replaced by the kinetic
momentum p− qA in the kinetic energy, where q is the charge of the particle,
and the energy contribution of the scalar potential is qϕ. Since the charge
of the electron is −e, the gauge-invariant Hamiltonian of free electrons in an
electromagnetic field reads

H =
1

2me

(
�

i
∇ + eA

)2

− eϕ (16.3.2)

if the interactions with the spin of the electrons can be neglected.
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One possibility to describe a uniform electric field is to choose a gauge in
which the scalar potential vanishes (ϕ = 0) and the vector potential is time
dependent:

A = −E t . (16.3.3)

An obvious advantage of this choice is that it preserves translation invariance,
and the wave vector remains a good quantum number. With this choice of
gauge the Hamiltonian (16.3.2) takes the form

H =
1

2me

(
�

i
∇ − eE t

)2

. (16.3.4)

On account of the explicit time dependence, the time-dependent Schrödinger
equation

1
2me

(
�

i
∇ − eE t

)2

ψ(r, t) = −�

i
∂

∂t
ψ(r, t) (16.3.5)

has to be solved. It is easily shown that the function

ψ(r, t) =
1√
V

eik·r exp

{
− i

�

t∫
0

1
2me

(�k − eEt′)2 dt′
}

(16.3.6)

satisfies the above equation. The wave vector k characterizing the spatial
variations of the wavefunction is time independent, however the energy of the
state changes with time as

εk(t) =
〈
ψ(r, t)

∣∣H∣∣ψ(r, t)
〉

=
�

2

2me

(
k − e

�
Et
)2

. (16.3.7)

The same time dependence would be obtained if the wave vector of the particle
were changing as

k(t) = k − e

�
Et . (16.3.8)

We shall soon see that, in addition to the energy, other physical quantities of
the electron also behave in such a way as if its wave vector were k(t).

Another possibility is to use a scalar potential, which can then be chosen as
ϕ = −E ·r. In a macroscopic sample, where the discrete (quantized) character
of the wave vector can be ignored, solutions of the equation[

1
2me

(
�

i
∇
)2

+ eE · r
]
ψ(r, t) = −�

i
∂

∂t
ψ(r, t) (16.3.9)

can be given in terms of a vector k that changes continuously with time:

ψ(r, t) =
1√
V

eik(t)·r exp

{
− i

�

t∫
0

�
2

2me
k2(t′) dt′

}
, (16.3.10)
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where the time dependence of k(t) is similar to (16.3.8):

k(t) = k(0) − e

�
Et . (16.3.11)

Translations are now characterized by an explicitly time-dependent k vector.
Along with the variations of the wave vector, the energy of the electron also
changes. The time dependence of the energy is the same as above.

To obtain the current carried by the particle, the quantum mechanical
current (16.2.19) has to be complemented by the contribution of the vector
potential:

jn =
1

2me

[
ψ∗(r)

(
�

i
∇ + eA

)
ψ(r) + ψ(r)

(
−�

i
∇ + eA

)
ψ∗(r)

]
=

�

i
1

2me

[
ψ∗(r)∇ψ(r) − ψ(r)∇ψ∗(r)

]
+
e

me
A|ψ(r)|2 . (16.3.12)

Whether the wavefunction obtained with one or the other gauge choice is
used, the same expression arises for the electric current:

j(t) = −e 1
V

�k(t)
me

. (16.3.13)

Using the expression derived for k(t),

j(t) = j0 +
1
V

e2

me
Et . (16.3.14)

The electric-field-dependent part is common to all electrons: the current gen-
erated by freely accelerating electrons increases linearly with time.

This would indeed be the case if there were no collisions. However, in
real crystals electrons are scattered by impurities and lattice vibrations, and
they can also collide with each other. In metals at room temperature the
average time between two collisions is τ ∼ 10−14 s, as was determined from
the resistivity in the Drude model. At the same time, assuming an electric field
of E ∼ 10−2 V/cm, the wave vector k changes little between two subsequent
collisions, and therefore the energy increases only slightly. In the collision
process the electron can lose this small excess energy. Thus, even though
electrons are not in equilibrium, a stationary distribution may arise, and a
stationary current may flow. Its magnitude is basically determined by the
collision processes. To calculate the current, the nonequilibrium distribution
function has to be specified first.

16.3.2 Stationary Distribution Function

The occupation probability of electron states in thermal equilibrium is known
to be given by the Fermi–Dirac distribution function
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f0(k) =
1

exp [(εk − μ) /kBT ] + 1
. (16.3.15)

The easiest way to provide an approximate treatment for its variations un-
der external perturbations is to assume that electrons move classically under
the influence of external disturbances, just like in the Drude model, but are
required to obey the quantum mechanical Fermi–Dirac statistics rather than
the classical statistics. We shall therefore assume again that the collision pro-
cesses are such that electrons fly an average time τ between collisions, and in
each collision they lose the energy gained from the field. Thermal equilibrium
is thus restored in the collision, nevertheless when a snapshot is taken of the
electron gas at any particular moment, the occupation probability of states is
not given by the equilibrium Fermi–Dirac distribution function but bears the
stamp of the changes that have occurred since the last collision.

Suppose now that a uniform electric field E acts on the system of electrons,
and that the spatial variations of temperature are such that the temperature
gradient ∇T (r) is also uniform in space. In a uniform electric field the mo-
mentum of the electrons is changed, by −eEt in time t. Considering collisions
occurring at intervals τ on the average, the momentum �k of the electron
changes by −eEτ per collision. The occupation probability of the state of
wave number k thus depends on whether the state k + eEτ/� was occupied
in equilibrium. Consequently, in a first approximation the nonequilibrium dis-
tribution function may be considered to take the same value at momentum
�k as the equilibrium distribution function at that momentum �k′ which is
transformed into �k by the field in time τ :

f(k) = f0(k′) = f0
(
k +

eτ

�
E
)
. (16.3.16)

As shown in Fig. 16.8, the wave vectors of the occupied states fill once again
a Fermi sphere, which is nonetheless displaced with respect to the original
one. The figure also shows the variation of the distribution function along
the electric field direction and its deviation from the equilibrium distribution.
Variations are restricted to two regions. The occupation is reduced in the
neighborhood of the surface of the Fermi sphere in the direction of the field,
while it is increased on the opposite side. The direction of the resultant particle
current is opposite to the field direction, while the electric current is along
the field direction on account of the negative charge of the electron.

Exploiting the fact that the equilibrium distribution function depends on
the momentum only through the energy, in weak fields the expansion to linear
order in E leads to

f(k) = f0(k) +
∂f0
∂εk

∂εk
∂k

eτ

�
E

= f0(k) +
(
−∂f0
∂εk

)
vk · (−eE) τ ,

(16.3.17)
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Fig. 16.8. (a) The Fermi sphere in the absence (dashed line) and presence (solid
line) of an electric field along the x-direction. (b) The finite-temperature distribution
function along the kx-axis in the two cases and its variation upon turning on the
field

where we made use of the relation (16.2.23) between the group velocity of
electrons and the derivative of the energy with respect to k.

A similar argument can be applied when a temperature gradient is present.
However, owing to the spatial variations of the temperature, the distribution
function must then be allowed to depend on the spatial variable r. Assuming
that electrons become thermalized in their collisions – that is, immediately
after a collision their distribution corresponds to thermal equilibrium –, and
that they can fly freely for an average time τ between collisions with a velocity
vk, the distribution function at position r will be the same as the equilibrium
distribution function at position r − vkτ :

f(r,k) = f0(r − vkτ,k) . (16.3.18)

We shall use the form

f0(r,k) =
1

e[εk−μ(r)]/kBT (r) + 1
(16.3.19)

for the equilibrium distribution function, which takes into account the spatial
dependence of the chemical potential arising from the spatial variations of the
temperature. If the temperature varies little over a mean free path, which,
in turn, is small compared to the dimensions of the sample, then, performing
an expansion about the equilibrium distribution function and exploiting the
relation

∇μ =
∂μ

∂T
∇T , (16.3.20)

the rules of implicit differentiation lead to

f(r,k) = f0(k) + kBT
∂f0
∂εk

∂

∂r

εk − μ(r)
kBT (r)

· (−vkτ)

= f0(k) + τ
(
−∂f0
∂εk

)[
εk − μ
T

+
∂μ

∂T

]
vk · (−∇T ) .

(16.3.21)
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The same result can be obtained using another physical picture if it is
noted that the spatial dependence of the distribution function arises from
the spatial dependence of the temperature. Electrons of different velocities
arrive at point r from different directions – and thus from points of different
temperatures. Consider electrons of velocity vk that have flown for an average
time τ since their last collision. If vk and ∇T are parallel, then these electrons
come from a point of temperature

T − τvk · ∇T . (16.3.22)

The same expression gives the effective temperature of electrons when vk and
∇T are not parallel. Consequently, the distribution function of electrons is
such as if their local temperature were not T but τvk · ∇T less, that is,

f(k, T ) = f0(k, T − τvk · ∇T ) . (16.3.23)

This form of the distribution function is shown in Fig. 16.9. The effective
temperatures are different for left- and right-moving electrons. This implies
that the sharp boundary of the Fermi sphere is smeared out more on one side
than on the other. The figure also shows the distribution function along the
axis of decreasing temperature (dT/dx < 0), as well as the departure from
the equilibrium distribution. Since right-moving electrons around +kF come
from warmer places, there are more electrons in the states above the Fermi
momentum than there would be in thermal equilibrium at temperature T . By
the same token, the occupation of states below the Fermi momentum is lower.
The contrary applies to left-moving electrons around −kF: the occupation of
states above (below) the Fermi momentum is lower (higher) than in thermal
equilibrium.

f( )k

kx

ky

kx

kx

�f( )k

f0( )k

( )a ( )b

�kF kF

�kF kF

Fig. 16.9. (a) Smearing out of the boundary of occupied states at a constant tem-
perature and in the presence of a temperature gradient (dT/dx < 0). The occupation
probability drops from almost one to nearly zero in the hatched region. (b) The dis-
tribution function along the kx-axis and its variation upon the application of the
temperature gradient

Up to linear order in the temperature gradient,
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f(k, T ) = f0(k) − τ ∂f0
∂T

vk · ∇T

= f0(k) + τ
(
−∂f0
∂εk

)[
εk − μ
T

+
∂μ

∂T

]
vk · (−∇T ) ,

(16.3.24)

which is in agreement with our earlier result.
If both an electric field and a temperature gradient are present but the

variations of the temperature are sufficiently slow then one may make the more
general statement that the k-space distribution of electrons can be specified
by a space-dependent function f(r,k) whose value is the same as that of the
equilibrium distribution function at r − vkτ for an electron of wave vector
k + eτE/�:

f(r,k) = f0
(
r − vkτ,k +

eτ

�
E
)
, (16.3.25)

or
f(k, T ) = f0

(
k +

eτ

�
E, T − τvk · ∇T

)
. (16.3.26)

Expanding this expression through linear order in the external pertur-
bations, the following formula is obtained for the nonequilibrium stationary
distribution function:

f(k) = f0(k) + τ
(
−∂f0
∂εk

)
vk ·

[
−e
(

E +
∇μ
e

)
+
εk − μ
T

(−∇T )
]
.

(16.3.27)
Making use of (16.3.20), the previous result is recovered in the E = 0 case. In
what follows, it will be more practical to use this form, since when the electric
field is expressed in terms of the scalar potential ϕ(r) through E = −∇ϕ it is
clearer that the electric current is driven by the gradient of the electrochemical
potential ϕ− μ/e.

16.3.3 Electric and Heat Currents

An applied electric field induces an electric current, while a temperature gra-
dient causes a heat current to flow in the system. These currents can be simply
expressed in terms of the distribution function. The particle current density
is

jn =
1
V

∑
k,σ

vkf(k) =
∫

dk

4π3
vkf(k) . (16.3.28)

The electric current density is obtained by multiplying both sides by the
electron charge:

j = −e
∫

dk

4π3
vkf(k) . (16.3.29)

The energy current is given by

jE =
∫

dk

4π3
εkvkf(k) . (16.3.30)
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However, the heat current cannot be identified directly with the energy cur-
rent. It follows from the thermodynamic identities dQ = T dS and T dS =
dE − μdN that the heat-current density is

jQ = TjS = jE − μjn =
∫

dk

4π3
(εk − μ)vkf(k) . (16.3.31)

Using (16.3.27) for the distribution function, and making use of the prop-
erty that no current flows in thermal equilibrium, the electric and heat currents
appear as linear responses to external perturbations:

j = K0

(
E +

∇μ
e

)
−K1

(
−∇T
T

)
, (16.3.32-a)

jQ = −K1

(
E +

∇μ
e

)
+K2

(
−∇T
T

)
, (16.3.32-b)

where

Kn = e2−n

∫
dk

4π3

(
−∂f0
∂εk

)
τ(εk)

1
3
v2

k (εk − μ)n
, (16.3.33)

and the relaxation time τ may depend on the particle energy. The factor 1/3
appears in front of v2

k because the relationships between currents and external
perturbations (E, −∇T ) are usually tensorial, and the general expressions for
the integrals Kn contain the dyadic product vk ◦ vk – however, on account
of the isotropic distribution of free electrons in k-space, only diagonal terms
contribute, and the result is just 1/3 of what would be obtained if the integral
were evaluated using v2

k. As we shall see in Chapter 24, the appearance of the
same integral K1 in the electric and heat currents is neither accidental nor
the result of the approximation: it is the manifestation of the relationships
between the transport coefficients in nonequilibrium statistical physics, the
Onsager reciprocal relations.26

It is readily seen that K0 is just the conductivity:

K0 = σ. (16.3.34)

Before turning to the study of the roles of other coefficients, let us define the
quantity

σ(ε) =
2e2

3me
ρ(ε)ετ(ε) . (16.3.35)

When v2
k is expressed in terms of the electron energy in the defining expression

of Kn, and the integration variable k is replaced by the energy, we have
26 L. Onsager, 1931. Lars Onsager (1903–1976) was awarded the Nobel Prize in

Chemistry in 1968 “for the discovery of the reciprocal relations bearing his name,
which are fundamental for the thermodynamics of irreversible processes”.
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Kn = e−n

∫
dε
(
−∂f0
∂ε

)
σ(ε)(ε− μ)n . (16.3.36)

Using the Sommerfeld expansion,

K0 = σ(μ) +
π2

6
(kBT )2

d2σ(ε)
dε2

∣∣∣∣
ε=μ

, (16.3.37-a)

K1 =
π2

3e
(kBT )2

dσ(ε)
dε

∣∣∣∣
ε=μ

, (16.3.37-b)

K2 =
π2

3e2
(kBT )2σ(μ) , (16.3.37-c)

where, in line with (16.3.35),

σ(μ) =
2e2

3me
ρ(μ)μτ(μ) . (16.3.38)

At low temperatures, where corrections of order T 2 can be neglected, the
conductivity is given by

σ0 =
2e2

3me
ρ(εF)εFτ = 1

3e
2ρ(εF)v2Fτ , (16.3.39)

where τ is the relaxation time of electrons at the Fermi energy. When the
density of states is expressed by the electron density using (16.2.55), the well-
known Drude formula (16.1.20) is recovered for the conductivity. This form is
therefore valid in the Sommerfeld model, too.

Since a temperature gradient induces not only a heat current but, through
a cross effect, an electric current as well, pure thermal conduction is obtained
when the flow of the electric current is canceled by an applied electric field.
This requires

K0

(
E +

∇μ
e

)
= K1

(
−∇T
T

)
. (16.3.40)

Substituting this requirement into the expression for the heat current,

jQ = −K
2
1

K0

(
−∇T
T

)
+K2

(
−∇T
T

)
. (16.3.41)

Since the thermal conductivity λ is defined by the equation

jQ = λ (−∇T ) , (16.3.42)

we have

λ =
K2

T
− K2

1

K0T
. (16.3.43)

The derivative dσ(ε)/dε in K1 can be determined from (16.3.35). Since close
to the Fermi energy the density of states varies little with energy, the derivative
is relatively well approximated by σ(εF)/εF in metals, leading to
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K2
1

K0K2
≈ π2

3

(
kBT

εF

)2

. (16.3.44)

Except for extremely high temperatures, the thermal energy is much smaller
than the Fermi energy, thus the second term in (16.3.43) is negligible:

λ =
K2

T

{
1 + O

(
kBT

εF

)2
}
. (16.3.45)

By substituting (16.3.37-c) into this expression and using (16.3.39), we finally
have

λ =
π2

9
k2
BTρ(εF)v2Fτ. (16.3.46)

Comparison with the specific-heat formula (16.2.91) gives

λ = 1
3celv

2
Fτ , (16.3.47)

in accordance with the classical expression (16.1.22) of the kinetic theory of
gases. However, the temperature dependence does not come from the thermal
velocity of electrons now, as in the Drude model, but from the specific heat
of electrons.

When the thermal conductivity is expressed in terms of the electrical con-
ductivity, we find

λ =
π2

3

(
kB
e

)2

Tσ. (16.3.48)

Note that apart from a numerical factor this formula is identical with the
Wiedemann–Franz law (16.1.24). The only difference is that the multiplying
factor of (kB/e)2 in the Lorenz number is now (π2/3) instead of 3/2, i.e.,

L = 2.45 × 10−8 V2 K−2. (16.3.49)

This value is in good agreement with the experimental data listed in Ta-
ble 16.4, showing that one of the flaws of the classical model is eliminated by
the quantum mechanical treatment.

16.3.4 Thermoelectric Phenomena

It is readily seen from the formulas (16.3.32) of the currents that if there is a
temperature gradient between two points of the sample, then an electrostatic
potential difference appears between them (and an electric field inside the
sample) even when no current is flowing. The absolute differential thermopower
(also known as thermoelectric power or Seebeck coefficient) S is defined by(

E +
∇μ
e

)
= S∇T , (16.3.50)
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with the additional requirement that no current should flow. Expressed in
terms of the electrochemical potential,

S = −d(ϕ− μ/e)
dT

∣∣∣
j=0

. (16.3.51)

According to (16.3.32-a),

S = − 1
T

K1

K0
. (16.3.52)

Using the leading terms in (16.3.37) gives the Cutler–Mott formula:27

S = −π
2k2

BT

3e
d lnσ(ε)

dε

∣∣∣∣
ε=εF

. (16.3.53)

Substituting the approximation for the derivative of σ(ε) again,

S ≈ −π
2

3
k2
BT

eεF
(16.3.54)

is obtained.28 In the free-electron model the absolute thermoelectric power is
negative, and its room-temperature value is a few μV/K. The negative sign
is logical. Thermal diffusion gives rise to a flow of electrons from the hot side
toward the cold side, resulting in the accumulation of negative charge on the
latter, and thus a negative voltage with respect to the hot side, halting the
flow of electrons. In reality, a dynamic equilibrium is established. Electrons
continue to diffuse toward the cold side (consequently, an electric current flows
in the opposite direction). On the other hand, the electric field set up in the
sample, which points toward the cold side, drives the electrons toward the hot
side. In equilibrium the diffusion and drift currents compensate each other.
This is shown in Fig. 16.10(a).

The experimental values of the room-temperature Seebeck coefficient are
listed in Table 16.8 for several elements. The data clearly show that the ther-
moelectric power is positive for many metals, which cannot be interpreted
within the Sommerfeld model. Since we shall not deal with the details of ther-
moelectric phenomena later, it should be noted here that this comes partly
from the modifications of the electron states in the periodic potential of the
lattice and partly from the energy dependence of the collisions during the dif-
fusion of electrons. These can make the Seebeck coefficient two to three orders
of magnitude larger in semiconductors than in metals.
27 M. Cutler and N. F. Mott, 1969.
28 Using the relationship ρ(ε) ∝ √

ε for the density of states that is valid for
quadratic dispersion relations,

S = −π2

2

k2
BT

eεF
.
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Fig. 16.10. The Seebeck effect. (a) The thermoelectric power induced by a tem-
perature gradient. (b) The schematic setup of thermoelectric power measurements

Table 16.8. Room-temperature thermoelectric power for several metals

Element S (μV/K) Element S (μV/K)

Li 14 Pd −9.99
Na −5 Pt −5.28
K −12.5 Cu 1.83
Rb −8.3 Ag 1.51
V 1.0 Au 1.94
Cr 17.3 Al −1.8
W 1.07 Pb −1.05

It is worth noting that phonons also give an indirect contribution to the
thermoelectric power: they flow from the hot side to the cold one, and can
transfer momentum to the electrons through their interactions. This phe-
nomenon, called phonon drag, also leads to the accumulation of electrons on
the cold side, and thus gives an additional term in the termoelectric power.

In general, the absolute thermoelectric power itself cannot be measured
directly, only the difference of the thermoelectric powers of two metals in con-
tact.29 The measurement can be performed in the setup shown schematically
in Fig. 16.10(b), with one point of contact at the reference temperature T0,
while the other at some other temperature T . Because of the unequal absolute
differential thermoelectric powers Sa and Sb of the two materials, a potential
difference is observed between the two end points of an open system, indepen-
dently of the temperature T ′ of the points A and B between which this voltage
is measured. If a closed circuit were built of the two materials, a current would
be generated. This phenomenon is called the Seebeck effect.30

The magnitude of the potential difference – also called the thermoelectro-
motive force – is
29 Except for the case when a normal metal is in contact with a superconductor, as

the thermoelectric power vanishes in superconductors.
30 T. J. Seebeck, 1821.
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Eab(T, T0) = V (A) − V (B) = −
A∫

B

E · ds

= −
T∫

T ′

SbdT −
T0∫

T

SadT −
T ′∫

T0

SbdT =

T∫
T0

(Sa − Sb)dT .

(16.3.55)

In differential form:

Sab ≡ Sa − Sb =
∂Eab(T, T0)

∂T

∣∣∣∣
T=T0

. (16.3.56)

The coefficient Sab is the relative Seebeck coefficient of material a with respect
to material b.

Another phenomenon is observed when electric current is flowing in a
system made up of two different metals kept at the same temperature. It
follows from (16.3.32) that for ∇T = 0

jQ = −K1

K0
j , (16.3.57)

that is, in addition to the electric current, a heat current is also present in
each part. The electric current is the same on the two sides of the contact,
however K1 and K0 depend on material properties, so the magnitude of the
heat current is different in the two metals. This is only possible if the system
emits or absorbs heat at the contact. This is the Peltier effect,31 while the
coefficient

Π =
jQ

j

∣∣∣
∇T=0

= −K1

K0
(16.3.58)

is called the Peltier coefficient. Comparison with (16.3.52), the formula for
the absolute thermoelectric power S immediately leads to

Π = ST , (16.3.59)

which is just the first Thomson relation or Kelvin relation.32 As shown in
Fig. 16.11(a), the heat emitted or absorbed irreversibly at the contact between
two different metals per unit time is

dQ
dt

= (Πa −Πb) j = (Sa − Sb)Tj . (16.3.60)

In the setup shown in Fig. 16.11(b) both contacts between the two metals
are at the same temperature. When an electric current is circulating, the
temperatures of the contacts can be kept equal only if heat is absorbed at one
31 J. C. A. Peltier, 1834.
32 W. Thomson (Lord Kelvin), 1854.
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Fig. 16.11. The Peltier effect. (a) Emission or absorption of heat at the contact of
two current-carrying metals. (b) Electric and heat currents in a closed circuit

contact and the same amount is released at the other – that is, heat is pumped
from one side to the other. If the same temperature is not maintained by the
absorption and release of heat, the voltage induces a temperature difference:
one contact cools down while the other warms up. In this sense the Peltier
effect can be considered as the inverse of the Seebeck effect.

In a current-carrying conductor heat is reversibly released not only when
two different metals are in contact but also when the current flows through
a sample made of a single metal but in addition to the potential difference a
temperature gradient is also present. This phenomenon is called the Thomson
effect, and the heat that is released over and above the irreversibly released
Joule heat is called the Thomson heat. Its magnitude can be evaluated using
the continuity equation

∂ne

∂t
+ div jn = 0 (16.3.61)

and a similar equation for the energy density w = E/V :

∂w

∂t
+ div jE = E · j , (16.3.62)

which are the consequences of particle-number and energy conservation, re-
spectively. The term on the right-hand side of the last formula is the change
in the energy due to the work of the external field. The heat generated in unit
volume (q = Q/V ) per unit time is then

∂q

∂t
= j · E − div jQ . (16.3.63)

Before transforming this equation, we shall write equations (16.3.32) in an
alternative form, using the coefficients introduced above:

E =
1
σ

j + S∇T , jQ = Πj − λ∇T . (16.3.64)
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Substituting these formulas into (16.3.63), assuming spatially uniform currents
and temperature gradient, and neglecting higher powers of the temperature
gradient gives

∂q

∂t
=

1
σ

j2 + Sj · ∇T − ∂Π

∂T
j · ∇T

=
1
σ

j2 − T ∂S
∂T

j · ∇T ,
(16.3.65)

where we have exploited (16.3.59) relating the thermoelectric power to the
Peltier coefficient. In the final formula the first term is the Joule heat, while
the second is the Thomson heat. By defining the Thomson coefficient μT from
the reversibly released heat as(

∂q

∂t

)
rev

= −μTj · ∇T , (16.3.66)

the second Thomson relation is obtained:

μT = T
∂S

∂T
= T

∂

∂T

(
Π

T

)
. (16.3.67)

This relation allows us – at least, in principle – to measure indirectly the
absolute differential termoelectric power, as

S =

T∫
0

μT

T ′ dT ′ . (16.3.68)

16.3.5 Galvanomagnetic and Thermomagnetic Phenomena

It was shown in connection with the Hall effect that if a current is flowing in
the sample and a perpendicular magnetic field is applied then the Lorentz force
on the electrons gives rise to a potential difference that is perpendicular to
both the electric and magnetic fields. This phenomenon is easily understood
in the classical picture. The quantum mechanical treatment would require
the solution of the Schrödinger equation in the presence of a magnetic field.
We shall return to this point in Chapters 21 and 22. Below we shall content
ourselves with presenting some other effects that arise in magnetic fields.

As has been mentioned, the application of a magnetic field could, in prin-
ciple, give rise to magnetoresistance – that is, it could lead to a change of the
resistance along the electric field direction. However, there is neither trans-
verse nor longitudinal magnetoresistance (in which the electric and magnetic
fields are perpendicular and parallel, respectively) in the classical model of
free electrons. The situation is similar in the Sommerfeld model as long as
only the temperature-independent leading terms are used in the evaluation of
the current. However, a more accurate calculation yields
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Δ�
�0

=
aB2

1 + cB2
, (16.3.69)

where the coefficients a and c are expressed in terms of the mean free path l
as

a =
π2

3

(
elkBT

m2
ev

3
F

)2

, c =
(

el

mevF

)2

. (16.3.70)

After an initial parabolic increase, the variation of the resistance becomes
saturated for strong fields.

The quantum mechanical Sommerfeld model leads to the same Hall coef-
ficient as the classical Drude model. In Hall effect measurements transverse
voltages appear because no current is allowed to flow in the direction that
is perpendicular both to the magnetic field and the initial current direction.
When no transverse voltage is allowed, a secondary electric current starts to
flow perpendicular to the primary one. This is the Corbino effect.33

Since the electric current may be accompanied by a heat current, the mag-
netic field can also affect the latter. Thus, when electric and magnetic fields
and a temperature gradient are all present, the generalization of (16.3.32)
gives

j = N11E +N12∇T +N13B × E +N14B × ∇T ,
jQ = N21E +N22∇T +N23B × E +N24B × ∇T

(16.3.71)

for the electric and heat currents. As the magnetic field itself does not induce
a current, only the above terms appear when only terms linear in the magnetic
field are allowed. Since in experiments it is easier to control the electric current
than the electric field, it is more practical to rewrite the equations in the form

E =
1
σ

j + S∇T +RHB × j + LB × ∇T ,

jQ = Πj − λ∇T +MB × j +NB × ∇T .
(16.3.72)

As indicated in (16.3.64), when no magnetic field is present, the four co-
efficients correspond to four known quantities: the inverse conductivity, the
differential thermoelectric power, the Peltier coefficient, and the thermal con-
ductivity. When a magnetic field is applied, four new coefficients appear. Be-
sides, the former four can also change – moreover, it should also be remem-
bered that the coefficients are no longer necessarily scalars. One of the new
coefficients is the previously mentioned Hall coefficient. The others are also
related to well-known classical physical phenomena.

Phenomena whose occurrence is due primarily to electric currents are
called galvanomagnetic. In connection with the Hall effect, an important fea-
ture has not been mentioned yet: while the Hall voltage serves to eliminate
33 O. M. Corbino, 1911.
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transverse electric currents, the sample cannot remain isothermal unless a heat
current is flowing in this transverse direction. If there are no heat currents, a
transverse temperature gradient appears. This is the Ettingshausen effect.34
The Ettingshausen coefficient is defined by

− ∇T = AEB × j . (16.3.73)

If the electric current is along the x-direction, and the applied magnetic field
is along the z-direction, then ∂T/∂y is finite, and

AE = −∂T/∂y
Bzjx

. (16.3.74)

Making use of general thermodynamic relations, the Ettingshausen coefficient
can be related to the Hall coefficient:

AE =
TμT

λ�
RH . (16.3.75)

Staying within the framework of the Sommerfeld model, and assuming energy-
dependent relaxation times,

AE = − T
ne

(
∂ ln τ(ε)
∂ε

)
ε=εF

. (16.3.76)

If the primary current is not electric but a heat current induced by the
temperature gradient across the sample then we speak of thermomagnetic phe-
nomena. Owing to the magnetic field, a transverse electric field or a transverse
secondary temperature gradient appears in this case, too. The first possibility
is called the Nernst effect or transverse Nernst–Ettingshausen effect,35 while
the second is known as the Righi–Leduc effect.36 The corresponding coeffi-
cients are defined as

E = −ANB × ∇T and ∇⊥T = ARLB × ∇‖T . (16.3.77)

Assuming once again that the primary current is in the x-direction while the
magnetic field is along the z-direction,

AN = − Ey

Bz∂T/∂x
, ARL =

∂T/∂y

Bz∂T/∂x
. (16.3.78)

34 A. v. Ettingshausen, 1887.
35 W. Nernst and A. v. Ettingshausen, 1887. The longitudinal Nernst-

Ettingshausen effect is the variation of the thermopower in a transverse magnetic
field. Walther Hermann Nernst (1864–1941) was awarded the Nobel Prize in
Chemistry in 1920 “in recognition of his work in thermochemistry”.

36 A. Righi and A. Leduc, 1887.
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It should be noted that these coefficients are not independent: they can be
expressed in terms of the formerly introduced ones via the Bridgman rela-
tions:37

AN =
μT

ρ
RH =

λ

T
AE , ARL = RH σ . (16.3.79)

16.4 Scattering of Free Electrons by Impurities

Up to now the system of electrons has been considered as a gas of almost
free particles. The word “almost” refers to the fact that the interpretation
of conduction phenomena had to be based on the assumption that electrons
participate in collision processes from time to time. This was taken into consid-
eration by a phenomenological parameter, the relaxation time. These collision
processes can be electron–electron interaction processes as well as scattering
on the ions of the lattice. We shall discuss these in more detail later. Below,
we shall consider a different kind of scattering events, which is related to a
recurrent question in solid-state physics: what happens to a free electron de-
scribed by a plane-wave wavefunction when it is scattered by an impurity?
This question can be addressed in two different ways. The first option is to
treat this process as a scattering problem, and solve the Schrödinger equation[

− �
2

2me
∇2 + V (r)

]
ψ(r) = εψ(r) (16.4.1)

asymptotically (i.e., far from the impurity) for an electron beam scattered by
the potential V (r) of the impurity placed at the origin. The other option is
to compute the one-particle stationary electron states in the presence of the
impurity potential.

16.4.1 Formal Solution of the Schrödinger Equation

Before turning to the study of the scattering problem, we shall briefly outline
how to determine the electron states formed around the impurity by means
of the formal solution of the Schrödinger equation using Green functions.

Impurities break translational symmetry, and so the wave vector k will no
longer be a good quantum number. By writing the energy eigenvalue formally
as ε = �

2k2/2me,

�
2

2me

[∇2 + k2
]
ψk(r) = V (r)ψk(r) (16.4.2)

37 P. W. Bridgman, 1924. Percy Williams Bridgman (1882–1961) was awarded
the Nobel Prize in 1946 “for the invention of an apparatus to produce extremely
high pressures, and for the discoveries he made therewith in the field of high
pressure”.
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is obtained after some algebra. The implicit form of the wavefunction can be
easily established by the introduction of the free-electron Green function that
satisfies the equation

�
2

2me

[∇2 + k2 ∓ iα
]
G(r, r′) = δ(r − r′) , (16.4.3)

where α is an infinitesimal positive number that ensures the appropriate ana-
lytic properties of the Green function. Using this defining equation it is readily
seen that the function

ψk(r) =
1√
V

eik·r +
∫

dr′G(r, r′)V (r′)ψk(r′) (16.4.4)

is indeed a solution of (16.4.2).
The equation for the Green function can be solved explicitly. Using the

formula ∇2(1/r) = −4πδ(r),

G(r, r′) = − me

2π�2

eik|r−r′|

|r − r′| , (16.4.5)

that is, the wavefunction satisfies the equation

ψk(r) =
1√
V

eik·r − me

2π�2

∫
dr′ eik|r−r′|

|r − r′| V (r′)ψk(r′) . (16.4.6)

When the potential is weak, the wavefunction can be calculated from this
equation iteratively.

16.4.2 Approach Based on Scattering Theory

When free electrons described by plane waves are scattered elastically by the
spherically symmetric potential of an impurity, we shall seek solutions that
can be written as the superposition of an incoming plane wave and an outgoing
(scattered) spherical wave:

ψk(r) ∝ eik·r + f(θ)
eikr

r
, (16.4.7)

where θ is the angle between the propagation direction k of the incident
plane wave and the direction of r. Only the the polar angle θ appears, the
azimuthal angle ϕ does not, since the scattered wave exhibits rotational sym-
metry around the direction of k. The coefficient f(θ) of the outgoing spherical
wave is the scattering amplitude; the differential scattering cross section is de-
termined by this term. We shall therefore try to relate f(θ) to the parameters
of the scattering potential.

The spatial part of the wavefunction is determined by the Schrödinger
equation (16.4.1). Because of the spherical symmetry of the potential it is
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practical to use spherical coordinates, and to seek solutions using the method
of partial waves. In other words: as the wavefunction in the scattering problem
does not depend on the azimuthal angle ϕ, an expansion in terms of the Leg-
endre polynomials Pl(cos θ) associated with the states of angular momentum
l is used for the wavefunction:

ψk(r) =
1√
V

∞∑
l=0

(2l + 1)ilRl(r)Pl(cos θ) . (16.4.8)

As we shall see, the k- and energy dependence appears in Rl(r) in such a way
that the true argument turns out to be kr.

In terms of spherical coordinates, the Laplacian in the kinetic energy is

∇2 =
1
r2
∂

∂r
r2
∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂ϕ2
. (16.4.9)

Rewriting the θ-derivative term using the identity

1
sin θ

∂

∂θ
sin θ

∂

∂θ
= sin2 θ

∂2

∂(cos θ)2
− 2 cos θ

∂

∂(cos θ)
, (16.4.10)

and exploiting the property that, according to (C.4.15), the Legendre polyno-
mials satisfy the equation[

(1 − cos2 θ)
∂2

∂(cos θ)2
− 2 cos θ

∂

∂(cos θ)
+ l(l + 1)

]
Pl(cos θ) = 0 , (16.4.11)

the Schrödinger equation for the radial part Rl(r) takes the form[
− �

2

2me

1
r2
∂

∂r
r2
∂

∂r
+

�
2

2me

l(l + 1)
r2

+ V (r)
]
Rl(r) = εRl(r) . (16.4.12)

Alternatively, this can be written as[
− �

2

2me

∂2

∂r2
+

�
2

2me

l(l + 1)
r2

+ V (r)
]

(rRl(r)) = ε (rRl(r)) , (16.4.13)

or, when the energy eigenvalue ε is expressed by a parameter k through ε =
�

2k2/2me, as[
∂2

∂r2
+

2
r

∂

∂r
− l(l + 1)

r2
− 2me

�2
V (r)

]
Rl(r) = −k2Rl(r) . (16.4.14)

A general solution cannot be given, however it is possible to find a solu-
tion that is asymptotically valid at large distances from the impurity, where
the potential is negligibly small. Note that at distances where the potential
vanishes, the radial equation (16.4.14) – when expressed in terms of the vari-
able kr = z – is the same as (C.3.43), the equation for spherical Bessel and
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Neumann functions. The asymptotic solution can therefore be written as a
linear combination of these functions:

Rl(r) = cl [cos δl jl(kr) − sin δl nl(kr)] . (16.4.15)

Using the asymptotic form

jl(kr) ≈ sin(kr − lπ/2)
kr

, nl(kr) ≈ −cos(kr − lπ/2)
kr

(16.4.16)

of the spherical Bessel and Neumann functions given in Appendix C, we have

ψk(r) ≈ 1√
V

∞∑
l=0

(2l + 1) ilcl
1
kr

sin(kr − lπ/2 + δl)Pl(cos θ) (16.4.17)

far from the impurity. Now consider the form (C.4.38) of the incoming plane
wave,

eik·r = eikr cos θ =
∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ) , (16.4.18)

which is valid not only asymptotically but also at r = 0 (consequently, it
does not contain any second-order spherical Bessel function that is singular
at r = 0). Taking this expression in the asymptotic region, we have

1√
V

eik·r ≈ 1√
V

∞∑
l=0

(2l + 1) il
1
kr

sin (kr − lπ/2)Pl(cos θ) . (16.4.19)

A comparison of the two formulas shows that scattering by the impurity po-
tential leads to a phase shift δl in the lth partial wave.

The coefficient cl can be determined from the requirement that the wave-
function should indeed be of the form (16.4.7) – that is, it should contain an
outgoing spherical wave in addition to the incoming plane wave. Consider now
the asymptotic expression for the change of the wavefunction caused by the
impurity:

ψk(r) − 1√
V

eik·r =
1√
V

∞∑
l=0

(2l + 1) ilPl(cos θ)
1
kr

(16.4.20)

× [cl sin (kr − lπ/2 + δl) − sin (kr − lπ/2)
]

and rewrite the bracketed factor as

cl
2i

[
ei(kr−lπ/2+δl) − e−i(kr−lπ/2+δl)

]
− 1

2i

[
ei(kr−lπ/2) − e−i(kr−lπ/2)

]
.

(16.4.21)
The terms that contain e−ikr – and thus describe an incoming spherical wave
– vanish if

cl = eiδl . (16.4.22)
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Since asymptotically

1√
V

eik·r ≈
∞∑

l=0

(2l + 1)
2ikr

[
eikr − (−1)le−ikr

]
Pl(cos θ) (16.4.23)

and

ψk(r) ≈ 1√
V

∞∑
l=0

(2l + 1)
2ikr

[
e2iδleikr − (−1)le−ikr

]
Pl(cos θ) , (16.4.24)

the amplitude of the scattered spherical waves is

f(θ) =
1
k

∞∑
l=0

(2l + 1)(e2iδl − 1)
1
2i
Pl(cos θ)

=
1
k

∞∑
l=0

(2l + 1)eiδl sin δl Pl(cos θ) .

(16.4.25)

Its square is the differential cross section along the direction θ:

σ(θ) = |f(θ)|2 . (16.4.26)

Integration over the entire solid angle gives the total cross section of the scat-
tering by the impurity. Exploiting the properties of the Legendre polynomials,

σtot = 2π

π∫
0

σ(θ) sin θ dθ =
4π
k2

∞∑
l=0

(2l + 1) sin2 δl . (16.4.27)

The influence of the potential thus appears entirely through the phase shifts δl.
It follows from the above form of the cross section that there is practically

no scattering when the phase shift is an integral multiple of π. As we shall see,
for attractive interactions this corresponds to the situation in which electrons
are bound to the impurity. Scattering is strongest when δl = π/2, 3π/2, . . . ;
in this case we speak of a resonance or virtual bound state.

Because of their scattering on impurities, electron states have a finite life-
time whose inverse is proportional to the transition probability from a given
state to any other state. For spatially disordered impurities an average has to
be taken over all possible disordered configurations. Interference terms arising
from scattering by different scattering centers then cancel out, resulting in a
total transition probability that is proportional to the number of scatterers.
As we shall see in Chapter 36 of Volume 3, quantum mechanical interference
cannot always be neglected: it can lead to the localization of electron states.

Since the cross section is defined as the ratio of the transition probability
and the particle flux, the inverse lifetime is given by

1
τk

= nivkσtot , (16.4.28)
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where ni is the concentration of impurities. From the expression for the cross
section we have

1
τ

=
4π�ni

mek

∞∑
l=0

(2l + 1) sin2 δl . (16.4.29)

It will be shown in Chapter 24 that the collision time that appears in the
electrical conductivity is different from this lifetime. This is because the cur-
rent carried by electrons changes only slightly in those scattering processes
for which θ ≈ 0, while in back-scattering processes of angle θ ≈ π the current
is significantly reduced. In fact scattering through angle θ should be multi-
plied by a weight factor 1− cos θ in the formula for the relaxation time. Thus
transport processes are governed by the transport relaxation time defined by

1
τtr

= nivF〈σ〉 , (16.4.30)

where 〈σ〉 is the weighted cross section:

〈σ〉 = 2π

π∫
0

(1 − cos θ)σ(θ) sin θ dθ =
4π
k2

∞∑
l=0

(l + 1) sin2(δl − δl+1) . (16.4.31)

Substituting this into the Drude formula, the contribution of impurity scat-
tering to resistivity is

� =
me

nee2τtr
=
nimevF
nee2

〈σ〉 =
4π�ni

nee2kF

∞∑
l=0

(l + 1) sin2(δl − δl+1) . (16.4.32)

This resistivity contribution survives even at very low temperatures where all
other scattering processes are frozen in and their contributions vanish. It is
therefore called residual resistivity.

16.4.3 Friedel Oscillations Around Impurities

It will often prove useful to know how the spatial density of electrons changes
around an impurity and how much total charge accumulates there. To cal-
culate these, consider a sphere of radius R centered at the impurity. The
contribution of the state of quantum number k to the change in the number
of electrons in this sphere is

δNk =

2π∫
0

dϕ

π∫
0

sin θdθ

R∫
0

[∣∣ψk(r)
∣∣2 − 1

V

∣∣eik·r∣∣2] r2 dr . (16.4.33)

Writing the wavefunctions in terms of partial waves – see (16.4.8) and (16.4.18)
–, integration over the angular variables gives
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δNk =
4π
V

∞∑
l=0

(2l + 1)

[ R∫
0

R2
l (kr) r

2 dr −
R∫

0

j2l (kr) r2 dr

]
. (16.4.34)

To evaluate the integrals, consider (16.4.13), the equation that the radial
function Rl has to satisfy. For the sake of conciseness, we shall denote the
radial function associated with the wave number k′ by R′

l. Multiplying the
equation for rRl by rR′

l, and the equation for rR′
l by rRl, their difference

yields

rR′
l

∂2

∂r2
(rRl) − rRl

∂2

∂r2
(rR′

l) = (k′2 − k2)(rRl)(rR′
l) . (16.4.35)

Integrating both sides from 0 to R,

[
rR′

l

∂

∂r
(rRl) − rRl

∂

∂r
(rR′

l)
]R

0

= (k′2 − k2)

R∫
0

(rRl)(rR′
l)dr . (16.4.36)

In the k′ → k limit
R′

l = Rl + (k′ − k)∂Rl

∂k
, (16.4.37)

and so [
∂

∂k
(rRl)

∂

∂r
(rRl) − rRl

∂2

∂r∂k
(rRl)

]R

0

= 2k

R∫
0

r2R2
l dr . (16.4.38)

The left-hand side vanishes at the lower limit. At the upper limit the asymp-
totic form

Rl ≈ eiδl

kr
sin(kr − lπ/2 + δl) (16.4.39)

of the radial function – implied by (16.4.17) – yields

R∫
0

r2R2
l dr =

1
2k2

{
R+

∂δl
∂k

− 1
2k

sin
[
2
(
kR+ δl − lπ

2

)]}
. (16.4.40)

The result for the impurity-free case is obtained from this formula by elimi-
nating the phase shifts. Then, by subtracting one equation from the other, we
find

δNk =
1
V

2π
k2

∞∑
l=0

(2l + 1)
[
∂δl
∂k

− 1
k

sin δl cos (2kR+ δl − lπ)
]
. (16.4.41)

Summing the contribution of the occupied states (that is, integrating over the
interior of the Fermi sphere and multiplying by a factor 2 for the spin) gives
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the following formula for the change in the total number of electrons inside a
sphere of radius R:

δN =
V

4π3

kF∫
0

δNk 4πk2 dk

=
2
π

∞∑
l=0

(2l + 1)

[
δl(kF) −

kF∫
0

dk
k

sin δl cos (2kR+ δl − lπ)
]
.

(16.4.42)

The oscillating terms in this expression can be used to determine the spa-
tial variations of the perturbed charge distribution around the impurity. De-
noting the number density at a distance r from the impurity by n(r),

δN =

R∫
0

n(r)4πr2 dr , (16.4.43)

hence

n(r) =
1

4πr2
dδN(R)

dR

∣∣∣∣
R=r

= − 1
2π2r3

∑
l

(2l + 1)(−1)l sin δl cos(2kFr + δl) .
(16.4.44)

The same result would have been obtained if the variation of the electron
density had been determined from the asymptotic form of the perturbed and
unperturbed wavefunctions through

n(r) =
∑
k,σ

[∣∣ψk(r)
∣∣2 − ∣∣ψ(0)

k (r)
∣∣2] . (16.4.45)

The perturbation caused by the impurity does not fall off exponentially but
much more slowly, as 1/r3, and not monotonously but in an oscillatory way.
This is called Friedel oscillation.38 The oscillation wavelength is the reciprocal
of twice the Fermi wave number, that is, the reciprocal of the diameter of the
Fermi sphere. It is important to note that the oscillation is the consequence
of the abrupt change in the momentum distribution at the Fermi energy.

At large distances the oscillatory terms drop off. The total accumulated
charge around the impurity is then

δN =
2
π

∞∑
l=0

(2l + 1)δl(kF) . (16.4.46)

38 J. Friedel, 1952.
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Since electron states are redistributed, electrons are displaced around a
charged impurity in such a way that the excess charge should be screened
(neutralized) over a relatively short distance – otherwise its contribution to
the Coulomb energy would become excessively large –, the phase shifts at the
Fermi momentum can be related to the charge Ze of the impurity, which has
to be screened:

Z =
2
π

∞∑
l=0

(2l + 1)δl(kF) . (16.4.47)

This formula is known as the Friedel sum rule. It can be intuitively understood
in the following simple picture. In view of the spherical symmetry of the im-
purity potential, consider an electron gas with modified boundary conditions:
within a sphere of radius R rather than in a rectangular box. By choosing the
coefficient cl in the asymptotic form of the radial wavefunction in such a way
that it is normalized in this sphere, we have

Rl(r) ≈ 1√
2πR

1
r

sin(kr − lπ/2 + δl) (16.4.48)

for large values of r. The allowed values of the wave number k are specified
by the requirement that the wavefunction vanish on the surface of the sphere
of radius R, that is,

kR− 1
2 lπ + δl(k) = nπ , n = 0,±1,±2, . . . . (16.4.49)

Due to the phase shifts, the change of the wave number k with respect to the
impurity-free case is

δk = −δl(k)
R

. (16.4.50)

Since the allowed values of k are separated by regular distances π/R, we find
that when the factor 2 arising from spin and the number of states with angular
momentum l (2l + 1) are taken into account, there are

2
π

(2l + 1)δl(k) (16.4.51)

allowed electron states in an interval δk. If the impurity possesses an excess
charge ±Ze, Z states must be displaced below (or above) the Fermi energy
to screen it. This requirement leads to the sum rule (16.4.47).

Using the same argument, the integrated density of states can be deter-
mined for an arbitrary energy ε. The change in the number of states below
energy ε due to the impurity is

δN(ε) =
2
π

∞∑
l=0

(2l + 1)δl(ε) . (16.4.52)

Its derivative with respect to energy gives the change of the density of states:
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δρ(ε) =
2
π

∞∑
l=0

(2l + 1)
dδl(ε)

dε
. (16.4.53)

If the scattering of the lth partial wave features a resonance at energy εr,
then, according to quantum mechanics, the energy dependence of the phase
shift is given by

tan δl =
Γ

2(εr − ε) . (16.4.54)

The contribution of the lth partial wave to the change of the density of states
is then

δρl(ε) =
2
π

(2l + 1)
Γ/2

(εr − ε)2 + (Γ/2)2
, (16.4.55)

that is, a Lorentzian peak of half-width Γ appears around εr.

16.4.4 Bound States Around Impurities

In the foregoing the allowed values of the parameter k were determined from
the requirement that the wavefunction vanish on the surface of a sphere of
radius R, in other words, that the condition

kR− lπ/2 + δl = nπ (16.4.56)

be met. Because of the phase shift δl caused by the impurity, the energies are
also shifted relative to those of the ideal electron gas. The perturbed energies
are:

ε =
�

2

2me

(
nπ + lπ/2 − δl

R

)2

. (16.4.57)

When the impurity potential is weak, δl is small, and energies are shifted only
slightly. For attractive interactions δl is positive and the energy levels are
shifted downward, while for repulsive interactions δl is negative and they are
shifted upward. If δl is smaller than π, the nth perturbed level is between the
(n− 1)th and (n+ 1)th unperturbed levels. Since the allowed values of k are
separated by regular distances π/R, the energy levels form a quasicontinuum.

A particular situation arises when the attractive potential is sufficiently
strong and δ0 reaches π. The energy of the lowest-lying state (of quantum
number n = 1 and angular momentum l = 0) vanishes – and becomes nega-
tive for even stronger potentials. The wave number associated with this level
is imaginary, hence the wavefunction decays exponentially with increasing dis-
tance from the impurity. Thus, in contrast to the previously discussed electron
states that extend over the entire sample, the energy level appearing below
the quasicontinuum corresponds to a localized state bound to the impurity.
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16.5 Inadequacies of the Free-Electron Model

The inadequacies and failures of the Drude model, based on classical physics,
were discussed in Section 16.1.8. The application of quantum mechanics pro-
vided a remedy for some of them. The Sommerfeld model gives a much better
account of the thermodynamic behavior than the classical model. The elec-
tronic specific heat and susceptibility are in order-of-magnitude agreement
with experimental data for simple metals, and the theoretical formulas for
their temperature dependence are also consistent with measurements. How-
ever, the calculated value of the density of states agrees with the measured
data only for the simplest metals. When it is estimated from the susceptibil-
ity data, it is sometimes several orders of magnitude off the value calculated
from the free-electron model. The same is true – though, in part, for differ-
ent reasons – when the density of states (or the electron mass) is determined
from the linear contribution of the specific heat.39 All this indicates that the
free-electron assumption is not justified in most metals.

It is interesting to note that the estimate obtained for the electron mean
free path in the Drude model proves incorrect in the Sommerfeld model. In the
former, the mean free path of electrons moving at thermal velocities at room
temperature is on the order of atomic distances, thus it seemed plausible to
assume that the resistivity of the metal is due to the scattering of the electrons
by the rigid lattice of ions. In the Sommerfeld model the characteristic velocity
of electrons is the Fermi velocity, which is usually an order of magnitude larger
than the thermal velocity at room temperature. This characteristic electron
velocity is preserved down to low temperatures, and since the resistivity is
three or four orders of magnitude smaller in this region, the corresponding
mean free path is much larger than the distance between ions. The mean free
path is therefore not related to the atomic spacing.

In connection with the electrical and thermal conductivity of metals, a
significant improvement is obtained for the value of the Lorenz number pro-
vided it is determined from measurements at room temperature. However, the
new model cannot eliminate another important shortcoming of the classical
treatment: the Wiedemann–Franz law is not satisfied by the resistivity and
thermal conductivity data measured at lower temperatures. To illustrate this,
the temperature dependence of resistivity and thermal conductivity are shown
for some simple metals in Fig. 16.12.

Around room temperature, the resistivity increases linearly with T , while
the thermal conductivity is essentially constant, thus the Wiedemann–Franz
law is satisfied. As the temperatures is lowered, λ increases rapidly, and af-
ter reaching a maximum it vanishes linearly with T at very low tempera-
tures. At such low temperatures the resistivity is practically constant, and the
39 Note that this linear temperature dependence can be observed only at very low

temperatures, leading to particular difficulties in the evaluation of experimental
specific heat data. At higher temperatures this is suppressed by nonelectronic –
for example, phononic – contributions.
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Fig. 16.12. Temperature dependence of resistivity and thermal conductivity for
some simple metals

Wiedemann–Franz law is valid again. However, in the intermediate tempera-
ture range the description of the scattering processes in terms of a relaxation
time – that is equivalent to assuming elastic scattering – is called into question.
From the study of lattice vibrations it is known that the energy of the lattice
can change in discrete steps that correspond to the creation or annihilation
of phonons. It is therefore natural to expect that electrons scattered by the
lattice can take part in inelastic collision processes as well. Those processes in
which an electron transfers a part of its energy to the lattice while its wave
vector changes only slightly contribute to the decay of the heat current, but
practically not to the resistivity. Thus our assumptions about elastic scatter-
ing and the applicability of the relaxation time will have to be reexamined –
and a more precise description of the electron–phonon interactions is called
for in the region where they cannot be used.

The Sommerfeld model does not offer an explanation for the observation
that the Hall coefficient can be different from its classical value not only in its
magnitude but also in its sign. The same applies to the thermoelectric power.
Measured data are usually in good agreement with the predictions of the free-
electron model for alkali metals but significant deviations are found for various
other metals. Moreover, the model itself says nothing about which electrons
must or can be considered free and which ones bound to the core. Nonetheless
the above findings indicate that the Sommerfeld model can be applicable only
to those metals that have a single incomplete shell, the outermost s-shell. It
looks as if in solids p- and especially d-electrons were neither almost free nor
completely bound to the core.

In connection with electrical resistivity it should also be noted that the
resistivity values of order 1−100 nΩm listed in Table 16.2 are typical of good
metals. A material is customarily considered a metal if its resistivity at room
temperature exceeds 106 (Ωm)−1. The resistivity of bismuth is on this border-



76 16 Free-Electron Model of Metals

line. There are, however metals with much lower but still finite resistivities,40
therefore these, too, must contain some “free” electrons. Using the Drude for-
mula one can describe arbitrarily small resistivities by choosing the collision
time of charge carriers (electrons) sufficiently small. However, the above pic-
ture of electrical conductivity is physically sensible only if the electron mean
free path is larger than the electron wavelength, that is, kFl > 1. This leads to
the conclusion that there is a minimum metallic conductivity, which would be
of order 105 S m−1 in a three-dimensional sample. When discussing the role
of disorder at the end of the third volume we shall see that the situation is
much more complex. Here we shall content ourselves with the observation that
even in pure materials resistivity is often much lower than the above metallic
value – and its temperature dependence can also be very different from that of
normal metals. Such materials are called semiconductors. The nature of such
materials – just like superconductivity, or the magnetic properties of metals
– lies outside the realm of the Sommerfeld model. This clearly indicates the
necessity to go beyond the free-electron model in order to understand the true
nature of electron states in solids.

Further Reading

1. A. Sommerfeld und H. Bethe, Elektronentheorie der Metalle, in Handbuch
der Physik, Zweite Auflage, Band XXIV. Zweiter Teil, Verlag von Julius
Springer, Berlin (1933); Heidelberger Taschenbücher, Bd. 19, Springer-
Verlag, Berlin (1967).

2. A. H. Wilson, The Theory of Metals, Second Edition, Cambridge Univer-
sity Press, Cambridge (1958).

40 The room-temperature resistivity of pure germanium is about 2 (Ω m)−1.
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Electrons in the Periodic Potential of a Crystal

The discussion of the properties of metals in the previous chapter was based
on a free-electron model (or rather: a gas of neutral fermionic particles) in an
empty box. The classical Drude model and the quantum mechanical Sommer-
feld model (based on the Fermi–Dirac statistics) were introduced, and it was
shown that a suitable choice of certain parameters leads to a good description
of several properties of simple metals. We have to specify which electrons of
the atoms remain bound in the ion core and which can be considered free
(and hence can participate in conduction in the solid state). The number of
conduction electrons is an important parameter even in the Drude model. In
much the same way, in the Sommerfeld model various properties of metals are
determined through the Fermi energy, by the number of conduction electrons
per atom. Since core electrons are ignored, these models obviously cannot ac-
count for the electrical properties of ionically or covalently bonded materials,
in which electrons are fairly well localized to the ions and covalent bonds.
Therefore not even the quantum mechanical model can explain the existence
of insulators and semiconductors. However, the conduction electrons are not
perfectly free even in metals, since they move through the regular crystalline
array of ions, thus their motion is determined by the periodic crystal potential.
To resolve these difficulties and contradictions, the behavior of the electrons
has to be studied in the presence of the atoms (ions) that make up the crystal
lattice.

As a first approximation, we shall consider ions to be fixed at the lattice
points, and ignore their vibrations, the phonons. The justification of this ap-
proximation and the influence of the motion of ions on the electrons will be
discussed in Chapter 23. In the present chapter we shall lump the effects of
ions into a local static potential Uion(r) that can be taken as the sum of the
individual atomic potentials va(r − Rm) of periodically spaced ions.

Taking into account the influence of other electrons is much more difficult.
Only by employing the methods of the many-body problem can electron–
electron interactions be treated more or less precisely. We shall delve into this
complex subject in Volume 3. Below we shall assume that electrons feel the
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influence of the others only in an average sense, through the averaged potential
Uel(r) that also possesses the periodicity of the lattice. In this chapter we
shall examine how the electronic states can be described in ideal crystals and
present some general features of the energy spectrum without any assumptions
about the actual form of this periodic potential. At the end of the chapter
we shall briefly discuss what happens to the electrons if the structure is not
perfectly crystalline. The methods to determine energy eigenvalues for specific
periodic potentials will be discussed in the next chapters.

17.1 Band Structure of Electronic States

In this section we shall first introduce the Bloch functions – that is, the Bloch
form of electron wavefunctions obtained in the presence of a periodic potential
using the Bloch theorem (formulated in full generality in Chapter 6), and then
determine some general properties of the electron spectrum.

17.1.1 Bloch States

As mentioned in the introductory part, we shall assume that electrons feel
the presence of ions and other electrons only through the spin-independent
lattice-periodic potentials Uion(r) and Uel(r). Therefore the same one-particle
potential,

U(r) = Uion(r) + Uel(r) (17.1.1)

acts on each electron. Using this averaged potential, the Hamiltonian of a
system of Ne electrons is

Hel = − �
2

2me

Ne∑
i=1

∂2

∂r2
i

+
Ne∑
i=1

U(ri) . (17.1.2)

This Hamiltonian is the sum of independent one-particle Hamiltonians. There-
fore when the solutions of the one-particle Schrödinger equation

H(r)ψi(r) ≡
[
− �

2

2me
∇2 + U(r)

]
ψi(r) = εiψi(r) (17.1.3)

are known, the total wavefunction Ψ of the electron system can be written as
the Slater determinant of the wavefunctions of occupied one-particle states,
thereby satisfying the requirement that the total wavefunction should be com-
pletely antisymmetric. Since the potential is spin-independent, as the spin–
orbit interaction is ignored here, only the spatial parts of the wavefunctions
are considered. Nevertheless, when writing down the Slater determinant, the
requirement of complete antisymmetry applies to the spin variables as well:
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Ψ =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣

ψi1,σ1(r1, s1) ψi1,σ1(r2, s2) . . . ψi1,σ1(rNe , sNe)

ψi2,σ2(r1, s1) ψi2,σ2(r2, s2) . . . ψi2,σ2(rNe , sNe)
...

...
. . .

...
ψiNe ,σNe

(r1, s1) ψiNe ,σNe
(r2, s2) . . . ψiNe ,σNe

(rNe , sNe)

∣∣∣∣∣∣∣∣∣∣
.

(17.1.4)
Because of the periodicity of the crystal structure, the potential U(r)

satisfies the condition
U(r + tm) = U(r) , (17.1.5)

where tm is an arbitrary translation vector of the crystal lattice. Along with
the potential, the full Hamiltonian is also lattice periodic, and satisfies (6.2.1).
In accordance with Bloch’s theorem, solutions must satisfy the condition

ψk(r + tm) = eik·tmψk(r) (17.1.6)

given in (6.2.5), where the vector k can take discrete values allowed by the
periodic boundary condition.

The Bloch condition on the wavefunction can be formulated in another way
by separating the phase factor eik·r off the wavefunction, and by introducing
the function uk(r) through the definition

ψk(r) = eik·ruk(r) . (17.1.7)

It follows directly from (17.1.6) that

ψk(r + tm) = eik·tmeik·ruk(r) . (17.1.8)

On the other hand, if the wavefunction given in (17.1.7) is taken at the trans-
lated position r + tm, we find

ψk(r + tm) = eik·(r+tm)uk(r + tm) . (17.1.9)

Comparison of the two formulas gives

uk(r + tm) = uk(r) , (17.1.10)

that is, the function uk(r) obtained by the separation of the phase factor is
periodic with the periodicity of the lattice. Bloch’s theorem is therefore equiva-
lent to the statement that the eigenfunctions of a lattice-periodic Hamiltonian
can be written in the form (17.1.7), where the uk(r) are lattice-periodic func-
tions. Wavefunctions of this form are called Bloch functions.1 Such a function
uk(r) and the real part of the corresponding Bloch function are shown in
Fig. 17.1.
1 Sometimes the lattice-periodic functions uk(r) are called Bloch functions in the

literature.
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Fig. 17.1. A lattice-periodic function u(x) and the real part of the corresponding
Bloch function

In the absence of a periodic potential the wavefunction is a plane wave
eik·r/

√
V . The function uk(r) describes the deformation of the wavefunction

relative to the plane wave. This deformation is identical for each primitive
cell of the crystal. It would, therefore, be more natural to define the Bloch
function as

ψk(r) =
1√
V

eik·ruk(r) (17.1.11)

instead of (17.1.7). Nonetheless we shall often drop the factor 1/
√
V wherever

this does not cause confusion.
The form (17.1.7) of the Bloch function immediately confirms our previous

remark that �k is not the momentum of the Bloch state. The momentum
operator transforms wavefunctions that satisfy the Bloch theorem into

�

i
∇ψk(r) =

�

i
∇ (

eik·ruk(r)
)

= �kψk(r) + eik·r �

i
∇uk(r) (17.1.12)

indicating that ψk(r) is not an eigenstate of the momentum operator.

17.1.2 Energy Levels of Bloch States

Substituting the one-particle wavefunction (17.1.7) into the Schrödinger equa-
tion (17.1.3),[

− �
2

2me
∇2 + U(r)

]
eik·ruk(r) = εkeik·ruk(r) . (17.1.13)

Differentiating the exponential factor and separating eik·r on both sides, the
function uk(r) satisfies the equation[

�
2k2

2me
− i�2

me
k · ∇ − �

2

2me
∇2 + U(r)

]
uk(r) = εkuk(r) . (17.1.14)
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We shall also use the equivalent form[
1

2me

(
�

i
∇ + �k

)2

+ U(r)
]
uk(r) = εkuk(r) . (17.1.15)

By introducing the notation

Hk =
1

2me

(
�

i
∇ + �k

)2

+ U(r) , (17.1.16)

(17.1.15) can be considered as an eigenvalue equation for the function uk(r):

Hkuk(r) = εkuk(r) . (17.1.17)

Since uk(r) is lattice periodic, it is sufficient to solve this equation for a single
primitive cell of the crystal, with periodic boundary conditions, however the
solutions have to be found for all possible values of k.

The eigenvalue problem has infinitely many solutions for each k. We shall
label them by a second index, n. The eigenvalue equation to be solved is then[

�
2k2

2me
− i�2

me
k · ∇ − �

2

2me
∇2 + U(r)

]
unk(r) = εnkunk(r) . (17.1.18)

The Bloch functions ψnk(r) form a complete orthonormal set:∫
ψ∗

nk(r)ψn′k′(r) dr = δn,n′δk,k′ , (17.1.19)

and ∑
nk

ψ∗
nk(r)ψnk(r′) = δ(r − r′) . (17.1.20)

Figure 17.2 shows for each allowed value of k the four lowest energy eigen-
values (obtained for an arbitrarily chosen potential) for chains of the same
lattice constant a but different lengths L = Na subject to Born–von Kármán
boundary conditions.

In short chains, where the Brillouin zone contains only a few allowed wave
numbers k, the location of the energy levels seem to lack any order. When the
number of atoms is increased, the allowed k values fill the region (−π/a, π/a)
more densely, and the energy eigenvalues εnk are arranged in such a way that
in theN → ∞ limit they make up continuous curves that are similar to phonon
dispersion curves. In finite but sufficiently long chains energy eigenvalues can
be labeled in such a manner that for a given n the energies associated with
adjacent k values are close – that is, εnk can be approximated by a continuous
function in k-space. If there are several states with close-by energies, one can
impose the requirement that the continuous approximation of εnk should also
have a continuous derivative. The energies of the states associated with a
particular n are then arranged into bands, which explains why the label n is
called the band index. Similarly, band indices can be assigned to the levels of
the electronic energy spectrum in three-dimensional crystals, too.
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Fig. 17.2. The energy levels of electrons moving in the periodic potential of one-
dimensional chains made up of 5 and 40 atoms

17.1.3 Eigenvalue Problem for Equivalent k Vectors

The k vectors that characterize the behavior of the eigenstates of a lattice-
periodic system under translations were defined in the cell spanned by the
primitive vectors of the reciprocal lattice in Chapter 6. It was then shown that,
as far as translational symmetries are concerned, an equivalent description is
obtained when the vectors k are replaced by vectors k′ = k+G that differ from
them in a vector of the reciprocal lattice. Equivalence means that the same
results are obtained for measurable quantities such as the energy spectrum
or the spatial density of electrons. On the other hand, the wavefunction can
receive an extra phase factor. We shall demonstrate these for the states given
in terms of Bloch functions.

We shall first show that by replacing k (defined in the primitive cell) by
its equivalent k′ = k + G (defined in the Brillouin zone), the wavefunction of
the state can be written in the Bloch form in terms of the new wave vector.
To this end, we shall write the Bloch function

ψnk(r) = eik·runk(r) (17.1.21)

as
ψnk(r) = ei(k′−G)·runk(r) = eik′·runk′(r) , (17.1.22)

where
unk′(r) = un,k+G(r) = e−iG·runk(r) . (17.1.23)

It follows immediately from the lattice periodicity of unk(r) and (5.2.20) that

unk′(r + tm) = unk′(r) , (17.1.24)

that is, this function is also lattice periodic. As the probability of finding the
electron at r is |unk(r)|2, and (17.1.23) implies |unk′(r)|2 = |unk(r)|2, the
states associated with k and k + G are equivalent in this sense.
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It is worth noting that the Bloch function ψnk(r) is periodic in reciprocal
space and satisfies (17.1.6) in real space, while unk(r) is periodic in real space
and satisfies (17.1.23) in reciprocal space.

Let us now examine the eigenvalue problem of the states associated with
the equivalent vectors k + G. From (17.1.18) we have[

�
2(k + G)2

2me
− i�2

me
(k + G) · ∇ − �

2

2me
∇2 + U(r)

]
un,k+G(r)

= εn,k+Gun,k+G(r) .

(17.1.25)

Expressing un,k+G(r) in terms of unk(r) through (17.1.23), differentiation of
the exponential factor leads to[

�
2k2

2me
− i�2

me
k · ∇ − �

2

2me
∇2 + U(r)

]
unk(r) = εn,k+Gunk(r) . (17.1.26)

Comparison with (17.1.18) gives

εn,k+G = εnk , (17.1.27)

that is, equivalent k vectors are associated with the same energy.

17.1.4 Role of the Spin–Orbit Interaction

Up to now electrons were assumed to feel a spin-independent potential, and
thus energy eigenstates were independent of the spin orientation: εnk↑ = εnk↓.
In the absence of a magnetic field energies are therefore doubly degenerate.
However, in the field of heavy ions, where relativistic effects cannot be ignored,
spin–orbit coupling must also be considered. Using (3.1.30) – or more precisely
its spin-dependent part, which gives the most important contribution –, the
one-particle states have to be determined from the equation[

− �
2

2me
∇2 + U(r) +

�
2

4im2
ec

2
σ · ((∇U(r)) × ∇)]ψnk(r) = εnkψnk(r) ,

(17.1.28)
rather than (17.1.13). In this formula ψnk(r) is a two-component spinor.

Writing the electron wavefunction in its Bloch form, the equation for
unk(r) reads{

1
2me

(
�

i
∇ + �k

)2

+ U(r) +
�

4m2
ec

2
σ ·
[
∇U(r) × �

i
∇
]

(17.1.29)

+
�

2

4m2
ec

2
k · [σ × ∇U(r)

]}
unk(r) = εnkunk(r) .

As we shall see in connection with the band structure of semiconductors in
Sec. 20.2, this interaction splits certain – otherwise degenerate – bands. If
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the crystal does not possess inversion symmetry (which is the case for the
sphalerite structure among others), the relation εn,k,α = εn,−k,β , implied by
time reversal and Kramers’ theorem, continues to hold. This relation estab-
lishes that for each state there exists another one with the same energy but
opposite wave vector and spin, while for a given k the two spin states are
of different energy. This is known as the Dresselhaus splitting.2 On the other
hand, when the crystal possesses inversion symmetry, un,−k(r) = un,k(−r)
and εn,k,α = εn,−k,α. Combined with time reversal, εn,k,α = εn,k,β , which
shows that spin degeneracy is preserved.

17.2 Representation of the Band Structure

A complete knowledge of the band structure requires the solution of the eigen-
value problem for each vector k of the primitive cell of the reciprocal lattice
(or the Brillouin zone) – that is, the relation between energy and wave vector
has to be computed for each band. Since the problem is usually solved numer-
ically, this would require the specification of an excessively large amount of
data. Much like for the determination of the phonon spectrum, calculations are
usually performed only for some special, high-symmetry directions of the Bril-
louin zone, and the dispersion curves of Bloch electrons are also displayed only
along these directions. For materials that crystallize in fcc structure (whose
Brillouin zone is shown in Fig. 7.11), the calculations are usually performed
along the lines Δ and Λ – which connect the center Γ of the Brillouin zone
with the centers X and L of the square and hexagonal shaped faces –, and per-
haps for some other vectors along other characteristic directions. Figure 17.3
shows the band structure of aluminum calculated in this way.
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Fig. 17.3. Calculated band structure of aluminum along high-symmetry directions
of the Brillouin zone
2 G. Dresselhaus, 1955.
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As the figure shows, if the band index were chosen in such a way that the
energies are indexed in ascending order for any k then break points would
appear in the εnk vs. k plot (with n fixed) wherever two lines intersect. As
has been mentioned before, we shall rather require that for a given band index
the dispersion relation in k lead to continuous, smooth curves. The dispersion
curves of different bands may therefore intersect each other, and the energy
regions covered by the bands may overlap.

However, bands can also overlap even when the dispersion curves – or
in higher dimensions the εnk (hyper)surfaces – do not intersect, nevertheless
there are states whose energy is the same although they are associated with
different points of the Brillouin zone and belong in different bands.

17.2.1 Reduced-, Repeated-, and Extended-Zone Schemes

As we have seen, the same energy eigenvalue is associated with equivalent k
vectors, it is therefore immaterial whether wave vectors defined in the Bril-
louin zone or in the primitive cell of the reciprocal lattice are used. With
wave vectors reduced to the Brillouin zone, the energies of each band can be
represented – occasionally separately – in the same Brillouin zone. This is the
reduced-zone scheme.

Sometimes it is more practical not to restrict wave vectors to the Brillouin
zone but use all equivalent vectors k + G as well. By virtue of (17.1.27) the
band structure can then be represented by repeating all dispersion curves over
the whole k-space. This is the repeated-zone scheme.

Finally, the infinite number of solutions associated with a given k can also
be distributed among the infinite number of vectors k +G in such a way that
one solution should belong to each equivalent vector. This can be achieved in
two different ways. The first possibility is to draw the Brillouin zones around
each lattice point, which gives an unambiguous filling of the entire space.
Then, using a predefined – and, to a certain extent, arbitrary – procedure,
a vector G of the reciprocal lattice is assigned to each band index, and the
states in that band are associated with the wave vectors in the Brillouin zone
around that particular G.

In the other, more commonly used method for distributing the band states
among equivalent k vectors, the notion of higher (second, third, etc.) Brillouin
zones is introduced, and the reciprocal space is divided in another way. To
this end, we shall generalize Dirichlet’s procedure – mentioned in Section 5.1.4
in connection with the construction of the Wigner–Seitz cell, and which is
also the method for constructing Brillouin zones in reciprocal space. In this
generalization a selected lattice point of the reciprocal lattice is connected
with all other lattice points of the reciprocal lattice, and the perpendicular
bisecting planes of the segments are drawn. These planes are Bragg planes
because any vector k drawn from the selected reciprocal-lattice point to a
point of the plane satisfies the Bragg condition (8.1.7). The division of the
entire reciprocal space among higher Brillouin zones by means of the Bragg
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planes is based on the criterion of how many Bragg planes need to be crossed
(at least) to reach a particular region from the selected point.

The usual Brillouin zone around the selected point will be the first Brillouin
zone. The second Brillouin zone will comprise those regions that can only be
reached along a straight line from the selected point by intersecting one Bragg
plane. In other words: the second zone comprises those regions that have a
common boundary with the first zone.

The third Brillouin zone is made up of regions that have a common bound-
ary with the second zone. To reach such regions from the selected starting
point, two Bragg planes need to be crossed. In general: the nth Brillouin zone
is reached by crossing n−1 Bragg planes. This division of the reciprocal space
is shown in Fig. 17.4 for a two-dimensional square lattice.
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Fig. 17.4. Division of the reciprocal space of a square lattice to first, second, third,
etc. Brillouin zones

Higher Brillouin zones may consist of disjoint parts. Nevertheless when
these are translated through suitably chosen vectors of the reciprocal lattice,
they are found to cover the first Brillouin zone precisely – that is, the total
volume of each higher Brillouin zone is the same as that of the first. This is
demonstrated in Fig. 17.5 where the parts of the second, third, and fourth
Brillouin zones (marked by the corresponding numbers in the previous figure)
are moved in such a way that they make up a square.

Figure 17.6 shows the external boundaries of the second, third, and fourth
Brillouin zones of a simple cubic lattice, while Fig. 17.7 shows the external
boundaries of the first and second Brillouin zones for face- and body-centered
cubic lattices. Once again, each higher Brillouin zone has the same total vol-
ume as the first, and they can be reduced to the first Brillouin zone by suitable
translations.
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Fig. 17.5. Reduction of the second, third, and fourth Brillouin zones of a square
lattice to the first zone

Fig. 17.6. External boundaries of the second, third, and fourth Brillouin zones for
a simple cubic lattice

( )a ( )b

Fig. 17.7. External boundaries of the first and second Brillouin zones for (a) face-
centered and (b) body-centered cubic lattices

The assignment of the states to the zones is then done simply by assigning
the states of the first band to the wave vectors in the first Brillouin zone, the
states of the second band to the wave vectors in the second Brillouin zone, an
so forth. This is how the extended-zone scheme is obtained.

In Fig. 17.2 the band structure was plotted as a function of the reduced
wave number in the Brillouin zone. The same band structure of the 40-atom
chain represented in the repeated- and extended-zone schemes is shown in
Fig. 17.8. For the latter the fourth band is outside the displayed region.



88 17 Electrons in the Periodic Potential of a Crystal

�k

0 0

�k

� ��2 a � ��2 a 2��a2��a kk

(a) (b)

Fig. 17.8. The energy levels shown in Fig. 17.2 in the (a) repeated- and (b)
extended-zone schemes

17.2.2 Constant-Energy Surfaces and the Fermi Surface

The energy of electron states can also be illustrated by specifying the regions
of constant energy in k-space. In two dimensions lines, while in three dimen-
sions surfaces of constant energy are obtained. The constant-energy surfaces
determined for a face-centered cubic lattice with a relatively weak potential
are shown in Figure 17.9 for two different energies.
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Fig. 17.9. Constant-energy surfaces in the band structure of a face-centered cubic
crystal for two values of the energy

Among the constant-energy surfaces particularly important is the surface
that contains those k vectors for which the energy is the same as the zero-
temperature value of the chemical potential. This energy is called the Fermi
energy for Bloch states, too. Since in the ground state all the states whose
energy is lower than the chemical potential are occupied while higher-energy
states are empty, this surface separates occupied and unoccupied states in
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k-space. This constant-energy surface is called the Fermi surface. As demon-
strated for the Sommerfeld model, in the absence of a periodic potential this
is just the surface of the Fermi sphere. However, the presence of a periodic
potential can drastically distort the spherical shape of the Fermi surface –
and, as we shall see, it can even disappear.

For a relatively small number of electrons only the states at the bottom
of the lowest-lying band are occupied. The Fermi surface is then a simply
connected continuous surface that deviates little from the spherical shape.
When the number of electrons is increased, the surface may cease to be simply
connected, as illustrated in Fig. 17.9(b). When the number of electrons exceeds
twice the number of lattice points, electrons will certainly occupy the states
of more than one band. In such cases more than one band can be partially
filled. The Fermi surface separating occupied and unoccupied states must
then be given for each of these – hence the Fermi surface is made up of several
pieces. The reduced- and extended-zone schemes are both used to visualize
them.

17.3 Metals, Insulators, Semiconductors

In the previous section it was assumed that there exist Bloch states whose
energy is the same as the chemical potential. This is indeed the case when the
Fermi energy (the chemical potential) lies inside a band (or several bands).
Then the electrons that occupy states with slightly lower energies than the
Fermi energy can be easily excited thermally or by an electric field into states
with energies in excess of the Fermi energy. The behavior of such materials can
be similar to what was presented for the free-electron model. Such materials
are metals. As mentioned on page 75, their resistivity is typically on the order
of 10 nΩm at room temperature, decreases with decreasing temperature, and
in an ideal crystal it would even vanish at T = 0. A material is customarily
considered metallic if its conductivity exceeds 106 (Ωm)−1 (i.e., its resistivity
� < 1μΩm).

However, the chemical potential may just as well be not inside a band
but between two nonoverlapping bands, in which case there is no Bloch state
whose energy is the same as the chemical potential. One cannot even speak of a
Fermi surface then. This situation arises only when there are forbidden regions
of finite width called energy gaps or band gaps such that the energies inside
the gap do not appear as the energy of any band state. The most relevant
band gap is the one that separates the bands that are filled completely in the
ground state from those that are completely empty. By way of example, the
band structure of diamond is shown in Fig. 17.10(a).

This can occur when the number of electrons per atom is even, and they
completely fill one or more bands in the ground state, and the next, empty
band is separated by a finite energy gap from the occupied ones. In such
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Fig. 17.10. Calculated band structures in high-symmetry directions of the Brillouin
zone for (a) diamond [Reprinted with permission from W. Saslow, T. K. Bergstresser,
and M. L. Cohen, Phys. Rev. Lett. 16, 354 (1966). ©1966 by the American Physical
Society] and (b) gray tin [Reprinted with permission from J. R. Chelikowsky and
M. L. Cohen, Phys. Rev. B 14, 556 (1976). ©1976 by the American Physical Society]

materials electric current starts to flow only above a certain (rather large)
threshold voltage. They are called insulators. At T = 0 the resistivity of
insulators is infinitely large.

This implies that if the band structure is known, a sharp line can be drawn
between metals and insulators: the chemical potential in the ground state is
inside a band in the former and inside a gap in the latter. However, when
physical properties measured at finite temperatures are considered, continu-
ous variations are found. At finite temperatures those states whose energy is
larger than the chemical potential can be partially filled by thermally excited
electrons, and lower-energy states can be partially empty. Therefore, strictly
speaking, the conductivity does not vanish even when the energy gap exceeds
the thermal energy kBT . A material is considered to be electrically insulating
if its conductivity is less than 10−8 (Ωm)−1. In general, those materials that
are insulators at low temperatures remain insulators at room temperature,
too. However, there is a class of materials whose conductivity vs. tempera-
ture plot has a jump at a certain temperature or changes several orders of
magnitude in a narrow temperature range. This phenomenon is called the
metal–insulator transition.

Among the materials whose band structure has a finite gap around the
chemical potential particular behavior is observed in those for which the en-
ergy gap is larger than the thermal energy at room temperature but nonethe-
less sufficiently small, consequently electrons excited thermally across the gap
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carry an electric current that can be easily measured and has substantial
effects. Such materials are called semiconductors.

Compared to the usual values in metals, smaller conductivities are ob-
tained when the energy gap is extremely narrow – or even nonexistent –
around the Fermi energy but the electronic density of states is very low there.
Materials featuring such a band structure are called semimetals. Examples
include elements of the nitrogen group (group 15 [VA] of the periodic table):
arsenic, antimony, and bismuth, as well as graphite, a modification of carbon
(group 14 [IVA]). As listed in Table 16.2, the conductivity of bismuth is close
to the lower limit set for metals. Gray tin is the example for vanishing gap at
the Fermi energy, as shown in Fig. 17.10(b): the two bands touch each other
at the Fermi energy. Nevertheless, on account of the low density of states,
thermally excited electrons do not reach the states directly above the Fermi
level but those in a somewhat higher-lying local minimum with a high density
of states, therefore, from an electric point of view, gray tin is a semiconductor.

In materials that crystallize in a structure with a monatomic basis each
band contains the same number of k states as there are lattice points. Among
them those materials that have an odd number of electrons per atom behave
electrically as metals since the topmost band that contains electrons in the
ground state cannot be completely filled on account of spin degeneracy. Indeed,
the alkali metals in the first column of the periodic table are all good metallic
conductors. The single electron on the outermost s-shell in the atomic state
finds itself in a band that is only half filled. The noble metals of group 11 (IB)
and the elements of the boron group (group 13 [IIIA]) have more complex
band structures, nonetheless they are metals – with the sole exception of
boron. Boron itself crystallizes in a rhombohedral structure with a polyatomic
basis, the chemical potential is inside a 1.5 eV wide gap, therefore it is a
semiconductor.

Insulators and semiconductors are expected to be found among the ele-
ments of even-numbered columns of the periodic table, to the left and right of
transition metals. However, elements of group 2 (IIA), alkaline-earth metals,
are all metals, since the overlap of bands leads to the formation of two par-
tially filled bands. At the other extremity of the periodic table nonmetallic
elements are found. The halogens in group 17 (VIIA) and the noble gases in
group 18 (VIIIA) are not even crystalline at room temperature.3 Semiconduc-
tors should be looked for in groups 14 (IVA) and 16 (VIA).

Instead of their conductivity, materials can also be characterized by the
number of charge carriers. In metals the room-temperature concentration of
conduction electrons usually exceeds 1022/cm3, while it is between 1017 and
1021/cm3 in semimetals. It is even lower in semiconductors, e.g., 1013/cm3 in
germanium and 1010/cm3 in silicon at room temperature.
3 In spite of their odd number of electrons, halogens are not metallic even at low

temperatures as their centered monoclinic or orthorhombic lattices are decorated
with polyatomic bases.
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This classification of crystalline solids is based on the assumption that all
interactions can be lumped into a periodic potential, and then the state of the
electron system can be given as the superposition of one-particle states. How-
ever, this assumption is not always valid. Those insulators whose properties
can be interpreted in this simple band picture are called band insulators or
Bloch–Wilson insulators. Nevertheless under certain circumstances the inter-
action of electrons with lattice vibrations or with each other can also render
the material insulator. We speak of Peierls insulators in the first case and
Mott insulators in the second. Finally, disorder can also make the conductiv-
ity vanish. Such materials are called Anderson insulators. The study of their
physical properties, which are essentially determined by the interactions, will
be the subject of later chapters.

17.4 Bloch Electrons as Quasiparticles

Whether the thermodynamic properties are examined or the response to ap-
plied electromagnetic fields, real metals often show very similar qualitative
behavior to a free electron gas. This is not surprising in view of the band
structure constructed from one-particle states, however the question remains:
how come electron–electron interactions can be lumped into a one-particle
potential? This question will be revisited in Volume 3. Below we shall demon-
strate that the system of electrons interacting with the periodic potential of
the crystal can be described as a gas of fictitious noninteracting particles obey-
ing the Fermi–Dirac statistics. These fermionic quasiparticles are called Bloch
electrons. Quasiparticles are defined only inside solids, and their quantum
mechanical state cannot be identified with any state of a single real electron,
but they offer a simple physical interpretation of the behavior of the electron
system. Using this picture we shall show that the thermodynamic proper-
ties of electrons moving in a periodic potential can be easily calculated using
essentially a few parameters for simple metals.

17.4.1 Creation and Annihilation Operators of Bloch States

It is often more convenient to treat the electron system in the occupation-
number formalism (second quantization). Following the prescriptions of Ap-
pendix H, we shall introduce the creation and annihilation operators of Bloch
states, c†nkσ and cnkσ, where σ is the spin quantum number. These operators
obey the fermionic anticommutation relations,[

cnkσ, c
†
n′k′σ′

]
+

= δnn′δkk′δσσ′ . (17.4.1)

Using these operators the state of Ne electrons in which individual Bloch elec-
trons occupy one-particle states associated with the wavefunctions ψn1k1σ1 ,
ψn2k2σ2 , . . . (and which could also be written as a Slater determinant) can be
expressed as
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Ψ = c†n1k1σ1
c†n2k2σ2

. . . c†nNekNeσNe
|0〉 , (17.4.2)

where |0〉 is the vacuum of Bloch electrons.
If the Hamiltonian of the system can be written as the sum of one-particle

Hamiltonians over the individual particles – as was assumed in (17.1.2) –
then, according to (H.2.9) and (H.2.10), it can be rewritten in the occupation-
number representation as the following bilinear combination of creation and
annihilation operators:

H =
∑
nn′

kk′σσ′

c†nkσH(n, n′,k,k′, σ, σ′)cn′k′σ′ , (17.4.3)

where H(n, n′,k,k′, σ, σ′) is the matrix element of the one-particle Hamilto-
nian H(r) between one-particle states:

H(n, n′,k,k′, σ, σ′) =
∫
ψ∗

nkσ(r)H(r)ψn′k′σ′(r) dr . (17.4.4)

Since according to (17.1.3) the orthonormalized Bloch functions ψnkσ(r) are
the eigenfunctions of the one-particle Hamiltonian with energy eigenvalues
εnk,

H =
∑

n,k,σ

εnkc
†
nkσcnkσ . (17.4.5)

The Hamiltonian of the electron system is that of a noninteracting gas of
fermions (Bloch electrons) of energy εnk. Compared to the gas of free electrons,
the energy �

2k2/2me containing the electron mass is replaced by εnk obtained
for Bloch electrons. In the ground state Bloch electrons fill the Fermi sea
completely – that is, all states whose energy is smaller than the Fermi energy
are occupied. At finite temperatures states above the Fermi energy may also be
occupied. According to the Fermi–Dirac distribution function, the occupation
probability – i.e., the mean number of electrons with wave vector k and spin
σ in the nth band – is given by〈

nnkσ

〉
=
〈
c†nkσcnkσ

〉
=

1
e(εnk−μ)/kBT + 1

. (17.4.6)

The variations of the momentum distribution function at finite temperature
with respect to the ground-state distribution is interpreted as being due to
the thermal excitation of fermionic quasiparticles.

17.4.2 Effective Mass of Bloch Electrons

At the bottom of the bands, close to the minimum, the dispersion relation of
Bloch electrons can be approximated by a quadratic expression of the wave
vectors. In a cubic crystal, when the minimum is at a high-symmetry point
k0, the energy can be approximated by
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εk ≈ εk0 +A(k − k0)2 . (17.4.7)

By writing the coefficient A as

A =
�

2

2m∗ , (17.4.8)

the dispersion relation is similar to that of free electrons but the electron mass
me is replaced by another value, m∗, which depends on the periodic potential
and can also be defined as

1
m∗ =

1
�2

∂2εk

∂k2 . (17.4.9)

By analogy, this parameter is called the effective mass of the Bloch electron.
Naturally, the effective mass determined from (17.4.9) is different from the

free electron mass, moreover, it takes different values in each band – and if
there are several minima in the band, it also depends on the specific point of
the Brillouin zone at which the second derivative is taken. The notion of effec-
tive mass is particularly useful when the electrons that determine the thermal
properties of the crystal are in that region of a band where the quadratic
approximation of the energy is justified. A barely filled metallic band or the
conduction and valence bands in semiconductors are good examples. In these
cases the system of Bloch electrons behaves just like a system of free electrons,
except that the electron mass is replaced by an effective mass.

In noncubic crystals the dispersion relation is not spherically symmetric. If
close to the minimum the local symmetry of the Brillouin zone is orthorhom-
bic, the series expansion of the energy is

εk ≈ εk0 +Ax(kx − k0x)2 +Ay(ky − k0y)2 +Az(kz − k0z)2 . (17.4.10)

Rewriting this expression as

εk ≈ εk0 +
�

2(kx − k0x)2

2m∗
x

+
�

2(ky − k0y)2

2m∗
y

+
�

2(kz − k0z)2

2m∗
z

, (17.4.11)

the behavior of the electrons is characterized by the triplet m∗
x, m∗

y, m∗
z.

Even more generally, when it is sufficient to keep quadratic terms in the se-
ries expansion around the minimum, an inverse effective-mass tensor can be
introduced instead of the scalar effective mass using the definition(

1
M∗

)
αβ

=
1
�2

∂2εk
∂kα∂kβ

, α, β = x, y, z . (17.4.12)

The energy of the band states then reads

εk ≈ εk0 +
�

2

2

∑
αβ

(
1

M∗

)
αβ

(kα − k0α)(kβ − k0β) . (17.4.13)
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The effective-mass tensor M∗ is the inverse of the above-defined 1/M∗. It
takes a particularly simple form when the inverse mass tensor is diagonal: if

1
M∗ =

⎛⎜⎜⎜⎜⎜⎝
1
m∗

1

0 0

0
1
m∗

2

0

0 0
1
m∗

3

⎞⎟⎟⎟⎟⎟⎠ (17.4.14)

then the effective-mass tensor is also diagonal and

M∗ =

⎛⎜⎝m
∗
1 0 0

0 m∗
2 0

0 0 m∗
3

⎞⎟⎠ . (17.4.15)

17.4.3 Bloch Electrons and Holes

The description in terms of the effective mass is usually satisfactory at low
band filling. We shall often encounter the opposite case where the band is
almost completely filled and only a small number of states close to the top
of the band remain unoccupied. This situation can be regarded as if some
electrons in the vicinity of the maximum were removed from the completely
filled band – that is, holes were generated.

When a band is completely filled with electrons the sum of the wave vectors
k of occupied states (i.e., the sum over the entire Brillouin zone) is zero:∑

k∈BZ

k = 0 . (17.4.16)

Now let us remove an electron of wave vector ke from this completely filled
band. The wave vector of this state,

kh =
∑

k∈BZ

k − ke = −ke , (17.4.17)

is just the negative of the electron’s wave vector. When a hole is created, the
change in the energy of the system is the negative of the energy of the removed
particle, therefore the energy εh(kh) of the hole satisfies

εh(kh) = −ε(ke) . (17.4.18)

Provided that close to the top of the band the dispersion relation is
isotropic, the leading correction of the expansion gives

εk ≈ εk0 −A(k − k0)2 , A > 0 . (17.4.19)
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According to the defining equation (17.4.9), the effective mass is negative for
electrons with energies close to the maximum:

1
m∗ = −2A

�2
. (17.4.20)

However, when hole energies are considered, the sign of the quadratic term is
reversed, and the effective mass of the hole defined by

1
m∗

h
=

1
�2

∂2εh(kh)
∂k2

h
(17.4.21)

is positive:
m∗

h = −m∗ . (17.4.22)

For general dispersion curves the inverse effective-mass tensor(
1

M∗
h

)
αβ

= − 1
�2

∂2εk
∂kα∂kβ

(17.4.23)

has to be used once again. If a band is almost completely filled, treating the
small number of unoccupied electron states as positive-effective-mass holes
proves to be convenient especially in the description of the dynamics of elec-
trons and the discussion of semiconductors.

17.4.4 Density of States for Bloch Electrons

Just like in the free-electron case, we shall often need the sum of some quan-
tity g(k) – for example the energy – over occupied k-space states in order to
determine certain properties of the electron system. For large samples contain-
ing a great number of primitive cells the allowed values of k fill the Brillouin
zone densely, therefore the sum can be replaced by an integral. Considering
the contribution of electrons in each band individually,

∑
k

g(k)f0(εnk) → V

(2π)3

∫
g(k)f0(εnk) dk . (17.4.24)

In a lot of cases quantities that depend on the energy alone need to be
summed, therefore we can once again introduce the density of states by stip-
ulating that ρn(ε) dε is the number of states in the nth band with energies
between ε and ε + dε. The k-sum or k-integral can then be rewritten as an
energy integral of the density of states:∑

kσ

g(εnk)f0(εnk) = V
∫
g(ε)f0(ε)ρn(ε) dε . (17.4.25)

Following the steps in Chapter 12, where the phonon density of states was
derived, we get
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ρn(ε) =
2

(2π)3

∫
S(ε)

dS
|∇kεnk| , (17.4.26)

where the integral has to be evaluated for the constant-energy surface S(ε).
The factor two comes from the spin quantum number. The total electronic
density of states is a sum over bands:

ρ(ε) =
∑

n

ρn(ε) . (17.4.27)

If the energy of the electrons depends on spin, so does the density of states:

ρnσ(ε) =
1

(2π)3

∫
S(ε)

dS
|∇kεnkσ| , (17.4.28)

and the total density of states is then given by

ρ(ε) =
∑
nσ

ρnσ(ε) . (17.4.29)

Just like for phonons, the Van Hove singularities discussed in Chapter 12
also appear in the electronic density of states. There is, nevertheless, an essen-
tial difference: for electrons the dispersion relation is quadratic at the bottom
of the band, therefore a square-root singularity (P0-type critical point) ap-
pears at the bottom of each band. It is quite natural that each band has a
minimum and a maximum, i.e., the density of states features a P0- and a
P3-type point. It can also be shown that each band has at least three P1-
and three P2-type critical points as well. As we shall see in the tight-binding
approximation, the simple cubic crystal provides an example for the minimum
number of critical points if the dispersion relation is approximated by

εk = α [3 − cos kxa− cos kya− cos kza] . (17.4.30)

The minimum is at the center Γ of the Brillouin zone, and the maximum is
at the corner points R. P1-type saddle points are found at the face centers X,
since within the face the dispersion relation has its minimum at the center,
while in the perpendicular direction it has its maximum there. On the other
hand, P2-type saddle points are found at the edge centers, since the dispersion
relation along the edge has its minimum there, while it has its maximum in
the same point along the lines joining the centers of the two adjacent faces.

If in the general case the dispersion relation transformed to the principal
axes can be approximated by

εk = εmin +
�

2k2
1

2m∗
1

+
�

2k2
2

2m∗
2

+
�

2k2
3

2m∗
3

(17.4.31)

in the vicinity of the minimum, then the density of states is
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ρ(ε) =
√

2
π2�3

(m∗
1m

∗
2m

∗
3)

1/2 √
ε− εmin . (17.4.32)

If the dispersion relation can be written as

εk = εmax − �
2k2

1

2m∗
1

− �
2k2

2

2m∗
2

− �
2k2

3

2m∗
3

(17.4.33)

in the vicinity of the maximum, then, by the same token, the density of states
reads

ρ(ε) =
√

2
π2�3

(m∗
1m

∗
2m

∗
3)

1/2 √
εmax − ε . (17.4.34)

Around a P1-type saddle point, where the dispersion relation is

εk = εc +
�

2k2
1

2m∗
1

+
�

2k2
2

2m∗
2

− �
2k2

3

2m∗
3

, (17.4.35)

the density of states has a square-root-type energy dependence in the region
ε < εc:

ρ(ε) = C −
√

2
π2�3

(m∗
1m

∗
2m

∗
3)

1/2 √
εc − ε . (17.4.36)

For P2-type saddle points a similar formula is obtained for energies above εc:

ρ(ε) = C −
√

2
π2�3

(m∗
1m

∗
2m

∗
3)

1/2 √
ε− εc . (17.4.37)

These formulas are straightforward to derive from the expressions for the Van
Hove singularities for phonons established in Chapter 12: one has to substitute
α1 = �

2/2m∗
1, α2 = �

2/2m∗
2, α3 = �

2/2m∗
3, and include an extra factor of two

arising from the electron spin.
Just like for phonons, the density of states features an inverse-square-root

singularity at the bottom and top of the band in one-dimensional electron
systems. In two-dimensional systems a logarithmic singularity appears at the
energy associated with the saddle point:

ρ(ε) = C − 1
π2�2

(m∗
1m

∗
2)

1/2 ln
∣∣∣∣1 − ε

εc

∣∣∣∣+ O(ε− εc) , (17.4.38)

but at the energy of the bottom of the band the density of states jumps from
zero to a finite value, and at the energy of the top of the band it drops from
a finite value to zero.

17.4.5 Specific Heat and Susceptibility of Bloch Electrons

Bloch electrons also obey the Fermi–Dirac statistics at finite temperatures. By
repeating the steps of the procedure for free electrons, the thermal energy and
specific heat of electrons moving in a periodic potential can be determined.
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Once again, we start with (16.2.88), however εk is the energy of Bloch electrons
and ρ(ε) the density of states of Bloch electrons this time. If the variation of
the density of states is so slow in a region of width kBT around the Fermi
energy that it is justified to keep only the leading order term in the Sommerfeld
expansion, then the specific heat takes the same form as (16.2.91):

cel =
π2

3
k2
BTρ(εF) , (17.4.39)

where ρ(εF) is the Bloch electron density of states at the Fermi energy. This
can be understood relatively simply. Because of the Fermi–Dirac statistics,
the thermal properties are determined by electrons whose energies are within
a few times kBT of the Fermi energy. As kBT  εF at the usual temperatures,
the specific heat is independent of the density of states far from the Fermi
energy.

When the dispersion relation of Bloch electrons can be approximated by
a quadratic function and the effective mass is a scalar, the coefficient of the
linear term in the specific heat can be expressed by the effective mass just like
in (16.2.92):

γ =
k2
Bm

∗

3�2

(
3π2ne

)1/3
. (17.4.40)

In noncubic systems, where the dispersion relation must be given in terms
of an effective-mass tensor rather than a single scalar parameter, the density
of states has to be determined using (17.4.26) as an integral over the Fermi
surface. It can be shown that the density of states can be recast in the same
form as for free electrons but the electron mass is replaced by

m∗
ds =

[
det(m∗

ij)
]1/3

, (17.4.41)

which corresponds to the combination

m∗
ds =

(
m∗

xm
∗
ym

∗
z

)1/3 (17.4.42)

in the orthorhombic case. This quantity is called the density-of-states mass in
order to distinguish it from other combinations encountered in other physical
quantities. Since this effective mass appears in the specific heat, the term
thermal mass is also used.

This explains in part why the Sommerfeld coefficient (the proportionality
factor of the temperature in the specific heat) of metals differs from the free-
electron value. Nevertheless, the quantitative understanding of the so-called
heavy-fermionic behavior, the extremely large effective mass, requires a more
precise account of electron–electron interactions.

To determine the Pauli susceptibility arising from the spins of Bloch elec-
trons, the calculation performed in the free-electron model is repeated. If the
density of states varies little over a region of width μBB around the Fermi
energy, a similar formula is found:
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χP = 1
4μ0(geμB)2ρ(εF) , (17.4.43)

with the single difference that the density of states at the Fermi energy is now
that of the Bloch electrons. Therefore the periodic potential modifies the Pauli
susceptibility, too, through the effective mass of Bloch electrons. As the same
effective mass appears in the specific heat and the susceptibility, the Wilson
ratio for noninteracting Bloch electrons is the same as for free electrons.

17.5 Wannier States

The one-particle wavefunction of electrons was written in the Bloch form in
the previous sections. However, this is not the only possibility: in certain cases
another representation is more practical.

17.5.1 Wannier Functions

We shall make use of the previously established relationship

ψn,k+G(r) = ei(k+G)·run,k+G(r) = eik·runk(r) = ψnk(r) , (17.5.1)

which states that when ψnk(r) is considered as a function of k at a fixed r, it
is periodic in the reciprocal lattice. It can therefore be expanded into a Fourier
series; the vectors that appear in this representation are the translation vectors
of the reciprocal of the reciprocal lattice – that is, the lattice vectors of the
original direct lattice. A convenient choice of normalization is

ψnk(r) =
1√
N

∑
Rj

φn(r,Rj)eik·Rj . (17.5.2)

Making use of (C.1.47) leads to

φn(r,Rj) =
1√
N

∑
k∈BZ

e−ik·Rjψnk(r) (17.5.3)

for the Fourier coefficients. In what follows, even when it is not explicitly
indicated, summation over k refers to summation over the wave vectors in the
Brillouin zone.

We shall first demonstrate that the above-defined φn(r,Rj) is indeed a
function of r−Rj alone. To this end we shall translate both Rj and r by tm,
and make use of the translational properties of ψnk(r):
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φn(r + tm,Rj + tm) =
1√
N

∑
k

e−ik·(Rj+tm)ψnk(r + tm)

=
1√
N

∑
k

e−ik·(Rj+tm)eik·tmψnk(r)

=
1√
N

∑
k

e−ik·Rjψnk(r)

= φn(r,Rj) . (17.5.4)

By choosing tm = −Rj ,

φn(r,Rj) = φn(r − Rj , 0) , (17.5.5)

which shows that the genuine variable is the difference of r and Rj . The
functions φn(r − Rj) are called Wannier functions.4 According to (17.5.3),
they can be related to the Bloch function by

φn(r − Rj) =
1√
N

∑
k

e−ik·Rjψnk(r)

=
1√
N

∑
k

eik·(r−Rj)unk(r) ,
(17.5.6)

while the inverse relationship is

ψnk(r) =
1√
N

∑
Rj

eik·Rjφn(r − Rj) , (17.5.7-a)

unk(r) =
1√
N

∑
Rj

e−ik·(r−Rj)φn(r − Rj) . (17.5.7-b)

It is readily seen that the functions ψnk(r) expressed in terms of the Wan-
nier functions satisfy the conditions (6.2.5) and (17.1.6) imposed on the Bloch
functions. Taking the function at the position translated through tm,

ψnk(r + tm) =
1√
N

∑
Rj

φn(r + tm − Rj)eik·Rj . (17.5.8)

Indexing the sum by the translated lattice point Rl = Rj − tm instead of the
original Rj , the sum remains unaltered on account of the periodic boundary
conditions, thus

ψnk(r + tm) =
1√
N

∑
Rl

φn(r − Rl)eik·(Rl+tm) = eik·tmψnk(r) . (17.5.9)

4 G. H. Wannier, 1937.
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Whether the Bloch functions or the Wannier representation is used, we
have a complete orthogonal set of wavefunctions, since the orthogonality of the
Bloch functions implies the orthogonality of the Wannier functions associated
with different bands and lattice points:∫

φ∗n(r − Rj)φn′(r − Rj′) dr =
1
N

∑
k,k′

∫
ei(k·Rj−k′·Rj′ )ψ∗

nk(r)ψn′k′(r) dr

=
1
N

∑
k

eik·(Rj−Rj′ )δn,n′

= δRj ,Rj′ δn,n′ . (17.5.10)

The completeness of the Wannier functions can be demonstrated along the
same lines: ∑

n,Rj

φ∗n(r − Rj)φn(r′ − Rj) = δ(r − r′) . (17.5.11)

Since the phase of Wannier functions can be chosen arbitrarily, it is possible
to construct Wannier functions φn(r−Rj) that take large values only around
the lattice point Rj , and drop off exponentially with distance in other cells. To
demonstrate this, consider a simple example. For free electrons the function
unk(r) appearing in the Bloch function is independent of k: eiGn·r. Assuming
a slightly more general but still k-independent function un(r), the Wannier
functions that correspond to the Bloch functions

ψnk(r) =
1√
V

eik·run(r) (17.5.12)

can be determined exactly:

φn(r − Rj) =
1√
NV

∑
k

e−ik·Rj eik·run(r) (17.5.13)

=
1

N
√
v

∑
k

eik·(r−Rj)un(r) = Φ(r − Rj)un(r) ,

where Φ depends on the lattice constants a, b, c as

Φ(r) =
1√
v

sinπx/a
πx/a

sinπy/b
πy/b

sinπz/c
πz/c

. (17.5.14)

It is readily seen that the Wannier function drops off with increasing distance,
while oscillating sinusoidally with a period of twice the lattice constant. The
Wannier functions are usually well localized in space for more realistic func-
tions unk(r) as well.

The Wannier states are not eigenstates of the one-particle Hamiltonian;
H couples Wannier functions associated with different lattice points but with
the same band. Using (17.1.3),
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Hφn(r − Rj) = H 1√
N

∑
k

e−ik·Rjψnk(r)

=
1√
N

∑
k

e−ik·Rjεnkψnk(r) (17.5.15)

=
1
N

∑
k

e−ik·Rjεnk

∑
Rl

eik·Rlφn(r − Rl) .

This can be rewritten as

Hφn(r − Rj) =
∑
Rl

tn,jlφn(r − Rl) (17.5.16)

with
tn,jl =

1
N

∑
k

εnkeik·(Rl−Rj) . (17.5.17)

The orthonormality of the Wannier functions implies

tn,jl =
∫
φ∗n(r − Rl)H(r)φn(r − Rj) dr . (17.5.18)

Since the one-particle Hamiltonian is local, this coefficient vanishes unless the
Wannier functions of the two lattice points overlap. Consequently it is often
sufficient to consider only nearest neighbors and choose the Wannier function
φn(r − Rj) as the wavefunction of a core electron of the atom at Rj , even
though the orthogonality is lost with this choice.

17.5.2 Creation and Annihilation Operators of Wannier States

The creation and annihilation operators (c†njσ and cnjσ) can be introduced for
Wannier states as well; in this case they change the occupation of the Wannier
state at Rj in the nth band by adding or removing an electron. In terms of
these operators the Hamiltonian reads

H =
∑
n,σ

∑
j,l

tn,jlc
†
nlσcnjσ . (17.5.19)

In this representation the Hamiltonian is nondiagonal. It describes the hopping
of an electron in the Wannier state centered on the jth atom to a state centered
on the lth atom. The probability of transition is the absolute square of the
hopping matrix element tn,jl.

Using the creation and annihilation operators of Bloch electrons means
working in reciprocal space, while using those of the Wannier states means
working in real space. The two representations are related by the discrete
Fourier transforms
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c†njσ =
1√
N

∑
k

c†nkσe−ik·Rj , cnjσ =
1√
N

∑
k

cnkσeik·Rj (17.5.20)

and

c†nkσ =
1√
N

∑
Rj

c†njσeik·Rj , cnkσ =
1√
N

∑
Rj

cnjσe−ik·Rj , (17.5.21)

in analogy with the mutual relations between Bloch and Wannier functions.
These expressions can also be viewed as unitary transformations that diag-
onalize the Hamiltonian (17.5.19). This transformation also establishes the
relationship between the energy of Bloch electrons and the hopping matrix
elements (17.5.17):

εnk =
∑
Rl

tn,jle−ik·(Rl−Rj) . (17.5.22)

17.6 Electron States Around Impurities

Before turning to the subject matter of the next chapters, the technical de-
tails of computing the band structure in an ideal crystal, it should be noted
that only in ideal crystals do the Bloch and Wannier states exist in the form
presented in the foregoing. In real materials impurities and defects are always
present, and the electronic spectrum is therefore modified with respect to the
ideal case. Adapting the procedure used in the study of localized lattice vi-
brations, it can be demonstrated that the energies of the N electron states
making up the quasicontinuous band are modified in such a way that N − 1
states remain inside the original band but one state can move outside. The
difference with localized lattice vibrations is that the bound state can appear
below or above the band (depending on whether the potential is attractive
or repulsive). The spectrum of free electrons showed a similar pattern in the
vicinity of an impurity, however, the free-electron spectrum being unbounded
from above, bound states appeared only for attractive potentials, at nega-
tive energies. Below, we shall generalize the free-electron results to electrons
moving in a periodic potential.

Suppose that an impurity atom at lattice site R0 gives rise to an additional
short-range potential V (r−R0) relative to the periodic potential U(r) of the
ideal crystal. Since the impurity breaks discrete translational symmetry, the
states can no longer be characterized by a wave vector k. Using an index μ
as quantum number, the Schrödinger equation that determines the electron
states reads[

− �
2

2me
∇2 + U(r) + V (r − R0)

]
ψμ(r) = εμψμ(r) . (17.6.1)

Suppose, furthermore, that the electron states of the ideal crystal – that is,
the eigenfunctions and eigenvalues of the Schrödinger equation
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H0ψnk(r) ≡
[
− �

2

2me
∇2 + U(r)

]
ψnk(r) = εnkψnk(r) (17.6.2)

are known.
Equation (17.6.1) can be solved much in the same manner as (16.4.2),

which describes the interaction of a free electron with an impurity. We find

ψμ(r) = ψnk(r) +
∫
Gεμ

(r, r′)V (r′)ψμ(r′) dr′ , (17.6.3)

where now the Green function Gε(r, r′) is the solution of

(ε−H0)Gε(r, r′) ≡
[
ε+

�
2

2me
∇2 − U(r)

]
Gε(r, r′) = δ(r − r′) . (17.6.4)

Expanding the Green function in terms of Bloch states as

Gε(r − r′) =
∑
nk

ank(r′)ψnk(r) , (17.6.5)

and substituting this form into the equation for the Green function, the eigen-
value equation [

− �
2

2me
∇2 + U(r) − εnk

]
ψnk(r) = 0 (17.6.6)

of the Bloch states and the orthogonality of Bloch functions imply that

ank(r′) =
ψ∗

nk(r′)
ε− εnk

, (17.6.7)

or
Gε(r − r′) =

∑
nk

ψ∗
nk(r′)ψnk(r)
ε− εnk

. (17.6.8)

The wavefunction can then be written as

ψμ(r) = ψnk(r) +
∑
n′k′

∫
ψn′k′(r)ψ∗

n′k′(r′)
ε− εn′k′ + iα

V (r′)ψμ(r′) dr′ , (17.6.9)

where α is an infinitesimally small positive quantity that ensures the required
analytic properties.

If the influence of the potential is limited to the vicinity of the impurity, as
has been assumed, then it is more convenient to use Wannier functions than
Bloch functions to calculate the matrix element. If the impurity is located at
R0 then only the Wannier functions associated with the same lattice point
have nonvanishing matrix elements, and among them the matrix element of
the transition into the same band is the most important. Keeping only this
one, we have
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φ∗n(r − Rj)V (r − R0)φn′(r − Rj′) dr = Vnnδnn′δ(Rj − R0)δ(Rj′ − R0) ,

(17.6.10)
which is tantamount to stipulating that scattering by the impurity does not
couple states in different bands. The state ψμ can then be expanded in Wannier
states associated with a single band:

ψμ(r) =
1√
N

∑
j

c(Rj)φn(r − Rj) . (17.6.11)

Substituting this into (17.6.9), and using an expansion in Wannier functions
rather than Bloch functions,

c(Rj) = eik·Rj +
1
N

∑
k′

eik′·(Rj−R0)

ε− εnk′ + iα
Vnnc(R0) . (17.6.12)

The solution for Rj = R0 is

c(R0) =
eik·R0

1 − Vnn
1
N

∑
k′

1
ε− εnk′ + iα

. (17.6.13)

The sum over k′ can be replaced by the energy integral

1
N

∑
k′

1
ε− εnk′ + iα

=
V

N

∫
ρn(ε′)

ε− ε′ + iα
dε′

=
V

N

[
P
∫
ρn(ε′)
ε− ε′ dε

′ − iπρn(ε)
]
.

(17.6.14)

Using the notation

Fn(ε) = P
∫
ρn(ε′)
ε− ε′ dε′ (17.6.15)

for the principal value,

c(R0) =
eik·R0

1 − Vnn(V/N)Fn(ε) + iπVnn(V/N)ρn(ε)
. (17.6.16)

The amplitude c(R0) of the wavefunction is large at the impurity for energy
values ε0 that satisfy

1 − Vnn(V/N)Fn(ε0) = 0 . (17.6.17)

When this condition is satisfied inside a band, the amplitude remains finite on
account of the imaginary part but the |c(R0)|2 vs. ε function has a resonance-
like maximum. This corresponds to a virtual bound state, as a Lorentzian
peak
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ρ(ε) = ρn(ε) +
2
π

Γ/2
(ε− ε0)2 + (Γ/2)2

(17.6.18)

appears in the density of states, where

Γ/2 =
πρn(ε0)
F ′(ε0)

. (17.6.19)

The corresponding density of states is plotted in Fig. 17.11.
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Fig. 17.11. The appearance of virtual bound states in the density of states

On the other hand, when the condition (17.6.17) is satisfied outside the
band, and thus the imaginary part vanishes, the amplitude of the Wannier
function at the impurity becomes infinitely large, indicating a real bound state
localized around the impurity. For repulsive potentials (Vnn > 0) the bound
state can appear above the band, at energy ε0 = max εnk + Δ, while for
attractive potentials (Vnn < 0) below the band, at energy ε0 = min εnk −Δ.
The binding energy Δ can be determined from the equations

1 =
Vnn

N

∑
k

1
Δ+ max εnk − εnk

(17.6.20)

and
1 =

|Vnn|
N

∑
k

1
Δ+ εnk − min εnk

. (17.6.21)

As the dispersion relation is quadratic in the vicinity of the top and bottom
of the band, the sum on the right-hand side diverges at Δ = 0 in one- and
two-dimensional systems, thus there exists a bound state with finite binding
energy no matter how weak the impurity potential is. In three-dimensional
systems bound states exist only for potentials Vnn satisfying either

Vnn >

[
1
N

∑
k

1
max εnk − εnk

]−1

(17.6.22)

or

|Vnn| >
[

1
N

∑
k

1
εnk − min εnk

]−1

. (17.6.23)
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Simple Models of the Band Structure

The knowledge of the band structure, the energies of one-particle states, and
the probability of their occupation are of fundamental importance when a
quantitative explanation is sought for those properties of crystalline materi-
als that are determined by electrons. Therefore the theoretical (numerical)
calculation and experimental determination of the band structure is a very
important chapter of solid-state physics. Before giving a concise summary of
the most commonly employed methods in the next chapter, we present two
simple models below that give a qualitatively correct description of the band
structure of simple metals.

To form an intuitive picture of the electron states in crystalline materials,
we shall treat the problem in two opposite limits: either the electrons are
considered nearly free and atomic potentials weak, or electrons are assumed
to be bound to atoms, and their hopping to adjacent atoms is treated as a
perturbation.

18.1 Nearly-Free-Electron Approximation

In view of the success of the Sommerfeld model, it is straightforward to assume
that the periodic potential is a weak perturbation for the conduction electrons
in metals, and its effects can be determined in perturbation theory. In zeroth
order, called the empty-lattice approximation, the periodic potential of the
crystal is treated as negligibly weak. This can serve as a fairly good starting
point for understanding the band structure, since the states determined in
this approximation evolve smoothly into the Bloch states when the potential
is switched on. Moreover, the dispersion relation differs appreciably from that
obtained in the empty-lattice approximation only at the boundaries and center
of the Brillouin zone.
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18.1.1 Band Structure in the Empty Lattice

The problem of electrons in an empty box is in fact the Sommerfeld model.
It was shown that the wave vectors k are quantized, and the allowed values
are given by (16.2.16), where the nα can take arbitrary integer values. There
is no upper bound on the magnitude of the vectors k. Apart from the spin,
this vector is the only quantum number – that is, two states are possible for
each value of k.

Even though the lattice-periodic potential due to the ions and other elec-
trons vanishes in the empty-lattice approximation as well, the latter never-
theless differs from the problem of electrons in an empty box since the full
translational symmetry is assumed to be broken, and the system to be in-
variant under translations through lattice vectors. Formally, a one-electron
Schrödinger equation has to be solved with the strength of the potential ap-
proaching zero.

In the presence of a finite periodic potential the allowed wave vectors k are
defined in the Brillouin zone or in an equivalent volume of k-space, however
there exist an infinite number of solutions for each k as the band index can take
infinitely many values. Consequently, we shall characterize electron states in
an empty lattice by the k vectors defined in the Brillouin zone of the reciprocal
lattice and a band index. The task is to establish a relationship between the
plane-wave states of free electrons and the states in an empty lattice.

Using the Bloch form for the electron wavefunction, the lattice-periodic
part unk(r) can be represented by a Fourier series that contains only the
vectors of the reciprocal lattice. The same applies to the periodic potential.
Instead of (C.1.36), it is more convenient to eliminate the volume factor and
write the Fourier series of lattice-periodic functions as

unk(r) =
∑
Gj

cnk(Gj)eiGj ·r , U(r) =
∑
Gj

U(Gj)eiGj ·r . (18.1.1)

By substituting these formulas into (17.1.18), multiplying it by e−iGi·r from
the left, and integrating over the volume v of the primitive cell, the following
equation is obtained for the Fourier coefficients:[

�
2

2me
(k + Gi)2 − εnk

]
cnk(Gi) +

∑
Gj

U(Gi − Gj)cnk(Gj) = 0 . (18.1.2)

The solution in the U → 0 limit is

cnk(Gi) = 0 or εnk = ε(0)k+Gi
≡ �

2

2me
(k + Gi)2 . (18.1.3)

The solution in the empty lattice for the band of index n is therefore par-
ticularly simple: apart from a single Gi, all reciprocal-lattice vectors have
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vanishing coefficients in the expansion (18.1.1).1 The normalized Bloch func-
tion of this state is then

ψnk(r) =
1√
V

eik·reiGi·r . (18.1.4)

It is readily seen that the nonvanishing coefficient is unity. This procedure
establishes a one-to-one correspondence between the band indices n and the
reciprocal-lattice vectors Gi, moreover, it guarantees that the dispersion rela-
tions εnk have continuous derivatives in k-space. Nevertheless, this choice has
a serious drawback: as we shall see, the states of different bands are mixed by
the periodic potential.

As the simplest example, consider a one-dimensional system of length L.
Imposing periodic boundary conditions, the wave number can take the discrete
values k = m 2π/L, where m is an arbitrary integer. For free electrons the
energy is quadratic in the wave number:

ε
(0)
k =

�
2

2me
k2 . (18.1.5)

If the system of length L is in fact a chain of lattice constant a containing
N atoms then the allowed wave numbers are, once again, k = m 2π/L =
m 2π/(Na), but – provided only the wave numbers defined in the first Brillouin
zone −π/a < k ≤ π/a are considered (i.e., the equivalent wave numbers
in higher Brillouin zones are reduced to the first Brillouin zone) – m can
take values only in the interval −N/2 < m ≤ N/2. By taking the vectors
G = n 2π/a of the reciprocal lattice of the linear chain for each integer value
of n, the energy eigenvalues are given by

εnk =
�

2

2me

(
k + n

2π
a

)2

=
�

2

2me

(
2π
Na

)2

(m+ nN)2 (18.1.6)

in the empty-lattice approximation according to (18.1.3). These energies are
shown in Fig. 18.1(a).

At first sight, the spectrum obtained for electrons moving in an empty
lattice looks very different from the well-known parabolic spectrum of free
electrons – even though they describe the same system of electrons. The proper
relation between the results of the two approximations is established when the
repeated- or extended-zone scheme is used instead of restricting the k values
to the first Brillouin zone. The energies associated with the wave numbers
in the interval −π/a < k ≤ π/a are also associated with all equivalent wave
numbers k + G in the repeated-zone scheme, as shown in Fig. 18.1(b). The
dispersion curves are then continuous across the boundaries of the Brillouin
1 Since the wavefunction is constructed from a single plane wave, the method is also

known as the single-OPW approximation, where OPW stands for orthogonalized
plane wave.
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Fig. 18.1. Energy vs. wave number plot for a one-dimensional electron system
in the empty-lattice approximation, represented in the (a) reduced-zone and (b)
repeated-zone schemes

zone, and the characteristic parabolas of the free-electron model are recovered
– in a repeated pattern.

The parabolic dispersion curve of free electrons is recovered even more
directly in the extended-zone scheme. The energies given by (18.1.6) are then
represented by plotting the state of index n not in the interval −π/a < k ≤
π/a but in an equivalent interval (2n− 1)π/a < k ≤ (2n+ 1)π/a. The disper-
sion relation obtained in this way is shown in Fig. (18.2).

�k

k

� �a ��a���a ��a

Fig. 18.2. Energy vs. wave number plot for a one-dimensional electron system in
the empty-lattice approximation, represented in the extended-zone scheme

Conversely, one may say that the energy eigenvalues of the electrons mov-
ing through the empty lattice can be obtained for the k values in the reduced-
zone scheme from the free-electron dispersion curve by finding the equivalent
k values inside the first Brillouin zone for each wave number outside of it, and
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then shifting the energy eigenvalue to this k value. This procedure is called
zone folding.

After the one-dimensional chain consider a somewhat more complicated
case, a simple cubic crystal with a monatomic basis. The bands made up of
the first few energy eigenvalues are shown for two high-symmetry directions
in Fig. 18.3. The numbers appearing next to the band indices A,B,C, . . .
indicate the degeneracy of the bands.
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Fig. 18.3. Energy bands for an empty simple cubic lattice in two special directions
of the Brillouin zone. Energy is given in units of (�2/2me)(π/a)2

One of the directions is along line Δ connecting the center Γ = (0, 0, 0)
of the Brillouin zone and X = (π/a)(0, 0, 1) (see Fig. 7.2). The lowest-lying
band (A) belongs to the vector G = 0 of the reciprocal lattice. The energy of
the state associated with the point Δ = (π/a)(0, 0, ξ) is

εA(0, 0, ξ) =
�

2

2me

(π
a

)2

ξ2 . (18.1.7)

The next band (B) corresponds to the reciprocal-lattice vector G = (2π/a)
(0, 0, 1̄); its energy is

εB(0, 0, ξ) =
�

2

2me

(π
a

)2

(ξ − 2)2 . (18.1.8)

The vector G = (2π/a)(0, 0, 1) is associated with band C of energy

εC(0, 0, ξ) =
�

2

2me

(π
a

)2

(ξ + 2)2 , (18.1.9)
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while the bands D, E, F , and G, which belong to points G = (2π/a)(1, 0, 0),
(2π/a)(0, 1, 0), (2π/a)(1̄, 0, 0), and (2π/a)(0, 1̄, 0), are degenerate along the
line ΓX. Their energy is

εD,E,F,G(0, 0, ξ) =
�

2

2me

(π
a

)2

(ξ2 + 4) . (18.1.10)

The other direction is along the line Λ joining the center Γ and R =
(π/a)(1, 1, 1). The bands correspond to the same vectors of the reciprocal
lattice as above, therefore the same indices are used. The energy values at
Λ = (π/a)(ξ, ξ, ξ) are

εA(ξ, ξ, ξ) =
�

2

2me

(π
a

)2

3ξ2 ,

εB,F,G(ξ, ξ, ξ) =
�

2

2me

(π
a

)2

[(ξ − 2)2 + 2ξ2] ,

εC,D,E(ξ, ξ, ξ) =
�

2

2me

(π
a

)2

[(ξ + 2)2 + 2ξ2] .

(18.1.11)

A similar procedure is followed for other lattice types, too. For a body-
centered cubic crystal the Brillouin zone is shown in Fig. 7.7. Its special
points are the center Γ = (2π/a)(0, 0, 0), the vertices H and P – e.g.,
H = (2π/a)(1, 0, 0) and P = (2π/a)( 1

2 ,
1
2 ,

1
2 ) –, and the face centers – e.g.,

N = (2π/a)( 1
2 ,

1
2 , 0). Figure 18.4 shows the energy spectrum for the wave

vectors along the lines joining them calculated in the empty-lattice approxi-
mation.
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Fig. 18.4. Energy bands for an empty body-centered cubic lattice. Energy is given
in units of (�2/2me)(2π/a)2

The energy values obtained in the empty-lattice approximation for a face-
centered cubic lattice will be presented in Chapter 20 on the band structure
of semiconductors.
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18.1.2 Fermi Surface in the Empty Lattice

As a consequence of the Fermi–Dirac statistics, the bands are filled up to the
Fermi energy in the ground state. Since the physical properties of metals are
determined by electrons occupying states near the Fermi energy, the knowl-
edge of these states – especially the density of states at the Fermi energy
and the characteristic features of the Fermi surface – are particularly impor-
tant for understanding these properties. A good starting point for this is the
Fermi surface in an empty lattice, which can be obtained via the Harrison
construction.2

As demonstrated in the previous subsection, the dispersion relation ob-
tained in the extended-zone scheme in the empty-lattice approximation is
identical to the quadratic dispersion relation of free electrons. The natural
labeling of the bands also comes from the free-electron model: the nth band
is the part of the free-electron spectrum that falls into the nth Brillouin zone.
The only difference in the reduced-zone scheme is that the states associated
with wave vectors k that lie outside the first Brillouin zone are reduced to
equivalent k vectors inside the first zone. Thus the Fermi surface in the empty-
lattice approximation can be constructed by drawing a Fermi sphere of radius
kF in the reciprocal lattice such that the number of allowed electron states
within the Fermi sphere should be equal to the number of conduction elec-
trons – and then, if necessary, reducing the parts of this sphere lying outside
the first Brillouin zone to the interior of the zone.

Denoting the number of conduction electrons per atom by z, the Fermi
momentum kF of the gas of free electrons can be calculated from

Ne

V
=
zN

V
=
k3
F

3π2
, (18.1.12)

which is a consequence of (16.2.24). For metals that crystallize in a simple
cubic structure with a monatomic basis, V = Na3, so

kF =
(π
a

)(3z
π

)1/3

, (18.1.13)

and the Fermi energy is

εF =
�

2

2me

(π
a

)2
(

3z
π

)2/3

. (18.1.14)

For one conduction electron per atom,

kF = 0.985
(π
a

)
, εF = 0.970

�
2

2me

(π
a

)2

. (18.1.15)

2 W. A. Harrison, 1960.



116 18 Simple Models of the Band Structure

Since the diameter 2kF of the Fermi sphere is smaller than the edge of the
cubic Brillouin zone, the entire Fermi sphere is inside the first Brillouin zone,
and all occupied states are in the lowest-lying band.

If the gas of free electrons contains two electrons per lattice point,

kF = 1.241
(π
a

)
, εF = 1.539

�
2

2me

(π
a

)2

. (18.1.16)

In this case kF is larger than the distance ΓX but smaller than the distance
ΓR. Thus, when the lowest-energy states are filled gradually by electrons in
the ground state (as required by the Fermi–Dirac statistics), the lowest-lying
states in the second band become occupied before the highest-lying states in
the first band. (The latter are states whose wave vectors are close to the corner
point R of the Brillouin zone.)

It was mentioned in the previous chapter that the prerequisite for metallic
behavior is that the Fermi energy should fall inside a band. This is the case
for two partially filled bands of the previous example. Moreover, no matter
up to what energy the levels are filled, the system is always metallic in the
empty-lattice approximation as there are no gaps (forbidden energies) in the
band structure.

The radius of the Fermi sphere can be calculated similarly for crystals
displaying other symmetries. In metals with a body-centered cubic crystal
structure, where the Bravais cell of side a contains two atoms, the Fermi wave
number is

kF =
(

2π
a

)(
3z
4π

)1/3

, (18.1.17)

while in metals with a face-centered cubic crystal structure, where the Bravais
cell of side a contains four atoms,

kF =
(

2π
a

)(
3z
2π

)1/3

, (18.1.18)

and in a hexagonal close-packed structure

kF =
(π
a

)(2
√

3z
πc/a

)1/3

. (18.1.19)

The surface of this sphere is the Fermi sphere in the empty-lattice ap-
proximation in the extended-zone scheme. When working in the reduced-zone
scheme, the Fermi surfaces of individual bands are obtained by reducing the
Fermi sphere to the first Brillouin zone. For ease of illustration, we shall first
consider a two-dimensional square lattice of lattice constant a, with z elec-
trons per atom (and so a total of Ne = zN electrons). The radius of the “Fermi
sphere” is then determined from the formula

zN = 2k2
Fπ

V

(2π)2
= 2k2

Fπ
Na2

(2π)2
, (18.1.20)
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which gives

kF =
(

2z
π

)1/2
π

a
. (18.1.21)

Fig. 18.5. Fermi sphere of two-dimensional systems with one, two, three, and four
electrons per primitive cell in the empty-lattice approximation, represented in the
extended-zone scheme

As illustrated in Fig. 18.5, the “Fermi sphere” reaches beyond the bound-
aries of the Brillouin zone – a square of side 2π/a – if z ≥ 2. When the
extended-zone scheme is used, the Fermi surface is in the first and second
Brillouin zones for z = 2 and z = 3, while for z = 4 the states of the first
Brillouin zone are all occupied, and the Fermi surface is in the second, third,
and fourth Brillouin zones.

When the pieces lying outside the first Brillouin zone in the extended-zone
scheme are reduced to the first Brillouin zone, the Fermi surface in the z = 2
case – shown in Fig. 18.6 – is seen to be composed of disjoint parts in the first
and second bands.

Another representation, which will prove particularly useful later, is ob-
tained when the Fermi sphere is drawn around each point of the reciprocal
lattice in the repeated-zone scheme. As shown in Fig. 18.7, certain regions
around the corners M of the first Brillouin zone are not covered, while certain
closed regions around the edge centers X are covered twice.

It is immediately seen that if the wave vectors are not reduced to the
Brillouin zone centered at Γ but to an equivalent region centered at a vertex
or edge center of the first Brillouin zone, then the pieces in the first and
second bands that are disjoint in the customary representation make up a
closed Fermi surface. This is shown in Fig. 18.8.
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Fig. 18.6. Fermi surface in two partially filled bands of a two-dimensional system
with two electrons per primitive cell in the empty-lattice approximation, represented
in the reduced-zone scheme

� ��

M

X

M

Fig. 18.7. Fermi spheres in the empty-lattice approximation for a two-dimensional
square lattice with two electrons per primitive cell, represented in the repeated-zone
scheme

X
M

Fig. 18.8. Closed Fermi surface of the system shown in the two previous figures
when wave vectors are reduced to regions centered at M or X rather than Γ

The Fermi surface in the first band – that is, the surface made up of the
pieces that belonged initially in the first Brillouin zone – surrounds empty
states. It is therefore said to be a hole-type Fermi surface. The states of
the second band make up an electron-like Fermi surface. These closed Fermi
surfaces are not at all spherical.

A similar procedure is followed when each atom has four electrons. The
overlapping Fermi spheres of the repeated-zone scheme are shown in the upper
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part of Fig. 18.9. The regions covered twice, three, or four times mark the parts
of the Fermi surface that belong in the second, third, and fourth bands. These
are shown in the lower part, represented in the reduced-zone scheme. Since
the states of the first band are all filled, there is no Fermi surface there. The
Fermi surface in the third and fourth bands are closed provided the equivalent
vectors k are reduced to the region centered at M .

�
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�

�

�

M
M

�

M

M

M

M

M

M

M

M

M

Fig. 18.9. Fermi surfaces of a two-dimensional system with four electrons per
primitive cell in the empty-lattice approximation, represented in the repeated- and
reduced-zone schemes. The pieces of the Fermi surface in the third and fourth bands
are now reduced to the region around point M rather than Γ

By employing the same procedure, the Fermi surfaces can be easily con-
structed for two highly important three-dimensional cubic crystal structures:
body- and face-centered cubic lattices. Figures 18.10 and 18.11 show the parts
of the Fermi surface that belong to each band in the reduced-zone scheme for
mono-, di-, tri-, and tetravalent metals. For the sake of better illustration, the
surfaces are sometimes shown not around the zone center Γ but other high-
symmetry points of the Brillouin zone. Convex portions of the Fermi surface
surround electron states, while concave portions hole states.
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Fig. 18.10. Fermi surfaces of mono-, di-, tri-, and tetravalent metals in an empty
body-centered cubic lattice. In certain cases the reduced zone is centered at point
H or N rather than Γ [Reprinted with permission from W. A. Harrison, Phys. Rev.
118, 1190 (1960). ©1960 by the American Physical Society]

18.1.3 Effects of a Weak Periodic Potential

The finite periodic potential U(r) due to the ions and other electrons modi-
fies the energy spectrum obtained in the empty-lattice approximation. If the
potential is weak, a complete solution of the system of equations (18.1.2) is
not necessary: the effects of the potential can be taken into account using
perturbation theory, keeping only the lowest-order nonvanishing corrections.
This is the nearly-free-electron model. Rough as it may seem, this approxi-
mation provides qualitatively correct information about the bands and Fermi
surfaces in metals with s- and p-electrons. An important feature of the band
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Fig. 18.11. Fermi surfaces of mono-, di-, tri-, and tetravalent metals in an empty
face-centered cubic lattice. In certain cases the reduced zone is centered at point X
or L rather than Γ [W. A. Harrison, ibid.]

structure can be observed even in this approximation: energy bands may be
separated by gaps. Gaps arise because the degeneracies present in the empty-
lattice approximation at the center and boundary of the Brillouin zone are
lifted by the periodic potential, and thus certain states are shifted upward,
while others downward.

We shall determine the energy shift due to the periodic potential for a state
for which the unperturbed energy in the empty lattice, ε(0)k+Gi

, is relatively far
from the energies ε(0)k+Gj

of states with the same k in all other bands, that is,
for all Gj �= Gi:

|ε(0)k+Gi
− ε(0)k+Gj

| � U , (18.1.22)
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where U is some kind of average of the periodic potential of the lattice. The
unperturbed wavefunction (18.1.4) of the selected state contains a single vec-
tor Gi, that is, the coefficient cnk(Gi) of this vector is unity in the expansion
(18.1.1), while cnk(Gj) = 0 for all other Gj . Since the potential is assumed
to be weak on the scale of the kinetic energy, cnk(Gi) is expected to be of
order unity even in the presence of a perturbing potential, while all other co-
efficients are expected to be proportional to U or its higher powers. Therefore
the equations for cnk(Gi) and cnk(Gj) will be treated separately.

For simplicity, we shall assume that the component for Gi = 0 vanishes in
the Fourier series of the potential – that is, the integral of the potential over
the entire volume is zero. (If this were not the case, the Fourier component
associated with the zero vector of the reciprocal lattice could be eliminated by
adding a constant to the potential. Such a constant would shift all energy val-
ues by the same amount, and thus would not modify the dispersion relation.)
Ignoring the term Gj = Gi in the second term of (18.1.2),[

�
2

2me
(k + Gi)2 − εnk

]
cnk(Gi) +

∑
Gj �=Gi

U(Gi − Gj)cnk(Gj) = 0 (18.1.23)

is obtained. The second term contains only the coefficients cnk(Gj) that are
assumed to be small, multiplied by the weak potential – therefore this term
is second- or higher-order in the potential. This implies that it is sufficient to
determine the small coefficients cnk(Gj) up to linear order in the potential. If
the equations for cnk(Gj) are derived from (18.1.2), and the term containing
Gi is separated from the sum over the other reciprocal-lattice vectors,[

�
2

2me
(k + Gj)2 − εnk

]
cnk(Gj) + U(Gj − Gi)cnk(Gi) (18.1.24)

+
∑

Gk �=Gi

U(Gj − Gk)cnk(Gk) = 0

is obtained. The third term on the left-hand side is a second-order correction
and can be neglected. This leaves us with

cnk(Gj) =
U(Gj − Gi)

εnk − ε(0)k+Gj

cnk(Gi) . (18.1.25)

Substituting this into (18.1.23),[
εnk − ε(0)k+Gi

]
cnk(Gi) =

∑
Gj �=Gi

U(Gi − Gj)U(Gj − Gi)

εnk − ε(0)k+Gj

cnk(Gi) ,

(18.1.26)
and so

εnk = ε(0)k+Gi
+

∑
Gj �=Gi

|U(Gi − Gj)|2
εnk − ε(0)k+Gj

. (18.1.27)
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The self-consistent solution of this equation is the perturbed energy value.
Since the neglected terms are of order U3, the same accuracy is kept if

εnk is replaced by the unperturbed ε(0)k+Gi
in the energy denominator on the

right-hand side:

εnk = ε(0)k+Gi
+

∑
Gj �=Gi

|U(Gi − Gj)|2
ε
(0)
k+Gi

− ε(0)k+Gj

+ O(U3) . (18.1.28)

This formula shows that energy levels repel each other. In those terms where
the unperturbed energy ε(0)k+Gj

is larger than ε(0)k+Gi
the correction is negative.

The selected level is thus shifted downward by the levels above it. Similarly,
the mixing with levels of lower energy gives rise to an upward shift.

This correction is usually small provided the potential is weak. When the
unperturbed energies determined in the empty-lattice approximation are not
too close together, the energy levels are hardly shifted. The situation is radi-
cally different when the energy of the selected state is close to that of another
state with the same (or an equivalent) vector k. The energy denominator
in (18.1.25) is then small, and therefore the coefficient cnk(Gj) will also be
large. The situation is particularly interesting when there is a wave vector k
for which the unperturbed energy levels associated with the vectors Gi and
Gj of the reciprocal lattice are equal:

ε
(0)
k+Gi

= ε(0)k+Gj
. (18.1.29)

Barring accidental situations, this occurs at the center or boundary of the
Brillouin zone. Note that the previous formula is satisfied for a quadratic
dispersion relation only if

|k + Gi| = |k + Gj | . (18.1.30)

k G� jk G� i

G G�i j

k G G����� �i j i j) � �G G

Fig. 18.12. Two vectors satisfying the condition |k+Gi| = |k+Gj |. Their starting
points are the tail and tip of the reciprocal-lattice vector Gi − Gj , while their
common end point is a point of the perpendicular bisecting plane (Bragg plane) of
Gi − Gj
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If |Gi| = |Gj | then the energies are equal at the zone center. Otherwise
the equality is satisfied at the boundary of a (possibly higher) Brillouin zone,
since the previous condition implies

k · (Gi − Gj) + G2
i − G2

j = 0 , (18.1.31)

which is equivalent to the condition that k + 1
2 (Gi + Gj) should be perpen-

dicular to Gi − Gj . As shown in Fig. 18.12, the vector k + Gi is then in the
perpendicular bisecting plane of Gi − Gj , and this plane is, by definition, a
Bragg plane, a zone boundary.

The unperturbed energies that belong to k+Gi and k+Gj are equal but
this degeneracy may be lifted by the periodic potential. The calculation of the
splitting requires the application of degenerate perturbation theory. Owing to
the mixing of the degenerate states, the coefficients cnk(Gi) and cnk(Gj)
associated with the vectors Gi and Gj can be large. By neglecting the terms
associated with other vectors of the reciprocal lattice in the expansion (18.1.1),
since they are proportional to cnk(Gk) and vanish in the U → 0 limit, the
following equations are obtained for the energies:[

εnk − ε(0)k+Gi

]
cnk(Gi) = U(Gi − Gj)cnk(Gj) ,[

εnk − ε(0)k+Gj

]
cnk(Gj) = U(Gj − Gi)cnk(Gi) .

(18.1.32)

This homogeneous system of equations has a nontrivial solution for cnk if
the determinant vanishes:∣∣∣∣∣∣

εnk − ε(0)k+Gi
−U(Gi − Gj)

−U∗(Gi − Gj) εnk − ε(0)k+Gj

∣∣∣∣∣∣ = 0 . (18.1.33)

The perturbed energies are then

εnk = 1
2

(
ε
(0)
k+Gi

+ ε(0)k+Gj

)
±
{

1
4

(
ε
(0)
k+Gi

− ε(0)k+Gj

)2

+ |U(Gi − Gj)|2
}1/2

.

(18.1.34)
The new energy eigenvalues are shown schematically in Fig. 18.13 along a par-
ticular direction of the Brillouin zone. The degeneracy is lifted at the boundary
(or center) of the Brillouin zone by the periodic potential and a gap appears
between the two bands. The splitting is proportional to |U(Gi − Gj)|.

It follows from the expression for the unperturbed energies that at the
zone boundary

∇kεnk =
�

2

me

[
k + 1

2 (Gi + Gj)
]
, (18.1.35)

i.e., the k-space gradient of εnk is along the plane of the zone boundary. Thus
the group velocity, which is proportional to this gradient, has a vanishing
component perpendicular to the zone boundary. Since this gradient is perpen-
dicular to the constant-energy surface, the dispersion curves, when considered
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��a
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� � �U G Gi j)

Fig. 18.13. Upward and downward shift of the free-electron levels at the zone
boundary due to a weak periodic potential

along lines perpendicular to a Bragg plane, reach this plane with a vanishing
slope. This also implies that the constant-energy surfaces are perpendicular
to the zone boundary.

When the foregoing results are applied to a one-dimensional lattice, the
periodic potential is seen to lift all the degeneracies at the center and bound-
aries of the Brillouin zone that were obtained in the previous subsection. Fig-
ure 18.14 shows the resulting band pattern in the first Brillouin zone, and – by
suitable folding of the bands – in the extended- and repeated-zone scheme. In
contrast to the energy spectra in Figs. 18.1 and 18.2, where all energy values
were allowed, distinctly separate bands (and gaps between them) are observed
now.

� ��a ���a����a ���a � ��a ���a����a ���a

�k �k

k k

( )a ( )b

Fig. 18.14. Band structure of a one-dimensional system in the nearly-free-electron
approximation (a) in the reduced- and extended-zone schemes, and (b) in the
repeated-zone scheme

Based on these findings one may say that in much of the Brillouin zone,
apart from the center and boundaries, the energy of electrons in the nearly-
free-electron model is fairly close to the energy of free electrons in an empty
lattice. Significant differences are observed only at the center and boundaries
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of the zone as degeneracies are – at least, partially – lifted there. This leads to
the vanishing of the group velocity at the zone center and of its perpendicular
component at the zone boundary, provided the zone boundary is separated
from its mirror image by a reciprocal-lattice vector.

The band structure of the empty lattice may exhibit not only double but
also higher degeneracies. This can occur, for example, at the edges or vertices
of the Brillouin zone. In these geometries degenerate perturbation theory has
to be applied to four- and eightfold degenerate states. The degenerate levels
usually split, even though this may depend on the particular choice of the
potential. Below we shall present a method that allows us to determine the
character of the splitting from the crystal symmetries, without knowing the
exact form of the potential. One can thus specify in full generality which
degeneracies are accidental, which ones can be lifted by an applied potential,
and which ones are preserved even in the presence of the lattice potential.

18.1.4 Lifting of Accidental Degeneracies

Suppose that a solution ψnk(r) of the Schrödinger equation and the corre-
sponding energy eigenvalue εnk are known. As demonstrated in Chapter 6,
the energy is the same for all vectors k′ that are related to k by a symmetry
transformation. Below we shall examine under what circumstances do two or
more states with the same wave vector but different wavefunctions have the
same energy – that is, when there is a degeneracy imposed by the symmetry.
If there is not, then any degeneracy obtained in the band-structure calculation
is accidental.

Consider the symmetry group of the Hamiltonian. For each element P of
the group the corresponding symmetry operation commutes with the Hamil-
tonian:

PH = HP . (18.1.36)

Recall from Chapter 6 that if ψnk(r) is an eigenfunction of the Hamiltonian
then any function

Pψnk(r) = ψnk(P−1r) (18.1.37)

obtained by a symmetry transformation is also an eigenfunction with the same
energy. It was also mentioned that these functions belong to different wave
vectors k as

ψnk(P−1r) = eik·(P−1r)unk(P−1r) = ei(Pk)·ru′nk(r) . (18.1.38)

Now select those symmetry elements T that take k into itself or into an
equivalent vector (Tk ≡ k). These symmetry elements constitute the lit-
tle group of k. A representation of this little group can be constructed on
the basis of the functions Tψnk(r). According to Wigner’s theorem, unless a
special potential is chosen, accidental degeneracies can be ignored, and the
representation must be irreducible. The bands can then be characterized by
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the irreducible representation of the little group of k according to which the
wavefunction transforms. For this reason, the band structure is often specified
by indexing the bands by letters that refer to the irreducible representations
of the states. The degeneracy of a band is determined by the dimension of the
irreducible representation.

Whenever the energies are the same for some wavefunctions but the rep-
resentation of the little group on these functions is reducible, the degeneracy
is accidental: it is an artefact of the approximation, e.g., the consequence of
a particular, oversimplified choice of the potential. The degeneracy of the en-
ergy levels is removed by choosing a more general potential that nevertheless
respects the symmetries of the system. Consequently, whether the degeneracy
at a particular wave vector k is dictated by underlying symmetries can be de-
termined by representing the little group of k on the space of the degenerate
wavefunctions and reducing the representation. The states whose wavefunc-
tions belong to the same irreducible representation are necessarily of the same
energy. These degeneracies are thus required by symmetry. On the other hand,
the energy of the wavefunctions that belong to different irreducible represen-
tations can be the same only accidentally.

By way of example, let us consider once again a simple cubic crystal –
whose empty-lattice band structure was determined in the previous subsec-
tion. Figure 18.3 shows the energies of the electrons along two directions of the
Brillouin zone. In the ΓX direction the states D, E, F , and G form a fourfold
degenerate band, while along the direction ΓR the bands B, F , G and C,
D, E, respectively, are degenerate. Further degeneracies appear at the center
and boundaries of the Brillouin zone in the empty-lattice approximation. The
question is: What happens to these degeneracies when the periodic potential
is turned on? Are they removed, or preserved as a result of an underlying
symmetry? We shall use group-theoretical methods to answer this question.

Let us first examine what happens at the center of the Brillouin zone, in
point Γ . The state that belongs to the lowest band, A, is not degenerate,
while the bands B, C, D, E, F , and G are all of the same energy in Γ . Is this
degeneracy symmetry-related?

In the empty-lattice approximation the wavefunctions that correspond to
the six k = 0 states are readily expressed in terms of the reciprocal-lattice
vectors associated with the branches (see Sec. 18.1.1):

φB = e−2πiz/a , φC = e2πiz/a , φD = e2πix/a ,

φE = e−2πix/a , φF = e2πiy/a , φG = e−2πiy/a .
(18.1.39)

Next, the elements of the little group of the point Γ = (0, 0, 0) are rep-
resented using these functions. The little group contains 48 elements, as all
symmetry operations of the cube – listed in Tables 5.1 and 5.4 – take the
vector k = 0 into itself. As discussed in Chapter 6, the 48 group elements
constitute 10 classes, and so there are 10 irreducible representations: 4 one-
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dimensional, 2 two-dimensional, and 4 three-dimensional. Their characters are
given in Table D.1 of Volume 1.

As there are no six-dimensional irreducible representations, the little group
obviously transforms reducibly on the space of the functions given in (18.1.39).
To reduce it, consider the representation matrix for one typical element of each
class:

D(E) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , D(C4z) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

D(C2z) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , D(C2a) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

D(C3a) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , D(I) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

(18.1.40)

The characters can be read off immediately, and are listed in Table 18.1.

Table 18.1. Characters of the representation of the little group of point Γ on the
six degenerate functions

E 3C2m 6C4m 6C2p 8C3j I 3IC2m 6IC4m 6IC2p 8IC3j

χ 6 2 2 0 0 0 4 0 2 0

When the reduction is performed using (D.1.30), the representation is
decomposed into the sum of a one-dimensional (Γ1), a two-dimensional (Γ12),
and a three-dimensional (Γ15) representation. The wavefunctions serving as
basis can also be determined using (D.1.43). The basis function for the one-
dimensional representation is

ψΓ1 = cos(2πx/a) + cos(2πy/a) + cos(2πz/a) , (18.1.41)

those of the two-dimensional are
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ψ
(1)
Γ12

= cos(2πx/a) − cos(2πy/a) ,

ψ
(2)
Γ12

= cos(2πz/a) − 1
2

[
cos(2πx/a) + cos(2πy/a)

]
,

(18.1.42)

and those of the three-dimensional are

ψ
(1)
Γ15

= sin(2πx/a) , ψ
(2)
Γ15

= sin(2πy/a) , ψ
(3)
Γ15

= sin(2πz/a) . (18.1.43)

Note that ψΓ1 possesses s-type symmetry, the three ψΓ15 p-type symmetry,
while the two ψΓ12 the symmetries of the functions dx2−y2 and dz2 . These
symmetries can be used to label the bands.

Since states characterized by functions that belong to the same irreducible
representation are of the same energy, no matter how the periodic potential is
chosen (as long as it respects the symmetry), a doubly and a triply degenerate
energy level persist even after it is turned on. On the other hand, by choosing
an arbitrary potential of cubic symmetry, the matrix element of the potential
between wavefunctions that belong to different irreducible representations will
vanish. These states are not mixed by the potential. Therefore, accidental
symmetries aside, the energies of the three irreducible representations are
different in general.

Let us now examine what happens when the points k = (π/a)(0, 0, ξ) of
line Δ connecting Γ and X are considered. The elements of the little group for
lineΔ are E, C4z, C2z, C3

4z, IC2x = σx, IC2y = σy, IC2a = σa, and IC2b = σb.
Inversion itself is not a symmetry element any more, only in combination with
rotations around axes lying in the xy-plane. The eight elements of the group
can be divided into five classes, thus the little group has a two-dimensional
and four one-dimensional irreducible representations. The character table of
the irreducible representations is given in Table 18.2. Each class is represented
by a typical element, and the number of elements is also given.

Table 18.2. Character table for the irreducible representations of the little group
of line Δ

E C2z 2C4z 2IC2x 2IC2a

Δ1 1 1 1 1 1
Δ2 1 1 −1 1 −1
Δ′

2 1 1 −1 −1 1
Δ′

1 1 1 1 −1 −1
Δ5 2 −2 0 0 0

Now consider the wavefunctions obtained in the empty-lattice approxima-
tion. Since branch A belongs to vector G = 0, the wavefunction of the state
associated with the vector k = (π/a)(0, 0, ξ) is

ψA(r) = eik·r = eiπξz/a . (18.1.44)
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This wavefunction is invariant under the action of the symmetry elements
of the little group of line Δ (listed above), that is, the wavefunction trans-
forms according to the irreducible representation Δ1. This representation is
one-dimensional, therefore, inside the Brillouin zone a nondegenerate band is
formed by these states.

The branch marked B belongs to the vector G = (2π/a)(0, 0, 1̄), and its
wavefunction is

ψB(r) = eiπ(ξ−2)z/a . (18.1.45)

A similar expression is found for the wavefunction of branch C:

ψC(r) = eiπ(ξ+2)z/a . (18.1.46)

The symmetry elements of the little group of point Δ leave these wave-
functions invariant as well – so they, too, transform according to the one-
dimensional representation Δ1. This gives two more nondegenerate bands in-
side the Brillouin zone.

In the empty-lattice approximation the bands D, E, F , and G are degen-
erate along the line Δ (ΓX). The wavefunctions that correspond to the four
bands are

ψD(r) = eiπξz/a e2πix/a , ψE(r) = eiπξz/a e−2πix/a ,

ψF(r) = eiπξz/a e2πiy/a , ψG(r) = eiπξz/a e−2πiy/a .
(18.1.47)

By choosing these four functions as the basis of the representation, a reducible
representation of the little group is obtained. This representation is the direct
sum of the irreducible representations Δ1, Δ2, and Δ5, so the fourfold degen-
erate level splits into two nondegenerate and a doubly degenerate level. By
determining the linear combinations that can be chosen as basis functions of
the irreducible representations, the function

ψΔ1 = eiπξz/a
[
cos(2πx/a) + cos(2πy/a)

]
(18.1.48)

is seen to transform according to the representation Δ1, the function

ψΔ2 = eiπξz/a
[
cos(2πx/a) − cos(2πy/a)

]
(18.1.49)

according to Δ2, while the linear combinations for the two-dimensional rep-
resentation Δ5 are

ψ
(1)
Δ5

= eiπξz/a sin(2πx/a) and ψ
(2)
Δ5

= eiπξz/a sin(2πy/a) . (18.1.50)

In our previous calculations we saw that the sixfold degenerate level in
point Γ = (0, 0, 0) arising from the states B, C, D, E, F , and G in the
empty-lattice approximation splits into levels that transform according to the
one-dimensional Γ1, the two-dimensional Γ12, and the three-dimensional Γ15

representations when the periodic potential is turned on. Close to Γ and
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along the line Δ, the one-dimensional representation Δ1 appears three times,
and both the one-dimensional Δ2 and the three-dimensional Δ5 once. How
does this splitting occur when k moves from Γ toward X? There are two
possibilities. Either the degeneracy of the level that is doubly degenerate in
Γ is conserved and the triply degenerate level splits into three nondegenerate
ones, or the doubly degenerate level splits into two nondegenerate ones and
the triply degenerate level into a nondegenerate and a doubly degenerate one.
We shall now show that the answer can be deduced from the compatibility
conditions for the irreducible representations, regardless the specific form of
the potential.

The little group of line Δ is a subgroup of the little group of point Γ .
The irreducible representations of point Γ can be reducible on this subgroup,
and so they may be reduced to the irreducible representations of Δ. The
irreducible representations that occur in this reduction procedure are said to
be compatible with the irreducible representation of point Γ .

A comparison of the character tables reveals that Γ1 is compatible with
Δ1. By breaking the cubic symmetry, the function

ψΔ1 = a1(ξ) cos(2πz/a) + a2(ξ)
[
cos(2πx/a) + cos(2πy/a)

]
, (18.1.51)

which transforms according to the representation Δ1, is obtained from func-
tion (18.1.41), which transforms according to the representation Γ1. In Γ ,
a1(0) = a2(0), while in other points of line Δ these coefficients take differ-
ent values, depending on the potential and the wave number. Naturally, the
coefficients change continuously with the wave number.

The representation Γ12 is compatible with Δ1 and Δ2, since χΓ12(P ) =
χΔ1(P ) + χΔ2(P ) holds for the character of all symmetry elements P of the
line Δ. Therefore functions (18.1.42) that transform according to Γ12 in point
Γ should continuously evolve into functions that transform according to Δ1

and Δ2 along line ΓX. It is readily seen that one of the basis functions,

cos(2πx/a) − cos(2πy/a) , (18.1.52)

transforms according to Δ2. Starting with the other basis function of Γ12 in
Γ , it then evolves into the function

a2(ξ) cos(2πz/a) − 1
2a1(ξ)

[
cos(2πx/a) + cos(2πy/a)

]
, (18.1.53)

which transforms according to Δ1, and is orthogonal to the function in
(18.1.51) that also transforms according to Δ1.

For the symmetry elements of the line Δ, the representation Γ15 is de-
composed into the irreducible representations Δ1 and Δ5. Of the three basis
functions in (18.1.43), sin(2πz/a) is separated from the others. The level that
is triply degenerate in point Γ splits into a nondegenerate and a doubly de-
generate level along line Δ. These compatibility relations are summarized in
Table 18.3.
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Table 18.3. Compatibility of the irreducible representations of lines Δ and Λ and
the irreducible representations of point Γ

Γ1 Γ2 Γ12 Γ15 Γ25

Δ1 Δ2 Δ1 Δ2 Δ1 Δ5 Δ2 Δ5

Λ1 Λ2 Λ3 Λ1 Λ3 Λ2 Λ3

This means that the symmetry-related degeneracy in point Γ is lifted in
nearby points as described by the second option above. Just like Fig. 18.3,
the left panel of Fig. 18.15 also shows the band structure obtained in the
empty-lattice approximation along the line joining Γ and X, however bands
are now indexed according to the irreducible representations of the states. The
right-hand side shows the band structure when band splitting is also taken
into account. The diagram is schematic: the character of the splitting can be
determined by symmetry considerations alone but the amount of splitting and
the order of levels cannot.
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Fig. 18.15. Band structure in the empty-lattice approximation and after the lifting
of degeneracies along the line ΓX in a simple cubic crystal. Bands are indexed by
the irreducible representations of the states. The numbers in the brackets show the
dimension of the representation, i.e., the degree of degeneracy for the level

We shall examine what exactly happens to these bands in point X only
for the two lowest-energy bands, denoted by A and B in the empty-lattice
approximation. In the absence of the periodic potential they are degenerate in
point X, however this degeneracy is expected to be removed when the periodic
potential is turned on. We shall prove that this splitting must indeed occur
for symmetry reasons. For this, we have to demonstrate that the functions
ψA(r) and ψB(r) are not the basis functions of a two-dimensional irreducible
representation in point X – i.e., the representation of the little group of the
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symmetries of point X is reducible, and can be decomposed into two one-
dimensional irreducible representations. As the wavefunctions are not related
by any symmetry, the corresponding energies need not be equal.

The symmetry is higher in point X at the zone boundary than along
the line Δ inside the zone because of the new symmetry operations, e.g.,
inversion, that transform point X = (π/a)(0, 0, 1) into the equivalent point
X ′ = (π/a)(0, 0, 1̄). The symmetry elements making up the little group of X
are thus: the identity element E, the fourfold rotation C4z around [001], the
twofold rotations C2x and C2y around [100] and [010], the twofold rotations
C2a and C2b around [110] and [1̄10], the inversion I, and the combination of
inversion and the rotations. The 16 symmetry elements are divided into 10
classes – therefore the little group has 10 irreducible representations: 8 one-
dimensional and 2 two-dimensional. The character table of the representations
is given in Table 18.4.

Table 18.4. Character table of the irreducible representations for the little group
of points X

E C2z 2C4z 2C2x 2C2a I IC2z 2IC4z 2IC2x 2IC2a

X1 1 1 1 1 1 1 1 1 1 1
X2 1 1 −1 1 −1 1 1 −1 1 −1
X3 1 1 −1 −1 1 1 1 −1 −1 1
X4 1 1 1 −1 −1 1 1 1 −1 −1
X5 2 −2 0 0 0 2 −2 0 0 0

X ′
1 1 1 1 1 1 −1 −1 −1 −1 −1

X ′
2 1 1 −1 1 −1 −1 −1 1 −1 1

X ′
3 1 1 −1 −1 1 −1 −1 1 1 −1

X ′
4 1 1 1 −1 −1 −1 −1 −1 1 1

X ′
5 2 −2 0 0 0 −2 2 0 0 0

Consider the representation of this group on the space of the unperturbed
functions ψA and ψB. The wavefunctions at point X = (π/a)(0, 0, 1) of the
Brillouin zone are

ψA(r) = eπiz/a , ψB(r) = e−πiz/a . (18.1.54)

It is straightforward to calculate the matrices of the representation by applying
the symmetry operations of the little group on these wavefunctions. Since we
are interested only in the characters of the representation, it is sufficient to
write them down for a single element in each of the 10 classes:
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D(E) =
(

1 0
0 1

)
, D(C2z) =

(
1 0
0 1

)
, D(C4z) =

(
1 0
0 1

)
,

D(C2x) =
(

0 1
1 0

)
, D(C2a) =

(
0 1
1 0

)
,

D(I) =
(

0 1
1 0

)
, D(IC2z) =

(
0 1
1 0

)
, D(IC4z) =

(
0 1
1 0

)
,

D(IC2x) =
(

1 0
0 1

)
, D(IC2a) =

(
1 0
0 1

)
.

The characters can be immediately read off from the matrices; the results
are listed in Table 18.5.

Table 18.5. Characters of the representation of the little group of point X on the
functions ψA and ψB

E C2z 2C4z 2C2x 2C2a I IC2z 2IC4z 2IC2x 2IC2a

χ 2 2 2 0 0 0 0 0 2 2

Comparison of Tables 18.4 and 18.5 shows that these characters are just
the sums of the corresponding characters of the irreducible representations
X1 and X ′

4. According to the addition theorem for characters, the above rep-
resentation is the direct sum of these two irreducible representations. The
wavefunctions (the basis functions of the irreducible representations) can also
be obtained easily. It is straightforward to show that the linear combinations
ψX1 = cos(πz/a) and ψX′

4
= sin(πz/a) transform according to X1 and X ′

4,
respectively.

Since the two wavefunctions belong to different irreducible representations,
the matrix element of the lattice potential U(r) vanishes between them:∫

ψ∗
X1

(r)U(r)ψX′
4
(r) dr = 0 . (18.1.55)

Using this basis, it is not necessary to make recourse to degenerate pertur-
bation theory. In the first order of perturbation theory the energy correction
can be calculated separately for the two wavefunctions from

ε
(1)
i =

∫
ψ∗

i (r)U(r)ψi(r) dr∫
ψ∗

i (r)ψi(r) dr
, i = X1, X

′
4 . (18.1.56)

The levels are indeed split in point X.
In our earlier considerations we used the functions

ψA(r) = eπiξz/a , ψB(r) = eπi(ξ−2)z/a , (18.1.57)
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given in (18.1.44) and (18.1.45) for the states of bands A and B in general
points of line Δ. However, for ξ → 1 they do not tend continuously to the
functions obtained in point X,

ψX1 = cos(πz/a) , ψX′
4

= sin(πz/a) , (18.1.58)

even though the wavefunctions – just like the energy – must change con-
tinuously in a band. This contradiction can be resolved by noting that the
functions ψA and ψB transform according to the same representation, conse-
quently one may just as well take any linear combination. A more appropriate
form of the wavefunctions satisfying the orthogonality condition is

ψA(r) = a1(ξ)eiπξz/a + a2(ξ)eiπ(ξ−2)z/a

= eiπξz/a
[
a1(ξ) + a2(ξ)e−2πiz/a

]
, (18.1.59-a)

ψB(r) = −a2(ξ)eiπξz/a + a1(ξ)eiπ(ξ−2)z/a

= eiπξz/a
[
−a2(ξ) + a1(ξ)e−2πiz/a

]
. (18.1.59-b)

The coefficients a1 and a2 depend on the strength of the interaction and the
location of the point Δ (ξ). In the empty-lattice approximation a1 = 1 and
a2 = 0, and the wavefunctions given in (18.1.44) and (18.1.45) are recovered.
These values are modified by the lattice potential. Far from point X, where
the difference of the energies is large, there is hardly any mixing: a1 ≈ 1
and a2 ≈ 0. As X is approached, a1 decreases and a2 increases, and the two
become equal in X (ξ = 1). The wavefunctions (18.1.58) are then recovered.

Using a similar procedure, it is straightforward to calculate the degree
of the symmetry-related (nonaccidental) degeneracy of the band states and
the lifting of the degeneracy with respect to the empty-lattice approximation
shown in Fig. 18.3 for points Λ = (π/a)(ξ, ξ, ξ) along the line joining Γ and R.
In addition to the identity element E, the little group of the line Λ contains
rotations through 120◦ and 240◦ around the direction [111], and reflections
in the planes of normal [11̄0], [101̄], and [011̄]. The character table of the
irreducible representations of the little group is given in Table 18.6.

Table 18.6. Character table of the irreducible representations for the little group
of line Λ

E 2C3 3IC2p

Λ1 1 1 1
Λ2 1 1 −1
Λ3 2 −1 0

It is readily seen that the representation Γ1 is compatible with Λ1, Γ12 with
Λ3, and Γ15 with Λ1 and Λ3. This means that the nondegenerate state Γ1 goes
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over continuously into a state Λ1 as k moves from the zone center toward R.
Similarly, the doubly degenerate state Γ12 goes over continuously into the state
Λ3 and remains doubly degenerate. However, the triply degenerate state Γ15 is
split into a nondegenerate level Λ1 and a doubly degenerate level Λ3 along the
line Λ. Just like Fig. 18.15, Fig. 18.16 also shows the band structure presented
in Fig. 18.3, however bands are now indexed by the irreducible representations
of the states, while the right-hand side shows the band structure obtained by
taking splitting into account.
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Fig. 18.16. Band structure in the empty-lattice approximation and after the lifting
of degeneracies along the line ΓR in a simple cubic crystal. Bands are indexed by
the irreducible representations of the states

The figure also indicates what may happen to the split levels in point R. It
can be demonstrated that the lowest-lying, eightfold degenerate level obtained
in the empty-lattice approximation splits into two nondegenerate and two
triply degenerate levels in R when the periodic potential is turned on. Then
each triply degenerate level splits further into a nondegenerate and a doubly
degenerate level along the line ΓR. Using group-theoretical considerations
alone, it is impossible to determine which state of point R will correspond to
a particular band starting from Γ .

18.1.5 Fermi Surface for Nearly Free Electrons

Even though it contains less information, one often visualizes the band struc-
ture in higher dimensions by displaying the constant-energy surfaces rather
than the dispersion relation. For free electrons these surfaces are spherical.
Represented in the extended-zone scheme, these surfaces are also spherical in
the nearly-free-electron model, as long as they are far from the zone bound-
aries. When the boundaries are approached, the surfaces become distorted so
that they can reach the boundary perpendicularly, as the k-space gradient of
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εnk must lie in a Bragg plane, in the zone boundary. Constant-energy sur-
faces in an empty lattice and in the presence of a weak potential are shown
in Fig. 18.17 for a two-dimensional square lattice.

( )a ( )b

Fig. 18.17. Constant-energy surfaces in a square lattice (a) in the empty-lattice
approximation and (b) in the nearly-free-electron approximation

Among the constant-energy surfaces the one that corresponds to the Fermi
energy – the Fermi surface – is particularly important. For a given band
structure the energy of the highest occupied levels in the ground state – and
so the shape of the Fermi surface – depends on the number of electrons and
the filling of the band. Figure 18.18 shows the Fermi surface in the extended-
zone scheme for a two-dimensional square lattice at three different electron
numbers. Comparison with Fig. 18.5 shows the distortion of the Fermi surface
due to the periodic potential.

�

Fig. 18.18. Fermi surface distorted by a weak periodic potential in the extended-
zone scheme for a two-dimensional system with one, two, and four electrons per
primitive cell
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Represented in the reduced-zone scheme, the shape of the Fermi surface
is shown in Fig. 18.19. In some cases the occupied states are drawn around
points M or X rather than Γ .
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Fig. 18.19. Fermi surface in a square lattice, in the presence of a weak periodic
potential, represented in the reduced-zone scheme for (a) two and (b) four electrons
per primitive cell

Compared to the Fermi surfaces obtained in the empty-lattice approxi-
mation and shown in Figs. 18.6, 18.8, and 18.9, it is readily seen that the
periodic potential and the resulting distortion of the Fermi surface round off
the sharp corners of the Fermi surface obtained in the empty-lattice approx-
imation. Owing to this distortion more states may be accommodated below
the Fermi energy in the second and third Brillouin zones than in an empty
lattice, and thus the number of occupied states may be reduced, or may even
vanish in the fourth Brillouin zone. The total volume enclosed by the Fermi
surface – which is the sum of the parts in the various zones – is, nevertheless,
independent of the strength of the periodic potential, in agreement with Lut-
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tinger’s theorem,3 which stipulates that the interaction does not change the
volume of the k-space region enclosed by the Fermi surface.

The situation is similar in three dimensions. The constant-energy surfaces
are almost spherical for energies close to the bottom of the lowest-lying band,
and the states are essentially free-electron-like. For higher energies, where the
constant-energy surface gets close to the zone boundaries, its spherical shape
becomes distorted. Figure 18.20 shows this in a section of the Brillouin zone
of a face-centered cubic crystal for two energy values.
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Fig. 18.20. The distortion of the constant-energy surfaces in a face-centered cu-
bic lattice in the nearly-free-electron approximation at two different energies and
occupation values

Similar methods can be used for three-dimensional systems to derive the
realistic Fermi surface, distorted by the periodic potential, from the Fermi
surface obtained in an empty three-dimensional lattice using the Harrison
construction. For symmetry reasons, the Fermi surface must be perpendicular
to those boundaries of the Brillouin zone that are separated from their mirror
images by a reciprocal-lattice vector.

18.2 Tight-Binding Approximation

In the previous section the band structure of electrons moving in a crystal was
presented using free electrons as the starting point. A completely different –
and, in a sense, exactly opposite – approach to calculate the band structure
is obtained when the electrons are supposed to be bound to atoms, their
wavefunction to be that of an atomic eigenstate, and the effects of other ions
are treated as a perturbation.
3 J. M. Luttinger, 1960.
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18.2.1 Broadening of Atomic Levels into Bands

To understand the formation of the band structure imagine that the crystal
is constructed by placing the atoms in a crystalline order, however, with a
very large initial lattice constant, and then the lattice constant is gradually
reduced. If the atom at Rj acts on the surrounding electrons via a potential
va(r−Rj), then the atomic wavefunctions are the solutions of the Schrödinger
equation[

− �
2

2me
∇2 + va(r − Rj)

]
wα(r − Rj) = εαwα(r − Rj) . (18.2.1)

Because of the spherical symmetry of the atomic potential, states are char-
acterized, as usual, by the quantum numbers n, l, and ml, which we shall
collectively denote by α. As long as the atoms are far from each other, the
same atomic energy levels εα appear for each atom. For N atoms the levels are
at least N -fold degenerate. Electrons occupy these highly degenerate atomic
states.

When the lattice constant is reduced, the overlap between atomic wave-
functions gradually increases, energies become shifted from the atomic values,
and the multiple degeneracy is lifted. As shown in Fig. 18.21 schematically,
the energies form broader and broader bands as the lattice constant decreases.
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Fig. 18.21. The formation of energy bands from atomic levels as the lattice constant
is reduced

If the overlap is not strong even when the real lattice constant is reached,
and the mixing of atomic states of unequal energies can be ignored, then, fol-
lowing Bloch’s proposal,4 the wavefunctions associated with the band states
can be written as linear combinations of the atomic wavefunctions:

ψα(k, r) =
1√
N

∑
j

eik·Rjwα(r − Rj) (18.2.2)

This form satisfies the relation (17.1.6) for Bloch functions as
4 F. Bloch, 1928.
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ψα(k, r + Rn) =
1√
N

∑
j

eik·Rjwα(r + Rn − Rj)

= eik·Rn
1√
N

∑
j

eik·(Rj−Rn)wα(r − (Rj − Rn))

= eik·Rnψα(k, r) . (18.2.3)

This representation of the wavefunction resembles the relation between Bloch
and Wannier functions. However, as the atomic functions of neighboring atoms
are not orthogonal, in contrast to the Wannier functions, these are not gen-
uine Bloch functions, since they do not satisfy the orthogonality condition
(17.1.18).

The correct normalization of the wavefunction is ensured by a coefficient
c �= 1, that is,

ψα(k, r) =
c√
N

∑
j

eik·Rjwα(r − Rj) . (18.2.4)

In what follows, we shall assume that the atomic wavefunctions drop off suf-
ficiently rapidly so that there is no significant overlap between them even
when the atoms are nearest neighbors. The normalization factor can then be
approximated by unity.

The method based on the wavefunctions built up of atomic states in this
way is called the tight-binding approximation. According to the foregoing,
this approach can also be considered as an approximation of the orthogonal
Wannier functions by the atomic wavefunctions.

There is no unknown parameter in the chosen wavefunction, which is gen-
erally not an exact eigenstate either. The energy of the state is therefore given
by

εα(k) =

∫
ψ∗

α(k, r)
[
− �

2

2me
∇2 + U(r)

]
ψα(k, r) dr∫

ψ∗
α(k, r)ψα(k, r) dr

. (18.2.5)

Inserting (18.2.2) into this expression, and assuming that overlaps can be
neglected for normalization purposes,

εα(k) ≈ 1
N

∑
j,j′

eik·(Rj−Rj′ )
∫
w∗

α(r−Rj′)
[
− �

2

2me
∇2 + U(r)

]
wα(r−Rj) dr .

(18.2.6)
One sum in the double sum over lattice points can be calculated, since the

integral ∫
w∗

α(r − Rj′)
[
− �

2

2me
∇2 + U(r)

]
wα(r − Rj) dr (18.2.7)

depends only on the difference Rl = Rj − Rj′ on account of the periodicity
of U(r). Then
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εα(k) ≈
∑

l

eik·Rl

∫
w∗

α(r + Rl)
[
− �

2

2me
∇2 + U(r)

]
wα(r) dr . (18.2.8)

Because of the weak overlap between atomic wavefunctions the largest con-
tribution obviously comes from the term Rl = 0. If all other contributions
were zero, electrons would be bound to atoms, and would not propagate in
the lattice. Energies would then be independent of k. The weak, nonetheless
finite overlap, which is irrelevant for normalization, becomes essential when
the dispersion relation is determined, since it allows electrons to hop from one
atom to its neighbor.

The energy formula can be further simplified by making use of the
Schrödinger equation (18.2.1) of the atomic problem:

εα(k) ≈ εα +
∑

l

eik·Rl

∫
w∗

α(r + Rl) [U(r) − va(r)]wα(r) dr . (18.2.9)

The first term on the right-hand side is the energy of the electron in the atomic
state. It looks as if the absence of overlap of atomic wavefunctions had to be
exploited once again – however the same term appears when the assumption
c ≈ 1 is not made. In the second term the Rl = 0 term of the sum over the
lattice points is expected to give a negative contribution, as it is plausible to
assume that the potential around an atom in a crystal is lower than around
a free atom (U(r) − va(r) < 0). This term,

Δεα =
∫
w∗

α(r) [U(r) − va(r)]wα(r) dr , (18.2.10)

shifts the energy of each state in the band by the same amount. This shift
will therefore be ignored below. The broadening of atomic energy levels into
bands is described by the terms Rl �= 0 in the second term of (18.2.9); they are
also proportional to the difference between the real potential and the atomic
potential. Introducing the notation

γα(Rl) = −
∫
w∗

α(r + Rl) [U(r) − va(r)]wα(r) dr , (18.2.11)

the energies in band α are

εα(k) ≈ εα −
∑

l

′
eik·Rlγα(Rl) , (18.2.12)

where the sum is over the lattice points Rl �= 0. Since the overlap between dis-
tant neighbors can be exponentially small, the dominant contribution usually
comes from nearest neighbors. The energy is then

εα(k) ≈ εα −
∑

l

′
γα(δl)eik·δl , (18.2.13)

where the sum is over nearest neighbors only.
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This method is expected to work well for those states that overlap only
slightly even in the crystal – that is, for inner shells. Nevertheless it some-
times provides an adequate description of the states of conduction electrons
as well. It does not only propose a simple picture of the formation of bands
but also models properly some of their characteristics. Since according to our
assumptions there is no mixing between atomic states of different energies,
depending on which atomic states are used as the starting point, we speak of
s-, p-, and d-bands.

It should be noted that the simple form derived above is valid only when
the primitive cell contains a single atom and only one electron state per atom
is considered. For crystals with polyatomic bases or for p- and d-bands the
linear combinations of degenerate states must be chosen as atomic states, and
the energy eigenvalues should be determined by diagonalizing a matrix of the
corresponding size. Below we shall examine a few examples.

18.2.2 Band of s-Electrons

Let us first examine the case where the tight-binding band is formed from the
atomic s-states (azimuthal quantum number: l = 0) with the same principal
quantum number, n. Owing to the spherical symmetry of the atomic wave-
function, γn,0(Rl) exhibits the same symmetry as the potential U(r). For a
cubic crystal – where nearest neighbors are all located at equal distances, at
such positions that they can be transformed into each other by symmetry
transformations – γn,0(δl) can be replaced by a constant. For a simple cu-
bic lattice, where nearest neighbors are located at a(±1, 0, 0), a(0,±1, 0), and
a(0, 0,±1),

εn,0(k) = εn,0 − 2γ(1, 0, 0)[cos kxa+ cos kya+ cos kza] . (18.2.14)

In a face-centered cubic crystal, where there are 12 nearest neighbors, located
at (a/2)(±1,±1, 0), (a/2)(±1, 0,±1), and (a/2)(0,±1,±1), the formula

eia(kx+ky)/2 + eia(kx−ky)/2 + eia(−kx+ky)/2 + eia(−kx−ky)/2

=
[
eiakx/2 + e−iakx/2

] [
eiaky/2 + e−iaky/2

]
= 4 cos(kxa/2) cos(kya/2) (18.2.15)

leads to

εn,0(k) = εn,0 − 4γ( 1
2

1
20) [cos(kxa/2) cos(kya/2)

+ cos(kya/2) cos(kza/2) + cos(kza/2) cos(kxa/2)] .
(18.2.16)

Evaluating the sum of phase factors in a similar fashion for the eight
nearest neighbors in a body-centered cubic lattice,
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εn,0(k) = εn,0 − 8γ( 1
2

1
2

1
2 ) cos(kxa/2) cos(kya/2) cos(kza/2) . (18.2.17)

Whichever formula is considered, when the energy is expanded about the
zone center, an isotropic quadratic expression is obtained for small values of
the wave number, much like for free electrons:

εn,0(k) = εn,0 + γa2k2 , (18.2.18)

however, depending on the sign of γ, the parabola can open either upward or
downward. As Fig. 18.22 shows, the distortion of the dispersion relation due
to the periodic potential of the lattice (i.e., the deviation from the parabolic
form) becomes more and more important as the distance from the point k = 0
increases.
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Fig. 18.22. The tight-binding s-band in a simple cubic lattice for a fixed kz; γ is
positive on the left and negative on the right

In the region where the second-order expansion is a good approximation,
the constant-energy surfaces are spheres. The behavior of these electrons can
be described adequately in terms of an effective scalar mass. Farther from the
minimum and maximum energies the constant-energy surfaces are less and
less spherical. This is even more obvious in the next two figures. In Fig. 18.23
the lines of constant energy are plotted for the two-dimensional square lattice
in the tight-binding approximation, while in Fig. 18.24 the constant-energy
surfaces for a simple cubic crystal are shown for two different energies.

In the two-dimensional case, when the band is exactly half filled, the “Fermi
sphere” is distorted into a square. A logarithmic singularity appears in the
density of states at the corresponding energy, and the concept of effective
mass becomes meaningless. For higher band filling the description in terms
of holes is more convenient. In the repeated-zone scheme spherical constant-
energy surfaces appear around the corners of the Brillouin zone.

The constant-energy surfaces calculated for a face-centered cubic struc-
ture are shown in Fig. 17.9. This surface has the same topology as the one
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Fig. 18.23. Lines of constant energy for the s-band in a two-dimensional square
lattice in the tight-binding approximation

Fig. 18.24. Constant-energy surfaces in a simple cubic lattice in the tight-binding
approximation

obtained in the nearly-free-electron approximation (see Fig. 18.20), however
the distortion of the “Fermi sphere” is much more pronounced now.

18.2.3 Band of p-Electrons

The situation is more complicated when the energies of the band formed by
p-electrons are considered, since owing to their threefold degeneracy, atomic
p-states are mixed when bands are formed. For this reason, the atomic wave-
functions are customarily chosen as the linear combinations of the functions

ψnlm(r) = Rnl(r)Y m
l (θ, ϕ) (18.2.19)

obtained in the presence of a spherically symmetric potential; in our particular
case (l = 1, m = ±1, 0)

wn,1(r) = c1ψn,1,1(r) + c0ψn,1,0(r) + c−1ψn,1,−1(r) . (18.2.20)

The corresponding energy is εn,1. Using this atomic function as an approxi-
mate Wannier function, the Schrödinger equation for the one-particle states
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of the electrons in the crystal is[
− �

2

2me
∇2 + U(r)

]
1√
N

∑
j

eik·Rjwn,1(r − Rj)

= εn,1(k)
1√
N

∑
j

eik·Rjwn,1(r − Rj) .
(18.2.21)

Using the expansion (18.2.20) for wn,1(r) and the atomic Schrödinger equation
for ψn,1,m, we have

∑
j

eik·Rj

1∑
m′=−1

[εn,1 + U(r) − va(r − Rj)] cm′ψn,1,m′(r − Rj)

= εn,1(k)
∑

j

eik·Rj

1∑
m′=−1

cm′ψn,1,m′(r − Rj) .

(18.2.22)

Multiplying both sides by ψ∗
n,1,m(r−Rj′), integrating over the crystal volume,

and making use of the assumption that the overlap between wavefunctions
of different lattice points can be ignored as far as the normalization of the
wavefunction is concerned,

εn,1(k)cm −
1∑

m′=−1

∑
l

γmm′(Rl)eik·Rlcm′ = εn,1(k)cm , (18.2.23)

where

γmm′(Rl) = −
∫
ψ∗

n,1,m(r + Rl) [U(r) − va(r)]ψn,1,m′(r) dr . (18.2.24)

The eigenvalue problem leads to a system of linear equations in three variables,
which is equivalent to the diagonalization of a 3 × 3 matrix.

The calculation is further simplified when the real functions ψpx
, ψpy

, ψpz

are used instead of the wavefunctions expressed in spherical harmonics. As
shown in Fig. 4.10, the three new functions give high densities around the x-,
y-, and z-axes, in a cylindrically symmetric geometry. It is readily established
from the transformation properties of the functions ψpα

(r) that in simple
cubic crystals the coefficients

γαβ(δl) = −
∫
ψ∗

pα
(r + δl) [U(r) − va(r)]ψpβ

(r) dr (18.2.25)

obtained for nearest neighbors are diagonal – however the value depends on
whether the maxima of the electron density are along or perpendicular to the
direction of the neighbors. Introducing the notations

γ‖ = −
∫
ψ∗

px
(r + ax̂) [U(r) − va(r)]ψpx

(r) dr (18.2.26)
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and
γ⊥ = −

∫
ψ∗

px
(r + aŷ) [U(r) − va(r)]ψpx

(r) dr , (18.2.27)

and exploiting the cubic symmetry, the energies for the three p-bands are

ε
(1)
n,1(k) = εn,1 − 2γ‖ cos kxa− 2γ⊥[cos kya+ cos kza] ,

ε
(2)
n,1(k) = εn,1 − 2γ‖ cos kya− 2γ⊥[cos kxa+ cos kza] ,

ε
(3)
n,1(k) = εn,1 − 2γ‖ cos kza− 2γ⊥[cos kxa+ cos kya] .

(18.2.28)

Note that the three p-bands, when considered individually, do not exhibit the
symmetries of the cubic lattice, but as a set they do.

To obtain an estimate for the sign and relative magnitude of the co-
efficients, the p-orbitals of neighboring atoms are shown schematically in
Fig. 18.25.

�

�

�

�

� � � �

Fig. 18.25. Relative orientation of the p-orbitals in neighboring atoms

As can be inferred from the figure, in the integral for γ‖ the two wavefunc-
tions may overlap in regions where their signs are opposite. Combined with
the negative sign in the definition of γ‖ and the negativity of U(r) − va(r),
γ‖ < 0. On the other hand, the wavefunctions appear with identical signs in
the integrand of γ⊥, therefore γ⊥ > 0. The orientation of the wavefunctions
implies γ⊥ < |γ‖|, hence the dispersion relation has a maximum in one and
minima in two directions at the zone center. The dispersion curves are plotted
for a fixed value of kz in Fig. 18.26.

The px- and py-bands feature a saddle point in kx = ky = 0 for a fixed
value of kz; minima and maxima occur at the edge centers of the Brillouin
zone. In the pz-band the minimum is at the center and the maximum is at
the vertex of the Brillouin zone.
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Fig. 18.26. Electron energies in the three p-bands in the tight-binding approxima-
tion for a fixed value of kz, and the constant-energy contours. Minima are marked
by m and maxima by M
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Methods for Calculating and Measuring the
Band Structure

In the previous chapter we examined two simple methods based on oppo-
site approaches to calculate the energies and band structure of one-particle
electron states. In the nearly-free-electron model the potential created by the
lattice of atoms was considered as a perturbation with respect to the kinetic
energy of electrons. In the tight-binding method we started with localized
atomic states, and treated the propagation of electrons in the lattice as pertur-
bation. Both methods gave a good qualitative picture about how the allowed
energies of Bloch electrons form bands. In the first approach, even though free
electrons can have arbitrary energies, certain energies are found to be forbid-
den in the presence of the potential, while in the second approach discrete
atomic energy levels are observed to broaden into bands. Although in certain
cases – e.g., for simple metals – the two methods lead to even quantitatively
correct results, the kinetic energy of electrons and the potential arising from
the interactions with atoms and other electrons are equally important in gen-
eral, and neither of them can be treated as a perturbation with respect to the
other. The accurate calculation of the band structure requires the solution of
a difficult numerical problem in which every state – including deep core states
– must be taken into account in principle, since even those are broadened into
bands.

Two problems arise in connection with the Schrödinger equation (17.1.3).
Firstly, the choice of the one-particle potential is dictated by the specific prob-
lem, secondly, when U(r) is given, a suitable and efficient numerical method
is needed to compute the energy eigenvalues quickly and accurately. We shall
not deal with the choice of the potential here: it will be deferred to Volume 3
devoted to the study of electron–electron interactions. We shall just note that,
since the influence of all other electrons must also be lumped into the poten-
tial, the solutions for the wavefunction must be consistent with the electron
density used for specifying the potential – that is, self-consistent solutions
have to be found.

Assuming that the potential is known, we shall first briefly present various
computational methods. As mentioned before, all these methods eventually
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lead to numerical algorithms, for which dedicated computer codes have been
worked out. The discussion of the numerical aspects is far beyond the scope
of this book. Our sole purpose is to familiarize the reader with the fundamen-
tal principles and concepts of each method. The currently most widely used
methods for calculating the band structure rely on the density-functional the-
ory, which will be discussed only in Chapter 30, after a more precise study of
electron–electron interactions.

In metals only the electron states close to the Fermi surface are important.
Therefore after the introduction of the diverse methods we shall present the
band structure of simple metals and the shape of their Fermi surfaces. (The
band structure of semiconductors will be the subject of a separate chapter.)
At the end of the chapter we shall give a brief overview of the experimental
methods that allow the determination of some features of the band structure.
The detailed discussion of other experimental methods for determining the
parameters of the Fermi surface will be deferred to Chapters 21 and 22.

19.1 Matrix Methods

Some of the methods developed for the computation of the band structure are
based on the equivalence of the solution of the Schrödinger equation and that
of a matrix eigenvalue problem.

19.1.1 General Formulation of the Problem

The calculation of energy levels in a periodic potential – that is, finding the
solutions of the one-particle Schrödinger equation – can be based on the ex-
pansion of the wavefunction ψnk(r) in a suitable complete but not necessarily
orthogonal set of functions φj(k, r):

ψnk(r) =
∑

j

cnj(k)φj(k, r) , (19.1.1)

where the expansion coefficients are determined from the requirement that the
state should be an eigenstate of the Hamiltonian. To satisfy Bloch’s theorem,
the condition

φj(k, r + Rm) = eik·Rmφj(k, r) (19.1.2)

is imposed on each member of the set of functions used in the expansion for
each lattice vector Rm.

Substituting the above expansion into the Schrödinger equation, multiply-
ing it by φ∗i (k, r), and integrating the product over the whole volume of the
crystal, the system of homogeneous linear equations∑

j

[Hij(k) − εnkSij(k)] cnj(k) = 0 (19.1.3)



19.1 Matrix Methods 153

arises, where

Hij(k) =
∫
φ∗i (k, r)H(r)φj(k, r) dr (19.1.4)

and
Sij(k) =

∫
φ∗i (k, r)φj(k, r) dr . (19.1.5)

If the basis functions are not orthogonal, their overlap matrix Sij contains
some nonvanishing off-diagonal elements. The eigenfunctions are the solutions
of this system of homogeneous linear equations, provided the energy eigen-
values are known. The latter can be determined from the condition that the
system of equations for cnj should have a nontrivial solution – that is, the
determinant of the matrix Hij(k) − εkSij(k) should vanish:

det
[
Hij(k) − εkSij(k)

]
= 0 . (19.1.6)

By performing the calculation for each vector k of the Brillouin zone, the set
of eigenvalues gives the energies εnk. If the set of functions is complete then,
in principle, an exact solution can be obtained from this expansion – however,
it requires the diagonalization of an infinitely large matrix.

To proceed, we shall demonstrate that (19.1.3) can also be considered as
the solution of a variational problem. By writing the wavefunction in the form
(19.1.1), the expectation value of the energy is〈

ψnk

∣∣H∣∣ψnk

〉
=
∫
ψ∗

nk(r)H(r)ψnk(r) dr

=
∑
ij

c∗ni(k)cnj(k)Hij(k) ,
(19.1.7)

where Hij(k) is defined by (19.1.4). The normalization condition for the wave-
function is〈

ψnk

∣∣ψnk

〉
=
∫
ψ∗

nk(r)ψnk(r) dr =
∑
ij

c∗ni(k)cnj(k)Sij(k) = 1 . (19.1.8)

If the minimum of the energy is determined with the constraint that the
wavefunction of the state should be normalized, and this condition is taken
into account by a Lagrange multiplier, then∑

ij

c∗ni(k)cnj(k)Hij(k) − λ
[∑

ij

c∗ni(k)cnj(k)Sij(k) − 1
]

(19.1.9)

has to be minimized with respect to c∗ni. This indeed leads to (19.1.3) when
the Lagrange multiplier λ is identified with the energy εnk.

If the set of equations used in the expansion (19.1.1) is not complete, then
this variational approach does not lead to the exact eigenvalues and eigenfunc-
tions. Nonetheless, as an approximation, one may choose the coefficients in
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such a way that the energy of the state (the expectation value of the Hamil-
tonian) be a minimum. The accuracy of this method is determined by the
choice of functions and the number of terms taken into account in the expan-
sion. The choice of the set of functions should therefore be based on physical
reasoning. The methods presented below will differ precisely in the choice of
the set of functions and the considerations that justify keeping only a few
functions instead of the complete set.

19.1.2 LCAO Method

By choosing the complete set of Wannier states as basis functions, and ex-
panding the wavefunction satisfying Bloch’s theorem in terms of them, an
exact method can be obtained – at least in principle. It should neverthe-
less be kept in mind that finding the Wannier states is equivalent to solving
the complete eigenvalue problem. An approximate method is obtained by re-
placing the Wannier functions by functions with similar properties. It was
demonstrated in Section 18.2 on the tight-binding approximation that atomic
wavefunctions offer a good approximation to the Wannier functions. By way
of example we saw how to construct a wavefunction satisfying the Bloch con-
dition using a single s- or three p-states. To generalize this procedure, we shall
build the functions φj(k, r) to be used in (19.1.1) from the atomic wavefunc-
tions wj(r − Rm) in the form

φj(k, r) =
1√
N

∑
m

eik·Rmwj(r − Rm) , (19.1.10)

which satisfies the Bloch condition. The label j stands for the set of quantum
numbers n, l, and ml that characterize the atomic states, with each possible
value allowed. The band states are thus linear combinations of atomic orbitals
– just like molecular orbits were built up of atomic states in Chapter 4. The
method is called LCAO method in the present context, too, even though we
now aim at constructing states that extend over the entire crystal.

In an alternative interpretation of the method one starts with the Wannier
representation of the wavefunction ψnk(r) and writes the Wannier function
φn(r −Rm) as the linear combination of the complete set of atomic orbitals:

φn(r − Rm) =
∑

j

cnj(k)wj(r − Rm) . (19.1.11)

In the space of these functions the matrix elements are

Hij(k) =
∫
φ∗i (k, r)H(r)φj(k, r) dr (19.1.12)

=
1
N

∑
mm′

e−ik·(Rm′−Rm)

∫
w∗

i (r − Rm′)H(r)wj(r − Rm) dr .
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Of the double sum over the lattice points one can be evaluated since the
integral ∫

w∗
i (r − Rm′)

[
− �

2

2me
∇2 + U(r)

]
wj(r − Rm) dr (19.1.13)

depends only on the difference Rl = Rm′ − Rm because of the periodicity of
U(r). Therefore

Hij(k) =
∑

l

e−ik·RlEij(Rl) , (19.1.14)

where
Eij(Rl) =

∫
w∗

i (r − Rl)H(r)wj(r) dr . (19.1.15)

Similarly, the quantities Sij(k) characterizing the overlap between wavefunc-
tions can be written as

Sij(k) =
∫
φ∗i (k, r)φj(k, r) dr

=
1
N

∑
mm′

e−ik·(Rm′−Rm)

∫
w∗

i (r − Rm′)wj(r − Rm) dr

=
∑

l

e−ik·RlSij(Rl) , (19.1.16)

where
Sij(Rl) =

∫
w∗

i (r − Rl)wj(r) dr . (19.1.17)

Off-diagonal elements appear because the atomic wavefunctions centered on
different atoms are not orthogonal.

The quantity Eij(Rl) in the matrix element Hij(k) can be further simpli-
fied by making use of the Schrödinger equation (18.2.1) of the atomic problem:

Eij(Rl) =
∫
w∗

i (r − Rl)
[
− �

2

2me
∇2 + U(r)

]
wj(r) dr (19.1.18)

= εjSij(Rl) +
∫
w∗

i (r − Rl) [U(r) − va(r)]wj(r) dr .

Using the notation

γij(Rl) = −
∫
w∗

i (r − Rl) [U(r) − va(r)]wj(r) dr , (19.1.19)

we have

Hij(k) = εjSij(k) −
∑

l

e−ik·Rlγij(Rl) = εjSij(k) − γij(k) , (19.1.20)
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where γij(k) is the Fourier transform of γij(Rl). Specifying the energy eigen-
values is therefore equivalent to solving the equation

det
[
(εj − εk)Sij(k) − γij(k)

]
= 0 . (19.1.21)

When the atomic wavefunctions are known, these matrix elements and
overlap integrals can be determined. An exact solution would require using
the complete set of atomic states. An approximate result is obtained if a
finite set of atomic states is considered. Note that by choosing a single atomic
state or several degenerate atomic states, the tight-binding approximation is
recovered. Obviously, the description is better when a larger number of atomic
orbitals are taken. Figure 18.21 illustrating the formation of bands shows
that those atomic states mix most whose energies are close together. If there
is considerable mixing (hybridization) between s- and p-states that belong to
the same principal quantum number, then the matrix elements in a 4×4 block
will be important. The solution of the eigenvalue problem is therefore reduced
to the diagonalization of such a matrix. For s–d hybridization a 6× 6 secular
equation must be solved. Even when p-states are also taken into account, the
matrix remains small, 9 × 9.

19.1.3 Plane-Wave Method

Another possibility is to choose plane waves, exp(ik ·r), instead of the atomic
functions as the complete set of functions in the expansion (19.1.1). To satisfy
the requirement of completeness, the wave vectors k must not be restricted
to the first Brillouin zone: all equivalent vectors k + G must also be allowed.
This amounts to using the functions

φj(k, r) =
1√
V

ei(k+Gj)·r . (19.1.22)

These functions satisfy the condition (19.1.2), and constitute a complete and
orthonormal set:

Sij(k) =
1
V

∫
e−i(Gi−Gj)·r dr = δij . (19.1.23)

The matrix elements of the Hamiltonian are

Hij(k) =
1
V

∫
e−i(k+Gi)·r

[
− �

2

2me
∇2 + U(r)

]
ei(k+Gj)·r dr

=
�

2

2me
(k + Gj)2δij + Uij , (19.1.24)

where

Uij =
〈
k + Gi

∣∣U ∣∣k + Gj

〉
=

1
V

∫
e−i(Gi−Gj)·rU(r) dr (19.1.25)
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is the Fourier transform of the potential. By substituting these formulas into
(19.1.6), nontrivial solutions exist if

det
([

�
2

2me
(k + Gi)2 − εk

]
δij + Uij

)
= 0 . (19.1.26)

The equation for the expansion coefficients in the wavefunction of the solution
with energy εnk is[

�
2

2me
(k + Gi)2 − εnk

]
cni(k) +

∑
j

Uijcnj(k) = 0 . (19.1.27)

Leaving a volume factor aside, this expression is identical to the general for-
mula (18.1.2) obtained in the nearly-free-electron approximation, provided
cnk(Gj) in (18.1.2) is identified with cnj(k) above. This is natural, since the
choice of a plane-wave basis corresponds to writing the wavefunction as

ψnk(r) =
1√
V

∑
j

cnj(k)ei(k+Gj)·r , (19.1.28)

which, in turn, is equivalent to expanding the lattice-periodic function unk(r)
in the Bloch function into a Fourier series of the reciprocal-lattice vectors as

unk(r) =
1√
V

∑
j

cnj(k)eiGj ·r . (19.1.29)

In the nearly-free-electron approximation we solved the system of equa-
tions iteratively – and did not go beyond the first iteration step. To understand
how degeneracies are lifted, a mere 2 × 2 block was considered. Nonetheless
the method can be applied, in principle, to arbitrary potentials, and energies
can be calculated exactly by using sufficiently large matrices. This may be
necessary even in simple metals, since the method in its above form does not
distinguish between the localized core electrons and the mobile ones that ac-
count for conduction phenomena: the former are also constructed from plane
waves. The calculation of the full band structure may require hundreds or
even thousands of plane waves. The diagonalization of matrices of this size
would not pose any difficulty to present-day computers, however the slow
convergence of numerical techniques encourages the application of improved
methods based on physical insight.

19.1.4 Orthogonalized-Plane-Wave Method

In crystalline solids, where all energy eigenstates are organized into bands,
the bands formed by relatively strongly bound core states lie much below the
Fermi energy and are narrow on account of the small overlap between neigh-
boring atoms. For example, in aluminum, 1s, 2s, and 2p states are considered
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to belong to the core, and they give rise to narrow bands. Bands that lie
closer to the Fermi energy – such as the bands formed by 3s and 3p electrons
in aluminum – are broader. In the present chapter we shall call these broader
bands valence bands, since their electrons participate in chemical bonding. In
metals we shall further distinguish partially filled conduction bands, as elec-
trons in these are responsible for the metallic conductivity. Note that the
terms conduction band and valence band are used in a slightly different sense
in connection with semiconductors.

Both in the plane-wave method and the LCAO method, each band is
treated on the same footing, even though the LCAO method, which uses
atomic states, is expected to work better for low-lying narrow bands, while
the plane-wave method seems to be more adapted to the description of
valence-band states. Based on this observation, C. Herring (1940) proposed
a method in which core states and valence-band states are treated differently.

The narrow bands of core electrons – which remain well localized in the
crystal, too – can be approximated well by using the atomic wavefunctions
wα(r−Rm) of core states in place of the Wannier functions. In what follows,
we shall use the index α only for core states. The Bloch functions associated
with them are chosen as

φα(k, r) =
1√
N

∑
m

eik·Rmwα(r − Rm) , (19.1.30)

much like in the LCAO approximation. To describe valence-band states using
the expansion (19.1.1), another set indexed by j has to be added. We shall
choose the plane-wave-like basis functions φj(k, r) with the requirement that
they be orthogonal to the wavefunctions φα(k, r) made up of core states, that
is, ∫

φ∗α(k, r)φj(k, r) dr = 0 . (19.1.31)

This approach is called the orthogonalized-plane-wave (OPW) method.
Our task is significantly simplified: only the functions that belong to the

same (equivalent) wave vectors k need to be considered, as those that belong
to nonequivalent ks are a priori orthogonal. Just like in the Gram–Schmidt
orthogonalization,1 the set of functions to be used in (19.1.1) is sought in the
form

φj(k, r) =
1√
V

ei(k+Gj)·r −
∑
α

μα(k + Gj)φα(k, r) , (19.1.32)

that is, by subtracting a linear combination of core wavefunctions from the
plane wave. The coefficients μα are determined from the requirement that
(19.1.31) should be satisfied. Assuming that the functions φα(k, r) constructed
from the core states are approximately orthogonal, the equation
1 This procedure allows one to construct an equivalent orthonormalized set of func-

tions from linearly independent elements of a Hilbert space.
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μα(k + Gj) =
1√
V

∫
ei(k+Gj)·r′

φ∗α(k, r′) dr′

=
1√
NV

∑
m

∫
ei(k+Gj)·(r′−Rm)w∗

α(r′ − Rm) dr′

=
1√
v

∫
ei(k+Gj)·r′

w∗
α(r′) dr′ (19.1.33)

is obtained, where v is the volume of the primitive cell. In the last step we
made use of the property that each cell contributes equally. Substituting this
back into (19.1.32), we find

φj(k, r) =
1√
V

ei(k+Gj)·r −
∑
α

φα(k, r)
1√
V

∫
φ∗α(k, r′)ei(k+Gj)·r′

dr′ .

(19.1.34)
In concise Dirac notation this reads

|φj(k)〉 = |k+Gj〉−
∑
α

|φα(k)〉〈φα(k)|k+Gj〉 = (1−P )|k+Gj〉 , (19.1.35)

where orthogonality is ensured by the projection operator

P =
∑
α

|φα(k)〉〈φα(k)| . (19.1.36)

Using these OPW functions φj(k, r) as basis functions in the expansion
(19.1.1), and exploiting the properties that plane waves are eigenfunctions of
the kinetic energy operator, and the φα(k, r) are eigenfunctions of the full
Hamiltonian with energy εα, the equation to be solved is

�
2

2me
(k + Gi)

2
cni(k) +

∑
j

Uijcnj(k)

−
∑

j

∑
α

εαμ
∗
α(k + Gi)μα(k + Gj)cnj(k)

= εkcni(k) −
∑

j

∑
α

εkμ
∗
α(k + Gi)μα(k + Gj)cnj(k) .

(19.1.37)

The secular equation, which determines the energies of the nontrivial solu-
tions, can be written in a form that resembles (19.1.26):

det
([

�
2

2me
(k + Gi)2 − εk

]
δij + Γij

)
= 0 , (19.1.38)

where

Γij = Uij +
∑
α

(εk − εα)μ∗α(k + Gi)μα(k + Gj) . (19.1.39)
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Since in addition to the potential, Γij also contains the contribution of
core electrons, to establish the same level of accuracy far fewer terms need to
be taken into account in the numerical calculations based on this approach
than in the plane-wave method. Note, however, that Γij itself contains the
energy that is to be determined, therefore the equation needs to be solved
self-consistently.

As a simple example, consider the case where wavefunctions orthogonalized
to the 1s core state are used. Taking the wavefunction of the 1s state of
hydrogen as atomic wavefunction,

w1s(r) = (1/a30π)
1/2e−r/a0 . (19.1.40)

From (19.1.33), the coefficient μ1s(k) is

μ1s(k) = 〈φ1s(k)|k〉 =
1√
v
(1/a30π)

1/2

∫
eik·r′−r′/a0 dr′

=
1√
v
8(π/a0)1/2 a20

(1 + a20k
2)2

,

(19.1.41)

while the wavefunction of the orthogonalized plane wave associated with the
vector Gj = 0 of the reciprocal lattice is

φ(k, r) =
1√
V

eik·r − 1√
V

∑
m

eik·Rme−|r−Rm|/a0
8

(1 + a20k
2)2

. (19.1.42)

Since this wavefunction has nodes, the convergence of 2s-type states is reached
much more easily by using φ(k, r) than by using only plane waves in their
construction. While this achievement is undoubtedly significant, the most im-
portant implication of the OPW method from today’s perspective is that it
lead to the pseudopotential method.

19.1.5 Pseudopotential Method

In the orthogonalized-plane-wave method relatively good approximate eigen-
values can be obtained for the valence-band states by means of a small number
of basis functions that are orthogonal to the core states. As J. C. Phillips
and L. Kleinman pointed out in 1959 by comparing (19.1.38) and (19.1.26),
the energy eigenvalues obtained in the OPW method with a small number of
orthogonalized plane waves can be recovered using the same number of sim-
ple plane waves in the plane-wave method if the potential U(r) is replaced by
an effective potential whose matrix elements are the quantities Γij . Choosing
once again, by way of example, the wavefunctions orthogonal to the 1s core
state, which lead to the coefficients μ1s(k) given in (19.1.41), and using the
Fourier transform of the bare Coulomb potential in (19.1.39) and (19.1.41),
we find
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Γij = − 4πẽ2

|Gi − Gj |2 +
64πa30
v

εk − ε1s

[1 + a20(k + Gi)2]2[1 + a20(k + Gj)2]2
,

(19.1.43)
which clearly shows that the positive correction partially compensates the neg-
ative contribution of the bare Coulomb potential, and the effective potential
specified by Γij is no longer singular.

To put it differently: the description based on the plane-wave method can
be made equivalent to the OPW method, leading to identical valence-band
energies, if the effects of core electrons are not taken into account in the wave-
function but in a suitably chosen potential. In a certain sense this resembles
the renormalization procedure presented in Appendix M of Volume 3, in which
those states whose energies are far from the energy of interest are eliminated
by absorbing their effects into an interaction, leading to a modified potential.

Treating the problem along the same lines but more generally than in the
OPW method, we shall assume that the solutions of the Schrödinger equation
are known in a certain, low-lying, energy range:

[H0 + U(r)]φα(k, r) = εαkφα(k, r) , (19.1.44)

and that the eigenfunctions can be constructed from the atomic functions
wα(r − Rm) as if they were Wannier functions, just like in the tight-binding
approximation. In the energy range above, the eigenfunctions are constructed,
according to (19.1.1), from a set of functions φj(k, r) satisfying the Bloch
condition and the requirement that these functions should be orthogonal to
the core states φα(k, r).

Another set of functions φ̃j(k, r) is then defined with the yet unknown
coefficients μjα(k):

φ̃j(k, r) = φj(k, r) +
∑
α

μjα(k)φα(k, r) . (19.1.45)

The orthogonality of the functions φj and φα implies that

μjα(k) =
∫
φ∗α(k, r′)φ̃j(k, r′) dr′ . (19.1.46)

Expanding the functions φα on the basis of atomic functions, and exploiting
the translational property of the Bloch functions φ̃j ,

μjα(k) = N1/2

∫
w∗

α(r)φ̃j(k, r) dr . (19.1.47)

Expressing φj(k, r) from (19.1.45), and substituting it into (19.1.1), we find

ψnk(r) =
∑

j

cnj(k)

[
φ̃j(k, r) −

∑
α

μjα(k)φα(k, r)

]
. (19.1.48)
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Acting on both sides by the Hamiltonian, and making use of the eigenvalue
equation of the core states, a slight rearrangement of the terms leads to the
following form of the Schrödinger equation:

H
∑

j

cjn(k)φ̃j(k, r)+
∑

j

cjn(k)
∑
α

(εnk − εαk)μjα(k)φα(k, r)

= εnk

∑
j

cjn(k)φ̃j(k, r) .
(19.1.49)

Note that if (19.1.46) is used for μjα(k), and the pseudo-wavefunction is
written as

ψ̃nk(r) =
∑

j

cnj(k)φ̃j(k, r) , (19.1.50)

then (19.1.49) is just

Hψ̃nk(r) +
∫
W (r, r′)ψ̃nk(r′) dr′ = εnkψ̃nk(r) , (19.1.51)

where

W (r, r′) =
∑
α

φ∗α(k, r′) [εnk − εαk]φα(k, r)

=
∑
α

|φα〉 [εnk − εαk] 〈φα| .
(19.1.52)

Rewriting (19.1.51) as∫
H̃(r, r′)ψ̃nk(r′) dr′ = εnkψ̃nk(r) , (19.1.53)

where

H̃(r, r′) =
[
− �

2

2me
∇2

r + U(r)
]
δ(r − r′) +W (r, r′) , (19.1.54)

one may say that the energy eigenvalues εnk of the original problem can be
obtained from a Schrödinger equation with an effective nonlocal potential

V (r, r′) = U(r)δ(r − r′) +W (r, r′) , (19.1.55)

called the pseudopotential, and the eigenfunctions are just the pseudo-wave-
functions ψ̃nk(r).

Compared to the OPW method, the functions φ̃j(k, r) in the expansion of
ψ̃nk(r) correspond to plane waves, and φj(k, r) to plane waves orthogonalized
to the core states. One may therefore say that if it is enough to take a few
orthogonalized plane waves in the OPW method then only the coefficients
associated with the same plane waves will be important in the expansion
(19.1.50) when the pseudopotential W (r, r′) is used.
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This implies that if the pseudopotential were known, the band structure
could be described in terms of a small number of plane waves. To understand
this physically, consider the diagonal matrix elements of the pseudopotential.
The quantity

〈φk|W |φk〉 =
∑
α

(εk − εαk) |〈φk|ψαk〉|2 (19.1.56)

is positive in the energy range of interest, since the energies εαk of the bands
of core states are lower than the energies of the valence bands. The negative
potential of the ions is smoothed out by this positive contribution, therefore
instead of the deep atomic potential well electrons move in a relatively weak
pseudopotential, almost freely. This is why the conduction electrons of metals
can often be described in the free-electron picture.

Besides nonlocality, another important property of the pseudopotential
is its dependence on the energy that is to be determined, even though this
dependence can be ignored if the energies of the core states are sufficiently
far from the energies of the band of interest. We have ample freedom in the
choice of the new wavefunction and, together with it, the pseudopotential. In
general, the wavefunction should be chosen to be as smooth as possible. As
M. H. Cohen and V. Heine pointed out in 1961, the optimal choice for the
pseudopotential and the pseudo-wavefunction satisfy the equation

V |ψ̃k〉 = (1 − P )U |ψ̃k〉 +
〈ψ̃k|(1 − P )U |ψ̃k〉
〈ψ̃k|(1 − P )|ψ̃k〉

P |ψ̃k〉 . (19.1.57)

However, this pseudopotential is nonlinear. In the linearized approximation,
the plane-wave expansion of the pseudo-wavefunction gives

V |k〉 = U |k〉 +
∑
α

[
�

2k2

2me
+ 〈k|V |k〉 − εα

]
|α〉〈α|k〉 . (19.1.58)

In practical applications one often chooses an even simpler form, a smooth,
energy-independent, local potential that contains only a few parameters.
These are determined from a comparison with some experimental results –
for example, from the requirement that the correct value should be recovered
for the energy of core states, or that the spectrum of lattice vibrations should
lead to the correct value of the sound velocity. This choice is supported by
the following arguments: The energy independence can be justified because
the investigated energies are relatively far from the energies of the core states,
thus the factor εnk − εαk in W can be taken constant. To understand the
requirement of locality, the Schrödinger equation (19.1.51) expressed in terms
of the pseudopotential can be formally rewritten as

Hψ̃nk(r) +W ′(r)ψ̃nk(r) = εnkψ̃nk(r) , (19.1.59)

where
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W ′(r)ψ̃nk(r) =
∑
α

∫
φ∗α(k, r′) [εnk − εαk]φα(k, r)ψ̃nk(r′) dr′. (19.1.60)

Since the functions φα(k, r) describe core states, when they are given in the
Wannier representation there is hardly any overlap between terms that belong
to different atoms, thus the potential W ′(r) takes the form

W ′(r) =
∑
Rm

v′a(r − Rm) . (19.1.61)

The rapid decay of the core wavefunctions justifies the approximation that
the potential is constant inside the core, while outside it decays as

v′a(r) = A
e−κr

r
, (19.1.62)

where A and κ have to be determined from the comparison of experimental
data with the theoretical values calculated from the band structure. Naturally,
other forms are equally possible.

19.2 Variational Methods and Methods Based on
Scattering Theory

The previous methods were all based on a set2 of wavefunctions that satisfy
the Bloch condition, and the matrix elements of the Hamiltonian as well as
the overlap integrals were determined for these. As an alternative approach,
one may first solve the problem of electron states in the region close to the
atomic core, inside the Wigner–Seitz cell, in the presence of the potential felt
there, and then use variational methods, Green functions, or methods based
on scattering theory to determine the band structure of the entire crystal.

19.2.1 Augmented-Plane-Wave Method

In the OPW method the separation between core states characterized by
atomic wavefunctions and plane-wave-like valence-band states was based on
the energies of the states. In 1937 J. C. Slater proposed using functions
of another kind, in which the core part of the wavefunction and the plane-
wave-like part in the region between ion cores are treated separately in real
space.

Suppose that the potential shows considerable variations only in a small
region around the atoms, within a sphere of radius rMT that fits into the
Wigner–Seitz cell, and can be approximated by a constant value in the regions
between the spheres. This potential is called the muffin-tin potential. The
equipotential lines of a two-dimensional section are shown in Fig. 19.1.
2 A complete set in principle, but in practice they contained only a few terms.
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rMT

Fig. 19.1. Equipotential lines of the muffin-tin potential in square and hexagonal
lattices

In the region between the nonoverlapping muffin-tin spheres, where the
potential can be set to zero without loss of generality, the wavefunction can be
represented by a plane wave. On the other hand, inside the muffin-tin spheres
the wavefunction is obtained as the solution of the Schrödinger equation with
the potential.

Consider a single muffin-tin sphere first. Since the potential va(r) in its
interior is spherically symmetric, the solutions of the Schrödinger equation
can be expanded in the spherical harmonics Y m

l (θ, ϕ):

φ(r) =
∑
lm

ClmRl(ε, r)Y m
l (θ, ϕ) , (19.2.1)

where θ and ϕ are the polar and azimuthal angles of the position vector r. To
determine the amplitude Rl, the Laplacian is written in polar coordinates. Ex-
ploiting the properties of spherical harmonics leads to the radial Schrödinger
equation

− �
2

2me

[
∂2

∂r2
+

2
r

∂

∂r
− l(l + 1)

r2

]
Rl + va(r)Rl = εRl , (19.2.2)

which has to be solved inside the muffin-tin sphere in the presence of the
atomic potential va.

The coefficients Clm are determined from the requirement that this wave-
function should match smoothly with the plane-wave solution at the surface
of the muffin-tin sphere – that is,

φ(k, r) =

⎧⎨⎩
∑
lm

Clm(k)Rl(ε, r)Y m
l (θ, ϕ) 0 ≤ r ≤ rMT ,

exp(ik · r)/
√
V rMT < r ≤ rWS

(19.2.3)

should be continuous at rMT. Such solutions are called augmented plane waves,
and the method is the APW method.
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Using expansion (C.4.38) for the plane wave,

eik·r = 4π
∞∑

l=0

+l∑
m=−l

iljl(kr)Y m
l

∗(θk, ϕk)Y m
l (θ, ϕ) , (19.2.4)

where θk and ϕk are the polar and azimuthal angles of the vector k, it is
straightforward to show that the k-dependent coefficient Clm is

Clm(k) =
4π√
V

ilY m
l

∗(θk, ϕk)
jl(krMT)
Rl(ε, rMT)

. (19.2.5)

The wavefunction can also be calculated for a periodic array of muffin-tin
spheres, when the lattice-periodic potential is the sum of the potentials of
individual muffin-tin spheres:

U(r) =
∑

n

va(r − Rn) . (19.2.6)

In the region between muffin-tin spheres the plane wave obviously satisfies
the Bloch condition. The same condition can be satisfied within the muffin-
tin spheres if the wavefunctions inside individual spheres are summed using
suitably chosen phase factors:

φ(k, r + Rn) = eik·Rnφ(k, r) . (19.2.7)

Nonetheless we shall not be concerned with this condition below, since it is
sufficient to solve the eigenvalue problem inside a single cell.

These functions are eigenfunctions of the Schrödinger equation (with eigen-
value ε) inside the muffin-tin sphere, but not outside of it, therefore the linear
combination of several augmented plane waves needs to be taken. Since the
total wavefunction must also satisfy the Bloch condition with a wave vector
k, we shall choose, just like in the plane-wave and orthogonalized-plane-wave
methods, those functions as φj(k, r) that can be obtained from φ(k, r) by the
substitution k → k + Gj :

ψk(r) =
∑

j

cj(k)φj(k, r) =
∑

j

c(k + Gj)φ(k + Gj , r) . (19.2.8)

In what follows, we shall use the notation kj = k + Gj .
At this point we could revert to the matrix method. The difficulty lies in

the fact that even though the function defined in (19.2.3) is continuous at the
surface of the muffin-tin spheres, its derivative is not. For physical reasons,
the continuity of its derivative has to be ensured, too. This requirement can
be fulfilled most easily by using variational methods.

It is well known that for the lowest-energy state the Schrödinger equation
is equivalent to the statement that the quantity
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ψ∗

k(r) [H(r) − ε]ψk(r) dr (19.2.9)

has its minimum at the actual wavefunction; ε is a Lagrange multiplier through
which the normalization condition of the wavefunction is taken into account,
and the minimum of the energy is given by the value of ε at the minimum.
We shall now demonstrate that for integrals over the Wigner–Seitz cell this
problem is equivalent to the variational problem for the quantity

�
2

2me

∫
v

|∇ψk(r)|2 dr +
∫
v

ψ∗
k(r) [va(r) − ε]ψk(r) dr . (19.2.10)

Taking their difference and applying Green’s theorem, we obtain∫
v

[
|∇ψk(r)|2 + ψ∗

k(r)∇2ψk(r)
]

dr =
∫
v

∇ [ψ∗
k(r)∇ψk(r)] dr

=
∫

dS ψ∗
k(r)

∂ψk(r)
∂n(r)

,

(19.2.11)

where the integral is over the surface S of the Wigner–Seitz cell, and n(r) is
the unit normal of the surface at r. Owing to the Bloch condition, on opposite
faces of the Wigner–Seitz cell separated by a lattice vector Rm,

∂ψk(r + Rm)
∂n(r + Rm)

= −eik·Rm
∂ψk(r)
∂n(r)

. (19.2.12)

Making use of this relation and the Bloch condition for ψ∗
k, the right-hand

side of (19.2.11) is found to vanish.
When the wavefunction in (19.2.10) is expanded in terms of the augmented

plane waves, and the coefficients c(kj) in (19.2.8) are varied, some tedious
algebra, which we shall not reproduce here, leads to the following determinant
equation for the eigenvalues:

det
([

�
2

2me
(k + Gi)2 − ε

]
δij + ΓAPW

ij

)
= 0 , (19.2.13)

where

ΓAPW
ij =

4πr2MT
V

�
2

2me

{
−
[
(k + Gi)(k + Gj) − 2meε

�2

]
j1(|Gi − Gj |rMT)

|Gi − Gj |
(19.2.14)

+
∑

l

(2l + 1)Pl(cos θij)jl(|k + Gi|rMT)jl(|k + Gj |rMT)
R′

l(ε, rMT)
Rl(ε, rMT)

}
,

and θij is the angle between ki and kj . Comparison with (19.1.26) shows
that the obtained formula is similar to that of the plane-wave method, but
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now ΓAPW
ij appears instead of the matrix elements of the potential. The ΓAPW

ij

depend on the potential only through the values of the radial wavefunction and
its derivative at the muffin-tin radius. Since the functions Rl inside the muffin-
tin sphere also depend on the energy ε itself, this is not a simple eigenvalue
problem. It can be solved by iteration, improving the energy and wavefunction
step by step. The more complicated form is more than compensated for by
the more rapid convergence of the method compared to previously discussed
techniques.

Note that if the primitive cell contains several atoms then the muffin-tin
spheres have to be constructed for each of them and the appropriate functions
have to be matched at the surface for each sphere.

19.2.2 Green Function or KKR Method

As put forward by J. Korringa (1947), W. Kohn, and N. Rostoker
(1954), the band structure in a periodic potential can also be considered from
the standpoint that Bloch states are formed as a consequence of multiple
scattering events by the periodic potential. The Korringa–Kohn–Rostocker or
KKR method uses scattering theoretical methods to determine the band struc-
ture. The method is often referred to as the Green function method, since it
is customarily formulated in terms of the Green function of electrons moving
in the lattice.

The potential of choice is the muffin-tin potential in this method, too,
which means that the total potential is written as the sum of spherically
symmetric atomic potentials. However, the radius of the sphere is not the
radius rMT of the muffin-tin sphere inscribed in the Wigner–Seitz cell; instead
it is chosen in such a way that the volume of the sphere be equal to that of
the cell. Even though the spheres overlap, they do so only slightly, thus the
effects of overlapping are expected to be small. This approach is called the
atomic-sphere approximation (ASA).

In connection with the scattering of free electrons by impurities, the free-
electron Green function was introduced in (16.4.3) with the definition[

− �
2

2me
∇2 − ε

]
G(r − r′) = −δ(r − r′) . (19.2.15)

It was shown there that its solution is

G(r − r′) = − me

2π�2

eiκ|r−r′|

|r − r′| , (19.2.16)

where κ =
√

2meε/�2, and also that the real part of the right-hand side,

Gs(r − r′) = − me

2π�2

cosκ|r − r′|
|r − r′| , (19.2.17)
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is a solution in itself. As we shall see the two choices correspond to traveling-
and standing-wave solutions. Expanding them into spherical harmonics and
Bessel functions in the region r < r′,

G(r − r′) =
2me

�2
κ
∑
lm

Y m
l (θ, ϕ)Y m

l
∗(θ′, ϕ′)jl(κr) [nl(κr′) − ijl(κr′)] ,

(19.2.18)
where θ, ϕ and θ′, ϕ′ are the polar and azimuthal angles of the vectors r and
r′, respectively, and

Gs(r − r′) =
2me

�2
κ
∑
lm

Y m
l (θ, ϕ)Y m

l
∗(θ′, ϕ′)jl(κr)nl(κr′) . (19.2.19)

The formula valid in the region r > r′ is obtained by exchanging the variables
r and r′ and the corresponding angular variables.

In the presence of the atomic potentials the Schrödinger equation can be
written as [

− �
2

2me
∇2 − ε

]
ψ(r) = −U(r)ψ(r) . (19.2.20)

It is readily seen from this form that the solution satisfies the homogeneous
integral equation

ψ(r) =
∫
G(r − r′)U(r′)ψ(r′) dr′ . (19.2.21)

If the potential is the sum of isolated muffin-tin potentials, and the solution
in a periodic potential is characterized by a wave vector k,

ψk(r) =
∑

n

∫
G(r − r′)va(r′ − Rn)ψk(r′) dr′ . (19.2.22)

By changing the variables and making use of the translational properties of
the Bloch functions, this can be rewritten as

ψk(r) =
∑

l

∫
v

G(r − r′ − Rl)va(r′)ψk(r′ + Rl) dr′

=
∫
v

G(k, r − r′)va(r′)ψk(r′) dr′ ,
(19.2.23)

where integration is over a single Wigner–Seitz cell (or atomic sphere), and

G(k, r − r′) =
∑

n

eik·RnG(r − r′ − Rn)

= − me

2π�2

∑
n

exp(iκ|r − r′ − Rn|)
|r − r′ − Rn| eik·Rn .

(19.2.24)
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This quantity, which satisfies the relation

G(k, r + Rm − r′) = eik·RmG(k, r − r′) (19.2.25)

for translations, is the structural Green function, since everything that is char-
acteristic of the structure (i.e., the arrangement of atoms) is lumped into it.
Separating the parts that are regular and singular at r = r′, the form

G(k, r − r′) =
2me

�2

∑
lm,l′m′

jl(κr) {Alm,l′m′jl′(κr′)

+ κδlm,l′m′nl(κr′)}Y m
l (θ, ϕ)Y m′

l′
∗
(θ′, ϕ′)

(19.2.26)

is assumed, as suggested by the free Green function formula (19.2.18). The
coefficients will be determined from an alternative representation of the Green
function.

Using now plane waves for φk(r) in the method employed in Section 17.6,
the Green function is expanded as

G(r − r′) =
∑

k

ak(r′)φk(r) . (19.2.27)

Substituting this formula into the equation for the Green function, and making
use of the identity [

− �
2

2me
∇2 − εk

]
φk(r) = 0 (19.2.28)

for plane waves it is straightforward to show that

ak(r′) =
φ∗k(r′)
ε− εk , (19.2.29)

hence
G(r − r′) =

∑
k

φ∗k(r′)φk(r)
ε− εk . (19.2.30)

The part of the Green function that transforms according to the wave
vector k under translations is obtained by summing over the equivalent vectors

kj = k + Gj . (19.2.31)

Since the corresponding wavefunctions and energies are

φj(r) =
1√
V

ei(k+Gj)·r and εj =
�

2(k + Gj)2

2me
, (19.2.32)

the solution of the equation for the Green function is

G(k, r − r′) =
1
V

∑
j

ei(k+Gj)·(r−r′)

ε− �2(k + Gj)2/2me
. (19.2.33)
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The series expansion of the exponential according to (C.4.38) gives

G(k, r − r′) = − (4π)2

V

∑
l,m

l′,m′

∑
j

il−l′ jl(|kj |r)jl′(|kj |r′)
�2k2

j/2me − ε
(19.2.34)

×Y m
l (θ, ϕ)Y m′

l′
∗
(θ′, ϕ′)Y m

l
∗(θj , ϕj)Y m′

l′ (θj , ϕj) ,

where θ, ϕ and θ′, ϕ′ are the polar and azimuthal angles of the vectors r and
r′, respectively.

From the comparison of the two formulas for the Green function we have

Alm,l′m′ =
(4π)2

V

il−l′

jl(κr)jl′(κr′)

∑
j

jl(|kj |r)jl′(|kj |r′)
κ2 − k2

j

× Y m
l

∗(θj , ϕj)Y m′
l′ (θj , ϕj) − κδll′δmm′

nl(κr′)
jl(κr′)

.

(19.2.35)

Through the sum over the vectors of the reciprocal lattice, these coefficients
contain information about the structure, which is why they are called structure
constants. They can be determined once and for all, and they can be looked
up in standard references.

When the Green function is known, the wavefunction and the energy eigen-
value can be determined using (19.2.23). Instead of trying to solve these equa-
tions in a self-consistent way, we shall demonstrate that they can be derived
from a variational problem – much in the same way as in the APW method.
Starting with the quantity

Λ =
∫
v

ψ∗
k(r)va(r)ψk(r) dr

−
∫
v

∫
v′

ψ∗
k(r)va(r)G(k, r − r′)va(r′)ψk(r′) dr′ dr ,

(19.2.36)

the requirement
δΛ = 0 (19.2.37)

imposed on its variations with respect to ψ∗
k(r) gives (19.2.23), regardless

of whether or not the function satisfies the boundary condition. It can also
be shown that Λ itself also vanishes when the exact function ψk(r) is used.
Therefore when the equation

Λ(ψ,k, ε) = 0 (19.2.38)

is solved for ε using an approximate function ψ(r), the error will be small of the
second order. We shall exploit this property to determine the eigenfunctions
and eigenvalues from this variational problem.
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Adapted to the muffin-tin potential, the wavefunction is expanded in spher-
ical harmonics,

ψk(r) =
∑
lm

Clm(k)Rl(ε, r)Y m
l (θ, ϕ) , (19.2.39)

where Rl(ε, r) is the solution of the radial Schrödinger equation. Substituting
this into the expression for Λ leads to a formula that is quadratic in Clm(k):

Λ =
∑

lm,l′m′
C∗

lm(k)Λlm,l′m′(k)Cl′m′(k) . (19.2.40)

Stationarity requires that∑
l′m′

Λlm,l′m′(k)Cl′m′(k) = 0 (19.2.41)

for every l and m. Nontrivial solutions exist if

det (Λlm,l′m′) = 0 . (19.2.42)

By determining the matrix elements in this formula, and using the solution
of the equation (19.2.15) for the Green function that also satisfies condition
(19.2.25), the following form is obtained after some tedious algebra:

det
(
Alm,l′m′ + κδll′δmm′

Ll(κ, rMT)nl(κrMT) − κn′l(κrMT)
Ll(κ, rMT)jl(κrMT) − κj′l(κrMT)

)
= 0 ,

(19.2.43)
where

Ll(κ, rMT) =
1
Rl

dRl

dr

∣∣∣∣
r=rMT

. (19.2.44)

In addition to the spherical Bessel and Neumann functions, this formula also
contains their derivatives

j′l(x) =
djl(x)

dx
and n′l(x) =

dnl(x)
dx

. (19.2.45)

The potential appears only through the values of the wavefunction and its
derivative at the muffin-tin radius.

Note that by using (19.2.35) for Alm,l′m′ , the equation for the energy
eigenvalue can be written in a form analogous to (19.2.13) in the KKR method,
too:

det
([

�
2

2me
(k + Gi)2 − ε

]
δij + ΓKKR

ij

)
= 0 , (19.2.46)

where

ΓKKR
ij =

4πr2MT
V

2me

�2

∑
l

(2l + 1)Pl(cos θij)jl(|ki|rMT)jl(|kj |rMT)

×
[
R′

l(κ, rMT)
Rl(κ, rMT)

− κj
′
l(κrMT)
jl(κrMT)

]
. (19.2.47)
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Comparison with the results obtained with the APW method gives

ΓKKR
ij = ΓAPW

ij − Γ 0
ij , (19.2.48)

where Γ 0 is the empty-lattice value for ΓAPW; in this case the radial function
Rl in (19.2.14) is just the spherical Bessel function jl.

19.2.3 Physical Interpretation of the KKR Method

The results obtained with the Green function method can be given a simple
interpretation when the Bloch states are considered to arise from the inter-
ference of beams scattered multiply by ions. Before showing this, we rewrite
the KKR equations in an equivalent form.

As discussed in Chapter 16 in connection with the state of electrons scat-
tered by an impurity, the scattered partial waves can be characterized by
phase shifts δl with respect to the incoming partial wave in the region where
the potential is negligible. The potential appears only through these δl. We
shall now show that the quantity

Ll(κ, rMT)nl(κrMT) − κn′l(κrMT)
Ll(κ, rMT)jl(κrMT) − κj′l(κrMT)

, (19.2.49)

which appears in (19.2.43) in addition to the structure constant, is related
to the phase shift in a particularly simple manner, and that (19.2.43) is just
the self-consistency condition that the wave incident on any muffin-tin sphere
should be equal to the sum of the waves scattered by all others.

In the region outside the muffin-tin sphere, where the potential vanishes,
the radial Schrödinger equation (19.2.2) can be solved in terms of spheri-
cal Bessel and Neumann functions by making use of (C.3.43). The complete
solution is sought in the form of the linear combination

Rl(κ, r) ∼ jl(κr) cos δl − nl(κr) sin δl , (19.2.50)

where δl is the phase shift of the lth partial wave, since asymptotic forms
imply

Rl(κ, r) ∼ 1
κr

sin[κr + δl − πl/2] . (19.2.51)

When this formula, which is valid outside the muffin-tin sphere, is matched
at the surface of the sphere to the value obtained from the numerical solution
of the Schrödinger equation in the interior, the relation

Ll(κ, rMT) =
1

Rl(κ, rMT)
dRl(κ, r)

dr

∣∣∣∣
r=rMT

= κ
j′l(κrMT) cos δl − n′l(κrMT) sin δl
jl(κrMT) cos δl − nl(κrMT) sin δl

(19.2.52)
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arises, in which the prime stands for the derivative with respect to the argu-
ment. Then

tan δl =
Ll(κ, rMT)jl(κrMT) − κj′l(κrMT)
Ll(κ, rMT)nl(κrMT) − κn′l(κrMT)

, (19.2.53)

which is precisely the inverse of the quantity which appeared in (19.2.43),
therefore the KKR equations can be rewritten as

det (Alm,l′m′ + κδll′δmm′ cot δl) = 0 . (19.2.54)

The effects of the potential can be fully absorbed in the phase shifts. This
form will now be given an intuitive interpretation.

Had we used the spherical Hankel functions h(1)
l = jl + inl instead of the

spherical Neumann functions in (19.2.50), we would have started with the
form

Rl(κ, r) ∼ jl(κr) + ieiδl sin δlh
(1)
l (κr) . (19.2.55)

Generalizing this, in the presence of a single scattering potential, the wave-
function can be expanded into spherical Bessel and Hankel functions as

φ(r) =
∑
lm

[
almjl(κr) + blmh

(1)
l (κr)

]
Y m

l (θ, ϕ) , (19.2.56)

where the coefficients are related by

blm = ieiδl sin δl alm . (19.2.57)

In view of the asymptotic behavior of the spherical Bessel functions at small
and large values of r, the first term may be considered as an incoming wave,
and the second as an outgoing wave.

For a periodic array of muffin-tin potentials the total wavefunction is cho-
sen as

ψk(r) =
∑

j

eik·Rjφ(r − Rj) (19.2.58)

to meet the Bloch condition. Now consider a point r outside the muffin-tin
sphere in the Wigner–Seitz cell of the ith lattice point. The wavefunction can
be considered to be composed of incoming and outgoing terms. The system
is in a stationary state when the incoming wave in the ith cell is equal to the
sum of the outgoing waves from the other (j �= i) cells. For the cell around
the origin this implies∑

lm

almjl(κ|r|)Y m
l (θi, ϕi)

=
∑
j �=i

eik·Rj

∑
l′m′

bl′m′h
(1)
l (κ|r − Rj |)Y m′

l′ (θj , ϕj) ,
(19.2.59)
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where θj and ϕj are the angular variables of the vector r − Rj . Using the
common notation f for spherical Bessel, Neumann, and Hankel functions,
and making use of their addition theorems,

fl(r′′)Y m
l (θ′′, ϕ′′) =

∑
l′,l′′

m′

il
′+l′′−l(−1)m(2l′ + 1)(2l′′ + 1)C(l, l′, l′′;m,m′)

×jl′(r)Y m′
l′ (θ, ϕ)fl′′(r′)Y m−m′

l′′ (θ′, ϕ′) , (19.2.60)

where r′′ = r + r′ (while θ′′ and ϕ′′ are the corresponding angular variables),
and C can be expressed in terms of Wigner 3j symbols or Clebsch–Gordan
coefficients. Rewriting the right-hand side of (19.2.59), and equating the co-
efficient of jl(r)Y m

l (θ, ϕ) on the two sides leads to an equation of the form

alm =
∑
l′m′

Glm,l′m′bl′m′ . (19.2.61)

Exploiting (19.2.57), the homogeneous system of equations∑
l′m′

[
Glm,l′m′ + i

e−iδl

sin δl
δll′δmm′

]
bl′m′ = 0 (19.2.62)

is obtained for the coefficients blm. Introducing Alm,l′m′ defined by

Glm,l′m′ =
i
κ
Alm,l′m′ − δll′δmm′ , (19.2.63)

and making use of the specific form of the coefficients Glm,l′m′ , it can be
demonstrated that this leads to a system of equations that is indeed equiva-
lent to the KKR equation (19.2.54). It is also clear from the result that the
structure constant Alm,l′m′ depends on the structure alone, and that the po-
tential appears only through the phase shifts. The convergence of the method
is determined by the phase shifts. In general, it is sufficient to focus on the
partial waves l = 0, 1, 2, 3, leading to a 16 × 16 determinant.

19.2.4 LMTO Method

In the matrix methods we chose a complete set of basis functions that were in-
dependent of the energy to be determined, and had to compute the eigenvalues
of the matrix made up of the matrix elements in this basis.

On the other hand, we used energy-dependent partial waves in the muffin-
tin method, and the equations for the one-particle energies were obtained from
the matching conditions. The resulting system of equations is nonlinear in the
energy, and therefore its numerical solution is more difficult than for a fixed
basis. This difficulty can be overcome by applying a linear method based on
energy-independent muffin-tin orbitals, the LMTO (linear muffin-tin orbital)
method.
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The wavefunction ψk(r) is once again constructed from the solutions ob-
tained for individual muffin-tin spheres, as

ψk(r) =
∑
lm

Blm(k)
∑

j

eik·Rjφlm(r − Rj) , (19.2.64)

with a suitable choice of the muffin-tin orbitals φlm(r). Owing to the spherical
symmetry of the potential, the angular dependence can be specified in terms
of spherical harmonics, while in the radial part, inside the radius rAS of the
atomic sphere a suitably chosen smooth function is added to the function
Rl(ε, r) obtained from the solution of the radial Schrödinger equation:

φlm(r) = ilY m
l (θ, ϕ)

[
Rl(ε, r) + pl(ε)

(
r

rAS

)l
]

r < rAS . (19.2.65)

Outside the atomic sphere, where the potential vanishes, the radial wavefunc-
tion is now not chosen as a plane wave (like in the APW method) but as
(rAS/r)l+1, the solution of the Laplace equation with zero kinetic energy that
vanishes at infinity, since it satisfies

∇2
(rAS

r

)l+1

≡
[
∂2

∂r2
+

2
r

∂

∂r

](rAS

r

)l+1

=
l(l + 1)
r2

(rAS

r

)l+1

, (19.2.66)

hence
φlm(r) = ilY m

l (θ, ϕ)
(rAS

r

)l+1

r > rAS. (19.2.67)

The coefficient pl(ε) is determined from the condition that the wavefunction
should be continuous across the surface of the sphere,

pl(ε) =
Dl(ε) + l + 1
Dl(ε) − l , (19.2.68)

where
Dl(ε) =

rAS

Rl(ε, rAS)
∂Rl(ε, r)
∂r

∣∣∣
r=rAS

. (19.2.69)

Having fixed the form of the wavefunction, the following procedure could
be used to evaluate the single-particle energies. The correct value of the radial
wavefunction inside the muffin-tin sphere is known to be Rl(ε, r). An extra
term was added to this inside the muffin-tin sphere. Moreover, the external
wavefunctions associated with other muffin-tin spheres also reach into this
region. To recover the correct solution, the two must cancel, that is,

∑
lm

Blm(k)
[
pl(ε)ilY m

l (θ, ϕ)
(
r

rAS

)l

+
∑
j �=0

ilY m
l (θj , ϕj)

(
rAS

|r − Rj |
)l+1

eik·Rj

]
= 0 ,

(19.2.70)
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where θj and ϕj are the angular variables of the vector r−Rj . Exploiting the
known properties of the spherical harmonics, the second term can be expanded
about r = 0 as∑

j �=0

ilY m
l (θj , ϕj)

(
rAS

|r − Rj |
)l+1

eik·Rj

= −
∑
l′m′

Slm,l′m′(k)
2(2l′ + 1)

(
r

rAS

)l′

il
′
Y m′

l′ (θ, ϕ) .

(19.2.71)

The quantities Slm,l′m′(k) defined by this formula are called canonical struc-
ture constants. Canonical, as they depend on the structure alone and not the
energy, therefore they can be tabulated for various points of the Brillouin
zone.

Substituting this back into (19.2.70), we find

∑
ll′mm′

Blm(k)
[
pl(ε)δll′δmm′ − Slm,l′m′(k)

2(2l′ + 1)

](
r

rAS

)l′

il
′
Y m′

l′ (θ, ϕ) = 0 ,

(19.2.72)
and so ∑

lm

Blm(k)
[
2(2l + 1)pl(ε)δll′δmm′ − Slm,l′m′(k)

]
= 0 . (19.2.73)

The system of homogeneous linear equations for the coefficients Blm(k) has
nontrivial solutions if

det
[
2(2l + 1)pl(ε)δll′δmm′ − Slm,l′m′(k)

]
= 0 . (19.2.74)

The solutions of this equation are the energies for the wave vector k. As
mentioned above, the structure constant is energy-independent, and all in-
formation about the potential is contained in pl(ε) through the logarithmic
derivative Dl(ε).

This procedure is in the same spirit as the one in the KKR method. How-
ever, there are two essential differences. Firstly, instead of spherical Bessel
functions with energy-dependent arguments, functions associated with zero
energy are used outside the muffin-tin sphere. Secondly, the structure constant
is also energy-independent. Nonetheless the procedure requires the solution of
a system of equations that is nonlinear in the energy. As demonstrated by
O. K. Andersen (1975), relatively good accuracy can be achieved by em-
ploying yet another simplification: fixing the energy variable in Rl(ε, r) – and
thus in pl(ε) – at a particular value (for example the Fermi energy), and using
the arising energy-independent wavefunctions φlm(r) as the set of basis func-
tions in the matrix method to evaluate the energy eigenvalues. The resulting
equations provide one of the most efficient methods for calculating the band
structure.
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19.3 Band Structure and Fermi Surface of Simple Metals

As indicated by the foregoing discussion, band-structure calculations demand
considerable numerical effort in general. Without going into details, we shall
present the calculated band structure and Fermi surface of mono-, di-, tri-, and
tetravalent simple metals, and compare them with the experimental results.
As we shall see, the empty-lattice approximation often gives surprisingly good
pictures of the real Fermi surfaces of simple metals. We shall also observe the
failure of this simple method in transition metals, where d-electrons contribute
considerably to the metallic properties. We shall present only briefly some
characteristic features of their band structure.

Images of the calculated Fermi surfaces of metallic elements are available
on various dedicated websites, for example www.phys.ufl.edu/fermisurface/.

19.3.1 Monovalent Metals

The elements of groups 1 (IA) and 11 (IB) of the periodic table – alkali metals
and noble metals – are monovalent. Their electronic and crystalline structure
are summarized in Table 19.1.

Table 19.1. The electronic and crystalline structure of monovalent metals

Element Electronic Crystalline Element Electronic Crystalline
structure structure structure structure

Li 1s2 2s1 bcc
Na [Ne] 3s1 bcc
K [Ar] 4s1 bcc Cu [Ar] 3d10 4s1 fcc
Rb [Kr] 5s1 bcc Ag [Kr] 4d10 5s1 fcc
Cs [Xe] 6s1 bcc Au [Xe] 4f14 5d10 6s1 fcc

Alkali metals crystallize in body-centered cubic structure – even though
for lithium and sodium this phase becomes stable only above T = 77K and
T = 23 K, respectively. Hydrogen is different, as its structure in the solid
phase contains two atoms per primitive cell – which explains why it is an in-
sulator rather than a metal. Under high pressure, solid hydrogen also becomes
metallic, but the properties of this phase are relatively little known.

Figure 19.2 shows the calculated band structure of sodium in certain spe-
cial directions of the Brillouin zone of the bcc lattice. Comparison with the
result for the empty bcc lattice shown in Fig. 18.4 indicates that accidental
degeneracies are lifted at the zone boundary (and also at the zone center for
higher-lying bands), and it is also there that the dispersion relation exhibits
the largest deviations from the form obtained in the empty-lattice approxi-
mation, nevertheless the effects of the potential are essentially weak. In agree-
ment with this observation, the constant-energy surfaces, which are spherical
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Fig. 19.2. The band structure of sodium, calculated by the LCAO method
[Reprinted with permission from W. Y. Ching and J. Callaway, Phys. Rev. B 11,
1324 (1975). ©1975 by the American Physical Society]

in an empty lattice, undergo substantial distortion only in the vicinity of the
zone boundary when the periodic potential is turned on. Therefore barring
exceptional cases – namely, when the Fermi surface is close to the zone bound-
ary –, the nearly-free-electron model can be a suitable starting point for the
calculation of the Fermi surface.

Let us compare the radius of the Fermi sphere obtained in the empty-lattice
approximation with the dimensions of the Brillouin zone in a bcc lattice.
According to (18.1.17), the Fermi momentum in monovalent metals is

kF = 0.620(2π/a) . (19.3.1)

Among the points located on the boundaries of the rhombic dodecahedral
Brillouin zone of the bcc lattice, the face center N = (2π/a)( 1

2 ,
1
2 , 0) is closest

to the zone center. Its distance from Γ is

ΓN = (2π/a)
√

( 1
2 )2 + (1

2 )2 = 0.707(2π/a) . (19.3.2)

This is larger than kF, thus the Fermi sphere is entirely inside the first Brillouin
zone in the empty-lattice approximation, as shown in Fig. 18.10. The same is
illustrated in two sections of the Brillouin zone in Figs. 19.3(a) and (b).

As kF is over 10% smaller than ΓN , the measured Fermi surfaces are al-
most perfectly spherical in alkali metals where the potential is weak: deviations
are on the order of a few percent. The distorted Fermi sphere is completely
inside the Brillouin zone, as shown in Fig. 19.3(c) for sodium. Consequently,
the metallic properties of alkali metals can be very well explained in the free-
electron model, just the electron mass needs to be replaced by an effective
mass. This effective mass appears in the low-temperature specific heat of elec-
trons, as well as in the cyclotron resonance and the de Haas–van Alphen
effect (to be discussed later). The effective masses derived from the experi-
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Fig. 19.3. (a) and (b): Fermi sphere of radius kF in two sections of the Brillouin
zone. (c): Fermi surface for the conduction electrons of sodium

mental data on specific heat and the motion of electrons in a magnetic field
are listed in Table 19.2.

Table 19.2. The ratio of the Bloch electron effective mass to the electron mass for al-
kali metals. m∗

ds is the density-of-states effective mass derived from low-temperature
specific-heat data, while mc is determined either from the cyclotron resonance or
the de Haas–van Alphen effect. For comparison, the calculated effective mass is also
given

Element m∗
ds/me mc/me m∗

calc/me

Li 2.168 1.8 1.66
Na 1.210 1.24 1.00
K 1.234 1.22 1.09
Rb 1.226 1.20 1.21
Cs 1.355 1.44 1.76

The picture is more complicated for noble metals. Over and above the
electrons on the closed core shells, which are irrelevant from the viewpoint
of metallic properties, 11 electrons have to be accommodated, which requires
six bands. In the tight-binding approximation these are mixed from d- and
s-states. In the LCAO method these six states would be used as basis. Mixing
is generally so strong that one can no longer speak of pure s- and d-type
bands. States close to the Fermi energy are dominantly s-type, nonetheless
the Harrison construction fails to account adequately for the Fermi surface of
noble metals.

To understand this, we shall compare the free-electron Fermi wave num-
ber with the dimensions of the Brillouin zone in this case, too. According to
(18.1.18), for monovalent metals with fcc structure

kF = 0.782(2π/a) . (19.3.3)
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Among the points of the zone boundary, L = (2π/a)( 1
2 ,

1
2 ,

1
2 ) is closest to the

center, at a distance of 0.866(2π/a). Thus the Fermi sphere is entirely inside
the first Brillouin zone in the empty-lattice approximation, as illustrated in
Fig. 18.11. Figure 19.4(a) shows the location of the Fermi sphere in a section
of the truncated-octahedron-shaped Brillouin zone.

( )a ( )b

K a���� (¾,¾,0)

U a���� (¼,¼,1)�

X a���� (0,0,1)

L a���� ( )½,½,½

Fig. 19.4. (a) Fermi sphere of radius kF in a section of the first Brillouin zone of
the fcc lattice. (b) Fermi surface for copper

In the presence of a weak periodic potential the Fermi surface is once again
expected to be almost spherical, with small humps toward points L. However,
as the free-electron Fermi sphere is now closer to the zone boundary than
in bcc lattices, a ten percent distortion of the Fermi sphere – in which d-
electrons may play a prime role – is sufficient for that the Fermi surface touch
the zone boundary. Measurements confirm that the spherical shape is indeed
distorted in such a way in noble metals. The Fermi surface is perpendicular
to the hexagonal faces in the neighborhood of the eight equivalent points L,
as illustrated in Fig. 19.4(b). This Fermi surface is similar to that shown in
Fig. 18.20. In the repeated-zone scheme the Fermi surface is not made up of
disjoint spheres: spherical regions are connected by “necks” along the [111]
directions. As we shall see, this has a profound influence on the motion of
electrons in magnetic fields.

The calculated band structure of copper is shown in Fig. 19.5. Note
that due to the “necks” of the Fermi surface along the [111] directions the
conduction-electron band remains below the Fermi energy along the whole
line connecting Γ with the center L of the hexagonal face of the Brillouin
zone. The Fermi energy is reached only at k vectors lying in the hexagonal
face between points L and W .

Similar band structures are obtained for other noble metals, and the Fermi
surfaces are also similar: spherical regions are connected by “necks” in the
extended-zone scheme. As we shall see in Chapter 21, the measured shapes of
the Fermi surfaces are in excellent agreement with this picture.
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Fig. 19.5. The band structure of copper along some special lines of the Brillouin
zone, calculated using the APW method [Reprinted with permission from G. A.
Burdick, Phys. Rev. 129, 138 (1963). ©1963 by the American Physical Society]

19.3.2 Divalent Metals

The elements of groups 2 (IIA) and 12 (IIB) of the periodic table – alkaline-
earth metals and the elements of the zinc group – are divalent. Their electronic
and crystalline structure are summarized in Table 19.3.

Table 19.3. The electronic and crystalline structure of divalent metals

Element Electronic Crystalline Element Electronic Crystalline
structure structure structure structure

Be 1s2 2s2 hcp
Mg [Ne] 3s2 hcp
Ca [Ar] 4s2 fcc Zn [Ar] 3d10 4s2 hcp
Sr [Kr] 5s2 fcc Cd [Kr] 4d10 5s2 hcp
Ba [Xe] 6s2 bcc Hg [Xe] 4f14 5d10 6s2 rhombohedral

Even though the outermost shell contains two electrons in the atomic
configuration, these materials are all metals. This can be understood most
easily in the nearly-free-electron model. In a bcc lattice kF = 0.782 (2π/a) for
two electrons per atom, which is larger than the distance ΓN , while in an fcc
lattice kF = 0.985 (2π/a), which is larger than the distance ΓL. In both cases
the free-electron Fermi sphere extends beyond the first Brillouin zone. Thus,
both the first and second Brillouin zones are only partially filled.

The Fermi surfaces obtained in the empty-lattice approximation for bcc
and fcc structures are shown in Figs. 18.10 and 18.11. Note that the Fermi
surface in the first Brillouin zone is not drawn around Γ but around H and
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X since in this representation the states that are farthest from Γ (and, conse-
quently, unoccupied) form connected regions around the edges joining points
H and P (for bcc), and edges joining points W (for fcc). In the first band
the so-called “monster” surrounds hole states, while the piece in the second
Brillouin zone corresponds to electron states.

Owing to the periodic potential of the lattice, the spherical Fermi surface
of free electrons becomes distorted. Nevertheless for small perturbations the
splitting at the zone boundary is not too large, therefore the allowed energies
of the bands overlap, even though identical energies are associated with dif-
ferent wave vectors in the two bands. This is illustrated in Fig. 19.6(a) for the
calculated band structure of calcium, which crystallizes in an fcc lattice. The
calculated Fermi surface is very similar to the one obtained from the Harrison
construction.

(a) (b)

Fig. 19.6. Calculated band structure of (a) calcium and (b) magnesium

The situation is similar for elements that crystallize in hcp structure. As
illustrated in Fig. 19.6(b), the bands that cross the Fermi energy overlap there,
too. The Fermi surface is rather complicated; its empty-lattice approximation
is shown in Fig. 19.7. The first Brillouin zone contains a “monster”, while
the states in the second Brillouin zone lead to a cigar- of lens-shaped Fermi
surface.

19.3.3 Trivalent Metals

Of the trivalent metals in group 13 (IIIA) of the periodic table, the band
structure calculated in the LCAO method for aluminum, which crystallizes in
fcc structure, was illustrated in Fig. 17.3. Although several bands cross each
other and get hybridized close to the Fermi surface, the shape of the Fermi
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Fig. 19.7. Fermi surface of divalent metals in an empty hcp lattice [Reprinted
with permission from W. A. Harrison, Phys. Rev. 118, 1190 (1960). ©1960 by the
American Physical Society]

surface is obtained fairly accurately in the nearly-free-electron approximation.
As shown in Fig. 18.11, the first Brillouin zone is completely filled. In the
second band, the occupied states are located close to the square and hexagonal
faces of the truncated octahedron, leading to a hole-type Fermi surface. A
“monster” appears in the third band, and tiny “pockets” in the fourth. The
potential of the lattice modifies the Fermi surface in such a way that electrons
are transferred from the fourth band to the second and third bands, and the
monster in the third band is transformed into a set of rings, as illustrated in
Fig. 19.8.

Fig. 19.8. Fermi surfaces in the second and third Brillouin zones for aluminum
[Reprinted with permission from W. A. Harrison, Phys. Rev. 116, 555 (1959). ©1959
by the American Physical Society]
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19.3.4 Tetravalent Elements

The band structure of two prominent representatives of the carbon group
[group 14 (IVA)], silicon and germanium, will be studied in detail in Chap-
ter 20. We shall see that they are semiconductors: their Fermi energy lies in a
gap. Below we shall briefly overview the band structure and Fermi surface of
lead, which crystallizes in fcc structure and exhibits metallic properties (see
Figure 19.9(a)).

(a) (b)

Fig. 19.9. (a): Calculated band structure for lead. (b): Fermi surface in the third
Brillouin zone [Reprinted with permission from J. R. Anderson and A. V. Gold,
Phys. Rev. 139, A1459 (1965). ©1965 by the American Physical Society]

The metallic character is the consequence of the Fermi energy lying in
two bands. The Fermi surface in Fig. 18.11 obtained for tetravalent metals in
the empty-lattice approximation is composed of similar pieces as for trivalent
metals, just the “monster” is somewhat bulkier, and the “pockets” are larger.
This picture is in good agreement with the measured Fermi surface shown in
Fig. 19.9(b).

19.3.5 Band Structure of Transition Metals and Rare-Earth
Metals

The elements located between group 2 (IIA; alkaline-earth metals) and group
13 (IIIA; boron group) – that is, the elements of groups 3 through 12 – are
called transition metals. In their atomic state a d-shell (the 3d-, 4d-, or 5d-
shell) is partially filled – or even when it is completely filled, as in groups 11
and 12, these states do not lie deep. Therefore, in solids the bands formed
by d-electrons are close to the Fermi energy, and the latter can cross these
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bands. Another consequence is that, apart from the elements of groups 11
and 12, the properties of transition metals are principally determined by the
d-electrons, in contrast to the elements studied above. Using the nearly-free-
electron approximation for describing these bands is totally unjustified, and
their Fermi surfaces bear hardly any resemblance to those obtained with the
Harrison construction. Figure 19.10 shows the Fermi surfaces for molybdenum
and tungsten obtained in the Lomer model.3

(a) (b)

Fig. 19.10. Fermi surface proposed for (a) molybdenum and (b) tungsten

In transition metals the width of the d-band is usually smaller than the
usual width of the conduction band in simple metals, and this narrow region
must contain sufficiently many states to accommodate ten electrons. The den-
sity of states is therefore higher than usual, and this value appears in the
low-temperature specific heat as well as the Pauli susceptibility.

A particular difficulty appears in the band-structure calculation of magnet-
ically ordered transition metals. This manifests itself through the spin depen-
dence of the energy eigenvalues: spin-up and spin-down electrons do not fill up
the same energy levels, and the net magnetization is the result of the unequal
number of occupied spin-up and spin-down states. To account for this, the
band structures have to be calculated separately albeit self-consistently; this
requires more complex methods than those discussed above. By way of exam-
ple, the calculated band structure of ferromagnetic iron is shown in Fig. 19.11.

In rare-earth metals the 4f level is partially filled in the atomic configura-
tion, therefore the 4f-band is expected to lie close to the Fermi energy, just like
the d-band of transition metals. But this is not the case: electrons around the
Fermi energy have hardly any 4f character: the latter are fairly well localized
in a rather narrow band deep below the Fermi energy. This result cannot be
consistently interpreted in the one-particle picture. The inapplicability of this
picture to rare-earth metals is due to electron–electron correlations. The study
of such correlations remains one of the most exciting subjects of solid-state
physics to date. We shall examine certain aspects in Volume 3.
3 W. M. Lomer, 1962.
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Fig. 19.11. The band structure of ferromagnetic iron calculated by the LCAO
method [Reprinted with permission from J. Callaway and C. S. Wang, Phys. Rev.
B 16, 2095 (1977). ©1977 by the American Physical Society]

19.4 Experimental Study of the Band Structure

Diverse experimental methods are available for measuring the energy spec-
trum of Bloch electrons, their band structure, or the shape of the Fermi
surface. Some of them allow the direct determination of the energy versus
wave vector relation, at least over a part of the Brillouin zone. Other methods
provide information about the topology and characteristic parameters of the
Fermi surface. The latter are based in part on the property that the shape of
the Fermi surface can be inferred from the motion of electrons in a magnetic
field. We shall discuss these methods in some detail in later chapters. Below
we shall give a brief account of some other techniques.

19.4.1 Positron Annihilation and Compton Scattering

When a beam of high-energy positrons is incident on a solid, the positrons
lose most of their kinetic energy because of the interactions with the electrons
in the solid. They are slowed down rather quickly (in about 10−12 seconds) to
thermal energies (about 25 meV). Then they annihilate with the conduction
electrons in about 10−10 seconds, emitting two γ photons. Assuming that the
momentum of the positron is negligible compared to that of the conduction
electron, the conservation of energy (applied to the relativistic expression of
energy) and the conservation of momentum lead to the following equations:
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mec
2 + c

√
(mec)2 + p2

e = �(ω1 + ω2) ,
pe = �(k1 + k2) .

(19.4.1)

The energy of the photons cannot be less then the electron rest energy, about
0.5MeV. Since the kinetic energy of the electron is only a few eV, it can be
neglected in the energy balance. This leads to

k1 ≈ k2 ≈ mec
2

�c
(19.4.2)

for the photon wave number. The ratio of pe and �ki is also small, on the
order of 10−3. Consequently, the two annihilation photons are emitted in
almost opposite directions, making an angle π − θ, where θ is likewise small.
This is shown in Fig. 19.12.

Fig. 19.12. A pair of photons emitted in nearly opposite directions in a positron–
electron annihilation process

Using (19.4.2) in the equation of momentum conservation, the component
of the wave vector of the annihilated electron along the angular bisector of
the directions of the two emitted photons is

kz = 2
mec

�
sin
(

1
2θ
) ≈ mec

�
θ . (19.4.3)

This component can thus be determined from the measured angle between
two photons in coincidence. For a spherical Fermi surface the maximum value
of kz is kF. This corresponds to a cut-off angle θmax: the angle between the
directions of the two emerging photons cannot be larger than this value. By
measuring θmax, the Fermi momentum can be determined.

In the usual measurement setup the two other components of the electron
wave vector are not measured separately but are integrated out. Therefore be-
low the critical angle the intensity of the emitted γ radiation shows a quadratic
angular dependence. The angular correlation observed in experiments is dif-
ferent: anisotropic, as shown in Fig. 19.13. This provides information about
the shape of the Fermi surface.

Similar results are obtained in the approach based on the Compton scat-
tering4 of X-rays by the solid. When hitting an electron at rest, the γ photon
transfers a part of its energy to the electron, thus the scattered photon will be
4 Arthur Holly Compton (1892–1962) was awarded the Nobel Prize in 1927

“for his discovery of the effect named after him”.
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Fig. 19.13. Measurement results of angular correlation in electron–positron anni-
hilation in a copper single crystal for two different orientations of the sample. A
sketch of the Fermi surface is shown in the upper part [K. Fujiwara and O. Sueoka,
J. Phys. Soc. Japan 21, 1947 (1966)]

of lower energy, i.e., of larger wavelength.5 From the conservation of energy
and momentum, the change in the photon wavelength is

Δλ =
h

mec
(1 − cos θ) =

2h
mec

sin2
(

1
2θ
)
, (19.4.4)

where θ is the scattering angle (the angle between the directions of the in-
coming and outgoing photons), and λC = h/mec is the Compton wavelength.
If the incident beam is monochromatic, the photons scattered in a particular
direction are found to be monoenergetic (i.e., of the same wavelength).

This is not observed in experiments performed on metals, since the con-
duction electrons, by which the photons are scattered, cannot be considered
to be at rest. Owing to the motion of the electrons, an additional Doppler
5 In reality, Compton scattering is a two-step process. The electron absorbs the

incident photon, and then emits a photon of different energy – or the photon
emission may just as well precede the absorption of the incident photon.
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shift occurs. This causes a broadening of the lines of well-defined energies in a
way that depends on the momentum distribution of the electrons. The shape
of the Fermi surface can be inferred from the Compton line shape (profile),
that is, the Doppler broadening of the Compton line.

19.4.2 Photoelectron Spectroscopy

In Compton scattering, only a small part of the energy of the incoming X-
ray photon is transferred to an electron, the larger part is taken away by the
emitted X-ray photon, and the wavelength of the latter is measured. However,
the photon may transfer all its energy to the electron, and if the electron’s
energy exceeds the work function (photoemission threshold), which is usually
on the order of a few eV, electron emission occurs. This is the photoelectric
effect, which was first observed by H. Hertz in 1887. Its correct interpretation
in terms of the quantized nature of light was given in 1905 by A. Einstein.
By measuring the kinetic energy of the emitted electron one can infer the band
structure. Figure 19.14 shows a simple band structure with the corresponding
photoemission spectrum.
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Fig. 19.14. Connection between the band structure of electrons (schematic repre-
sentation on the left-hand side) and the photoelectron spectrum (right-hand side)

Due in great part to K. Siegbahn’s work6 photoelectron (or photoemis-
sion) spectroscopy (PES) became one of the most widely used methods for
the experimental study of electron states in solids. The same method applied
to ultraviolet radiation in the range 10–50 eV is called ultraviolet photoelec-
tron (photoemission) spectroscopy (UPS). It is suited above all to studying the
6 Kai Manne Börje Siegbahn (1918–2007) was awarded the Nobel Prize in 1981

“for his contribution to the development of high-resolution electron spectroscopy”.
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states of the valence band. When soft X-rays (of energies in the keV range) are
used, the method is called X-ray photoelectron (photoemission) spectroscopy
(XPS). Because of the high energies involved, this is particularly adapted to
the determination of the energies of deep core states,7 nevertheless valence-
band states can also be studied using high-resolution devices.

Identical processes occur in both cases. When an electron of energy εi
occupying a level below the Fermi energy absorbs a photon of energy �ω, it
moves up to the excited state of energy

εf = εi + �ω , (19.4.5)

which is so much above the vacuum energy level that the electron can leave
the solid. Referring the energies to the Fermi energy, the kinetic energy of the
emitted electron is

εkin = εf − Φ , (19.4.6)

where Φ is the work function, i.e., the distance of the vacuum energy level
from the Fermi energy. From the conservation of energy,

εkin = �ω − Φ− |εi| . (19.4.7)

Since the number of electrons emitted at a given kinetic energy is proportional
to the density of states at the corresponding initial state, this method provides
experimental information about the electronic density of states. Figure 19.15
shows the density of states for copper, the XPS spectrum derived from it, and
the measured spectrum.
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Fig. 19.15. (a) The density of occupied states for copper. (b) The XPS spectrum de-
rived from this (solid line) and the measured spectrum (dashed line) [M. Lähdeniemi
et al., J. Phys. F: Metal Phys. 11, 1531 (1981)]

7 Besides being specific to the element, the energies of these levels also depend
on the chemical environment, i.e., the type of bonding. Therefore XPS is also
suitable for the chemical analysis of surfaces, which is why it is often referred to
as ESCA, electron spectroscopy for chemical analysis.
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The reverse process is used in inverse photoemission spectroscopy (IPES).
When a high-energy electron beam hits the sample, an electron can be trapped
in an unoccupied state above the Fermi energy, while the energy difference is
taken away by an emitted photon. This phenomenon is called bremsstrahlung
(braking radiation). For this reason, the method is also called bremsstrahlung
isochromat spectroscopy (BIS). It provides direct information about the elec-
tronic density of states above the Fermi energy.

The techniques presented above measure the spectrum against energy:
the distribution is integrated over the angular variables. The advent of high-
intensity synchrotron radiation sources opened the way to sufficiently accu-
rate measurements of the angular distribution of electrons emitted at spec-
ified energies. This method, called angle-resolved photoemission spectroscopy
(ARPES), gives more details of the electronic band structure. Figure 19.16
shows the photoemission spectrum of GaAs for various values of the azimuthal
angle and two different polar angles.

Fig. 19.16. Variations in the photoemission spectrum of GaAs with the azimuthal
angle, for two different polar angles [Reprinted with permission from N. V. Smith and
M. M. Traum, Phys. Rev. Lett. 31, 1247 (1973). ©1973 by the American Physical
Society]
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A complete theoretical description of ARPES can be given by using the
Green function technique of the many-body problem.8 To obtain a qualitative
picture, we shall denote the initial energy inside the solid by εi, the energy
of the emitted electron by εf, and the corresponding wave vectors by ki and
kf. The conservation of energy and momentum9 in the photoelectric process
implies

εi + �ω = εf , k
‖
i = k

‖
f + G‖ . (19.4.8)

In the second equation we exploited the property that below 100 eV, a typical
energy used in ARPES measurements, the wave number of the photon is much
smaller than that of the electron, and momentum conservation (which is valid
up to a reciprocal-lattice vector) holds only for the component parallel to the
surface: as translational symmetry is broken, the conservation of momentum
does not apply to the perpendicular component. By measuring the kinetic
energy of the emitted electron, the energy of its initial state inside the solid
can be reconstructed by using the relation

εkin = εi + �ω − εvac . (19.4.9)

On the other hand, for electrons emitted in a given direction characterized
by the polar angle θ measured from the surface normal and the azimuthal
angle ϕ with respect to a preferred crystallographic direction of the crystal,
the relations

kfx =
(2meεkin)1/2

�
sin θ cosϕ , kfy =

(2meεkin)1/2

�
sin θ sinϕ (19.4.10)

can be used to calculate the components of k that lie in the surface. It is
more complicated to determine the component perpendicular to the surface:
it requires comparison with other measurements or assuming a nearly-free-
electron-like behavior. The dispersion relation of electrons can be determined
from spectra measured in different directions. The band structure obtained in
this way for copper is shown in Fig. 19.17 for two directions of the Brillouin
zone.

The problem related to the perpendicular component of the wave vector
k does not arise in quasi-two-dimensional layered systems. High-Tc supercon-
ductors are typical examples, therefore ARPES is ideally suited to the study
of their electronic structure.

Electron states in solids can also be investigated using the reflection or
absorption of photons in the optical region. We shall examine this possibility
in Chapter 25.
8 The intensity of photoemission is proportional to the spectral function – that is,

the imaginary part of the single-particle Green function. Thus ARPES provides
direct insight into the electronic structure of the many-body system.

9 More precisely, the conservation of crystal momentum is required, otherwise the
photon could not be absorbed by the crystal.
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Fig. 19.17. The energy distribution of photoelectrons emitted by the (100) surface
of copper for three polar angles, and the band structure of copper along the line
ΓKX of the Brillouin zone determined from ARPES data [Reprinted with permis-
sion from P. Thiry et al., Phys. Rev. Lett. 43, 82 (1979). ©1979 by the American
Physical Society]
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Electronic Structure of Semiconductors

Since the invention of the transistor in 1947–1948, and especially the start of
the mass production of integrated circuits and microprocessors, semiconductor
devices have played an ever increasing role in modern information technology
as well as many other applied fields. The optical properties of semiconductors,
which set them distinctly apart of metals, are also exploited in a wide range
of applications. In addition to being very important for materials science, the
study of semiconductors is of great interest for fundamental research as well,
as a great number of new phenomena can be observed in them. For example,
the discovery of the quantum Hall effect arose from the possibility of creating
semiconductor heterojunctions in which the electron gas is practically confined
to a two-dimensional region next to the interface. This opened the way to the
study of the properties rooted in the two-dimensional character of the system.
Besides, very high purity materials can be fabricated from semiconductors,
which is a prerequisite to studying certain physical phenomena.

To derive the physical properties of semiconductors from first principles,
we have to familiarize ourselves with the characteristic properties of their elec-
tronic structure. The methods of band-structure calculation presented in the
previous chapter can be equally applied to metals and insulators, so they can
just as well be used for the description of the electronic structure of semi-
conductors. However, the devices designed to exploit the physical properties
of semiconductors practically never use pure crystals: the number of charge
carriers is controlled by doping the semiconductor components with impuri-
ties. Therefore we shall also study the states formed around impurities, and
how the energy spectrum is modified by them. The phenomena required to
understand the operation of semiconductor devices, as well as the particular
conditions arising close to the interfaces and in inhomogeneous semiconductor
structures will be presented in Chapter 27, after the discussion of transport
phenomena.
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20.1 Semiconductor Materials

As mentioned earlier, a characteristic property of semiconductors is that their
resistivity falls between that of metals and insulators. An even more interesting
feature is the temperature dependence of resistivity. In contrast to metals
and semimetals, it increases exponentially with decreasing temperature in
pure semiconductors: � ∝ exp(ε0/kBT ). The Hall coefficient RH is positive in
several cases, which can be interpreted by assuming that the principal charge
carriers in these materials are not electrons but holes. It is also known from
the behavior of the Hall coefficient that, in contrast to metals, the number of
carriers depends strongly on temperature.

This is in perfect agreement with a band structure in which the bands that
are filled completely in the ground state are separated from the completely
empty bands by a forbidden region, a gap, whose width εg is finite but not
much larger than the thermal energy kBT . In semiconductors the highest band
that is completely filled in the ground state is called the valence band, while
the lowest completely empty band is called the conduction band. Current can
flow only when charge carriers – electrons in the conduction band and holes
in the valence band – are generated by thermal excitation.

As we shall see, the probability of generating carriers by thermal excita-
tion is proportional to exp(−εg/2kBT ) because of the finite gap. If the band
gap is around εg ∼ 5 eV, this probability is about e−100 or 10−45 at room
temperature (kBT ∼ 0.025 eV). Since the total electron density is on the or-
der of 1023 per cm3, the conduction band contains practically no electrons.
However, when the gap is only 1 eV, the excitation probability is 10−9 because
of the exponential dependence, and so the density of thermally excited elec-
trons is 1014/cm3. Such a number of mobile charges gives rise to observable
phenomena.

The resistivity of semiconductors is very sensitive to the presence of impu-
rities. For this reason, pure stoichiometric semiconductors are of much smaller
practical importance than doped ones. Nonetheless we shall start our discus-
sion with pure materials.

20.1.1 Elemental Semiconductors

As mentioned in Chapter 17, elemental semiconductors are located in the
even-numbered groups of the periodic table, to the right of transition met-
als. Certain elements of the group IIIA (boron group)1 and the group VA
(nitrogen group) also occur in compound semiconductors. Table 20.1 shows
the electronic configuration of the outermost shell in the atomic state of the
elements of interest.

Elemental semiconductors are found in group IVA (carbon group), and
group VIA (oxygen group, chalcogens). The first element of the carbon group,
1 Following the conventions of semiconductor physics, we shall often use only the

traditional designation for the groups of the periodic table in this chapter.
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Table 20.1. Elements occurring in semiconductor materials, and the configuration
of their outermost shell in the atomic state

Group IIB Group IIIA Group IVA Group VA Group VIA

B 2s2 2p1 C 2s2 2p2 N 2s2 2p3 O 2s2 2p4

Al 3s2 3p1 Si 3s2 3p2 P 3s2 3p3 S 3s2 3p4

Zn 3d10 4s2 Ga 4s2 4p1 Ge 4s2 4p2 As 4s2 4p3 Se 4s2 4p4

Cd 4d10 5s2 In 5s2 5p1 Sn 5s2 5p2 Sb 5s2 5p3 Te 5s2 5p4

Hg 5d10 6s2 Tl 6s2 6p1 Pb 6s2 6p2 Bi 6s2 6p3 Po 6s2 6p4

carbon, has several allotropes. Even though not a semiconductor, diamond is
of great interest here as it features the same type of bonding and structure
as the other, semiconducting, elements of the group. The sp3 hybrid states
given in (4.4.52) of the outermost s- and p-electrons form four covalent bonds
in the directions of the vertices of a regular tetrahedron. This leads to the
diamond lattice shown in Fig. 7.16. As discussed in Chapter 4, in covalently
bonded materials the density of electrons is highest in the region between the
two atoms. This was illustrated for germanium in Fig. 4.5, where a section of
the spatial distribution of the valence electrons was shown in the vicinity of
the line joining neighboring atoms.

Of the elements of group IVA, the band structure of diamond and gray tin
(α-Sn) – both determined by the LCAO method – were shown in Fig. 17.10.
The band structure of silicon and germanium will be discussed in detail and
illustrated later (Figs. 20.2 and 20.5). In each case, there are further narrow
and completely filled bands below the shown bands. The lowest four of the
shown bands – which are partially degenerate along certain high-symmetry
directions – are formed by the s- and p-electrons that participate in cova-
lent bonding. In the ground state these bands are completely filled, since the
primitive cell contains two electrons with four valence electrons each. Except
for α-Sn, these four bands are separated by a finite gap from the higher-lying
ones (that are completely empty in the ground state).

Pure diamond is an insulator as its energy gap is 5.48 eV. However, when
doped, it exhibits the characteristic properties of semiconductors. The two
next elements of the carbon group, silicon (Si) and germanium (Ge) are good
semiconductors even in their pure form; their energy gap is close to 1 eV.
The measured data show a slight nonetheless clear temperature dependence.
This is due to the variations of the lattice constant, which modify the overlap
between the electron clouds of neighboring atoms, leading to an inevitable
shift of the band energies. The energy gap measured at room temperature
and the value extrapolated to T = 0 from low-temperature measurements are
listed in Table 20.2.

The fourth element of this group is tin. Among its several allotropes gray
tin is also a semiconductor, but it has hardly any practical importance. The



198 20 Electronic Structure of Semiconductors

Table 20.2. Energy gap at room temperature and at low temperatures for group
IVA elements

Element εg(300 K) (eV) εg(T = 0) (eV)

C 5.48 5.4
Si 1.110 1.170
Ge 0.664 0.744

energy gap is not listed in the table because there is no real gap in the band
structure. Nonetheless, as mentioned in Chapter 17, it behaves practically as
a semiconductor, since the density of states is very low at the bottom of the
conduction band, therefore electrons excited thermally at room temperature
do not occupy these levels but a local minimum of the conduction band.
Although this minimum is located 0.1 eV higher, it has a larger density of
states.

It is readily seen from the band structure and the values given in the table
that the gap decreases toward the high end of the column. Tin is followed by
lead, a metal whose band structure was shown in Fig. 19.9.

Among the elements of the oxygen group, selenium (Se) and tellurium (Te)
are the only semiconductors. The gap is 1.8 eV for Se and 0.33 eV for Te. In
these materials the outermost s- and p-electrons can form two covalent bonds
located along a helix, as shown in Fig. 7.24(a). The relatively weak van der
Waals forces between the chains are strong enough to ensure that selenium
and tellurium behave as three-dimensional materials.

20.1.2 Compound Semiconductors

Among covalently bonded compounds quite a few are semiconductors. For
that each s- and p-electron form saturated covalent bonds, the compound has
to be built up of cations and anions that give, on the average, four electrons to
the tetrahedrally coordinated bonds. This can be ensured in several different
ways. The simplest possibility is to build a compound of two elements of the
carbon group (group IVA) – or else an element of the boron group (group
IIIA) can be combined with one of the nitrogen group (group VA), or an
element of the zinc group (group IIB) with one of the oxygen group (group
VIA).

Among the compounds of the elements of the carbon group, silicon carbide
(SiC, also called carborundum) is particularly noteworthy. Its energy gap is
2.42 eV. In stoichiometric composition it is a good insulator, but a small excess
of carbon or other dopants turn it into a good semiconductor. For applications,
III–V (AIIIBV) and II–VI (AIIBVI) semiconductors are more important. As
their names show, these are compounds of elements in groups IIIA and VA,
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and IIB and VIA. Table 20.3 shows the room-temperature energy gap for a
small selection of them.

Table 20.3. Energy gap for III–V, II–VI, and I–VII semiconductors at room tem-
perature

III–V
compound

εg

(eV)
II–VI
compound

εg

(eV)
I–VII
compound

εg

(eV)

AlSb 1.63 ZnO 3.20 AgF 2.8
GaP 2.27 ZnS 3.56 AgCl 3.25
GaAs 1.43 ZnSe 2.67 AgBr 2.68
GaSb 0.71 CdS 2.50 AgI 3.02
InP 1.26 CdSe 1.75 CuCl 3.39
InAs 0.36 CdTe 1.43 CuBr 3.07
InSb 0.18 HgS 2.27 CuI 3.11

A large number of III–V and II–VI semiconductors crystallize in the spha-
lerite structure. The prototype of this structure, sphalerite (zinc sulfide) is
a semiconductor itself. As shown in Fig. 7.16, this structure can be derived
from the diamond structure by placing one kind of atom at the vertices and
face centers of a fcc lattice, and the other kind of atom at the center of the
four small cubes. The structure can also be considered to be made up of two
interpenetrating fcc sublattices displaced by a quarter of the space diagonal.
Thus each atom is surrounded tetrahedrally by four of the other kind. Here,
too, s- and p-electrons participate in bonding, however the bond is not purely
covalent on account of the different electronegativities of the two atoms.

In AIIIBV semiconductors the ion cores A3+ and B5+ stripped of their s-
and p-electrons do not attract electrons in the same way. Unlike in germanium
(Fig. 4.5), the wavefunction of the electrons forming the covalent bond – and
hence the density of the electrons – is not symmetric with respect to the
position of the two ions, as shown in Fig. 4.7 for GaP: it is biassed toward the
B5+ ions. This gives a slight ionic character to the bond.

The asymmetry is even more pronounced for II–VI semiconductors, and
the density maximum of the binding electrons is now even closer to the element
of group VIA, as illustrated in Fig. 4.7 for ZnSe. The bond is thus more
strongly ionic in character. The elements of the carbon group, for which no
such asymmetry occurs, are called nonpolar semiconductors, while III–V and
II–VI compounds are polar semiconductors.

Even more strongly polar are the compounds of the elements of groups
IB and VIIA. Some halides of noble metals behave as semiconductors, even
though their gap is rather large. Copper compounds feature tetrahedrally
coordinated bonds, but silver compounds do not: they crystallize in the sodium
chloride structure.
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It is worth comparing the properties of these compounds with those of
alkali halides (formed by elements of groups IA and VIIA). In the latter the
difference between the electronegativities of the two constituents is so large
that purely ionic bonds are formed instead of polarized covalent bonds. Con-
sequently the structure is also different, NaCl- or CsCl-type, and their gap
(listed in Table 20.4 for a few alkali halides) is much larger than in any pre-
viously mentioned case.

Table 20.4. Energy gap in some alkali halides

Compound εg (eV) Compound εg (eV) Compound εg (eV)

LiF 13.7 LiCl 9.4 LiBr 7.6
NaF 11.5 NaCl 8.7 NaBr 7.5
KF 10.8 KCl 8.4 KBr 7.4
RbF 10.3 RbCl 8.2 RbBr 7.4
CsF 9.9 CsCl 8.3 CsBr 7.3

In addition to those listed above, there exist further compound semi-
conductors with non-tetrahedrally coordinated covalent bonds. Tin and lead
(group IVA) form semiconducting materials with elements of the oxygen group
(group VIA) that crystallize in the NaCl structure. Elements of group IVA may
also form compound semiconductors with alkaline-earth metals (group IIA) in
the composition II2–IV (AII

2 BIV). Semiconductor compounds with a non-1:1
composition can also be formed by IB and VIA, or IIB and VA elements. The
best known examples are Cu2O (εg = 2.17 eV) and TiO2 (εg = 3.03 eV). The
gap is much narrower in some other compounds, as listed in Table 20.5.

Table 20.5. Energy gap in some compound semiconductors at low temperatures

Compound εg (eV) Compound εg (eV)

SnS 1.09 Mg2Si 0.77
SnSe 0.95 Mg2Ge 0.74
SnTe 0.36 Mg2Sn 0.36
PbO 2.07 Cu2O 2.17
PbS 0.29 Ag2S 0.85
PbSe 0.14 Zn3As2 0.86
PbTe 0.19 Cd3P2 0.50

Semiconducting properties are also observed in various nonstoichiometric
compounds and even amorphous materials.
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20.2 Band Structure of Pure Semiconductors

According to the foregoing, in the ground state of semiconductors the com-
pletely filled valence band is separated from the completely empty conduction
band by a narrow gap. We shall first examine the band structure of the two
best known semiconductors, silicon and germanium, focusing on how the en-
ergy gap is formed and how the bands closest to the chemical potential can
be characterized. To understand the band structure, we shall follow the steps
outlined in Chapter 18: start with the empty-lattice approximation, and deter-
mine how degeneracy is lifted and how gaps appear in the nearly-free-electron
approximation. We shall then present the theoretical results based on more
accurate calculations, and the experimental results.

20.2.1 Electronic Structure in the Diamond Lattice

We have seen that the elemental semiconductors of the carbon group crystal-
lize in a diamond structure. Since the Bravais lattice is face-centered cubic,
the Brillouin zone is the truncated octahedron depicted in Fig. 7.11. Below we
shall repeatedly make reference to the special points and lines of the Brillouin
zone, therefore we shall recall them in Fig. 20.1(a).
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Fig. 20.1. (a) Brillouin zone of the face-centered cubic lattice of the diamond
structure with the special points and lines. (b) Band structure in the empty-lattice
approximation, with the energy given in units of (�2/2me)(2π/a)2. The triplets hkl
next to each branch refer to the corresponding reciprocal-lattice vector (2π/a)(h, k, l)

The figure also shows the band structure calculated in the empty-lattice
approximation, along the four high-symmetry directions of the Brillouin zone,
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as usual. The lines Δ, Λ, and Σ join the center Γ = (0, 0, 0) with the cen-
ter X = (2π/a)(0, 0, 1) of a square face, the center L = (2π/a)( 1

2 ,
1
2 ,

1
2 ) of

a hexagonal face, and an edge center K = (2π/a)(3
4 ,

3
4 , 0) of a hexagonal

face, respectively, while another line joins point X ′ = (2π/a)(0, 1, 0) (which is
equivalent to X) and point U = (2π/a)(1

4 , 1,
1
4 ) (which is equivalent to K).

The periodic potential modifies this band structure. As far as the behavior
of semiconductors is concerned, the most important is to understand what
happens at and close to the zone center Γ where an eightfold degenerate state
is found above the lowest nondegenerate level. According to the discussion in
Chapter 18, the wavefunctions of these eight states can be written as

ψnk(r) =
1√
V

ei(k+Gi)·r (20.2.1)

in the empty-lattice approximation, where Gi = (2π/a) (±1,±1,±1). To de-
termine the extent to which this eightfold degeneracy is removed in k = 0,
the method described in Chapter 18 for the lifting of accidental degeneracies
is applied to the diamond lattice.

The little group of point Γ – i.e., the group of those symmetry operations
that take Γ into itself or an equivalent point – is the 48-element group Oh.
Using the character table of irreducible representations given in Appendix D of
Volume 1, the eight-dimensional representation over the eight functions above
can be reduced to two one-dimensional (Γ1 and Γ ′

2) and two three-dimensional
irreducible representations (Γ15 and Γ ′

25):

Γ = Γ1 + Γ ′
2 + Γ15 + Γ ′

25 . (20.2.2)

It is also straightforward to find the wavefunctions that transform according
to these irreducible representations as linear combinations of the functions
eiGi·r. The representation Γ1 is associated with the symmetric combination

ψΓ1(r) =
1
8

[
e2πi(x+y+z)/a + e2πi(x+y−z)/a + e2πi(x−y+z)/a + e2πi(−x+y+z)/a+

+ e−2πi(x+y+z)/a + e−2πi(x+y−z)/a + e−2πi(x−y+z)/a + e−2πi(−x+y+z)/a
]

= cos(2πx/a) cos(2πy/a) cos(2πz/a) . (20.2.3)

The combination associated with Γ ′
2 is

ψΓ ′
2
(r) = sin(2πx/a) sin(2πy/a) sin(2πz/a) , (20.2.4)

while the combinations associated with the three-dimensional representations
are

ψ
(1)
Γ15

(r) = sin(2πx/a) cos(2πy/a) cos(2πz/a) ,

ψ
(2)
Γ15

(r) = cos(2πx/a) sin(2πy/a) cos(2πz/a) ,

ψ
(3)
Γ15

(r) = cos(2πx/a) cos(2πy/a) sin(2πz/a) ,

(20.2.5)
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and

ψ
(1)
Γ ′

25
(r) = cos(2πx/a) sin(2πy/a) sin(2πz/a) ,

ψ
(2)
Γ ′

25
(r) = sin(2πx/a) cos(2πy/a) sin(2πz/a) ,

ψ
(3)
Γ ′

25
(r) = sin(2πx/a) sin(2πy/a) cos(2πz/a) .

(20.2.6)

Hence the eightfold degeneracy is lifted in such a way that two triply de-
generate states, of symmetry Γ15 and Γ ′

25, and two nondegenerate states, of
symmetry Γ1 and Γ ′

2, arise. Apart from exceptional cases, their energies are
different.

We can also examine what happens to the electron states along the lines
Δ and Λ close to Γ . To this end we have to make use of the compatibility
relations between the irreducible representations that belong to point Γ and
lines Δ and Λ, which can be directly established from the character tables.
Table 20.6 contains these relations for the relevant representations.

Table 20.6. Compatibility relations between irreducible representations for point
Γ and points Δ and Λ

Γ1 Γ ′
2 Γ15 Γ ′

25

Δ1 Δ′
2 Δ1 Δ5 Δ′

2 Δ5

Λ1 Λ1 Λ1 Λ3 Λ1 Λ3

It is immediately seen from these relations that the energies of the triply
degenerate states associated with the representations Γ15 and Γ ′

25 are split
further along these lines, to a nondegenerate and a doubly degenerate level.
Nothing more specific can be said using symmetry considerations alone –
except for one thing. The nondegenerate state starting from Γ ′

25 necessarily
becomes degenerate with the corresponding state of the lowest band in point
X – that is, the double degeneracy obtained in the free-electron model is not
lifted there by the periodic potential, while it is lifted in point L.

The band structure obtained in this way is in good agreement with the
band structure of diamond and gray tin (Fig. 17.10), as well as silicon and
germanium (to be presented later). Once accidental degeneracies are lifted,
the state of symmetry Γ ′

25 is found to be the lowest in Γ . Since the basis
contains two atoms, eight electrons have to be accommodated in the bands,
therefore, taking spin degeneracy into account, the bands containing the triply
degenerate state of symmetry Γ ′

25 (as well as the band containing the states
associated with the vector G = 0) are completely filled in the ground state,
whereas higher-lying bands (of symmetry Γ15, Γ ′

2, and Γ1 in point Γ ) are
left completely empty. The gap between occupied and unoccupied bands is so
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large in diamond that it behaves as an insulator. This insulator character is
not changed even when one takes into account further splitting due to spin–
orbit coupling (which is weak because of the low atomic number). The role of
spin–orbit coupling will be discussed later for silicon and germanium.

20.2.2 Band Structure of Silicon

The band structure of silicon calculated without taking spin–orbit coupling
into account is shown in Fig. 20.2. The pattern is very similar to what can
be expected from the previous general considerations and the example of
diamond. Here, too, the bands containing the energy level of symmetry Γ ′

25

are the valence bands, and they are completely filled. The bands containing
the state of symmetry Γ15 are the lowest-lying empty bands. They are the
conduction bands. The gap between the state of symmetry Γ ′

25 at the top of
the valence band and the k = 0 state of symmetry Γ15 in the conduction band
is 2.5 eV.

Fig. 20.2. Energy bands of silicon and low-energy constant-energy surfaces of the
conduction band [Reprinted with permission from J. R. Chelikowsky and M. L.
Cohen, Phys. Rev. B 10, 5095 (1974). ©1974 by the American Physical Society]

However, the experimental value for the gap, measured by means of the
thermal excitation of electrons, is much lower: 1.11 eV at room temperature.
The reason for this discrepancy is that the minimum of the conduction band
is not at k = 0 but at kc = (2π/a)(0, 0,±0.85) (and four other symmetrically
located points along the kx- and ky-axes). The dispersion relation can be
approximated by a quadratic expression around these minima. Because of the
rotational symmetry around the kz-axis, the form
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εk = �
2

[
k2

x + k2
y

2m∗
n⊥

+
(kz − kcz)2

2m∗
n‖

]
(20.2.7)

is expected with two different effective masses. Electrons promoted into the
conduction band fill these valleys. Cyclotron resonance, which will be dis-
cussed in the next chapter, is the method of choice for determining these
effective masses. According to measurements,

m∗
n‖ = 0.916me, m∗

n⊥ = 0.191me . (20.2.8)

Owing to the huge difference between the components of the effective-mass
tensor, the constant-energy surfaces of the conduction band form six prolate
ellipsoids of rotation in the Brillouin zone. These are shown on the right-hand
side of Fig. 20.2.

Since electrons feel an appreciable field gradient close to the nucleus, spin–
orbit interaction gives rise to further splitting inside the valence band. To spec-
ify it, it has to be borne in mind that the spin variable transforms according to
the irreducible representation D1/2 of the rotation group, therefore the wave-
function that contains both spatial and spin variables transforms according
to the direct product of Γ ′

25 and D1/2 for the states at the top of the valence
band. It follows directly from (6.1.19) that the triply (or, together with spin,
sixfold) degenerate state of symmetry Γ ′

25 is split in point Γ into a fourfold
degenerate state that transforms according to the irreducible representation
Γ8 of the double group and a doubly degenerate state that transforms ac-
cording to Γ7. The magnitude of spin–orbit splitting is about 0.044 eV. In
the points k �= 0 the fourfold degenerate level is split further; however, as
the point group of the diamond structure contains inversion symmetry, spin
degeneracy is preserved. The schematic pattern of energy levels is shown in
Fig. 20.3.

�g

mn
*

mp,h
*

mso
*

mp,l
*

Heavy holes

Li sght hole

Split-of holesf

k

Electrons

�

�

�7

��

Fig. 20.3. Splitting of the state of symmetry Γ ′
25 close to point Γ , due to spin–orbit

coupling. Indices show the irreducible representations of the double group according
to which each band transforms in Γ
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The energies obtained by taking spin–orbit interaction into account can
no longer be described by a quadratic function at the top of the valence band;
the form

εp1(k) = − �
2

2me

{
Ak2 − [B2k4 + C2(k2

xk
2
y + k2

yk
2
z + k2

zk
2
x)
]1/2

}
,

εp2(k) = − �
2

2me

{
Ak2 +

[
B2k4 + C2(k2

xk
2
y + k2

yk
2
z + k2

zk
2
x)
]1/2

}
,

εp3(k) = −Δ−A �
2

2me
k2

(20.2.9)

have to be used instead. Measurements give

A = 4.27 , B = 0.63 , C = 4.93 , (20.2.10)

for silicon, and Δ = 0.044 eV, as mentioned above. The corresponding
constant-energy surfaces are not ellipsoidal: they look like spheres with humps
along the 〈100〉 or 〈111〉 directions, as illustrated in Fig. 20.4.

Fig. 20.4. Constant-energy surfaces at the top of the valence band of silicon for
heavy and light holes

Despite the nonquadratic energy versus wave vector relation for the first
two bands, it is customary to speak of effective hole masses, by which values
averaged over all directions are meant. A heavy- and a light-hole mass are
obtained:

m∗
p,h = 0.537me , m∗

p,l = 0.153me . (20.2.11)

In the third band called split-off band holes of effective mass m∗
so = 0.234me

appear.

20.2.3 Band Structure of Germanium

The calculated band structure of germanium is shown in Fig. 20.5. By and
large, it is also in agreement with the qualitative picture presented above for
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the diamond lattice, which was obtained by lifting the degeneracies in the
empty-lattice approximation.

Fig. 20.5. The energy bands of germanium. The bands calculated by the LCAO
method are displayed on the left, while the results of a pseudopotential calculation
that takes spin–orbit coupling into account are shown on the right. In the latter
case the letters next to each band refer to the corresponding irreducible represen-
tation of the double group [Reprinted with permission from J. R. Chelikowsky and
M. L. Cohen, Phys. Rev. B 14, 556 (1976). ©1976 by the American Physical Society]

When the spin–orbit interaction is neglected, the eightfold degenerate level
in point Γ splits to four levels of unequal energies in the same way as in
silicon. However, the order of these levels, which cannot be determined from
symmetry considerations alone, is different. Above the triply degenerate level
of symmetry Γ ′

25 the nondegenerate level of symmetry Γ ′
2 is located. The

state of symmetry Γ15 lies above this. However, just like in silicon, the gap,
which determines the thermal properties, is not equal to the splitting between
the Γ ′

25 and Γ ′
2 levels in point Γ , since the wave vector is not the same for

the highest-lying state in the valence band and the lowest-lying state in the
conduction band.

As Fig. 20.5 shows, the minimum of the conduction band is at the edge
of the Brillouin zone, in kc = L = (2π/a)( 1

2 ,
1
2 ,

1
2 ) (plus three symmetrically

located points).2 Figure 20.6 shows those regions in k-space where thermally
excited conduction electrons are located. Just like silicon, germanium is a
multivalley semiconductor.

Close to the bottom of the conduction band, the energy can be approx-
imated by a quadratic form. By choosing the direction [111] as one of the
2 This is because the eight points (2π/a)(± 1

2
,± 1

2
,± 1

2
) form four equivalent pairs.
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Fig. 20.6. Constant-energy surfaces at the bottom of the conduction band for
germanium

principal axes, the effective-mass tensor is found to be diagonal, with a lon-
gitudinal and a transverse mass. Their experimental values determined by
cyclotron resonance are

m∗
n‖ = 1.588me and m∗

n⊥ = 0.082me . (20.2.12)

Spin–orbit interaction gives rise to further splitting at the top of the va-
lence band in germanium, too. This is illustrated on the right-hand side of
Fig. 20.5, where the irreducible representations of the double group are used
for indexing states. The parameter values for germanium in (20.2.9), the for-
mula for the electron energies, are

A = 13.38 , B = 8.57 , C = 12.78 . (20.2.13)

The masses of heavy and light holes, obtained by averaging over directions,
are

m∗
p,h = 0.28me , m∗

p,l = 0.044me . (20.2.14)

The third energy level is shifted by Δ = 0.295 eV, which is almost an order of
magnitude larger than for silicon. The effective mass of holes in the split-off
band is m∗

so = 0.095me.

20.2.4 Band Structure of Compound Semiconductors

The band structure of compound semiconductors that crystallize in the spha-
lerite structure is very similar to those of silicon and germanium. This is
illustrated in Fig. 20.7 for two cases – both calculated by taking spin–orbit
interaction into account.

The most important difference with silicon and germanium is that the
minimum of the conduction band is at Γ . In its vicinity, electron states can
be characterized by a scalar effective mass. The highest energy in the valence
band also occurs at Γ . Here, too, the triple (or, together with spin, sixfold)
degeneracy is split by spin–orbit interaction to a lower-lying nondegenerate
level and a doubly degenerate level that splits further into two levels away
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Fig. 20.7. The energy bands of GaAs and ZnSe [Reprinted with permission from
J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976). ©1976 by the
American Physical Society]

from Γ : one corresponds to a low- and the other to a high-effective-mass
hole. When spin–orbit interaction is taken into account more accurately, a
more complicated band structure arises. This is because inversion symmetry
is broken in the sphalerite structure, and thus the double degeneracy due to
spin is lifted. This phenomenon, called the Dresselhaus splitting, was discussed
in Chapter 17. The conduction band containing the k = 0 state of symmetry
Γ6 is split and a tiny asymmetry – a small k3 term – appears in the energy.
Nevertheless, the full band structure still possesses the symmetry εk = ε−k.
Similar things apply to the valence bands that contain the points associated
with the irreducible representations Γ7 and Γ8. However, the asymmetry is so
weak that it is imperceptible in Fig. 20.7.

Table 20.7 shows the effective mass for electron and hole states in some
compound semiconductors – which are all direct-gap semiconductors, that is,
the lowest-energy state in the conduction band and the highest-energy state
in the valence band are associated with the same wave vector k. The effective
mass is seen to be much lower than the electron mass. It is not difficult to
show that this is not by accident but the direct consequence of the formation
of the gap. To do so, we have to go back to the nearly-free-electron calculation
of how the two energy levels, which are degenerate in the absence a periodic
potential, are split at the center or edges of the Brillouin zone.

It was shown in Chapter 18 in connection with (18.1.29) that the free-
electron energies ε(0)k+Gi

and ε(0)k+Gj
are equal for those vectors k for which

k + Gi and k + Gj are on the same Bragg plane that perpendicularly bisects
the vector Gi − Gj . It then follows that the vector
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Table 20.7. Effective masses in the valence and conduction bands for some com-
pound semiconductors

Crystal m∗
n/me m∗

p,h/me m∗
p,l/me m∗

so/me

GaAs 0.066 0.47 0.07 0.15
GaSb 0.042 0.35 0.05 0.12
InP 0.077 0.56 0.12 0.12
InAs 0.024 0.43 0.026 0.14
InSb 0.014 0.39 0.016 0.43

k‖ = k + 1
2 (Gi + Gj) (20.2.15)

lies in the Bragg plane, and is perpendicular to the vector Gi −Gj . To deter-
mine the effective masses, consider now the vectors

k = k‖ + k⊥ − 1
2 (Gi + Gj) (20.2.16)

away from the Bragg plane, where k‖ lies in the Bragg plane and k⊥ is per-
pendicular to it. Then

k + Gi = k0 + k‖ + k⊥ and k + Gj = −k0 + k‖ + k⊥ , (20.2.17)

where the vector k0 = 1
2 (Gi − Gj) is perpendicular to k‖. Using a quadratic

dispersion relation for the unperturbed states,

ε
(0)
k+Gi

=
�

2

2me

(
k2
‖ + k2

0 + 2k0 · k⊥ + k2
⊥
)
,

ε
(0)
k+Gj

=
�

2

2me

(
k2
‖ + k2

0 − 2k0 · k⊥ + k2
⊥
)
.

(20.2.18)

Substituting these into (18.1.34), the energies in the presence of a periodic
potential are

εk =
�

2

2me

(
k2
‖ + k2

0 + k2
⊥
)
±
[
4

�
2

2me
k2

0

�
2

2me
k2
⊥ + |U(2k0)|2

]1/2

. (20.2.19)

The vector k is close to the Bragg plane provided |k⊥| is small. Expansion for
small values of k⊥ yields

ε
(+)
k =ε(0)k0

+
�

2k2
‖

2me
+ |U(2k0)| + �

2k2
⊥

2me

[
2ε(0)k0

|U(2k0)| + 1

]
,

ε
(−)
k =ε(0)k0

+
�

2k2
‖

2me
− |U(2k0)| − �

2k2
⊥

2me

[
2ε(0)k0

|U(2k0)| − 1

]
.

(20.2.20)
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It is immediately seen that the motion parallel to the Bragg plane is not
affected by the periodic potential in this approximation: this element of the
effective-mass tensor remains the same. However, the masses associated with
the motion perpendicular to the Bragg plane are modified, renormalized:

m∗ = ± me

2ε(0)k0
/|U(2k0)| ∓ 1

. (20.2.21)

Since the magnitude of the potential is usually smaller than the energy of the
level to be split, a positive and a negative effective mass are obtained, and
both are smaller than the electron mass.

20.2.5 Indirect- and Direct-Gap Semiconductors

In silicon and germanium, the maximum of the valence band was seen to be at
kv = 0, while the minimum of the conduction band at another wave vector,
kc �= 0. Such semiconductors are called indirect-gap semiconductors. When
the top of the valence band and the bottom of the conduction band are at
the same wave vector, kc = kv, we speak of direct-gap semiconductors. GaAs
and InSb are two notable representatives of the second group. The distinction
is important because in indirect-gap semiconductors it is not immaterial how
the gap is measured.

The thermal properties depend strongly on the number of thermally ex-
cited electrons in the conduction band. This, in turn, is determined in part by
the smallest energy required for the excitation of electrons. The same energy
appears as the activation energy in the temperature dependence of semicon-
ductors in the region where the most important factor in the variation of
resistivity is the variation in the number of thermally excited carriers.

However, it is not this energy that is observed in indirect-gap semiconduc-
tors in optical measurements. By shining light on a semiconductor, an electron
in the valence band may absorb a photon and may be promoted to the con-
duction band. Since the wave number of the light inducing the transition is
typically k ∼ 106 m−1 , which is much smaller than the typical wave number
of electrons calculated from the size of the Brillouin zone (of order 1010 m−1),
the wave number of the electron practically does not change in the transition.
In the k-space plot of the optical transition between the valence band and
the conduction band, the electron is located vertically above the hole, as in
Fig. 20.8(a).

By varying the energy of the incident light, absorption occurs above a
photon energy threshold, where excitation into the conduction band becomes
possible. This absorption threshold is the width of the direct (or optical)
gap. The indirect band gap, which determines thermal properties, cannot be
measured directly in optical absorption measurements. However, there exist
higher-order processes in which the electron excited into the conduction band
is scattered into the minimum of the conduction band upon the emission of a
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Fig. 20.8. Optical transitions in semiconductors: (a) direct transition, (b) indirect
transition

phonon, as illustrated in the process in Fig. 20.8(b). If the phonon spectrum
is known, the indirect band gap can be determined.

20.3 Electrons and Holes in Intrinsic Semiconductors

In the previous sections of this chapter we dealt with the determination of the
energy of one-particle states – i.e., the band structure. In the ground state the
valence band is completely filled and the conduction band is empty. The inter-
esting properties of semiconductors are due partly to the fact that the energy
gap is relatively small, thus charge carriers can be generated in the conduction
and valence bands even by thermal excitation. The electrical conductivity of
pure (intrinsic) semiconductors – which are void of impurities and dopants
– is, to a large extent, determined precisely by the number of such carriers.
It is relatively easy to evaluate it theoretically, since if the band structure is
known, the occupation of the one-particle states at finite temperatures can be
calculated using the methods of statistical physics. Assuming a simple band
structure, we shall determine the number of charge carriers below, and also
examine the position of the chemical potential with respect to the conduction
and valence bands.

20.3.1 Number of Thermally Excited Charge Carriers

Thermal excitation of electrons is usually possible only from the top of the
valence band to the bottom of the conduction band. Therefore the number of
thermally excited charge carriers can be calculated without knowing the full
band structure. To simplify the calculation, we shall assume that the states
that lie close to the bottom of the conduction band and to the top of the
valence band can be characterized by the scalar effective masses m∗

n and m∗
p,

respectively. Then, by generalizing (16.2.54), we shall use the formulas
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ρc(ε) =
1

2π2

(
2m∗

n

�2

)3/2 √
ε− εc , (20.3.1-a)

ρv(ε) =
1

2π2

(
2m∗

p

�2

)3/2 √
εv − ε (20.3.1-b)

for the density of states in the conduction and valence bands, where εc is the
energy of the bottom of the conduction band and εv is that of the top of the
valence band.

These formulas can be straightforwardly generalized to the cases when the
longitudinal and transverse components of the effective-mass tensor are dif-
ferent, and when the possibility of having light and heavy holes is taken into
account. If the one-particle energies in the conduction band can be charac-
terized approximately by the elements of an effective-mass tensor m∗

ij , then,
according to (17.4.42), the effective mass is replaced by

m∗
ds =

[
det
(
m∗

ij

)]1/3 (20.3.2)

in the density of states. When the conduction band contains ν equivalent
valleys (as in silicon and germanium), the density of states calculated for a
single valley has to be multiplied by ν. This is equivalent to saying that the
mass in the density of states is ν2/3 times the effective mass determined for a
single-valley configuration.

By taking the average of the transverse and longitudinal effective masses,
the contribution of a single valley can be taken into account by an effective
mass of mtherm = 0.32me in silicon. Since the electrons in each of the six
valleys contribute equally to the density of states, one has to use the density-
of-states mass

m∗
n,ds = 62/3mtherm = 1.18me . (20.3.3)

The contribution of a single valley can be taken into account by an effective
mass of mtherm = 0.22me in germanium. Since the bottom of the conduction
band consists of four equivalent valleys, the correct density-of-states mass is

m∗
n,ds = 42/3mtherm = 0.55me . (20.3.4)

To determine the total density of states in the valence band, the density of
states for the heavy and light holes (of mass m∗

p,h and m∗
p,l) must be added,

which is equivalent to saying that holes of effective mass

m∗
p,ds =

(
m∗

p,h
3/2 +m∗

p,l
3/2
)2/3

(20.3.5)

form a single band. For silicon,

m∗
p,ds = 0.59me , (20.3.6)

whereas for germanium



214 20 Electronic Structure of Semiconductors

m∗
p,ds = 0.37me . (20.3.7)

In what follows, the simple notations m∗
n and m∗

p will refer to these density-
of-state masses.

Using the Fermi–Dirac distribution for the thermal occupation of the
conduction-band states, the density of electrons in the conduction band is

n(T ) =

∞∫
εc

ρc(ε)
1

e(ε−μ)/kBT + 1
dε (20.3.8)

in thermal equilibrium, where μ is the yet-unknown value of the chemical
potential.

Analogously, the density of electrons in the valence band is

nv(T ) =

εv∫
−∞

ρv(ε)
1

e(ε−μ)/kBT + 1
dε . (20.3.9)

Since the valence band is almost completely filled, it is more practical to
consider the holes there instead of the electrons, and to specify the number
density of thermally excited states. Denoting the density of holes by p,

p(T ) =

εv∫
−∞

ρv(ε)
[
1 − 1

e(ε−μ)/kBT + 1

]
dε . (20.3.10)

After a simple rearrangement,

p(T ) =

εv∫
−∞

ρv(ε)
1

e(μ−ε)/kBT + 1
dε . (20.3.11)

The negative sign in the energy dependence (relative to the usual Fermi–
Dirac distribution) is the consequence of the fact that holes are obtained from
electrons through the transformation ε−μ↔ −(ε−μ). The density of states
and the thermal population of the states at finite temperature are illustrated
in Fig. 20.9 for both bands. The third part of the figure shows the occupation
of electron and hole states – that is, the distribution of thermally excited
electrons (holes) in the conduction (valence) band is plotted against energy.

Substituting the density of states formula (20.3.1) into (20.3.8), the density
of thermally excited electrons is

n(T ) =
1

2π2

(
2m∗

n

�2

)3/2
∞∫

εc

√
ε− εc

e(ε−μ)/kBT + 1
dε

= 2
(
m∗

nkBT

2π�2

)3/2

F1/2 (−(εc − μ)/kBT ) ,

(20.3.12)
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Fig. 20.9. The density of states in the valence and conduction bands, and the
thermal occupation of states at a finite temperature, assuming equal effective masses.
On the right-hand side the occupation of hole (rather than electron) states is shown
in the valence band

where F1/2(x) is the Fermi integral of index j = 1/2 defined in (16.2.62).
While F1/2(x) could be approximated by its low-temperature asymptotic form
for metals, the asymptotic expression in the opposite limit can be usually
employed for semiconductors. The value of the chemical potential μ has not
been established yet, but it is already known that at T = 0 it is somewhere
inside the energy gap separating filled and empty states. This means that in
semiconductors there are no electrons whose energy is the same as the Fermi
energy – thus the Fermi surface is absent.

We shall see that the chemical potential is located around mid-gap. Since
the gap in semiconductors is usually much larger than the thermal energy at
room temperature, kBT ≈ 0.025 eV, we shall assume that

εc − μ� kBT , μ− εv � kBT . (20.3.13)

In this limit the quantum mechanical Fermi–Dirac distribution can be approx-
imated by the classical Maxwell–Boltzmann distribution:

1
e(ε−μ)/kBT + 1

∼ e−(ε−μ)/kBT , if ε > εc , (20.3.14-a)

1
e(μ−ε)/kBT + 1

∼ e−(μ−ε)/kBT , if ε < εv . (20.3.14-b)

Below we shall deal only with this so-called nondegenerate case. When con-
dition (20.3.13) is not met – that is, quantum statistics cannot be adequately
approximated by classical statistics –, we speak of a degenerate semiconduc-
tor. The calculations are somewhat more tedious in this case but they do not
present any difficulty of principle.
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Substituting the classical distribution function (20.3.14-a) into (20.3.8),
we have

n(T ) =

∞∫
εc

ρc(ε)e−(ε−μ)/kBT dε . (20.3.15)

Since the density of states in the conduction band depends on ε − εc alone,
by introducing the quantity

Nc(T ) =

∞∫
εc

ρc(ε)e−(ε−εc)/kBT dε , (20.3.16)

the density (concentration) of electrons can be written as

n(T ) = Nc(T )e−(εc−μ)/kBT . (20.3.17)

The value of Nc(T ) depends on the specific form of the density of states. Mak-
ing use of the formula for the density of states for electrons of effective mass
m∗

n, (20.3.1), and exploiting (C.2.1), the integral (20.3.16) can be evaluated:

Nc(T ) = 2
(
m∗

nkBT

2π�2

)3/2

. (20.3.18)

The formula for the density of conduction electrons is therefore equivalent
to (20.3.12), with the Fermi integral approximated by its high-temperature
asymptotic form, (C.2.24). It should be noted that by substituting the actual
values of the physical constants, Nc(T ) can be rewritten as

Nc(T ) = 2.5
(
m∗

n

me

)3/2(
T

300K

)3/2

× 1019/cm3. (20.3.19)

It is readily seen that in nondegenerate semiconductors the density of charge
carriers cannot exceed 1018 to 1019/cm3.

Analogously, the density of holes in the valence band is

p(T ) = Pv(T )e−(μ−εv)/kBT , (20.3.20)

where

Pv(T ) =

εv∫
−∞

ρv(ε)e−(εv−ε)/kBT dε . (20.3.21)

Assuming an effective hole mass of m∗
p and substituting the density of states

(20.3.1) into the integral,

Pv(T ) = 2
(
m∗

pkBT

2π�2

)3/2

. (20.3.22)
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In pure, undoped semiconductors, where all thermally excited electrons
in the conduction band come from the valence band, the number of holes
generated in the valence band must be equal to the number of electrons in
the conduction band: n(T ) = p(T ). This common value, denoted by ni(T ),
is called the intrinsic carrier density or intrinsic carrier concentration. To
evaluate it, it should be noted that in thermal equilibrium the product of the
number of electrons in the conduction band and the number of holes in the
valence band,

n(T ) p(T ) = Nc(T )Pv(T ) e−(εc−εv)/kBT , (20.3.23)

is independent of the value of the chemical potential, thus

ni(T ) =
√
Nc(T )Pv(T )e−(εc−εv)/2kBT =

√
Nc(T )Pv(T )e−εg/2kBT . (20.3.24)

The exponent in the formula for the density of the thermally excited charge
carriers contains the half of the gap, confirming the statement made in the in-
troduction of the chapter. This is formally due to the mid-gap location of the
chemical potential at low temperatures, therefore the number of excitations
depends on the energy measured from that point. A more intuitive interpre-
tation is based on the picture of the thermal generation of electron–hole pairs
with electrons in the conduction band and holes in the valence band. Since
the pair creation energy is the same as the gap, half of it is attributed to the
electron and half to the hole.

By substituting (20.3.18) and (20.3.22) into (20.3.24), the formula

ni(T ) = 2
(
kBT

2π�2

)3/2

(m∗
nm

∗
p)3/4e−εg/2kBT (20.3.25)

for the intrinsic carrier density contains the known parameters of semicon-
ductors. It should be emphasized once again: to obtain numerical values, the
masses in the expression for the density of states have to be used. Applying
(20.3.19) and its counterpart to Pv, this can be rewritten as

ni(T ) = 2.5
(
m∗

n

me

)3/4(m∗
p

me

)3/4(
T

300K

)3/2

e−εg/2kBT × 1019/cm3 .

(20.3.26)
From the known values of the effective mass and the energy gap, the intrinsic
carrier density of silicon at room temperature is nSi

i (300K) = 1.02×1010/cm3,
while it is larger in germanium on account of the smaller gap: nGe

i (300K) =
2.33 × 1013/cm3.

The derivation of (20.3.23) was based on the single assumption that the
edges of the conduction and valence bands are both far from the chemical
potential on the scale of the thermal energy, therefore classical statistics can
be used. Thus the same equation applies to doped semiconductors, too. Even
though n(T ) �= ni(T ) and p(T ) �= ni(T ), since the impurity atoms give rise to
extra states between the conduction band and the valence band, and therefore
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the chemical potential is shifted, nonetheless the product of n(T ) and p(T ) is
independent of the chemical potential, and the relationship

n(T ) p(T ) = n2
i (T ) (20.3.27)

holds for doped semiconductors as well – with the intrinsic carrier density ni

given in (20.3.25). This formula is called the law of mass action.

20.3.2 Temperature Dependence of the Chemical Potential

In intrinsic semiconductors the value of the chemical potential can be deter-
mined from the requirement that the number of charge carriers should be the
same in the valence and conduction bands:

Nc(T )e−(εc−μ)/kBT = Pv(T )e−(μ−εv)/kBT . (20.3.28)

Rearrangement of the terms gives

Pv(T )
Nc(T )

= exp
[
2μ− (εc + εv)

kBT

]
, (20.3.29)

hence the chemical potential is

μ = 1
2 (εc + εv) + 1

2kBT ln
Pv(T )
Nc(T )

. (20.3.30)

At T = 0 the second term vanishes, and the chemical potential is indeed
located precisely in the middle of the gap. Substituting (20.3.18) and (20.3.22)
into the second term, which gives the corrections at finite temperatures, we
have

μ = 1
2 (εc + εv) + 3

4kBT ln
m∗

p

m∗
n
. (20.3.31)

Thus, unlike in metals, the chemical potential varies linearly with temperature
in semiconductors. The sign of the variations depends on the ratio of the
effective masses in the two bands. The chemical potential shifts toward the
band whose effective mass is lower, but the deviation from the middle of the
gap is tiny even at room temperature, and can be practically neglected.

Introducing the notation μi for the chemical potential of pure semiconduc-
tors, its connection with ni can be given in two equivalent ways:

ni = Nc(T )e−(εc−μi)/kBT (20.3.32)

or
ni = Pv(T )e−(μi−εv)/kBT . (20.3.33)
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20.4 Electronic Structure of Doped Semiconductors

In the previous sections we studied the electronic structure of semiconductors
of stoichiometric composition, in which carriers are generated by exciting elec-
trons from the valence band into the conduction band across the gap, leaving
behind holes. The number of carriers can be controlled only by varying the
temperature. By deviating from the stoichiometric composition, e.g., by dop-
ing a semiconductor with impurities, the concentration of electrons and holes
can be greatly increased. Semiconductors in which a substantial proportion
of the carriers are provided by impurities are called extrinsic or doped semi-
conductors. Present-day silicon-based semiconductor technology is capable of
producing staggeringly high purity crystals with about one dopant per 1012

Si atoms – that is, the impurity concentration is about 1010 atoms/cm3. The
majority of the impurity atoms are not ionized, and are therefore inactive in
the sense that they do not affect the number of electrons or holes responsi-
ble for conduction. More important are those active impurities that change
the number of mobile carriers. The most important role is played by those
dopants that can easily give away or take up an electron. Typically, elemental
semiconductors in the carbon group (group IVA) – e.g., silicon – are doped by
substituting some of the group IVA (Si) atoms by an element of group IIIA
(e.g., gallium) or group VA (e.g., arsenic).3

Elements of group VA have one more electron on their outermost p-shell
than silicon. Only four s- and p-electrons are required to form the covalent
bonds. To ensure charge neutrality, each dopant donates an additional electron
to the system. Such impurities are therefore called donors. Figure 20.10(a)
shows the electrons in the tetrahedrally coordinated covalent bonds and the
extra electron of the donor.

e
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Fig. 20.10. Electron excess (a) and electron deficiency (b) around an arsenic and
a gallium atom in silicon

3 Since the number of thermally excited charge carriers in pure silicon is as low as
1010/cm3 even at room temperature, the behavior is practically determined by
the electrons of the dopants alone.
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One would naively expect that the extra electron of the donor occupies a
state in the conduction band. But this is wrong. As discussed in Chapter 17,
bound states may appear around an impurity, below or above the band, de-
pending on the attractive or repulsive character of the interaction. Since the
interaction between the ionized donor and the extra electron is attractive, one
would expect that the band structure is modified by donor atoms in such a way
that bound states are formed below the conduction band, accommodating the
extra electrons of the donor atoms in the ground state. We shall demonstrate
that the binding energy is often sufficiently low for that thermal excitation
of these states be easily possible, thus the extra electrons also contribute to
conduction.

On the other hand, the outermost shell of elements of group IIIA is one
electron short compared to silicon. With spatially well localized covalent bonds
in mind this implies that in samples doped with such impurities the number
of electrons per impurity atom is one less than what would be necessary to
form valence bonds. The formation of the chemical bond requires an additional
electron, creating an electron deficiency, an apparently positively charged hole,
as shown in Fig. 20.10(b). Such impurities are called acceptors.

One would expect that the electron deficiencies brought about by the co-
valent bonds in the presence of acceptors give rise to empty states, holes, in
the valence band. This is not the case, as the states in the valence band are
reorganized by the impurity potential. When the bonds are formed, the ac-
ceptor can be considered as a negatively charged ion, which therefore repels
other electrons. The repulsive potential pushes a state outside the continuum,
above the band. Since the impurity does not change the total number of pos-
sible electron states, there remain one less state in the band as without the
impurity. Thus, in spite of the electron deficiency, the valence band is com-
pletely filled in the ground state, and there is one electron per impurity atom
in the bound state above the band. Since this level could accommodate two
electrons, one may say that acceptors add weakly bound holes to the system.

20.4.1 Energy of Donor and Acceptor Levels

Our introductory remarks showed that bound states can be formed around
ionized impurities. The method for evaluating the binding energy is known, at
least in principle. Based on a simple physical picture, we shall try to estimate
these energies below.

Figure 20.10(a) is a schematic representation of the spatial distribution
of electrons in the four tetrahedrally coordinated covalent bonds between an
arsenic atom and its four silicon neighbors. Since the two cores are different,
the bond is slightly polarized. This is felt above all by the excess electron
that does not participate in the bonds. Since the charge of the arsenic core is
higher than that of the silicon core, the excess electron may be weakly bound
to the arsenic ion. As a rough estimate – which will turn out not to be too
rough – the sample can be considered electrically neutral and uniform far from
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the impurity, while the neighborhood of the arsenic ion can be viewed as if a
charge +e were located at the impurity in a medium of dielectric constant εr,
and a single electron of charge −e were moving in its field.

This model is very similar to a hydrogen atom, where the electron is in
a bound state in the proton’s Coulomb field, and the binding energy of the
lowest-lying state – the ionization potential – is 13.6 eV. This energy is much
larger than the energy gap of semiconductors. If the binding energy were just
as high, then this bound state would be completely irrelevant to the properties
of semiconductors. However, the energy is much lower in reality: about 0.05 eV
for electrons donated by an arsenic atom in a silicon matrix. The reason for
this is twofold:

1. The electron moves around the impurity in a dielectric, not in vacuum. In
contrast to metals, the static dielectric constant, which is due essentially
to core electrons, is rather large in semiconductors because of the finite
gap: εr = 11.7 in silicon and εr = 16.0 in germanium. Similar values,
around 10 to 20, are found for the majority of compound semiconductors.
Therefore the electron does not feel the bare Coulomb potential ẽ2/r but
a weaker one, ẽ2/εrr. One could say that the other electrons screen the
Coulomb potential of the charge +e of the donor atom. The effects of
dielectric screening can be taken into account by replacing e by e/

√
εr in

each formula.

2. The motion of the electron in the crystal lattice is characterized by an
effective mass m∗. As we have seen, this is often much smaller than the
electron mass. It also reduces the binding energy.

If the effects of the periodic potential are taken into account by an effective
mass and the influence of the other electrons by a dielectric constant, then
the energy of an electron moving in the field of an impurity atom can be
calculated from the Schrödinger equation{

− �
2

2m∗∇2 − ẽ2

εrr

}
ψ(r) = εψ(r) . (20.4.1)

The problem of an electron around a donor in a semiconductor is thus analo-
gous to the quantum mechanical problem of the hydrogen atom, provided the
substitutions

ẽ→ ẽ√
εr

and me → m∗ (20.4.2)

are made. The dimensions of electron orbits in the hydrogen atom are known
to be on the order of the Bohr radius a0. With the above substitutions, we
now have

r0 =
�

2

m∗(ẽ2/εr)
=
me

m∗ εr a0 (20.4.3)

for the spatial extent of the bound state. Using the known experimental values
for silicon and germanium leads to the estimates rSi

0 ≈ 30Å and rGe
0 ≈ 80Å,
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which are at least an order of magnitude larger than the lattice constant.
At such distances the assumption of the uniform background and the use
of the static dielectric constant are both acceptable, giving an a posteriori
justification of our starting point.

The counterpart of the lowest energy in the hydrogen atom,

ε0 = meẽ
4/2�

2 = 13.6 eV , (20.4.4)

is now

εb =
m∗(ẽ2/εr)2

2�2
=
m∗

me

1
ε2r

meẽ
4

2�2
=
m∗

me

1
ε2r

× 13.6 eV . (20.4.5)

Using values that are typical for m∗ and εr in semiconductors, this binding
energy is much smaller than the gap: the estimated value is 20 meV for silicon
and 5.5 meV for germanium. These energies are measured from the continuum
– that is, the bottom of the conduction band in our case. Thus, below but
fairly close to the conduction band, a weakly bound state of energy

εd = εc − εb (20.4.6)

appears. It is called a donor level. The density of states containing this new
level is shown in Fig. 20.11(a).
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Fig. 20.11. Impurity levels in the gap: (a) donor level; (b) acceptor level

According to the above estimate, the binding energy of the donor level
depends only on the properties of the matrix but not on the donor atom that
gives rise to it. The distances of donor levels from the bottom of the conduction
band (i.e., the binding energies εb = εc−εd) are listed in Table 20.8 for various
donor atoms in silicon and germanium. These experimental data are in order-
of-magnitude agreement with the estimated values, but depend clearly, albeit
weakly, on the impurity.
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Table 20.8. Binding energies (in meV) of donor levels in silicon and germanium

P As Sb Bi

Si 45.3 53.7 42.7 70.6
Ge 12.9 14.2 10.3 12.8

The analogy with the hydrogen atom implies the existence of a whole series
of bound states at energies εb/n2, which can indeed be observed in optical
experiments. However, they do not affect those properties of semiconductors
that are the most important in practical applications. As we shall see, owing
to the smallness of the binding energy, almost all of the donors are ionized
except at low temperatures. Therefore we shall consider a single bound state
(one donor level) per donor atom below.

There are as many donor levels in the system as donor atoms in the sample.
In the ground state the extra electron provided by the donor does not occupy
a conduction-band state but a donor-level state, and there is one electron
on each donor level. According to our estimates, the distance of the donor
levels from the bottom of the conduction band is much smaller than the gap,
therefore these electrons are much easier to excite thermally than those in the
valence band. Electrons on donor levels thus constitute an important source
of charge carriers. Those semiconductors in which the carriers are dominantly
conduction electrons coming from donor levels – and hence there are more
electrons in the conduction band than holes in the valence band – are called
n-type semiconductors.

The case when an acceptor atom of group IIIA is embedded in silicon or
germanium can be treated in perfect analogy with the foregoing. The miss-
ing electron can be pictured as a positively charged hole of mass m∗, moving
around the negatively charged impurity atom in a neutral background of di-
electric constant εr. Since the energy changes sign in the electron–hole trans-
formation, we now have a weakly bound hole state, an acceptor level above
the valence band. Its energy is denoted by εa. The distances of acceptor levels
from the top of the valence band (i.e., the binding energies εb = εa − εv) are
listed in Table 20.9 for various configurations.

Table 20.9. Binding energies (in meV) of acceptor levels in silicon and germanium

B Al Ga In Tl

Si 45.0 68.5 71 155 245
Ge 10.8 11.1 11.3 12.0 13.5
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The density of states containing the acceptor level is shown in Fig. 20.11(b).
In the ground state the acceptor level contains a single electron (that is, a sin-
gle hole). Since its distance from the top of the valence band is much smaller
than the band gap, it is much easier to excite electrons of the valence band to
these levels than into the conduction band. The thermal generation of mobile
holes in the valence band is therefore relatively easy. Those semiconductors in
which the charge carriers are dominantly holes in the valence band generated
by the excitation of electrons to acceptor levels are called p-type semiconduc-
tors.

The situation is very similar when an AIIIBV semiconductor is doped by an
element of group IVA, silicon or germanium. If the substituted atom is triva-
lent (A), the group IVA atom behaves as a donor; if it is pentavalent (B), it
behaves as an acceptor. The binding energy is of the same order of magnitude
as before, as shown in Table 20.10 for some compound semiconductors.

Table 20.10. Binding energies (in meV) of acceptor and donor levels due to silicon
or germanium doping in some compound semiconductors

Compound
εb Acceptor εb Donor

Si Ge Si Ge

GaP 210 265 85 204
GaAs 34.8 40.4 5.84 5.88

The bound states due to impurities are not always so close to the edge of
the conduction or valence band. In silicon or germanium doped with transition
metals, the bound states are deep inside the gap. For example, in Si doped
with Zn, Fe, and Mn, the bound states are 0.32, 0.39, and 0.5 eV above the
top of the valence band. In contrast to the shallow levels, the analogy with
the hydrogen atom does not work for the energies of these deep levels : the
details of the band structure must be taken into account. These levels may
play an important role in the nonequilibrium processes in semiconductors,
since electrons that become trapped there can no longer be excited thermally.

20.5 Doped Semiconductors at Finite Temperatures

Having determined the energy spectrum of doped semiconductors, let us now
examine what happens in these semiconductors at finite temperatures. We
shall consider a sample that contains nd donors and na acceptors per unit
volume. Henceforth, when speaking of the number of atoms or electrons, we
shall always refer to their density (number per unit volume).
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In addition to the electrons necessary for forming the valence bonds, each
donor gives an additional electron to the system that can easily become mo-
bile. In contrast, acceptor atoms are one electron short to form all covalent
bonds, so each of them binds an otherwise mobile electron into the fourth
bond. If the number (per unit volume) of electrons on the outermost shells
is ne, which can just fill the valence band before doping, then the number
of electrons that are relevant to semiconductor behavior (electrons in the va-
lence and conduction bands as well as on the donor and acceptor levels) is
ne + nd − na after doping. The positive and negative charges of the impu-
rity ions ensure the overall charge neutrality of the system. Below, we shall
examine how these electrons populate the levels.

20.5.1 Condition of Charge Neutrality

It was demonstrated in the previous section that a hydrogen-like spectrum
appears around each donor atom, nonetheless, for simplicity, it is justified to
take into consideration a single level, of energy εd. In the absence of acceptors,
ne of the ne + nd electrons fill the valence band in the ground state, and
each of the remaining nd electrons occupies a separate donor level, thereby
neutralizing the charge of the ion.

At finite temperature some of the electrons are excited into higher-energy
states. The probability that an electron hops to a donor level that is already
occupied by another electron is much smaller than the probability that it is
promoted to the conduction band because the distance of the donor levels
from the bottom of the conduction band (i.e., the binding energy) is much
smaller than the energy of the strong Coulomb repulsion between two electrons
on the same donor level. We shall therefore assume that donor levels cannot
accommodate two electrons. Denoting the number (density) of neutral donor
atoms (with one electron on the donor level) by n0

d, and that of the positively
charged, ionized donors (with no electron on the donor level) by n+

d ,

nd = n0
d + n+

d . (20.5.1)

Since all electrons that are detached from the ionized donors end up in
the conduction band, as long as the states of the valence band are not excited
thermally, the condition for charge neutrality is

n = n+
d , (20.5.2)

where n is the number of electrons in the conduction band. At higher temper-
atures, valence-band electrons can also be excited into the conduction band,
leaving behind an empty state, a hole in the valence band. (According to our
earlier assumption, this requires less energy than the excitation of an electron
to a donor level that is already occupied by another electron.) Denoting the
number of holes in the valence band by p, the condition for charge neutrality
is now
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n = n+
d + p . (20.5.3)

A somewhat different formulation is used for acceptors. Because of the ini-
tial electron deficiency of the acceptor atom, the number of available electrons
is ne−na. At the same time, the valence band is known to be modified by the
potential of the acceptors, and can accommodate ne − 2na electrons per unit
volume (when spin is also taken into account). These states are all occupied
in the ground state. Each of the remaining na electrons occupies a separate
acceptor level, ensuring the charge neutrality of the acceptor atom.

In the excited state an acceptor level may become either doubly occu-
pied by binding another electron of the opposite spin or empty. The former,
negatively ionized state is easily realized because the attractive interaction
between the acceptor and the electrons can partially overcome the Coulomb
repulsion between electrons. Owing to the proximity of the acceptor levels to
the top of the valence band, valence-band electrons can be thermally excited
to singly occupied, neutral acceptor levels, leaving behind a hole in the valence
band. The energy of a positively ionized, empty acceptor level is much higher,
so this state can be neglected in calculations. We shall therefore assume that
each acceptor level is occupied by at least one electron. Denoting the number
of neutral acceptor atoms (with one electron on the acceptor level) by n0

a, and
that of the negatively charged, ionized acceptor atoms (with two electrons on
the acceptor level) by n−a ,

na = n0
a + n−a . (20.5.4)

Acceptors are ionized by capturing electrons from the valence band. Since
at low temperatures valence-band electrons can be excited only to acceptor
levels, the number of holes p in the valence band must be equal to n−a :

n−a = p . (20.5.5)

Excitation into the conduction band requires somewhat higher energies. When
such excitations occur, some of the electrons leaving the valence band ionize
acceptors, while others populate the conduction band, so the equation for
charge neutrality reads

n+ n−a = p . (20.5.6)

When donors and acceptors are simultaneously present, then out of the
ne + nd −na electrons ne − 2na fill the valence band in the ground state. The
number of remaining electrons is nd + na, and acceptors can accommodate
2na. Therefore, when nd < na, nd acceptor levels will be doubly and na − nd
singly occupied. Acceptors are negatively ionized in the former and neutral
in the latter case. Donor levels remain empty, and thus donors are positively
charged (ionized).

n−a = nd, n0
a = na − nd, n+

d = nd, n0
d = 0 . (20.5.7)

The condition for overall neutrality requires that the number of negatively
charged acceptors be equal to the number of positively charged donors:
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n−a = n+
d . (20.5.8)

At finite temperatures conduction-band states can also be excited, and so
holes appear in the valence band. Charge neutrality now requires that the
number of electrons in the conduction band plus negative (ionized) acceptors
be equal to the number of positive (ionized) donors and holes in the valence
band:

n+ n−a = n+
d + p . (20.5.9)

The same equation applies when nd > na. This formula plays a central role
in the description of the behavior of semiconductors. Before turning to an
application, the evaluation of the chemical potential, we shall examine each
term separately.

20.5.2 Thermal Population of Donor and Acceptor Levels

The formulas (20.3.17) and (20.3.20) obtained for the number of electrons in
the conduction band and the number of holes in the valence band may be
used in this situation, too, as their derivation was based solely on the thermal
occupation of one-particle states. The suitable choice of the chemical potential
will make the only difference.

However, the Fermi–Dirac distribution function valid for the occupation of
independent states cannot be automatically applied to the thermal population
of donor and acceptor levels; the relevant formulas have to be derived from
the general principles of statistical mechanics. When electron spins are also
taken into account, four states are possible. The donor level can be either
empty, singly occupied (with either spin orientation, leading to two states), or
doubly occupied (by electrons of opposite spin). The Fermi–Dirac distribution
function would apply to donor levels if the energy of the doubly occupied state
were twice the energy of the singly occupied state. However, on account of the
Coulomb repulsion between the two electrons, it is much higher than that,
therefore it is energetically more favorable for the second electron to occupy
a state in the conduction band. Donor atoms can therefore be in one of three
possible states: the donor level is either empty, or singly occupied by a spin-
up or spin-down electron. In a grand canonical ensemble, the probabilities of
these states are determined by the Boltzmann factors

e−βε0/Z and e−β(ε0+εd−μ)/Z . (20.5.10)

The distribution function fd of donors – that is, the mean number of electrons
per donor atom – is

fd(εd) =
∑
nie−β(Ei−μni)∑
e−β(Ei−μni)

=
2e−(ε0+εd−μ)/kBT

e−ε0/kBT + 2e−(ε0+εd−μ)/kBT

=
1

1
2e(εd−μ)/kBT + 1

.

(20.5.11)
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This formula also gives the probability that the donor atom is neutral (i.e.,
it is occupied by one electron). If the number of donor atoms is nd, then the
number of neutral ones is

n0
d = ndfd(εd) =

nd
1
2e(εd−μ)/kBT + 1

. (20.5.12)

(20.5.1) implies that the average number of ionized donors is

n+
d = nd − nd

1
2e(εd−μ)/kBT + 1

=
nd

1 + 2e(μ−εd)/kBT
. (20.5.13)

The situation is, in a sense, the opposite for acceptors. In the neutral
ground state the acceptor level is occupied by one electron. Owing to the two
spin orientations, the ground state is doubly degenerate. The excited state, in
which the acceptor level has two electrons of opposite spin, is not degenerate.
The distribution function fa(εa) of acceptors is defined in such a way that it
gives the expected number of electrons on the acceptor level:

fa(εa) =
2e−(ε0−μ)/kBT + 2e−(ε0+εa−2μ)/kBT

2e−(ε0−μ)/kBT + e−(ε0+εa−2μ)/kBT

=
1 + e(μ−εa)/kBT

1 + 1
2e(μ−εa)/kBT

.

(20.5.14)

Since there is at least one electron on the acceptor level (one in the neutral
state and two in the ionized state), the probability that the acceptor is ionized
is

fa(εa) − 1 =
1 + e(μ−εa)/kBT

1 + 1
2e(μ−εa)/kBT

− 1 =
1

1 + 2e(εa−μ)/kBT
, (20.5.15)

and the number of ionized acceptors is

n−a =
na

1 + 2e(εa−μ)/kBT
. (20.5.16)

This expression is perfectly analogous to the one specifying the number of ion-
ized donors, but energies are now measured in the opposite direction, down-
ward from the chemical potential. In this upside-down picture electrons appear
as holes, and vice versa.

20.5.3 Number of Carriers in Doped Semiconductors

The density of charge carriers – that is, the number of electrons in the conduc-
tion band plus holes in the valence band per unit volume – has a very strong
influence on the properties of doped semiconductors. The carrier concentra-
tions can be calculated by exploiting (20.3.17) and (20.3.20). However, it is
often more convenient to use the formulas implied by (20.3.32) and (20.3.33),
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n = ni e(μ−μi)/kBT , p = ni e(μi−μ)/kBT . (20.5.17)

These relations clearly show that the effects of doping appears only through
the chemical potential. An upward shift of the chemical potential due to dop-
ing gives rise to an exponential increase in the number of carriers in the
conduction band, and a similar decrease in the valence band. Variations in
the opposite sense are observed when the chemical potential decreases due to
doping.

In the foregoing we have derived all the formulas that are necessary for de-
termining the chemical potential. Substituting (20.3.17), (20.3.20), (20.5.13),
and (20.5.16) into the charge-neutrality condition (20.5.9), we have

Nc(T )e−(εc−μ)/kBT +
na

1 + 2e(εa−μ)/kBT

=
nd

1 + 2e(μ−εd)/kBT
+ Pv(T )e−(μ−εv)/kBT .

(20.5.18)

By solving this equation, we shall now calculate the chemical potential and
carrier concentration in different situations.

n-Type Semiconductors Containing Only Donors

We shall first deal with the case of semiconductors that contain only donor
atoms. The neutrality condition (20.5.9) is then reduced to (20.5.3). At low
temperatures electrons are excited into the conduction band principally from
the donor levels, and hardly from the valence band, thus p n. Neglecting p
in the neutrality condition, and writing out the two other terms in full,

Nc(T )e−(εc−μ)/kBT =
nd

1 + 2e(μ−εd)/kBT
. (20.5.19)

This can be rewritten as a quadratic equation for x = exp(μ/kBT ). Its
solution gives

μ = kBT ln

{
1
4
eεd/kBT

[√
1 +

8nd

Nc(T )
e(εc−εd)/kBT − 1

]}
. (20.5.20)

At very low temperatures, where

8nd

Nc(T )
e(εc−εd)/kBT � 1 , (20.5.21)

the chemical potential is

μ = kBT ln

[
1
4
eεd/kBT

√
8nd

Nc(T )
e(εc−εd)/2kBT

]
= 1

2 (εc + εd) + 1
2kBT ln

nd

2Nc(T )
.

(20.5.22)
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As Nc(T ) is proportional to the 3/2th power of the temperature, the second
term vanishes in the T → 0 limit. Bearing resemblance on intrinsic semicon-
ductors, the chemical potential is located halfway between the bottom of the
completely empty conduction band and the completely filled donor level.

Thus, at very low temperatures, where (20.5.21) is satisfied, the number
of conduction electrons is obtained by substituting the above formula of the
chemical potential into (20.3.17):

n = Nc(T )e−(εc−μ)/kBT =

√
Nc(T )nd

2
e−(εc−εd)/2kBT . (20.5.23)

The temperature dependence is dominated by the exponential factor. Since
the density of carriers is exponentially small, this temperature range is called
the freeze-out range or partial-ionization range.

The chemical potential shows an initial increase with increasing temper-
ature. Unless the number of donors is sufficiently large, this increase stops
before the chemical potential could reach the bottom of the conduction band.
If this condition is not met, then classical statistics can no longer be used for
determining the number of electrons in the conduction band, and quantum
statistics has to be applied instead. Such semiconductors are called degenerate.

Slightly above the freeze-out range, where Nc(T ) � 8nd and thus

8nd

Nc(T )
e(εc−εd)/kBT  1 , (20.5.24)

the chemical potential for nondegenerate semiconductors can be obtained by
a series expansion of (20.5.20) leading to

μ = kBT ln
{

1
4
eεd/kBT

[
1 +

4nd

Nc(T )
e(εc−εd)/kBT − 1

]}
= kBT ln

(
nd

Nc(T )
eεc/kBT

)
= εc + kBT ln

nd

Nc(T )
, (20.5.25)

while the number of electrons in the conduction band is

n = Nc(T )e−(εc−μ)/kBT = Nc(T )eln nd/Nc(T ) = nd . (20.5.26)

Because of the condition Nc(T ) � 8nd, the chemical potential decreases with
increasing temperature in this range. By comparing the equation n = nd
with (20.5.3), and exploiting that p ≈ 0, almost all donor impurities are seen
to be ionized: their extra electrons are in the conduction band now. This
medium-temperature range is often referred to as the saturation range or
extrinsic range, since the carrier concentration is determined by the number
of impurities.

More careful calculations show that a few electrons of the valence band
are already excited to the conduction band, nonetheless the number of holes
left behind in the valence band is still low. The holes in the valence band are
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therefore called minority carriers In n-type semiconductors electrons in the
conduction band are the majority carriers.

To evaluate the number of minority carriers, the previous calculation has
to be refined, as p can no longer be neglected. Assuming that all donors are
ionized, we have

n = p+ nd . (20.5.27)

Another relation is obtained from the law of mass action. As mentioned in
connection with pure semiconductors, (20.3.27) relating p and n is valid in
the presence of impurities, too. The physically sensible solution of the two
equations is

n = 1
2nd

[√
1 + (2ni/nd)2 + 1

]
,

p = 1
2nd

[√
1 + (2ni/nd)2 − 1

]
,

(20.5.28)

where ni is determined by (20.3.24). In the temperature range where the
carriers coming from donors dominate, ni  nd. As mentioned above, the
leading order of the series expansion gives n = nd for the number of carriers.
Keeping second-order terms, too, we have

n = nd + n2
i /nd , p = n2

i /nd . (20.5.29)

Figure 20.12 shows the thermal population of electron and hole states in an
n-type semiconductor. Comparison with Fig. 20.9 shows that the number of
electrons in the conduction band has increased, while the number of holes in
the valence band has decreased.
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Fig. 20.12. The thermal distribution of electron and hole states in an n-type semi-
conductor at two different temperatures

A more accurate formula is obtained for the chemical potential when μ is
expressed from (20.3.17) and (20.5.28) is used for n:
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μ = εc + kBT ln

[
nd

2Nc(T )

(
1 +

√
1 +

4n2
i

n2
d

)]
. (20.5.30)

At even higher temperatures carriers excited thermally from the valence
band may start to dominate: ni � nd. Then (20.5.28) implies

n ≈ ni + 1
2nd , p ≈ ni − 1

2nd . (20.5.31)

Taking, once again, the chemical potential from (20.3.17) and making use of
the previous result,

μ = εc + kBT ln
n

Nc(T )
≈ εc + kBT ln

ni

Nc(T )
. (20.5.32)

Using (20.3.24) for ni, we find

μ = 1
2 (εc + εv) + 1

2kBT ln
Pv(T )
Nc(T )

, (20.5.33)

which is the same result as for intrinsic semiconductors. This shows that for
semiconductors doped by donors there is a range at sufficiently high tem-
peratures where the contribution of donors to the carrier concentration is
negligible. Since n ≈ p, the overwhelming majority of the electrons in the
conduction band come from the valence band. Once again, the number of
electrons increases exponentially with temperature, however the exponent is
not (εc − εd)/2, as at low temperatures, but (εc − εv)/2 = εg/2. The semicon-
ductor behaves as if it were intrinsic. This high-temperature range is known as
the intrinsic range. The threshold temperature of this range increases with the
concentration of donor atoms. The temperature dependence of the chemical
potential and the number of electrons in the conduction band are schemati-
cally summarized in Fig. 20.13.
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Fig. 20.13. (a) Temperature dependence of the chemical potential in the presence
of donor atoms. The dashed line shows the variations of the chemical potential in
an intrinsic semiconductor. (b) Temperature dependence of the number of electrons
in the conduction band
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p-Type Semiconductors Containing Only Acceptors

Analogous calculations can be performed for p-type semiconductors that con-
tain only acceptors. Starting with the equation of charge neutrality,

n+ n−a = p , (20.5.34)

the results can be written down immediately, by exploiting the electron–hole
symmetry i.e., the correspondence between electron and hole states in n- and
p-type semiconductors. These considerations lead to Fig. 20.14, in which the
chemical potential and the number of holes in the valence band are plotted
against temperature.
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Fig. 20.14. (a) Temperature dependence of the chemical potential in a semiconduc-
tor doped by acceptor atoms. (b) Temperature dependence of the number of holes
in the valence band

At low temperatures, where no electrons are excited to the conduction
band, the chemical potential is usually written as

μ = −kBT ln

{
1
4
e−εa/kBT

[√
1 +

8na

Pv(T )
e−(εv−εa)/kBT − 1

]}
, (20.5.35)

in analogy with (20.5.20). In the T → 0 limit, where Pv(T )  na, the chemical
potential is halfway between the top of the valence band and the acceptor
level. At low temperatures the dominant process is the excitation of electrons
from the valence band to the acceptor level – that is, viewed from another
perspective, the dominant carriers are holes excited into the valence band
from the acceptor level. Here, too, this is known as the freeze-out (or partial-
ionization) range.
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In the intermediate temperature range each acceptor is ionized, n−a ≈ na,
but n ≈ 0, and thus p ≈ na. This is saturation or extrinsic range. More
accurate calculations yield

p = 1
2na

[√
1 + (2ni/na)2 + 1

]
≈ na + n2

i /na ,

n = 1
2na

[√
1 + (2ni/na)2 − 1

]
≈ n2

i /na .
(20.5.36)

At even higher temperatures the number of electrons excited into the con-
duction band may exceed the number of impurities. Hence, above some char-
acteristic temperature that depends on the acceptor concentration, the semi-
conductor behaves as if it did not contain any impurities. This is the intrin-
sic conduction range. Figure 20.15 shows the temperature dependence of the
chemical potential for various donor and acceptor concentrations.
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Fig. 20.15. Temperature dependence of the chemical potential in silicon for various
donor and acceptor concentrations

Semiconductors Containing Donors and Acceptors

In principle, the number of charge carriers and the chemical potential may also
be determined from (20.5.9) for samples containing both donors and acceptors.
Two cases must be considered: nd > na and nd < na. The sample is an n-type
semiconductor in the first case, and a p-type semiconductor in the second.

When nd > na, the valence band is completely filled in the ground state
and each acceptor level is doubly occupied, hence all acceptors are ionized.
The remaining nd−na electrons occupy donor levels, but these levels are only
partially filled. The chemical potential is obviously the energy of the donor
level: μ = εd.
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At finite temperatures the full equation (20.5.9) has to be considered. The
introduction of the variable x = exp(μ/kBT ) leads to a quartic equation.
However, the equation is considerably simplified in four characteristic tem-
perature ranges, and the solution is straightforward. We shall now consider
each of them.

Once again, in the low-temperature range, where the chemical potential
remains close to εd, practically only the electrons occupying donor levels are
excited into the conduction band, i.e., p ≈ 0 and n−a ≈ na. The neutrality
condition is then reduced to

Nc(T )e−(εc−μ)/kBT + na =
nd

1 + 2e(μ−εd)/kBT
. (20.5.37)

This formula is further simplified at very low temperatures where only a very
small number of electrons are excited into the conduction band. By neglecting
the first term on the left-hand side compared to na,

na =
nd

1 + 2e(μ−εd)/kBT
. (20.5.38)

Rearrangement of the terms gives

μ = εd + kBT ln
nd − na

2na
. (20.5.39)

Substituting this into (20.3.17), the number of electrons in the conduction
band is

n =
Nc(T )(nd − na)

2na
e−(εc−εd)/kBT . (20.5.40)

At slightly higher but still low temperatures – where the thermal energy
kBT is still smaller than the distance of the chemical potential from the donor
levels (kBT  |εd−μ|) – only a small proportion of the donors become ionized
and practically none of the electrons in the valence band are excited into the
conduction band. If nd � na, there is a temperature range where the number
of electrons promoted to the conduction band from the donor levels exceeds
the number of ionized acceptors, therefore na can be neglected in (20.5.37).
Exploiting the condition εd−μ� kBT in the distribution function for donors,

Nc(T )e−(εc−μ)/kBT = 1
2nde−(μ−εd)/kBT , (20.5.41)

and so
μ = 1

2 (εc + εd) + 1
2kBT ln

nd

2Nc(T )
. (20.5.42)

Using this form of the chemical potential to evaluate the number of charge
carriers in the conduction band:

n =

√
Nc(T )nd

2
e−(εc−εd)/2kBT . (20.5.43)
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This is the same as (20.5.23), the low-temperature formula obtained for semi-
conductors containing only donor atoms. Our previous considerations show
that if acceptors are also present in a small quantity, then they play a role only
at very low temperatures. They modify the exponent in the exponential tem-
perature dependence of the number of charge carriers to (εc − εd)/kBT . Only
at slightly higher temperatures does the value characteristic of the freeze-out
range of n-type semiconductors, (εc − εd)/2kBT , appear in the exponent.

At even higher temperatures the samples that contain a small number
of acceptors in addition to donors behave like a material that contains only
donors – however nd is replaced by nd−na in every previously derived formula.
There is a saturation range in this case, too, where – in addition to the already
ionized acceptors – each donor becomes ionized: n+

d ≈ nd. The difference
between the number of electrons in the conduction band and the number of
holes in the valence band is then

Δn = n− p = nd − na . (20.5.44)

The law of mass action is valid here, too, and takes the form

n p = n2
i . (20.5.45)

The two equations yield

n = 1
2

[
(nd − na)2 + 4n2

i
]1/2

+ 1
2 (nd − na) ,

p = 1
2

[
(nd − na)2 + 4n2

i
]1/2 − 1

2 (nd − na) .
(20.5.46)

In the saturation range the carriers supplied by the impurities dominate,
Δn� ni, thus in leading order

n ≈ nd − na , p ≈ n2
i

nd − na
. (20.5.47)

In this intermediate temperature range the number of majority carriers is in-
dependent of the temperature. Even though the formula for the number of
carriers contains the difference nd − na – that is, donors are partially com-
pensated by acceptors –, the overall behavior of the semiconductor depends
on the total number of donors and acceptors nd + na, too, as they also act as
scattering and recombination centers.

Finally, at even higher temperatures the intrinsic conduction range is
reached. Figure 20.16 shows the temperature dependence of the chemical po-
tential and the number of electrons excited into the conduction band in the
four discussed temperature ranges.

In the opposite case, when acceptors are in excess of donors (na > nd), the
chemical potential is just εa in the ground state. Apart from the range of very
low temperatures the same behavior is obtained as for p-type semiconductors
containing only acceptors, with the single difference that now
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Fig. 20.16. (a) Temperature dependence of the chemical potential for n-type (nd >
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dependence for a pure semiconductor. (b) Temperature dependence of the number
of electrons excited into the conduction band for an n-type semiconductor

n ≈ n2
i

na − nd
, p ≈ na − nd (20.5.48)

in the saturation range.
The above-discussed temperature dependence of the number of charge car-

riers plays an important role in the transport properties of homogeneous semi-
conductors. The temperature dependence of the conductivity is dominated by
the variation of the number of charge carriers in the low- and high-temperature
regions. The conductivity increases sharply with temperature due to the expo-
nential increase of the carrier density. In the medium-temperature saturation
range, where the carrier concentration is temperature independent, the con-
ductivity decreases with temperature.
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Semiclassical Dynamics of Electrons

Having specified the stationary electron states, we can now turn to another
issue that is even more interesting in several respects: What happens to the
electrons in solids when the sample is placed in an applied electromagnetic
field? This question does not arise only in the context of conduction (or trans-
port) phenomena but also when the motion of electrons in a constant magnetic
field is studied or when one tries to infer the processes occurring inside the
material from the optical properties.

In the presence of an electromagnetic field the states of Bloch electrons
cannot be calculated exactly. High-frequency fields can induce interband tran-
sitions, and similar transitions can also occur in sufficiently strong uniform
electric fields, as we shall see at the end of this chapter. To describe the pro-
cesses in applied fields, we shall use the so-called semiclassical approximation.
In the present chapter we shall introduce this method, and present its limita-
tions as well.

As we shall see, the wave vector of electrons in a uniform magnetic field
moves along k-space orbits of constant energy in a plane perpendicular to
the magnetic field. Since electron states outside the narrow region of width
kBT around the Fermi energy are fully occupied or completely empty, the
motion in a magnetic field provides information about the properties of elec-
trons near the Fermi surface, which play a primary role in the behavior of
metals. Therefore we shall also briefly discuss some experimental methods
that use the motion in a magnetic field to determine the main features of the
Fermi surface. Other consequences of semiclassical dynamics, for example the
transport properties in solids, will be studied in more detail in Chapter 24.

21.1 Basics of Semiclassical Dynamics

When studying the motion of free electrons in a uniform electric field in Chap-
ter 16, we demonstrated that if the electric field is specified in terms of a scalar
potential then the behavior of the electronic wavefunctions under translations
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can still be characterized by a wave vector k, however k will be time de-
pendent. The time dependence is given by (16.3.11). Rewritten in differential
form,

�k̇(t) = −eE . (21.1.1)

Formally, this is the same as the classical equation of motion, since for free
electrons �k is the momentum and −eE is the accelerating force of the electric
field. We shall examine how this is modified for Bloch electrons, as the crystal
momentum, �k, which is related to the invariance under discrete translations,
is not the same as the momentum, and the motion of electrons is affected not
only by the applied field but also by the periodic potential. As we shall see,
in spite of these differences, (21.1.1) is valid for Bloch electrons, too, in the
semiclassical approximation.

In this approach our primary concern is not the eigenvalues and eigenfunc-
tions of the Hamiltonian

H =
1

2me

[
�

i
∇ + eA(r)

]2
+ U(r) − eϕ(r) (21.1.2)

but the motion of a wave packet that can be represented as the superposition
of Bloch states that belong in the same band:

φnk(r, t) =
∑
k′
g(k′)ψnk′(r)e−iεnk′ t/� . (21.1.3)

The wave packet can be reasonably characterized by a wave vector k if the
sum over k′ is limited to a sufficiently small region around k whose width
Δk = k′ −k satisfies |Δk|  |k|. As is well known from quantum mechanics,
the spatial extent of the wave packet depends on the size of this k-space
region. For wave packets obtained by the superposition of plane waves the
uncertainties of the wave vector and position are related by

|Δk| · |Δr| ∼ 1 . (21.1.4)

It will be shown in Section 21.4 on the limitations of the semiclassical ap-
proximation that the same applies to wave packets constructed from Bloch
states. Keeping this limitation in mind, one may speak of a Bloch electron at
position r with crystal momentum �k.

By interpreting the motion of electrons as the propagation of wave packets,
a semiclassical description can be obtained. This requires a proper definition
of the velocity and mass of Bloch electrons, and then establishing the equation
of motion in terms of them. We shall deal with these issues below, and return
to the limitations of the semiclassical approximation in the last section of the
chapter.

21.1.1 Velocity of Bloch Electrons

As established in optics, the group velocity of a wave packet made up of waves
of dispersion relation ω(k) is
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v(k) =
∂ω(k)
∂k

. (21.1.5)

Since the energy ε of quantum particles and the frequency ω that is character-
istic of the variations of the wavefunctions with time are related by ε = �ω, the
expected formula for the velocity of Bloch electrons with a general dispersion
relation εnk is

vnk =
1
�

∂εnk

∂k
. (21.1.6)

Below we shall demonstrate more rigorously that this is indeed correct by
calculating the expectation value of the velocity operator for an electron in a
Bloch state.

According to the customary quantum mechanical formulas, the velocity
operator, as the time derivative of the position operator, can be expressed as
a commutator with the Hamiltonian:

v =
dr

dt
=

i
�

[H, r] . (21.1.7)

Since the periodic potential of the crystal in

H = − �
2

2me
∇2 + U(r) (21.1.8)

depends on the position coordinates alone, the evaluation of the commuta-
tor for electrons moving in the lattice potential leads to the same velocity
operator,

v =
p

me
=

�

ime
∇ , (21.1.9)

as (16.2.21), the operator for free electrons. The expectation value of the
velocity in the Bloch state ψnk(r) is

vnk = 〈ψnk|v|ψnk〉 =
∫
ψ∗

nk(r)
�

ime
∇ψnk(r) dr . (21.1.10)

In order to relate this to the energy, we shall consider the Schrödinger
equation that determines the energies and the Bloch functions. More pre-
cisely, (17.1.17), the equation obtained for the lattice-periodic function uk(r)
is used with an additional band index. In the latter equation Hk is defined
by (17.1.16). Applying the equation to a state whose wave number k + δk is
slightly different from k, the substitution k → k + δk gives

Hk+δkun,k+δk(r) = εn,k+δkun,k+δk(r) , (21.1.11)

where

Hk+δk =
�

2

2me

(
1
i
∇ + k + δk

)2

+ U(r)

= Hk +
�

2

me

(
1
i
∇ + k

)
δk +

�
2

2me
(δk)2 .

(21.1.12)
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If δk is small, Hk can be formally considered as the Hamiltonian of an
unperturbed system, and the other terms as weak perturbations; δk is then
the small parameter of the perturbation expansion. When looking for the
leading-order term of the variation of the energy, the terms that are of the
second and higher orders in δk can be neglected in (21.1.12), and a first-
order perturbation expansion can be employed using the term linear in δk.
According to (G.1.10), the first-order energy correction is

δεnk =
∫
u∗nk(r)

�
2

me

(
1
i
∇ + k

)
δk unk(r) dr . (21.1.13)

By writing the variation of the energy as δεnk = (∂εnk/∂k)δk, and equating
the coefficients of δk on the two sides,

∂εnk

∂k
=
∫
u∗nk(r)

�
2

me

(
1
i
∇ + k

)
unk(r) dr (21.1.14)

is obtained for the gradient of the dispersion curve. Switching back from the
lattice-periodic functions unk(r) to the full Bloch function, and by inserting
the phase factor exp(ik · r), we have

∂εnk

∂k
=

�
2

me

∫
ψ∗

nk(r)
1
i
∇ψnk(r) dr . (21.1.15)

Apart from a factor of �, the right-hand side is just the expectation value
of the velocity, as given in (21.1.10), thus

∂εnk

∂k
= �vnk , (21.1.16)

that is, (21.1.6) is indeed the velocity of Bloch electrons in solids.
Let us now apply this result to a simple situation: to the electron states

in a simple cubic lattice obtained in the tight-binding approximation. The
left-hand side of Fig. 21.1 shows the energy spectrum in a high-symmetry

kx

kx

�k vk

��a

��a

�a

�a

Fig. 21.1. Dispersion curve for electrons in the tight-binding approximation and
their velocity in a cubic crystal along a high-symmetry direction of the Brillouin
zone
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direction of the Brillouin zone. (The choice of a high-symmetry direction is
important as only then does the gradient of the dispersion relation point
in the same direction.) The right-hand side of the figure shows the velocity
determined from (21.1.6). The velocity vanishes at the center and boundaries
of the Brillouin zone, while it takes both positive and negative values between
them.

21.1.2 Semiclassical Equation of Motion

Once the velocity of Bloch electrons is known, it is straightforward to establish
the k-space equation of motion for the variations of the wave vector with time.
If the wave packet made up of Bloch electrons in the nth band moves at a
velocity vnk, the work done in time dt on an electron in a uniform electric
field E is

dW = −eE · vnk dt . (21.1.17)

This has to be the same as the variation of the one-particle energy

dεnk

dt
dt . (21.1.18)

The variation of the energy is due, in part, to the variation of the wave vector
k. Another possible source of the variation is the interband transition of the
Bloch electron. As we shall demonstrate later, interband transitions can be
neglected, thus the variation in the energy due to the change of the wave
vector is

dW =
∂εnk

∂k

dk

dt
dt = �vnk

dk

dt
dt . (21.1.19)

Comparison of the two formulas for dW shows that the free-electron expression

�k̇ = −eE (21.1.20)

is valid for Bloch electrons, too. Its solution is

�k(t) = �k(0) − eEt . (21.1.21)

The uniform variation of the wave vector can be valid only as long as k is
inside the Brillouin zone. Since the wave vector is determined only up to a
reciprocal-lattice vector, when k(t) reaches the zone boundary it jumps to
the equivalent vector k + G on the opposite side of the zone, from where
the uniform variation continues. Thus k shows in fact periodic variation with
time. This is plotted in Fig. 21.2 for a high-symmetry direction of the Brillouin
zone.

Similar oscillations are obtained from

ṙ(t) = vn[k(t)] , (21.1.22)
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Fig. 21.2. Periodic variation of the wave vector of a Bloch electron in a uniform
electric field, along a high-symmetry direction of the Brillouin zone

the equation that determines the motion of electrons in real space, when due
account is taken of the property that the velocity itself oscillates as k runs over
the Brillouin zone. As shown in Fig. 21.3, the electron starting from the state
k = 0 first accelerates, then decelerates, and finally turns around. Therefore
in a uniform electric field, under ideal circumstances, electrons oscillate.

v� �t x� �t

t t

Fig. 21.3. Periodic variations in the velocity and position of a Bloch electron in a
uniform electric field

In reality, the situation is more complicated because of collisions. As has
been mentioned in connection with the Drude model, electrons fly freely for
an average time τ , accelerating as determined by the equation of motion, and
then collide, losing the energy taken from the electric field. Taking typical
relaxation times for metals, in customarily applied electric fields the variation
of the wave vector is typically much smaller than the size of the Brillouin zone,
thus these oscillations cannot be observed. Electrons moving in the periodic
field of the lattice carry a direct current. This will be discussed in detail in
Chapter 24.

It should be emphasized that the foregoing implies only that if the Bloch
electron is in the state of wave vector k0 in the n0th band at t = 0 – that is,
its translational properties are determined by the equation

ψn0k0(r + tm) = eik0·tmψn0k0(r) , (21.1.23)
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then after time t the wavefunction satisfies

ψ(r + tm, t) = eik·tmψ(r, t) , (21.1.24)

where k can be determined from (21.1.21). This new state is usually not an
eigenstate of the Hamiltonian but a superposition of states whose wave vectors
k are in different bands. Electric fields can thus induce interband transitions.
As we shall see, the applicability of semiclassical dynamics is limited by this
very fact: the approximation is valid only as long as interband transitions can
be neglected.

In the presence of a magnetic field the considerations based on the variation
of energy are not useful, since the electron energy is conserved in uniform
magnetic fields. One possibility is to use the Schrödinger equation for the
time evolution of the electronic wavefunction ψn0k0(r) at time t = 0 to obtain
ψ at a later time dt:

ψ(r,dt) = e−iHdt/�ψn0k0(r) , (21.1.25)

where the kinetic-energy term of the Hamiltonian is now written in terms of
the kinetic (rather than the canonical) momentum, which contains the vector
potential as well, and the variation of the wavefunction under translations is
determined for ψ(r,dt). The operator for a translation through tm is known
to be

Ttm
= e−tm·∇ , (21.1.26)

since the straightforward series expansion of the exponent leads to

Ttm
ψ(r) = e−tm·∇ψ(r) = ψ(r − tm) . (21.1.27)

When this operator is applied to the wavefunction at time dt, then

Ttmψ(r,dt) = e−ik·tmψ(r,dt) (21.1.28)

can no longer be satisfied exactly with a magnetic-field-dependent k. It can
nonetheless be demonstrated that when the terms that are quadratic in the
magnetic field are neglected, the behavior under translations is characterized
by the wave vector

k = k0 − e

�
vn0k0 × Bdt , (21.1.29)

where vnk is the velocity of the Bloch electron. The second term on the right-
hand side contains the Lorentz force acting on a particle of charge −e in a
magnetic field B. Its presence can be understood intuitively. Since in many
respects the wave packet behaves as a classical particle of momentum �k, it is
not surprising that the equation governing the variation of the wave vector of
the wave packet is the same as the classical equation of motion for an electron.
Consequently, we shall assume that the k-space equation of motion

�k̇ = −e[E(r, t) + vnk × B(r, t)
]

(21.1.30)

is valid for time- and position-dependent fields as well.
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21.1.3 Effective-Mass Tensor

The effective mass of Bloch electrons was defined through the dispersion rela-
tion in Chapter 17, even though physical meaning was attached to this concept
only close to the bottom of the band (or to the top for holes). Below we shall
examine whether the dynamics of electrons is characterized by the same ef-
fective mass. To this end, we first determine the acceleration of the electrons
by differentiating the velocity formula (21.1.6) with respect to time:

v̇nk =
d
dt

(
1
�

∂εnk

∂k

)
. (21.1.31)

For notational simplicity, we shall often suppress the band index, keeping in
mind its implicit presence. Since the energy depends on time only through k,
the rules of implicit differentiation give

v̇k =
∂

∂k

(
1
�

∂εk
∂k

)
dk

dt
=

1
�2

∂2εk

∂k2 �k̇ . (21.1.32)

As �k̇ is the force F on the electron, comparison with the classical equation
of motion

v̇ =
1
M

F (21.1.33)

for a particle of mass M gives the same formula,

1
m∗ =

1
�2

∂2εk

∂k2 , (21.1.34)

for the effective mass governing the dynamics of an electron moving through
the periodic field of the lattice as (17.4.9), the defining equation of the effective
mass, obtained from the curvature of the dispersion relation.

In more general cases, where the dispersion relation of the electrons is not
isotropic, their motion can be described in terms of an effective-mass tensor.
Defining the tensor through the generalization of (21.1.33),

v̇α =
(

1
M∗

)
αβ

Fβ , (21.1.35)

we have (
1

M∗

)
αβ

=
1
�2

∂2εk
∂kα∂kβ

, α, β = x, y, z (21.1.36)

for the inverse dynamical effective-mass tensor. Obviously, this is the same
as (17.4.12). The effective mass can thus be defined for electrons associated
with any point of the Brillouin zone. The concept proves really useful when
the effective mass is the same for a reasonably large group of electrons.
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21.1.4 Motion of Electrons and Holes

It was mentioned in connection with the density of states that the dispersion
relation can usually be approximated by a quadratic form at the bottom of
the band, which facilitates the definition of the effective mass there. At the
top of the band it is more practical to consider empty states as holes. Below
we shall examine their motion in an applied electromagnetic field.

The semiclassical equations governing the dynamics of electrons are the
same whether or not the state is occupied. In the phase space spanned by
vectors k and r the path traced out by the wave packet is independent of
the occupation. As long as collisions can be neglected, occupied states evolve
into occupied, and unoccupied into unoccupied states. When an unoccupied
state is treated as a hole, the equation of motion for the variation of the wave
vector of the electron

�k̇e = −e [E(r, t) + ven(ke) × B(r, t)] , (21.1.37)

(in which even the velocity has an explicit “electron” label) can be rewritten
in terms of the hole wave vector kh = −ke and the hole velocity defined by

vhn(kh) =
1
�

∂εhn(kh)
∂kh

. (21.1.38)

As (17.4.18) implies, vhn(kh) = ven(ke), so

�k̇h = +e [E(r, t) + vhn(kh) × B(r, t)] . (21.1.39)

This can be interpreted by attributing a positive charge to the hole. We shall
also show that the current carried by holes can also be calculated using the
same elementary picture: particles of charge +e move at a velocity vhn(kh).

If the charge carriers occupy several bands, the total current is obtained
by summing the contributions of the electrons in each band. We shall first
demonstrate that completely filled bands do not contribute to the conductiv-
ity, so only partially filled bands need to be considered. This is at the heart
of our previous assertion that the prerequisite for metallic behavior is at least
one incompletely filled band.

For any lattice-periodic function f(r) the integral over the primitive cell (of
volume v) is invariant under the translation of the argument by an arbitrary
vector r′: ∫

v

drf(r) =
∫
v

drf(r + r′) , (21.1.40)

hence
d

dr′

∫
v

drf(r + r′) =
∫
v

dr
d

dr′ f(r + r′) =
∫
v

dr
d
dr
f(r + r′)

=
∫
v

dr
d
dr
f(r) = 0 .

(21.1.41)
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A similar statement is true for functions that are periodic in the reciprocal
lattice, provided integration is over the primitive cell of the reciprocal lattice
or the equivalent Brillouin zone.

To apply this to the electric and energy currents, consider their semiclas-
sical formulas. The current density carried by the electrons in the nth band
is

j = −e 1
V

∑
k,σ

vnk = −e
∫

dk

4π3

1
�

∂εnk

∂k
, (21.1.42)

while the energy-current density is

jε =
1
V

∑
k,σ

εnkvnk =
∫

dk

4π3
εnk

1
�

∂εnk

∂k
=

1
2

∫
dk

4π3

1
�

∂ε2nk

∂k
, (21.1.43)

where the integrals are over the occupied states. Since εnk and its square are
lattice-periodic in the reciprocal space, the electric and energy currents both
vanish for completely filled bands. It is therefore sufficient to consider bands
close to the Fermi energy only; those deep below are completely filled and can
therefore be ignored.

If the band is partially filled, the k-space sum can be decomposed into two
sums: over occupied and unoccupied states. According to the foregoing,∫

filled

dk

4π3
vnk +

∫
empty

dk

4π3
vnk = 0 . (21.1.44)

The electric current carried by occupied states can then be rewritten in terms
of the empty states as

j = −e
∫

filled

dk

4π3
vnk = +e

∫
empty

dk

4π3
vnk . (21.1.45)

The electric current can thus be interpreted as arising from positively charged
holes. This observation will be particularly useful for semiconductors, where
the contribution of the almost completely filled valence band is best treated
in terms of holes.

21.2 Bloch Electrons in Uniform Magnetic Fields

The study of the motion of electrons in a uniform magnetic field provides
fundamental information about the effective mass and other important prop-
erties of the Bloch electrons whose wave vectors make up the Fermi surface,
and about the shape of the Fermi surface itself. We shall examine this motion
in the semiclassical approximation.
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21.2.1 Motion in Reciprocal and Real Spaces

The variation of the wave vector k in a uniform magnetic field is governed by
the equation

dk

dt
= − e

�
vk × B , (21.2.1)

where the velocity is calculated from the dispersion relation of the electrons
in the customary way:

vk =
1
�

∂εk
∂k

. (21.2.2)

For simplicity, we shall suppress band indices.
A direct consequence of (21.2.1) is that the variation of the wave vector

with time is perpendicular to the magnetic field, so k‖, the component of
k along the magnetic field, is conserved. Another conserved quantity is the
energy. Taking the time derivative of the energy of electrons and making use
of the property that the energy depends on time only through the wave vector,
we have

dεk
dt

=
∂εk
∂k

· dk

dt
= −evk · (vk × B) = 0 . (21.2.3)

Just like free electrons, Bloch electrons cannot absorb any energy from the
magnetic field either. In the semiclassical approximation the wave vector of
the Bloch electron has to remain on a constant-energy surface in k-space –
more specifically, on its intersection with a plane perpendicular to the mag-
netic field. This is illustrated in Fig. 21.4, which shows the k-space orbits for
different Fermi surfaces in a simple cubic lattice. The almost spherical Fermi
surface on the left-hand side corresponds to nearly free electrons, while the
one on the right-hand side depicts an electron system for which the band is
more than half filled and that can be modeled in the tight-binding approxi-
mation. If the magnetic field is along the z-axis, the k vector moves on the
Fermi surface in the direction marked by arrows.

kx

kz

ky

kx

kz

ky

Fig. 21.4. k-space orbits on two Fermi surfaces in the presence of a uniform mag-
netic field applied along the z-axis
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In an applied magnetic field the trajectory in real space1 has a similar
shape to the orbit in k-space. Writing the equation for k as

dk

dt
= − e

�

(
dr

dt
× B

)
, (21.2.4)

integration yields

k(t) − k(0) = − e
�

[r(t) − r(0)] × B. (21.2.5)

Because of the vector product, only the component of r(t) − r(0) that is
perpendicular to the z-directed magnetic field contributes to the right-hand
side:

[r(t) − r(0)]⊥ × ẑ = − �

eB
[k(t) − k(0)] , (21.2.6)

where ẑ is the unit vector along the z-axis. In component form:

x(t) − x(0) =
�

eB
[ky(t) − ky(0)] ,

y(t) − y(0) = − �

eB
[kx(t) − kx(0)] .

(21.2.7)

Consequently, the projection of the real-space trajectory of the electrons to
the xy-plane follows the k-space motion, however:

1. The real-space motion is scaled up by a factor of l20 = �/eB with respect
to the k-space motion;2

2. Multiplication by the unit vector ẑ gives rise to a π/2 phase shift between
real- and k-space motions.

This is shown in Fig. 21.5. Since the shape of the real-space trajectory is
similar to that of the k-space orbit, and the latter is determined by the shape
of the constant-energy surfaces, the trajectory will be circular (as in the free-
electron case) only when the constant-energy surfaces are spheres – i.e., the
energy can be given in terms of a scalar effective mass. If the situation is more
complex, elliptical or even more complicated trajectories are obtained.
1 To describe the motion of electrons, some authors use the word orbit both in

k-space and real space. Others distinguish the k-space and real-space motions by
using orbit and trajectory, respectively. When this distinction is important, we
shall adopt the latter choice.

2 As will be demonstrated in the next chapter, in magnetic fields applied customar-
ily in experiments the magnetic length l0 is of order 10−6 cm. Since the magnitude
of the wave vector k is on the order of the linear dimension of the Brillouin zone
for electrons moving on the Fermi surface, the dimensions of the real-space tra-
jectory are much larger than the atomic dimensions.
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kx

ky
y

x

Fig. 21.5. The motion in k-space and the projection of the real-space trajectory to
the plane perpendicular to the magnetic field

21.2.2 Open and Closed Orbits in Magnetic Fields

The distortions of the Fermi “sphere” in a square lattice due to the weak
periodic potential were analyzed in Chapter 18. Figure 18.18 showed that
the Fermi surface is almost circular when the number of electrons is small,
whereas it is made up of several sheets when the number of electrons is large.
Very similar figures are obtained for the kz = 0 section of the Fermi surface in
a simple cubic lattice when the band filling is sufficiently high for that some
electrons occupy states beyond the first Brillouin zone. This is illustrated in
Fig. 21.6(a).

( )b( )a

Fig. 21.6. (a) Section of the Fermi surface of nearly free electrons for a relatively
high band filling, represented in the extended-zone scheme. (b) The k-space orbit of
electrons on the Fermi surface in an applied magnetic field

In a uniform magnetic field along the z-axis, the k vector traverses tra-
verses the intersection of the Fermi surface with the kz = constant plane.
This is depicted in the extended-zone scheme in Fig. 21.6(b). Since the Fermi
surface is discontinuous at the zone boundaries, when electrons reach them
they continue their motion from the equivalent point across the zone, there-
fore they do not trace out the entire intersection just a small portion of it.
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This is more conspicuous when the k-space motion of electrons is studied in
the repeated-zone scheme.

( )a ( )b

Fig. 21.7. The repeated-zone-scheme representation of those portions of the Fermi
surface shown in the previous figure that belong in the first and second bands

When the portions of the Fermi sphere are translated through a reciprocal-
lattice vector, as shown in Figs. 21.7(a) and (b), the portions that were initially
in the first and second Brillouin zones make up a connected Fermi surface, or a
closed orbit when its section is considered. The portions of the Fermi surface
that belong in the second band make up a curve whose interior contains
occupied states, and in a magnetic field perpendicular to the orbit electrons
move along the orbit counterclockwise, just as free electrons do. The situation
is different for the portions that belong in the first band: they surround empty
states, so this is a hole-type Fermi surface, and electrons trace out the orbit
clockwise.

Depending on the shape of the Fermi surface, the orbits may not close
in on themselves even in the repeated-zone scheme, or they may be closed
in certain directions but open in others. Such an open orbit is illustrated in
Fig. 21.8. Electrons then move on orbits that run to infinity.

Fig. 21.8. Open orbits on the Fermi surface in the reduced- and repeated-zone
schemes
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By varying the direction of the magnetic field, the shape of the sections
of the Fermi surface – and thus the shape of the electrons’ orbits – can be
changed. This property can be used for the experimental determination of the
shape of the Fermi surface.

21.2.3 Cyclotron Frequency in a Closed Orbit

For closed orbits one may calculate the period Tc that is required for the k
vector of an electron of energy ε to traverse the intersection of the surface
of constant energy ε with a plane perpendicular to the magnetic field. By
choosing, as usual, the z-axis along the direction of the magnetic field B, kz

is conserved. Since the element of arc in the (kx, ky) plane can be written as

dl =
√

(dkx)2 + (dky)2 , (21.2.8)

the time rate of change for the arc length along the k-space orbit is

dl
dt

=

√(
dkx

dt

)2

+
(

dky

dt

)2

. (21.2.9)

As
dkx

dt
= − e

�
vyB ,

dky

dt
=
e

�
vxB , (21.2.10)

we have
dl
dt

=
eB

�

√
v2x + v2y =

eB

�
v⊥ , (21.2.11)

where v⊥ is the velocity component that is perpendicular to the field direction.
Rearrangement then gives

dt =
�

eB

dl
v⊥
. (21.2.12)

For a closed orbit C the period Tc is the circular integral around the orbit:

Tc =
�

eB

∮
C

dl
v⊥
. (21.2.13)

This expression can be related to the area A enclosed by the orbit in k-
space. To demonstrate this, consider the constant kz section of the surfaces
of constant energy ε and ε+ dε.

As illustrated in Fig. 21.9, the area between the lines of constant energy ε
and ε+ dε is

dA =
∮

dl dk⊥ . (21.2.14)

The k-space distance dk⊥ of the lines of constant energy can be expressed in
terms of the energy difference dε through the relation
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kx

ky

dk���d�

�
dl

Fig. 21.9. Sections of the surfaces of constant energy ε and ε + dε perpendicular
to the uniform z-directed magnetic field, at a particular value of kz

dk⊥ =
dk⊥
dε

dε =
dε

dε/dk⊥
=

dε
�v⊥

. (21.2.15)

Substituting this into (21.2.14),

dA =
∮

dl
�v⊥

dε , (21.2.16)

and so
∂A
∂ε

=
∮

dl
�v⊥

. (21.2.17)

This is the same integral as in expression (21.2.13) for the period, therefore

Tc =
�

2

eB

∂A
∂ε
. (21.2.18)

The frequency of the periodic motion is

νc =
eB

�2

(
∂A
∂ε

)−1

, (21.2.19)

so its angular frequency is just

ωc =
2πeB

�2

(
∂A
∂ε

)−1

. (21.2.20)

As this is the (angular) frequency of the periodic motion of an electron in
an applied magnetic field, ωc is called the cyclotron frequency – even though
rigorously speaking the term cyclotron angular frequency would be more ap-
propriate. For a magnetic field direction that is fixed relative to the Fermi
surface, the cyclotron frequency is generally different in different sections of
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the Fermi surface (i.e., for electrons with different k‖, where k‖ is the projec-
tion of the wave vector to the direction of the magnetic field). We shall see
that this quantity can be measured in experiments when a substantial fraction
of all electrons on the Fermi surface move at the same cyclotron frequency.
This occurs for stationary (extremal) sections of the Fermi surface – that is
for those sections for which the energy derivative of the area of the cross sec-
tion of the Fermi surface with the plane perpendicular to the magnetic field
varies only slowly as the position of the plane is changed. Consequently, the
cyclotron frequencies associated with the maximal and minimal cross sections
can be measured. Since in general ωc depends on the magnetic field direc-
tion, the shape of the Fermi surface can be determined from the direction
dependence of the cyclotron frequency.

21.2.4 Cyclotron Mass

Writing the one-particle energy for free electrons in terms of the wave-vector
components that are parallel (kz) and perpendicular (k⊥) to the magnetic
field, the surface of constant energy ε is obtained as the related pairs (kz, k⊥)
that satisfy the equation

ε =
�

2

2me
(k2

z + k2
⊥) . (21.2.21)

The k-space area of its cross section with the plane perpendicular to z at
height kz is

A(ε, kz) = k2
⊥π =

2πme

�2
ε− k2

zπ . (21.2.22)

This implies
∂A
∂ε

=
2πme

�2
. (21.2.23)

Substituting this into the cyclotron frequency formula (21.2.20),

ωc =
eB

me
(21.2.24)

is obtained for free electrons.
Analogously, the period and cyclotron frequency are customarily written

in the free-electron-like form

Tc =
2πmc

eB
, ωc =

eB

mc
(21.2.25)

for more general one-particle energy spectra, too, where the cyclotron mass
mc is defined by

mc =
�

2

2π
∂A
∂ε
. (21.2.26)
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By repeating the steps of the calculation of the free-electron case, it is
immediately established that when the energy of Bloch electrons can be char-
acterized by a scalar effective mass m∗ then the cyclotron mass is the same
as the effective mass obtained from the band structure:

mc = m∗. (21.2.27)

For more general dispersion relation of the Bloch electrons, the constant-
energy surfaces are ellipsoids of general orientation in the vicinity of the
minima and maxima, where the dispersion relation can be approximated by
quadratic expressions, and the intersections of the Fermi surface with planes
perpendicular to the magnetic field are ellipses. As shown in Fig. 21.10, the
area enclosed by the cyclotron orbit depends on the particular choice of the
point on the Fermi surface. However, just like for spherical Fermi surfaces, the
period of the motion of the electron and, through it, the cyclotron frequency
are independent of the height parameter (formerly denoted by kz) of the sec-
tion, it depends only on the orientation of the applied magnetic field relative
to the principal axes of the ellipsoidal Fermi surface. The cyclotron mass is a
certain average of the components of the effective-mass tensor, namely, when
the magnetic field is along the z-axis,

mc =
(

det M∗
ij

M∗
zz

)1/2

. (21.2.28)

z

Fig. 21.10. Elliptic cyclotron orbits on an ellipsoidal Fermi surface

The most straightforward way to derive this is solving the semiclassical
equation of motion for electrons described by the dispersion relation (17.4.13)
in the presence of a z-directed magnetic field. We shall apply the same method
in the next subsection in a more refined calculation that takes into account
the finite lifetime of the electrons due to collisions.

For notational simplicity, we shall shift the origin to k0. Calculating the
velocity in the semiclassical equation of motion from the dispersion relation,
we have
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dkx

dt
= −e

[(
1

M∗

)
xy

kx +
(

1
M∗

)
yy

ky +
(

1
M∗

)
yz

kz

]
Bz ,

dky

dt
= e

[(
1

M∗

)
xx

kx +
(

1
M∗

)
xy

ky +
(

1
M∗

)
xz

kz

]
Bz ,

dkz

dt
= 0 .

(21.2.29)

As the motion is presumably periodic, we seek solutions of the form ke−iωct.
The above formulas then lead to the set of homogeneous equations[

iωc − e
(

1
M∗

)
xy

Bz

]
kx − e

(
1

M∗

)
yy

Bzky − e
(

1
M∗

)
yz

Bzkz = 0 ,

(21.2.30)

e

(
1

M∗

)
xx

kx +

[
iωc + e

(
1

M∗

)
xy

Bz

]
ky + e

(
1

M∗

)
xz

Bzkz = 0 ,

iωckz = 0 .

Nontrivial solutions exist when the determinant formed from the coefficients
vanishes:∣∣∣∣∣∣∣∣∣∣∣∣

iωc − e
(

1
M∗

)
xy

Bz −e
(

1
M∗

)
yy

Bz −e
(

1
M∗

)
yz

Bz

e

(
1

M∗

)
xx

Bz iωc + e
(

1
M∗

)
xy

Bz e

(
1

M∗

)
xz

Bz

0 0 iωc

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 . (21.2.31)

One solution is, obviously, ωc = 0. The physically interesting solution is ob-
tained from the equation

ω2
c = e2B2

z

[(
1

M∗

)
xx

(
1

M∗

)
yy

−
(

1
M∗

)2

xy

]
. (21.2.32)

By defining the cyclotron mass in the customary way, and changing to
the effective-mass tensor M∗ from the inverse effective-mass tensor M∗−1,
(21.2.28) is indeed recovered.

It is worth writing down the result for the case when the coordinate axes
are chosen along the principal axes of the ellipsoidal Fermi surface but the
magnetic induction does not point in a high-symmetry direction. The effective-
mass tensor is then diagonal, so the dispersion relation can be written as

εk =
�

2k2
1

2m∗
1

+
�

2k2
2

2m∗
2

+
�

2k2
3

2m∗
3

, (21.2.33)
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and, according to our assumptions, the masses are positive along each of the
three directions. Specifying the projections of the magnetic field along the
principal axes by the direction cosines α1, α2, and α3:

B1 = Bα1 , B2 = Bα2 , B3 = Bα3 . (21.2.34)

The equations of motion for the components along the principal axes are

dk1
dt

= −e k2
m∗

2

B3 + e
k3
m∗

3

B2 ,

dk2
dt

= −e k3
m∗

3

B1 + e
k1
m∗

1

B3 ,

dk3
dt

= −e k1
m∗

1

B2 + e
k2
m∗

2

B1 .

(21.2.35)

Seeking solutions of the form ke−iωct,

iωck1 − eB3

m∗
2

k2 +
eB2

m∗
3

k3 = 0 ,

iωck2 − eB1

m∗
3

k3 +
eB3

m∗
1

k1 = 0 ,

iωck3 − eB2

m∗
1

k1 +
eB1

m∗
2

k2 = 0

(21.2.36)

is obtained, hence the condition for the existence of nontrivial solutions is∣∣∣∣∣∣∣∣∣∣∣∣

iωc − eB3

m∗
2

+
eB2

m∗
3

+
eB3

m∗
1

iωc −eB1

m∗
3

−eB2

m∗
1

+
eB1

m∗
2

iωc

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 . (21.2.37)

The expansion of the determinant leads to a cubic equation in ωc:

iωc

[
−ω2

c +
(eB1)2

m∗
2m

∗
3

]
+
eB3

m∗
2

[
iωc
eB3
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1

− e2B1B2
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∗
3
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+
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3
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1
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∗
2

]
= 0 .

(21.2.38)

It is immediately seen that the first solution is ωc = 0. The two others are
given by

ω2
c = e2

[
B2

1

m∗
2m

∗
3

+
B2

2

m∗
1m

∗
3

+
B2

3

m∗
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∗
2

]

= (eB)2
m∗

1α
2
1 +m∗

2α
2
2 +m∗

3α
2
3

m∗
1m

∗
2m

∗
3

.

(21.2.39)
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The connection between the cyclotron mass and the cyclotron frequency, given
in the second equation of (21.2.25), leads to

1
mc

=

√
m∗

1α
2
1 +m∗

2α
2
2 +m∗

3α
2
3

m∗
1m

∗
2m

∗
3

. (21.2.40)

In the special case when the energy is given by

εk =
�

2

2m∗
⊥

(k2
x + k2

y) +
�

2k2
z

2m∗
‖
, (21.2.41)

that is, a longitudinal and a transverse mass are distinguished (as in semi-
conductors), and the magnetic field makes an angle θ with the z-axis, the
cyclotron mass is

1
mc

=

√
cos2 θ
m∗

⊥
2 +

sin2 θ

m∗
⊥m

∗
‖
. (21.2.42)

The cyclotron mass is thus a particular average of the components of the
effective-mass tensor.

21.2.5 Cyclotron Resonance

As discussed in the previous subsection, the angular frequency ωc of the pe-
riodic motion in a uniform magnetic field is directly related to the cyclotron
mass. On the other hand, when the dependence of the cyclotron frequency
on the magnetic field direction is known, the components of the effective-
mass tensor can be derived. The phenomenon of cyclotron resonance offers a
straightforward possibility to measure them, and thus, through the effective-
mass tensor, to characterize the Fermi surface.

In the measurement setup the sample is placed in a uniform magnetic
field B, and an additional weak electric field of frequency ω is applied in a
perpendicular direction. In a uniform magnetic field electrons on the Fermi
surface are known to move in a helical path whose projection on the plane
perpendicular to the field depends on the shape of the Fermi surface, and the
frequency of the periodic projected motion is the cyclotron frequency. If the
frequency of the alternating electric field is the same, the electron moves in
phase with the electric field and can thus gains energy from it. By varying
the frequency of the applied field or the magnetic field strength – i.e., the
cyclotron frequency –, absorption occurs only when the condition ω = ωc is
met.

In real samples electrons moving in the cyclotron orbit undergo collisions
and fall out of phase. Therefore even at the frequency ω = ωc they cannot
absorb as much energy as a completely free electron gas; on the other hand,
absorption is observed not only at ω = ωc but also when the frequency of the
electric field differs slightly from ωc. If the collisions are sufficiently infrequent
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– that is, the collision time is much larger than the period, τ � Tc (ωcτ � 1) –
then the absorption shows a resonance around ωc. This phenomenon is called
cyclotron resonance or diamagnetic resonance.

To understand the experimental findings, we shall again discuss the motion
of electrons in the semiclassical approximation, however, amend (21.1.30),
which describes the motion in k-space, by a term that accounts for collisions.
Collisions are assumed to lead to a finite relaxation time, just as in the Drude
model. Consequently, a term −k/τ appears in the equation of motion, which
indicates that in the absence of an applied field the wave vector would tend
to k = 0 with a relaxation time τ :

dk

dt
= − e

�
(E + vk × B) − k

τ
. (21.2.43)

Rewriting the equation in the system of coordinates spanned by the principal
axes of the effective-mass tensor:
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= − e
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(21.2.44)

Assuming that in an electric field E = E0e−iωt of frequency ω the solution
will also be periodic with the same frequency, the equation of motion reads
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By solving the set of equations that is now inhomogeneous because of the
presence of the electric field, and exploiting the property that k varies in the
plane perpendicular to B,

�k1 =
1

−(ω + i/τ)2 + ω2
c

[
ieE1

(
ω +

i
τ

)
+ eE2

eB3

m∗
2

− eE3
eB2

m∗
3

]
(21.2.46)

is obtained, where ωc is given by (21.2.39) – in other words, it is the cyclotron
frequency associated with the cyclotron mass specified by (21.2.40). Similar
equations are valid for the other components, too. Denoting the electron den-
sity by ne, the component of the current carried by the electrons along the
1-axis is
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j1 = −enev1 = −ene

m∗
1

�k1 . (21.2.47)

The σ11 element of the complex conductivity tensor is then

σ11 =
e2 ne

m∗
1

−iω + 1/τ
−(ω + i/τ)2 + ω2

c
= σ0

1 − iωτ
1 + (ω2

c − ω2)τ2 − 2iωτ
, (21.2.48)

where σ0 = nee
2τ/m∗

1 is the conductivity of electrons of effective mass m∗
1

in the Drude model. Figure 21.11 shows how the real part of σ11 depends on
the strength of the magnetic field for different values of ωτ . When ωτ � 1,
a sharp resonance occurs at ω = ωc, while if ωτ < 1, the curve is completely
featureless. This is in agreement with the previous physical picture that elec-
trons can absorb energy from the field and a resonance can be built up only
when the electrons are accelerated by the field during several periods – that
is, the mean time τ between collisions is much larger than the period.
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Fig. 21.11. The dependence of absorption on the strength of the magnetic field for
various values of ωτ . The variation of the field is expressed in terms of the variation
of ωc

The quantum mechanical treatment of the electron states and transitions
would lead to the same results as the semiclassical approach above. We shall
demonstrate in the next chapter that in a uniform magnetic field the part of
the kinetic energy that comes from the motion perpendicular to the magnetic
field gives rise to discrete energy levels spaced at a regular distance �ωc.
Considering the electric field of frequency ω as a perturbation, it can lead to a
transition between two such levels if its frequency is the same as ωc. When this
condition is met, absorption may occur. When electrons undergo collisions,
energy levels become broadened in the quantum mechanical picture, and the
absorption peak is consequently broadened, too.

In experiments, the surface resistance of the sample, the absorption of the
electromagnetic field, or the reflection is measured. In fields of order 10−1 tesla
the cyclotron frequency is in the microwave region (GHz frequencies or cm
wavelengths). When the energy absorbed from the microwave field is mea-
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sured, resonances are observed. The method is particularly useful for semi-
conductors, where the dispersion relation can be relatively well approximated
by a quadratic expression at the bottom of the conduction band and the top of
the valence band. The longitudinal and transverse effective masses can then be
determined easily. The results of the first successful measurements, performed
on semiconducting germanium, are shown in Fig. 21.12.

Fig. 21.12. Cyclotron resonance peaks in germanium due to electrons and holes,
and the dependence of the cyclotron mass on the field direction [Reprinted with
permission from G. Dresselhaus et al., Phys. Rev. 98, 368 (1955). ©1955 by the
American Physical Society]

21.2.6 Azbel–Kaner Resonance

The previous calculation and the experimental setup used for cyclotron-
resonance measurements in semiconductors with a time-dependent but spa-
tially uniform electric field cannot be used for the determination of the effec-
tive mass of Bloch electrons in metals. This is because our assumption that
the electron feels the accelerating electric field all along its periodic orbit is in-
valid in metals. The high-frequency electric field used for the detection of the
periodic motion in the magnetic field penetrates to a depth δ into the sample.3
The skin depth is typically on the order of 10−5 to 10−6 cm, whereas in a field
of B ∼ 1 tesla electrons move in a circular orbit of radius rc ∼ 10−3 cm, thus
3 This is the skin depth observed in the skin effect.
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in the largest part of their orbits they do not feel the electric field. Nonetheless
M. I. Azbel and E. A. Kaner demonstrated in 1956 that in a suitably cho-
sen geometry resonance may also occur in metals. This phenomenon is called
the Azbel–Kaner resonance.

If the applied magnetic field is parallel to the surface and the field direc-
tion is chosen as the x-axis, then the electrons move in a helical path. They
propagate freely in the z direction, and trace out a circle in the yz-plane. They
can stay close to the surface only during a small fraction of their motion; the
rest of the trajectory is far from the surface.

Metal

&

E

y

x

z

B

Fig. 21.13. The geometry of the Azbel–Kaner resonance

The applied accelerating electric field is along the y-axis – that is, also
parallel to the surface but perpendicular to B (crossed-field setup). Then
those electrons that approach the surface by δ or less can absorb energy from
the electric field. Absorption will be resonance-like if the electric field is always
in the same phase when the electron returns to the skin layer after a cycle. The
condition for this is that the period Tc of the circular motion of the electron
should be an integral multiple of the period TE of the alternating electric field:

Tc = nTE . (21.2.49)

Then resonance occurs for those frequencies ω that satisfy

ω = nωc . (21.2.50)

Customarily, it is the magnetic field strength rather than the frequency of
the electric field that is varied in measurements of the Azbel–Kaner resonance.
Expressed in terms of B, resonance occurs for those values Bn that satisfy

1
Bn

= n
2πe
�2ω

(
∂A
∂ε

)−1

. (21.2.51)

While in the ordinary setup cyclotron resonance occurs only at a single
value of the magnetic field or frequency, in the Azbel–Kaner resonance a whole
set of absorption peaks are observed. An example is shown in Fig. 21.14. Note
that the reciprocals of the corresponding values of the magnetic field (1/B)
are regularly spaced. In this case, too, the resonance is sharp only when the
relaxation time of electrons is much larger than the period of their motion, i.e.,



264 21 Semiclassical Dynamics of Electrons

Fig. 21.14. Azbel–Kaner resonance in copper, compared to the theoretical results
of Azbel and Kaner for the derivative of the resonance absorption, for ωτ = 10
[Reprinted with permission from A. F. Kip et al., Phys. Rev. 124, 359 (1961). ©1961
by the American Physical Society]

ωcτ � 1. When the field strength is reduced, ωc becomes smaller, too, and the
resonance disappears when ωcτ ∼ 1. The figure also shows the disappearance
of the resonance.

For ellipsoidal Fermi surfaces the frequency is known to depend on the
relative orientation of the magnetic field and the principal axes of the ellipsoid
but not on the particular section of the Fermi surface on which electrons move.
For nonellipsoidal Fermi surfaces, like the one shown in Fig. 21.15(a), the
frequency is different for each section, and only a small number of electrons
contribute to each of them. Measurable effects are due to electrons in those
parts of the Fermi surface where the period varies little over a relatively wide
region – that is, where the area of the cross section has an extremum. Two

B

( )a ( )b

Fig. 21.15. (a) Nonellipsoidal Fermi surface with two extremal cross sections. (b)
The corresponding Azbel–Kaner resonance featuring two characteristic frequencies
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such loci are found on the Fermi surface in Fig. 21.15(a): a minimal and a
maximal cross section. Consequently there are two characteristic dominant
frequencies. This leads to the resonance curve plotted in Fig. 21.15(b).

21.2.7 Magnetoacoustic Geometric Oscillations

Instead of an electromagnetic field, ultrasound can also be used to obtain
information about the shape and size of the Fermi surface. This is because
in the semiclassical limit real-space electron trajectories are similar to the
k-space orbits, just the scales are different.

Consider a sample placed in a z-directed uniform magnetic field in which
transverse lattice vibrations propagating perpendicularly to the field (in the
x direction) are generated by ultrasound with a frequency in the MHz region.
The transverse vibration of the ions in the crystal creates an oscillating electric
field whose wavelength λ is much larger than the atomic dimensions. If the
cyclotron frequency associated with the magnetic field is much larger than the
frequency of the ultrasound, then the electric field of the ultrasound remains
practically unchanged while the electron makes a full cycle in the magnetic
field. If globally – that is, summed over the entire trajectory – the electron
experiences a net accelerating force, it can absorb energy. This is expected to
occur when the electron is accelerated maximally in the turning points of the
real-space orbit. This is shown schematically in Fig. 21.16.

Reciprocal space

Real space
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1/2 �
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Fig. 21.16. Semiclassical orbit of an electron in reciprocal space, and the interaction
with the electric field created by the ultrasound in real space

Observable sound attenuation requires that the electron complete several
cycles between two subsequent collisions, that is, ωcτ � 1. This occurs only
in sufficiently pure samples.
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According to this simple picture an electron can absorb energy from the
ultrasound if the extremal diameter of the real-space orbit in the direction of
sound propagation is a half-integral multiple of the wavelength of the sound:

dext = (n+ 1/2)λ . (21.2.52)

More rigorous calculations lead to a slightly different location of the absorption
maximum than suggested by this simple physical picture. Assuming that the
Fermi surface is spherical, electrons move in circular orbits in real space, too,
whose radius is �/eB times the radius of the k-space orbit. In the extremal
cross section of the Fermi surface, the equation for the real-space orbit of an
electron moving at a frequency ωc is

x(t) = r cosωct , y(t) = r sinωct , (21.2.53)

where
r =

�

eB
kF . (21.2.54)

The energy absorbed in one cycle by the electron from the electric field Eyeiqx

created in the direction perpendicular to the propagation of the sound wave
is

I ∼
Tc∫
0

E(t) · v(t) dt =

Tc∫
0

Eyeiqx(t)vy dt . (21.2.55)

Using the formula vy(t) = v0 cosωct for the velocity, the previous integral can
be expressed in terms of the Bessel function J1 as

I ∼
Tc∫
0

Eyeiqr cos ωctv0 cosωct dt

=
Eyv0
ωc

2π∫
0

eiqr cos ξ cos ξ dξ =
Eyv0
ωc

2πJ1(qr) .

(21.2.56)

When q is expressed by the wavelength of the sound wave and its real-space
radius by kF, relatively wide maxima appear at

�kF
eB

1
λ

= 1.22, 2.23, 3.24, . . . , n+ 5/8 . (21.2.57)

The real- and reciprocal-space orbits are similar in shape in more general
cases, too, and their relative scale factor is �/eB, therefore the dimensions of
the Fermi surface can be inferred from the size of the real-space orbit in such
cases as well. Since the most important contributions are due to electrons
whose wave vector moves along the section of the Fermi surface of extremal
diameter, the latter can be immediately determined from these measurements
using the known wavelength of the sound wave.
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Figure 21.17 shows the experimental results for high-purity magnesium.
Measurements in different directions provide information about various sec-
tions of the Fermi surface. The oscillations shown in the figure correspond
to different sections of the arm of the monster-shaped Fermi surface (see
Fig. 19.7) of divalent metals with hcp structure, such as magnesium.

Fig. 21.17. Magnetoacoustic geometric resonance oscillations measured in high-
purity magnesium [Reprinted with permission from J. B. Ketterson and R. W. Stark,
Phys. Rev. 156, 748 (1967). ©1967 by the American Physical Society]

Note that in stronger magnetic fields very sharp peaks can be observed in
the ultrasonic attenuation. Figure 21.18 shows such experimental results for
gallium. The correct description of the phenomenon and the specification of
what information can be obtained for the Fermi surface from the location of
the absorption peaks requires the quantum mechanical description of electrons

Fig. 21.18. Giant quantum oscillations in the ultrasonic absorption spectrum of
gallium [Reprinted with permission from V. Shapira and B. Lax, Phys. Rev. 138, A
1191 (1965). ©1965 by the American Physical Society]
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in strong magnetic fields. That is why the phenomenon is called giant quantum
oscillation.

21.3 Size Effects

It was assumed in the foregoing that the thickness of the sample is much larger
than the diameter of the cyclotron orbit. If this is not the case, new methods
become available for determining the properties of the Fermi surface. Since
these experimental methods are based on the requirement that the size of the
sample and the cyclotron orbit be somehow matched, they are collectively
called size effects.

21.3.1 Extinction of the Resonance in Thin Samples

In the analysis of the Azbel–Kaner resonance we assumed that electrons re-
peatedly return to the skin layer during their periodic motion. When the
applied magnetic field is strong and the dimensions of the (real-space) orbit
are small, this indeed occurs with a high probability. However, as the magnetic
field becomes weaker, the orbit becomes larger and larger, and at a certain
point its diameter becomes comparable to the thickness of the sample. The
electron may then be reflected by the other surface and leave the cyclotron
orbit, leading to the disappearance of the resonance, as pointed out by E. A.
Kaner in 1958. Such a situation is illustrated in Fig. 21.19. Plotted as a func-
tion of 1/B, resonances follow each other at regular distances up to a point,
where they disappear. When the thickness of the sample is known, the Fermi
momentum can be determined from the value of the field in the point where
the resonances disappear.

The same geometry is used as in the description of the Azbel–Kaner res-
onance: the homogeneous magnetic field is directed along the x-axis and the
high-frequency electric field along the y-axis. The only difference is that the
sample is now of finite width (d) in the z-direction. Consider the situation
shown in Fig. 21.20, when the nth cyclotron orbit, which satisfies the condi-
tion

n
eB

mc
= ω , (21.3.1)

is just inside the sample – that is, the nth resonance can be observed but not
the n+ 1th.

We shall now integrate the equation of motion in the y-direction,

�
dky

dt
= −evzB , (21.3.2)

over half a period, from the top of the orbit to its bottom; the displacement
of the electron is then just the diameter dn of the orbit:
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Fig. 21.19. Azbel–Kaner resonances recorded on single crystals of tin of a few mm
thickness. As the field strength decreases, the resonance disappears after the 26th
peak in the thinnest sample [M. S. Khaikin, Soviet Physics JETP, 14, 1260 (1962)]

d

Fig. 21.20. Cyclotron orbits in a sample of finite width in a perpendicular magnetic
field. The circles are associated with Azbel–Kaner resonances of different indices

ky(T/2) − ky(0) = −eB
�

T/2∫
0

vz(t′)dt′ = −eB
�
dn . (21.3.3)

By eliminating the magnetic field using the resonance condition (21.3.1), we
have

ky(T/2) − ky(0) = −mc ω

n�
dn . (21.3.4)

If the resonances disappear at a sufficiently large value of n, dn can be prac-
tically identified with the thickness of the sample, so ky(T/2) − ky(0) can
be determined from the measurements. For electrons that contribute to the
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resonance both ky(0) and ky(T/2) are the quasimomenta associated with ex-
tremal cross sections of the Fermi surface, just they are oppositely directed.
Therefore this method allows the measurement of the Fermi momentum.

21.3.2 Radiofrequency Size Effect

Setting up a resonance does not require the application of GHz microwaves. It
can also be achieved using a RF field of a few MHz, polarized perpendicular
to the magnetic field, provided the frequency is sufficiently high for that the
skin depth be small compared to the sample thickness. This phenomenon is
called the Gantmakher effect.4

Fig. 21.21. Anomalies of the surface impedance in a high-purity single crystal of tin
of thickness 0.4 mm at a frequency of 3.06 MHz, measured at several angles between
the direction of the uniform magnetic field and the [001] crystallographic direction
[V. F. Gantmakher, Soviet Physics JETP, 16, 247 (1963)]

When the electron on the helical path returns to the skin layer after a full
cycle, it will feel that, because of the low frequency, the phase of the RF field
has practically not changed. The electron can thus absorb energy coherently.
This is true as long as the real-space diameter of the cyclotron orbit is smaller
than the thickness of the sample, that is,
4 V. F. Gantmakher, 1962.
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�

eB
Δk < d . (21.3.5)

As the magnetic field becomes weaker, the radius of the semiclassical or-
bit increases. Anomaly appears in the absorption when the real-space orbit
associated with an extremal diameter of the Fermi surface no longer fits in
the sample. The extremal diameter of the Fermi surface can then be deter-
mined from the thickness of the sample and the appropriate field Bc using the
formula

Δkc =
eBc

�
d . (21.3.6)

As shown in Fig. 21.21, the anomaly does not appear at a single well-
defined value Bc but also at its integral multiples. This can be illustrated
by the following picture: The electrons that pass close to the surface of the
sample, and get accelerated there, penetrate into the sample, and turn back
in depth �Δkc/eB. Around this depth they create a thin layer, whose width
is the same as the skin depth, in which the current density is high, and this
can accelerate other electrons traversing the layer. This geometry is shown in
Fig. 21.22.

Fig. 21.22. Orbits of electrons accelerated inside the sample by the electric field of
the primary electrons

When the trajectory of such secondary electrons reaches the other side of
the slab, electromagnetic radiation is emanated from there, and the impedance
increases. This transfer of energy through the thin sample may occur in
multiple steps as well. Consequently, anomaly is observed at magnetic fields
Bn = nBc for which the extremal diameter d0 is just 1/n of the sample thick-
ness. This phenomenon provides one of the best ways to determine the Fermi
momentum.

21.4 Limitations of the Semiclassical Description

Throughout the previous sections we assumed the applicability of the semi-
classical description based on a single wave packet. We shall now discuss the
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limitations of this approach, examine the conditions that the wavelength, fre-
quency, and amplitude of the electromagnetic field must satisfy. Finally, we
shall briefly show how the interband transitions – which are completely ne-
glected in the semiclassical treatment – appear at higher field strengths.

21.4.1 Conditions of the Applicability of Semiclassical Dynamics

The spatial extent of a wave packet

φ(r, t) =
∑
k′
g(k′) exp

[
i
(
k′ · r − εnk′t/�

)]
(21.4.1)

made up of plane waves is known to be determined by the spread of the k′-
sum in momentum space. If g(k′) is substantially different from zero inside
a sphere of radius Δk around a vector k, then the state is localized within a
region of linear dimension Δr ∼ 1/Δk in real space.

When Bloch states are combined to form wave packets, as in (21.1.3), the
Bloch form of the wavefunction leads to

φnk(r, t) =
∑
k′
g(k′)unk′(r) exp

[
i
(
k′ · r − εnk′t/�

)]
. (21.4.2)

According to our assumption, g(k′) is substantially different from zero only
inside a sphere of radius Δk around k. If, moreover, unk′(r) varies slowly with
k′ in the same region, then we can use the form

φnk(r, t) ≈ unk(r)
∑
k′
g(k′) exp

[
i
(
k′ · r − εnk′t/�

)]
, (21.4.3)

so the wavefunction is now written as a combination of plane waves with coef-
ficients g(k′)unk(r). The state is thus confined to a region of linear dimension
Δr ∼ 1/Δk in real space.

If we wish to associate this wave packet with a k vector inside the Brillouin
zone then the wave packet must be made up of states k′ for which Δk is much
smaller than the size of the zone – that is, the condition Δk  1/a has to
be satisfied, where a is the lattice constant. Then Δr � a, so the size of the
wave packet is much larger than the lattice constant: it extends over many
primitive cells.

As far as the dynamics of electrons is concerned, the wave packet can be
considered point-like provided the variation of the applied field is slow on the
scale of the wave packet. For external fields of the form E0 exp[i(q · r − ωt)]
this implies |q|  Δk, that is, the condition is met by long-wavelength applied
fields.

Limits can be set for the field strength E and the frequency ω of the field.
These are derived from the requirement that interband transitions should
be either forbidden or negligible. By absorbing a photon from the field, the
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electron can jump to a higher band. To prevent this, the photon energy needs
to be smaller than the band gap εg:

�ω < εg . (21.4.4)

The condition for the field strength can be derived from the time-dependent
Schrödinger equation. Taking the electric field into account through the scalar
potential −E · r, we have

− �

i
∂ψ(r, t)
∂t

= [H0 + eE · r]ψ(r, t) , (21.4.5)

where H0 contains the kinetic-energy operator and the periodic potential.
Now consider a Bloch electron whose wavefunction would be

ψk(r, t) = eik·ruk(r)e−iεkt/� (21.4.6)

in the absence of an electric field, and suppose that the effects of the applied
field can all be lumped into the variation of the wave vector with time. If the
state is characterized by a wave vector k at time t = 0 then its time evolution
around t = 0 is governed by

− �

i
∂ψk(r, t)
∂t

= [εk + eE · r]ψk(r, t) . (21.4.7)

On the other hand, the wave vector itself also shows explicit time dependence.
Making use of the Bloch form of the wavefunction, we have

− �

i
∂ψk(r, t)
∂t

= −�

i

(
∂ψk(r, t)
∂t

)
k

− �

i

(
∂ψk(r, t)
∂k

)
t

dk

dt

= εkψk(r, t) +
1
i
eik·reE ·

(
ir +

∂

∂k

)
uk(r)e−iεkt/�

=
(
εk + eE · r +

1
i
eE · ∂ lnuk(r)

∂k

)
ψk(r, t) . (21.4.8)

Compared to the previous formula, an additional term is present. The semi-
classical approximation can be applied when the contribution of this term is
negligible.

It was established in the nearly-free-electron approximation that the lead-
ing correction to the band gap is proportional to the periodic potential. As-
suming that the periodic potential opens a gap at the zone boundary, the
distortion of the dispersion relation is appreciable in a region of width Δk for
which

εg ≈ ∂εk
∂k

Δk . (21.4.9)

Inside this region, the deviations from the plane-wave form are important: the
change in uk may be comparable to uk itself, and so
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∂ lnuk(r)
∂k

≈ 1
Δk

≈ �
2k

meεg
. (21.4.10)

The contribution of the new term in (21.4.8) is therefore

eE
�

2k

meεg
. (21.4.11)

It can be neglected if it is smaller than the band gap,

eE
�

2k

meεg
 εg . (21.4.12)

Apart from factors of order unity, for wave vectors on the zone boundary we
have

k ≈ 1/a ,
�

2k2

2me
≈ εF , (21.4.13)

where a is the lattice constant. The interband transitions induced by the
electric field can thus be neglected when

eEa ε2g
εF
. (21.4.14)

The limitations imposed on the magnetic field can be treated analogously.
Then the condition

ev × B · ∂ lnuk(r)
∂k

 εg (21.4.15)

has to be met. Using the previous formulas, this is equivalent to

�ωc 
ε2g
εF
. (21.4.16)

21.4.2 Electric and Magnetic Breakdown

The above condition for the magnitude of the electric field is always met in
metals. When both the current density and the resistivity are chosen large,
102 A/cm2 and 100μΩcm, respectively, the electric field strength is E = ρ j ∼
10−2 V/cm. The variation of the energy over distances that are comparable to
the atomic spacing a ∼ 10−8 cm is eEa ∼ 10−10 eV. Since the Fermi energy
εF is on the order of an eV, interband transitions are highly improbable for
any reasonable value of the separation between bands, since the condition is
met for any gap in excess of 10−5 eV. The electric field can be several orders of
magnitude stronger in insulators and semiconductors than in metals, therefore
an applied electric field can stimulate interband transitions in them. This
phenomenon is called electric breakdown. As C. Zener (1934) pointed out,
it can be interpreted as a tunneling across the potential barrier arising from
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the gap between the two bands. For this reason the phenomenon is also called
Zener tunneling.

To estimate the probability of the transition by tunneling, it should be
noted that the energy of electron states is shifted by eE ·r, and thus becomes
position-dependent in the presence of an electric field. The state at the top
of the lower band can tunnel to a state at the bottom of the upper band at
a distance x0 if their energies are equal. The distance x0 is determined from
the condition eEx0 = εg. The tunneling probability for a particle of mass m∗

and energy ε through a potential barrier U(x) is

P ∝ exp

⎧⎨⎩−2
�

x0∫
0

√
2m∗[U(x) − ε] dx

⎫⎬⎭ , (21.4.17)

which leads to the estimate

P ∝ exp

[
−C

√
2m∗

�

ε
3/2
g

eE

]
(21.4.18)

with a coefficient C of order unity. Applying this to a state close to the
zone boundary, and making use of (21.4.13), the tunneling probability can
be rewritten as

P ∝ exp

[
−C εg

eEa

(
εg
εF

)1/2
]
. (21.4.19)

More precise calculations lead to the result

P ∝ exp

[
−C ε2g

eEaεF

]
. (21.4.20)

Comparison with (21.4.14) shows that if the electric field strength does not
meet the condition of the applicability of the semiclassical approximation –
that is, eEa becomes comparable to ε2g/εF –, then Zener tunneling may appear.

Repeating the calculation in the presence of a magnetic field, the tunneling
probability is found to be

P ∝ exp

[
−C ε2g

�ωcεF

]
. (21.4.21)

Once again, when the condition for the applicability of the semiclassical ap-
proximation is not met, the electron may tunnel to a nearby state in another
band (where nearby refers to the distance in real space as well as reciprocal
space). In a magnetic field of B ∼ 1 tesla, �ωc ∼ 10−4 eV. Therefore magnetic
breakdown may occur even if the band gap is as small as 10−2 eV. Note that
this can occur even at the low temperatures used in cyclotron resonance mea-
surements, where thermal excitation can hardly induce interband transitions
across such a gap.
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Looking back at the cases shown in Figs. 21.6 and 21.7, we can conclude
that if an electron reaches the zone boundary and does not continue its semi-
classical trajectory from the equivalent point across the zone but jumps to a
nearby state in another band, then, on account of these jumps, it moves as
if it hardly felt the periodic potential. The orbit will be a slightly deformed
circle, almost like for free electrons; it will encircle a larger area in k-space
than the semiclassical orbits, and the period will show an abrupt increase.
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Electrons in Strong Magnetic Fields

The semiclassical treatment of the dynamics of electrons is justified only in rel-
atively weak magnetic fields. Using present-day technology it is quite easy to
produce strong fields in which the conditions derived in the previous chapter
are not met. In such uniform static magnetic fields interband transitions can
occur. Even more importantly, the wavefunctions of electron states meet the
condition (21.1.28) only in relatively weak magnetic fields: in stronger fields
the state can no longer be characterized by a wave vector k as a quantum
number, and we have to solve the complete quantum mechanical problem.
As mentioned earlier, this problem cannot be solved exactly in general. How-
ever, when the periodic lattice potential can be ignored, an exact solution
becomes possible. Therefore we shall first calculate the energy spectrum of
a free-electron gas in a magnetic field, and then try to generalize the results
to Bloch electrons. Using the one-particle spectrum, we shall determine the
ground-state energy of the electron gas as well as its finite-temperature free
energy. Both of them show oscillations as functions of the magnetic field, and
this can lead to similar oscillations in other physical quantities, too. Their
measurement can provide insight into the properties of the electron system.

22.1 Free Electrons in a Magnetic Field

Just like in Chapter 16, we consider an electron gas confined to a rectangular
box of sides Lx, Ly, and Lz that is subject to periodic boundary conditions,
but this time we place the system in an applied magnetic field B. Since the
quantum mechanical problem was first solved by L. D. Landau in 1930, the
electronic energy levels in a magnetic field are called Landau levels.

22.1.1 One-Particle Energy Spectrum

We shall again specify the magnetic field B in terms of a vector potential A.
To simplify calculations, we shall neglect the interaction of the electron spin
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with the magnetic field.1 To determine the one-particle energy spectrum, the
Schrödinger equation

1
2me

(
�

i
∇ + eA

)2

ψ(r) = εψ(r) (22.1.1)

needs to be solved. In the Landau gauge the z-directed magnetic field can
be derived from the vector potential A = (0, Bx, 0), since B = curlA.
Another common choice is the symmetric gauge, in which A = 1

2B × r =
1
2 (−By, Bx, 0). Later we shall use this gauge, too.

Writing the momentum operator in component form, the Hamiltonian in
Landau gauge reads
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Even though the magnetic field breaks the invariance under arbitrary
translations, invariance along the y- and z-directions is preserved by our choice
of the gauge. Consequently, the two corresponding momentum components are
conserved,

ṗy =
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[H, pz] = 0 . (22.1.3)

Following Landau, we shall use the ansatz

ψ(x, y, z) = u(x)eikyyeikzz . (22.1.4)

Inserting it into the Schrödinger equation, and using (22.1.2) for the Hamil-
tonian, the equation for u(x) is
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which can be rearranged as
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(22.1.6)
The combination eB/me can be recognized as the cyclotron frequency ωc of
free electrons. By introducing the notation

x0 = − �

eB
ky = − �

meωc
ky , (22.1.7)

the equation reads
1 Later we shall return to the role of spin.
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This is the Schrödinger equation of a linear harmonic oscillator that os-
cillates about x0 with an angular frequency ωc. It is well known from the
quantum mechanical treatment of oscillators that the wavefunction of the
state of quantum number n of an oscillator centered at x0 can be written in
terms of the Hermite polynomial Hn that satisfies (C.4.1):
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where the magnetic length
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introduced on page 250 characterizes the spatial variations of the wavefunc-
tion. It can be given a simple intuitive meaning by realizing that in the semi-
classical approximation an electron of energy �ωc/2 moves in a circular orbit
of radius l0 in real space. As a characteristic length l0 is also frequently used
in quantum mechanics. By substituting the numerical values of � and e, and
expressing the magnetic field in teslas, we immediately get

l0 =
25.66 nm√
B[T ]

. (22.1.11)

This length is on the order of 10−6 cm in magnetic fields applied customarily
in measurements, and is thus much larger than atomic distances.

Another celebrated result of quantum mechanics states that the energy
eigenvalues of the oscillator are quantized in units of �ωc, with a zero-point en-
ergy of 1

2�ωc. Identifying the energy formula on the right-hand side of (22.1.8)
with the oscillator energy,
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where n can take nonnegative integer values. Rearranging this formula as
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the electron energy is seen to be composed of two terms. The part of the
kinetic energy coming from the motion parallel to the field is the same as in
the zero-field case, whereas the contribution of the perpendicular motion is
quantized in units of �ωc and thus depends on the strength of the field.

When periodic boundary conditions are used, the z component of the wave
vector, kz, is quantized in units of 2π/Lz. Therefore in macroscopic samples
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the energy of Landau states varies practically continuously with the quantum
number kz. However, the energy of the levels labeled by subsequent values of
the quantum number n can differ greatly when the field is sufficiently strong.
The states characterized by the same quantum number n then make up a
continuum. They are said to belong to the nth Landau level or subband.
However, the subbands can overlap on account of the dependence on kz.

There are alternative ways to determine the energy spectrum. The Hamil-
tonian can be simplified by a suitably chosen canonical transformation, or lad-
der (creation and annihilation) operators can be used instead of the position
and momentum operators, as was done for lattice vibrations in Chapter 12,
but the description of the motion in the xy-plane requires two commuting sets
of operators now. Since x and py appear together in the combination
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the appropriate choice in this case is
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rather than (12.1.23). The inverse transformation is then
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It follows from the canonical commutation relations of the position and mo-
mentum operators that the ladder operators satisfy bosonic commutation re-
lations:

[a, a†] = 1 , [b, b†] = 1 , (22.1.17)

and
[a, a] = [a†, a†] = [b, b] = [b†, b†] = 0 , (22.1.18)
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moreover the operators a (a†) and b (b†) commute with each other, too. In
terms of them the Hamiltonian (22.1.2) can be cast in diagonal form:

H =
�ωc

2
(
aa† + a†a

)
+

1
2me

p2z = �ωc
(
a†a+ 1

2

)
+

1
2me

p2z . (22.1.19)

The ground state is the vacuum of the “particles” created by the operators
a† and b†,

aψ0,0 = bψ0,0 = 0 , (22.1.20)

while excited states are obtained from the ground state by acting on it with
the creation operators a† and b†:

ψ = ψn,meikzz =
1√
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(a†)n(b†)mψ0,0eikzz . (22.1.21)

However, the energy of the state depends only on the quantum number kz

and the number n of the oscillators created by a†; it is independent of the
number of b-type oscillators.

22.1.2 Degree of Degeneracy of Landau Levels

As mentioned above, states can be characterized by three quantum numbers
(n, ky, kz, or n, m, kz), however only n and kz appear in the energy expres-
sion. Since the energy does not depend on ky (or m), the energy levels are
highly degenerate. In the second-quantized form this manifests itself in the
absence of the creation and annihilation operators of b-type oscillators in the
Hamiltonian. As the operator b† creates zero-energy oscillations, the energy
does not depend on the occupation number of this oscillator state.

The number of possible states – that is, the degree of degeneracy – can be
obtained most easily by counting the possible values for the quantum number
ky in the wavefunction (22.1.4). This quantum number is related to the center
x0 of the oscillator by (22.1.7), which can also be written as

x0 = −l20 ky . (22.1.22)

The possible values for ky and x0 are limited by a geometric constraint. The
formula (22.1.9) for un(x) contains, in addition to the Hermite polynomi-
als, an exponential function, whose rapid decay renders solutions physically
meaningless unless x0 is inside the sample, that is,

0 < x0 < Lx . (22.1.23)

This constraint and (22.1.7) imply that the quantum number ky must be in
the range
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When periodic boundary conditions are imposed, ky is quantized in units of
2π/Ly, so the number of possible values for ky is
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This formula gives the degree of degeneracy for Landau levels in each subband
– that is, the number of states of the same energy when kz is kept fixed. If ωc
is expressed in terms of the magnetic field, the equivalent formula

Np =
eB

2π�
LxLy (22.1.26)

clearly shows that the degree of degeneracy increases proportionally to the
strength of the magnetic field.

By introducing the flux quantum2 Φ∗
0 = 2π�/e = h/e, the degree of de-

generacy of Landau levels can be written as
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Since BLxLy is the total magnetic flux through the sample, Np is determined
by the ratio of the magnetic flux to the flux quantum. The result suggests
that each state carries one flux quantum.

Up to this point we have completely ignored the spin degrees of freedom
and their interaction with the magnetic field. When they are taken into ac-
count, the appropriate formula reads
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where σ = ±1 for the two spin orientations. This leads to the spin splitting
of Landau levels. For free electrons the spacing �ωc of Landau levels is, to a
good approximation, equal to the spin splitting, as ge ≈ −2 and

�ωc = �
eB

me
= 2μBB . (22.1.29)

Therefore the energy of spin-up electrons on the nth Landau level is practically
the same as the energy of spin-down electrons on the n+1th level. Aside from
the lowest level, the effects of spin can be taken into account by a factor 2 in
the number of degenerate states. The situation will be more complicated for
Bloch electrons, where the energy of Landau levels depends on the cyclotron
mass through ωc, and so the spin splitting will no longer be equal to the
spacing of Landau levels. The effects of spin cannot then be lumped into a
simple factor of two.
2 This is twice the flux quantum Φ0 = h/2e used in superconductivity; see page 454.
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22.1.3 Density of States

When the energy spectrum and the degree of degeneracy for each level are
known, we can proceed to determine the density of states, which plays a
fundamental role in the calculation of thermodynamic quantities.

We shall first consider a two-dimensional electron gas in a perpendicu-
lar magnetic field. The electronic energy spectrum then consists only of the
discrete values that correspond to the oscillator energies:
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. (22.1.30)

Ignoring spin, the number of states on each energy level is given by (22.1.27).
The density of states thus contains regularly spaced Dirac delta peaks of equal
amplitude Np:
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As the magnetic field is chosen weaker, the spacing of these peaks is reduced.
In sufficiently weak fields a coarse-grained, continuous density of states can
be defined, which is constant, and required to be equal to the density of states
of the two-dimensional electron gas in the absence of a magnetic field.

To determine the latter, we shall follow the procedure introduced in Chap-
ter 16, but now only the components kx and ky are taken into account in the
kinetic energy, giving
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Electrons with energies between ε and ε + dε are located in an annulus of
radius k⊥ and thickness dk⊥, whose area is therefore dA = 2πk⊥ dk⊥. The
relations between ε and k⊥, and dε and dk⊥ are
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By eliminating dk⊥ in favor of dε, we have

dA =
2πme
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dε . (22.1.34)

The number dN of states in the energy range of width dε is obtained by
dividing this area by the k-space area (2π/Lx)(2π/Ly) per allowed value of k:
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The density of states per unit surface area and spin orientation in a two-
dimensional electron gas is therefore
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ρ2d,σ(ε) =
me

2π�2
. (22.1.36)

For such a density of states, an energy range of width �ωc in a sample of
surface area LxLy contains the same number of states,
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as the degree of degeneracy of Landau levels according to (22.1.26). Therefore
the lowest Np states, which would fill an energy range of width �ωc in the
absence of a magnetic field, become degenerate at the lowest Landau level at
�ωc/2 in the presence of a magnetic field. Similarly, the next Np states in the
range �ωc < ε < 2�ωc are all pulled to the Landau level of energy 3

2�ωc, etc.
Such a substantial rearrangement of the electron states is not surprising,

since, according to (3.2.23), the leading term of the change in energy in an
applied magnetic field is given by

e�

2me
l · B , (22.1.38)

and so, assuming unit angular momentum, the shift of the energy of the states
in a field of strength B is of order

e�

2me
B = 1

2�ωc . (22.1.39)

As the magnetic field becomes stronger, the distance between adjacent
Landau levels increases – and so does the degeneracy of states: more and
more states condense into each Landau level. Figure 22.1 shows the energy
spectrum for three different values of the magnetic field compared to the zero-
field case.

B�0 B�0B1�0 B B2� 1 B B3� 2B�0

���

Fig. 22.1. Energy levels of a two-dimensional electron gas for three different values
of the magnetic field
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Now consider the three-dimensional case, where, in addition to the quan-
tum number n and its degeneracy, kz also needs to be taken into account.
Since kz is quantized in units of 2π/Lz, there are (Lz/2π) dkz possible values
for kz in the region of width dkz. For each value of kz, ky can take Np different
values. Therefore the total number of states in the nth Landau subband with
wave numbers between kz and kz + dkz is
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Lz

2π
dkz =

eB

2π�
LxLy

Lz

2π
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When the factor of two coming from the two possible spin orientations is also
included,
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V dkz . (22.1.41)

The relationship between the energy ε and kz in the nth Landau subband is
given by
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and so
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Since the positive and negative values of kz give the same contribution, the
density of states per unit volume coming from the Landau subband of quantum
number n is
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The total density of states is obtained by summing over Landau levels:
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(22.1.45)

where the summation is up to the largest integer nmax that satisfies the con-
dition (nmax + 1

2 )�ωc ≤ ε. As shown in Fig. 22.2, the density of states has a
singularity at energies ε = (n+ 1

2 )�ωc. For weak fields, where the singularities
are spaced rather densely, a coarse-grained, continuous density of states can
be defined in which the singularities are smeared out. The

√
ε-type density

of states derived in (16.2.54) for a free-electron gas is then recovered. This is
indicated by a dashed line in the figure.

By increasing the magnetic field, more and more states are accommodated
in each Landau subband, and so levels of higher quantum numbers become
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Fig. 22.2. The density of states of a three-dimensional electron gas in strong mag-
netic field. The density of states in the absence of the magnetic field is shown by
the dashed line

successively empty as the electrons move to subbands of lower quantum num-
bers. When the density of states is considered at a fixed energy as a function
of the magnetic field, singularities appear at those fields where new Landau
levels become empty. The distance between such singularities increases with
increasing B, whereas they are regularly spaced as a function of 1/B. Fig-
ure 22.3 is a schematic plot of the density of states at the Fermi energy versus
the magnetic induction B and its reciprocal at relatively strong fields.

��� �F��� �F

� �� �� F � �� �� F

� �� 0 �0 ����½ ��½

Fig. 22.3. The density of states at the Fermi energy as a function of the magnetic
induction and its reciprocal

To be precise, the figure shows the density of states at the Fermi energy
calculated for the zero-field case. We need to show now that, apart from very
strong fields, the chemical potential depends weakly on the magnetic field.

Since fermions fill the states up to the Fermi energy at zero temperature,
the integral of the density of states up to the chemical potential is just the
number of electrons per unit volume:
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μ(B)∫
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Comparison with the zero-field case gives
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where ρ0 is the density of states of the free-electron gas, which can also be
written as
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Making use of (22.1.45), we have
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By integrating this formula with respect to energy, and introducing the nota-
tions
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is obtained, where nmax must satisfy the condition
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The simplest way to obtain the solution is to plot η0 versus η. As shown in
Fig. 22.4, apart from very small values of η the graph runs very close to the
straight line η0 = η. From the slope of the straight lines drawn from the origin
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Fig. 22.4. The solution of the equation for the field dependence of the chemical
potential, and the variation of the chemical potential with the inverse magnetic field
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to different points of the curve the field dependence of η/η0 = μ(B)/εF (and
through it that of the chemical potential) can be easily established. This is
plotted in the right part of the figure.

Very strong fields aside, this ratio oscillates around unity with a small
amplitude. Under these circumstances the analytical expression
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is obtained for the oscillation of the chemical potential.

22.1.4 Visualization of the Landau States

When the magnetic field is turned on, the Landau subband of quantum num-
ber n becomes populated by those states for which the kinetic-energy contri-
bution

ε⊥ =
�

2k2
⊥

2me
=

�
2

2me
(k2

x + k2
y) (22.1.54)

of the motion perpendicular to the field is in the range

n�ωc < ε⊥ < (n+ 1)�ωc . (22.1.55)

As shown in Fig. 22.5, the quantum numbers kx and ky of these states fill an
annulus in k-space. Its inner radius k⊥ can be determined from

n�ωc =
�

2k2
⊥
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and its outer radius k⊥ + dk⊥ from
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For large values of n, where dk⊥ is small compared to k⊥,
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Since the area of the annulus is then
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the number of allowed k vectors in the annulus is
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This is the same as the degree of degeneracy of individual Landau levels,
provided spin is neglected. Thus, when the magnetic field is turned on, states



22.1 Free Electrons in a Magnetic Field 289

��

2����

2����

��

��
d��

Fig. 22.5. Allowed values of the wave-vector components kx and ky for a free-
electron gas. When a magnetic field is turned on, the corresponding states in the
annulus are all condensed into the same Landau level

whose wave-vector component k⊥ is located in an annulus of width dk⊥ in
the zero-field case – that is, whose energy differs by less than �ωc – become
degenerate. They are pulled to the closest Landau level (subband) of quantum
number n. Consequently, the Landau levels can also be visualized by the circles
in the (kx, ky) plane shown in the left part of Fig. 22.6. The circles are drawn
in such a way that the area of each annulus is the same:

δA = 2πk⊥ dk⊥ =
2πme

�
ωc =

2πeB
�

=
2π
l20
, (22.1.61)

and thus the same number of states condense into each circle. Note that the
Landau states are not located at well-defined points on the circle but rotate
with frequency ωc.

kx

ky

Fig. 22.6. Visualization of the Landau levels in the (kx, ky) plane by circles, and
by cylinders drawn into the Fermi sphere
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When the variable kz is also taken into account, the states in the Landau
subbands can be illustrated in k-space by coaxial cylinders (tubes) drawn into
the Fermi sphere. Their projection on the (kx, ky) plane is just the set of circles
discussed earlier. Much like in the two-dimensional case, the states whose wave
vectors in the zero-field case are close to the tube (either inside or outside)
become degenerate and end up on the closest tube when the magnetic field
is turned on. The tubes are characterized by the quantum number n. Points
located in different heights on the cylinder correspond to states of different
quantum numbers kz. Because of the formula (22.1.61) for the area between
the circles, the cross section of the tubes is said to be quantized. For the tube
of quantum number n
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. (22.1.62)

In the ground state the tubes are filled in the region between
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which depends on the quantum number n. Since the chemical potential can be
identified with εF to a good approximation, the filled region can be obtained
as the portions of the tubes inside the free-electron Fermi sphere.

22.1.5 Landau States in the Symmetric Gauge

To amend the picture given in the previous subsection, the spatial distribution
of electrons in the Landau states needs to be specified. When calculated from
the wavefunction given in (22.1.4) and (22.1.9), the electronic density varies
only in the x-direction: it is nonvanishing around the center x0 of the oscillator,
over a width l0 that is determined by (22.1.10). These regions become narrower
as the field strength is increased, and electrons are then localized to planes
x = x0 = l20ky spaced at equal distances, where ky is an integral multiple of
2π/Ly. This configuration is very different from the set of circles in the xy-
plane obtained in the semiclassical approximation. To recover the semiclassical
result we need to take different linear combinations of the wavefunctions of
degenerate states. This is achieved by using the symmetric gauge instead of
the Landau gauge.

By choosing the vector potential as A = 1
2B × r, the Hamiltonian whose

eigenvalue problem has to be solved is now

H =
1

2me

[(
px − 1

2eBy
)2 +

(
py + 1

2eBx
)2 + p2z

]
. (22.1.64)

Since the z component is again separated from the x and y components, plane
wave solutions are sought in the z-direction. We shall therefore discuss only
the motion in the xy-plane, described by the Hamiltonian H⊥. By introducing
the Larmor frequency
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ωL =
eB

2me
, (22.1.65)

which is just half of the cyclotron frequency, the transverse part of the Hamil-
tonian can be rewritten as

H⊥ =
p2x

2me
+ 1

2meω
2
Lx

2 +
p2y

2me
+ 1

2meω
2
Ly

2 + �ωLLz , (22.1.66)

where �Lz = xpy − ypx is the z component of the angular momentum opera-
tor.3 The previous expression is the sum of the Hamiltonians of two identical
harmonic oscillators of frequency ωL, however the two oscillators are not in-
dependent of one another: they are coupled by the last term of H⊥. Therefore
the creation and annihilation operators used in the quantum mechanical treat-
ment of oscillators, which are now written as

a =
√
meωL

2�

(
x+

i
meωL

px

)
, a† =

√
meωL

2�

(
x− i

meωL
px

)
,

b =
√
meωL

2�

(
y +

i
meωL

py

)
, b† =

√
meωL

2�

(
y − i

meωL
py

)
,

(22.1.67)

rather than (22.1.15), do not diagonalize the Hamiltonian but yield

H⊥ = �ωL
(
a†a+ 1

2

)
+ �ωL

(
b†b+ 1

2

)
+ i�ωL

(
ab† − a†b). (22.1.68)

The Hamiltonian can be diagonalized by a Bogoliubov-type transformation,
by taking linear combinations of the two oscillators. To this end, we introduce
the operators

α =
1√
2

(
a− ib

)
, α† =

1√
2

(
a† + ib†

)
,

β =
1√
2

(
a+ ib

)
, β† =

1√
2

(
a† − ib†

)
.

(22.1.69)

The inverse transformation is straightforward:

a =
1√
2

(
α+ β

)
, a† =

1√
2

(
α† + β†

)
,

b =
i√
2

(
α− β), b† =

−i√
2

(
α† − β†). (22.1.70)

Substituting these into (22.1.68), and making use of the equality ωc = 2ωL,

H⊥ = �ωL(2α†α+ 1) = �ωc
(
α†α+ 1

2

)
(22.1.71)

3 The eigenvalues and eigenfunctions of this Hamiltonian were determined by
V. Fock in 1928, before Landau, therefore the Landau spectrum is sometimes
referred to as the Fock–Landau spectrum.
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is obtained. This is just the Hamiltonian of a harmonic oscillator of angular
frequency ωc. The eigenvalues are thus the same as in (22.1.12). Note that
just like in the Landau gauge, two creation and annihilation operators had to
be introduced, however the oscillators created by β† do not contribute to the
energy. This gives rise to the degeneracy of the Landau levels.

The specific form of the wavefunctions can be obtained particularly sim-
ply by realizing that the operators α and β can be written in coordinate
representation, provided the variables

w =
1√
2
(x+ iy) , w∗ =

1√
2
(x− iy) (22.1.72)

and the corresponding canonical momenta,

pw =
�

i
∂

∂w
=

�

i
1√
2

(
∂

∂x
− i

∂

∂y

)
, pw∗ =

�

i
∂

∂w∗ =
�

i
1√
2

(
∂

∂x
+ i

∂

∂y

)
(22.1.73)

are used, since the substitution of (22.1.67) into (22.1.69) leads immediately
to

α =
√
meωL

2�

(
w∗ +

i
meωL

pw

)
, α† =

√
meωL

2�

(
w − i

meωL
pw∗

)
,

(22.1.74)

β =
√
meωL

2�

(
w +

i
meωL

pw∗

)
, β† =

√
meωL

2�

(
w∗ − i

meωL
pw

)
.

So w and its complex conjugate are the natural variables in the symmetric
gauge. It seems therefore logical to replace the x and y coordinates by the
polar coordinates defined by

x = r cosϕ , y = r sinϕ , (22.1.75)

as
w =

1√
2
reiϕ , w∗ =

1√
2
re−iϕ . (22.1.76)

In terms of the polar coordinates, the Hamiltonian in (22.1.66) reads

H⊥ = − �
2

2me

[
∂2

∂r2
+

1
r

∂

∂r
+

1
r2
∂2

∂ϕ2

]
+

1
2
meω

2
Lr

2 + ωL
�

i
∂

∂ϕ
. (22.1.77)

The eigenvalue problem can then be solved exactly. Eigenstates are charac-
terized by two quantum numbers: l, which is related to the radial part, and
m, which specifies the z component of the dimensionless angular momentum.
The eigenfunctions are

ψl,m(r, ϕ) =
1√
2π

eimϕ 1
l0

(
l!

(|m| + l)!
)1/2

e−r2/4l20

(
r2

2l20

)|m|/2

L
|m|
l (r2/2l20) ,

(22.1.78)
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where L|m|
l is the generalized Laguerre polynomial defined in (C.4.10). The

energy eigenvalues are given in terms of the quantum numbers l and m as

ε⊥ = �ωc

[
l +

m+ |m|
2

+
1
2

]
, (22.1.79)

in agreement with the result obtained in the Landau gauge.
By exploiting the properties of the generalized Laguerre polynomials it can

be shown that the solutions give high electron densities in the xy-plane along
the circles whose radii are related to the magnetic length l0 in a simple way.
Particularly simple are the wavefunctions for the lowest Landau level (l = 0):

ψ0,m(r, ϕ) =
1√

2π|m|! l0

(
r2

2l20

)|m|/2

eimϕe−r2/4l20 , (22.1.80)

which yield 〈
ψ0,m(r, ϕ)

∣∣r2∣∣ψ0,m(r, ϕ)
〉

= 2(m+ 1)l20 (22.1.81)

and 〈
ψ0,m(r, ϕ)

∣∣Lz

∣∣ψ0,m(r, ϕ)
〉

= m. (22.1.82)

For increasingm the wavefunction is localized along circles of larger and larger
radii. The degree of degeneracy can be determined from the requirement that
the radius for the largest m should be inside the sample, a cylinder of radius
R. This means

2l20(mmax + 1) = R2 . (22.1.83)

Expressed in terms of the cross-sectional area F = R2π of the sample,

mmax + 1 =
F

2πl20
, (22.1.84)

which gives the same degree of degeneracy as (22.1.25).
For further reference, we shall write the wavefunction obtained in the sym-

metric gauge in another form:

ψm,n(x, y) =
1[

2πl20(2l
2
0)m+nm!n!

]1/2
e(x2+y2)/4l20

×
(
∂

∂x
+ i

∂

∂y

)m(
∂

∂x
− i

∂

∂y

)n

e−(x2+y2)/2l20 .

(22.1.85)

This can be written in a particularly simple form in terms of the operators α†

and β†:

ψm,n(x, y) =
1√
m!n!

(
β†
)m (

α†)n ψ0,0(x, y), (22.1.86)

where
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ψ0,0(x, y) =
1√
2πl20

exp
[−(x2 + y2)/4l20

]
. (22.1.87)

The energy of these states is the same, ε = �ωc(n + 1/2), irrespective
of m. The states that belong to the lowest Landau level will be particularly
important. Their wavefunctions are

ψm,0(x, y) =
1

(2πl202mm!)1/2

(
x+ iy
l0

)m

e−(x2+y2)/4l20 . (22.1.88)

22.1.6 Edge States

Even though the sample was assumed to be of finite extent in the directions
perpendicular to the field, since this was necessary to determine the degree of
degeneracy of the Landau levels, the finite height of the potential barrier at
the edge of the sample was ignored. Close to the surface, the electronic wave-
functions may become distorted by this potential, and the energy of the state
can change. This can be illustrated most simply in the semiclassical picture.
As shown in Fig. 16.3, electrons placed in an applied magnetic field move in
circular orbits that are perpendicular to the field direction. For electrons of
energy ε in an applied field B, the radius of this classical circular orbit is the
cyclotron radius rc = (2meε)1/2/eB. This is true for electrons deep inside the
sample. Electrons close to the boundaries move in circular arcs: they repeat-
edly hit the walls, and are reflected back from it, hence they move along the
wall. However, the propagation direction is the opposite on the opposite face.

In the Landau gauge the degenerate oscillators are characterized by the
coordinate x0 of their center, which must be inside the sample. According
to the above picture, one would expect that when the Schrödinger equation
of electrons moving in a magnetic field is solved in a finite box bounded by
potential walls using the Landau gauge, the previous result is recovered for
the energy of those oscillators whose coordinate x0 is more than rc away from
the boundary. The energy is independent of x0, and discrete Landau levels
appear. On the other hand, the energy of those states that are close to the
edges of the sample are higher. This is shown schematically in Fig. 22.7.

0

�

� �Ly 2

�F

� �Ly 2

Fig. 22.7. Upward shift of the energy of the Landau levels near the surface and the
appearance of edge states, shown in a section of the sample. Dots indicate occupied
Landau states
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The contribution of edge states can be neglected as far as the total energy
of the system and the susceptibility derived from it are concerned. In the rest
of this chapter we shall consistently ignore them. However, they need to be
taken into account in the description of the quantum Hall effect.

22.2 Landau Diamagnetism

It was mentioned in Chapter 16 that the susceptibility due to the orbital
motion of electrons vanishes in a classical electron gas. This is not the case in
the quantum mechanical treatment. To determine the magnetization and the
susceptibility, consider the ground-state energy of the electron system in the
presence of a magnetic field:

E = V

εF∫
0

ερ(ε) dε . (22.2.1)

Taking the density of states from (22.1.45),

E =
V

2π2

(
2me

�2

)3/2
�ωc

2

nmax∑
n=0

εF∫
(n+ 1

2 )�ωc

ε[
ε− (n+ 1

2

)
�ωc
]1/2

dε . (22.2.2)

Since the number of electrons can also be expressed in terms of the density of
states, we find

E = NeεF +
V

2π2

(
2me

�2

)3/2
�ωc

2

nmax∑
n=0

εF∫
(n+ 1

2 )�ωc

ε− εF[
ε− (n+ 1

2

)
�ωc
]1/2

dε .

(22.2.3)
After the change of variable ε− (n+ 1

2 )�ωc → ε the integral can be evaluated:

E = NeεF − V

2π2

(
2me

�2

)3/2
�ωc

2

nmax∑
n=0

εF−(n+ 1
2 )�ωc∫

0

εF − (n+ 1
2

)
�ωc − ε√

ε
dε

= NeεF − V

3π2

(
2me

�2

)3/2

�ωc

nmax∑
n=0

[
εF − (n+ 1

2

)
�ωc
]3/2

. (22.2.4)

If the number of occupied Landau levels is sufficiently high, the sum can
be approximated by an integral, and the Euler–Maclaurin formula

n0∑
n=0

f
(
n+ 1

2

)
=

n0+1∫
0

f(x) dx− 1
24

[f ′(n0 + 1) − f ′(0)] (22.2.5)
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can be used for the difference between the Riemann sum and the integral. The
result is then

E0 = NeεF − V

3π2

(
2me

�2

)3/2

�ωc

nmax+1∫
0

[
εF − x�ωc

]3/2 dx

+
V

48π2

(
2me

�2

)3/2

(�ωc)2ε
1/2
F . (22.2.6)

Since nmax is the largest integer for which (nmax + 1
2 )�ωc is less than the

chemical potential, (nmax + 1)�ωc is identified with εF. Making use of the
relation

Ne =
V

3π2
k3
F =

V

3π2

(
2me

�2

)3/2

ε
3/2
F (22.2.7)

between the Fermi energy and the particle number, and expressing ωc in terms
of the magnetic induction B and the Fermi energy in terms of the Fermi
momentum, we have

E0 =
(
1 − 2

5 )NeεF − V

24π2
(eB)2

kF
me

. (22.2.8)

The first term is the ground-state energy of the free-electron gas in zero mag-
netic field; it is in agreement with (16.2.36). The susceptibility can be derived
from the field-dependent second term using (3.2.40); this gives

χ = −μ0e
2kF

3me

1
(2π)2

. (22.2.9)

Introducing formally the Bohr magneton μB for e�/2me,

χ = −μ0μ
2
B

3
kFme

π2�2
. (22.2.10)

As comparison with (16.2.54) shows, the right-hand side contains the density
of states at the Fermi energy, so the susceptibility due to the orbital motion
in a free-electron gas is

χ = − 1
3μ0μ

2
Bρ(εF) . (22.2.11)

The negative sign indicates the diamagnetic behavior of the electron gas
called Landau diamagnetism. The spin-related Pauli susceptibility also has
to be included in the total susceptibility of the electron gas. Comparison with
(16.2.113) reveals that the diamagnetic susceptibility is precisely one-third of
the Pauli susceptibility for free electrons if |ge| = 2 is taken. Therefore, de-
spite the opposite signs, the combined orbital and spin contributions give an
overall paramagnetic character to the electron gas. As we shall see in the next
section, the situation may be different for Bloch electrons.
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It is worth noting that the nonvanishing diamagnetic contribution comes
formally from the correction term in the Euler–Maclaurin formula. If the den-
sity of states did not contain a sum over the discrete Landau levels, and the
free energy could be written as an integral of a smooth function, then the
second term in (22.2.8), which comes from the difference between the sum
and the integral, would not appear, and there would be no Landau diamag-
netism. That is why we found in Chapter 16 that the orbital motion gives no
contribution to the susceptibility in the classical limit.

It should also be noted that the condition for the applicability of (22.2.5)
is

|f(n) − f(n+ 1)|  f(n) . (22.2.12)

Had the calculations been performed at a finite temperature, we would have
seen that this condition is equivalent to the requirement μBB  kBT . There-
fore the formula obtained for the susceptibility is valid only in the B → 0
limit. For stronger fields, where μBB � kBT , the approximation used above
cannot be applied. We shall discuss the details of more precise calculations in
Section 22.4.

22.3 Bloch Electrons in Strong Magnetic Fields

The energy spectrum cannot be determined exactly for Bloch electrons moving
in the periodic potential of a crystal. That is why we studied the dynamics
of electrons in the semiclassical approximation in the previous chapter. We
shall now demonstrate that the intuitive picture for the formation of Landau
levels can be generalized to the case where the constant-energy surfaces are
ellipsoids, or, if the dispersion relation is more general, to cases where the
quantized nature of energy is important but the system is still far from the
extreme quantum limit.

22.3.1 Electrons Characterized by an Effective-Mass Tensor

The Schrödinger equation (22.1.2) of free electrons contains the electron mass
me. The calculation presented there can be straightforwardly generalized to
the case where the energy spectrum of the Bloch electrons can be characterized
by an effective-mass tensor, and the magnetic field is along a principal axis of
the tensor – using Wannier’s theorem4 and the Peierls substitution.5

Wannier’s theorem is based on the observation that if the energy of the
Bloch state ψnk(r) is εn(k) in the presence of a periodic potential, then these
Bloch functions are eigenfunctions of the operator εn(−i∇) obtained by re-
placing k in the dispersion relation by −i∇, with the same energy, that is,
4 G. H. Wannier, 1937.
5 R. E. Peierls, 1933.
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εn(−i∇)ψnk(r) = εn(k)ψnk(r) . (22.3.1)

This can be most easily demonstrated by performing this substitution on the
Fourier expansion6

εn(k) =
1√
N

∑
Rl

Cnle−iRl·k , (22.3.2)

and then applying it to the wavefunction ψnk(r). This gives

εn(−i∇)ψnk(r) =
1√
N

∑
Rl

Cnle−Rl·∇ψnk(r)

=
1√
N

∑
Rl

Cnl

[
1 − Rl · ∇ + 1

2 (Rl · ∇)2 + . . .
]
ψnk(r)

=
1√
N

∑
Rl

Cnlψnk(r − Rl) . (22.3.3)

Exploiting the translational properties of the wavefunction, this indeed leads
to

εn(−i∇)ψnk(r) =
1√
N

∑
Rl

Cnle−iRl·kψnk(r) = εnkψnk(r) . (22.3.4)

Therefore this operator can serve as an effective Hamiltonian:

Heff = εn(−i∇) . (22.3.5)

When the electrons are placed in a magnetic field described by a vector
potential, the Peierls substitution is used. As demonstrated by Peierls, the
wave vector characterizing the translational properties should be replaced by
−i∇ + eA/� for Bloch electrons in a magnetic field. Thus the effects of a
periodic potential and an electromagnetic field can be taken into account by
an effective Hamiltonian that is obtained by using the above substitution in
the dispersion relation of the Bloch electrons.

When the Fermi surface is ellipsoidal, the dispersion relation transformed
to the principal axes can be characterized by the diagonal elements m∗

1, m∗
2,

and m∗
3 of the effective-mass tensor according to (21.2.33). By choosing the

coordinate axes along the principal axes, the effective Hamiltonian reads

H =
1

2m∗
1

(px + eAx)2 +
1

2m∗
2

(py + eAy)2 +
1

2m∗
3

(pz + eAz)2 . (22.3.6)

If the magnetic field is along the z-direction, and the Landau gauge is used,
we have
6 Note that the expansion contains a sum over the translation vectors of the direct

lattice, since εn(k) is periodic in k in the reciprocal lattice.
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H = − �
2

2m∗
1

∂2

∂x2
− �

2

2m∗
2

(
∂

∂y
+ i
eB

�
x

)2

− �
2

2m∗
3

∂2

∂z2
. (22.3.7)

The eigenvalue problem can then be solved exactly by repeating the steps
of the free-electron case. The eigenenergies can be written as

ε =
(
n+ 1

2

)
�ωc +

�
2k2

z

2m∗
||
, (22.3.8)

where the cyclotron frequency formula ωc = eB/mc contains the cyclotron
mass mc = (m∗

1m
∗
2)

1/2, and m∗
|| = m∗

3. The calculation also shows that the
degree of degeneracy is once again given by (22.1.26).

Using the Peierls substitution, the energy of Landau levels can also be
calculated after a great deal of tedious algebra in the case where the dispersion
relation of the Bloch electrons is still quadratic but the orientation of the
magnetic field with respect to the principal axes is arbitrary. Specifying this
arbitrary direction by the direction cosines α1, α2, α3, as in (21.2.34), the
energy spectrum can again be written as

ε =
(
n+ 1

2

)
�ωc +

�
2k2

||
2m∗

||
, (22.3.9)

where k|| is the wave number of the motion along the direction of the magnetic
field, and the corresponding effective mass is

m∗
|| = m∗

1α
2
1 +m∗

2α
2
2 +m∗

3α
2
3 , (22.3.10)

whereas the formula for the cyclotron frequency of the perpendicular motion
contains the cyclotron mass (21.2.26) obtained in the semiclassical approxi-
mation. This is quite natural, since the semiclassical and quantum mechanical
approaches should lead to the same cyclotron frequency. Figure 22.8 shows
the oblique Landau tubes formed by the corresponding states of the same
quantum number n.

H

Fig. 22.8. Landau tubes associated with the Landau states of the same quantum
number n for an ellipsoidal Fermi surface and general orientation of the magnetic
field with respect to the principal axes
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22.3.2 Semiclassical Quantization

Quantum effects become important when the distance of energy levels be-
comes comparable to the thermal energy. In magnetic fields of B ∼ 1T
the energy difference �ωc is on the order of 10−4 eV, which corresponds to
the thermal energy at 1 kelvin. Therefore the quantized nature of energy
needs to be taken into account at low temperatures for such fields. Since
the spectrum in magnetic field cannot be determined exactly for a general
dispersion relation, further approximations are required. It is useful to bear
in mind that in metals the Fermi energy is of order 1 eV, �ωc/εF ∼ 10−4,
and the number of interesting Landau levels is high, about 104. According
to L. Onsager’s proposition (1952), under such circumstances Bohr’s semi-
classical quantization can be used to calculate the Landau levels of Bloch
electrons.

According to the correspondence principle, the energy difference between
two neighboring levels can be related to the frequency ν of the motion in the
classical orbit:

ε(n+ 1) − ε(n) = hν . (22.3.11)

Identifying this frequency with

νc = T−1
c =

eB

�2

(
∂A
∂ε

)−1

, (22.3.12)

the frequency determined in the semiclassical approximation and given in
(21.2.19), the energy difference of adjacent Landau levels with kz fixed should
be

ε(n+ 1, kz) − ε(n, kz) =
2πeB

�

(
∂A
∂ε

)−1

. (22.3.13)

For large quantum numbers

∂A
∂ε

=
A[ε(n+ 1, kz)] −A[ε(n, kz)]
ε(n+ 1, kz) − ε(n, kz)

(22.3.14)

to a good approximation, therefore

A[ε(n+ 1, kz)] −A[ε(n, kz)] =
2πeB

�
, (22.3.15)

and hence
A[ε(n, kz)] = (n+ γ)

2πeB
�

, (22.3.16)

where γ is a fractional number that cannot be determined exactly because of
the approximation.

Since A is the area of the semiclassical orbit in the (kx, ky) plane, this
result has another intuitive interpretation: for electrons moving in periodic
potentials, too, only those k-space orbits are allowed whose area in the plane
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Fig. 22.9. Visualization of the Landau states for a general Fermi surface

perpendicular to the magnetic field is quantized in units of 2πeB/�. Since
the semiclassical motion is on constant-energy surfaces, the lines of constant
energy in the (kx, ky) plane are drawn in such a way that the area between
neighboring contours should be 2πeB/�. This can be considered as a gener-
alization of Fig. 22.6. By drawing the closed contours for all values of kz, the
Landau tubes shown in Fig. 22.9 are obtained. In contrast to Fig. 22.6, their
cross sections are not circular but of the shape of the lines of constant energy.

22.3.3 Quantization of the Orbit in Real Space

As illustrated in Fig. 21.5, electrons trace out similar orbits in real space and
k-space in the semiclassical approximation. Their dimensions are related by
a scaling factor �/eB, as given in (21.2.6). For large values of the quantum
number n the same result holds for electrons on quantized Landau levels.
Since the k-space area of the orbits is quantized, so is the area enclosed by
the orbit in real space: in the plane that is perpendicular to the magnetic field
the electron can only trace out orbits whose area is given by

Fn =
(

�

eB

)2 2πeB
�

(n+ γ) =
2π�

eB
(n+ γ) = 2πl20(n+ γ) . (22.3.17)

The magnetic flux through this area is

Φn = (n+ γ)
2π�

e
= (n+ γ)Φ∗

0 , (22.3.18)

where Φ∗
0 is the flux quantum. Electrons in a strong magnetic field are observed

to move in orbits for which the flux enclosed by the area is an integral multiple
of the flux quantum – provided the constant γ is neglected.
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22.3.4 Energy Spectrum in the Tight-Binding Approximation

Though semiclassical quantization gives a good approximation in most cases,
it is worth examining what happens to the electrons moving in a periodic
potential in a very strong magnetic field using a different approach. In zero
magnetic field the dispersion relation in the tight-binding approximation for
electrons moving in a square lattice is

εk = −2t [cos(kxa) + cos(kya)] . (22.3.19)

As has been mentioned, the effects of the magnetic field can be taken into
account by means of the Peierls substitution, so the expression obtained from
the dispersion relation via

k → 1
�

(
�

i
∇ + eA

)
(22.3.20)

will be considered as the effective Hamiltonian. Using the Landau gauge,

H = −2t
{

cos
[
1
i
∂

∂x
a

]
+ cos

[(
1
i
∂

∂y
+
e

�
Bx

)
a

]}
. (22.3.21)

Note that the Hamiltonian now contains the shift operators exp(a∂/∂x) and
exp(a∂/∂y), which shift the wavefunction by a lattice constant in the x- and
y-directions, respectively:

ea∂/∂xψ(r) = ψ(r + ax̂) , ea∂/∂yψ(r) = ψ(r + aŷ) . (22.3.22)

Applying them to the eigenvalue problem of the Hamiltonian (22.3.21),

−t
[
ψ(r + ax̂) + ψ(r − ax̂) + eieaBx/�ψ(r + aŷ)

+ e−ieaBx/�ψ(r − aŷ)
]

= εψ(r) .
(22.3.23)

Since the Wannier functions are better adapted to the tight-binding ap-
proximation, we shall now expand the wavefunction of one-particle states in
terms of the Wannier functions associated with the lattice points, with coef-
ficients g(Ri):

ψ(r) =
∑

i

g(Ri)φ(r − Ri) =
∑

i

g(Ri)c
†
i |0〉 . (22.3.24)

Substituting this expression into (22.3.23), the coefficients g(Ri) are found to
satisfy a similar equation:

− t
[
g(Ri + ax̂) + g(Ri − ax̂) + eieaBx/�g(Ri + aŷ) (22.3.25)

+ e−ieaBx/�g(Ri − aŷ)
]

= εg(Ri) .
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Specifying the lattice points Ri = (ma, na) by the coordinates (m,n), the
equation[

g(m+ 1, n) + g(m− 1, n) + eiea2Bm/�g(m,n+ 1) (22.3.26)

+ e−iea2Bm/�g(m,n− 1)
]

= εg(m,n)

is obtained, where ε now denotes the dimensionless energy (i.e., the energy
divided by −t).

Note that the same result could have been obtained by exploiting the
property that in the presence of a magnetic field the amplitude t of hopping
between lattice points contains a field-dependent phase factor. Neglecting the
spin variable, the Hamiltonian is

H =
∑
ij

tijc
†
i cje

iφij , (22.3.27)

where the phase factor is given by the line integral of the vector potential
along a path joining two neighboring lattice points:

φij = −2π
Φ∗

0

i∫
j

A(r) · dl . (22.3.28)

Because of the choice of the Landau gauge, only the x coordinate appears
in the phase factors, and the variation in the y-direction can be chosen as a
plane wave:

g(m,n) = eiknag(m) . (22.3.29)

This leads to the Harper equation for the variations in the x-direction:

g(m+ 1) + g(m− 1) + 2 cos(2πmα+ ka)g(m) = εg(m) , (22.3.30)

where

α =
ea2B

h
=
a2B

Φ∗
0

(22.3.31)

is the number of flux quanta through the primitive cell. Writing the recursive
equation as(

g(m+ 1)

g(m)

)
=

(
ε− 2 cos(2πmα+ ka) −1

1 0

)(
g(m)

g(m− 1)

)
, (22.3.32)

and making use of the property that under periodic boundary conditions the
starting point is reached after N steps, the equation for the energy eigenvalues
is

N∏
m=1

(
ε− 2 cos(2πmα+ ka) −1

1 0

)
= 1 . (22.3.33)
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In the absence of a magnetic field, the energy eigenvalues make up a band
of width 4t. This is also the case when the strength of the magnetic field is
such that the flux through each primitive cell is an integral multiple of the
flux quantum Φ∗

0. This is because when a closed path is traversed, the phase
factors give 2π/Φ∗

0 times the enclosed magnetic flux on account of Gauss’s
law, and these phase factors can be transformed away by a suitable gauge
transformation in the above-mentioned cases. For intermediate values of the
field strength the band is split into subbands. Based on the Harper equation,
the energy spectrum was first determined by D. R. Hofstadter in 1976.
The spectrum, known as the Hofstadter butterfly, is shown in Fig. 22.10.

Fig. 22.10. The Hofstadter spectrum of electrons in magnetic field in the tight-
binding approximation. The dimensionless energy is plotted against the dimension-
less flux α [Reprinted with permission from D. R. Hofstadter, Phys. Rev. B 14, 2239
(1976). ©1976 by the American Physical Society]

For relatively weak fields, the spectrum at the bottom and top of the band
is similar to the spectrum of Landau levels for free electrons; the regularly
spaced discrete energies vary linearly with the field. In stronger fields, these
Landau levels are split further, which is most conspicuous for the lowest level,
while Landau levels of higher quantum numbers disappear gradually. The
number of subbands depends on the fraction of the flux quantum per primitive
cell. If the area a2 encloses one-third of the flux quantum then there are three
subbands, separated by gaps. If it encloses one-fifth or two-fifth then there
are five subbands. In general, if α is a rational number that can be written
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as p/q, where q is odd, then the band is split into q subbands (minibands).
When q is even, the subbands may touch at the center.

We shall see in Chapter 24 on transport phenomena that the rearrange-
ment of electron states in two-dimensional electron systems placed in a strong
magnetic field – that is, the appearance of relatively well separated Landau
levels – leads to an interesting phenomenon: the quantization of the Hall re-
sistance. Plateaux appear in the Hall resistance vs. magnetic field plot, where
the inverse Hall resistance is quantized in units of e2/h, and the longitudinal
resistance vanishes. As the field strength is increased, the integer ν that labels
the plateau decreases in steps of unity. This is illustrated in Fig. 24.13. It can
be shown that further rearrangement of the Landau levels due to the periodic
potential of the lattice does not change the quantized character, however, the
plateaux no longer make up a monotonically decreasing set of steps on account
of the “minigaps” separating the subbands. The observation of this pattern is
difficult, since for the customary, atomic-size lattice constants of crystals the
parameter α = Ba2/Φ∗

0 is too small even for the strongest attainable fields.
However, in superlattices fabricated in semiconductor heterostructures α can
be sufficiently large for that the minigaps produce observable effects. As the
experimental results in Fig. 22.11 show, the quantum number of the plateaux
does not change monotonically, and the longitudinal resistivity has peaks even
in individual Hall plateau regions.

Fig. 22.11. The longitudinal resistance Rxx and inverse Hall resistance 1/Rxy at
50 mK for two superlattices of lattice constants 120 and 100 nm, respectively, fabri-
cated in a semiconductor GaAs/AlGaAs heterostructure. Letters and numbers label
the resistance peaks [Reprinted with permission from C. Albrecht et al., Phys. Rev.
Lett. 86, 147 (2001). ©2001 by the American Physical Society]

22.3.5 Diamagnetic Susceptibility of Bloch Electrons

The diamagnetic susceptibility of electrons moving in a periodic potential can
be calculated in the same way as for free electrons, provided the conditions
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of semiclassical quantization are met. If the energy spectrum can be charac-
terized by a scalar effective mass m∗, the result can be expressed in the same
form as for free electrons, however, the electron mass needs to be replaced by
the effective mass. Using the form (22.2.9), the diamagnetic susceptibility is

χdia = −μ0
e2kF
3m∗

1
(2π)2

. (22.3.34)

The formal introduction of the Bohr magneton then gives

χdia = − 1
3μ0μ

2
B
kFm

∗

π2�2

(me

m∗
)2

. (22.3.35)

Since kFm∗/π2
�

2 is the density of states of electrons of effective mass m∗ at
the Fermi energy,

χdia = − 1
3μ0μ

2
Bρ(εF)

(me

m∗
)2

. (22.3.36)

The Bohr magneton appeared naturally in the analogous expression (17.4.43)
for the Pauli paramagnetic susceptibility of Bloch electrons, since that was
due to the spins, but it showed up in the previous formula only through a
formal substitution. Therefore the relative magnitude of the paramagnetic
and diamagnetic contributions in the total susceptibility

χm = μ0μ
2
Bρ(εF)

[
1 − 1

3

(me

m∗
)2
]

(22.3.37)

depends on the effective mass. When this is sufficiently low, the diamagnetic
contribution can exceed the paramagnetic one, as in bismuth. Note that in
addition to the total susceptibility, the contribution of the electron spins can
also be measured in experiments using ESR techniques, and so the two con-
tributions may be separated.

22.4 Quantum Oscillations in Magnetic Fields

It was established in the previous section that the separation of Landau levels
and the number of degenerate states on each level is proportional to the mag-
netic field. Therefore the density of states at the Fermi energy has a singularity
at each value of the magnetic field where a Landau level becomes completely
empty on account of the rearrangement of states. At low temperatures, where
the thermal energy kBT is lower than the magnetic energy �ωc separating the
Landau levels, this gives rise to jumps and oscillations in other macroscopic
properties of the system, too. Such oscillations did not appear in the above
expression for the diamagnetic susceptibility because the Euler–Maclaurin for-
mula is a too simple approximation for the sum over the quantum number
n of the Landau levels. In fact it can be justified only in magnetic fields for
which μBB is smaller than the thermal energy kBT . Below we shall present a
more rigorous treatment.
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22.4.1 Oscillations in a Two-Dimensional Electron Gas

We shall first examine a two-dimensional electron gas, and choose the direction
of the magnetic field to be perpendicular to the plane. This choice is not made
solely for the simplicity of the treatment and the possibility of illustrating
oscillatory phenomena by an easily tractable example: it is equally motivated
by the experimental realizability of the two-dimensional electron gas in which
neat oscillations can be measured.

First consider such values of the magnetic field for which the Landau levels
are completely filled up to and including the level of quantum number n, while
all levels above it are completely empty. Ignoring spins, the n+ 1 filled levels
can accommodate

Ne = (n+ 1)Np = (n+ 1)
B

Φ∗
0

LxLy (22.4.1)

electrons, provided (22.1.27) is used for Np. Using the converse of this rela-
tionship, if the number Ne of electrons is given, the level of quantum number
n is completely filled while the next one is completely empty in a magnetic
field Bn satisfying

Bn =
1

n+ 1
B0 , where B0 = Ne

Φ∗
0

LxLy
. (22.4.2)

B0 is the field at which the lowest Landau level (n = 0) is completely filled
and all others are empty.

Since the energy of the Landau level is in the middle of the range from
which states condense into the Landau level in question upon the application
of the magnetic field, and the density of states of a two-dimensional electron
gas is independent of the energy, the same number of electrons gain and
lose energy in the magnetic field when a Landau level is completely filled, as
illustrated in Fig. 22.1. Thus, the ground-state energy at the magnetic fields
that satisfy the above condition is obviously the same as in the zero-field case,

E0(Bn) = E0(B = 0) . (22.4.3)

When the particle number is kept fixed and the magnetic field is increased
from Bn to B > Bn, the number of allowed states on each level increases. As
long as the condition B < Bn−1 is met, the lowest n Landau levels remain
completely filled and the (n+1)th (of quantum number n) only partially filled.
The total energy of the system is therefore

E0(B) = Np

n−1∑
l=0

�ωc
(
l + 1

2

)
+ (Ne −Npn)�ωc

(
n+ 1

2

)
. (22.4.4)

The first term is the energy of the electrons on the completely filled levels of
quantum numbers l = 0, 1, . . . , n−1, while the second term is the energy of the
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remaining Ne −nNp electrons on the level of quantum number n. Summation
then gives

E0(B) = Np�ωc
[
1
2n(n− 1) + 1

2n
]
+ (Ne −Npn)�ωc

(
n+ 1

2

)
= Ne�ωc

(
n+ 1

2

)− 1
2Np �ωcn(n+ 1) .

(22.4.5)

Making use of (22.1.27), (22.4.2), and the well-known form of the cyclotron
frequency,

E0(B) = Ne�ωc

[
n+ 1

2 − 1
2n(n+ 1)

B

B0

]
= Ne�

eB

me

[
n+ 1

2 − 1
2n(n+ 1)

B

B0

]
.

(22.4.6)

It should be stressed that this formula is valid in the region B0/(n+1) ≤ B ≤
B0/n. The piecewise parabolic pattern of the energy vs. magnetic field plot
is illustrated in Fig. 22.12. The figure also shows the field dependence of the
magnetization, which is just the negative partial derivative of the ground-state
energy with respect to B.
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Fig. 22.12. Energy and magnetization of a two-dimensional electron gas as func-
tions of the magnetic field

If the rapid variations of the energy for weak fields were approximated
by a smooth curve (with the same area beneath), a quadratically increasing
function would be obtained. This indicates that in an average sense the sus-
ceptibility is negative – that is, the spinless electron system is diamagnetic.
The same conclusion can be drawn from the magnetization vs. magnetic field
graph, if proper account is taken of the singularly large negative values of
the susceptibility in those points where the magnetization is discontinuous.
By taking an average of these and the intermediate regions that give positive
contributions, the overall susceptibility is found to be diamagnetic.

As a function of the magnetic field, the energy exhibits kinks and the
magnetization has jumps at those values Bn where a Landau level becomes
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completely empty. It follows from (22.4.2) for Bn that when these quantities
are plotted against 1/B, as in Fig. 22.13, kinks and jumps are spaced at regular
distances. In fields where the quantum number of the highest completely filled
Landau level is sufficiently large (on the order of hundreds or more), the
magnetization shows regular sawtooth oscillations as a function of 1/B.

�0 M

���

���

Fig. 22.13. Energy and magnetization of a two-dimensional electron gas as func-
tions of 1/B

There are several naturally occurring materials in which the motion of
electrons can be considered two-dimensional. A prime example is Θ–(BEDT-
TTF)2I3,7 an organic conductor. Figure 22.14 shows the measured magneti-
zation against the magnetic field, as well as against its inverse over a small
region. The sawtooth-like pattern is in good agreement with the theoretical
predictions of Fig. 22.13.

Fig. 22.14. Magnetization of the quasi-two-dimensional Θ–(BEDT-TTF)2I3 in a
strong magnetic field as a function of the magnetic field and its inverse [M. Tokumoto
et al., Solid State Commun. 75, 439 (1990)]

7 BEDT-TTF stands for bis(ethylenedithio)tetrathiafulvalene.
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22.4.2 Energy of a Three-Dimensional Electron Gas in a Magnetic
Field

The contribution of the motion in the z-direction also needs to be included in
the description of the oscillations in a three-dimensional electron gas. In the
presence of a magnetic field the density of states is no longer a set of sharp
Dirac delta-like peaks but rather a set of peaks smeared out to one side, as
shown in Fig. 22.2. However, the energy and possibly other physical quantities
are expected to show oscillations because of the singularities in the density of
states.

To determine the ground-state energy we shall first consider those electrons
for which the z component of the wave vector is between kz and kz + dkz.
Such electrons constitute a quasi-two-dimensional electron gas, whose effective
Fermi energy is

ε′F(kz) = εF − �
2k2

z

2me
. (22.4.7)

At this value of kz those Landau levels are filled for which

n ≤ ε′F(kz)
�ωc

− 1
2 , (22.4.8)

that is, the quantum number of the highest completely filled level satisfies the
condition

ε′F(kz)
�ωc

− 3
2 < nmax ≤ ε′F(kz)

�ωc
− 1

2 . (22.4.9)

As the magnetic field is increased, this number nmax decreases in unit steps.
There is an important difference compared to the two-dimensional case.

When a slice of width dkz is considered at a fixed kz, the states are now
either completely filled or completely empty in a Landau subband because
when the field is changed, and electrons rearrange themselves, they can end
up on another subband with a different kz. Consequently, the electron number
oscillates in the slice in question. The number of occupied states and the
energy of the slice exhibit kinks at those values of the field B′

n(kz) where the
energy of the Landau level is the same as the effective Fermi energy:

ε′F(kz) =
(
n+ 1

2

)
�ωc =

(
n+ 1

2

)
�
eB′

n(kz)
me

, (22.4.10)

since for stronger fields the Landau tube of quantum number n moves just
outside the Fermi sphere in this height, and so becomes empty. The location
of the kinks is given by

1
B′

n(kz)
=
(
n+ 1

2

) e�
me

1
ε′F(kz)

, (22.4.11)

indicating that they are regularly spaced in 1/B, and their separation is
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Δ
(

1
B

)
=
e�

me

1
ε′F(kz)

. (22.4.12)

Instead of the effective Fermi energy of the slice at kz, the previous for-
mulas can also be expressed in terms of the cross-sectional area

A(kz) = k2
⊥π =

2me

�2

(
εF − �

2k2
z

2me

)
π =

2πme

�2
ε′F(kz) (22.4.13)

of the Fermi sphere in height kz. In a given height the Landau tube of quantum
number n becomes empty when its quantized cross-sectional area

A =
2πeB

�

(
n+ 1

2

)
(22.4.14)

becomes larger than the cross-sectional area of the Fermi sphere at that height.
The period of oscillations is given by

Δ
(

1
B

)
=

2πe
�

1
A(kz)

. (22.4.15)

Now consider a magnetic field such that

B′
n+1(kz) < B < B′

n(kz) , (22.4.16)

that is, (
n+ 1

2

) e�
me

1
ε′F(kz)

<
1
B
<
(
n+ 1 + 1

2

) e�
me

1
ε′F(kz)

. (22.4.17)

According to the foregoing, there are n + 1 Landau tubes inside the Fermi
sphere in height kz, and they are all filled in this height. To determine the
energy for such an intermediate value of B, we have to make use of the formula
for the number of electrons on the n+ 1 Landau levels in a slice of thickness
at kz,

Ne(B, kz) dkz = Np(n+ 1)
Lz

2π
dkz = (n+ 1)

eBV

(2π)2�
dkz , (22.4.18)

which implies that the density of electrons per unit thickness of the slice is

ρ(B) = (n+ 1)
eB

(2π)2�
=

me

(2π�)2
(n+ 1)�ωc . (22.4.19)

Considering, in addition to the energy of the oscillators on the completely
filled Landau levels, the kinetic energy of the motion in the z-direction (which
is the same for each electron of the slice), the energy of the slice is

E0(B, kz) dkz = Np
Lz

2π
dkz

n∑
l=0

�ωc
(
l+ 1

2

)
+Np

(
n+1

)Lz

2π
dkz

�
2k2

z

2me
. (22.4.20)
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Evaluating the sum in the first term gives

E0(B, kz) dkz = Np
Lz

2π
dkz �ωc

(n+ 1)2

2
+Np(n+1)

Lz

2π
dkz

�
2k2

z

2me
. (22.4.21)

Using the value of Np, the energy of the slice can be expressed in terms of the
density ρ(B) as

E0(B, kz) dkz =
[
(2π�)2

2me
ρ2(B) + ρ(B)

�
2k2

z

2me

]
V dkz . (22.4.22)

This shows that between two kinks the energy varies quadratically with the
magnetic field.

Let us introduce a second characteristic magnetic field, Bn(kz), which is
defined by the requirement that the number of electron states in the slice of
thickness dkz at kz in the presence of the magnetic field be equal to the same
in the absence of the field. From our previous results the latter can be easily
established by means of the cross-sectional area A(kz) of the Fermi sphere in
height kz. This section contains

A(kz)
(

2π
Lx

2π
Ly

)−1

=
me

2π�2
ε′F(kz)LxLy (22.4.23)

allowed vectors k⊥. Since the number of allowed kz values in a region of thick-
ness dkz is Lzdkz/2π, the total number of allowed electron states, neglecting
spins, is

Ne(kz) dkz =
me

2π�2
ε′F(kz)LxLy

Lz

2π
dkz = me

V

(2π�)2
ε′F(kz) dkz . (22.4.24)

On the other hand, using (22.1.26) for the degree of degeneracy of the
Landau levels, the condition for having exactly n + 1 filled Landau levels in
the magnetic field Bn(kz) is that

Ne(kz) dkz = Np (n+ 1)
Lz

2π
dkz = (n+ 1)

eBn(kz)
(2π)2�

V dkz . (22.4.25)

Comparison of the two formulas for Ne(kz) gives

Bn(kz) =
1

n+ 1
meε

′
F(kz)
�e

. (22.4.26)

It can be shown that for such magnetic fields Bn(kz) the total energy of
the electrons in the slice is independent of the number of filled Landau levels
– just like in the two-dimensional case. Following the arguments that led to
(22.4.20) and (22.4.21), the energy contribution of the slice is

E0(Bn, kz) dkz = Np
Lz

2π
dkz �ωc

(n+ 1)2

2
+Np(n+1)

Lz

2π
dkz

�
2k2

z

2me
. (22.4.27)
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To cast it in a more practical form, we introduce the notation ρ0 = Ne(kz)/V
for the density of electrons in a region of unit thickness at kz:

ρ0 =
me

(2π�)2
ε′F(kz) . (22.4.28)

Using (22.4.25), this can be written in the equivalent forms

ρ0 =
1
V
Np(n+ 1)

Lz

2π
= (n+ 1)

eBn(kz)
(2π)2�

. (22.4.29)

The energy of the slice is then

E0(Bn, kz) dkz =
[
(2π�)2

2me
ρ20 + ρ0

�
2k2

z

2me

]
V dkz . (22.4.30)

The last formula directly shows that for such fields Bn(kz) the energy is
always the same, independently of the number of Landau tubes in the given
cross section.

It follows directly from the comparison of (22.4.10) and (22.4.26) that

B′
n+1(kz) < Bn(kz) < B′

n(kz) . (22.4.31)

Another particularity of the field Bn(kz) and the associated density ρ0, which
can be seen immediately from the expression (22.4.22) for the quadratically
changing energy between B′

n+1(kz) and B′
n(kz), is that the energy has its

minimum at the density given by (22.4.28) – that is, at the field Bn(kz).
It is useful to add a further term to the formula (22.4.22) of the energy of

the slice at kz that vanishes upon integration with respect to kz but nonethe-
less simplifies the energy expression of individual slices. Starting from the
magnetic field associated with the energy minimum, more and more states
appear in the Landau tubes as the field strength is increased. Until the mag-
netic field reaches the value B′

n satisfying (22.4.10), more and more electrons
arrive in the slice at kz from slices with different kz values at which the inflat-
ing Landau tubes intersect the Fermi sphere. The number of occupied electron
states in the slice at kz changes by

δNe = (ρ− ρ0)V dkz . (22.4.32)

Since these electrons arrive in this slice from regions where their energy is
equal to the Fermi energy, the energy of the other slices is reduced by

− εF δNe = −(ρ− ρ0)εF V dkz . (22.4.33)

Adding this term to (22.4.22), the contribution of this slice to the ground-state
energy is

E0(B, kz) dkz =
[
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2me
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− (ρ− ρ0)εF

]
V dkz . (22.4.34)
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With respect to its value in the fields Bn, the energy changes by

ΔE0(B, kz) = [E0(B, kz) − E0(Bn, kz)] dkz (22.4.35)

=
[
(2π�)2

2me
(ρ2 − ρ20) − (ρ− ρ0)

(
εF − �

2k2
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2me

)]
V dkz .

Using (22.4.28), the formula for the effective Fermi energy, we have

ΔE0(B, kz) =
(2π�)2

2me
(ρ− ρ0)2V dkz . (22.4.36)

For magnetic fields in the range (22.4.16), which is close to Bn, the density
of electrons in the slice varies linearly with the magnetic field,

ρ− ρ0 = (n+ 1)
e

(2π)2�

[
B −Bn(kz)

]
, (22.4.37)

while the energy of the slice shows a quadratic field dependence. At the bound-
ary of the region, determined by (22.4.10), when the outermost Landau tube
at the given height just crosses the Fermi sphere, a jump appears in the oc-
cupation number and a kink in the energy. This is illustrated in Fig. 22.15,
where the variations are plotted against 1/B, since the jumps and kinks are
spaced at regular distances in 1/B. When the quantum number of the Landau
level is sufficiently high (n� 1), the jump in the occupation number is

Δ(ρ− ρ0) =
1
n

meε
′
F

(2π�)2
. (22.4.38)

22.4.3 De Haas–van Alphen Effect

It was demonstrated above that in strong magnetic fields the ground-state
energy of the electron gas oscillates as the magnetic field varies. Naturally,
such oscillations do not appear in the energy alone but also in other physi-
cal quantities that can be derived from the energy, e.g., the magnetization or
the susceptibility. This was first observed by L. V. Shubnikov and W. J.
de Haas in 1930 in the low-temperature resistivity of bismuth, and later the
same year by W. J. de Haas and P. M. van Alphen in the magnetiza-
tion. The latter phenomenon, called the de Haas–van Alphen effect became
particulary important when it was established that the shape of the Fermi
surface can be inferred from the frequency of the oscillations and the tem-
perature dependence of the amplitude. Since the calculation is rather tedious
for a general Fermi surface, we shall just outline the most important results
below.

To determine the magnetization of an electron system in a strong magnetic
field, we shall follow the method used for evaluating the energy, and calculate
first the contribution of a slice of thickness dkz to the magnetization from the
field dependence (22.4.36) of the energy:
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Fig. 22.15. (a) The quantum number of the highest occupied Landau states in the
slice of width dkz at kz, as a function of x′ = meε

′
F(kz)/e�B. Parts (b), (c), and (d)

show the variations of the electron density, energy, and magnetization with x′ (that
is, practically the inverse magnetic field)

δM(B, kz) = − 1
V

∂E0(B, kz)
∂B

= − (2π�)2

me
(ρ− ρ0) dρ

dB
dkz . (22.4.39)

Making use of (22.4.19) and (22.4.37),

δM(B, kz) = −(ρ− ρ0)(n+ 1)
e�

me
dkz

= −(n+ 1)2
e2

(2π)2me

[
B −Bn(kz)

]
dkz

(22.4.40)
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that is, the magnetization of the slice is proportional to the field in the re-
gion specified by (22.4.17). For Landau levels of sufficiently large quantum
numbers, for which

B′
n(kz) −Bn(kz) =

meε
′
F(kz)
e�

(
1

n+ 1
2

− 1
n+ 1

)
≈ 1

2

meε
′
F(kz)
e�

1
(n+ 1)2

,

(22.4.41)
the magnetization varies between ±δMmax, where

δMmax = 1
2

eε′F
(2π)2�

dkz . (22.4.42)

As illustrated in Fig. (22.15), the magnetization is a sawtooth-like periodic
function of 1/B to a good approximation. It follows from (22.4.12) that when
the variable

x =
2π
B

me

e�
ε′F = 2π

ε′F
�ωc

(22.4.43)

is used, δM(x) is periodic with a period of 2π. Expanding the magnetization
into a Fourier series as

δM(x, kz) = dkz

∞∑
l=1

Al sin lx , (22.4.44)

and making use of (C.1.52), the formula for the Fourier series of the sawtooth
wave,

Al =
e

4π3�
ε′F

(−1)l

l
(22.4.45)

is obtained for the Fourier coefficients, and hence

δM(x, kz) =
e

4π3�
ε′F

∞∑
l=1

(−1)l sin lx
l

dkz . (22.4.46)

The oscillatory part of the total magnetization is obtained by integration
with respect to kz over the Fermi sphere:

Mosc =
e

4π3�

∞∑
l=1

(−1)l

l

kF∫
−kF

(
εF − �

2k2
z

2me

)
sin
[
2πl

me

e�B

(
εF − �

2k2
z

2me

)]
dkz .

(22.4.47)
Owing to the rapid oscillations in the integrand, only the contribution of the
kz ∼ 0 region is important. When the prefactor ε′F of the integrand is approx-
imated by εF, a Fresnel integral arises. Extending the limits of integration
from ±kF to ±∞, and exploiting that

∞∫
0

sin
π

2
x2 dx =

∞∫
0

cos
π

2
x2 dx =

1
2
, (22.4.48)
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the integral in (22.4.47) can be evaluated and yields

Mosc =
e

4π3�
εF

(
eB

�

)1/2 ∞∑
l=1

(−1)l

l3/2
sin
(
2πl

me

e�B
εF − π

4

)
. (22.4.49)

Expressing the coefficient formally in terms of the Bohr magneton μB =
e�/2me, and making use of the relationship between the electron density and
the Fermi energy, the oscillatory part of the magnetization can be rewritten
as

Mosc =
3neμ

2
BB

4πεF

(
2εF
�ωc

)1/2 ∞∑
l=1

(−1)l

l3/2
sin
(

2πl
εF
�ωc

− π

4

)
. (22.4.50)

Comparing the amplitude of the oscillatory term to the nonoscillatory term
obtained in the calculation of the Landau diamagnetism,

Mosc/M0 ∼ (εF/�ωc)1/2 . (22.4.51)

In the magnetic fields customarily used in experiments, this ratio is much
larger than one, and so the oscillations are easy to observe. The magnetic
susceptibility features very similar oscillations.

22.4.4 Role of Spin in Oscillatory Phenomena

The electron spin was neglected in the foregoing calculations, even though its
role is much more than just giving a contribution to the magnetization which
is proportional to the Pauli susceptibility: it also gives rise to a spin-dependent
energy shift of the Landau levels. This means that the Landau tubes do not
move outside the Fermi sphere at the previously determined magnetic fields
but at somewhat weaker or stronger fields, depending on the spin quantum
number. The magnetization due to the orbital motion shows sawtooth-like
oscillations for spin-up and spin-down electrons alike, however the loci of the
discontinuities are shifted with respect to the spinless case. The easiest way
to incorporate this shift into the calculations is to replace the effective Fermi
energy (22.4.7) of the electrons at kz by the spin-dependent expression

ε′Fσ(kz) = εF − �
2k2

z

2me
+ 1

2geμBBσ . (22.4.52)

Repeating the steps of the previous calculation, the oscillatory part of the
magnetization is found to be

Mosc =
e

4π3�
εF

(
eB

�

)1/2∑
σ

∞∑
l=1

(−1)l

l3/2
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[
2πl
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2geμBBσ
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4

]
(22.4.53)

=
e

2π3�
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4
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.
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In terms of the Bohr magneton this reads

Mosc =
3neμ

2
BB

2πεF

(
2εF
�ωc

)1/2 ∞∑
l=1

(−1)l

l3/2
cos
(

1
2πlge

)
sin
(
2πl

me

e�B
εF − π

4

)
.

(22.4.54)
It should be noted that if the effective mass m∗ of the Bloch electrons

differs from the electron mass, thenme needs to be replaced bym∗ in (22.4.49),
since the cyclotron frequency and the energy of Landau levels are determined
by the latter. Naturally, the Bohr magneton contains the electron mass, so

Mosc =
3neμ

2
BB

2πεF

(
2εF
�ωc

)1/2 ∞∑
l=1

(−1)l

l3/2
cos
(

1
2πlge
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me

)
sin
(

2πl
εF
�ωc

− π

4

)
.

(22.4.55)

22.4.5 Oscillations in the Magnetization at Finite Temperatures

The previous calculation can be performed at finite temperatures as well; in
this case the free energy has to be determined instead of the energy. If the
chemical potential rather than the particle number is fixed, a grand canonical
ensemble has to be considered. According to the results of statistical mechan-
ics, the grand canonical potential for a noninteracting fermion gas is

Ω = −kBT
∑

i

ln
(
1 + e−β(εi−μ)

)
, (22.4.56)

where the sum is over all one-particle states of energy εi in the system. The
free energy is then obtained from the thermodynamic relation

F = Ω + μN . (22.4.57)

Characterizing the Landau levels by the quantum number n and the wave
number kz, we have to sum over both of them, taking care of the Np-fold de-
generacy of the states and the additional double degeneracy due to the electron
spin. (This is not true for the level n = 0 but the difference is immaterial if
Ne � Np.) Using (22.1.26), the free energy is

F = Neμ− 2kBT
eB

2π�
LxLy

∞∑
n=0

∑
kz

ln
(
1 + e−β[ε(n,kz)−μ]

)
. (22.4.58)

For macroscopic samples the spacing 2π/Lz of the kz values is sufficiently
small for that the sum can be replaced by an integral:

F = Neμ− 2kBT
eB

2π�
LxLy

∞∑
n=0

Lz

2π

∞∫
−∞

ln
(
1 + e−β[ε(n,kz)−μ]

)
dkz

(22.4.59)

= Neμ− kBT 2eB
�

V

(2π)2

∞∑
n=0

∞∫
−∞

ln
(
1 + e−β[ε(n,kz)−μ]

)
dkz .
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Since the integrand depends on kz only through the energy, the kz-integral
can be replaced by an energy integral, making use of the relationship

kz = ±
√

2me

�2

[
ε(n, kz) − (n+ 1

2 )�ωc
]
. (22.4.60)

The two values kz that belong to a given energy ε(n, kz) contribute equally to
the free energy, so we can consider only the branch with the positive sign, and
multiply its contribution by two. Since the lower limit of the energy integral
for the Landau level of quantum number n is (n+ 1

2 )�ωc, we find

F = Neμ− kBT 4eB
�

V

(2π)2

∞∑
n=0

∞∫
(n+ 1

2 )�ωc

ln
(
1 + e−β(ε−μ)

) dkz

dε
dε . (22.4.61)

Upon integration by parts, the integrated part vanishes, so

F = Neμ− 4eB
V

(2π�)2

∞∑
n=0

∞∫
(n+ 1

2 )�ωc

√
2me

[
ε− (n+ 1

2

)
�ωc
]

eβ(ε−μ) + 1
dε . (22.4.62)

The previously derived formula for the ground-state energy, (22.2.4), is re-
covered in the T → 0 limit. The sum over the quantum number n was ap-
proximated using the Euler–Maclaurin formula; that is how we arrived at the
Landau diamagnetic susceptibility. In retrospect we can see that that proce-
dure was not sufficiently precise, since it did not account for the oscillatory
correction. We shall therefore return to (22.4.59) and try to evaluate it more
accurately.

To this end, we shall use the Poisson summation formula, which asserts
that

∞∑
n=0

f(n+ 1
2 ) =

∞∫
0

f(x) dx+ 2
∞∑
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∞∫
0

f(x) cos
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2
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dx

=
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0

f(x) dx+ 2
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l=1

(−1)l
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0

f(x) cos(2πlx) dx .

(22.4.63)

This can be easily proved using the relation

∞∑
n=−∞

δ
[
x− (n+ 1

2

)]
=

∞∑
l=−∞

e2πil(x− 1
2 ) = 1 + 2
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cos
[
2πl
(
x− 1

2

)]
= 1 + 2

∞∑
l=1

(−1)l cos(2πlx) , (22.4.64)
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which is in fact the Fourier representation of an infinite set of periodically
spaced Dirac delta peaks. By multiplying both sides by a function f(x) and
integrating over the interval (0,∞), the above result is indeed recovered.

We shall now apply (22.4.63) to the thermodynamic potential (22.4.59) of
the grand canonical ensemble. Considering the spinless case first,

Ω = − 2kBT
eB

�

V

(2π)2

∞∫
0

∞∫
−∞

ln
(
1 + e−β[ε(x,kz)−μ]

)
dkz dx

− 4kBT
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�

V

(2π)2
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(−1)l

∞∫
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−∞

ln
(
1 + e−β[ε(x,kz)−μ]

)
× cos(2πlx) dkz dx ,

(22.4.65)

where

ε(x, kz) = �ωcx+
�

2k2
z

2me
. (22.4.66)

Taking a term of the l-sum, we shall consider the expression

Il(kz) =

∞∫
0

ln
(
1 + e−β[ε(x,kz)−μ]

)
cos(2πlx) dx (22.4.67)

before integration with respect to kz. Making use of the result

− kBT ∂
∂ε

ln
[
1 + e−β[ε(x,kz)−μ]

]
= f0(ε) , (22.4.68)

and integrating by parts twice, we have

Il(kz) =
1

4π2l2kBT
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(22.4.69)

The first term can be ignored as it does not give an oscillatory contribution.
Since ε is linear in x, and ∂f0/∂x is nonvanishing only near the Fermi energy,

Il(kz) =
�ωc

4π2l2kBT

∞∫
−∞

cos(2πlx)
∂f0(ε(x))
∂x

dx . (22.4.70)

The Sommerfeld expansion cannot be used now because the cosine function
oscillates too rapidly. However, as the negative derivative of the Fermi function
has its maximum at that particular value of x where the energy is equal to
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the chemical potential, for each value of kz we shall seek the value x = X for
which

ε(X, kz) = μ . (22.4.71)

Exploiting the property that the chemical potential is practically independent
of the magnetic field,

�ωcX +
�

2k2
z

2me
= εF . (22.4.72)

Using (22.4.13), X can be related to the cross-sectional area A(kz) of the
Fermi sphere in height kz:

X =
ε′F
�ωc

=
�

2πeB
A(kz) . (22.4.73)

Expanding the integration variable about x = X, and changing the variable
from x to η = �ωc(x−X)/kBT ,

Il(kz) =
�ωc

4π2l2kBT
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)]
df0
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is obtained. Since

df0(x)
dx

= − ex

(ex + 1)2
= − 1

4 cosh2(x/2)
(22.4.75)

is an even function of x, we have

Il(kz) =
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cos(2πlX)
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dη . (22.4.76)

The integral can be evaluated exactly, using
∞∫
0

cos ax
cosh2 βx

dx =
aπ

2β2 sinh(aπ/2β)
, (22.4.77)

which leads to

Il(kz) = − 1
2l

1
sinh(2π2lkBT/�ωc)

cos
(
l�A(μ, kz)

eB

)
. (22.4.78)

The periodicity in 1/B comes from the cosine function.
Writing this expression back into the thermodynamic potential, the oscil-

latory part that we are interested in reads

Ωosc = kBT
∞∑

l=1

(−1)l

∞∫
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eB

2π2�
g(l) cos

(
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)
dkz , (22.4.79)
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where
g(l) =

1
l

1
sinh(2π2lkBT/�ωc)

. (22.4.80)

The most important contribution to the integral comes from that region
of kz where the cosine function varies slowly, that is, the cross-sectional area
is stationary,

∂A(μ, kz)
∂kz

= 0 . (22.4.81)

The series expansion about such a point k0 leads to a quadratic variation of
the cross-sectional area:

A = A0 − 1
2k

′2A′′
0 + . . . , (22.4.82)

where k′ = kz −k0, and A′′
0 is negative if the cross-sectional area of the Fermi

surface has a local minimum. Obviously, for the spherical Fermi surface of
free electrons the region kz ≈ 0 gives the largest contribution, and A′′

0 =
2π. Inserting this series expansion into the formula for the thermodynamic
potential, we have
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. (22.4.83)

The amplitude of oscillations is small in the thermodynamic potential –
and thus in the free energy, too. In the T → 0 limit the oscillatory part of Ω
is proportional to the 5/2th power of �ωc. Comparison with the formula for
the ground-state energy at B = 0 gives

Ωosc

E0(B = 0)
∼ (�ωc/εF)5/2 . (22.4.84)

The oscillatory term is found to be even smaller than the field-dependent but
not oscillatory term that gives rise to Landau diamagnetism – which is smaller
than E0(B = 0) by a factor of order (�ωc/εF)2.

However, this is not the case for the magnetization. The dominant contri-
bution comes from the derivative of the argument of the cosine function with
respect to the magnetic field:
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(22.4.85)

This expression is valid for a general Fermi surface, and is known as the
Lifshitz–Kosevich formula.8 At T = 0 (22.4.49) is recovered, and the asser-
tion made on page 317 that the oscillatory part has a larger amplitude than
the nonoscillatory part is also established. Since at finite temperatures an
additional multiplicative factor

2π2lkBT/�ωc

sinh(2π2lkBT/�ωc)
(22.4.86)

appears, the amplitude of the oscillation decreases exponentially with increas-
ing temperature when kBT � �ωc. Therefore the experimental observation of
the de Haas–van Alphen effect is possible only at very low temperatures.

When the contribution of the coupling between the electron spin and the
magnetic field is also taken into account in the energy, an additional factor

cos
(

1
2πlge

)
(22.4.87)

appears in the oscillatory part of the magnetization (just like in the zero-
temperature case). If, moreover, proper care is taken of the subtlety that for
Bloch electrons the cyclotron frequency – which determines the energy of the
Landau levels – contains the cyclotron mass rather than the electron mass, and
therefore the Zeeman splitting due to spins is not the same as the separation
of the Landau levels, the above factor is replaced by

cos
(

1
2πlge

m∗

me

)
. (22.4.88)

Keeping the nonoscillatory parts, too, for an electron system that can be
characterized by a scalar effective mass, and for which the area A0 of the cross
section of maximum diameter is related to the Fermi energy by

A0 =
2πm∗

�2
εF , (22.4.89)

the final result for the magnetization is
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(22.4.90)

8 I. M. Lifshitz and A. M. Kosevich, 1955. The result for a spherical Fermi
surface was derived by L. D. Landau in 1939.
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At T = 0 the oscillatory term is the same as in (22.4.55).
Deriving the susceptibility from the magnetization,

χ = μ0μ
2
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(22.4.91)

which contains both the Pauli susceptibility due to spins and the Landau
diamagnetic susceptibility.

22.4.6 Oscillations for General Fermi Surfaces

The previous procedure can be applied not only to electron systems with a
spherical Fermi surface but also to arbitrarily shaped Fermi surfaces. The
calculations showed that the slices at different kz give oscillations of different
frequencies, but these interfere and cancel out, and only the oscillation due
to electrons in stationary cross sections survives. As (22.4.85) indicates, the
sine function that characterizes the oscillations in the magnetization is of the
form

sin
(
l

�

eB
A0 − π

4

)
, (22.4.92)

where A0 is the area of the stationary cross section of the Fermi surface
perpendicular to the magnetic field, and so the oscillations are, once again,
regularly spaced in 1/B, with a spacing of

Δ
(

1
B

)
=

2πe
�

1
A0
. (22.4.93)

If the Fermi surface has two extremal cross sections in a given direction then
oscillations appear at both frequencies. Figure 22.16 shows such an example,
the experimental results for zinc when the applied magnetic field is along
a characteristic crystallographic direction of the sample. A higher-frequency
oscillation is superposed on the slower variation, indicating the presence of
two extremal cross sections.

Thus, when the magnetization is plotted as a function of 1/B, the period of
oscillation gives directly the maximal and minimal cross-sectional areas of the
Fermi surface perpendicular to the field. By measuring the oscillation period
in different directions, information can be obtained about the shape of the
Fermi surface, while the effective mass can be inferred from the temperature
dependence of the amplitude.
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Fig. 22.16. De Haas–van Alphen oscillations in zinc [Reprinted with permission
from A. S. Joseph and W. L. Gordon, Phys. Rev. 126, 489 (1962). ©1962 by the
American Physical Society]

22.4.7 Experimental Results

One possibility for studying the de Haas–van Alphen effect is to measure the
frequency of the oscillations of the magnetization. Denoting the frequency in
magnetic field by ν – which is defined by the requirement that the argument of
the sine function characterizing the oscillations should contain integral mul-
tiples of 2πν/B –, the extremal cross section of the Fermi surface and the
frequency are related by

A =
2πe
�
ν . (22.4.94)

Figure 22.17 shows the oscillations obtained for copper. By applying a
magnetic field in the [111] direction, the superposition of a slow and a rapid
oscillation is observed. They correspond to the two stationary cross sections
of the Fermi surface perpendicular to the [111] direction. To see this better,
the Fermi surface of copper shown in Fig. 19.4(b) is also presented, but this
time in the repeated-zone scheme.

The spherical regions of the Fermi surface are connected by “necks” in the
[111] direction. In the perpendicular direction the smallest-area section is at
the neck, while the largest-area section at the great circle of the sphere. This
is the “belly” of the Fermi surface. Measurements in magnetic fields applied
in other directions would show “dog bone” shaped sections.

It should be emphasized that oscillations can be observed only in suffi-
ciently pure materials and at low enough temperatures. As discussed earlier,
the large-amplitude oscillations are smeared out at finite temperatures. Scat-
tering by impurities, which gives rise to a finite relaxation time τ , has a similar
effect. The quantized Landau levels are broadened, and an extra exponential
factor,

exp(−2π/(ωcτ)) = exp(−2πme/eBτ) , (22.4.95)
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Fig. 22.17. Characteristic de Haas–van Alphen oscillations in copper, as a function
of the strength of the magnetic field applied in the [111] direction [Reprinted with
permission from A. S. Joseph et al., Phys. Rev. 148, 569 (1966). ©1966 by the
American Physical Society], and the Fermi surface of copper in the repeated-zone
scheme

called the Dingle factor,9 appears in the amplitude of the oscillations. The am-
plitude is considerably reduced when the relaxation time becomes comparable
to or smaller than the reciprocal of ωc. Writing the Dingle factor as

exp(−2π2kBTD/�ωc) , (22.4.96)

the thermal energy that corresponds to the Dingle temperature TD needs to
be small compared to the magnetic energy for that the de Haas–van Alphen
effect could be observed.

It was mentioned in connection with the data for the coefficient of the linear
term in the low-temperature specific heat of metals listed in Table 16.7 that in
experiments carried out in the 1980s γ was found to be several orders of magni-
tude larger in a family of materials (certain cerium and uranium compounds)
than its usual value, indicating a large density of states and a high effective
mass. Examining the Fermi surface using de Haas–van Alphen techniques, the
cyclotron mass can be determined from the temperature-dependent coefficient

1
sinh(2π2kBT/�ωc)

(22.4.97)

in the amplitude of the oscillatory terms. By fitting the amplitude of the
oscillations, the value obtained for mc/me was between 11 and 40 for CeCu6

10

and between 25 and 90 for UPt3.11

9 R. B. Dingle, 1952.
10 P. H. P. Reinders et al., Phys. Rev. Lett. 57, 1631 (1986).
11 L. Taillefer and G. G. Lonzarich, Phys. Rev. Lett. 60, 1570 (1988).



22.4 Quantum Oscillations in Magnetic Fields 327

22.4.8 Further Oscillation Phenomena

In addition to the magnetization, oscillations may also occur in other phys-
ical quantities. As mentioned on page 314, L. V. Shubnikov and W. J.
de Haas observed such behavior in the dependence of resistivity on the ap-
plied magnetic field. This is the Shubnikov–de Haas effect. The oscillations of
the low-temperature resistivity of the organic conductor β–(BEDT-TTF)2I3
in strong magnetic fields is plotted against the field strength in Fig. 22.18.

Fig. 22.18. Shubnikov–de Haas oscillations in two samples of β–(BEDT-TTF)2I3,
at low temperature (T = 380 mK) [Reprinted with permission from W. Kang et al.,
Phys. Rev. Lett. 62, 2559 (1989). ©1989 by the American Physical Society]

Similar oscillations have been observed in the thermoelectric power as
well as the thermal conductivity. The anomalous behavior of the Hall effect
in strong magnetic fields will be discussed separately, in Chapter 24.
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Electrons in Thermally Vibrating Lattices

Up to now we have either neglected the potential due to ion cores or considered
it strictly periodic in our calculations of the electron states. The thermal
motion of ions has been completely ignored. Similarly, the effect of electrons
on the dynamics of ions was taken into account only by a mean static potential,
paying no attention to the possibility that the motion of the electrons may
influence that of the ions. Instead of this approach, the coupled system of
electrons and ions should have been studied, and the problem of electron
states and lattice vibrations should have been solved simultaneously. More
precisely, instead of assuming a lattice-periodic potential, the eigenstates of
electrons should have been calculated in the field of ions oscillating about their
equilibrium positions, while the vibration of ions should have been studied
in a fluctuating sea of electrons. In this chapter we shall first demonstrate
that the two kinds of degrees of freedom can be treated separately in general
– that is, the Born–Oppenheimer approximation,1 also called the adiabatic
decoupling, is justified. This also means that the effects of lattice vibrations
on the electron states can be studied in perturbation theory. For this reason, it
is practical to write the Hamiltonian of the interaction between the vibrating
lattice and the electrons in second-quantized form. In this representation the
Hamiltonian appears as if the electrons absorbed and emitted phonons due to
the interactions. Thus, even though the periodicity of the potential is broken
by the motion of the ions, the electron states can still be characterized by a
wave vector k – but it is no longer conserved. The electrons can be scattered
into a state with a different wave vector, transferring energy and momentum
to the phonon subsystem, and so both the electron states and phonons have
finite lifetimes. After specifying the interaction Hamiltonian, we shall explore
what other consequences these scattering processes have on electrons and
lattice vibrations.
1 M. Born and J. R. Oppenheimer, 1927.
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23.1 Adiabatic Decoupling

As mentioned in Chapter 3, the full Hamiltonian of the system of electrons
and ions, including their interactions, can be written as a sum of three terms,
just like in (3.1.8):

H = Hel + Hion + Hel–ion . (23.1.1)

The first term, Hel, which depends only on the position coordinates ri of the
electrons, contains the kinetic energy and the mutual Coulomb interactions
of the electrons, as in (3.1.4). Instead of applying the notation used in Chap-
ter 11, we shall denote the instantaneous position vector of the ions by Rl for
clarity. The label l now contains both the index m of the primitive cell and the
index μ that distinguishes the atoms of the basis from each other. Assuming
pair potentials among the ions, the Hamiltonian Hion, which consists of the
kinetic energy and the mutual interactions of the ions, reads

Hion = Hkin
ion + Hion–ion = −

∑
l

�
2

2Ml

∂2

∂R2
l

+ 1
2

∑
l,l′
Uion(Rl − Rl′) . (23.1.2)

Finally, the part Hel–ion, which describes the interactions between electrons
and ions, depends on the coordinates of both electrons and ions:

Hel–ion ≡ Uel–ion(r1, r2, . . . , ri, . . . , rNe ,R1,R2, . . . ,Rl, . . . ,RN ) . (23.1.3)

Most of our considerations are valid without any restrictions on the form of the
electron–ion potential. Nonetheless, for simplicity, we shall sometimes assume
that the potential is essentially the sum of electron–ion pair potentials, that
is,

Hel–ion =
∑
i,l

U ′
el–ion(ri − Rl) . (23.1.4)

Below we shall use the notation {ri} for the position vectors of all electrons
(r1, r2, . . . , rNe) and {Rl} for those of all ions (R1,R2, . . . ,RN ). In terms of
these,

Hel–ion ≡ Hel–ion({ri}; {Rl}) , (23.1.5)

and the total wavefunction of the system is written concisely as

Ψ({ri}; {Rl}) . (23.1.6)

To calculate this wavefunction and the total energy of the system, the
Schrödinger equation for the full Hamiltonian would need to be solved, with-
out the simplifications arising from the invariance under discrete translations.
In this general case it is impossible to find the complete solution of the prob-
lem. However, as Born and Oppenheimer pointed out, the characteristic
velocity of electrons in solids, the Fermi velocity (vF ∼ 106 m/s) is much larger
than the sound velocity (cs ∼ 103 m/s), which is the characteristic velocity
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of the vibrating ion system. Hence ions are affected by an averaged electron
distribution, whereas electrons feel the instantaneous positions of the ions,
following their motion adiabatically. With this assumption, the wavefunction
of the electrons can be determined by first considering ions to be stationary
at their instantaneous nonequilibrium positions R1, R2, . . .Rl, . . . ,RN , and
solving the Schrödinger equation

(Hel + Hel–ion)φ({ri}; {Rl}) = Eel({Rl})φ({ri}; {Rl}) (23.1.7)

in this nonperiodic potential, where φ({ri}; {Rl}) is the wavefunction of the
electron states with the positions of the ions “fixed”.

The solutions of this Schrödinger equation, indexed by the label n, con-
stitute a complete orthonormal set. The wavefunction Ψ({ri}; {Rl}) of the
complete system of electrons and ions can be expanded in terms of them,
allowing the coefficients Φn({Rl}) to depend on the coordinates of the ions:

Ψ({ri}; {Rl}) =
∑

n

Φn({Rl})φn({ri}; {Rl}) . (23.1.8)

Acting on this wavefunction by the full Hamiltonian, and exploiting the
relation (23.1.7) for φn({ri}; {Rl}) as well as the orthonormality of the wave-
functions,{

−
∑

l

�
2

2Ml

∂2

∂R2
l

+ 1
2

∑
l,l′
U(Rl − Rl′) + Eel

n ({Rl})
}
Φn({Rl}) (23.1.9)

−
∑

l

∑
n′

{
Mn,n′

∂Φn′({Rl})
∂Rl

+Nn,n′ Φn′({Rl})
}

= EΦn({Rl}) ,

where

Mn,n′ =
�

2

Ml

∫
φ∗n({ri}; {Rl})∂φn′({ri}; {Rl})

∂Rl

∏
i

dri (23.1.10)

and

Nn,n′ =
�

2

2Ml

∫
φ∗n({ri}; {Rl})∂

2φn′({ri}; {Rl})
∂R2

l

∏
i

dri . (23.1.11)

By neglecting the terms that contain the matrix elements Mn,n′ and Nn,n′

in (23.1.9), we obtain a Schrödinger equation for the ions in which the effects
of the electrons are taken into account by an effective potential Eel

n ({Rl})
that depends on the ionic coordinates Rl – in the same way as in the anal-
ysis of lattice vibrations. Since the states of different labels n are not mixed,
this approximation is obviously equivalent to replacing the full wavefunction
(23.1.8) of electrons and ions by a single term,

Ψ({ri}; {Rl}) = Φ({Rl})φ({ri}; {Rl}) . (23.1.12)
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Owing to the product form of the wavefunction, the two kinds of degrees
of freedom can be separated to a certain degree. It is quite plausible to as-
sume that the electrons are always in their ground state that corresponds
to the instantaneous configuration of the slowly moving ions. Therefore, the
electronic wavefunction φ({ri}; {Rl}) is the ground-state wavefunction in the
particular ionic configuration, and Eel({Rl}) is the ground-state energy. This
approximation is called the adiabatic approximation.

To justify this approximation, and to understand the role of the neglected
terms, we shall first show that their contribution to the full energy of the
system is indeed negligible. To this end, the diagonal matrix elements have to
be considered. Since in the absence of a magnetic field the wavefunction can
always be chosen real, the relationship∫

φ∗n({ri}; {Rl}) ∂

∂Rl
φn({ri}; {Rl})

∏
i

dri

=
1
2
∂

∂Rl

∫
φ∗n({ri}; {Rl})φn({ri}; {Rl})

∏
i

dri

(23.1.13)

can be used for the integral in the diagonal matrix elementMn,n. The integral
on the right-hand side is just the total number of electrons in the system. The
derivative vanishes on account of the conservation of the particle number, that
is, the diagonal elements of Mn,n′ are zero.

The diagonal elements of Nn,n′ give a finite but small contribution to the
energy. To evaluate it, we shall assume that the wavefunction φn({ri}; {Rl})
depends only on the relative position vectors, that is, the variables ri − Rl.
In terms of them, the formula for Nn,n reads∫

φ∗n({ri}; {Rl}) �
2

2Ml

∂2φn({ri}; {Rl})
∂R2

l

∏
i

dri

=
∫
φ∗n({ri}; {Rl}) �

2

2Ml

∂2φn({ri}; {Rl})
∂r2

i

∏
i

dri

=
me

Ml

∫
φ∗n({ri}; {Rl}) �

2

2me

∂2

∂r2
i

φn({ri}; {Rl})
∏

i

dri .

(23.1.14)

The reader may recognize the kinetic energy of the electrons, multiplied by a
factor of me/Ml. Because of the great disparity between the mass of electrons
and ions, the contribution of this term is 10−3 to 10−4 times smaller than the
usual electron energies. By neglecting this tiny correction, we may say that
the electronic contribution to the lattice energy is Eel({Rl}) in the adiabatic
approximation.

Even if the diagonal elements can be neglected, the nonvanishing off-
diagonal elements indicate the possibility of transitions between different elec-
tron states due to the motion of the ions. Their accurate evaluation would
require knowing the wavefunctions φn({ri}; {Rl}) precisely. Because of the
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presence of the electron–electron interaction term in Hel, the solution of this
problem would require the full apparatus of the many-body problem. Even
when electron–electron interactions are treated in the simplest approxima-
tion, the Hartree–Fock approximation (to be discussed in Chapter 28), and
are absorbed in an effective one-particle potential, we still have to overcome
another difficulty: the states of electrons need to be calculated in the field of
displaced electrons, that is, in a nonperiodic potential. By taking the displace-
ment of ions from their equilibrium positions to be small, and expanding the
electronic wavefunction about the equilibrium position of the ions, the lead-
ing term, which is proportional to the displacement of ions, comes from the
matrix element Mn,n′ , as the terms that are linear in the displacement vanish
in Nn,n′ . The off-diagonal matrix elements Mn,n′ correspond to the interac-
tion of the electrons and the vibrating lattice. When the lattice vibrations
are described in terms of phonons, this interaction can be viewed as an inter-
action between electrons and phonons. It can be shown that it is weak, and
the smallness of the coupling constant can be traced back to the smallness
of the electron-to-ion mass ratio, thus the electron–phonon interaction can
usually be considered as a perturbation, and can be treated in the framework
of perturbation theory.

23.2 Hamiltonian of the Electron–Phonon Interaction

The leading-order contribution to the interaction between the system of elec-
trons and phonons thus appears in the off-diagonal elements of the matrix
Mn,n′ . However, it is rather difficult to study them in the present form. The
Bloch form2 of the interaction turns out to be much more practical as well
as intuitive. Suppose that the potential Uel–ion of the interaction between
electrons and ions can be written as a sum of one-particle potentials for the
individual electrons:

Uel–ion({ri}; {Rl}) =
∑

i

Uel–ion(ri; {Rl}) . (23.2.1)

Because of the displacement of the ions, the potential felt by the ith electron
is modified. For small displacements this modification can be taken to be
proportional to the displacement. Denoting the equilibrium position of the
ions by R0

l and the corresponding displacement by u(R0
l ),

Uel–ion(ri; {Rl}) = Uel–ion(ri; {R0
l + u(R0

l )})
= Uel–ion(ri; {R0

l }) + δUel–ion(ri)
(23.2.2)

in leading order, where
2 F. Bloch, 1928.
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δUel–ion =
∑

l

u(R0
l )
∂Uel–ion(ri; {Rl})

∂u(R0
l )

∣∣∣
u(R0

l )=0
. (23.2.3)

Below we shall not indicate that the derivative has to be taken at the equilib-
rium position. The first term gives the equilibrium value of the electron–ion
interaction. This lattice-periodic potential has to be included in (17.1.1) to
calculate the energy spectrum of the electrons in the static lattice. The second
term contains the interaction of the electrons with lattice vibrations. Since the
latter is described by phonons in the quantum picture, this term represents the
electron–phonon interaction. When the contribution of all electrons is taken
into account:

Hel–ph =
∑

i

∑
l

u(R0
l )
∂Uel–ion(ri; {Rl})

∂u(R0
l )

. (23.2.4)

In terms of the electron density

n(r) =
∑

i

δ(r − ri) , (23.2.5)

it can also be written as

Hel–ph =
∑

l

u(R0
l )
∫
n(r)

∂Uel–ion(r; {Rl})
∂u(R0

l )
dr . (23.2.6)

We now have to cast it in another, simpler form, and then examine the con-
sequences of the interaction.

This simpler form is based on the second-quantized representation of wave-
functions and operators. Therefore we shall repeatedly refer to the formulas
of Appendix H, which presents second quantization. In this formulation the
interaction between electrons and the vibrating lattice appears as scatter-
ing of particle-like elementary excitations – that is, scattering of electrons by
phonons. However, unlike electrons, for which charge conservation implies the
conservation of the electron number, the number of phonons may change: they
can be created and annihilated in scattering processes.

23.2.1 Second-Quantized Form of the Hamiltonian

For simplicity, we shall consider a crystal with a monatomic basis below,
keeping in mind that it is straightforward to generalize the expressions to
crystals with a polyatomic basis. In the latter case both m and μ – which
label the primitive cells and the atoms inside a cell – are included in the index
l, however, the sum is taken only over the vectors of the primitive cells in the
Fourier transform.

Expressing the operators of the displacement of ions in terms of the phonon
creation and annihilation operators, (12.1.39) is simplified to
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u(R0
l ) =

∑
q,λ

√
�

2MNωλ(q)
e(λ)(q)eiq·R0

l

(
aλ(q) + a†λ(−q)

)
(23.2.7)

for crystals with a monatomic basis. Substituting this into (23.2.4), the Hamil-
tonian is found to be linear in the a†λ and aλ.

In conjunction with the phonon creation and annihilation operators, it is
practical to write the electron states in second-quantized form, too. Therefore
we express the wavefunction of the many-electron system in terms of the
creation operators c†nkσ of the one-particle states characterized by the Bloch
functions ψnkσ(r). For the sake of simplicity, we shall consider electron states
within a single band, and suppress the band index.3 According to (H.2.9) and
(H.2.10), a one-particle operator

∑
i f(ri) that acts on the electron states can

be written as∑
i

f(ri) =
∑
kk′σ

{∫
ψ∗

k′σ(r)f(r)ψkσ(r) dr

}
c†k′σckσ (23.2.8)

in terms of the electron creation and annihilation operators. Applying this to
the derivative term in the electron–phonon interaction formula (23.2.4), its
second-quantized form reads∑

i

∂Uel–ion(ri; {Rl})
∂u(R0

l )

=
∑
kk′σ

{∫
ψ∗

k′σ(r)
∂Uel–ion(r; {Rl})

∂u(R0
l )

ψkσ(r) dr

}
c†k′σckσ .

(23.2.9)

Inserting this formula and (23.2.7) into (23.2.4), the following general form is
obtained for the Hamiltonian of the electron–phonon interaction:

Hel–ph =
∑
qλ

∑
kk′σ

Dλσ(k,k′, q)c†k′σckσ

(
aλ(q) + a†λ(−q)

)
, (23.2.10)

where

Dλσ(k,k′, q) =
∑

l

√
�

2MNωλ(q)
eiq·R0

l (23.2.11)

×
∫
ψ∗

k′σ(r)e(λ)(q) · ∂Uel–ion(r; {Rl})
∂u(R0

l )
ψkσ(r) dr .

The electron–ion potential Uel–ion(r; {R0
l }) is obviously lattice periodic in r

as it contains the equilibrium positions of the ions. On the other hand, the
derivative with respect to the position vector of the lth ion is a function of
3 Physically speaking, this means that processes in which an electron is scattered

into another band upon the absorption or emission of a photon are neglected.
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r−R0
l . By exploiting the simple translational properties of the Bloch functions

in the integral of the matrix element, we have∫
ψ∗

k′σ(r)e(λ)(q) · ∂Uel–ion(r; {Rl})
∂u(R0

l )
ψkσ(r) dr = ei(k−k′)·R0

l (23.2.12)

×
∫
ψ∗

k′σ(r − R0
l )e

(λ)(q) · ∂Uel–ion(r; {Rl})
∂u(R0

l )
ψkσ(r − R0

l ) dr .

After the separation of the phase factors, the remaining integral is independent
of the position R0

l of the lattice point. Therefore when the sum over R0
l is

calculated in (23.2.11), the exponential factors cancel the contributions unless

q + k − k′ = G . (23.2.13)

The Hamiltonian of the electron–phonon interaction can then be written as

Hel–ph =
∑
qλ

∑
kGσ

Dλσ(k, q,G)c†k+q+Gσckσ

(
aλ(q) + a†λ(−q)

)
(23.2.14)

where

Dλσ(k, q,G) =

√
�N

2Mωλ(q)

∫
ψ∗

k+q+Gσ(r − R0
l )

× e(λ)(q) · ∂Uel–ion(r; {Rl})
∂u(R0

l )
ψkσ(r − R0

l ) dr .

(23.2.15)

The interaction can be described by words like this: Because of the vi-
brational motion of the atoms, regular periodicity is broken in the crystal, so
the Bloch states are no longer eigenstates. Since charge conservation implies
that the number of electrons is conserved, whereas the number of phonons
may change, the interaction with lattice vibrations may scatter electrons from
their initial state to some other state, and additional phonons may appear in
the system or existing ones may disappear from it. As the discrete transla-
tional symmetry is broken, the crystal momentum of electrons is not conserved
any more. When, however, vibrations are specified in terms of phonons, and
the Bloch electrons as well as phonons are characterized by the wave vec-
tors as quantum numbers defined in the regular lattice, then the conservation
of quasimomentum to within an additive reciprocal-lattice vector is restored
when the combined system of electrons and phonons is considered. The general
conservation laws presented in Chapter 6 as the consequences of translational
symmetry can be applied to the interacting system of electrons and phonons
by stating that an electron of wave number k can be scattered to the state
of wave number k′ = k + q + G upon the absorption of a phonon of wave
number q or the emission of a phonon of wave number −q. These processes
are shown in Fig. 23.1.
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Fig. 23.1. Electron–phonon interactions, in which a phonon is emitted and ab-
sorbed. Electrons are represented by straight lines, phonons by wavy ones

Wave vectors are usually reduced to the first Brillouin zone, that is why the
reciprocal-lattice vector G appears in (23.2.13) and the Hamiltonian (23.2.14).
As mentioned in Chapter 6, those processes that do not require such a reduc-
tion – because k + q is already in the first Brillouin zone, so G = 0 – are
called normal processes. When k+q is outside the first Brillouin zone, and so
a reciprocal-lattice vector G �= 0 is needed to reduce it to the first Brillouin
zone, the process is called umklapp. Both types are shown in Fig. 23.2.
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q
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G

( )a ( )b

�

Fig. 23.2. Electron–photon interaction through (a) a normal and (b) an umklapp
process

23.2.2 Electron–Phonon Matrix Element

To determine the strength of the electron–phonon interaction, further assump-
tions have to be made about the potential. In the simplest approximation,
proposed by L. Nordheim in 1931, the full potential is the sum of individual
atomic potentials Ua that ions carry with themselves rigidly as they move
around:

Uel–ion(r; {Rl}) =
∑

l

Ua(r − Rl) . (23.2.16)

That is why this approximation is called the rigid-ion approximation. Fig-
ure 23.3 shows the rigid atomic potentials displaced from the equilibrium
positions.

Even when the atomic potential is assumed to be nonvanishing only within
the Wigner–Seitz cell, once the atoms are displaced, the rigidly comoving
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a a a

Fig. 23.3. The potential felt by the electrons in the rigid-ion approximation. Dashed
lines show the potential around the equilibrium position of the ions, and solid lines
around the displaced ions

potentials do not match properly at the cell boundaries. The rigid-ion ap-
proximation must certainly be improved in this respect. However, as we are
interested only in the qualitative description of the electron–phonon interac-
tion here, we shall not be concerned with this problem.

Using the relation

∂Uel–ion(r; {Rl})
∂u(R0

l )

∣∣∣
u(R0

l )=0
=
∂Ua(r − Rl)
∂u(R0

l )

∣∣∣
u(R0

l )=0
= −∂Ua(r − R0

l )
∂r

,

(23.2.17)
the Fourier representation

Ua(r − R0
l ) =

∑
q′
Ua(q′)eiq′·(r−R0

l ) (23.2.18)

of the one-particle atomic potential, and the customary form of the Bloch
functions, the coupling constant that determines the strength of the electron–
phonon interaction is

Dλσ(k, q,G) = −i

√
�N

2Mωλ(q)

∑
q′

(
e(λ)(q) · q′

)
Ua(q′)

× 1
V

∫
eiq′·(r−R0

l )e−i(k+q+G)·(r−R0
l )

× u∗k+q+Gσ(r − R0
l )e

ik·(r−R0
l )ukσ(r − R0

l ) dr .

(23.2.19)

Since the functions uk(r) are lattice periodic, the previous integral vanishes
unless q′ = q + G. Separating the volume integral into an integral over a
primitive cell and a sum over the cells, we have

Dλσ(k, q,G) = −i
N

V

√
�N

2Mωλ(q)
e(λ)(q) · (q + G)Ua(q + G)∫

v

u∗k+q+Gσ(r)ukσ(r) dr .

(23.2.20)
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The factor e(λ)(q)·(q+G) in the interaction strength is called the polariza-
tion factor. Because of its presence, only longitudinal phonons may participate
in normal processes. While this is not true for umklapp processes, it is often
justified to assume that scattering by longitudinal phonons gives the most
important contribution to the electron–phonon interaction.

Starting with the Schrödinger equation of the electronic wavefunction,
the quantities in the interaction matrix element can be estimated after some
tedious algebra. The result is

U(q)
∫
v

u∗k+qσ(r)ukσ(r) dr =
2
5
εFG(|q|rWS) , (23.2.21)

where rWS is the Wigner–Seitz radius and

G(x) = 3
(
x cosx− sinx

x3

)
. (23.2.22)

2εF/5 is the energy factor, while G(|q|rWS), which depends on the momentum
transfer in the process, is the interference factor. For increasing |q| the interac-
tion gets weaker. In the rigid-ion approximation forward scattering processes
are much more probable than backscattering processes.

23.2.3 Deformation Potential

The possibility that the displacement of ions can modify the electronic charge
distribution, leading to an additional potential felt by the electrons, was ig-
nored in the rigid-ion approximation. This may be particularly important for
long-wavelength longitudinal acoustic phonons, since the propagation of such
vibrations deforms the primitive cells, and the lattice constant and the ion
density are locally modified. The breaking of the local charge neutrality leads
to local variations in the electron density, and this results in a modification
of the potential. Below we shall give a simple estimate for this additional po-
tential due to the deformation of the lattice, called the deformation potential,
and also determine the strength of the electron–phonon interaction caused by
the potential.

In the long-wavelength limit longitudinal acoustic vibrations can be con-
sidered as compressional waves propagating in an elastic continuum. The dis-
placements u(R0

l ) defined only in discrete lattice points can then be replaced
by a continuous displacement field u(r) via the generalization of (23.2.7):

u(r) =
∑
qλ

√
�

2MNωλ(q)
e(λ)(q)eiq·r

(
aλ(q) + a†λ(−q)

)
. (23.2.23)

The relative change of the lattice constant in the propagation direction is pro-
portional to the gradient of the ionic displacement. The local relative change
in the volume is then
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Δ(r) ≡ δV

V
=
∂u(r)
∂r

. (23.2.24)

The deformation potential arising from the breaking of local charge neutrality
because of the long-wavelength variations of the lattice constant is propor-
tional to Δ(r):

Udef(r) = CΔ(r) . (23.2.25)

The Hamiltonian contains the product of the potential and the local electron
density:

Hdef = C
∫
ne(r)Δ(r) dr . (23.2.26)

The coefficient C can be estimated in the free-electron model. The defor-
mation Δ(r) modifies the local electron density, and therefore the local Fermi
energy as well. Making use of the relation

εF =
�

2

2me

(
3π2Ne

V

)2/3

(23.2.27)

for free electrons, where kF can be expressed from (16.2.24), the change δV
in the volume modifies the Fermi energy locally by

δεF(r) = −2
3εF

δV

V
= − 2

3εFΔ(r) . (23.2.28)

In the presence of the deformation potential the electrons are rearranged in
such a way that the chemical potential should be the same. Consequently,

Udef(r) = 2
3εFΔ(r) , (23.2.29)

that is, C = 2
3εF and

Hdef = 2
3εF

∫
ne(r)Δ(r) dr . (23.2.30)

To find the second-quantized form of the Hamiltonian, we shall express
the electron density and the deformation in terms of creation and annihilation
operators. Writing the field operators in (H.2.46) in terms of the Bloch states,

ne(r) =
1
V

∑
kk′σ

ei(k−k′)ru∗k′(r)uk(r)c†k′σckσ , (23.2.31)

while for Δ(r) we shall use

Δ(r) = i
∑
qλ

√
�

2MNωλ(q)
(e(λ)(q) · q)eiq·r

(
aλ(q) + a†λ(−q)

)
, (23.2.32)

which can be obtained by differentiating (23.2.23) with respect to q. Substi-
tuting these into (23.2.26), and separating the volume integral into an integral
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over a primitive cell and a sum over the cells, as before, the Hamiltonian is
similar to the one derived in the rigid-ion approximation. Neglecting umklapp
processes for simplicity,

Hel–ph =
∑
qλ

∑
kσ

Dλ(q)c†k+qσckσ

(
aλ(q) + a†λ(−q)

)
, (23.2.33)

where

Dλ(q) =
iC
V

√
�N

2Mωλ(q)

(
e(λ)(q) · q

)∫
v

u∗k+q+Gσ(r)ukσ(r) dr . (23.2.34)

The argument that led to this form of the electron–phonon interaction is
justified only for the interaction with long-wavelength longitudinal acoustic
phonons, where ωλ(q) is proportional to q, and thus the interaction strength
is proportional to q1/2. The strength C of the deformation potential can be
treated as a free parameter and fitted to measured data.

If more accurate calculations are required for the strength of the electron–
phonon scattering, then the real potential cannot be approximated by the
sum of some plausible atomic potentials. The ion cores may carry their po-
tentials rigidly with themselves, so the rigid-ion approximation can be used
as a starting point, however this potential is screened by the redistribution of
the electronic charge. This leads to a weakening of the Coulomb potential of
the ion core, which can be taken into account by the wavelength-dependent
dielectric function. We shall discuss this screening mechanism in Chapter 29
on electron–electron interactions.

23.2.4 Interaction of Electrons with Optical Phonons

In the previous subsection we dealt with the modifications of the electron
states due to the long-wavelength deformations of the crystal lattice, that
is, the interaction of Bloch electrons with acoustic phonons. It is plausible
to expect that in ionic crystals, where optical phonons correspond to the
vibrations of oppositely charged ions (i.e., polarization waves), the scattering
by optical phonons is even more important in the interaction between the
Bloch electrons and the vibrating lattice. Since transverse optical phonons
give rise to a much smaller polarization than longitudinal optical phonons,
we shall focus on longitudinal optical (LO) phonons. We shall denote their
creation and annihilation operators by b†q and bq, suppressing the index λ of
polarization.

To determine the Hamiltonian of the interaction with LO phonons, we
shall start with the electric polarization vector P , which can be considered
proportional to the amplitude of optical phonons:

P = F
∑

q

e(q)
(
bqeiq·r + b†qe−iq·r) , (23.2.35)
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where the polarization vector e(q) is the unit vector in the direction of q, thus
the polarization can be written as

P = F
∑

q

q

q

(
bqeiq·r + b†qe−iq·r) . (23.2.36)

Since there are no free charges in the crystal, div D = 0. As its Fourier
transform satisfies q · D = 0, we have ε0E + P = 0 in the longitudinal case,
and so

E = −F
ε0

∑
q

q

q

(
bqeiq·r + b†qe−iq·r) . (23.2.37)

When the electric field E is derived from a scalar potential ϕ(r) through
E = − gradϕ(r), the potential that leads to the field in the previous formula
is

ϕ(r) = −i
F

ε0

∑
q

1
q

(
bqeiq·r − b†qe−iq·r) . (23.2.38)

Writing the Hamiltonian of the electron–phonon interaction as the energy
of an electron system of density n(r) moving in such a potential, we have

Hel–ph = −e
∫
ϕ(r)n(r) dr . (23.2.39)

In terms of the electron field operators this can be rewritten as

Hel–ph = −e
∑

σ

∫
ϕ(r)ψ†

σ(r)ψσ(r) dr . (23.2.40)

Approximating the Bloch states of electrons by plane waves, and using the
corresponding creation and annihilation operators,

Hel–ph = −i
Fe

ε0

∑
qσ

1
q

(
bqc

†
k+q,σckσ − b†qc†k−q,σckσ

)
. (23.2.41)

The coefficient F can be expressed in terms of the frequency ωLO of LO
phonons and the low- and high-frequency values of the dielectric constant:

F 2 =
�ωLOε0

2V

[
1

εr(∞)
− 1
εr(0)

]
. (23.2.42)

This formula is very similar to its counterpart for acoustic phonons. This
is because the structure of the interaction Hamiltonian is determined by the
conservation laws for the number of electrons and the crystal momentum.
The only important difference is that the interaction is singularly strong for
long-wavelength LO phonons, whereas the corresponding matrix element is
proportional to √

q for acoustic phonons.
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23.3 Consequences of the Electron–Phonon Interaction

The Hamiltonian of the electron–phonon interaction thus describes two dis-
tinct processes: the creation and annihilation of a phonon, depicted in Fig.
23.1. An electron cannot remain in a Bloch state of wave vector k indefinitely
in the vibrating lattice: it is scattered into another state of different wave vec-
tor by the emission or absorption of a phonon. Because of this finite lifetime,
the current carried by the electrons would dissipate in a finite amount of time
in the absence of an electric field that accelerates the electrons. To maintain
a constant current, a constant electric field has to be applied. As we shall
see it in detail in the next chapter on transport phenomena, electron–phonon
scattering gives one of the most important contributions to the resistivity of
metals.

The electron–phonon interaction processes shown in Fig. 23.1 are redrawn
differently in Fig. 23.4. The left-hand process can be interpreted as the anni-
hilation of a phonon into an electron–hole pair, with the energy and crystal
momentum conserved. This process contributes to the attenuation of sound
waves in metals. As is well known, phonons can also decay because of the
slight anharmonicity of the potential felt by the atoms. The possibility that
the number of phonons may also be reduced by the electron–phonon interac-
tion gives a further contribution to the decay rate (inverse lifetime) of phonons.
Of course, the inverse process, the annihilation of an electron–hole pair into
a phonon, is also possible.

Fig. 23.4. First-order processes of the electron–phonon interaction

Figure 23.5 shows three second-order processes of the electron–phonon
interaction.

( )a ( )b ( )c

Fig. 23.5. Second-order processes of the electron–phonon interaction
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The first process corresponds to the emission and subsequent absorption
of the same phonon by an electron.4 If this process is repeated several times,
it is as if the electron were surrounded by a comoving phonon cloud, and so
the measure of its inertia, its effective mass, is also changed. In an analogous,
two-step process showed in Fig. 23.5(b), the phonon is transformed into an
electron–hole pair for a short time, and when the pair recombines, the phonon
emerges again. Such processes modify the energy of the phonon. However,
the correction of these second-order processes to the particle energy contains
an imaginary part as well. While the real part gives the energy shift of the
particles (electrons and phonons) due to the interaction, the imaginary part
can be interpreted as their decay rate. Thus, the electron–phonon interaction
is seen to render the lifetime of electrons and phonons finite.

The third possibility is shown in Fig. 23.5(c): an electron propagating in
the crystal emits a phonon, and thus modifies the vibrational state of the
crystal; then the phonon is absorbed by another electron, and the initial vi-
brational state is restored. In this process the state of two electrons is changed,
so the exchange of the phonon gives rise to an effective interaction between
the two electrons. As will be discussed in detail in Chapter 34 on the mi-
croscopic theory of superconductors, the appearance of Cooper pairs, which
are responsible for superconductivity, is due precisely to such processes in the
majority of superconductors.

23.3.1 Finite Lifetime of Electron States

As mentioned in the previous section, owing to the electron–phonon interac-
tion, the Bloch states determined in an ideal crystal are not eigenstates of
the full Hamiltonian, so electrons are scattered from the Bloch state of wave
vector k in a finite amount of time, and thus their lifetime and mean free path
becomes finite. They can be estimated by analyzing the scattering by acoustic
phonons.

In terms of the creation operator the state containing a Bloch electron of
wave vector k can be written as

|k〉 = c†kσ|0〉 . (23.3.1)

Because of the electron–phonon interaction, this can be scattered into a state
of wave vector k′, while a phonon of wave vector q = k − k′ is simultane-
ously created. For simplicity, we shall neglect umklapp processes. In second
quantization this state is given by

|k − q, 1qλ〉 = c†k−q,σa
†
λ(q)|0〉 . (23.3.2)

The transition probability for this quantum mechanical process is
4 While momentum conservation must apply to each elementary process, energy

conservation applies only to real processes, between an initial and a finial state,
but not to the intermediate virtual states.
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Wkk′ =
2π
�

|〈k − q, 1qλ|Hel–ph|k〉|2 δ(εk − εk−q − �ωλ(q))δk′,k−q . (23.3.3)

The probability of the very similar process in which the electron of wave vector
k is scattered into another state by the absorption of a phonon can be written
analogously.

The inverse lifetime is obtained by summing over all possible scattering
processes:

1
τ

=
2π
�

∑
qλ

|〈k − q, 1qλ|Hel–ph|k〉|2 δ(εk − εk−q − �ωλ(q))

+
2π
�

∑
qλ

|〈k + q|Hel–ph|k, 1qλ〉|2 δ(εk − εk+q + �ωλ(q)) .
(23.3.4)

It should be noted that the same result can be simply obtained from the
energy correction

ε̃k = εk+
∑
qλ

[ |〈k − q, 1qλ|Hel–ph|k, 0〉|2
εk − εk−q − �ωλ(q)

+
|〈k + q|Hel–ph|k, 1qλ〉|2
εk − εk+q + �ωλ(q)

]
(23.3.5)

in the second order of perturbation theory.5 By adding an infinitesimal imag-
inary part iα to the energy denominator, the lifetime of the particle is deter-
mined by the imaginary part of the particle energy:

− Im ε̃k = Γk =
�

2τ
. (23.3.6)

When the dispersion relation of the electrons is characterized by an ef-
fective mass m∗ and that of the acoustic phonons by the sound velocity cs,
energy and momentum conservation jointly lead to the requirement

�
2(k ± q)2

2m∗ =
�

2k2

2m∗ ± �csq (23.3.7)

for normal processes involving phonon absorption and emission, respectively.
Rewritten in terms of the angle θ between k and q,

q = ∓2k cos θ ± 2m∗cs
�

. (23.3.8)

In metals, where the sound velocity is several orders of magnitude smaller than
the Fermi velocity, the second term on the right-hand side is much smaller
than kF, thus
5 The energy of the quasiparticle can be determined from the location of the pole

of the Green function G(k, ω) in the complex ω plane. For the retarded Green
function the pole is in the lower half-plane, at ε̃k − iΓk , at a finite distance from
the real axis. When the Green function is transformed back to real time, the
probability of finding the particle of energy ε̃k decays exponentially with the
time constant �/(2Γk) on account of the imaginary part of Γk .
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q = ∓2k cos θ (23.3.9)

to a good approximation. In spite of the possibly large momentum transfer,
the scattering can be considered practically elastic, and only electrons close
to the Fermi energy participate in the processes. The lifetime due to these
processes is found to be

τ ∝ T−3 (23.3.10)

at very low temperatures (which will be demonstrated more accurately in the
next chapter), while at higher temperatures

τ ∝ T−1 . (23.3.11)

This estimate cannot be applied to semiconductors, where the character-
istic value of k is related to the thermal de Broglie wavelength. Using the
formula �k =

√
m∗kBT , the change in the energy of electrons is found to be

negligible for temperatures above 1K, and the scattering is practically elastic
again, however the lifetime depends strongly on the energy of the electrons:

τ ∝ T−1ε−1/2 . (23.3.12)

23.3.2 Polarons

As has been mentioned, electrons propagating in a crystal emit or absorb
phonons when scattered by the vibrating lattice. We may say that the elec-
trons are surrounded by a cloud of phonons – in other words the “bare” Bloch
electrons of effective mass m∗ in the rigid lattice become “dressed” in the
presence of phonons, and so their effective mass is modified.

To study this mass enhancement, we shall consider a Bloch state of the
electron system, and assume that there are no phonons in the unperturbed
ground state. The interaction admixes to the state |k〉 other states in which
a phonon of wave vector q and polarization λ is present, and the wave vector
of the electron is k − q. According to the formulas of perturbation theory, in
the first order of the electron–phonon interaction the electron wavefunction is

|k〉(1) = |k〉 +
∑
qλ

|k − q, 1qλ〉 〈k − q, 1qλ|Hel–ph|k〉
εk − εk−q − �ωλ(q)

. (23.3.13)

The electron propagating in the system is accompanied by phonons in this
perturbed state, therefore the state can be characterized by the mean number
of phonons it contains. This is the expectation value of the phonon-number
operator in the perturbed state:

〈nph〉 = (1)〈k|
∑
qλ

a†λ(q)aλ(q)|k〉(1)

=
∑
qλ

|〈k − q, 1qλ|Hel–ph|k〉|2(
εk − εk−q − �ωλ(q)

)2 . (23.3.14)
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Assuming that only the interaction with long-wavelength acoustic phonons
gives an important contribution, we shall drop the polarization index λ, and
write

Hel–ph = iC
∑
k,qσ

√
�N

2Mωq
qc†k+qσckσ(aq + a†−q) , (23.3.15)

where only the q-dependent factors are written out explicitly, and the square
of the matrix element is thus∣∣〈k − q, 1q|Hel–ph|k, 0〉

∣∣2 =
C2

�N |q|
2Mcs

. (23.3.16)

Expressing the electron spectrum in terms of an effective mass m∗, and
assuming a linear dispersion relation for the phonons, the energy denominator
is

εk − εk−q − �ωq =
�

2

2m∗ (2k · q − q2) − �csq . (23.3.17)

Let us first examine what happens to the electrons at the bottom of the
conduction band in semiconductors. For slow electrons k · q can be neglected
compared to q2. Taking the wave numbers of phonons, according to the Debye
approximation, inside a sphere of radius qD, and making use of the integral

∫
dq

(2π)3
q(

q2 +
2m∗cs

�
q

)2 =
1

2π2

qD∫
0

q

(q + qc)2
dq , (23.3.18)

where qc = 2m∗cs/�,

〈nph〉 =
1
π2

m∗2NC2

�3csM
ln
(
qD
qc

)
(23.3.19)

to a good approximation. When the characteristic values of covalent semicon-
ductors are inserted, the result is 〈nph〉 ∼ 0.01 to 0.02, that is, phonons mix
very weakly with electrons. For metals, where k is on the order of the Fermi
wave number, the mixing can be more important, and acoustic phonons may
lead to a perceivable but still rather small mass enhancement.

The situation is radically different for the optical phonons in ionic crystals,
where the polarizability is high and the number of phonons in the phonon
cloud is not small. Then the elementary excitations are, strictly speaking,
mixtures of electron and phonon states. These composite particles are called
polarons. For simplicity, we shall examine the formation of polarons in the
framework of perturbation theory, and determine the change in the wave-
function and energy of the Bloch electron of wave vector k. Calculating the
matrix element from the Hamiltonian (23.2.41) of the interaction between
electrons and LO phonons, and using the value of the coupling constant given
in (23.2.42), we have
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〈k − q, 1LOq|Hel–ph|k, 0〉 = − i
q

{
e2�ωLO

2ε0V

[
1

εr(∞)
− 1
εr(0)

]}1/2

. (23.3.20)

The energy denominator of 〈nph〉 in (23.3.14) is now the square of

εk − εk−q − �ωLOq =
�

2

2m∗ (2k · q − q2) − �ωLO . (23.3.21)

Neglecting, once again, the term proportional to k for slow electrons, and
including the factor 1/q2 in the square of the matrix element, the following
q-integral arises: ∫

dq

(2π)3
1
q2

1
(q2 + q2LO)2

, (23.3.22)

where q2LO = (2m∗/�)ωLO. Instead of integrating over the Brillouin zone, the
limits of integration can be extended to infinity. Since

∞∫
0

dx
(x2 + a2)2

=
π

4a3
, (23.3.23)

the mean number of phonons in the cloud around the electron is

〈nph〉 =
e2

16πε0�ωLO

(
2m∗ωLO

�

)1/2 [ 1
εr(∞)

− 1
εr(0)

]
. (23.3.24)

By introducing the dimensionless coupling constant

α =
ẽ2

2�ωLO

(
2m∗ωLO

�

)1/2 [ 1
εr(∞)

− 1
εr(0)

]
(23.3.25)

we find
〈nph〉 = 1

2α . (23.3.26)

If the electron–phonon interaction is sufficiently weak, and perturbation
theory may be applied, then the effective mass of the polaron can also be
determined. The second-order term is the lowest nonvanishing correction to
the energy of an electron in a phonon cloud:

ε̃k = εk +
∑

q

|〈k − q, 1q|Hel–ph|k, 0〉|2
εk − εk−q − �ωLO

. (23.3.27)

Expanding the energy denominator for small values of k, the correction is
proportional to k2. Integration then leads to

ε̃k = εk − α
(

�ωLO +
�

2k2

12m∗

)
. (23.3.28)

Neglecting the correction to the ground-state energy, the kinetic energy of the
polaron is
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εkin =
�

2

2m∗
(
1 − 1

6α
)
k2 , (23.3.29)

and so its effective mass is

mpol =
m∗

1 − 1
6α

≈ m∗ (1 + 1
6α
)
. (23.3.30)

When the coupling is weak, the size of the polaron can also be estimated.
Since the electron absorbs and emits phonons of energy �ωLO, the energy
uncertainty is Δε = �ωLO. The related uncertainty of the wave number can
be determined from

�
2(Δk)2

2m∗ = �ωLO , (23.3.31)

leading to

Δk =

√
2m∗ωLO

�
. (23.3.32)

Identifying the size of the polaron with the position uncertainty obtained from
the Heisenberg uncertainty principle,

r0 =
1

Δk
=
√

�

2m∗ωLO
. (23.3.33)

Since this usually means a distance of 10 to 100 lattice constants, they are
called large polarons.

If the mean number of phonons around the electron is estimated from
(23.3.24), and the measured low- and high-frequency values are used for the
dielectric constant, 〈nph〉 is found to be between 1 and 3 for alkali halides.
Since the dimensionless coupling constant is of order unity now, keeping the
first few terms in the perturbation series is obviously not sufficient. Other
methods need to be applied that treat electron–phonon interactions nonper-
turbatively. Such calculations show that the size of the polaron is then com-
parable to the lattice constant, hence the name small polaron. As the size
decreases and the mass increases, these excitations are more and more local-
ized. This change in the character of the electron states – the transition from
states extending over the entire lattice to localized states due to the interac-
tion with the vibrations of the lattice – can be studied in the Holstein model.6
In this model electrons are described in the tight-binding approximation, with
their spins neglected, in the basis of the Wannier states, and the vibrations of
the lattice are specified in terms of dispersionless optical vibrations, as in the
Einstein model (that is, atoms in each lattice point vibrate independently of
one another with the same frequency ω0). The interaction between electrons
and lattice vibrations is assumed to be local, that is, the vibrational state of
an atom may change only when an electron is located at the lattice point in
question. Writing the Hamiltonian in second-quantized representation,
6 T. Holstein, 1959.
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H = −t
∑
<ij>

(
c†i cj + c†jci

)
+ �ω0

∑
i

b†i bi − g
∑

i

c†i ci
(
b†i + bi

)
, (23.3.34)

where the operators c†i and b†i create and annihilate a lattice vibration on the
ith lattice point, and 〈ij〉 denotes nearest-neighbor lattice points. Calculations
show that the localization of the electrons occurs gradually as the coupling
constant g increases. The study of transport properties requires very different
methods in this localized state than in the general case.

23.3.3 Kohn Anomaly and Peierls Instability

Just like for electrons, the energy of phonons is also shifted (renormalized)
by the electron–phonon interaction. The two calculations differ in the choice
of the unperturbed wavefunction. It now corresponds to a state in which a
single phonon of wave number q is present, and the electron system is in its
ground state denoted by |FS〉 – that is, the Bloch states are filled up to the
Fermi energy. The unperturbed wavefunction is then

|1qλ〉 = a†λ(q)|FS〉 . (23.3.35)

Because of the interaction, this phonon may be annihilated while an
electron–hole pair is created. The reverse process may also occur, and the
phonon may reappear after a while. Denoting the wave vector of the hole by
k and that of the electron by k + q, the wavefunction in this intermediate
state is

|k + q,k〉 = c†k+qσckσ|FS〉 . (23.3.36)

The phonon energy in the first nonvanishing order of perturbation theory
is

�ω
(1)
λ (q) = �ωλ(q) +

∑
kσ

|〈k,k + q|Hel–ph|1λq〉|2
�ωλ(q) − (εk+q − εk)

. (23.3.37)

When evaluating the sum, some care must be exercised, as the electron–hole
pair was created in a ground-state Fermi sea, thus the hole is below and the
electron is above the Fermi level. Consequently, the sum is over the region for
which |k| < kF and |k + q| > kF. This region is shown in Fig. 23.6.

Since the most interesting effects appear in the vicinity of 2kF, we shall
approximate the strength of the electron–phonon interaction by a constant,
and denote it by g. Specifying the range of summation in terms of the Fermi
function,

�ω
(1)
λ (q) = �ωλ(q) +

∑
kσ

g2
f0(k)[1 − f0(k + q)]
�ωλ(q) − (εk+q − εk)

. (23.3.38)

Neglecting the phonon energy compared to the electron energies in the energy
denominator,
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Fig. 23.6. The possible momenta of the electron and hole illustrated by two Fermi
spheres displaced by q

�ω
(1)
λ (q) = �ωλ(q) − g2

∑
kσ

f0(k)[1 − f0(k + q)]
εk+q − εk . (23.3.39)

Now the sum can be approximated by an integral, and the latter can be
evaluated. We shall delve into the details in Chapter 33. Using the results to
be derived there, it can be shown that the derivative of the energy correction
for general three-dimensional systems exhibits a singularity at q = 2kF at zero
temperature. Therefore anomalous dispersion appears in the phonon energy
at this wave number. This is called Kohn anomaly.7

$� �q

q q

$� �q

�kF �kF

( )a ( )b

Fig. 23.7. The Kohn anomaly in the phonon spectrum due to the electron–phonon
interaction at q = 2kF, in a (a) three-dimensional and (b) one-dimensional system

As illustrated in Fig. 23.7(a), this anomaly is usually hardly observable.
This is not the case in strongly anisotropic systems, in which the propagation
of electrons is practically limited to a single direction. We shall demonstrate
in Chapter 33 that the value of the integral in (23.3.39) depends greatly on
the shape of the Fermi surface. In quasi-one-dimensional systems the energy
correction itself shows a logarithmic singularity at q = 2kF at low tempera-
tures. The conditions of adiabatic decoupling are no longer met then, and so
it is not sufficient to keep the lowest-order corrections in perturbation theory.
7 W. Kohn, 1959. Walter Kohn (1923–) was awarded the 1998 Nobel Prize in

Chemistry “for his development of the density-functional theory”.



352 23 Electrons in Thermally Vibrating Lattices

More precise calculations based on the methods of the many-body problem
show that the equation that determines the renormalized phonon frequency
ω̃λ is

(�ω̃λ(q))2 = (�ωλ(q))2 − 2�ωλ(q)g2
∑
kσ

f0(k)[1 − f0(k + q)]
εk+q − εk . (23.3.40)

Naturally, the result obtained in perturbation theory is recovered in leading
order. In one-dimensional systems the energy of the phonon with wave number
q = 2kF shows strong temperature dependence, and even vanishes at a finite
temperature:

kBTc = 2.28 εF e−�ωλ(2kF)/g2ρ(εF) . (23.3.41)
Slightly above this critical point, the energy of the phonon is

(�ω̃λ(2kF))2 = �ωλ(2kF)g2ρ(εF) ln
T

Tc
. (23.3.42)

The 2kF phonon is said to become soft at Tc, and the phonon state of van-
ishing energy may become macroscopically populated (just like in the Bose
condensation). The system then becomes unstable against the static distor-
tions of the lattice. Since the periodicity of the distorted lattice is determined
by 2kF, this quantity will be the primitive reciprocal-lattice vector of the new
lattice. Figure 23.8 shows the distorted lattice and its new energy spectrum
in the special case where the band was initially half filled (2kF = π/a), and
so the distortion corresponds to the dimerization of the lattice, and hence a
doubling of the unit cell.

�a

�k

� �a�� a� � a���a
k

Fig. 23.8. The dimerization of the lattice and the formation of gaps in a one-
dimensional system due to the Peierls instability

Even though below Tc the energy of the ion system increases because of
the distortion, this is compensated for by the decrease in the energy of the
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electron system as the boundary of the Brillouin zone moves to kF, and thus
the energy of each occupied electron state is lowered. In the one-dimensional
case the decrease is always larger than the increase in the elastic energy, that
is why a 2kF distortion occurs in the position of the ions. It is accompanied
by a density wave of the same periodicity in the electron system. This will be
discussed in Chapter 33.

Note that the initially partially (half) filled band becomes completely filled
now. Because of the gap at the zone boundary the material that shows metallic
behavior at high temperatures becomes insulator at Tc. This is the Peierls
instability.8

It is known that in strictly one-dimensional systems no phase transition
is possible at finite temperatures: they are washed out by fluctuations. How-
ever, phase transition may occur in quasi-one-dimensional systems made up
of weakly coupled chains, where the Fermi surface has a particular nesting
property: two pieces on opposite sides of the Fermi surface can be matched
when one is translated through a vector q. In this case the integral for the
shift of the phonon frequency shows similar logarithmic singularity to the one-
dimensional case. However, a true phase transition may now take place, since
the fluctuations are limited by the three-dimensional ordering of the density
waves on individual chains. The more accurate description must take account
of the electrostatic energy between chains.

23.3.4 Jahn–Teller Distortion

As discussed above, in strongly anisotropic, quasi-one-dimensional systems,
where the motion of the electrons in the conduction band is essentially limited
to a single direction, the interaction with the lattice makes the lattice distorted
– in particular, it becomes dimerized when the band is half filled. However,
the distortion of the lattice may also occur when the deformation lowers the
energy of the electrons of the ion core (rather than the conduction electrons)
by an amount that exceeds the increment in the elastic energy caused by the
distortion. This phenomenon is called the Jahn–Teller effect.9

To understand this phenomenon, consider a crystal in which Cu2+ ions sit
in an environment of cubic symmetry. The outermost open 3d shell accom-
modates nine electrons. In a free atom the state 2D5/2 of quantum numbers
S = 1/2, L = 2, J = 5/2 would be the ground state according to Hund’s rules.
When the copper atoms sit in a crystal, the ground-state configuration can be
determined by the method worked out in Chapter 6: the S and L values are
specified by Hund’s first and second rules, and then the crystal field, rather
than the spin–orbit coupling, is considered as the essential perturbation. This
splits the tenfold degenerate energy level further.

The L = 2 energy level is known to split into two in a cubic environment.
The dxy, dyz, and dzx states remain degenerate, and transform according
8 R. E. Peierls, 1955.
9 H. Jahn and E. Teller, 1936.
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to the representation Γ ′
25 (T2g), while the dz2 and dx2−y2 states transform

according to Γ12 (Eg). For more than half filled bands the t2g states are
known to be lower. Therefore they accommodate six electrons, and the eg
levels three.

When the environment of the ions does not exhibit a cubic symmetry but
a lower one, the splitting pattern is somewhat different. Suppose that the
crystal is slightly elongated or compressed along the z-axis, and so the cubic
symmetry is reduced to tetragonal. By considering the distortion along the
z-axis as a perturbation, the splitting pattern of the t2g and eg levels of the
cubic structure can be determined. This is shown in Fig. 23.9.

dx y2 2�

dz2

dxy

d dyz xz,

Cubic

3d
9

Tetragonal

Fig. 23.9. The splitting of the ground-state energy level S = 1/2, L = 2 of the Cu2+

ion in a cubic environment, and in the presence of an additional weak tetragonal
component

The total energy of the electrons on the t2g level is not changed by the
splitting caused by the distortion. Of the three electrons on the eg level two
will have lower and one higher energy, so the total energy of the electron
system is lowered in the transition to the distorted state by an amount that
is expected to be proportional to the distortion.

On the other hand, the elastic energy of the lattice increases, as for the
Peierls distortion – and this increment is proportional to the square of the
distortion parameter. When the two contributions are examined together, the
linear term is found to be dominant for small distortions, and so the cubic
lattice becomes spontaneously distorted to reach a lower-energy state.

This is generalized by the Jahn–Teller theorem, which states that if the
symmetry of the crystal field is so high that the highest-energy electrons would
occupy degenerate orbitals in the ground state, then it is energetically more
favorable for the crystal to undergo a distortion so that this degeneracy is
lifted.

At high temperature, where many different configurations are mixed, this
distortion is no longer favorable. Just like the Peierls distortion, the Jahn–
Teller distortion also occurs at a finite temperature, as a structural transfor-
mation.
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23.3.5 Effective Electron–Electron Interaction

The second-order process of the electron–phonon interaction shown in Fig.
23.5(c) was interpreted as an effective interaction between two electrons
through the emission of a phonon by one and its subsequent absorption by
the other. The most convenient way to describe this effective interaction is to
use the canonical transformation presented in detail in Appendix I, but the
same result can also be obtained in the second order of perturbation theory.

In the latter approach we start with Fröhlich’s10 second-quantized
Hamiltonian of the joint system of electrons and phonons, which contains
the kinetic energy of the electrons, the energy of the free phonons, and the in-
teraction between the electrons and the long-wavelength longitudinal acoustic
phonons. Neglecting the electron spin,

H =
∑

k

εkc
†
kck +

∑
q

�ωqa
†
qaq + i

∑
k,q

Dqc
†
k+qck

(
aq + a†−q

)
. (23.3.43)

Writing the Fröhlich Hamiltonian as

H0 + λH1 , (23.3.44)

the electron–phonon interaction is chosen as the perturbation. Then a canon-
ical transformation

H̃ = eSHe−S (23.3.45)

is performed, which transforms phonons out in the lowest order, leaving back
only electrons. This can be achieved by expanding the transformed Hamilto-
nian in powers of S, and requiring that

λH1 + [S,H0] = 0 , (23.3.46)

thereby eliminating the direct electron–phonon interaction. The new Hamil-
tonian is then

H̃ = H0 + 1
2λ [S,H1] + O(λ3) . (23.3.47)

In our particular case, where the interaction term describes the creation or
annihilation of a phonon, S has nonvanishing matrix elements between states
whose phonon numbers differ by one. By choosing a state in which the number
of phonons with wave vector q is nq, and keeping in mind that, according to
(23.2.34), Dq is an odd function of q, the matrix elements of interest are

〈
(n+ 1)q

∣∣S∣∣nq

〉
= iDq

∑
k

c†k−qck
1

εk − εk−q − �ωq
,

〈
nq

∣∣S∣∣(n+ 1)q

〉
= −iDq

∑
k′
c†k′+qck′

1
εk′ − εk′+q + �ωq

.

(23.3.48)

10 H. Fröhlich, 1954.
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The term 1
2λ [S,H1] in the transformed Hamiltonian has nonvanishing matrix

elements between those many-electron states that differ in the occupation of
four one-particle states: relative to the initial state, two states become empty,
and two others occupied in the final state. By taking those matrix elements
for which the phonon state is the same in the initial and final states, this
corresponds to an effective electron–electron scattering. Other matrix elements
of H̃ describe the absorption or emission of two phonons, however we shall
not be concerned with these processes now.

The Hamiltonian of the scattering of electrons – that is, of the effective
electron–electron interaction – reads

Heff =
1
2

∑
q

D2
q

∑
k,k′

c†k′+qck′c
†
k−qck

×
(

1
εk − εk−q − �ωq

− 1
εk′ − εk′+q + �ωq

)
.

(23.3.49)

Changing the variables as k ↔ k′ and q → −q in the second term, and making
use of ωq = ω−q,

Heff =
∑

q

D2
q

∑
k,k′

c†k′+qck′c
†
k−qck

�ωq

(εk − εk−q)2 − (�ωq)2
. (23.3.50)

Up to now, the electron spin has been ignored. Since it is not changed
by the emission or absorption of a phonon, the Hamiltonian of the effective
interaction including spin is

Heff =
∑

q

D2
q

∑
k,k′

σσ′

c†k′+qσ′ck′σ′c
†
k−qσckσ

�ωq

(εk − εk−q)2 − (�ωq)2
. (23.3.51)

For electrons close to the Fermi surface, |εk − εk−q| may be smaller than �ωq,
therefore the emission of a phonon by such an electron and its absorption
by another leads to an attractive interaction between the electrons. If this at-
traction overcomes the Coulomb repulsion between them, the pair of electrons
forms a bound state. Such pairs are at the origin of superconductivity.

Further Reading

1. G. Grimvall, The Electron-Phonon Interaction in Metals, Selected Top-
ics in Solid State Physics, Editor E. P. Wohlfarth, Volume XVI. North-
Holland Publishing Company, Amsterdam (1981).

2. J. M. Ziman, Electrons and Phonons, The Theory of Transport Phenom-
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Transport Phenomena

In Chapter 16 we already discussed the propagation of electric and heat cur-
rents in the simplest model of metals, the classical Drude model, and then in
the quantum mechanical Sommerfeld model, however the treatment was not
consistently quantum mechanical in the latter. Since the complete solution
of the quantum mechanical problem of electrons in an applied electric field
or under other external forces (for example, a temperature gradient) is not
known, we tacitly opted for the application of the semiclassical treatment by
assuming that the occupation of the electron states can be characterized by a
position- and wave-vector-dependent nonequilibrium stationary distribution
function f(r,k). Having given a more precise meaning to the semiclassical
approximation in Chapter 21, we are now in the position to apply it to the
description of conduction phenomena, and examine the current carried by the
electrons moving in the periodic potential of the lattice.

In addition to the semiclassical approximation, our previous considerations
were also based on the assumption that, just like in the Drude model, the
effects of collisions can be taken into account by a relaxation time in the
Sommerfeld model, too. Since this quantity is introduced phenomenologically,
nothing can be said about its temperature dependence within these models –
and consequently, the correct results for the temperature dependence of the
electrical resistivity and thermal conductivity cannot be derived, either.

Moreover, these models may, at best, be applied to the description of the
properties of simple metals, in which the conduction electrons behave like
free electrons; the transport properties of semiconductors or transition metals
with a narrow d-band are obviously outside their realm. Therefore another
approach is required for the description of the transport properties of Bloch
electrons and phonons interacting with them.

Before starting the discussion of the characteristic phenomena in solids,
we briefly summarize the most important results of the irreversible thermo-
dynamical treatment of transport phenomena. Then we introduce the Boltz-
mann equation, whose solution gives the nonequilibrium distribution of elec-
trons and phonons in the presence of an external perturbation. To determine
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the distribution function, we shall first study the Boltzmann equation in the
relaxation-time approximation, and then take into account the scattering of
electrons more accurately than before. Finally, we shall use the results to cal-
culate the temperature dependence of the electrical resistivity and thermal
conductivity of metals and semiconductors.

24.1 General Formulation of Transport Phenomena

In a system of charged particles an applied electric field induces an electric
current, while a temperature gradient generates a heat current. However, the
heat current may also be carried by uncharged particles, for example, phonons.
The behavior of solids is primarily determined by the propagation of these
currents inside them. In multicomponent materials the particle currents of
individual components are also studied, while in semiconductors the currents
carried by electrons and holes are customarily separated.

By writing the electric field as the gradient of an electrostatic potential,
currents are seen to be induced by the gradient of this potential and the
temperature gradient. The diffusion current of particles appears when the
concentration has a nonvanishing gradient. In general, such gradients are the
driving forces of currents.

In solids the electric field is usually sufficiently weak to justify dealing with
linear phenomena alone. Then Ohm’s law implies

j = σE = −σ∇ϕ , (24.1.1)

where σ is the conductivity tensor. For a temperature gradient, too, the re-
sponse to the perturbation – the heat current – is proportional to the driving
force (unless its spatial variations are excessively rapid):

jQ = −λ∇T , (24.1.2)

where λ is the thermal or heat conductivity. If the particle density n is not
uniform, diffusion leads to a nonvanishing particle-current density:

jn = −D∇n , (24.1.3)

where D is the diffusion coefficient.
It is well known from classical physics that an electric field can also induce

a heat current, and a temperature gradient can generate an electric current.
Likewise, electric and heat currents are induced when the chemical potential
shows spatial variations. The corresponding component of the current is pro-
portional to the gradient of the chemical potential. It was demonstrated in
Chapter 16 that the coefficients of these cross effects are related to each other
in a simple way. We shall give a more general formulation of this statement
below.
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24.1.1 Currents and Driving Forces

In the analysis of currents, we need to distinguish particle currents, electric
currents, energy currents, heat currents, and entropy currents. Their densities
are denoted by jn, j, jE , jQ, and jS , respectively. The relationships between
jn and j, and jQ and jS are easily established:

jQ = TjS (24.1.4)

is generally valid, while for the density of the electric current carried by elec-
trons

j = −ejn . (24.1.5)

One more relation can be written down if changes in the volume can be ne-
glected (dV = 0), which is a fairly good approximation for solids. From the
thermodynamic relation

TdS = dE − μdN (24.1.6)

we then have
TjS = jE − μjn . (24.1.7)

The same thermodynamic relation also implies a formula between the time
rates of change of the entropy, energy, and particle number:

T
∂S

∂t
=
∂E

∂t
− μ∂N

∂t
. (24.1.8)

When each quantity is referred to unit volume, and therefore denoted by the
corresponding lowercase letter (except for the energy density, which is denoted
by w to distinguish it from the elementary charge e), we have

T
∂s

∂t
=
∂w

∂t
− μ∂n

∂t
. (24.1.9)

The particle density and the particle-current density have to satisfy the
continuity equation

∂n

∂t
+ div jn = 0 . (24.1.10)

A similar equation is valid for the energy density and energy-current density;
however, the generation of Joule heat is taken into account by an additional
term in the energy balance:

∂w

∂t
+ div jE = E · j . (24.1.11)

The analogous equation for the entropy density also contains an additional
term on the right-hand side that corresponds to the local entropy production:

∂s

∂t
+ div jS = ṡ . (24.1.12)
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Using the previous equations, ṡ can be written as

ṡ =
1
T

(
∂w

∂t
− μ∂n

∂t

)
+ div

jQ

T

=
1
T

(
E · j − div jE + μ div jn + div jQ − jQ · ∇T

T

)
.

(24.1.13)

From (24.1.4) and (24.1.7) we have

div jQ = div jE − jn · ∇μ− μ div jn , (24.1.14)

and so the entropy-production formula can be simplified to

ṡ =
1
T

{
E · j − jn · ∇μ− jQ · ∇T

T

}
=

1
T

{(
E +

∇μ
e

)
· j − ∇T

T
· jQ

}
.

(24.1.15)

Rewriting this as

ṡ =
1
T

(
Xe · j + XQ · jQ

)
, (24.1.16)

the multiplying factor of the current densities is called the driving force of
the current. If, in addition to the electric and heat currents, other currents
also flow in the system, the corresponding driving force is defined through the
relation

ṡ =
1
T

∑
i

Xi · ji . (24.1.17)

The previous formulas confirm that the driving force of the electric current
is not simply the electric field E but the combination E + ∇μ/e. When the
electric field is derived from a scalar potential,

Xe = E +
∇μ
e

= −∇
(
ϕ− μ

e

)
, (24.1.18)

that is, the driving force is not the gradient of the electrostatic potential ϕ
but that of the electrochemical potential ϕ − μ/e, as was demonstrated for
free electrons on page 53. Similarly, the driving force of the heat current is
not simply −∇T but

XQ = −∇T
T
. (24.1.19)

24.1.2 Onsager Relations

As mentioned earlier, in the overwhelming majority of transport phenomena
in solids the currents can be taken to be proportional to the driving forces:



24.2 Boltzmann Equation 361

ji =
∑

j

LijXj . (24.1.20)

According to irreversible thermodynamics, the cross effects satisfy the Onsager
relations in this linear approximation:

Lαβ
ij = Lβα

ji , (24.1.21)

while in a magnetic field

Lαβ
ij (B) = Lβα

ji (−B) . (24.1.22)

When only an electric field and a temperature gradient are applied, and
only the electric and heat currents are considered,

j = L11

(
E +

∇μ
e

)
+ L12

(
−∇T
T

)
,

jQ = L21

(
E +

∇μ
e

)
+ L22

(
−∇T
T

)
.

(24.1.23)

In the Sommerfeld model these coefficients are scalars on account of the
isotropy of the electron gas. Comparison with (16.3.32) shows that L12 and
L21 are equal, and their value is the negative of the integral K1 defined in
(16.3.33). The equality of L12 and L21 is now seen not to be accidental but
the consequence of the Onsager relations of nonequilibrium thermodynamics,
and is thus generally valid.

24.2 Boltzmann Equation

An exact quantum mechanical treatment of conduction phenomena requires
the apparatus of the many-body problem. As we shall briefly discuss in Chap-
ter 36, this is indeed necessary in disordered systems. However, in solid-state
physics we usually deal with systems in which the mean free path of electrons
is much larger than their de Broglie wavelength, and therefore the conduc-
tion electrons can be considered to make up a semiclassical electron gas as
far as the conduction properties are concerned – so their equation of motion
is known. The kinetic theory of gases can then be applied to this electron
gas, with the difference that the most important collision mechanism is not
the scattering of particles by one another but the interaction with the crystal
lattice, its vibrations or defects. The reason why transport phenomena were
not analyzed in depth in Chapter 16 on the Sommerfeld model is that the
reader may not have been familiar with the details of the interaction between
the electrons and the vibrating lattice (the electron–phonon interaction).

In thermal equilibrium the occupation of electron states is characterized by
the Fermi–Dirac distribution, while phonon states are described by the Bose–
Einstein distribution. In the semiclassical approximation the nonequilibrium
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state can be specified by a nonequilibrium distribution function. We shall first
derive the Boltzmann equation that determines this distribution function, and
then present the approximations used for solving it.

24.2.1 Nonequilibrium Distribution Function

Consider a point r,k in the phase space of the position and wave vector of
electrons, and denote the number of electrons that are inside the phase-space
volume element dr dk around the point r,k at time t by dN(r,k, t). The
nonequilibrium distribution function f(r,k, t) is then defined as

dN(r,k, t) = f(r,k, t)
dr dk

4π3
. (24.2.1)

This formula contains the information that the k-space density of the allowed
wave vectors is V/(2π)3 in a sample of volume V , and the factor 2 due to the
two possible spin orientations is also included. The electric current density at
point r at time t is then

j(r, t) = −e
∫

dk

4π3
vkf(r,k, t) , (24.2.2)

while the heat-current density is

jQ(r, t) =
∫

dk

4π3
(εk − μ)vkf(r,k, t) . (24.2.3)

If electrons populate several bands, then the number of electrons can be
considered separately for each band. When dNn of the dN electrons in the
phase-space volume element occupy states of the band of index n, the distri-
bution function for that band is defined by

dNn(r,k, t) = fn(r,k, t)
dr dk

4π3
. (24.2.4)

Since electrons in completely filled bands do not carry a net current, we shall
be concerned with the contribution of incomplete shells in our treatment of
transport phenomena. In most of our calculations we shall assume that there
is a single band of interest, and thus suppress the band index. As individual
bands contribute additively to the currents, the generalization to the case of
multiple partially filled bands is straightforward.

In magnetic systems, the number of electrons in the volume element dr dk
may be different for the two spin orientations (σ =↑, ↓). We shall also see
examples where the strength of the interaction that governs the scattering
of electrons depends on the orientation of the electron spin. Their proper
treatment requires the introduction of a spin-dependent distribution function,
which can be defined in terms of the number of spin-σ particles as
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dNσ(r,k, t) = fσ(r,k, t)
dr dk

8π3
. (24.2.5)

Below we shall suppress the spin index, unless it is expressly needed.
In thermal equilibrium the distribution of the electrons is specified by the

well-known Fermi function

f0(k) =
1

exp [(εk − μ) /kBT ] + 1
. (24.2.6)

If the temperature or the chemical potential is nonuniform, the distribution
function contains their local values:

f0(r,k) =
1

exp [(εk − μ(r)) /kBT (r)] + 1
. (24.2.7)

Phonons are treated on the same footing. A temperature gradient modifies
the phonon distribution with respect to the thermal equilibrium. Denoting the
number of phonons of polarization λ in the region dr dq around the point r, q
of the phase space by dNλ, the phonon distribution function gλ(r, q, t) is
defined as

dNλ(r, q, t) = gλ(r, q, t)
dr dq

8π3
. (24.2.8)

Since phonons obey the Bose–Einstein statistics, and their chemical potential
vanishes in thermal equilibrium, we have

g0λ(q) =
1

exp [�ωλ(q)/kBT ] − 1
, (24.2.9)

while if the system is in local equilibrium in a nonuniform temperature dis-
tribution,

g0λ(r, q) =
1

exp [�ωλ(q)/kBT (r)] − 1
. (24.2.10)

24.2.2 Boltzmann Equation for Electrons

To determine the nonequilibrium distribution function, the phase-space mo-
tion of the particles inside the volume element dr dk around the point r,k at
time t needs to be studied. If no collisions occur, then dt time later they are
in the region dr′dk′ around r′,k′, where the primed and unprimed quantities
are related by r′ = r + ṙ dt and k′ = k + k̇ dt. Because of the conservation of
the particle number,

f(r,k, t)dr dk = f(r + ṙ dt,k + k̇ dt, t+ dt) dr′ dk′ . (24.2.11)

According to Liouville’s theorem, the phase-space volume remains constant
during the motion, dr dk = dr′ dk′, and so

f(r + ṙ dt,k + k̇ dt, t+ dt) = f(r,k, t) . (24.2.12)
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For small time differences the linear-order expansion of the left-hand side gives

df
dt

≡ ∂f

∂t
+ ṙ · ∂f

∂r
+ k̇ · ∂f

∂k
= 0 , (24.2.13)

which is in fact the equation of continuity in phase space.
On the other hand, when collisions occur during the infinitesimal time

interval dt, by which certain particles are scattered out of the phase-space
trajectory (outscattering) – or other particles are scattered into the vicinity
of the phase-space point r′,k′ (inscattering) – then a collision term appears
on the right-hand side:

f(r + ṙ dt,k + k̇ dt, t+ dt) = f(r,k, t) +
(
∂f(r,k, t)

∂t

)
coll

dt , (24.2.14)

where(
∂f(r,k, t)

∂t

)
coll

dt =
(
∂f(r,k, t)

∂t

)
in

dt−
(
∂f(r,k, t)

∂t

)
out

dt (24.2.15)

is the change in particle number due to the difference of inscattering and
outscattering. Expanding this formula to linear order in dt,

∂f

∂t
+ ṙ · ∂f

∂r
+ k̇ · ∂f

∂k
=
(
∂f

∂t

)
coll

. (24.2.16)

This is the Boltzmann equation.1
In the semiclassical approximation the phase-space motion of electrons is

given by the equations

ṙ = vk =
1
�

∂εk
∂k

, �k̇ = −e(E + vk × B) . (24.2.17)

Thus in the stationary case the distribution function can be determined by
solving

vk · ∂f
∂r

− e

�
(E + vk × B) · ∂f

∂k
=
(
∂f

∂t

)
coll

. (24.2.18)

Assuming that the distribution function is just slightly different from the
thermal-equilibrium function f0, using the notation f = f0 + f1 we may
transform the Boltzmann equation into an equation for the departure f1 from
the equilibrium distribution:

vk · ∂f0
∂r

− e

�
(E + vk × B) · ∂f0

∂k

=
(
∂f

∂t

)
coll

− vk · ∂f1
∂r

+
e

�
(E + vk × B) · ∂f1

∂k
.

(24.2.19)

1 L. Boltzmann, 1872.
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Since f0 depends on the wave and position vectors only through the combi-
nation (εk − μ(r))/kBT (r), the left-hand side can be rewritten as

vk · ∂f0
∂r

− e

�
(E + vk × B) · ∂f0

∂k

= −
(
−∂f0
∂εk

)
vk ·

[
−e
(

E +
∇μ
e

)
− εk − μ

T
∇T

]
.

(24.2.20)

The explicit magnetic-field dependence of the left-hand side has thus been
eliminated. Nonetheless an implicit dependence remains, as the trajectory of
electrons – and, consequently, their velocity, too – still depends on the applied
field. This clearly shows the special role of the magnetic field: when the motion
of electrons is examined, it cannot be considered as a weak perturbation to
which electrons react linearly. The situation is different for the electric field.
Customarily, only the linear response to the electric field is studied. As f1
itself is proportional to the applied field, the term that is proportional to E
can be neglected on the right-hand side of (24.2.19), as it would lead to a
quadratic correction. The Boltzmann equation for electrons is therefore

−
(
−∂f0
∂εk

)
vk ·

[
−e
(

E +
∇μ
e

)
− εk − μ

T
∇T

]
=
(
∂f

∂t

)
coll

− vk · ∂f1
∂r

+
e

�

(
vk × B

) · ∂f1
∂k

.

(24.2.21)

We shall usually study conduction phenomena in uniform fields and in the
presence of a constant temperature gradient, and be concerned with the de-
pendence of the distribution function only on the wave vector and energy.

Up to now nothing has been said about how the collision term in the
Boltzmann equation should be chosen. Therefore we shall first determine the
collision term due to the scattering of electrons by the defects of a rigid lattice,
and then turn to the collision terms in a vibrating lattice due to the electron–
phonon interaction (coupled system of electrons and phonons). We shall also
see what collision terms arise when phonons interact only among themselves.

24.2.3 Collision Term for Scattering by Lattice Defects

In a rigid lattice, the collision term comes from the interaction of electrons with
other electrons and their scattering by lattice defects. The collision integral
can be written down simply for the latter provided the matrix elements of the
scattering by lattice defects are known.

Let us denote the probability for an electron in state k to be scattered
in time dt into an empty state in the volume element dk′ around k′ by

Wkk′
dk′ dt
(2π)3

. Since the probability for a given state to be empty is 1 − f(k′),

and the state k is present with a weight f(k), the probability of outscattering
is
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∂f

∂t

)
out

= f(k)
∫

dk′

(2π)3
Wkk′

[
1 − f(k′)

]
. (24.2.22)

In the inscattering process electrons are scattered from k′ to k; this requires
that k′ be occupied and k empty initially. The probability of this process is
therefore (

∂f

∂t

)
in

= [1 − f(k)]
∫

dk′

(2π)3
Wk′k f(k

′) . (24.2.23)

Since the spin is conserved in the scattering, there is no summation over the
spin variable. The full collision integral of the two processes is(

∂f

∂t

)
coll

=
∫

dk′

(2π)3
{
Wk′kf(k

′) [1 − f(k)] −Wkk′f(k)
[
1 − f(k′)

]}
.

(24.2.24)
When this is substituted into the Boltzmann equation, a nonlinear in-

tegrodifferential equation is obtained for the electronic distribution function
even in the simplest case. Its solution obviously requires further approxima-
tions. Before turning to their discussion, let us write down the Boltzmann
equation for the nonequilibrium distribution of phonons, which sometimes
also play an important role in the determination of transport properties of
solids.

24.2.4 Boltzmann Equation for Phonons

When the perturbations vary slowly both in space and time, the properties
determined by the lattice vibrations (phonons) can also be treated in the semi-
classical approximation – that is, a position- and time-dependent semiclassical
distribution function can be introduced for phonons much in the same way
as was done for electrons. Apart from piezoelectric effects, the electromag-
netic field does not act on phonons; however, when a temperature gradient is
present, the equilibrium distribution of phonons is disturbed, and they can also
carry a heat current. Consequently, the equation governing the phase-space
variations of the distribution function gλ(r, q, t) for phonons of polarization
λ differs formally from the Boltzmann equation for electrons in the absence
of the term arising from the variation of the wave vector:

∂gλ(r, q, t)
∂t

+ cλ(q) · ∂gλ(r, q, t)
∂r

=
(
∂gλ
∂t

)
coll
, (24.2.25)

where cλ(q) is the group velocity of phonons of polarization λ, which can be
derived from the dispersion relation as

cλ(q) =
∂ωλ(q)
∂q

. (24.2.26)

In the stationary case
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cλ · ∂gλ(r, q, t)
∂r

=
(
∂gλ
∂t

)
coll
. (24.2.27)

By relating the spatial variations to the temperature gradient,

cλ · ∇T ∂gλ(r, q, t)
∂T

=
(
∂gλ
∂t

)
coll
. (24.2.28)

When the system of phonons is studied in itself, the decay and merger
processes of phonons due to anharmonicity need to be taken into account to
determine the collision integral. For simplicity, we shall consider only three-
phonon processes, and neglect umklapp processes. The processes in which a
phonon of wave vector q can participate are shown in Fig. 24.1.

Fig. 24.1. Decay and merger processes with three phonons involved, which modify
the distribution function of the phonons of wave vector q

We shall denote by Wqq′ the transition probability of the process in which
a phonon of wave vector q decays into two phonons, q′ and q′′ = q−q′. Obvi-
ously, the inverse process – in which two phonons, q′ and q′′ = q − q′, merge
into one, of wave vector q – has the same transition probability. The number
of phonons of wave vector q is reduced by the first and increased by the second
process, so they contribute to outscattering and inscattering, respectively. To
determine the actual contribution, one has to sum over the possible values
of q′. It must, however, be borne in mind that for inscattering processes the
transition probability Wqq′ has to be multiplied by the probability that the
system initially contains the two phonons, q′ and q′′ (that is, by the product
of the corresponding distribution functions).

Owing to its bosonic character, the creation of a phonon q does not require
that the state should be empty – moreover, the creation probability is even
increased by the presence of existing phonons because of stimulated emission,
yielding a factor 1 + gλ(q). By taking into account the contributions of the
other processes in Fig. 24.1,(

∂gλ
∂t

)
coll

=
∑
λ′λ′′

∫
dq′

(2π)3
{

1
2Wqq′ [gλ′(q′)gλ′′(q − q′)(1 + gλ(q))

−gλ(q)(1 + gλ′(q′))(1 + gλ′′(q − q′))]
+Wq′q [gλ′(q′)(1 + gλ(q))(1 + gλ′′(q′ − q))
−gλ(q)gλ′′(q′ − q)(1 + gλ′(q′))]} . (24.2.29)
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The factor 1
2 in the first term is due to the indistinguishability of phonons:

since the processes related by q′ ↔ q−q′ are identical, a twofold overcounting
occurs in the q′ integral.

24.2.5 Coupled Electron–Phonon Systems

Because of the interaction between electrons and phonons, the two distribution
functions are coupled. The collision term in the Boltzmann equation for the
electron distribution function f(r,k, t) contains the contributions of four kinds
of process. The number of electrons with wave vector k increases when an
electron of wave vector k′ = k+q emits a phonon of wave vector q or absorbs
one of wave vector −q, and is thus scattered into the state of quantum number
k. On the other hand, the number of such electrons is reduced by the processes
in which an electron of wave vector k absorbs or emits a phonon. These
possibilities are shown in Fig. 24.2.

Fig. 24.2. Electron scattering processes with phonon emission and absorption that
increase and decrease the number of electrons with wave vector k

Consequently, the collision integral for electrons contains four terms. The
collision term is proportional to the transition probabilities of the phonon-
emission and -absorption processes. For the process in which an electron of
wave vector k absorbs one of the nλ(q) phonons of polarization λ and wave
vector q,

Wk,q,λ;k′ =
2π
�

∣∣〈k′, nλ(q) − 1|Hel–ph|k, nλ(q)〉∣∣2 δ(εk + �ωλ(q)− εk′)δk+q,k′ .

(24.2.30)
The transition probabilities of other processes are similar in form. As the
matrix element of the electron–phonon interaction is the same whether the
electron emits or absorbs the phonon, after the separation of the factors grant-
ing energy and momentum conservation each process is proportional to

Ik,q,λ =
2π
�

∣∣〈k′ = k + q, nλ(q) − 1|Hel–ph|k, nλ(q)〉∣∣2
=

2π
�

∣∣〈k′ = k − q, nλ(q) + 1|Hel–ph|k, nλ(q)〉∣∣2 . (24.2.31)

Of course, in phonon absorption and emission alike, the initial electron
state must be occupied, while the final state that becomes occupied in the
scattering must be initially empty according to the Pauli exclusion principle.
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Similarly, the initial phonon state must be occupied in phonon-absorption
processes, while in phonon-emission processes a factor 1+g appears because of
stimulated emission. Adding the scattering processes in their order in Fig. 24.2,(

∂f

∂t

)
coll

=
1
V

∑
k′qλ

{
Wk′;k,q,λf(k

′)[1 − f(k)][1 + gλ(q)]

+Wk′,−q,λ;kf(k
′)gλ(−q)[1 − f(k)]

−Wk;k′,−q,λf(k)[1 − f(k′)][1 + gλ(−q)]

−Wk,q,λ;k′f(k)gλ(q)[1 − f(k′)]
}
.

(24.2.32)

The same scattering processes also contribute to the collision integral in
the Boltzmann equation for phonons, since the phonon number is changed by
phonon emission and absorption:(

∂gλ
∂t

)
coll

=
1
V

∑
kk′

{
Wk′;k,q,λf(k

′)[1 − f(k)][1 + gλ(q)]

−Wk,q,λ;k′f(k)gλ(q)[1 − f(k′)]
}
.

(24.2.33)

To quantify the role of electron–phonon scattering, the coupled system
of equations for the electron and phonon distribution functions needs to be
solved. In thermal equilibrium the contributions of inscattering and outscat-
tering processes cancel out, because when energy conservation is taken into
account, εk+q = εk + �ωλ(q) implies

f0(εk+q)[1−f0(εk)][1+g0(ωλ(q))] = f0(εk)g0(ωλ(q))[1−f0(εk+q)] , (24.2.34)

and similarly, εk+q + �ωλ(−q) = εk implies

f0(εk+q)g0(ωλ(−q))[1 − f0(εk)] = f0(εk)[1 − f0(εk+q)][1 + g0(ωλ(−q))] .
(24.2.35)

This is the principle of detailed balance for individual processes. The colli-
sion integral vanishes unless an external perturbation drives the system out
of thermal equilibrium. If the departure from equilibrium is small, and the
occupation of electron states is expected to change only around the Fermi
energy, the nonequilibrium distribution functions can be written as

f(k) = f0(k) − kBT ∂f0(k)
∂εk

χ(k) ,

gλ(q) = g0λ(q) − kBT

�

∂g0(q)
∂ωλ(q)

φλ(q) .
(24.2.36)

Writing out explicitly the derivative of the equilibrium distribution function,

f(k) = f0(k) + f0(k)(1 − f0(k))χ(k) ,

gλ(q) = g0λ(q) + g0λ(q)[1 + g0λ(q)]φλ(q) .
(24.2.37)



370 24 Transport Phenomena

By linearizing the collision integral in the small dimensionless quantities
χ and φ, and making use of the property that the equilibrium phonon distri-
bution function is even in q, we find(

∂f

∂t

)
coll

= −
∑
qλ

Ik,q,λf0(k)[1 − f0(k + q)]g0λ(q)

× {χ(k) − χ(k + q) + φλ(q)
}
δ(εk + �ωλ(q) − εk+q)

−
∑
qλ

Ik,q,λf0(k)[1 − f0(k + q)][1 + g0λ(q)] (24.2.38)

× {χ(k) − χ(k + q) − φλ(−q)
}
δ(εk − �ωλ(q) − εk+q) ,

and (
∂gλ
∂t

)
coll

= −
∑
qλ

Ik,q,λf0(k)[1 − f0(k + q)]g0λ(q) (24.2.39)

× {χ(k) − χ(k + q) + φλ(q)
}
δ(εk + �ωλ(q) − εk+q) .

The system of equations is quite complicated even after this linearization.
Instead of solving it, we usually study either the electron or phonon distribu-
tion function, and assume that the other subsystem is in thermal equilibrium.

24.3 Relaxation-Time Approximation

In the previous section we saw that the difficulty in solving the Boltzmann
equation is rooted in the fact that the distribution function to be determined
appears in the integrand of the collision term as well. Before turning to the
general treatment of transport phenomena based on the Boltzmann equation,
we shall first examine under what conditions the collision term can be inter-
preted in terms of a relaxation time, and where this treatment leads to. We
shall then compare the results with those derived in the Drude and Sommer-
feld models, where the finite relaxation time was assumed to be the same for
each electron.

24.3.1 Relaxation Time

To introduce the relaxation time, we shall start with the impurity scattering
formula (24.2.24). The collision term vanishes in thermal equilibrium, since
the inscattering and outscattering processes compensate each other, that is,

Wkk′f0(k)
[
1 − f0(k′)

]
=Wk′kf0(k

′) [1 − f0(k)] . (24.3.1)

This requirement, which formulates the condition of detailed balance for these
processes, is customarily written as
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Wkk′ exp[−εk/kBT ] =Wk′k exp[−εk′/kBT ] , (24.3.2)

too. Naturally, Wkk′ =Wk′k for elastic scattering. Then(
∂f

∂t

)
coll

=
∫

dk′

(2π)3
Wkk′f0(k)

[
1 − f0(k′)

]
×
[
f(k′) [1 − f(k)]
f0(k′) [1 − f0(k)]

− f(k)
[
1 − f(k′)

]
f0(k)

[
1 − f0(k′)

]] . (24.3.3)

Assuming that the departure f1 ≡ f − f0 from equilibrium is small,

f(k′) [1 − f(k)]
f0(k′) [1 − f0(k)]

− f(k)
[
1 − f(k′)

]
f0(k)

[
1 − f0(k′)

]
=

f1(k′)
f0(k′)

[
1 − f0(k′)

] − f1(k)
f0(k) [1 − f0(k)]

.

(24.3.4)

Making use of the formula

f0(k) [1 − f0(k)] = −kBT ∂f0
∂εk

(24.3.5)

for the Fermi function, and rewriting f1 in the previously used form

f1(k) = −kBT ∂f0
∂εk

χ(k) , (24.3.6)

we have(
∂f

∂t

)
coll

=
∫

dk′

(2π)3
Wkk′f0(k)

[
1 − f0(k′)

] [
χ(k′) − χ(k)

]
. (24.3.7)

For elastic scattering, where εk = εk′ ,(
∂f

∂t

)
coll

= −kBT ∂f0
∂εk

∫
dk′

(2π)3
Wkk′

[
χ(k′) − χ(k)

]
= kBT

∂f0
∂εk

χ(k)
∫

dk′

(2π)3
Wkk′

[
1 − χ(k′)

χ(k)

]
= −(f(k) − f0(k))

∫
dk′

(2π)3
Wkk′

[
1 − χ(k′)

χ(k)

]
.

(24.3.8)

The distribution function in a selected point r,k of the phase space usually
depends on its value in other points; it is precisely for this reason that the
collision term contains the integral of the distribution function. For elastic
scattering, the collision integral could be cast in a simple form in which the
departure from the equilibrium distribution is multiplied by a k-dependent
factor. To understand the physical meaning of the proportionality factor we
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shall determine the variation of the number of particles due to collisions by
another method.

Let τ(r,k) be the mean time between collisions for a particle in the vicinity
of point r,k of the phase space; in other words, let 1/τ(r,k) be the probability
for the same particle to be scattered in unit time. Out of the dNe particles in
volume dr dk/4π3 of the phase space

dt
τ(r,k)

dNe =
dt

τ(r,k)
f(r,k, t)

dr dk

4π3
(24.3.9)

are then scattered in time dt. These outscattering processes modify the dis-
tribution function by

df(r,k, t)out = − dt
τ(r,k)

f(r,k, t) . (24.3.10)

The analogous results for inscattering are just as straightforward to derive,
only the two previously discussed fundamental conditions are required. The
first condition is very natural: the collisions should not modify the distribution
function in thermal equilibrium. The second is much less intuitive. It requires
that the distribution after collisions should be independent of the state be-
fore the collisions – in other words, the collisions should erase the memory of
the system. This implies that the strength of inscattering is independent of
the instantaneous state of the local environment in phase space – that is, its
departure from equilibrium is immaterial. Since inscattering and outscatter-
ing compensate each other in thermal equilibrium, we shall assume that the
distribution function changes by

df(r,k, t)in =
dt

τ(r,k)
f0(r,k) . (24.3.11)

The total change due to collisions is then(
∂f(r,k, t)

∂t

)
coll

= − 1
τ(r,k)

[f(r,k, t) − f0(r,k)] . (24.3.12)

If collisions were the only processes, the system would relax toward equilibrium
with a characteristic time τ(r,k) called the relaxation time.

Comparing this general expression with (24.3.8) leads to the following
formula for the reciprocal of the relaxation time:

1
τ(k)

=
∫

dk′

(2π)3
Wkk′

[
1 − χ(k′)

χ(k)

]
. (24.3.13)

Attention should be paid to a subtlety that turns out to be crucial in our
later considerations: in the relaxation time (24.3.13), the transition probability
Wkk′ is not simply integrated over each process (as would be if the inverse
lifetime of a particle were to be calculated), but scattering processes are taken
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into account by a weight factor that depends on the wave vectors k and
k′. Therefore, the relaxation time τ is often called transport lifetime and
sometimes denoted by τtr in order to distinguish it from the ordinary lifetime
obtained from

1
τ(k)

=
∫

dk′

(2π)3
Wkk′ . (24.3.14)

Following the same steps, the collision term for phonons is often well ap-
proximated by expressing it in terms of the phonon relaxation time τph as(

∂gλ(q)
∂t

)
coll

= −gλ(q) − g0λ(q)
τph(q)

. (24.3.15)

The introduction of the relaxation time was based on the assumption of
elastic scattering. It can be demonstrated that the relaxation-time approxi-
mation can also be used for quasielastic scattering, where the energy transfer
is smaller than the thermal energy kBT ; otherwise the whole integral has to
be considered. Looking back at (24.3.13), it should be noted that, through χ,
the relaxation time also depends on the nonequilibrium distribution, and so
it is not just a characteristic parameter of scattering. This observation also
indicates the limitations of the relaxation-time approximation, even for elastic
scattering.

24.3.2 Distribution Function in the Relaxation-Time
Approximation

The most straightforward method to determine the distribution function is the
direct integration of the Boltzmann equation. If no magnetic field is present
and the driving forces are uniform – i.e., T is not constant in space but ∇T is
–, this can be carried out without difficulty. When the collision term is written
in the relaxation-time approximation, and the other terms on the right-hand
side of the Boltzmann equation (24.2.21) are neglected – since, according to
our assumptions, B = 0, and the distribution function is spatially uniform –,
the solution of the equation

−
(
−∂f0
∂εk

)
vk ·

[
−e
(

E +
∇μ
e

)
− εk − μ

T
∇T

]
= −f(k) − f0(k)

τ(εk)
(24.3.16)

is

f(k) = f0(k)+
(
−∂f0
∂εk

)
τ(εk)vk·

[
−e
(

E +
∇μ
e

)
− εk − μ

T
∇T

]
. (24.3.17)

Thus (16.3.27), which was derived using much simpler considerations, is re-
covered. This straightforward approach can no longer be used in the presence
of a magnetic field. By applying Chambers’ method,2 intuitive formulas are
obtained that can be used in a wide range of applications.
2 R. G. Chambers, 1963.
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Consider the phase-space volume element dr dk around a point r,k at
time t, and determine the electron trajectories r(t′),k(t′) for anterior times
t′ < t by integrating the equation of motion backward in time from r(t),k(t).
These trajectories are shown in Fig. 24.3.

Fig. 24.3. Semiclassical trajectories of electrons running into a small neighborhood
of a selected point of the phase space at time t

If there were no collisions, each electron that traverses one of these semi-
classical trajectories would be in the selected region at time t. However, elec-
trons trace out these trajectories only in the intervals between collisions. Some
of the electrons are kicked off from them upon scattering, while others emerge
on them after a collision. Eventually, those electrons reach the neighborhood
of point r,k at time t that were scattered onto one of the trajectories at time
t′ < t and did not undergo subsequent scattering before t.

The number of electrons that emerge on these trajectories after a collision
during the time interval dt′ around t′ is given by

dt′

τ(r(t′),k(t′))
f0(r(t′),k(t′))

dr′ dk′

4π3
(24.3.18)

in the relaxation-time approximation. According to Liouville’s theorem,
dr′ dk′ = dr dk, thus the number of inscattered electrons is

dt′

τ(r(t′),k(t′))
f0(r(t′),k(t′))

dr dk

4π3
. (24.3.19)

Denoting the probability that the particle does not undergo any further scat-
tering by P (r,k, t, t′), the total number of electrons that arrive in the selected
phase-space volume element at time t is given by the integral

dN =

t∫
−∞

dt′

τ(r(t′),k(t′))
f0(r(t′),k(t′))P (r,k, t, t′)

dr dk

4π3
. (24.3.20)

Comparison with (24.2.1), the defining equation of the distribution function,
gives
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f(r,k, t) =

t∫
−∞

dt′
1

τ(r(t′),k(t′))
f0(r(t′),k(t′))P (r,k, t, t′) . (24.3.21)

For simplicity, we keep only the time arguments:

f(t) =

t∫
−∞

dt′
1
τ(t′)

f0(t′)P (t, t′) . (24.3.22)

Since the collision probability in time dt′ is dt′/τ , and that of collisionless
propagation is 1− dt′/τ , the probability P (t, t′) that no collision occurs from
t′ to t is

P (t, t′) = P (t, t′ + dt′)
[
1 − dt′

τ(t′)

]
, (24.3.23)

and hence
∂

∂t′
P (t, t′) =

P (t, t′)
τ(t′)

. (24.3.24)

The solution that satisfies the initial condition P (t, t) = 1 is

P (t, t′) = exp
(
−

t∫
t′

dt′′

τ(t′′)

)
. (24.3.25)

Instead of using the explicit form of P (t, t′) in (24.3.22), it is more conve-
nient to substitute (24.3.24) and perform an integration by parts. Since the
probability that a particle never underwent collisions is zero [P (t,−∞) = 0],
we have

f(t) =

t∫
−∞

dt′f0(t′)
∂

∂t′
P (t, t′) = f0(t) −

t∫
−∞

dt′P (t, t′)
d
dt′
f0(t′) . (24.3.26)

As the t′-dependence appears through the arguments r(t′) and k(t′), the rules
of implicit differentiation give

df0(t′)
dt′

=
∂f0(t′)
∂εk

∂εk
∂k

· dk

dt′
+
∂f0(t′)
∂T

∂T

∂r
· dr

dt′
+
∂f0(t′)
∂μ

∂μ

∂r
· dr

dt′
. (24.3.27)

Since f0 depends on the combination [εk − μ(r)]/T (r), its derivatives can be
expressed in terms of the derivatives with respect to the energy. Making use
of the semiclassical equation of motion, we find

f(t) = f0(t)+

t∫
−∞

dt′P (t, t′)
(
−∂f0
∂εk

)
(24.3.28)

×vk(t′) ·
[
−eE(r(t′)) − ∇μ(r(t′)) − εk − μ

T
∇T (r(t′))

]
.
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This is the general form of the distribution function in the relaxation-time
approximation. The magnetic field does not appear explicitly, but it does im-
plicitly, since it has strong influence on the semiclassical electron trajectories.

If the electric field and the temperature gradient are weak, and linear
effects are considered, P (t, t′), which depends on the collisions, can often be
approximated by the formulas obtained for E = 0 and ∇T = 0. In a uniform
field nothing depends explicitly on r(t′), only implicitly, through k(t′). It is
customary to assume that the relaxation time depends on k only through εk.
Since εk is constant in a uniform magnetic field, the integral in P (t, t′) can be
evaluated:

P (t, t′) = e−(t−t′)/τ(εk) , (24.3.29)

and

f(t) = f0(t) +

t∫
−∞

dt′e−(t−t′)/τ(εk)

(
−∂f0
∂εk

)

× vk(t′) ·
[
−e
(

E +
∇μ
e

)
− εk − μ

T
∇T

]
.

(24.3.30)

In terms of the quantity

wk(t) =
1

τ(εk)

t∫
−∞

dt′e−(t−t′)/τ(εk)vk(t′) , (24.3.31)

the distribution function can be written as

f(t) = f0(t) +
(
−∂f0
∂εk

)
τ(εk)wk(t) ·

[
−e
(

E +
∇μ
e

)
− εk − μ

T
∇T

]
.

(24.3.32)
When no external magnetic field is present, and the driving forces are

uniform, the drift velocity is constant in time and, according to (24.3.31),
wk = vk. The stationary distribution function is therefore

f(k) = f0(k)+
(
−∂f0
∂εk

)
τ(εk)vk·

[
−e
(

E +
∇μ
e

)
− εk − μ

T
∇T

]
. (24.3.33)

Note that this is the same as (24.3.17), which was obtained for the same
situation. In the presence of a magnetic field, where the velocity changes on
account of moving in a circular orbit, the relationship between the results of
the two approaches is less conspicuous. Depending on the character of the
particular situation, we shall use either form below.

24.3.3 DC Conductivity

According to the foregoing, in the absence of a magnetic field and a temper-
ature gradient, when E is constant, the distribution function is given by
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f(k) = f0(k) − e (E · vk) τ(εk)
(
−∂f0
∂εk

)
. (24.3.34)

This is the same as our previous result (16.3.17) obtained by assuming that
the stationary distribution function can be derived from the Fermi function
by shifting the energy in its argument by eτE/�, the energy gained from
the electric field. As (24.3.34) shows, the approach based on the Boltzmann
equation asserts that the same formula is applicable to Bloch electrons, too.

Writing the current density carried by electrons in its customary form, and
noting that the current vanishes in thermal equilibrium,

j = −e 1
V

∑
k,σ

vk

[
f(k) − f0(k)

]
= −e

∫
dk

4π3
vk

[
f(k) − f0(k)

]
. (24.3.35)

By separating the part of the distribution function that is proportional to the
electric field, the conductivity tensor is found to be

σ = e2
∫

dk

4π3
vk ◦ vkτ(εk)

(
−∂f0
∂εk

)
, (24.3.36)

where vk ◦ vk denotes the diadic product of the two vectors. This tensor
exhibits the symmetries of the crystal lattice. In cubic crystals σαβ = δαβσ,
and thus the conductivity can be specified by a scalar. For lower symmetries,
j and E are not necessarily parallel, and, depending on the symmetry, off-
diagonal tensor elements may also appear.

Because of the derivative of the Fermi function only those electrons con-
tribute that are close to εF, within a region of width kBT . When the con-
ductivity at T = 0 is considered, the factor τ(εF) can be taken outside the
integral. Making use of

vk

(
−∂f0
∂εk

)
= −1

�

∂f0(εk)
∂k

, (24.3.37)

the formula for the conductivity is

σ = −1
�
e2τ(εF)

∫
dk

4π3
vk ◦ ∂f0(εk)

∂k
. (24.3.38)

Integrating by parts, and assuming that the dispersion relation can be speci-
fied in terms of a scalar effective mass, at zero temperature we have

σ0 = e2τ(εF)
∫

dk

4π3

1
�

∂vk

∂k
f0(εk) = e2τ(εF)

∫
occupied

dk

4π3

1
m∗

k

. (24.3.39)

If the effective mass is independent of k, the Drude formula

σ0 =
nee

2τ

m∗ (24.3.40)
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is recovered, with the sole difference that the electron mass is replaced by
the effective mass. A perfectly intuitive meaning can be given to ne: it is the
number (density) of electrons in the partially filled conduction band, while τ
is the transport relaxation time of electrons on the Fermi surface.

If the integral in the conductivity is performed over the entire Brillouin
zone rather than the occupied states, it vanishes, as completely filled bands do
not contribute to the current. Therefore, a negative sign aside, the integration
could be done over the empty states as well, leading to

σ0 = e2τ(εF)
∫

empty

dk

4π3

(
− 1
m∗

k

)
. (24.3.41)

Since the electron and hole masses are defined to be opposite in sign, the same
form is obtained for the current and conductivity as above, provided the latter
is expressed in terms of the effective hole mass m∗

h:

σ0 =
nhe

2τ

m∗
h
, (24.3.42)

where nh is the number of holes per unit volume.

24.3.4 AC and Optical Conductivity

To determine the AC conductivity, we start with the distribution function
formula (24.3.30) obtained using Chambers’ method. In an electric field
E(t) = E(ω)e−iωt of frequency ω, the integral over the semiclassical trajectory
of electrons can be evaluated:

f(k, t) = f0(k) +

t∫
−∞

dt′e−(t−t′)/τ(εk)

(
−∂f0
∂εk

)
(−e)vk(t′) · E(ω)e−iωt′

= f0(k) − e−iωt

t∫
−∞

dt′e−(t−t′)[1/τ(εk)−iω]

(
−∂f0
∂εk

)
evk(t′) · E(ω)

= f0(k) − e−iωt 1
1/τ(εk) − iω

(
−∂f0
∂εk

)
evk · E(ω) . (24.3.43)

Expressing the current density through this formula, the frequency-dependent
(AC) conductivity is

σαβ(ω) = e2
∫

dk

4π3
vα

kv
β
k

1
1/τ(εk) − iω

(
−∂f0
∂εk

)
. (24.3.44)

If the relaxation time is independent of the energy, and the system is isotropic
or exhibits cubic symmetry, we have
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σ(ω) =
σ0

1 − iωτ
, (24.3.45)

just like in the Drude model, where

σ0 = e2
∫

dk

4π3
1
3v

2
kτ

(
−∂f0
∂εk

)
. (24.3.46)

This means that when the periodic potential of the lattice is taken into ac-
count, then the same results are obtained for the optical properties of metals
and the role of the plasma frequency in the relaxation-time approximation as
in the classical model of free electrons.

When σ0 is written in the Drude form, the mass that appears in the
denominator is neither the electron mass nor the dynamical effective mass of
Bloch electrons but a new parameter called the optical mass:

σ0 = nee
2τ/mopt , (24.3.47)

where the inverse of the optical mass is given by

m−1
opt =

1
3ne

∫
dk

4π3
v2k

(
−∂f0
∂εk

)
. (24.3.48)

Following the same steps as for the density of states, we now decompose
the k-space integral into integrals over the constant-energy surfaces and the
component of k that is perpendicular to them,∫

dk =
∫

dε
∫

dS
�vk

, (24.3.49)

which gives

m−1
opt =

1
12π3�ne

∫
S(εF)

vk dS , (24.3.50)

where the integral is over the Fermi surface. For free electrons me is recovered,
but in general mopt is different from the dynamical effective mass.

24.3.5 General Form of Transport Coefficients

In the foregoing the distribution function was determined in two different
ways for uniform driving forces and zero magnetic field. It was also mentioned
that the results given in (24.3.17) and (24.3.33) are formally identical to the
free-electron formula (16.3.27). The only differences are that εk is now taken
from band-structure calculations (instead of the simple isotropic and quadratic
dispersion relation for free electrons), and the electron velocity is the group
velocity derived from the dispersion relation. Moreover, the relaxation time
may depend on εk.
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Using this distribution function in the formulas for the electric and heat
currents, the kinetic coefficients defined by the relations

j = L11

(
E +

∇μ
e

)
+ L12

(
−∇T
T

)
,

jQ = L21

(
E +

∇μ
e

)
+ L22

(
−∇T
T

) (24.3.51)

are tensor quantities that exhibit the symmetries of the crystal itself:

Lαβ
11 = e2

∫
dk

4π3

(
−∂f0
∂εk

)
τ(εk)vα(k)vβ(k) ,

Lαβ
12 = Lαβ

21 = −e
∫

dk

4π3

(
−∂f0
∂εk

)
τ(εk)vα(k)vβ(k)(εk − μ) ,

Lαβ
22 =

∫
dk

4π3

(
−∂f0
∂εk

)
τ(εk)vα(k)vβ(k)(εk − μ)2 .

(24.3.52)

The k-space integral can be decomposed into an integral over the constant-
energy surface and an energy integral. By introducing

σαβ(ε) =
e2τ(ε)
4π3

∫
εk=ε

dS
|∇εk|vα(k)vβ(k) , (24.3.53)

the kinetic coefficients can be written as

Lαβ
11 =

∫
dε
(
−∂f0
∂εk

)
σαβ(ε) ,

Lαβ
12 = Lαβ

21 = −1
e

∫
dε
(
−∂f0
∂εk

)
(ε− μ)σαβ(ε) ,

Lαβ
22 =

1
e2

∫
dε
(
−∂f0
∂εk

)
(ε− μ)2σαβ(ε) .

(24.3.54)

Assuming that close to the Fermi surface σαβ(ε) varies slowly, the Sommerfeld
expansion can be applied. Keeping only the leading term, the value of σαβ(ε)
at the Fermi energy gives directly the conductivity tensor.

Applying the Sommerfeld expansion to L22, too, we have

Lαβ
22 =

π2

3e2
(kBT )2σαβ(εF) . (24.3.55)

Since the leading term of the thermal conductivity is λ = L22/T , the
Wiedemann–Franz law, which was derived for free electrons in Section 16.1.3,
applies also to Bloch electrons in the semiclassical approximation.
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24.3.6 Hall Effect

If the effect of the magnetic field on electrons were taken into account in
(24.3.34) by replacing E by E + vk × B, as in the Lorentz force, nothing
would change, since this combination is multiplied by vk. However, it is well
known from classical physics that crossed electric and magnetic fields give rise
to the Hall effect. To derive it in our present framework, we must either solve
the Boltzmann equation more accurately, or start with Chambers’ formula of
the distribution function, exploiting that electrons in a magnetic field move
in cyclotron orbits semiclassically. We shall see both approaches below.

We start with the Boltzmann equation (24.2.21), and apply it to the case
of crossed uniform electric and magnetic fields. If the collision term is treated
in the relaxation-time approximation, we have

eE · vk

(
−∂f0
∂εk

)
= −f1

τ
+
e

�
(vk × B) · ∂f1

∂k
. (24.3.56)

The solution can be sought in the form

f1 ≡ f − f0 = −e
(
−∂f0
∂εk

)
τvk · A , (24.3.57)

where A is yet to be determined. Then, following the steps of Section 24.3.3,
the particularly simple relation

j = σ0A (24.3.58)

is obtained in the isotropic case, where σ0 is the usual Drude conductivity.
Substituting (24.3.57) into the right-hand side of (24.3.56), the derivative

of f1 with respect to k can be calculated using the relation vk = �k/m∗,
which is valid in the effective-mass approximation. We then have

eE ·vk

(
−∂f0
∂εk

)
= e

(
−∂f0
∂εk

)
vk ·A− e

2τ

m∗

(
−∂f0
∂εk

)
(vk × B) ·A , (24.3.59)

which implies
E · vk = vk · A − eτ

m∗ (vk × B) · A . (24.3.60)

By rearranging the scalar triple product in the second term of the right-hand
side, it is readily seen that the equation can be satisfied for any vk only when

E = A − eτ

m∗ (B × A) . (24.3.61)

Whatever the relative orientation of the electric and magnetic fields, this
equation can be solved. The components of E, A, and j that are parallel
to the magnetic field satisfy

E‖ = A‖ , (24.3.62)
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and thus
j‖ = σ0E‖ . (24.3.63)

The magnetic field does not affect the parallel component of the current.
The resistivity is the same as in the absence of the magnetic field. There is
no longitudinal magnetoresistance in isotropic metals with a spherical Fermi
surface.

As for the components that are perpendicular to the magnetic field: ac-
cording to (24.3.61), A⊥ is also perpendicular to the magnetic field, and is
thus in the plane spanned by the vectors E⊥ and B × E⊥. By seeking it in
the form A⊥ = aE⊥ + b(B × E⊥), and substituting that into (24.3.61), it
follows immediately that

A⊥ =
E⊥ +

eτ

m∗B × E⊥

1 +
( eτ
m∗
)2

B2
. (24.3.64)

Substituting this into (24.3.58),

j⊥ = σ0

E⊥ +
eτ

m∗B × E⊥

1 +
( eτ
m∗
)2

B2
(24.3.65)

is obtained. Thus in crossed electric and magnetic fields the current flow is
not parallel to the electric field: a component that is perpendicular to both
the electric and magnetic fields is also present.

This can be cast in another form by eliminating A from (24.3.61):

E =
1
σ0

j − eτ

m∗B × 1
σ0

j = �0j − eτ

m∗ �0B × j . (24.3.66)

When the applied magnetic field is perpendicular to the current, the electric
field acquires a new component that is perpendicular both to the current and
the magnetic field:

EH = − eτ
m∗ �0Bj . (24.3.67)

Choosing the z-axis along the magnetic, and the y-axis along the electric field,
the Hall coefficient is defined by

RH =
Ey

jxB
=
�yx(B)
B

. (24.3.68)

Note that for nonspherical Fermi surfaces �yx(B = 0) can be finite. The proper
definition of the Hall coefficient is then

RH =
1

2B
[
�yx(B) − �yx(−B)

]
. (24.3.69)
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In our case the Hall coefficient is

RH = − eτ
m∗ �0 = − eτ

m∗
m∗

nee2τ
= − 1

nee
. (24.3.70)

The calculation is similar for hole conduction. In line with our previous
observation that holes behave as positively charged particles,

RH =
1
nhe

(24.3.71)

is obtained for the Hall coefficient. This explains why the Hall coefficient
measured in experiments is not always negative – even though the Sommerfeld
model would imply that.

24.3.7 Alternative Treatment of Transport in Magnetic Fields

In the previous subsection we examined how an applied magnetic field af-
fected transport properties for systems with a spherical Fermi surface. In the
more general case the transport coefficients can be determined using Cham-
bers’ method. Before turning to this discussion, we shall demonstrate how the
previously derived results can be recovered in Chambers’ approach.

According to (24.3.32), when both electric and magnetic fields are present,
and the temperature is uniform (thus ∇μ = 0), we have

f(t) = f0(t) − e
(
−∂f0
∂εk

)
τ(εk)wk(t) · E , (24.3.72)

where wk(t) can be calculated from the velocity of electrons by integrating
over the trajectory:

wk(t) =
1

τ(εk)

t∫
−∞

dt′e−(t−t′)/τ(εk)vk(t′) . (24.3.73)

When the Fermi surface is spherical, and a z-directed magnetic field is
applied, the electron moves in a helical path, and its projection on the xy-
plane is a circular motion of angular frequency ωc. If the velocity is given by
vx

k = vk⊥ cosφ, vy
k = vk⊥ sinφ, vz

k = vk‖ at t = 0, then at an arbitrary time t
it is

vk(t) =
[
vk⊥ cos(ωct+ φ), vk⊥ sin(ωct+ φ), vk‖

]
(24.3.74)

=
[
vx

k cosωct− vy
k sinωct, v

x
k sinωct+ v

y
k cosωct, vk‖

]
.

Substituting this back into the above formula for wk, and making use of
the relations
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1
τ

0∫
−∞

dt′ et′/τ

{
cosωct

′

sinωct
′

}
=

1
1 + (ωcτ)2

{
1

−ωcτ

}
, (24.3.75)

we have

wk =
{

vx
k

1 + (ωcτ)2
+

vy
kωcτ

1 + (ωcτ)2
,

vy
k

1 + (ωcτ)2
− vx

kωcτ

1 + (ωcτ)2
, vk‖(k)

}
.

(24.3.76)
Using this formula in the distribution function to determine the current, the
conductivity tensor is

σαβ(B) = σ0

⎛⎜⎜⎜⎜⎜⎝
1

1 + (ωcτ)2
−ωcτ

1 + (ωcτ)2
0

ωcτ

1 + (ωcτ)2
1

1 + (ωcτ)2
0

0 0 1

⎞⎟⎟⎟⎟⎟⎠ , (24.3.77)

where σ0 = nee
2τ/m∗. By inverting it,

�αβ(B) = �0

⎛⎜⎜⎝
1 ωcτ 0

−ωcτ 1 0

0 0 1

⎞⎟⎟⎠ . (24.3.78)

is obtained for the resistivity tensor. The off-diagonal elements give the Hall
coefficient, and the previous result is duly recovered. The diagonal terms are,
on the other hand, independent of the magnetic field. This means that the
current along the electric field is the same whether or not a magnetic field is
present.

24.3.8 Magnetoresistance

The previous results are valid only for spherical Fermi surfaces. For nonspheri-
cal Fermi surfaces the conductivity can substantially change on the application
of a magnetic field, since electrons no longer traverse circular orbits in k-space
– and, consequently, in real space, either. In many cases their orbits are not
even closed.

When the inverse of the conductivity tensor, the resistivity tensor

�αβ(B) =
[
σ−1(B)

]
αβ

(24.3.79)

is examined in the presence of a z-directed magnetic field, �xx(B) and �yy(B)
specify the transverse, and �zz(B) the longitudinal magnetoresistance.

Suppose that electrons move in a closed orbit in a section of a nonspherical
Fermi surface. To obtain generally valid results in strong fields, symmetry
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considerations need to be applied. When the field is so strong that the period
of the cyclotron orbit is much shorter than the mean time between collisions,
the exponential factor in the integral for wk varies little over a period Tc, and
so

wk ∝
Tc∫
0

dtvk(t) . (24.3.80)

The integral over the closed orbit vanishes for the velocity components per-
pendicular to the magnetic field; only the integral of the field-directed z com-
ponent survives. Thus in the B → ∞ limit σzz is the single nonvanishing
component of the conductivity tensor.

In large but finite magnetic fields the magnetic-field-dependent corrections
can be expanded into a power series of 1/B,

σαβ(B) = Aαβ +
1
B
Bαβ +

1
B2
Cαβ + . . . . (24.3.81)

Because of the Onsager relation, the condition

σαβ(B) = σβα(−B) (24.3.82)

must be satisfied. Applying it to the series above, we have

Aαβ +
1
B
Bαβ +

1
B2
Cαβ + · · · = Aβα − 1

B
Bβα +

1
B2
Cβα + . . . . (24.3.83)

Comparison of the terms of the same order shows that each diagonal ele-
ment must be either a constant or proportional to 1/B2. If the Fermi surface
is closed, then, according to our previous considerations, only the zz compo-
nent can be a constant. On the other hand, the off-diagonal elements can be
of order 1/B or smaller. Therefore,

σαβ(B) =

⎛⎜⎜⎜⎜⎜⎜⎝

Cxx

B2

Bxy

B

Bxz

B

−Bxy

B

Cyy

B2

Byz

B

−Bxz

B
−Byz

B
Azz

⎞⎟⎟⎟⎟⎟⎟⎠ . (24.3.84)

By inverting this matrix,

�xx ∼ CyyAzz +B2
yz

AzzB2
xy

(24.3.85)

in leading order. A similar expression holds for �yy. They show that the trans-
verse magnetoresistance tends to a finite value.

The situation is radically different when the electrons move in open tra-
jectories. If the k-space orbit does not close in the ky-direction, then the x
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component of the velocity does not average out to zero in the high-field limit,
and only those components of σαβ(B) vanish in this limit for which either α
or β is equal to y. Thus we have

σαβ(B) =

⎛⎜⎜⎜⎜⎜⎜⎝
Axx

Bxy

B
Axz

−Bxy

B

Cyy

B2

Byz

B

−Axz −Byz

B
Azz

⎞⎟⎟⎟⎟⎟⎟⎠ . (24.3.86)

Once again, �xx becomes saturated – but �yy does not: �yy ∼ B2.
By rotating the sample relative to the magnetic field direction, and mea-

suring the variation of the resistivity, one can infer the directions along which
the electron orbits are closed and open. This provides information about the
topology of the cross sections of the Fermi surface. Figure 24.4(a) shows the
angular dependence of the resistivity of β-(BEDT-TTF)2I3 when the mag-
netic field direction is rotated in the plane perpendicular to a plane of high
conductivity. Part (b) shows the calculated angular dependence of ρzz for the
highly anisotropic Fermi surface illustrated in the top left part.

(a) (b)

Fig. 24.4. (a) Variations of the magnetoresistance of the quasi-two-dimensional
β-(BEDT-TTF)2I3 as the magnetic field is rotated in a plane perpendicular to the
conducting plane. (b) Electron orbits on the quasi-two-dimensional Fermi surface
in a magnetic field and the calculated angular dependence of the resistance �zz

[Reprinted with permission from N. Hanasaki et al., Phys. Rev. B 57, 1336 (1998).
©1998 by the American Physical Society]
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24.4 Transport Coefficients in Metals and
Semiconductors

In the previous sections we ignored the microscopic origin of scattering pro-
cesses, and studied transport phenomena in the relaxation-time approxima-
tion. We shall now examine how individual scattering processes – such as
scattering by impurities and crystal defects, interaction with lattice vibra-
tions (phonons), and electron–electron interactions – modify the transport
coefficients. We shall also discuss the applicability of the relaxation-time ap-
proximation.

Studying individual scattering processes separately is justified if they do
not interfere. Matthiessen’s rule3 is the formulation of the empirical observa-
tion that the resistivities due to different scattering processes – such as �imp,
due to impurity scattering, and �el–ph, due to the electron–phonon interaction
– add up:

� = �imp + �el–ph . (24.4.1)

For the relaxation times this implies reciprocal additivity:

1
τ

=
1
τimp

+
1

τel–ph
. (24.4.2)

Even though deviations from Matthiessen’s rule are not rare, assuming its
validity allows us to separate experimental results into the contributions of
individual scattering processes.

24.4.1 Scattering of Electrons by Impurities

Assuming that the sample contains a small number (ni) of randomly dis-
tributed immobile impurities, the quantum mechanical transition probability
from state k to state k′ is given by the Fermi golden rule:

Wkk′ =
2π
�
niδ(εk − εk′)

∣∣〈k′|U |k〉∣∣2 , (24.4.3)

where U is not simply the bare Coulomb potential of impurity ion: the screen-
ing effect of the other electrons are also incorporated in it. We shall discuss
this in more detail at the end of the section. The matrix element is calculated
between Bloch states:

〈k′|U |k〉 =
∫

drψ∗
nk′(r)U(r)ψnk(r) . (24.4.4)

Because of the random distribution of the impurities, the electrons scattered
incoherently by different impurities do not interfere. That is why the transition
probability is proportional to the number of scatterers.
3 A. Matthiessen, 1864.
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Since scattering by rigid impurities is elastic, the approach of Section 24.2.1
for the treatment of elastic scattering can be applied, and a relaxation time
can be introduced through (24.3.13). This expression is further simplified for
isotropic Fermi surfaces. Since the velocity vk is then parallel to k, it is natural
to assume that χ(k), the quantity characterizing the departure from equilib-
rium – which must be proportional to the electric field – can be written as

χ(k) = a(εk)k · E . (24.4.5)

Substituting this into the formula for the relaxation time, and making use of
the elastic character of the scattering, we have

1
τ(k)

=
∫

dk′

(2π)3
Wkk′

(
1 − E · k′

E · k
)
. (24.4.6)

Let us now separate k′ into components that are parallel and perpendicular
to k. As the two vectors are of the same length,

k′ = k′
⊥ + (k̂ · k̂′)k = k′

⊥ + cos θ k , (24.4.7)

where k̂ (k̂
′
) is the unit vector in the direction k (k′), and θ is the angle

between k and k′. Since only those scattering processes for which both k and
k′ are essentially on the Fermi surface give important contributions, Wkk′

depends only on θ, and is independent of the perpendicular component. The
part of (1 − E · k′/E · k) that contains k′

⊥ gives vanishing contribution after
integration over the azimuthal angle ϕ, and so the relaxation time is given by

1
τ(k)

=
∫

dk′

(2π)3
Wkk′(1 − cos θ) . (24.4.8)

As has already been mentioned, the relaxation time used for the calculation
of the electrical conductivity is not the same as the lifetime of an electron
of wave vector k obtained using simple quantum mechanical considerations,
which is

1
τ(k)

=
∫

dk′

(2π)3
Wkk′ . (24.4.9)

In this formula each process that scatters the electron of wave vector k into
another state is weighted by its proper transition probability. However, when
the resistivity – i.e., the decay of the current – is considered, other factors
have to be taken into account as well. Those processes in which the wave
vector changes little hardly reduce the current. The effect is the strongest
when the electron of wave vector k is scattered into the state −k, that is, in
backscattering. The factor 1 − cos θ in the transport relaxation time comes
precisely from the different weights of forward and backward scattering.

Since the relaxation time was found to be temperature independent, impu-
rity scattering gives a temperature-independent contribution to the resistivity.
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Figure 24.5 shows the low-temperature resistivity for two copper samples of
different degrees of purity. At very low temperatures all other scattering pro-
cesses are frozen out, and impurities cause a finite residual resistivity, which
depends sensitively on the purity of the sample. The ratio of this quantity to
the room-temperature resistivity can be used to characterize the purity of the
sample.

Fig. 24.5. Low-temperature resistivity in two copper samples of different purity
[Reprinted with permission from M. Khoshenevisan et al., Phys. Rev. B 19, 3873
(1979). ©1979 by the American Physical Society]

To evaluate the order of magnitude of this resistivity contribution, assump-
tions have to be made about the strength of the interaction. The simplest op-
tion is to assume that the impurity ion has a certain charge, and conduction
electrons are scattered by this long-range potential via the Coulomb interac-
tion. We shall see later that far from the impurity conduction electrons screen
the charge of the impurity ion, therefore instead of the long-range Coulomb
interaction electrons feel a short-range scattering potential. The results ob-
tained in this modified picture for the transport relaxation time and resistivity
due to impurities are in agreement with measurement data.

24.4.2 Contribution of Electron–Phonon Scattering to the
Resistivity

To determine the contribution of the electron–phonon interaction to the resis-
tivity, the transport equation needs to be solved simultaneously for the elec-
tron and phonon systems. In the equation for the electrons the form (24.2.38)
of the collision integral has to be used. By making the approximation that, for
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the purpose of determining the electron distribution, the system of phonons
is in thermal equilibrium (φλ(q) = 0), the collision term takes the form(

∂f

∂t

)
coll

= − 1
V

∑
qλ

Ik,q,λf0(k)
[
1 − f0(k + q)

][
χ(k) − χ(k + q)

]
×{g0λ(q)δ(εk + �ωλ(q) − εk+q) (24.4.10)

+ [1 + g0λ(q)]δ(εk − �ωλ(q) − εk+q)
}
.

Before deriving an approximately valid formula, we shall analyze two limiting
cases, in which the temperature dependence of the resistivity can be simply
determined from the number of phonons participating in the collisions and
the conservation of energy and momentum.

At temperature T , the electrons in the region of width kBT around the
Fermi energy can participate in collision. At temperatures higher than the
characteristic Debye temperature of the phonon spectrum the energy of the
phonons is smaller than the thermal energy, therefore the phonon-absorption
or -emission processes are quasielastic from the viewpoint of electrons. If the
phonon energy may be neglected in the energy-conservation delta function
then the two terms in the previous collision integral can be combined. The
arising formula is similar to the result obtained in the relaxation-time ap-
proximation, however, an additional factor 1 + 2g0λ(q) appears, indicating the
presence of phonons. As mentioned before, if it were not for this factor, the
relaxation time would be temperature independent. However, the occupation
function of phonons is proportional to the temperature in the T � ΘD region,

g0λ(q) =
1

exp(β�ωλ(q)) − 1
≈ kBT

�ωλ(q)
, (24.4.11)

and thus the inverse relaxation time and the resistivity are both proportional
to it, too:

� ∼ T , if T � ΘD . (24.4.12)

This result can be interpreted alternatively. The relaxation time contains a
certain average of the square of the matrix element of the electron–phonon
interaction. Since the matrix element is proportional to the displacement of the
ions, 1/τ contains the mean square displacement. It was shown in (12.3.12)
that at high temperatures 〈u2〉 ∼ T , so the resistivity increases in direct
proportion to the temperature.

The situation is more complicated at low temperatures. Even though scat-
tering is quasielastic, the number of electrons and phonons participating in
the scattering need to be estimated more accurately: in addition to energy
and momentum conservation, the wave-number dependence of the matrix el-
ement as well as the asymmetry between the contributions of forward- and
backward-scattering processes also have to be taken into account.
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Assuming that a single phonon is created or annihilated in the collision,

εk±q = εk ± �ωλ(q). (24.4.13)

If the conservation of energy were considered alone, upon the absorption
of a sufficiently energetic phonon an electron sitting relatively deep below
the Fermi energy could also be scattered to an empty state above the Fermi
level. In reality, however, only energy transfers of order kBT occur: only those
phonons are likely to participate in absorption for which �ωλ(q) ≤ kBT be-
cause only these phonons are excited thermally in sufficient numbers. This
implies that only acoustic phonons are relevant, and their wave numbers must
satisfy the condition q ≤ kBT/�cs.

The same bound applies to phonon emission. Once a thermally excited
electron has emitted a phonon and transferred a part of its energy to the
lattice, it has to occupy an initially empty state. Thus both the initial and
final states of the electron must be close to the Fermi energy, inside a region
that is a few times kBT wide. Hence the energy loss must be of the same order
of magnitude or smaller. This change in the energy is small compared to the
energy of the electrons, which is on the order of the Fermi energy, therefore
these processes may be called quasielastic.

Now consider the collision integral for wave vectors k that are close to the
Fermi surface. It follows from our previous considerations that substantial con-
tributions come only from those scattering processes for which k + q is inside
the sphere of radius kBT/�cs centered at k. Energy conservation imposes an-
other constraint, so the wave vectors of phonons participating in scattering lie
on a two-dimensional surface inside the sphere. Thus in the sum over the wave
vector q the phase-space restriction gives a factor that is proportional to T 2.

Another factor comes from the strength of the scattering. According to
(24.2.30), the transition probability Wk;k′,q,λ in the collision integral contains
the square of the matrix element of the electron–phonon interaction. As men-
tioned above, only acoustic phonons need to be taken into account at low tem-
peratures. For acoustic phonons the matrix element of the electron–phonon
interaction is proportional to √

q. According to the previous dimensional con-
sideration, the factor q coming from the square of the matrix element brings
in an additional factor of T .

Altogether, this would mean that the inverse relaxation time due to the
electron–phonon interaction is proportional to T 3 – which would lead to
� ∼ T 3 in the T  ΘD region. However, just like for impurity scattering, a
factor 1−χ(k′)/χ(k) appears in the collision integral for electron–phonon scat-
tering. At low temperatures, where electron–phonon scattering is quasielastic,
this factor can be rewritten as 1 − cos θ. Owing to this factor, forward and
small-angle scattering contribute much less to the effective collision rate than
large-angle and backward scattering. Since the electron has to be close to the
Fermi surface both in the initial and final states, and at low temperatures
the wavelength of phonons participating in these scattering processes is much
smaller than the Fermi wave number, small-angle scattering dominates, for
which



392 24 Transport Phenomena

1 − cos θ = 2 sin2(θ/2) ≈ 1
2

(
q/kF

)2
. (24.4.14)

This is illustrated in Fig. 24.6.

k

(

k' q

Fig. 24.6. Electron and phonon wave vectors in small-angle quasielastic scattering

According to our previous dimensional considerations, this q2 term gives
an additional factor T 2 to the collision integral, and thus

� ∼ T 5 . (24.4.15)

This T 5 dependence becomes modified if the Fermi surface approaches the
zone boundary, and thus umklapp scattering become important.

Calculations are very tedious in the region between the two limiting cases.
However, a good interpolation formula is offered by the partly empirical Bloch–
Grüneisen relation:4

�(T ) = K(T/ΘD)5J5(ΘD/T ), (24.4.16)

where K is a constant, which will not be specified here, and

J5(x) =

x∫
0

eξξ5 dξ
(eξ − 1)2

= 5

x∫
0

ξ4 dξ
eξ − 1

− x5

ex − 1
. (24.4.17)

This integral lends itself to simple evaluation in two limits:

J5(x) =

⎧⎪⎪⎨⎪⎪⎩
1
4
x4 − 1

72
x6 + . . . x 1 ,

5!
∞∑

k=1

1
k5

= 5!ζ(5) = 124.43 x� 1 .
(24.4.18)

At low temperatures (ΘD/T � 1), J5(ΘD/T ) is constant, so the resistivity
is proportional to the fifth power of the temperature. Likewise, at high tem-
peratures (ΘD/T  1), J5(θD/T ) is proportional to (1/T )4, so the resistivity
is proportional to the temperature. In both limits the previous results are
recovered, and the interpolation formula provides a good approximation for
the resistivity of simple metals in the intermediate region, too. This is shown
in Fig. 24.7.

At very low temperatures electron–electron scattering has to be taken
into account, too. It can be demonstrated that the requirements of energy
4 F. Bloch, 1930; E. Grüneisen, 1933.
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Fig. 24.7. The resistivity of some simple metals scaled by the resistivity at the
Debye temperature, as a function of T/ΘD. The solid line is the prediction of the
Bloch–Grüneisen formula [F. J. Blatt, Physics of Electronic Conduction in Solids,
McGraw-Hill Book Co., New York (1968)]

and momentum conservation can be satisfied simultaneously only by umklapp
processes. After some algebra, the resistivity is found to be proportional to
the square of the temperature:

�el–el ∼
(
kBT

εF

)2

. (24.4.19)

In alkali metals τel–ph and τel–el are comparable at a few kelvins (around 4K
for sodium), however a relatively low concentration of impurities gives rise to a
similar relaxation time. The contributions of individual processes are difficult
to separate.

The situation is different in transition metals. The electric current is dom-
inantly carried by s-electrons, nevertheless the interaction with d-electrons,
whose density of states is high, can give an important contribution to the
resistivity. In some transition metals (Mn, Fe, Co, Ni, Pd, Pt, W, and Nb)
the temperature dependence of the resistivity below 10K is fairly well ap-
proximated by a quadratic fit, as shown in Fig. 24.8. It should be noted that
other scattering processes can also lead to such a temperature dependence in
magnetic materials – but the majority of the materials listed above are not
magnetic.
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Fig. 24.8. Temperature dependence of resistivity for some transition metals (Pd,
Fe, Nb, Co, W, Ni) at temperatures below 20 K [G. K. White and S. B. Woods,
Philosophical Transactions of the Royal Society, 251 A, 273 (1959)]

24.4.3 Scattering by Magnetic Impurities and the Kondo Effect

The ubiquitous impurities in metals give a temperature-independent contri-
bution to the resistivity, the so-called residual resistivity (page 389). However,
strong temperature dependence was observed in several low-temperature ex-
periments: the resistivity attained a minimum at a few kelvins, and then
started to grow with decreasing temperature as log T , see Fig. 24.9.

Since measurements indicated the possibility that the effect might be due
to the presence of magnetic impurities, J. Kondo (1964) justified by theo-
retical calculations that scattering by such impurities indeed gives rise to an
increase in the resistivity with decreasing temperature. Earlier calculations
of impurity scattering were based on a spin-independent scattering potential.
However, when magnetic impurities (Mn, Cr, Fe, etc.) are introduced into a
nonmagnetic metal (Cu, Ag, Au, Al, etc.), spin-flip processes become possi-
ble: the spin of the scattered electron and the spin of the magnetic impurity
are flipped simultaneously, while the component of the total spin along the
quantization axis is conserved. This opens a new scattering channel. The in-
teraction of the impurity with conduction electrons is described in terms of
the so-called s–d interaction, in which the spin Si of the impurity located
at Ri – which is an internal degree of freedom of the impurity – interacts
with the local spin density of the conduction electrons. When electrons are
represented by field operators or by creation and annihilation operators of
free-electron states (as the periodic potential of the lattice is neglected in the
present calculation), the interaction Hamiltonian takes the form
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Fig. 24.9. Temperature dependence of resistivity in copper containing a small con-
centration of magnetic impurities (manganese and iron) [G. Grüner, Advances in
Physics 23, 941 (1974), and B. Knook, Thesis, Leiden (1962)]

Hs–d = −J
∑
iαβ

∫
ψ̂†

α(r)σαβψ̂β(r) · Siδ(r − Ri) dr

= − J
V

∑
i

∑
k,k′
αβ

ei(k−k′)·Ric†k′ασαβckβ · Si .
(24.4.20)

Since the flip of the impurity spin is accompanied by the flip of an electron
spin, separate equations have to be written down for the distribution function
of spin-up and spin-down electrons. The collision term for the former is(

∂f↑(k)
∂t

)
coll

=
∑
k′
Wk↑,k′↑

{
f↑(k′)[1 − f↑(k)] − f↑(k)[1 − f↑(k′)]

}
(24.4.21)

+
∑
k′
Wk↑,k′↓

{
f↓(k′)[1 − f↑(k)] − f↑(k)[1 − f↓(k′)]

}
.

The transition probability Wab between states a and b is given by the usual
quantum mechanical formula
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Wab =
2π
�

|〈a|Hs-d|b〉|2 δ(εa − εb) . (24.4.22)

For spin-conserving scattering, the matrix element is

〈k′ ↑ |Hs-d|k ↑〉 = − J
V
Sz . (24.4.23)

By determining the other matrix elements it is relatively straightforward to
show that the residual resistivity is temperature independent in this case,
too, just like for nonmagnetic impurities. Kondo’s important observation
was that, despite the weakness of the coupling, the Born approximation does
not provide a satisfactory treatment of the scattering: higher-order corrections
need to be taken into account as well.

A better approximation can be obtained for the transition probability by
replacing the matrix element of the interaction Hamiltonian by the matrix
element of the scattering matrix T in (24.4.22). When the eigenstates |a〉 and
energy eigenvalues εa of the unperturbed system are known, the transition
probability from |a〉 to |b〉 due to the interaction is

Wab =
2π
�

|〈a|T |b〉|2 δ(εa − εb) , (24.4.24)

where the matrix elements of T can be expressed in terms of those of the
interaction Hamiltonian Hint as

〈a|T |b〉 = 〈a|Hint|b〉 +
∑

c

〈a|Hint|c〉〈c|Hint|b〉
εa − εc + . . . . (24.4.25)

Up to the third order in the coupling constant,

Wab =
2π
�

{
〈a|Hs-d|b〉〈b|Hs-d|a〉 (24.4.26)

+
∑

c

[ 〈a|Hs-d|c〉〈c|Hs-d|b〉〈b|Hs-d|a〉
εa − εc + c.c.

]
+ . . .

}
δ(εa − εb).

First consider the scattering k ↑→ k′ ↑. As shown in Fig. 24.10, two pro-
cesses are possible in second order. One option is that the electron of quantum
numbers k↑ is first scattered into an intermediate state

|c〉 = |k′′σ〉 = c†k′′σ|FS〉 , (24.4.27)

and then, in a second event, the electron of quantum numbers k′′σ is scattered
to the final state k′ ↑.

The other option is that the first interaction leaves the electron of quantum
numbers k↑ in its initial state, and the impurity spin interacts with the Fermi
sea to create an electron–hole pair. The intermediate state thus contains the
electron k↑ as well as an electron–hole pair:
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Fig. 24.10. Second-order processes of the s–d interaction. Time flows from left to
right. The electron propagating backward in time corresponds to a hole

|c〉 = |k↑,k′ ↑,k′′σ〉 = c†k↑c
†
k′↑ck′′σ|FS〉 . (24.4.28)

The hole of quantum numbers k′′σ is filled by the hitherto unperturbed in-
coming electron k↑ in the second interaction, while the electron of the created
electron–hole pair survives in the final state. In the previous formulas only the
states of the electrons are indicated, those of the impurity spin are not. We
shall need to pay attention to this.

In order that these processes can take place, the state k′′σ has to be
initially empty in the first, and occupied in the second case. The second-order
correction to the T matrix is

T (2) =
∑
k′′σ

〈k↑ |Hs-d|k′′σ〉〈k′′σ|Hs-d|k′ ↑〉
εk − εk′′

(1 − f0(k′′)) (24.4.29)

+
∑
k′′σ

〈k↑ |Hs-d|k↑,k′ ↑,k′′σ〉〈k↑,k′ ↑,k′′σ|Hs-d|k′ ↑〉
εk − (εk + εk′ − εk′′)

f0(k′′) .

If the z component of the impurity spin is left unchanged by the scattering,
the combined contribution of the two channels is(

− J
V

)2∑
k′′

(Sz)2
(

1 − f0(k′′)
εk − εk′′

− f0(k′′)
εk′′ − εk′

)

=
(
− J
V

)2

(Sz)2
∑
k′′

1
εk − εk′′

.

(24.4.30)

The negative sign of the second term on the left-hand side is the consequence
of the Fermi–Dirac statistics. Assuming that the density of states is symmetric
about the Fermi energy, the integral vanishes for the electrons on the Fermi
surface, and is negligible in its vicinity. The contribution of scattering by a
rigid, nonrotating spin – just like that of potential scattering – is of no interest.

On the other hand, if the spin is flipped in the intermediate state, then
an electron of quantum numbers k′′ ↓ appears in the first process, and the
impurity spin goes over from the initial state Sz = M to Sz = M + 1. The
contribution of this process is(

− J
V

)2∑
k′′

[S(S + 1) −M(M + 1)]
1 − f0(k′′)
εk − εk′′

. (24.4.31)
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In the other channel, where the electron–hole pair is composed of a spin-up
electron and a spin-down hole, the impurity spin has to flip down, to the state
Sz = M − 1. The contribution of this process is therefore

−
(
− J
V

)2∑
k′′

[S(S + 1) −M(M − 1)]
f0(k′′)

εk − (εk + εk′ − εk′′)
. (24.4.32)

Since εk = εk′ on account of the conservation of energy, the combined contri-
bution is(

− J
V

)2∑
k′′

{[
S(S + 1) −M2

] 1
εk − εk′′

−M 1 − 2f0(k′′)
εk − εk′′

}
. (24.4.33)

The first term is negligible once again, however, the second term is no longer
small: it even diverges logarithmically when εk → εF and T → 0.

Using this form for the second-order correction to the T matrix in J , the
transition probability can be determined up to third order in J . By summing
over the possible spin orientations,

W (k ↑→ k′ ↑) = ni
2πJ2S(S + 1)

3�
[1 + 4Jg(εk)] δ(εk − εk′) , (24.4.34)

where ni is the concentration of magnetic impurities, and the singular function
in the third-order correction is

g(εk) =
1
V

∑
k′′

f0(k′′)
εk′′ − εk . (24.4.35)

To evaluate this sum, we assume a constant density of states. This is a good
approximation for electrons close to the Fermi surface, from where the singular
contribution to the corresponding integral comes. This gives

g(εk) ∼
⎧⎨⎩ln

(
kBT/εF

)
, if εk < kBT ,

ln
(
εk/εF

)
, if εk > kBT .

(24.4.36)

Repeating the calculation for the spin-flip scattering k↑→ k′ ↓,

W (k ↑→ k′ ↓) = ni
4πJ2S(S + 1)

3�
[1 + 4Jg(εk)] δ(εk − εk′) . (24.4.37)

By substituting these formulas into the collision integral, we can define a
relaxation time in the customary way. The result is

1
τ

= ni
3πJ2S(S + 1)z

2�εF
[1 + 4Jg(εk)] , (24.4.38)

where z is the number of conduction electrons per atom.
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Using this energy- or temperature-dependent relaxation time in the Boltz-
mann equation,

� = �0 +A lnT (24.4.39)

is obtained for the resistivity after some algebra. Here �0 is the resistivity of
the pure sample.

Using this formula, a good fit can be obtained for the experimental results
in the vicinity of the resistivity minimum. However, because of the logarithmic
temperature dependence, the question immediately arises: What happens at
lower temperatures? It is straightforward to show that the higher orders of the
perturbation expansion give even more singular contributions, and thus per-
turbation theory is unable to provide a satisfactory treatment of the problem.
This made the Kondo problem one of the most intensely studied problems of
solid-state physics in the past decades. We shall return to it in Chapter 35 on
strongly correlated electron systems.

24.4.4 Electronic Contribution to Thermal Conductivity

As was shown on page 380, the Wiedemann–Franz law, which is based on ex-
perimental findings, applies to Bloch electrons as well in the relaxation-time
approximation. Therefore the electronic contribution to thermal conductivity
could be determined naively but most straightforwardly using this law. Thus,
the product of the thermal conductivity and the resistivity is expected to be
proportional to the temperature, with a universal constant of proportional-
ity, the Lorenz number given in (16.3.48). Using our previous results for the
temperature dependence of the resistivity,

� ∼

⎧⎪⎨⎪⎩
const. , if T → 0 ,
T 5 , if T < ΘD ,

T , if T > ΘD ,

(24.4.40)

the thermal conductivity should then behave as

λ ∼

⎧⎪⎨⎪⎩
T , if T → 0 ,
T−4 , if T < ΘD ,

const. , if T > ΘD

(24.4.41)

in the three temperature ranges of interest. Typical experimental results for
metals are shown in Fig. 24.11.

The thermal conductivity is proportional to the temperature at low tem-
peratures, as expected, but the constant of proportionality depends strongly
on the purity of the sample. At high temperatures, too, the theoretical pre-
diction is in agreement with the experimental findings: λ tends to a constant.
However, the Wiedemann–Franz law fails in the intermediate temperature
range: the thermal conductivity is proportional to 1/T 2 rather than 1/T 4
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Fig. 24.11. Temperature dependence of the thermal conductivity for gold samples
of different purity [J. Olsen, Electron Transport in Metals, Interscience Publishers,
Inc., New York (1962)]

here. The experimentally observed tendency T−2 can be reproduced in the-
oretical calculations by omitting the factor 1 − cos θ in the relaxation rate.
This factor played an essential role in the determination of the resistivity but
seems to be unimportant in heat-conduction phenomena. This can be under-
stood intuitively, as electron–phonon scattering cannot be considered elastic in
this region, and thus the relaxation-time approximation is inapplicable. While
small-angle inelastic scattering by low-momentum phonons gives a very small
contribution to the decay of the electric current, the same processes contribute
appreciably to the decay of the heat current, as electrons lose energy in such
processes.

24.4.5 Phonon Contribution to Thermal Conductivity

Up to now we have considered only electrons as a vehicle of heat conduction.
However, phonons can also contribute to thermal conductivity in solids. Note
that when only normal processes are considered, in which energy and momen-
tum are conserved simultaneously, the heat current cannot decay. If it were
not for umklapp processes, solids would be perfect heat conductors.

The heat current carried by phonons can be simply written as

jQ =
∑

λ

∫
dq

(2π)3
�ωλ(q)vλ(q) g(q) , (24.4.42)
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where vλ(q) is the group velocity of phonons. The Boltzmann equation gov-
erning the stationary distribution function of phonons in the presence of a
temperature gradient was given in (24.2.28). Applying the relaxation-time
approximation, its solution is

gλ(q) = g0λ(q) − τ(q)
∂g0λ(q)
∂T

vλ(q) · ∇T . (24.4.43)

Substituting this into the current formula,

jQ = −∇T
∑

λ

∫
dq

(2π)3
�ωλ(q)vλ(q) ◦ vλ(q)τ(q)

∂g0λ(q)
∂T

(24.4.44)

is obtained, and thus the thermal conductivity is

λ =
1
3

∑
λ

∫
dq

(2π)3
�ωλ(q) vλ(q)Λλ(q)

∂g0λ(q)
∂T

(24.4.45)

in the isotropic case, where Λλ(q) = vλ(q)τ(q) is the mean free path. In terms
of cλ(q), the heat capacity per mode, this can be rewritten as

λ =
1
3

∑
λ

∫
dq

(2π)3
cλ(q)vλ(q)Λλ(q) . (24.4.46)

Note that this is the generalization of (12.4.20),

λ = 1
3cV vΛ , (24.4.47)

a well-known formula of the kinetic theory of gases.
At temperatures well above the Debye temperature the mean free path of

phonons is inversely proportional to the temperature, Λ ∼ 1/T , and thus the
thermal conductivity also decreases with increasing temperature:

λ ∼ 1/T . (24.4.48)

At low temperatures umklapp processes freeze out. The strength of those
processes in which two phonons (q and q′) merge into one (q′′) is proportional
to the occupation of the initial states, given by

gλ(q)gλ′(q′) ∼ exp
(
−�ωλ(q)
kBT

)
exp

(
−�ωλ′(q′)

kBT

)
. (24.4.49)

Because of the conservation of energy,

gλ(q)gλ′(q′) ∼ exp
(
−�ωλ′′(q′′)

kBT

)
∼ exp

(
−ΘD

T

)
(24.4.50)

for phonon states close to the zone boundary at low temperatures. The tem-
perature dependence of the thermal conductivity is then
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λ ∼ Tn exp
(
ΘD

T

)
, (24.4.51)

where the exponent n cannot be determined from our previous considerations.
At low temperatures, where umklapp processes become less and less probable,
the thermal conductivity would increase beyond bounds in the T → 0 limit.
However, when the mean free path becomes comparable to the size D of the
sample, this tendency is reversed, and

λ ∼ T 3D , (24.4.52)

where T 3 comes from the phonon specific heat. This can be readily observed
in experiments. Phonons may also be scattered because of the different mass
of isotopes. The corresponding, observable, contribution is

λ ∼ M

δM

1
T 1/2

. (24.4.53)

The left-hand side of Fig. 24.12 shows these characteristic ranges of the
thermal conductivity vs. temperature graph on a typical curve, while the right-
hand side is a log–log plot of the experimental results for sodium fluoride.
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Fig. 24.12. (a) Typical temperature dependence of the thermal conductivity for
insulators. (b) The measured thermal conductivity for three differently grown sam-
ples of the ionic crystal NaF [Reprinted with permission from H. E. Jackson et al.,
Phys. Rev. Lett. 25, 26 (1970). ©1970 by the American Physical Society]

24.4.6 Transport Coefficients in Semiconductors

The formulas obtained in the relaxation-time approximation for a gas of free
electrons in Chapter 16 will serve as the starting point for our study of trans-
port phenomena in semiconductors. Expressed in terms of K0, defined in
(16.3.33), the electrical conductivity is
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σ = e2
∫

dk

4π3

(
−∂f0
∂εk

)
τ(εk)

1
3
v2

k . (24.4.54)

There are two essential differences with metals. Firstly, the classical Maxwell-
Boltzmann statistics can be applied instead of quantum statistics; secondly,
the contributions of conduction-band electrons and valence-band holes have
to be treated separately.

If conduction electrons at the bottom of the conduction band are treated
as free particles of effective mass m∗

n, v2
k can be expressed in terms of the

energy, and the k-sum can be transformed into an energy integral using the
density of states. We then have

σ =
2e2

3m∗
n

∞∫
εc

τ(ε)
(
−∂f0
∂ε

)
(ε− εc)ρc(ε) dε . (24.4.55)

For the density of states we shall use the formula (20.3.1),

ρc(ε) =
1

2π2

(
2m∗

n

�2

)3/2 √
ε− εc . (24.4.56)

The applicability of classical statistics means that f0 can be approximated by

f0(ε) =
1

e(ε−μ)/kBT + 1
≈ e−(εc−μ)/kBT e−(ε−εc)/kBT . (24.4.57)

According to (20.3.17) and (20.3.18), the density of excited electrons and the
chemical potential are related by

n(T ) =
1
4

(
2m∗

nkBT

π�2

)3/2

e−(εc−μ)/kBT , (24.4.58)

and so

f0(ε) ≈ 4n(T )
(

2m∗
nkBT

π�2

)−3/2

e−(ε−εc)/kBT . (24.4.59)

Substituting this into the conductivity formula,

σ = e2
4n(T )

3m∗
nπ

1/2
(kBT )−5/2

∞∫
εc

dεe−(ε−εc)/kBT τ(ε)(ε− εc)3/2 . (24.4.60)

By introducing the new variable x = (ε− εc)/kBT ,

σ = e2
4n(T )

3m∗
nπ

1/2

∞∫
0

τ(ε)e−xx3/2 dx . (24.4.61)

Writing the conductivity in the customary Drude form
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σ =
ne2

m∗
n
〈τ〉 , (24.4.62)

the mean relaxation time is

〈τ〉 =
4

3π1/2

∞∫
0

τ(ε)x3/2e−x dx . (24.4.63)

This can be rewritten as

〈τ〉 =
2

3kBT

∫
(ε− εc)τ(ε)e−(ε−εc)/kBT ρ(ε) dε∫

e−(ε−εc)/kBT ρ(ε) dε
. (24.4.64)

The conductivity of semiconductors is customarily given in terms of the mo-
bility μ defined by vn = −μnE. On account of the relationship jn = −envn
between the current and the drift velocity,

σ = neμn , (24.4.65)

while the mobility and the relaxation time are related by

μn =
e

m∗
n
〈τ〉 . (24.4.66)

Analogous formulas apply to the hole conductivity. The total conductivity is
then

σ = neμn + peμp . (24.4.67)

The temperature dependence of the conductivity (resistivity) is therefore de-
termined by the number of charge carriers and their mobilities.

At low temperatures impurity scattering is the dominant scattering mech-
anism in semiconductors, too, however these impurities are usually charged.
In Chapter 29 of Volume 3 we shall see that the Coulomb potential of external
charges is screened by mobile electrons, and thus the 1/r Coulomb potential
is replaced by the exponentially screened Yukawa potential:

U(r) ∝ e−qr

r
, (24.4.68)

where, owing to the low electron density in semiconductors, the inverse of the
screening length can be specified using the classical Debye–Hückel theory of
screening: q2DH = nee

2/(εkBT ), where ε is the permittivity. When the matrix
element in the transition probability is determined using this potential, the
transport relaxation time is given by

1
τ(ε)

∼ ε−3/2 (24.4.69)
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if only the energy dependence of the dominant term is retained. The temper-
ature dependence of the mobility is then

μ ∼ 〈τ〉 ∼ (kBT )3/2 . (24.4.70)

The deformation potential offers a particularly well adapted approach to
studying the scattering by acoustic phonons. The scattering matrix element
leads to an energy- and temperature-dependent relaxation time,

1
τ(ε, T )

∼ ε1/2kBT , (24.4.71)

which, in conjunction with (24.4.63), gives

μ ∼ 〈τ〉 ∼ (kBT )−3/2 . (24.4.72)

Studying the interaction with optical phonons is not so straightforward as
the involved processes are not elastic. At low temperatures (kBT  �ω0) the
crucial factor is the number of thermally excited optical phonons,

1
τ(ε)

∼ 1
e�ω0/kBT − 1

∼ e−�ω0/kBT , (24.4.73)

and thus
μ ∼ 〈τ〉 ∼ e�ω0/kBT , (24.4.74)

whereas at high temperatures the result is the same as for acoustic phonons:

1
τ(ε)

∼ kBTε1/2 and μ ∼ 〈τ〉 ∼ T−3/2 . (24.4.75)

24.5 Quantum Hall Effect

The semiclassical calculation lead to the conclusion that the Hall resistance,
which is related to an off-diagonal component of the conductivity tensor, has
to be proportional to the magnetic field, whereas �xx has to be practically
independent of it. However, in their experiments on silicon-based MOSFETs,
von Klitzing and his coworkers5 found that in strong magnetic fields and at
low temperatures (at most 1 to 2 kelvins) �xy does not increase proportionally
with B but plateaux appear, and the longitudinal resistivity �xx is not con-
stant but oscillates violently and vanishes at the plateaux. Similar behavior is
observed when, instead of tuning the magnetic field strength to control which
Landau level is filled partially, the gate voltage is changed to modulate the
number of charge carriers. This is shown in Fig. 24.13. At or above liquid-
helium temperature practically nothing remains of this anomalous behavior.
5 K. v. Klitzing, G. Dorda, and M. Pepper, 1980. See the footnote on page 6

of Volume 1.
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Fig. 24.13. The first experimental results of von Klitzing and coworkers for the
quantum Hall effect [Reprinted with permission from Phys. Rev. Lett. 45, 494 (1980).
©1980 by the American Physical Society]

As will be discussed in Chapter 27 on semiconductor devices, an inver-
sion layer may appear at the insulator–semiconductor interface, in which the
conduction band is pushed below the chemical potential. The electric field,
which is perpendicular to the surface, attracts the electrons into this layer.
The thickness of the layer and the number of charge carriers within it can be
controlled by the gate voltage Vg. Since the typical width of this layer is 3 to
5 nm, an essentially two dimensional electron gas (2DEG)6 appears, and the
motion in the perpendicular direction freezes out. As backed up by a multi-
tude of other experiments, the appearance of the plateaux is indeed related to
the two-dimensional character of the motion of electrons, and impurities play
an important role in it.

Applying the results obtained for the Hall effect to the two-dimensional
case, the conductivity tensor is

σαβ(B) = σ0

⎛⎜⎜⎝
1

1 + (ωcτ)2
−ωcτ

1 + (ωcτ)2

ωcτ

1 + (ωcτ)2
1

1 + (ωcτ)2

⎞⎟⎟⎠ , (24.5.1)

where σ0 is the Drude conductivity. Its inverse is the resistivity tensor,
6 The abbreviation 2DES for two-dimensional electron system is also commonly

used.
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�αβ(B) = �0

(
1 ωcτ

−ωcτ 1

)
=

(
�0 B/nee

−B/nee �0

)
. (24.5.2)

Apparently, the two-dimensional case does not differ essentially from the
previously studied case: in an isotropic system the longitudinal resistivity is
independent of the magnetic field, and the Hall resistance increases in direct
proportion to the applied filed. In contrast, measurements show that the Hall
resistance of a doped two-dimensional electron system7 features plateaux at

�(ν)
xy =

1
ν

h

e2
, (24.5.3)

where ν is an integer. Therefore the effect is called integer quantum Hall
effect (IQHE). When 1/�xy is plotted against 1/B, the plateaux are regularly
spaced. Moreover, the value of the off-diagonal element of the resistance tensor
at the plateaux agrees to a relative accuracy of 10−9 with 1/ν times the value
RK = 25.812 807 572 kΩ, which is calculated from RK = h/e2. This quantity
has since been termed the von Klitzing constant. Owing to this extraordinary
precision, the quantum Hall effect was adopted in 1990 to establish a new
standard for the electrical resistance. By agreement, the conventional value
RK = 25 812.807Ω was chosen for the Hall resistance of the plateau of label
ν = 1.

The xx component of the resistivity tensor, �xx, exhibits strong Shubnikov–
de Haas oscillations, and drops to zero wherever the Hall resistance has a
plateau. Since

σxx =
�xx

�2xx + �2xy

, σxy = − �xy

�2xx + �2xy

, (24.5.4)

when �xx vanishes, so does σxx, and σxy also takes a quantized value:

σxy = −ν e
2

h
. (24.5.5)

If the semiclassical expression for the off-diagonal element of the resistivity
tensor were used, the equality

B

nee
=

1
ν

h

e2
(24.5.6)

would be obtained. This would be satisfied for integer values of ν if the electron
density ne and the magnetic induction B were related by

ne = ν
eB

h
. (24.5.7)

7 In two-dimensional systems the off-diagonal components of the resistance and the
resistivity tensors are equal: Rxy = �xy. This is because Ey = −�xyjx leads to
Vy = −RxyIx via the integration of jx and Ey in the direction perpendicular to
the current flow, y.
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As discussed in Section 22.1.2, the degree of degeneracy per unit surface area
of the Landau levels in strong magnetic fields is given by (22.1.26), and thus

ne = ν
Np

LxLy
. (24.5.8)

Spelled out: the quantized value of the Hall resistance measured on the plateau
of index ν is obtained in the semiclassical description at a particular electron
density for which the lowest ν Landau levels are completely filled and all
others are empty. Since elastic scattering is impossible for completely filled
Landau levels, τ → ∞, and the resistivity vanishes: �xx = 0.

However, the extended character of the plateaux cannot be understood in
the above picture, as the highest filled Landau level is completely filled only
at very precise values of the magnetic field. Even a tiny change in the field
strength modifies the degree of degeneracy of the Landau levels. With the elec-
tron number fixed, either empty states appear on the previously completely
filled Landau level, or a previously empty Landau level becomes partially
filled.

The resolution of this problem lies in the observation that the width of
the plateaux depends strongly on the purity of the sample. In contrast to
common situations, in this case the higher the impurity concentration the
better. In the presence of impurities the Landau levels are broadened, as
shown in Fig. 24.14. Even more important is that a part of the states are
localized. These localized states do not participate in conduction: they serve
as reservoirs, so the chemical potential can go continuously over from one
Landau level to the other. If the field is such that the chemical potential is
inside a region where the states are localized, �xx vanishes because these states
do not contribute to the conductivity.

����

Landau levels
in pure sampleLocalized

states

�

Fig. 24.14. Broadening of Landau levels and the appearance of localized states in
the spectrum of a two-dimensional electron gas, due to impurities

More intriguing is the question why �xy takes very accurate quantized
values at the same fields. To find the answer, we have to return to Chapter 22,
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and continue the analysis of the electron states at the sample boundaries in
strong magnetic fields. As shown in Fig. 22.7, in contrast to bulk states – whose
energy depends only on the quantum number n of the Landau level and is
independent of the quantum number ky that is related to the coordinate x0 of
the oscillator centers –, the energy of the edge states (whose coordinate x0 is
close to the sample boundary) is higher. The number of branches crossing the
Fermi energy is the same as the number of bulk Landau levels below the Fermi
energy. Moreover, these edge states remain extended even in the presence
of impurities. As their velocity is strictly directed along the edge, and they
all move around the sample in the same direction, impurities cannot cause
backscattering. It is as if electrons propagated in one-dimensional channels
along the sample edges, without collisions.

Taking the geometry that is customarily used in the measurements of the
Hall effect, the current propagates in the x-direction, and the Hall voltage is
measured in the y-direction, thus the finite width of the sample is important in
this direction. The gauge that is best adapted to this geometry is the Landau
gauge with A = (−By, 0, 0). Choosing the ansatz

ψ(x, y) = eikxxu(y) (24.5.9)

for the wavefunction, the equation for u(y) is

− �
2

2m∗
d2u(y)

dy2
+

1
2
m∗ω2

c (y − ykx
)2u(y) + U(y)u(y) = εu(y) , (24.5.10)

where ykx
= �kx/eB = kxl

2
0, and the potential U(y) due to the finite width

Ly of the sample is also taken into account. Treating this potential as a per-
turbation, in the first order we have

ε(n, kx) =
(
n+ 1

2

)
�ωc + U(ykx

) . (24.5.11)

The electron velocities are each other’s opposite for the electron states along
the two edges ykx

= 0 and ykx
= Ly, as

vx(n, kx) =
1
�

∂ε(n, kx)
∂kx

=
1
�

∂U(y)
∂y

∂ykx

∂kx
=

1
eB

∂U(y)
∂y

. (24.5.12)

As we shall see in Chapter 27, electrons propagating in a one-dimensional
channel contribute to the conductance by e2/h. If there are ν Landau levels
below the Fermi energy, then electrons can propagate in the same number of
channels, and thus their current is

Ix = ν
e2

h
Vx . (24.5.13)

Because of the free propagation of the electrons there is no potential drop
along the sample edge. Each contact is at the same electrochemical potential
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as the reservoir from which the electrons arrive. That is why �xx is measured
to be zero in the usual setup. For the same reason, the potential difference Vy

between the two sides is the same as −Vx, and so

Rxy = −Vy

Ix
=

1
ν

h

e2
, (24.5.14)

in agreement with experimental findings.
It was found in measurements performed more recently on two-dimensional

electron gases produced in AlGaAs/GaAs heterojunctions, which feature
much higher mobilities, that the Hall resistance can take quantized values
Rxy = h/νe2 not only with integer values of ν but also for certain simple frac-
tional numbers ν = p/q, that is, for special fractional fillings of the highest
partially filled Landau level (usually the lowest Landau level). However, the
fractional quantum Hall effect (FQHE) cannot be interpreted in terms of the
one-particle picture: the role of the electron–electron interaction is crucial. We
shall discuss this in detail in Chapter 32.
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25

Optical Properties of Solids

In the previous chapter on transport properties we studied the behavior of
solids in static or low-frequency electromagnetic fields. As a continuation, we
shall now investigate what happens to them when subjected to electromag-
netic radiation in or close to the optical region.

One of our reasons for using the semiclassical approximation in the fore-
going was that at low frequencies the quanta of the electromagnetic field,
photons, are not energetic enough to cause interband transitions. This is no
longer true for visible light, whose wavelength ranges from 400 to 800 nm. The
energy of the photons of red light (λ = 620 nm) is about 2 eV, while that of
blue light (λ = 470nm) is about 2.6 eV; both are sufficient to induce interband
transitions. It is even easier with photons in the higher-frequency ultraviolet
(UV) region, whose energy ranges up to about 100 eV. When speaking about
the optical properties of solids, we must also consider infrared (IR) radiation,
whose wavelength is longer than that of visible light. Since the energy of IR
photons ranges from 10−3 eV to about 1.6 eV, they cannot usually induce in-
terband transitions, nonetheless their interaction with solids can be treated
on the same footing as that of visible light.

There are no sharp dividing lines between the infrared, visible, and ultra-
violet portions of the spectrum, or the far, mid and near infrared (FIR, MIR,
NIR) regions. Table 25.1 contains typical wavelength, frequency, wave number
and phonon energy values for different portions of the optical region of the
electromagnetic spectrum. Their conversion formulas are given in Appendix A.

Since optical wavelengths, ranging from 10 nm to 1mm, are much larger
than the atomic dimensions, solids interacting with light can often be treated
as continuous media, and their atomic structure neglected. Consequently,
there are two levels of studying optical properties. The classical treatment of
electromagnetic radiation, based on the Maxwell equations, offers an adequate
description for a wide range of phenomena. Solids are then treated as dielec-
tric media, and characterized by optical constants. To provide a microscopic
foundation to this phenomenological description, the optical constants have to
be related to the dielectric constant and the optical conductivity. The latter
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Table 25.1. The wavelength, frequency, wave number and energy for different por-
tions of the optical region of the electromagnetic spectrum

Wavelength Frequency
(THz)

Wave number
(cm−1) Energy

FIR 25–1000 μm 0.1–10 10–400 0.5–50 meV
MIR 2.5–25 μm 10–120 400–4000 50–500 meV
NIR 0.8–2.5 μm 120–400 4 × 103–12 × 103 0.5–1.6 eV
Visible 400–800 nm 400–800 12 × 103–24 × 103 1.6–3 eV
UV 10–400 nm 800–32 000 24 × 103–106 3–120 eV

quantities need to be derived from first principles, using quantum mechanics
to describe the ground state and excited states of the electron system and the
vibrating lattice, as well as their transitions induced by the electromagnetic
field. However, if a more accurate description of electromagnetic absorption
is required, we can no longer neglect that the radiation field is quantized, and
that photons of well-defined energy and momentum interact with both the
collective elementary excitations of solids (e.g., phonons) and the one-particle
excitations (Bloch electrons). The importance of optical measurements lies in
the fact that the so-called optical constants may in fact depend strongly on
the wavelength of the radiation incident on the sample. Since a very wide fre-
quency window is open to experiments, the response of the system’s electrons
and phonons to radiation can be studied over a vast energy range.

In this chapter we shall first explore the reflection, transmission, and ab-
sorption of light in solids using the classical approach based on the Maxwell
equations, and then determine the dielectric constant for some simple cases:
free electrons, bound electrons, and a system of vibrating atoms. As we shall
see, this allows us to gain insight into the possible states of electrons and
phonons. At the end of the chapter we shall also outline the more rigorous
quantum mechanical treatment.

25.1 Interaction of Solids with the Classical Radiation
Field

When a solid is illuminated by light – or more generally: when a solid is
exposed to electromagnetic radiation whose frequency is in the optical region
–, a part of the incident light is reflected, another part may emerge as an
attenuated beam on the other side of the sample, and the rest is absorbed
in the sample. In optical measurements the material properties of the sample
are often inferred from absorption, transmission, and reflection data.

The simplest way to describe the optical properties of solids and to treat
the interaction with the electromagnetic field is based on the Maxwell equa-
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tions of classical electrodynamics. Material properties are included through
the dielectric constant and the conductivity. This approach was also used in
Chapter 16, where the high-frequency behavior was studied in the free-electron
model of metals. In addition to the nearly free conduction electrons, we shall
also take into account bound electrons as well as the contribution of phonons
in this chapter.

25.1.1 Propagation and Absorption of Light in a Dielectric

Written in their conventional form, the Maxwell equations1 of classical elec-
trodynamics read

I. curlB = μ0

(
j + ε0

∂E

∂t

)
, II. curlE = −∂B

∂t
,

III. div E = ρ/ε0 , IV. div B = 0 ,
(25.1.1)

where ρ is the total charge density and j is the total current density.
In vacuum, where neither charges nor currents are present, the Maxwell

equations in conjunction with μ0 = 1/ε0c2 lead simply to

curl curlE = −ε0μ0
∂2E

∂t2
= − 1

c2
∂2E

∂t2
. (25.1.2)

Using the operator identity

curl curl = grad div−∇2 (25.1.3)

and the homogeneous Maxwell equation div E = 0, the wave equation

∇2E =
1
c2
∂2E

∂t2
(25.1.4)

is obtained. A similar equation applies to the magnetic induction (magnetic
flux density). These equations describe transverse electromagnetic waves that
propagate at the speed of light:

E = E0 exp(−iω[t− q̂ · r/c]) , B = B0 exp(−iω[t− q̂ · r/c]) , (25.1.5)

where q̂ is the unit vector in the propagation direction of the wave, E0 ⊥ q̂,
B0 ⊥ q̂, and E0 ⊥ B0, moreover q, E0, and B0 span a right-handed Cartesian
coordinate system, and they are related by

B0 =
1
c

q̂ × E0 . (25.1.6)

Longitudinal waves are not allowed, because if no external charges are present,
div E = 0 and div B = 0, and thus E and B can have nonvanishing compo-
nents only perpendicular to the propagation direction.
1 J. C. Maxwell, 1873.
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The situation is more complicated in solids exposed to electromagnetic
radiation. Under the influence of the electric field E, the oppositely directed
motion of positive and negative charges gives rise to a dipole moment, which
can be characterized by the polarization P . Likewise, a magnetic field B
leads to a magnetic polarization that can be specified by the magnetization
M . In addition to describing the effects of internal charges in terms of the
polarization and magnetization, external charges can also be injected into the
solid, and currents can also be set up externally. By using the relations

D = ε0E + P and H =
B

μ0
− M , (25.1.7)

and denoting the densities of external charges and currents by ρext and jext,
the Maxwell equations in dielectric media take the form

I. curlH = jext +
∂D

∂t
, II. curlE = −∂B

∂t
,

III. div D = ρext , IV. div B = 0 .
(25.1.8)

Naturally, these equations need to be complemented by the constitutive rela-
tions between the electric displacement and electric field, the magnetic induc-
tion and magnetic field, and the current density and electric field.

The relationships between P and E, and M and H are usually nonlocal.
For weak fields, where the relationships are linear, simple equations can be
written down for the Fourier components. For isotropic systems and cubic
crystals the electric and magnetic susceptibilities are defined by

1
ε0

P (q, ω) = χel(q, ω)E(q, ω) , M(q, ω) = χm(q, ω)H(q, ω) . (25.1.9)

Substituted into the equations for the Fourier components of the electric dis-
placement and magnetic induction,

D(q, ω) =ε0E(q, ω) + P (q, ω) ,
B(q, ω) =μ0 [H(q, ω) + M(q, ω)] ,

(25.1.10)

we obtain

D(q, ω) =ε0[1 + χel(q, ω)]E(q, ω) = ε0 εtotr (q, ω)E(q, ω) ,

B(q, ω) =μ0[1 + χm(q, ω)]H(q, ω) = μ0 μ
tot
r (q, ω)H(q, ω) .

(25.1.11)

These equations relate the susceptibilities to the permittivity and permeabil-
ity. The label “tot” in the superscript indicates that the quantities contain
the contributions of bound as well as free electrons. We shall also assume that
Ohm’s law applies, i.e., the current density is proportional to the electric field:

j = σE , (25.1.12)
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where j also contains the current induced by the external field. We shall
discuss this in more detail in Chapter 29.

Note that for anisotropic crystals the constitutive relations usually have
to be written as

Dα = εαβEβ ,

Bα = μαβHβ , (α, β = x, y, z)
jα = σαβEβ ,

(25.1.13)

where εαβ , μαβ , and σαβ are the αβ components of the permittivity, per-
meability, and conductivity tensors. Below we shall ignore the possibility of
anisotropy, and work with scalar quantities ε, μ, and σ, which is justified for
cubic crystals as well.

If no external charges are injected and no external currents are applied,
and the electromagnetic field is assumed to be of a definite wave number and
frequency,

E = E0 exp(iq · r − iωt) , B = B0 exp(iq · r − iωt) , (25.1.14)

similar wave equations are obtained inside dielectric media as in empty space:

∇2E(q, ω) =
εtotr (q, ω)μtot

r (q, ω)
c2

∂2E(q, ω)
∂t2

. (25.1.15)

A similar equation applies to H (or B). Consequently, only waves satisfying

q2 =
ω2

c2
N2 (25.1.16)

may propagate in the system, where

N =
√
εtotr μtot

r (25.1.17)

is the refractive index (index of refraction). Denoting the unit vector along
the wave propagation direction once again by q̂,

E = E0 exp
[
i
ωN

c
q̂ · r − iωt

]
, B = B0 exp

[
i
ωN

c
q̂ · r − iωt

]
, (25.1.18)

where q̂, E0, and B0 are mutually perpendicular, and they span a right-
handed coordinate system. The amplitudes of the electric and magnetic com-
ponents of an electromagnetic wave propagating in a dielectric medium are
now related by

B0 = N
√
ε0μ0 q̂ × E0 =

1
c
N q̂ × E0 . (25.1.19)

In this chapter we shall assume that the sample is weakly magnetizable
(μtot

r ≈ 1), so we can focus on the relative permittivity alone. Then
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N ≈
√
εtotr . (25.1.20)

If εtotr is real, then the propagation velocity of electromagnetic waves in the
medium is equal to the speed of light divided by the refractive index: vprop =
c/N .

This assumption is usually incorrect, and εtotr is complex. Then the complex
index of refraction N can be separated into real and imaginary parts,

N = n+ iκ , (25.1.21)

and the electromagnetic field propagating inside a dielectric medium is de-
scribed by the formulas

E = E0 exp
(
−ωκ
c

q̂ · r
)

exp
(
i
ωn

c
q̂ · r − iωt

)
,

B = B0 exp
(
−ωκ
c

q̂ · r
)

exp
(
i
ωn

c
q̂ · r − iωt

)
.

(25.1.22)

Here, too, B0 and E0 are related by (25.1.19), but since N is complex, E0

and B0 cannot be chosen real simultaneously, as a complex phase factor ap-
pears between them. The spatial variations of the electric and magnetic fields
indicate that n is related to dispersion, and κ to absorption. Thus n is the
real refractive index, while κ is the extinction coefficient (absorption index).
The physical reason behind absorption is precisely the phase difference be-
tween the electric and magnetic fields. According to the Lambert–Beer law2

the intensity of the electromagnetic field decays exponentially in the sample.
The linear absorption coefficient α is defined as

α = −1
I

dI
dr
. (25.1.23)

Its reciprocal is the distance over which the intensity drops to 1/e times the
initial value. By using (25.1.22) for the field amplitude,

α =
2κω
c

=
4πκ
λ
. (25.1.24)

The two optical constants, n and κ – which are, in fact, functions of ω –
are not independent of one another. This is because the complex refractive
index is related to the complex dielectric constant (N2 = εtotr ), whose real and
imaginary parts satisfy the Kramers–Kronig relation (16.1.65). The connec-
tion between n and κ can be derived in an even more straightforward manner
by realizing that the analiticity of N(ω) implies that its real and imaginary
parts – just like those of the complex dielectric constant – should satisfy the
Kramers–Kronig relation:
2 J. H. Lambert, 1760 and A. Beer, 1854. It is also known as the Beer–Bouguer–

Lambert law, since it was first discovered by P. Bouguer in 1729.
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n(ω) − 1 =
2
π
P

∞∫
0

ω′κ(ω′)
ω′2 − ω2

dω′,

κ(ω) = −2ω
π
P

∞∫
0

n(ω′) − 1
ω′2 − ω2

dω′.

(25.1.25)

By measuring the absorption of a beam traversing a thin layer, n(ω) could
be determined – at least, in principle – if precise measurements could be
performed over the entire frequency range.

25.1.2 Reflection and Refraction at an Interface

The other possibility for measuring the optical constants is based on the ob-
servation of the beam reflected from the surface of the sample. To determine
the reflectivity, we choose a geometry in which a plane interface separates the
vacuum in the z > 0 region from a medium of refractive index N in the z < 0
region. The propagation direction of the incident electromagnetic radiation is
in the xz-plane, and makes an angle θ with the normal of the interface. We
shall denote the parallel component of the electric field (which is in the plane
of incidence) by Ep, and the perpendicular component by Es.3 It is therefore
customary to speak of s- and p-polarized waves.4 A part of the radiation is
reflected, and another penetrates into the sample. We shall denote the angle of
refraction by θ′′, and the components of the electric field in the reflected and
refracted rays that are parallel and perpendicular to the plane of incidence by
E′

p and E′
s, and E′′

p and E′′
s . They are shown in Fig. 25.1.
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Fig. 25.1. The electric and magnetic field vectors of the incident, reflected, and
refracted waves at a vacuum–solid interface for (a) TE and (b) TM polarization

3 The label “s” comes from the German word for perpendicular, senkrecht.
4 S-polarization is also called transverse electric (TE) polarization, as the electric

field vector of the wave is perpendicular to the plane of incidence. Likewise, p-
polarization is also known as transverse magnetic (TM) polarization.
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The Maxwell equations imply that the tangential component of the electric
and magnetic fields and the perpendicular component of the electric displace-
ment and magnetic induction must be continuous across the interface of two
media of different indices of refraction – provided there are no surface charges
and surface currents. Denoting the surface normal by n̂, the continuity con-
dition can be generally formulated as

(E + E′ − E′′) × n̂ = 0 , (D + D′ − D′′) · n̂ = 0 ,
(H + H ′ − H ′′) × n̂ = 0 , (B + B′ − B′′) · n̂ = 0 . (25.1.26)

Thus, for an s-polarized wave we have

Es + E′
s = E′′

s ,

Hs cos θ −H ′
s cos θ′ = H ′′

s cos θ′′,
(25.1.27)

where
sin θ′′ =

sin θ
N

(25.1.28)

because of Snell’s law of refraction, and, as usual, θ′ = θ is assumed for
reflection. Since (25.1.19) implies that

Hs =
√
ε0
μ0
Es , H ′

s =
√
ε0
μ0
E′

s , H ′′
s = N

√
ε0
μ0
E′′

s , (25.1.29)

the second equation in (25.1.27) yields

(Es − E′
s) cos θ = NE′′

s cos θ′′ . (25.1.30)

For a p-polarized wave, in which the magnetic field is parallel to the in-
terface, we have

Ep cos θ + E′
p cos θ = E′′

p cos θ′′ ,

Hp −H ′
p = H ′′

p .
(25.1.31)

By expressing Hp in the second equation in terms of Ep,

Ep − E′
p = NE′′

p . (25.1.32)

These are the same equations as in classical optics, provided N is replaced
by the real refractive index n. By taking the ratios of the amplitudes, we
obtain the Fresnel formulas5 of reflection and refraction:

rp =
E′

p

Ep
=

cos θ′′ −N cos θ
N cos θ + cos θ′′

, tp =
E′′

p

Ep
=

2 cos θ
N cos θ + cos θ′′

,

rs =
E′

s

Es
=

cos θ −N cos θ′′

cos θ +N cos θ′′
, ts =

E′′
s

Es
=

2 cos θ
cos θ +N cos θ′′

.

(25.1.33)

5 A. J. Fresnel, 1815–1818.
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The quantities r and t are called the reflection and transmission coefficients.6
Using Snell’s law, they are usually written as

rp = − tan(θ − θ′′)
tan(θ + θ′′)

, tp =
2 cos θ sin θ′′

sin(θ + θ′′) cos(θ − θ′′) ,

rs = − sin(θ − θ′′)
sin(θ + θ′′)

, ts =
2 cos θ sin θ′′

sin(θ + θ′′)
.

(25.1.34)

When the incident light is reflected from the interface of an optically denser
medium (n > 1), the amplitude reflection coefficient is negative, indicating a
180◦ phase shift.

These equations formally apply to absorbing media as well. Compared
to dielectrics, the index of refraction is complex, therefore the quantity θ′′
determined from Snell’s law does not have a direct physical meaning as the
angle that specifies the direction of the refracted wave. Instead, it is related
to the phase shift between the reflected and refracted waves.

The formulas become much simpler for normal incidence. TM- and TE-
polarized waves are the same then, the amplitude of the reflected beam is

E′

E
=

1 −N
1 +N

, (25.1.35)

and the reflectance (or reflectivity) is

R =
∣∣∣∣1 −N
1 +N

∣∣∣∣2 =
(n− 1)2 + κ2

(n+ 1)2 + κ2
. (25.1.36)

Optical measurements are often performed on thin layers. A part of the
refracted wave then emerges at the other interface (transmitted wave), and
another part becomes reflected, thereby augmenting the intensity of the
backscattered wave and giving rise to multiple scattering as well. When the
thickness d of the layer is much larger than the wavelength, and thus interfer-
ence effects can be neglected, the transmittance is

〈T 〉 =
(1 −R)2e−Kd

1 −R2e−2Kd
, (25.1.37)

while the reflectance is

〈R〉 = R
[
1 + 〈T 〉e−Kd

]
. (25.1.38)

By measuring the absorption and reflection, the real and imaginary parts
of the complex refractive index can be determined. However, as mentioned on
page 416, n and κ are not independent of one another, so reflection itself gives
a complete characterization of the system, provided its value is known at all
frequencies.
6 Since they are obtained from the amplitudes of the electromagnetic field, they

are also called amplitude reflection and transmission coefficients, to distinguish
them from intensity reflection and transmission coefficients.
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25.1.3 Role of Free and Bound Electrons

In the foregoing discussion each electron was treated on the same footing,
whichever band it belonged in; that is why the label “tot” appeared in the
superscript of ε and μ. However, it is often more convenient to distinguish
bound electrons, which are part of the ion core and belong in deep-lying nar-
row bands, from the more or less free, highly mobile electrons of the bands
that are closer to the Fermi energy. This separation is arbitrary in a sense. In
the analysis of optical properties another, natural, separation is used, which
is based on the energy associated with the highest studied frequency. An elec-
tron is then considered bound if its binding energy exceeds this predefined
maximum energy. The effects of bound electrons are lumped into the polar-
ization – i.e., a dielectric constant εr(∞) –, whereas the current carried by
mobile conduction electrons is retained separately. Therefore an additional
term appears in the wave equation. Exploiting the constitutive relation,

∇2E =
ε(∞)
ε0c2

∂2E

∂t2
+

σ

ε0c2
∂E

∂t
. (25.1.39)

It is important to note that σ is now the optical conductivity, which is related
to the current driven by the transverse field. Apart from the long-wavelength
limit, it is generally different from the longitudinal conductivity.

Seeking the solution in the usual form (25.1.14), those waves can propagate
for which

q2 =
ε(∞)
ε0

ω2

c2
+

iωσ
ε0c2

=
ω2

c2

[
εr(∞) + i

σ

ε0ω

]
. (25.1.40)

Comparison with (25.1.16) and (25.1.17) gives

εtotr = εr(∞) + i
σ

ε0ω
. (25.1.41)

We may say that the real part of the complex dielectric constant comes from
the dielectric constant εr(∞) of bound electrons and the imaginary part of the
conductivity of free electrons, while its imaginary part comes from the real
part of the conductivity of free electrons:

ε1 = εr(∞) − Imσ
ε0ω

, ε2 =
Reσ
ε0ω

. (25.1.42)

If the real and imaginary parts of the complex refractive index are used instead
of the real and imaginary parts of the dielectric constant, we have

n+ iκ =
[
εr(∞) + i

σ

ε0ω

]1/2

, (25.1.43)

that is,

n2 − κ2 = εr(∞) − Imσ
ε0ω

, 2nκ =
Reσ
ε0ω

. (25.1.44)
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25.1.4 Scattering of Light by Free Electrons

As a first example, we shall now examine the optical properties of metals in the
simplest approximation. In the classical Drude model, conduction electrons
move in a uniform background of unit dielectric constant, and the frequency-
dependent conductivity is given by (16.1.41):

σ(ω) =
σ0

1 − iωτ
, where σ0 =

nee
2τ

me
. (25.1.45)

However, this formula for the conductivity cannot be applied without reser-
vations. As already mentioned, the optical properties are governed by the
optical conductivity, which, in turn, should be determined from the current
induced by transverse electromagnetic fields. This is in striking contrast with
the Drude model, where the longitudinal conductivity was calculated from the
longitudinal current.

To determine the optical conductivity, we have to consider the equation
of motion for electrons in the presence of an electromagnetic field. Even when
there are no external currents, charges placed in an electromagnetic field move.
Their displacement r is related to the electric field E through the equation
of motion that contains the Lorentz force. Neglecting the term due to the
magnetic field, as small to the second order, the motion of electrons is governed
by the equation

mer̈ = −eE . (25.1.46)

In a field of angular frequency ω the electrons oscillate with the same fre-
quency, thus, in terms of the Fourier transforms,

− ω2mer = −eE . (25.1.47)

The density of the current carried by the moving charges is

j = −eneṙ . (25.1.48)

Using its Fourier transform in the Maxwell equations labeled I. and II.:

iq × H = −iωε0E + iωneer , iq × E = iωμ0H . (25.1.49)

Combining the two equations gives

q × [q × E] = ωμ0 q × H = −ω2μ0ε0E + ω2μ0neer . (25.1.50)

Transforming the left-hand side by making use of (3.3.6),

q × [q × E] = q(q · E) − q2E . (25.1.51)

In the transverse case the first term vanishes. Then

q2E = ω2μ0ε0E − ω2μ0neer =
ω2

c2
E − ω2

c2
nee

ε0
r , (25.1.52)
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where the identity ε0μ0 = 1/c2 was used. The substitution of (25.1.47) into
this equation leads to

q2 =
ω2

c2
− 1
c2
nee

2

ε0me
, (25.1.53)

from which the frequency of transverse oscillations can be calculated. By com-
paring this formula with (25.1.16) and (25.1.20), and making use of (16.1.69),
the equation for the frequency of the longitudinal plasma oscillations,

εr = 1 − nee
2

ε0ω2me
= 1 − ω2

p

ω2
(25.1.54)

is found for the transverse dielectric constant of the free-electron gas. This
expression is the same as the high-frequency formula for the longitudinal di-
electric constant.

Considering the optical constants n and κ instead of the dielectric con-
stant, n = 0 and κ is finite for ω < ωp, while κ = 0 and n is finite for ω > ωp.
Thus an electromagnetic radiation of frequency ω < ωp that is incident per-
pendicular to the interface undergoes total reflection because oscillations of
such frequency cannot propagate in the free-electron gas. The intensity of the
electromagnetic field decays exponentially toward the interior of the sample.
This can be interpreted classically by saying that the forced oscillations of free
electrons in the electromagnetic field are 180 degrees out of phase with the
driving field, so the field is canceled inside the sample. Waves with a frequency
of less than ωp can propagate only on the surface. It can be shown that the
frequency of the surface plasma oscillations (surface plasmons) is smaller than
ωp/

√
2.

For electromagnetic fields of frequency ω > ωp reflection becomes gradu-
ally weaker, and the metal becomes transparent. In metals that can be mod-
eled by a free-electron gas only those transverse oscillations can propagate
whose frequency and wave number satisfy

ω2
T = ω2

p + c2q2 . (25.1.55)

The threshold frequency ωp of transparency can be estimated by insert-
ing a typical metallic electron density value into the plasma-frequency formula
(16.1.69). The resulting frequency is in the ultraviolet; total reflection prevails
over the entire visible frequency range. This explains the characteristic luster
of metals. Certain metals, for example copper or gold, have characteristic col-
ors because in addition to the quasi-free conduction electrons the d-electrons
of the core also interact with the electromagnetic field, absorbing photons of
well-defined wavelengths. By converting the threshold frequency (16.1.69) to
wavelength using the relation λ = 2πc/ωp, the calculated values are found to
be in fairly good agreement with the experimental results for simple metals.
Both are listed in Table 25.2.

The reason why the measured threshold wavelength (frequency) is always
larger (smaller) than the theoretical prediction can also be traced back to the
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Table 25.2. Calculated and measured threshold wavelengths for the transparency
of alkali metals

Metal Li Na K Rb Cs

λtheor (Å) 1500 2100 2900 3200 3600
λexp (Å) 2050 2100 3150 3600 4400

effects of core electrons. If their effects are lumped into the dielectric constant
εr(∞), which is thus larger than unity, the presence of core electrons leads to

ωp =
ω0

p√
εr(∞)

, (25.1.56)

where ω0
p is the free-electron value of the plasma frequency determined from

(16.1.69).
According to our previous calculation, the frequency ωp marks a sharp

boundary between the totally reflecting and transmitting regions. This result
was the consequence of neglecting the scattering of electrons, which were taken
into account through a relaxation time τ in the Drude model. This adds a
damping term to the equation of motion:

mer̈ = −eE − 1
τ
meṙ , (25.1.57)

or, for oscillations of angular frequency ω,

−
(
ω2 +

iω
τ

)
mer = −eE . (25.1.58)

Combined with (25.1.52), the equation for the dispersion relation of transverse
oscillations is

q2 =
ω2

c2
− ω2

c2
nee

2

meε0

1
ω2 + iω/τ

, (25.1.59)

which can also be written as

q2 =
(ω
c

)2
[
1 + i

σ0

ε0ω

1
1 − iωτ

]
=
(ω
c

)2
[
1 − ω2

p

ω2 + iω/τ

]
. (25.1.60)

The transverse dielectric constant for the free-electron gas is then

εr = 1 + i
σ0

ε0ω

1
1 − iωτ

= 1 − ω2
p

ω2 + iω/τ
. (25.1.61)

This formula is the same as (16.1.70), obtained for the longitudinal dielectric
constant – in agreement with the generally valid observation that the longitu-
dinal and transverse dielectric constants are the same in the long-wavelength
limit.
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Using, once again, the real and imaginary parts of the complex refractive
index instead of the dielectric constant,

(n+ iκ)2 = 1 − ω2
p

ω2 + iω/τ
, (25.1.62)

and hence

ε1 = n2 − κ2 = 1 − ω2
pτ

2

1 + ω2τ2
, ε2 = 2nκ =

ω2
pτ

ω(1 + ω2τ2)
. (25.1.63)

When the frequency dependence of n and κ are determined from these equa-
tions, the reflectance (25.1.36) can also be specified at different wavelengths.
This generalization of the Drude model to the description of optical properties
is called the Drude–Zener model. Figure 25.2 shows the frequency dependence
of the real and imaginary parts of the dielectric constant, the optical constants
(n, κ), as well as the reflectance (R) for typical values of ωp and τ .

Two characteristic, frequency-like quantities appeared in the description
of the properties of the electron gas: the inverse relaxation time 1/τ and
the plasma frequency ωp.7 Based on the magnitude of the frequency of the
electromagnetic field relative to these characteristic frequencies, three typical
regions of the optical behavior can be distinguished.

In the low-frequency region, where ω  1/τ and of course ωp � 1/τ ,

εr ≈ 1 − (ωpτ)2 + i
(ωpτ)2

ωτ
. (25.1.64)

The real part of the dielectric constant takes large negative values, and the
imaginary part is even larger in magnitude, so this portion of the spectrum is
called the absorption region. Here

n2 − κ2 ≈ 1 − ω2
pτ

2 ≈ −ω2
pτ

2 , 2nκ ≈ ω2
pτ

ω
. (25.1.65)

To a fairly good approximation, n and κ are found to be much larger than
unity, and of the same order of magnitude:

n ≈ κ ≈
(
ω2

pτ

2ω

)1/2

=
(
σ0

2ε0ω

)1/2

� 1 . (25.1.66)

Determined from (25.1.36), the reflectance is close to 100% in this FIR region,
however, it shows a characteristic dependence on wavelength:

R = 1 − 2
(

2ω
ω2

pτ

)1/2

= 1 − 2
(

2ωε0
σ0

)1/2

= 1 − 2
(

4πcε0
λσ0

)1/2

. (25.1.67)

7 We saw that in metals τ is usually on the order of 10−14 to 10−15 s. According
to the estimate obtained for the plasma frequency, 1/τ is usually much smaller
than ωp.
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Fig. 25.2. Frequency dependence of the dielectric constant, refractive index, ex-
tinction coefficient and reflectivity of a free-electron gas for typical values of ωp and
τ (based on Wooten’s book)

This is the Hagen–Rubens relation,8 which is in good agreement with measure-
ments for good conductors (such as gold, silver, and copper) at wavelengths
over 30 μm.

The region 1/τ  ω, where the period of the oscillating field is much
smaller than the relaxation time, is called the relaxation region. Here ω2τ2

becomes dominant in the denominator of the dielectric constant (25.1.63):

εr ≈ 1 −
(ωp

ω

)2

+ i
ω2

p

ω3τ
, (25.1.68)

or alternatively,

n2 − κ2 ≈ 1 − ω2
p

ω2
, 2nκ ≈ ω2

p

ω3τ
. (25.1.69)

Two regions are distinguished within the relaxation region. When ω < ωp,
the real part of the dielectric constant is still negative but the imaginary part
8 E. Hagen and H. Rubens, 1903.
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is smaller in magnitude than the real part. To a good approximation,

n ≈ ωp

2ω2τ
, κ ≈ ωp

ω
. (25.1.70)

The metal remains strongly reflective throughout this region:

R ≈ 1 − 2
ωpτ

, (25.1.71)

while the absorption coefficient decreases as 1/ω2.
When ω > ωp, which corresponds to ultraviolet frequencies, the real part

of the dielectric constant becomes positive, and the extinction coefficient is
small,

n ≈
√

1 −
(ωp

ω

)2

≈ 1 , κ ≈ ω2
p

2ω3τ
≈ 0 . (25.1.72)

The reflectance is very small, on the order of a few percent, and the metal
becomes transparent.

25.1.5 Reflectivity of Semiconductors

The Drude–Zener theory presented above does not only provide an approxi-
mate explanation for the optical properties of simple metals: through a slight
generalization it also gives an adequate account of the wavelength dependence
of the reflectance of strongly doped semiconductors. For the latter, it must be
borne in mind that the polarizability of ion cores cannot be ignored in semi-
conductors; in fact εr(∞) can be much larger than unity. Instead of (25.1.63),
the formulas

ε1 = n2 − κ2 = εr(∞) − ω2
pτ

2

1 + ω2τ2
, ε2 = 2nκ =

ω2
pτ

ω(1 + ω2τ2)
(25.1.73)

have to be used for the real and imaginary parts of the dielectric constant.
The other important difference with metals is the magnitude of the relax-

ation time. The mean free path of electrons is of the same order in metals and
semiconductors but the typical electron velocities are different: it is the Fermi
velocity vF in the former, while in the latter, where electrons can be treated
classically, it is the thermal velocity – which is several orders of magnitude
smaller than vF. Therefore the relaxation time is several orders of magnitude
larger in semiconductors than in metals. Consequently, the condition ωτ � 1
is met in the infrared region, and the absorption region (ω  1/τ) is pushed
out of the optical region. For the entire optical region

n2 − κ2 = εr(∞) − ω2
p

ω2
, 2nκ =

ω2
p

ω3τ
. (25.1.74)

At ω = ωp/
√
εr(∞)
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n = κ =
εr(∞)
2ωτ

 1 , (25.1.75)

so the reflectance is still close to unity. At the slightly higher but not too
distant frequency ω = ωp/

√
εr(∞) − 1 we have n ≈ 1 and κ 1, and so the

reflectance is small. This sharp drop in the reflectivity is shown in Fig. 25.3 for
various values of the dopant concentration. This is the analog of the plasma
edge for doped semiconductors in which the concentration of carriers in the
conduction or valence band is sufficiently high for that they can be treated as
an electron gas.

Fig. 25.3. Reflectivity of p-type PbTe samples as a function of the wavelength
[Reprinted with permission from J. R. Dixon and H. R. Riedl, Phys. Rev. 138,
A873 (1965). ©1965 by the American Physical Society]

At even higher frequencies the dominant contribution to the dielectric
constant comes from core electrons, and thus, from an optical point of view,
the semiconductor behaves as a classical dielectric.

25.1.6 Interaction of Light with Bound Electrons

The results obtained in the Drude–Zener theory can be applied when only
the effects of the electromagnetic field on the more or less free electrons of
the conduction and valence bands have to be considered – that is, for simple
metals and semiconductors. This condition is obviously not met in insulators.
In the latter the interaction of light with bound electrons has to be studied.
The simplest, classical discussion is based on the Lorentz model.

In this model the bound states of electrons are described in terms of classi-
cal harmonic oscillators of angular frequency ω0. Including the corresponding
term in the equation of motion (25.1.57) for electrons, we have
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mer̈ +meω
2
0r = −eE − 1

τ
meṙ . (25.1.76)

The equation for the Fourier component of frequency ω reads

me
(−ω2 + ω2

0 − iω/τ
)
r = −eE , (25.1.77)

and its solution is

r = − e

me

(
ω2

0 − ω2 − iω/τ
)−1

E . (25.1.78)

The induced dipole moment, and then the polarizability can be determined
from the displacement r:

α(ω) =
−er
E

=
e2

me

(
ω2

0 − ω2 − iω/τ
)−1

. (25.1.79)

When a sample of volume V contains Ne bound electrons with the same
eigenfrequency ω0, the polarization is

P =
nee

2

me

(
ω2

0 − ω2 − iω/τ
)−1

E , (25.1.80)

and the dielectric constant is

εr = 1 +
nee

2

ε0me

1
ω2

0 − ω2 − iω/τ
= 1 +

ω2
p

ω2
0 − ω2 − iω/τ

. (25.1.81)

In the ω0 → 0 limit, where bound electrons become free, the earlier results
are recovered. It is obvious from the calculation that if ω is not the same for
each electron but for Nj of them the eigenfrequency is ωj and the relaxation
time is τj , we have

εr = 1 +
e2

ε0me

1
V

∑
j

Nj

ω2
j − ω2 − iω/τj

. (25.1.82)

When there is a single eigenfrequency, the real and imaginary parts of the
dielectric constant are

ε1 = 1 +
ω2

p(ω2
0 − ω2)

(ω2
0 − ω2)2 + (ω/τ)2

,

ε2 =
ω2

pω/τ

(ω2
0 − ω2)2 + (ω/τ)2

.

(25.1.83)

The optical constants n and κ are then given by

n =
{

1
2

[
(ε21 + ε22)

1/2 + ε1
]}1/2

,

κ =
{

1
2

[
(ε21 + ε22)

1/2 − ε1
]}1/2

.

(25.1.84)
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In contrast to free electrons, where the two characteristic frequencies 1/τ
and ωp divided the optical frequency range into three parts, four parts are
distinguished for bound electrons, as ω0 is now finite.

At low frequencies ω  ω0

ε1 ≈ 1 +
ω2

p

ω2
0

� 1 , (25.1.85)

while ε2 is close to zero, so n ≈ √
ε1 > 1, and κ ≈ 0. In this region the

insulator hardly absorbs any light, and its reflectance is small, so the material
is transparent.

In a region of width 2/τ around ω0, where both n and κ may take large
values, both absorption and reflectivity are significant. The part of the light
that is not reflected by the sample is absorbed.

For ω � ω0 the electrons of the insulator behave as if they were free. As
long as ε1 < 0, the good reflectivity of metals is observed. Of course, this
occurs well beyond the visible region, in the ultraviolet.

Finally, at very high frequencies (ω � ωp), ε1 becomes positive. This

occurs above ωL =
√
ω2

0 + ω2
p in the τ → ∞ limit. The reflectance is small,

and the insulator becomes transparent again.
The frequency dependence of the real and imaginary parts of the dielectric

constant and of the optical constants n, κ are plotted in Fig. 25.4 for typical
values of ω0, ωp, and τ , while the frequency dependence of the reflectance R
in the four regions is shown in Fig. 25.5.
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430 25 Optical Properties of Solids

A RT T

R
(%

)

10

1086420 12 14

20

30

40

50

60

70

0

2��


�$ (eV)

Fig. 25.5. Frequency dependence of the reflectance in the Lorentz model (based on
Wooten’s book)

25.1.7 Absorption and Dispersion in Ionic Crystals

Up to now we have studied how the electromagnetic field polarizes the system
of electrons if the electrons can be considered free or are in bound states. In
ionic crystals we have to take into account the additional polarization due
to the optical vibrations of the lattice and the corresponding contribution to
the dielectric constant. To understand the role of optical phonons, we shall
first examine the diatomic chain discussed in Chapter 11. If the two ions are
oppositely charged, the equations of motion (11.2.17) for the two kinds of
atom,

M1ün = −K [2un − vn − vn−1] ,

M2v̈n = −K [2vn − un+1 − un] ,
(25.1.86)

must be complemented by a term that accounts for the effects of the electro-
magnetic field. Taking the spatial Fourier transforms, in the long-wavelength
(small q) limit, where the phase factors e±iqa can be approximated by unity,

M1üq = − 2K(uq − vq) + eEe−iωt ,

M2v̈q = − 2K(vq − uq) − eEe−iωt .
(25.1.87)

After some algebra,

üq − v̈q =
[−K(uq − vq) + eEe−iωt

]( 1
M1

+
1
M2

)
. (25.1.88)

Introducing the frequency ωTO of long-wavelength transverse optical modes
through
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ω2
TO = K

(
1
M1

+
1
M2

)
, (25.1.89)

and assuming a harmonic time dependence, the solution of the equations of
motions is (

ω2
TO − ω2

)
(uq − vq) =

eEe−iωt

K
ω2

TO . (25.1.90)

The polarizability of the lattice per primitive cell is then

e(uq − vq) =
e2

K

ω2
TO

ω2
TO − ω2

. (25.1.91)

If this were substituted directly into the dielectric constant, the resulting
formula would contain the spring constant K. To avoid that, we shall write
the dielectric constant as

εr(ω) = a+ b
ω2

TO
ω2

TO − ω2
, (25.1.92)

and express the two parameters in terms of the values of the dielectric constant
at ω = 0 and in the ω → ∞ limit. Since εr(0) = a+ b and εr(∞) = a,

εr(ω) = εr(∞) + [εr(0) − εr(∞)]
ω2

TO
ω2

TO − ω2
. (25.1.93)

Note that the dielectric constant is always real in this approximation, and
for very small and very large values of ω it is positive. In between there is a
frequency range,

ωTO < ω < ωLO , (25.1.94)

where
ω2

LO =
εr(0)
εr(∞)

ω2
TO , (25.1.95)

in which the dielectric constant is negative and the refractive index vanishes,
thus the crystal becomes perfectly reflective. Expressing εr(ω), as given in
(25.1.93), in terms of ωLO,

εr(ω) = εr(∞)
ω2

LO − ω2

ω2
TO − ω2

. (25.1.96)

The subscript “LO” of ωLO is not a coincidence: according to the Lyddane–
Sachs–Teller relation, this is just the frequency of longitudinal optical oscil-
lations. The expression also shows that εr(ω) vanishes at this frequency, thus
longitudinal modes can propagate in the system.

The fact that the reflectance is unity between ωTO and ωLO indicates
that oscillations of such frequencies cannot propagate in ionic crystals. To
determine the frequencies of the allowed modes, we have to return to (25.1.16)
and (25.1.20):
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q2 =
ω2

c2
εr(ω) . (25.1.97)

Substituting (25.1.96) into (25.1.97), the solutions of this equation for ω
as a function of q determine the dispersion relation of the vibrations of the
ionic crystal. The equation is quadratic in ω2, and its solutions are

ω2(q) = 1
2

(
c2q2

εr(∞)
+ ω2

LO

)
± 1

2

[(
c2q2

εr(∞)
+ ω2

LO

)2

− 4
c2q2

εr(∞)
ω2

TO

]1/2

.

(25.1.98)
They are shown graphically in Fig. 25.6.
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Fig. 25.6. The dispersion relation of polaritons

At small values of q one of the two branches has a light-like linear disper-
sion relation with a propagation velocity c/

√
εr(0), as expected in a medium

of refractive index n =
√
εr(0), whereas the other branch corresponds to lon-

gitudinal optical modes. At larger values of q the two modes get hybridized,
and become a mixture of electromagnetic and lattice vibrations. These hy-
brid modes are called polaritons.9 At even higher frequencies we find again
a mode with a linear dispersion curve and another mode whose frequency
is independent of the wavelength, however, the propagation velocity for the
former is c/

√
εr(∞), while the frequency of the latter is somewhat lower than

that of transverse optical vibrations. Note that there are no modes with a
frequency in the ωTO < ω < ωLO range. Consequently, the sample totally
reflects radiations of such frequencies.

In the previous calculation we neglected damping forces, which render the
lifetime of phonons finite. Just like in the Lorentz model, their inclusion in the
denominator of the dielectric constant leads to the appearance of an additional
term iωγ, where γ is the inverse lifetime. Therefore
9 J. J. Hopfield, 1958.
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εr(ω) = εr(∞) + [εr(0) − εr(∞)]
ω2

TO
ω2

TO − ω2 − iωγ
. (25.1.99)

As shown in Fig. 25.7, the frequency dependence of the real and imaginary
parts

ε1(ω) = εr(∞) + [εr(0) − εr(∞)]
ω2

TO(ω2
TO − ω2)

(ω2
TO − ω2)2 + ω2γ2

,

ε2(ω) = [εr(0) − εr(∞)]
ω2

TOωγ

(ω2
TO − ω2)2 + ω2γ2

(25.1.100)

is very similar to that of the Lorentz model (shown in Fig. 25.4). The imagi-
nary part ε2 has its maximum at ωTO. This can be considered as a measure-
ment instruction. The frequency of transverse oscillations is defined by the
maximum of the imaginary part of the dielectric constant.
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Fig. 25.7. The contribution of optical phonons to the dielectric constant and the
frequency dependence of the reflectivity

The lower part of Fig. 25.7 shows the frequency dependence of the re-
flectance. When γ is finite, the reflection between ωTO and ωLO is no longer
total, however, the reflectance can remain close to unity. Figure 25.8 presents
the reflectivity data for aluminum antimonide. The theoretical curves fit well
with the experimental results.
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Fig. 25.8. Wavelength dependence of the reflectance of AlSb and the theoretical
curve fitted to the experimental data [Reprinted with permission from W. J. Turner
and W. E. Reese, Phys. Rev. 127, 126 (1962). ©1962 by the American Physical
Society]

Making use of the Kramers–Kronig relation for the dielectric constant,

ε1(ω) = εr(∞) +
2
π

P

∞∫
0

ω′ε2(ω′)
ω′2 − ω2

dω′ . (25.1.101)

This formula clearly shows that the difference between the static and optical
dielectric constants,

ε1(0) − εr(∞) =
2
π

∞∫
0

ε2(ω′)
ω′ dω′ , (25.1.102)

is due to the oscillators of finite frequency. Since the ions, bound electrons,
and relatively free electrons in a solid can be associated with oscillators of
highly disparate frequencies, their contributions to the dielectric constant can
be simply added. At low frequencies only the contribution of the conduction
electrons need to be considered. The contribution of ions gives a characteristic
dispersive curve at about the optical phonon frequency. At even higher fre-
quencies the dielectric constant seems to become saturated at a value above
unity. If only frequencies up to this range were considered, this value could
be taken as εr(∞). At still higher frequencies the dispersive contribution of
bound electrons can also be observed, and εr(ω) reaches its true asymptotic
value only after that. Figure 25.9 shows the frequency dependence of the real
part of the dielectric constant schematically; the characteristic frequency is
assumed to be 1012 Hz for optical phonons and 1015 Hz for the excitation of
bound electrons. Sharp changes are observed at these frequencies. It should,
nonetheless, borne in mind that the entire spectrum cannot be measured in
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any single experiment: we can only measure it up to a characteristic frequency
ωc, which is usually smaller than the frequency of interband transitions.
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Fig. 25.9. Frequency dependence of the real part of the dielectric constant obtained
by summing the contributions of electrons and lattice vibrations

25.2 Quantum Mechanical Treatment

In the previous section we determined the polarizability and dielectric con-
stant of solids for a classically treated electron system and a classical lattice.
In the quantum mechanical treatment the interaction between the electro-
magnetic field and a solid can often be described by the Hamiltonians

Hint = −
∫

E(r) · P (r) dr (25.2.1)

or
Hint = −

∫
B(r) · M(r) dr , (25.2.2)

which correspond to the dipole approximation. Whether one or the other is
used depends on the relative strength of the couplings between the electric
field E and the polarization P of charged particles and between the magnetic
induction B and the magnetic moment M . Just like in the classical treatment,
we shall focus on electrically polarizable materials, and omit the discussion of
the optical properties of magnetic materials. First, we shall demonstrate that
the results obtained from the quantum mechanical analysis of electronic states
are very similar to the classical ones. Then we shall quantize the electromag-
netic field, too, and describe the interaction of light and matter in terms of
scattering between photons and the elementary excitations of the solid.

25.2.1 Dielectric Constant of the System of Electrons

Below we shall represent electrons by their wavefunctions, as usual for a quan-
tum mechanical description, but we shall continue to treat the electromagnetic
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field classically for the time being. We shall assume that at t = −∞ the core
electrons are in the ground state of energy E0 described by the wavefunction
φ0, and then an x-directed electric field of frequency ω is turned on adiabati-
cally:

E(t) = 1
2Exx̂

(
eiωt + e−iωt

)
e−δ|t| . (25.2.3)

The adiabaticity is included in the factor e−δ|t|, where δ is infinitesimally
small. Because of the applied field, the ground-state wavefunction becomes
mixed with the wavefunctions of excited states. Denoting the wavefunctions of
the allowed excited states by φj and the excitation energies by �ωj0 = Ej−E0,
the wavefunction of the perturbed state can be sought in the form

ψ(r, t) = c0(t)φ0(r)e−iE0t/� +
∑

j

cj(t)φj(r)e−iEjt/� , (25.2.4)

where the coefficients cj(t) can be determined using the formulas of time-
dependent perturbation theory. Up to linear order in the interaction,

− �

i
dcj(t)

dt
=
∫
φ∗j (r)Hint(t)φ0(r)ei(Ej−E0)t/� dr . (25.2.5)

In the dipole approximation, where effects of the magnetic field are neglected,
the perturbation Hamiltonian is

Hint(t) = eE(t) · r . (25.2.6)

Since the time dependence appears in exponential factors, the integration of
the differential equation (25.2.5) is straightforward. For times t when the field
is already turned on,

cj(t) = − 1
2

i
�

t∫
−∞

eExxj0

(
eiωt′ + e−iωt′

)
e−δ|t′|ei(Ej−E0)t

′/� dt′

= − 1
2eExxj0

{
ei(�ω+Ej−E0)t/�

�ω + (Ej − E0) − iδ
+

ei(−�ω+Ej−E0)t/�

−�ω + (Ej − E0) − iδ

}
= −1

2

eEx

�
xj0

{
ei(ω+ωj0)t

ωj0 + ω − iδ
+

ei(−ω+ωj0)t

ωj0 − ω − iδ

}
(25.2.7)

for j �= 0, where xj0 is the dipole matrix element, given by

xj0 =
∫
φ∗j (r)xφ0(r) dr . (25.2.8)

The dipole moment of the atom in this state is
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〈x〉 =
∫
ψ∗(r, t)xψ(r, t) dr

=
∑

j

{
x0jcj(t)e−iωj0t + xj0c

∗
j (t)e

iωj0t
}

= − 1
2

eEx

�

∑
j

|xj0|2
{

eiωt

ωj0 + ω − iδ
+

e−iωt

ωj0 − ω − iδ
(25.2.9)

+
e−iωt

ωj0 + ω + iδ
+

eiωt

ωj0 − ω + iδ

}
= − 1

2

eEx

�

∑
j

|xj0|2
{

2ωj0

ω2
j0 − ω2 + iωδ

eiωt +
2ωj0

ω2
j0 − ω2 − iωδ

e−iωt

}
.

The atomic polarizability can be determined from the polarization P = −e〈x〉.
The real part of the polarizability comes from the contribution that has the
same time dependence cosωt as the perturbing field. There is, however, an
additional part, which is proportional to sinωt and so contains a phase shift;
it is related to the absorbed energy, and can be interpreted as the imaginary
part of the polarizability. This is very similar to how (3.2.99) and (3.2.101)
were interpreted as the real and imaginary parts of the susceptibility in the
discussion of paramagnetic resonance. Thus,

α(ω) =
∑

j

e2|xj0|2
ε0�

2ωj0

ω2
j0 − ω2 − iωδ

. (25.2.10)

If the volume V contains N atoms, the real part of the dielectric constant is

εr(ω) = 1 +
N

V
α(ω) = 1 +

N

V

∑
j

e2|xj0|2
ε0�

2ωj0

ω2
j0 − ω2

. (25.2.11)

This formula is very similar to the result obtained in the τ → ∞ limit for
bound electrons treated as classical oscillators. Using the same factors as in
(25.1.81) and (25.1.82), the dielectric constant is customarily written as

εr(ω) = 1 +
e2

ε0me

N

V

∑
j

fj

ω2
j0 − ω2

, (25.2.12)

where
fj =

2me

�2
�ωj0|xj0|2 . (25.2.13)

On account of the analogy, this quantity is called the oscillator strength of
the transition from the ground state to the jth excited state. It can be proved
that the oscillator strengths obey a sum rule,10

10 This formula is called f-sum rule because of the usual notation f of the oscillator
strength.
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j

fj = Z , (25.2.14)

where Z is the number of excitable electrons per atom.
Since an infinite lifetime was assumed for the electron states in the fore-

going, a Dirac delta peak is obtained for the imaginary part of the dielectric
constant. Absorption occurs at those frequencies ω that correspond the fre-
quency of a transition from the ground state to an excited state. However,
absorption itself always leads to some broadening since the probability that
the electron is in the ground state decreases exponentially, while the occupa-
tion of excited states increases. Then the inverse lifetime of the states is given
by a finite Γj rather than an infinitesimal δ. Consequently,

εr(ω) = 1 +
e2

ε0me

N

V

∑
j

fj

ω2
j0 − ω2 − iωΓj

. (25.2.15)

The above considerations apply to bound electrons. In a system of free
electrons, photons of wave vector q and frequency ω can induce transitions in
which an electron of wave vector k inside the Fermi sphere is scattered to a
state k + q outside the Fermi sphere. The contribution of these processes to
the dielectric constant will be determined in Chapter 29. We just quote the
result here:

εr(q, ω) = 1 − e2

ε0q2
2
V

∑
k

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

. (25.2.16)

The imaginary part of the dielectric constant,

ε2(q, ω) = π
e2

ε0q2
2
V

∑
k

[f0(εk) − f0(εk+q)] δ(�ω − εk+q + εk) , (25.2.17)

which is related to absorption, is simple to interpret. The electric field of
wave vector q can excite an electron of wave vector k of the Fermi sea to a
state k + q as long as the absorption of the photon can supply the required
energy. The Fermi functions appear because the electron has to move from an
occupied state to an initially empty one.

Using the substitution k → −k − q in the term that contains f0(εk+q),
the real part takes the form

ε1(q, ω) = 1 +
e2

ε0q2
2
V

∑
k

2f0(εk)(εk+q − εk)
(εk+q − εk)2 − (�ω)2

. (25.2.18)

This can be easily generalized to the case where Bloch electrons moving in
a periodic potential are considered and transitions between different bands
(interband transition) have to be taken into account, too. The only difference
is the appearance of the matrix element of the operator exp(iq · r) between
the initial and final states of the electron:
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εr(q, ω) = 1 +
e2

ε0q2
2
V

∑
nn′k

|〈nk|eiq·r|n′k + q〉|22f0(εnk) (εn′k+q − εnk)
(εn′k+q − εnk)2 − (�ω)2

,

(25.2.19)
where n and n′ are band indices.

Since the wave vector associated with the transitions stimulated by light
is q ≈ 0, the frequency-dependent dielectric function can now be written as

εr(ω) = 1 +
e2

ε0me

1
V

∑
nn′k

fnn′(k)
ω2

nn′k − ω2
, (25.2.20)

where �ωnn′k is the energy of the transition between the state of energy εnk

in the nth band and the state with the same wave vector in the n′th band,
and fnn′(k) is the oscillator strength for this transition; its value is obtained
from the comparison with (25.2.19).

The imaginary part

ε2(ω) =
πe2

ωε0me

1
V

∑
nn′k

fnn′(k)δ(ω − ωnn′k) (25.2.21)

is usually specified in terms of the joint density of states for the two bands.
Analogously to the procedure used to define the density of states in Sections
12.2.1 and 17.4.4, the k-space sum can be replaced by an energy integral and
an integral over the constant-energy surface. The joint density of states for
bands n and n′ is then defined in analogy to (17.4.26) as

ρnn′(ε) =
2

(2π)3

∫
S(ε)

dS
|∇k(εn′k − εnk)| , (25.2.22)

where the factor 2 comes from the spin. The imaginary part of the dielectric
constant is then

ε2(ω) =
πe2

ε0meω

∑
nn′
fnn′(ω)ρnn′(�ω) . (25.2.23)

Since this quantity determines the strength of the absorption of electromag-
netic radiation, it is immediately obvious that there is no absorption at those
energies where no interband transition is possible. The joint density of states
is singular not only at the minimum and maximum: Van Hove singularities
appear at the energies that correspond to the saddle points in the difference
of the two dispersion relations – just like for the density of states for phonons
and Bloch electrons in Chapters 12 and 17. These singularities show up in
the frequency dependence of the imaginary part of the dielectric constant (as
illustrated for germanium in Fig. 25.10), and consequently in the absorption
as well.

The previous discussion of interband transitions was based on the as-
sumption that the electron excited to the n′th band is independent of the
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Fig. 25.10. The contribution of interband transitions to the theoretically and exper-
imentally determined frequency-dependent dielectric constant of germanium [J. C.
Phillips, Solid State Physics, Vol. 18]

hole left behind in the nth band. In semiconductors the interaction between
conduction-band electrons and valence-band holes cannot be neglected: they
can form bound states, called excitons, leading to the appearance of new peaks
in the absorption spectrum. We shall discuss this in more detail in the next
volume.

As mentioned in Section 25.1.4, the interaction with the electromagnetic
field is described in terms of the transverse dielectric constant rather than the
longitudinal one, however, the two are the same in the long-wavelength limit.
Just for reference, the precise formula for the imaginary part of the transverse
dielectric constant, which determines the absorption, is

ε2(ω) =
e2�

2

ε0m2
eω

2

∑
nn′

|〈n′, k |e · ∇|n, k〉|2 ρnn′(�ω) , (25.2.24)

where e is the unit vector in the direction of the transverse electric field, which
is just the polarization vector of the photon. The above matrix element is the
matrix element of the electron–photon interaction Hamiltonian that we shall
discuss below.

25.2.2 Electron–Photon Interaction

In the previous calculations we used the dipole approximation (25.2.6) for the
interaction between electrons and the electromagnetic field. In other cases it
is more convenient to specify the electromagnetic field by a vector potential,
and derive the interaction from the Hamiltonian given in (3.2.26),

H =
∑

i

{
1

2me

[
pi + eA(ri)

]2 + U(ri)
}
. (25.2.25)
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Earlier this Hamiltonian was used for the description of magnetic properties
in uniform magnetic fields. By a suitable choice of the vector potential it
can also serve to describe the interaction of electromagnetic radiation with
solids. The usual form p = −i�∇ of the momentum operator implies that
p · A = A · p − i� div A. In the Coulomb gauge div A = 0, so we have[

p + eA(r)
]2 = p2 + ep · A + eA · p + e2A2

= p2 + 2eA · p + e2A2 .
(25.2.26)

In a first approximation, the term proportional to A2 can be neglected, since
for common light intensities it is much smaller than A · p, so the interaction
is given by

Hint =
∑

i

e

me
A(ri) · pi = −

∑
i

ie�
me

A(ri) · ∇i . (25.2.27)

A simple and intuitive picture of the interaction is obtained when, using the
language of quantum electrodynamics, the electromagnetic field is described
in terms of photons, and its interaction with the solid is pictured as scattering
between photons and the elementary excitations of the solid. Therefore, we
abandon the classical approach based on the Maxwell equations in favor of a
description in terms of photon creation and annihilation operators. Because
of the transversality of electromagnetic radiation, the electric field and the
vector potential are expressed in terms of two physically interesting transverse
modes:

E = −i
∑
q,λ

√
�ωqλ

2V ε0
eqλ

(
bqλei(q·r−ωqt) − b†qλe−i(q·r−ωqt)

)
,

A =
∑
q,λ

√
�

2V ε0ωqλ
eqλ

(
bqλei(q·r−ωqt) + b†qλe−i(q·r−ωqt)

)
,

(25.2.28)

where b†qλ (bqλ) is the photon creation (annihilation) operator, and the polar-
ization vectors e satisfy

eqλ · q = 0 , λ = 1, 2 . (25.2.29)

Substituting these into (25.2.27), and using the second-quantized represen-
tation for the electron states as well, the following types of interaction terms
can appear in the Hamiltonian:

Hint ∼
∑

nn′kq

Dnn′kqc
†
n′k+qσcnkσ(bq + b†−q) . (25.2.30)

These terms describe processes in which an electron of wave vector k in the
nth band is scattered into the n′th band with the absorption or emission of a
photon. These are depicted by the first two processes in Fig. 25.11.
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Fig. 25.11. Interaction between electrons and the radiation field: scattering with
the absorption or emission of one photon, pair creation, and radiative recombination

It is more common in solid-state physics to speak about the creation of an
electron–hole pair when a photon is absorbed, and about the radiative recom-
bination of an electron–hole pair when a photon is emitted. The interaction
processes reflecting this point of view are shown in the right part of the figure.

The photon energy is comparable to the typical electron energy in solids
(of order eV) at wavelengths that are much larger than the atomic dimensions
(or wave numbers that are much smaller than the size of the Brillouin zone).
Therefore there is practically no momentum transfer (|q|  |k|) when a pho-
ton with an energy on the order of an eV is absorbed or emitted. Representing
the interband transitions in the reciprocal space, as in Fig. 20.8, these pro-
cesses correspond to vertical lines. As mentioned in connection with the band
structure of semiconductors, the gap of direct-gap semiconductors can be de-
termined from the threshold frequency of photon absorption. In indirect-gap
semiconductors the electron of the electron–hole pair created by the absorp-
tion of the photon can lose energy to get to the minimum of the conduction
band only by the subsequent emission of a phonon. In such indirect, two-step
transitions the conservation of energy does not need to be satisfied in the
intermediate state, only in the final state:

k′ = k + κ − q , εk′ = εk + �ω − �ωq , (25.2.31)

where κ is the negligibly small momentum of the photon, and q is the momen-
tum of the phonon. As discussed in Section 20.2.5, the actual indirect gap can
be determined by means of such processes when the maximum of the valence
band and the minimum of the conduction band are located at different wave
vectors – as in germanium and silicon.

In X-ray absorption electrons are excited from deep levels because of the
large photon energy. The hole left behind then acts as a scattering center. Since
the associated scattering potential does not appear adiabatically but abruptly,
this so-called final-state interaction leads to a rearrangement of the states of
the electron system. It is essential to take it into account in the description of
the absorption edge. However, its theoretical treatment requires the apparatus
of the many-body problem.

At high intensities the term A2 can no longer be neglected. When written
in the form
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i

e2

2me
A2(ri) =

∫
dr
∑

i

e2

2me
A2(r)δ(r − ri)

=
∫

dr
e2

2me
A2(r)ρ(r) ,

(25.2.32)

A2 is seen to be coupled to the density ρ(r) of electrons. Using the second-
quantized representation for this term, too, a number of different contributions
appear, for example ∑

nn′kqq′
Dnn′kqq′c†n′k+q′σcnkσb

†
q−q′bq , (25.2.33)

which corresponds to the scattering of a photon, accompanied by the creation
of an electron–hole pair. Terms with two-photon absorption and emission can
also appear. They are shown in Fig. 25.12.

Fig. 25.12. Interaction between electrons and the radiation field: two-photon pro-
cesses

An interesting manifestation of the interaction between photons and elec-
trons in solids is photoemission. In this process the energetic electron of the
created electron–hole pair leaves the solid. In the light of our previous re-
sults, the energy distribution of the emitted electrons is expected to reflect
the density of states inside the solid. As mentioned in Chapter 19, information
about the Fermi surface can be obtained by the ARPES method, in which the
angular distribution is also measured.

25.2.3 Phonon–Photon Interaction

As mentioned in Chapter 13 on the experimental study of phonons, infrared
absorption and Raman scattering provide suitable methods for measuring the
energy of optical phonons at the center of the Brillouin zone, while long-
wavelength acoustic phonons – in particular, their group velocity – can be
studied by means of Brillouin scattering. These quantities can be derived
from experimental data without knowing the precise nature of the interaction,
simply by assuming the conservation of energy and quasimomentum. Below
we shall give a more detailed description of the interaction, and read off the
allowed absorption and scattering processes.

Consider the kinetic energy (11.1.24) of the atoms of a vibrating lattice.
In the presence of an electromagnetic field described by a vector potential
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A the canonical momentum P (m,μ) is replaced by the kinetic momentum
P (m,μ)− qμA(r) in the kinetic energy formula, where qμ is the charge of the
μth ion in the primitive cell:

Tkin =
∑
m,μ

1
2Mμ

[
P (m,μ) − qμA(r(m,μ))

]2
. (25.2.34)

Up to linear order in the vector potential, the interaction between moving
ions and the electromagnetic field can be written as

Hint = −
∑
m,μ

1
Mμ

qμP (m,μ) · A(r(m,μ)) . (25.2.35)

Using the expansion (12.1.39), the momentum P (m,μ) = Mμu̇(m,μ) can
also be expressed in terms of the phonon creation and annihilation operators.
Likewise, the vector potential can be expressed in terms of the photon cre-
ation and annihilation operators through (25.2.28) in a very similar form. By
substituting both into the interaction Hamiltonian, and evaluating the sum
over the lattice points, which gives a constraint for the wave vectors,

Hint =
∑

q

Vq

(
a†qbq − aqb

†
q + a†qb

†
−q − aqb−q

)
(25.2.36)

is obtained, where a†q and b†q are the phonon and photon creation operators,
respectively. For simplicity, the polarization index is suppressed. The formula
can be interpreted as the conversion of a photon into a phonon, or vice versa,
in the interaction. Infrared absorption corresponds to the absorption of an
infrared photon accompanied by the creation of a transverse optical phonon,
to which the photon energy is transferred.

The full Hamiltonian of the photon–phonon system is

H =
∑

q

�ωq

(
a†qaq + 1

2

)
+
∑

q

�c|q| (b†qbq + 1
2

)
+
∑

q

Vq

(
a†qbq − aqb

†
q + a†qb

†
−q − aqb−q

)
.

(25.2.37)

If the system of phonons is not coupled to other degrees of freedom then
this bilinear Hamiltonian can be diagonalized by means of the generalized
Bogoliubov transformation

αi,q = wiaq + xibq + yia
†
−q + zib

†
−q i = 1, 2 , (25.2.38)

which gives

H =
∑

q

[
�Ω(1)

q

(
α†

1qα1q + 1
2

)
+ �Ω(2)

q

(
α†

2qα2q + 1
2

)]
. (25.2.39)
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These excitations are just the polaritons discussed in Section 25.1.7, which
arise from the hybridization of optical lattice vibrations and electromagnetic
radiation propagating in the solid. Their dispersion curve is shown in Fig. 25.6.

On the other hand, when phonons are also coupled to other degrees of free-
dom, and the interaction with photons is not the strongest, then the phonon
created by the photon can, before being transformed back to a photon, trans-
fer its energy to other degrees of freedom, while it decays, is scattered, or
absorbed. Thus the absorption of the energy of the photon occurs in two
steps. Because of the large disparity in the velocities, only optical phonons
can be created by light. Since the energy of optical phonons is below 0.1 eV,
the absorption occurs in the infrared region.

In ionic crystals the coupling to the electromagnetic field can be described
alternatively in terms of the coupling between the electric field E and the
polarization P due to the motion of ions. The interaction Hamiltonian is then

Hint = −P · E . (25.2.40)

Expressing the electric field, through (25.2.28), in terms of the phonon creation
and annihilation operators, and the polarization P in terms of the displace-
ment of ions in the form

P =
∑
m,μ

q∗μum,μ =
√

�

2NωTO

∑
m,μ,q

q∗μ√
Mμ

(
eμaqeiq·Rm + e∗

μa
†
qe−iq·Rm

)
,

(25.2.41)
where q∗μ is the effective charge of the μth ion in the primitive cell, we obtain
an expression that is similar to (25.2.36). Because of the transversality of
photons, they interact only with transverse optical phonons. The absorption
spectrum features a sharp peak at ω = ωTO.

Several channels are open for two-phonon absorption – that is, the process
in which a photon is absorbed and two phonons are created. The previous
linear formula between the ionic displacement and polarization is valid only for
rigid ions. Because of the displacement of neighboring ions the electron cloud
becomes distorted, giving rise to a coupling between the ionic displacement of
two ions and the electric field. In this way two phonons may also be created.
In another channel the created phonon decays due to anharmonicity. The
contributions of the two channels cannot be separated, as only the common
final state is observed. Because of these processes, absorption does not occur
at a single frequency but over a wide continuum.

Light can also be scattered inelastically by phonons. When a phonon is cre-
ated or annihilated in the optical branch, we speak of Raman scattering. The
wave number of visible light is on the order of 105 cm−1, therefore light scat-
tering is suitable to study q ∼ 0 phonons only – provided single-phonon events
alone are considered. When the photon absorbs or emits a long-wavelength
acoustic phonon, we speak of Brillouin scattering. These processes are illus-
trated in Fig. 25.13. Only the initial and final states of the photon and phonon
are shown; intermediate states are neglected.
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Fig. 25.13. The simplest processes of the phonon–photon interaction. Photons are
represented by dashed and phonons by wavy lines

Just like for absorption, the simultaneous creation or annihilation of two
phonons of wave vectors q and −q is possible in Raman scattering as well. By
means of such two-phonon Raman scattering, the whole phonon spectrum can
be probed. We speak of two-phonon Raman scattering even when two acoustic
phonons are created or annihilated. Since the density of states is the highest at
the boundary of the Brillouin zone for acoustic phonons, such measurements
are particularly sensitive to phonons close to the zone boundaries.

Attention must be paid, however, to the subtlety that photons can interact
directly only with optical phonons, therefore their interaction with acoustic
phonons is possible only in multiple steps, through the creation of an electron–
hole pair. The most probable processes are shown in Fig. 25.14.

Fig. 25.14. Photon–phonon scattering processes with the emission of one and two
phonons, with intermediate electron–hole pairs
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In the lowest order either the hole or the electron of the created electron–
hole pair emits or absorbs a phonon. In second-order processes two phonons
may also be created. Two such possibilities are shown in Fig. 25.14. In the
first case the Raman spectrum is continuous, while sharp lines are obtained
at the sums of the two phonon frequencies in the second, since momentum
conservation applies to intermediate states, too.

The strength of the individual processes can be determined only by tak-
ing into account the intermediate states, using the full quantum mechanical
description. That way selection rules are also established: depending on the
symmetries of the crystal, certain phonon branches are found to contribute to
infrared absorption, while others to Raman scattering alone. The correspond-
ing modes are called infrared active and Raman active modes.
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Superconductivity

As discussed in Chapter 24, the electrical resistivity of metals decreases with
decreasing temperature. In spite of zero-point vibrations, the contribution of
scattering by lattice vibrations would vanish at T = 0, and the resistivity of
an ideal crystal would be zero, whereas finite resistivities would be observed
at any finite temperature. However, impurities and inhomogeneities, which
are always present in the sample, reduce the transport relaxation time of
electrons to a finite value even at zero temperature, and thus the conductivity
remains finite at T = 0, too: σ = nee

2τ/me according to the prediction
of the Drude model. The liquefaction of helium (1908) opened the way to
studying the resistivity of metals at much lower temperatures than before, well
below the condensation point of helium at 4.22K, also known as the liquid-
helium temperature. It came as a great surprise in 1911 when H. Kamerlingh
Onnes1 observed that the resistivity of mercury (which can be purified easily
in its liquid state, and is therefore regarded as the purest metal) did not
decrease gradually with decreasing temperature but dropped to a very low
value – zero within experimental error – around T = 4.2 K. This experimental
finding is shown in Fig. 26.1.

Later it was confirmed that in a broad class of metals the resistivity does
not decrease gradually, as a power of the temperature, but drops suddenly
to zero at a finite critical temperature Tc. Kamerlingh Onnes coined the
terms superconductor for such materials, and superconductivity for the phe-
nomenon.2

In most cases the superconducting state appears at a very low temperature,
however several families of materials have been discovered recently in which
the transition temperature is close to or even somewhat higher than 100K.
Depending on the purity of the sample, the transition may be slightly smeared
out, as in the example shown in Fig. 26.2. The resistance of the sample of
1 See the footnote on page 2 of Volume 1.
2 Originally, he dubbed the phenomenon “supraconductivity”, but this name was

gradually replaced by the term used today.
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Fig. 26.1. Temperature dependence of the resistivity of mercury at low tempera-
tures, as measured by Kamerlingh Onnes [Comm. Phys. Lab. Univ. Leiden, No.
120b (1911)]

composition YBa2Cu3O7−δ (abbreviated as Y-Ba-Cu-O or YBCO) starts to
decrease rapidly around 90K, but it is finite even at 80K.

Fig. 26.2. Temperature dependence of the resistance for a high-Tc superconductor,
Y-Ba-Cu-O [Reprinted with permission from M. K. Wu et al., Phys. Rev. Lett. 58,
908 (1987). ©1987 by the American Physical Society]

We shall start this chapter with a brief overview of the phenomenon of
superconductivity and the most characteristic properties of superconductors,
and then give a phenomenological description. The microscopic theory will be
presented in Chapter 34 (Volume 3), after the detailed discussion of electron–
electron interactions.
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26.1 Superconductivity: The Phenomenon

Even though the most striking feature of superconductors is their infinitely
high conductivity, it is accompanied by a number of other interesting proper-
ties. Their discovery was a great step toward the understanding of the phe-
nomenon. Below we shall consider them one by one.

26.1.1 Vanishing Resistance, Persistent Current

The name “superconductor” comes from the striking property of vanishing
resistance below a critical temperature. A direct consequence of this vanishing
resistance is the persistence of currents. In a ring-shaped superconductor a
current would flow indefinitely because of the absence of resistance. According
to experiments, there is no sign indicating that the current would diminish:
the most precise measurements put the lifetime of the current above 105 years.
As we shall see, this current flows on the sample surface and not in its interior.

However, superconductors cannot carry arbitrarily large currents. Above
a critical current Jc the sample ceases to behave as a superconductor. In wires
of 1mm in diameter this critical current can be as high as 100A. As we shall
see, it is the magnetic field, generated by the current around the sample, that
destroys superconductivity.

The statement that no current is dissipated is valid only for direct currents
and low-frequency alternating currents. Current is dissipated above a thresh-
old frequency ν, which is characteristic of the material and is usually in the
microwave or infrared region. This can be seen in Fig. 26.3, which shows the
frequency dependence of the real part of the optical conductivity in thin lead
layers. It can be shown that the threshold frequency and the width Δ of the

Fig. 26.3. The frequency dependence of the real part of the optical (far-infrared)
conductivity in thin lead layers [Reprinted with permission from L. H. Palmer and
M. Tinkham, Phys. Rev. 165, 588 (1968). ©1968 by the American Physical Society]
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gap in the energy spectrum (to be discussed in Section 26.1.6) are related by
hν ≈ Δ.

26.1.2 Isotope Effect

In 1950 several research groups observed that the critical temperature Tc of
superconductors depended on the isotopic composition: Tc was found to de-
crease for increasing concentrations of heavier isotopes of the same element.
For mercury, which has seven stable isotopes between mass numbers 196 and
204, the transition temperature varies between 4.16K and 4.12K. The depen-
dence of the critical temperature on the isotopic mass can be approximated
as

Tc ∝M−α , (26.1.1)

where α = 1/2 was found for mercury. In other cases the variations of the
critical temperature are weaker. Table 26.1 shows the measured value of α for
a number of superconductors.

Table 26.1. Measured value of exponent α of the isotope effect for a number of
superconductors

Cd Hg Mo Os Pb Re Ru Sn Tl Zn Zr

α 0.5 0.50 0.37 0.21 0.48 0.36 0.0 0.47 0.5 0.45 0.0

While in certain cases the exponent is zero – which corresponds to the
absence of any measurable isotope effect –, it is often close to 0.5. Since dif-
ferent isotopes have the same electronic structure, the dependence on the
isotopic composition indicates that superconductivity cannot be understood
completely in terms of the electron system alone: the mass of the ions in whose
field the electrons move is also important. As we shall see in Chapter 34, the
microscopic theory of superconductivity – the BCS theory – provides a sim-
ple explanation for the dependence on the isotopic mass and the exponent
α = 1/2. Deviations from it can be understood in an improved theoretical
framework that leads to the Eliashberg equations.

26.1.3 Meissner–Ochsenfeld Effect

Because of its infinite conductivity, the superconductor might be considered
as a perfect conductor. In perfect conductors the current flow can be finite
only for vanishing electric fields, E = 0. However, the Maxwell equations
then imply that the magnetic field cannot vary with time inside the sample.
Therefore, when an external magnetic field is turned on, it cannot penetrate
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into the perfectly conducting region. On the other hand, if the sample is placed
in a magnetic field in its normal state, and it becomes a perfect conductor
only afterwards, then the magnetic field established inside the sample in the
normal state would need to remain unaltered by the transition into the perfect
conductor state, and the magnetic field would freeze into the sample. This
means that the strength of the magnetic field in a perfect conductor would
depend on the history of the sample.

Contrary to these expectations, W. Meissner and R. Ochsenfeld
(1933) observed that the magnetic induction inside the superconductor was
always zero in weak applied fields. When a superconductor is placed in a mag-
netic field, the field cannot penetrate into the sample. And if the sample is
placed into the magnetic field in its normal state, and cooled below the crit-
ical temperature Tc only afterwards, the magnetic field is expelled from the
sample. This is the Meissner–Ochsenfeld effect. The magnetic field lines are
shown in Fig. 26.4 for both the normal and superconducting states.

Fig. 26.4. The magnetic field lines around a sample of finite size, in the normal
(left) and superconducting (right) states

To understand this behavior of superconductors, we have to assume that
the magnetic field induces surface currents in a layer that is macroscopically
thin but thick on the atomic scales. These cancel the applied field, and main-
tain the state in which the magnetic induction is zero inside the sample. In
conjunction with the formula B = μ0(H + M) = 0, the requirement B = 0
leads to

M = −H (26.1.2)

for the magnetization of the superconductor. The susceptibility of the super-
conductor is therefore χm = −1, which corresponds to perfect diamagnetism.

This property of superconductors can be exploited most easily for setting
up a persistent current. Consider a superconducting ring placed in a uniform
axial magnetic field H above its critical temperature. With the field switched
on, the sample is then cooled below its critical temperature, whereby the
magnetic field H is expelled from the sample but, of course, B remains finite
inside the ring. When the external field is then switched off, the field strength
inside the ring must remain unchanged, since field lines cannot enter the
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superconducting ring. Therefore the flux through the ring is the same as the
original flux of the applied field: the transient electric field generated by the
switch-off induces an eddy current in the ring, and the magnetic field of the
current produces the required flux. The magnetic field lines around the ring in
the presence of the applied field and after its switch-off are shown in Fig. 26.5.

Fig. 26.5. The magnetic field lines around a ring-shaped sample in the presence of
an applied field (left) and after the applied field has been switched off (right), when
the superconducting current induced in the sample maintains the flux through the
ring

According to the measurement results shown in Fig. 26.6, the flux through
the superconducting ring cannot take any arbitrary value, only the integral
multiples of the flux quantum Φ0 = h/2e. This flux quantum is exactly the
half of what would be expected from the Landau quantization of electronic
energy levels in strong magnetic fields.3

Fig. 26.6. The magnetic flux through a superconducting ring, as a function of the
applied field [Reprinted with permission from B. S. Deaver, Jr. and W. M. Fairbank,
Phys. Rev. Lett. 7, 43 (1961). ©1961 by the American Physical Society]

3 The flux quantum associated with the motion of electrons in a magnetic field is
h/e, see page 282.
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26.1.4 Critical Field

The Meissner–Ochsenfeld effect can usually be observed only in relatively weak
fields. Sufficiently strong fields – which may be as low as H ∼ 102 to 103 Oe
in certain materials – can completely destroy superconductivity; the sample
then shows normal metallic behavior. Depending on how the transition to the
normal phase occurs, superconductors are divided into two broad classes.

In type I superconductors B remains zero inside the sample until the ap-
plied magnetic field reaches a temperature-dependent critical value Hc(T ); at
that point the entire sample becomes normal, that is, its conductivity jumps
to a finite value. As we shall see later, the transition is first order everywhere
except T = 0 and at T = Tc where Hc = 0, therefore the magnetization curve
exhibits hysteresis. When the external magnetic field is reduced, the normal
state may be maintained down to a lower field strength Hc2 (Hc2 < Hc). The
magnetic induction inside the sample and the magnetization of the sample
are shown in Fig. 26.7.

�MB

Fig. 26.7. The magnetic induction and magnetization in type I superconductors as
functions of the applied magnetic field

Of course, at the critical temperature Tc the critical field is zero: Hc(Tc) =
0. At lower temperatures Hc is finite, and increases continuously as T de-
creases. Experimental data show that this dependence is well approximated
by the function

Hc(T ) = Hc(0)
[
1 − (T/Tc)

2
]
. (26.1.3)

The critical field at T = 0 and the critical temperature are two important
parameters of superconductors. The superconducting phase covers a finite
region in the T–H plane; its boundary is determined by the temperature
dependence of the critical field. A typical phase diagram is shown in Fig. 26.8.

However, this behavior is not common to all superconductors. In a fairly
large proportion of superconductors the magnetic field starts to penetrate
into the sample at the lower critical field Hc1, however this penetration is
gradual rather than abrupt. The complete penetration of the field occurs at the
upper critical field Hc2, where superconductivity is destroyed. Materials that
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Fig. 26.8. Phase diagram of type I superconductors in the T–H plane

exhibit this behavior are called type II superconductors. The dependence of the
magnetization and average magnetic flux density B in such superconductors
on the applied magnetic field H are shown in Fig. 26.9.

B �M

Fig. 26.9. The magnetic induction and the magnetization in type II superconduc-
tors as functions of the applied magnetic field

As opposed to type I superconductors, the penetration of the magnetic
field (the disappearance of the Meissner–Ochsenfeld effect) in type II super-
conductors occurs at a lower field than the appearance of electrical resistivity.
That is why there are two phase boundaries in the schematic phase diagram
in Fig. 26.10.

When the applied field is weaker than the lower critical field Hc1, the sam-
ple behaves as a perfect diamagnet. This is the Meissner phase. When the
applied field is stronger than the upper critical field Hc2, normal behavior is
observed. For fields between Hc1 and Hc2, in the Shubnikov phase, the sample
becomes inhomogeneous: the sample interior then contains alternate super-
conducting and normal regions. That is why this phase is also known as the
mixed phase. The normal phase appears inside tube-like regions (“filaments of
flux”) along the applied magnetic field; the magnetic field can penetrate into
these parts of the sample. The magnetic flux density inside each tube is such
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Fig. 26.10. Phase diagram of type II superconductors in the T–H plane

that the total magnetic flux through the tube is exactly one flux quantum.
The current around the tube surface screens this flux, and the regions among
the tubes are superconducting. Since these eddy currents show a vortex-like
pattern, the tubes are called vortices. Defects in the crystalline order prevent
the vortices from moving, and so externally applied currents may flow without
any resistance in this state of the sample, too. Since Hc2 may be as high as
105 Oe, type II superconductors are much more important for technological
applications than type I superconductors. Among others, strong supercon-
ducting magnets can be built of them.

As we shall see, in conventional type II superconductors vortices are ar-
ranged in a regular array over the entire range between Hc1 and Hc2. All
high-Tc superconductors are type II materials, however their phase diagram
is even more complicated, as the lattice of vortices may melt before the sample
becomes a normal metal. Such a phase diagram is shown in Fig. 26.25.

26.1.5 Thermoelectric Properties

According to the Wiedemann–Franz law, good conductors are also good heat
conductors. In the region where the electrical resistivity receives its dominant
contribution from phonon-absorption and -emission processes, the resistivity
increases with temperature, while the thermal conductivity decreases for a
while and then tends to a constant value. The same behavior is observed
in superconducting materials in their normal phase when a magnetic field
exceeding Hc is applied. If the Wiedemann–Franz law were valid in the su-
perconducting phase, too, then the thermal conductivity would also become
infinitely large. However, λ starts to decrease at the onset of superconductiv-
ity, as shown in Fig. 26.11.
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Fig. 26.11. Temperature dependence of the thermal conductivity in the vicinity of
the superconducting phase transition

Another surprise is that the electric current is not accompanied by a heat
current: the Peltier coefficient is zero in the superconducting phase. These
phenomena indicate that the electrons responsible for superconductivity do
not carry any entropy.

26.1.6 Specific Heat

As we have seen, below room temperature, the specific heat of pure metals in
their normal state can be given as the sum of two terms:

Cn = γT +AT 3 . (26.1.4)

The linear term, which becomes dominant at low temperatures, is the elec-
tronic contribution, while the cubic term is due to phonons. A completely
different behavior is observed in the superconducting phase. The specific heat
has a discontinuity at Tc, and immediately below Tc it is larger than it would
be in the normal phase. On the other hand, the electronic contribution to the
specific heat is exponentially small at low temperatures,

Cs ∼ exp
(
− Δ

kBT

)
, (26.1.5)

where Δ is on the order of kBTc. This is shown for aluminum in Fig. 26.12.
This behavior indicates that, contrary to normal metals, there are no low-

energy electronic excitations in the superconducting state. A gap Δ ∼ kBTc
appears in the excitation spectrum. However, this gap is different in several
respects from those in semiconductors or insulators. Firstly, the appearance of
the gap in the latter types of material is the consequence of the periodic poten-
tial of the lattice. When electrons are added to the system, they occupy states
above the gap, and thus the conductivity increases. In contrast, the energy
gap is attached to the Fermi energy in superconductors. If the number of elec-
trons were increased, the position of the gap would be shifted upward together
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Fig. 26.12. Low-temperature specific heat of aluminum in zero magnetic field and
in an external field exceeding Hc [Reprinted with permission from N. E. Phillips,
Phys. Rev. 114, 676 (1959). ©1959 by the American Physical Society]

with the chemical potential, and the system would remain a superconductor.
Secondly, the gap depends only weakly on temperature in semiconductors,
whereas it shows a strong temperature dependence in superconductors. The
gap becomes narrower for increasing temperatures, and disappears at Tc.

In the absence of a magnetic field the superconducting order breaks up
continuously: the phase transition is second order. However, the specific heat
exhibits a discontinuity. Its magnitude can be estimated using the microscopic
theory. Referred to the specific heat Cn = γTc of the electron system, the
relative jump of the specific heat is a universal constant:

Cs − Cn

Cn
=

12
7ζ(3)

= 1.426 . (26.1.6)

As can be seen in Table 26.2, the measured value is indeed close to this number
in certain materials. However, the deviation is significant in others, especially
in high-Tc superconductors, where the specific-heat contribution of phonons
is also important.

Table 26.2. The relative jump of the specific heat in the transition point for some
superconductors

Element Relative jump Compound Relative jump

Al 1.45 UPt3 0.9
Cd 1.36 CeRu2Si2 3.5
Nb 1.93 (TMTSF)2ClO4 1.7
Pb 2.71 YBa2Cu3O7 3.6
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Using the relation between the specific heat in a uniform magnetic field
and the entropy per unit volume,

cH = T
(
∂s

∂T

)
H

, (26.1.7)

the entropy can be determined. Its temperature dependence is sketched in
Fig. 26.13. The entropy is lower in the superconducting phase than it would
be in the normal phase. The former is therefore more ordered than the latter.

Tc T

S

Superconductor

Normal metal

Fig. 26.13. Temperature dependence of the entropy in the superconducting and
normal states

26.1.7 Tunneling in SIS and SIN Junctions

Other measurements also indicate the presence of a gap in the spectrum of
electronic excitations. When a thin superconducting layer is illuminated by
infrared radiation with a wavelength of a few mm (Ephoton ∼ 10−3 eV), ab-
sorption is observed only above a frequency threshold. The same applies to
the absorption of ultrasound. As pointed out by I. Giaever4 (1960), the ex-
perimental study of tunneling in junctions where two superconductors or a
superconductor and a normal metal are separated by a thin insulator layer
is likely to provide the most suitable method for detecting the energy gap in
the superconducting phase. The first configuration is called a superconductor–
insulator–superconductor (SIS) junction, and the second is a superconductor–
insulator–normal metal (SIN) junction. The current–voltage characteristics of
two SIS junctions are shown in Fig. 26.14. In the first case identical, and in
the second case different superconducting materials are used on the two sides.
In the I–V curve extrapolated to T = 0 the current appears only at a finite
voltage, which is related to the energy gapsΔL andΔR of the superconductors
on the left and right by eV = ΔL +ΔR.
4 Ivar Giaever (1929–) was awarded the Nobel Prize in 1973 for his “experimental

discoveries regarding tunneling phenomena in superconductors”.
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Fig. 26.14. Current–voltage characteristics of Al-Al2O3-Al and Al-Al2O3-In junc-
tions at different temperatures [Reprinted with permission from I. Giaever and
K. Megerle, Phys. Rev. 122, 1101 (1961). ©1961 by the American Physical Society]

In junctions that contain high-Tc unconventional superconductors different
characteristics and temperature dependence are observed. This is related to
the characteristic anisotropy of the energy spectrum in such materials: the
gap depends on the direction in k-space.

26.2 Superconducting Materials

The first superconducting materials were discovered among elemental met-
als. Somewhat later, researchers turned to metallic compounds, and observed
that quite a few of them became superconductors at low temperatures. By low
temperatures we mean that even though the highest observed critical temper-
ature kept growing, the record was still only 23K in the mid-1980s. Shortly
afterwards, high-Tc superconductors were discovered, with critical tempera-
tures above 100K. Nonetheless we are still very far from realizing the hope of
finding materials that superconduct even at room temperature.

Below, we shall first consider the characteristic parameters of elemental
superconductors, then turn to compound superconductors, which are the most
important for applications, and finally present high-Tc superconductors.

26.2.1 Superconducting Elements

In Table 26.3 we listed those elements that become superconductors at normal
pressure in the bulk. Besides the critical temperature, the critical magnetic
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induction Bc is listed, since this is used ever more widely in the literature
instead of the critical magnetic field Hc. For type II superconductors – such as
niobium, tantalum, and technetium – the magnetic induction that corresponds
to the thermodynamic critical field Hc is given. This quantity will be defined
later; for now it is enough to know that it is between Hc1 and Hc2.

Table 26.3. The critical temperature Tc and the critical magnetic induction Bc of
superconducting elements

Element Tc (K) Bc (mT) Element Tc (K) Bc (mT)

Al 1.18 10.5 Pa 1.4
Am 0.6 Pb 7.20 80.3
Be 0.03 9.9 Re 1.70 20.1
Cd 0.52 2.8 Rh 3.2 × 10−4 5 × 10−3

Ga 1.08 5.9 Ru 0.49 6.9
Hf 0.13 1.3 Sn 3.72 30.5

α-Hg 4.15 41.1 Ta 4.47 82.9
β-Hg 3.95 33.9 Tc 7.8 141
In 3.41 28.2 Th 1.37 16.0
Ir 0.11 1.6 Ti 0.40 5.6

α-La 4.87 80 Tl 2.38 17.6
β-La 6.06 110 U 0.68 10.0
Lu 0.1 35.0 V 5.46 140
Mo 0.92 9.7 W 0.01 0.1
Nb 9.25 206 Zn 0.86 5.4
Os 0.66 7.0 Zr 0.63 4.7

Even more confusing than the inconsistent usage of B andH, the literature
also lacks unanimity in the choice of units. The CGS system is still widely
used, so the critical field is often given in oersteds instead of the corresponding
SI unit, A/m. Other authors speak about the magnetic field but specify it in
gausses or teslas. In Table 26.3 Bc is given, in milliteslas. To obtain the value
of Hc in A/m, it has to be multiplied by 104/4π = 795.8. Oersted values are
obtained through 1mT=̂10Oe.

It is worth taking a look at how these superconducting materials are dis-
tributed among the groups of the periodic table. This is shown in Table 26.4.

It is no surprise that the good semiconductors in group 14 (column IVA)
and the nonmetallic elements in groups 15, 16, and 17 (columns VA, VIA and
VIIA) do not become superconductors at atmospheric pressure even at very
low temperatures although it should be mentioned that they do so under very
high pressure – ranging from about 10GPa to over 100GPa for oxygen, sulfur,
and bromine – at a few kelvins. For example, the critical temperature reaches
18K at 30GPa for phosphorus. It should also be noted that at normal pres-
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Table 26.4. Superconducting elements in the periodic table. Elements shown in
white on black become superconductors in the bulk at atmospheric pressure, while
those in italics on gray only under high pressure or in thin films
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sure neither alkali metals, nor alkaline-earth metals (apart from beryllium),
nor noble metals are superconductors – in short, none of the simplest metals
to which the free-electron model can be applied successfully. Superconductors
are found among the elements of groups 12 and 13 (columns IIB and IIIA),
the non-semiconductor elements of group 14 (column IVA), and transition
metals. However, transition metals that are magnetically ordered, or are in
a sense close to becoming magnetically ordered, do not display superconduc-
tivity. But this rule is not watertight either: at high pressure iron loses its
magnetization, recrystallizes in an hcp structure, and then becomes a super-
conductor below 2K. Chromium exhibits superconductivity in thin films. As
we shall see in Volume 3, the presence of a uniform ferromagnetic order rules
out the possibility of superconductivity. In antiferromagnetic or nonuniform
ferromagnetic materials the situation is not so clear: the two kinds of order
usually compete and work against each other, although there are certain cases
when they coexist.

Among lanthanoides, only lanthanum and lutetium are superconductors.
The critical temperature is slightly different for the two crystallographic mod-
ifications of lanthanum, α-La (hcp structure) and β-La (fcc structure). To
date, four actinoids have been found to exhibit superconductivity: thorium,
protactinium, uranium (α and γ modifications), and americium. With the
exception of niobium, technetium, and vanadium, elemental superconductors
are all type I. The lower and upper critical fields are given in Table 26.5 for
these exceptions.
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Table 26.5. The critical temperature Tc and the lower and upper critical fields for
elemental type II superconductors

Element Tc (K) Bc1 (mT) Bc2 (mT)

Nb 9.25 173 405
Tc 7.8 120 312
V 5.4 115 296

The critical temperature may change under high pressure. The critical
temperature of zirconium changes from 0.6K at normal pressure to 11K at
30GPa, while the Tc of vanadium reaches 17.2K at 120GPa. Several other
elements – such as As, B, Ba, Bi, Ca, Ce, Cs, Fe, Ge, Li, P, Sb, Sc, Se, Si, Sr,
Te, and Y – that behave as normal metals or semiconductors become super-
conductors under pressures of order 103 MPa or higher. Among all elements,
the highest critical temperature was observed in lithium: Tc = 20K at a pres-
sure of 50GPa. Even Br, I, O, and S become superconductor under very high
pressure.

In other cases the superconducting parameters of amorphous samples or
thin films are different from those observed in bulk crystalline samples. For
example, in thin films tungsten becomes a superconductor at 5.5K instead of
0.01K, beryllium at 9.95K instead of 26mK, and gallium at 8.6K instead of
1.08K. Another interesting finding is that carbon becomes a superconductor
in its most recently discovered allotropic modification, the nanotube, and
its critical temperature depends on the tube diameter. Its highest critical
temperature registered to date is 15K.

26.2.2 Superconducting Compounds

Compared to elemental superconductors, higher critical temperatures can be
found in metallic alloys or compounds. A particularly interesting family of
such compounds is the group of materials of composition M3X – where M
stands for niobium or vanadium –, crystallized in A15 structure (shown in
Fig. 7.5). The transition temperatures for some of them are listed in Ta-
ble 26.6.

Members of this family held the record of highest transition temperature
for a good while. For applications, the upper critical field may be even more
important; this reaches 24.7T in Nb3Sn and 23T in V3Si. The highest critical
fields occur in another family, the so-called Chevrel-phase compounds. Their
generic composition is MxMo6X8, where M is a metallic element and X is
either sulfur or selenium. The transition temperature may depend strongly on
the number x specifying the composition, which is not necessarily one. This
is ignored in Table 26.7, in which the parameters – including typical values
for Tc – are listed for a number of superconductors.
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Table 26.6. Transition temperature of A15 superconductors

Compound Tc (K) Compound Tc (K)

V3Au 3.0 Nb3Au 11.5
V3Al 9.6 Nb3Al 19.1
V3Ga 16.8 Nb3Ga 14.5
V3In 13.9 Nb3In 9.2
V3Si 17.1 Nb3Si 19.0
V3Ge 8.2 Nb3Ge 23.2
V3Sn 3.8 Nb3Sn 18.1
V3Pt 2.9 Nb3Pt 10.9

Table 26.7. The transition temperature and upper critical magnetic induction for
Chevrel-phase superconductors

Compound Tc (K) Bc2 (T) Compound Tc (K) Bc2 (T)

Mo6S8 1.9 Mo6Se8 6.5
LaMo6S8 7.1 5.4 LaMo6Se8 11.4 44.5
Cu2Mo6S8 10.7 Cu2Mo6Se8 5.9
PbMo6S8 14.7 55.0 PbMo6Se8 3.8 3.8
TlMo6S8 8.7 TlMo6Se8 12.2
SnMo6S8 11.8 34.0 SnMo6Se8 6.8
YbMo6S8 8.6 YbMo6Se8 5.8

It was discovered in the early 1990s that some alkali-metal-doped ful-
lerites (which are made up of C60 molecules, see page 29 of Volume 1) exhibit
superconductivity. Relatively high Tc was found in alkali-metal fullerides of
composition M3C60. Their transition temperatures are given in Table 26.8.

Table 26.8. Critical temperature of alkali fullerides of composition M3C60

Compound Tc (K) Compound Tc (K)

K3C60 19.5 Rb3C60 29.5
K2RbC60 23.0 Rb2CsC60 31
K2CsC60 24.0 RbCs2C60 33
KRb2C60 27.0 Cs3C60 47

It is worth noting that the increase in the critical temperature of fullerides
is directly related to the increase in the lattice constant, brought about by
placing larger and larger alkali atoms in the lattice.
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A rather intensely studied materials of the past years has been MgB2, in
which hcp layers of manganese atoms become intertwined with honeycomb-
structured (graphite-like) layers of boron atoms. The particularly keen interest
is due to the highest transition temperature ever found in “conventional”5

superconductors: Tc = 40K.
Owing to their physical properties, heavy-fermion superconductors occupy

a special place among superconducting compounds. They will be presented in
Chapter 35.

26.2.3 High-Temperature Superconductors

Well into the 1980s, newer and newer superconducting materials were discov-
ered but the highest attained critical temperature kept increasing quite slowly.
Then in 1986 an observation made by J. G. Bednorz and K. A. Müller6

triggered an unprecedented hunt for materials with higher and higher Tc.
They found that by taking the semiconducting compound La2CuO4, which
becomes antiferromagnetically ordered at TN = 540K, and replacing a part
of the trivalent La3+ ions by divalent Ba2+ or Sr2+ ions, the resistivity of
the electron-deficient material (in which hole conduction dominates) starts to
drop rapidly at a higher temperature than in previously studied materials.
However, the transition was not sharp, and the electrical resistance did not
vanish completely, either. The Meissner–Ochsenfeld effect could not be ob-
served, but the measurements performed in magnetic fields indicated strong
diamagnetism.

By the first months of 1987 it became clear that the materials of composi-
tion La2−xBaxCuO4become superconductors between 30 and 35K, depending
on the concentration of the Ba ions. At high pressures the critical temperature
was found to be close to 40K. Using strontium instead of barium, the critical
temperature of La2−xSrxCuO4 was observed to reach 37.5K even at normal
pressures for the composition x ≈ 0.15.

This discovery gave a new impetus to the search of superconductors with
higher and higher Tc. Still in 1987 it was found that in YBa2Cu3O7−δ (YBCO)
the critical temperature, which depends on the oxygen content, can even reach
93K. The transition was not sharp here, either, as shown in Fig. 26.2. The
Meissner–Ochsenfeld effect could not be observed entirely: the samples did not
become perfectly diamagnetic (that is, the susceptibility did not reach −1).
Through the improvements in sample preparation during the past decades,
the susceptibility of high-quality crystals is close to the ideal value of −1 now.
When Y is replaced by a rare-earth metal, the transition temperature varies
relatively little.
5 As will be seen in Chapter 34, a superconductor is called conventional if the

spin-singlet Cooper pairs responsible for superconductivity are formed by the
electron–phonon interaction, and the order parameter exhibits s-wave symmetry,
therefore the BCS theory can be used to describe it.

6 See the footnote on page 6 of Volume 1.
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The two families of materials are commonly called 214 and 123 compounds,
referring to the ratios of the components. The critical temperature of some
of them are listed in Table 26.9. Critical fields are not shown because they
may depend on the direction of the applied field on account of the strong
anisotropy of the sample. According to estimates, Bc2 can be as high as 180T
in YBa2Cu3O7−δ.

Table 26.9. The transition temperatures for some members of the first discovered
families of high-Tc superconductors

Compound Tc (K) Compound Tc (K)

La2−xBaxCuO4 33 YBa2Cu3O7−δ 93
La2−xSrxCuO4 37.5 LaBa2Cu3O7 89
La2CuO4+δ 42 NdBa2Cu3O7 96

These new superconductors share a number of common features. The char-
acteristic layered structure of La2−xSrxCuO4 was shown in Fig. 7.23(b). We
shall show it once again in Fig. 26.15, along with the structure of the parent
compound of YBa2Cu3O7−δ.
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Fig. 26.15. The structure of La2−xSrxCuO4 and YBa2Cu3O7

In both structures the copper ion and the octahedrally coordinated oxygen
ions surrounding it make up Cu–O planes between the other constituents. In
La2−xSrxCuO4 the La3+ ions sit between these planes. The Sr2+ (Ba2+) ions
only serve as a reservoir of carriers. In YBa2Cu3O7−δ there are two Cu–O
planes per primitive cell, and the oxygen deficiency provides the carriers.
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More and more signs point to the conclusion that these Cu–O planes play
an important role in superconductivity. That is why these families of supercon-
ductors are called cuprate superconductors.7 In stoichiometric La2CuO4 the
half spins of Cu2+ ions are coupled antiferromagnetically via superexchange
through the oxygen ions, and make up an ordered antiferromagnetic structure.
The situation is very similar in YBa2Cu3O7−δ when δ ≈ 1. In both cases, the
small variation of the concentration of one component rapidly destroys the
magnetic order, and the sample becomes a superconductor. It looks as if the
electrons or holes moving in the Cu–O plane, among the disordered magnetic
moments, were responsible for superconductivity, and the relevant interaction
between these electrons were not the same as in conventional superconductors.
We shall discuss this point in detail in Chapter 34 on the microscopic theory
of superconductivity.

Somewhat later appropriate technologies were developed for synthesizing
material families in which the number of Cu–O planes can be controlled sys-
tematically. The materials in the series

HgBa2Can−1CunO2n+2,
TlBa2Can−1CunO2n+3,
Bi2Sr2Can−1CunO2n+4,
Tl2Ba2Can−1CunO2n+4

contain n Cu–O planes. The structures for n = 1, 2, 3 are shown for two of
them in Figs. 26.16 and 26.17.

Fig. 26.16. The structure of cuprate superconductors of composition
TlBa2Can−1CunO2n+3 for n = 1, 2, 3

7 The names copper-oxide ceramic superconductors and ceramic superconductors
are also used.
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Fig. 26.17. The structure of cuprate superconductors of composition
Tl2Ba2Can−1CunO2n+4 for n = 1, 2, 3

As listed in Table 26.10, their transition temperatures increase for a while
for increasing n, and then start to decrease again. The currently known
highest Tc at atmospheric pressure, 138K, was observed in the compound
Hg0.8Tl0.2Ba2Ca2Cu3O8.33, which contains three Cu–O planes. At high pres-
sure even higher transition temperatures can be reached: at 30GPa Tc = 157K
was measured.

26.3 Phenomenological Description of Superconductivity

As was demonstrated in the previous sections, superconductors show differ-
ent thermodynamic and electrodynamic behavior from normal metals. These
differences can be fully understood only within the framework of the micro-
scopic theory. Since that treatment draws heavily on the apparatus of the
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Table 26.10. High-Tc superconducting compounds, their abbreviated notations,
and their transition temperatures

Compound Notation Tc (K)

Bi2Sr2CuO6 Bi-2201 9
Bi2Sr2CaCu2O8 Bi-2212 92
Bi2Sr2Ca2Cu3O10 Bi-2223 110
Tl2Ba2CuO6 Tl-2201 95
Tl2Ba2CaCu2O8 Tl-2212 118
Tl2Ba2Ca2Cu3O10 Tl-2223 127
Tl2Ba2Ca3Cu4O12 Tl-2234 109
TlBa2CaCu2O7 Tl-1212 103
TlBa2Ca2Cu3O9 Tl-1223 133
TlBa2Ca3Cu4O11 Tl-1234 112
TlBa2Ca4Cu5O13 Tl-1245 <120
HgBa2CuO4 Hg-1201 95
HgBa2CaCu2O6 Hg-1212 126
HgBa2Ca2Cu3O8 Hg-1223 135
HgBa2Ca3Cu4O10 Hg-1234 125
HgBa2Ca4Cu5O12 Hg-1245 101

many-body problem, it has to be deferred to Volume 3 (Chapter 34). Below
we shall give a phenomenological description.

26.3.1 Thermodynamics of Superconductors

As follows from general thermodynamic considerations, the thermodynamic
potential used to describe the properties of superconductors depends on the
set of independent variables. If the magnetic properties are ignored, and the
temperature T and volume V are given, the Helmholtz free energy

F = E − TS (26.3.1)

has to be minimized. Likewise, when the temperature T and the pressure p
are fixed, the state with the lowest value of the Gibbs free energy

G = E − TS + pV (26.3.2)

is the equilibrium state.
The variation of the volume does not play an important role in supercon-

ductors – however, magnetic properties are essential. Then the work done by
the magnetic field on the system needs to be taken into account in the internal-
energy balance. The variation of the internal energy density is therefore given
by

dw = T ds+ μ0H · dM . (26.3.3)
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Henceforth we shall systematically use lowercase symbols to denote the densi-
ties of the appropriate extensive thermodynamic quantities. The contribution
μ0H · dH of the electromagnetic field energy has to be added to the internal
energy. The variation of the internal energy density is then

dw = T ds+ μ0H · dM + μ0H · dH = T ds+ H · dB. (26.3.4)

If the magnetic induction (flux density) B is the independent, natural variable,
the variation of the Helmholtz free energy density f is

df(T,B) = −sdT + H · dB. (26.3.5)

In most experiments it is not the magnetic flux density that is controlled
directly but the applied magnetic field H, by means of applied currents. The
relevant thermodynamic potential is then the Gibbs free energy, which is a
function of T and H. It is obtained from the Helmholtz free energy F (T,B)
by a Legendre transformation. In terms of the densities,

g(T,H) = f(T,B) − B · H. (26.3.6)

The behavior of the system is determined by the minimum of this quantity.
The condition for thermodynamic equilibrium is(

∂g

∂B

)
H

= 0 . (26.3.7)

When the temperature and magnetic field are varied, the Gibbs potential
changes by

dg(T,H) = −sdT − B · dH. (26.3.8)

This implies the following formulas for the entropy and magnetic induction:

s = −
(
∂g

∂T

)
H

, B = −
(
∂g

∂H

)
T

. (26.3.9)

Integration of (26.3.8) gives the variation of the Gibbs potential for a
sample placed in a magnetic field. In isotropic systems

g(T,H) = g(T, 0) −
H∫

0

B(H ′) · dH ′ . (26.3.10)

In the normal state, if the sample itself is not magnetically ordered, μr ≈ 1
and B = μ0H to a good approximation, thus

gn(T,H) = gn(T, 0) − 1
2μ0H

2. (26.3.11)

In the superconducting state of type I superconductors B = 0 in the bulk of
the sample, so, if the contribution of the thin surface layer can be neglected,
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gs(T,H) = gs(T, 0) . (26.3.12)

The free energy in the superconducting and normal phases are plotted against
the magnetic field in Fig. 26.18.

gs

gn

Hc

g

H

Fig. 26.18. The dependence of the Gibbs free energy on the magnetic field in the
superconducting and normal phases

In the absence of an applied magnetic field the superconducting phase is
stable below the critical temperature as its Gibbs free energy is lower. The
difference of the free energies of the superconducting and normal phases is
called the condensation energy. In the presence of a magnetic field the free
energy of the normal state becomes lower, while that of the superconducting
phase is left unchanged. In fields exceeding a critical strength, the Gibbs free
energy is lower for the normal state than for the superconducting state. The
critical magnetic field Hc, where the phase transition occurs, is determined
by

gs(T,Hc) = gn(T,Hc) . (26.3.13)

Using the previous formulas,

gs(T, 0) = gn(T, 0) − 1
2μ0H

2
c . (26.3.14)

The condensation energy can thus be simply related to the critical field. This
is particularly noteworthy because the condensation energy can be determined
from the microscopic theory, and so the temperature dependence of the critical
field can be derived.

The difference of the two Gibbs free energies in a magnetic field can also
be written as

gs(T,H) = gn(T,H) + 1
2μ0

(
H2 −H2

c
)
. (26.3.15)

The entropies of the two phases at the critical field of the transition can be
determined through (26.3.9), leading to

ss − sn = μ0Hc
dHc

dT
. (26.3.16)

It follows from the previously derived temperature dependence of the critical
field that the quantity on the right-hand side is negative, thus the entropy of
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the superconducting phase is indeed lower than that of the normal phase. The
latent heat of the phase transition is then

q = T (sn − ss) = −Tμ0Hc
dHc

dT
. (26.3.17)

This quantity vanishes at T = 0 and T = Tc, where Hc = 0. The transition is
second order in both points and first order everywhere else.

Calculating the specific heat from c = T∂s/∂T ,

cs − cn = Tμ0

[
Hc

d2Hc

dT 2
+
(

dHc

dT

)2
]
. (26.3.18)

It seems justified to assume that the transition to the superconducting state
does not modify the phonon spectrum, so the specific-heat contribution of
lattice vibrations is the same in the two phases. The jump in the specific heat
is related to changes in the excitation spectrum of the electron system.

Using the empirical formula (26.1.3) for the temperature dependence of
the critical field,

cs − cn = 6μ0
H2

c (0)
Tc

[
−1

3

(
T

Tc

)
+
(
T

Tc

)3
]
. (26.3.19)

At low temperatures the second term is much smaller than the first. Since the
specific heat of the superconductor is exponentially small, we may identify the
term that is proportional to the temperature with the electronic contribution
cn = γT to the specific heat of normal metals. By making use of (26.1.3) once
again, we have

γ = −μ0Hc
d2Hc

dT 2
= 2μ0

(
Hc(0)
Tc

)2

. (26.3.20)

According to (16.2.91), γ can be related to the electronic density of states at
the Fermi energy, which can thus also be determined from the measurement
of Hc and Tc.

The jump in the specific heat in the critical point is given by the Rutgers
formula8

(cs − cn)Tc
= Tc μ0

(
dHc

dT

)2

Tc

= 4μ0
H2

c (0)
Tc

. (26.3.21)

The quantities on the two sides can be measured independently. Experimental
data usually obey this formula quite well.

Thermodynamic relations can also be applied to type II superconductors,
even though the thermodynamic critical field – which is derived from the
energy difference between the normal and superconducting phases – does not
8 A. J. Rutgers, 1936.
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have a direct physical meaning. In the normal phase, where the magnetic
induction inside the sample is determined by B = μ0H,

∂

∂H
gn(T,H) = −μ0H . (26.3.22)

In the superconducting phase

∂

∂H
gs(T,H) = −B (26.3.23)

is satisfied. By combining the two equations,

∂

∂H

[
gn(T,H) − gs(T,H)

]
= B − μ0H = μ0M . (26.3.24)

Thus, when the magnetization is integrated up to the upper critical field,

Hc2∫
0

M dH =
1
μ0

[
gn(T,Hc2)−gs(T,Hc2)

]− 1
μ0

[
gn(T, 0)−gs(T, 0)

]
. (26.3.25)

At the upper critical field the Gibbs free energy is the same in the supercon-
ducting and normal phases, and for H = 0 this difference is the condensation
energy. Writing this in the same form as for type I superconductors, we can
introduce the thermodynamic critical field Hc through the definition

1
2μ0H

2
c = gn(T, 0) − gs(T, 0) . (26.3.26)

Then
Hc2∫
0

M dH = − 1
2H

2
c . (26.3.27)

By measuring the equilibrium magnetization curve, a measurement instruction
can be given for the determination of the thermodynamic critical field.

26.3.2 Electrodynamics of Superconductors

In 1935 the brothers Fritz and Heinz London proposed a simple system
of equations for the description of the electric and magnetic properties of su-
perconductors. They assumed that the Maxwell equations could be applied in
their original form, only the constitutive relations required modification. In
line with an early phenomenological theory of superconductivity, the Gorter–
Casimir two-fluid model,9 they considered that besides normal electrons, su-
perconductors also contain another type of carrier, of charge −e∗ and mass
m∗, in a number density n∗s . For simplicity, we shall call them superconduct-
ing electrons in this chapter. Normal electrons participate in scattering, and
9 C. J. Gorter and H. B. G. Casimir, 1934.
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their relaxation time τn is finite, whereas superconducting electrons move in
the sample without dissipation. Their current density can be written in the
customary form

js = −e∗n∗svs , (26.3.28)

where vs is the velocity of superconducting electrons. If this current is not
dissipated, the superconducting electrons accelerate freely in an electric field;
their equation of motion is

m∗ dvs

dt
= −e∗E . (26.3.29)

The equation governing the variations of the current with time is then

djs

dt
=
n∗s e

∗2

m∗ E . (26.3.30)

This is the first London equation, which formulates the infinity of the conduc-
tivity.

Another relation is obtained by substituting this formula into the Maxwell
equation

curlE = −∂B
∂t
. (26.3.31)

This leads to
d
dt

(
m∗

n∗s e∗
2 curl js

)
= −∂B

∂t
, (26.3.32)

and after some rearrangement to

d
dt

(
curl js +

n∗s e
∗2

m∗ B

)
= 0 . (26.3.33)

The London brothers assumed that the parenthesized expression is not only
constant in time but zero, that is

curl js = −n
∗
s e

∗2

m∗ B . (26.3.34)

This is the second London equation. When the magnetic induction is expressed
in terms of the vector potential as B = curlA,

js = −n
∗
s e

∗2

m∗ A (26.3.35)

is obtained, which implies a local relationship between the superconducting
current and the vector potential.

By introducing the parameter
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λ2
L =

m∗

n∗s e∗
2μ0

, (26.3.36)

which has a dimension of length squared, the two London equations can also
be written as

E = μ0λ
2
L

djs

dt
, B = −μ0λ

2
L curl js . (26.3.37)

In the discussion of the microscopic theory we shall see that the supercon-
ducting electrons are in fact bound electron pairs, the so-called Cooper pairs.
To match this phenomenological theory with experimental results and the mi-
croscopic theory, we shall need to use e∗ = 2e, m∗ = 2me, and n∗s = ns/2,
where ns is the actual density of superconducting electrons. Note that if the
electron mass and charge, along with the actual density of electrons respon-
sible for superconductivity were used instead of the corresponding effective
parameters, a very similar formula would be obtained for λL:

λ2
L =

me

nse2μ0
. (26.3.38)

The reason behind choosing the second London equation in the form given
above is that it leads naturally to the Meissner–Ochsenfeld effect. According
to the Maxwell equations, in the static case

1
μ0

curlB = js . (26.3.39)

By taking the curl of both sides, and making use of the second London equa-
tion,

curl curlB = μ0 curl js = −μ0
n∗s e

2

m
B = − 1

λ2
L
B . (26.3.40)

We shall determine the solution of this equation in the special case where
the x > 0 half-space is filled by a superconducting material and the x < 0
half-space by a normal metal or vacuum. By applying a uniform magnetic
field in the z-direction, the magnetic induction becomes nonuniform at the
superconductor side of the interface, as shown in Fig. 26.19.

As the interface is the x = 0 plane, all spatial variations are in the x-
direction. The spatial variations of Bz are governed by

d2Bz

dx2
=

1
λ2

L
Bz . (26.3.41)

We are now seeking solutions that also satisfy the auxiliary condition that the
magnetic field should be B0 in the x < 0 region, while deep inside the su-
perconductor it should vanish, as required for the Meissner–Ochsenfeld effect.
The result is

Bz(x) =

⎧⎨⎩B0 , x < 0 ,

B0e−x/λL , x > 0 .
(26.3.42)
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Fig. 26.19. Penetration of an applied magnetic field into the superconductor. The
region is characterized by the penetration depth λL

Thus λL determines how deeply the magnetic induction can penetrate into the
superconductor; only beyond that does the superconductor show the char-
acteristic bulk behavior (B = 0). For this reason, λL is called the London
penetration depth.

(26.3.39) implies that a surface current flows in the superconductor if the
field is finite outside. The current density depends on the distance from the
surface as

js = j(0)s e−x/λL =
1

μ0λL
B0e−x/λL . (26.3.43)

This surface current screens the external magnetic field inside the supercon-
ductor. The critical current – which is the highest current that can be passed
through a superconducting wire of radius R without the sample becoming a
normal conductor – is then straightforward to determine. Since the current
can flow only close to the surface, practically within a layer of thickness λL,
the current is approximately

I = 2πRλLj
(0)
s . (26.3.44)

On the other hand, the current density on the surface cannot be larger than
the value associated with the critical field outside the sample, so j(0)s cannot
exceed

jc =
1

μ0λL
Bc . (26.3.45)

The critical current is then

Ic = 2πRBc/μ0 . (26.3.46)

As the density of superconducting electrons is temperature dependent,
so is the London penetration depth. Assuming that at T = 0 all electrons
become superconducting – that is, n∗s can be identified with the density of
conduction electrons –, λL is expected to be on the order of 100nm (1000Å) for
typical metallic electron densities. The extrapolated zero-temperature value
of the measured penetration depth is given in Table 26.11 for a number of
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superconductors. The measured values are in order-of-magnitude agreement
with the estimated values given above.

Table 26.11. The experimental values for the penetration depth and coherence
length in certain superconductors

Element λL (nm) ξ0 (nm) Compound λL (nm) ξ0 (nm)

Al 45 1550 Nb3Sn 65 3
Cd 110 760 Nb3Ge 90 3
In 40 360 V3Si 60 3
Nb 52 39 PbMo6S8 200 2
Pb 39 87 K3C60 240 2.6
Sn 42 180 UBe13 400 7

According to the Gorter–Casimir two-fluid model, the density of normal
electrons is proportional to the fourth power of T at finite temperatures, so
the density of superconducting electrons is given by

ns = n0

[
1 − (T/Tc)4] . (26.3.47)

The approximate formula for the temperature dependence of the penetration
depth is therefore

λL(T ) = λL(0)
[
1 − (T/Tc)4

]−1/2
, (26.3.48)

in fair agreement with measurements. As the critical point is approached, the
penetration depth diverges as the inverse square root of Tc − T .

In high-Tc superconductors the penetration depth and coherence length
exhibit strong anisotropy because of the layered structure. Some relevant data
are listed in Table 26.12.

Table 26.12. The experimental values for the penetration depth and coherence
length in two high-Tc cuprate superconductors, parallel and perpendicular to the
Cu–O planes

Compound λ‖ (nm) λ⊥ (nm) ξ‖ (nm) ξ⊥ (nm)

YBa2Cu3O7 100 500 1.2 0.3
HgBa2Ca2Cu3O10 130 3500 1.5 0.2
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26.3.3 Pippard Coherence Length

The measured value of the penetration depth is often larger than the predic-
tion of the London equation (26.3.36). The reason for this is that the second
London equation assumes a local relationship between the current density of
superconducting electrons and the vector potential. However, this assumption
is too strong, and is not satisfied in all superconductors. In analogy to the
Reuter–Sondheimer theory10 of the anomalous skin effect, which led to a non-
local generalization of Ohm’s law, A. B. Pippard (1953) proposed to replace
the local London equation with a nonlocal relationship, in which the current
at point r does not depend on the vector potential in r alone but on its values
A(r′) over a region of radius ξ0 around r. Based on Chambers’ formula,11

j(r) =
3σ
4πl

∫
R[R · E(r′)]

R4
exp(−R/l) dr′ (26.3.49)

for the anomalous skin effect, where R = r−r′, R = |R|, σ is the macroscopic
conductivity, and l is the mean free path, Pippard assumed

js(r) = − 3nse
2

4πξ0me

∫
R[R · A(r′)]

R4
exp(−R/ξ0) dr′

= − 3
4πμ0

1
ξ0λ2

L

∫
R[R · A(r′)]

R4
exp(−R/ξ0) dr′

(26.3.50)

for superconductors. The temperature-independent characteristic length ξ0 is
the Pippard coherence length.

To estimate its value, we shall assume that the superconducting state is
due dominantly to the electrons in the region of width kBTc around the Fermi
energy. The uncertainty of the momentum is then Δp ≈ kBTc/vF. The position
uncertainty

Δx ≥ �/Δp =
�vF
kBTc

(26.3.51)

implied by the Heisenberg uncertainty principle can then be identified with the
coherence length ξ0. According to the microscopic theory, its more accurate
value can be expressed in terms of the energy gap Δ0 – which is of the same
order of magnitude as kBTc:

ξ0 =
�vF
πΔ0

= a
�vF
kBTc

, (26.3.52)

where a ≈ 0.180. Its experimental values for a number of materials are listed
in Tables 26.11 and 26.12. Visibly, ξ0 can be two orders of magnitude larger
or smaller than the London penetration depth. This plays an important role
in the classification of superconductors.
10 G. E. H. Reuter and E. H. Sondheimer, 1948.
11 R. G. Chambers, 1952.
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If λL � ξ0, then A(r) varies little over the interesting part of the domain
of integration in (26.3.50), and a local relationship between the current density
and the vector potential expressed by the second London equation is recovered.
In this case the penetration of the magnetic field is determined by λL alone. As
we shall see later, such a situation is encountered in type II superconductors,
which are therefore also called London superconductors.

In the opposite limit, which is typical of type I superconductors, Pippard’s
nonlocal relationship between the current and the vector potential has to be
used. That is why type I superconductors are sometimes referred to as Pippard
superconductors. The actual penetration depth – the distance over which the
vector potential falls off – has to be determined self-consistently. Owing to
the sharp decrease of the vector potential, the integral in (26.3.50) is reduced
roughly by a factor of order λ/ξ0:

js(r) = − λ
ξ0

1
μ0λ2

L
A(r) . (26.3.53)

When the penetration depth is determined from this relation using the
Maxwell equations, λ/(ξ0λ2

L) must be identified with 1/λ2. This gives

λ = λ2/3
L ξ

1/3
0 , (26.3.54)

which is larger than the London value, in agreement with the measurements.
When impurities are present, and the mean free path of electrons is l

because of impurity scattering, the actual coherence length is given by

1
ξ

=
1
ξ0

+
1
l
. (26.3.55)

In the very imperfect (dirty) limit l  ξ0, and thus the exponential factor in
the Pippard formula is e−|r|/l. By evaluating the integral, the current and the
vector potential are now related through

js(r) = − l

ξ0

1
μ0λ2

L
A(r) . (26.3.56)

The actual penetration depth of the magnetic field is then obtained from

l

ξ0

1
λ2

L
=

1
λ2
, (26.3.57)

which gives

λ = λL

(
ξ0
l

)1/2

. (26.3.58)
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26.3.4 Flux Quantization

The condition that the current should vanish inside the superconductor im-
mediately implies the property mentioned among the experimental findings:
the magnetic flux through a ring cannot take any arbitrary value, only the
integral multiples of a flux quantum Φ0. To demonstrate this, we have to start
with the Bohr quantization condition∮

C

p · dl = nh , (26.3.59)

where the line integral is along some closed path. As discussed in Chapter 3,
the canonical momentum p and the kinetic momentum m∗vs that determines
the kinetic energy are related by

p = m∗vs − e∗A . (26.3.60)

Substituting this into the quantization condition,

m∗
∮
C

vs · dl − e∗
∮
C

A · dl = nh . (26.3.61)

Expressing the velocity in terms of the current of superconducting electrons
and rearranging the terms gives

m∗

n∗s e∗
2

∮
C

js · dl +
∮
C

A · dl =
|n|h
e∗

. (26.3.62)

If the ring is sufficiently thick for that no current can flow in its interior, the
integration path can be chosen in such a way that the contribution of the first
term on the left-hand side be zero. According to Stokes’ theorem, the second
term is the magnetic flux Φ through a surface F bounded by the closed curve
C: ∮

C

A · dl =
∫
F

curlA dF = Φ . (26.3.63)

So the magnetic flux through the superconducting ring can take only discrete
values, namely, the integral multiples of the flux quantum

Φ0 =
h

e∗
. (26.3.64)

To establish agreement with the measurement shown in Fig. 26.6, e∗ must be
chosen as twice the elementary charge.

When the region is chosen in such a way that current flows on its bound-
ary, then the quantization condition (in units of h/e∗) does not apply to the
magnetic flux but to the fluxoid
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Φ+
m∗

n∗s e∗
2

∮
C

js · dl , (26.3.65)

which also contains the contribution of the superconducting current.

26.4 Ginzburg–Landau Theory

By complementing the general thermodynamic relations by a simple assump-
tion about the temperature dependence of the critical field, and extending
the Maxwell equations to the superconducting phase by means of the Lon-
don equations, we gave a quite simple description of the thermodynamics
and electrodynamics of the superconducting state in the previous section.
The phase transition was studied through the comparison of the free energy
of the normal and superconducting states, both of which were assumed to
be homogeneous. If the sample is allowed to be inhomogeneous, i.e., normal
and superconducting regions can alternate in it – a possibility that was men-
tioned as an empirical fact in connection with the Shubnikov phase of type
II superconductors – then simple (and, as we shall see, naive) considerations
straightforwardly lead to the conclusion that the homogeneous superconduct-
ing state can never be stable energetically. To demonstrate this, assume that
normal and superconducting layers alternate inside the sample in such a way
that the normal layers are much thinner than the superconducting ones, but
even the thickness of the latter is smaller than the penetration length. In this
geometry the normal regions contribute negligibly to the total free energy,
however, they allow the magnetic field to penetrate into the superconducting
regions, too. This way, the Gibbs free energy of homogeneous superconduc-
tors could be reduced. Moreover, superconductivity would not disappear at
the critical field Hc (which is related to the condensation energy of bulk su-
perconductors): it could persist in a configuration where thin superconducting
and normal layers are stacked because the destruction of superconductivity
requires a higher critical field in thin films than in bulk samples.

The existence of type I superconductors is in contradiction with this naive
expectation. In type II superconductors the alternation of normal and su-
perconducting regions is indeed observed between the upper and lower criti-
cal fields, however, homogeneous superconductivity is found below Hc1 here,
too. This indicates the necessity of a more precise study of normal metal–
superconductor interfaces, most notably their energy. This requires a better
treatment of superconductivity than the one based on the London equations.

This theory, called the Ginzburg–Landau theory, is the generalization of
Landau’s theory of second-order phase transitions to inhomogeneous super-
conductors in a magnetic field. The fundamental assumptions of Landau’s
theory were presented in Chapter 14. Using that as a starting point, we shall
now derive the Ginzburg–Landau equations, and then use them to describe
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the macroscopic properties and the vortices that appear in the intermediate
state of type II superconductors.

26.4.1 Ginzburg–Landau Equations

In 1950, before the advent of the microscopic theory of superconductiv-
ity, V. L. Ginzburg12 and L. D. Landau generalized the Landau theory
of second-order phase transitions to the normal–superconducting transition.
They assumed that the superconducting phase can be characterized by an
order parameter that is finite only in the ordered, superconducting phase,
and varies continuously below the critical point, staring from zero at Tc. They
also assumed that a free-energy functional can be defined in the vicinity of the
phase-transition point, and it can be expanded in powers of the order param-
eter. The equilibrium value of the order parameter can be determined from
the minimum of the functional, whereas the actual value of the free energy is
given by the value of the functional at the equilibrium order parameter.

As the magnetic field is known to penetrate into type II superconductors
inhomogeneously, we shall use the free-energy-density formula (14.5.17), which
takes the spatial variations of the order parameter into account, too. Besides,
Ginzburg and Landau assumed that the order parameter is somehow related
to the wavefunction of superconducting electrons, and is therefore a complex
quantity. Their second, even more important assumption was that the term
containing the gradient of the order parameter in the series expansion of the
free-energy density can be considered to be related to the kinetic energy of
superconducting electrons. This physical insight then implied that, just like
for an electron in a magnetic field, the effects of the magnetic field have to be
taken into account by replacing the canonical momentum operator −i�∇ by
the kinetic momentum operator, which also contains the vector potential and
the charge −e∗ of superconducting electrons.13 The free-energy density of the
superconducting state is then

fs = fn+α(T )|ψ|2+
1
2
β(T )|ψ|4+

1
2m∗

∣∣∣∣(�

i
∇ + e∗A

)
ψ

∣∣∣∣2+
1

2μ0
B2 , (26.4.1)

where the last term is the energy of the magnetic field B = curlA. In their
approach the magnetic induction (or the vector potential) is fixed, which is
why the Helmholtz free energy is studied.
12 Well after the death of Landau (1908–1968), who was awarded the Nobel Prize

in 1962 (see footnote on page 28 of Volume 1), Vitaly Lazarevich Ginzburg
(1916–) shared the Nobel Prize with Alexei Alexeevich Abrikosov (1928–)
and Anthony James Leggett (1938–) in 2003 “for pioneering contributions to
the theory of superconductors and superfluids”.

13 The free energy is gauge invariant only if a universal value is taken for the charge.
Ginzburg and Landau argued that there was no reason to choose it to be dif-
ferent from the electron charge. It is now known that e∗ should be chosen as 2e,
a universal value for all superconductors.
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Since the order parameter of the superconducting state has to vanish in
the normal state – in other words, the free-energy minimum must be at ψ = 0
in the normal phase and at some nonzero value in the superconducting state
–, the phase transition occurs at that temperature Tc for which α(Tc) = 0.
The parameter α is positive above Tc and negative below it. Assuming a linear
temperature dependence in the vicinity of the transition point,

α(T ) = a(T − Tc) , a > 0 , (26.4.2)

while β is chosen to be positive and temperature independent.
The spatial distribution of the order parameter and magnetic induction can

be determined from the minimum of the free energy. Since the order parameter
is complex, the real and imaginary parts need to be varied separately – or
else, the minimum can also be sought with respect to ψ and its conjugate.
The variation of the free energy is

δFs =
∫

dr

[
αψ δψ∗ + β|ψ|2ψ δψ∗ (26.4.3)

+
1

2m∗

(
−�

i
∇ + e∗A

)
δψ∗

(
�

i
∇ + e∗A

)
ψ + c.c.

]
+
∫

dr

[
B

2μ0
curl δA +

e∗

2m∗ψ
∗δA

(
�

i
∇ + e∗A

)
ψ + c.c.

]
.

Integrating the terms containing the derivative of δψ∗ and δA by parts,

δFs =
∫

dr

{
δψ∗

[
αψ + β|ψ|2ψ +

1
2m∗

(
�

i
∇ + e∗A

)2

ψ

]
+ c.c.

}
+
∫

dr

{
δA

[
curlB
2μ0

+
e∗

2m∗ψ
∗
(

�

i
∇ + e∗A

)
ψ

]
+ c.c.

}
. (26.4.4)

In addition to that, the integrated part gives a surface term∫
dS

[
δψ∗

(
�

i
∇ + e∗A

)
ψ + c.c.

]
. (26.4.5)

In the calculus of variations boundary conditions have to be specified, too.
Customarily, ψ and its variation are both assumed to vanish at the boundaries.
Instead, Ginzburg and Landau proposed the condition of vanishing current
through the surface. This condition is fulfilled when the component of the
integrand along the surface normal n satisfies

n ·
(

�

i
∇ + e∗A

)
ψ = 0 (26.4.6)

on the boundary. This indeed leads to the correct result for superconductor–
insulator interfaces. The situation is not so simple for superconductor–normal
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metal interfaces. Since the wavefunction ψ can penetrate into the normal
metal,14 the condition that no current should flow through the surface could
also be satisfied by the boundary condition

n ·
(

�

i
∇ + e∗A

)
ψ = ibψ , (26.4.7)

where b is real. An even more general choice is required for SIS junctions, in
which the current can flow from one superconductor into the other through a
thin insulating layer.

At the minimum of the free energy the bracketed terms in (26.4.4) must
vanish. The first Ginzburg–Landau equation is obtained by equating the coef-
ficient of δψ∗ to zero:

1
2m∗

(
�

i
∇ + e∗A

)2

ψ + αψ + β|ψ|2ψ = 0 . (26.4.8)

Formally, this equation is a Schrödinger equation for the wavefunction ψ of
superconducting electrons, in which the term proportional to |ψ|2 is the po-
tential due to the other electrons. In this sense the first Ginzburg–Landau
equation is a nonlinear Schrödinger equation.

The second Ginzburg–Landau equation is derived from the requirement
that the coefficient of δA also vanish, using the Maxwell equation for the
current. It reads

1
μ0

curlB = j = − e∗

2m∗ψ
∗
(

�

i
∇ + e∗A

)
ψ + c.c. (26.4.9)

This is just the quantum mechanical current formula, with p replaced by
p+e∗A. The charge current is obtained by multiplying the quantum mechan-
ical (particle) current by −e∗. In conjunction with the relation B = curl A
between the vector potential and the magnetic induction, these Ginzburg–
Landau equations determine the values of the order parameter ψ and magnetic
induction B in the superconducting phase – and by way of it, the current as
well.

The Ginzburg–Landau equations were derived phenomenologically. It was
pointed out by L. P. Gorkov in 1959 that they can also be derived from the
microscopic theory, and it was then established that the starred parameters
have to be chosen as e∗ = 2e and m∗ = 2me (as mentioned on page 476),
since they are related to the Cooper pairs.

26.4.2 Gauge Symmetry Breaking

Suppose that a solution of the Ginzburg–Landau equations, the wavefunction
ψ(r) plus the vector potential A(r), is known. Since in both equations the
operator
14 This gives rise to the so-called proximity effect.
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�

i
∇ + e∗A (26.4.10)

acts on the wavefunction ψ(r),

ψ′(r) = ψ(r)eiφ(r) ,

A′(r) = A(r) − �

e∗
∇φ(r) = A(r) − Φ0

2π
∇φ(r)

(26.4.11)

is also a solution – with the same energy, magnetic induction, and current.
The transformation that connects the solutions is the well-known gauge

transformation of electrodynamics, and the existence of equivalent solutions
is the consequence of deriving the Ginzburg–Landau equations from a gauge-
invariant free energy. Among the infinitely many solutions one is chosen by
nature – just like for the rotationally symmetric Heisenberg model in which a
broken-symmetry state is realized with the magnetization pointing in a well-
defined direction. Similarly, gauge symmetry is broken in the superconducting
state.

According to Goldstone’s theorem (Section 6.3.2), the breaking of a contin-
uous symmetry implies the existence of bosonic elementary excitations with a
gapless energy spectrum. However, the theorem is valid only for short-ranged
forces. Owing to the lack of screening, the Coulomb interaction remains long-
ranged in superconductors, so Goldstone’s theorem does not apply to super-
conductors.

One would think that the phase of the wavefunction, which is a typi-
cal microscopic quantum mechanical quantity, cannot be measured, and is
therefore of limited importance. This is indeed so for an isolated supercon-
ductor. However, when there is a weak contact between two superconductors,
which prevents the establishment of thermodynamic equilibrium but allows
the transfer of electrons from one superconductor to the other, their phase
difference can lead to interesting phenomena. We shall return to this point at
the end of the chapter.

26.4.3 Coherence Length and Penetration Depth

Based on the London equations, we have already introduced a characteristic
length of the superconducting state: the penetration depth of the magnetic
field. We have also mentioned that there is another characteristic length, the
coherence length. In order to interpret both of them in the framework of
the Ginzburg–Landau theory, we have to examine what happens close to the
surface of superconductors.

Outside the superconductor the order parameter vanishes, while deep in
its interior it takes the equilibrium value. Close to the surface, its variation
occurs over a region of finite width ξ. To determine this parameter, consider
the first Ginzburg–Landau equation in zero magnetic field:



26.4 Ginzburg–Landau Theory 487

− �
2

2m∗ ∇2ψ + αψ + β|ψ|2ψ = 0 . (26.4.12)

Far from the surface, where the superconductor can be considered homo-
geneous, the equilibrium value of the order parameter can be obtained from

|ψ0|2 = −α
β

(26.4.13)

according to (14.5.4). In terms of the dimensionless quantity f = ψ/|ψ0|,
(26.4.12) reads

− �
2

2m∗∇2f + αf − α|f |2f = 0 . (26.4.14)

It follows from the division of this equation by α that the parameter ξ of
dimension length defined through

ξ2 = − �
2

2m∗α
(26.4.15)

characterizes the spatial variations of f . This implies that when the order
parameter varies in space, e.g., it grows from zero to its equilibrium value,
all spatial variations occur on the length scale determined by ξ. In order to
distinguish it from the temperature-independent Pippard coherence length ξ0,
ξ is called the Ginzburg–Landau correlation length. It can be shown in the
microscopic theory that the two are not independent of one another. Although
the Ginzburg–Landau theory is valid only in the vicinity of the transition
point, ξ(T ), the characteristic length of the variations of the superconducting
order parameter, and ξ0, the parameter that appears in the electrodynamics
of superconductors, can both be defined in the microscopic theory. It turns
out that for pure superconductors

ξ(T → 0) = ξ0 . (26.4.16)

It follows from our assumption about the temperature dependence of the
coefficient α in the Landau expansion that the Ginzburg–Landau coherence
length diverges in the critical point:

ξ(T ) =

√
�2

2m∗a
(
Tc − T

)−1/2
. (26.4.17)

According to the microscopic theory,

ξ(T ) = 0.74 ξ0(1 − T/Tc)−1/2 (26.4.18)

for clean superconductors, while for very imperfect ones, in the “dirty” limit

ξ(T ) = 0.855 (ξ0l)1/2(1 − T/Tc)−1/2 . (26.4.19)
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The spatial variations of the order parameter can be determined explicitly
when the surface is an infinite plane. Choosing it as the x = 0 plane, all
variations are along the x-direction, and the governing equation is

ξ2
d2f

dx2
= −f + f3 = −f (1 − f2

)
. (26.4.20)

This equation can be integrated exactly when both sides are multiplied by
2 df/dx. The result is

ξ2
(

df
dx

)2

= 1
2

(
1 − f2

)2
. (26.4.21)

Rearrangement then leads to

df
dx

=
1√
2ξ

(
1 − f2

)
, (26.4.22)

which can be integrated once again. The final solution is

f(x) = tanh
x− x0√

2ξ
, (26.4.23)

where x0 is a constant not specified by the equations: the position coordi-
nate of that point inside the normal metal where the order parameter would
vanish if the formula valid for the superconductor were extrapolated. Toward
the sample interior, the order parameter of the superconducting state indeed
increases to the equilibrium value over a characteristic length ξ, as shown in
Fig. 26.20.

-

.

.�

xx0

SuperconductorNormal metal

Fig. 26.20. Spatial variation of the superconducting order parameter at a normal
metal–superconductor interface

The other characteristic length is the penetration depth, which was in-
troduced and interpreted through the phenomenological London equations.
We shall now show that the second London equation, which formulates the
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local relationship between the current and the vector potential, can be ob-
tained from the second Ginzburg–Landau equation if the length scale ξ of the
spatial variations of the wavefunction is small compared to the characteristic
scale of the variations of the magnetic field. Writing ψ(r) as |ψ(r)|eiφ(r), the
superconducting current is

j(r) = −e
∗2

m∗ |ψ(r)|2
[
A(r) +

�

e∗
∇φ(r)

]
. (26.4.24)

This formula is very similar to (26.3.35), the formula for the local relation-
ship between the current and the vector potential obtained from the London
equation, as the second term in

A(r) +
�

e∗
∇φ(r) , (26.4.25)

which contains the gradient of the phase, can be transformed away by a gauge
transformation. Instead of the density of the superconducting electrons, the
previous formula contains |ψ(r)|2, in complete agreement with the quantum
mechanical interpretation of the wavefunction. Since ξ is assumed to be small
compared to the characteristic scale of the variations of the vector potential,
|ψ(r)| can be approximated by the equilibrium value |ψ0|. Inserting the cur-
rent density into the Maxwell equations, we obtain a temperature-dependent
London penetration depth defined by

λ2
L(T ) =

m∗

μ0e∗2|ψ0|2 = − m∗β
μ0e∗2α

=
m∗β

μ0e∗2a(Tc − T )
. (26.4.26)

The penetration depth diverges with the same exponent at the critical tem-
perature as the coherence length.

26.4.4 Flux Quantization

As demonstrated in Sections 26.1.3 and 26.3.4, the magnetic flux through a
superconducting ring cannot take any arbitrary value only the integral mul-
tiples of an elementary flux quantum. We shall derive this condition from the
Ginzburg–Landau equations now.

Consider a non-simply connected superconductor in which the supercon-
ducting region surrounds normals regions (holes). When the sample is placed
in a magnetic field, the flux lines pass through the normal region. However,
the eddy currents on the boundary of the superconducting region cancel the
applied field, and the condition B = 0 is met inside the superconductor. The
flux through the region surrounded by the superconductor is

Φ =
∫
F

B · n dS , (26.4.27)



490 26 Superconductivity

where the surface F can be chosen at will, with the sole restriction that
its contour should be inside the superconducting region, and n is the unit
normal of the surface element. By expressing the magnetic induction in terms
of the vector potential and using Stokes’ theorem, the surface integral can be
transformed into the integral around the contour C:

Φ =
∫
C

A · dl . (26.4.28)

A can be expressed from the second Ginzburg–Landau equation as

A = −m
∗

e∗2

1
|ψ|2 j − �

2ie∗
1

|ψ|2 (ψ∗∇ψ − ψ∇ψ∗) . (26.4.29)

Sufficiently far from the surface, where no diamagnetic current flows and the
superconducting order is established, the magnitude of the order parameter
ψ is given by the equilibrium value but its phase may still change. Assuming
that it can be written as ψ = |ψ0|eiφ,

A = − �

e∗
∇φ . (26.4.30)

Using this form of A in the integral around the contour C, which is chosen
in such a way that the current should vanish along it, we have

Φ = − �

e∗

∫
C

∇φ dl . (26.4.31)

The absolute value of the order parameter ψ is a single-valued function of
the position but the phase is not. A full turn around the normal region may
change the phase by an integral multiple of 2π. Therefore the flux enclosed
by the contour C is

Φ = n 2π
�

e∗
= n

h

e∗
. (26.4.32)

Since e∗ = 2e, the elementary flux quantum is

Φ0 =
h

2e
= 2.067 × 10−15 Wb = 2.067 × 10−7 G cm2 . (26.4.33)

F. London discussed flux quantization in already 1950, but he made the
assumption e∗ = e, and so his result for the flux quantum was twice as large
as the correct value. The correctness of the above formula was later confirmed
by the experiments shown in Fig. 26.6.

If the contour C is chosen in such a way that current can flow around it
then it is the fluxoid

Φ′ = Φ+ μ0λ
2
L

∫
C

js dl , (26.4.34)

rather than the flux, that is quantized, in units of Φ0. As mentioned in con-
nection with the London theory, this corresponds to the Bohr–Sommerfeld
quantization of the canonical momentum.
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26.4.5 Energy of the Normal Metal–Superconductor Interface

To understand when normal regions can be formed inside a superconductor,
the energy of the interface between a superconductor and a normal metal has
to be studied. This energy depends on the relative magnitude of the coherence
length and the penetration depth. Two extreme cases are shown in Fig. 26.21.

B

/. /�
/./

/./

/. /�Bc Bc

B

� �

- -

SuperconductorNormal
metal

SuperconductorNormal
metal

Fig. 26.21. The spatial variation of the magnetic induction and the superconducting
order parameter at a normal metal–superconductor interface, in the λ � ξ and
λ � ξ limits

The ratio κ = λ/ξ of the penetration depth and coherence length, called
the Ginzburg–Landau parameter, is a fundamental parameter of supercon-
ductors. When κ 1, the magnetic field drops off much more rapidly than ψ
grows up to its equilibrium value. There is a wide region where both B and ψ
are small, i.e., both the superconducting condensate and the magnetic induc-
tion, which could reduce the energy, are absent. The surface energy of such
a normal–superconductor interface is expected to be positive, so such walls
are not formed spontaneously. The situation is the opposite in the κ � 1
case: the surface energy is expected to be negative, thus such walls are formed
spontaneously. Below we shall give a better estimate for the surface energy.

When the applied magnetic field is considered as a free variable, the density
of the Gibbs potential,

g = f − H · B , (26.4.35)

has to be minimized. Using the Ginzburg–Landau form (26.4.1) for the
Helmholtz free energy, the Gibbs potential in given by

gn(T,H) = fn(T, 0) +
1

2μ0
B2 − H · B

= fn(T, 0) − 1
2μ0H

2

(26.4.36)

in the normal state where the order parameter vanishes and B = μ0H, while
it is

gs(T,H) = fn(T, 0) + α(T )|ψ|2 + 1
2β(T )|ψ|4

+
1

2m∗

∣∣∣∣(�

i
∇ + e∗A

)
ψ

∣∣∣∣2 +
1

2μ0
B2 − H · B

(26.4.37)
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in the superconducting state.
When the applied magnetic field is equal to the thermodynamic critical

field defined by
fs(T, 0) = fn(T, 0) − 1

2μ0H
2
c , (26.4.38)

then, according to (26.3.13), the Gibbs potential of the homogeneous super-
conductor is the same as that of the homogeneous normal phase. Their den-
sities are given by

ghom
s (T,Hc) = ghom

n (T,Hc) = fn(T, 0) − 1
2μ0H

2
c . (26.4.39)

When this common value – which is valid on both sides, at large distances from
the interface – is subtracted from the actual density of the Gibbs potential
calculated in the presence of an interface, and the difference is integrated in
the direction perpendicular to the interface, the surface energy is found to be

σns =

∞∫
−∞

[
gs(T,Hc) − ghom

n (T,Hc)
]
dx

=

∞∫
−∞

{
α(T )|ψ|2 + 1

2β(T )|ψ|4 +
1

2m∗

∣∣∣∣(�

i
∇ + e∗A

)
ψ

∣∣∣∣2

+
1

2μ0
(B − μ0Hc)2

}
dx .

(26.4.40)

By multiplying the first Ginzburg–Landau equation by ψ∗, and taking its
integral along the x-axis, integration by parts yields

∞∫
−∞

{
α(T )|ψ|2 + β(T )|ψ|4 +

1
2m∗

∣∣∣∣(�

i
∇ + e∗A

)
ψ

∣∣∣∣2
}

dx = 0 . (26.4.41)

Comparison with the previous equation gives the surface energy as

σns =

∞∫
−∞

{
−1

2
β(T )|ψ|4 +

(B − μ0Hc)2

2μ0

}
dx . (26.4.42)

The role of ψ and B in determining the surface energy is clear. In the ξ � λ
limit B and ψ are small in the transition region of width ξ, so the free energy
per unit surface area is

σns ≈ 1
2ξμ0H

2
c , (26.4.43)

which is indeed positive. In the opposite limit, λ� ξ, the wavefunction almost
takes the equilibrium value over a large part of the transition region of width
λ, however, the magnetic induction does not drop to zero, and so

σns ≈ − 1
2λμ0H

2
c , (26.4.44)
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which means that the wall energy is negative.
In general, the wall energy can be determined only numerically. The special

case κ = 1/
√

2 is an exception, since the Ginzburg–Landau equations then
imply

|ψ|2 =
μ0Hc −B
(μ0β)1/2

, (26.4.45)

that is, the integrand vanishes identically, and so the surface energy is zero.
For κ < 1/

√
2 the surface energy is positive, thus the formation of walls is

not advantageous energetically. Conversely, the surface energy is negative for
κ > 1/

√
2, so the energy is lower when the system is made up of alternate

normal and superconducting regions. The first case is realized in type I su-
perconductors, and the second in type II superconductors.

26.4.6 Vortices

Type II superconductors in a thermodynamic critical field (or more generally,
between the upper and lower critical fields) are thus not homogeneous, as
the free energy of the system is lower if normal and superconducting regions
alternate. To understand what happens in the superconducting phase in this
geometry, we have to find a more accurate solution of the Ginzburg–Landau
equations. As pointed out by A. A. Abrikosov15 in 1957, the magnetic
field penetrates into the superconductor in long tubes called vortices. This
can be studied analytically for κ� 1, when |ψ(r)| takes the asymptotic value
everywhere except for a small core region. The dependence of the magnetic in-
duction and superconducting order parameter on the distance from the center
of the vortex are shown in Fig. 26.22.
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Fig. 26.22. The spatial variations of the magnetic induction and superconducting
order parameter around a vortex core

(26.4.30), which was derived from the second Ginzburg–Landau equation,
can be rewritten as

A + μ0λ
2
Lj = − 1

2π
Φ0∇φ . (26.4.46)

15 See the footnotes on pages 4 of Volume 1 and 483.
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By taking an arbitrary contour that does not approach the vortex core within
the coherence length ξ, and expressing the current in terms of the magnetic
induction through the Maxwell equations, we have∫

C

(
A + λ2

L curlB
)

dl = nΦ0 . (26.4.47)

The line integral on the left-hand side can be transformed into a surface
integral by means of Stokes’ theorem, yielding∫

F

(
curlA + λ2

L curl curlB
) · dS = nΦ0 . (26.4.48)

When several vortices are present in a type II superconductor, each vortex
carries exactly one flux quantum in the energetically most favorable configu-
ration. As ξ  λL, we shall study the structure of the vortex in the ξ → 0
limit. The previous equation is satisfied by an arbitrary contour if

B + λ2
L curl curlB = ẑΦ0δ2(r) , (26.4.49)

where δ2(r) is a δ function in the perpendicular plane, and ẑ is the unit vector
in the direction of the magnetic field.

Compared to the London equation, an additional source term has ap-
peared. Since div B = 0,

B − λ2
L∇2B = Φ0ẑδ2(r) . (26.4.50)

Changing to cylindrical coordinates, and assuming that B has only one non-
vanishing component, Bz, which depends only on r, we have

Bz − λ2
L
r

d
dr

(
r
dBz

dr

)
= Φ0δ2(r) . (26.4.51)

Outside the vortex core the solution is

Bz(r) =
Φ0

2πλ2
L
K0

(
r

λL

)
, (26.4.52)

where K0 is the zeroth-order modified Bessel function, while inside the vortex

Bz(r) =
Φ0

2πλ2
L
K0

(
ξ

λL

)
. (26.4.53)

Using the form given in (C.3.59), simple analytic formulas are obtained in two
limits:

Bz(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ0

2πλ2
L

(
πλL

2r

)1/2

e−r/λL , if r → ∞ ,

Φ0

2πλ2
L

(
ln
λL

r
+ 0.12

)
, if ξ  r  λL .

(26.4.54)
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Note that over the largest part of the Shubnikov phase the separation of
vortices is smaller than the penetration depth, thus the magnetic induction is
finite everywhere in the sample.

The radial variation of the current circulating around the vortex core is
given by

j(r) = − Φ0

2πλ3
Lμ0

K1

(
r

λL

)
(26.4.55)

outside the core. Far from the core of an isolated vortex, j(r) decays exponen-
tially, too, however it decreases as 1/r in the region ξ  r  λL. Determined
from the spatial dependence, the vortex energy per unit length is

Evortex =
Φ2

0

4πμ0λ2
L

ln
(
λL

ξ

)
. (26.4.56)

This result could have been found intuitively. Since the current of super-
conducting electrons is cylindrically symmetric around the vortex core, the
associated velocity can be determined from the quantization condition∮

p · dl = nh (26.4.57)

for the canonical momentum p if the latter is approximated by the kinetic
momentum m∗vs. Taken around a circle of radius r, the integral is

nh = m∗
∮

vs · dl = m∗vs2πr , (26.4.58)

and hence
vs =

n�

m∗r
. (26.4.59)

It can be assumed that the dominant part of the circulating current flows in
a region into which the field can penetrate and where the order parameter
has almost reached its equilibrium value – that is, where the distances r from
the vortex core is larger than the coherence length ξ but smaller than the
penetration depth λL. When the n = 1 solution is applied to each vortex,
the kinetic energy of the superconducting electrons in a layer of unit height
around the vortex core is

Ekin = n∗s

λL∫
ξ

m∗v2s
2

2πr dr =
πn∗s �

2

m∗

λL∫
ξ

dr
r

=
πn∗s �

2

m∗ lnκ . (26.4.60)

Using the formulas of the flux quantum and the London penetration depth,
the vortex energy obtained in (26.4.56) is indeed recovered.

It can be shown that when two vortices are located at r1 and r2, separated
by a distance r12, their interaction energy is
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E12 =
Φ2

0

2πμ0λ2
K0

(
r12
λL

)
, (26.4.61)

that is, the interaction decays exponentially at large distances. This result
lends itself to simple interpretation in terms of the magnetic moment of the
vortex. The angular momentum due to the circulating current is

�L = n∗s

λL∫
ξ

rm∗vs2πr dr = n∗sπ�λ2
L . (26.4.62)

The magnetic moment is obtained by multiplying it by e∗/2m∗:

μ =
πn∗s e

∗
�

2m∗ λ2
L =

Φ0

4μ0
. (26.4.63)

When such a magnetic moment is placed into the field B(r12) of the other
vortex, the same interaction energy is found as above.

Since the interaction between vortices is repulsive, the lowest-energy con-
figuration for a given flux is obtained by separating the vortices as much as
possible. This is realized in periodic structures. Two possibilities are shown in
Fig. 26.23: a square and a triangular lattice.

Fig. 26.23. Vortex arrangement in two-dimensional square and triangular lattices

Simple considerations show that the triangular vortex lattice in energet-
ically more favorable. If the flux through the surface area F of the sample
is BF = Φ = nΦ0, and each vortex carries a flux quantum, then the lattice
constant a� of the square vortex lattice is given by

a2�B = Φ0 , a� =
(
Φ0

B

)1/2

, (26.4.64)

whereas for a triangular lattice
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a�

√
3

2
a�B = Φ0 , a� =

(
4
3

)1/4(
Φ0

B

)1/2

= 1.075
(
Φ0

B

)1/2

,

(26.4.65)
so for a given flux a� > a�. The arrangement of vortices in such a triangu-
lar lattice is indeed observed in conventional superconductors. The image in
Fig. 26.24, taken by a scanning tunneling microscope, shows the surface of a
type II superconductor in the Shubnikov phase.

Fig. 26.24. The STM image of the vortex lattice observed in a NbSe2 sample in
a magnetic field of 1T at a temperature of 1.8 K [Reprinted with permission from
H. F. Hess et al., Phys. Rev. Lett. 62, 214 (1989). ©1989 by the American Physical
Society]

The situation is slightly different in high-Tc superconductors. When the
sample is heated in an applied magnetic field H that is somewhat above the
lower critical field Hc1(T ), the vortex lattice may melt before reaching the
relatively high critical temperature for this field, and thus a vortex liquid
can appear. It has not been confirmed by experiments whether the vortices
really make up a lattice before making a transition to the liquid-like state in
fields above Hc1(T ) or are disordered at lower temperatures, too. Theoretical
considerations support the assumption that a statically disordered, glass-like
vortex-glass state is realized. The corresponding phase diagram is shown in
Fig. 26.25.

26.4.7 Upper and Lower Critical Fields

In the foregoing the necessity of the appearance of vortices (i.e., alternating
normal and superconducting regions) was demonstrated theoretically for type
II superconductors placed in the thermodynamic critical field. However, it is
known from experiments that in conventional superconductors the inhomo-
geneous Shubnikov phase with vortices is stable for fields between the lower
and upper critical fields, Hc1 and Hc2. Below Hc1, type II superconductors are
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Fig. 26.25. Schematic phase diagram of high-Tc superconductors

also perfect diamagnets, fully displaying the Meissner–Ochsenfeld effect, while
they make a transition into the normal state above Hc2. Using the previous
result, we can now determine the values of the two critical fields.

For fields close to Hc1, where the magnetization is small, the separation
of vortices becomes so large that their interaction can be neglected. Whether
or not a vortex can appear is determined by the relative strength of the two
competing terms in the Gibbs potential. According to (26.4.56), the vortex
itself has a positive energy. In a sample of length L, the energy of the vortex is
LEvortex. This can be compensated by the magnetic field contribution −B ·H
in the Gibbs potential. Assuming that the magnetic flux through the vortex
is exactly one flux quantum, the integral of the magnetic field contribution
over the volume of the sample is

−
∫
V

B · H dV = −LH
∫
F

B · dS = −LHΦ0 . (26.4.66)

The first vortex may appear at that value Hc1 of the field where the two
contributions are equal:

Hc1Φ0 = Evortex . (26.4.67)

Using the vortex-energy formula, the lower critical field is

Hc1 =
Φ0

4πμ0λ2
L

lnκ . (26.4.68)

In slightly stronger fields the sudden appearance of a large number of
vortices is prevented by the repulsive interaction between vortices. Therefore
the number of vortices increases step by step, while their separation is still
larger than λ, and the magnetic field penetrates into the sample gradually.

Now consider what happens in strong magnetic fields, when the mixed
state is transformed into normal metal. Assuming that the order parameter
is small in the vicinity of the transition point, the first Ginzburg–Landau
equation can be linearized:
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1
2m∗

(
�

i
∇ + e∗A

)2

ψ = −αψ . (26.4.69)

Formally, this is the same Schrödinger equation as (22.1.13), from which the
energy levels (Landau levels) of a noninteracting electron gas placed in a
strong magnetic field were determined. Adopting the results obtained there
to the present case, the energy eigenvalues are

ε =
�

2k2
z

2m∗ + (n+ 1
2 )�ω∗

c , (26.4.70)

where, on account of e∗ = 2e,

�ω∗
c = �

e∗B
m∗ = �

2eB
m∗ . (26.4.71)

In (26.4.69) −α plays the role of the energy eigenvalue. At temperatures
below Tc, where α is negative, the superconducting order parameter ψ is
nonzero if −α is equal to one of the eigenvalues in (26.4.70). The strongest
magnetic field for which the condition

− α ≥ εmin = 1
2�ω∗

c = �
eB

m∗ (26.4.72)

can be satisfied – and therefore a superconducting state may exist – is then
given by

Hc2 = −α m
∗

e�μ0
. (26.4.73)

The parameter α of the Ginzburg–Landau theory can be related to the coher-
ence length ξ through (26.4.15). Making use of this connection,

Hc2 =
�

2eμ0ξ2
=

Φ0

2πμ0ξ2
. (26.4.74)

Close to Hc2, vortices are present in a relatively high number. The previous
formula can be interpreted by saying that superconductivity is destroyed at
that value of the magnetic field where the separation of vortices becomes
comparable to the coherence length.

When a Ginzburg–Landau-like phenomenological description is applied to
anisotropic superconductors, it is quite natural to assume that an effective-
mass tensor can be used in the term that contains the gradient of the order
parameter. Instead of (26.4.69), the linearization of the first Ginzburg-Landau
equation then leads to

1
2

∑
αβ

(
�

i
∇ + e∗A

)
α

(
1
m∗

)
αβ

(
�

i
∇ + e∗A

)
β

ψ = −αψ . (26.4.75)

Once again, this is a Schrödinger equation for the one-particle spectrum of
an electron gas in a strong magnetic field, but the spectrum in zero magnetic
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field is now characterized by an effective-mass tensor. The energy of the Lan-
dau levels can again be written as (26.4.70) but now the motion in the field
direction and the cyclotron frequency are determined by the components of
the effective-mass tensor, in combinations that depend on the field direction.
Thus the upper critical field is obtained from (26.4.72) here, too. Assuming
that there are one longitudinal and two identical transverse masses, m∗

‖ and
m∗

⊥, when the magnetic field makes an angle θ with the longitudinal direction,
and the cyclotron mass in ω∗

c is taken from (21.2.42), we have

ω∗
c = 2eB

(
sin2 θ

m∗
‖m

∗
⊥

+
cos2 θ
(m∗

⊥)2

)1/2

, (26.4.76)

where the factor 2 comes from the double charge of the Cooper pairs. When
the magnetic field is parallel or perpendicular to the symmetry axis, the upper
critical field can be written as

Hc2‖ =
Φ0

2πμ0ξ‖ξ⊥
, Hc2⊥ =

Φ0

2πμ0ξ2⊥
, (26.4.77)

where

ξ2‖ =
�

2

2m∗
‖a(Tc − T )

, ξ2⊥ =
�

2

2m∗
⊥a(Tc − T )

. (26.4.78)

In the isotropic case the upper and lower critical fields can also be expressed
in terms of the thermodynamic critical field. It is known from Landau’s theory
of phase transitions that the free energy decreases by α2/2β in the ordered
phase. On the other hand, the thermodynamic critical field is defined precisely
by the equality of the free energy in the superconducting and normal phases.
This leads to

1
2μ0H

2
c =

α2

2β
. (26.4.79)

Using the previously obtained formulas for the London penetration depth and
coherence length,

Hc =
Φ0

2
√

2πμ0λLξ
. (26.4.80)

Thus
Hc1 =

1√
2

1
κ
Hc lnκ , Hc2 =

√
2κHc . (26.4.81)

In type II superconductors, where κ > 1/
√

2, Hc1 < Hc < Hc2. As the applied
field is increased, the Meissner phase becomes unstable below the thermody-
namic critical field, and the new phase remains stable even at fields that are
stronger than the thermodynamic critical field. This is possible because of the
nonuniformity of the superconducting order parameter. In type I superconduc-
tors, where the upper critical field Hc2 is smaller than Hc, the homogeneous
superconducting order disappears and reappears at Hc as the field strength
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is increased and decreased. It is nevertheless possible to attribute a physical
meaning to Hc2. Since in type I superconductors the phase transition at finite
temperatures and finite magnetic fields is first order, the normal phase can be
“supercooled”, as shown in Fig. 26.7. Hc2 specifies the lowest field for which
the normal phase can exist when the applied magnetic field is reduced.

It is worth noting that a similar hysteresis can be observed in type II
superconductors, too, at Hc1. The reason for this is that when field lines
penetrate into the superconductor in the form of a vortex, a potential barrier
has to be surmounted. The force on a vortex appearing inside the sample,
close to the surface, can be described as an attraction between the vortex and
its “mirror image” of opposite vorticity that is outside the sample.

26.5 Josephson Effect

It has already been mentioned that when superconducting material is placed
on one or both sides of a junction, the current–voltage characteristics are not
linear. This current comes from the tunneling of normal electrons, which can
only be present in the system at energies above the gap. That is why the gap
can be determined from the I–V characteristics. In 1962 B. D. Josephson16

recognized that if superconductors are placed on both sides of the junction,
superconducting electrons can also tunnel through the junction. We shall dis-
cuss this effect now.

26.5.1 Relation Between the Josephson Current and the Phase of
the Superconductor

In order to draw a simple picture of the Josephson effect, we suppose that
the width d of the insulating layer of the junction is much smaller than the
coherence length: d ξ. In line with the Ginzburg–Landau theory we assume
that the system can be characterized by a complex function ψ that takes
its equilibrium value far from the insulating layer, but with different phases
φL and φR on the two sides. If two identical superconductors fill the regions
x < −d/2 and x > d/2,

ψ(x) =

⎧⎨⎩|ψ0|eiφL x < −d/2 ,
|ψ0|eiφR x > d/2 .

(26.5.1)

The spatial variation in the insulating layer can be determined from the first
Ginzburg–Landau equation. In the zero-field case the equation (26.4.20) for
16 Brian David Josephson (1940–) was awarded the Nobel Prize in 1973 “for his

theoretical predictions of the properties of a supercurrent through a tunnel bar-
rier, in particular those phenomena which are generally known as the Josephson
effects”.
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f = ψ/|ψ0| has to be considered. Based on the geometry of the system, we
assume that the characteristic scale for the spatial variations of the order pa-
rameter is the thickness of the insulating layer. Then, on account of the huge
factor (ξ/d)2 that appears on the left-hand side, the equation can be satis-
fied only if d2f/dx2 = 0. The requirement that the solution should match
smoothly at the boundary of the insulating layer with the value in the super-
conductors leads to

f(x) ≈
(

1
2
− x

d

)
eiφL +

(
1
2

+
x

d

)
eiφR − d/2 ≤ x ≤ d/2 . (26.5.2)

The spatial variation of the order parameter over the Josephson junction is
shown in Fig. 26.26.

.�e
i0L .�e

i0R

d

Fig. 26.26. Variation of the real part of the order parameter in a Josephson junction

The current determined from this wavefunction by means of the second
Ginzburg–Landau equation is

j =
2e�|ψ0|2
m∗d

sin(φR − φL) , (26.5.3)

that is, the supercurrent through the junction depends on the difference of
the macroscopic phases of the superconductors on each side.

For the sake of later generalization, it is worth giving a brief overview of
two more accurate methods. In the first approach, developed by Feynman,17
the superconductors – which are not necessarily identical – on the two sides
of the junction are each described in terms of a complex order parameter, the
wavefunction of the superconducting electrons,

ψL = |ψL|eiφL , ψR = |ψR|eiφR , (26.5.4)

just like in the Ginzburg–Landau theory. In an isolated superconductor the
time dependence of the wavefunction is determined by the chemical potential,
as ψ satisfies the time-dependent Schrödinger equation

− �

i
∂ψ

∂t
= μψ . (26.5.5)

17 R. P. Feynman, 1965. See also the footnote on page 532 of Volume 1.
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Because of the tunnel coupling in the Josephson junction, the wavefunction
of the other side also appears in the equations. The coupling between the two
sides can be taken into account by a phenomenological coupling constant T
as

−�

i
∂ψL

∂t
= μLψL + TψR ,

−�

i
∂ψR

∂t
= μRψR + TψL .

(26.5.6)

Substitution of the formulas in (26.5.4) leads to

∂|ψL|
∂t

eiφL + i|ψL|eiφL
∂φL

∂t
= − i

�
μL|ψL|eiφL − i

�
T |ψR|eiφR ,

∂|ψR|
∂t

eiφR + i|ψR|eiφR
∂φR

∂t
= − i

�
μR|ψR|eiφR − i

�
T |ψL|eiφL .

(26.5.7)

After some algebra we obtain

∂|ψL|
∂t

+ i|ψL|∂φL

∂t
= − i

�
μL|ψL| − i

�
T |ψR|ei(φR−φL),

∂|ψR|
∂t

+ i|ψR|∂φR

∂t
= − i

�
μR|ψR| − i

�
T |ψL|e−i(φR−φL).

(26.5.8)

By separating the real and imaginary parts,

∂|ψL|
∂t

=
1
�
T |ψR| sin(φR − φL) ,

∂|ψR|
∂t

= −1
�
T |ψL| sin(φR − φL) ,

(26.5.9)

and

∂φL

∂t
= −1

�
μL − 1

�
T
|ψR|
|ψL| cos(φR − φL) ,

∂φR

∂t
= −1

�
μR − 1

�
T
|ψL|
|ψR| cos(φR − φL) .

(26.5.10)

The real part is related to the variations of the amplitude – that is, the
variations of the number of superconducting electrons. The current density
carried by the particles of charge −e∗ is

j = −e∗ ∂|ψR|2
∂t

=
2e∗

�
T |ψL||ψR| sin(φR − φL) . (26.5.11)

Thus, the supercurrent through the Josephson junction depends on the phase
difference of the two superconductors, just as in the simple derivation.

Let us turn to the second method now. It was mentioned in connection with
the Ginzburg–Landau equations that the usual boundary condition given by
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(26.4.6) cannot be applied when current is allowed to flow through the inter-
face. Assuming the most general Cauchy boundary condition, the values of the
wavefunctions and their derivatives on the interface satisfy the simultaneous
equations

ψL = λ11ψR + λ12

(
d
dx

+
ie∗

�
A

)
ψR ,(

d
dx

+
ie∗

�
A

)
ψL = λ21ψR + λ22

(
d
dx

+
ie∗

�
A

)
ψR .

(26.5.12)

As usual, the vector potential was added to the derivative to have gauge-
invariant equations. Since the currents calculated from the left- and right-
hand-side wavefunctions must be equal, the coefficients λ have to satisfy the
auxiliary condition

λ11λ22 − λ12λ21 = 1 . (26.5.13)

Determined from the second Ginzburg–Landau equation, the current is
then

j =
ie∗�
2m∗ψ

∗
R

(
d
dx

+
ie∗

�
A

)
ψR + c.c.

=
ie∗�
2m∗

{
ψ∗

R

[
1
λ12
ψL − λ11

λ12
ψR

]
− ψR

[
1
λ12
ψ∗

L − λ11

λ12
ψ∗

R

]}
=

ie∗�
2m∗λ12

[
ψ∗

RψL − ψRψ
∗
L

]
=

e∗�
m∗λ12

∣∣ψL
∣∣ ∣∣ψR

∣∣ sin (φR − φL
)
,

(26.5.14)

in agreement with the previous results.
Next, we have to examine how the phases of the superconductors on each

side of the junction change with the applied voltage across or magnetic field
at the tunnel junction.

26.5.2 DC Josephson Effect

An important result of Feynman’s treatment is the establishment of the
system of equations (26.5.10) for the variation of the phases with time. For
identical superconductors, when |ψL| = |ψR|,

∂φR

∂t
− ∂φL

∂t
=

1
�
(μL − μR) . (26.5.15)

If there is no voltage across the junction, the chemical potential is the same
on both sides. Then

∂

∂t
(φR − φL) = 0 , (26.5.16)
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so the phase difference is constant, and a constant supercurrent can flow
through the junction. This is the direct-current (DC) Josephson effect.

By writing the Josephson current through the junction of cross-sectional
area A as

IJ = I0 sin(φR − φL) , (26.5.17)

it can be shown on the basis of the microscopic theory that the maximum
supercurrent that can be driven through the junction without any voltage
drop is determined by the superconducting gap and the resistance Rn of the
junction measured in its normal state. At T = 0

I0(T = 0) =
πΔ

2eRn
, (26.5.18)

while at finite temperatures

I0(T ) =
πΔ

2eRn
tanh(Δ/2kBT ) . (26.5.19)

At the threshold voltage Vc = 2Δ/e, where normal current starts to flow,
the value of the single-particle tunneling current is exactly the same as the
maximum supercurrent. At higher voltages the current gradually reaches the
value I = V/Rn that corresponds to ohmic behavior of the normal state. The
current–voltage characteristic is shown in Fig. 26.27.

Fig. 26.27. I–V curve for a Josephson junction at zero temperature, and the
measured supercurrent and single-particle current in an Sn-SnOx-Sn junction at
T = 1.8 K [Reprinted with permission from R. C. Jaklevic et al., Phys. Rev. 140, A
1628 (1965). ©1965 by the American Physical Society]

Experiments are in good agreement with the theoretical prediction that at
low temperatures the maximum supercurrent that can be driven through the
Josephson junction without any voltage drop is π/4 times the current that
would flow through the junction in its normal state at the threshold voltage
Vc. If a stronger current is passed through, a finite voltage V appears across
the junction.
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26.5.3 AC Josephson Effect

A voltage V applied between two superconductors gives rise to a chemical
potential difference −e∗V between the two sides. In the Josephson effect,
where “superconducting electrons” of charge −e∗ = −2e tunnel, the formula

μR − μL = −e∗V = −2eV (26.5.20)

has to be applied. The equation for the phase difference of the two supercon-
ductors, (26.5.15), now reads

∂

∂t
(φR − φL) = 2

eV

�
. (26.5.21)

It can also be considered as the consequence of gauge invariance, as the gauge
transformation (26.4.11) takes the scalar potential ϕ into

ϕ′ = ϕ+
Φ0

2π
∂φ

∂t
, (26.5.22)

that is, the gauge-invariant phase difference is given by

Δφ− 2π
Φ0

∫
ϕ(t′)dt′ . (26.5.23)

When the potential is denoted by V instead of ϕ, the previous formula is
recovered.

When a finite voltage is applied, the phase difference changes with time.
In particular, for a DC voltage

φR − φL = δφ0 + 2
eV

�
t . (26.5.24)

Because of the linear time dependence of the phase difference, the current
through the junction oscillates sinusoidally:

IJ = I0 sin
(
δφ0 + 2

eV

�
t
)

= I0 sin
(
δφ0 + 2π

V

Φ0
t
)
. (26.5.25)

Thus a DC voltage gives rise to an alternating current of angular frequency
ω = 2eV/� = 2πV/Φ0 – that is, of frequency

ν =
2e
h
V . (26.5.26)

This is the alternating-current (AC) Josephson effect, and the quantity

KJ =
2e
h

= 483 597.9GHz/V (26.5.27)

is called the Josephson constant. Since the above relation between the fre-
quency and voltage is independent of the material properties, and is satisfied
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to a high precision, the AC Josephson effect has been used to define the voltage
standard since 1990.

The phenomenon can be interpreted as follows. In order to remain a bound
pair after tunneling, the superconducting pair of electrons emits a photon of
energy �ω = 2eV , which compensates the difference between the chemical
potentials on the two sides. The phenomenon was confirmed experimentally
by the detection of the radiation, which is in the microwave region when the
applied voltage is a few millivolts.18

In the inverse AC Josephson effect an AC voltage (a microwave field) of
frequency ω and amplitude Vω and an additional DC voltage V0 are applied
to the Josephson junction. The total voltage that determines the difference of
the chemical potentials is

V (t) = V0 + Vω cosωt . (26.5.28)

Substituting this into (26.5.15), the equation governing the variation of the
phases with time,

∂

∂t
(φR − φL) =

2e
�
V0 +

2e
�
Vω cosωt (26.5.29)

is obtained. By integrating both sides,

φR − φL = δφ0 +
2e
�
V0t+

2e
�

Vω

ω
sinωt , (26.5.30)

and the current through the junction is

IJ = I0 sin
(

δφ0 +
2e
�
V0t+

2e
�

Vω

ω
sinωt

)
. (26.5.31)

This formula can be cast in a more transparent form by applying a conse-
quence of (C.1.50):

cos(a sinωt) =
∞∑

n=−∞
Jn(a) cosnωt ,

sin(a sinωt) =
∞∑

n=−∞
Jn(a) sinnωt ,

(26.5.32)

where Jn is the Bessel function of order n. Making use of the property

J−n(x) = (−1)nJn(x) (26.5.33)

of the Bessel functions, the current through the Josephson junction is

IJ = I0
∞∑

n=−∞
(−1)nJn

(2eVω

�ω

)
sin
[
δφ0 +

(
2eV0

�
− nω

)
t

]
. (26.5.34)

18 An applied voltage of 1 mV corresponds to a frequency of 483.6 GHz.
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The total current through a junction placed in a microwave cavity is the
sum of the various AC components. In the absence of an applied DC voltage
(V0 = 0) the term n = 0 gives a DC component, but the factor J0(2eVω/�ω)
makes the amplitude smaller than the maximum current that can be driven
through the junction in the absence of the microwave field. Moreover, DC
components appear at all values of V0 that satisfy

V0 = n
�ω

2e
. (26.5.35)

The corresponding current–voltage characteristic is shown in Fig. 26.28(a).

I I

V0 V0( )b( )a

Fig. 26.28. Current–voltage characteristics for a Josephson junction in a microwave
field with (a) voltage drive and (b) current drive

The situation is different when the junction is not connected to a voltage
source but to a current generator, which is highly common in experiments.
In this case the additional current component due to normal electrons must
also be taken into account. Assuming ohmic current–voltage characteristics
for this component at voltages V > 2Δ/e, and adding the corresponding term
to the phenomenological equations for the current, we have

I = I0 sin(φR − φL) + V/R , (26.5.36)

where the phase difference and the voltage continue to be related by (26.5.21).
The total current then satisfies the equation

I = I0 sin(φR − φL) +
�

2eR
∂

∂t
(φR − φL) . (26.5.37)

If this total current, rather than the voltage, is fixed externally, very different
I–V curves are obtained. When the phase difference and, through it, the volt-
age are determined from the current, steps are found instead of discrete peaks,
as shown in Fig. 26.28(b). They are called Shapiro steps.19 The height of the

19 S. Shapiro, 1963.
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Fig. 26.29. The current–voltage characteristics for a current-driven Josephson junc-
tion placed in microwave fields of different power, according to the measurements of
C. C. Grimes and S. Shapiro [Reprinted with permission from Phys. Rev. 169, 397
(1968). ©1968 by the American Physical Society]

nth step is determined by the Bessel function Jn. As indicated in Fig. 26.29,
measurements are in fair agreement with the theoretical description.

The situation is more complicated when coupling between the two super-
conductors cannot be approximated by a linear term as in (26.5.6). However,
the discussion of this point would lead us too far afield.

26.5.4 Josephson Junctions in a Magnetic Field

It is known from the Ginzburg–Landau theory that the phase of the supercon-
ductor is changed by the magnetic field. It is expected to change the current
through the junction, too. Consider a setup in which the sample is uniform
and infinite in the y- and z-directions, and the narrow insulating oxide layer
is centered at the plane x = 0. The magnetic field is applied in the z-direction
(i.e., parallel to the surface of the oxide layer), and its strength depends on
the variable x. It can be derived from an x-dependent vector potential with a
nonvanishing y component, A = Ay(x)ŷ, which satisfies

Bz =
dAy(x)

dx
. (26.5.38)

Bz(x) and Ay(x) vary considerably only close to the oxide layer, in a re-
gion whose width is on the order of the penetration depth, as illustrated in
Fig. 26.30.

In addition to the x-directed current through the junction, a y-directed
surface current appears in the above-mentioned region. Its spatial variation is
shown in Fig. 26.30.
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� �d
x xx

Bz IyAy

Fig. 26.30. The spatial variation of the magnetic induction, vector potential, and
surface current in a Josephson junction, perpendicular to the oxide layer

Because of the presence of the vector potential, the phase of the supercon-
ductor is not homogeneous: it depends on the y coordinate. The x-directed
current density at position y through the junction is determined by the phase
difference φ(Ly)−φ(Ry), where Ly and Ry are two points inside the left- and
right-hand superconductors, respectively, whose distance from the interface is
larger than the penetration depth. To determine this phase difference, con-
sider the second Ginzburg–Landau equation (26.4.30). Expressed in terms of
the phase of the wavefunction, the current density is

j = −e
∗
�

m∗ |ψ|2
(

∇φ+
e∗

�
A

)
. (26.5.39)

Far from the insulator–superconductor interface, where no current flows,

∇φ = −e
∗

�
A . (26.5.40)

The integral of this formula gives the phase difference between two points that
can be connected by a path that is entirely in the superconductor.

Now consider two points, L1 and L2, deep inside the left-hand supercon-
ductor, as in Fig. 26.31.

Fig. 26.31. Schematic cross section of a Josephson junction in a magnetic field that
is applied in z-direction

Although the magnetic field cannot penetrate to this depth, the difference
of the phases at the two points is finite because of the presence of the vector
potential:
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φ(L2) − φ(L1) = −e
∗

�

L2∫
L1

A · dl . (26.5.41)

Analogously, for two points R1 and R2 deep inside the right-hand side but
with the same y and z coordinates as L1 and L2, the phase difference is

φ(R2) − φ(R1) = −e
∗

�

R2∫
R1

A · dl . (26.5.42)

A suitable rearrangement leads to the following expression for the varia-
tion of the phase difference between points located on opposite sides of the
junction:

Δφ(L2 −R2) − Δφ(L1 −R1) = [φ(L2) − φ(R2)] − [φ(L1) − φ(R1)]

= [φ(L2) − φ(L1)] − [φ(R2) − φ(R1)]

= −e
∗

�

⎛⎝ L2∫
L1

A · dl −
R2∫

R1

A · dl

⎞⎠ . (26.5.43)

Since only the y component of the vector potential is nonzero, the line integrals
along the x-directed paths between L1 and R1, and L2 and R2 vanish. Owing
to their vanishing contributions, these segments can be freely added to the
previous integration path, and so

Δφ(L2 −R2) − Δφ(L1 −R1) =
e∗

�

∮
A · dl , (26.5.44)

where the closed path is traversed counterclockwise. This can be rewritten
as a surface integral for curlA, which gives the flux Φ through the surface
bounded by the contour. In terms of the flux quantum Φ0 we have

Δφ(L2 −R2) − Δφ(L1 −R1) = 2π
Φ

Φ0
. (26.5.45)

Denoting the phase difference at y = 0 by Δφ(0), the phase difference at
an arbitrary y is given by

Δφ(y) = Δφ(0) + 2π
Φ(y)
Φ0

, (26.5.46)

where
Φ(y) = B · (d+ λL + λR)y (26.5.47)

approximately. In the previous formula d is the thickness of the oxide layer,
while λL and λR are the penetration depths in the two superconductors. The
Josephson current at position y is therefore
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IJ(y) = I0 sin
(

Δφ(0) + 2π
Φ(y)
Φ0

)
. (26.5.48)

Note that this formula allows the current to be interpreted as the sine of the
gauge-invariant phase difference

Δφ+
2π
Φ0

∫
A · ds (26.5.49)

in the presence of a vector potential.
The formulas also shows that the current through the junction oscillates

with the height y. This is illustrated in Fig. 26.32.
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Fig. 26.32. The spatial variation of the current through the Josephson junction,
perpendicular to the magnetic field, for three different values of the field strength

Because of this spatial oscillation, the total current through the junction
varies with the magnetic field much like a diffraction pattern. The current is
the highest in the zero-field case, since it flows in the same direction over the
entire cross section of the junction then. When the field strength is such that
the total magnetic flux through the junction is an integral multiple of the flux
quantum, the total current is zero because the oscillatory contributions cancel
out. In general, the current through the junction for a sample of width Ly is

IJ =

Ly∫
0

IJ(y) dy = I0

Ly∫
0

sin
(

δφ(0) − 2π
Φ(y)
Φ0

)
dy

= I0Ly sin(δφ(0))
sin(πΦ/Φ0)
πΦ/Φ0

,

(26.5.50)

and the total flux through the junction is Φ = B(d + λL + λR)Ly. Since the
direction of the current is rarely measured in experiments, the dependence of
the total current on the magnetic field is similar to the Fraunhofer diffraction
pattern. However, when two point-like junctions are located at two opposite
points of a ring, the dependence on the magnetic field is described by the
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Airy function. These two functions, along with measurement data, are shown
in Fig. 26.33

(a) (b)

Fig. 26.33. The total current through a Josephson junction as a function of the
magnetic field: (a) theoretical predictions; (b) experimental results by D. E. Lan-
genberg et al. [Proc. IEEE 54, 560 (1966)]

A more interesting interference pattern is obtained when the current is
split between two arms, which are connected in parallel and enclose a finite
magnetic flux.

Fig. 26.34. Two Josephson junctions connected in parallel

Since the superconducting arms are broken by the insulating layers of the
junction, the quantization condition does not apply to the enclosed flux: it can
take any arbitrary value. Assuming that the arms are sufficiently narrow for
that each junction can be characterized by a phase difference, the resultant
of the currents in the two arms is

IJ = I0 [sin Δφ(L1 −R1) + sin Δφ(L2 −R2)] . (26.5.51)

In perfect analogy with the previous results, when the two arms enclose a flux
Φ, the phase differences are related by

Δφ(L2 −R2) − Δφ(L1 −R1) = 2π
Φ

Φ0
. (26.5.52)

Choosing the phase differences in the two arms as Δφ0 + πΦ/Φ0 and Δφ0 −
πΦ/Φ0, the resultant current is
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IJ = I0

[
sin
(

Δφ0 + π
Φ

Φ0

)
+ sin

(
Δφ0 − π Φ

Φ0

)]
= 2I0 sin Δφ0 · cos

(
π
Φ

Φ0

)
.

(26.5.53)

Once again, by measuring the intensity of the current but not its direction,
a diffraction-pattern-like dependence is found (Fig. 26.35). The operation of
SQUIDs,20 designed to measure tiny magnetic fields,21 is based on this prin-
ciple.

Fig. 26.35. The dependence of the maximum supercurrent on the magnetic field
for two point-like Josephson junctions connected in parallel

In reality, the finite size of the Josephson junctions connected in parallel
must also be taken into account. If the flux through the cross section of the
junction is Φf then, according to (26.5.50), the previous formula for the current
has to be multiplied by the appropriate factor

sin (πΦf/Φ0) / (πΦf/Φ0) , (26.5.54)

at each junction. This leads to a much slower variation than the total enclosed
flux Φ, and so the dependence shown in Fig. 26.36 is observed in experiments.

Fig. 26.36. Macroscopic interference and diffraction effects in the maximum Joseph-
son current through two Josephson junctions coupled in parallel [Reprinted with
permission from R. C. Jaklevic et al., Phys. Rev. 140, A 1628 (1965). ©1965 by the
American Physical Society]

20 The acronym SQUID stands for Superconducting QUantum Interference Device.
21 In an appropriate design, SQUIDs can also be used for the highly sensitive mea-

surement of susceptibility and voltage.
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27

Transport of Carriers in Semiconductor Devices

The energy spectrum of electrons in semiconductors was discussed in Chap-
ter 20. The modifications due to the uniform doping of pure semiconductors
by donor or acceptor impurities were also analyzed in detail. However, the
semiconductor devices that have become the fundamental building blocks of
modern high-tech equipment consist of different regions that may differ in
their doping concentration, doping type, or base material, and are separated
by relatively sharp boundaries (interfaces). In other devices semiconductor
regions are in contact with metals or insulators. In this chapter we shall first
examine what happens to electronic states close to metal–semiconductor in-
terfaces and in p–n junctions.

As we shall see, the charge distribution becomes nonuniform on the semi-
conductor side. Thus diffusion may occur, leading to the recombination and
generation of charge carriers. After a brief description of these physical pro-
cesses we shall investigate the consequences of applying a voltage across a
metal–semiconductor junction or a p–n junction. We shall demonstrate that
the current of carriers is a nonlinear function of the applied voltage. The
intensity of the current may also depend strongly on its direction, and can
be easily controlled through the voltage applied to one of the regions. This
property is used for rectification and amplification.

Since the invention of the point-contact transistor1 and the bipolar junc-
tion transistor2 (whose operation is based on the physical processes taking
place in p–n junctions), semiconductor technology – in particular, planar
technology – has undergone a breathtaking evolution. This has led to the
development and mass production of newer and newer generations of silicon-
based devices. Below we shall deal only with a few simple cases, and examine
those physical processes that are necessary for understanding the principles
of operation.

In the description of physical processes we shall assume the applicability
of the semiclassical approximation to the motion of the carriers. Only a very
1 J. Bardeen and W. H. Brattain, 1947.
2 W. B. Shockley, 1948. See the footnote on page 4 of Volume 1.
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brief overview will be given of the quantum effects that are important in
very tiny systems called nanostructures. Finally, we shall look into a recent
development that aims to make use of spin (rather than charge) transport in
a new type of device.

27.1 Interfaces and Junctions

The properties of inhomogeneously doped semiconductor devices can be con-
trolled by the carriers introduced via doping. In order that the properties
should indeed be determined by the introduced carriers, and be controllable
by the concentration of donors and acceptors, the crystal structures on the
two sides of the junction should differ as little as possible. If these structures
were built by putting together two different, traditionally fabricated semicon-
ductors, the number of surface states could be comparable to the number of
carriers introduced by doping, and so the properties of the junction could
be determined by the former. That is why junctions are usually produced
by the nonuniform doping of single crystals. Several different techniques are
used. The simplest is to change the composition of the melt from which the
semiconductor crystal is grown. Another possibility is to heat one side of a
ready-made crystal, and to alloy the dopants into it. A third option is to use
diffusion to add dopant atoms, and create an inhomogeneous distribution in
which one side of the sample is an n-type, while the other is a p-type semi-
conductor. More accurately controlled and more abruptly changing doping
concentrations can be achieved by ion implantation and epitaxial growth.

Below we shall examine the nonuniform redistribution of charges, which
depends on the amount of doping, first at the metal–semiconductor interface,
and then at the interface between n- and p-type semiconductors. We shall not
discuss the states around semiconductor–insulator interfaces: even though the
semiconductor is in contact with the insulating oxide layer in many applica-
tions, the layer separating it from the metal is usually sufficiently narrow for
that it can be treated as a simple potential barrier.

27.1.1 Metal–Semiconductor Interface

We shall first consider the interface between a metal and an n-type semicon-
ductor. The interface with a p-type semiconductor can be treated in exactly
the same way. Therefore only the results for the latter will be listed after the
discussion of n-type semiconductors.

Before the contact is made, the work function – which is the distance of
the chemical potential from the vacuum level (the minimum amount of en-
ergy needed to remove an electron from the metal) – may be different in the
metal and the semiconductor: Φm ≷ Φs. First we discuss the case Φm > Φs.
Figure 27.1(a) shows the occupied electronic states of the metal and semi-
conductor in the moment they are brought into contact, and the bottom of
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the conduction band (which is empty in the ground state), aligned to the
vacuum level εvac. The chemical potential in semiconductors is known to de-
pend strongly on temperature as well as the number of donors and acceptors.
The figure shows a low-temperature situation in which the chemical poten-
tial of the semiconductor is between the donor level and the bottom of the
conduction band.

SemiconductorMetal Metal Semiconductor
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Fig. 27.1. The formation of a depletion layer at the interface of a metal and an
n-type semiconductor. The energy-level diagram in the metal and semiconductor
(a) at the moment of contact, (b) in thermal equilibrium, after the bending of the
energy levels

As illustrated in the figure, the chemical potentials are different in the
metal and the semiconductor. This situation cannot be maintained, since in
thermal equilibrium the chemical potential must be the same on both sides of
the interface. The equalization of the chemical potential occurs via the transfer
of charges from one side to the other. When the chemical potential is lower
on the metallic side (which corresponds to Φm > Φs), electrons move from
the semiconductors to the metal. Since charges cannot accumulate locally in
metals, the transferred electrons are distributed uniformly over the metallic
side. On the other hand, the charge density may become nonuniform on the
semiconductor side. This gives rise to a nonuniform electric field, which can
be specified by a potential V (r). Since the scale of the spatial variations
of the potential is much larger than the atomic distances, the semiclassical
approximation can be applied, and the position-dependent potential leads to
a position-dependent shift Δε = −eV (r) of the energy levels. This distortion
of the energy spectrum – bending of the levels – is shown in Fig. 27.1(b).

Far from the interface on the semiconductor side, where the charge dis-
tribution is already uniform, the relative location of the chemical potential
with respect to the bottom of the conduction band and the donor level must
be the same as in homogeneous semiconductors, which was determined in
Chapter 20. On the other hand, in an absolute sense it has to be equal to the
chemical potential in the metal, therefore the energy spectrum of the semicon-
ductor is bent downward by Δε = Φm − Φs. The contact potential difference
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V0, defined through
eV0 = Φm − Φs , (27.1.1)

comes from a layer of finite width around the interface, from where electrons
have diffused into the metal.3

We now have to determine in a self-consistent manner the new, inhomoge-
neous charge distribution, the arising position-dependent potential V (r), and
the position-dependent shift of the energy levels.

At point r, where the potential V (r) leads to an energy shift −eV (r), the
density of electrons in the conduction band is not given by (20.3.17) but by

n(r) = Nc(T ) exp
{
−εc − eV (r) − μ

kBT

}
, (27.1.2)

whereas the density of ionized donor atoms is given by

n+
d (r) =

nd

1 + 2e(μ−εd+eV (r))/kBT
(27.1.3)

instead of (20.5.13). The density of holes in the valence band can be expressed
analogously. Because of the opposite charge of holes, the energy shift is eV (r),
so, instead of (20.3.20),

p(r) = Pv(T ) exp
{
−μ− εv + eV (r)

kBT

}
(27.1.4)

has to be used for it.
Because of the charge redistribution on the semiconductor side, local

charge neutrality is violated close to the interface, and a charge density

ρ(r) = −e [n(r) − n+
d (r) − p(r)

]
(27.1.5)

appears. In the medium of relative permittivity εr this charge produces an
electrostatic potential V (r) that satisfies the Poission equation

∇2V (r) = −1
ε
ρ(r) = − 1

εrε0
ρ(r) . (27.1.6)

Since the charge distribution itself also depends on the potential, this equation
has to be solved self-consistently, imposing the boundary condition that on
the semiconductor side, far from the metal–semiconductor interface, charge
neutrality must be satisfied locally.

To simplify calculations, consider the case in which two semi-infinite media
are separated by a plane interface. Choosing the x-axis along the perpendicular
direction, all variations occur in the x-direction, therefore we shall use this
variable instead of r.
3 The diffusion of donor atoms can be ignored.
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Suppose, furthermore, that the temperature is in the saturation range (see
page 230) – that is, all donor atoms are ionized (n+

d ≈ nd) but hardly any
holes are generated in the valence band (p ≈ 0). As a function of the distance
from the contact, the charge density is given by

ρ(x) = −e [n(x) − nd] , (27.1.7)

and
d2V (x)

dx2
= −1

ε
ρ(x) . (27.1.8)

In the absence of a potential, the neutrality condition implies n ≈ nd far
from the interface in this temperature range. Referred to that, the density of
electrons in the conduction band is

n(x) = n(∞) exp
(
e[V (x) − V (∞)]

kBT

)
= nd exp

(
e[V (x) − V0]

kBT

)
, (27.1.9)

where V0 = V (∞). Substituting this into (27.1.7), the Poisson equation
(27.1.8) gives a closed equation for the potential:

d2V (x)
dx2

=
e

ε
nd

[
exp

(
e[V (x) − V0]

kBT

)
− 1
]
. (27.1.10)

The complete solution of this equation specifies the profile of the potential. In
general, this equation cannot be solved analytically but an important property
can be read off immediately. Rewriting the equation in terms of the dimen-
sionless quantity Ṽ (x) = e[V (x) − V0]/kBT ,

d2Ṽ (x)
dx2

=
e

kBT

e

ε
nd

[
eṼ (x) − 1

]
. (27.1.11)

By introducing the quantity

λD =
√
ε kBT

e2nd
(27.1.12)

of dimension length, a dimensionless equation can be obtained for x/λD. So λD
defines the characteristic length scale for the spatial variations of the potential
– and, consequently, for the charge redistribution as well. Since λD is the same
as the screening length in the Debye–Hückel theory4 of electrolytes, it is called
the Debye length (or Debye screening length). Electrons described by classical
statistics in semiconductors screen the effect of the metal over such a distance.

In the temperature range where e(V (x) − V0)/kBT  1, the spatial vari-
ations of the potential and charge distribution can be determined explicitly.
From (27.1.10) we have
4 P. Debye and E. Hückel, 1923. This will be discussed in detail in Chapter 29.
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d2V (x)
dx2

≈ e2nd

εkBT
[V (x) − V0] =

1
λ2

D
[V (x) − V0] . (27.1.13)

Its physically meaningful solution, which decreases (rather than increases)
exponentially far from the interface, is

V (x) − V0 = Ae−x/λD . (27.1.14)

To specify the parameter A, attention must be paid to the auxiliary condition
that there is no screening at x = 0: the relative position of energy levels is the
same as in the moment of contact. Therefore

V (x) = V0

{
1 − e−x/λD

}
, (27.1.15)

and the shift of energy levels is

Δε(x) = eV0

{
e−x/λD − 1

}
, x > 0 , (27.1.16)

where eV0 is defined by (27.1.1). This position-dependent shift of the energy
levels is shown in Fig. 27.1(b). When the potential is known, the charge dis-
tribution can be determined from the Poisson equation as

ρ(x) = ε
1
λ2

D
V0e−x/λD =

e2nd

kBT
V0e−x/λD . (27.1.17)

When eV0 = Φm − Φs > 0, electrons diffuse from a region of depth λD on
the semiconductor side into the metal. This region is called depletion layer
or depletion region. Since the positively charged donors remain at their po-
sition, this region is in fact positively charged, which is why it is also called
space-charge region. λD is also the characteristic scale for the variations of the
potential, where the contact-potential drop V0 occurs. According to our pre-
vious calculations, both the potential and charge density vary exponentially
with the distance. The spatial variation of the net charge distribution and the
potential are shown in Fig. 27.2.

Fig. 27.2. (a) The net charge distribution close to the metal–semiconductor inter-
face. (b) The spatial variation of the potential

By assuming a donor density of nd = 1016/cm3 at T = 300K in germa-
nium, λD = 4 × 10−6 cm is found for the characteristic length. The influence
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of the metal is screened over this distance. As we shall see, screening occurs
much faster, over atomic distances in metals. That is why the metallic side
can be considered homogeneous even after the contact has been made.

Once thermal equilibrium has been established and the depletion layer has
been formed, the energy levels are bent as shown in Fig. 27.1(b). Electrons
inside the semiconductor cannot move to the metallic side, since they would
have to overcome a potential barrier known as the Schottky barrier,5 and the
probability for that is very low for eV0 � kBT . For this reason, the terms
barrier layer and Schottky barrier layer are also widely used for the depletion
layer.

In reality, the situation is somewhat more complicated as a charge placed
close to a metallic surface is known to polarize the metal. This polarization can
be described in terms of a mirror charge of the opposite sign inside the metal.
Therefore the potential barrier felt by an electron approaching the interface
is lowered and smoothed out in the immediate vicinity of the interface, as
illustrated in Fig. 27.3. Since the lowering of the potential barrier is rather
small compared to the height itself, this effect can be neglected in calculations.

Fig. 27.3. Lowering of the Schottky barrier at a metal–semiconductor contact

Figure 27.4 shows the energy levels for the case where the difference be-
tween the work functions exceeds the gap width: Φm − Φs ≥ εg.
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Fig. 27.4. Formation of an inversion layer at the interface of a metal with an n-type
semiconductor. The energy-level diagram (a) before and (b) after the establishment
of thermodynamic equilibrium

5 W. Schottky, 1938.
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Once thermal equilibrium has been established close to the interface in
such a configuration, the top of the valence band is above the chemical po-
tential in a tiny region that is much narrower than the depletion region. The
states at the top of the valence band then also become empty in this small re-
gion as it is energetically more favorable for electrons to fill the electron states
in the metal. Thus, close to the interface, a large number of holes appear on
the semiconductor side, and the n-type semiconductor becomes a p-type semi-
conductor. Instead of a depletion layer, an inversion layer is formed. Because
of the narrowness of the inversion layer, the holes in it can be considered to
propagate freely parallel to the interface but confined to a narrow potential
well in the perpendicular direction, thus their energy can take only distinct,
quantized, values. Indeed, hole states appear in the inversion layer when the
highest quantized level is above the Fermi energy. This requires that εv at
the interface should exceed the chemical potential by more than a threshold
value, and the inversion layer cannot be too narrow.

The opposite case, when the work function is larger on the semiconductor
side (Φm − Φs < 0), is illustrated in Fig. 27.5. Following the same steps as
above, it can be shown that the energy levels of the semiconductor are bent
in the opposite sense as in a depletion layer. Therefore electrons move from
the metal to the n-type semiconductor, and fill the states of the conduction
band in a layer of thickness λD, as those states are below the chemical poten-
tial. Unlike the depletion layer, this region contains an abundant number of
charges, and is accordingly called the accumulation layer. The two sides are
not separated by a potential barrier.
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Fig. 27.5. Formation of an accumulation layer at the interface between a metal and
an n-type semiconductor when Φm − Φs < 0. The energy-level diagram (a) before
and (b) after the establishment of thermodynamic equilibrium

Accumulation, depletion, and inversion layers can also be created in p-type
semiconductors; however, the condition for their appearance is reversed with
respect to n-type semiconductors. As shown in Fig. 27.6, the condition for the
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Fig. 27.6. Formation of (a) an accumulation, (b) a depletion, and (c) an inversion
layer at the interface between a metal and a p-type semiconductor

formation of a depletion layer is now Φm − Φs < 0, while an inversion layer
can be formed only when

Φm − Φs ≤ −εg (27.1.18)

is also satisfied. If Φm − Φs > 0, an accumulation layer appears.

27.1.2 MOS Structures

In devices that contain metallic as well as semiconducting regions, the metal
and the semiconductor are usually not in direct contact but separated by a thin
insulating layer. Such structures are called metal–insulator–semiconductor
(MIS) structures. If the insulating layer is obtained by oxidizing the mate-
rial on the metallic side, we speak of a metal–oxide–semiconductor (MOS)
structure. In most cases this is an M-SiO2-Si structure, where M stands for
some metal.

The thickness of the insulating layer is usually chosen to be a few times
the atomic dimension, so that the contact-potential drop should occur over
a finite region. At the same time, this layer has to be sufficiently narrow for
that electrons can tunnel from one side to the other. This can compensate for
the possible difference in the chemical potential, since in thermal equilibrium
μ has to be the same in the metal and semiconductor. This usually leads to
a shift of the energy levels that depends on their distance from the interface.
The MOS structure is said to be ideal if the location of the energy levels in
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Fig. 27.7. Energy-level diagram of ideal (a) p-type and (b) n-type MOS structures
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the semiconductor does not depend on the distance from the interface, as in
the illustration of Fig. 27.7.

Depending on the type of the semiconductor, we speak of n-MOS and
p-MOS structures.

27.1.3 p–n Junctions

Even more interesting than the charge redistribution at metal–semiconductor
interfaces is the rearrangement at the interface of two differently doped semi-
conductors. In analogy to the configurations examined above, we shall now
consider two semi-infinite semiconductors, a p- and an n-type, that are placed
in contact in a plane, and analyze what happens to the electrons close to the
interface.

As mentioned in the introduction, such junctions can be fabricated by
means of the diffusion of different kinds of impurity atoms – acceptors and
donors – into the two halves of an initially homogeneous semiconductor, turn-
ing them into p- and n-type semiconductors. Depending on the particular
fabrication method, the boundary between the two regions can be very sharp
or smeared out. For simplicity, we shall deal with abrupt (or step) junctions.
Treating the interface as an infinite plane, variations are considered only in
the perpendicular direction (x). We assume that only acceptors are present
at x < 0 (p side) and donors at x > 0 (n side), in uniform distribution:

nd(x) =

{
nd if x ≥ 0 ;

0 if x < 0 ;
na(x) =

{
0 if x ≥ 0 ;

na if x < 0 .
(27.1.19)

For more realistic dopant distributions in graded junctions the calculations
can be performed only numerically.

If the semiconductor were imagined to be separated into two parts by
an insulating layer during the introduction of donor and acceptor atoms, the
chemical potential would be at different heights with respect to the top of the
valence band and bottom of the conduction band on the p- and n-sides. This
is illustrated in Fig. 27.8(a).

Since the insulating layer is absent, and the n- and p-type semiconductors
are in intimate contact, the chemical potential must be the same on both
sides. If the chemical potentials are drawn at the same height [Fig. 27.8(b)],
but the relative location of the energy levels remains unchanged on both sides,
then the conduction and valence bands do not match properly across the
interface. In reality, thermal equilibration and the equalization of the chemical
potential occurs through the flow of electrons from the n-side to the p-side.
Because of the redistribution of charges, an electron deficiency appears on
the n-side, and an electron excess on the p-side. Owing to the inhomogeneous
charge distribution, an electrostatic potential appears, leading to a distance-
dependent bending of the energy levels close to the interface, as shown in
Fig. 27.9.
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Fig. 27.8. Energy-level diagram of a p–n junction, when (a) the band edges and
(b) the chemical potentials are drawn at the same height

x

	

�� = eVD

ln
0

�lp
0

	

�c
(p)

�c
(n)

�d�v
(p)

�v
(n)

�a

p-type n-type

Fig. 27.9. Bending of band edges at the interface of p- and n-type semiconductors

To determine the position-dependent potential V (r) and the new charge
distribution, we may follow the same steps as for the metal–semiconductor
interface. The potential satisfies the Poisson equation

∇2V (r) = −1
ε
ρ(r) . (27.1.20)

In the most general case the spatial distribution is inhomogeneous both for
donors and acceptors, so the charge density ρ(r) is given by

ρ(r) = −e [n(r) − n+
d (r) + n−a (r) − p(r)

]
. (27.1.21)

After the contact has been made, a new thermodynamic equilibrium is estab-
lished, in which the potential shifts the electron energies by −eV (r), thereby
changing the thermal occupation. For example, (27.1.2) has to be used for
the thermal occupation of the states in the conduction band, which takes the
simpler form

n(x) = n(∞) exp
{
e[V (x) − V (∞)]

kBT

}
(27.1.22)
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when spatial variations are assumed to occur only in the x-direction. Rewrit-
ing the general formula (27.1.4) for the number of holes in the valence band
accordingly,

p(x) = p(−∞) exp
{
−e[V (x) − V (−∞)]

kBT

}
. (27.1.23)

It is plausible to expect that the redistribution of charges is limited to the
vicinity of the interface, and far from it the previously obtained values for
homogeneous n- and p-type semiconductors are recovered. We shall assume,
furthermore, that the temperature is in the range where the dopant atoms are
completely ionized in the homogeneous semiconductors, and they supply the
dominant charge carriers, that is,

n(∞) = nd , p(−∞) = na . (27.1.24)

By substituting these formulas into (27.1.22) and (27.1.23), we have

n(x) = nd exp
{
e[V (x) − V (∞)]

kBT

}
,

p(x) = na exp
{−e[V (x) − V (−∞)]

kBT

}
.

(27.1.25)

By eliminating V (x) from the two equations of (27.1.25), the relative shift of
the energy levels between the two sides of the junction is

eV (∞) − eV (−∞) = kBT ln
(

ndna

n(x)p(x)

)
. (27.1.26)

The law of mass action must be satisfied everywhere, thus, according to
(20.3.27),

eVD ≡ eΔV = kBT ln
(
ndna

n2
i

)
. (27.1.27)

Using (20.3.24), this can be rewritten in the equivalent form

eVD = εg + kBT ln
(

ndna

Nc(T )Pv(T )

)
. (27.1.28)

The last result could have been obtained very simply. As can be read off from
Fig. 27.9,

eVD = εg − [εc(∞) − μ] − [μ− εv(−∞)] . (27.1.29)

Since all donor and acceptor atoms are assumed to be ionized, and far from
the interface n(∞) = nd and p(−∞) = na, the combination of (20.3.17) and
(20.3.20) immediately implies the previous formula for VD.

This potential difference, which depends on the number of dopant atoms
on each side of the sample, is called the contact potential or built-in potential.
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Since this potential difference is due to the diffusion of mobile carriers, it is
also called diffusion potential ; that is why the label “D” is used.

If both Nc(T ) and Pv(T ) are on the order of 1019/cm3 at room tempera-
ture, and the concentrations of donors and acceptors are both between 1014

and 1018/cm3, then the built-in potential is found to be between 0.5 and 1V
in silicon and somewhat lower in germanium, between 0.4 and 0.6V. These
are smaller than but of the same order as the gap.

Substituting the charge-distribution formulas into (27.1.21), and the re-
sulting expression into the Poisson equation (27.1.20), a closed formula is
obtained for the potential. On the n-side (x > 0)

d2V (x)
dx2

=
e

ε

{
nd exp

[
−eV (∞) − V (x)

kBT

]
− nd

−na exp
[
−eV (x) − V (−∞)

kBT

]}
,

(27.1.30)

while on the p-side (x < 0)

d2V (x)
dx2

=
e

ε

{
nd exp

[
−eV (∞) − V (x)

kBT

]
+ na

−na exp
[
−eV (x) − V (−∞)

kBT

]}
.

(27.1.31)

Even after these simplifications, the equations can usually be solved only
numerically. In a simple physical picture put forward by Schottky, the dis-
tribution of extra charges is assumed to be uniform over a region of width
l0n on the n-side and l0p on the p-side – that is, all variations occur in the
region −l0p < x < l0n. Beyond that – for x ≥ l0n on the n-side and x ≤ −l0p
on the p-side – the situation is the same as in homogeneous semiconductors.
Consequently, we shall assume that

n(x) = nd , V (x) = V (∞) , if x ≥ l0n (27.1.32)

on the n-side and

p(x) = na , V (x) = V (−∞) , if x ≤ −l0p (27.1.33)

on the p-side.
As is well known, there are also holes on the n-side and electrons on the

p-side, even though their concentrations are low. While the two equations in
(27.1.25) are valid for any x, as long as classical statistics can be applied, the
first will be used for x ≥ 0 (n-side), and the second for x ≤ 0 (p-side). Conse-
quently, we shall use the notations nn(x) and pp(x) for the concentrations of
majority carriers, indicating that they correspond to the electron concentra-
tion on the n-side and the hole concentration on the p-side. The concentration
of minority carriers – holes on the n-side and electrons on the p-side – will be
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denoted by pn and np, respectively. These are best expressed from (27.1.27)
as

pn(x) =
n2

i
nd

exp
{
−e[V (x) − V (∞)]

kBT

}
, x > 0 ,

np(x) =
n2

i
na

exp
{
e[V (x) − V (−∞)]

kBT

}
, x < 0 .

(27.1.34)

Beyond the transition region, where the potential can be replaced by its
asymptotic value,

pn(x) ≈ n2
i
nd

 nd , if x ≥ l0n ,

np(x) ≈ n2
i
na

 na , if x ≤ −l0p .
(27.1.35)

In the transition region the concentration of electrons and holes changes
rapidly between the two limits. This is shown in Fig. 27.10, where the con-
centrations are plotted on a logarithmic scale.

Fig. 27.10. Variations of the electron and hole concentrations in a p–n junction

The variation of eV (x) in the transition region is comparable to εg. In the
limit εg � kBT , both n(x) and p(x) are small and can be neglected in a first
approximation, as

n(x) = nd exp
[
−eV (∞) − V (x)

kBT

]
∼ nd exp

[−εg
kBT

]
 nd ,

p(x) = na exp
[
−eV (x) − V (−∞)

kBT

]
∼ na exp

[−εg
kBT

]
 na .

(27.1.36)

Thus in the Schottky approximation all electrons supplied by the donors (holes
introduced by the acceptors) are assumed to leave the region of width l0n
(l0p) on the n-side (p-side). The full width of the depletion layer is therefore
l0n + l0p. Having diffused to the other side of the contact, electrons and holes
leave behind uncompensated ions in the depletion layer. The actual charge
distribution is given by
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ρ(x) =

⎧⎨⎩end , 0 < x < l0n ,

−ena , −l0p < x < 0 .
(27.1.37)

That is why the depletion layer is also called space-charge region here, too.
Because of the overall neutrality of the sample, the condition

nd l
0
n = na l

0
p (27.1.38)

has to be met. In customary setups one side is much more heavily doped
than the other, and so the depletion layer is very narrow there. The spatial
distribution of mobile carriers and the full charge density close to the interface
are shown in Fig. 27.11.
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Fig. 27.11. The distribution of carriers and full charge density in a p–n junction.
The dotted line indicates the Schottky approximation

Using these approximations, the equation to be solved reads

d2V (x)
dx2

= −e
ε

⎧⎨⎩nd , 0 < x < l0n ,

−na , −l0p < x < 0 .
(27.1.39)

By integrating it once, the field strength E is obtained. When E is required
to be continuous and vanish outside the depletion layer,

E(x) =

⎧⎪⎨⎪⎩
end

ε
(x− l0n) , 0 < x < l0n ,

−ena

ε
(x+ l0p) , −l0p < x < 0 .

(27.1.40)

From the requirement that the field strength should be continuous at x = 0,
(27.1.38) is recovered. This is perfectly understandable, as it is known to be
the consequence of charge conservation.

By integrating the field strength, too, the solution that leads to a contin-
uous potential in l0n and −l0p is

V (x) =

⎧⎪⎨⎪⎩
V (∞) − end

2ε
(x− l0n)2 , 0 < x < l0n ,

V (−∞) +
ena

2ε
(x+ l0p)2 , −l0p < x < 0 .

(27.1.41)
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The variations of the potential and electric field are shown in Fig. 27.12.
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Fig. 27.12. The variations of the potential and electric field in a p–n junction

Since the potential, too, has to be continuous at x = 0,

V (∞) − e

2ε
ndl

0
n
2

= V (−∞) +
e

2ε
nal

0
p
2
. (27.1.42)

This leads to a relation between the built-in potential and the depletion width:

VD = V (∞) − V (−∞) =
e

2ε

(
ndl

0
n
2

+ nal
0
p
2
)
. (27.1.43)

The width of the space-charge regions on the n- and p-sides can then be
determined by making use of (27.1.38):

l0n =
{

2εVD

e

na/nd

nd + na

}1/2

, l0p =
{

2εVD

e

nd/na

nd + na

}1/2

. (27.1.44)

The full width of the space-charge region is thus

l = l0n + l0p =
{

2εVD

e

nd + na

nd na

}1/2

. (27.1.45)

Assuming typical values between 1014 and 1018/cm3 for the dopant con-
centration and VD = 1 V for the diffusion potential, the depletion width is
l0n,p ∼ 10−6 to 10−4 cm. Since the drop of the diffusion potential occurs over
such a distance, the electric field can be as high as 104 to 106 V/cm here.

27.1.4 Heterojunctions

Using epitaxial growth techniques, it is possible to grow semiconductors of
different chemical composition (e.g., different doping) on top of each other –
for example, AlxGa1−xAs on GaAs – provided the mismatch of the lattice
parameters is small. Depending on the type of dopants in the two materials,
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n–n, n–p, p–n, and p–p heterojunctions can be fabricated.6 Naturally, the gaps
and work functions are different on the two sides of the junction. The flat-band
energy-level diagram for a p–n heterostructure of p-type GaAs and n-type
AlxGa1−xAs is shown in Fig. 27.13(a). The energy difference between the tops
of the valence bands is Δεv, while that between the bottoms of the conduction
bands is Δεc. Since the chemical potential is located at different distances
from the vacuum level, which cannot be maintained in thermal equilibrium,
the energy levels must bend close to the interface, but in such a way that the
differences Δεv and Δεc are preserved. This is illustrated in Fig. 27.13(b).
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Fig. 27.13. (a) Flat-band energy-level diagram for p- and n-type semiconductors
with different gaps. (b) The energy levels of a p–n heterojunction

Since the gap is larger in the n-type AlxGa1−xAs, a well and a barrier ap-
pear in the conduction band, and a jump in the valence band. In case of heavy
doping, the potential well can be shifted below the chemical potential. Then
electrons move from the right-hand side to the left-hand side, and accumulate
there, making up a two-dimensional electron gas (2DEG). In such configu-
rations the particular properties of the two-dimensional electron gas can be
studied. Heterojunctions are also widely used in such important technological
applications as optoelectronic devices, semiconductor lasers, photodetectors,
and solar cells.

Figure 27.14 shows the band structures for the three other heterojunction
types: n–n, p–p, and n–p.

27.2 Generation, Motion, and Recombination of Carriers

Before turning to the study of how the charge distribution close to a metal–
semiconductor or semiconductor–semiconductor interface is modified by an
applied voltage, we present the physical processes that determine the current.
One would expect that carriers move from one side to the other via diffusion.
6 As usual, the first letter shows the doping type of the material with a narrower

gap.
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Fig. 27.14. Schematic energy-level diagrams of n–n, p–p, and n–p heterojunctions

However, this is not the only process that can change the number of carriers
in space and time. Through the creation of electron–hole pairs, new carri-
ers can be generated in the sample, and through recombination they may
also disappear. Below we shall give an overview of certain features of these
processes.

27.2.1 Generation and Recombination of Carriers

Thermal equilibrium is brought about by incessant collisions in semiconduc-
tors. As mentioned in Section 23.3, phonons can be absorbed while their en-
ergy and momentum are used for the creation of an electron–hole pair. The
inverse process can also take place: in the annihilation of an electron and a
hole, a phonon can be created. This is the recombination of carriers. The same
process also exists with a photon, rather than a phonon, in the final state; it
is then called radiative recombination. This is how the current is converted
into light in light-emitting diodes (LEDs).7

If the gap is less than 0.2–0.3 eV, the direct recombination of the electron–
hole pair is possible. For larger gaps the recombination occurs dominantly
indirectly, through those deep levels (traps) that are located deep inside the
gap and can interact both with conduction- and valence-band states. This
recombination takes about τ ∼ 10−3 s in silicon and germanium, and only τ ∼
10−8 s in GaAs. Even without going into the details of the interaction between
electrons and phonons, or specifying the capture probability of traps, some
general observations can be made about these generation and recombination
processes.

Suppose that thermodynamic equilibrium is broken by some external dis-
turbance, and the number densities n and p of charge carriers are different
from the equilibrium values (n0 and p0) in the conduction and valence bands
alike. Since in the recombination process an electron in the conduction band
7 For semiconductors with a wide gap, such as GaN or GaP, the emitted light is in

the visible region, whereas GaAs-based LEDs emit infrared radiation.
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fills a hole in the valence band, the recombination rate (number of recom-
bination events in unit time, R) must be proportional to the electron- and
hole-number densities:

R = C np , (27.2.1)

where C is a proportionality factor that will be determined later.
The probability of carrier generation cannot be obtained from such simple

considerations. In addition to thermally created electron–hole pairs, semicon-
ductors also contain carriers that were introduced externally, through injection
or interaction with light. We shall denote the external and thermal generation
rates by Ginj and Gtherm. We shall assume that the latter is independent of
the actual numbers of electrons and holes – in other words, the equilibrium
value can also be used in nonequilibrium states. On the other hand, in ther-
mal equilibrium the number of carriers is constant because the increase due to
thermal generation is compensated for by the decrease due to recombination.
Therefore,

Gtherm = R0 = C n0 p0 . (27.2.2)

In what follows, we shall ignore the possibility of carrier injection. If the
number of carriers differs from the equilibrium value, the recombination and
generation processes do not compensate each other. The net contribution of
the two processes changes the number of carriers in such a way that thermal
equilibrium should be restored. Since one electron and one hole are created
(annihilated) in each generation (recombination) process, the net recombina-
tion rate of either type of carrier is

U = R−Gtherm = C [n p− n0 p0] . (27.2.3)

The right-hand side can be rewritten as

U = C [(n− n0)(p− p0) + n0(p− p0) + p0(n− n0)] . (27.2.4)

Assuming that the departure from equilibrium is slight, the first term, being
a second-order quantity, can be neglected, and so

U = C [n0(p− p0) + p0(n− n0)] . (27.2.5)

In n-type semiconductors p0  n0, therefore

U ≈ Cn0(p− p0) , (27.2.6)

while in p-type semiconductors

U ≈ Cp0(n− n0) , (27.2.7)

that is, the variation in the number of carriers always depends on the excess
or deficiency of minority carriers.
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If no current flows in the sample, the change in the carrier numbers is
exclusively due to generation and recombination processes. In n-type semi-
conductors

∂n

∂t
=
∂p

∂t
= −Cn0(p− p0) , (27.2.8)

and hence
p(t) − p0 =

[
p(0) − p0

]
e−t/τp , (27.2.9)

where
τp =

1
Cn0

(27.2.10)

is the carrier lifetime, also called the recombination lifetime or recombination
time. Its meaning is obvious from the previous exponential time dependence:
τp is the mean recombination time for an additional hole introduced in an n-
type semiconductor. Its inverse is the recombination probability in unit time.

By expressing the constant C in terms of the recombination lifetime, the
variations in the densities of electrons and holes in n-type semiconductors due
to recombination and generation are governed by the equations

∂n

∂t
= −p− p0

τp
,

∂p

∂t
= −p− p0

τp
. (27.2.11)

The situation in p-type semiconductors can be treated analogously. If the
number of carriers differs from the value in thermal equilibrium, the variation
in the number of extra electrons can be described in terms of a recombination
lifetime τn that is related to C through

τn =
1
Cp0

. (27.2.12)

In terms of τn, the net recombination rate is

U =
n− n0

τn
, (27.2.13)

and
∂n

∂t
= −n− n0

τn
,

∂p

∂t
= −n− n0

τn
. (27.2.14)

Up to this point we have ignored the current that may flow in the semicon-
ductor. If the number of carriers were conserved, the continuity equation would
apply. Because of the generation and recombination processes, the continuity
equation needs to be complemented by the previous terms for the variations in
the particle numbers. The net variations in the numbers of electrons and holes
due to generation and recombination processes are known to be determined by
the number of minority carriers. Therefore in n-type semiconductors, where
the minority carriers are holes, we have:

∂n

∂t
− 1
e
∇jn = −p− p0

τp
,

∂p

∂t
+

1
e
∇jp = −p− p0

τp
, (27.2.15)
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where jn and jp are the currents carried by electrons and holes, respectively.
Analogously, in p-type semiconductors, where the minority carriers are elec-
trons,

∂n

∂t
− 1
e
∇jn = −n− n0

τn
,

∂p

∂t
+

1
e
∇jp = −n− n0

τn
. (27.2.16)

In the presence of a current, the number of charge carriers can remain constant
in time, as the divergence of the current can compensate the loss due to
recombination.

27.2.2 Diffusion and Drift of Carriers

The recombination lifetime introduced above is much longer than the mean
time between collisions during the motion of an electron or hole, which charac-
terizes the amount of time the particle spends in a particular state. The latter
is about τ ∼ 10−12 to 10−13 s. The motion of electrons should therefore be
considered as diffusion in the transition region, where the charge distribution
is nonuniform. This indicates the inadequacy of the previous static picture,
and the necessity of including the diffusion current of carriers in the descrip-
tion of the processes close to the contact, even though there is no net current.
The diffusion potential V (r), which is present because of the nonuniformity of
the charge distribution, gives rise to an ohmic drift current. The two compo-
nents of the current must cancel out perfectly. This leads to a self-consistent
relation between the charge distribution and the potential.

Denoting the electron diffusion coefficient by Dn, the particle-current den-
sity driven by diffusion is

jdiff(r) = −Dn gradn(r) (27.2.17)

according to Fick’s first law.8 Since each electron carries a charge −e, the
diffusion current is

jdiff
n (r) = −ejdiff(r) = eDn gradn(r) . (27.2.18)

Besides the charge distribution, the potential also varies in space in inho-
mogeneous specimens. Therefore the electric field E(r) = − gradV (r) does
not vanish, nor does the drift current jdrift

n (r) = −en(r)vn(r), which is pro-
portional to it. The velocity vn of electrons can be related to the electric field
E through the mobility μn as vn = −μnE. Since electrons move against the
field, the drift current is

jdrift
n (r) = en(r)μnE(r) = −en(r)μn gradV (r) . (27.2.19)

There is no net charge flow in thermal equilibrium as the two currents
cancel out:
8 A. Fick, 1855.
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− en(r)μn gradV (r) + eDn gradn(r) = 0 . (27.2.20)

Since (27.1.2) implies

gradn(r) =
e

kBT
n(r) gradV (r) , (27.2.21)

comparison with (27.2.20) leads to the Einstein relation9

μn =
e

kBT
Dn (27.2.22)

between the diffusion coefficient and the mobility. These considerations pro-
vide additional support to the picture that the nonuniform charge distribution
on the two sides of the contact is due to the diffusion of electrons, and justifies
the term diffusion potential.

The diffusion and drift currents of holes can be treated likewise. Because
of the positive charge of holes, the diffusion current, which is proportional to
the concentration gradient, is

jdiff
p (r) = −eDp grad p(r) , (27.2.23)

and the drift current, which is driven by the potential gradient, is

jdrift
p (r) = ep(r)vp(r) = eμpp(r)E = −eμpp(r) gradV (r) , (27.2.24)

where μp is the hole mobility, and we exploited that holes are drifted along
the field.

Since the net current of holes is zero in thermal equilibrium,

− eDp grad p(r) − eμpp(r) gradV (r) = 0 . (27.2.25)

As implied by (27.1.4), the density of holes satisfies

grad p(r) = − e

kBT
p(r) gradV (r) . (27.2.26)

The Einstein relation is valid for holes as well:

Dp =
kBT

e
μp . (27.2.27)

The mobility of electrons and holes, as well as the diffusion coefficients at
room temperature are listed in Table 27.1 for a number of semiconductors.

Through their diffusive motion, particles move a distance L =
√
Dt in

time t. Thus the minority carriers injected into a p- or n-type semiconductor
through an interface are expected to cover a distance
9 A. Einstein, 1905, also known as the Einstein–Smoluchowski relation because

the theory of Brownian motion was also worked out independently by M. Smolu-
chowski one year later.
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Table 27.1. The room-temperature mobility and diffusion coefficient of electrons
and holes in the transition region

Semiconductor μn

(cm2/V s)
μp

(cm2/V s)
Dn

(cm2/s)
Dp

(cm2/s)

Si 1350 480 34.9 12.9
Ge 3900 1900 100.8 49.1
GaAs 8800 320 227.5 10.3
GaSb 3750 680
InAs 33 000 450
InSb 77 000 850

Ln =
√
Dnτn , and Lp =

√
Dpτp (27.2.28)

during the carrier lifetime τn,p. To prove this, we shall consider the equations
governing the spatial and temporal variations of the density of electrons and
holes, (27.2.15) and (27.2.16), in the stationary case.

When the concentrations vary in a single direction, and thus diffusion
occurs only along that direction, the equation for the minority carriers (holes)
in n-type semiconductors is simplified to

1
e

djp
dx

= −p− p0
τp

. (27.2.29)

Substitution of the diffusion current from (27.2.23) yields

Dp
d2p

dx2
=
p− p0
τp

. (27.2.30)

In terms of Ln and Lp, defined in (27.2.28), the equation for the variations
of the hole density is

d2p

dx2
=
p− p0
L2

p
. (27.2.31)

In the physically meaningful solution the density of the injected holes de-
creases exponentially with the distance, as exp(−x/Lp). If the carriers are
injected at x = 0, and the equilibrium concentration p0 is to be recovered for
large values of x, the solution is

p(x) = p0 + [p(0) − p0]e−x/Lp . (27.2.32)

Therefore Lp is the hole diffusion length. On the other hand, when the injected
charges are removed (drained) at the end of the semiconducting sample of
width d, the spatial distribution of holes is given by

p(x) = p0 + [p(0) − p0] sinh[(d− x)/Lp]
sinh(d/Lp)

. (27.2.33)
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In perfect analogy, the spatial variation of the density of injected elec-
trons on the p-side is given by exp(x/Ln), where Ln is the diffusion length of
electrons, which now play the role of minority carriers.

The estimated magnitude of these diffusion lengths turns out to be much
larger than the width of the depletion layer. This point will be important for
the operation of semiconductor devices.

27.2.3 Fundamental Equations of the Physics of Semiconductor
Devices

We are now in the position to write down the equations that can be used to
model the behavior of semiconductor devices mathematically. The Maxwell
equations are, of course, valid, but they have to be complemented by the
constitutive relations and the continuity equation.

The total current density in an arbitrary point of the semiconductor is the
sum of the electron and hole currents:

j(r) = jn(r) + jp(r) . (27.2.34)

The current of either carrier type can be decomposed further, into a diffusion
current and a drift current that is the response to the applied electric field:

jn(r) = en(r)μnE + eDn∇n(r) ,
jp(r) = ep(r)μpE − eDp∇p(r) .

(27.2.35)

The electric field E is determined by the total charge density. In addition
to mobile carriers, the charged donors and acceptors must also be taken into
account:

εdiv E = −e [n(r) + n−a (r) − n+
d (r) − p(r)

]
. (27.2.36)

We shall also need the extensions of the continuity equation that contain
the generation and recombination terms. Allowing for the injection of carriers,

∂n

∂t
− 1
e
∇jn = Ginj, n +Gtherm −R ,

∂p

∂t
+

1
e
∇jp = Ginj, p +Gtherm −R .

(27.2.37)

Since the thermal generation and recombination of carriers are determined by
the number of minority carriers, it is useful to write down separate equations
for n-type and p-type semiconductors. Following the convention that the type
of the semiconductor is indicated by a subscript, the variations of the number
density of electrons (n) and holes (p) are given by

∂nn

∂t
= Ginj, n +Dn∇2nn + μn div(nnE) − pn − pn0

τp
,

∂pn
∂t

= Ginj, p +Dp∇2pn − μp div(pnE) − pn − pn0

τp

(27.2.38)
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in an n-type semiconductor, and by

∂np

∂t
= Ginj, n +Dn∇2np + μn div(npE) − np − np0

τn
,

∂pp
∂t

= Ginj, p +Dp∇2pp − μp div(ppE) − np − np0

τn

(27.2.39)

in a p-type semiconductor.
In principle, the solution of these equations allow us to determine the cur-

rent in any system composed of arbitrarily doped semiconductor components
for any applied voltage – that is, the characteristics of the semiconductor
device. Below we shall consider a few simple cases.

27.3 Biased Semiconductor Junctions

In the previous section we found that the charge distribution became nonuni-
form near to the interface between a metal and a semiconductor or two
semiconductors. According to Fick’s first law, a diffusion current has to flow
through the interface then. However, no net charge current is produced be-
cause an internal potential, the diffusion potential, is built up. Steady current
can flow only when an external voltage is applied. Owing to the different char-
acter of the two sides, the current depends strongly on the polarity, therefore
these junctions may exhibit rectifying properties. The rectifiers used in the
first radios were based on metal–semiconductor contacts.

27.3.1 Biased Schottky Diodes

We shall first consider a metal–semiconductor junction in which a depletion
layer is formed between the metal and the n-type semiconductor. In the previ-
ous section we solved the Poisson equation to determine the spatial variations
of the static potential V (x) and the electron density n(x) in the depletion
layer. In reality, this equilibrium state is established by two currents that
compensate each other perfectly: a diffusion current toward the metallic side,
and an oppositely directed drift current,

jn(r) = en(r)μnE + eDn∇n(r) = 0 . (27.3.1)

Writing the electric field as the negative gradient of the potential V (r), and
exploiting the Einstein relation, the solution given in (27.1.9) is recovered:

n(x) = n(∞) exp
(
e[V (x) − V (∞)]

kBT

)
. (27.3.2)

Let us now apply a voltage V > 0 to this setup (known as the Schottky
diode or Schottky barrier diode) in such a way that the metal is the positive
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electrode. By convention, the junction is then said to be forward biased. When
the metal is connected to the negative electrode, it is reverse biased. The
thermal equilibrium is broken by the applied voltage, and so the chemical
potential becomes different on the two sides: the energy levels on the metallic
side are shifted downward by eV . Alternatively, we could just as well say that
the energy levels of the semiconductor experience an upward shift of the same
magnitude. However, since the relative location of the energy levels on the
two sides remains unaltered (the levels are “pinned”) in the point of contact,
the extra potential grows to its asymptotic value gradually with the distance.
This leads to a further bending of the energy levels on the semiconductor side.
The energy-level diagrams in the presence of an applied voltage are shown in
Fig. 27.15.

	 	
	

	

�c

�c

�d

�d

�vac �vac

�v

�v

( )a ( )b

eV

V�� forward bias V� reverse bias

eV

Fig. 27.15. Energy-level diagram at the interface of a metal and an n-type semi-
conductor in the presence of an applied voltage. (a) V > 0, (b) V < 0

When a nonzero voltage is applied, a net current flows from the semicon-
ductor to the metal or vice versa. In n-type semiconductors the dominant
contribution comes from electrons because at the relevant temperatures the
valence band of the semiconductor is completely filled, just like those electron
states in the metal that are at the same height.

Instead of eV0 = Φm − Φs, the height of the potential barrier seen by the
electrons coming from the semiconductor side is now eV0 − eV . They can
pass through it either classically, if their thermal energy is large enough, or
by quantum mechanical tunneling. In metal–semiconductor contacts the first
option is more important. Later we shall also discuss semiconductor devices
in which tunneling plays the dominant role. For V > 0 the potential barrier
is smaller than in the equilibrium state, therefore electrons start to flow from
the semiconductor to the metal. The current is due to the majority carriers
injected from the semiconductor to the metal.

Two situations need to be distinguished. If the electron mean free path
exceeds the thickness of the depletion layer, the current can be determined
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from the Richardson–Dushman equation10 of thermionic emission. Only those
electrons that are able to overcome the potential barrier V0 − V can get from
the semiconductor to the metal side. According to the formulas of classical
statistics, if the number density of electrons inside the semiconductor is nd,
the number density of electrons whose velocity components are between vx
and vx + dvx, vy and vy + dvy, vz and vz + dvz is given by

dn = nd

(
m∗

n

2πkBT

)3/2

e−m∗
n(v2

x+v2
y+v2

z)/2kBT dvxdvydvz . (27.3.3)

The density of the current carried by them in the −x-direction is

djx = evxnd

(
m∗

n

2πkBT

)3/2

e−m∗
n(v2

x+v2
y+v2

z)/2kBT dvxdvydvz . (27.3.4)

However, only those electrons get over the potential barrier for which

1
2m

∗
nv

2
x > e(V0 − V ) , (27.3.5)

hence the total current density is

jx = end

(
m∗

n

2πkBT

)3/2
∞∫

v0

vxe−m∗
nv2

x/2kBT dvx

∞∫∫
−∞

e−m∗
n(v2

y+v2
z)/2kBT dvydvz ,

(27.3.6)
where

1
2m

∗
nv

2
0 = e(V0 − V ) . (27.3.7)

The integral gives

jx = 1
4nd

(
8kBT
πm∗

n

)1/2

e−eV0/kBT eeV/kBT . (27.3.8)

Electrons can pass over the potential barrier in the other direction, too.
However, the potential barrier felt by these electrons is not affected by the
applied voltage, so the reverse current is independent of V . Since the two
currents compensate each other for V = 0, the total current is

j = j0
(
eeV/kBT − 1

)
. (27.3.9)

A slightly different approach has to be taken when the electron mean free
path is smaller than the thickness of the depletion layer. Making use of the
Einstein relation, the current-density formula
10 O. W. Richardson, 1901, S. Dushman, 1923. Owen Willans Richardson

(1879–1959) was awarded the Nobel Prize in 1928 “for his work on the thermionic
phenomenon and especially for the discovery of the law named after him”.
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j(r) = en(r)μnE + eDn∇n(r) = −en(r)μn∇V (r) + eDn∇n(r) , (27.3.10)

which contains the drift and diffusion currents, can then be rewritten as

j(r) = eDneeV (r)/kBT ∇
(
n(r)e−eV (r)/kBT

)
. (27.3.11)

By moving the first exponential factor to the left-hand side, integrating on
the semiconductor side from the contact to the other end of the sample (i.e.,
infinity), and exploiting that the current is the same in all cross sections,

jx

∞∫
0

e−eV (x)/kBT dx = eDnn(x)e−eV (x)/kBT
∣∣∣x=∞

x=0
(27.3.12)

is obtained. Far from the contact n(x) ≈ nd, and the potential grows to V0−V
rather than V0. The potential is zero at the contact because the net current is
small and the density of electrons is practically the same as for V = 0 – that
is,

n(0) = nde−eV0/kBT . (27.3.13)

Consequently, the current depends on the applied voltage as

j = j0
(
eeV/kBT − 1

)
. (27.3.14)

The current then increases exponentially with the voltage.
When the metallic side is the negative electrode – i.e., the Schottky diode

is reverse biased – the electrons can carry the same weak current from the
metal to the semiconductor, however, the current in the opposite direction
becomes weaker and weaker as the electrons have to surmount an increasingly
high potential barrier. Because of this property, Schottky diodes are also called
rectifying contacts or blocking contacts. The nonlinear current–voltage char-
acteristic is shown in Fig. 27.16.

V

j

j j� � ���� e
eV k T� B

Fig. 27.16. Current–voltage characteristic of a Schottky diode

The voltage dependence of the current through the depletion layer at the
contact of a p-type semiconductor and a metal can be studied in the same
way. The characteristics are identical.
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The situation is completely different when a bias voltage is applied to a
metal–semiconductor junction with an accumulation layer. As illustrated in
Fig. 27.17, electrons do not have to overcome any potential barrier, so the
current–voltage characteristic is linear. Such junctions are therefore called
ohmic contacts.

Fig. 27.17. The shift of energy levels at the interface between a metal and an n-
type semiconductor with an accumulation layer when the applied voltage (a) V > 0,
(b) V < 0

27.3.2 Biased MOS Structures

It was mentioned in Section 27.1.2 that, by definition, the location of the
energy levels in ideal MOS structures does not depend on the distance from
the interface. This is true as long as no voltage is applied across the junction.
When a nonzero voltage is applied, a part of it drops across the oxide layer,
and another part in a region of the semiconductor close to the interface, which
makes the energy levels position dependent. The situation is shown for MOS
structures with p- and n-type semiconductors in Fig. 27.18.

When a negative voltage is applied to the metallic side in a p-MOS struc-
ture, the energy bands of the semiconductor become bent upward close to the
interface. Therefore the majority carriers (holes) accumulate at the interface
on the semiconductor side but no current flows. When a positive voltage is
applied to the metallic side, the energy bands become bent in the opposite
direction, and the holes move away from the vicinity of the interface. The ca-
pacity of the system thus depends on the applied voltage. For sufficiently high
positive voltages the distortion of the bands can be so large that an inversion
layer is formed at the semiconductor–oxide interface. This possibility is used
in field-effect transistors (FETs), which will be discussed in the Section 27.4.2.

Similar situations are encountered in MOS structures with an n-type semi-
conductor.

27.3.3 Current–Voltage Characteristics of p–n Junctions

Before examining the effects of an applied voltage on a p–n junction, we shall
briefly return to the discussion of how the equilibrium state is established in a
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Fig. 27.18. Biased MOS structures with (a) a p-type, (b) an n-type semiconductor

p–n junction in the absence of any bias. When the Poisson equation was solved
for the depletion layer in Section 27.1.3, we treated the system as if it were
static. In reality, two oppositely directed currents flow in the transition region:
the diffusion current, driven by the gradient of the carrier concentration, and
the drift current, driven by the gradient of the potential. The two currents
cancel out perfectly. Moreover, this cancellation applies separately for the
current of electrons and holes:

jn(r) = en(r)μnE + eDn∇n(r) = 0 ,
jp(r) = ep(r)μpE − eDp∇p(r) = 0 .

(27.3.15)

Using the Einstein relation, it is straightforward to show that the solution of
these equations leads to the relation (27.1.25) between the carrier density and
the potential.

Let us now investigate the effects of an applied voltage V . By convention,
V is considered positive and the junction forward biased if the applied voltage
increases the electrostatic potential of the p-side. When the voltage source is
connected the opposite way, the junction is reverse biased. Because of this
bias, the energy levels on the p-side are shifted by −eV with respect to the
n-side. Besides, the thermal equilibrium is broken by the applied voltage, and
the chemical potential becomes different on the two sides. Denoting its value
by μn and μp on the corresponding sides, we have

μn − μp = eV . (27.3.16)
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In the first approximation we may assume that this potential drop occurs
across the depletion layer. Instead of eVD, the relative shift of the energy
levels on the two sides is again eVD − eV . The potential difference between
the two sides is therefore reduced when V > 0, just like the bending of the
energy levels close to the interface. This is illustrated in Fig. 27.19(a) .
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Fig. 27.19. (a) Energy-level diagram of a forward-biased p–n junction. (b) The
local potential that leads to a shift of the energy levels

Figure 27.19(b) shows the spatial variation of the diffusion potential, re-
duced by the applied voltage. The potential drop now occurs over a shorter
distance than for V = 0 because VD − V (rather than VD) is used in the
formulas (27.1.44) for the width of the depletion layer.

Because of the reduced thickness of the depletion layer and the nonzero
net current, Schottky’s assumption – that all spatial variations are limited
to the depletion layer of width l0p + l0n – is no longer valid. We shall use this
observation to determine the current through a biased diode from the current
flowing outside the depletion layer. The weak net current in the depletion layer
cannot be determined sufficiently precisely as it is the difference of two oppo-
sitely directed large currents: the drift and diffusion currents. They are both
large because the variations of the potential and concentration are practically
limited to this region. Because of the former, the electric field is large, leading
to a large drift current; because of the latter, the concentration gradient is
large, and thus so is the diffusion current.

If there is a net current through the sample, it injects electrons into the p-
side and holes into the n-side. The diffusion lengths Ln,p are much larger than
the thickness of the space-charge region (see page 540). Thus, even though
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the variation of the charge density occurs dominantly over the depletion layer,
the equilibrium distribution of carriers is not established immediately beyond
it, as the injected charges can travel much farther than the depletion layer.
This means that a new region appears on either side of the depletion layer, a
diffusion region of width Ln on the p-side and another of width Lp on the n-
side. The diffusion and recombination of the carriers occur primarily in these
regions. The subscript indicates that the relevant process is the diffusion of
minority carriers.

To determine the spatial variations of the charge density, we shall make
use of the smallness of the net current in the depletion layer relative to the
drift and diffusion currents. The two large terms on the right-hand side of
(27.2.35) thus cancel out to a good approximation:

0 ≈ en(r)μnE + eDn
dn(x)

dx
,

0 ≈ ep(r)μpE − eDp
dp(x)
dx

.

(27.3.17)

Using these equations to express the electric field in terms of the applied
voltage,

en(x)μn
dV (x)

dx
= eDn

dn(x)
dx

,

ep(x)μp
dV (x)

dx
= −eDp

dp(x)
dx

.

(27.3.18)

By exploiting the Einstein relation, the formulas given in (27.1.25) are recov-
ered:

n(x) ∼ exp
eV (x)
kBT

, p(x) ∼ exp
−eV (x)
kBT

. (27.3.19)

Far from the interface, the electron number density at normal temperatures
is given by nn(∞) = nd on the n-side and by np(∞) = np on the p-side. This
drop in the electron density gives rise to a diffusion potential VD between the
two sides of the p–n junction. The potential itself varies over a region of width
l = l0n + l0p, as specified by (27.1.45). When an applied voltage V is used, the
potential drop across the depletion layer is reduced to VD−V , so the thickness
of the layer is changed. The new values ln and lp are now determined by the
equations

nd ln = na lp (27.3.20)

and
VD − V =

e

2ε
(
ndl

2
n + nal

2
p
)
, (27.3.21)

rather than (27.1.38) and (27.1.43). At the boundaries of the shortened de-
pletion layer the carrier concentration does not drop to the equilibrium values
but to

np(−lp) = nd exp
(
−e(VD − V )

kBT

)
. (27.3.22)
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Since according to (27.1.27)

n2
i
na

= nde−eVD/kBT , (27.3.23)

the electron density on the left-hand side of the depletion layer is

np(−lp) =
n2

i
na

eeV/kBT = np(−∞)eeV/kBT . (27.3.24)

The decrease of the electron density continues over the diffusion region until
the equilibrium value n2

i /na is reached.
We may say that electrons are injected from the n-side to the p-side over

the potential barrier that has been reduced by the positive applied voltage.
Moving to the diffusion region, the electrons appear as minority carriers. This
increase in the number of minority carriers in that region of the p-side plays
an important role in the operation of semiconductor devices.

It is less important but nonetheless noteworthy that, on account of the
requirement of local charge neutrality, this increase in the number of the mi-
nority carriers gives rise to an increase in the number of majority carriers
(holes) in the diffusion region. However, this increase is negligibly small com-
pared to the number of thermally excited holes that appear because of the
presence of acceptors.

By the same token, the number of minority carriers (holes) increases in
the diffusion region of the n-side, too. At the edge of the depletion layer

pn(ln) =
n2

i
nd

eeV/kBT = pn(∞)eeV/kBT . (27.3.25)

The spatial distribution of electrons and holes are shown in Fig. 27.20.
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Fig. 27.20. Electron and hole densities at both sides of a forward-biased p–n junc-
tion

The total current due to the applied voltage is the same across any cross
section of the sample, however the relative contribution of electrons and holes
varies. This is illustrated in Fig. 27.21.
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Fig. 27.21. The total current density (j) and the current densities carried by elec-
trons (jn) and holes (jp) along the p–n junction, for (a) V > 0 and (b) V < 0

Outside the diffusion region, where the carrier concentration is practically
constant, only a weak drift current flows. On either side of the interface,
the current of electrons or holes shows a strong position dependence in the
diffusion region. The electric field E is small, and therefore so is the drift
current – however, the diffusion current of minority carriers is important.
The condition for the neglect of the drift current can be established by the
following simple consideration. During the recombination time τn,p carriers in
an electric field E travel a distance μn,pEτn,p. If this characteristic length is
smaller than the diffusion length Ln,p, the drift current is negligible compared
to the diffusion current. The condition for this is

μn,pEτn,p √
Dn,pτn,p . (27.3.26)

By making use of the Einstein relation,

E  kBT

e

1√
Dn,pτn,p

=
kBT

eLn,p
. (27.3.27)

Keeping in mind that the largest part of the applied voltage drops over the
space-charge region, this condition is met in the diffusion region, provided the
bias is not too large.

This is not the case inside the depletion layer. As we have seen, because of
the large potential and concentration drops, the diffusion and drift currents
are equally large but oppositely directed. The net currents of electrons and
holes are therefore small, of order mA/cm2 for customary voltages. As the
depletion layer is thin compared to the diffusion length (i.e., the mean distance
traveled before recombination), it is justified to assume that the generation
and recombination of carriers are negligible in this region. The electron and
hole currents pass through the depletion layer without attenuation, and so
they are the same at ln and −lp:

jn(ln) = jn(−lp) , jp(ln) = jp(−lp) . (27.3.28)

The total current density
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j = jn + jp (27.3.29)

can be determined from the values of the two components at the boundary of
the depletion layer – at the p-side for electrons and at the n-side for holes –,
that is,

jn = jn(−lp) , jp = jp(ln) . (27.3.30)

According to our previous considerations, the electron current is almost
completely diffusive at the boundary of the transition region on the p-side.
By neglecting the drift term, we have

jn(−lp) = eDn
dnp(x)

dx

∣∣∣∣
x=−lp

. (27.3.31)

Similarly, at the boundary of the transition region on the n-side, the hole drift
current can be neglected:

jp(ln) = −eDp
dpn(x)

dx

∣∣∣∣
x=ln

. (27.3.32)

The equation for the number density of holes on the n-side, (27.2.31), and
the analogous equation for the number density of electrons on the p-side have
to be solved subject to the boundary condition that the number densities of
minority carriers in the homogeneous region satisfy

np(−∞) =
n2

i
na
, and pn(∞) =

n2
i
nd
. (27.3.33)

The solutions are

np(x) =
n2

i
na

+
[
np(−lp) − n2

i
na

]
e(x+lp)/Ln , x ≤ −lp ,

pn(x) =
n2

i
nd

+
[
pn(ln) − n2

i
nd

]
e−(x−ln)/Lp , x ≥ ln .

(27.3.34)

The derivatives in (27.3.31) and (27.3.32) are then

jn(−lp) = e
Dn

Ln

[
np(−lp) − n2

i
na

]
,

jp(ln) = −eDp

Lp

[
pn(ln) − n2

i
nd

]
.

(27.3.35)

Taking the carrier densities from (27.3.24) and (27.3.25),

jn(−lp) = e
n2

i
na

Dn

Ln

[
eeV/kBT − 1

]
,

jp(ln) = −en
2
i
nd

Dp

Lp

[
eeV/kBT − 1

]
.

(27.3.36)
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Using (27.3.29) and (27.3.30), the total current density through the p–n junc-
tion is

j = en2
i

(
Dn

Lnna
+

Dp

Lpnd

)(
eeV/kBT − 1

)
. (27.3.37)

The effects of a reverse bias (V < 0) can be analyzed in much the same
way. The spatial variations of the energy levels and the potential between the
two sides are shown in Fig. 27.22. The potential difference is increased, and
so is the width of the depletion layer.
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Fig. 27.22. (a) Energy-level diagram of a reverse-biased p–n junction (V < 0). (b)
The local potential that is responsible for the shift of the energy levels

Since the depletion layer has become wider, the concentration of minor-
ity carriers at its boundary is smaller than the equilibrium (V = 0) value,
therefore a diffusion current appears in the diffusion region here, too. The
variations of the electron and hole currents are shown in Fig. 27.21(b). To ob-
tain a better picture of the physical processes inside the junction, the spatial
variations of the electron and hole densities are also plotted for this situation
in Fig. 27.23.

A similar calculation shows that the formula (27.3.37) for the total current
density is valid for V < 0, too, that is,

j(V ) = j0
[
eeV/kBT − 1

]
. (27.3.38)
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Fig. 27.23. Spatial variations of the electron and hole densities at both sides of a
reverse-biased p–n junction

This is Shockley’s law.11 The strongly nonlinear current–voltage character-
istic has the same features as the characteristic of a Schottky diode, shown
in Fig. 27.16. The p–n junction behaves as a rectifier, too. To illustrate the
actual current and voltage values, it should be remembered that a forward
bias of a few tenths of a volt typically gives a current of order 10mA through
the p–n junction. In contrast, for a reverse bias the current is a couple of μA,
and almost independent of the bias voltage. The current through germanium
diodes is indeed correctly given by (27.3.38). On the other hand, the contri-
bution of carriers generated in the space-charge region cannot be neglected in
silicon, where ni is much smaller. The previous calculation has to be refined
then.

An intuitive picture can be formed about the total current by decomposing
it into four parts:

jn(n → p) = e
n2

i
na

Dn

Ln
eeV/kBT ,

jn(p → n) = −en
2
i
na

Dn

Ln
,

jp(p → n) = e
n2

i
nd

Dp

Lp
eeV/kBT ,

jp(n → p) = −en
2
i
nd

Dp

Lp
.

(27.3.39)

The first term is the current carried from the n-side to the p-side by the
majority carriers, electrons. The exponential voltage dependence is logical: the
applied voltage reduces the height of the potential barrier that the conduction-
band electrons on the n-side have to overcome in order to get through to
the p-side. This part of the current is also called the electron recombination
current : having passed through the potential barrier, the electrons recombine
with the holes (majority carriers) of the p-side.
11 W. B. Shockley, 1949.
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The second term is the countercurrent of thermally excited electrons from
the p-side. This is independent of the bias voltage, since the electrons (minority
carriers) slide down the potential barrier to get to the n-side. This component
is also called the generation current. To estimate its magnitude, it should
be noted that those minority carriers are likely to get to the n-side that are
created close to the interface, within the diffusion length Ln. Since the electron
generation rate on the p-side is n0/τn, the current density of the electrons
generated within a distance Ln of the interface is

jn(p → n) = −eLnn0/τn . (27.3.40)

Exploiting the relation n0 = n2
i /p0, and that p0 = na on the p-side,

jn(p → n) = −en
2
i
na

Ln

τn
. (27.3.41)

Eliminating the carrier lifetime in favor of the diffusion coefficient, and making
use of (27.2.28),

jn(p → n) = −en
2
i
na

Dn

Ln
. (27.3.42)

In perfect analogy, the third and fourth equations in (27.3.39) describe
the hole recombination and generation currents. For V > 0, the holes on the
p-side have to overcome a reduced potential barrier, just as was discussed for
electrons above, and there is also a countercurrent of minority carriers (holes)
generated on the n-side:

jp(n → p) = −en
2
i
nd

Lp

τp
= −en

2
i
nd

Dp

Lp
. (27.3.43)

The negative sign appears because the current flows from the x > 0 side to
the x < 0 side.

27.3.4 Zener and Avalanche Breakdown in p–n Junctions

At moderately large negative voltages carriers can no longer overcome the
potential barrier, and the saturation value of the current is given by

j0 = −e
[
n2

i
na

Dn

Ln
+
n2

i
nd

Dp

Lp

]
. (27.3.44)

When larger negative voltages are applied to the p–n junction, the current is
observed to increase sharply at a threshold value that is characteristic of the
diode, and can range from a few volts to a thousand volts. The current can
reach very high values without an increase in the voltage. This phenomenon
is called the breakdown of the diode, and the threshold value of the voltage
is the breakdown voltage. The corresponding current–voltage characteristic is
shown in Fig. 27.24.
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Fig. 27.24. The current–voltage characteristic of a Zener diode

The breakdown can occur for several reasons. For example, at sufficiently
large voltages the heat generated by the reverse carriers can give rise to ther-
mal instability in the diode. The device becomes hot because of the produced
Joule heat, and therefore the number of minority carriers is increased. This
leads to an increased current, which causes a further rise in the temperature,
and so on. The acceleration of this mechanism can result in enormous currents
without an increase in the voltage. However, other mechanisms proved to be
more important in practical applications.

The thickness of the depletion layer depends on the doping of both sides.
In highly doped diodes carriers can also tunnel through the thin depletion
layer. This tunnel current starts to flow when the reverse bias is large enough
(a few V) to bring the bottom of the conduction band on the n-side to the
same level as the valence band on the p-side (Fig. 27.25), since the electrons in
the valence band can then tunnel through the potential barrier, to an empty
state of the conduction band. This sharp increase in the current is the Zener
breakdown or Zener effect.12

�p

�n

eV

Fig. 27.25. The location of the energy levels in a Zener diode for large negative
applied voltages

Those p–n junctions that are fabricated expressly in such a way that their
current–voltage characteristics should feature a breakdown at some large neg-
12 C. Zener, 1934.
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ative voltage in order to achieve voltage control are called Zener diodes. How-
ever, breakdown in Zener diodes is often not caused by tunneling but by
avalanches brought about by collisional ionization. Since the potential drop
occurs dominantly across the depletion layer, the electric field can reach very
high values, even 106 V/cm, in the very narrow depletion layers of heavily
doped p–n junctions. Such field strengths may require kilovolt bias voltages
in less heavily dopes devices. Electrons accelerated by such fields can excite
further, covalently bound electrons into the conduction band via collisional
ionization. As holes are left behind in the valence band, this mechanism gen-
erates electron–hole pairs. Accelerated by the electric field, these new carriers
generate further electron–hole pairs, and so on. This avalanche effect leads to
avalanche breakdown.

27.3.5 Tunnel Diodes

In Zener diodes the electrons in the valence band of the p-side tunnel to the
conduction band on the n-side when a sufficiently large negative voltage is ap-
plied. A new situation is encountered in p–n junctions made up of two heavily
doped semiconductors. Such devices are called tunnel or Esaki diodes.13

In such configurations the number of holes on the p-side and the num-
ber of electrons on the n-side become so large that the chemical potential
moves from the gap into the valence and conduction bands, respectively. Such
semiconductors were termed degenerate semiconductors in Chapter 20. The
location of bands in the equilibrium state (V = 0) is shown in Fig. 27.26.

Fig. 27.26. The location of the energy levels in the equilibrium state in heavily
doped p–n junctions

Because of the heavy doping, the depletion layer is narrower than in usual
p–n junctions, therefore the current comes dominantly from quantum me-
chanical tunneling rather than the drift driven by the built-in potential or
13 L. Esaki, 1958. Leo Esaki (1925–) was awarded the Nobel Prize in 1973 for his

“experimental discoveries regarding tunneling phenomena in semiconductors”.



27.3 Biased Semiconductor Junctions 557

diffusion. However, without bias, the oppositely directed currents cancel out.
When a bias is applied, the bands become shifted, as illustrated in Fig. 27.27.

Fig. 27.27. The location of the energy levels in heavily doped p–n junctions when
the bias is zero (2), negative (1), positive with increasing values (3–5)

When a negative voltage is applied, the chemical potential is higher on
the p-side than on the n-side. Since the electrons at the top of the valence
band on the p-side are facing empty states on the n-side, more electrons can
tunnel from the p-side to the n-side than in the opposite direction. The net
current is then proportional to the voltage. The situation is similar for low
positive voltages as long as the shift of the bands is sufficiently small for that
the electrons on the n-side whose energy is equal to the chemical potential can
tunnel to empty states in the valence band on the p-side. The reverse process
can also take place, but globally more electrons tunnel from the n-side to the
p-side than the other way around. At a higher positive voltage the chemical
potential on the n-side reaches the height of the top of the valence band on
the p-side. This is shown in the middle figure. For even higher voltages the
current decreases as fewer and fewer electrons find a hole into which they
could tunnel. This corresponds to the region of negative differential resistance
in the current–voltage characteristic in Fig. 27.28.

Fig. 27.28. Current–voltage characteristic of an Esaki diode. Numbers correspond
to the voltage regimes marked in the previous figure
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At even higher voltages the tunnel current can completely vanish. At the
same time, the diffusion and drift currents become larger, since the relative
position of the bands is the same now as in a usual p–n junction, leading to
an exponential voltage dependence of the current, in line with Shockley’s law.

27.4 Simple Semiconductor Devices

As mentioned in the introduction, the increasingly high number of semi-
conductor devices can be put down to the enormous development of pla-
nar technology and photolithographic techniques, allowing manufacturers
to build dedicated configurations of metal–semiconductor, metal–insulator–
semiconductor, or semiconductor–semiconductor junctions with well-defined
properties. The operation of such devices is nonetheless governed by the sim-
ple physical principles outlined above. We shall present a few simple examples
below.

27.4.1 Bipolar Transistors

In bipolar transistors14 two semiconductor junctions of opposite polarity are
juxtaposed. Depending on the order of the p- and n-type layers the transistor
is either p–n–p or n–p–n-type. Below we shall briefly discuss the basic notions
of the operation of p–n–p transistors. The same considerations apply to n–p–n
translators as well, only the current and voltage directions are reversed.
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Fig. 27.29. Schematic structure of bipolar p–n–p transistors, and the sectional view
of a bipolar transistor fabricated using the planar technology

As illustrated in the schematic diagram, the heavily doped p-region on the
left-hand side (emitter) and the moderately doped p-region on the right-hand
side (collector) are separated by a thin, lightly doped n-type layer (base),
whose width is smaller than the diffusion length. In transistors fabricated
using the planar technology the spatial arrangement of the n- and p-type
14 The name “transistor” was coined by J. R. Pierce from the word “transresis-

tance” to fit in with the names of other devices, such as varistor and thermistor.
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regions is different but the principles of operation are the same. To obtain a
simple picture about the operation of transistors, consider the location of the
energy levels when a nonzero voltage is applied. This is shown in Fig. 27.30.
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Fig. 27.30. Energy-level diagram of a bipolar transistor in the (a) absence (b)
presence of a bias voltage

Consider the p–n junction on the left. Since na � nd, we have pp � nn
for the majority carriers. The law of mass action then implies np  pn for the
minority carriers. Applying a voltage VE > 0 across the emitter–base junction,
the current is dominantly carried by holes injected from the emitter into the
base. If the formula derived for a p–n junction is used to determine the current
in a first approximation,

jE =
eppDp

Lp

[
eeVE/kBT − 1

]
. (27.4.1)

To obtain a more accurate result, the finite width of the base has to be taken
into account. The hole concentrations at the boundaries of the depletion layers
next to the emitter and collector sides are then given by

p(xE) = pEeeVE/kBT , p(xC) = pCeeVC/kBT , (27.4.2)

where pE and pC are the equilibrium hole concentrations in the emitter and
collector. If these boundary conditions are imposed, and the equilibrium con-
centration is taken as pB, the solution of the equations inside the base yields

p(x) = pB + (pE − pB)
sinh[(xC − x)/LB]
sinh[(xC − xB)/LB]

+ (pC − pB)
sinh[(x− xE)/LB]
sinh[(xC − xB)/LB]

,

(27.4.3)

where LB is the hole diffusion length in the base. Neglecting the width of the
depletion layer compared to the width W = xC − xE of the neutral region
of the base, the concentration of the electrons (minority carriers) on the two
p-sides is given by
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n(x) = nE + nE

[
eeVE/kBT − 1

]
e(x−xE)/LE , x < xE ,

n(x) = nC + nC

[
eeVC/kBT − 1

]
e−(x−xC)/LC , x > xC .

(27.4.4)

The total current density between the emitter and base is then

jE =
epBDB

LB

1
sinh(W/LB)

×
{

cosh(W/LB)
[
eeVE/kBT − 1

]
−
[
eeVC/kBT − 1

]}
+
enEDE

LE

[
eeVE/kBT − 1

]
.

(27.4.5)

If the base is sufficiently thin, most holes pass through it without recom-
bination and reach the collector. When a negative voltage is applied between
the base and collector, the motion of holes gives a collector current jC. Its
magnitude can be determined in the same way:

jC =
epBDB

LB

1
sinh(W/LB)

×
{[

eeVE/kBT − 1
]
− coth(W/LB)

[
eeVC/kBT − 1

]}
− enCDC

LC

[
eeVC/kBT − 1

]
.

(27.4.6)

Because of the loss in the base, the base current

jB = jE − jC (27.4.7)

is much smaller than the collector current. When the base current is increased,
the neutrality of the base can be preserved only if the collector current also
increases. The ratio jC/jB is the current gain of the transistor, which can be
much larger than unity if the width of the base is indeed smaller than the hole
diffusion length.

27.4.2 Field-Effect Transistors

The principle of the field effect – namely, the possibility of modulating the
conductivity of solids by a transverse electric field, and thereby controlling
the electric current – was proposed as early as 1925 by J. E. Lilienfeld.
The theory of the field effect was put forward by W. Shockley in 1952, but
the first experimental confirmation came only in 1960 with the fabrication
of the first field-effect transistor (FET). Its simplest version is the junction
field-effect transistor (JFET) shown in Fig. 27.31. Between two heavily doped
p-type gates there is an n-type layer with metallic contacts at each end that
serve as current source and drain. By applying negative voltage to the gates,
the thickness of the depletion layers increases in the p–n junctions, reducing
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Fig. 27.31. The schematic structure of field-effect transistors

the cross section of the n-type channel through which the current can flow
from the source to the drain. The resistance of field-effect transistors can thus
be controlled by the gate voltage.

In MOSFETs (metal–oxide–semiconductor field-effect transistors) the re-
sistance is controlled electrostatically via the modification of the charge dis-
tribution at the oxide–semiconductor interfaces. Their schematic structure is
shown in Fig. 27.32.
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Fig. 27.32. (a) The schematic structure of MOSFETs. (b) The formation of a
conducting channel at a large gate voltage

The active region of the MOSFET is made up of a semiconductor sub-
strate (body) – in our example, p-type – with an insulating layer of silicon
oxide grown on it, and a metal contact evaporated on top. Depending on the
voltage applied between the metal contact (gate) and the body electrode, an
accumulation or depletion of the majority carriers can occur on the semi-
conductor side, or even minority carriers can form an inversion layer in this
metal–insulator–semiconductor junction. On either side of the gate, a small
hole is etched into the silicon oxide layer using photolithographic techniques.
By introducing large quantities of dopant through the holes, island-like re-
gions of the opposite (n) type semiconductor are created. The metal contacts
of these heavily doped islands serve as source and drain.

As long as the voltage applied to the control electrode (gate) is small,
no current flows between the n-type source and drain through the p-type
substrate. However, when the gate voltage reaches a sufficiently large positive
threshold value, an inversion layer is formed at the interface between the
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oxide film and the p-type substrate, and an n-type channel opens through
which current can flow from the source to the drain.

The thickness of the inversion layer increases with increasing gate voltage.
The current does not grow linearly with the drain–source voltage but more
slowly because, on account of the potential drop in the channel, the voltage
between the channel and the gate depends on the position along the channel.
Consequently, the width of the channel and the carrier density in the channel
decrease toward the drain.

When the difference between the gate-to-source voltage (input control volt-
age) and the drain-to-source voltage (output voltage) reaches the threshold
value, the inversion layer at the drain disappears. The current cannot be in-
creased further by applying even higher drain voltages. The resulting current–
voltage characteristics are shown in Fig. 27.33.
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Fig. 27.33. The current–voltage characteristics of MOSFETs: the drain current jD
as a function of the drain-to-source voltage VD for different gate-to-source voltages
VG

27.4.3 Semiconductor Lasers and Solar Cells

The operation of lasers15 is known to be based on the principle of population
inversion: under external excitation, the occupation of the higher-lying energy
level exceeds that of the lower level, and through an avalanche-like process
of stimulated emission a coherent light beam emerges. If the intensity of this
beam is larger than the intensity loss due to absorption, a high-intensity co-
herent beam is obtained. Population inversion can also occur in highly doped
p–n junctions, so such semiconductor devices can be used as laser sources.

As demonstrated in connection with the tunnel diode, in p–n junctions
made up of two heavily doped (degenerate) semiconductors the chemical po-
tential is located in the valence band on the p-side and the conduction band on
the n-side. Applying a sufficiently large positive voltage across this junction,
such that the condition
15 Laser is the acronym for Light Amplification by Stimulated Emission of Radiation.
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eV ≥ εg (27.4.8)

is met, a narrow layer appears next to the interface, in which there are occu-
pied electron states in the conduction band and empty states in the valence
band. This situation is illustrated in Fig. 27.34.
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Fig. 27.34. Energy-band diagram of a semiconductor laser

The population inversion in the transition layer is the consequence of the
injection of electrons from the n-side to the p-side and holes in the opposite
direction by the current through the diode. As an electron–hole pair is annihi-
lated, the diode emits light. The emitted light is in the infrared (λ ≈ 1200 nm)
for a gap of 1 eV, whereas it is visible (λ ≈ 500 nm) for a gap of 2.5 eV.

Below a current threshold, absorption is more probable than stimulated
emission because of the losses due to diffusion and recombination, and so the
diode emits incoherent light. Above the threshold, the p–n junction operates
as a laser, and emits a coherent light beam in a narrow frequency range.
However, the efficiency of this coherent light emission by the p–n junction is
quite poor. The losses can be reduced, and laser operation can be obtained
at a lower threshold current in the double heterojunction configuration shown
in Fig. 27.35, where an epitaxially grown GaAs layer is inserted between the

0 3. m�

�v
�v

	p

�c

h�

J

p-Al Ga Asx x1-

p-GaAs
Intensity
profile

p-Al Ga Asx x1-

p-GaAs
n-Al Ga Asx x1-

J

( )a ( )b

Active
layer

n-Al Ga Asx x1-

	n
�c

Fig. 27.35. (a) Schematic structure and (b) energy-band diagram of a double het-
erojunction (DH) laser
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p- and n-type AlxGa1−xAs layers. That is why such devices are called DH
(double heterojunction) lasers. Since the gap is smaller in the middle layer,
this is where population inversion occurs, and so this is the active region of
the laser.

As electric current passes through a LED, light is emitted. The inverse
process is also possible in semiconductor junctions: incident light can generate
carriers, and thus induce a current or voltage. This is the operation principle
of solar cells.

27.5 Semiconductor Quantum Devices

In the previous section we were primarily concerned with systems in which
the metal or semiconductor on either side of the interface was much thicker
than the transition region, therefore the former could be considered infinite in
size. Moreover, since the conditions of the semiclassical approximation were
satisfied, it was possible to calculate the current induced in the system by
an applied voltage using classical equations. The development of materials
technology, and miniaturization in particular, has led to the fabrication of
ever smaller semiconductor devices. The linear size of the components on
chips is typically one micron. This is the realm of microelectronics. In the
past decades even tinier structures were produced, in which the linear size
of the sample in one, two, or even three spatial dimensions is on the order
of the de Broglie wavelength of the current-carrying electrons.16 For electrons
confined to such small regions quantum effects and the quantized nature of the
energy spectrum become important. Therefore those structures in which the
free propagation of electrons is confined in one, two, and all three directions
are called quantum wells, quantum wires, and quantum dots. Since the linear
sizes of the confinement region are smaller than a micron, typically a few
hundred nanometers (and the relevant wavelength in semiconductors can be
almost comparable, over 10nm), the body of physical phenomena observed in
such systems is usually referred to as nanophysics. Since these dimensions are
halfway between the typical length scales of bulk (macroscopic) and atomic
(microscopic) samples, the terms mesoscopic systems and mesoscopic physics
are also commonly used.17

Two more length scales are important in such systems. The classical theory
of electron transport, based on the Boltzmann equation, assumes that elec-
trons collide frequently, and the mean free path l is much smaller than the size
of the sample, thus the motion of electrons is diffusive. It is then possible to
define a local electrochemical potential that varies continuously in the sample.
16 Since the energy of the participating electrons is the Fermi energy, the relevant

size is the Fermi wavelength.
17 The Greek words μεσoς (mesos) and νανoς (nanos) mean middle and dwarf,

respectively.
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Another essential assumption is that the phase coherence of the wave packet is
lost in collisions. This loss occurs over a length lφ, called the phase-coherence
length, which is characteristic of the material and depends on temperature.
The mean free path l and the phase-coherence length lφ are two different
quantities. The former is determined by inelastic electron–electron collisions,
electron–phonon interactions that involve phonon absorption or emission, and
spin-flip magnetic impurity scattering processes, while the latter dominantly
comes from elastic scattering by the static potential of impurities. At low
temperatures lφ � l. Classical transport theory can be used as long as the
characteristic linear dimension L of the sample is much larger than lφ and l.
If l L < lφ, the motion of the electron is still diffusive, however interference
effects can no longer be neglected. We shall investigate this in Chapter 36 of
Volume 3. If, however, the linear dimension L is comparable to or smaller than
the mean free path l, the electron propagates ballistically. Then local ther-
modynamic equilibrium exists only at the ohmic contacts, and the concept of
the electrochemical potential is meaningful only there. Below we shall give a
very sketchy overview of the physics of such systems, focusing on the energy
spectrum and some simple cases of carrier transport. The detailed discussion
of this very rapidly evolving field is far beyond the scope of this book. This
striking evolution is motivated only in part by the desire of understanding the
new physical phenomena. Even more important is the driving force of tech-
nology: if the present miniaturization trend in the semiconductor industry (as
expressed by Moore’s law) continues, such nanostructure devices are expected
to be widely used in one or two decades.

27.5.1 Electron Spectrum of Quantum Wells

Using epitaxial growth techniques, it is possible to produce structures in which
a thin layer of semiconductor with a narrow gap is inserted between two iden-
tical semiconductors with a large gap. For example, a thin layer of GaAs can
be inserted between two layers of AlxGa1−xAs. Such structures are increas-
ingly important for applications. The location of the edge of the conduction
and valence bands in such a sandwich structure is shown in Fig. 27.36(a).

Electrons at the bottom of the conduction band of GaAs feel a narrow
potential well of width d. Assuming that the well is sufficiently deep for that
the potential barrier can be taken infinitely high in the calculation of the
lowest states, the boundary conditions imposed on the wavefunction implies,
in line with the discussion in Chapter 16, that the electrons can be in the
states of energy

ε⊥ =
�

2π2

2m∗
nd

2
n2 (27.5.1)

measured from the bottom of the band, where m∗
n is the effective mass of the

electrons. If the depth of the potential well is finite, the wavefunction does
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Fig. 27.36. (a) The location of the edge of the conduction and valence bands in
a GaAs quantum well. (b) The dispersion relation for the states in a quantum well
and their density of states

not vanish identically outside the potential well. By requiring the continuity
of the wavefunction and its derivative across the boundary of the well, only a
finite number of bound states may appear; their energies are smaller than the
height of the potential barrier, and their wavefunctions decay exponentially
outside the well. The separation of the levels is not exactly proportional to n2

but we shall neglect the difference below.
When the motion parallel to the potential barrier is also taken into account,

the allowed energies are

ε = εc +
�

2k2
‖

2m∗
n

+
�

2π2

2m∗
nd

2
n2 . (27.5.2)

It can be shown by the same token that holes can occupy states of energy

ε = εv −
�

2k2
‖

2m∗
p
− �

2π2

2m∗
pd

2
n2 (27.5.3)

in the valence band. As long as the width d of the quantum well is sufficiently
small compared to the transverse dimensions, the energies of the states of dif-
ferent quantum numbers n are fairly well separated, and form subbands. This
spectrum and the corresponding density of states are shown in Fig. 27.36(b).
To calculate the latter, we made use of the property that within each sub-
band the electron system can be considered two-dimensional, and the density
of states of a 2DES is constant. If the well is narrow enough (nanoscale), the
subbands of adjacent quantum numbers n are sufficiently separated for that
the behavior should be governed by a single subband. Such a quantum well
is ideally adapted to the investigation of the properties of two-dimensional
electron systems.
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An important application of quantum wells is the quantum-well laser (QW
laser). This is a double-heterojunction laser with a nanoscale active layer; the
light emitted in the transition between its quantized energy levels is ampli-
fied coherently. The wavelength of the emitted light can be controlled by the
thickness of the active layer. Even better lasers can be produced from struc-
tures with multiple quantum wells, in which GaAs and AlxGa1−xAs layers
alternate.

In a special configuration wide-gap and narrow-gap semiconductors alter-
nate in one direction periodically. If the thickness of the wide-gap semicon-
ductor layers is small enough for that the wavefunctions extending beyond the
wells formed in the narrow-gap layers overlap, the carriers are not localized
to one particular well but can propagate in the superlattice of quantum wells
by tunneling.

27.5.2 Quantum Wires and Quantum Dots

If the free motion of electrons in a 2DEG at the semiconductor interface
is further limited by gates to a few hundred nm or less in one direction, a
practically one dimensional electron system is obtained. Assuming that the
potential well at the cross section of such a quantum wire is deep and sharp,
the state of the electron can be described in terms of a propagating plane
wave along and two standing waves perpendicular to the axis of the wire:

ψ(x, y, z) =
1√
L

eikxx

(
4

LyLz

)1/2

sin
mπy

Ly
sin
nπz

Lz
. (27.5.4)

The energy of the state is then
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, (27.5.5)

and the density of states is the sum of terms with the typical inverse-square-
root singularity of one-dimensional systems:
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(ε− εm,n)−1/2θ(ε− εm,n) , (27.5.6)

where θ(x) is the Heaviside step function and
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. (27.5.7)

If the wire is sufficiently thin, the branches are fairly well separated in energy,
and only a few of them are partially filled at low temperatures. Assuming
that the states in the branches of quantum numbers m and n are not mixed
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by the infrequent collisions, each branch can be considered as an independent
channel for the propagation of electrons.

If the length L of the wire is smaller than the electron mean free path l, the
propagation of electrons is not diffusive (with frequent collisions) but ballistic.
Such relatively short and narrow constrictions between two wider electron
reservoirs are also called quantum point contacts (QPCs). Investigating the
electron transport in and conductance of such systems, Landauer18 found
that when a sample of transmission coefficient T is placed between two ideally
conducting reservoirs, and the same contacts are used for the voltage and
current measurements, the conductance is

G = 2
e2

h
T . (27.5.8)

This is the Landauer formula. The factor 2 comes from spin. This value of the
conductance can be understood intuitively from the formula ρ(εF) = 1/(π�vF)
for the density of states per spin orientation at the Fermi energy in a one-
dimensional electron gas. Considering only particles that propagate in the
same direction, the density of states is 1/(2π�vF). When a voltage V is applied
to the sample, electrons in a region of width eV carry the current. Thus, if
each electron reaches the other side without collision, the current per spin
orientation is

I = evF
1

2π�vF
eV =

e2

h
V . (27.5.9)

The velocity in the current formula is canceled by the factor 1/vF in the
density of states, which leads to a conductance of e2/h per spin orientation.
When electrons undergo collisions, the transmission coefficient is smaller than
unity, and the conductance is also proportionally smaller.

If electrons can propagate in several independent channels, the total trans-
mission coefficient in the conductance formula is the sum of the transmission
coefficients of individual channels. Naturally, only partially filled channels be-
low the Fermi energy need to be considered. The transmission coefficient T
can generally be determined using the methods of quantum mechanics. If
the propagation of electrons is indeed ballistic, the transmission coefficient is
unity, and thus, because of the spin degeneracy, the conductance is quantized
in units of G0 = 2e2/h = 7.748×10−5 Ω−1 called the conductance quantum.19
This is shown in Fig. 27.37. The voltage between the two ends of the wire is
kept constant in the measurement setup, and the number of electrons in the
wire and the number of open channels in which electrons can propagate are
controlled by the negative gate voltage. Then steps appear as a function of the
gate voltage. The gate voltage plays a double role in that. Firstly, it changes
the electrostatic potential of the wire with respect to the source and drain
contacts, secondly, as the magnitude of the negative voltage is increased, the
18 R. Landauer, 1957.
19 In terms of the resistance: R can only be 1/nth of h/2e2 = 12.906 kΩ.
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region in which electrons can propagate becomes narrower, and thus the en-
ergy difference between the channels becomes larger. Both effects lead to a
decrease in the number of open channels.

(a) (b)

Fig. 27.37. (a) Quantized conductance in a quantum wire, at 0.6 K. (b) The quanti-
zation is smeared out at higher temperatures [Reprinted with permission from B. J.
van Wees et al., Phys. Rev. Lett. 60, 848 (1988) and Phys. Rev. B 43, 12431 (1991).
©1991 by the American Physical Society]

In quantum dots the motion of charge carriers is confined in all three
spatial dimensions. The linear dimension of the allowed region is less than
a μm in semiconductors, whereas in metallic samples it is on the order of
the Fermi wavelength. This can be achieved in practice by confining the two-
dimensional electron gas of a semiconductor device to a small region by means
of voltages applied to the gates on the surface. This way a practically zero
dimensional electron gas is obtained.

Within a region of such dimensions, the number of mobile electrons that
participate in conduction is at most a few thousand. Owing to the small
capacity of the dot, the charging energy becomes important on this scale.
Adding charge Q to a system of capacity C requires an energy Q2/C. If
the energy needed for the addition of a single electron exceeds the thermal
energy, then the Coulomb repulsion of the electrons on the dot prevents it.
This phenomenon is called the Coulomb blockade. The quantized nature of
charge then becomes important, and electrons can be moved one by one in
such systems. The new phenomena arising from this property can be studied
thoroughly in a nanostructure in which the quantum dot is connected via
tunnel junctions to two metallic electron reservoirs, a source and a drain,
and its voltage is controlled by a third electrode (gate). For reasons that will
be understood later, such structures are also called single-electron transistors
(SETs). Their schematic structure is shown in Fig. 27.38.
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Fig. 27.38. The schematic structure of single-electron transistors

If there are N mobile electrons (Q = −eN) on the dot, the total electro-
static energy is the sum of the term QVg due to the gate voltage Vg and the
charging energy Q2/2C:

E(Q) = QVg +
Q2

2C
. (27.5.10)

The dependence of this energy on the number of electrons is shown in
Fig. 27.39.
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Fig. 27.39. (a) The electrostatic energy of a quantum dot as a function of the
number of electrons in the Coulomb blockade region and in the degeneracy point.
(b) The spectrum associated with the addition or removal of an electron in the two
cases. Full circles indicate the N electrons on the dot; the empty circle is the N +1th
electron

If N changed continuously, the energy minimum would be at N = CVg/e.
Since the particle number is a discrete variable, the actual electron number
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is the integer N that is closest to that minimum. Referred to this discrete
minimum, the lowest energies of the systems with N + 1 and N − 1 electrons
are A and I higher, respectively, where A is the electron affinity and I is the
ionization energy:

A = E(N + 1) − E(N) = −eVg +
e2

C

(
N + 1

2

)
,

I = E(N − 1) − E(N) = eVg − e2

C

(
N − 1

2

)
.

(27.5.11)

Obviously, A+ I = e2/C. By choosing the gate voltage Vg = eN/C in such a
way that the minimum be at an integer charge state, both the addition and
removal of an electron require an energy e2/2C. The energy needed to add or
remove an electron is finite at other gate voltages, too. This nonzero energy
difference prevents electrons from jumping from one contact to the dot and
then on to the other contact. The only exception is

Vg = e
(
N ± 1

2

)
/C , (27.5.12)

when either A or I vanishes, and thus the electrostatic energy is the same for
N and N + 1 or N and N − 1 charges. The charge of the dot can fluctuate
between the two values. If a small external voltage is applied between the
source and drain, a current can flow through the quantum dot, since electrons
can jump from one contact to the dot and then on to the other contact. By
varying the gate voltage, this situation occurs for all values Vg for which the
previous condition is satisfied by an integer N – that is, finite peaks separated
by regular intervals δVg = e/C appear in the conductance. The conductance
oscillates with Vg. This is the Coulomb blockade oscillation.

The number of electrons on the dot, the magnitude of the electron affinity
and ionization energy (that are finite because of the charging energy), and,
through them, the current between the source and drain can thus be controlled
by the gate voltage. This explains why the device is called a single-electron
transistor.

In addition to the quantized nature of charge, the discreteness of the en-
ergy levels must also be taken into account in semiconductor quantum dots.
By taking a complete set of one-particle states of energy ελ, the dot can be
described in terms of the Hamiltonian

Hdot =
∑

λ

(
ελ − eVg

)
a†λaλ +

(N̂ e)2/2C , (27.5.13)

where N̂ =
∑

λ a
†
λaλ is the particle-number operator for the electrons on the

dot. When there are N electrons on the dot, the energy required to add the
(N + 1)th is not εN+1 but the electrostatic energy difference between the
configurations with N + 1 and N electrons:

ΔE = εN+1 +
[− (N + 1)eVg + (N + 1)2e2/2C

]− [−NeVg +N2e2/2C
]

= εN+1 − eVg + (N + 1
2 )e2/C . (27.5.14)
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Tunneling occurs when this energy is the same as the chemical potential of
the contact:

μ = εN+1 − eVg + (N + 1
2 )e2/C , (27.5.15)

that is, at the gate voltage

Vg = (N + 1
2 )e/C +

(
εN+1 − μ

)
/e . (27.5.16)

Therefore the separation of the conductance peaks is not exactly regular but

δVg = e/C +
(
εN+1 − εN

)
/e , (27.5.17)

and their amplitudes are not equal, either. Figure 27.40 shows the Coulomb
blockade oscillations in a quantum dot in a GaAs/AlGaAs heterojunction.
The capacity decreases and the peak separation increases for decreasing dot
size. The thermal broadening can be interpreted in terms of the Fermi–Dirac
statistics for the occupation of the levels.

Fig. 27.40. Coulomb blockade oscillations in quantum dots of different sizes in
GaAs/AlGaAs heterojunctions for progressively shorter distances between the two
constrictions, with a corresponding increase in the period at low temperature (T =
50 mK), and the thermal broadening of the peaks at a higher temperature (T =
800 mK) [Reprinted with permission from U. Meirav et al., Phys. Rev. Lett. 65, 771
(1990). ©1990 by the American Physical Society]

As shown in Fig. 27.41, similar oscillations had been observed earlier in
quantum wires, too. It has been established that the underlying mechanism is
the same: the Coulomb blockade. The reason for this is that quantum wires are
often disordered, made up of weakly coupled smaller parts (islands), between
which electrons can travel by tunneling. The charging energy of individual
islands can be high, and then the conductance of the quantum wire is similar
to that of a quantum dot.
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Fig. 27.41. Coulomb blockade oscillations in the conductance of disordered quan-
tum wires [Reprinted with permission from J. H. F. Scott-Thomas et al., Phys. Rev.
Lett. 62, 583 (1989), and U. Meirav et al., Phys. Rev. B 40, 5871 (1989). ©1989
by the American Physical Society]

It should be noted that if Vg is fixed and the potential difference between
the source and drain is varied, the measured current–voltage characteristics
are nonlinear. This is once again due to the Coulomb blockade. The current
increases step by step each time the potential difference reaches the threshold
for a new electron to jump to the quantum dot. This pattern is called the
Coulomb staircase.

27.6 Basics of Spintronics

Just like for classical semiconductor devices, only the motion of charges and
the current carried by them were examined in the semiconductor quantum
devices presented in the previous section. Since the standard devices are non-
magnetic, it was taken for granted that the current carried by electrons is
the same for both spin orientations. The role of spin was adding a factor 2
to the formulas of extensive quantities compared to the spinless case. The
recent discovery that the electron spin can play a much more important role
gave birth to a new branch of electronics called spin-based electronics or spin-
tronics. It is concerned with the construction of quantum devices by making
use of the spin-selective motion of electrons and the interaction of the spin of
charge carriers with magnetic materials. If the quantum state defined by the
spin remains coherent for a sufficiently long time, such devices can be used
for storing and transmitting information.

One of the most important examples of spin-dependent transport is the gi-
ant magnetoresistance20 (GMR) observed in systems made up of two or more
magnetic layers separated by thin nonmagnetic layers. If the mobile electrons
20 The adjective “giant” indicates that the variation of the resistance may be con-

siderably larger than ten percent in such layered structures, as opposed to the
customary few percent in metals placed in magnetic fields. The colossal magne-
toresistance (CMR) of certain perovskite manganites, in which the variation of
the resistance is several orders of magnitude larger, is certainly caused by some
other, as-yet not well understood, mechanism.
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in the nonmagnetic layer between two adjacent ferromagnetic layers mediate
antiferromagnetic coupling via the RKKY interaction (pages 466 of Volume 1
and 605) then the magnetization alternates in subsequent layers. As the re-
search groups of A. Fert and P. Grünberg21 demonstrated independently
in 1988, the resistance is larger in this state than in the configuration where the
moments of subsequent ferromagnetic layers are aligned in the same direction
in a strong magnetic field. To understand this phenomenon, it should be borne
in mind that in scattering processes without spin flip – which are usually much
stronger than spin-flip processes – the transition probability is proportional
to the density of final states, and this density of states is very different for the
two spin orientations in ferromagnetic materials. Consequently, ferromagnetic
layers act as polarizators: the transmission probability is much higher for elec-
trons whose magnetic moment is parallel to the ferromagnetic moment of the
layer than for the opposite spin orientation. If the two ferromagnetic layers are
oppositely magnetized (antiferromagnetically coupled), electrons of both spin
orientations are scattered in the same way as they pass through both layers.
(For either spin orientation, the passage is almost without collisions through
one but not the other layer.) However, when the magnetization of the ferro-
magnetic layers is parallel, half of the electrons – those with a favorable spin
orientation – pass through both layers easily, while the other half (with the
opposite spin) are strongly scattered in both layers. Since the currents carried
by the electrons of the two spin orientations flow in parallel, the resistance
is smaller in the last case than for antiferromagnetically coupled layers. Such
configurations in which the resistance is controlled by the magnetic field via
reversing the magnetization of a layer are called spin valves. Nowadays such
layered structures are widely used in the read heads of hard disks. Writing
and reading processes are based on giant magnetoresistance because a higher
information density can be achieved this way.

Nevertheless, research in spintronics is mostly concerned with semicon-
ductors rather than metallic systems – firstly, because such components can
be integrated more easily with standard semiconductor devices, and secondly,
because signal amplification can be achieved only by means of semiconductor
devices. The description of the behavior of such systems requires the general-
ization of the fundamental equations of semiconductor devices (Section 27.2.3)
to the spin-polarized case. The total current can now be decomposed into four
parts:

j(r) = jn↑(r) + jn↓(r) + jp↑(r) + jp↓(r) . (27.6.1)

Just like in (27.2.35), the electron current for each spin orientation is given
by the equations

jn↑(r) = en↑(r)μn↑E + eDn↑∇n↑(r) ,

jn↓(r) = en↓(r)μn↓E + eDn↓∇n↓(r) ,
(27.6.2)

21 Albert Fert (1938–) and Peter Grünberg (1939–) were awarded the Nobel
Prize in 2007 “for the discovery of giant magnetoresistance”.
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where the mobility and the diffusion coefficient can be spin dependent. Similar
equations apply to the hole current:

jp↑(r) = ep↑(r)μp↑E − eDp↑∇p↑(r) ,

jp↓(r) = ep↓(r)μp↓E − eDp↓∇p↓(r) .
(27.6.3)

The Poisson equation relating the gradient of the electric field to the charge
density takes the form

εdiv E = −e [n↑(r) + n↓(r) + n−a (r) − n+
d (r) − p↑(r) − p↓(r)

]
(27.6.4)

if the sample contains donors and acceptors.
Finally, we have to generalize of the continuity equation to establish the re-

lationship between the spatial variation of the charge density and the currents,
keeping track of the spin dependence of the generation and recombination of
carriers. The formula (27.2.1) can be used for recombination, with the obvious
auxiliary condition that the electron and hole that take part in the process
must be of opposite spins. Additionally, a new term appears, the spin relax-
ation. Spins can be reversed with a characteristic time τ↑↓; its reciprocal is the
spin-flip rate Γ↑↓. Such spin-flip processes couple the numbers of spin-up and
spin-down electrons and holes. Therefore, instead of the system of equation
(27.2.37), its generalization

∂n↑
∂t

− 1
e
∇jn↑ = Ginj, n↑ +Gtherm↑ − C↑n↑p↓ + Γn↑↓n↓ − Γn↓↑n↑ ,

∂n↓
∂t

− 1
e
∇jn↓ = Ginj, n↓ +Gtherm↓ − C↓n↓p↑ − Γn↑↓n↓ + Γn↓↑n↑ ,

∂p↑
∂t

+
1
e
∇jp↑ = Ginj, p↑ +Gtherm↑ − C↓n↓p↑ + Γp↑↓p↓ − Γp↓↑p↑ ,

∂p↓
∂t

+
1
e
∇jp↓ = Ginj, p↓ +Gtherm↓ − C↑n↑p↓ − Γp↑↓p↓ + Γp↓↑p↑

(27.6.5)

has to be used. The real difficulty in understanding spin-polarized transport
lies is the quantum mechanical determination of the parameters in the previ-
ous phenomenological equations. Its detailed discussion cannot be given here;
we just mention that, among others, we would need to clarify how good a
quantum number the spin is for characterizing the state of holes in the pres-
ence of the spin–orbit interaction. Note that in establishing the previous set
of equations we assumed that carriers undergo frequent collisions, and trans-
port can be conceived as a diffusive motion. In small samples, nanostructures,
this assumption is not valid: the motion can be ballistic. Just like in quantum
devices based on charge transport, this requires another description.

The generation and injection of spin-polarized electrons are among the
basic challenges of spintronics. Obviously, spin polarization can be achieved
most simply in ferromagnetic materials. The existence of ferromagnetic semi-
conductors was an interesting discovery of the past decades. For applications,
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the most important are the structures based on III–V semiconductors (e.g.,
InAs or GaAs) and a magnetic element (for example manganese), which sub-
stitutes partially (at most at a few atomic percent level) the element from
column III. Curie temperatures above 100K have been achieved this way.
Using such materials facilitates the fabrication of semiconductor junctions in
which one side is a ferromagnetic and the other a nonmagnetic semiconductor.
The quest for the most effective way of injecting spin-polarized electrons from
a ferromagnet into a nonmagnetic semiconductor – so that spin current could
flow in the latter – has been a topic of particularly keen interest.

The polarized electrons injected into the nonmagnetic component are not
in equilibrium. Relaxation processes would lead to the establishment of ther-
mal equilibrium but such processes are relatively slow (the spin-flip time is
on the order of 10−9 s), so electrons can pass through a nanostructure with
their phase preserved. However, the spin can be manipulated by means of the
spin–orbit interaction, which opens the way to new phenomena.

As mentioned in Chapter 3, the spin–orbit coupling can be described by
the Rashba term (3.1.36) in two-dimensional systems, where the coupling
strength α is proportional to the gradient of the potential, and can therefore
be controlled by the voltage applied to the system. During their motion elec-
trons feel a spin-dependent magnetic field, so spin-up and spin-down electrons
propagate differently. An interesting consequence of this difference is the ex-
perimentally confirmed spin Hall effect. The Rashba term gives rise to a pure
spin current that is perpendicular to the electric current through the sample,
and the spin polarization will be different on the two sides.

The operation of the spin-field-effect transistor (spin-FET) proposed by
Datta and Das22 (Fig. 27.42) is based on the Rashba-type spin–orbit cou-
pling using polarized electrons injected from the ferromagnet into the non-
magnetic semiconductor.
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Fig. 27.42. Schematic structure of the Datta–Das spin-field-effect transistor
[S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990)]

The two-dimensional electron gas at the interface of a heterojunction is
connected to a ferromagnetic source and a drain. The spin-polarized charges
injected from the source (emitter) can travel along the interface and become
22 S. Datta and B. Das, 1990.
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absorbed at the other side, provided the polarization of the drain (collector) is
the same. However, when the electron spins are flipped in the channel by some
mechanism, the electrons can no longer be absorbed, and there is no current.
When a voltage is applied to the gate, the spins of the electrons traveling in
the channel start to rotate. The current through the channel can therefore be
controlled by the gate voltage.

Among the many open issues of spintronics the most intriguing is the
possibility of using the two states of a spin as a quantum bit (qubit) for storing
and transmitting information, and thus for building a spin-based quantum
computer. Hopefully, we have a not so long way to go before finding the
answer to this problem as well as the other questions mentioned above.
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G

Quantum Mechanical Perturbation Theory

Quantum mechanical perturbation theory is a widely used method in solid-
state physics. Without the details of derivation, we shall list a number of basic
formulas of time-independent (stationary) and time-dependent perturbation
theory below. For simplicity, we shall use the Dirac notation for wavefunctions
and matrix elements.

G.1 Time-Independent Perturbation Theory

Assume that the complete solution (eigenfunctions and eigenvalues) of the
Schrödinger equation

H0

∣∣ψ(0)
i

〉
= E(0)

i

∣∣ψ(0)
i

〉
(G.1.1)

is known for a system described by a simple Hamiltonian H0. If the system
is subject to a time-independent (stationary) perturbation described by the
Hamiltonian H1 – which can be an external perturbation or the interaction
between the components of the system –, the eigenvalues and eigenfunctions
change. The method for determining the new ones depends on whether the
unperturbed energy level in question is degenerate or not.

G.1.1 Nondegenerate Perturbation Theory

We now introduce a fictitious coupling constant λ, whose value will be treated
as a parameter in the calculations and set equal to unity in the final result,
and write the full Hamiltonian H = H0 + H1 as

H = H0 + λH1 . (G.1.2)

The parameter λ is purely a bookkeeping device to keep track of the relative
order of magnitude of the various terms, since the energy eigenvalues and
eigenfunctions will be sought in the form of an expansion in powers of λ:
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Ei = E(0)
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λnE
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(G.1.3)

The series is convergent if the perturbation is weak, that is, in addition to the
formally introduced parameter λ, the interaction Hamiltonian itself contains
a small parameter, the physical coupling constant.

By substituting this expansion into the Schrödinger equation and collect-
ing the same powers of λ from both sides, we obtain

H0

∣∣ψ(0)
i

〉
= E(0)

i

∣∣ψ(0)
i

〉
,

H0

∣∣ψ(1)
i

〉
+ H1
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i

〉
= E(0)

i

∣∣ψ(1)
i

〉
+ E(1)

i

∣∣ψ(0)
i

〉
,

H0

∣∣ψ(2)
i

〉
+ H1

∣∣ψ(1)
i

〉
= E(0)

i

∣∣ψ(2)
i

〉
+ E(1)

i

∣∣ψ(1)
i

〉
+ E(2)

i

∣∣ψ(0)
i

〉 (G.1.4)

and similar equations for higher-order corrections. The corrections to the en-
ergy and wavefunction of any order are related to the lower-order ones by the
recursion formula

(H0 − E(0)
i )
∣∣ψ(n)

i

〉
+ (H1 − E(1)

i )
∣∣ψ(n−1)

i

〉
− E(2)

i

∣∣ψ(n−2)
i

〉− . . .− E(n)
i

∣∣ψ(0)
i

〉
= 0 .

(G.1.5)

Multiplying the second equation in (G.1.4) (which comes from the terms
that are linear in λ) by

〈
ψ

(0)
i

∣∣ from the left, the first-order correction to the
energy is

E
(1)
i =

〈
ψ

(0)
i
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∣∣ψ(0)
i

〉
. (G.1.6)

To determine the correction to the wavefunction, the same equation is multi-
plied by

〈
ψ

(0)
j
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Since the eigenfunctions of H0 make up a complete set, the functions
∣∣ψ(n)

i

〉
can be expanded in terms of them:∣∣ψ(n)

i

〉
=
∑

j

C
(n)
ij

∣∣ψ(0)
j

〉
. (G.1.8)

The coefficients C(n)
ii are not determined by the previous equations: their val-

ues depend on the normalization of the perturbed wavefunction. Substituting
the previous formula into (G.1.7), we have

E
(0)
j C

(n)
ij +
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(0)
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i 〉 = E(0)

i C
(n)
ij , (G.1.9)
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and hence ∣∣ψ(1)
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The second-order correction to the energy is then
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and the second-order correction to the wavefunction is
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However, this wavefunction is not normalized to unity. Proper normalization
is ensured by the choice

∣∣ψ(2)
i

〉
=
∑
j �=i

∑
k �=i

〈
ψ

(0)
j

∣∣H1

∣∣ψ(0)
k

〉〈
ψ

(0)
k

∣∣H1

∣∣ψ(0)
i

〉(
E

(0)
i − E(0)

j

)(
E

(0)
i − E(0)

k

) ∣∣ψ(0)
j

〉
−
∑
j �=i

〈
ψ

(0)
j

∣∣H1

∣∣ψ(0)
i

〉〈
ψ

(0)
i

∣∣H1

∣∣ψ(0)
i

〉(
E

(0)
i − E(0)

j

)2 ∣∣ψ(0)
j

〉
− 1

2

∑
j �=i

〈
ψ

(0)
i

∣∣H1

∣∣ψ(0)
j

〉〈
ψ

(0)
j

∣∣H1

∣∣ψ(0)
i

〉(
E

(0)
i − E(0)

j

)2 ∣∣ψ(0)
i

〉
.

(G.1.13)

Finally, the third-order correction to the energy is

E
(3)
i =

∑
j �=i

∑
k �=i

〈
ψ

(0)
i

∣∣H1

∣∣ψ(0)
j

〉〈
ψ

(0)
j

∣∣H1

∣∣ψ(0)
k

〉〈
ψ

(0)
k

∣∣H1

∣∣ψ(0)
i

〉(
E

(0)
i − E(0)

j

)(
E

(0)
i −E(0)

k

)
−
∑
j �=i

〈
ψ

(0)
i

∣∣H1

∣∣ψ(0)
j

〉〈
ψ

(0)
j

∣∣H1

∣∣ψ(0)
i

〉〈
ψ

(0)
i

∣∣H1

∣∣ψ(0)
i

〉(
E

(0)
i − E(0)

j

)2 .

(G.1.14)

In this Rayleigh–Schrödinger perturbation theory the explicit form of
higher-order corrections becomes increasingly complicated. A relatively simple
recursion formula can be obtained by introducing the projection operator

Pi = 1 − ∣∣ψ(0)
i

〉〈
ψ

(0)
i

∣∣ =∑
j �=i

∣∣ψ(0)
j

〉〈
ψ

(0)
j

∣∣ (G.1.15)
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which projects onto the subspace that is orthogonal to the state
∣∣ψ(0)

i

〉
. The

nth-order energy correction can then be written as

E
(n)
i =

〈
ψ

(0)
i

∣∣H1

∣∣ψ(n−1)
i

〉
, (G.1.16)

where the matrix element is to be taken with the wavefunction∣∣ψ(n)
i

〉
=

1

E
(0)
i −H0

Pi

[(H1 − E(1)
i

)∣∣ψ(n−1)
i

〉
−E(2)

i

∣∣ψ(n−2)
i

〉− . . .− E(n−1)
i

∣∣ψ(1)
i

〉]
,

(G.1.17)

which is in the subspace mentioned above.
Formally simpler expressions can be obtained when the Brillouin–Wigner

perturbation theory is used. The perturbed wavefunction in the Schrödinger
equation (H0 + H1

)∣∣ψi

〉
= Ei

∣∣ψi

〉
(G.1.18)

is then chosen in the form∣∣ψi

〉
= C0

∣∣ψ(0)
i

〉
+
∣∣Δψi

〉
, (G.1.19)

where
∣∣Δψi

〉
is orthogonal to

∣∣ψ(0)
i

〉
, and C0 takes care of the appropriate

normalization. After some algebra, the eigenvalue equation reads(H0 − Ei

)∣∣Δψi

〉
+ H1

∣∣ψi

〉
= C0

(
Ei − E(0)

i

)∣∣ψ(0)
i

〉
. (G.1.20)

By applying the projection operator Pi, and exploiting the relations

Pi

∣∣ψ(0)
i

〉
= 0 , Pi

∣∣ψi

〉
=
∣∣Δψi

〉
(G.1.21)

as well as the commutation of Pi and H0,(
Ei −H0

)∣∣Δψi

〉
= PiH1

∣∣ψi

〉
(G.1.22)

is obtained. Its formal solution is∣∣ψi

〉
= C0

∣∣ψ(0)
i

〉
+

Pi

Ei −H0
H1

∣∣ψi

〉
. (G.1.23)

Iteration then yields

∣∣ψi

〉
= C0

∞∑
n=0

(
Pi

Ei −H0
H1

)n ∣∣ψ(0)
i

〉
, (G.1.24)

and

ΔEi =
∞∑

n=0

〈
ψ

(0)
i

∣∣H1

(
Pi

Ei −H0
H1

)n ∣∣ψ(0)
i

〉
(G.1.25)
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for the energy correction. In this method the energy denominator contains the
perturbed energy Ei rather than the unperturbed one E(0)

i . To first order in
the interaction,

Ei = E(0)
i +

〈
ψ

(0)
i

∣∣H1

∣∣ψ(0)
i

〉
, (G.1.26)

while to second order,

Ei = E(0)
i +

〈
ψ

(0)
i

∣∣H1

∣∣ψ(0)
i

〉
+
∑
j �=i

〈
ψ

(0)
i

∣∣H1

∣∣ψ(0)
j

〉〈
ψ

(0)
j

∣∣H1

∣∣ψ(0)
i

〉
Ei − E(0)

j

+ . . . .
(G.1.27)

It is easy to show that by rearranging the energy denominator and expanding
it as

1
Ei −H0

=
1

E
(0)
i −H0 + ΔEi

=
1

E
(0)
i −H0

∞∑
n=0

( −ΔEi

E
(0)
i −H0

)n

, (G.1.28)

the results of the Rayleigh–Schrödinger perturbation theory are recovered.
The formulas of time-dependent perturbation theory can also be used to

determine the ground-state energy and wavefunction of the perturbed sys-
tem, provided the interaction is assumed to be turned on adiabatically. The
appropriate formulas are given in Section G.2.

G.1.2 Degenerate Perturbation Theory

In the previous subsection we studied the shift of nondegenerate energy levels
due to the perturbation. For degenerate levels a slightly different method has
to be used because the formal application of the previous formulas would yield
vanishing energy denominators.

Assuming that the ith energy level of the unperturbed system is p-fold
degenerate – that is, the same energy E(0)

i belongs to each of the states
∣∣ψ(0)

i1

〉
,∣∣ψ(0)

i2

〉
, . . . ,

∣∣ψ(0)
ip

〉
–, any linear combination of these degenerate eigenstates

is also an eigenstate of H0 with the same energy. We shall use such linear
combinations to determine the perturbed states. We write the wavefunctions
of the states of the perturbed system that arise from the degenerate states as∣∣ψ〉 =

∑
k

cik

∣∣ψ(0)
ik

〉
+
∑
n�=i

cn
∣∣ψ(0)

n

〉
, (G.1.29)

where the cik
are of order unity, whereas the other coefficients cn that specify

the mixing with the unperturbed eigenstates whose energy is different from
E

(0)
i are small, proportional to the perturbation. By substituting this form

into the Schrödinger equation, and multiplying both sides by
〈
ψ

(0)
ij

∣∣ from the
left,
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ΔEcij
=
∑

k

〈
ψ

(0)
ij

∣∣H1

∣∣ψ(0)
ik

〉
cik

+
∑
n�=i

〈
ψ

(0)
ij

∣∣H1

∣∣ψ(0)
n

〉
cn (G.1.30)

is obtained. Since the coefficients cn are small, the second term on the right-
hand side can be neglected in calculating the leading-order energy correction,
which is given by ∑

k

[〈
ψ

(0)
ij

∣∣H1

∣∣ψ(0)
ik

〉− δjkΔE
]
cik

= 0 . (G.1.31)

This homogeneous system of equations has nontrivial solutions if the deter-
minant of the coefficient matrix vanishes:

det
(〈
ψ

(0)
ij

∣∣H1

∣∣ψ(0)
ik

〉− δjkΔE
)

= 0 . (G.1.32)

The solutions of this pth-order equation – that is, the eigenvalues of the matrix
made up of the matrix elements

〈
ψ

(0)
ij

∣∣H1

∣∣ψ(0)
ik

〉
– specify the eventual splitting

of the initially p-fold degenerate level, i.e., the shift of the perturbed levels
with respect to the unperturbed one. Thus the interaction Hamiltonian needs
to be diagonalized on the subspace of the degenerate states of H0. In general,
the degeneracy is lifted at least partially by the perturbation. As discussed in
Appendix D on group theory, the symmetry properties of the full Hamiltonian
determine which irreducible representations appear, and what the degree of
degeneracy is for each new level.

G.2 Time-Dependent Perturbation Theory

If the perturbation depends explicitly on time, no stationary states can arise.
We may then be interested in the evolution of the system: What states can
be reached at time t from an initial state

∣∣ψ(0)
i

〉
if the perturbation is turned

on suddenly at time t0? The answer lies in the solution of the time-dependent
Schrödinger equation[H0 + λH1(t)

]∣∣ψi(t)
〉

= −�

i
∂

∂t

∣∣ψi(t)
〉
. (G.2.1)

The wavefunction
∣∣ψi(t)

〉
is sought in the form∣∣ψi(t)
〉

=
∑

j

cij(t)
∣∣ψ(0)

j

〉
e−iE

(0)
j t/� , (G.2.2)

subject to the initial condition

cij(t0) = δij . (G.2.3)

Since the time dependence of the unperturbed state has been written out
explicitly, the functions cij(t) are expected to vary slowly in time. Expanding
the coefficients once again into powers of λ,
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cij(t) = c(0)ij (t) +
∞∑

r=1

λrc
(r)
ij (t) , (G.2.4)

where, naturally, the zeroth-order term is a constant:

c
(0)
ij (t) = δij . (G.2.5)

Substituting this series expansion into the Schrödinger equation, we find

− �

i
∂

∂t
c
(r)
ij (t) =

∑
k

ei(E
(0)
j −E

(0)
k )t/�

〈
ψ

(0)
j

∣∣H1(t)
∣∣ψ(0)

k

〉
c
(r−1)
ik (t) . (G.2.6)

The explicit formulas for the first two terms obtained through iteration are

c
(1)
ij (t) = − i

�

t∫
t0

〈
ψ

(0)
j

∣∣H1(t1)
∣∣ψ(0)

i

〉
ei(E

(0)
j −E

(0)
i )t1/�dt1 , (G.2.7)

and

c
(2)
ij (t) =

(
− i

�

)2
t∫

t0

dt1

t1∫
t0

dt2
∑

k

〈
ψ

(0)
j

∣∣H1(t1)
∣∣ψ(0)

k

〉
ei(E

(0)
j −E

(0)
k )t1/�

×〈ψ(0)
k

∣∣H1(t2)
∣∣ψ(0)

i

〉
ei(E

(0)
k −E

(0)
i )t2/� (G.2.8)

In the interaction picture the time dependence of an arbitrary operator O
is given by

Ô(t) = eiH0t/�Oe−iH0t/� . (G.2.9)

Using this form for the Hamiltonian, which may have an intrinsic time de-
pendence as well, the first two coefficients c(n)

ij can be written in terms of the
operators

Ĥ1(t) = eiH0t/�H1(t)e−iH0t/� (G.2.10)

as

c
(1)
ij (t) = − i

�

t∫
t0

〈
ψ

(0)
j

∣∣Ĥ1(t1)
∣∣ψ(0)

i

〉
dt1 (G.2.11)

and

c
(2)
ij (t) =

(
− i

�

)2
t∫

t0

dt1

t1∫
t0

dt2
∑

k

〈
ψ

(0)
j

∣∣Ĥ1(t1)
∣∣ψ(0)

k

〉
× 〈ψ(0)

k

∣∣Ĥ1(t2)
∣∣ψ(0)

i

〉
.

(G.2.12)

Since the intermediate states
∣∣ψ(0)

k

〉
constitute a complete set, the previous

formula simplifies to
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c
(2)
ij (t) =

(
− i

�

)2
t∫

t0

dt1

t1∫
t0

dt2
〈
ψ

(0)
j

∣∣Ĥ1(t1)Ĥ1(t2)
∣∣ψ(0)

i

〉
. (G.2.13)

The same result is obtained when the double integral on the t1, t2 plane is
evaluated in reverse order:

c
(2)
ij (t) =

(
− i

�

)2
t∫

t0

dt2

t∫
t2

dt1
〈
ψ

(0)
j

∣∣Ĥ1(t1)Ĥ1(t2)
∣∣ψ(0)

i

〉
, (G.2.14)

or by swapping the notation of the two time variables:

c
(2)
ij (t) =

(
− i

�

)2
t∫

t0

dt1

t∫
t1

dt2
〈
ψ

(0)
j

∣∣Ĥ1(t2)Ĥ1(t1)
∣∣ψ(0)

i

〉
. (G.2.15)

Using these two formulas, the coefficient can also be written as

c
(2)
ij (t) =

(
− i

�

)2 1
2

t∫
t0

dt1

t∫
t0

dt2
〈
ψ

(0)
j

∣∣T{Ĥ1(t1)Ĥ1(t2)
}∣∣ψ(0)

i

〉
, (G.2.16)

where T is the time-ordering operator, which orders the operators in a product
in descending order of their time argument. Its action can be written in terms
of the Heaviside step function as

T
{Ĥ1(t1)Ĥ1(t2)

}
= θ(t1 − t2)Ĥ1(t1)Ĥ1(t2) + θ(t2 − t1)Ĥ1(t2)Ĥ1(t1) .

(G.2.17)
Generalizing this to arbitrary orders, and setting λ = 1,

cij(t) = δji+
∞∑

n=1

(
− i

�

)n
t∫

t0

dt1

t1∫
t0

dt2 . . .

tn−1∫
t0

dtn

× 〈ψ(0)
j

∣∣Ĥ1(t1)Ĥ1(t2) . . . Ĥ1(tn)
∣∣ψ(0)

i

〉
,

(G.2.18)

or, in time-ordered form,

cij(t) = δji+
∞∑

n=1

1
n!

(
− i

�

)n
t∫

t0

dt1

t∫
t0

dt2 . . .

t∫
t0

dtn

× 〈ψ(0)
j

∣∣T{Ĥ1(t1)Ĥ1(t2) . . . Ĥ1(tn)
}∣∣ψ(0)

i

〉
.

(G.2.19)

The time evolution of the wavefunction between times t0 and t is therefore
governed by the operator S(t, t0):∣∣ψ(t)

〉
= S(t, t0)

∣∣ψ(t0)
〉
, (G.2.20)
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where

S(t, t0) =
∞∑

n=0

(
− i

�

)n
t∫

t0

dt1

t1∫
t0

dt2 . . .

tn−1∫
t0

dtn Ĥ1(t1)Ĥ1(t2) . . . Ĥ1(tn) ,

(G.2.21)
or

S(t, t0) =
∞∑

n=0

1
n!

(
− i

�

)n
t∫

t0

dt1

t∫
t0

dt2 . . .

t∫
t0

dtn T
{Ĥ1(t1)Ĥ1(t2) . . . Ĥ1(tn)

}
.

(G.2.22)
Now consider a system whose initial wavefunction at t0 = 0 is

∣∣ψ(0)
i

〉
, and

a constant perturbation that acts for a finite period of time. According to
(G.2.7), the amplitude of the state

∣∣ψ(0)
j

〉
that becomes admixed to the initial

state at time t is given by

c
(1)
ij = −〈ψ(0)

j

∣∣H1

∣∣ψ(0)
i

〉ei(E
(0)
j −E

(0)
i )t/� − 1

E
(0)
j − E(0)

i

(G.2.23)

in the lowest order of perturbation theory. The transition probability from
state

∣∣ψ(0)
i

〉
to
∣∣ψ(0)

j

〉
is then

Wi→j =
∣∣c(1)ij

∣∣2 = 2
∣∣∣〈ψ(0)

j

∣∣H1

∣∣ψ(0)
i

〉∣∣∣2 1 − cos
(
(E(0)

j − E(0)
i )t/�

)(
E

(0)
j − E(0)

i

)2 (G.2.24)

in the same order. For large values of the time, the formula on the right-hand
side gives significant probabilities only for states whose energy difference is at
most of order 2π�/t. Since

lim
t→∞

1 − cos(x− x0)t
(x− x0)2

= πtδ(x− x0) , (G.2.25)

the transition rate in the t→ ∞ limit is

wi→j =
dWi→j

dt
=

2π
�

∣∣∣〈ψ(0)
j

∣∣H1

∣∣ψ(0)
i

〉∣∣∣2δ(E(0)
j − E(0)

i ) . (G.2.26)

As mentioned in the previous section, the formulas of time-dependent per-
turbation theory can also be used to specify the energy shifts due to a sta-
tionary perturbation, provided the interaction is assumed to be turned on
adiabatically at t0 = −∞. Inserting a factor exp(−α|t|) in the interaction
Hamiltonian, which specifies the adiabatic switch-on by means of an infinites-
imally small α, we have

Ĥ1(t) = eiH0t/�H1e−iH0t/�e−α|t| . (G.2.27)
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in the interaction picture. Using the ground state
∣∣Ψ0

〉
of energy E0 of the

unperturbed system, the energy correction due to the perturbation is

ΔE =

〈
Ψ0

∣∣H1S(0,−∞)
∣∣Ψ0

〉〈
Ψ0

∣∣S(0,−∞)
∣∣Ψ0

〉 , (G.2.28)

and the wavefunction is ∣∣Ψ〉 =
S(0,−∞)

∣∣Ψ0

〉〈
Ψ0

∣∣S(0,−∞)
∣∣Ψ0

〉 . (G.2.29)

As J. Goldstone (1957) pointed out, the same result may be formu-
lated in a slightly different way. Considering a many-particle system with a
nondegenerate ground state, the contribution of each term in the perturba-
tion expansion can be represented by time-ordered diagrams that show the
intermediate states through which the system gets back to the ground state.
This representation contains terms in which some of the particles participat-
ing in the intermediate processes are in no way connected to the incoming
and outgoing particles. It can be demonstrated that the contributions of the
disconnected parts are exactly canceled by the denominator in (G.2.28) and
(G.2.29), so

ΔE =
∞∑

n=0

〈
Ψ0

∣∣∣H1

(
1

E0 −H0
H1

)n ∣∣∣Ψ0

〉
con
,

∣∣Ψ〉 =
∞∑

n=0

(
1

E0 −H0
H1

)n ∣∣Ψ0

〉
con,

(G.2.30)

where the label “con” indicates that only the contribution of connected di-
agrams need to be taken into account. It should be noted that instead of
Goldstone’s time-ordered diagrams, the perturbation series for the ground-
state energy can also be represented in terms of Feynman diagrams, which
are more commonly used in the many-body problem. Only connected dia-
grams need to be considered in that representation, too.
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Second Quantization

The quantum mechanical wavefunction is most often considered as the func-
tion of the space and time variables when the solutions of the Schrödinger
equation are sought. In principle, this approach is applicable even when the
system is made up of a large number of interacting particles. However, it is
then much more convenient to use the occupation-number representation for
the wavefunction. We shall introduce the creation and annihilation operators,
and express the Hamiltonian in terms of them, too.

H.1 Occupation-Number Representation

It was mentioned in Chapter 12 on the quantum mechanical treatment of
lattice vibrations that the eigenstates of the harmonic oscillator can be char-
acterized by the quantum number n that can take nonnegative integer values.
Using the linear combinations of the position variable x and its conjugate
momentum, it is possible to construct operators a† and a that increase and
decrease this quantum number. We may say that when these ladder operators
are applied to an eigenstate, they create an additional quantum or annihi-
late an existing one. Consequently, these operators are called the creation and
annihilation operators of the elementary quantum or excitation. States can
be characterized by the number of quanta they contain – that is, by the oc-
cupation number. Using Dirac’s notation, the state ψn of quantum number
n – which can be constructed from the ground state of the oscillator by the
n-fold application of the creation operator a†, and thus contains n quanta –
will henceforth be denoted by |n〉. The requirement that such states should
also be normalized to unity leads to

a|n〉 =
√
n |n− 1〉 , a†|n〉 =

√
n+ 1 |n+ 1〉 . (H.1.1)

The operators a and a† of the quantum mechanical oscillator satisfy the
bosonic commutation relation.
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This occupation-number representation can be equally applied to many-
particle systems made up of fermions (e.g., electrons) or bosons (e.g., phonons,
magnons). Any state of an interacting system consisting of N particles can
be expanded in terms of the complete set of states of the noninteracting
system. The eigenstates of the noninteracting many-particle system can, in
turn, be expressed in terms of the one-particle eigenstates. When the one-
particle problem is solved for the noninteracting system, the complete set
φ1(ξ), φ2(ξ), . . . , φi(ξ), . . . of one-particle states is obtained, where the collec-
tive notation ξ is used for the spatial variable r and spin s of the particles:
ξ = (r, s).

Such complete sets are the set of eigenfunctions for the harmonic oscillator,
and the system of plane waves, Bloch functions, or Wannier functions for
electrons. The construction of the complete set of many-particle functions
from one-particle functions is different for bosons and fermions: for bosons,
several particles may be in the same state, whereas this possibility is excluded
by the Pauli principle for fermions. The two cases must therefore be treated
separately.

Bosons

For noninteracting bosons the states of the many-particle system are described
by means of those combinations of the one-particle states that are completely
symmetric with respect to the interchange of the space and spin variables.
If an N -particle system contains n1, n2, . . . , nk, . . . particles in the states
φ1, φ2, . . . , φk, . . . , where ∑

k

nk = N, (H.1.2)

the wavefunction with the required symmetry properties is

Φn1,n2,...,nk,... =
(
n1!n2! . . . nk! . . .

N !

)1/2∑
P

φp1(ξ1)φp2(ξ2) . . . φpN(ξN) ,

(H.1.3)
where 1, 2, . . . , k, . . . occurs among the indices pi exactly n1, n2, . . . , nk, . . .
times, and summation is over all possible permutations of the indices.

It turns out practical to introduce a more concise notation. If the wave-
functions of the one-particles states are known, the wavefunction Φ is un-
ambiguously characterized by the numbers n1, n2, . . . , nk, . . . that specify the
occupation of each one-particle state, therefore the above-defined state can be
concisely denoted by

Φn1,n2,...,nk,... ≡ |n1, n2, . . . , nk, . . . 〉 . (H.1.4)

This is the occupation-number representation, while the vector space spanned
by the set of all such basis states with nonnegative integers nk for bosons is
called the Fock space.
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We shall now define the creation and annihilation operators that act in
the Fock space and increase and decrease the occupation number by one:

a†k|n1, n2, . . . , nk, . . . 〉 = fc|n1, n2, . . . , nk + 1, . . . 〉 ,
ak|n1, n2, . . . , nk, . . . 〉 = fa|n1, n2, . . . , nk − 1, . . . 〉 .

(H.1.5)

If the normalization factors for bosons are chosen the same way as for harmonic
oscillators, that is,

a†k|n1, n2, . . . , nk, . . . 〉 =
√
nk + 1|n1, n2, . . . , nk + 1, . . . 〉 ,

ak|n1, n2, . . . , nk, . . . 〉 =
√
nk|n1, n2, . . . , nk − 1, . . . 〉 ,

(H.1.6)

then n̂k = a†kak is the number operator that gives the occupation number of
the state of index k, since

a†kak|n1, n2, . . . , nk, . . . 〉 = nk|n1, n2, . . . , nk, . . . 〉 , (H.1.7)

and the commutation relations are the usual ones for bosons:

aka
†
k′ − a†k′ak = δkk′ . (H.1.8)

Any state |n1, n2, . . . , nk, . . . 〉 can be constructed from the vacuum by
means of creation operators:

Φn1,n2,...,nk,... =
1√

n1!n2! . . . nk! . . .

(
a†1
)n1
(
a†2
)n2

. . .
(
a†k
)nk . . . |0〉. (H.1.9)

As has been mentioned, these states make up a complete set, and the wave-
functions of interacting many-particle system can be expressed as linear com-
binations of them.

Fermions

A similar approach can be adopted for fermions, however, the many-particle
wavefunction has to be chosen as

Φn1,n2,...,nk,... =
1√
N !

∑
P

(−1)Pφp1(ξ1)φp2(ξ2) . . . φpN(ξN) (H.1.10)

to meet the requirement of complete antisymmetrization. This is equivalent
to building a Slater determinant from the one-particle wavefunctions:

Φn1,n2,...,nk,... =
1√
N !

∣∣∣∣∣∣∣∣∣
φp1(ξ1) φp2(ξ1) . . . φpN(ξ1)
φp1(ξ2) φp2(ξ2) . . . φpN(ξ2)

...
...

. . .
...

φp1(ξN) φp2(ξN) . . . φpN(ξN)

∣∣∣∣∣∣∣∣∣ . (H.1.11)
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Since each one-particle state can occur at most once, when the states are
ordered in some arbitrary way, the product in (H.1.10) with indices

p1 < p2 < · · · < pN (H.1.12)

is chosen with positive sign, and the signs for other configurations follow from
the parity of the permutation.

The occupation-number representation can be used for fermions as well.
The wavefunction is then written in Fock space as

Φn1,n2,...,nk,... ≡ |n1, n2, . . . , nk, . . . 〉 , (H.1.13)

where ni can be either 0 or 1. The creation and annihilation operators must
be introduced in such a way that the equations

a†k|n1, n2, . . . , nk, . . . 〉 = 0 , if nk = 1 ,

ak|n1, n2, . . . , nk, . . . 〉 = 0 , if nk = 0
(H.1.14)

be satisfied. After ordering the one-particle states, the normalization of the
states obtained by the application of the creation and annihilation operators
are chosen as

a†k|n1, n2, . . . , nk, . . . 〉 =
√

1 − nk(−1)Sk |n1, n2, . . . , nk + 1, . . . 〉 ,
ak|n1, n2, . . . , nk, . . . 〉 =

√
nk(−1)Sk |n1, n2, . . . , nk − 1, . . . 〉 ,

(H.1.15)

where
Sk =

∑
i<k

ni . (H.1.16)

With this choice n̂k = a†kak is the number operator for fermions as well,
since when it acts on the state |n1, n2, . . . , nk, . . . 〉

a†kak|n1, n2, . . . , nk, . . . 〉 = nk|n1, n2, . . . , nk, . . . 〉 . (H.1.17)

In reverse order, however,

aka
†
k|n1, n2, . . . , nk, . . . 〉 =

√
(1 + nk)(1 − nk)|n1, n2, . . . , nk, . . . 〉 . (H.1.18)

Since nk can only take the values 0 and 1, the eigenvalue of aka
†
k is 1 − nk,

and thus the operator identity

aka
†
k + a†kak = 1 (H.1.19)

holds. By taking states of different quantum numbers, if the state of quantum
number k precedes the state with quantum number k′ in the order, we have

aka
†
k′ |n1, n2, . . . , nk, . . . , nk′ , . . . 〉 (H.1.20)

= (−1)Sk(−1)Sk′√nk

√
1 − nk′ |n1, n2, . . . , nk − 1, . . . , nk′ + 1, . . . 〉,
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while for the reverse order of the operators the −1 factors due to antisym-
metrization are different:

a†k′ak|n1, n2, . . . , nk, . . . , nk′ , . . . 〉 (H.1.21)
= (−1)Sk(−1)Sk′−1√nk

√
1 − nk′ |n1, n2, . . . , nk − 1, . . . , nk′ + 1, . . . 〉,

and thus
[ak, a

†
k′ ]+ ≡ aka

†
k′ + a†k′ak = δkk′ , (H.1.22)

where [A,B]+ is the anticommutator of the two operators. Likewise, it can be
shown that

[ak, ak′ ]+ = 0 , [a†k, a
†
k′ ]+ = 0 . (H.1.23)

The state Φ in which the one-particle states of index p1 < p2 < · · · < pN
are filled can be written as

Φ = a†p1
a†p2
. . . a†pN

|0〉 (H.1.24)

in terms of the creation operators, where |0〉 is the vacuum state.

H.2 Second-Quantized Form of Operators

In the discussion of many-particle systems we mostly encounter operators that
are the sums of terms acting on individual particles or contain the variables
of two particles. The kinetic energy of a system and the interaction with an
applied field are examples for the first, while pair interaction between the
particles is an example of the second. Below we shall show that the one- and
two-particle operators can be expressed in simple forms in terms of the cre-
ation and annihilation operators. Equivalence is based on the requirement that
their action on the wavefunctions given in occupation-number representation
lead to the same matrix elements as the usual representation.

H.2.1 Second-Quantized Form of One-Particle Operators

We shall first discuss one-particle operators. In complete generality, they can
be written as

F (1) =
N∑

i=1

f(ξi) . (H.2.1)

The operator f either leaves the particle in the same state or takes it into
another. We shall first consider diagonal matrix elements. For bosons, each
particle gives the same contribution because of symmetrization. By selecting
a particle and assuming that it is in the state of label l,
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. . .

∫
Φ∗

n1,n2,...,nk,...

N∑
i=1

f(ξi)Φn1,n2,...,nk,... dξ1 dξ2 . . . dξN

= N
n1!n2! . . . nk! . . .

N !

∑
l

∫
φ∗l (ξ)f(ξ)φl (ξ) dξ (H.2.2)

×
∑
P ′

∫
. . .

∫
φ∗p1

(ξ2) . . . φ∗pN
(ξN )φp1

(ξ2) . . . φpN
(ξN ) dξ2 . . . dξN .

To calculate the factor that remains after the separation of the matrix element
of the state l, only those states need to be considered in the permutation P ′

that contain the state of label l only nl−1 times. Owing to the orthonormality
of the one-particle states, the value of the previous formula is∑

l

nl

∫
φ∗l (ξ)f(ξ)φl(ξ) dξ . (H.2.3)

In the off-diagonal terms nonzero matrix elements are obtained between
those states Φn1,n2,...,nk,...,nl,... and Φn1,n2,...,nk+1,...,nl−1,... for which the oc-
cupation numbers of two one-particle states differ by one unit each. Then∫∫

. . .

∫
Φ∗

n1,n2,...,nk+1,...,nl−1,...

∑
i

f(ξi)Φn1,n2,...,nk,...,nl,... dξ1 dξ2 . . . dξN .

(H.2.4)
Because of the normalization factors of the two wavefunctions the matrix
element is proportional to

I =
(
n1!n2! . . . (nk + 1)! . . . (nl − 1)!

N !

)1/2(
n1!n2! . . . nk! . . . nl!

N !

)1/2

.

(H.2.5)
Since each particle contributes by the same amount, the matrix element is∫∫

. . .

∫
Φ∗

n1,n2,...,nk+1,...,nl−1,...

∑
i

f(ξi)Φn1,n2,...,nk,...,nl,... dξ1 dξ2 . . . dξN

= NI
∑
kl

∫
φ∗k(ξ)f(ξ)φl (ξ) dξ (H.2.6)

×
∑
P ′

∫
. . .

∫
φ∗p1

(ξ2) . . . φ∗pN
(ξN )φp1

(ξ2) . . . φpN
(ξN ) dξ2 . . . dξN .

After the separation of the integral for the selected particle, the remaining
terms correspond to a state that contains N − 1 particles, with occupation
numbers n1, n2, . . . , nk, . . . , nl − 1, . . . . Since there are

(N − 1)!
n1!n2! . . . nk! . . . (nl − 1)! . . .

(H.2.7)
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such states, the separation of the ξ-integral leaves behind a factor
√
nk + 1

√
nl,

so the matrix element is

√
nk + 1

√
nl

∫
φ∗k(ξ)f(ξ)φl (ξ) dξ . (H.2.8)

The same expressions are obtained for the diagonal and off-diagonal matrix
elements if the states are specified in occupation-number representation, the
operator F (1) is chosen as

F (1) =
∑
kl

a†kfklal , (H.2.9)

where
fkl =

∫
φ∗k(ξ)f(ξ)φl (ξ) dξ , (H.2.10)

and the previously obtained relations for the action of the creation and annihi-
lation operators are used in the calculation of the matrix element. Therefore
the operator given in (H.2.9), which acts in the Fock space, is the second-
quantized form of one-particle operators for bosons. Note that while the sum
is over N particles in the first-quantized formula (H.2.1) of the one-particle
operator, it is over the quantum numbers of the one-particle states in the
second-quantized formula.

The intermediate steps are slightly different for fermions, since a Slater
determinant wavefunction is specified in terms of the occupation numbers,
and the normalization factors are also different – nevertheless the final result
is the same: the one-particle operators for fermions can again be represented
as (H.2.9) in terms of creation and annihilation operators.

H.2.2 Second-Quantized Form of Two-Particle Operators

This approach can be extended to the two-body interaction term in the Hamil-
tonian and similar operators that are the sums of terms containing the coor-
dinates of two particles:

F (2) =
∑
ij

f(ξi, ξj) . (H.2.11)

Since the variables of two particles appear in each term, such an operator has
a nonvanishing matrix element only between states for which the occupation
numbers of at most four one-particle states change: two decrease and two
others increase by one. The matrix element to be evaluated is thus∫∫

. . .

∫
Φ∗

n1,...,nk+1,...,nl+1,...,nm−1,...,nn−1,...

∑
ij

f(ξi, ξj)

Φn1,...,nk,...,nl,...,nm,...,nn,... dξ1 dξ2 . . . dξN .

(H.2.12)
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Intuitively, we may say that one particle is taken from state φm(ξi) to φk(ξi),
and the other from state φn(ξj) to φl(ξj). Because of the indistinguishabil-
ity of the particles, other combinations occur with the same weight. Besides,
there are nonvanishing matrix elements for processes in which the occupation
changes for three or just two states. A lengthy but straightforward calculation
shows that the same matrix elements are obtained if the wavefunction is cho-
sen in the occupation-number representation and the two-particle operator is
written in the form

F (2) =
∑
klmn

fklmna
†
ka

†
l aman , (H.2.13)

where

fklmn =
∫
φ∗k(ξ1)φ∗l (ξ2)f(ξ1, ξ2)φm(ξ2)φn(ξ1) dξ1 dξ2 . (H.2.14)

Therefore the operator (H.2.13), which acts in the Fock space, is the second-
quantized form of two-particle operators for bosons.

Once again, the intermediate steps are slightly different for fermions be-
cause there are no processes with doubly occupied states. Nevertheless the
second-quantized form of two-particle operators remains the same as above.

H.2.3 Field Operators

Using the one-particle wavefunction φk(ξ) of the state of quantum number k,
it is customary to introduce the field operators

ψ̂(ξ) =
∑

k

φk(ξ)ak , ψ̂†(ξ) =
∑

k

φ∗k(ξ)a†k (H.2.15)

that are defined in real space. The commutation relations of creation and anni-
hilation operators and the completeness relations of the one-particle functions
imply [

ψ̂(ξ), ψ̂†(ξ′)
]

=
∑
k,k′

φk(ξ)φ∗k′(ξ′)
[
ak, a

†
k′
]

=
∑

k

φk(ξ)φ∗k(ξ′) = δ(ξ − ξ′)
(H.2.16)

for bosons and[
ψ̂(ξ), ψ̂†(ξ′)

]
+

=
∑
k,k′

φk(ξ)φ∗k′(ξ′)
[
ak, a

†
k′
]
+

=
∑

k

φk(ξ)φ∗k(ξ′) = δ(ξ − ξ′)
(H.2.17)

for fermions. It can also be shown that by taking a commutator for bosons
and an anticommutator for fermions,
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ψ̂(ξ), ψ̂(ξ′)

]
∓ =

[
ψ̂†(ξ), ψ̂†(ξ′)

]
∓ = 0 . (H.2.18)

When the spin variable is separated,[
ψ̂α(r), ψ̂†

β(r′)
]
∓ = δαβδ(r − r′) , (H.2.19)

and [
ψ̂α(r), ψ̂β(r′)

]
∓ = 0 ,

[
ψ̂†

α(r), ψ̂†
β(r′)

]
∓ = 0 . (H.2.20)

The creation and annihilation operators a†k and ak change the occupation
of a one-particle state of a given quantum number. Below we shall see that
field operators can be interpreted as operators that create and annihilate a
particle at ξ. In other words, the state ψ̂†

σ(r)|0〉 contains a particle of spin
quantum number σ at point r of the real space. Similarly, ψ̂†

σ(r)ψ̂σ(r) is the
density operator of spin-σ particles at r.

The one- and two-particle operators can then be rewritten as

F (1) =
∫

dξ ψ̂†(ξ)f (1)(ξ)ψ̂(ξ) , (H.2.21)

and

F (2) =
∫

dξ1
∫

dξ2ψ̂†(ξ1)ψ̂†(ξ2)f (2)(ξ1, ξ2)ψ̂(ξ2)ψ̂(ξ1) . (H.2.22)

In this representation the one-particle operator has exactly the same form as
the expectation value of the one-particle operator in first quantization, except
that the wavefunction and it complex conjugate are replaced by the field
operator and its Hermitian adjoint – hence the name second quantization.

H.2.4 Second-Quantized Form of the Electronic Hamiltonian

Among the terms of the Hamiltonian, the kinetic energy and the potential are
one-particle operators, and the pair interaction is a two-particle operator. For
electrons, when the potential and the pair interaction are spin independent,

H =
∑

i

H(1)
i + 1

2

∑
ij

U (2)(ri, rj) , (H.2.23)

where the one-particle part contains

H(1)
i = − �

2

2me
∇2

i + U(ri) . (H.2.24)

By taking a complete set of one-particle states, and denoting, as customary
for electrons, the creation and annihilation operators of a particle in state
φk(ξ) by c†k and ck instead of a†k and ak, we have
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H =
∑
kl

Hklc
†
kcl + 1

2

∑
klmn

U
(2)
klmnc

†
kc

†
l cmcn , (H.2.25)

where

Hkl =
∫
φ∗k(ξ)

(
− �

2

2me
∇2 + U(r)

)
φl (ξ) dξ , (H.2.26)

and

U
(2)
klmn =

∫∫
dξ dξ′ φ∗k(ξ)φ∗l (ξ

′)U (2)(r, r′)φm(ξ′)φn(ξ) . (H.2.27)

In general, the states are chosen in such a way that the one-particle part be
diagonal. This is the case when the Bloch functions determined in the presence
of a periodic potential are used as a complete basis set. However, this is not
the only option. In the Hubbard model the Wannier states are used, and so the
one-particle term in the Hamiltonian that describes the hopping of electrons
between lattice points is not diagonal.

Using the field operators instead of the creation and annihilation operators,

H =
∫
ψ̂†(ξ)

(
− �

2

2me
∇2 + U(r)

)
ψ̂(ξ) dξ

+
∫∫

dξ dξ′ ψ̂†(ξ)ψ̂†(ξ′)U (2)(r, r′)ψ̂(ξ′)ψ̂(ξ) .
(H.2.28)

Writing out the spin variable explicitly, the spin independence of the potential
and of the interaction implies

H =
∑

σ

∫
ψ̂†

σ(r)
(
− �

2

2me
∇2 + U(r)

)
ψ̂σ(r) dr

+
∑
σσ′

∫∫
dr dr′ ψ̂†

σ(r)ψ̂†
σ′(r′)U (2)(r, r′)ψ̂σ′(r′)ψ̂σ(r) .

(H.2.29)

The description is highly simplified by choosing the plane waves as the
complete set. The one-particle states are then characterized by the wave vector
k and the spin quantum number σ. The usual formula

Hkin = −
∑

i

�
2

2me

∂2

∂r2
i

(H.2.30)

for the kinetic energy can be rewritten in second-quantized form as

Hkin =
∑

kk′σσ′
c†kσHσσ′(k,k′)ck′σ′ , (H.2.31)

where
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Hσσ′(k,k′) =
1
V

∫
dr e−ik·r

(
− �

2

2me

)
∂2

∂r2
eik′·rδσσ′

=
�

2k2

2me
δkk′δσσ′ ,

(H.2.32)

and so

Hkin =
∑
kσ

�
2k2

2me
c†kσckσ . (H.2.33)

The second-quantized form of the one-particle potential U(r) contains the
Fourier transform of the potential:

HU =
1
V

∑
kk′σ

U(k − k′)c†kσck′σ =
1
V

∑
kq

U(q)c†k+qσckσ . (H.2.34)

For a spin-independent two-particle interaction U (2)(ri − rj) the second-
quantized form is

Hint = 1
2

∑
k1k2k3k4

σσ′

U (2)(k1,k2,k3,k4)c
†
k1σc

†
k2σ′ck3σ′ck4σ , (H.2.35)

where

U (2)(k1,k2,k3,k4) =
1
V 2

∫
dr1

∫
dr2e−ik1·r1e−ik2·r2

× U (2)(r1 − r2)eik3·r2eik4·r1

=
1
V 2

∫
dr1

∫
dr2e−ik1·r1e−ik2·r2 (H.2.36)

× 1
V

∑
q

U (2)(q)eiq·(r1−r2)eik3·r2eik4·r1

=
1
V

∑
q

U (2)(q)δk1,k4+qδk2,k3−q .

By renaming the indices, the interaction term can be written as

Hint =
1

2V

∑
kk′q
σσ′

U (2)(q)c†k+qσc
†
k′−qσ′ck′σ′ckσ . (H.2.37)

If the one-particle periodic potential is taken into account by using Bloch
states instead of plane waves, and the corresponding creation and annihilation
operators c†nkσ and cnkσ, then the entire one-particle part of the Hamiltonian
– the kinetic energy plus the one-particle potential – can be diagonalized. This
leads to

Hkin + HU =
∑
nkσ

εnkc
†
nkσcnkσ , (H.2.38)
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where εnk is the energy of Bloch electrons in the presence of the periodic
potential. The interaction is not restricted to electrons in the same band.
Electrons from different bands can be scattered to other bands provided the
quasimomentum is conserved to within an additive reciprocal-lattice vector.

H.2.5 Number-Density and Spin-Density Operators

In the first-quantized formulation the number density of spinless particles is
given by

n(r) =
∑

l

δ(r − rl) . (H.2.39)

Its Fourier transform is

n(q) =
∫

dr n(r)e−iq·r =
∑

l

∫
dr δ(r − rl)e−iq·r =

∑
l

e−iq·rl . (H.2.40)

In terms of plane-wave-creation and -annihilation operators, the general rule
for one-particle operators implies

n(q) =
∑
k,k′

c†kn(k,k
′)ck′ , (H.2.41)

where
n(k,k′) =

1
V

∫
dr e−ik·re−iq·reik′·r = δk′,k+q . (H.2.42)

A part of the sum can then be evaluated; it yields

n(q) =
∑

k

c†kck+q . (H.2.43)

Using an inverse Fourier transform it can be shown that the density operator in
real space can be expressed particularly simply in terms of the field operator:

n(r) = ψ̂†(r)ψ̂(r) . (H.2.44)

For particles with spin, an additional sum over the spin quantum number
appears:

n(q) =
∑
kσ

c†kσck+qσ , (H.2.45)

while the number-density operator is given in real space by

n(r) =
∑

σ

ψ̂†
σ(r)ψ̂σ(r) . (H.2.46)

We can now show that the field operator ψ̂†
σ(r) indeed adds a spin-σ particle

to the system at r. To this end, we shall rewrite the operator n(r) as
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n(r) =
∑

σ

∫
dr′′ψ̂†

σ(r′′)δ(r − r′′)ψ̂σ(r) , (H.2.47)

and examine its action on the state ψ̂†
σ(r′)|0〉. Making use of the commutation

relation of field operators,

n(r)ψ̂†
σ(r′)|0〉 = δ(r − r′)ψ̂†

σ(r′)|0〉 , (H.2.48)

which means that there is indeed a particle at r = r′.
Constructing the row and column vector

ψ̂† = (ψ̂†
↑ ψ̂

†
↓) and ψ̂ =

(
ψ̂↑

ψ̂↓

)
(H.2.49)

from the field operators, we have

n(r) = ψ̂†(r)ψ̂(r) . (H.2.50)

The particle-number operator is the integral of n(r) over the entire space:

N =
∫
n(r) dr , (H.2.51)

which is the same as the q = 0 component of the quantity n(q):

N =
∑
kσ

c†kσckσ . (H.2.52)

If the field operators are not expanded in a plane-wave basis but in terms
of the Bloch states, and a single band is considered,

ψ̂σ(r) =
1√
V

∑
k

eik·ruk(r)ckσ ,

ψ̂†
σ(r) =

1√
V

∑
k

e−ik·ru∗k(r)c†kσ ,

(H.2.53)

and hence

n(r) =
1
V

∑
kk′σ

e−i(k−k′)·ru∗k(r)uk′(r)c†kσck′σ . (H.2.54)

By taking its Fourier transform,

n(q) =
∫
n(r)e−iq·rdr

=
1
V

∑
kk′σ

∫
e−i(k+q−k′)·ru∗k(r)uk′(r) dr c†kσck′σ .

(H.2.55)
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Because of the lattice periodicity of the functions uk(r) the integral vanishes
unless k′ = k+q+G, where the reciprocal-lattice vector G ensures that both
k and k′ are in the first Brillouin zone. By separating the integral into two
parts, an integral over the primitive cell and a sum over cells,

n(q) =
N

V

∑
kGσ

∫
v

u∗k(r)uk+q+G(r) dr c†kσck+q+G,σ . (H.2.56)

In terms of the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(H.2.57)

the density of magnetic moment can be written as

m(r) = 1
2geμB

∑
i

σiδ(r − ri) . (H.2.58)

Using, once again, the row and column vectors of field operators, we obtain
the second-quantized operator

m(r) = 1
2geμBψ̂†(r)σψ̂(r) . (H.2.59)

Just like for the particle density, the Fourier transform can again be ex-
pressed in a particularly simple form in terms of the creation and annihilation
operators of plane-wave states. When written in components, the operators

σ+ = 1
2 (σx + iσy) =

(
0 1
0 0

)
, σ− = 1

2 (σx − iσy) =
(

0 0
1 0

)
, (H.2.60)

and the corresponding
m± = mx ± imy (H.2.61)

are customarily used instead of the x and y components of the magnetic
moment. Explicitly,

mz(q) = 1
2geμB

∑
k

[
c†k↑ck+q↑ − c†k↓ck+q↓

]
,

m+(q) = geμB
∑

k

c†k↑ck+q↓ ,

m−(q) = geμB
∑

k

c†k↓ck+q↑ .

(H.2.62)
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I

Canonical Transformation

Instead of tackling the quantum mechanical eigenvalue problem directly, it
is often more practical to perform a unitary canonical transformation on the
Hamiltonian that leaves the energy spectrum unaltered. This can be achieved
either by transforming away some degrees of freedom, and generating an ef-
fective interaction among the remaining ones, or by transforming the Hamil-
tonian directly to a diagonal form. Below we shall present both approaches.

I.1 Derivation of an Effective Hamiltonian

It is a recurrent situation in solid-state physics that a system is made up of
two distinct parts whose components interact but we are interested only in
the properties of one subsystem. The effects of the other subsystem – i.e., its
degrees of freedom (or at least some of them) – can then be transformed away
by means of a canonical transformation. This is the case for an interacting
system of electrons and phonons when the effective interaction between the
electrons mediated by the phonons is studied, as discussed in Chapter 23.
Below we shall first treat the method of canonical transformation generally,
and then present some other applications as well.

I.1.1 General Formulation of the Problem

By separating an unperturbed part H0 – whose energy eigenstates can be
calculated exactly – from the interaction part Hint of the Hamiltonian, and
by formally introducing a coupling constant λ, the Hamiltonian can be written
in the generic form

H = H0 + λH1 . (I.1.1)

We shall now demonstrate that by means of a canonical transformation

H̃ = eSHe−S , (I.1.2)
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where
S† = −S (I.1.3)

because of the unitarity of the transformation, the effects of the perturbation
on the space of eigenstates of H0 can be taken into account by an equivalent
interaction term instead of H1.

When an arbitrary operator O and its transform Õ are considered, the
series expansion of the unitary operator exp(±S) and the subsequent rear-
rangement of the terms of the same powers of S gives

Õ = eSOe−S = O + [S,O] + 1
2 [S, [S,O]] + 1

3! [S, [S, [S,O]]] + . . . . (I.1.4)

Applying this formula to the Hamiltonian (I.1.1),

H̃ = H0+λH1+[S,H0]+λ [S,H1]+ 1
2 [S, [S,H0]]+ 1

2λ [S, [S,H1]]+. . . . (I.1.5)

The direct interaction term H1 can be eliminated by a suitable choice of S by
requiring that

λH1 + [S,H0] = 0 . (I.1.6)

The operator S is thus proportional to λ. Eliminating H1 from the transformed
Hamiltonian (I.1.5) by means of this equation,

H̃ = H0 − 1
2 [S, [S,H0]] − 1

3 [S, [S, [S,H0]]] + . . . (I.1.7)

to third order in the coupling constant. The Hamiltonian of the effective in-
teraction is thus

Heff = − 1
2 [S, [S,H0]] − 1

3 [S, [S, [S,H0]]] + . . . . (I.1.8)

Alternatively, it can be written as

Heff = 1
2 [S, λH1] + 1

3 [S, [S, λH1]] + . . . . (I.1.9)

In most cases only the first (leading) term is taken into account.
As we shall see, the operator S generating the canonical transformation can

sometimes be given explicitly. In other cases we shall content ourselves with
specifying the matrix elements of the transformed Hamiltonian between any
initial and final states (|i〉 and |f〉, of energy Ei and Ef ) of the unperturbed
system. By keeping only the first term on the right-hand side of (I.1.9) and
inserting a complete set of intermediate states by making use of the property∑

j |j〉〈j| = 1,

〈f |Heff|i〉 = 1
2

∑
j

[〈f |S|j〉〈j|λH1|i〉 − 〈f |λH1|j〉〈j|S|i〉] . (I.1.10)

Taking the matrix elements of (I.1.6) between the intermediate states,

〈j|λH1|j′〉 + 〈j|SH0 −H0S|j′〉 = 0 . (I.1.11)
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If these states are eigenstates of the unperturbed system with an energy Ej

then the previous equation implies

〈j|S|j′〉 =
〈j|λH1|j′〉
Ej − Ej′

. (I.1.12)

By substituting this form of the matrix element into (I.1.10), and taking into
account that the initial and final states are also eigenstates of the unperturbed
Hamiltonian, we find

〈f |Heff|i〉 = 1
2

∑
j

〈f |λH1|j〉〈j|λH1|i〉
[

1
Ef − Ej

− 1
Ej − Ei

]
. (I.1.13)

When elastic transitions are considered, and the common energy Ei = Ef is
denoted by E0,

〈f |Heff|i〉 = −
∑

j

〈f |λH1|j〉〈j|λH1|i〉
Ej − E0

. (I.1.14)

It is often not necessary to know these matrix elements over the entire
Hilbert space of the system’s states; using physical considerations it may be
sufficient to know them over a subspace. It is then often possible to find
explicitly an effective Hamiltonian that gives the same matrix elements in
that subspace.

In Chapter 23 we showed how the effective electron–electron interaction
can be derived from the electron–phonon interaction. Below we shall first
derive the effective interaction between magnetic moments in an electron sys-
tem, and then demonstrate that even the interaction between the magnetic
moment and the electron system can be considered as an effective interaction,
and obtained from the Anderson model that describes the interaction between
conduction electrons and d-electrons that are “bound” to the atom.

I.1.2 RKKY Interaction

It was mentioned in Chapter 14 that a localized spin S1 placed in a system
of free electrons interacts with them through its magnetic moment, and –
provided S1 is fixed – it can polarize the electron system around itself. If a
second spin S2 is placed at a distance r from the first, its orientation will not
be arbitrary but determined by the local value of the spin density generated by
the first spin. Since in reality the first spin is not fixed, interactions mediated
by the mobile electrons may eventually lead to processes in which the two
localized spins of magnitude S mutually flip each other. By choosing the
kinetic energy of the mobile electrons as the unperturbed Hamiltonian, and
the interaction between the conduction electrons and the localized spins as a
perturbation, the canonical transformation is chosen in such a way that this
direct interaction is replaced by an effective interaction between the two spins.
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The interaction between the localized moment of d-electrons and the itin-
erant s-electrons is determined by the spin density of the s-electrons at the
localized moment. Just like in the Heisenberg model, the scalar product of
the two spins is taken with an exchange coupling constant J . This is the so-
called s–d interaction. Writing the spin density of electrons in terms of the
field operators as in (H.2.59), the interaction between the spin Sl at Rl and
the conduction electrons is

Hs–d = −2JSl · s(Rl) = −JSl ·
(
ψ̂

†
(Rl)σψ̂(Rl)

)
= −J

∑
αβ

Sl · σαβψ̂
†
α(Rl)ψ̂β(Rl) .

(I.1.15)

Using the creation and annihilation operators in momentum representation
instead of the field operators, we have

Hs–d = − J
V

∑
kk′

ei(k−k′)·Rl

{
S+

l c
†
k′↓ck↑ + S−

l c
†
k′↑ck↓

+ Sz
l

(
c†k′↑ck↑ − c†k′↓ck↓

)}
.

(I.1.16)

The total spin is conserved in the interaction but there can be an exchange
between conduction electrons and localized spins. The different terms in the
previous formula describe the processes that increase, reduce, and preserve
the z component of the localized spin.

A somewhat more general formula can be obtained by assuming that the
interaction is not strictly local. The coupling strength then depends on what
state k′ the electron of wave vector k is scattered into.

Hs–d = − 1
V

∑
kk′
Jk′kei(k−k′)·Rl

{
S+

l c
†
k′↓ck↑ + S−

l c
†
k′↑ck↓

+ Sz
l

(
c†k′↑ck↑ − c†k′↓ck↓

)}
.

(I.1.17)

In what follows, we shall assume that this k-dependence can be ignored.
If the system contains Ni localized spins S1,S2, . . . at R1,R2, . . . , the

interaction with the conduction electrons is determined by the interaction
Hamiltonian

Hs–d = − J
V

Ni∑
l=1

∑
kk′

ei(k−k′)·Rl

{
S+

l c
†
k′↓ck↑ + S−

l c
†
k′↑ck↓

+ Sz
l

(
c†k′↑ck↑ − c†k′↓ck↓

)}
.

(I.1.18)

This can be interpreted by the following picture: the interaction of a localized
spin with the electron system gives rise to the creation or annihilation of an
electron–hole pair. Since the strength of the interaction depends on the initial
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state of the localized spin, and spin-flip processes are allowed, the electron–
hole pair carries information about the state of localized spins. The net result
of two subsequent scattering processes – in which an electron–hole pair created
in the vicinity of one spin is annihilated at another– is that the state of the
first spin affects the state of the second spin, that is, an effective coupling
arises between them.

The effective Hamiltonian has nonvanishing matrix elements between
states for which the state of the electron system remains the same and only
the orientations of the localized spins change. This is described by the effec-
tive interaction of the two spins. (I.1.14) also has nonzero matrix elements
between states that differ by two electron–hole pairs – but we shall neglect
them below.

The electron system is assumed to be initially in its ground state denoted
by |FS〉. The state of the spins can be characterized by the value Ml of their
z component. Consequently, the initial state of the full system is

|i〉 = |FS〉|{Ml}〉 . (I.1.19)

As intermediate states we must take states in which an electron–hole pair has
been created from the Fermi sea in addition to the possible spin flip, that is,

|j〉 = c†k′σ′ckσ|FS〉|{M ′′
l }〉 . (I.1.20)

Since the spin flip does not require any energy, the energy of the intermediate
state is

Ej = εk′ − εk + E0 . (I.1.21)

After the second scattering event, the electron system may get back into its
initial state but the localized spins may be flipped,

|f〉 = |FS〉|{M ′
l}〉 , (I.1.22)

where the conservation of the spin z component implies

M1 +M2 + · · · = M ′
1 +M ′

2 + . . . . (I.1.23)

Using these states in (I.1.14),

〈f |Heff|i〉 = −
∑

kk′σσ′

∑
{M ′′

l }

1
εk′ − εk 〈{M

′
l}|〈FS|Hs–dc

†
k′σ′ckσ|FS〉|{M ′′

l }〉

×〈{M ′′
l }|〈FS|c†kσck′σ′Hs–d|FS〉|{Ml}〉 . (I.1.24)

The previous formula gives a nonvanishing contribution when the electron
of the electron–hole pair created by the s–d interaction is outside the Fermi
sphere, while the hole is inside. This restriction can be incorporated by means
of the factor f0(εk)[1 − f0(εk′)].
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Allowing all possible orientations for the spin of the electron–hole pair
(and thus for the localized spin), the total contribution is

〈f |Heff|i〉 = −
∑
kk′

f0(εk)[1 − f0(εk′)]
εk′ − εk

(
J

V

)2∑
ll′

ei(k−k′)·(Rl′−Rl)

×
∑

{M ′′
l }

[
2〈{M ′

l}|Sz
l |{M ′′

l }〉〈{M ′′
l }|Sz

l′ |{Ml}〉

+〈{M ′
l}|S+

l |{M ′′
l }〉〈{M ′′

l }|S−
l′ |{Ml}〉 (I.1.25)

+〈{M ′
l}|S−

l |{M ′′
l }〉〈{M ′′

l }|S+
l′ |{Ml}〉

]
.

Evaluating the sum for the complete set of intermediate spin states,

〈f |Heff|i〉 = −
(
J

V

)2∑
ll′

∑
kk′

f0(εk)[1 − f0(εk′)]
εk′ − εk ei(k−k′)·(Rl′−Rl)

×2〈{M ′
l}|
[
Sz

l S
z
l′ + 1

2

(
S+

l S
−
l′ + S−

l S
+
l′
)] |{Ml}〉. (I.1.26)

This can be considered as the matrix element of the operator

H = −
∑
ll′
J(Rl − Rl′)Sl · Sl′ , (I.1.27)

thus indirect exchange can be described in terms of an effective Hamiltonian
that has the same form as the Hamiltonian of direct exchange. To determine
its strength, the notation r = R1 − R2 is introduced, and the sum

I =
(

1
V

)2∑
kk′

f0(εk)[1 − f0(εk′)]
εk′ − εk e−i(k−k′)·r (I.1.28)

has to be evaluated. Replacing the sum by an integral, the angular integrals
are readily calculated:

I =
1

(2π)6

kF∫
0

k2 dk

∞∫
kF

k′2 dk′
1

εk′ − εk (I.1.29)

×2π

π∫
0

sin θ dθ e−ikr cos θ 2π

π∫
0

sin θ′ dθ′eik′r cos θ′

= − 4
(2π)4

kF∫
0

k2 dk

∞∫
kF

k′2 dk′
1

εk′ − εk
sin kr
kr

sin k′r
k′r

.

Using the quadratic dispersion relation valid for free electrons and the nota-
tions κ = kr and κ′ = k′r, we have
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I = − me

2�2π4

1
r4

kFr∫
0

κ2 dκ

∞∫
kFr

κ′2 dκ′
1

κ′2 − κ2

sinκ
κ

sinκ′

κ′
. (I.1.30)

The κ′-integral is not affected significantly by shifting the lower limit of inte-
gration to κ′ = 0 but, in order to avoid the singularity arising from κ′ = κ, the
principal value of the integral needs to be taken. By considering the integral

K = P

∞∫
0

κ′2 dκ′
1

κ′2 − κ2

sinκ′

κ′
(I.1.31)

separately, the even character of the integrand implies

K = 1
2P

∞∫
−∞

κ′2 dκ′
1

κ′2 − κ2

sinκ′

κ′

=
1
4i

P

∞∫
−∞

dκ′
[
κ′eiκ′

κ′2 − κ2
− κ′e−iκ′

κ′2 − κ2

]
.

(I.1.32)

The principal-value integrals can be determined by using the complex variable
κ′± iη instead of κ′ (where η is an infinitesimal quantity), and performing the
integral in the complex plane, along the contour shown in Fig. I.1. By using
the variable κ′ +iη in the first term, the poles are in the lower half-plane, and
the integration contour is closed in the upper half-plane. The opposite is done
in the second term.

�1� 'i

�1� 'i

1� 'i

1� 'i

1’ plane

1’ plane

Fig. I.1. The integration contours used for the two terms in the integrand of K
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Making use of the relation

1
x± iη

= P
1
x
∓ iπδ(x) , (I.1.33)

we have
K = 1

2π cosκ . (I.1.34)

Substituting this back into (I.1.30),

I = − me

4�2π3

1
r4

kFr∫
0

dκκ sinκ cosκ = − m

16�2π3

1
r4
(
sin 2κ− 2κ cos 2κ

)∣∣∣kFr

0

= −mek
4
F

�2π3

sin 2kFr − 2kFr cos 2kFr(
2kFr

)4 . (I.1.35)

By collecting all factors, the effective interaction between two localized
spins can be written as

Heff = −2J(r)S1 · S2 , (I.1.36)

with an effective exchange constant

J(r) =
meJ

2k4
F

�2π3
F (2kFr) , (I.1.37)

where the function F (x) is defined by

F (x) =
x cosx− sinx

x4
. (I.1.38)

This is the RKKY interaction.
The same result is obtained when the integral I is evaluated by another

method. Using the variable k′ = k+q but neglecting once again the restriction
imposed on q by the Pauli exclusion principle,

I =
2me

�2

(
1
V

)2∑
q

∑
|k|<kF

1
|k + q|2 − k2 e−iq·r , (I.1.39)

which is the Fourier transform of the formula given in (C.2.32). After per-
forming the angular integral, we may change to a complex variable again.
The previous result is then recovered through integration along the cuts of
the logarithmic function.

It should be noted that the generator S of the transformation can be
determined explicitly in this case. Since[

c†k′αckβ ,
∑
k′′σ

εk′′c†k′′σck′′σ

]
=
(
εk′ − εk

)
c†k′αckβ , (I.1.40)

it is straightforward to show that
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S = − J

2V

∑
l

∑
kk′

∑
αβ

ei(k−k′)·Rl
1

εk′ − εk Sl · σαβc
†
k′αckβ . (I.1.41)

Using this formula in the first term of (I.1.9), making use of

(Sl · σ)(Sl′ · σ) = (Sl · Sl′) + iσ · (Sl × Sl′) , (I.1.42)

and keeping only the state of the two localized spins from the entire Hilbert
space, while integrating out the degrees of freedom of the s-electrons by taking
the ground-state expectation value (as conduction electrons are treated as a
reservoir), the previously derived effective Hamiltonian is recovered.

I.1.3 Derivation of the s–d Interaction

We shall now demonstrate that the s–d interaction given in (I.1.16) can also
be viewed as an effective interaction. To this end, we shall start with the
Anderson model (to be discussed in Chapter 35), in which d-electrons are not
strictly bound to the atom but can become detached for short periods of time.

In the Anderson model s-electrons are described by the usual term

Hs =
∑
kσ

εkc
†
kσckσ , (I.1.43)

where the energies are referred to the chemical potential. For simplicity, we
shall neglect the degeneracy of the d-states but take into account the Coulomb
repulsion between the d-electrons when there are two of them (of opposite
spins) on the same atom. Their Hamiltonian is then

Hd = εd (nd↑ + nd↓) + Und↑nd↓ . (I.1.44)

Finally, the term describing the hybridization of s- and d-electrons is

Hhybr =
1√
V

∑
kσ

(
Vdkc

†
kσdσ + Vkdd

†
σckσ

)
, (I.1.45)

where d†σ (dσ) is the creation (annihilation) operator of d-electrons.
When εd < 0 but εd + U > 0, and there is no hybridization (that is,

s- and d-states are not mixed), there is exactly one electron on the d-level,
and therefore the atom has a localized moment. If Vkd �= 0, this electron
can hop off the atom, and another electron can hop on the atom that has
just become empty. If U is sufficiently large, there cannot be two electrons
on the same atom simultaneously, whereas if Vkd is not too strong, there is
always an electron on the atom – thus the atom continues to possess a spin
and a magnetic moment, however their orientation may change because the
spin of the electron that hops off the atom may be different from the spin of
the electron that hops on it. At the same time, a spin flip also occurs in the
electron system. This gives rise to the s–d interaction.
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To obtain this from the Anderson model Hamiltonian by way of a canonical
transformation, hybridization is chosen as the perturbation and all other terms
are included in the Hamiltonian H0 of the unperturbed system. The generator
S of the transformation that eliminates direct hybridization, the Schrieffer–
Wolff transformation,1 is

S =
1√
V

∑
kσ

[
Vdk

εk − εd − U nd,−σc
†
kσdσ +

Vdk

εk − εd (1 − nd,−σ)c†kσdσ

− Vkd

εk − εd − U nd,−σd
†
σckσ − Vkd

εk − εd (1 − nd,−σ)d†σckσ

]
, (I.1.46)

where Vdk = V ∗
kd. The canonical transformation leads to a term that describes

the exchange between the localized spin on the d-level and the spin density of
conduction electrons, as given in (I.1.17), with a coefficient

Jkk′ = 1
2VkdVdk′

[
1

εk − εd − U +
1

εk′ − εd − U − 1
εk − εd − 1

εk′ − εd

]
.

(I.1.47)
If both k and k′ are close to the Fermi surface, the effective s–d exchange
constant is

J = |VkFd|2 U

εd(εd + U)
. (I.1.48)

Additional terms
1
V

∑
kk′

∑
σ

Vkk′c†k′σckσ , (I.1.49)

which are independent of the spin of the d-level, also appear; they describe
potential scattering. When k and k′ are close to the Fermi surface, their
strength is

Vpot = −1
2
|VkFd|2 U + 2εd

εd(εd + U)
. (I.1.50)

I.2 Diagonalization of the Hamiltonian

Another application of unitary canonical transformations is the diagonaliza-
tion of a Hamiltonian that is bilinear in the creation and annihilation opera-
tors.

As was found in connection with antiferromagnets, the spectrum of ele-
mentary excitations (magnons) can be obtained from the eigenvalues of the
Hamiltonian given in (15.3.6),

H = E0 + 2|J |zS
∑

k

[
a†kak + b†−kb−k + γk

(
akb−k + a†kb

†
−k

)]
, (I.2.1)

1 J. R. Schrieffer and P. A. Wolff, 1966.



I.2 Diagonalization of the Hamiltonian 613

where the operators ak, a†k, b−k, and b†−k satisfy bosonic commutation re-
lations. A similar situation is encountered in the Bogoliubov treatment of
superfluidity2 (which we shall not discuss), and in Chapter 32, where the
excitations of the one-dimensional Luttinger liquid is studied by means of
bosonic density fluctuations.

A very similar but fermionic problem is encountered in Chapter 34 on the
BCS theory of superconductivity, where the eigenstates of the Hamiltonian

HBCS = E0 +
∑

k

ξk

(
c†k↑ck↑ + c†−k↓c−k↓

)
−
∑

k

(
Δkc

†
k↑c

†
−k↓ + Δ∗

kc−k↓ck↑
) (I.2.2)

are sought. For bosonic and fermionic systems alike, we shall use the Hamil-
tonian

H = E0 +
∑

k

[
εk

(
a†kak + b†−kb−k

)
+ γk

(
akb−k + b†−ka

†
k

)]
, (I.2.3)

which is bilinear in the creation and annihilation operators, and demonstrate
how it can be diagonalized by means of a canonical transformation

H̃ = eSHe−S . (I.2.4)

Since the canonical transformation does not change the eigenvalues, the energy
spectrum can be read off immediately from the diagonal form.

I.2.1 Bosonic Systems

We shall first consider a bosonic system, and show that diagonalization can
be achieved by the choice

S =
∑

k

θk

(
b†−ka

†
k − akb−k

)
, (I.2.5)

where θk is real.
Performing the canonical transformation for each term of the Hamiltonian

(I.2.3),

H̃ = E0 +
∑

k

[
εk

(
ã†kãk + b̃†−kb̃−k

)
+ γk

(
ãkb̃−k + ã†kb̃

†
−k

)]
, (I.2.6)

where
ã†k = eSa†ke−S , ãk = eSake−S , (I.2.7)

and b̃†−k and b̃−k are defined by similar formulas.

2 N. N. Bogoliubov, 1947.
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Applying the expansion (I.1.4) to ã†k, and using the relations

[S, a†k] = −θkb−k , [S, ak] = −θkb†−k ,

[S, b†−k] = −θkak , [S, b−k] = −θka†k
(I.2.8)

that follow from the explicit form of the generator S and the bosonic commu-
tation relations, the repeated application of the commutators yields

ã†k = a†k − θkb−k + 1
2θ

2
ka

†
k − 1

3!θ
3
kb−k + . . .

= cosh θk a
†
k − sinh θk b−k .

(I.2.9)

Likewise, it can be proved that

ãk = cosh θk ak − sinh θk b
†
−k ,

b̃†−k = cosh θk b
†
−k − sinh θk ak ,

b̃−k = cosh θk b−k − sinh θk a
†
k .

(I.2.10)

Inserting these formulas into the canonically transformed Hamiltonian,

H̃ = E0 +
∑

k

{
εk

[
(cosh θka

†
k − sinh θk b−k)(cosh θk ak − sinh θk b

†
−k)

+ (cosh θk b
†
−k − sinh θk ak)(cosh θk b−k − sinh θk a

†
k)
]

(I.2.11)

+ γk

[
(cosh θk ak − sinh θk b

†
−k)(cosh θk b−k − sinh θk a

†
k)

+ (cosh θk a
†
k − sinh θk b−k)(cosh θk b

†
−k − sinh θk ak)

]}
.

The off-diagonal terms vanish if

− 2εk sinh θk cosh θk + γk

(
cosh2 θk + sinh2 θk

)
= 0 . (I.2.12)

The solution of this equation is

cosh2 θk = 1
2

(
εk√
ε2k − γ2

k

+1

)
, sinh2 θk = 1

2

(
εk√
ε2k − γ2

k

−1

)
. (I.2.13)

The remaining diagonal Hamiltonian reads

H̃ = E0 +
∑

k

�ωk

(
a†kak + b†−kb−k + 1

)
, (I.2.14)

where

�ωk = εk
(
cosh2 θk + sinh2 θk

)− 2γk sinh θk cosh θk =
√
ε2k − γ2

k . (I.2.15)
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Instead of this method, the reverse approach is usually applied. An inverse
canonical transformation is performed on the operators, by introducing

αk = e−SakeS = cosh θk ak + sinh θk b
†
−k ,

α†
k = e−Sa†keS = cosh θk a

†
k + sinh θk b−k ,

βk = e−Sb−keS = cosh θk b−k + sinh θk a
†
k ,

β†k = e−Sb†−keS = cosh θk b
†
−k + sinh θk ak .

(I.2.16)

In terms of them, the original Hamiltonian becomes diagonal,

H = E0 +
∑

k

�ωk

(
α†

kαk + β†−kβ−k + 1
)
. (I.2.17)

I.2.2 Fermionic Systems

The same procedure can be applied to fermions – moreover, the formula (I.2.5)
for the generator S of the transformation can be used without any modifica-
tions. The anticommutation relations for fermions then yield

[S, a†k] = θkb−k , [S, ak] = θkb
†
−k ,

[S, b†−k] = −θkak , [S, b−k] = −θka†k ,
(I.2.18)

hence

ã†k = a†k + θkb−k − 1
2θ

2
ka

†
k − 1

3!θ
3
kb−k + . . .

= cos θk a
†
k + sin θk b−k ,

(I.2.19)

and

ãk = cos θk ak + sin θk b
†
−k ,

b̃†−k = cos θk b
†
−k − sin θk ak ,

b̃−k = cos θk b−k − sin θk a
†
k .

(I.2.20)

The Hamiltonian can be diagonalized if

2εk sin θk cos θk − γk

(
cos2 θk − sin2 θk

)
= 0 , (I.2.21)

which implies

cos2 θk = 1
2

(
1 +

εk√
ε2k + γ2

k

)
, sin2 θk = 1

2

(
1 − εk√

ε2k + γ2
k

)
, (I.2.22)

and the new eigenvalues are given by

Ek = εk
(
cos2 θk − sin2 θk

)
+ 2γk sin θk cos θk =

√
ε2k + γ2

k . (I.2.23)

Just like for bosons, the inverse procedure is usually followed for fermions,
too, as in Chapter 34 on superconductivity: the Hamiltonian is diagonalized in
terms of the new creation and operation operators that are linear combinations
of the original operators.
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of magnesium, 183
of rare-earth metals, 186
of semiconductors, 201
of silicon, 204
of sodium, 178
of transition metals, 185

barrier layer, see depletion layer
basis, 114
BCS theory, 4
BEDT-TTF, 309
β-(BEDT-TTF)2I3, 327
(BEDT-TTF)2I3, 386
benzene-hexa-n-alkanoate, 24
Berezinskii–Kosterlitz–Thouless

phase, 556
Berezinskii–Kosterlitz–Thouless

transition, 555
critical exponent in, see critical

exponent, in Berezinskii–
Kosterlitz–Thouless transition

Bernal model, 22, 23, 304
Bernoulli numbers, 618
Bessel functions, 620
Bethe ansatz, 564–566
biased junction, 541
biaxial nematic phase, 26
BiF3 structure, 220
bipartite lattice, 520
bipolar transistor, see transistor, bipolar
BIS, 192
BKT phase, see Berezinskii–Kosterlitz–

Thouless phase
black-and-white group, 167
black-and-white lattice, 167
Bloch electrons, 92

annihilation operator of, 92
creation operator of, 92
density of states for, 96
diamagnetic susceptibility of, 305
effective mass of, 93
Green function of, 105
in magnetic field, 248
in strong magnetic field, 297
specific heat of, 98
susceptibility of, 98
velocity of, 240

Bloch equations, 65
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Bloch function, 79
Bloch states, 78

energy spectrum of, 80
Bloch T 3/2 law, 528

corrections to, 529
Bloch wall, 509
Bloch–Grüneisen relation, 392
Bloch’s theorem, 186, 79
Bloch–Wilson insulator, 92
body-centered cubic structures,

210–214
Bogoliubov transformation

application of, 546
for antiferromagnets, 542

Bohr magneton, 44, 588
Bohr radius, 50, 588
Bohr–van Leeuwen theorem, 20
Boltzmann distribution,

see Maxwell–Boltzmann
distribution

Boltzmann equation, 361, 364
for electrons, 363
for phonons, 366

bonding state, 98
Born–Mayer approximation, 88
Born–Oppenheimer approximation, 329
Born–von Kármán boundary condition,

see boundary conditions,
Born–von Kármán

boron group, 91
Bose–Einstein statistics, 396
bound state, 107

around impurities, 73
boundary conditions

antiperiodic, 186
Born–von Kármán, 185, 186,

338, 26
for Ginzburg–Landau

equations, 484
twisted, 186

Bragg condition, 243
Bragg peaks, 243

shape of, 252
temperature dependence of,

443–444
Bragg plane, 245, 85, 124
Bravais cell, 117, 118, 144
Bravais group, 140

Bravais lattices, 113
types in three dimensions, 141,

146–154
types in two dimensions, 140,

142–145
breakdown

avalanche, 556
electric, 274
magnetic, 274
of the diode, 554
Zener, 555

bremsstrahlung isochromat spectroscopy,
192

Bridgman relations, 64
Brillouin function, 57
Brillouin scattering, 436–437, 443, 445
Brillouin zone, 123, 190

higher, 85
of bcc lattice, 212
of fcc lattice, 216
size of, in antiferromagnets, 519

Brillouin–Wigner perturbation
theory, 582

buckyball, 30
built-in potential, 529
bulk defects, see volume defects
bulk modulus, 365, 369
bulk susceptibility, see susceptibility,

volume
Burgers circuit, 286, 287
Burgers dislocation, see screw

dislocation
Burgers vector, 286, 287

C1 structure, 204, 219
C1b structure, 223
C2 structure, 204
C3 structure, 204, 209, 210
C4 structure, 204
C14 structure, 204
C15 structure, 204, 223
calamitic nematic phase, 25
calcium

band structure of, 183
canonical structure constant, 177
canonical transformation, 355, 603
carbon group, 196
carrier lifetime, 536
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carriers
diffusion of, 537
generation of, 533
majority, 231
minority, 231
recombination of, 533

Cauchy relations, 369
ccp structure, see cubic crystal

structures, close-packed
cellular methods, 164
center-of-mass order, 19
cesium chloride

Madelung energy of, 87
structure, 204, 207

chain-like structures, 229–233
Chambers’ formula, 479
Chambers’ method, 373
character table

of Oh group, 648
of the double group O†, 648

charge carriers, see carriers
charge-neutrality condition, 225
charging energy, 569
chemical potential, 31, 34, 36

temperature dependence of, 37, 218
chemical shift, 72
chiral nematic phase,

see cholesteric phase
cholesteric phase, 26
circular wave number,

see angular wave number
Clausius–Mossotti relation, 375
Clebsch–Gordan coefficients, 671
close packing

cubic, 217
hexagonal, 226

closed orbits, 251
closure domains, 511
CMR, see colossal magnetoresistance
coherence length

in Ginzburg–Landau theory, 486
Pippard, 479

coherent scattering, 439–443
cohesive energy, 77

of covalent crystals, 105
of ionic crystals, 84
of molecular crystals, 81–83

coincident-site lattice, 299, 300
Coleman’s theorem, 201, 411
collision term, 364

collision time, 4, 8
color center, 282
color group

black-and-white, 167
gray, 167

colossal magnetoresistance, 573
columnar phase, 28
compatibility condition, 639, 131
compound semiconductors, 198

band structure of, 208
compressibility, 365

of electron gas, 43
compression modulus, see bulk modulus
compressional waves, 366
Compton scattering, 188
condensed phases, 13
conduction band, 158

in semiconductors, 196
conduction electron, 2
conductivity, 7

AC, 14, 378
DC, 5, 376
in Drude model, 7
in Sommerfeld model, 55
optical, 378
thermal, 10, see thermal

conductivity
configuration interaction, 100
configurational entropy, 276
constant

stiffness, see stiffness constant
contact

ohmic, 545
rectifying, 544

contact potential, 528
contact potential difference, 520
continuity equation, 18, 359, 536
continuous groups, 642–646
conventional superconductors, 466
conventional unit cell, 117, 144
Cooper pair, 344, 476
coordination number, 208
copper

Azbel–Kaner resonance in, 264
band structure of, 181, 194
de Haas–van Alphen oscillations

in, 326
Fermi surface of, 181
XPS spectrum of, 191

Corbino effect, 62
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core electron, 2, 157
correlation function, 16
correlation length, 494–496
Coulomb blockade, 569
Coulomb staircase, 573
coupling

jj, 40
LS, 40
Russell–Saunders, 40

covalent bond, 89–105
covalent crystal, 89
covalent radius, 233
creation operator, 589

of antiferromagnetic
magnon, 542

of Bloch electron, 92
of electron state, 31
of hole state, 31
of magnon, 525
of phonon, 394–395
of Wannier state, 103

critical current, 451
critical exponent, 491, 496–500

in Berezinskii–Kosterlitz–
Thouless transition, 555

critical field, 455, 462, 497
lower (Hc1), 455
thermodynamic, 473
upper (Hc2), 455

critical temperature, 449, 462
of antiferromagnets, 481
of ferrimagnets, 461
of ferromagnets, 475
of superconductors, 470

cross section, 653–656
of coherent scattering, 439–443
of impurity scattering, 68

crowdion, 280
crystal class, 162
crystal family, 141
crystal field, 174
crystal-field splitting, 174
crystal momentum, 189
crystal structure

types of, 203
crystal systems, 140

hierarchy of, in three dimensions,
156

hierarchy of, in two dimensions, 155

crystallite, 21
CsCl structure, 208, 237
Cu structure, 217
Cu3Au structure, 204, 208
CuAu structure, 300
cubic crystal structures, 205–224

body-centered, 210–214
close-packed, 217
face-centered, 214–221
simple, 205–210

cubic lattice, 153
cuprite structure, 204, 210
Curie’s law, 52

deviation from, 182
Curie susceptibility, 53, 22
Curie temperature, 450, 475

of ferrimagnetic materials, 461
of ferromagnetic materials, 451–453

Curie–Weiss law, 476
current

electric, 7, 49, 53, 362
heat, 9, 53, 362

current gain, 560
current–voltage characteristics

of Esaki diode, 557
of MOSFET, 562
of p–n junction, 545, 553
of Schottky barrier, 544
of Schottky diode, 545
of Zener diode, 554

Cutler–Mott formula, 57
cyclic group, 130
cyclotron frequency, 254
cyclotron mass, 255
cyclotron resonance, 259

D0 structure, 204
D03 structure, 220
D09 structure, 209
D2 structure, 204
D21 structure, 209
D23 structure, 221
D2e structure, 209
D2f structure, 220
D8 structure, 204
dangling bonds, 305
DC conductivity, 376
de Broglie wavelength, 25, 29, 346
Debye frequency, 401
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Debye function, 416, 611
Debye length, 521
Debye model, 389–390
Debye–Hückel theory, 404, 521
Debye–Scherrer method, 267
Debye temperature, 412, 596
Debye–Waller factor, 442
deep level, 224
defects, see also line defects;

planar defects; point
defects; volume defects

dislocations, 283–292
grain boundaries, 298

deformation potential, 339
degeneracy

accidental, 173, 126
lifting of, 173, 126

degeneracy temperature, 37
degenerate semiconductor, 215
de Haas–van Alphen effect, 314
delta function, 615
dense random packing model, 304
density of states

in strong magnetic field, 283
in two-dimensional electron

gas, 283
integrated, 399
of Bloch electrons, 96
of electron gas, 32
of phonons, 398–409

density-of-states mass, 99, 213
depletion layer, 519, 522, 530
depletion region, see depletion layer
destruction operator, see annihilation

operator
detailed balance, see principle

of detailed balance
dhcp structure, see hexagonal crystal

structures, double
close-packed

diamagnetic resonance, see cyclotron
resonance

diamagnetic susceptibility
of Bloch electrons, 305
of electron gas, 47

diamagnetism
perfect, 453

diamond
band structure of, 89

diamond structure, 204, 221–224, 197
electron states of, 201

dielectric constant, 18, 435
of bound electrons, 435
of germanium, 221
of ideal gas of electrons, 18
of silicon, 221
transverse, 423

dielectric function, 18
diffraction

dynamical theory of,
258–260

theory of, 242–260
diffusion, 537
diffusion coefficient, 358,

538, 539
diffusion length, 539
diffusion potential, 529
diffusion region, 548
digamma function, 619
dihedral group, 130
dimerized chain, 337, 345–348
Dingle factor, 326
Dingle temperature, 326
dipole approximation, 435, 436
dipole–dipole interaction, 70, 80,

463, 661
Dirac delta function, 615
direct exchange, see exchange,

Heisenberg
direct gap, 211
direct lattice, 122
direct-gap semiconductors, 211
director, 25
Dirichlet’s construction, 117, 85

in reciprocal lattice, 123
disclinations, 290

screw, 291
wedge, 291

discotic columnar phase, 28
discotic nematic phase, 25, 26
dislocation line, 284
dislocations, 283–292

edge, 284, 285
mixed, 285, 286
partial

Frank, 297
Shockley, 295

screw, 285
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dispersion
in ionic crystal, 430

dispersion relation
for antiferromagnetic magnons,

520, 543
for ferromagnetic magnons,

518, 524
for phonons, 395
of spinons

in an isotropic antiferromagnet,
571

of XY model, 573
distribution function

Bose–Einstein, see Bose–Einstein
statistics

Fermi–Dirac, see Fermi–Dirac
statistics

in relaxation-time approximation,
373

Maxwell–Boltzmann, see Maxwell–
Boltzmann distribution

nonequilibrium, 362
stationary, 49

divacancy, 280
divalent metals, 182
domain wall, 504

width of, 511
domains, 508–513
donor, 219
donor level, 222

thermal population of, 227
doped semiconductors, 219
double exchange, 468–469
double group, 179, 641–642
double hexagonal close-packed structure

see hexagonal crystal
structures, double
close-packed

Dresselhaus splitting, 84, 209
drift velocity, 5
Drude–Lorentz model, 2, 1, 23
Drude model, 1–23

failures of, 22
Drude peak, 15
Drude weight, 16
Drude–Zener model, 424
Dulong–Petit law, 384
dynamical interactions, 534
dynamical matrix, 356

dynamical structure factor, 440, 659
Dyson–Maleev transformation, 531

and the Hamiltonian of interacting
magnons, 534

E2 structure, 204
E21 structure, 209
easy axis of magnetization, 472
easy plane of magnetization, 472
edge dislocation, 284, 285
edge states, 294, 409
effective Hamiltonian, 603
effective interaction, 344
effective magnetic moment, 58
effective magneton number, 58
effective mass, 41

in compound semiconductors, 210
of Bloch electrons, 93
of electrons in germanium, 208
of electrons in silicon, 205
of holes, 96
of holes in germanium, 208
of holes in silicon, 206
tensor, see effective-mass tensor

effective-mass tensor, 95, 246
inverse, see inverse effective-mass

tensor
Einstein model, 387–389
Einstein relation, 538
elastic constants

Lamé, see Lamé constants
of crystals, 367–371
Voigt, see Voigt elastic constants

elastic waves, 363–367
electric breakdown, 274
electric current, 53
electrical conductivity, 5
electrochemical potential, 53, 360
electrodynamics of superconductors, 474
electron

conduction, 2
core, 2, 157
valence, 2

electron gas
at finite temperatures, 34
classical, 2
compressibility of, 43
density of states for, 32
entropy of, 43
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equation of state for, 42
ground state of, 28
magnetic properties of, 20
specific heat of, 40
susceptibility of, 44

electron–electron interaction
effective, 344

electron–hole excitations, 35
electron–hole pair, 446, 534
electron–ion interaction, 334
electron paramagnetic resonance, 61
electron–phonon interaction, 193

consequences of, 343
Hamiltonian of, 333

electron–photon interaction, 440
electron spectroscopy for chemical

analysis, 191
electron spin resonance, 61
electron states

finite lifetime of, 344
localized, 73

elementary excitations
in magnetic systems, 515
phonons, see phonons

Eliashberg equations, 452
empty-lattice approximation, 109
energy current, 248
energy gap, see gap
energy spectrum

of Bloch states, 80
entropy

of electron gas, 43
of superconductors, 460
of vortices in XY model, 554

EPR, 61
equation of state

for crystal, 418–420
for electron gas, 42

equipartition theorem, 384, 4
equivalent wave vectors, 190, 82
Esaki diode, 556
ESCA, 191
ESR, 61
Ettingshausen effect, 63
Euler–Lagrange equation, 359
Euler–Maclaurin formula, 295
Euler–Mascheroni constant, 620
Euler’s constant, see Euler–Mascheroni

constant

Euler’s equation, 510
Euler’s gamma function, 619
Evjen’s method, 84
Ewald construction, 264–265

for Laue method, 266
for powder method, 268
for rotating-crystal method, 267

Ewald’s method, 84
Madelung energy of NaCl

crystal, 86
Ewald sphere, 264
EXAFS, 269, 309
exchange, 463

direct, see exchange, Heisenberg
double, see double exchange
Heisenberg, 463–464
RKKY, see RKKY interaction
super-, see superexchange

exchange energy, 464
exchange integral, 92
exchange interaction, 42
excited states, 31
exciton, 440
extended-zone scheme, 85
extinction coefficient, 416
extinction length, 263
extrinsic range, 230

face-centered cubic structures,
214–221

factorial function, 619
faithful representation of point

groups, 130
Faraday effect, 513
F -center, 282
Fermi contact term, 71, 661
Fermi energy, 28

for Bloch states, 88
Fermi–Dirac distribution function,

34, 49
Fermi–Dirac statistics, 2, 34, 47, 92
Fermi integral, 612, 36
Fermi momentum, 28
Fermi pseudopotential, 247, 439
Fermi sea, 28
Fermi sphere, 28
Fermi surface, 89

for nearly free electrons, 136
in empty lattice, 115
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of aluminum, 184
of copper, 181
of divalent metals, 182
of lead, 185
of molybdenum, 186
of monovalent metals, 178
of noble metals, 180
of sodium, 179
of trivalent metals, 183
of tungsten, 186

Fermi temperature, 37
Fermi velocity, 29
Fermi wave number, 28
ferrimagnetic materials, 461–462
ferrimagnetism, 461, 462
ferromagnetic materials, 450–453
ferromagnetism, 450–453, 470
FET, 545, 560
Fibonacci chain, 317–323
Fick’s law, 537
field operator, 596
field-effect transistor, 560

spin, 576
final-state interaction, 442
fine structure, 40

of paramagnetic resonance, 68
fine-structure constant, 36
first theorem of condensed-matter

physics, 199
fixed point, 502
flip-over process, see umklapp process
Floquet’s theorem, 186
fluctuation–dissipation theorem, 52
fluorite structure, 204, 219
flux quantization, 481, 489
flux quantum, 587, 282, 454
fluxoid, 481, 490
Fock space, 590
forbidden band, 89
forward bias, 542
Fourier transform, 601
Fourier’s law, 9
FQHE, see fractional quantum

Hall effect
fractional quantum Hall effect, 410
Frank partial dislocation, 297
free electrons, see also electron gas

density of states, 32
Drude model, 2

equation of state, 42
in a magnetic field, 277
Sommerfeld model, 24

free energy
of vortices in XY model, 555

free energy (Gibbs), see Gibbs free
energy

free energy (Helmholtz), see Helmholtz
free energy

free enthalpy, see Gibbs free energy
free-electron model, 1
freeze-out range, 230
Frenkel defect, 283
Fresnel formulas, 418
Fresnel’s equations, 259
Fröhlich model, 355
Friedel oscillations, 69
Friedel sum rule, 72
fullerene, 30, 76
fullerite, 30, 221, 465

infrared absorption in, 432
Raman scattering in, 435

galvanomagnetic effects, 61
gamma function, 619
Gantmakher effect, 270
gap, 89, 199

in alkali halides, 200
in compound semiconductors, 199
in elemental semiconductors, 198
in magnon spectrum for

antiferromagnets, 546
in semiconductors, 200
in superconductor, 458

gauge symmetry
broken, 485

Gaussian function
Fourier transform of, 609

Gaussian system of units, 590
Gell-Mann matrices, 646
generation current, 554
generation of carriers, 534
germanium, 76, 91, 197

band structure of, 206
cyclotron resonance in, 262
dielectric constant of, 221
effective mass of electrons in, 208
effective mass of holes in, 208

g-factor, 45
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giant magnetoresistance, 573
giant quantum oscillation, 268
Gibbs free energy, 277, 470
Gibbs potential, see Gibbs free energy
Ginzburg–Landau correlation

length, 487
Ginzburg–Landau equations, 483
Ginzburg–Landau parameter, 491
Ginzburg–Landau theory, 482
glass, 21

metallic, see metallic glass
spin, see spin glass

glide line, 158
glide plane, 158
glide reflection, 158
GMR, see giant magnetoresistance
Goldstone bosons, 200, 397
Goldstone’s theorem, 200, 397, 546,

547, 486
Gorter–Casimir model, 474
grain boundaries, 293, 298

tilt, 298
twist, 298

grand canonical ensemble, 318
grand canonical potential, 42
graphite structure, 204
gray groups, 168
Green function

of Bloch electron, 105
of free electrons, 65

Green function method, 168
Griffiths inequality, 497
Grüneisen parameter, 419
Grüneisen relation, 425
ground state

of antiferromagnet, 543–544
and the Néel state, 543–544,

568
of crystal lattice, 410–413
of electron gas, 28
of ferromagnet, 522

group theory, 633–651
gyromagnetic ratio, 45

H1 structure, 204
H11 structure, 223
Hagen–Rubens relation, 425
Haldane gap, 579
half-Heusler structure, 223

Hall angle, 14
Hall coefficient, 12, 382
Hall effect, 381

classical, 11
quantum, 6, 195, 405

Hall resistance, 11
Hall voltage, 11
halogens, 91
Hamiltonian

effective, 603
of electron–phonon

interaction, 333
of free electron gas, 31
of interacting magnons, 534
second-quantized form, 597

Hankel functions, 620
harmonic approximation, 331–337
harmonic oscillator, 392–393, 279, 427
Harper equation, 303
Harrison construction, 115
Hartree energy, 588
Hartree–Fock approximation, 96
Hc1, see lower critical field
Hc2, see upper critical field
hcp structure, see hexagonal crystal

structures, close-packed
heat capacity, 5
heat conduction, 9

law of, see Fourier’s law
heat conductivity, see thermal

conductivity
heat current, 9, 53, 358

in electron gas, 47
Heaviside step function, 608, 616
heavy holes, 206
heavy-fermion materials, 41, 42
HEED, 262
Heisenberg chain

anisotropic ferromagnetic
spin-1/2, 560–566

antiferromagnetic
spin-1, 578–580
spin-1/2, 566–569

Heisenberg exchange, see exchange,
Heisenberg

Heisenberg model, 469
Hamiltonian

eigenstates of, 521–522, 526–527,
538, 540
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quadratic and quartic parts,
534–535

Heitler–London approximation, 90
Helmholtz free energy, 278, 470

of phonon gas, 414
Hermann–Mauguin symbols, 125
Hermite polynomials, 623
heterojunction, 532
heteropolar bond, 83
Heusler alloy, see Heusler phase
Heusler phase, 204, 220
hexa-n-alkoxy triphenylene, 24
hexagonal crystal structures, 224–229

close-packed, 204, 224, 226
double close-packed, 224, 226
simple, 224

hexatic phase, 28
Higgs bosons, 201
high-Tc superconductors, 466
high-temperature expansion, 503–504
HMTTF-TCNQ, 232
Hofstadter butterfly, 304
Hofstadter spectrum, 304
hole states, 31
holes, 95

creation operator of, 31
in Fermi sphere, 31
in semiconductors, 212
motion of, 247

Holstein model, 349
Holstein–Primakoff transformation, 530

and the Hamiltonian of
interacting magnons, 534

application of, 534, 546
homeopolar bond, 89
homopolar bond, 89
honeycomb lattice, 113, 114
Hooke’s law, 365, 368
Hubbard model, 5
Hund’s rules, 42
hybrid states, 103–105, 233
hydrogen bond, 106
hyperfine structure, 69

icosahedral group, 131
ideal crystal, 14, 109
improper rotation, 126
impurities

acceptor, 220
bound states around, 73, 107

donor, 219
electron states around, 104
in semiconductors, 219
magnetic, 394
scattering by, 64

incoherent scattering, 660
incommensurate structures, 312

magnetic, see spiral structures
index of refraction, see refractive index
indirect exchange, see RKKY interaction
indirect gap, 211
indirect-gap semiconductors, 211
inelastic neutron scattering, see neutron

scattering, inelastic, 547
infrared absorption, 431–433, 443
infrared active mode, 432, 447
insulators, 90
integer quantum Hall effect, 407
integrated density of states, 399
interaction

electron–ion, 334
electron–phonon, 193, 333
electron–photon, 440
phonon–phonon, 423–424
phonon–photon, 443
RKKY, 466
s–d, 465, 606, 611
spin–orbit, 38, 83, 204
van der Waals, 78
with radiation field, 412

interface, 518
metal–semiconductor, 518

interfacial defects, 274
international notation, see Hermann–

Mauguin symbols
interstitials, 278–280

split, 279
intrinsic carrier density, 217
intrinsic range, 232
intrinsic semiconductors, 201, 212
inverse AC Josephson effect, 507
inverse effective-mass tensor, 94, 246
inverse photoemission spectroscopy, 192
inversion, 126
inversion layer, 406, 524
ionic bond, 83
ionic–covalent bond, 94
ionic crystals, 83–89, 430

optical vibrations in, 373–377
ionic radius, 236
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IPES, see inverse photoemission
spectroscopy

IQHE, see integer quantum Hall effect
irreducible representations, 637
Ising model, 472

and Mermin–Wagner theorem, 551
two-dimensional, 551

isomer shift, 73
isotope effect, 452

Jahn–Teller distortion, 353
Jahn–Teller theorem, 354
JFET, 560
jj coupling, 40
Jones symbol, 130
Jordan–Wigner transformation, 533

application of, 572
Josephson constant, 587, 506
Josephson effect, 501

AC, 506
DC, 504
in magnetic field, 509
inverse AC, 507

Josephson inequality, 497, 499
Joule heat, 15, 60, 61, 359
junction

abrupt, 526
step, 526

junction transistor, 4, 560

kagome lattice, 113, 114
Kelvin relations, see Thomson

relations
Kerr effect, 513
kinematical interaction, 536
kinetic coefficient, 380
kinetic theory of gases, 1, 23, 43
KKR method, 168
Knight shift, 72
Kohn anomaly, 350
Kondo effect, 5, 394
Korringa law, 71
Korringa relaxation, 71
Kosterlitz–Thouless transition,

see Berezinskii–Kosterlitz–
Thouless transition

Kramers–Kronig relation, 64, 16, 19,
416, 434

Kramers’ theorem, 182

L1 structure, 204, 207
L2 structure, 204
L′3 structure, 204
La2−xBaxCuO4, 466
ladder operator, 393, 589
Lagrange’s equation, 34, 359
Laguerre polynomials, 624
Lambert–Beer law, 416
Lamé constants, 365
Landau diamagnetism, 295
Landau gauge, 278
Landau levels, 277

degree of degeneracy of, 281
Landau–Peierls instability, 28, 201
Landau theory of phase transitions, 199,

489–492
Landauer formula, 568
Landé g-factor, 54
Langevin diamagnetism, see Larmor

diamagnetism
Langevin function, 57
Langevin susceptibility, 53
Langmuir frequency, 20
Langmuir oscillation, 20
lanthanoids, 179, 218
Larmor diamagnetism, 49
Larmor frequency, 50
Larmor’s theorem, 21
laser, 562
lattice parameters, 229
lattice vibrations

classical description of, 331–385
Einstein model, 387–389
quantum description of, 387–427

lattices that are not Bravais lattices,
113, 114

Laue condition, 194, 244, 245
Laue method, 265
Laves phase, 204, 223
law of mass action, 218
layered structures, 229–233
LCAO method, 97, 154
lead

band structure of, 185
Fermi surface of, 185

LED, 534
LEED, 262
Legendre polynomials, 625
Lennard-Jones potential, 81
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level splitting in crystals, 173–182
Lie groups, 643
Lieb–Schultz–Mattis theorem, 578, 582
lifetime

carrier, 536
of electron states, 344
of electrons, 69
of magnons, 536, 548
of phonons, 424

Lifshitz–Kosevich formula, 323
light

interaction with bound
electrons, 427

reflection of, 417
refraction of, 417
scattering by free electrons, 421

light holes, 206
Lindemann criterion, 413
line defects, 274, 283–292
linear chain

diatomic, 341–345
dimerized, 345–348
monatomic, 337–341

liquid crystals, 24–29
liquid phase, 22–23
little group, 126
LMTO method, 175
localized excitations

lattice vibrations, 377–383
localized state, 73, 107

of electron, 104
London equations, 475
London penetration depth, 477
long-range order, 14
longitudinal magnetoresistance, 61
longitudinal mass, 208
longitudinal vibrations, 341
Lorentz formula, 374
Lorentz–Lorenz equation, 375
Lorentz model, 427
Lorentzian function

Fourier transform of, 609
Lorenz number, 10, 56
low-angle grain boundary, 298
low-dimensional magnetic systems, 548f
lower critical field, 455, 497
LS coupling, 40
Luttinger’s theorem, 139
Lyddane–Sachs–Teller relation, 377, 431

M -center, 282
Madelung constant, 87
Madelung energy, 84
magnesium

band structure of, 183
magnetic breakdown, 274
magnetic force microscope, 513
magnetic form factor, 249
magnetic group, see color group,

black-and-white
magnetic lattice, see black-and-white

lattice
magnetic length, 250
magnetic space groups, see space groups,

black and white
magnetic structures, 453–462
magnetic-field dependence

of resistivity, 11
magnetism

antiferro-, 453–459
atomic, 51
ferri-, 461, 462
ferro-, 450–453, 470

magnetization, see also sublattice
magnetization

definition of, 48
temperature dependence of,

see Bloch T 3/2 law
magnetoacoustic oscillations, 265
magnetomechanical ratio, see gyromag-

netic ratio
magnetoresistance, 61, 384

colossal, 573
giant, 573
longitudinal, 61
transverse, 61

magnon energy
temperature-dependent corrections

to, 535
magnons

antiferromagnetic, 540–547
approximate bosonic character of,

521, 525
as magnetic counterparts of

phonons, 521
bound states of, 536–540, 565–566
cutoff for, 527, 545
ferrimagnetic, 546–547
ferromagnetic, 521
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interaction of, 533–536
Hamiltonian for, 534

thermodynamics of, 527–530
majority carriers, 231
Majumdar–Ghosh point, 577
mass

cyclotron, 255
dynamical effective, 246
optical, 379

mass susceptibility, see susceptibility,
mass

mass, effective, see effective mass
matrix methods, 152

LCAO method, 154
OPW method, 157
plane-wave method, 156

Matthiessen’s rule, 387
Maxwell equations, 16, 413
Maxwell–Boltzmann distribution, 4,

22, 215
Maxwellian velocity distribution, 4
MBBA, 24
mean free path

of electrons, 5, 8
of phonons, 427

mean free time, see collision time
mean-field theory

of antiferromagnetism, 478–484
of ferrimagnetism, 487–488
of ferromagnetism, 474–478

Meissner phase, 456, 500
Meissner–Ochsenfeld effect, 452

and the second London
equation, 476

melting point of elements, 596
Mermin–Wagner theorem, 411, 550
mesogen, 24
mesomorphic phases, 13, 23–24
mesoscopic physics, 564
mesoscopic systems, 7, 564
metal–insulator transition, 90
metallic bond, 106
metallic glass, 21, 303
method of partial waves, 66
4-methoxy-benzilidene-

4-butyl-aniline, 24
Mg structure, see hexagonal crystal

structures, close-packed

Miller–Bravais indices, 119
Miller indices, 119
minibands, 305
minimum metallic conductivity, 76
minority carriers, 231
mirror line, 124
mirror plane, 124
MIS structures, 525
misorientation angle, 298
mixed dislocation, 285, 286
MoAl12 structure, 214
mobility, 6, 539
modulus of elasticity, see Young’s

modulus
modulus of rigidity, see shear

modulus
molar susceptibility, see susceptibility,

molar
molecular crystals, 78–83
molecular-orbital method, 96
molybdenum

Fermi surface of, 186
monatomic chain, see linear chain,

monatomic
monovalent metals, 178
MOS structures, 525

biased, 545
mosaic structure, 298
MOSFET, 561
Mössbauer effect, 72
motif, 114
Mott insulator, 92
muffin-tin potential, 164
multivalley semiconductors, 207

N-process, see normal process
n-type semiconductors, 223
NaCl structure, see sodium chloride,

structure
nanophysics, 564
nanostructures, 7, 565
nearly-free-electron model, 120
Néel state, 540
Néel temperature, 454, 481
Néel wall, 509
nematic phase, 25, 26

biaxial, 26
calamitic, 25
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chiral, 26
cholesteric, 26
discotic, 25, 26

Nernst effect, 63
Nernst–Ettingshausen effect, 63
nesting Fermi surface, 353
Neumann functions, 620
Neumann’s principle, 171
neutron scattering

cross section of, see Van Hove
formula

elastic, 241
inelastic, 242, 438–447
magnetic, 660–664

NiAs structure, 227, 228
NMR, see nuclear magnetic resonance
noble gases, 77, 218, 91
noble metals, 218, 2, 22, 41, 91, 178

Fermi surface of, 180
Noether’s theorem, 191
noncrystalline solids, 21–22
nonresonant size effect, 270
nonsymmorphic plane groups, 163
nonsymmorphic space groups, 166
normal coordinates, 357
normal modes, 359
normal process, 193
nuclear magnetic resonance, 71
number-density operator, 600

occupation-number representation,
589

octahedral group, 130
octahedral sites, 213, 218
Ohm’s law, 7
ohmic contact, 545
Onsager reciprocal relations, 54, 360
open orbits, 251
optical branch, 343
optical conductivity, 378
optical constant, 416
optical mass, 379
optical properties, 411
optical vibrations, 343, 361–363

in ionic crystals, 373–377
OPW method, 157
orbit

closed, 251
open, 251

order
center-of-mass, 19
long-range, 14

absence of in finite temperature
XY model, 555

absence of in low-dimensional
finite temperature Heisenberg
model, 550

magnetic, 450–462
orientational, 19
short-range, 14

order parameter
in superconductors, 483

order–disorder transitions, 489
orientational order, 19
orthogonalized-plane-wave method, 157
oscillations

Friedel, 69
in two-dimensional electron gas, 307
Langmuir, 20
plasma, 20
Ruderman–Kittel, 465

oscillator, 392–393
oscillator strength, 437
overlap integral, 92

PAA, 24
packing fraction

definition of, 208
for ccp crystal, 217
for diamond structure, 222
for hcp crystal, 226
for sc crystal, 208

pair-correlation function, 17
para-azoxy anisole, 24
parallel susceptibility, 484
paramagnetic resonance, 61

fine structure, 68
paramagnetic space groups, see space

groups, gray
paramagnetism, 51

atomic, 51
Van Vleck, 60

partial dislocations, 294–298
partial structure factor, 307
partial waves, 69
particle–hole excitations

in ideal electron gas, 35
in the XY model, 574–575
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Pauli exclusion principle, 36, 464
Pauli matrices, 646, 674
Pauli susceptibility, 45

of Bloch electrons, 99
Pauling ionic radius, 236
Pearson symbol, 205
Peierls instability, 350
Peierls insulators, 92
Peierls substitution, 297
Peltier coefficient, 59

in superconductors, 458
Peltier effect, 59
penetration depth

in Ginzburg–Landau theory, 486
London, 477
temperature dependence of, 489

Penrose tiling, 323–326
perfect diamagnetism, 453
periodic boundary condition,

see boundary conditions,
Born–von Kármán

periodic potential, 77
periodic table, 593
permittivity, 17, 415

relative, see dielectric constant
perovskite structure, 204, 209
perpendicular susceptibility, 484
persistent current, 451
perturbation theory, 579

Brillouin–Wigner, 582
degenerate, 583
nondegenerate, 579
Rayleigh–Schrödinger, 581
time-dependent, 584
time-independent, 579

PES, see photoelectron spectroscopy
phase diagram

of high-Tc superconductors, 498
of type I superconductors, 456
of type II superconductors, 457

phase shift, 67, 173
phonon drag, 58
phonon softening, 352
phonon–phonon interaction, 423–424
phonon–photon interaction, 443
phonons, 395

acoustic, 397
density of states of, 398–409
experimental study of, 429–447

interaction among,
see phonon–phonon interaction

lifetime of, 446
specific heat of, 413–418

photoelectric effect, 190
photoelectron spectroscopy, 190
photoemission spectroscopy, 190
physical constants, 587–588
planar defects, 274, 293–301
planar model, see XY model
planar regime, 566
plane groups, 162
plane-wave method, 156
plasma frequency, 20
plasma oscillations, 20
plastic crystals, 29–30
p–n junction, 526

biased, 545
breakdown in, 554

point defects, 274–283
point group of the crystal, 161
point groups, 127–135
point-contact transistor, 4
Poisson equation, 520
Poisson summation formula, 319
Poisson’s ratio, 369
polar covalent bond, 94
polariton, 432
polarization factor, 339
polarization vector, 357
polarons, 346
polycrystals, 21, 293
polymers, 30
positron annihilation, 187
powder method, 267
p-polarization, 417
primitive cell, 115
primitive vectors, 110

choice of, 111–113
principle of detailed balance, 369
proximity effect, 485
p-type semiconductors, 224
pseudo-wavefunction, 162
pseudopotential, 162
pseudopotential method, 160
pyrite structure, 204

quantum critical point, 500
quantum dot, 564, 567
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quantum Hall effect, 6, 195, 405
quantum oscillations, 306
quantum phase transitions, 500
quantum point contact, 568
quantum well, 564, 565
quantum wire, 564, 567
quantum-well laser, 567
quasicrystals, 3, 21, 315–330
quasimomentum, 191
quasiparticles, 92
quasiperiodic functions, 311
quasiperiodic structures, 309–330
quasiperiodic tiling, see Penrose tiling
QW laser, see quantum-well laser

radial distribution function, 17, 305
in amorphous silicon, 306
in quasicrystals, 316

radiofrequency size effect, 270
Raman active mode, 435, 447
Raman scattering, 433–436, 443, 445

two-phonon, 446
rapidity, 563
rare-earth garnet, 547
rare-earth metals, 452, 23, 42

band structure of, 186
Rashba term, 38, 576
Rayleigh–Schrödinger perturbation

theory, 581
R-center, 282
reciprocal lattice, 120–124

definition, 120
of bcc lattice, 212
of fcc lattice, 216
of hexagonal lattice, 225
primitive vectors of, 122

recombination current, 554
recombination lifetime, 536
recombination of carriers, 534
rectification

by p–n junction, 553
by Schottky diode, 544

rectifying contact, 544
reduced-zone scheme, 85
reduction, 638
reflectance, 419
reflection coefficient, 417, 419
reflectivity, 419

of semiconductors, 426

refractive index, 416
relative permittivity, see dielectric

constant
relativistic effects, 36–38, 83
relaxation function, 63
relaxation region, 425
relaxation time, 4, 8, 370

spin–lattice, 64
spin–spin, 65
transport, 69

relaxation-time approximation, 370
renormalization, 501
renormalization-group transformation,

500–502
repeated-zone scheme, 85
residual resistivity, 69, 389
resistivity, 7

contribution of electron–phonon
interaction, 389

of metals, 8
residual, see residual resistivity

resonance absorption, 61, 72
resonance fluorescence, 72
resonance integral, 98
resonant absorption, 61
resonating valence bond spin

liquid, 585
Reuter–Sondheimer theory, 479
reverse bias, 542
Richardson–Dushman equation, 543
Riemann zeta function, 617
Righi–Leduc effect, 63
rigid-ion approximation, 337
RKKY interaction, 466, 574, 605
rock-salt structure, see sodium chloride,

structure
Rodrigues’ formula

for generalized Laguerre
polynomials, 625

for Hermite polynomials, 623
for Laguerre polynomials, 624

rotating-crystal method, 265
rotation axis, 125
rotation group, 642, 665
rotation–inversion, see symmetry

operations, rotation–inversion
rotation–reflection, see symmetry

operations, rotation–reflection
rotational symmetry, 125



642 Subject Index

rotoinversion, see symmetry
operations, rotation–inversion

rotoreflection, see symmetry
operations, rotation–reflection

Ruderman–Kittel oscillation, 465
Rushbrook inequality, 497
Russell–Saunders coupling, 40
Rutgers formula, 473
rutile structure, 204
RVB, see spin liquid, resonating

valence bond
Rydberg energy, 588

satellite peaks, 314, 459
saturated bond, 99
saturation current, 554
saturation range, 230
scaling laws, 496–500
scanning tunneling

microscope, 270
scattering

by impurities, 64, 387
by lattice defects, 365
by magnetic impurities, 394
electron–phonon, 341

scattering amplitude, 65
scattering cross section

of impurity scattering, 68
scattering length, 247, 440
scattering of light

by bound electrons, 427
by free electrons, 421

scattering theory
methods based on, 164

scattering vector, 548
Schoenflies symbols, 125
Schottky barrier, 523
Schottky defect, 280–282
Schottky diode, 541

biased, 541
current–voltage characteristics

of, 545
Schrieffer–Wolff transformation, 612
Schwinger boson, 532
screening length, 521
screw axis, 158
screw dislocation, 285
screw rotation, 158
s–d interaction, 465, 606, 611

second quantization, 589
Seebeck coefficient, 56
Seebeck effect, 58
Seitz symbol, 157
selection rules, 184, 650
γ-selenium structure, 204
semiclassical dynamics, 239

limitations of, 271
semiclassical equation of motion, 243
semiclassical quantization, 300
semiconductor laser, 562
II–VI semiconductors, 198
III–V semiconductors, 198
semiconductor quantum devices, 564
semiconductors, 76

band structure of, 201
conduction band in, 196
degenerate, 215
electronic structure of, 195
elemental, 196
gap in, 198, 199
multivalley, 207
n-type, 223
p-type, 224
valence band in, 196

semimetals, 91
separation energy, 77
Shapiro steps, 508
shear modulus, 365, 369
shift operator, see ladder operator
Shockley partial dislocation, 295
Shockley’s law, 553
short-range order, 14, 305–309
Shubnikov groups, 167
Shubnikov phase, 456
Shubnikov–de Haas effect, 327
silicon, 91, 197

band structure of, 204
dielectric constant of, 221
effective mass of electrons in, 205
effective mass of holes in, 206

simple cubic crystals, 205–210
single crystal, 20
single-electron transistor, 569, 571
size effects, 268
skin depth, 262
skutterudite structure, 204
Slater determinant, 101, 24, 78
small polaron, 349
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smectic phases, 27–28
Snell’s law, 418
sodium

band structure of, 178
Fermi surface of, 179

sodium chloride
Madelung energy of, 86
structure, 204, 219, 238, 199

softening of phonons, 352
solar cell, 562, 564
solid solutions, 21
Sommerfeld coefficient, 41
Sommerfeld expansion, 37
Sommerfeld model, 24–47

inadequacies of, 74
Sommerfeld–Wilson ratio, 46
space groups, 162

black-and-white, 168
gray, 168
in two dimensions, see plane

groups
magnetic, 166

space-charge layer, see depletion
layer, space-charge region

space-charge region, 522, 531
specific heat

of Bloch electrons, 98
of classical crystals, 383–385
of electron gas, 40
of magnon gas, 529
of phonon gas, 413–418
of superconductors, 458

specific susceptibility,
see susceptibility, specific

spectrum, see also energy spectrum
in chain of S = 1/2 spins, 539
in the XY model, 575

sphalerite structure, 204, 221–224, 199
spherical Bessel functions, 621
spherical Hankel functions, 622
spherical harmonics, 627
spherical Neumann functions, 622
spin

classical
precession of, 516

classical equation of motion
in magnetic field, 516

quantum mechanical equation
of motion, 516

spin glass, 449
spin Hall effect, 576
spin ladders, 581–583
spin liquid, 551, 574, 584–586

algenbraic, 584
resonating valence bond, 585

spin operators, 665
representation in terms of boson

operators, 530–533, 541
representation in terms of fermion

operators, 533
spin transistor, 576
spin valve, 574
spin waves

antiferromagnetic, 540–547
classical, 516–520

antiferromagnetic, 518–520
ferromagnetic, 516–518
illustration of, 518, 520

definition of, 517
ferromagnetic, 521
quantum-mechanical description of,

521–540
spin–lattice relaxation, 64
spin–orbit interaction, 38, 83, 204, 206,

208
spin-density operator, 600
spin-FET, see spin-field-effect transistor
spin-field-effect transistor, 576
spin-flop phase, 484
spin-flop transition, 484, 546
spinel structure, 204, 223
spinons, 570

dispersion relation of, see dispersion
relation, of spinons

spintronics, 573
spiral structures, 459–461
split interstitial, 279
split-off band, 206
s-polarization, 417
SQUID, 514
stacking faults, 293–294
staggered susceptibility, 482
step function, see Heaviside step function
step junction, 526
stiffness constant

of spin waves, 524
Stirling formula, 619
STM, see scanning tunneling microscope
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Stokes component, 434, 446
strain tensor, 364
stress tensor, 365
structure amplitude, 248
structure constant, 171
structure factor, 18, 248

dynamical, see dynamical structure
factor

in amorphous silicon, 306
partial, 307

Strukturbericht designation, 205
sublattice magnetization,

see also magnetization
temperature dependence of, 545

substitutional impurity, 274
superconducting materials, 461

compounds, 464
elements, 461

superconductivity, 2, 449
phenomenological description, 469

superconductors
conventional, 466
critical temperature of, 470
electrodynamics of, 474
high-Tc, 466
London, 480
Pippard, 480
specific heat of, 458
thermal conductivity of, 457
thermodynamics of, 470
thermoelectric properties of, 457
type I, 455
type II, 456

superexchange, 466–468
surface plasmon, 422
susceptibility

Curie, 53
definition of, 48
Langevin, 53
mass, 49
molar, 49
of antiferromagnets, 482–484
of Bloch electrons, 98
of classical electron gas, 22
of electron gas, 44
of ferromagnets, see Curie–Weiss

law
divergent spin-wave contribution

to, 530

specific, 49
Van Vleck, 60
volume, 49

symmetric gauge, 278, 290
symmetry breaking, 199
symmetry elements

glide line, 158
glide plane, 158
inversion center, 126
mirror line, 124
mirror plane, 124, 125
rotation axis, 125
rotation–inversion axis, 126
rotation–reflection axis, 126
screw axis, 158

symmetry operations
glide reflection, 158
inversion, 126
reflection, 125
rotation–inversion, 126
rotation–reflection, 126
screw rotation, 158

symmorphic plane groups, 163
symmorphic space groups, 164
synchrotron radiation, 241
syngony, see crystal systems

Taylor–Orowan dislocation, see edge
dislocation

TBBA, 24
TE polarization, 417
tensile modulus, see Young’s modulus
terephtal-bis-butyl-aniline, 24
tetrahedral group, 130
tetrahedral sites, 213, 218
thermal conductivity, 10, 55, 358

by phonons, 427, 400
electronic contribution, 399
for superconductors, 457
in Drude model, 9, 10
in Sommerfeld model, 56

thermal expansion, 425–427
thermal mass, 99
thermodynamic critical field, 462,

473, 492
thermoelectric phenomena, 56
thermoelectric power, 56
thermoelectric properties

of superconductors, 457
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thermomagnetic effects, 61
thermopower, 56
Thomson effect, 60
Thomson heat, 60
Thomson relations

first, 59
second, 61

tight-binding approximation, 139
p-band, 145
s-band, 143
in magnetic field, 302

tilt grain boundary, 298
time reversal, 196
TM polarization, 417
top-hat function

Fourier transform of, 608
topological quantum number, 554
torsional waves, 366
trajectory of electrons in real space, 250
transistor

bipolar, 517, 558
field-effect, 560
junction, 4, 560
point-contact, 4, 517
single-electron, 571
spin-field-effect, 576

transition metals, 213, 218, 23, 42, 393,
band structure of, 185

translational symmetry, 110
transmission coefficient, 419
transmittance, 419
transport

in magnetic field, 383
transport coefficients, 54, 379

in semiconductors, 402
transport phenomena, 357
transport relaxation time, 69
transverse magnetoresistance, 61
transverse mass, 208
transverse vibrations, 341
triple-axis spectrometer, 439, 445
trivalent metals, 183
TTF-TCNQ, 76
tungsten

Fermi surface of, 186
tunnel diode, 556
tunneling, 542, 555, 556

in SIN junction, 460

in SIS junction, 460
of normal electrons, 501
single-particle, 505

twin crystals, 299, 301
twist grain boundary, 298
twisted boundary conditions,

see boundary conditions,
antiperiodic

two-fluid model, 474
two-phonon absorption, 445
two-phonon Raman scattering,

436, 446
type I superconductors, 455
type II superconductors, 456, 473

ultraviolet photoelectron
spectroscopy, 190

ultraviolet photoemission
spectroscopy, 190

umklapp process, 193, 424, 427, 337,
392, 400

uniaxial anisotropy, 472
unsaturated bond, 99
upper critical field, 455, 497
UPS, 190

vacancies, 275–278
formation energies of, 276

vacancy pair, 280
valence band, 158, 191

in semiconductors, 196
valence electron, 2
valence-bond method, 90
valence-bond-solid state, 580
van der Waals bond, 79–81
van der Waals interaction, 78
Van Hove formula, 440, 656
Van Hove singularities, 405–409, 97
Van Vleck paramagnetism, 60
Van Vleck susceptibility, 60
variational methods, 164
vector operator

definition of, 53
velocity

of Bloch electrons, 240
virtual bound state, 68, 106
Voigt elastic constants, 368
Volterra construction, 284
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volume defects, 274, 302
volume susceptibility,

see susceptibility,
volume

von Klitzing constant, 587, 407
Voronoi polyhedron, 117
vortex lattice, 497
vortices, 553–559, 457, 493

W structure, 213
wallpaper groups,

see plane groups
Wannier functions, 100
Wannier’s theorem, 297
Weiss field, 474
Weiss indices, 119
Wiedemann–Franz law, 10, 23, 56,

74, 399, 457
Wigner–Eckart theorem, 53
Wigner–Seitz cell, 117
Wigner–Seitz radius, 3
Wigner–Seitz sphere, 116, 3
Wigner’s theorem, 173
Wilson ratio, 46, 100
work function, 518
wurtzite structure, 204, 228

X-ray diffraction
experimental methods of,

261–268
theory of, 242–260

X-ray photoelectron
spectroscopy, 191

X-ray photoemission
spectroscopy, 191

XPS, 191

XY model, 472, 551, 572
entropy of vortices in,

see entropy, of vortices
in XY model

free energy of vortices in,
see free energy, of vortices
in XY model

Hamiltonian of, 551
phase transition in,

see Berezinskii–Kosterlitz–
Thouless transition

YBa2Cu3O7−δ, 450, 466
YBCO, 450, 466
YIG, see yttrium–iron garnet
Young’s modulus, 369
yttrium–iron garnet, 547
Yukawa function, 404

Fourier transform of, 609

Zener breakdown, 554
Zener diode, 556
Zener effect, see Zener breakdown
Zener tunneling, 275
zero-point energy, 392, 543
zero-point spin contraction

in antiferromagnetic ground
state, 544

in two-dimensional
antiferromagnets, 551

zero-point vibrations, 89, 392
zeta function, 617
zinc group, 182
zincblende structure, see sphalerite

structure
zone folding, 113



Fundamental physical constants

Name Symbol Value

Bohr magneton μB = e�/2me 9.274 009 × 10−24 JT−1

Bohr radius a0 = 4πε0�
2/mee

2 0.529 177 × 10−10 m
Boltzmann constant kB 1.380 650 × 10−23 JK−1

Conductance quantum G0 = 2e2/h 7.748 092 × 10−5 S
Electron g-factor ge = 2μe/μB −2.002 319
Electron gyromagnetic ratio γe = 2|μe|/� 1.760 860 × 1011 s−1 T−1

γe/2π 28 024.9540 MHz T−1

Electron magnetic moment μe −9.284 764 × 10−24 J T−1

−1.001 160 μB

Electron mass me 9.109 382 × 10−31 kg
Electric constant ε0 = 1/μ0c

2 8.854 188 × 10−12 F m−1

Elementary charge e 1.602 176 × 10−19 C
Hartree energy Eh = e2/4πε0a0 4.359 744 × 10−18 J

in eV 27.211 383 eV
Josephson constant KJ = 2e/h 483 597.9 × 109 Hz V−1

Magnetic constant μ0 4π × 10−7 N A−2

Magnetic flux quantum Φ0 = h/2e 2.067 834 × 10−15 Wb
Nuclear magneton μN = e�/2mp 5.050 783 × 10−27 JT−1

Neutron mass mn 1.674 927 × 10−27 kg
Neutron magnetic moment μn −0.966 236 × 10−26 J T−1

−1.913 043 μN

Neutron g-factor gn = 2μn/μN −3.826 085
Planck constant h 6.626 069 × 10−34 J s

in eV h/{e} 4.135 667 × 10−15 eV s
Proton g-factor gp = 2μp/μN 5.585 695
Proton gyromagnetic ratio γp = 2μp/� 2.675 222 × 108 s−1 T−1

γp/2π 42.577 482 MHz T−1

Proton magnetic moment μp 1.410 607 × 10−26 JT−1

2.792 847 μN

Proton mass mp 1.672 622 × 10−27 kg
Reduced Planck constant � = h/2π 1.054 572 × 10−34 J s

in eV �/{e} 6.582 119 × 10−16 eV s
Rydberg constant R∞ = α2mec/2h 10 973 731.569 m−1

Rydberg energy Ry = R∞hc 2.179 872 × 10−18 J
in eV 13.605 692 eV

Speed of light c 299 792 458 m s−1

Von Klitzing constant RK = h/e2 25 812.807 572 Ω
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