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Preface

The dramatic increase in design complexity of modern circuits challenges our
ability to verify their functional correctness. Therefore, circuits are often taped-
out with functional errors, which may cause critical system failures and huge
financial loss. While improvements in verification allow engineers to find more
errors, fixing these errors remains a manual and challenging task, consum-
ing valuable engineering resources that could have otherwise been used to im-
prove verification and design quality. In this book we solve this problem by
proposing innovative methods to automate the debugging process throughout
the design flow. We first observe that existing verification tools often focus
exclusively on error detection, without considering the effort required by error
repair. Therefore, they tend to generate tremendously long bug traces, making
the debugging process extremely challenging. Hence, our first innovation is a
bug trace minimizer that can remove most redundant information from a trace,
thus facilitating debugging. To automate the error-repair process itself, we de-
velop a novel framework that uses simulation to abstract the functionality of the
circuit, and then rely on bug traces to guide the refinement of the abstraction.
To strengthen the framework, we also propose a compact abstraction encoding
using simulated values. This innovation not only integrates verification and
debugging but also scales much further than existing solutions. We apply this
framework to fix bugs both in gate-level and register-transfer-level circuits.
However, we note that this solution is not directly applicable to post-silicon
debugging because of the highly-restrictive physical constraints at this design
stage which allow only minimal perturbations of the silicon die. To address this
challenge, we propose a set of comprehensive physically-aware algorithms to
generate a range of viable netlist and layout transformations. We then select
the most promising transformations according to the physical constraints. Fi-
nally, we integrate all these scalable error-repair techniques into a framework
called FogClear. Our empirical evaluation shows that FogClear can repair er-
rors in a broad range of designs, demonstrating its ability to greatly reduce



xxiv Preface

debugging effort, enhance design quality, and ultimately enable the design and
manufacture of more reliable electronic devices.

This book is divided into three parts. In Part I we provide necessary back-
ground to understand this book and illustrate prior art. In Part II we present our
FogClear methodologies and describe theoretical advances in error repair, in-
cluding a counterexample-guided error-repair framework and signature-based
resynthesis techniques. In Part III we explain different components used in
the FogClear flow in detail, including bug trace minimization, functional error
diagnosis and correction, an incremental verification system for physical syn-
thesis, post-silicon debugging and layout repair, as well as methodologies for
spare-cell insertion. Finally, we conclude this book and summarize our key
techniques in the last chapter.



PART I

BACKGROUND AND PRIOR ART



Chapter 1

INTRODUCTION

Most electronic devices that we use today are driven by Integrated Circuits
(ICs) – these circuits are inside computers, cellphones, Anti-lock Braking Sys-
tems (ABS) in cars, and are sometimes even used to regulate a person’s heart-
beat. To guarantee that these electronic devices will work properly, it is critical
to ensure the functional correctness of their internal ICs. However, experi-
ence shows that many IC designs still have functional errors. For instance, a
medical device to treat cancer, called Therac-25, contained a fatal design error
which overexposed patients to radiation, seriously injuring or killing six peo-
ple between 1985 and 1987 [89]. The infamous FDIV bug in the Intel Pentium
processors not only hurt Intel’s reputation but also cost Intel 475 million dollars
to replace the products [146]. A more subtle design error may alter financial
information in a bank’s computer or cause a serious accident by starting a car’s
ABS unexpectedly. To address these problems, enormous resources have been
devoted to finding and fixing such design errors. The process to find the de-
sign errors is called verification, and the process to repair the errors is often
called debugging. Error repair involves diagnosing the causes of the errors and
correcting them.

Due to the importance of ensuring a circuit’s functional correctness, exten-
sive research on verification has been conducted, which allows engineers to
find bugs more easily. However, once a bug is found, the debugging process
remains mostly manual and ad hoc. The lack of automatic debugging tools and
methodologies greatly limits engineers’ productivity and makes thorough ver-
ification more difficult. To automate the debugging process, we propose new
methodologies, tools and algorithms in this book. In this chapter, we first de-
scribe the current circuit design trends and challenges. Next, we briefly review
existing solutions that address the challenges and point out the deficiency in
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current solutions. We then provide an outline of our approach and summarize
the key techniques of this work.

1.1 Design Trends and Challenges
Modern circuit designs strive to provide more functionalities with each prod-

uct generation. To achieve this goal, circuits become larger and more com-
plicated with each generation, and designing them correctly becomes more
and more difficult. One example that shows this trend is Intel’s microproces-
sors. The 80386 processor released in 1985 barely allows the execution of the
Windows operating system and contains only 28 thousand transistors. On the
other hand, the Core 2 Duo processor released in 2006 supports very com-
plicated computations and is several hundred times more powerful than the
80386 processor. In order to provide this power, 167 million transistors are
used. Needless to say, designing a circuit of this size and making sure that it
works properly are extremely challenging tasks.

No matter how fast and powerful a circuit is, it may become useless if its
behavior differs from what is expected. To ensure the functional correctness
of a circuit, tremendous resources have been devoted to verification. As a
result, verification already accounts for two thirds of the circuit design cycle
and the overall design/verification effort [13, 110]. However, many ICs are still
released with latent errors, demonstrating how poor the current techniques are
in ensuring functional correctness. To this end, various estimates indicate that
functional errors are currently responsible for 40% of failures at the first circuit
production [13, 110], and the growth in design size and overall complexity is
much faster than the growth of engineers’ verification capabilities. Therefore,
verification begins to limit the features that can be implemented in a design
[49], essentially becoming the bottleneck that hampers the improvement of
modern electronic devices.

To address this problem, the current trend is to automate testbench genera-
tion and verification in order to find design bugs more thoroughly. Once a bug
is found, however, fixing the bug is still mostly manual and ad hoc. Therefore,
engineers often need to spend a great amount of time analyzing and fixing the
design errors. Although waveform viewers and simulators are great aids to this
end, there are currently no good methodologies and algorithms that can auto-
mate the debugging process. The lack of automatic debugging methodologies
not only slows down the verification process but also makes thorough design
verification more difficult. To this end, Intel’s latest Core 2 Duo processor can
serve as an example [160]: a detailed analysis of published errata performed
by Theo de Raadt in mid 2007 identified 20–30 bugs that cannot be masked by
changes in Basic Input/Output System (BIOS) and operating systems, while
some may be exploited by malicious software. De Raadt estimates that In-
tel will take a year to fix these bugs in Core 2 processors. It is particularly
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Source: IBM

Figure 1.1. Relative delay due to gate and interconnect at different technology nodes. Delay
due to interconnect becomes larger than the gate delay at the 90 nm technology node.

alarming that these bugs escaped Intel’s verification and validation method-
ologies, which are considered among the most advanced and effective in the
industry. A recent bug found in AMD Phenom processor [152] further shows
how difficult the verification problem is.

Another challenge comes from the improvement in IC manufacturing tech-
nology that allows smaller transistors to be created on a silicon die. This im-
provement enables the transistors to switch faster and consume less power.
However, the delay due to interconnect is also becoming more significant be-
cause of the miniaturization in transistor size. As Figure 1.1 shows, delay due
to interconnect already becomes larger than the gate delay at the 90 nm tech-
nology node. To mitigate this effect, various physical synthesis techniques and
even more powerful optimizations such as retiming are used [120]. These op-
timizations further exacerbate the verification problem in several ways. First,
since Electronic Design Automation (EDA) tools may still contain unexpected
bugs [9], it is important to verify the functional correctness of the optimized cir-
cuit. However, once a bug is found, it is very difficult to pinpoint the optimiza-
tion step that caused the bug because a large number of circuit modifications
may have been performed, which makes repairing the error very challenging.
Second, to preserve the invested physical synthesis effort, bugs found in late
design stages must be repaired carefully so as to preserve previous optimiza-
tion effort. This is significantly different from traditional design approaches,
which restrict bug-fixing to the original high-level description of the circuit and
resynthesize it from scratch after every such fix. In summary, the increase in
circuit complexity and miniaturization in transistor size make verification and
debugging much more difficult than they were just ten years ago.
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To support the miniaturization of CMOS circuits, the required masks also
become much more sophisticated and expensive. As Figure 1.2 shows [153],
mask cost already approaches 3 million dollars per set at the 65 nm technology
node. This cost makes any functional mistakes after circuit production very
expensive to fix, not to mention the loss in revenue caused by delayed market
entry may be even higher than the mask cost. In addition, due to the lack of
automatic post-silicon debugging methodologies, repairing design errors post-
silicon is much more challenging than repairing them pre-silicon. As a result,
it is important to detect and repair design errors as early in the circuit design
flow as possible. On the other hand, any post-silicon error-repair technique
that allows the reuse of lithography masks can also alleviate this problem.

Figure 1.2. Estimated mask costs at different technology nodes. Source: ITRS’05 [153].

1.2 State of the Art
To ensure the functional correctness of a circuit, the current trend is to im-

prove its verification. Among the techniques and methodologies available for
functional verification, simulation-based verification is prevalent in industry
because of its linear and predictable complexity and its flexibility to be applied,
in some form, to any design. The simplest verification method, called direct
test, is to manually develop suites of input stimuli to test the circuit. Since
developing the test suites can be tedious and time consuming, a more flexi-
ble methodology called random simulation is often used. Random simulation
involves connecting a logic simulator with stimuli coming from a constraint-
based random generator, that is, an engine that can automatically produce ran-
dom legal inputs for the design at a very high rate, based on a set of rules
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(or constraints) derived from the specification document. In order to detect
bugs, assertion statements, or checkers, are embedded in the design and con-
tinuously monitor the simulated activity for anomalies. When a bug is detected,
the simulation trace leading to it is stored and can be replayed later to analyze
the conditions that led to the failure. This trace is called a bug trace.

Although simulation is scalable and easy to use, it cannot guarantee the cor-
rectness of a circuit unless all possible test vectors can be exhaustively tried.
Therefore, another verification approach called formal verification began to
attract increasing attention from industry. Formal verification tools use mathe-
matical methods to prove or disprove the correctness of a design with respect
to a certain formal specification or property. In this way, complete verification
can be achieved. For example, symbolic simulation, Bounded Model Checking
(BMC) and reachability analysis [16, 72] all belong to this genre. However,
formally verifying the correctness of a design tends to become more difficult
when design gets larger. Therefore, currently it is often applied to small and
critical components within large designs only.

To leverage the advantages of both simulation and formal approaches, a
hybrid verification methodology, called semi-formal verification, has recently
become more popular [70]. Semi-formal techniques strive to provide better
scalability with minimal loss in their verification power. To achieve these
goals, semi-formal techniques often use heuristics to intelligently select the
verification methods to apply, either simulation or formal methods. When the
current methods run out of steam, they switch to other methods and continue
verification based on previous results. In this way, semi-formal techniques are
able to provide a good balance between scalability and verification power.

The verification techniques described so far focus on detecting design er-
rors. After errors are found, the causes of the errors must be identified so
that the errors can be corrected. Automatic error diagnosis and correction at
the gate level have been studied for decades because this is the level at which
the circuits were traditionally designed. To simplify error diagnosis and cor-
rection, Abadir et al. [1] proposed an error model to capture the bugs that
occur frequently, which has been used in many subsequent studies [86, 130].
While early work in this domain often relies on heuristics and special error
models [1, 54, 86, 97, 130], recent improvements in error-repair theories and
Boolean-manipulation technologies have allowed more robust techniques to be
developed [5, 6, 125, 117, 126, 142]. These techniques are not limited by spe-
cific error models and have more comprehensive error diagnosis or correction
power than previous solutions.

After automatic logic-synthesis tools became widely available, design tasks
shifted from developing gate-level netlists to describing the circuit’s functions
at a higher-level abstraction, called the Register-Transfer Level (RTL). RTL
provides a software-like abstraction that allows designers to concentrate on the
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functions of the circuit instead of its detailed implementations. Due to this
abstraction, gate-level error diagnosis and correction techniques cannot be ap-
plied to the RTL easily. However, this is problematic because most design
activity takes place at the RTL nowadays. To address this problem, Shi et al.
[122] and Rau et al. [111] employed a software-analysis approach to iden-
tify statements in the RTL code that may be responsible for the design errors.
However, these techniques can return large numbers of potentially erroneous
sites. To narrow down the errors, Jiang et al. [75] proposed a metric to prior-
itize the errors. Although their techniques can facilitate error diagnosis, error
correction remains manual. Another approach proposed by Bloem et al. [18]
formally analyzes the RTL code and the failed properties, and it is able to di-
agnose and repair design errors. However, their approach is not scalable due
to the heavy use of formal-analysis methods. Since more comprehensive RTL
debugging methodologies are still currently unavailable, automatic RTL error
repair remains a difficult problem and requires more research.

Another domain that began to attract people’s attention is that of post-silicon
debugging. Due to the unparalleled complexity of modern circuits, more and
more bugs escaped pre-silicon verification and were found post-silicon. Post-
silicon debugging is considerably more difficult than pre-silicon debugging due
to its limited observability: without special constructs, only signals at the pri-
mary inputs and outputs can be observed. Even if the bug can be diagnosed
and a fix is found, changing the circuit on a silicon die to verify the fix is also
difficult if at all possible. To address the first problem, scan chains [23] have
been used to observe the values in registers. To address the second problem,
Focused Ion Beam (FIB) has been introduced to physically change the metal
connections between transistors on a silicon die. Alternatively, techniques that
use programmable logic have been proposed [93] for this purpose. A recent
start-up company called DAFCA [159] proposed a more comprehensive ap-
proach that addresses both problems by inserting special constructs before the
circuit is taped out. Although these techniques can facilitate post-silicon de-
bugging, the debugging process itself remains manual and ad hoc. Therefore,
post-silicon debugging is still mostly an art, not a science [67].

1.3 New Opportunities
Despite the vast amount of verification and debugging effort invested in

modern circuits, these circuits are still often released with latent bugs, showing
the deficiency of current methodologies. One major reason is that existing error
diagnosis and correction techniques typically lack the power and scalability to
handle the complexity of today’s designs. Another reason is that existing ver-
ification techniques often focus on finding design errors without considering
how the errors should be fixed. Therefore, the bug traces produced by veri-
fication can be prohibitively long, making human analysis extremely difficult
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and further hampering the deployment of automatic error-repair tools. As a
result, error repair remains a demanding, semi-manual process that often intro-
duces new errors and consumes valuable resources, essentially undermining
thorough verification.

To address these problems, we propose a framework called FogClear that
automates the error-repair processes at various design stages, including front-
end design, back-end logic design, back-end physical design and post-silicon
debugging. We observe that major weakness exists in several key components
required by automatic error repair, and this deficiency may limit the power and
scalability of the framework. To ensure the success of our methodologies, we
also develop innovative data structures, theories and algorithms to strengthen
these components. Our enhanced components are briefly described below.

Butramin reduces the complexity of bug traces produced by verification for
easier error diagnosis.

REDIR utilizes bug traces to automatically correct design errors at the RTL.

CoRé utilizes bug traces to automatically correct design errors at the gate
level.

InVerS monitors physical synthesis optimizations to identify potential er-
rors and facilitates debugging.

To repair post-silicon electrical errors, we propose SymWire, a symmetry-
based rewiring technique, to perturb the layout and change the electrical
characteristics of the erroneous wires. In addition, we devise a SafeResynth
technique to identify alternative signal sources that can generate the same
signal, and use the identified sources to change the wiring topology in order
to repair electrical errors.

To repair post-silicon functional errors, we propose PAFER and PARSyn
that can change a circuit’s functionality via wire reconnections. In this
way, transistor masks can be reused and respin cost can be reduced.

The strength of these components stems from the intelligent combination of
simulation and formal verification techniques. In particular, recent improve-
ments in SATisfiability (SAT) solvers provide the power and scalability to han-
dle modern circuits. By enhancing the power of key components, as well as
unifying verification and debugging into the same framework, the FogClear
framework promises to facilitate the debugging processes at various design
stages, thus improving the quality of electronic devices in several categories.
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1.4 Key Innovations and Book Outline
In this book we present advanced theories and methodologies that address

the error diagnosis and correction problem of digital circuits. In addition, we
propose scalable and powerful algorithms to match the error-repair require-
ments at different design stages. On the methodological front, we promote
interoperability between verification and debugging by devising new design
flows that automate the error-repair processes in front-end design, back-end
logic design, back-end physical design and post-silicon debugging. On the
theoretical front, we propose a counterexample-guided error-repair framework
that performs abstraction using signatures, which is refined by counterexam-
ples that fail further verification. This framework integrates verification into
debugging and scales much further than existing solutions due to its innovative
abstraction mechanism. To support the error-correction needs in the frame-
work, we design two resynthesis algorithms, which are based on a compact
encoding of resynthesis information called Pairs of Bits to be Distinguished
(PBDs). These resynthesis techniques allow us to repair design errors effec-
tively. We also develop a comprehensive functional symmetry detector that
can identify permutational, phase-shift, higher-level, as well as composite in-
put and output symmetries. We apply this symmetry-detection technique to
rewiring and use it to repair post-silicon electrical errors.

To enhance the robustness and power of FogClear, it is important to make
sure that each component used in the framework is scalable and effective. We
observe that existing solutions exhibit major weakness when we implement
several components critical to our framework. Therefore, we develop new
techniques to strengthen these components. In particular, we observe that ver-
ification tools often strive to find many errors without considering how these
errors should be resolved. As a result, the returned bug traces can be tremen-
dously long. Existing solutions to reduce the complexity of the traces, however,
rely heavily on formal methods and are not scalable [53, 65, 68, 77, 113, 115,
121]. To this end, we propose a bug trace minimizer called Butramin using
several simulation-based methods. This minimizer scales much further than
existing solutions and can handle more realistic designs. Another component
that receives little attention is RTL error diagnosis and correction. Although
techniques that address this problem began to emerge in the past few years [18,
75, 111, 122, 126], they are not accurate or scalable enough to handle today’s
circuits. To design an effective automatic RTL debugger, we extend state-of-
the-art gate-level solutions to the RTL. Our empirical evaluation shows that our
debugger is powerful and accurate, yet it manages to avoid drawbacks common
in gate-level error analysis and is highly scalable. On the other end of the de-
sign flow, we observe that post-silicon debugging is often ad hoc and manual.
To solve this problem, we propose the concept of physical safeness to identify
physical synthesis techniques that are suitable for this design stage. In addi-
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tion, we propose several new algorithms that can repair both functional and
electrical errors on a silicon die.

The rest of the book is organized as follows. Part I, which includes Chapters
2 and 3, provides necessary background and illustrates prior art. In particular,
Chapter 2 outlines the current design and verification landscapes. In this chap-
ter, we discuss the front-end design flow, followed by back-end design flows
and the post-silicon debugging process. Chapter 3 introduces several tradi-
tional techniques for finding and fixing bugs, including simulation-based ver-
ification, formal-verification methods, design-for-debug constructs and post-
silicon metal fix.

Part II, which includes Chapters 4, 5, 6, and 7, illustrates our FogClear
methodologies and presents our theoretical advances in error repair. We start
from the proposed FogClear design and verification methodologies in Chapter 4.
In this chapter, we describe how our methodologies address the error-repair
problems at different design stages. Chapter 5 then illustrates our gate-level
functional error correction framework, CoRé, that uses counterexamples re-
ported by verification to automatically repair design errors at the gate level
[40, 41]. It scales further than existing techniques due to its intelligent use of
signature-based abstraction and refinement. To support the error-correction re-
quirements in CoRé, we propose two innovative resynthesis techniques,
Distinguishing-Power Search (DPS) and Goal-Directed Search (GDS) [40, 41],
in Chapter 6. These techniques can be used to find resynthesized netlists that
change the functionality of the circuit to match a given specification. To allow
efficient manipulation of logic for resynthesis, we also describe a compact en-
coding of required resynthesis information in the chapter, called Pairs of Bits
to be Distinguished (PBDs). Finally, Chapter 7 presents our comprehensive
symmetry-detection algorithm based on graph-automorphism, and we applied
the detected symmetries to rewiring in order to optimize wirelength [36, 37].
This rewiring technique is also used to repair electrical errors as shown in Sec-
tion 11.4.1.

Part III, which includes Chapters 8, 9, 10, 11, and 12, discusses specific Fog-
Clear components that are vital to the effectiveness of our methodologies. We
start from our proposed bug trace minimization technique, Butramin [34, 35],
in Chapter 8. Butramin considers a bug trace produced by a random simula-
tor or semi-formal verification software and generates an equivalent trace of
shorter length. By reducing the complexity of the bug trace, error diagnosis
will become much easier. Next, we observe that functional mistakes contribute
to a large portion of design errors, especially at the RTL and the gate level.
Our solutions to this end are discussed in Chapter 9, which includes gate-level
error repair for sequential circuits and RTL error repair [45]. Our techniques
can diagnose and repair errors at these design stages, thus greatly saving engi-
neers’ time and effort. Since interconnect begins to dominate delay and power
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consumption at the latest technology nodes, more aggressive physical synthesis
techniques are used, which exacerbates the already difficult verification prob-
lem. In Chapter 10 we describe an incremental verification framework, called
InVerS, that can identify potentially erroneous netlist transformations produced
by physical synthesis [44]. InVerS allows early detection of bugs and promises
to reduce the debugging effort.

After a design has been taped-out, bugs may be found on a silicon die. We
notice that due to the special physical constraints in post-silicon debugging,
most existing pre-silicon error-repair techniques cannot be applied to this de-
sign stage. In Chapter 11 we first propose the concept of physical safeness to
measure the impact of physical optimizations on the layout [38, 39], and then
use it to identify physical synthesis techniques that can be applied post-silicon.
To this end, we observe that safe techniques are particularly suitable for post-
silicon debugging; therefore, we propose a SafeResynth technique based on
simulation and on-line verification. We then illustrate how functional errors
can be repaired by our PAFER framework and PARSyn algorithm [42, 43]. In
addition, we describe how to adapt symmetry-based rewiring and SafeResynth
for electrical error repair. In Chapter 12 we describe new methodologies for
spare-cell insertion, which are important to the success of post-silicon debug-
ging [46]. Finally, Chapter 13 concludes this book by providing a summary of
key techniques described in this book.



Chapter 2

CURRENT LANDSCAPE IN DESIGN
AND VERIFICATION

Before delving into error-repair techniques, we are going to review how dig-
ital circuits are developed and verified first. In this chapter we describe current
flows for front-end design, back-end logic design, back-end physical design
and post-silicon debugging. We also discuss the bugs that may appear at each
design stage, as well as the current verification and debugging methodologies
that attack them.

2.1 Front-End Design
Figure 2.1 illustrates the current front-end design flow. Given a specifica-

tion, typically three groups of engineers will work on the same design, includ-
ing architecture design, testbench creation and RTL development1. The flow
shown in Figure 2.1 uses simulation-based verification; however, flows using
formal verification are similar. Chapter 3 provides more detailed discussions
on these verification methods.

In this design flow, the architecture group first designs a high-level initial
model using high-level languages such as C, C++, SystemC, Vera [163], e
[150] or SystemVerilog. At the same time, the verification group develops a
testbench to verify the initial model. If verification fails, the testbench and/or
model need to be corrected, after which their correctness is verified again.
This process keeps repeating until the high-level model passes verification. At
this time, a golden high-level model and testbench will be produced. They
will be used to verify the RTL initial model developed by the RTL group. If
verification passes, an RTL golden model will be produced. If verification

1Although there may be other groups of engineers working on other design aspects, such as power, we do
not consider them in this design flow.
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Figure 2.1. The current front-end design flow.

fails, the RTL model contains bugs and must be fixed. Usually, a bug trace that
exposes the bugs in the RTL model will be returned by the verification tool.

To address the debugging problem, existing error-repair techniques often
partition the problem into two steps. In the first step, the circuit is diagnosed
to identify potential changes that can alter the incorrect output responses. In
the second step, the changes are implemented. The first step is called error
diagnosis, and the second step is called error correction. Currently, functional
error diagnosis and correction are often performed manually using the steps de-
scribed below. This manual error-repair procedure is also shown in the “Man-
ual functional error correction” block in Figure 2.1.

1 The bug trace is minimized to reduce its complexity for easier error diag-
nosis.

2 The minimized bug trace is diagnosed to find the cause of the bugs. Debug-
ging expertise and design knowledge are usually required to find the cause
of the bugs.
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3 After the cause of the bugs is found, the RTL code must be repaired to
remove the bugs. The engineer who designed the erroneous block is usually
responsible for fixing the bugs.

4 The repaired RTL model needs to be verified again to ensure the correctness
of the fix and prevent new bugs from being introduced by the fix.

Errors in semiconductor products have different origins, ranging from poor
specifications, miscommunication among designers, and designer’s mistakes
– conceptual or minor. Table 2.1 lists 15 most common error categories in
microprocessor designs specified at the Register-Transfer Level (RTL), col-
lected from student projects at the University of Michigan between 1996 and
1997 [27]. In addition to academic data, Intel also analyzed the sources of
bugs found in the Pentium 4 processor [12], and the major categories are as
follows: RTL coding (18.1%), microarchitecture (25.1%), logic/microcode
changes (18.4%) and architecture (2.8%).

Table 2.1. Distribution of design errors (in %) in seven microprocessor projects.

Error category Microprocessor project Ave.
LC2 DLX1 DLX2 DLX3 X86 FPU FXU

Wrong signal source 27.3 31.4 25.7 46.2 32.8 23.5 25.7 30.4
Missing instance 0.0 28.6 20.0 23.1 14.8 5.9 15.9 15.5
Missing inversion 0.0 8.6 0.0 0.0 0.0 47.1 16.8 10.3
New category 9.1 8.6 0.0 7.7 6.6 11.8 4.4 6.9
(Sophisticated)
Unconnected inputs 0.0 8.6 14.3 7.7 8.2 5.9 0.9 6.5
Missing inputs 9.1 8.6 5.7 7.7 11.5 0.0 0.0 6.1
Wrong gate/module 13.6 0.0 11.4 0.0 9.8 0.0 0.0 5.0
type
Missing item/factor 9.1 2.9 5.7 0.0 0.0 0.0 4.4 3.2
Wrong constant 9.1 0.0 2.9 0.0 0.0 0.0 9.7 3.1
Always statement 9.1 0.0 2.9 0.0 0.0 0.0 2.7 2.1
Missing 0.0 0.0 0.0 0.0 4.9 5.9 0.9 1.7
latch/flip-flop
Wrong bus width 4.5 0.0 0.0 0.0 0.0 0.0 7.1 1.7
Missing state 9.1 0.0 0.0 0.0 0.0 0.0 0.0 1.3
Conflicting outputs 0.0 0.0 0.0 7.7 0.0 0.0 0.0 1.1
Conceptual error 0.0 0.0 2.9 0.0 3.3 0.0 0.9 1.0

Reproduced from [27, Table4], where the top 15 most-common errors are shown. “New cate-
gory” includes timing errors and sophisticated, difficult-to-fix errors.

Since the purpose of RTL development is to describe the logic function of
the circuit, the errors occurring at the RTL are mostly functional. We observe
from Table 2.1 that most errors are simple in that they only require the change
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of a few lines of code, while complex errors only contribute to 6.9% of the
total errors. This is not surprising since competent designers should be able to
write code that is close to the correct one [60]. However, finding and fixing
those bugs are still challenging and time-consuming. Since fixing errors at
later design stages will be much more difficult and expensive, it is especially
important to make sure that the RTL code describes the function of the circuit
correctly.

To address this problem, techniques that focus on RTL debugging have
been developed recently. The first group of techniques [111, 122] employ a
software-analysis approach that implicitly uses multiplexers (MUXes) to iden-
tify statements in the RTL code that are responsible for the errors. However,
these techniques can return large numbers of potentially erroneous sites. To
address this problem, Jiang et al. [75] proposed a metric to prioritize the er-
rors. Their techniques greatly improve the quality of error diagnosis, but error
correction remains manual. The second group of techniques, such as those in
[18], uses formal analysis of an HDL description and failed properties; because
of that these techniques can only be deployed in a formal verification frame-
work, and cannot be applied in a simulation-based verification flow common in
the industry today. In addition, these techniques cannot repair identified errors
automatically. Finally, the work by Staber et al. [126] can diagnose and correct
RTL design errors automatically, but it relies on state-transition analysis and
hence, it does not scale beyond tens of state bits. In addition, this algorithm
requires a correct formal specification of the design, which is rarely available
in today’s design environments because its development is often as challenging
as the design process itself. In contrast, the most common type of specification
available is a high-level model, often written in a high-level language, which
produces the correct I/O behavior of the system. As we show in Section 4.1,
our FogClear methodology is scalable and can automate both error diagnosis
and repair at the RTL. In addition, it only requires the correct I/O behavior to
be known.

2.2 Back-End Logic Design
Front-end design flow produces an RTL model that should be functionally

correct. The next step is to produce a gate-level netlist that has the same func-
tionality by performing back-end logic design, followed by back-end physical
design that generates the layout. This section discusses the logic design flow,
and the next section describes the physical design flow.

Figure 2.2 shows the current back-end logic design flow. Given an RTL
golden model, this flow produces a gate-level netlist that efficiently implements
the logic functions of the RTL model. This goal is achieved by performing
logic synthesis and various optimizations, which are already highly automated.
However, since logic synthesis may not capture all the behavior of the RTL
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Figure 2.2. The current back-end logic design flow.

code faithfully [19], it is possible that the produced netlist does not match the
RTL model. In addition, unexpected bugs may still exist in synthesis tools [9].
Therefore, verification is still required to ensure the correctness of the netlist.

Another reason to fix functional errors at the gate-level instead of the RTL
is to preserve previous design effort, which is especially important when the
errors are discovered at a late stage of the design flow. In the current design
methodology, functional errors discovered at an early stage of the design flow
are often conceivable to be fixed by changing the RTL code and synthesiz-
ing the entire netlist from scratch. However, such a design strategy is typi-
cally inefficient when the errors are discovered at a late stage of the design
flow because previously performed optimizations will be invalidated. Addi-
tionally, gate-level bug-fixing offers possibilities not available when working
with higher-level specifications, such as reconnecting individual wires, chang-
ing individual gate types, etc.

One way to verify the correctness of the netlist is to rerun the testbench
developed for the RTL model, while Figure 2.2 shows another approach where
the netlist is verified against the RTL model using equivalence checking. In
either approach, when verification fails, a counterexample (or a bug trace for
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the simulation-based approach) will be produced to expose the mismatch. This
counterexample will be used to debug the netlist.

Before logic synthesis was automated, engineers designed digital circuits at
the gate level or had to perform synthesis themselves. In this context, Abadir
et al. [1] proposed an error model to capture the bugs that occur frequently
at this level. In the current design methodology, however, gate-level netlists
are often generated via synthesis tools. As a result, many bugs that exist in
a netlist are caused by the erroneous RTL code and may not be captured by
this model. On the other hand, bugs introduced by Engineering Change Order
(ECO) modifications or EDA tools can often be categorized into the errors in
this model.

Similar to RTL debugging, existing gate-level error-repair techniques also
partition the debugging problem into Error Diagnosis (ED) and Error Correc-
tion (EC). The solutions that address these two problems are described below.

Error diagnosis has been extensively studied in the past few decades. For
example, early work by Madre et al. [97] used symbolic simulation and Boolean
equation solving to identify error locations, while Kuo [86] used Automatic
Test Pattern Generation (ATPG) and don’t-care propagation. Both of these
techniques are limited to single errors only. Recently, Smith et al. [125]
and Ali et al. [6] used Boolean satisfiability (SAT) to diagnose design errors.
Their techniques can handle multiple errors and are not limited to specific er-
ror models. We adopt these techniques for error diagnosis because of their
flexibility, which will be described in detail in Chapter 5. To further improve
the scalability of SAT-based error diagnosis, Safarpour et al. [116] proposed
an abstraction-refinement scheme for sequential circuits by replacing registers
with primary inputs, while Ali et al. [5] proposed the use of Quantified Boolean
Formulas (QBF) for combinational circuits.

Error correction implements new logic functions found by diagnosis to fix
the erroneous behavior of the circuit. Madre et al. [97] pointed out that the
search space of this problem is exponential and, in the worst case, is similar to
that of synthesis. As a result, heuristics have been used in most publications.
Chung et al. [54] proposed a Single-Logic-Design-Error (SLDE) model in their
ACCORD system, and were able to detect and correct errors that comply with
the model. To further reduce the search space, they also proposed screen tests
to prune the search. The AutoFix system from Huang et al. [73] assumed that
the specification is given as a netlist and equivalence points can be identified
between the specification and the circuit. The error region in the circuit can
then be reduced by replacing the equivalent points with pseudo-primary inputs
and outputs, and the errors are corrected by resynthesizing the new functions
using the pseudo-primary inputs. Lin et al. [92] first synthesized and min-
imized the candidate functions using BDDs, and then replaced the inputs to
the BDDs by signals in the circuit to reuse the existing netlist. Swamy et al.
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[128] synthesized the required functions by using the signals in minimal re-
gions. Work by Veneris et al. [130] handled this problem by trying possible
fixes according to the error model proposed by Abadir et al. [1]. Staber et al.
[126] proposed a theoretically sound approach that fixes design errors by pre-
venting the reach of bug states, which can also be applied to RTL debugging
and software error correction. Although these techniques have been successful
to some degree, their correction power is often limited by the heuristics em-
ployed or the logic representations used. For example, either the error must
comply with a specific error model [54, 130] or the specification must be given
[54, 73, 126]. Although the work by Lin et al. [92] and Swamy et al. [128] has
fewer restrictions, their techniques require longer runtime and do not scale well
due to the use of BDDs. The work by Staber et al. [126] also does not scale
well because of the heavy use of state-transition analysis. A recent approach
proposed by Yang et al. [142] managed to avoid most drawbacks in current
solutions. However, their techniques are based on Sets of Pairs of Functions to
be Distinguished (SPFDs), which are more difficult to calculate and represent
than the signature-based solutions shown in Section 6.1.2.

Table 2.2. A comparison of gate-level error diagnosis and correction techniques.

Technique ED/ No. of Error Scalability Requirement
EC errors model

ACCORD Both Single SLDE Moderate Functional
[54] (BDDs) specification
AutoFix Both Multiple None Moderate Golden
[73] (BDDs) netlist
Kuo [86] ED Single Abadir Good Test

(ATPG) vectors
Lin [92] Both Multiple None Moderate Golden

(BDDs) netlist
Madre [97] Both Single PRIAM Moderate Functional

specification
Smith ED Multiple None Good Test
[125] (SAT) vectors
Staber [126] Both Multiple None Moderate Functional

(State analysis) specification
Veneris Both Multiple Abadir Good Test
[130] (ATPG) vectors
CoRé Both Multiple None Good (SAT, Test
(Chapter 5) signatures) vectors

A comparison of the work presented in this book (CoRé) with previous error
diagnosis and correction techniques is given in Table 2.2. In the table, “No.
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Figure 2.3. The current back-end physical design flow.

of errors” is the number of errors that can be detected or corrected by the
technique. Our gate-level error-repair framework, CoRé, will be described in
detail in Chapter 5.

2.3 Back-End Physical Design
The current back-end physical design flow is shown in Figure 2.3. Starting

from the golden netlist, place and route is first performed to produce the lay-
out. Sometimes clock or scan synthesis also needs to be performed, as well as
physical synthesis that optimizes timing or power of the circuit. Post-layout
verification is then carried out to ensure the correctness of the layout. If ver-
ification fails, the cause of the error must be diagnosed. If the error is due to
timing violations, layout timing repair needs to be performed to fix the error,
usually via more iterations of physical synthesis. Since bugs are still common
in today’s logic and physical synthesis tools [9], logic errors may still be in-
troduced. When this happens, the manual functional error correction process
shown in Figure 2.2 needs to be performed, and this process will produce a
repaired netlist. The layout is then modified to reflect the change in the netlist,
after which its correctness is verified again.
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2.4 Post-Silicon Debugging
Figure 2.4 shows the current post-silicon debugging flow. To verify the

correctness of a silicon die, engineers apply numerous test vectors to the die
and then check their output responses. If the responses are correct for all the
applied test vectors, then the die passes verification. If not, then the test vectors
that expose the design errors become the bug trace that can be used to diagnose
and correct the errors. The trace will then be diagnosed to identify the root
causes of the errors. Typically, there are three types of errors: functional,
electrical and manufacturing/yield. In this work we only focus on the first two
types.

Figure 2.4. The current post-silicon debugging flow.

After errors are diagnosed, the layout is modified to correct them, and the
repaired layout must be verified again. This process is repeated until no more
errors are exposed. In post-silicon debugging, however, it is often unnecessary
to fix all the errors because repairing a fraction of the errors may be sufficient
to enable further verification. For example, a processor may contain a bug in
its ALU and another one in its branch predictor. If fixing the bug in the ALU
is sufficient to enable further testing, then the fix in the branch predictor can be
postponed to the next respin. On the other hand, all the bugs should be fixed
before the chip is shipped to the customers.

Josephson documented the major silicon failure mechanisms in micropro-
cessors [78], where the most common failures (excluding dynamic logic) are
drive strength (9%), logic errors (9%), race conditions (8%), unexpected ca-
pacitive coupling (7%), and drive fights (7%). Another important problem at
the latest technology nodes are antenna effects, which can damage a circuit
during its manufacturing or reduce its reliability. These problems often can
only be identified in post-silicon debugging.
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Pre-silicon and post-silicon debugging differ in several significant ways.
First, conceptual bugs that require deep understanding of the chip’s function-
ality are predominantly introduced when the chip is being designed and well
before the first silicon is available, and such bugs may not be fixable by au-
tomatic tools. As Table 2.1 shows, however, complex and conceptual errors
only contribute to 7.9% of the errors at early design stages, and such errors can
often be caught by pre-silicon verification. As a result, post-silicon functional
bugs are mostly subtle errors that only affect the output responses of a few
input vectors, and their fixes can usually be implemented with very few gates.
As an analysis of commercial microprocessors suggests [133], faults in con-
trol logic contribute to 52% of the total errors, which are typically subtle and
only appear in rare corner-cases. However, repairing such errors requires the
analysis of detailed layout information, making it a highly tedious and error-
prone task. As we show in Chapter 11, our work can automate this process.
Second, errors found post-silicon typically include functional and electrical
problems, as well as those related to manufacturability and yield. However,
issues identified pre-silicon are predominantly related to functional and timing
errors.2 Problems that manage to evade pre-silicon validation are often diffi-
cult to simulate, analyze and even duplicate. Third, the observability of the
internal signals on a silicon die is extremely limited. Most internal signals can-
not be directly observed, even in designs with built-in scan chains (see Section
3.3.1) that enable access to sequential elements. Fourth, verifying the correct-
ness of a fix is challenging because it is difficult to physically implement a
fix in a chip that has already been manufactured. Although techniques such
as FIB exist (see Section 3.3.2), they typically can only change metal layers
of the chip and cannot create any new transistor (this process is often called
metal fix). Finally, it is especially important to minimize the layout area af-
fected by each change in post-silicon debugging because smaller changes are
easier to implement with good FIB techniques, and there is a smaller risk of
unexpected side effects. Due to these unusual circumstances and constraints,
most debugging techniques prevalent in early design stages cannot be applied
to post-silicon debugging. In particular, conventional physical synthesis and
ECO techniques affect too many cells or wire segments to be useful in post-
silicon debugging. As illustrated in Figure 2.5(b), a small modification in the
layout that sizes up a gate requires changes in all transistor masks and refabri-
cation of the chip. On the other hand, our techniques are aware of the physical
constraints and can repair errors with minimal physical changes, as shown in
Figure 2.5(c).

2Post-silicon timing violations are often caused by electrical problems and are only their symptoms.
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(a) (b) (c)

Figure 2.5. Post-silicon error-repair example. (a) The original buggy layout with a weak driver
(INV). (b) A traditional resynthesis technique finds a “simple” fix that sizes up the driving gate,
but it requires expensive remanufacturing of the silicon die to change the transistors. (c) Our
physically-aware techniques find a more “complex” fix using symmetry-based rewiring, and the
fix can be implemented simply with a metal fix and has smaller physical impact.

To repair post-silicon functional errors, the current trend is to provide more
visibility and controllability of the silicon die. For example, most modern
designs incorporate a technique, called scan test [23], into their chips. This
technique allows engineers to observe the values of internal registers and can
greatly improve the design signals’ observability. In order to change the logic
on a silicon die, spare cells are often scattered throughout a design to enable
metal fix [79]. The number of spare cells depends on the methodology, as well
as the expectation for respins and future steppings, and this number can reach
1% of all cells in mass-produced microprocessor designs. Our methodology
to insert spare cells is discussed in Chapter 12. Alternatively, Lin et al. [93]
proposed the use of programmable logic for this purpose. DAFCA provides a
more comprehensive solution that further improves the observability of silicon
dies and enables logic changes on the dies [2, 159]. A success story can be
found in [76].

Debugging electrical errors is often more challenging than debugging func-
tional errors because it does not allow the deployment of logic debugging tools
that designers are familiar with. In addition, there are various reasons for elec-
trical errors [78], and analyzing them requires profound design and physical
knowledge. Although techniques to debug electrical errors exist (e.g., voltage-
frequency Shmoo plots [10]), they are often heuristic in nature and require
abundant expertise and experience. As a result, post-silicon debugging is cur-
rently an art, not a science. Even if the causes of the errors can be identified,
finding valid fixes is still challenging because most existing resynthesis tech-
niques require changes in transistor cells and do not allow metal fix. To address
this problem, techniques that allow post-silicon metal fix have been developed
recently, such as ECO routing [140]. However, ECO routing can only repair
a fraction of electrical errors because it cannot find layout transformations in-
volving logic changes. To repair more difficult bugs, transformations that also
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utilize logic information are required. For example, one way to repair a driv-
ing strength error is to identify alternative signal sources that also generate the
same signal, and this can only be achieved by considering logic information.
All these issues will be addressed and solved by the FogClear post-silicon de-
bugging methodology that we present in Chapter 11.



Chapter 3

FINDING BUGS AND REPAIRING CIRCUITS

In the previous chapter we described the current design and verification
methodologies at different design stages. In this chapter we take a closer
look at the verification techniques used in these methodologies. Among the
techniques available for functional verification, simulation-based verification
is prevalent in the industry because of its linear and predictable complexity
as well as its flexibility in being applied, in some form, to any design. How-
ever, simulation can only find bugs that can be exposed by the given stimuli.
Therefore, unless all possible input scenarios can be covered by the stimuli, the
correctness of the design cannot be guaranteed. To address this problem, for-
mal methods have been developed to prove the correctness of the design under
certain pre-defined properties. Nonetheless, their scalability is often limited
because the proving process can be very complicated. In addition, developing
properties may be as difficult as developing the design itself. Therefore, formal
techniques are applied to only a small portion of the current designs. To over-
come this problem, hybrid techniques that utilize both simulation and formal
methods have been proposed. In this chapter, we first review simulation-based
verification techniques. Next, we describe commonly used formal methods.
Finally, we introduce the scan chain Design-for-Debugging (DFD) construct
and the metal fix technique that facilitate post-silicon debugging.

3.1 Simulation-Based Verification
Simulation is the most commonly used technique for verifying the correct-

ness of a design. In its simplest form, called direct test, engineers manually
develop the test vectors that are applied to the design and then inspect their
output responses. Developing the test suites, however, can be costly and time-
consuming. In addition, scenarios not considered by the designers may be
overlooked by the test developers as well. Therefore, techniques that automate
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testbench generation have been proposed to avoid the bias from human engi-
neers. A common methodology to this context is constrained-random simu-
lation. It involves connecting a logic simulator with stimuli coming from a
constraint-based random generator, i.e., an engine that can automatically pro-
duce random legal inputs for the design at a very high rate based on a set of
rules (or constraints) derived from the specification.

A fast simulator is the core of simulation-based verification methodologies;
therefore, in this section we review two commonly used simulation algorithms.
Since the quality of test vectors generated in constrained-random simulation
greatly affects the thoroughness of verification, we also review several solu-
tions that improve this quality.

3.1.1 Logic Simulation Algorithms
Logic simulation mimics the operation of a digital circuit by calculating the

outputs of the circuit using given input stimuli. For example, if a 0 is applied
to the input of an inverter, logic simulation will produce a 1 on its output.
Algorithms that perform simulation can be categorized into two major types:
oblivious and event-driven [11]. In the oblivious algorithm, all gates are sim-
ulated at each time point. In event-driven simulation, value changes in the
netlist are recorded, and only the gates that might cause further changes are
simulated. Event-driven algorithms are potentially more efficient than oblivi-
ous algorithms because they only simulate the part of the netlist that had their
values changed; however, the overhead to keep track of the gates that should
be simulated is also a concern.

A typical oblivious simulation algorithm works as follows:

1 A linear list of gates is produced by levelizing the netlist. Gates closer to
the primary inputs (i.e., those at lower levels of logic) are placed on the
front of the list.

2 At each time point, all the gates in the list are simulated. Since gates with
smaller levels of logic are simulated first, the simulation values at the inputs
of the gate currently being simulated are always valid. As a result, the
simulation value at the gate’s output is also correct.

Event-driven algorithms are more complicated than oblivious ones because
the algorithms must keep track of the gates that need to be resimulated. One
such algorithm, proposed by Lewis [90], is shown in Figure 3.1. Two phases
are used in Lewis’ algorithm, including the node phase (also called the event
phase) and the gate phase (also called the evaluation phase).

The node phase corresponds to the code labeled “fanout:”, and the gate
phase corresponds to the code labeled “simulate:”. There are two lists that
represent the state of the netlist: the first one is for the active nodes, while the
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1 fanout:
2 foreach node ∈ active nodes
3 node.val= node.next val;
4 active gates = active gates ∪ node′s fanout gates;
5 active nodes.clear();
6 simulate:
7 foreach gate ∈ active gates
8 simulate gate;
9 foreach node ∈ gate′s output

10 if (node.val != node.next val)
11 active nodes=active nodes ∪ node;
12 active gates.clear();

Figure 3.1. Lewis’ event-driven simulation algorithm.

other one is for the active gates. At each time point, nodes in active nodes list
are scanned and their fanout gates are added to the active gates list. The logic
value of each node is also updated from its next val, and the active nodes list
is cleared. The active gates list is then scanned, and each active gate is simu-
lated. The simulation results will be used to update the next val of the gate’s
output nodes. If the node’s new value (in node.next val) is different from
its current value (in node.val), the node will be added to the active nodes
list. The active gates list is then cleared. Since gates will be simulated only
if their input values change, Lewis’ simulation algorithm can avoid redundant
computation that simulates gates whose output values will not change.

3.1.2 Improving Test Generation and Verification
One major obstacle in adopting constrained-random simulation into the ver-

ification flow is that writing constraints may be difficult: the constraints need
to model the environment for the design under verification, and describing the
environment using constraints can be challenging. To address this problem,
Yuan et al. [144] proposed techniques to generate the constraints using rules
specified by designers. In this way, test developers can focus on describing the
high-level behavior of the environment and let the tool automatically generate
the constraints. Alternatively, commercial Verification Intellectual Properties
(VIPs) and Bus Functional Models (BFMs) are also available for modeling the
test environment [147, 151].

The quality of a test suite is determined by the input scenarios that can be
explored by its tests. Test vectors that cover corner-case scenarios are often
considered as of high quality. Since random simulation tends to cover scenar-
ios that occur frequently, techniques that try to generate tests with higher qual-
ity have been proposed. For example, the StressTest technique [132] monitors
circuit activities at key signals and uses a Markov-model-driven test generator
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to cover the corner-case scenarios. Shimizu et al. [124] took another approach
by deriving an input generator and a coverage metric from a formal specifica-
tion first, and then they used the measured coverage to bias the input generator.
Recent work by Plaza et al. [108] measures signal activities based on Shan-
non entropy and uses the measured activities to guide a pattern generator to
produce high-quality test vectors.

3.2 Formal Verification
Simulation-based verification uses a large number of input vectors to check

a design’s responses. Due to the scalability of modern simulators, whole-chip
simulation can often be performed. However, it is usually infeasible to simulate
all possible input sequences because the number of the sequences is typically
large and can even be infinite. As a result, it is difficult to judge whether all
possible scenarios have been covered, making complete verification difficult.

Formal verification is a totally different approach. It uses mathematical
methods to prove or disprove the correctness of the design with respect to
a certain formal specifications or properties. In this way, complete verifica-
tion can be achieved to the extent described by the specification or properties.
However, the complexity of formally verifying a design grows considerably
with the size of the circuit, making formal techniques applicable to smaller
designs only. As a result, currently it is often used to verify small and critical
components within a large design.

In this section we first describe a commonly used problem formulation, the
SATisfiability (SAT) problem. Next, we briefly introduce several formal verifi-
cation techniques, including Bounded Model Checking (BMC), symbolic sim-
ulation, reachability analysis and equivalence checking.

3.2.1 The Boolean Satisfiability Problem
A Boolean SATisfiability (SAT) problem can be formulated as follows.

Given a Boolean expression composed of AND, OR, NOT, variables and paren-
theses, determine if there is an assignment of true and false values to the vari-
ables that makes the expression evaluate to true. If no such assignment exists,
then the expression is said to be unsatisfiable. Otherwise, the expression is sat-
isfiable, and the assignment is a solution to the SAT problem. If the Boolean
expression is a conjunction (AND) of clauses, then we call it a Conjunctive
Normal Form (CNF). Since netlists composed of logic gates can be converted
into CNF easily, SAT has been used extensively to solve circuit design and
verification problems.

SAT is the first known NP-complete problem [56]. Fortunately, many prac-
tical SAT problems can be solved by modern solvers such as MiniSat [61],
GRASP [98] and zChaff [103]. However, these solvers still cannot handle
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many important problems, and more research on this problem is being con-
ducted.

3.2.2 Bounded Model Checking
Bounded Model Checking (BMC) [16] is a formal method which can prove

or disprove properties of bounded length in a design, frequently using SAT
solving techniques to achieve this goal. A high-level flow of the algorithm is
given in Figure 3.2. The central idea of BMC is to “unroll” a given sequential
circuit k times to generate a combinational circuit that has behavior equivalent
to k clock cycles of the original circuit. In the process of unrolling, the circuit’s
memory elements are eliminated, and the signals that feed them at cycle i
are connected directly to the memory elements’ output signals at cycle i − 1.
In CNF-based SAT, the resulting combinational circuit is converted to a CNF
formula C. The property to be proved is also complemented and converted
to CNF form (p). These two formulas are conjoined and the resulting SAT
instance I is fed into a SAT solver. If a satisfiable assignment is found for
I , then the assignment describes a counterexample that falsifies the (bounded)
property, otherwise the property holds true.

1 SAT-BMC(circuit, property, maxK)
2 p= CNF (!property);
3 for k=1 to maxK do
4 C = CNF (unroll(circuit, k));
5 I = C ∧ p; //SAT instance
6 if (I is satisfiable)
7 return (SAT solution);

Figure 3.2. Pseudo-code for bounded model checking.

3.2.3 Symbolic Simulation
The basic idea behind symbolic simulation is similar to that of logic simu-

lation [14]. Unlike logic simulation, however, Boolean variables are simulated
instead of constant scalar values. For example, simulating “A AND B” will
produce a Boolean expression representing “A AND B” instead of a Boolean
value.

In symbolic simulation, a new symbol is injected to each primary input at
each cycle. The simulator then produces Boolean expressions at the outputs
of the circuit using the injected symbols. Since each symbol implicitly rep-
resents both the values 1 and 0, the generated Boolean expressions represent
all possible input sequences. As a result, if the design has n inputs, symbolic
simulation can produce outputs representing all 2n input patterns in one single
step. Traditionally, Binary Decision Diagrams (BDDs) [20] have been used
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to represent the Boolean expressions due to their flexibility in Boolean manip-
ulations. Recently, symbolic simulators using CNF to represent the Boolean
expressions have also been developed [147].

The verification power of symbolic simulation is similar to that of BMC: it
can be used to prove properties within a bounded number of cycles or disprove
a property; however, it cannot prove a property that considers an indefinite
number of cycles. For example, symbolic simulation can falsify a property like
“c1 is always equal to 0”, or it can prove a property like “c1 always becomes
1 three cycles after a1 is set to 0”. Nonetheless, it cannot prove a property that
says “c1 is always equal to 0”.

3.2.4 Reachability Analysis
Reachability analysis is also called symbolic traversal or least fix-point com-

putation. It tries to solve the following problem: given a Finite State Machine
(FSM) description of a sequential digital circuit, find all the reachable states
from a set of initial states. Its algorithmic flow is shown in Figure 3.3. In the
algorithm, R is a set of reached states, I is the set of initial states, and Δ is the
transition function for the FSM (i.e., it maps each (state, input) to a next state).
We use subscript t to represent the cycle at which the current computation takes
place. The Img function used in the algorithm calculates the forward image
of the given states and transition functions. To this end, Coudert et al. [57]
provide an efficient algorithm for forward-image computation.

1 t= 0;
2 Rt = I; // Start from initial state
3 repeat
4 Rt+1 = Rt ∪ Img(Rt, Δ); // Compute forward image
5 until (Rt+1 == Rt); // Repeat until a fix point is reached

Figure 3.3. The algorithmic flow of reachability analysis.

Reachability analysis possesses greater verification power than BMC and
symbolic simulation in that it can prove properties that consider an infinite
number of cycles. To prove properties using reachability analysis, we first
identify the set of states P ′ that do not satisfy the property. Next, we compute
the reachable set R. If we found that R∩P ′ is empty, then the property holds;
otherwise, the property can be violated and there is a bug.

Although reachability analysis is powerful, representing the states is chal-
lenging because the number of possible states grows exponentially with the
number of state bits. Although BDDs have been shown to be effective in en-
coding the states, their scalability is still limited. To address this problem,
several different approaches have been proposed, including abstraction, pa-
rameterization and mixed traversal algorithms [112].
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3.2.5 Equivalence Checking
The purpose of equivalence checking is to prove that two circuits exhibit

exactly the same behavior. There are two types of equivalency between two
circuits: combinational and sequential. Given identical input vectors, combina-
tional equivalency requires both circuits to produce exactly the same responses
at their primary outputs and register boundaries. On the other hand, sequential
equivalency only requires the responses at primary outputs to be identical.

The basic procedure to perform combinational equivalence checking be-
tween two circuits works as follows. First, the inputs/outputs to the registers
are broken into primary outputs/inputs of the circuits. Next, a miter is added
between each pair of corresponding outputs, where a miter is a circuit consist-
ing of an XOR gate combining the pair of outputs. Third, the corresponding
inputs between two circuits are connected to the same signal sources. After
inserting these constructs, the equivalence checker then tries to find an input
pattern that makes the output of any of the inserted miters 1. If no such pat-
tern can be found, then the two circuits are equivalent; otherwise they are not
equivalent and the pattern is a counterexample. The equivalence checker can
be implemented using BDDs or CNF-SAT. Techniques that improve this basic
procedure have also been proposed, for example [85].

BMC can be used to perform sequential equivalence checking up to a certain
number of cycles C, and it works as follows. Given two circuits, they are first
unrolled C times. Next, the primary inputs of both circuits for each unrolled
copy are connected, and the circuits are constrained using their initial states.
Miters are then added to the unrolled primary outputs between both circuits.
BDDs or CNF-SAT can then be used to perform the checking. If a sequence
of patterns exists that can make the output of any miter 1, then the circuits are
not sequentially equivalent, and the sequence becomes a counterexample.

3.3 Design for Debugging and Post-Silicon Metal Fix
Post-silicon debugging is considerably different from pre-silicon debugging

because of its special physical constraints. In particular, observing, control-
ling and changing any circuit component post-silicon is very difficult. To ad-
dress this problem, existing techniques focus on improving the observability
and controllability of the silicon die. In this section we describe the most
commonly-used DFD construct, scan chains. Next, we introduce the Focused
Ion Beam (FIB) technique that supports post-silicon metal fix.

3.3.1 Scan Chains
Without special constructs, only the values of a circuit’s primary inputs and

outputs can be observed and controlled. Therefore, modern chips often use
scan chains [23] to improve the design’s observability and controllability. The
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basic idea behind scan chains is to employ sequential elements that have a
serial shift capability so that they can be connected to form long shift registers.
The scan-chain elements can then operate like primary inputs or outputs during
debugging, which can greatly improve the controllability and observability of
the circuit’s internal signals.

3.3.2 Post-Silicon Metal Fix via Focused Ion Beam
Focused Ion Beam (FIB) is a technique that uses a focused beam of gallium

ions [99]. Gallium is chosen because it is easy to liquefy and ionize. After
gallium is liquefied, a huge electric field causes ionization and field emission
of the gallium atoms, and the ions are focused onto the target by electrostatic
lens. When the high-energy gallium ions strike their target, atoms will be
sputtered from the surface of the target. Because of this, FIB is often used
as a micro-machining tool to modify materials at the nanoscale level. In the
semiconductor industry, FIB can be applied to modify an existing silicon die.
For example, it can cut a wire or deposit conductive material in order to make
a connection. However, it cannot create new transistors on a silicon die.

To remove unwanted materials from a silicon die, ion milling is used. When
an accelerated ion hits the silicon die, the ion loses its energy by scattering
the electrons and the lattice atoms. If the energy is higher than the binding
energy of the atoms, the atoms will be sputtered from the surface of the sili-
con die. To complement material removal, ion-induced deposition is used to
add new materials to a silicon die. In the process, a precursor gas, often an
organometallic, is directed to and absorbed by the surface of the die. When the
incident ion beam hits the gas molecule, the molecule dissociates and leaves
the metal constituent as a deposit. Similarly, insulator can also be deposited
on the die. Since impurities such as gallium ions may be trapped by the de-
posited materials, the conductivity/resistivity of the deposited metal/insulator
tends to be worse than that produced using the regular manufacturing process.
Fortunately, this phenomenon does not pose serious challenges in post-silicon
debugging because the changes made are typically small.

(1) (2) (3) (4)

Figure 3.4. Schematic showing the process to connect to a lower-level wire through an upper-
level wire: (a) a large hole is milled through the upper level; (b) the hole is filled with SiO2; (c)
a smaller hole is milled to the lower-level wire; and (d) the hole is filled with new metal. In the
figure, whitespace is filled with SiO2, and the dark blocks are metal wires.
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FIB can either cut or reconnect top-level wires. Changing metallic wires
at lower levels, however, is a much more elaborate process. To achieve this, a
large hole is first milled through the upper-level wires to expose the lower-level
wire, then the hole is filled with oxide for insulation. Next, a new smaller hole
is milled through the refilled oxide, and metal is deposited down to the lower
level. The affected upper-level wires may need to be reconnected in a similar
way. An illustration of the process is shown in Figure 3.4.
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Chapter 4

CIRCUIT DESIGN AND VERIFICATION
METHODOLOGIES

In this chapter we describe the FogClear methodologies that automate the IC
verification and debugging flows, including front-end design, back-end logic
design, back-end physical design and post-silicon debugging.

4.1 Front-End Design
Our FogClear front-end methodology automates the functional error correc-

tion process, and it works as follows. Given a bug trace and the RTL model that
fails verification, Butramin (see Chapter 8) is used to minimize the bug trace,
and then the minimized bug trace is analyzed by the REDIR framework (see
Section 9.2) to produce a repaired RTL model. The repaired RTL model is ver-
ified again to make sure no new bugs are introduced by the fix. This process
keeps repeating until the model passes verification. The FogClear front-end
design flow is shown in Figure 4.1, where the “Automatic functional error cor-
rection” block replaces the “Manual functional error correction” block in Fig-
ure 2.1. By automating the error diagnosis and correction process, engineers’
time can be saved, and design quality can be improved.

4.2 Back-End Logic Design
Fixing errors at the gate level is more difficult than at the RTL because en-

gineers are unfamiliar with the synthesized netlists. In order to address this
problem, our FogClear design flow automatically repairs the gate-level netlist.
As shown in Figure 4.2, it is achieved by analyzing the counterexamples re-
turned by the verification engine using the CoRé framework (see Chapter 5
and Section 9.1). This framework automates the gate-level error-correction
process and thus saves engineers’ time and effort.
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Figure 4.1. The FogClear front-end design flow.

4.3 Back-End Physical Design
Due to the growing dominance of interconnect in delay and power of mod-

ern designs, tremendous physical synthesis effort and even more powerful
optimizations such as retiming are required. Given that bugs still appear in
many EDA tools today [9], it is important to verify the correctness of the per-
formed optimizations. Traditional techniques address this verification prob-
lem by checking the equivalence between the original design and the opti-
mized version. This approach, however, only verifies the equivalence of two
versions of the design after a number, or possibly all, of the transformations
and optimizations have been completed. Unfortunately, such an approach is
not sustainable in the long term because it makes the identification, isolation,
and correction of errors introduced by the transformations extremely diffi-
cult and time-consuming. On the other hand, performing traditional equiv-
alence checking after each circuit transformation is too demanding. Since
functional correctness is the most important aspect of high-quality designs,
a large amount of effort is currently devoted to verification and debugging, ex-
pending resources that could have otherwise been dedicated to improve other
aspects of performance. To this end, verification has become the bottleneck
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Figure 4.2. The FogClear back-end logic design flow.

that limits achievable optimizations and the features that can be included in
a design [49], slowing down the evolution of the overall quality of electronic
designs.

The FogClear back-end physical design flow shown in Figure 4.3 addresses
this problem using an incremental verification system called InVerS, which will
be described in detail in Chapter 10. InVerS relies on a metric called similarity
factor to point out the changes that might have corrupted the circuit. Since this
metric is calculated by fast simulation, it can be applied after every circuit mod-
ification, allowing engineers to know when a bug might have been introduced
and traditional verification should be performed. When the similarity factor
indicates a potential problem, traditional verification should be performed to
check the correctness of the executed circuit modification. If verification fails,
the CoRé framework can be used to repair the errors. Alternatively, the errors
can also be fixed by reversing the performed modification.

As Section 10.3 shows, the InVerS system has high accuracy and can catch
most errors. However, it is still possible that a few errors may escape incre-
mental verification and be found in the full-fledged post-layout verification.
When this happens, the post-silicon error-repair techniques that we describe in
the next section can be used to repair the layout and fix the errors.
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Figure 4.3. The FogClear back-end physical design flow.

4.4 Post-Silicon Debugging
Figure 4.4 shows our FogClear methodology which automates post-silicon

debugging. When post-silicon verification fails, a bug trace is produced. Since
silicon dies offer simulation speed orders of magnitude faster than that pro-
vided by logic simulators, constrained-random testing is used extensively, gen-
erating extremely long bug traces. To simplify error diagnosis, we also apply
bug trace minimization in our methodology to reduce the complexity of traces
using the Butramin technique.

After a bug trace is simplified, we simulate the trace with a logic simulator
using the source netlist for the design layout. If simulation exposes the error,
then the error is functional, and PAFER is used to generate a repaired layout;
otherwise, the error is electrical. Currently, we still require separate error diag-
nosis steps to find the cause of an electrical error. For example, the techniques
proposed by Killpack [81] can be used to diagnose electrical errors. After the
cause of the error is identified, we check if the error can be repaired by ECO
routing. If so, we apply existing ECO routing tools such as those in [140];



Post-Silicon Debugging 41

Figure 4.4. The FogClear post-silicon debugging flow.

otherwise, we use SymWire or SafeResynth to change the logic and wire con-
nections around the error spot in order to fix the problem. The layout generated
by SymWire or SafeResynth is then routed by an ECO router to produce the
final repaired layout. This layout can be used to fix the silicon die for further
verification. A more detailed description on the components used in our flow
is given in Chapter 11.



Chapter 5

COUNTEREXAMPLE-GUIDED
ERROR-REPAIR FRAMEWORK

In this chapter we present a resynthesis framework, called CoRé, that auto-
matically corrects errors in combinational gate-level designs. The framework
is based on a new simulation-based abstraction technique and utilizes resynthe-
sis to modify the functionality of a circuit’s internal nodes to match the correct
behavior. Compared with previous solutions, CoRé is more powerful in that:
(1) it can fix a broader range of error types because it is not bounded by specific
error models; (2) it derives the correct functionality from simulation vectors,
without requiring golden netlists; and (3) it can be applied with a broad range
of verification flows, including formal and simulation-based. In this chapter,
we first provide required background. Next, we present our CoRé framework
that addresses the gate-level error-repair problem.

5.1 Background
In CoRé we assume that an input design, with one or more bugs, is provided

as a Boolean network. We strive to correct its erroneous behavior by regener-
ating the functionality of incorrect nodes. This section starts by defining some
terminology and then overviews relevant background.

5.1.1 Bit Signatures
Definition 5.1 Given a node t in a Boolean network, whose function is f ,
as well as input vectors x1, x2 ... xk. We define the signature of node t, st, as
(f(x1), ..., f(xk)), where f(xi) ∈ {0, 1} represents the output of f given an
input vector xi.

Our goal is to modify the functions of the nodes responsible for the erro-
neous behavior of a circuit via resynthesis. In this context, we call a node to
be resynthesized the target node, and we call the nodes that we can use as
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inputs to the newly synthesized node (function) the candidate nodes. Their
corresponding signatures are called the target signature and the candidate sig-
natures, respectively.

Given a target signature st and a collection of candidate signatures sc1 ,
sc2 ,...,scn , we say that st can be resynthesized by sc1 , sc2 ,...,scn if st can be ex-
pressed as st= f(sc1 , sc2 , ..., scn), where f(sc1 , sc2 , ..., scn) is a vector Boolean
function called the resynthesis function. We also call a netlist that implements
the resynthesis function the resynthesized netlist.

5.1.2 Don’t-Cares
When considering a subnetwork within a large Boolean network, Don’t-

Cares (DCs) are exploited by many synthesis techniques because they provide
additional freedom for optimizations. Satisfiability Don’t-Cares (SDCs) occur
when certain combinations of input values do not occur for the subnetwork,
while Observability Don’t-Cares (ODCs) occur when the output values of the
subnetwork do not affect any primary output. As we show in Section 5.2.1, our
CoRé framework is able to utilize both SDCs and ODCs.

5.1.3 SAT-Based Error Diagnosis
The error-diagnosis technique used in our CoRé framework is based on the

work by Smith et al. [125]. Given a logic netlist, a set of test vectors and a
set of correct output responses, this technique will return a set of wires, also
called error sites, along with their values for each test vector that can correct
the erroneous output responses. Our CoRé framework then corrects design
errors by resynthesizing the error sites using the corrected values as the target
signatures. In Smith’s error-diagnosis technique, three components are added
to the netlist, including (1) multiplexers, (2) test-vector constraints, and (3)
cardinality constraints. The whole circuit is then converted to CNF, and a
SAT solver is used to perform error diagnosis. These components are added
temporarily for error diagnosis only and will not appear in the netlist produced
by CoRé. They are described in detail below.

A multiplexer is added to every wire to model the correction of the erroneous
netlist. When the select line is 0, the original driver of the wire is used. When
the select line is 1, the multiplexer chooses a new signal source instead, and the
values applied by the new source will correct the erroneous output responses.
An example of the multiplexer is given in Figure 5.1(a). A variable, vi, is
introduced for every multiplexer to model the new source to the wire.

Test-vector constraints are used to force the erroneous netlist to produce
correct output responses for the test vectors. Obviously, the netlist can pro-
duce correct output responses only if a subset of the select lines of the added
multiplexers are set to 1, allowing the corresponding new signal sources to
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(a) (b)

Figure 5.1. Error diagnosis. In (a) a multiplexer is added to model the correction of an error,
while (b) shows the error cardinality constraints that limit the number of asserted select lines
to N .

generate logic values that agree with the signal sources which produce the cor-
rect responses. These constraints are implemented by duplicating one copy of
the multiplexer-enriched netlist for each test vector. The inputs of the copy
are controlled by the test vector, and its outputs are constrained by the correct
responses.

Cardinality constraints restrict the number of select lines that can be set
to 1 simultaneously. This number also represents the number of error sites
in the netlist. The cardinality constraints are implemented by an adder which
performs a bitwise addition of the select lines, and a comparator which forces
the sum of the adder to be N , as shown in Figure 5.1(b). Initially, N is set to 1,
and error diagnosis is performed by incrementing N until a solution is found.

5.1.4 Error Model
To reduce the complexity of error diagnosis and correction, several error

models have been introduced. These models classify common design errors in
order to reduce the difficulty of repairing them. Here we describe a frequently
used model formulated by D. Nayak [104], which is based on Abadir’s model
[1].

In the model, type “a” (wrong gate) mistakenly replaces one gate type by
another one with the same number of inputs; types “b” and “c” (extra/missing
wire) use a gate with more or fewer inputs than required; type “d” (wrong
input) connects a gate input to a wrong signal; and types “e” and “f” (ex-
tra/missing gate) incorrectly add or remove a gate. An illustration of the model
is given in Figure 5.2.
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Figure 5.2. Errors modeled by Abadir et al. [1].

5.2 Error-Correction Framework
for Combinational Circuits

For the discussion in this section we restrict our analysis to combinational
designs. In this context, the correctness of a circuit is simply determined by
the output responses under all possible input vectors. We will show in Section
9.1 how to extend the framework to sequential designs.

CoRé, our error-correction framework, relies on simulation to generate sig-
natures, which constitute our abstract model of the design and are the starting
point for the error diagnosis and resynthesis algorithms. After the netlist is
repaired, it is checked by a verification engine. If verification fails, possibly
due to new errors introduced by the correction process, new counterexamples
are generated and used to further refine the abstraction. Although in our im-
plementation we adopted Smith’s error-diagnosis technique [125] due to its
scalability, alternative diagnosis techniques can be used as well.

5.2.1 The CoRé Framework
In CoRé, an input test vector is called a functionality-preserving vector if

its output responses comply with the specification, and the vector is called an
error-sensitizing vector if its output responses differ. Error-sensitizing vectors
are often called counterexamples.

The algorithmic flow of CoRé is outlined in Figure 5.3. The inputs to the
framework are the original buggy netlist (CKTerr), the initial functionality-
preserving vectors (vectorsp) and the initial error-sensitizing vectors
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(vectorse). The output is the rectified netlist CKTnew. The framework first
performs error diagnosis to identify error locations and the correct values that
should be generated for those locations so that the error-sensitizing vectors
could produce the correct output responses. Those error locations constitute
the target nodes for resynthesis. The bits in the target nodes’ signatures that
correspond to the error-sensitizing vectors must be corrected according to the
diagnosis results, while the bits that correspond to the functionality-preserving
vectors must remain unchanged. If we could somehow create new combina-
tional netlist blocks that generate the required signatures at the target nodes
using other nodes in the Boolean network, we would be able to correct the cir-
cuit’s errors, at least those that have been exposed by the error-sensitizing vec-
tors. Let us assume for now that we can create such netlists (techniques to this
end will be discussed in the next chapter), producing the new circuit CKTnew

(line 4). CKTnew is checked at line 5 using the verification engine. When
verification fails, new error-sensitizing vectors for CKTnew will be returned
in counterexample. If no such vector exists, the circuit has been success-
fully corrected and CKTnew is returned. Otherwise, CKTnew is abandoned,
while counterexample is classified either as error-sensitizing or functionality-
preserving with respect to the original design (CKTerr). If counterexample
is error-sensitizing, it will be added to vectorse and be used to rediagnose the
design. CKTerr’s signatures are then updated using counterexample. By ac-
cumulating both functionality-preserving and error-sensitizing vectors, CoRé
will avoid reproposing the same wrong correction; hence guaranteeing that the
algorithm will eventually complete. Figure 5.4 illustrates a possible execution
scenario with the flow that we just described.

CoRé(CKTerr, vectorsp, vectorse, CKTnew)
1 compute signatures(CKTerr, vectorsp, vectorse);
2 fixes= diagnose(CKTerr, vectorse);
3 foreach fix ∈ fixes
4 CKTnew= resynthesize(CKTerr, fix);
5 counterexample=verify(CKTnew);
6 if (counterexample is empty) return CKTnew;
7 else if (counterexample is error-sensitizing for CKTerr)
8 vectorse = vectorse ∪ counterexample;
9 fixes= rediagnose(CKTerr, vectorse);

10 update signatures(CKTerr, counterexample);

Figure 5.3. The algorithmic flow of CoRé.

SDCs are exploited in CoRé by construction because simulation can only
produce legal signatures. To utilize ODCs, we simulate the complement sig-
nature of the target node and mark the bit positions whose changes do not
propagate to any primary output as ODCs: those positions are not considered
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(1) (2) (3)

Figure 5.4. Execution example of CoRé. Signatures are shown above the wires, where un-
derlined bits correspond to error-sensitizing vectors. (1) The gate was meant to be AND but is
erroneously an OR. Error diagnosis finds that the output of the 2nd pattern should be 0 instead
of 1; (2) the first resynthesized netlist fixes the 2nd pattern, but fails further verification (the
output of the 3rd pattern should be 1); (3) the counterexample from step 2 refines the signatures,
and a resynthesized netlist that fixes all the test patterns is found.

during resynthesis. Note that if a diagnosis contains multiple error sites, the
sites that are closer to primary outputs should be resynthesized first so that the
downstream logic of a node is always known when ODCs are calculated.

5.2.2 Analysis of CoRé

To achieve the required scalability to support the global implications of error
correction, CoRé uses an abstraction-refinement scheme: signatures provide an
abstraction of the Boolean network for resynthesis because they are the nodes’
partial truth tables (all unseen input vectors are considered as DCs), and the
abstraction is refined by means of the counterexamples that fail verification.
The following proposition shows that in theory, CoRé can eventually always
produce a netlist which passes verification. However, as it is the case for most
techniques based on abstraction and refinement, the framework may time-out
before a valid correction is found in practice. The use of high-quality test
vectors [130] is effective in alleviating this potential problem.

Proposition 1 Given a buggy combinational design and a specification
that defines the output responses of each input vector, the CoRé algorithm can
always generate a netlist that produces the correct output responses.

Proof 1 Given a set of required “fixes”, the resynthesis function of CoRé
can always generate a correct set of signatures, which in turn produce correct
responses at primary outputs. Observe that each signature represents a frag-
ment of a signal’s truth table. Therefore, when all possible input patterns are
applied to our CoRé framework, the signatures essentially become complete
truth tables, and hence define all the terms required to generate correct output
responses for any possible input stimulus. In CoRé, all the counterexamples
that fail verification are used to expand and enhance the set of signatures.
Each correction step of CoRé guarantees that the output responses of the in-
put patterns seen so far are correct, thus any counterexample must be new.
However, since the number of distinct input patterns is finite (at most 2n for
an n-input circuit), eventually no new vector can be generated, guaranteeing
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that the algorithm will complete in a finite number of iterations. In practice,
we find that a correct design can often be found in a few iterations.

5.2.3 Discussions
Several existing techniques, such as those in [130], also use simulation to

identify potential error-correction options and rely on further simulation to
prune unpromising candidates. Compared with these techniques, the frame-
work described in this section is more flexible because it performs abstraction
and refinement on the design itself. As a result, this framework can easily
adopt new error diagnosis or correction techniques. For example, our error-
correction engine can be easily replaced by any synthesis tool that can handle
truth tables or cubes. Most existing techniques, however, do not have this
flexibility. On the other hand, recent work by Safarpour et al. [116] provides
another abstraction-refinement error-repair methodology for sequential circuits
by replacing a fraction of the registers with primary inputs. Their methodology
can be used to accelerate the diagnosis process in our error-repair method for
sequential circuits, which is described in Section 9.1.

5.2.4 Applications
CoRé can be used whenever the output responses of a netlist need to be

changed. We now develop applications of our techniques in three different
verification contexts.

Application 1: combinational equivalence checking and enforcement.
This application fixes an erroneous netlist so that it becomes equivalent to a
golden netlist. In this application, the verification engine is an equivalence
checker. Test vectors on which the erroneous circuit and the golden model
agree are functionality-preserving vectors, and the remaining test vectors are
error-sensitizing. Initial vectors can be obtained by random simulation or
equivalence checking.

Application 2: fixing errors found by simulation. This application cor-
rects design errors that break a regression test. In this application, the verifica-
tion engine is the simulator and the regression suite. Test vectors that break the
regression are error-sensitizing vectors, and all other vectors are functionality-
preserving vectors. Initial vectors can be obtained by collecting the inputs
applied to the netlist while running the regression.

Application 3: fixing errors found by formal verification. This applica-
tion assumes that a formal tool proves that a property can be violated, and the
goal is to fix the netlist to prevent the property from being violated. In this ap-
plication, counterexamples returned by the tool are error-sensitizing vectors.
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SIGNATURE-BASED RESYNTHESIS
TECHNIQUES

The basis for CoRé’s resynthesis solution is the signature available at each
internal circuit node, where the signature of a node is essentially its partial
truth table. The resynthesis problem is formulated as follows: given a target
signature, find a resynthesized netlist that generates the target signature us-
ing the signatures of other nodes in the Boolean network as inputs. In this
Chapter, we first describe the concept of Pairs of Bits to be Distinguished
(PBDs), which compactly encode resynthesis information. Next, we describe
our Distinguishing-Power Search (DPS) and Goal-Directed Search (GDS) resyn-
thesis techniques that are based on signatures.

6.1 Pairs of Bits to be Distinguished (PBDs)
In this section we propose the concepts of Pairs of Bits to be Distinguished

(PBDs) and distinguishing power. PBDs can be derived easily using signatures
and compactly encode the information required for resynthesis. A similar con-
cept, Sets of Pairs of Functions to be Distinguished (SPFDs) [123, 141, 142],
is also described.

6.1.1 PBDs and Distinguishing Power
Recall that a signature s is a collection of the corresponding node’s simu-

lation values. In this chapter, we use s[i] to denote the i-th bit of signature s.
The goal of error correction is to modify the functions of the nodes respon-
sible for the erroneous behavior of a circuit via resynthesis. In this context,
we call a node to be resynthesized the target node, and we call the nodes that
we can use as inputs to the newly synthesized node (function) the candidate
nodes. Their corresponding signatures are called the target signature and the
candidate signatures, respectively.
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The proposition below states that a sufficient and necessary condition for a
resynthesis function to exist is that, whenever two bits in the target signature
are distinct, then such bits need to be distinct in at least one of the candidate
signatures. This proposition is a special case of Theorem 5.1 in [101], where
the minterms appearing in signatures represent the care-terms and all other
minterms are Don’t-Cares (DCs).

Proposition 2 Consider a collection of candidate signatures, sc1 , sc2 ,...,scn ,
and a target signature, st. Then a resynthesis function f , where st = f(sc1 ,
sc2 ,...,scn), exists if and only if no bit pair {i, j} exists such that st[i] �= st[j]
but sck

[i] = sck
[j] for all 1 ≤ k ≤ n.

In this work we call a pair of bits {i, j} in st, where st[i] �= st[j], a Pair
of Bits to be Distinguished (PBD). Based on Prop. 2, we say that the PBD
{i, j} can be distinguished by signature sck

if sck
[i] �= sck

[j]. We define the
Required Distinguishing Power (RDP) of the target signature st, RDP (st), as
the set of PBDs that need to be distinguished. We also define the Distinguish-
ing Power (DP) of a candidate signature sck

with respect to the target signature
st, DP (sck

, st), as the set of PBDs in st that can be distinguished by sck
. With

this definition, Prop. 2 can be restated as “a resynthesis function, f , exists if
and only if RDP (st) ⊆ ∪n

k=1DP (sck
, st)”.

6.1.2 Related Work
SPFD [123, 141, 142] is a relatively new data structure that encodes resyn-

thesis information and allows the use of DCs. An SPFD [141] Rt for a target
node t, represented as {(g1a, g1b), (g2a, g2b), ..., (gna, gnb)}, denotes a set of
pairs of functions that must be distinguished. In other words, for each pair
(gia, gib) ∈ Rt, the minterms in gia must produce a different value from the
minterms in gib at the output of t. Assume that node t has m fanins, c1...cm,
and their SPFDs are Rc1 ...Rcm , then according to [142]:

Rt ⊆ ∪m
i=1Rci (6.1)

In other words, the SPFD of node t is a subset of the union of all the SPFDs
of its fanins c1...cm. Since a function f satisfies an SPFD Rt if and only if
for each (gia, gib) ∈ Rt, f(gia) �= f(gib) [141]. This criterion, combined with
Equation 6.1, essentially states that a resynthesis function f exists if and only
if all the minterms that need to be distinguished in Rt are distinguished by at
least one of its fanins, which is consistent with Prop. 2. As a result, our use
of PBDs is equivalent to SPFDs. However, our approach has the following
advantages over SPFD-based techniques:
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1 PBDs provide a much more compact logic representation than SPFDs. Tra-
ditionally, SPFDs are calculated using BDDs and suffer memory explo-
sion problems. Recent work represents SPFDs as graphs [123] and SAT/
simulation can be used to calculate SPFDs [101]. This approach is more
memory efficient but may become computationally expensive. On the other
hand, our approach only uses signatures of nodes. Since each minterm
needs only one bit in a signature, our representation is very compact.

2 Calculating PBDs is significantly easier than calculating SPFDs: signa-
tures are generated by simulation, and DCs are calculated by simulating
the complement of the target signature. PBDs can then be derived easily by
considering only the care-terms in the target signature.

6.2 Resynthesis Using Distinguishing-Power Search
In this section, we first define the absolute distinguishing power |DP (s)| of

a signature s, and then we propose a Distinguishing-Power Search (DPS) tech-
nique that uses |DP| to select candidate signatures and generates the required
resynthesized netlist.

6.2.1 Absolute Distinguishing Power of a Signature
Absolute distinguishing power provides search guiding and pruning criteria

for our resynthesis techniques. To simplify bookkeeping, we reorder bits in
every signature so that in the target signature all the bits with value 0 precede
the ones with value 1, as in “00...0011...11”.

Definition 6.1 Assume a target signature st is composed of x 0s followed
by y 1s, we define the absolute required distinguishing power of st, denoted
by |RDP (st)|, as the number of PBDs in st and equals to xy. Moreover, if a
candidate signature sc has p 0s and q 1s in its first x bit positions, and r 0s
and s 1s in the remaining y positions, then we define the absolute distinguish
power of sc with respect to st, denoted by |DP (sc, st)|, as the number of PBDs
in st that can be distinguished by sc and equals to ps + qr.

The following corollary states a necessary but not sufficient condition to
determine whether the target signature can be generated from a collection of
candidate signatures.

Corollary 6.2 Consider a target signature st and a collection of candidate
signatures sc1 ...scn . If st can be generated by sc1 ...scn , then |RDP (st)| ≤∑n

i=1 |DP (sci , st)|.

6.2.2 Distinguishing-Power Search
Distinguishing-Power Search (DPS) is based on Prop. 2, which states that a

resynthesis function can be generated when a collection of candidate signatures
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covers all the PBDs in the target signature. However, the number of collections
satisfying this criterion may be exponential in the number of total signatures.
To identify possible candidate signatures effectively, we first select signatures
that cover the least-covered PBDs, second those that have high absolute dis-
tinguishing power (i.e., signatures that cover the most number of PBDs), and
third those that cover any remaining uncovered PBD. For efficiency, we limit
the search pool to the 200 nodes which are topologically closest to the target
node; however, we may go past this limit when those are not sufficient to cover
all the PBDs in the target signature. Finally, we exclude from the pool those
nodes that are in the fanout cone of the target node, so that we avoid creating a
combinational loop inadvertently.

After the candidate signatures are selected, a truth table for the resynthesis
function is built from the signatures, and it is constructed as follows. Note
that although we may select more signatures than needed for resynthesis, the
logic optimizer we use in the next step is usually able to identify the redundant
signatures and use only those which are essential.

1 Each signature is an input to the truth table. The i-th input produces the i-th
column in the table, and the j-th bit in the signature determines the value
of the j-th row.

2 If the j-th bit of the target signature is 1, then the j-th row is a minterm;
otherwise it is a maxterm.

3 All other terms are don’t-cares.

Figure 6.1 shows an example of the constructed truth table. The truth table
can be synthesized and optimized using existing software, such as Espresso
[114] or MVSIS [64]. Note that our resynthesis technique does not require
that the support of the target function is known a priori, since the correct sup-
port will be automatically selected when DPS searches for a set of candidate
signatures that distinguish all the PBDs. This is in contrast with other previous
solutions which require that the support of the target node to be known before
attempting to synthesize the function.

6.3 Resynthesis Using Goal-Directed Search
Goal-Directed Search (GDS) performs an exhaustive search for resynthe-

sized netlists. To reduce the search space, we propose two pruning techniques:
the absolute-distinguishing-power test and the compatibility test. Currently,
BUFFERs, INVERTERs, and 2-input AND, OR and XOR gates are supported.

The absolute-distinguishing-power test relies on Corollary 6.2 to reject resy-
nthesis opportunities when the selected candidate signatures do not have suffi-
cient absolute distinguishing power. In other words, a collection of candidate
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Signature Truth table
st=0101 s1 s2 s3 s4 st

s1=1010 1 0 1 0 0
s2=0101 0 1 1 0 1
s3=1110 1 0 1 0 0
s4=0001 0 1 0 1 1
Minimized 0 - - - 1

Figure 6.1. The truth table on the right is constructed from the signatures on the left. Signature
st is the target signature, while signatures s1 to s4 are candidate signatures. The minimized truth
table suggests that st can be resynthesized by an INVERTER with its input set to s1.

signatures whose total absolute distinguishing power is less than the abso-
lute required distinguishing power of the target signature is not considered for
resynthesis.

The compatibility test is based on the controlling values of logic gates. To
utilize this feature, we propose three rules, called compatibility constraints, to
prune the selection of inputs according to the output constraint and the gate
being tried. Each constraint is accompanied with a signature. In particular,
an identity constraint requires the input signature to be identical to the con-
straint’s signature; and a need-one constraint requires that specific bits in the
input signatures must be 1 whenever the corresponding bits in the constraint’s
signature are 1. Identity constraints are used to encode the constraints imposed
by BUFFERs and INVERTERs, while need-one constraints are used by AND
gates. Similarly, need-zero constraints are used by OR gates. For example, if
the target signature is 0011, and the gate being tried is AND, then the need-one
constraint will be used. This constraint will reject signature 0000 as the gate’s
input because its last two bits are not 1, but it will accept 0111 because its last
two bits are 1. These constraints, which propagate from the outputs of gates
to their inputs during resynthesis, need to be recalculated for each gate being
tried. For example, an identity constraint will become a need-one constraint
when it propagates through an AND gate, and it will become a need-zero con-
straint when it propagates through an OR gate. The rules for calculating the
constraints are shown in Figure 6.2.

The GDS algorithm is given in Figure 6.3. In the algorithm, level is the
level of logic being explored, constr is the constraint, and C returns a set
of candidate resynthesized netlists. Initially, level is set to 1, and constr is
identity constraint with signature equal to the target signature st. Function
update constr is used to update constraints.

GDS can be used to find a resynthesized netlist with minimal logic depth.
This is achieved by calling GDS iteratively, with an increasing value of the
level parameter, until a resynthesized netlist is found. However, the pruning
constraints weaken with each additional level of logic in GDS. Therefore, the
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Identity Need-one Need-zero
INVERTER S.C. S.C.+Need-zero S.C.+Need-one

BUFFER Constraint unchanged
AND Need-one Need-one None
OR Need-zero None Need-zero

Figure 6.2. Given a constraint imposed on a gate’s output and the gate type, this table calcu-
lates the constraint of the gate’s inputs. The output constraints are given in the first row, the gate
types are given in the first column, and their intersection is the input constraint. “S.C.” means
“signature complemented.”

Function GDS(level, constr, C)
1 if (level == max level)
2 C= candidate nodes whose signatures comply with constr;
3 return;
4 foreach gate ∈ library
5 constrn= update constr(gate, constr);
6 GDS(level + 1, constrn, Cn);
7 foreach c1, c2 ∈ Cn

8 if (level > 1 or |DP (c1, st)|+|DP (c2, st)|≥|RDP (st)|)
9 sn = calculate signature(gate, c1, c2);

10 if (sn complies with constr)
11 C = C ∪ gate(c1, c2);

Figure 6.3. The GDS algorithm.

maximum logic depth for GDS is typically small, and we rely on DPS to find
more complex resynthesis functions.



Chapter 7

SYMMETRY-BASED REWIRING

Rewiring is a post-placement optimization that reconnects wires in a given
netlist without changing its logic function. To this end, symmetry-based
rewiring is especially suitable for post-silicon error repair because no tran-
sistors will be affected. In light of this, we propose a rewiring algorithm based
on functional symmetries in this chapter. In the algorithm, we extract small
subcircuits consisting of several gates from the design and reconnect pins ac-
cording to the symmetries of the subcircuits. We observe that the power of
rewiring is determined by the underlying symmetry detector. For example, the
rewiring opportunity in Figure 7.1(a) cannot be discovered unless both input
and output symmetries can be detected. In addition, a rewiring opportunity
such as the one shown in Figure 7.1(b) can only be found if phase-shift sym-
metries [84] can be detected, where a phase-shift symmetry is a symmetry in-
volving negation of inputs and/or outputs. To enhance the power of symmetry
detection, we also propose a graph-based symmetry detector that can identify
permutational and phase-shift symmetries on multiple input and output wires,
as well as their combinations, creating abundant opportunities for rewiring. In
this chapter, we apply our techniques for wirelength optimization and observe
that it provides wirelength reduction comparable to that achieved by detailed
placement. In Chapter 11, we describe how this technique can be applied to
repair post-silicon electrical errors.

The remainder of the chapter is organized as follows. Section 7.1 introduces
basic principles of symmetry and describes relevant previous work on symme-
try detection and circuit rewiring. In Section 7.2 we describe our symmetry-
detection algorithm. Section 7.3 discusses the post-placement rewiring algo-
rithm. Finally, we provide experimental results in Section 7.4 and summarize
in Section 7.5.
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(a)

(b)

Figure 7.1. Rewiring examples: (a) multiple inputs and outputs are rewired simultaneously
using pin-permutation symmetry, (b) inputs to a multiplexer are rewired by inverting one of the
select signals. Bold lines represent changes made in the circuit.

7.1 Background
The rewiring technique described in this chapter is based on symmetry de-

tection. Therefore, in this section, we present background ideas and related
work about symmetry detection. Previous work on post-placement rewiring is
also discussed.

7.1.1 Symmetries in Boolean Functions
One can distinguish semantic (functional) symmetries of Boolean functions

from the symmetries of specific representations (syntactic symmetries). All
syntactic symmetries are also semantic, but not vice versa. For example, in
function “o = (x + y) + z”, x ↔ z is a semantic symmetry because the
function will not be changed after the permutation of variables; however, it is
not a syntactic symmetry because the structure of the function will be changed.
On the other hand, x ↔ y is both a semantic and syntactic symmetry. In this
work we exploit functional symmetries, whose definition is provided below.



Background 59

Definition 7.1 Consider a multi-output Boolean function F : Bn → Bm,
where

F (i1...in) =< f1(i1...in), f2(i1...in)...fm(i1...in) > . (7.1)

A functional symmetry is a one-to-one mapping s : B(n+m) → B(n+m) such
that:

< f1(i1...in), f2(i1...in)...fm(i1...in) >= (7.2)

< s(f1)(s(i1)...s(in)), s(f2)(s(i1)...s(in))...s(fm)(s(i1)...s(in)) > .

In other words, a functional (semantic) symmetry is a transformation of inputs
and outputs which does not change the functional relation between them.

Example 7.2 Consider the multi-output function z = x1 XOR y1 and w =
x2 XOR y2. The variable-permutation symmetries include: (1) x1 ↔ y1, (2)
x2 ↔ y2, (3) x1 ↔ x2, y1 ↔ y2, and z ↔ w (all swaps are performed
simultaneously). In fact, all the symmetries of this function can be gener-
ated from combinations of the symmetries listed above. A set of symmetries
with this property are called symmetry generators. For example, the symme-
try “x1 ↔ y2, y1 ↔ x2, and z ↔ w” can be generated by applying the
symmetries (1), (2) and (3) consecutively.

While most previous work on symmetry detection focuses on permutations
of two variables, Pomeranz [109] and Kravets [84] consider swaps of groups
of ordered variables. These swaps are called higher-order symmetries in [84].
For example, if variables a, b, c and d in the support of function f satisfy the
condition:

F (.., a, .., b, .., c, .., d, ..) = F (.., c, .., d, .., a, .., b, ..)

then we say that f has a second-order symmetry between ordered variable
groups (a, b) and (c, d). Such higher-order symmetries are common in real-
istic designs. For example, in a 4-bit adder, all bits of the two input numbers
can be swapped as groups (preserving the order of the bits), but no two input
bits in different bit positions are symmetric by themselves. Kravets also intro-
duced phase-shift symmetry as a function-preserving transformation involving
the inversion of one or more inputs that do not permute any of the inputs. Our
work generalizes this concept by including output symmetries involving inver-
sion in the class of phase-shift symmetries. We also define composite phase-
shift symmetry as a symmetry which consists of phase-shift and permutational
symmetries. In this chapter we commonly refer to composite phase-shift sym-
metries as just phase-shift symmetries, except for pure phase-shift symmetries
which do not include permutations.

Example 7.3 Consider again the multi-output function z = x1 XOR y1 and
w = x2 XOR y2 given in the previous example. Aside from the pin-swap sym-
metries discussed in the example, the following phase-shift symmetries also
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exist in the circuit: (1) x2 ↔ y′2, (2) x1 ↔ y′1, (3) x2 ↔ x′
2 and w ↔ w′,

(4) x1 ↔ x′
1 and z ↔ z′. Among these symmetries, (1) and (2) are composite

phase-shift symmetries because they involve both inversion and permutation of
inputs, while (3) and (4) are pure phase-shift symmetries because only inver-
sions of inputs and outputs are used. Note that due to Boolean consistency,
a symmetry composed of complement of variables in another symmetry is the
same symmetry. For example, y2 ↔ x′

2 is the same as x2 ↔ y′2.

7.1.2 Semantic and Syntactic Symmetry Detection
Symmetry detection in Boolean functions has several applications, includ-

ing technology mapping, logic synthesis, BDD minimization [106] and circuit
rewiring [32]. Methods for symmetry detection can be classified into four cate-
gories: BDD-based, graph-based, circuit-based and Boolean-matching-based.
However, it is relatively difficult to find all symmetries of a Boolean function
regardless of the representation used.

BDDs are particularly convenient for semantic symmetry detection because
they support abstract functional operations. One naive way to find two-variable
symmetries is to compute the cofactors for every pair of variables, say they are
v1 and v2, and check if Fv1v2 = Fv1v2 or Fv1 v2=Fv1v2 . Recent research [100]
indicates that symmetries can be found or disproved without computing all
the cofactors and thus significantly speeds up symmetry detection. However,
work on BDD-based symmetry detection has been limited to input permuta-
tions only.

In this book, symmetry-detection methods that rely on efficient algorithms
for the graph-automorphism problem (i.e., finding all symmetries of a given
graph) are classified as graph-based. They construct a graph whose symme-
tries faithfully capture the symmetries of the original object, find its automor-
phisms (symmetries), and map them back to the original object. Aloul et al.
[7] proposed a way to find symmetries for SAT clauses using this approach.
The symmetry-detection approach proposed in this book is inspired by their
work.

Circuit-based symmetry-detection methods often convert a circuit represent-
ing the function in question to a more regular form, where symmetry detection
is more practical and efficient. For example, Wang et al. [135] transform the
circuit to NOR gates. C.-W. Chang et al. [32] use a more elaborate approach
by converting the circuit to XOR, AND, OR, INVERTER and BUFFER first,
and then partition the circuit so that each subcircuit is fanout free. Next, they
form supergates from the gates and detect symmetries for those supergates.
Wallace et al. [134] use concepts from Boolean decomposition [15] and con-
vert the circuit to quasi-canonical forms, and then input symmetries are rec-
ognized from these forms. This technique is capable of finding higher-order
symmetries. Another type of circuit-based symmetry detector relies on ATPG
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and simulation, such as the work by Pomeranz et al. [109]. Although their
technique was developed to find both first and higher-order symmetries, they
reported experimental results for first-order symmetries only. Therefore, its
capability to detect higher-order symmetries is unclear.

Boolean matching is a problem related to symmetry detection. Its purpose
is to compute a canonical representation for Boolean functions that are equiv-
alent under negation and permutation of inputs and outputs. Symmetries are
implicitly processed by Boolean matching in that all functions symmetric to
each other will have the same canonical representation. However, enumerating
symmetries from Boolean matching is not straight forward and requires extra
work. This topic has been studied by Wu et al. [139] and Chai et al. [28].

Table 7.1. A comparison of different symmetry-detection methods.

Data structure
used

Target Symmetries detected Main applications Time
com-
plexity

BDD [100] Boolean
functions

All 1st order input sym-
metries

Synthesis O(n3)

Circuit –
Supergate [32]

Gate-level
circuits

1st order input symme-
tries in supergates, op-
portunistically

Rewiring, tech-
nology mapping

O(m)

Circuit –
Boolean de-
composition
[134]

Gate-level
circuits

Input and output per-
mutational symmetries,
higher-order

Rewiring, physi-
cal design

Ω(m)

Circuit –
simulation,
ATPG [109]

Gate-level
circuits

Input, output and
phase-shift symmetries,
higher-order

Error
diagnosis,
technology
mapping

Ω(2n)

Boolean
matching [28]

Boolean
functions

Input, output and
phase-shift symmetries,
higher-order

Technology map-
ping

Ω(2n)

Graph auto-
morphism (our
work)

Both (with
small num-
ber of in-
puts)

All input, output, phase-
shift symmetries and all
orders, exhaustively

Exhaustive small
group rewiring

Ω(2n)

In the table, n is the number of inputs to the circuit and m is the number of gates. Currently
known BDD-based and most circuit-based methods can detect only a fraction of all symme-
tries in some cases, while the method based on graph automorphism (this work) can detect all
symmetries exhaustively. Additionally, the symmetry-detection techniques in this work find all
phase-shift symmetries as well as composite (hybrid) symmetries that simultaneously involve
both permutations and phase-shifts. In contrast, existing literature on functional symmetries
does not consider such composite symmetries.
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A comparison of BDD-based symmetry detection [100], circuit-based sym-
metry detection [32, 109, 134], Boolean-matching-based symmetry detection
[28] and the method proposed in this paper is summarized in Table 7.1.

7.1.3 Graph-Automorphism Algorithms
Our symmetry-detection method is based on efficient graph-automorphism

algorithms, which have recently been improved by Darga et al. [58, 59]. Their
symmetry detector Saucy finds all symmetries of a given colored undirected
graph. To this end, consider an undirected graph G with n vertices, and let
V = {0, ..., n − 1}. Each vertex in G is labeled with a unique value in V .
A permutation on V is a bijection π : V → V . An automorphism of G is
a permutation π of the labels assigned to vertices in G such that π(G) = G;
we say that π is a structure-preserving mapping or symmetry. The set of all
such valid relabellings is called the automorphism group of G. A coloring is a
restriction on the permutation of vertices – only vertices in the same color can
map to each other. Given G, possibly with colored vertices, Saucy produces
symmetry generators that form a compact description of all symmetries.

7.1.4 Post-Placement Rewiring
Rewiring based on symmetries can be used to optimize circuit character-

istics. Some rewiring examples are illustrated in Figure 7.1(a), (b). For the
discussion in this chapter the goal is to reduce wirelength, and swapping sym-
metric input and output pins accomplishes this.

C.-W. Chang et al. [32] use the symmetry-detection technique described in
Section 7.1.2 to optimize delay, power and reliability. In general, symmetry
detection in their work is done opportunistically rather than exhaustively. Ex-
perimental results show that their approach can achieve these goals effectively
using the symmetries detected. However, they cannot find the rewiring oppor-
tunities in Figure 7.1(a), (b) because their symmetry-detection technique lacks
the ability to detect output and phase-shift symmetries.

Another type of rewiring is based on the addition and removal of wires.
Three major techniques are used to determine the wires that can be recon-
nected. The first one uses reasoning based on ATPG such as REWIRE [47],
RAMFIRE [33] and the work by Jiang et al. [76], which tries to add a re-
dundant wire that makes the target wire redundant so that it can be removed.
The second class of techniques is graph-based; one example is GBAW [138],
which uses pre-defined graph representation of subcircuits and relies on pattern
matching to replace wires. The third technique uses SPFDs [55] and is based
on don’t-cares. Although these techniques are potentially more powerful than
symmetry-based rewiring because they allow more aggressive layout changes,
they are also less stable and do not support post-silicon metal fix.
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7.2 Exhaustive Search for Functional Symmetries
The symmetry-detection method presented in our work can find all input,

output, multi-variable and phase-shift symmetries including composite (hy-
brid) symmetries. It relies on symmetry detection of graphs, thus the original
Boolean function must be converted to a graph first. After that, it solves the
graph-automorphism (symmetry detection) problem on this graph, and then the
symmetries found are converted to symmetries of the original Boolean func-
tion. Our main contribution is the mapping from a Boolean function to a graph,
and showing how to use it to find symmetries of the Boolean function. These
techniques are described in detail in this section.

7.2.1 Problem Mapping
To reduce functional symmetry detection to the graph-automorphism prob-

lem, we represent Boolean functions by graphs as described below:

1 Each input and its complement are represented by two vertices in the graph,
and there is an edge between them to maintain Boolean consistency (i.e.,
x ↔ y and x′ ↔ y′ must happen simultaneously). These vertices are
called input vertices. Outputs are handled similarly, and the vertices are
called output vertices.

2 Each minterm and maxterm of the Boolean function is represented by a
term vertex. We introduce an edge connecting every minterm vertex to the
output and an edge connecting every maxterm vertex to the complement of
the output. We also introduce an edge between every term vertex and every
input vertex or its complement, depending on whether that input is 1 or 0
in the term.

3 Since inputs and outputs are bipartite-permutable, all input vertices have
one color, and all outputs vertices have another color. All term vertices use
yet another color.

The idea behind this construction is that if an input vertex gets permuted
with another input vertex, the term vertices connected to them will also need
to be permuted. However, the edges between term vertices and output ver-
tices restrict such permutations to the following cases: (1) the permutation of
term vertices does not affect the connections to output vertices, which means
the outputs are unchanged; and (2) permuting term vertices may also require
permuting output vertices, thus capturing output symmetries. A proof of cor-
rectness is given in Section 7.2.2.

Figure 7.2(a) shows the truth table of function z = x⊕ y, and Figure 7.2(b)
illustrates our construction for the function. In general, vertex indices are as-
signed as follows. For n inputs and m outputs, the ith input is represented



64 Symmetry-Based Rewiring

xy z
00 0
01 1
10 1
11 0

(a) (b) (c)

Figure 7.2. Representing the 2-input XOR function by (a) the truth table, (b) the full graph,
and (c) the simplified graph for faster symmetry detection.

by vertex 2i, while the complementary vertex has index 2i + 1. There are 2n

terms, and the ith term is indexed by 2n+i. Similarly, the ith output is indexed
by 2n + 2n + 2i, while its complement is indexed by 2n + 2n + 2i + 1.

The symmetry detector Saucy [58, 59] used in this work typically runs faster
when the graph is smaller and contains more colors. Therefore if output sym-
metries do not need to be detected, a simplified graph with reduced number of
vertices can be used. It is constructed similarly to the full graph, but without
output vertices and potentially with more vertex colors. We define an output
pattern as a set of output vertices in the full graph that are connected to a given
term vertex. Further, term vertices with different output patterns shall be col-
ored differently. Figure 7.2(c) illustrates the simplified graph for the two-input
XOR function.

All the minterms and maxterms of the Boolean function are used in the
graph because we focus on fully-specified Boolean functions. Since all the
terms are used, and there are 2n terms for an n-input function, the time and
space complexity of our algorithm is Ω(2n).

7.2.2 Proof of Correctness
We first prove the correctness of the simplified graph construction proposed

in the previous section. Our proofs below are presented as a series of numbered
steps.

1 First, we need to prove that there is a one-to-one mapping between the
function and its graph. This mapping can be defined following the graph
construction in Section 7.2.1. The inverse mapping (from a graph to a func-
tion) is also given in the section.
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2 Second, we need to prove that there is a one-to-one mapping between sym-
metries of the function and automorphisms of the graph.

(a) First, we want to show that a symmetry of the function is an automor-
phism of the graph. A symmetry of the function is a permutation of the
function’s inputs that do not change the function’s outputs, and permu-
tation in inputs corresponds to reevaluation of the outputs of that the
term. Since the inputs are symmetric, no output will be changed by
the permutation, and the color of the term vertices in the corresponding
graph will remain the same. Therefore it is also an automorphism of
the graph.

(b) Next we want to show that an automorphism of the graph is a sym-
metry of the function. Since there is an edge between the input and
its complement, mapping one input vertex, say x, to another vertex,
say y, will cause x’s complement map to y’s complement, so Boolean
consistency is preserved. Since an input vertex connect to all the term
vertices that contain it, swaps between two input vertices will cause all
the term vertices that connect to them being swapped according to the
following rule: suppose that input vertex x swaps with input vertex y,
then all term vertices that connect to both x and y will also be swapped
because there is an edge between the term vertex and both x and y.
Since a swap between term vertices is legal only if they have the same
color, it means all automorphisms detected in the graph will not map a
term vertex to another color. And since the color of the term represents
an output pattern in the Boolean function, it means the outputs of the
Boolean function will not be changed. Therefore an automorphism of
the graph maps to an input symmetry of the Boolean function.

3 From Steps 1 and 2, there is a one-to-one mapping between the function
and its graph, and a one-to-one mapping between the symmetries of the
function and the automorphisms of the graph. Therefore the symmetry-
detection method for the simplified graph is correct.

Next, the correctness of the original graph is proved below. The relationship
between terms and inputs are described in the previous proof. Therefore the
proof here focuses on the relationship between terms and outputs. There are
three possible situations: input symmetries that do not affect the outputs, input
symmetries that affect the outputs, and output symmetries that are independent
of the inputs.

1 Input symmetries that do not affect the output: the way term vertices con-
nect to output vertices represent an output pattern. If two term vertices
have exactly the same outputs, then they will connect to the same output
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vertices; otherwise they will connect to at least one different output vertex.
Mapping a term vertex to another term vertex which has different output
pattern is invalid (except for the situation described in 2) because at least
one output vertex they connect to is different, therefore the connections to
output vertices behave the same as coloring in the previous proof.

2 Input symmetries that affect the output: if all terms that connect to an out-
put pattern can be mapped to all terms connecting to another output pat-
tern, then the output vertices corresponding to the two patterns can also be
swapped because the terms that the outputs connect to will not change af-
ter the mapping. In the mean time, the input vertices that connect to the
swapped minterms will also be swapped, which represent a symmetry in-
volving both inputs and outputs.

3 Output symmetries that are independent of the inputs: if two sets of output
vertices connect to exactly the same term vertices, then the output vertices
in the two sets can be swapped, which represent output symmetries. In this
case, no term swapping is involved, so the inputs are unaffected.

7.2.3 Generating Symmetries from Symmetry Generators
The symmetry detector Saucy returns symmetry generators. To produce

symmetries that can be used for rewiring, we design a symmetry generation
algorithm, which is shown in Figure 7.3. In the algorithm, generators is a set
which contains all the symmetry generators returned by Saucy, and three sets
of symmetries are used. They are old sym, cur sym and new sym. Ini-
tially, cur sym contains the identity symmetry (i.e., a symmetry that maps to
itself), and both old sym and new sym are empty. The algorithm loops un-
til cur sym is empty, meaning that all the symmetries have been generated; or
count is larger than 1000, meaning that 1000 symmetries have been generated.
As a result, at most 1000 symmetries will be tried for a set of symmetry gen-
erators to limit the complexity of rewiring. When the loop finishes, old sym
will contain all the symmetries generated using the generators.

7.2.4 Discussion
Compared with other symmetry-detection methods, the symmetry detector

described in this chapter has the following advantages: (1) it can detect all
possible input and output symmetries of a function, including multi-variable,
higher-order and phase-shift symmetries; and (2) symmetry generators are
used to represent the symmetries, which make the relationship between in-
put and output symmetries very clear. These characteristics make the use of
the symmetries easier than other methods that enumerate all symmetry pairs.

While evaluating our algorithm, we observed that Saucy is more efficient
when there are few or no symmetries in the graph; in contrast, it takes more
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Function symmetry generation(generators)
1 do
2 foreach sym ∈ cur sym
3 foreach gen ∈ generators
4 for i = 1 to 2 do
5 nsym = (i == 1)?gen × sym : sym × gen;
6 if (!nsym ∈ (old sym ∪ cur sym ∪ new sym))
7 new sym = new sym ∪ nsym;
8 count = count + 1;
9 old sym = old sym ∪ cur sym;

10 cur sym = new sym;
11 new sym.clear();
12 while (!cur sym.empty() and count < 1000);
13 return old sym;

Figure 7.3. Our symmetry generation algorithm.

time when there are many symmetries. For example, the runtime of a randomly
chosen 16-input function is 0.11 sec because random functions typically have
no symmetries. However, it takes 9.42 sec to detect all symmetries of the
16-input XOR function. Runtimes for 18 inputs are 0.59 and 92.39 sec, re-
spectively.

7.3 Post-Placement Rewiring
This section describes a permutative rewiring technique that uses symme-

tries of extracted subcircuits to reduce wirelength. Implementation insights
and further discussions are also given.

7.3.1 Permutative Rewiring
After placement, symmetries can be used to rewire the netlist to reduce the

wirelength. This is achieved by reconnecting pins according to the symmetries
found in subcircuits, and these subcircuits are extracted as follows.

1 We represent the netlist by a hypergraph, where cells are represented by
nodes and nets are represented by hyper-edges.

2 For each node in the hypergraph, we perform Breadth-First Search (BFS)
starting from the node, and use the first n nodes traversed as subcircuits.

3 Similarly, we perform Depth-First Search (DFS) and extract subcircuits us-
ing the first m nodes.

In our implementation, we perform BFS extraction 4 times with n from 1
to 4, and DFS twice with m from 3 to 4. This process is capable of extract-
ing various subcircuits suitable for rewiring. In addition to logically connected
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cells, min-cut placers such as Capo [3, 24] produce a hierarchical collection
of placement bins (buckets) that contain physically adjacent cells, and these
bins are also suitable for rewiring. Currently, we also use subcircuits com-
posed of cells in every half-bin and full-bin in our rewiring. After subcircuits
are extracted, we perform symmetry detection on these subcircuits. Next, we
reconnect the wires to the inputs and outputs of these subcircuits according to
the detected symmetries in order to optimize wirelength.

The reason why multiple passes with different sizes of subcircuits are used
is that some symmetries in small subcircuits cannot be detected in larger sub-
circuits. For example, in Figure 7.4, if the subcircuit contains all the gates, only
symmetries between x, y, z and w can be detected, and the rewiring opportu-
nity for p and q will be lost. By using multiple passes for symmetry detection,
more symmetries can be extracted from the circuit.

Figure 7.4. Rewiring opportunities for p and q cannot be detected by only considering the
subcircuit shown in this figure. To rewire p and q, a subcircuit with p and q as inputs must be
extracted.

The rewiring algorithm can be easily extended to utilize phase-shift sym-
metry: if the wirelength is shorter after the necessary inverters are inserted or
removed, then the circuit is rewired. It can also be used to reduce the delay on
critical paths.

7.3.2 Implementation Insights
During implementation, we observed that for subcircuits with a small num-

ber of inputs and outputs, it is more efficient to detect symmetries by enumer-
ating all possible permutations using bit operations on the truth table. That is
because the required permutations can be implemented with just a few lines
of C++ code, making this technique much faster than building the graph for
Saucy. We call this algorithm naive symmetry detection. To further reduce its
runtime, we limit the algorithm to detect first-order symmetries only. In our
implementation, naive symmetry detection is used on subcircuits with number
of inputs less than 11 and number of outputs less than 3. Experimental results
show that the runtime can be reduced by more than half with almost no loss
in quality, which is because the lost rewiring opportunities can be recovered in
larger subcircuits where Saucy-based symmetry detection is used.
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7.3.3 Discussion
Our rewiring techniques described so far use permutational symmetries.

Here we describe two applications of phase-shift symmetries.

1 The ability to handle phase-shift symmetries may reduce interconnect by
enabling permutational symmetries, as the MUX example in Figure 7.1(b)
shows.

2 Phase-shift symmetries support metal fix of logic errors involving only in-
versions of signals: by reconnecting certain wires, signals may be inverted.

Compared with other rewiring techniques, the advantages of our techniques
include the following:

Our rewiring techniques preserve placement, therefore the effects of any
change are immediately measurable. As a result, our methods are safe and
can be applied with every flow. In other words, their application can only
improve the optimization objective and never worsens it. This characteris-
tic is especially desirable in highly-optimized circuits because changes in
placements may create cell overlaps, and the legalization process to remove
these overlaps may affect multiple gates, leading to a deterioration of the
optimization goal.

Our techniques support post-silicon metal fix, which allows reuse of tran-
sistor masks and can significantly reduce respin cost.

The correctness of our optimizations can be verified easily using combina-
tional equivalence checking.

Our techniques can optimize a broad variety of objectives, as long as the
objectives can be evaluated incrementally.

The limitations of our rewiring techniques include:

The performance varies with each benchmark, depending on the number of
symmetries that exist in a design. Therefore improvement is not guaran-
teed.

When optimizing wirelength, the ratio of improvement tends to reduce
when designs get larger. Since permutative rewiring is a local optimiza-
tion, it cannot shorten global nets.

7.4 Experimental Results
Our implementation was written in C++, and the testcases were selected

from ITC99, ISCAS and MCNC benchmarks. To better reflect modern VLSI
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circuits, we chose the largest testcases from each benchmark suite, and added
several small and medium ones for completeness. Our experiments used the
min-cut placer Capo. The platform used was Fedora 2 Linux on a Pentium-4
workstation running at 2.26 GHz with 512 M RAM.

We converted every testcase from BLIF to the Bookshelf placement format
(.nodes and .nets files) using the converter provided in [25, 156]. We report
two different types of experimental results in this section, including the num-
ber of symmetries detected and rewiring. A flow chart of our experiments on
symmetry detection and rewiring is given in Figure 7.5.

Figure 7.5. Flow chart of our symmetry detection and rewiring experiments.

7.4.1 Symmetries Detected
The first experiment evaluates the symmetries found in the benchmarks, and

the results are summarized in Table 7.2. In the table, “number of subcircuits”
is the number of subcircuits extracted from the benchmark for symmetry de-
tection. “Input” is the number of subcircuits which contain input symmetries,
and “phase-shift input” is the number of subcircuits that contain phase-shift
input symmetries. “Output” and “phase-shift output” are used in a similar
way. “Input and output” are subcircuits that contain symmetries involving
both inputs and outputs. The number of symmetries found in the circuits can
be used to predict the probability of finding rewiring opportunities: at least
66% of the subcircuits contain permutational input symmetries and are suit-
able for rewiring. It can also be observed that although output symmetries do
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Table 7.2. Number of symmetries found in benchmark circuits.

Benchmark Number Symmetries
of Input Phase- Output Phase- Input

subcircuits shift shift and
input output output

ALU2 876 855 120 249 126 211
ALU4 15933 15924 242 1245 243 1244
B02 143 130 18 22 15 21
B10 1117 1015 160 201 137 170
B17 198544 190814 23789 32388 17559 24474

C5315 20498 19331 9114 5196 4490 4145
C7552 28866 26626 12243 7540 6477 5895
DALU 16665 15506 6632 3272 2550 2852

I10 14670 14165 4298 3710 2929 2516
S38417 141241 126508 75642 64973 59319 61504
S38584 122110 117084 55966 35632 29661 33655

Average 100% 94% 28% 23% 18% 20%

Row “Average” shows the average percentages of subcircuits that contain a specific symmetry
type. For example, the number in the last row of the third column means 94% of the subcircuits
contain at least one input symmetry.

not happen as often as input symmetries, their number is not negligible and
rewiring techniques should also take output symmetries into consideration.

7.4.2 Rewiring
In the rewiring experiments, wirelength reduction was calculated against

the original wirelength after placement using half-perimeter wirelength. The
second experiment compares the wirelength reduction gained from rewiring
and detailed placement. It also compares the wirelength reduction of rewiring
before and after detailed placement. These results are summarized in Tables
7.3 and 7.4, respectively. The maximum number of inputs allowed for sym-
metry detection was 16 in this experiment. From Table 7.3, it is found that
our method can effectively reduce wirelength by approximately 3.7%, which
is comparable to the improvement due to detailed-placement.

Table 7.4 shows that the wirelength reduction is a little bit smaller when
rewiring is used after detailed placement, suggesting that some rewiring op-
portunities interfere with optimization from detailed placement. For example,
detailed placement performs flipping of cells, which may interfere with permu-
tative rewiring if the inputs of the cell are symmetric. However, the difference
is very small, showing that wirelength reduction from rewiring is mostly inde-
pendent of detailed placement.
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Table 7.3. Wirelength reduction and runtime comparisons between rewiring, detailed place-
ment and global placement.

Benchmark Wirelength Wirelength reduction Runtime (seconds)
Rewiring (%) Detailed Rewiring Detailed Global

placement (%) placement placement
ALU2 5403.29 3.21 8.98 2.6 0.2 3.6
ALU4 35491.38 9.02 3.54 15.2 3.0 27.2
B02 142.90 8.29 0.00 2.8 0.4 0.1
B10 1548.28 5.04 3.89 7.2 0.1 1.0
B17 367223.20 2.92 2.28 350.6 32.6 206.2

C5315 30894.06 1.76 1.52 17.39 3.0 3.2
C7552 39226.30 1.71 1.57 23.8 4.0 2.8
DALU 20488.84 2.79 3.46 13.2 2.6 2.6

I10 50613.84 2.11 2.05 15.6 2.6 29.0
S38417 129313.20 2.01 2.05 180.8 22.2 17.2
S38584 174232.80 2.51 2.27 157.8 20.6 46.0

Average 77689 3.70 2.87 30.8 8.3 71.5

Table 7.4. The impact of rewiring before and after detailed placement.

Benchmark Wirelength reduction Runtime (seconds)
Before After Before After
detailed detailed detailed detailed

placement(%) placement(%) placement placement
ALU2 3.49 3.21 3.4 3.6
ALU4 9.38 9.02 27.2 27.2
B02 8.29 8.29 0.2 0.2
B10 4.78 5.04 0.8 1.0
B17 3.00 2.92 199.6 206.2

C5315 1.71 1.76 3.6 3.2
C7552 1.82 1.71 2.6 2.8
DALU 2.90 2.19 2.8 2.6

I10 2.05 2.11 29.2 29.0
S38417 2.04 2.01 18.0 17.2
S38584 2.50 2.51 46.2 46.0

Average 3.82 3.70 30.3 30.8

The third experiment evaluates the relationship between the number of in-
puts allowed in symmetry detection, wirelength reduction and runtime. In
order to show the true performance of Saucy-based symmetry detection, the
use of naive symmetry detection was turned off in this experiment. Since our
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symmetry-detection method is most efficient with small number of inputs, this
relationship represents the trade-off between performance and runtime. Empir-
ical results are shown in Table 7.5, where the numbers are averages of all the
benchmarks. These results indicate that the longer the rewiring program runs,
the better the reduction will be. However, most improvement occurs with small
number of inputs and can be achieved quickly. In addition, recent follow-up
work by Chai et al. [30] showed how to simplify the graphs that represent logic
functions in order to speed up symmetry detection. Their techniques can make
our symmetry detector run faster and thus further improve the rewiring quality
given the same amount of time.

Table 7.5. The impact of the number of inputs allowed in symmetry detection on performance
and runtime.

Number of Runtime Wirelength
inputs allowed (seconds) reduction(%)

2 2.90 1.06
4 4.30 2.58
6 7.07 3.12
8 14.98 3.50
10 28.03 3.63
12 41.34 3.72
14 59.85 3.66
16 82.30 3.68

We also applied our rewiring techniques to the OpenCores suite [154] in the
IWLS’05 benchmarks [161], and we performed routing to measure the wire-
length reduction for routed wires. The results show that our pre-routing op-
timizations transform into post-routing wirelength reduction effectively. Fur-
thermore, we observe that via counts can also be reduced by our optimizations.
These results show that our rewiring techniques are effective in reducing wire-
length and number of vias, and they can both reduce manufacturing defects and
improve yield. Reducing via count is especially important in deep submicron
era because vias are a major cause of manufacturing faults. Detailed results are
reported in [37].

7.5 Summary
In this chapter we presented a new symmetry-detection methodology and

applied it to post-placement rewiring. Compared with other symmetry-detection
techniques, our method identifies more symmetries, including multi-variable
permutational and phase-shift symmetries for both inputs and outputs. This is
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important in circuit rewiring because more detected symmetries create more
rewiring opportunities.

Our experimental results on common circuit benchmarks show that the wire-
length reduction is comparable and orthogonal to the reduction provided by
detailed placement – the reduction achieved by our method performed before
and after detailed placement is similar. This shows that our rewiring method is
very effective, and it should be performed after detailed placement for the best
results. When applied, we observe an average of 3.7% wirelength reduction
for the experimental benchmarks evaluated.

In summary, the rewiring technique we presented has the following advan-
tages: (1) it does not alter the placement of any standard cells, therefore no cell
overlaps are created and improvements from changes can be evaluated reliably;
(2) it can be applied to a variety of existing design flows; (3) it can optimize
a broad variety of objectives, such as delay and power, as long as they can be
evaluated incrementally; and (4) it can easily adapt to other symmetry detec-
tors, such as the detectors proposed by Chai et al. [29, 30]. On the other hand,
our technique has some limitations: (1) its performance depends on the spe-
cific design being optimized and there is no guarantee of wirelength reduction;
and (2) the improvement tends to decrease with larger designs, similar to what
has been observed from detailed placement.
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Chapter 8

BUG TRACE MINIMIZATION

Finding the cause of a bug can be one of the most time-consuming activities
in design verification. This is particularly true in the case of bugs discovered in
the context of a random simulation-based methodology, where bug traces, or
counterexamples, may be several hundred thousand cycles long. In this chapter
we describe Butramin, a bug trace minimizer. Butramin considers a bug trace
produced by a random simulator or a semi-formal verification software and
produces an equivalent trace of shorter length. Butramin applies a range of
minimization techniques, deploying both simulation-based and formal meth-
ods, with the objective of producing highly reduced traces that still expose the
original bug. Our experiments show that in most cases Butramin is able to re-
duce traces to a small fraction of their initial sizes, in terms of cycle length and
signals involved. The minimized traces can greatly facilitate bug analysis. In
addition, they can also be used to reduce regression runtime.

8.1 Background and Previous Work
Research on minimizing property counterexamples or, more generally, bug

traces, has been pursued both in the context of hardware and software veri-
fication. Before discussing these techniques, we first give some preliminary
background.

8.1.1 Anatomy of a Bug Trace
A bug state is an undesirable state that exposes a bug in the design. De-

pending on the nature of the bug, it can be exposed by a unique state (a specific
bug configuration) or any one of several states (a general bug configuration),
as shown in Figure 8.1. In the figure, suppose that the x-axis represents one
state machine called FSM-X and the y-axis represents another machine called
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FSM-Y. If a bug occurs only when a specific state in FSM-X and a specific
state in FSM-Y appear simultaneously, then the bug configuration will be a
very specific single point. On the other hand, if the bug is only related to a
specific state in FSM-X but it is independent of FSM-Y, then the bug configu-
ration will be all states on the vertical line intersecting the one state in FSM-X.
In this case, the bug configuration is very broad.

Figure 8.1. An illustration of two types of bugs, based on whether one or many states expose
a given bug. The x-axis represents FSM-X and the y-axis represents FSM-Y. A specific bug
configuration contains only one state, while a general bug configuration contains many states.

Given a sequential circuit and an initial state, a bug trace is a sequence of
test vectors that exposes a bug, i.e., causes the circuit to assume one of the bug
states. The length of the trace is the number of cycles from the initial state to
the bug state, and an input event is a change of an input signal at a specific
clock cycle of the trace. One input event is considered to affect only a single
input bit. An input variable assignment is a value assignment to an input signal
at a specific cycle. The term input variable assignment is used in the literature
when traces are modeled as sequences of symbolic variable assignments at
the design’s inputs. The number of input variable assignments in a trace is
the product of the number of cycles and the number of inputs. A checker
signal is a signal used to detect a violation of a property. In other words, if the
signal changes to a specific value, then the property monitored by the checker
is violated, and a bug is found. The objective of bug trace minimization is to
reduce the number of input events and cycles in a trace, while still detecting
the checker violation.

Example 8.1 Consider a circuit with three inputs a, b and c, initially set to
zero. Suppose that a bug trace is available where a and c are assigned to 1 at
cycle 1. At cycle 2, c is changed to 0 and it is changed back to 1 at cycle 3,
after which a checker detects a violation. In this situation we count four input
events, twelve input variable assignments, and three cycles for our bug trace.
The example trace is illustrated in Figure 8.2.
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Figure 8.2. A bug trace example. The boxes represent input variable assignments to the circuit
at each cycle, shaded boxes represent input events. This trace has three cycles, four input events
and twelve input variable assignments.

Another view of a bug trace is a path in the state space from the initial state
to the bug state, as shown in Figure 8.3. By construction, formal methods
can often find the minimal length bug trace as shown in the dotted line. There-
fore we focus our minimization on semi-formal and constrained-random traces
only. However, if Butramin is applied to a trace obtained with a formal tech-
nique, it may still be possible to reduce the number of input events and variable
assignments.

Figure 8.3. Another view of a bug trace. Three bug states are shown. Formal methods often
find the minimal length bug trace, while semi-formal and constrained-random techniques often
generate longer traces.

8.1.2 Known Techniques in Hardware Verification
Traditionally, a counterexample generated by BMC reports the input vari-

able assignments for each clock cycle and for each input of the design. How-
ever, it is possible, and common, that only a portion of these assignments are
required to falsify the property. Several techniques that attempt to minimize the
trace complexity have been recently proposed, for instance, Ravi et al. [113].
To this end they propose two techniques: brute-force lifting (BFL), which at-
tempts to eliminate one variable assignment at a time, and an improved variant
that eliminates variables in such a way so as to highlight the primary events
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that led to the property falsification. The basic idea of BFL is to consider the
free variables of the bug trace, that is, all input variable assignments in ev-
ery cycle. For each free variable v, BFL constructs a SAT instance SAT(v) to
determine if v can prevent the counterexample. If that is not the case, then v
is irrelevant to the counterexample and can be eliminated. Because this tech-
nique minimizes BMC-derived traces, its focus is only on reducing the number
of assignments to the circuit’s input signals. Moreover, each single assignment
elimination requires solving a distinct SAT problem, which may be computa-
tionally difficult. More recent work in [121] further improves the performance
of BFL by attempting the elimination of sets of variables simultaneously. Our
technique for removing individual variable assignments is similar to BFL as it
seeks to remove an assignment by evaluating a trace obtained with the opposite
assignment. However, we apply this technique to longer traces obtained with
semi-formal methods and we perform testing via resimulation.

Another technique applied to model checking solutions is by Gastin et al.
[65]. Here the counterexample is converted to a Büchi automaton and a depth-
first search algorithm is used to find a minimal bug trace. Minimization of
counterexamples is also addressed in [77], where the distinction between con-
trol and data signals is exploited in attempting to eliminate data signals first
from the counterexample.

All of these techniques focus on reducing the number of input variable as-
signments to disprove the property. Because the counterexample is obtained
through a formal model checker, the number of cycles in the bug trace is min-
imal by construction. Butramin’s approach considers a more general context
where bug traces can be generated by simulation or semi-formal verification
software, attacking much more complex designs than BMC-based techniques.
Therefore, (1) traces are in general orders of magnitude longer than the ones
generated by BMC; and (2) there is much potential for reducing the trace in
terms of number of clock cycles, as our experimental results indicate. On the
downside, the use of simulation-based techniques does not guarantee that the
results obtained are of minimal length. As the experimental results in Section
8.5 indicate, however, our heuristics provide good results for most benchmarks.

Aside from minimization of bug traces generated using formal methods,
techniques that generate traces by random simulation have also been explored
in the context of hardware verification. One such technique is by Chen et al.
[50] and proceeds in two phases. The first phase identifies all the distinct states
of the counterexample trace. The second phase represents the trace as a state
graph: it applies one step of forward state traversal [57] to each of the in-
dividual states and adds transition edges to the graph based on it. Dijkstra’s
shortest path algorithm is applied to the final graph obtained. This approach,
while very effective in minimizing the trace length (the number of clock cycles
in the trace), (1) does not consider elimination of input variable assignments,
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and (2) makes heavy use of formal state-traversal techniques, which are expen-
sive computationally and can usually be applied only to small-size designs, as
indicated also by the experimental results in [50].

8.1.3 Techniques in Software Verification
The problem of trace minimization has been a focus of research also in the

software verification domain. Software bug traces are characterized by involv-
ing a very large number of variables and very long sequences of instructions.
The delta debugging algorithm [69] is fairly popular in the software world.
It simplifies a complex software trace by extracting the portion of the trace
that is relevant to exposing the bug. Their approach is based exclusively on
resimulation-based exploration and it attacks the problem by partitioning the
trace (which in this case is a sequence of instructions) and checking if any of
the components can still expose the bug. The algorithm was able to greatly
reduce bug traces in Mozilla, a popular web browser. A recent contribution
that draws upon counterexamples found by model checking is by Groce et al.
[68]. Their solution focuses on minimizing a trace with respect to the primitive
constructs available in the language used to describe the hardware or software
system and on trying to highlight the causes of the error in the counterexample,
so as to produce a simplified trace that is more understandable by a software
designer.

8.2 Analysis of Bug Traces
In this section, we analyze the characteristics of bug traces generated using

random simulation, pointing out the origins of redundancy in these traces and
propose how redundancy can be removed. In general, redundancy exists be-
cause some portions of the bug trace may be unrelated to the bug, there may be
loops or shortcuts in the bug trace, or there may be an alternative and shorter
path to the bug. Two examples are given below to illustrate the idea, while the
following subsections provide a detailed analysis.

Example 8.2 Intel’s first-generation Pentium processor included a bug in
the floating-point unit which affected the FDIV instruction. This bug occurred
when FDIV was used with a specific set of operands. If there had been a
checker testing for the correctness of the FDIV operation during the simulation-
based verification of the processor, it is very probable that a bug trace exposing
this problem may be many cycles long. However, only a small portion of the
random program would have been useful to expose the FDIV bug, while the
majority of other instructions can be eliminated. The redundancy of the bug
trace comes from the cycles spent testing other portions of the design, which
are unrelated to the flawed unit and can thus be removed.
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Example 8.3 Suppose that the design under test is a FIFO unit, and a bug
occurs every time the FIFO is full. Also assume that there is a pseudo-random
bug trace containing both read and write operations until the trace reaches
the “FIFO full” state. Obviously, cycles that read data from the FIFO can be
removed because they create state transitions that bring the trace away from
the bug configuration instead of closer to it.

8.2.1 Making Traces Shorter
In general, a trace can be made shorter if any of the following situations

arise: (a) it contains loops; (b) there are alternative paths (shortcuts) between
two design states; or (c) there is another state which exposes the same bug and
can be reached earlier.

The first situation is depicted schematically in Figure 8.4. In random sim-
ulation, a state may be visited more than once, and such repetitive states will
form loops in the bug trace. Identifying such loops and removing them can
reduce the length of the bug trace.

Figure 8.4. A bug trace may contain sequential loops, which can be eliminated to obtain an
equivalent but more compact trace.

In the second case, there may be a shortcut between two states as indicated
by arrow 1 in Figure 8.5, which means an alternative path may exist from a
state to another state using fewer cycles. Such situations may arise in random
traces frequently because constrained-random simulation often selects transi-
tions arbitrarily and it is possible that longer paths are generated in place of
shorter ones.

The third condition occurs when multiple design states exist that expose the
same bug, and some of them can be reached in fewer steps compared to the
original one, as shown by arrows marked “2” in Figure 8.5. If a path to those
states can be found, it is possible to replace the original one.

A heuristic approach that can be easily devised to search for alternative
shorter traces is based on generating perturbations on a given trace. A bug trace
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Figure 8.5. Arrow 1 shows a shortcut between two states on the bug trace. Arrows marked
“2” show paths to easier-to-reach bug states in the same bug configuration (that violate the same
property).

can be perturbed locally or globally to find shortcuts or a path to an alternative
bug state. In a local perturbation, cycles or input events are added or removed
from an original trace. As mentioned previously, random simulation selects
state transitions in a pseudo-random fashion. By local perturbation, alternative
transitions can be explored and shorter paths to a trace state or to another state
exposing the bug may be found. In a global perturbation, a completely new
trace is generated, and the trace can be used to replace the original one if it is
shorter. One reason why perturbation has the potential to work effectively on
random traces is that a pseudo-random search tends to do a large amount of
local exploration, compared to a formal trace that progresses directly to a bug.
Because of this, opportunities of shortcuts within a trace abound.

8.2.2 Making Traces Simpler
After all redundant cycles are removed, many input events may still be left.

For example, if a circuit has 100 inputs and a bug trace is 100 cycles long,
there are 10,000 input variable assignments in the trace. However, not all as-
signments are relevant to expose the bug. Moreover, redundant events increase
the complexity of interpreting the trace in the debugging phase. Therefore it is
important to identify and remove such redundancy.

We envision two ways of simplifying the input assignments in a trace: by
removing input events and by eliminating assignments that are not essential
to reach our goal. In this latter approach, input assignments can be marked
as essential or not, based on their impact in exposing the bug. By removing
nonessential input variable assignments, the analysis of the bug trace during
debugging can be made much simpler. For example, a trace with two input
events will be much easier to analyze than a trace with 10,000 input events.
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8.3 Proposed Techniques
Based on our analysis, we propose several techniques to minimize a bug

trace. In this section we first provide an overview of these techniques, and then
we discuss each technique in detail.

1 Single-cycle elimination shortens a bug trace by resimulating a variant of
the trace which includes fewer simulation cycles.

2 Alternative path to bug is exploited by detecting when changes made on a
trace produce an alternative, shorter path to the bug.

3 State skip identifies all the unique state configurations in a trace. If the same
state occurs more than once, it indicates the presence of a loop between two
states, and the trace can be reduced.

4 BMC-based refinement attempts to further reduce the trace length by search-
ing locally for shorter paths between two trace states.

In addition, we propose the following techniques to simplify traces:
1 Input-event elimination attempts to eliminate input events, by resimulating

trace variants which involve fewer input events.
2 Essential variable identification uses three-value simulation to distinguish

essential variable assignments from nonessential ones, and marks the
nonessentials with “X”.

3 Indirectly, all cycle removal techniques may also remove redundant input
events.

A bug trace can be perturbed by either adding or removing cycles or in-
put events. However, trying all possibilities is infeasible. Since the purpose
of minimization is to reduce the number of cycles and input events, we only
use removal in the hope to find shorter and simpler traces. Our techniques are
applied in the following order: Butramin first tries to shorten a trace by remov-
ing certain clock cycles and simulating such trace variants, after which it tries
to reduce the number of input events. While analyzing each perturbed trace,
the two techniques of alternative path to bug and state skip monitor for loops
and shorter paths. Once these techniques run out of steam, Butramin applies
a series of BMC refinements. The BMC search is localized so that we never
generate complex SAT instances for SAT solving, which could become the
bottleneck of Butramin. If our SAT solver times out on some BMC instances,
we simply ignore such instances and potential trace reductions since we do not
necessarily aim for the shortest traces.

8.3.1 Single-Cycle Elimination
Single-cycle elimination is an aggressive but efficient way to reduce the

length and the number of input events in a bug trace. It tentatively removes a
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whole cycle from the bug trace and checks if the bug is still exposed by the
new trace through resimulation, in which case the new shorter trace replaces
the old one. This procedure is applied iteratively on each cycle in the trace,
starting from cycle 1 and progressing to the end of the trace. The reason we
start from the first simulation cycle is that perturbing early stages of a trace has
a better chance to explore states far away from the original trace. The later a
removal the less the opportunity to visit states far away from the original trace.

Example 8.4 Consider the trace of Example 8.1. During the first step,
single-cycle elimination attempts to remove cycle 1. If the new trace still ex-
poses the bug, we obtain a shorter bug trace which is only two cycles long and
has two input events, as shown in Figure 8.6. Note that it is possible that some
input events become redundant because of cycle elimination, as it is the case
in this example for the event on signal c at cycle 2. This is because the previ-
ous transition on c was at cycle 1, which has now been removed. After events
which have become redundant are eliminated, single-cycle elimination can be
applied to cycle 2 and 3, iteratively.

Figure 8.6. Single-cycle elimination attempts to remove individual trace cycles, generating
reduced traces which still expose the bug. This example shows a reduced trace where cycle 1
has been removed.

To reduce Butramin’s runtime, we extend single-cycle elimination to work
with several cycles at once. When three consecutive cycles are eliminated one
by one, Butramin will try to eliminate pairs of consecutive cycles. If that suc-
ceeds, the next attempt will consider twice as many cycles. If it fails, the num-
ber of cycles considered at once will be halved. This adaptive cycle elimina-
tion technique can dynamically extend its “window size” to quickly eliminate
large sequences of cycles when this is likely, but will roll back to single-cycle
removal otherwise.

Note that, when dependency exists between blocks of cycles, removing a
single cycle at a time may invalidate the bug trace. For example, removing any
cycle within a PCI-X transaction will almost always corrupt the transaction,
rendering the bug trace useless. This problem can be addressed by removing
whole transactions instead of cycles. With some extra inputs from the user to
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help identify transaction boundaries, Butramin can be easily adapted to handle
transaction-based traces.

8.3.2 Input-Event Elimination
Input-event elimination is the basic technique to remove input events from a

trace. It tentatively generates a variant trace where one input event is replaced
by the complementary value assignment. If the variant trace still exposes the
bug, the input event can be removed. In addition, the event immediately fol-
lowing on the same signal becomes redundant and can be removed as well.

Example 8.5 Consider once again the trace of Example 8.1. The result after
elimination of input event c at cycle 1 is shown in Figure 8.7. Note that the
input event on signal c at cycle 2 becomes redundant and it is also eliminated.

Figure 8.7. Input-event elimination removes pairs of events. In the example, the input events
on signal c at cycle 1 and 2 are removed.

8.3.3 Alternative Path to Bug
An alternative path to bug occurs when a variant trace reaches a state that

is different from the final state of the trace, but it also exposes the same bug.
The alternative state must obviously be reached in fewer simulation steps than
in the original trace. As shown in Figure 8.8, if state sj2 , reached at time t2 by
the variant trace (shown at the bottom) exposes the bug, the new variant trace
replaces the original one.

8.3.4 State Skip
The state skip rule is useful when two identical states exist in a bug trace.

This happens when there is a sequential loop in the trace or when, during the
simulation of a tentative variant trace, an alternative (and shorter) path to a
state in the original trace is found. Consider the example shown in Figure
8.9: if states sj2 and si4 are identical, then a new, more compact trace can
be generated by appending the portion from step t5 and on of the original
trace, to the prefix extracted from the variant trace up to and including step t2.
This technique identifies all reoccurring states in a trace and removes cycles
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Figure 8.8. Alternative path to bug: the variant trace at the bottom hits the bug at step t2. The
new trace replaces the old one, and simulation is stopped.

between them, guaranteeing that all the states in the final minimized trace are
unique. States are hashed for fast look-up so that state skip does not become a
bottleneck in execution.

Figure 8.9. State skip: if state sj2 = si4 , cycles t3 and t4 can be removed, obtaining a new
trace which includes the sequence “... sj1 , sj2 , si5 , ...”.

8.3.5 Essential Variable Identification
We found that, after applying our minimization techniques, bug traces are

usually much shorter. However, many input variable assignments may still be
part of the trace, and their relevance in exposing the bug may vary – some may
be essential, while others are not. Butramin includes an “X-mode” feature for
filtering out irrelevant input variable assignments, where input variable assign-
ments are classified as essential or not, based on a 3-value (0/1/X) simulation
analysis. To implement this technique, two bits are used to encode each signal
value, and each input assignment at each cycle is assigned in turn the value
X: if the X input propagates to the checker’s output and an X is sampled on
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the checker’s output signal, then the input is marked essential, and the original
input assignment is kept. Otherwise, the input assignment is deemed irrele-
vant for the purpose of exposing the bug. The set of input assignments that are
marked irrelevant contribute to simplify the debugging activity, since a verifi-
cation engineer does not need to take them into consideration when studying
the cause of the system’s incorrect behavior. We present experimental results
indicating that this analysis is capable of providing substantial simplifications
to the signals involved in an already reduced bug trace.

Note, finally, that our simplification technique, which relies on 3-value sim-
ulation, is over-conservative, flagging irrelevant input assignments as essential.
Consider, for instance, the simulation of a multiplexer where we propagated
an X value to the select input and a 1 value to both data inputs. A 3-valued
logic simulator would generate X at the output of the simulator; however,
for our purposes, the correct value should have been 1, since we consider X
to mean “don’t-care”. If more accuracy is desired for this analysis, a hybrid
logic/symbolic simulator can be used instead [82, 136].

Alternatively, essential variable identification could be performed using a
BMC-based technique with a pseudo-Boolean SAT solver, for instance [61,
166]. Such solvers satisfy a given SAT formula with the smallest possible
number of assigned variables (maximal number of don’t-cares). Aside from
these solvers, even mainstream Boolean SAT solvers can be specialized to do
this, as suggested in [113]. Since assignments in the SAT solution correspond
to input variable assignments in the bug trace, those input variable assignments
are obviously essential. Essential variable identification naturally follows by
marking all other input variable assignments as irrelevant. A similar idea has
been deployed also by Lu et al. [95] to find a three-valued solution which
minimizes the number of assignments to state variables.

8.3.6 BMC-Based Refinement
This technique can be used after simulation-based minimization to further

reduce the length of a bug trace. Because of state skip, after applying simulation-
based minimization, no two states in a trace will be the same. However, shorter

1 Select two states si and sj , k cycles apart;
2 for l = 1 to k − 1 do
3 C = circuit unrolled l times;
4 Transform C into a Boolean formula CNFc;
5 I=CNFc ∧ CNFsi ∧ CNFsj ;
6 if (I is satisfiable)
7 return (shortcut si → sj , l steps);

Figure 8.10. BMC-based shortcut detection algorithm.
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paths between any pair of states may still exist. We propose here an approach
based on model checking to find such paths. The algorithm, also outlined in
Figure 8.10, considers two states, say si and sj , which are k cycles apart in the
trace and attempts to find the shortest path connecting them. This path can then
be found by unrolling the circuit from 1 to k − 1 times, asserting si and sj as
the initial and final states, and attempting to satisfy the corresponding Boolean
formula. If we refer to the CNF formula of the unrolled circuit as CNFc, then
CNFc ∧ CNFsi ∧ CNFsj is the Boolean formula to be satisfied. If a SAT
solver can find a solution, then we have a shortcut connecting si to sj . Note
that the SAT instances generated by our algorithm are simplified by the fact
that CNFsi and CNFsj are equivalent to a partial satisfying assignment for
the instance. An example is given in Figure 8.11.

Figure 8.11. BMC-based refinement finds a shortcut between states S1 and S4, reducing the
overall trace length by one cycle.

The algorithm described in Figure 8.10 is applied iteratively on each pair
of states that are k steps apart in the bug trace, and using varying values for
k from 2 to m, where m is selected experimentally so that the SAT instance
can be solved efficiently. We then build an explicit directed graph using the
shortcuts found by the BMC-based refinement and construct the final shorter
path from the initial state to the bug state. Figure 8.12 shows an example of
such graph. Each vertex in the graph represents a state in the starting trace,
edges between vertices represent the existence of a path between the corre-
sponding states, and the edge’s weight is the number of cycles needed to go
from the source state to the sink. Initially, there is an edge between each two
consecutive vertices, and the weight labels are 1. Edges are added between
vertices when shortcuts are found between the corresponding states, and they
are labeled with the number of cycles used in the shortcut. A single-source
shortest path algorithm for directed acyclic graphs is then used to find a shorter
path from the initial to the bug state. While some of the shortcuts discovered
by BMC may be incompatible because of the partial constraints in CNFsi
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and CNFsj , the algorithm we describe selects an optimal set of compatible
shortcuts within the selected window size m.

Although simulation-based techniques are effective, they are heuristic in
nature and may miss local optimization opportunities. BMC-based refinement
has the potential to improve on local optimizations by performing short-range
optimal cycle elimination.

Figure 8.12. A shortest-path algorithm is used to find the shortest sequence from the initial
state to the bug state. The edges are labeled by the number of cycles needed to go from the
source vertex to the sink. The shortest path from states 0 to 4 in the figure uses 2 cycles.

8.4 Implementation Insights
We built a prototype implementation of the techniques described in the pre-

vious section to evaluate Butramin’s performance and trace reduction capa-
bility on a range of digital designs. Our implementation strives to simplify
a trace as much as possible, while providing good performance at the same
time. This section discusses some of the insights we gained while constructing
a Butramin’s prototype.

8.4.1 System Architecture
The architecture of Butramin consists of three primary components: a driver

program, commercial logic simulation software, and a SAT solver. The driver
program is responsible for (1) reading the bug trace, (2) interfacing to the
simulation tool and SAT solver for the evaluation of the compressed variant
traces, and (3) finding simplifications introduced in the previous sections. The
logic simulation software is responsible for simulating test vectors from the
driver program, notifying the system if the trace reaches the bug under study,
and communicating back to the driver each visited state during the simulation.
BMC-based minimization was implemented using MiniSat [61] that analyzes
the SAT instances generated by converting the unrolled circuits to CNF form
using a CNF generator. The system architecture is shown in Figure 8.13.

8.4.2 Algorithmic Analysis and Performance
Optimizations

In the worst case scenario, the complexity of our simulation-based tech-
niques is quadratic in the length of the trace under evaluation, and linear in the
size of the primary input signals of the design. In fact, consider an m-cycle
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Figure 8.13. Butramin system architecture.

long bug trace driving an n-input design. The worst case complexity for our
cycle-elimination technique is O(m2), where the one of the input-event elimi-
nation technique is O(n×m2). All the other simulation-based techniques have
simpler complexity or are independent of the size of the trace or design. In
order to improve the runtime of Butramin, we developed an extra optimization
as described below. Experimental results show that the worst case situation did
not occur due to our optimization, adaptive cycle elimination and the nature of
practical benchmarks.

The optimization focuses on identifying all multiple occurrences of a state
so that we can identify when the simulation of a variant trace falls into the orig-
inal trace, and then we can avoid simulating the last portion of the variant. To
achieve this, we hash all states visited by a trace and tag them with the clock
cycle in which they occur. During the simulation of variant traces we noted
that, in some special conditions, we can improve the performance of Butramin
by reducing the simulation required: after the time when the original and the
variant traces differ, if a variant state matches a state in the original trace tagged
by the same clock cycle, then we can terminate the variant simulation and still
guarantee that the variant trace will hit the bug. In other words, simulation can
be terminated early because the result of applying the same test vectors after
the matched state will not change. We call this an early exit. As illustrated in
Figure 8.14, early exit points allow the simulation to terminate immediately.
Often simulations can also be terminated early by state skip optimization be-
cause the destination state is already in the trace database. Experimental results
show that this optimization is crucial to the efficiency of simulation-based min-
imization techniques.
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Figure 8.14. Early exit. If the current state sj2 matches a state si2 from the original trace,
we can guarantee that the bug will eventually be hit. Therefore, simulation can be terminated
earlier.

8.4.3 Use Model
To run Butramin, the user must supply four inputs: (1) the design under

test, (2) a bug trace, (3) the property that was falsified by the trace, and (4) an
optional set of constraints on the design’s input signals. Traces are represented
as Value Change Dump (VCD) files, a common compact format that includes
all top-level input events. Similarly, the minimized bug traces are output as
VCD files.

Removing input events from the bug trace during trace minimization may
generate illegal input sequences, which in turn could erroneously falsify a
property or make the trace useless. For example, removing the reset event
from a bug trace may lead the design into an erroneous state, generating a spu-
rious trace which does not reflect a possible legal activity of the design under
verification, even if the simulation of such trace does expose the original design
flaw. Consequently, when testing sub-components of a design with constrained
inputs, it becomes necessary to validate the input sequences generated during
trace minimization. There are several ways to achieve this goal. One technique
is to mark required inputs so that Butramin does not attempt to remove the cor-
responding events from the trace. This approach is a viable solution to handle,
for instance, reset and the clock signals. For complex sets of constraints, it
is possible to convert them into an equivalent circuit block connected to the
original design, such as the techniques described in the work by Yuan et al.
[144]. This extra circuit block takes random input assignments and converts
them into a set of legal assignments which satisfy all the required environ-
ment constraints. We deployed the former approach for simple situations, and
we adapted the latter to the context of our solution for benchmarks with more
complex environments. Specifically, since Butramin starts already with a valid
input trace which it attempts to simplify, we wrote our constraints as a set of
monitors which observe each input sequence to the design. If the monitors flag
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an illegal transition during simulation, the entire “candidate trace” is deemed
invalid and removed from consideration. For BMC-based refinement, these en-
vironmental constraints are synthesized and included as additional constraints
to the problem instance. Note, however, that this limits BMC-based techniques
to be applied to designs whose environmental constraints are synthesizable. On
the other hand, this requirement is lifted for the simulation-based minimization
techniques. From our experimental results, we observe that most minimization
is contributed by simulation-based techniques, which renders this requirement
optional for most practical benchmarks.

We also developed an alternative use model to apply Butramin to reducing
regression runtime. In this context, the approach is slightly different since the
goal now is to obtain shorter traces that achieve the same functional coverage
as their longer counterpart. To support this, coverage points are encoded by
properties: each of them is “violated” only when the corresponding point is
covered by the trace. Butramin can then be configured to generate traces that
violate all of the properties so that the same coverage is maintained.

8.5 Experimental Results
We evaluated Butramin by minimizing traces generated by a range of com-

mercial verification tools: a constrained-random simulator, semi-formal ver-
ification software, and again a semi-formal tool where we specified to use
extra effort in generating compact traces. We considered nine benchmark
designs from OpenCores (FPU), ISCAS89 (S15850, S38584), ITC99 (B15),
IWLS2005 (VGALCD), picoJava (picoJava, ICU), as well as two internally
developed benchmarks (MULT, DES), whose characteristics are reported in
Table 8.1. We developed assertions to be falsified when not already available
with the design, and we inserted bugs in the design that falsify the assertions.
Table 8.2 describes assertions and bugs inserted. For ICU and picoJava, no
bugs were injected but the constraints for random simulation were relaxed.
The checker for VGALCD is a correct duplicate of the original design (which
we modified to contain one design error), hence the circuit size we worked with
is twice as the one reported in Table 8.1. Finally, experiments were conducted
on a Sun Blade 1500 (1 GHz UltraSPARC IIIi) workstation running Solaris 9.

8.5.1 Simulation-Based Experiments
Our first set of experiments attempts to minimize traces generated by run-

ning a semi-formal commercial verification tool with the checkers specified,
and subsequently applying only the simulation-based minimization techniques
of Butramin, described in Sections 8.3.1, 8.3.2, 8.3.3, and 8.3.4. We were not
able to complete the generation of traces with the semi-formal verification tool
for VGALCD, therefore we only report results related to constrained-random
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Table 8.1. Characteristics of benchmarks.

Benchmark Inputs Flip-flops Gates Description
S38584 41 1426 20681 Unknown
S15850 77 534 10306 Unknown
MULT 257 1280 130164 Wallace tree multiplier
DES 97 13248 49183 DES algorithm
B15 38 449 8886 Portion of 80386
FPU 72 761 7247 Floating point unit
ICU 30 62 506 PicoJava instruction cache unit
picoJava 53 14637 24773 PicoJava full design
VGALCD 56 17505 106547 VGA/LCD controller

The benchmark setup for VGALCD involves duplicating this design and modifying one con-
nection in one of the copies. Butramin then minimizes the trace exposing the difference. It
follows that the size of the benchmark we work with is actually twice as the one reported for
this design.

Table 8.2. Bugs injected and assertions for trace generation.

Circuit Bug injected Assertion used
S38584 None Output signals forced to a specific

value
S15850 None Output signals forced to a specific

value
MULT AND gate changed with

XOR
Compute the correct output value

DES Complemented output Timing between receive valid, out-
put ready and transmit valid

B15 None Coverage of a partial design state
FPU divide on zero condition-

ally complemented
Assert divide on zero when divi-
sor=0

ICU Constraints relaxed Buffer-full condition
picoJava Constraints relaxed Assert SMU’s spill and fill
VGALCD Circuit duplicated with one Outputs mismatch condition

wire changed in one copy

traces for this benchmark. Table 8.3 shows the absolute values of cycles and
input events left in each trace and the overall runtime of Butramin using only
simulation-based techniques. Figures 8.15 and 8.16 show the percentages of
cycles and input events removed from the original bug trace using different
techniques. Note that for all benchmarks we are able to remove the majority
of cycles and input events.
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Table 8.3. Cycles and input events removed by simulation-based techniques of Butramin on
traces generated by semi-formal verification.

Circuit Cycles Input events Runtime
Original Remain Removed (%) Original Remain Removed (%) (seconds)

S38584 13 8 38.46 255 2 99.22 19
S15850 59 1 98.31 2300 3 99.87 5
MULT 345 4 98.84 43843 2 99.99 35
DES 198 154 22.22 3293 3 99.91 254
B15 25015 11 99.96 450026 15 99.99 57
FPU 53711 5 99.99 1756431 17 99.99 27
ICU 6994 3 99.96 62740 3 99.99 5
picoJava 30016 10 99.97 675485 11 99.99 3359

Figure 8.15. Percentage of cycles removed using different simulation-based techniques. For
benchmarks like B15 and ICU, state skip is the most effective technique because they contain
small numbers of state variables and state repetition is more likely to occur. For large bench-
marks with long traces like FPU and picoJava, cycle elimination is the most effective technique.

With reference to Figures 8.15 and 8.16, we observe that the contribution
of different minimization techniques varies among benchmarks. For example,
almost all the cycles and input events are removed by cycle elimination in FPU
and picoJava. On the other hand, state skip removes more than half of the
cycles and input events in B15 and ICU. This difference can be attributed to
the nature of the benchmark: if there are fewer state variables in the design,
state skip is more likely to occur. In general, state skip has more opportuni-
ties to provide trace reductions in designs that are control-heavy, such as ICU,
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compared to designs that are datapath-heavy, such as FPU and picoJava. Al-
though input-event elimination does not remove cycles, it has great impact in
eliminating input events for some benchmarks, such as S38584. Overall, we
found that all these techniques are important to compact different types of bug
traces.

Figure 8.16. Number of input events eliminated with simulation-based techniques. The dis-
tributions are similar to cycle elimination because removing cycles also removes input events.
However, input-event elimination works the most effectively for some benchmarks like S38584
and DES, showing that some redundant input events can only be removed by this technique.

Our second set of experiments applies Butramin to a new set of traces, also
generated by a semi-formal tool, but this time we configured the software to
dedicate extra effort in generating short traces, by allowing more time to be
spent on the formal analysis of the checker. Similar to Table 8.3 discussed
earlier, Table 8.4 reports the results obtained by applying the simulation-based
minimization techniques of Butramin to these traces. We still find that Bu-
tramin has a high impact in compacting these traces, even if, generally speak-
ing, they present less redundancy, since they are closer to be minimal. Note in
particular, that the longer the traces, the greater the benefit from the applica-
tion of Butramin. Even if the overall impact is reduced, we still observe a 61%
reduction in the number of cycles and 91% in input events, on average.

The third set of experiments evaluated traces generated by constrained-
random simulation. Results are summarized in Table 8.5. As expected, Bu-
tramin produced the most impact on this set of traces, since they tend to in-
clude a large amount of redundant behavior. The average reduction is 99% in
terms of cycles and input events.
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Table 8.4. Cycles and input events removed by simulation-based techniques of Butramin on
traces generated by a compact-mode semi-formal verification tool.

Circuit Cycles Input events Runtime
Original Remain Removed (%) Original Remain Removed (%) (seconds)

S38584 13 8 38.46 255 2 99.22 21
S15850 17 1 94.12 559 56 89.98 4
MULT 6 4 33.33 660 2 99.70 34
DES 296 17 94.26 3425 3 99.91 17
B15 27 11 59.26 546 5 99.08 6
FPU 23 5 78.26 800 17 97.88 1
ICU 19 14 26.32 142 80 43.66 1
picoJava 26 10 61.54 681 11 98.38 39

Table 8.5. Cycles and input events removed by simulation-based methods of Butramin on
traces generated by constrained-random simulation.

Circuit Cycles Input events Runtime
Original Remain Removed (%) Original Remain Removed (%) (seconds)

S38584 1003 8 99.20 19047 2 99.99 16
S15850 2001 1 99.95 77344 3 99.99 2
MULT 1003 4 99.60 128199 2 99.99 34
DES 25196 154 99.39 666098 3 99.99 255
B15 148510 10 99.99 2675459 9 99.99 395
FPU 1046188 5 99.99 36125365 17 99.99 723
ICU 31992 3 99.99 287729 3 99.99 5
picoJava 99026 10 99.99 2227599 16 99.99 5125
VGALCD 36595 4 99.99 1554616 19 99.99 28027

8.5.2 Performance Analysis
Table 8.6 compares Butramin’s runtime with and without different optimiza-

tion techniques. The traces are generated using semi-formal methods in this
comparison. The execution runs that exceeded 40,000 seconds were timed-out
(T/O in the table). The runtime comparison shows that early exit and state
skip have great impacts on the execution time: early exit can stop resimula-
tion early, and state skip may reduce the length of a trace by many cycles at
a time. Although these two techniques require extra memory, the reduction in
runtime shows they are worthwhile. In ICU, state skip occurred 4 times, re-
moving 6977 cycles, which resulted in a very short runtime. The comparison
also shows that adaptive cycle elimination iscapable of reducing minimization
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Table 8.6. Impact of the various simulation-based techniques on Butramin’s runtime.

Benchmark Runtime(seconds)
[1]: cycle elimination+ [2]: [1]+state skip+ [3]: [2]+adaptive
input-event elimination early exit cycle elimination

S38584 21 19 19
S15850 11 5 5
MULT 48 43 35
DES 274 256 254
B15 T/O 58 57
FPU T/O 235 27
ICU 8129 5 5

picoJava T/O T/O 3359

Average 1697 66 64

Benchmarks that exceeded the time limit (40,000s) are not included in the average. Each of
the runtime columns reports the runtime using only a subset of our techniques: the first cycle
elimination and input-event elimination. The second includes in addition early exit and state
skip, and the third adds also adaptive cycle elimination.

time significantly. This technique is especially beneficial for long bug traces,
such as FPU and picoJava.

A comparison of Butramin’s impact and runtime on the three sets of traces
is summarized in Figure 8.17. The result shows that Butramin can effectively
reduce all three types of bug traces in a reasonable amount of time. Note, in
addition, that in some cases the minimization of a trace generated by random
simulation takes similar or less time than applying Butramin to a trace gen-
erated by a compact-mode semi-formal tool, even if the initial trace is much
longer. That is the case for S38584 or S15850. We explain this effect by the
nature of the bug traces: traces generated by random simulation tend to visit
states that are easily reachable, therefore states are likely to be repetitive, and
state skip occurs more frequently, leading to a shorter minimization time. On
the other hand, states visited in a compact-mode generated trace are more fre-
quently produced by formal engines and can be highly specific, making state
skip a rare event. The cases of FPU and picoJava are relevant in this context:
here state skips do not occur, and the minimization time is highly related to
the original trace length. They also demonstrate the benefits of Butramin in
various verification methodologies.

8.5.3 Essential Variable Identification
We also applied the technique from Section 8.3.5 to identify essential vari-

ables from the minimized traces we generated. Table 8.7 shows that after this
technique is applied, many input variable assignments are marked nonessential,
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Figure 8.17. Comparison of Butramin’s impact when applied to traces generated in three dif-
ferent modes. The graph shows the fraction of cycles and input events eliminated and the
average runtime.

further simplifying the trace. Note that the comparison is now between input
variable assignments, not input events. Since all nonessential input variable
assignments are simulated with X, the simulation will propagate X values to
many internal signals as well. As a result, it will be easier to understand the
impact of essential variable assignments on violated properties.

Table 8.7. Essential variable assignments identified in X-mode.

Circuit Input variables Essential variables
S38584 320 2
S15850 76 2
MULT 1024 1019
DES 14748 2
B15 407 45
FPU 355 94
ICU 87 21
picoJava 520 374

The table compares the number of input variable assignments in the minimized traces with the
number of assignments classified essential. All the remaining assignments are nonessential and
can be replaced by X values in simulation. The initial traces were generated by a semi-formal
verification tool.

8.5.4 Generation of High-Coverage Traces
In order to evaluate the effectiveness of Butramin on reducing regression

runtime, we selected three benchmarks, DES, FPU and VGALCD, as our
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Table 8.8. Cycles and input events removed by simulation-based methods of Butramin on
traces that violate multiple properties.

Circuit #Pro- Cycles Input events Runtime
perties Original Remain Removed (%) Original Remain Removed (%) (seconds)

DES 2 25196 184 99.27 666098 17 99.99 549
FPU 3 1046188 9 99.99 36125365 264 99.99 580
VGALCD 3 36595 5 99.98 1554616 22 99.99 25660

multi-property benchmarks. The original properties in the previous experi-
ments were preserved, and the same traces generated by constrained-random
simulation were used. In addition, we included a few extra properties, so that
our original traces would expose them before reaching their last simulation
step. Those extra properties specify a certain partial states to be visited or a
certain output signals to be asserted. Butramin is then configured to produce
minimized traces that violate all properties. The results are summarized in Ta-
ble 8.8. Compared with Table 8.5, it can be observed that in order to cover extra
properties, the length of the minimized traces are now longer. However, Bu-
tramin continues to be effective for these multi-property traces. We also found
that the order of property violations is preserved before and after minimization,
suggesting that Butramin minimizes segments of bug traces individually. From
an algorithmic complexity point of view, minimizing a multi-property trace is
similar to minimizing many single-property traces with different initial states.

While the original traces of FPU and VGALCD require 20–30 minutes to
be simulated, post-Butramin traces are short enough to be simulated in just a
few seconds. The benefits of adding the minimized trace to a regression suite,
instead of the original one, are obvious.

8.5.5 BMC-Based Experiments
We applied our BMC-based technique to traces already minimized using

simulation-based methods to evaluate the potential for further minimization.
For VGALCD, we report only data related to the minimization of random trace
since semi-formal traces are not available. The results are summarized in Table
8.9, where Orig is the original number of cycles in the trace, and Removed is
the number of cycles removed by this method. We used a maximum window of
10 cycles (m = 10). The main observation that can be made is that simulation-
based techniques are very effective in minimizing bug traces. In fact, only in
two cases, ICU and B15, our BMC-based technique was able to extract addi-
tional minimization opportunities. Potentially, we could repeat the application
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of simulation-based techniques and BMC-based methods until convergence,
when no additional minimization can be extracted.

Table 8.9. Cycles removed by the BMC-based method.

Circuit Semi-formal Compact-trace Constrained-random
Orig Removed Time Orig Removed Time Orig Removed Time

S38584 8 0 55 s 8 0 55 s 8 0 55 s
S15850 1 0 2 s 1 0 2 s 1 0 2 s
MULT 4 0 20 s 4 0 20 s 4 0 20 s
DES 154 0 23 h3m 17 0 357 s 154 0 23 h3m
B15 11 1 121 s 11 1 121 s 10 0 97 s
FPU 5 0 5 s 5 0 5 s 5 0 5 s
ICU 3 1 1 s 14 2 1 s 3 1 1 s
picoJava 10 0 70 s 10 0 70 s 10 0 104 s
VGALCD N/A N/A N/A N/A N/A N/A 4 0 985 s

In order to compare the performance of the BMC-based technique with our
simulation-based methods, we applied the former directly, to minimize the
original bug traces generated by semi-formal verification and by constrained-
random simulation. For this experiment, the time-out limit was set to 40,000
seconds. Results are summarized in Table 8.10, where benchmarks that timed-
out are marked by “T/O”. The findings reported in the table confirm that our
BMC-based method should only be applied, if at all, after the simulation-based
techniques have already greatly reduced the trace complexity.

8.5.6 Evaluation of Experimental Results
We attempted to gain more insights into the experimental results by eval-

uating two additional aspects of the minimized traces. We first checked how
close the minimized traces are to optimal-length traces such as those generated
by formal verification. To do so, we run full-fledged SAT-based BMC on our
minimized traces. The results show that our techniques found minimal-length
bug traces for all benchmarks except DES (both traces generated by random
simulation and semi-formal verification). For those two traces, the SAT solver
ran out of memory after we unrolled the design by 118 cycles, and we could
not finish the experiment. No shorter traces were found between 1 and 118
cycles long.

We also tried to evaluate if the potential for simulation-based trace reduc-
tion was mostly due to a large number of bug states, that is, a high number
of design configurations that expose a given bug (an example of this situation
is provided in Figure 8.1). To evaluate this aspect, we considered the original
non-minimized traces in our experimental results. We first sampled the final
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Table 8.10. Analysis of a pure BMC-based minimization technique.

Circuit Original Remained Runtime (s)
S38584 13 9 403
S15850 59 59 338
MULT 345 T/O T/O
DES 198 T/O T/O
B15 25015 T/O T/O
FPU 53711 T/O T/O
ICU 6994 700 856
picoJava 30016 T/O T/O

FPU 1046188 T/O T/O
picoJava 99026 T/O T/O
VGALCD 36595 T/O T/O

This table shows the potential for minimizing traces using our BMC-based technique alone.
Column “Original” shows the length, in cycles of the original trace, and column “Remained”
shows the length of the minimized trace obtained after applying the BMC-based method. Traces
in the top-half were generated by semi-formal verification, and the ones in the bottom-half were
generated by constrained-random simulation. Experiments are timed-out at 40,000 seconds.
The results of this table should be compared with Tables 8.3 and 8.5.

state of the design after simulating the traces, and then we fixed the goal of Bu-
tramin to generate a minimized trace that reaches that exact same final state.
The results of this experiment are summarized in Table 8.11. The table shows
that, for most benchmarks, the difference in the number of input events and
cycles removed is small, showing that the size of the bug configuration has a
minimal impact on the ability of Butramin to reduce and simplify a given bug
trace, and our proposed solution remains effective even when the bug configu-
ration is very specific.

8.6 Summary
In this chapter we presented Butramin, a bug trace minimizer that combines

simulation-based techniques with formal methods. Butramin applies simple
but powerful simulation-based bug trace reductions, such as cycle elimination,
input-event elimination, alternative path to bug, state skip and essential vari-
able identification. An additional BMC-based refinement method is used after
these techniques to exploit the potential for further minimization. Compared
to purely formal methods, Butramin has the following advantages: (1) it can
reduce both the length of a bug trace and the number of its input events; (2) it
leverages fast logic-simulation engines for bug trace minimization and it can
scale to industrial size designs; and (3) it leverages existing simulation-based
infrastructure, which is currently prevalent in the industry. This significantly
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Table 8.11. Analysis of the impact of a bug radius on Butramin effectiveness.

Circuit Cycles Input events
Original Same Same Original Same Same

trace bug state trace bug state
S38584 13 8 9 255 2 41
S15850 59 1 1 2300 3 3
MULT 345 4 4 43843 2 380
DES 198 154 193 3293 3 1022
B15 25015 11 11 450026 15 40
FPU 53711 5 5 1756431 17 112
ICU 6994 3 5 62740 3 6
picoJava 30016 10 75 675485 11 1575

FPU 1046188 5 6 36125365 17 120
picoJava 99026 10 22 2227599 16 42
VGALCD 36595 4 199 1554616 19 2068

The table compares number of cycles and input events in the original traces to the same values
from minimized traces that hit the same bug, and to minimized traces that reach the same bug
configuration. Traces in the top-half were generated by semi-formal software and traces in the
bottom-half were generated by constrained-random simulation.

lowers the barriers for industrial adoption of automatic design verification tech-
niques.

Our experimental results show that Butramin can reduce a bug trace to just
a small fraction of its original length and complexity (estimated as the num-
ber of input events in the trace) by using only simulation-based techniques.
In addition we showed that these results are largely independent of the veri-
fication methodology used to generate the trace, whether based on simulation
or semi-formal verification techniques. The impact of Butramin appears to be
uncorrelated with the size of the bug configuration targeted by the trace, that
is, the number of distinct design states that expose the bug.

Recent follow-up work by Pan et al. [53] and Safarpour et al. [115] focuses
on improving the formal analysis techniques for bug trace minimization, and
their approaches can be used to augment our BMC-based technique. As their
experimental results suggest, however, formal analysis still cannot achieve the
scalability provided by our simulation-based minimization methods, making
Butramin more suitable for practical designs.



Chapter 9

FUNCTIONAL ERROR DIAGNOSIS
AND CORRECTION

Recent improvements in design verification strive to automate the error-
detection process and greatly enhance engineers’ ability in detecting the pres-
ence of functional errors. However, the process of diagnosing the cause of
these errors and fixing them remains difficult and requires significant manual
effort. The work described in this chapter improves this aspect of verifica-
tion by presenting new constructs and algorithms to automate the error-repair
process at both the gate level and the Register-Transfer Level (RTL). In this
chapter, we first extend the CoRé framework (see Chapter 5) to handle se-
quential circuits. Next, we present a novel RTL error diagnosis and correction
methodology. Finally, we show the empirical evaluation of our functional error
repair techniques and summarize this chapter.

9.1 Gate-Level Error Repair for Sequential Circuits
The CoRé framework described in Chapter 5 only addresses the error-repair

problem for combinational circuits. CoRé is easily adaptable to correct errors
in sequential circuits, as described in this section. First of all, when operating
on sequential circuits the user will provide CoRé with input traces, instead of
input patterns. A trace is a sequence of input patterns, where a new pattern
is applied to the design’s inputs at each simulation cycle, and the trace can
be either error-sensitizing or functionality-preserving. To address sequential
circuits, we adopt the diagnosis techniques from Ali et al. [6] relating to se-
quential circuits. The idea is to first unroll the circuit by connecting the outputs
of the state registers to the inputs of the registers in the previous cycle, and then
use the test vectors to constrain the unrolled circuit. Given an initial state and
a set of test vectors with corresponding correct output responses, Ali’s error-
diagnosis technique is able to produce a collection of error sites, along with
their correct values, that rectify the incorrect output responses.
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To correct errors in sequential designs we apply the same algorithm de-
scribed in Section 5.2.1 with two changes: the diagnosis procedure should be
as described in [6], and the signature generation function is modified so that it
can be used in a sequential design. Specifically, the new sequential signature
generation procedure should record one bit of signature for each cycle of each
sequential trace that we simulate. For instance, if we have two traces available,
a 4-cycle trace and a 3-cycle trace, we will obtain a 7-bit signature at each in-
ternal circuit node. An example of the modified signature is shown in Figure
9.1. In our current implementation, we only use combinational Observability
Don’t-Cares (ODCs). In other words, we still treat inputs of state registers
as primary outputs when calculating ODCs. Although it is possible to exploit
sequential ODCs for resynthesis, we do not pursue this optimization, yet.

Trace1 Trace2
Cycle 1 2 3 4 1 2 3
Signature 0 1 1 0 1 0 1

Figure 9.1. Sequential signature construction example. The signature of a node is built by
concatenating the simulated values of each cycle for all the bug traces. In this example, trace1
is 4 cycles and trace2 is 3 cycles long. The final signature is then 0110101.

9.2 Register-Transfer-Level Error Repair
To develop a scalable and powerful RTL error diagnosis and correction sys-

tem, we extend our gate-level techniques to the RTL. This approach is more ac-
curate than previous software-based RTL solutions [75, 111, 122] (see Section
2.1) in that we can analyze designs rigorously using formal hardware verifica-
tion techniques. At the same time, it is considerably faster and more scalable
than gate-level diagnosis because errors are modeled at a higher level. More-
over, it only requires test vectors and output responses, making it more practi-
cal than existing formal analysis solutions [18]. Finally, the novel error model
and increased accuracy of our approach allow our technique to provide insight-
ful suggestions for correcting diagnosed errors. Key ideas in this work include:
(1) a new RTL error model that explicitly inserts MUXes into RTL code for er-
ror diagnosis, as opposed to previous solutions that use MUXes implicitly; (2)
new error-diagnosis algorithms using synthesis or symbolic simulation; and
(3) an error-correction technique using signal behaviors (signatures) that are
especially suitable for the RTL. Empirical results show that these techniques
allow us to provide highly accurate diagnoses very quickly.

We implemented our techniques in a framework called REDIR (RTL Error
DIagnosis and Repair), highlighted in Figure 9.2. The inputs to the framework
include a design containing one or more bugs, a set of test vectors exposing
them, and the correct responses for the primary outputs over the given test
vectors (usually generated by a high-level behavioral model written in C, C++,
SystemC, etc.). Note that we only require the correct responses at the primary
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Figure 9.2. REDIR framework. Inputs to the tool are an RTL design (which includes one or
more errors), test vectors exposing the bug(s), and correct output responses for those vectors
obtained from high-level simulation. Outputs of the tool include REDIR symptom core (a min-
imum cardinality set of RTL signals which need to be modified in order to correct the design),
as well as suggestions to fix the errors.

outputs of the high-level model and no internal values are required. The output
of the framework is a minimum cardinality set of RTL signals that should be
corrected in order to eliminate the erroneous behavior. We call this set the
symptom core. When multiple cores exist, REDIR provides all of the possible
minimal cardinality sets. In addition, the framework suggests several possible
fixes of the signals in the symptom core to help a designer correct those signals.

The rest of the section is organized as follows. In Section 9.2.1, we pro-
vide the necessary background. Section 9.2.2 describes our error-diagnosis
techniques, and Section 9.2.3 explains our error-correction method.

9.2.1 Background
Our error-diagnosis algorithm converts the error-diagnosis problem into a

Pseudo-Boolean (PB) problem, and then uses a PB solver to perform the di-
agnosis and infer which design signals are responsible for incorrect output be-
havior. In this subsection, we first define Pseudo-Boolean problems, which
are an extension of SATisifiability problems. Next, we review the basic idea
behind symbolic simulation, which we use as an alternative, compact way to
formulate the PB problem.
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Pseudo-Boolean Problems

PB problems, also called 0–1 integer linear programming problems, are an
extension of SATisfiability problems. A Pseudo-Boolean Constraint (PBC)
is specified as an inequality with a linear combination of Boolean variables:
C0po + C1p1 + ... + Cn−1pn−1 ≥ Cn, where the variables pi are defined over
the Boolean set {0, 1}. A PB problem allows the use of an additional objective
function, which is a linear expression that should be minimized or maximized
under the given constraints. A number of PB solvers have been developed
recently by extending existing SAT solvers (for instance, MiniSat+ [62]).

Logic and Symbolic Simulation

Logic simulation models the behavior of a digital circuit by propagating
scalar Boolean values (0 and 1) from primary inputs to primary outputs. For
example, when simulating 2-input AND with both inputs set to 1, the output 1
is produced. On the other hand, symbolic simulation uses symbols instead of
scalar values and produces Boolean expressions at the outputs [15, 22]. As a
result, simulating a 2-input XOR with inputs a and b generates an expression
“a XOR b” instead of a scalar value. To improve scalability, modern symbolic
simulators employ several techniques, including approximation, parameteri-
zation and on-the-fly logic simplification [14]. For example, with on-the-fly
logic simplification, “0 XOR b” is simplified to b thus reducing the complex-
ity of the expression. Traditional symbolic simulators operate on a gate-level
model of a design; however, in recent years simulators operating on RTL de-
scriptions have been proposed [82, 83]. Symbolic simulation is an alternative
way to generate an instance of the PB constraint problem that we use in our
error-diagnosis framework.

9.2.2 RTL Error Diagnosis
In this subsection, we describe our error-diagnosis techniques. First, we

explain our RTL error model, and then propose two diagnosis methods that use
either synthesis or symbolic simulation. Finally, we outline how hierarchical
designs should be handled.

Error Modeling

In our framework the error-diagnosis problem is represented with (1) an
RTL description containing one or more bugs that is composed of variables
(wires, registers, inputs/outputs) and operations on those variables; (2) a set
of test vectors exposing the bugs; and (3) the correct output responses for the
given test vectors, usually generated by a high-level behavioral model. The
objective of the error diagnosis is to identify a minimal number of variables in
the RTL description that are responsible for the design’s erroneous behavior.
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Moreover, by modifying the logic of those variables, the design errors can be
corrected. Each signal found to affect the correctness of the design is called
a symptom variable. Without minimization, the set of symptom variables re-
ported would include the root cause of the bug and the cone of logic emanating
from it: correcting all the symptom variables on any cut across this cone of
logic would eliminate the bug. Therefore, by forcing the PB solver to mini-
mize the number of symptom variables, we return a solution as close to the
root cause of the erroneous behavior as possible.

To model errors in a design, we introduce a conditional assignment for each
RTL variable, as shown in the example in Figure 9.3. Note that these condi-
tional assignments are used for error diagnosis only and should not appear in
the final synthesized design. However, they allow the REDIR framework to
locate sites of erroneous behavior in RTL, as we illustrate using a half adder
design shown in Figure 9.3. Suppose that the output responses of the design
are incorrect because c should be driven by “a & b” instead of “a | b”. Obvi-
ously, to produce the correct output that we obtain from a high-level model, the
behavior of c must be changed. To model this situation, we insert a conditional
assignment, “assign cn = csel ? cf : c”, into the code. Next, we replace all oc-
currences of c in the code with cn, except when c is used on the left-hand-side
of an assignment. We call csel a select variable and cf a free variable. Then,
by asserting csel and using an alternative signal source, modeled by cf , we can
force the circuit to behave as desired. If we can identify the select variables that
should be asserted and the correct signals that should drive the corresponding
free variables to produce correct circuit behavior, we can diagnose and fix the
errors in the design.

The procedure to introduce a conditional assignment for a design variable
v is called MUX-enrichment (since conditional assignments are conceptually
multiplexers), and its pseudo-code is shown in Figure 9.4. It should be per-
formed on each internal signal, defined in the circuit, including registers. The
primary inputs, however, should not be MUX-enriched since by construction
they cannot have erroneous values. It also should be noted that for hierarchical
designs the primary inputs of a module may be driven by the outputs of another
module and, therefore, may assume erroneous values. To handle this situation,
we insert conditional assignments into the hierarchical modules’ output ports.

Diagnosis with Synthesis

After the error-modeling constructs have been inserted into a design, er-
ror diagnosis is used to identify the minimal number of select variables that
should be asserted along with the values of their corresponding free variables
to produce the correct circuit behavior. In this section we present an error-
diagnosis technique that uses synthesis and circuit unrolling. In contrast with
existing gate-level diagnosis techniques described in Section 5.1.3, our RTL
error-modeling constructs are synthesized with the design, which eliminates
the need to insert multiplexers at the gate level. In this way, the synthesized
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module half adder(a, b, s, c);
input a, b;
output s, c;
assign s = a ˆ b;
assign c = a | b;

endmodule

module half adder MUX enriched(a, b, sn, cn, ssel, csel, sf , cf );
input a, b, ssel, csel, sf , cf ;
output sn, cn;
assign s = a ˆ b;
assign c = a | b;
assign sn = ssel ? sf : s;
assign cn = csel ? cf : c;

endmodule

Figure 9.3. An RTL error-modeling code example: module half adder shows the orig-
inal code, where c is erroneously driven by “a | b” instead of “a & b”; and module
half adder MUX enriched shows the MUX-enriched version. The differences are marked in
boldface.

procedure MUX enrichment(v)
1. create a new signal wire vn and new inputs vf and vsel;
2. add conditional assignment “vn = vsel ? vf : v”;
3. replace all occurrences of v that appear on the right-hand-side of assignments

(including outputs, if/case conditions, etc.) with vn;

Figure 9.4. Procedure to insert a conditional assignment for a signal in an RTL description for
error modeling.

netlist faithfully preserves the constructs inserted at the RTL, enabling accu-
rate RTL error diagnosis. This is significantly different from diagnosing design
errors at the gate level, since synthesis is only used to generate Boolean expres-
sions between RTL variables, and the synthesized netlist is not the target of the
diagnosis. As a result, our diagnosis method has a much smaller search space

Procedure syn based diagnosis(designCNF, c, inputs, outputs)
1 CNF = unroll designCNF c times;
2 connect all select variables in CNF to those in the first cycle;
3 constrain PI/PO in CNF using inputs/outputs;
4 PBC = CNF , min(

∑
select variables);

5 return solution= PB-Solve(BPC);

Figure 9.5. Procedure to perform error diagnosis using synthesis and circuit unrolling. PI/PO
means primary inputs and primary outputs.
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and runs significantly faster than gate-level techniques, as we show in the ex-
perimental results.

Figure 9.5 outlines the algorithm for synthesis-based error diagnosis. Be-
fore the procedure is called, the design is synthesized and its combinational
portion is converted to CNF format (designCNF ). Other inputs to the proce-
dure include the length of the bug trace, c, as well as the test vectors (inputs)
and their correct output responses (outputs). To make sure that the diagnosis
applies to all simulation cycles, the algorithm connects the select variables for
each unrolled copy to the corresponding CNF variables in the first copy. On
the other hand, free variables for each unrolled copy of the circuit are inde-
pendent. When a solution is found, each asserted select variable is a symptom
variable, and the solution for its corresponding free variable is an alternative
signal source that can fix the design errors. Note that if state values over time
are known, they can be used to constrain the CNF at register boundaries, reduc-
ing the sequential error-diagnosis problem to combinational. The constructed
CNF, along with the objective to minimize the sum of select variables, forms a
PBC. Error diagnosis is then performed by solving the PBC.

Diagnosis with RTL Symbolic Simulation

Here we propose an alternative error-diagnosis technique that scales further
than the synthesis-based technique. We achieve this by performing symbolic
simulation directly on the RTL representation and generating Boolean expres-
sions at the primary outputs for all simulated cycles. The outputs’ Boolean
expressions are used to build a PB problem’s instance, that is then handed over
to a PB solver for error diagnosis.

Although RTL symbolic simulators are not yet commonly available in the
industry, effective solutions have been proposed recently in the literature [82,
83]. Moreover, because of the scalability advantages of performing symbolic
simulation at the RTL instead of the gate level, commercial-quality solutions
are starting to appear. For our empirical validation we used one such RTL
symbolic simulator [147].

Figure 9.6 illustrates our procedure that uses symbolic simulation and PB
solving. We assume that the registers are initialized to known values before
the procedure is invoked. We also assume that the circuit contains n MUX-
enriched signals named vi, where i = {1..n}. Each vi has a corresponding
select variable vi sel and a free variable vi f . There are o primary outputs,
named POj , where j = {1..o}. We use subscript “@” to prefix the cycle
during which the symbols are generated. For each primary output j and for
each cycle t we compute expression POj@t by symbolically simulating the
given RTL design, and also obtain correct output value CPOj@t from the high-
level model. The inputs to the procedure are the RTL design (design), the test
vectors (test vectors), and the correct output responses over time (CPO).
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Procedure sim based diagnosis(design, test vectors, CPO)
1 ∀i, 1 ≤ i ≤ n, vi sel= new symbol();
2 for t = 1 to c begin // Simulate c cycles
3 PI = test vector at cycle t;
4 ∀i, 1 ≤ i ≤ n, vi f@t= new symbol();
5 PO@t = simulate(design);
6 end
7 PBC =

∧o

j=1

∧c

t=1
(POj@t== CPOj@t), min

(∑n

i=1
vi sel

)
;

8 return solution= PB Solve(PBC);

Figure 9.6. Procedure to perform error diagnosis using symbolic simulation. The boldfaced
variables are symbolic variables or expressions, while all others are scalar values.

In the algorithm shown in Figure 9.6, a symbol is initially created for each
select variable (line 1). During the simulation, a new symbol is created for
each free variable in every cycle, and test vectors are applied to primary in-
puts, as shown in lines 2–4. The reason for creating only one symbol for each
select variable is that a conditional assignment should be either activated or in-
activated throughout the entire simulation, while each free variable requires a
new symbol at every cycle because the value of the variable may change. As a
result, the symbols for the select variables are assigned outside the simulation
loop, while the symbols for the free variables are assigned in the loop. The
values of the free variables can be used as the alternative signal source to pro-
duce the correct behavior of the circuit. After simulating one cycle, a Boolean
expression for all of the primary outputs are created and saved in PO@t (line
5). After the simulation completes, the generated Boolean expressions for all
the primary outputs are constrained by their respective correct output values
and are ANDed to form a PBC problem as line 7 shows. In order to minimize
the number of symptom variables, we minimize the sum of select variables,
which is also added to the PBC as the objective function. A PB solver is then
invoked to solve the formulated PBC, as shown in line 8. In the solution,
the asserted select variables represent the symptom variables, and the values
of the free variables represent the alternative signal sources that can be used to
correct the erroneous output responses.

Below we present an example of a buggy design to illustrate the symbolic
simulation-based error-diagnosis technique.

Example 9.1 Assume that the circuit shown in Figure 9.7 contains an er-
ror: signal g1 is erroneously assigned to expression “r1 | r2” instead of “r1
& r2”. Conditional assignments, highlighted in boldface, have been inserted
into the circuit using the techniques described earlier. For simplicity reasons,
we do not include the MUXes at the outputs of registers r1 and r2. The trace
that exposes the error in two simulation cycles consists of the following val-



Register-Transfer-Level Error Repair 113

module example(clk, I1, I2, O1n, O2n, g1sel, O1sel, O2sel, g1f , O1f , O2f );
input I1, I2, g1sel, O1sel, O2sel, g1f , O1f , O2f

output O1n, O2n;
reg r1, r2;
initial begin r1= 0; r2= 0; end
always @(posedge clk) begin
r1= I1; r2= I2;

end
assign g1 = r1 | r2;
assign O1 = I1 | g1n;
assign O2 = I2 & g1n;
assign g1n= g1sel ? g1f : g1;
assign O1n= O1sel ? O1f : O1;
assign O2n= O2sel ? O2f : O2;

endmodule

Figure 9.7. Design for the example. Wire g1 should be driven by “r1 & r2”, but it is erro-
neously driven by “r1 | r2”. The changes made during MUX-enrichment are marked in bold-
face.

ues for inputs {I1, I2}: {0, 1}, {1, 1}. When the same trace is simulated
by a high-level behavioral model, the correct output responses for {O1, O2}
are generated: {0, 0}, {1, 0}. Besides these output responses, no addition
information, such as values of internal signals and registers, is required. We
annotate the symbols injected during the simulation by their cycle numbers us-
ing subscripts. The Boolean expressions for the primary outputs for the two
cycles of simulation are:

O1n@1= O1sel ? O1f@1 : [I1@1 | (g1sel ? g1f@1 : 0)]

O2n@1= O2sel ? O2f@1 : [I2@1 & (g1sel ? g1f@1 : 0)]

O1n@2= O1sel ? O1f@2 : {I1@2 | [g1sel ? g1f@2 : (I1@1 & I2@1)]}
O2n@2= O2sel ? O2f@2 : {I2@2& [g1sel ? g1f@2 : (I1@1 & I2@1)]}

Since the primary inputs are scalar values, the expressions can be greatly sim-
plified during symbolic simulation. For example, we know that I1@2=1; there-
fore, O1n@2 can be simplified to O1sel ? O1f@2 : 1. As a result, the Boolean
expressions actually generated by the symbolic simulator are:

O1n@1= O1sel ? O1f@1 : (g1sel ? g1f@1 : 0)

O2n@1= O2sel ? O2f@1 : (g1sel ? g1f@1 : 0)

O1n@2= O1sel ? O1f@2 : 1

O2n@2= O2sel ? O2f@2 : (g1sel ? g1f@2 : 0)

To perform error diagnosis, we constrain the output expressions using the cor-
rect responses, and then construct a PBC as follows:

PBC = (O1n@1 == 0) ∧ (O2n@1 == 0) ∧ (O1n@2 == 1) ∧ (O2n@2 == 0),

min(O1sel + O2sel + g1sel).



114 Functional Error Diagnosis and Correction

One solution of this PBC is to assert g1sel, which provides a correct symptom
core.

Handling Hierarchical Designs

Current designs often have hierarchical structures to allow the circuits to
be decomposed into smaller blocks and thus reduce their complexity. Here we
discuss how a MUX-enriched circuit should be instantiated if it is encapsulated
as a module in such a hierarchical design.

The algorithm to insert MUXes into a single module m is shown in Fig-
ure 9.4. If m is instantiated inside of another module M , however, MUX-
enrichment of M must include an extra step where new inputs are added to
all instantiations of m. Therefore, for hierarchical designs, the insertion of
conditional assignments must be performed bottom-up: MUX-enrichment in a
module must be executed before it is instantiated by another module. This is
achieved by analyzing the design hierarchy and performing MUX-enrichment
in a reverse-topological order.

It is important to note that in hierarchical designs, the select variables of
instances of the same module should be shared, while the free variables should
not. This is because all instances of the same module will have the same symp-
tom variables. As a result, select variables should share the same signals. On
the other hand, each instance is allowed to have different values for their inter-
nal signals; therefore, each free variable should have its own signal. However,
it is possible that a bug requires fixing only one RTL instance while other in-
stances of the same module can be left intact. This situation requires generation
of new RTL modules and is currently not handled by our diagnosis techniques.

9.2.3 RTL Error Correction
The RTL error-correction problem is formulated as follows: given an erro-

neous RTL description of a digital design, find a variant description for one or
more of the modules that compose it so that the new design presents a correct
behavior for the errors, while leaving the known-correct behavior unchanged.
Although many error-repair techniques exist for gate-level designs, very few
studies focus on the RTL. One major reason is the lack of logic representations
that can support the logic manipulation required during RTL error correction.
For example, the logic of a signal in a gate-level netlist can be easily repre-
sented by BDDs, and modifying the function of the signal can be supported by
the manipulation of its BDDs. However, most existing logic representations
cannot be easily applied to an RTL variable. This problem is further exac-
erbated by the fact that an RTL module may be instantiated multiple times,
creating many different functions for an RTL variable depending on where it
is instantiated.
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In this subsection, we first describe the baseline error-correction technique
that is easier to understand. Next, we show how signatures should be generated
at the RTL to handle hierarchical and sequential designs. Finally, we provide
some insights that we obtained during the implementation of our system.

Baseline Error-Correction Technique

For a flattened combinational design, error correction is performed as fol-
lows: (1) signatures of RTL variables are generated using simulation; (2) error
diagnosis is performed to find a symptom core; (3) signatures of the symptom
variables in the symptom core are replaced by the values of their corresponding
free variables; and (4) synthesis is applied to find logic expressions generating
the signatures of the symptom variables. By replacing the expressions that
generate the functions of the symptom variables with those new expressions,
design errors can be corrected.

Hierarchical and Sequential Designs

In a flattened design, each RTL variable represents exactly one logic func-
tion. In a hierarchical design, however, each variable may represent more than
one logic function. Therefore, we devise the following techniques to construct
the signatures of RTL variables. For clarity, we call a variable in an RTL mod-
ule a module variable and a variable in an instance generated by the module an
instance variable. A module variable may generate multiple instance variables
if the module is instantiated several times.

In RTL error correction, we modify the source code of the modules in order
to correct the design’s behavior. Since changing an RTL module will affect all
the instances produced by the module, we concatenate the simulation values
of the instance variables derived from the same module variable to produce the
signature for the module variable. This way, we can guarantee that a change
in a module will affect instances in the same way. Similarly, we concatenate
the signatures of the module variable at different cycles for sequential error
correction. A signature-construction example is given in Figure 9.8. Note that
to ensure the correctness of error repair, the same instance and cycle orders
must be used during the concatenation of signatures for all module variables.

Example 9.2 Using the same circuit as Example 9.1. The values returned
by the PB solver for g1f@0 and g1f@1 are both 0. Since the inputs to g1 are
{0, 0} and {0, 1} for the first two cycles, the correct expression for g1 should
generate 0 for these two inputs. RTL error correction returns the following
new logic expressions that can fix the error: g1 = r1&r2, g1 = r1, etc.
Note that although the correct fix is returned, the fix is not unique. In general,
longer traces containing various test vectors will identify the error with higher
precision and suggest better fixes than short ones.
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Design:
module top;
child c1(), c2(), c3();

endmodule
module child;
wire v;

endmodule
Simulation values:
Cycle 0: top.c1.v = 0, top.c2.v = 0, top.c3.v = 1
Cycle 1: top.c1.v = 1, top.c2.v = 0, top.c3.v = 0

Constructed signature for RTL error correction:

child.v =

c1.v
︷︸︸︷

1

c2.v
︷︸︸︷

0

c3.v
︷︸︸︷

0︸ ︷︷ ︸
cycle 1

c1.v
︷︸︸︷

0

c2.v
︷︸︸︷

0

c3.v
︷︸︸︷

1︸ ︷︷ ︸
cycle 0

Figure 9.8. Signature-construction example. Simulation values of variables created from the
same RTL variable at all cycles should be concatenated for error correction.

Identifying Erroneous Code Statements

Several existing error-diagnosis techniques are able to identify the RTL code
statements that may be responsible for the design errors [76, 111, 122, 127].
Unlike these techniques, REDIR returns the RTL variables that are responsible
for the errors instead. Since one variable may be affected by multiple state-
ments, the search space of the errors modeled by these techniques tend to be
larger than REDIR, making REDIR more efficient in error diagnosis. On the
other hand, being able to identify erroneous statements may further localize
the errors and make debugging easier. To achieve this goal, we observe that in
correctly designed RTL code, the value of a variable should be affected by at
most one statement at each cycle. Otherwise, a multiple-driven error will exist
in the design. Based on this observation, we develop the following procedure
to identify the erroneous code statements using our error-diagnosis results.

Given a symptom variable, we first record the cycles at which the values
of its free variables are different from its simulated values. Next, we identify
the code statements that assign new values to the symptom variable for those
cycles: these code statements are responsible for the errors. Since many mod-
ern logic simulators provide the capability to identify the executed code state-
ments (e.g., full-trace mode in Cadence Verilog-XL), erroneous statements can
be pinpointed easily by replaying the bug traces used for error diagnosis. After
erroneous statements are identified, signatures for error-correction can be gen-
erated using only the cycles when the statements are executed. In this way, we
can produce corrections specifically for the erroneous statements.
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Implementation Insights

When multiple bug traces are used in the diagnosis, the set of the reported
symptom variables is the intersection of the symptoms identified by each bug
trace. Therefore, to accelerate the diagnosis over a specific bug trace, we can
deassert the select variables that are never asserted during the execution of
previous traces.

Fixing errors involving multi-bit variables is more difficult than fixing errors
involving only one-bit variables because different bits in the variable may be
generated differently. To solve this problem, we allow the user to insert a
conditional assignment for each bit in the variable. Alternatively, REDIR can
also be configured to consider only the least-significant bit when performing
error correction. This is useful when the variable is considered as a whole.

In synthesis-based error diagnosis, we observe that it is difficult to identify
the wires derived from the same RTL variable in a synthesized netlist. To over-
come this problem, we add the outputs of inserted conditional statements to the
primary outputs of the MUX-enriched modules to obtain the simulated values
of the RTL variables. To improve our error-correction quality, we utilize ODCs
in our synthesis-based approach by simulating the complement signatures of
symptom variables and observe the changes at primary outputs (including in-
puts to registers).

9.3 Experimental Results
In this section we present experimental results of our error-repair techniques

at both the gate level and the RTL. At the gate level, we first evaluate the ef-
fectiveness of the baseline CoRé framework on fixing bugs in combinational
designs. Next, we use the extension described in Section 9.1 to repair errors
in sequential designs. At the RTL, we first evaluate our error-diagnosis tech-
niques and contrast the results with those at the gate level. We then show the
results on automatic error correction.

9.3.1 Gate-Level Error Repair
We implemented our CoRé framework using the OAGear package [162]

because it provides convenient logic representations for circuits. We adopted
Smith’s [125] algorithm and integrated MiniSat [61] into our system for error
diagnosis and equivalence checking. We used Espresso [114] to optimize the
truth table returned by DPS, and then we constructed the resynthesized netlist
using AND, OR and INVERTER gates. Our testcases were selected from
IWLS2005 benchmarks [161] based on designs from ISCAS89 and OpenCores
suites. In our implementation, we limited the number of attempts to resynthe-
size a wire to 30, and we prioritized our correction by starting from fixes with
wires closer to primary inputs. We conducted four experiments on a 2.0GHz
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Pentium 4 workstation. The first two experiments are in the context of equiv-
alence checking, the third one deals with simulation-based verification, while
the last one repairs errors in sequential circuits.

Equivalence checking: our first experiment employs Application 1 de-
scribed in Section 5.2.4 to repair an erroneous netlist by enforcing equivalency.
Inputs and outputs of the sequential elements in the benchmarks were treated
as primary outputs and inputs, respectively. The initial vectors were obtained
by simulating 1024 random patterns, and one error was injected to each netlist.
In the first half of the experiment, the injected errors fit in the error model de-
scribed in Section 5.1.4; while the errors injected in the second half involved
more than 2 levels of logic and did not comply with the error model. We ap-
plied GDS and DPS separately to compare their error-correction power and
performance. Since GDS subsumes existing techniques that are based on error
models, it can be used as a comparison to them. The results are summarized
in Table 9.1. As expected, GDS could not repair netlists in the second half of
the experiment, showing that our resynthesis techniques could fix more errors
than those based on Abadir’s error models [86, 130].

From the results in the first half, we observe that both GDS and DPS per-
formed well in the experiment: the resynthesis time was short, and the number
of iterations was typically small. This result shows that the error-diagnosis
technique we adopted was effective and our resynthesis techniques repaired
the netlists correctly. Compared with the error-correction time required by
some previous techniques that enumerate possible fixes in the error model
[54, 130], the short runtime of GDS shows that our pruning methods are ef-
ficient, even though GDS also explores all possible combinations. We observe
that the program runtime was dominated by error diagnosis and verification,
which highlights the importance of developing faster error-diagnosis and veri-
fication techniques.

Errors that are difficult to diagnose and correct often need additional test
vectors and iterations. In order to evaluate our techniques on fixing difficult
errors, we reran the first three benchmarks and reduced the number of their
initial patterns to 64. The results are summarized in Table 9.2, where the num-
ber of iterations increased as expected. The results suggest that our techniques
continued to be effective for difficult errors, where all the errors could be fixed
within two minutes. We also observe that DPS may sometimes need more it-
erations due to its much larger search space. However, our framework would
guide both techniques to the correct fix eventually.

In our second experiment, we injected more than one error into the netlist.
The injected errors complied with Abadir’s model and could be fixed by both
GDS and DPS. To mimic difficult errors, the number of initial vectors was
reduced to 64. We first measured the runtime and the number of iterations
required to fix each error separately, we then showed the results on fixing
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Table 9.1. Error-correction experiment for combinational gate-level netlists.

Bench- Gate Type of GDS DPS
mark count injected Runtime (sec) No. Runtime (sec) No.

error EC ED Veri. of EC ED Veri. of
iter. iter.

S1488 636 Single gate 1 3 1 1 1 4 1 1
change

S15850 685 Connection 1 5 1 2 2 5 1 1
change

S9234 1 974 Single gate 1 10 1 1 1 9 1 1
change

S13207 1219 Connection 1 5 1 1 1 5 1 1
change

S38584 6727 Single gate 1 306 83 1 1 306 81 1
change

S838 1 367 Multiple gate N/A 1 6 1 1
changes

S13207 1219 Multiple N/A 3 12 3 6
missing
gates

AC97 ctrl 11855 Multiple N/A 2 1032 252 5
connection
changes

The benchmarks in the top-half comply with Abadir’s error model, while those in the bottom-
half do not. “No. of iter.” is the number of error-correction attempts processed by the verifi-
cation engine. “EC” means error correction, “ED” means error diagnosis, and “Veri.” means
verification.

Table 9.2. Error-correction experiment for combinational gate-level netlists with reduced
number of initial patterns.

Bench- Gate Type of GDS DPS
mark count injected Runtime (sec) No. Runtime (sec) No.

error EC ED Verifi- of EC ED Verifi- of
cation iter. cation iter.

S1488 636 Single gate 1 5 3 13 1 4 1 3
change

S15850 685 Connection 1 3 1 5 53 4 5 42
change

S9234 1 974 Single gate 1 8 3 6 1 10 3 4
change

multiple errors. Time-out was set to 30 minutes in this experiment, and the
results are summarized in Table 9.3. Similar to other error diagnosis and cor-
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rection techniques, runtime of our techniques grows significantly with each
additional error. However, we can observe from the results that the number
of iterations is usually smaller than the product of the number of iterations for
each error. It shows that our framework tends to guide the resynthesis process
to fix the errors instead of merely trying all possible combinations of fixes.
Another interesting phenomenon is that DPS could simultaneously fix all three
errors in the S1488 benchmark, while GDS could not. The reason is that DPS
found a fix involving only two wires even though three errors were injected.
Since GDS could not fix the netlist using only two error sites, three-error diag-
nosis was performed, which was extremely slow. The reason is that in addition
to fixes involving three error sites, any combination of wires consisting of two
error sites and one “healthy” site (site with its function unchanged) is also a
valid fix. As a result, the number of possible fixes increased dramatically and
evaluating all of them was time consuming. This explanation is confirmed by
the following observation: error diagnosis returned 8, 7 and 9 possible fixes for
error1, error2 and error3 respectively, while the number of fixes for all three
errors using three sites was 21,842. This situation suggests that DPS is more
powerful than GDS, as well as many techniques subsumed by GDS.

Table 9.3. Multiple error experiment for combinational gate-level netlists.

Benchmark Runtime (sec) Number of iterations
Err1 Err2 Err3 Err1+2 Err1+2+3 Err1 Err2 Err3 Err1+2 Err1+2+3

S1488(GDS) 4 6 4 10 T/O 8 5 2 22 T/O
S1488(DPS) 14 5 5 34 9 32 4 2 45 14
S13207(GDS) 10 10 6 12 75 11 5 1 10 19
S13207(DPS) 7 9 6 14 74 4 5 1 16 15
S15850(GDS) 4 3 4 5 7 1 1 1 1 1
S15850(DPS) 4 3 5 5 10 1 1 13 1 11

Time-out is set to 30 minutes and is marked as T/O in the Table.

To further evaluate the strength of our error-repair techniques, we took the
C17 benchmark from the ISCAS’85 suite and prepared a totally different cir-
cuit with the same number of primary inputs and outputs, where the circuit
is composed of two multiplexers. Next, we used CoRé to “repair” the C17
benchmark so that it became equivalent to the prepared circuit. CoRé success-
fully repaired the C17 benchmark in 0.04 seconds using 26 test vectors. Since
the number of primary inputs is 5, this result suggests that CoRé can find a fix
without trying all possible input patterns (32 in this benchmark), even when
the the repaired circuit is considerably different from the original one.

Simulation-based verification: in our third experiment, we simulated n
functionality-preserving vectors and m error-sensitizing vectors, where m is
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much smaller than n. Error-sensitizing vectors were produced by randomly
changing one output per vector. We then checked whether our framework
could produce a netlist that was adaptive to the new responses. This is sim-
ilar to fixing errors found by simulation-based verification, where a few vec-
tors break the regression test while most vectors should be preserved. In this
experiment, we set n=1024 while changing m, and the results are summa-
rized in Table 9.4. We can observe from the results that additional error-
sensitizing vectors usually require more wires to be fixed, and the runtime
is also longer. However, our framework is able to repair all the benchmarks
within a short time by resynthesizing only a small number of wires. This result
suggests that our framework works effectively in the context of simulation-
based verification.

Table 9.4. Error correction for combinational gate-level netlists in the context of simulation-
based verification.

Bench- Runtime (sec) Number of error sites
mark m=1 m=2 m=3 m=4 m=1 m=2 m=3 m=4
S1488 3 4 10 10 1 2 3 3
S15850 3 4 4 6 1 2 2 4
S13207 3 6 8 19 1 2 3 5

1024 functionality-preserving and m error-sensitizing vectors are simulated, where the error-
sensitizing vectors randomly change one output per vector.

Repairing errors in sequential circuits: our fourth experiment repairs er-
rors in sequential circuits using techniques described in Section 9.1. The char-
acteristics of the benchmarks and their results are summarized in Table 9.5. For
each benchmark, 32 traces were provided, and the goal was to repair the cir-
cuit so that it produces the correct output responses for those traces. Note that
diagnosing errors in sequential circuits is much more difficult than that in com-
binational circuits because circuit unrolling is used. For example, the bug trace
for the last benchmark had 77 cycles, and it produced an unrolled circuit con-
taining more than one million standard cells. Since our algorithm processes all
the traces simultaneously, only one iteration will be required. For the computa-
tion of more representative runtime only, we deliberately processed the traces
one by one and failed all verification so that all the benchmarks underwent 32
iterations. All the bugs were injected at the RTL, and the designs were synthe-
sized using Cadence RTL compiler 4.10. In the table, “Err. Diag. time” is the
time spent on error diagnosis, “#Fixes” is the number of valid fixes returned by
CoRé, and “DPS time” is the runtime of DPS. The minimum/maximum num-
bers of support variables and gates used in the returned fixes are shown under
“Resynthesized netlist”. Note that implementing any valid fix is sufficient to
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correct the circuit’s behavior, and we rank the fixes based on the logic depth
from primary inputs: fixes closer to primary inputs are preferred. Under “Err.
diag. time”, “1st” is the runtime for diagnosing the first bug trace, while “To-
tal” is the runtime for diagnosing all 32 traces.

Table 9.5. Error-repair results for sequential circuits.

Bench- Descrip- #Cells Bug description Err. diag. #Fix- Resynthesized DPS
mark tion time (sec) es netlist time

First Total #Supp. #Gates (sec)
Pre Part of 1877 8-bit reduced OR 29.4 50.8 1 19/19 83/83 0.4
norm FPU → AND
MD5 MD5 full 13111 Incorrect state 5294 5670 2 33/64 58/126 28.2

chip transition
DLX 5-stage 14725 JAL inst. leads to 25674 78834 54 1/21 1/944 1745

pipeline incorrect bypass
MIPS- from MEM stage
Lite CPU Incorrect inst. 29436 30213 6 1/2 1/2 85

forwarding

DPS is used in this experiment. The error-diagnosis technique is based on [6]. “#Supp.” is the
number of support signals and “#Gates” is the number of gates in the resynthesized netlist. The
numbers are shown as minimum/maximum.

The comparison between the first and total diagnosis time in Table 9.5 shows
that diagnosing the first trace takes more than 30% of the total diagnosis time
in all the benchmarks. The reason is that the first diagnosis can often localize
errors to a small number of sites, which reduces the search space of further
diagnoses significantly. Since CoRé relies on iterative diagnosis to refine the
abstraction of signatures, this phenomenon ensures that CoRé is efficient after
the first iteration. As Table 9.5 shows, error diagnosis is still the bottleneck of
the CoRé framework. We also observe that fixing some bugs requires a large
number of gates and support variables in their resynthesized netlists because
the bugs are complex functional errors injected at the RTL.

9.3.2 RTL Error Repair
In RTL error-repair experiments, we evaluated the performance of the tech-

niques described in Section 9.2 with a range of Verilog benchmarks. We used
a proprietary Perl-based Verilog parser to insert conditional assignments into
RTL code. Synthesis-based diagnosis was implemented using OpenAccess
2.2 and OAGear 0.96 [162] with RTL Compiler v4.10 from Cadence as the
synthesis tool. For simulation-based diagnosis, we adopted an RTL symbolic
simulator, Insight 1.4, from Avery Design Systems [147]. For efficiency, we
implemented the techniques described in [62] to convert PB problems to SAT
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problems and adopted MiniSat as our SAT solver [61]. All the experiments
were conducted on an AMD Opteron 880 (2.4GHz) Linux workstation with
16GB memory. The designs under test included several circuits selected from
OpenCores [154] (Pre norm, MD5, MiniRISC, and CF FFT), the picoJava-II
microprocessor (Pipe), DLX, and Alpha. Bugs (described in Table 9.6) were
injected into these benchmarks, with the exception of DLX and Alpha, which
already included bugs. We used constrained-random simulation to generate
bug traces for Pipe, Pre norm, and CF FFT, while the bug traces for the rest
of the benchmarks were generated using the verification environment shipped
with the designs. Traces to expose bugs in DLX and Alpha were given by the
verification engineer and were generated using a constrained-random simula-
tion tool [132]. The number of traces for the benchmarks and their lengths are
also reported in Table 9.6. The characteristics of these benchmarks are sum-
marized in Table 9.7. In the table, “RTL #Lines” is the number of lines of RTL
code in a design, and “Gate-level #Cells” is the cell count of the synthesized
netlist. To compare our results with previous work, we implemented the algo-
rithms for gate-level error diagnosis in [6, 125]. In the table, we list the number
of MUXes inserted by their techniques in column “#MUXes”, and the number
of conditional assignments under “#Assi.”.

Synthesis-Based Error Diagnosis

In this experiment, we performed combinational and sequential error di-
agnosis using the synthesis-based techniques described in Section 9.2.2. For
comparison with previous work, we also synthesized the benchmarks and per-
formed gate-level error diagnosis using Smith’s and Ali’s [6, 125] techniques
described in Section 5.1.3. The results are summarized in Table 9.8 and Table
9.9. Recall that a symptom core suggests a possible set of signals to modify for
correcting the design, and it includes one or more symptom variables. In all
our experiments, we found that the reported symptom cores included the root
causes of errors for all benchmarks. In other words, REDIR accurately pointed
out the signals that exhibited incorrect behavior.
Comparison between RTL and gate-level error diagnosis: this comparison
clearly indicates that diagnosing functional errors at the RTL has significant
advantages over the gate level, including shorter runtime and more accurate
diagnoses. As Table 9.8 shows, most errors can be diagnosed using our tech-
niques within a few minutes, while Table 9.9 shows that identifying the same
errors at the gate level takes more than 48 hours in many cases. One major
reason for this is that the number of possible symptom variables (error sites),
i.e., internal netlist signals responsible for the bug, is significantly smaller in
RTL diagnosis, as can be observed from the numbers of inserted conditional
assignments shown in Table 9.7. This is due to the fact that one simple RTL
statement may be synthesized into a complex netlist, which proliferates the
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Table 9.6. Description of bugs in benchmarks.

Bench- Bug Description Bug traces
mark ID #Traces #Cycles
Pipe A One signal inverted 32 200
Pre A Reduced OR replaced by reduced AND 32 20
norm B One signal inverted 32 20

C One 26-bit bus MUX select line inverted 32 20
D Bug A + Bug B 32 20
E Bug A + Bug B + Bug C 32 20

MD5 A Incorrect operand for a 32-bit addition 1 200
B Incorrect state transition 1 200
C Bug B with a shorter trace 1 50

MRISC A Incorrect RHS for a 11-bit value assignment 1 200
CF FFT A One signal inverted 32 15
DLX A SLL inst. does shift the wrong way 1 150

B SLTIU inst. selects the wrong ALU operation 1 68(178)
C JAL inst. leads to incorrect bypass from MEM stage 1 47(142)
D Incorrect forwarding for ALU+IMM inst. 1 77(798)
E Does not write to reg31 1 49(143)
F RT reads lower 30 bits only 1 188
G If RT = 7 memory write is incorrect 1 30(1080)

Alpha A Write to zero-reg succeeds if rdb idx = 5 1 70(256)
B Forwarding through zero reg on rb 1 83(1433)
C Squash if source of MEM/WB = dest. of ID/EX and 1 150(9950)

instr. in ID is not a branch

DLX and Alpha included native bugs, while other bugs were manually injected. Bug traces for
several DLX and Alpha benchmarks have been minimized before diagnosis, and their original
lengths are shown in parentheses.

number of error sites. For example, a statement like “a = b + c” creates only
one symptom variable at the RTL. Its synthesized netlist, however, may con-
tain hundreds of error sites, depending on the implementation of the adder and
the bit-width of the signals. The small number of potential symptom variables
at the RTL significantly reduces the search space for PB or SAT solvers and
provides very short diagnosis runtime. In addition, one bug at the RTL may
transform into multiple simultaneous bugs at the gate level. Since runtime of
error diagnosis grows substantially with each additional bug [125], being able
to diagnose errors at the RTL avoids the expensive multi-error diagnosis pro-
cess at the gate level. We also observed that although the runtime of the RTL
error diagnosis still increases with each additional bug, its growth rate is much
smaller than the growth rate at the gate level. For example, as Table 9.9 shows,
the runtime of the gate-level diagnosis for Pre norm(A) and (D), which com-
bined (A) and (B), was 63.6 and 88.7 seconds, respectively. On the other hand,
Table 9.8 shows that the runtime for RTL diagnosis was13.2 and 13.8 seconds,
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Table 9.7. Characteristics of benchmarks.

Bench- Description #Flip- Trace type Gate-level [6, 125] RTL (Ours)
mark flops #Cells #MUXes #Lines #Assi.
Pipe Part of PicoJava 2 Constrained- 55 72 264 31

pipeline control unit random
Pre norm Part of FPU 71 Constrained 1877 1877 270 43

random
MD5 MD5 full chip 910 Direct test 13311 13313 438 37
MiniRISC MiniRISC full chip 887 Direct test 6402 6402 2013 43
CF FFT Part of the CF FFT 16,638 Constrained- 126532 126560 998 223

chip random
DLX 5-stage pipeline CPU, 2,062 Constrained- 14725 14727 1225 84

MIPS-Lite ISA random
Alpha 5-stage pipeline CPU, 2,917 Constrained- 38299 38601 1841 134

Alpha ISA random

“#MUXes” is the number of MUXes inserted by gate-level diagnosis [6, 125] for comparison,
and “#Assi.” is the number of conditional assignments inserted by our solution.

respectively. These results clearly indicate that adopting gate-level techniques
into RTL is the correct approach: it provides excellent accuracy because for-
mal analysis can be performed, yet it avoids drawbacks in gate-level analysis
in that it is still highly scalable and efficient. This is achieved by our new con-
structs that model errors at the RTL instead of the gate level. These results also
demonstrate that trying to diagnose RTL errors at the gate level and mapping
the results back to the RTL is ineffective and inefficient, not to mention the fact
that such a mapping is usually difficult to find.
Comparison between combinational and sequential diagnosis: the differ-
ence between combinational and sequential diagnosis is that sequential diagno-
sis only uses output responses for constraints, while combinational is allowed
to use state values. As Table 9.8 shows, the runtime of combinational diag-
nosis is typically shorter, and the number of symptom cores is often smaller.
In DLX(D), for example, the combinational technique runs significantly faster
than sequential, and returns only three cores, while sequential returns nine.
The reason is that combinational diagnosis allows the use of state values, which
provide additional constraints to the PB instance. As a result, the PB solver can
find solutions faster, and the additional constraints further localize the bugs.
Being able to utilize state values is especially important for designs with very
deep pipelines, where an error may be observed hundred cycles later. For
example, the error injected into CF FFT requires more than 40 cycles to prop-
agate to any primaryoutput, making the use of sequential diagnosis difficult. In
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Table 9.8. RTL synthesis-based error-diagnosis results.

Bench- Bug RTL diagnosis (Our work)
mark ID Combinational Sequential

Errors found Runtime Errors found Runtime
#Symp. #Cores (sec) #Symp. #Cores. (sec)

Pipe A 1 1 6.0 1 1 6.0
Pre A 1 1 13.2 1 1 13.2
norm B 1 1 11.4 1 2 13.4

C 1 1 11.4 1 1 11.4
D 2 1 12.4 2 2 13.8
E 3 2 13.9 3 4 17.4

MD5 A 1 1 83.3 1 3 173.2
B 1 1 42.9 1 2 110.1
C 1 1 14.1 1 6 49.8

MRISC A States unavailable 1 2 32.0
CF FFT A 1 4 364.8 Trace unavailable
DLX A 1 1 41.2 1 3 220.8

B 1 4 54.8 1 17 1886.3
C 1 5 15.8 1 11 104.0
D 1 3 27.5 1 9 2765.1
E 1 4 19.1 1 12 105.2
F 1 2 67.8 1 2 457.4
G 1 1 11.3 Trace unavailable

Alpha A 1 5 127.4 1 9 525.3
B 1 5 111.6 1 5 368.9
C 1 3 122.3 1 3 250.5

“#Symp.” is the number of symptom variables in each core, and “#Cores” is the total number of
symptom cores. The results should be compared with Table 9.9, which show that RTL diagnosis
outperforms gate-level diagnosis in all the benchmarks: the runtime is shorter, and the diagnosis
is more accurate.

addition, bugs that are observed in design states can only be diagnosed when
state values are available, such as DLX(G). On the other hand, sequential di-
agnosis is important when state values are unavailable. For example, the bug
injected into the MiniRISC processor changed the state registers, damaging
correct state values. In practice, it is also common that only responses at pri-
mary outputs are known. Therefore, being able to diagnose errors in combina-
tional and sequential circuits is equally important, and both are supported by
REDIR.

The comparison between MD5(B) and MD5(C) shows that there is a trade-
off between diagnosis runtime and quality: MD5(C) uses a shorter trace and
thus requires shorter diagnosis runtime; however, the number of symptom
coresis larger than that returned by MD5(B), showing that the results are less
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Table 9.9. Gate-level error-diagnosis results.

Bench- Bug Gate-level diagnosis [6, 125]
mark ID Combinational Sequential

Errors found Runtime Errors found Runtime
#Sites #Cores (sec) #Sites #Cores (sec)

Pipe A 1 1 6.9 1 1 7.1
Pre A 1 1 51.1 1 1 63.6
norm B 1 3 41.6 1 4 46.7

C Time-out (48 hours) with > 10 error sites
D 2 3 73.3 2 4 88.7
E Time-out (48 hours) with > 8 error sites

MD5 A Time-out (48 hours) with > 6 error sites
B 1 2 10980 1 4 41043
C 1 3 2731 1 28 17974

MRISC A States unavailable Time-out (48 hours)
CF FFT A 1 1 109305 Trace unavailable
DLX A Time-out (48 hours) Out of memory

B 1 20 15261 Out of memory
C 1 45 11436 1 170 34829
D 1 6 18376 1 6 49787
E 1 12 9743.5 1 193 19621
F 1 10 15184 Out of memory
G 1 9 4160.1 Trace unavailable

Alpha A Time-out (48 hours)
B Time-out (48 hours)
C Out of memory

“#Sites” is the number of error sites reported in each core, and “#Cores” is the total number of
symptom cores returned by error diagnosis.

accurate. The reason is that longer traces usually contain more information;
therefore, they can better localize design errors. One way to obtain short yet
high-quality traces is to perform bug trace minimization before error diagno-
sis. Such minimization techniques can remove redundant information from the
bug trace and greatly facilitate error diagnosis. We used the Butramin tech-
nique described in Chapter 8 to minimize the traces for DLX and Alpha, and
the length of the original traces is shown in parentheses. In general, one trace
is enough to localize the errors to a small number of symptom cores, while
additional traces may further reduce this number.
Case study: we use DLX(D) as an example to show the power of our error-
diagnosis techniques. Part of its RTL code is shown below:
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always@(memstage or exstage or idstage or rs3rd or rs3rt or rs4rd or rs4rt or rsr31)
casex ({memstage,exstage,idstage,rs3rd,rs3rt,rs4rd,rs4rt,rsr31})
{‘ALUimm, ‘dc3, ‘dc3,‘dc,‘dc, ‘dc, ‘true,‘dc}:
RSsel = ‘select stage3 bypass; // Buggy

......

In this example, the buggy code selects stage3 bypass, while the correct im-
plementation should select stage4. Error diagnosis returns two symptom cores:
RSsel and ALUout. Obviously, RSsel is the correct diagnosis. However, ALU-
out is also a correct diagnosis because if the ALU can generate correct outputs
even though the control signal is incorrect, then the bug can also be fixed.
Nonetheless, this is not a desirable fix. This case study shows that REDIR can
suggest various ways to repair the same error, allowing the designer to consider
different possibilities in order to choose the best fix.

Simulation-Based Error Diagnosis

In this experiment, we performed simulation-based diagnosis using the algo-
rithm described in Section 9.2.2 with Insight, an RTL symbolic simulator from
[147]. Benchmarks Pipe and CF FFT were used in this experiment. Simulation
took 23.8 and 162.9 seconds to generate SAT instances for these benchmarks,
respectively. The SAT solver included in Insight then solved the instances in 1
and 723 seconds respectively, and it successfully identified the design errors.
Note that currently, the SAT solver only returns one, instead of all possible
symptom cores. Although the runtime of simulation-based approach is longer
than the synthesis-based method, it does not require the design to be synthe-
sized in advance, thus saving the synthesizer runtime.

Error Correction

In our error-correction experiment, we applied the techniques described in
Section 9.2.3 to fix the errors diagnosed in Table 9.8. We used combinational
diagnosis in this experiment, and corrected the error locations using the resyn-
thesis methods described in Chapter 6. We summarize the results in Table 9.10
where we indicate which of the two synthesis techniques we used, either GDS
or DPS. In the table, “#Cores fixed” is the number of symptom cores that can
be corrected using our error-correction techniques, and “#Fixes” is the num-
ber of ways to fix the errors. We applied GDS first in the experiment, and
observed that GDS often returns a large number of valid fixes that can correct
the design errors. One reason is that GDS performs exhaustive search to find
new logic expressions; therefore, it may find many different ways to produce
the same signal. For example, “A · B” and “A · (A ⊕ B)” are both returned
even though they are equivalent. Another reason is that we only diagnosed
short bug traces, which may produce spurious fixes: signatures of different
variables are the same even though their functions are different. As a result,
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we only report the first 100 fixes in our implementation, where the fixes are
sorted so that those with smaller number of logic operations are returned first.
Due to the exhaustive-search nature of GDS, memory usage of GDS may be
high during the search, as are the cases for benchmarks DLX (C–F) and Alpha.
In these benchmarks, GDS ran out of memory, and we relied on DPS to find
fixes that can correct the errors. Since DPS only returns one logic expression
when fixing an error, the number of possible fixes is significantly smaller.

Table 9.10. Error-correction results for RTL designs

Bench-mark Bug #Cores Resyn. #Fixes Runtime
mark ID fixed method (sec)
Pipe A 1 GDS 2214 1.0
Pre norm A 1 GDS 4091 1.1

B 1 GDS 4947 2.4
C 1 GDS 68416 5.6
D 2 GDS 79358 7.1
E 3 GDS 548037 41.6

MD5 A 1 GDS 33625 4.1
B 0 GDS 0 3.86

CF FFT A 3 GDS 214800 141.6
DLX A 0 GDS 0 1.3

B 3 GDS 5319430 111.2
C 5 DPS 5 1.6
D 3 DPS 3 1.6
E 4 DPS 4 1.4
F 2 DPS 2 2.9
G 1 GDS 51330 0.7

Alpha A 5 DPS 5 7.9
B 4 DPS 4 10.4
C 3 DPS 3 8.5

Table 9.10 shows that we could not find valid fixes for benchmarks MD5(B)
and DLX(A). The reason is that the bugs in these benchmarks involve multi-bit
variables. For example, bug MD5(b) is an incorrect state transition for a 3-bit
state register. Since in this experiment we only consider the least-significant
bits of such variables during error correction, we could not find a valid fix.
This problem can be solved by inserting a conditional assignment for every bit
in a multi-bit variable.

Discussion of RTL Error-Repair Results

The RTL error-diagnosis results show that our error-modeling constructs
and diagnosis techniques can effectively localize design errors to a small num-
ber of symptom variables. On the other hand, our error-correction results sug-
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gest that options to repair the diagnosed errors abound. The reason is that the
search space of error correction is much larger than error diagnosis: there are
various ways to synthesize a logic function. As a result, finding high-quality
fixes for a bug requires much more information than providing high-quality
diagnoses. Although this can be achieved by diagnosing longer or more nu-
merous bug traces, the runtime of REDIR will also increase.

This observation shows that automatic error correction is a much more dif-
ficult problem than automatic error diagnosis. In practice, however, engineers
often find error diagnosis more difficult than error correction. It is common
that engineers need to spend days or weeks finding the cause of a bug. How-
ever, once the bug is identified, fixing it may only take a few hours. To this end,
our error-correction technique can also be used to facilitate manual error repair,
and it works as follows: (1) the engineer fixes the RTL code manually to pro-
vide new logic functions for the symptom cores identified by error diagnosis;
and (2) REDIR simulates the new functions to check whether the signatures
of symptom cores can be generated correctly using the new functions. If the
signatures cannot be generated by the new functions, then the fix is invalid.
In this way, engineers can check the correctness of their fixes before running
verification, which can accelerate the manual error-repair process significantly.

The synthesis-based results show that our techniques can effectively handle
designs as large as 2000 lines of RTL code, which is approximately the size
that an engineer actively works on. Since synthesis tools are available in most
companies, REDIR can be used by engineers everyday to facilitate their debug-
ging process. On the other hand, the simulation-based results suggest that our
techniques are promising. Once RTL symbolic simulators become accessible
to most companies, REDIR can automatically exploit their simulation power
to handle even larger designs.

9.4 Summary
In this chapter we empirically evaluated the effectiveness of the CoRé frame-

work in repairing functional errors in combinational gate-level netlists. In ad-
dition, we extended the framework to repair errors in sequential circuits. This
framework exploits both satisfiability and observability don’t-cares, and it uses
an abstraction-refinement scheme to achieve better scalability. The experimen-
tal results show that CoRé can produce a modified netlist which eliminates
erroneous responses while maintaining correct ones. In addition, CoRé only
requires test vectors and correct output responses; therefore, it can be easily
adopted in most verification flows.

Other key ideas presented in this chapter are the constructs and algorithms
that provide a new way to diagnose and correct errors at the RTL, includ-
ing: (1) an RTL error modeling construct; (2) scalable error-diagnosis algo-
rithms using Pseudo-Boolean constraints, synthesis, and simulation; and (3)
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an error-correction technique using signatures. To empirically validate our pro-
posed techniques, we developed a new verification framework, called REDIR.
To this end, our experiments with industrial designs demonstrate that REDIR is
efficient and scalable. In particular, designs up to a few thousand lines of code
(or 100K cells after synthesis) can be diagnosed within minutes with high ac-
curacy.

The comparison between gate-level and RTL error diagnosis shows that
RTL bugs should be fixed at the RTL because fixing the same errors at the
gate level will become much more difficult. To this end, REDIR can greatly
enhance the RTL debugging process to prevent bugs from escaping to the gate
level, allowing most functional errors to be caught and repaired at the RTL.
Therefore, even if bugs still escape to the gate level, those bugs will be more
subtle and should require smaller changes to the netlist. This will allow gate-
level error-repair techniques to work more effectively.



Chapter 10

INCREMENTAL VERIFICATION
FOR PHYSICAL SYNTHESIS

As interconnect increasingly dominates delay and power at the latest tech-
nology nodes, much effort is invested in physical synthesis optimizations, pos-
ing great challenges in validating the correctness of such optimizations. Com-
mon design methodologies that delay the verification of physical synthesis
transformations until the completion of the design phase are no longer sustain-
able because it makes the isolation of potential errors extremely challenging.
Since the design’s functional correctness should not be compromised, engi-
neers dedicate considerable resources to ensure the correctness at the expense
of improving other aspects of design quality. To address these challenges,
we propose a fast incremental verification system for physical synthesis op-
timizations, called InVerS, which includes capabilities for error detection and
diagnosis. This system helps engineers discover errors earlier, which simplifies
error isolation and correction, thereby reducing verification effort and enabling
more aggressive optimizations to improve performance.

10.1 Background
In this section we first take a closer look at the current physical synthesis

flow. Next, we describe a powerful physical synthesis technique called retim-
ing. Retiming repositions registers in a design and can perform optimizations
not achievable by combinational resynthesis methods. Our methodologies to
verify the correctness of these optimizations will be presented in the next sec-
tion.

10.1.1 The Current Physical Synthesis Flow
Post-placement optimizations have been studied and used extensively to im-

prove circuit parameters such as power and timing, and these techniques are of-
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ten called physical synthesis. In addition, it is sometimes necessary to change
the layout manually in order to fix bugs or optimize specific objectives; this
process is called Engineering Change Order (ECO). Physical synthesis is com-
monly performed using the following flow: (1) perform accurate analysis of
the optimization objective, (2) select gates to form a region for optimization,
(3) resynthesize the region to optimize the objective, and (4) perform legaliza-
tion to repair the layout. The work by Lu et al. [95] and Changfan et al. [48]
are all based on this flow.

Given that subtle and unexpected bugs still appear in physical synthesis tools
today [9], verification must be performed to ensure the correctness of the cir-
cuit. However, verification is typically slow; therefore, it is often performed
after hundreds or thousands of optimizations, as shown in Figure 10.1. As a
result, it is difficult to identify the circuit modification that introduced the bug.
In addition, debugging the circuit at this design stage is often difficult because
engineers are unfamiliar with the automatically generated netlist. As we will
show later, InVerS addresses these problems by providing a fast incremental
verification technique.

Figure 10.1. The current post-layout optimization flow. Verification is performed after the
layout has undergone a large number of optimizations, which makes debugging difficult.

10.1.2 Retiming
Retiming is a sequential logic optimization technique that repositions the

registers in a circuit while leaving the combinational cells unchanged [88, 120].
It is often used to minimize the number of registers in a design or to reduce a
circuit’s delay. For example, the circuit in Figure 10.4(b) is a retimed version
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of the circuit in Figure 10.4(a) that optimizes delay. Although retiming is a
powerful technique, ensuring its correctness imposes a serious problem on
verification because sequential equivalence checking is orders of magnitude
more difficult than combinational equivalence checking [74]. As a result, the
runtime of sequential verification is often much longer than that of combina-
tional verification, if it ever finishes. This problem will be addressed in Section
10.2.2.

10.2 Incremental Verification
We provide a robust incremental verification package that is composed of a

logic simulator, a SAT-based formal equivalence checker, and our innovative
similarity metric between a circuit and its revision. In this section we define
our similarity metrics, and then describe our overall verification methodology.

10.2.1 New Metric: Similarity Factor
We define the similarity factor as an estimate of the similarity between two

netlists, ckt1 and ckt2. This metric is based on simulation signatures of in-
dividual signals, and those signatures can be calculated using fast simulation.
Let N be the total number of signals (wires) in both circuits. Out of those N
signals, we distinguish M matching signals – a signal is considered matching
if and only if both circuits include signals with an identical signature. The
similarity factor between ckt1 and ckt2 is then M/N . In other words:

similarity factor =
number of matching signals

total number of signals
(10.1)

We also define the difference factor as (1 − similarity factor).

Example 10.1 Consider the two netlists shown in Figure 10.2, where the
signatures are shown above the wires. There are 10 signals in the netlists, and
7 of them are matching. As a result, the similarity factor is 7/10= 70%, and
the difference factor is 1 – 7/10 = 30%.

Intuitively, the similarity factor of two identical circuits should be 100%. If
a circuit is changed slightly but is still mostly equivalent to the original version,
then its similarity factor should drop only slightly. For example, Figure 10.3(a)
shows a netlist where a region of gates is resynthesized correctly. Since only
the signatures in that region will be affected, the similarity factor only drops
slightly. However, if the change greatly affects the circuit’s function, the simi-
larity factor can drop significantly, depending on the number of signals affected
by the change. As Figure 10.3(b) shows, when a bug is introduced by resyn-
thesis, the signatures in the output cone of the resynthesized region will also be
different, causing a larger drop in similarity factor. However, two equivalent
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Figure 10.2. Similarity factor example. Note that the signatures in the fanout cone of the
corrupted signal are different.

(a)

(b)

Figure 10.3. Resynthesis examples: (a) the gates in the rectangle are resynthesized correctly,
and their signatures may be different from the original netlist; (b) an error is introduced during
resynthesis, and the signatures in the output cone of the resynthesized region are also different,
causing a significant drop in similarity factor.

circuits may be dissimilar, e.g., a Carry-Look-Ahead adder and a Kogge-Stone
adder. Therefore, the similarity factor should be used in incremental verifica-
tion and cannot replace traditional verification techniques.

10.2.2 Verification of Retiming
A signature represents a fraction of a signal’s truth table, which in turn

describes the information flow within a circuit. While retiming may change
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the clock cycle that certain signatures are generated, because combinational
cells are preserved, most generated signatures should be identical. Figure 10.4
shows a retiming example from [44], where (a) is the original circuit and (b)
is the retimed circuit. A comparison of signatures between the circuits shows
that the signatures in (a) also appear in (b), although the cycles in which they
appear may be different. For example, the signatures of wire w (boldfaced)
in the retimed circuit appear one cycle earlier than those in the original circuit
because the registers were moved later in the circuit. Otherwise, the signatures
of (a) and (b) are identical. This phenomenon becomes more obvious when the
circuit is unrolled, as shown in Figure 10.5. Since the maximum absolute lag
in this example is 1, retiming only affects gates in the first and the last cycles,
leaving the rest of the circuits identical. As a result, signatures generated by
the unaffected gates should also be identical. Based on this observation, we ex-
tend our similarity factor to sequential verification, called sequential similarity
factor, as follows. Assume two netlists, ckt1 and ckt2, where the total num-
ber of signals (wires) in both circuits is N . After simulating C cycles, N × C
signatures will be generated. Out of those signatures, we distinguish M match-
ing signatures. The sequential similarity factor between ckt1 and ckt2 is then
M/(N × C). In other words:

sequential similarity factor =
number of matching signatures for all cycles

total number of signatures for all cycles
(10.2)

10.2.3 Overall Verification Methodology
As mentioned in Section 10.1.1, traditional verification is typically per-

formed after a batch of circuit modifications because it is very demanding
and time consuming. As a result, once a bug is found, it is often difficult
to isolate the change that introduced the bug because hundreds or thousands of
changes have been made. Similarity factor addresses this problem by pointing
out the changes that might have corrupted the circuit. As described in previous
subsections, a change that greatly affects the circuit’s function will probably
cause a sudden drop in the similarity factor. By monitoring the change in sim-
ilarity factor after every circuit modification, engineers will be able to know
when a bug might have been introduced and traditional verification should be
performed. Using the techniques that we developed, we propose the InVerS
incremental verification methodology as shown in Figure 10.6, and it works as
follows:

1 After each change to the circuit, the similarity factor between the new and
the original circuit is calculated. Running average and standard deviation
of the past 30 similarity factors are used to determine whether the current
similarity factor has dropped significantly. Empirically, we found that if the
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(a)

(b)

Figure 10.4. A retiming example: (a) is the original circuit, and (b) is its retimed version. The
tables above the wires show their signatures, where the nth row is for the nth cycle. Four traces
are used to generate the signatures, producing four bits per signature. Registers are represented
by black rectangles, and their initial states are 0. As wire w shows, retiming may change the
cycle that signatures appear, but it does not change the signatures (signatures shown in boldface
are identical).

current similarity factor drops below the average by more than two standard
deviations, then it is likely that the change introduced a bug. This number,
however, may vary among different benchmarks and should be empirically
determined.

2 When similarity factor indicates a potential problem, traditional verifica-
tion should be performed to verify the correctness of the executed circuit
modification.

3 If verification fails, our functional error repair tools can be used to repair
the errors.

Since InVerS monitors drops in similarity factors, rather than the absolute
values of similarity factors, the structures of the netlists become less relevant.
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(a)

(b)

Figure 10.5. Circuits in Figure 10.4 unrolled three times. The cycle in which a signal appears
is denoted using subscript “@”. Retiming affects gates in the first and the last cycles (marked in
dark gray), while the rest of the gates are structurally identical (marked in light gray). Therefore,
only the signatures of the dark-gray gates will be different.

Figure 10.6. Our InVerS verification methodology. It monitors every layout modification to
identify potential errors and calls equivalence checking when necessary. Our functional error
repair techniques can be used to correct the errors when verification fails.
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Therefore, InVerS can be applied to a variety of netlists, potentially with dif-
ferent error-flagging thresholds. As Section 10.3 shows, the similarity factor
exhibits high accuracy for various practical designs and allows our verification
methodology to achieve significant speed-up over traditional techniques.

10.3 Experimental Results
We implemented InVerS using OpenAccess 2.2 and OAGear 0.96 [162].

Our testcases were selected from IWLS’05 benchmarks [161] based on designs
from ISCAS’89 and OpenCores suites, whose characteristics are summarized
in Table 10.1. In the table, the average level of logic is calculated by aver-
aging the logic level of 30 randomly selected gates. The number of levels of
logic can be used as an indication of the circuit’s complexity. We conducted
all our experiments on an AMD Opteron 880 Linux workstation. The resyn-
thesis package used in our experiments is ABC from UC Berkeley [148]. In
this section we report results on combinational and sequential verification, re-
spectively.

Table 10.1. Characteristics of benchmarks.

Benchmark Cell Ave. level Function
count of logic

S1196 483 6.8 ISCAS’89
USB phy 546 4.7 USB 1.1 PHY
SASC 549 3.7 Simple asynchronous serial controller
S1494 643 6.5 ISCAS’89
I2C 1142 5.5 I2C master controller
DES area 3132 15.1 DES cipher (area optimized)
SPI 3227 15.9 Serial parallel interface IP
TV80 7161 18.7 8-Bit microprocessor
MEM ctrl 11440 10.1 WISHBONE memory controller
PCI bridge32 16816 9.4 PCI bridge
AES core 20795 11.0 AES cipher
WB conmax 29034 8.9 WISHBONE Conmax IP core
DES perf 98341 13.9 DES cipher (performance optimized)

10.3.1 Verification of Combinational Optimizations
Evaluation of the similarity factor: in our first experiment, we performed
two types of circuit modifications to evaluate the effectiveness of the similarity
factor for combinational verification. In the first type, we randomly injected
an error into the circuit according to Abadir’s error model (see Section 5.1.4),
which includes the errors that occur frequently in gate-level netlists. This mim-
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ics the situation where a bug has been introduced. In the second type, we ex-
tracted a subcircuit from the benchmark, which was composed of 2–20 gates,
and performed resynthesis of the subcircuit using ABC with the “resyn” com-
mand [148]. This is similar to the physical synthesis or ECO flow described
in Section 10.1.1, where gates in a small region of the circuit are changed.
We then calculated the similarity factor after each circuit modification for both
types of circuit modifications and compared their difference. Thirty samples
were used in this experiment, and the results are summarized in Table 10.2.
From the results, we observe that both types of circuit modifications lead to
decreases in similarity factor. However, the decrease is much more signifi-
cant when an error is injected. As d1 shows, the standardized differences in
the means of most benchmarks are larger than 0.5, indicating that the differ-
ences are statistically significant. Since resynthesis tests represent the norm
and error-injection tests are anomalies, we also calculated d2 using only SDr.
As d2 shows, the mean similarity factor drops more than two standard devia-
tions when an error is injected for most benchmarks. This result shows that the
similarity factor is effective in predicting whether a bug has been introduced
by the circuit modification. Nonetheless, in all benchmarks, the maximum
similarity factor for error-injection tests is larger than the minimum similarity
factor for resynthesis tests, suggesting that the similarity factor cannot replace
traditional verification and should be used as an auxiliary technique.

Table 10.2. Statistics of similarity factors for different types of circuit modifications.

Benchmark Similarity factor (%)
Resynthesized One error injected d1 d2

Meanr Minr Maxr SDr Meane Mine Maxe SDe

USB phy 99.849 99.019 100.000 0.231 98.897 91.897 99.822 1.734 0.969 4.128
SASC 99.765 99.119 100.000 0.234 97.995 90.291 99.912 2.941 1.115 7.567
I2C 99.840 99.486 100.000 0.172 99.695 98.583 100.000 0.339 0.567 0.843
SPI 99.906 99.604 100.000 0.097 99.692 96.430 99.985 0.726 0.518 2.191
TV80 99.956 99.791 100.000 0.050 99.432 94.978 100.000 1.077 0.930 10.425
MEM ctrl 99.984 99.857 100.000 0.027 99.850 97.699 100.000 0.438 0.575 4.897
PCI bridge32 99.978 99.941 100.000 0.019 99.903 97.649 99.997 0.426 0.338 3.878
AES core 99.990 99.950 100.000 0.015 99.657 98.086 99.988 0.470 1.372 21.797
WB conmax 99.984 99.960 100.000 0.012 99.920 99.216 99.998 0.180 0.671 5.184
DES perf 99.997 99.993 100.000 0.002 99.942 99.734 100.000 0.072 1.481 23.969

Thirty tests were performed in this experiment, whose means, minimal values (Min), maximum
values (Max), and standard deviations (SD) are shown. The last two columns show the stan-
dardized differences in the means: d1 is calculated using the average of both SDe and SDr ,
while d2 uses only SDr .
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The impact of cell count on the similarity factor: in order to study other
aspects that may affect the similarity factor, we further analyze our results by
plotting the factors against the cell counts of the benchmarks. To make the fig-
ure clearer, we plot the difference factor instead of the similarity factor. We no-
tice that by construction, the difference factor tends to reduce with the increase
in design size, which makes the comparison among different benchmarks dif-
ficult. In order to compensate this effect, we assume that the bug density is 1
bug per 1,000 gates and adjust our numbers accordingly. The plot is shown in
Figure 10.7, where the triangles represent data points from error-injection tests,
and the squares represent resynthesis tests. The linear regression lines of two
data sets are also shown. From the figure, we observe that the difference factor
tends to increase with the cell count for error-injection tests. The increase for
resynthesis tests, however, is less significant. As a result, the difference fac-
tor of error-injected circuits (triangle data points) will grow faster than that of
resynthesized circuits (square data points) when cell count increases, creating
larger discrepancy between them. This result shows that the similarity factor
will drop more significantly for larger designs, making it more accurate when
applied to practical designs, which often have orders of magnitude more cells
than the benchmarks used in our tests.

Figure 10.7. The relationship between cell count and the difference factor. The linear regres-
sion lines of the datapoints are also shown.

The impact of level of logic on the similarity factor: here we perform sim-
ilar analysis using the number of levels of logic as the independent variable.
The slopes of the linear regression lines for the error-injection tests and the
resynthesis tests are 0.236 and 0.012, respectively. The difference in slopes
shows that the difference factor grows faster when the number of levels of
logic increases, indicating that the similarity factor will be more effective when
designs become more complicated. This behavior is preferable because com-
plicated designs are often more difficult to verify.
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To study the impact of the number of levels of logic on the difference fac-
tor within a benchmark, we plotted the difference factor against the number
of levels of logic using benchmark DES perf in Figure 10.8. The logarith-
mic regression line for the error-injection tests are also shown. As the figure
suggests, the difference factor decreases with the increase in the number of
levels of logic. The reason is that gates with smaller numbers of levels of logic
have larger downstream logic, therefore larger numbers of signatures will be
affected. As a result, the difference factor will be larger. That the variance
explained is large (0.7841) suggests that this relation is strong. However, some
benchmarks do not exhibit this trend. For example, the variance explained for
benchmark TV18 is only 0.1438. For benchmarks that exhibit this trend, the
similarity factor provides a good predication of the location of the bug: a larger
drop in the similarity factor indicates that the bug is closer to primary inputs.

Figure 10.8. The relationship between the number of levels of logic and the difference fac-
tor in benchmark DES perf. The x-axis is the level of logic that the circuit is modified. The
logarithmic regression line for the error-injection tests is also shown.

To evaluate the effectiveness of our incremental verification methodology
described in Section 10.2.3, we assumed that there is 1 bug per 100 circuit
modifications, and then we calculated the accuracy of our methodology. We
also report the runtime for calculating the similarity factor and the runtime for
equivalence checking of each benchmark. Since most circuit modifications do
not introduce bugs, we report the runtime when equivalence is maintained. The
results are summarized in Table 10.3. From the results, we observe that our
methodology has high accuracy for most benchmarks. In addition, the results
show that calculating the similarity factor is significantly faster than perform-
ing equivalence checking. For example, calculating the similarity factor of
the largest benchmark (DES perf) takes less than 1 second, while performing
equivalence checking takes about 78 minutes. Due to the high accuracy of the
similarity factor, our incremental verification technique identifies more than
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99% of errors, rendering equivalence checking unnecessary in those cases and
providing a more than 100X speed-up.

Table 10.3. The accuracy of our incremental verification methodology.

Benchmark Cell Accuracy (%) Runtime(sec)
count EC SF

USB phy 546 92.70 0.19 <0.01
SASC 549 89.47 0.29 <0.01
I2C 1142 95.87 0.54 <0.01
SPI 3227 96.20 6.90 <0.01
TV80 7161 96.27 276.87 0.01
MEM ctrl 11440 99.20 56.85 0.03
PCI bridge32 16816 99.17 518.87 0.04
AES core 20795 99.33 163.88 0.04
WB conmax 29034 92.57 951.01 0.06
DES perf 98341 99.73 4721.77 0.19

1 bug per 100 circuit modifications is assumed in this experiment. Runtime for similarity-factor
calculation (SF) and equivalence checking (EC) is also shown.

10.3.2 Sequential Verification of Retiming
In our second experiment, we implemented the retiming algorithm described

in [88] and used our verification methodology to check the correctness of our
implementation. This methodology successfully identified several bugs in our
initial implementation. In our experience, most bugs were caused by incorrect
netlist modifications when repositioning the registers, and a few bugs were
due to erroneous initial state calculation. Examples of the bugs include: (1)
incorrect fanout connection when inserting a register to a wire which already
has a register; (2) missing/additional register; (3) missing wire when a register
drives a primary output; and (4) incorrect state calculation when two or more
registers are connected in a row.

To quantitatively evaluate our verification methodology, we ran each bench-
mark using the correct implementation and the buggy version to calculate their
respective Sequential Similarity Factors (SSFs), where 10 cycles were simu-
lated. The results are summarized in Table 10.4, which shows that the sequen-
tial similarity factors for retimed circuits are 100% for most benchmarks. As
explained in Section 10.2.2, only a few signatures should be affected by re-
timing. Therefore, the drop in similarity factor should be very small, making
sequential similarity factor especially accurate for verifying the correctness of
retiming. This phenomenon can also be observed from Table 10.5, where the
accuracy of our verification methodology is higher than 99% for most bench-
marks. To compare our methodology with formal equivalence checking, we
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also show the runtime of a sequential equivalence checker based on bounded
model checking in Table 10.5. This result shows that our methodology is more
beneficial for sequential verification than combinational because sequential
equivalence checking requires much more runtime than combinational. Since
the runtime to compute sequential similarity factor remains small, our tech-
nique can still be applied after every retiming optimization and thus eliminat-
ing most unnecessary sequential equivalence checking calls.

Table 10.4. Statistics of sequential similarity factors for retiming with and without errors.

Benchmark Sequential similarity factor (%)
Retiming without errors Retiming with errors

Meanr Minr Maxr SDr Meane Mine Maxe SDe

S1196 100.0000 100.0000 100.0000 0.0000 98.3631 86.7901 100.0000 3.0271
USB phy 100.0000 100.0000 100.0000 0.0000 99.9852 99.6441 100.0000 0.0664
SASC 99.9399 99.7433 100.0000 0.0717 99.9470 99.3812 100.0000 0.1305
S1494 100.0000 100.0000 100.0000 0.0000 99.0518 94.8166 99.5414 1.5548
I2C 100.0000 100.0000 100.0000 0.0000 99.9545 99.6568 100.0000 0.1074
DES area 100.0000 100.0000 100.0000 0.0000 95.9460 69.1441 100.0000 6.3899

Thirty tests were performed in this experiment, whose means, minimal values (Min), maximum
values (Max), and standard deviations (SD) are shown.

Table 10.5. Runtime of sequential similarity factor calculation (SSF) and sequential equiva-
lence checking (SEC).

Benchmark Cell DFF Accuracy (%) Runtime (sec)
count count SEC SSF

S1196 483 18 99.87 5.12 0.42
USB phy 546 98 99.10 0.41 0.34
SASC 549 117 95.80 5.16 0.56
S1494 643 6 99.47 2.86 0.45
I2C 1142 128 99.27 2491.01 1.43
DES area 3132 64 99.97 49382.20 14.50

Accuracy of our verification methodology is also reported, where 1 bug per 100 retiming opti-
mizations is assumed.

10.4 Summary
In this chapter we presented a novel incremental equivalence verification

system, InVerS, with a particular focus on improving design quality and en-
gineers’ productivity. The high performance of InVerS allows designers to
invoke it frequently, possibly after each circuit transformation. This allows
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errors to be detected sooner, when they can be more easily pinpointed and re-
solved. The scalability of InVerS stems from the use of fast simulation, which
can efficiently calculate our proposed similarity factor metric to spot potential
differences between two versions of a design. The areas where we detect a low
similarity are spots potentially hiding functional bugs that can be subjected
to more expensive formal techniques. The experimental results show that In-
VerS achieves a hundred-fold runtime speed-up on large designs compared to
traditional techniques for similar verification goals. Our methodology and al-
gorithms promise to decrease the number of latent bugs released in future dig-
ital designs and to facilitate more aggressive performance optimizations, thus
improving the quality of electronic design in several categories.



Chapter 11

POST-SILICON DEBUGGING
AND LAYOUT REPAIR

Modern IC designs have reached unparalleled levels of overall complexity,
and thorough verification is becoming more difficult. Furthermore, the verifi-
cation problem is exacerbated by the highly competitive market which requires
shorter time-to-market. As a result, design errors are more likely to escape
verification in the early stage of the design flow and are found after layout has
been finished; or even worse, after the chip has been taped-out. Needless to
say, these errors must be fixed before the IC can reach the market. Fixing such
errors is often costly, especially when the chip has been taped-out. The key
to reduce this cost is to preserve as much previous effort spent on the design
as possible. In this chapter we present error-repair techniques that support the
post-silicon debugging methodology described in Section 4.4. However, these
techniques can be applied to pre-silicon layout optimization or error repair as
well.

As mentioned in Section 2.4, design errors that occur post-silicon can be
functional or electrical, and various physical synthesis techniques may be used
to fix such errors. However, there is no metric to measure the impact of a
physical synthesis technique on the layout. In this chapter, we first define and
explore the concepts of physical safeness and logical soundness to measure
such an impact. We observe from this analysis that most existing physical syn-
thesis techniques do not allow post-silicon metal fix, and those support metal
fix have limited error-repair capabilities. Therefore, we propose a SafeResynth
technique that is more powerful yet has little impact on a layout. The next
section then describes how SafeResynth can be applied to repair post-silicon
electrical errors. In addition, the section also illustrates our new functional and
electrical error repair techniques. This chapter concludes with experimental
results and a brief summary.
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11.1 Physical Safeness and Logical Soundness
The concept of physical safeness is used to describe the impact of an opti-

mization technique on the placement of a circuit. Physically safe techniques
only allow legal changes to a given placement; therefore, accurate analysis
such as timing and congestion can be performed. Such changes are safe be-
cause they can be rejected immediately if the layout is not improved. On the
other hand, unsafe techniques allow changes that produce a temporarily illegal
placement. As a result, their evaluation is delayed, and it is not possible to
reliably decide if the change can be accepted or must be rejected until later.
Therefore, the average quality of unsafe changes may be worse than that of ac-
cepted safe changes. In addition, other physical parameters, such as wirelength
or via count, may be impacted by unsafe transformations.

Similar to physical safeness, logical soundness is used to describe the per-
turbation to the logic made by the optimization techniques. Techniques that
do not change the logic usually do not require verification. Examples for this
type of optimization include gate sizing and buffer insertion. Techniques that
change the logic of the circuit may require verification to ensure their correct-
ness. For example, optimizations based on reconnecting wires require verifi-
cation because any bug in the optimization process may change the circuit’s
behavior. Since local changes to combinational logic can be verified easily us-
ing equivalence checking, they are considered logically sound. However, small
changes to sequential logic often have global implications and are much more
difficult to verify, therefore we do not classify them as logically sound tech-
niques. These techniques include the insertion of clocked repeaters and the use
of retiming.

11.1.1 Physically Safe Techniques
Symmetry-based rewiring is one of the few physical synthesis techniques

that is physically safe in nature. As described in Chapter 7, it exploits sym-
metries in logic functions, looking for pin reconnections that improve the op-
timization objective. For example, the inputs to an AND gate can be swapped
without changing its logic function. Since only wiring is changed in this tech-
nique, the placement is always preserved. An example of symmetry-based
rewiring is given in Figure 11.1(a).

The advantage of physically safe techniques is that the effects of any change
are immediately measurable, therefore the change can be accepted or rejected
reliably. As a result, circuit parameters will not deteriorate after optimization
and no timing convergence problem will occur. However, the improvement
gained from these techniques is often limited because they cannot aggressively
modify the logic or use larger-scale optimizations. For example, in [32] timing
improvement measured before routing is typically less than 10%.
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11.1.2 Physically Unsafe Techniques
Traditional physical synthesis techniques are physically unsafe because they

create cell overlaps and thus prevent immediate evaluation of changes. Al-
though some of these techniques can be applied in a safe way, they may lose
their strength. It follows that existing physical synthesis tools usually rely on
unsafe techniques, planning to correct potentially illegal changes after the op-
timization phase is complete. A classification of these techniques and their
impact on logic are discussed below.

Gate sizing and buffer insertion are two important techniques that do not
change the logic, as shown in Figure 11.1(b) and (d). Gate sizing chooses
the size of the gates carefully so that signal delay in wires can be balanced
with gate delay, and the gates have enough strength to drive the wires. Buffer
insertion adds buffers to drive long wires. The work by Kannan et al. [80] is
based on these techniques.

Gate relocation moves gates on critical paths to better locations and also
does not change the logic. An example of gate relocation is given in Figure
11.1(c). Ajami et al. [4] utilize this technique by performing timing-driven
placement with global routing information using the notion of movable Steiner
points. They formulate the simultaneous placement and routing problem as a
mathematical program. The program is then solved by Han-Powell method.

Gate replication is another technique that can improve circuit timing with-
out changing the logic. As Figure 11.1(e) shows, by duplicating g5, the delay
to g1 and g9 can be reduced. Hrkic et al. [71] proposed a placement-coupled
approach based on such technique. Given a placed circuit, they first extract
replication trees from the critical paths after timing analysis, and then they
perform embedding and post-unification to determine the gates that should be
duplicated as well as their locations. Since duplicated gates may overlap with
existing gates, at the end of the process, timing-driven legalization is applied.
Although their approach improves timing by 1–36%, it also increases route
length by 2–28%.

Traditional rewiring techniques based on addition or removal of redundant
wires are not physically safe. The basic idea is to add one or more redundant
wires to make a target wire redundant so that it becomes removable. Since
gates must be modified to reflect the changes in wires, cell overlaps may occur.
The work in [47] utilizes this technique using an ATPG reasoning approach.

Optimization techniques discussed so far can be made physically safe by
rejecting all changes that create new overlaps. For example, this would allow
inserting buffers only in overlap-free sites. However, the prevailing practice
for these and many other optimizations is to first allow overlaps and then call
a legalizer to fix the overlaps. According to our definition, this is physically
unsafe. In other words, depending on how many overlaps are introduced, how
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(a) Symmetry-based rewiring. (b) Gate sizing.

(c) Gate relocation. (d) Buffer insertion.

(e) Gate duplication.

Figure 11.1. Several distinct physical synthesis techniques. Newly-introduced overlaps are
removed by legalizers after the optimization phase has completed.

powerful and how accurate the legalizer is, the physical parameters of the cir-
cuit may improve or deteriorate.

Traditional restructuring focuses on directing the synthesis process us-
ing timing information obtained from a placed or routed circuit. It is more
aggressive in that it may change the logic structure as well as the placement.
This technique reflects the fact that timing-driven synthesis requires accurate
timing, which can only be obtained from a placed circuit. However, a circuit
cannot be placed unless it is synthesized. Restructuring attempts to bridge the
gap between these two different stages in circuit design.

A typical restructuring flow includes: (1) obtaining accurate timing analy-
sis results from a placed or routed design, (2) identifying critical paths in the
design, (3) selecting gates from the critical paths to form critical regions, (4)
performing timing-driven resynthesis on the critical regions, and (5) calling le-
galizers to remove gate overlaps that may be created during the process. This
process is repeated until timing closure is achieved. The work by Lu et al. [94],
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Vaishnav et al. [129] and Changfan et al. [48] is all based on this flow with
emphasis on different aspects. For example, the work by Vaishnav focuses
on eliminating late-arriving events identified by symbolic simulation, while
Changfan analyzes the effects of routing on timing and utilizes them in his
resynthesis and incremental placement engines.

Traditional restructuring is usually physically unsafe. For example, evalua-
tion of new cell locations cannot be done reliably for technology-independent
restructuring unless technology mapping is also performed. Moreover, restruc-
turing techniques based on AIGs are likely to be unsafe because node mergers
performed in an AIG may distort a given placed circuit [148]. As a result,
the effects of the changes are not immediately measurable. Although carefully
designed techniques can be used to alleviate this problem [84, 91, 96], it is
difficult to be eliminated altogether. The strength and safeness of these tech-
niques are summarized in Table 11.1. The two physically safe techniques will
be adapted to repair electrical errors in Section 11.4.

Table 11.1. Comparison of a range of physical synthesis techniques in terms of physical safe-
ness and optimization potential.

Techniques Physical Optimization
safeness potential

Symmetry-based rewiring Safe Low
SafeResynth Safe Medium
ATPG-based rewiring, buffer insertion, Unsafe∗ Low
gate sizing, gate relocation
Gate replication Unsafe∗ Medium
Restructuring Unsafe High

Low potential means that only local optimizations are possible, and high potential means that
large scale optimizations are possible. ∗Note: some of these techniques could be made safe but
popular implementations use them in an unsafe fashion, allowing gate overlap.

11.2 New Resynthesis Technique – SafeResynth
Our safe physical synthesis approach, SafeResynth, is discussed in detail

in this section. It uses signatures (see Section 5.1.1) produced by simulation
to identify potential resynthesis opportunities, whose correctness are then vali-
dated by equivalence checking [148]. Since our goal is layout optimization and
error repair, we can prune some of the opportunities based on their improve-
ment potential before formally verifying them. To this end, we propose prun-
ing techniques based on physical constraints and logical compatibility among
signatures. SafeResynth is powerful in that it does not restrict resynthesis to
small geometric regions or small groups of adjacent wires. It is safe because
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the produced placement is always legal and the effect can be evaluated imme-
diately.

11.2.1 Terminology

A signature is a bit-vector of simulated values of a wire. Given the signature
st of a wire wt to be resynthesized, and a certain gate g1, a wire w1 with
signature s1 is said to be compatible with wt if it is possible to generate st

using g1 with signature s1 as one of its inputs. In other words, it is possible to
generate wt from w1 using g1. For example, if s1 = 1, st = 1 and g1 = AND,
then w1 is compatible with wt using g1 because it is possible to generate 1 on
an AND’s output if one of its inputs is 1. However, if s1 = 0, then w1 is not
compatible with wt using g1 because it is impossible to obtain 1 on an AND’s
output if one of its inputs is 0 (see Figure 11.4).

A controlling value of a gate is the value that fully specifies the gate’s output
when applied to one input of the gate. For example, 0 is the controlling value
for AND because when applied to the AND gate, its output is always 0 regard-
less of the value of other inputs. When two signatures are incompatible, that
can often be traced to a controlling value in some bits of one of the signatures.

11.2.2 SafeResynth Framework

The SafeResynth framework is outlined in Figure 11.2, and an example is
shown in Figure 11.3. In this section we illustrate how timing can be opti-
mized; however, SafeResynth can also be used to optimize other circuit param-
eters or repair post-silicon errors. Initially, library contains all the gates to be
used for resynthesis. We first generate a signature for each wire by simulating
certain input patterns. In order to optimize timing, wiret in line 2 will be se-
lected from wires on the critical paths in the circuit. Line 3 restricts our search
of potential resynthesis opportunities according to certain physical constraints,
and lines 4–5 further prune our search space based on logical soundness. After
a valid resynthesis option is found, we try placing the gate on various overlap-
free sites close to a desired location in line 6 and check their timing improve-
ments. In this process, more than one gate may be added if there are multiple
sinks for wiret, and the original driver of wiret may be replaced. In line 10
we remove redundant gates and wires that may appear because wire′ts original
driver may no longer drive any wire, which often initiates a chain of further
simplifications.

11.2.3 Search-Space Pruning Techniques

In order to resynthesize a target wire (wiret) using an n-input gate in a cir-
cuit containing m wires, the brute force technique needs to check

(m
n

)
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1. Simulate patterns and generate a signature for each wire.
2. Determine wiret to be resynthesized and retrieve wiresc from the circuit.
3. Prune wiresc according to physical constraints.
4. Foreach gate ∈ library with inputs selected from combinations of compatible

wires ∈ wiresc.
5. Check if wiret’s signature can be generated using gate with its inputs’ signatures.

If not, try next combination.
6. If so, do restructuring using gate by placing it on overlap-free sites close to the

desired location.
7. If timing is improved, check equivalency. If not equivalent, try next combination

of wires.
8. If equivalent, a valid restructuring is found.
9. Use the restructuring with maximum delay improvement for resynthesis.

10. Identify and remove gates and wires made redundant by resynthesis.

Figure 11.2. The SafeResynth framework.

Figure 11.3. A restructuring example. Input vectors to the circuit are shown on the left. Each
wire is annotated with its signature computed by simulation on those test vectors. We seek to
compute signal w1 by a different gate, e.g., in terms of signals w2 and w3. Two such restruc-
turing options (with new gates) are shown as gn1 and gn2. Since gn1 produces the required
signature, equivalence checking is performed between wn1 and w1 to verify the correctness of
this restructuring. Another option, gn2, is abandoned because it fails our compatibility test.

combinations of possible inputs, which can be very time-consuming for n > 2.
Therefore it is important to prune the number of wires to try.

When the objective is to optimize timing, the following physical constraints
can be used in line 3 of the framework: (1) wires with arrival time later than that
of wiret are discarded because resynthesis using them will only increase delay;
and (2) wires that are too far away from the sinks of wiret are abandoned
because the wire delay will be too large to be beneficial. We set this distance
threshold to twice the HPWL (Half-Perimeter WireLength) of wiret.

In line 4 logical compatibility is used to prune the wires that need to be tried.
Wires not compatible with wiret using gate are excluded from our search.
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Figure 11.4 summarizes how compatibilities are determined given a gate type,
the signatures of wiret and the wire to be tested (wire1).

Gate type wiret wire1 Result
NAND 0 0 Incompatible
NOR 1 1 Incompatible
AND 1 0 Incompatible
OR 0 1 Incompatible

XOR/XNOR Any Any Compatible

Figure 11.4. Conditions to determine compatibility: wiret is the target wire, and wire1 is the
potential new input of the resynthesized gate.

To accelerate compatibility testing, we use the one-count, i.e., the number
of 1s in the signature, to filter out unpromising candidates. For example, if
gate==OR and the one-count of wiret is smaller than that of wire1, then these
two wires are incompatible because OR will only increase one-count in the
target wire. This technique can be applied before bit-by-bit compatibility test
to detect incompatibility faster.

Our pruned search algorithm that implements lines 4–5 of the framework
is outlined in Figure 11.5. It is specifically optimized for two-input gates and
is a special version of the GDS algorithm shown in Section 6.3. Wiret is the
target wire to be resynthesized, wiresc are wires selected according to physical
constraints, and library contains gates used for resynthesis. All wires in the
fanout cone of wiret are excluded in the algorithm to avoid the formation of
combinational loops.

Function pruned search(wiret, wiresc, library)
1 foreach gate ∈ library
2 wiresg = compatible(wiret, wiresc, gate);
3 foreach wire1 ∈ wiresg

4 wiresd = get potential wires(wiret, wire1, wiresg, gate);
5 foreach wire2 ∈ wiresd

6 restructure using gate, wire1 and wire2;

Figure 11.5. The pruned search algorithm.

In Figure 11.5, function compatible returns wires in wiresg that are com-
patible with wiret given gate. Function get potential wires returns wires in
wiresd that are capable of generating the signature of wiret using gate and
wire1, and its algorithm is outlined in Figure 11.6. For XOR and XNOR, the
signature of the other input can be calculated directly, and wires with signa-
tures identical to that signature are returned using the signature hash table. For
other gate types, signatures are calculated iteratively for each wire (denoted as
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wire2) using wire1 as the other input, and the wires that produce signatures
which match wire′ts are returned.

Function get potential wires(wiret, wire1, wiresg, gate)
1 if (gate == XOR/XNOR)
2 wiresd= sig hash[wiret.signature XOR/XNOR wire1.signature];
3 else
4 foreach wire2 ∈ wiresg

5 if (wiret.signature == gate.evaluate(wire1.signature, wire2.signature))
6 wiresd = wiresd ∪ wire2;
7 return wiresd;

Figure 11.6. Algorithm for function get potential wires. XOR and XNOR are considered
separately because the required signature can be calculated uniquely from wiret and wire1.

11.3 Physically-Aware Functional Error Repair
In this section we describe our Physically-Aware Functional Error Repair

(PAFER) framework, which is based on the CoRé framework (see Chapter
5). PAFER automatically diagnoses and fixes logic errors in the layout by
changing its combinational portion. In this context, we assume that state values
are available, and we treat connections to the flip-flops as primary inputs and
outputs. To support the layout change required in logic error repair, we also
develop a Physically-Aware ReSynthesis (PARSyn) algorithm.

11.3.1 The PAFER Framework
The algorithmic flow of our PAFER framework is outlined in Figure 11.7.

The enhancements to make the CoRé framework physically-aware are marked
in boldface. Note that unlike CoRé, the circuits (ckterr, cktnew) in PAFER
now include layout information.

The inputs to the framework include the original circuit (ckterr) and the
test vectors (vectorsp, vectorse). The output of the framework is a circuit
(cktnew) that passes verification and does not violate any physical constraints.
In line 2 of the PAFER framework, the error is diagnosed, and the fixes are
returned in fixes. Each fix contains one or more wires that are responsible for
the circuit’s erroneous behavior and should be resynthesized. In line 4 of the
PAFER framework, PARSyn is used to generate a set of new resynthesized
circuits (cktnew), which will be described in the next subsection. These cir-
cuits are then checked to determine if any physical constraint is violated. For
example, whether it is possible to implement the change using metal fix. In
lines 5–6, that no circuit complies with the physical constraints means no valid
implementation can be found for the current fix. As a result, the fix will be
abandoned and the next fix will be tried. Otherwise, the first circuit that does
not violate any physical constraints is selected in line 7, where the circuits in
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framework PAFER(ckterr, vectorsp, vectorse, cktnew)
1 calculate ckterr’s initial signatures using vectorsp and vectorse;
2 fixes = diagnose(ckterr, vectorse);
3 foreach fix ∈ fixes
4 cktsnew = PARSyn(fix, ckterr);
5 if (every circuit in cktsnew violates physical constraints)
6 continue;
7 cktnew = the first circuit in cktsnew that does not violate physical constraints;
8 counterexample = verify(cktnew);
9 if (counterexample is empty)

10 return (cktnew);
11 else
12 if (check(ckterr, counterexample) fails)
13 fixes = rediagnose(ckterr, counterexample, fixes);
14 simulate counterexample and update ckt’s signatures;

Figure 11.7. The algorithmic flow of the PAFER framework.

cktsnew can be pre-sorted using important physical parameters such as timing,
power consumption, or reliability. The functional correctness of this circuit is
then verified as in the original CoRé framework. Please refer to Chapter 5 for
more details on this part of the framework.

11.3.2 The PARSyn Algorithm
The resynthesis problem in post-silicon debugging is considerably different

from traditional ones because the numbers and types of spare cells are often
limited. As a result, traditional resynthesis flows may not work because tech-
nology mapping the resynthesis function using the limited number of cells can
be difficult. Even if the resynthesis function can be mapped, implementing the
mapped netlist may still be infeasible due to other physical limitations. There-
fore, it is desirable in post-silicon debugging that the resynthesis technique can
generate as many resynthesized netlists as possible.

To support this requirement, our PARSyn algorithm exhaustively tries all
possible combinations of spare cells and input signals in order to produce var-
ious resynthesized netlists. To reduce its search space, we also develop several
pruning techniques based on logical and physical constraints. Although ex-
haustive in nature, our PARSyn algorithm is still practical because the numbers
of spare cells and possible inputs to the resynthesized netlists are often small
in post-silicon debugging, resulting in a significantly smaller search space than
traditional resynthesis problems.

Our PARSyn algorithm is illustrated in Figure 11.8, which tries to resynthe-
size every wire (wiret) in the given fix. In line 2 of the algorithm,
getSpareCell searches for spare cells within RANGE and returns the results
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in spareCells, where RANGE is a distance parameter given by the engi-
neer. This parameter limits the search of spare cells to those within RANGE
starting from wiret’s driver. One way to determine RANGE is to use the
maximum length of a wire that FIB can produce. A subcircuit, cktlocal, is
then extracted by extractSubCkt in line 3. This subcircuit contains the cells
which generate the signals that are allowed to be used as new inputs for the
resynthesized netlists. A set of resynthesized netlists (resynNetsnew) is then
generated by exhaustiveSearch in line 4. The cells in those netlists are then
“placed” using spare cells in the layout to produce new circuits (cktsnew),
which are returned in line 6.

function PARSyn(fix, ckt)
1 foreach wiret ∈ fix
2 spareCells = getSpareCell(wiret, ckt, RANGE);
3 cktlocal = extractSubCkt(wiret, ckt, RANGE);
4 resynNetsnew = exhaustiveSearch(1, spareCells, cktlocal);
5 cktsnew = placeResynNetlist(ckt, resynNetsnew);
6 return (cktsnew);

Figure 11.8. The PARSyn algorithm.

To place the cells in a resynthesized netlist, we first sort spare cells accord-
ing to their distances to wiret’s driver. Next, we map each cell in the resynthe-
sized netlist, the one closer to the netlist’s output first, to the spare cell closest
to wiret’s driver. The reason behind this is that we assume the original driver
is placed at a relatively good location. Since our resynthesized netlist will re-
place the original driver, we want to place the cell that generates the output
signal of the resynthesized netlist as close to that location as possible. The rest
of the cells in the resynthesized netlist are then placed using the spare cells
around that cell.

The exhaustiveSearch function called in the PARSyn algorithm is given
in Figure 11.9. This function exhaustively tries combinations of different cell
types and input signals in order to generate resynthesized netlists. The in-
puts to the function include the current logic level (level), available spare cells
(spareCells), and a subcircuit (cktlocal) whose cells can be used to generate
new inputs to the resynthesized netlists. The function returns valid resynthe-
sized netlists in netlistsnew.

In the function, MAXLEV EL is the maximum depth of logic allowed to
be used by the resynthesized netlists. So when level equals to MAXLEV EL,
no further search is allowed, and all the cells in cktlocal are returned (lines
1–2). In line 3, the search starts branching by trying every valid cell type, and
the search is bounded if no spare cells are available for that cell type (lines
4–5). If a cell is available for resynthesis, it is deducted from the spareCells
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function exhaustiveSearch(level, spareCells, cktlocal)
1 if (level == MAXLEV EL)
2 return all cells in cktlocal;
3 foreach cellType ∈ validCellTypes
4 if (checkSpareCell(spareCells, cellType) fails)
5 continue;
6 spareCells[cellType].count- -;
7 netlistssub = exhaustiveSearch(level + 1, spareCells, cktlocal);
8 netlistsn = generateNewCkts(cellType, netlistssub);
9 netlistsn = checkNetlist(netlistsn, spareCells);

10 netlistsnew = netlistsnew ∪ netlistsn;
11 if (level == 1)
12 removeIncorrect(netlistsnew);
13 return netlistsnew;

Figure 11.9. The exhaustiveSearch function.

repository in line 6. In line 7 the algorithm recursively generates subnetlists
for the next logic level, and the results are saved in netlistsub. New netlists
(netlistsn) for this logic level are then produced by generateNewCkts. This
function produces new netlists using a cell with type=cellType and inputs from
combinations of subnetlists from the next logic level. In line 9 checkNetlist
checks all the netlists in netlistn and removes those that cannot be imple-
mented using the available spare cells. All the netlists that can be implemented
are then added to a set of netlists called netlistsnew. If level is 1, the logic
correctness of the netlists in netlistsnew is checked by removeIncorrect,
and the netlists that cannot generate the correct resynthesis functions will be
removed. The rest of the netlists will then be returned in line 13. Note that
BUFFER should always be one of the valid cell types in order to generate
resynthesized netlists whose logic levels are smaller than MAXLEVEL. The
BUFFERs in a resynthesized netlist can be implemented by connecting their
fanouts to their input wires without using any spare cells.

To bound the search in exhaustiveSearch, we also used the logic pruning
techniques described in Section 6.3. To further reduce the resynthesis runtime,
we use netlist connectivity to remove unpromising cells from our search pool,
e.g., cells that are too far away from the erroneous wire. In addition, cells in
the fanout cone of the erroneous wire are also removed to avoid the formation
of combinational loops.

11.4 Automating Electrical Error Repair
The electrical errors found post-silicon are usually unlikely to happen in

any given region of a circuit, but become statistically significant in large chips.
To this end, a slight modification of the affected wires has a high probability
to successfully repair the problem. Being able to check this by performing
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accurate simulation and comparing several alternative fixes also increase the
chances of successfully repairing the circuit even further. In this section we
first describe two techniques that can automatically find a variety of electrical
error repair options, including SymWire and SafeResynth. These techniques
are able to generate layout transformations that modify the erroneous wires
without affecting the circuit’s functional correctness. Next, we study three
cases to show how our techniques can be used to repair electrical errors.

11.4.1 The SymWire Rewiring Technique
Symmetry-based rewiring changes the connections between gates using sym-

metries. An example is illustrated in Figure 11.11(b), where the inputs to cells
g1 and g2 are symmetric and thus can be reconnected without changing the
circuit’s functionality. The change in connections modifies the electrical char-
acteristics of the affected wires and can be used to fix electrical errors. Since
this rewiring technique does not perturb any cells, it is especially suitable for
post-silicon debugging. In light of this, we propose an electrical error repair
technique using the symmetry-based rewiring method presented in Chapter 7.
This technique is called SymWire and its algorithm is outlined in Figure 11.10.
The input to the algorithm is the wire (w) that has electrical errors, and this
algorithm changes the connections to the wire using symmetries. In line 1, we
extract various subcircuits (subCircuits) from the original circuit, where each
subcircuit has at least one input connecting to w. Currently, we extract subcir-
cuits composed of 1–7 cells in the fanout cone of w using breadth-first search
and depth-first search. For each extracted subcircuit, which is saved in ckt, we
detect as many symmetries as possible using function symmetryDetect (line
3). If any of the symmetries involve a permutation of w with another input, we
swap the connections to change the electrical characteristics of w. The sym-
metry detector can be implemented using the techniques presented earlier in
Section 7.2.

function SymWire(w)
1 extract subCircuits with w as one of the inputs;
2 foreach ckt ∈ subCircuits
3 sym = symmetryDetect(ckt);
4 if (sym involves permutation of w with another input)
5 reconnect wires in ckt using sym;

Figure 11.10. The SymWire algorithm.

11.4.2 Adapting SafeResynth to Perform Metal Fix
Some electrical errors cannot be fixed by modifying a small number of

wires, and a more aggressive technique is required. In this subsection we show
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how the SafeResynth technique described in Section 11.2 can be adapted to
perform post-silicon metal fix.

Assume that the error is caused by wire w or the cell g that drives w. We
first use SafeResynth to find an alternative way to generate the same signal that
drives w. In post-silicon debugging, however, we only rely on the spare cells
that are embedded into the design but not connected to other cells. Therefore
we do not need to insert new cells, which would be impossible to implement
with metal fix. Next, we drive a portion or all of w’s fanouts using the new cell.
Since a different cell can also be used to drive w, we can change the electrical
characteristics of both g and w in order to fix the error. Note that SafeResynth
subsumes cell relocation; therefore, it can also find layout transformations in-
volving replacements of cells.

11.4.3 Case Studies
In this subsection we show how our techniques can repair drive strength and

coupling problems, as well as avoid the harm caused by the antenna effect.
Note that these case studies only serve as examples, and our techniques can
also be applied to repair many other errors.

Drive strength problems occur when a cell is too small to propagate its
signal to all the fanouts within the designed timing budget. Our SafeResynth
technique solves this problem by finding an alternative source to generate the
same signal. As illustrated in Figure 11.11(a), the new source can be used to
drive a fraction of the fanouts of the problematic cell, reducing its required
driving capability.

Coupling between long parallel wires that are next to each other can result
in delayed signal transitions under some conditions and also introduces unex-
pected signal noise. Our SafeResynth technique can prevent these undesirable
phenomena by replacing the driver for one of the wires with an alternative sig-
nal source. Since the cell that generates the new signal will be at a different
location, the wire topology can be changed. Alternatively, SymWire can also
be used to solve the coupling problem. As shown in Figure 11.11(b), the af-
fected wires no longer travel in parallel for long distances after rewiring, which
can greatly reduce their coupling effects.

Antenna effects are caused by the charge accumulated during semiconduc-
tor manufacturing in partially-connected wire segments. This charge can dam-
age and permanently disable transistors connected to such wire segments. In
less severe situations, it changes the transistors’ behavior gradually and reduces
the reliability of the circuit. Because the charge accumulated in a metal layer
will be eliminated when the next layer is processed, it is possible to split the to-
tal charge with another layer by breaking a long wire and going up or down one
layer through vias. Based on this observation, metal jumpers [63] have been
used to alleviate the antenna effect, where vias are intentionally inserted to
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(a)

(b)

Figure 11.11. Case studies: (a) g1 has insufficient driving strength, and SafeResynth uses a
new cell, gnew, to drive a fraction of g1’s fanouts; (b) SymWire reduces coupling between
parallel long wires by changing their connections using symmetries, which also changes metal
layers and can alleviate the antenna effect (electric charge accumulated in partially-connected
wire segments during the manufacturing process).

change layers for long wires. However, the new vias will increase the resistiv-
ity of the nets and slow down the signals. To this end, our SymWire technique
can find transformations that change the metal layers of several wires to reduce
their antenna effects. In addition, it allows simultaneous optimization of other
parameters, such as the coupling between wires, as shown in Figure 11.11(b).

11.5 Experimental Results
To measure the effectiveness of the components in our FogClear post-silicon

methodology, we conducted two experiments. In the first experiment we apply
PAFER to repair functional errors in a layout; while the second experiment
evaluates the effectiveness of SymWire and SafeResynth in finding potential
electrical fixes. To facilitate metal fix, we pre-placed spare cells uniformly
using the whitespace in the layouts, and they occupied about 70% of each
layout’s whitespace. These spare cells included INVERTERs, as well as two-
input AND, OR, XOR, NAND, and NOR gates. In the PAFER framework, we
set the RANGE parameter to 50 �m and MAXLEV EL to 2. Under these
circumstances, approximately 45 spare cells (on average) are available when
resynthesizing each signal. All the experiments were conducted on an AMD
Opteron 880 workstation running Linux. The benchmarks were selected from
OpenCores [154] except DLX, Alpha, and EXU ECL. DLX and Alpha were
from the Bug UnderGround project [149], while EXU ECL was the control
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unit of OpenSparc’s EXU block [164]. The characteristics of our benchmarks
are summarized in Table 11.2. In the table, “#FFs” is the number of flip-flops
and “#Cells” is the cell count of each benchmark. To produce the layouts
for our experiments, we first synthesized the RTL designs with Cadence RTL
Compiler 4.10 using a cell library based on the 0.18 �m technology node. We
then placed the synthesized netlists with Capo 10.2 [24] and routed them with
Cadence NanoRoute 4.10.

Table 11.2. Characteristics of benchmarks.

Benchmark Description #FFs #Cells
Stepper Stepper Motor Drive 25 226
SASC Simple Asynchronous Serial 117 549

Controller
EXU ECL OpenSparc EXU control unit 351 1460
Pre norm Part of FPU 71 1877
MiniRISC MiniRISC full chip 887 6402
AC97 ctrl WISHBONE AC 97 Controller 2199 11855
USB funct USB function core 1746 12808
MD5 MD5 full chip 910 13311
DLX 5-stage pipeline CPU running 2062 14725

MIPS-Lite ISA
PCI bridge32 PCI bridge 3359 16816
AES core AES Cipher 530 20795
WB conmax WISHBONE Conmax IP Core 770 29034
Alpha 5-stage pipeline CPU running 2917 38299

Alpha ISA
Ethernet Ethernet IP core 10544 46771
DES perf DES core 8808 98341

11.5.1 Functional Error Repair
To evaluate our PAFER framework, we chose several benchmarks and in-

jected functional errors at either the gate level or the RTL. At the gate level
we injected bugs that complied with Abadir’s error model (see Section 5.1.4),
while those injected at the RTL were more complex errors (DLX contained
real bugs). We collected input patterns for the benchmarks from several traces
generated by verification (some of the traces were reduced by Butramin), and
a golden model was used to generate the correct output responses and state
values for error diagnosis and correction. Note that the golden model can be
a high-level behavior model because we do not need the simulation values for
the internal signals of the circuit. The goal of this experiment was to fix the
layout of each benchmark so that the circuit produces correct output responses
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Table 11.3. Post-silicon functional error repair results.

Benchmark Bug description #Pat- #Resyn. Changes after repair Runtime
terns cells #Vias (%) WL(%) Delay(%) (sec)

SASC(GL1) Missing wire 90 2 0.29 1.27 –0.13 9.9
SASC(GL2) Incorrect gate 66 1 0.13 0.33 0.00 4.4
EXU ECL Incorrect gate 90 No valid fix was found 158.71
(GL1)
EXU ECL Wrong wire 74 0 0.01 0.03 0.00 145.3
(GL2)
Pre norm Incorrect wire 46 2 0.10 0.24 –0.05 38.92
(GL1)
DLX(GL1) Incorrect gate 46 0 0.38 0.02 0.00 17245
DLX(GL2) Additional wire 33 0 –0.13 –0.04 –0.15 12778

Pre norm Reduced OR replaced by 672 3 0.19 0.38 0.57 76.24
(RTL1) reduced AND
MD5(RTL1) Incorrect state transition 201 3 0.02 0.03 –0.02 29794
DLX(RTL1) SLTIU inst. selects the 2208 No valid fix was found 12546

wrong ALU operation
DLX(RTL2) JAL inst. leads to wrong 1536 0 0.00 0.00 0.03 8495

bypass from MEM stage
DLX(RTL3) Incorrect forwarding for 1794 0 0.00 0.00 0.03 13807

ALU+IMM inst.
DLX(RTL4) Does not write to reg31 1600 No valid fix was found 7723
DLX(RTL5) If RT = 7 memory write 992 0 0.00 0.00 0.00 5771

is incorrect

The bugs in the upper half were injected at the gate level, while those in the lower half were
injected at the RTL. Some errors can be repaired by simply reconnecting wires and do not
require the use of any spare cell, as shown in Column 4.

for the given input patterns. This is similar to the situation described in Section
2.4 where fixing the observed errors allows the silicon die to be used for further
verification. If the repaired die fails further verification, new counterexamples
will be used to refine the fix as described in the PAFER framework. The results
are summarized in Table 11.3, where “#Patterns” is the number of input pat-
terns used in each benchmark, and “#Resyn. cells” is the number of cells used
by the resynthesized netlist. In order to measure the effects of our fix on im-
portant circuit parameters, we also report the changes in via count (“#Vias”),
wirelength (“WL”), and maximum delay (“Delay”) after the layout is repaired.
These numbers were collected after running NanoRoute in its ECO mode, and
then they were compared to those obtained from the original layout. The max-
imum delay was reported by NanoRoute’s timing analyzer.
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The results in Table 11.3 show that our techniques can successfully repair
logic errors for more than 70% of the benchmarks. We analyzed the bench-
marks that could not be repaired and found that in those benchmarks, cells that
produce the required signals were too far away and were excluded from our
search. As a result, our resynthesis technique could not find valid fixes. In
practice, this also means that the silicon die cannot be repaired via metal fix.
The results also show that our error-repair techniques may change physical pa-
rameters such as via count, wirelength, and maximum delay. For example, the
wirelength of SASC(GL1) increased by more than 1% after the layout was re-
paired. However, it is also possible that the fix we performed will actually im-
prove these parameters. For example, the via count, wirelength, and maximum
delay were all improved in DLX(GL2). In general, the changes in these phys-
ical parameters are typically small, showing that our error-repair techniques
have few side effects.

11.5.2 Electrical Error Repair
We currently do not have access to tools that can identify electrical errors

in a layout. Therefore, in this experiment we evaluate the effectiveness of
our electrical error repair techniques by computing the percentages of wires
where at least one valid transformation can be found. To this end, we selected
100 random wires from each benchmark and assumed that the wires contained
electrical errors. Next, we applied SymWire and SafeResynth to find layout
transformations that could modify the wires to repair the errors. The results
are summarized in Table 11.4. In the table, “#Repaired” is the number of wires
that could be modified, and “Runtime” is the total runtime of analyzing all 100
wires. We also report the minimum, maximum and average numbers of metal
segments affected by our error-repair techniques. These numbers include the
segments removed and inserted due to the layout changes.

From the results, we observe that both SymWire and SafeResynth were
able to alter more than half of the wires for most benchmarks, suggesting
that they can effectively find layout transformations that change the electri-
cal characteristics of the erroneous wires. In addition, the number of affected
metal segments is often small, which indicates that both techniques have little
physical impact on the chip, and the layout modifications can be implemented
easily by FIB. The runtime comparison between these techniques shows that
SymWire runs significantly faster than SafeResynth because symmetry detec-
tion for small subcircuits is much faster than equivalence checking. However,
SafeResynth is able to find and implement more aggressive layout changes for
more difficult errors: as the results suggest, SafeResynth typically affects more
metal segments than SymWire, producing more aggressive physical modifica-
tions. We also observe that SymWire seems to perform especially well for
arithmetic cores such as MD5, AES core, and DES perf, possibly due to the
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Table 11.4. Results of post-silicon electrical error repair.

Benchmark SymWire SafeResynth
#Re- Metal seg. affected Runtime #Re- Metal seg. affected Runtime

paired Min Max Mean (sec) paired Min Max Mean (sec)
Stepper 81 6 33 15.7 0.03 79 14 53 28.3 4.68
SASC 50 8 49 19.8 0.79 41 2 48 27.8 3.32
EXU ECL 68 7 42 15.0 1.13 71 14 831 119.1 23.02
MiniRISC 58 4 29 13.7 1.65 57 14 50 28.1 166
AC97 ctrl 52 9 26 13.9 3.26 56 14 53 31.9 68.02
USB funct 70 7 36 16.4 1.84 58 16 74 32.4 157.52
MD5 82 7 30 15.0 1.83 79 13 102 37.9 2630
DLX 64 6 49 15.8 11.00 67 13 97 40.2 8257
PCI bridge32 42 8 42 16.6 6.04 32 15 54 31.2 211.28
AES core 83 5 32 15.0 2.53 83 12 64 31.4 285.58
WB conmax 84 7 35 16.0 2.96 46 19 71 35.2 317.50
Alpha 67 9 41 16.3 12.32 55 11 101 36.9 85104
Ethernet 36 7 22 13.4 45.01 18 18 104 46.6 3714
DES perf 91 7 1020 36.7 4.86 76 10 60 29.0 585.34

100 wires were randomly selected to be erroneous, and “#Repaired” is the number of errors that
could be repaired by each technique. The number of metal segments affected by each technique
is also shown.

large numbers of logic operations used in these cores. Since many basic logic
operations are symmetric (such as AND, OR, XOR), SymWire is able to find
many repair opportunities. On the other hand, SymWire seems to perform
poorly for benchmarks with high percentages of flip-flops, such as SASC,
PCI bridge32, and Ethernet. The reason is that SymWire is not able to find
symmetries in flip-flops. As a result, if many wires only fanout to flip-flops,
SymWire will not be able to find fixes for those wires.

11.6 Summary
Due to the dramatic increase in design complexity, more and more errors are

escaping pre-silicon verification and are discovered post-silicon. While most
steps in the IC design flow have been highly automated, little effort has been
devoted to the post-silicon debugging process, making it difficult and ad hoc.
To address this problem, we use our FogClear methodology to systematically
automate the post-silicon debugging process, and it is powered by our new
techniques and algorithms that enhance key steps in post-silicon debugging.
The integration of logical, spatial and electrical considerations in these tech-
niques facilitates the generation of netlists and layout transformations to fix
the bug, and these techniques are complemented by search pruning methods
for more scalable processing. These ideas form the foundation of our PAFER
framework and the PARSyn algorithm that correct functional errors, as well as



166 Post-Silicon Debugging and Layout Repair

the SymWire and SafeResynth methods to repair electrical errors. Our empiri-
cal results show that these techniques can repair a substantial number of errors
in most benchmarks, demonstrating their effectiveness for post-silicon debug-
ging. FogClear can also reduce the costs of respins: fixes generated by Fog-
Clear only impact metal layers, hence enabling the reuse of transistor masks.
The accelerated post-silicon debugging process also promises to shorten the
time to the next respin, which can limit revenue loss due to late market entry.



Chapter 12

METHODOLOGIES FOR SPARE-CELL
INSERTION

Post-silicon validation has recently become a major bottleneck in IC de-
sign. Several high profile IC designs have been taped-out with latent bugs, and
forced the manufacturers to resort to additional design revisions. Such changes
can be applied through metal fix; however, this is impractical without carefully
pre-placed spare cells. As Figure 12.1(a) shows, a good spare-cell selection
and placement facilitate metal fix with minimal perturbation of the silicon die.
On the other hand, Figures 12.1(b) and (c) show that poorly placed spare cells
can only be reached through long wires, leading to large increments in the
propagation delay of the circuit; and that a poor selection of cell types requires
the use of more cells to fix the same error.

In this chapter we perform comprehensive analysis of the issues related to
spare-cell insertion, including the types of spare cells that should be used as
well as their placement. In addition, we propose a new technique to measure
the heterogeneity among signals and use it to determine spare-cell density.
Finally, we integrate our findings into a multi-faceted approach that calculates

(a) (b) (c)

Figure 12.1. A design where an XOR gate must be replaced by a NAND using spare cells. (a)
A high-quality fix with little perturbation of the layout. (b) A low-quality fix that requiring long
wires due to poor spare-cell placement. (c) Another low-quality fix using several cells due to a
poor selection of cell types.
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regional demand for spare cells, identifies the most appropriate cell types, and
places such cells into the layout.

Our work offers the first evaluation of strategies for spare-cell selection and
placement in the context of post-silicon debugging. It answers the following
important questions.

What types of spare cells are most useful for metal fix?

Do different types of designs or bugs need different combinations of spare
cells? How to select such combinations?

What is the impact of different spare-cell placement methods on important
circuit parameters before and after metal fix?

Should spare-cell density be different in different regions of a circuit? How
to determine the best density automatically?

Key methods presented in this chapter are:

A new technique to evaluate which type of cell is most useful to repair a
given circuit, called SimSynth. SimSynth also measures the heterogene-
ity among signals and is the first technique that addresses the cell density
problem.

A spare-cell insertion methodology that covers both spare-cell selection and
placement.

12.1 Existing Spare-Cell Insertion Methods
Spare-cell insertion is a design-dependent challenge whose solutions often

rely on bug analysis from previous chips. Due to the confidentiality of rel-
evant data, the results are only revealed in patents. Existing techniques for
spare-cell insertion either provide better spare cells that are more powerful in
generating new logic functions [17, 31, 66, 87, 105, 107, 119, 137, 131, 143]
or strive to find better placement for the spare cells, so that they are located in
proximity of a potential metal fix demand [17, 21, 31, 66, 87, 107, 131, 143].
Since these techniques are only described in patents, no empirical evaluation
has been reported, particularly in the context of metal fix. As a result, their
utility in post-silicon debug remains unclear. In Table 12.1 we summarize ex-
isting solutions that address the spare-cell insertion problem. Note that some
techniques emphasize elevating lower-level wires for easier FIB access, which
can also reduce respin cost because only masks for upper-level metal need to
be updated. However, the elevated vias and metal segments may cause routing
congestion and worsen circuit delay, hurting the overall circuit’s performance
in the end.
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Table 12.1. A summary of existing spare-cell insertion techniques described in US patents.
Major contributions are marked in boldface.

Author,
year

Spare cell type Placement and routing
methods

Drawbacks/limitations

Yee [143],
1997

Most commonly used cell
in the design; one of the
earliest works on spare-
cell insertion

Spare cells scattered af-
ter placement

Designed for 2 metal
layers only

Lee [87],
1997

NAND/NOR gates with
many inputs, BUF, INV,
DFF (new spare-cell se-
lection)

Placed close to poten-
tially buggy region

High-input gates may
waste space; other
cell types may be
more useful

Payne
[107], 1999

Gate array (new struc-
ture)

Spare cells scattered af-
ter placement

No new placement
technique claimed

Wong
[137], 2001

Configurable logic and
INV (new structure)

N/A No placement tech-
nique claimed

Schadt
[119], 2002

Programmable cells
(new structure); ele-
vated lower-level wires
improve FIB access

Spare-cell islands scat-
tered before placement

Uses 2 metal layers
only; inputs/outputs
of spare cells must be
elevated

Chaise-
martin
[31], 2003

NAND, DFF, trigate
(new structure)

Placed in a zigzag pat-
tern; stand-by tracks
for routing

Stand-by tracks may
create routing conges-
tion

Bingert
[17], 2003

Gate-array islands Floorplaned with the
design, then scattered
uniformly

Spare-cell islands
may occupy too much
space

Giles [66],
2003

New spare-cell selection
within cell islands in-
cluding INV, DFF, MUX,
AND, NAND, NOR and
BUF

Placed according to
design hierarchy

Each module is al-
lowed only one addi-
tional I/O; only fixed
blocks supported

Or-Bach
[105], 2004

New FPGA-like struc-
ture

N/A Uses 3 metal layers
only; no placement
technique claimed

Vergnes
[131], 2004

New structure with
functional input bus and
an equation input bus

Placed with poten-
tially buggy modules
by hardwiring inputs
of spare cells to signals
in those modules

Occupied routing
tracks may create
congestion

Brazell
[21], 2006

N/A Whitespace allocated
during Floorplanning;
cells inserted after
placement

Spare cells occupy all
remaining whitespace
– impractical for
modern layouts
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12.2 Cell Type Analysis
As suggested by Table 12.1, many existing techniques seek better selections

of spare-cell types so as to generate more complex logic functions for metal
fix [31, 66, 87, 131, 143]. Here, one tries to avoid low-utility cells that waste
valuable whitespace. A careful analysis of references suggests that none of the
existing techniques vary the spare-cell selection throughout the design. How-
ever, intuitively it seems that different circuit blocks in the design may benefit
best from different types of spare cells, and in general, some types may be
more useful than others. In this work we developed a new algorithm, called
SimSynth, that evaluates quantitatively the usefulness of a specific cell type,
and we deployed on a range of designs to determine if the type of spare cells
has a relevant impact on the quality of metal fix. Note that currently, we only
consider combinational cells in SimSynth. The utility of sequential cells will
depend on the sequential error repair technique being applied, which is a more
sophisticated problem.

12.2.1 The SimSynth Technique
The SimSynth algorithm relies on a pool of input vectors for the circuit that

can either be provided by a high-level simulator or acquired through a random
selection. We then compute a signature for each internal circuit wire. These
signatures can be thought of as partial truth tables that exclude all controllabil-
ity don’t-cares and they are the input to the SimSynth algorithm as indicated
in the pseudocode of Figure 12.2. The algorithm’s output is the success rate
to generate a signature that already exists in the design region. To collect the
signatures, we select a random wire, search for gates within 40 �m from the
driver of the wire, and then retrieve the signatures from the outputs of those
gates to form a signature pool. SimSynth is then called using the signature
pool as its input. Note that the 40 �m constraint is based on the observation
that cells too far away will not be useful in metal fix because the wires that
connect to them will be too long and will exhibit significant delay. In addition,
FIB cannot generate long wires efficiently.

function SimSynth(candiSigs)
1 foreach cell ∈ spareCellTypes
2 foreach inputSigs ∈ combinations of signatures from candiSigs
3 sig ← cell.compute(inputSigs);
4 if (sig ∈ candiSigs)
5 success[cell]++;
6 count[cell]++;
7 return success/count;

Figure 12.2. The SimSynth algorithm.
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Since we are measuring how easily an existing signal can be re-generated,
the cell utility is useful for electrical error repair, which generates resynthe-
sized netlists without modifying the circuit’s logic functions. However, this
technique can also measure the cell utility for functional error repair. The rea-
son is that we are comparing signatures (partial truth-tables) of the signals. If
two signals share the same signature, they must be functionally similar, but
can differ on input vectors that have not been used to generate the signatures.
This is similar to fixing functional errors: typically, a new signal that fixes a
functional error is only slightly different from an existing one because most of
the circuit’s functions are already correct in post-silicon debugging. In gen-
eral, more input vectors will bias the utility of spare-cell types toward fixing
electrical errors because the generated signals will be closer to existing ones,
while the selection will be biased toward functional errors when fewer vectors
are used. To make SimSynth more relevant to studying functional errors, we
can also consider signatures that are only slightly different from an existing
one: generating a signature that is 1-bit different from an existing one can also
be counted as a success. In practice, it is also possible that a fix requires a
significant change to the circuit’s functions. Implementing such a dramatic
change, however, typically requires more complex resynthesized netlists in-
volving large numbers of spare cells, which can make metal fix difficult or
even impossible. In this work we do not discuss the utility of spare cells for
fixing such extensive errors.

Further analysis shows that SimSynth can also be used to determine spare-
cell density. The reason is that what SimSynth really measures is the hetero-
geneity among signals in the circuit. If the success rate is high, then the logic
functions of the signals are similar, and generating a new signal that is close to
any existing one should be easy. If the rate is low, then the functions of signals
are quite different from each other, and generating a new signal using those sig-
nals would require more gates. This analysis is confirmed by our experimental
results shown in Section 12.5.2.

Example 12.1 Figure 12.3 shows a SimSynth execution example using a full
adder, where gate g1 should be XOR instead of OR. Two input vectors are used,
producing a 2-bit signature for each wire. Suppose we want to measure the
utility of cell types for the region indicated by the dashed line that contains two
distinct signatures. SimSynth tries different cell types with different combina-
tions of inputs (only 1 combination in this example) and measures the success
rate to replicate an existing signature. The results on the right of the figure
show that AND and XOR are more useful than NAND in this case. Note that
the correct cell type to fix the bug can be successfully identified because signa-
tures are only partial truth tables, which allow the identification of spare cells
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that can generate different signals. In general, additional input vectors will
bias the cell-type selection towards the one that allows less function change.

Figure 12.3. SimSynth example using a full adder.

12.2.2 Experimental Setup
Our implementation platform is based on the OAGear package [155] from

Cadence Labs that uses the OpenAccess database and is integrated with the
Capo placer [3]. We use benchmarks provided by the Bug UnderGround
project [149] (Alpha), which includes a number of actual bugs found in fully
functional microprocessor designs. Other benchmarks are from OpenCores
[154] (MRISC, MD5 and DES perf), picoJava (Hold logic), and OpenSparc
(EXU ECL) [167]. The characteristics of these benchmarks are summarized in
Table 12.2, where the first four are individual modules of the Alpha processor,
followed by the full fledged Alpha design. Next, we show another processor
(MRISC), followed by two CPU control blocks (Hold logic and EXU ECL)
and two cryptographic cores (MD5 and DES perf). To generate the layout in-
formation for these designs, we first synthesize the designs with Cadence RTL
Compiler 4.10 based on a 0.18 μm library, and then we instruct Capo to place
the design with uniform whitespace. By using uniform whitespace we pro-
duce lower bounds for the trends we observe, and the actual trends should be
stronger with more realistic placement techniques that distribute design cells to
aggressively optimize interconnect. We use Cadence NanoRoute 4.10 to route
the final design and calculate the routed wirelength and circuit delay. The cell
types considered in our analysis are INV (inverter), AND, OR, XOR, NAND,
NOR, and MUX2. All cells except INV and MUX2 have two inputs. To eval-
uate a region with 200 signals using SimSynth, approximately 6 seconds are
required on an AMD 2.4 GHz Opteron workstation.
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Table 12.2. Characteristics of benchmarks

Benchmark Description Cell Delay
count (ns)

Alpha IF Instruction fetch unit of Alpha 1205 1.15
Alpha ID Instruction decode unit of Alpha 11806 1.91
Alpha EX Instruction execution unit of Alpha 20903 3.89
Alpha MEM Memory stage unit of Alpha 363 0.44
Alpha Alpha CPU full chip 30212 6.93
MRISC MiniRISC CPU 4359 2.66
Hold logic Part of PicoJava IU control 67 0.61
EXU ECL Part of OpenSparc EXU control 2083 0.99
MD5 MD5 encryption/decryption core 9181 6.92
DES perf DES encryption/decryption core 100776 3.37

12.2.3 Empirical Results
The experimental results are summarized in Figure 12.4, which shows two

interesting trends. First, the distribution of cell-type utility varies widely among
modules of the Alpha processor: signatures can often be re-generated easily
using one gate in the IF and ID blocks, but not in the EX and MEM blocks.
The reason is that IF and ID contain mostly control logic. Since control logic
is mainly generated from “if-then” constructs, most signals are generated by
ANDing, ORing or multiplexing the same group of signals. As a result, the
logic functions between two signals are often very similar, making it easier to
generate identical signatures using one gate. On the other hand, EX is domi-
nated by datapaths. Since signals in such modules usually compute more dis-
tant functions, a single gate is less likely to re-generate an existing signature.
For example, the first bit and the last bit in an adder compute very differ-
ent functions. This result shows that to fix errors in arithmetic cores, more
spare cells may be needed than fixing similar errors in control logic. Second,
we observe that MUX2 is more useful in control logic (Alpha IF, Alpha ID,
Hold logic and EXU ECL) than in arithmetic cores. The reason is that control
logic is typically composed of many "if-then" constructs that can be efficiently
implemented and modified using multiplexers.

12.2.4 Discussion
Our empirical results suggest that AND, NAND, OR, NAND and INV are

the most useful in general, while XOR is the least useful. But CMOS standard
cells that implement INV, NAND and NOR are smaller than those for AND
and OR gates, making INV, NAND and NOR preferable as spare cells due to
their functional completeness. The utility of MUX2, however, is unclear: it is
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Figure 12.4. Using single gates of different types to generate desired signals. The success
rates are shown in percent.

useful in only some of the benchmarks. Since MUX2 has three inputs, it should
be useful in fixing functional errors because it can generate many different
functions. In addition, the “if-then” construct commonly used in control logic
can be modeled easily using MUX2. Since MUX2 is not a good candidate to
fix electrical errors (MUX2 implemented using active transistors is large and
slow), it should be implemented using pass transistors to fix functional errors.

In summary, our results suggest that: (1) different types of designs or errors
need different combinations of spare-cell types; and (2) the most useful types
are simple ones such as INV, NAND and NOR, while more complex gates such
as XOR and MUX2 are less useful. Since there is no clear trend to predict the
types of spare cells that will be more useful in a design, performing empirical
analysis beforehand for each block in the design should help select the most
adequate spare-cell types and distributions.

12.3 Placement Analysis
Placement of spare cells is another major factor that affects the quality of

metal fix. When errors occur too far from pre-placed spare cells, the required
wire connections may be too long to be practical. Even if such wires can be
implemented by FIB or respin, the wire delay may also be large. Existing so-
lutions either place the spare cells before design placement [31, 119], with de-
sign placement [66, 87, 131], or after design placement [17, 107, 143, 21]. To
make sure that spare cells are available where necessary, uniform distribution
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of spare cells has been used by many existing solutions [17, 31, 119], while
several other solutions focus on identifying potentially buggy regions and place
spare cells close to them [66, 87, 131]. The spare cells are often grouped into
spare-cell islands and then placed on a uniform grid; however, it is also pos-
sible to uniformly distribute individual cells instead of grouped cell islands.
Since there is little research that evaluates different placement methods, the
relative advantages of known techniques remain unclear.

A high-quality spare-cell placement should have minimal impact on im-
portant circuit parameters before metal fix to avoid increasing circuit delay
or wirelength inadvertently and hurting design quality. It should also facilitate
metal fix with the smallest impact on circuit parameters to provide high-quality
repair. We observe that most existing techniques either scatter spare cells after
design placement or place spare-cell islands uniformly before design place-
ment. We call the former method PostSpare placement and the latter Cluster-
Spare. PostSpare covers the placement methods described in patents proposed
by Yee [143] and Payne [107], while ClusterSpare covers those proposed by
Schadt [119], Chaisemartin [31] and Bingert [17]. In ClusterSpare-based tech-
niques, a cell island typically contains one cell for each selected type. There-
fore, the number of cells in each island is usually large. An illustration of these
placement methods is given in Figure 12.5.

PostSpare ClusterSpare UniSpare(new)

Figure 12.5. Illustration of different placement methods. Dark cells are spare cells. PostSpare
inserts spare cells after design placement. Since design cells may be clustered in some regions,
spare-cell distribution is typically non-uniform. ClusterSpare inserts spare-cell islands on a
uniform grid before design placement, while UniSpare inserts single spare cells.

PostSpare placement should have minimal impact on important circuit pa-
rameters because spare cells are inserted after design placement. However,
the error-repair quality of this method may be poor when design cells form
high-utilization areas, forcing spare cells into sparser regions. When this hap-
pens, long wires may be needed to reach those cells. ClusterSpare placement
may have larger impact on circuit parameters because the cell islands will act
like macros and reduce the optimization that can be performed by the placer.
However, it should provide better error-repair quality because their uniform
distribution makes their access easier. Therefore, shorter wires can be used to
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reach the cell islands. In addition, connections among cells within the same
island only require local wires and will be easy to implement. Note that, how-
ever, even the relatively short wires necessary to reach the spare-cell islands of
ClusterSpare may trigger unacceptable wire delay increase in current silicon
technology nodes, which are extremely delay-sensitive.

In this work we propose UniSpare, a solution that pre-places individual
spare cells uniformly on a grid, as illustrated schematically in Figure 12.5(c).
In this way, the average distance from a design cell to the closest spare cell is
reduced. For example, when the size of the clusters reduces from 16 to 1 while
maintaining the total number of spare cells, the average distance to reach a
spare cell is reduced by 4 times. In a resynthesized netlist involving many
gates, these individual cells can also act like buffers to increase signal strength,
thus further reducing wire delay.

12.4 Our Methodology
Based on our analysis, we propose a new spare-cell insertion methodology,

illustrated in Figure 12.6. Below we explain how it performs the selection and
placement of spare cells.

Figure 12.6. Our spare-cell insertion flow.

Our analysis suggests that different types of circuits require different distri-
butions of spare-cell types. To select appropriate types, we apply our SimSynth
technique in each design module and use the resulting cell-type distribution to
determine the types of spare cells that should be inserted to each module. Since
AND and OR gates require greater area than NAND and NOR, in our method-
ology we always use INV, NAND and NOR. In addition, for control blocks we
insert multiplexers implemented using pass transistors to fix functional errors.
Cell structures that provide greater flexibility, such as programmable logic or
gate array [17, 105, 107, 119, 137], can also be used. However, they often
require additional long wires to support programming.

The density of spare cells can be determined by the expected bug rate. If
a circuit module is potentially buggy, then more spare cells should be placed
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in that module. For example, a perfectly working/verified circuit that is be-
ing scaled down to a new technology may encounter new electrical errors, but
functional errors should not be prominent. In arithmetic cores, functional er-
rors are relatively unlikely because these cores are usually heavily verified and
are reused among designs. If bugs do occur, however, they may be difficult to
repair using metal fix alone because all 32 or 64 bits may be affected. Wagner
et al. [133] showed that most errors found in high-profile processors are in
control logic. Therefore, more spare cells should be placed there.

If the expected bug rate is unknown, the results from SimSynth could be
used. If the success rate measured by SimSynth in a block is lower than other
blocks, then the heterogeneity among signals in the block is high and more
spare cells should be placed. Suppose that there are n blocks in a circuit, the
average success rate for block Bi is Si, and the average success rate for all the
blocks is Savg. Also assume that the target overall spare-cell density is Dall%.
Formula 12.1 shows how to determine the spare-cell density Di for block Bi.
In the formula, P is a parameter that determines the impact of Si on Di and
should be determined empirically. For example, based on our evaluation, P
should be 20% for the blocks in the Alpha processor.

Di = [
(Si − Savg) × P

Savg
+ 1] × Dall

100%
(12.1)

The placement of spare cells depends on the expected bug rate and the
metal-fix technique being used. If the expected bug rate is low, spare cells can
be scattered uniformly after design placement. This helps ensure that spare
cells do not affect circuit performance. If the expected bug rate is higher or
unknown, then spare cells should be pre-placed uniformly before design place-
ment so that wherever a fix must be applied, there are spare cells close to the
repair site. To reduce the impact of the fix on important circuit parameters,
spare cells should be placed individually or as small islands throughout the de-
sign using our proposed UniSpare method. Note that spare cells not connected
during metal fix can also be used as buffers to improve circuit timing, as [51]
suggests.

12.5 Experimental Results
In this section we empirically evaluate our techniques and compare them

with existing solutions.

12.5.1 Cell-Type Selection
Experiment design: in this experiment we compare our results with two cell-
selection methods: Giles [66] and Yee [143]. According to Figure 12.4, we
use INV, NAND and NOR for most benchmarks, while Alpha ID also includes
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MUX2. Giles uses INV, DFF, MUX, AND, NAND, NOR and BUF as spare
cells. Since Yee selects the “most-commonly used cell types” without indicat-
ing the number of types that should be used, we synthesized the benchmarks
again using the seven types from which spare cells are drawn, and then selected
the most-used two types for each benchmark, which were consistently NAND
and INV. We use the UniSpare placement method for all three spare-cell se-
lections to make sure the results are not affected by placement. To perform
the experiment, we first select a subcircuit composed of 1–6 cells that are con-
nected to each other. Next, we mimic a “fix” by resynthesizing the subcircuit
and then map the resynthesized netlist to spare cells close to the subcircuit.
Finally, we measure the delay and wirelength of the circuit after routing the
modified netlist using NanoRoute’s ECO mode. Better spare-cell selections
should allow metal fix to be performed with smaller impact on circuit delay
and wirelength. We ran each experiment 50 times to collect 50 data points for
statistical analysis.
Results: the results are summarized in Figure 12.7. The graph shows that our
spare-cell selection produces 23 and 4% smaller delay increase compared to
Yee and Giles at a comparable wirelength increase. This result shows that our
spare-cell selection can find more useful cells for each design and provides
better error-repair quality after metal fix.

Figure 12.7. Delay and wirelength increase after metal fix when using three different sets of
spare-cell selections. Ours has 23 and 4% smaller delay increase compared to Yee and Giles,
while the wirelength increase is approximately the same.

12.5.2 Spare-Cell Placement
Three different types of placement methods are used in our experiments, and

an illustration is given in Figure 12.5. PostSpare inserts individual spare cells
after design placement; UniSpare inserts individual cells on a uniform grid be-
fore design placement; and ClusterSpare inserts spare-cell islands on a uniform
grid before design placement, where each island is composed of 9 cells. We
use INV, NAND and NOR gates as spare cells in our experiments, and each
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(a) (b)

(c)

Figure 12.8. Impact of spare-cell placement methods on circuit parameters: (a) before metal
fix; (b)(c) after metal fix. Ours has 24% smaller delay increase before metal fix compared with
ClusterSpare. The delay increase after metal fix is 37 and 17% better than the PostSpare and
ClusterSpare methods, respectively.

benchmark contains approximately 4% spare cells. The placer and router used
in these experiments are Capo and NanoRoute. We ran each experiment 50
times to collect 50 distinct data points for statistical analysis.
Circuit parameter analysis before metal fix: in this experiment we first insert
spare cells using the three methods described earlier. Next, we place and route
the design using Capo and NanoRoute. Finally, we measure the impact of
different placement methods on important circuit parameters, including delay
and wirelength.

Figure 12.8(a) shows the average results of the benchmarks, and the er-
ror bars represent the range of one standard deviation. The figure shows that
PostSpare placement does not affect circuit delay or wirelength. This is ex-
pected because the spare cells are placed after design placement; therefore, de-
lay and wirelength should not be affected by spare-cell insertion. ClusterSpare
placement shows a very interesting trend where the delay is increased while
wirelength decreases. The reason is that large cell islands act like macros and
force Capo to place design cells closer together, thus reducing total wirelength.
At the same time, longer wires must be used to connect cells around the spare-
cell islands, resulting in larger delay. For more aggressive placers, however,
this trend may not be observed. The results also show that wirelength increased
by 0.9% in UniSpare placement. This is because pre-placed spare cells will oc-
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cupy certain placement sites, reducing the number of sites that can be used by
the placer. Therefore, the optimization that can be performed by the placer
will also be limited, resulting in larger wirelength. The delay, however, is only
slightly affected by the inserted spare cells because connecting cells around
a single cell only needs slightly longer wires, resulting in 24% smaller delay
increase than ClusterSpare placement. We also note that the standard devia-
tions are large in ClusterSpare and UniSpare placement methods, suggesting
that spare-cell insertion may destabilize existing placement and routing tools.
Repair quality analysis after metal fix: after errors in a circuit have been
repaired by metal fix, the circuit’s major physical parameters may change, in-
cluding interconnect length and maximum delay. Typically, repairs with higher
quality can minimize the perturbation of those parameters. Since the quality of
metal fix is affected by the placement of spare cells, we reused the experiment
described in Section 12.5.1 to measure the impact of placement methods on
error-repair quality. Since fixes that do not affect a critical path have no impact
on circuit delay, we only selected data points whose delay has been changed to
measure the true impact of placement methods on delay.

The average changes of physical parameters after metal fix are shown in
Figure 12.8: Figure 12.8(b) shows the impact of placement on circuit delay
and wirelength, while Figure 12.8(c) shows the impact on the number of af-
fected metal segments. The error bars represent one standard deviation. The
results show that PostSpare placement produces poor repair quality because
it triggers a larger increase in delay and wirelength. In addition, it also af-
fects more metal segments, making FIB more difficult. These trends should
be stronger with non-uniform distribution of whitespace. From Figure 12.8(b),
we observe that UniSpare placement has smaller delay and similar wirelength
increase compared to ClusterSpare. The reason is that the cell islands placed
by ClusterSpare are farther away from each other than the spare cells placed by
UniSpare. As a result, longer wires are needed to connect to those cell islands,
resulting in larger delay. On the other hand, Figure 12.8(c) shows that smaller
numbers of metal segments are affected in circuits produced by ClusterSpare.
This is because once those long wires reach the cell islands, connections among
the cells in the same island only require local wires and will not perturb other
wires. On average, UniSpare placement results in 37 and 17% smaller delay
increase compared with PostSpare and ClusterSpare respectively, suggesting
that it is the best placement method.
Density of spare cells: another interesting placement-related issue is the den-
sity of spare cells. Several existing techniques suggest that spare cells should
be inserted close to potentially-buggy circuit modules [87, 131]. This approach
is certainly useful if such information is available. However, it cannot be used
if the bug distribution of a chip is unknown. As discussed in Section 12.2.1,
SimSynth can address this problem. To evaluate its effectiveness, we counted
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the average number of spare cells used in the fixes produced by our previous
experiment, and we contrast the results with Figure 12.4.

The results of this experiment are shown in Figure 12.9. This figure shows
that to generate the same signal, the Alpha processor needs more spare cells
than its EX block, followed by its ID and IF blocks. If we contrast this result
with Figure 12.4, we can see that the IF block has the highest success rate
in generating an existing signature using one spare cell, followed by ID, EX
and the Alpha processor. These two observations are correlated because if
it is easier to generate an existing signal using one gate, the number of cells
needed to replicate a signal should also be smaller, at least on average. This
phenomenon can also be observed on MD5 and DES perf: MD5 requires more
cells in each fix, and the success rate to generate an existing signal using one
gate is also smaller. This result suggests that measuring the success rate of our
SimSynth experiment can help determine the density of spare cells that should
be placed on a silicon die.

Figure 12.9. Average numbers of cells used when fixing bugs in the benchmarks. By con-
trasting with Figure 12.4 we show that SimSynth can help determine spare-cell density. For
example, Alpha has smaller success rate in Figure 12.4 than its EX block, followed by its ID
and IF blocks. This figure shows that the Alpha design requires more cells than its EX, ID and
IF blocks.

12.6 Summary
In this chapter we performed a comprehensive analysis of spare-cell inser-

tion to study the nature of this problem. Our work evaluates, for the first time,
several rules of thumb commonly used in spare-cell insertion. First, several
existing solutions suggest to use the “most-commonly used” cell type in the
design as the spare-cell type. According to our results, the most popular cell
type is indeed very useful, but (1) other types can be equally useful, and (2) us-
ing a blend of several spare-cell types provides better error-repair quality than
using only one or two types. Second, most existing solutions use large spare-
cell islands. Our analysis shows that this approach hurts circuit’s wirelength
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and timing, and we believe that the difference will grow with each technology
node due to poor scaling of interconnect delay. To reduce this impact, smaller
islands should be used so as to reduce the average distance from a design cell to
the closest spare cell. This will shorten the wires that connect to spare cells and
improve circuit delay after metal fix. Third, most existing solutions neglect the
impact of spare-cell insertion on circuit parameters. However, we showed that
this impact may be significant. Without careful planning, spare-cell insertion
can worsen circuit timing and wirelength.
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CONCLUSIONS

Verification is important in ensuring the correctness of a circuit design. As a
result, it has been studied extensively and is highly automated. However, once
errors are found, their diagnosis and correction are still mostly performed man-
ually, which can be very difficult and time-consuming. Existing techniques that
address this error-repair problem are often limited in their strength and scalabil-
ity. This deficiency can be explained, in part, by the lack of scalable resynthe-
sis methods. In addition, existing gate-level error-diagnosis techniques cannot
be applied to the RTL, where most design activities occur, making automatic
functional error correction much more difficult. This problem is further exacer-
bated by poor interoperability between verification and debugging tools, which
stresses existing error-correction techniques even more. Since functional cor-
rectness is the most important aspect of high-quality designs, the resources
consumed by debugging limit the effort that can be devoted to improve the
performance of a circuit, hampering the sophistication of digital designs.

In this book we described several innovative algorithms, data structures, and
methodologies that provide new ways for error diagnosis and correction. In
addition, we described the FogClear framework that automates the functional
error-repair process. This framework automatically corrects design errors at
the RTL or gate level, and it is able to physically implement the corrections
with minimal changes to existing cell locations, wire routes and manufacturing
masks. In addition, our physical synthesis techniques are able to fix electrical
errors with minimal impact to the layout. Below we summarize key techniques
presented in this book.

We presented a scalable bug trace minimizer, called Butramin, that reduces
the complexity of bug traces and bridges the gap between verification and
debugging.
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We described a CoRé resynthesis framework based on simulation and SAT.
To achieve better scalability, we used an abstraction-refinement scheme in
this framework. In addition, we devised a simplification of SPFDs, Pairs
of Bits to be Distinguished (PBDs), to encode the resynthesis information
required by the framework. This representation supports the use of com-
plete don’t-cares and makes CoRé scale further than most existing error-
correction techniques. Based on PBDs, we developed two innovative resyn-
thesis algorithms, Distinguishing-Power Search (DPS) and Goal-Directed
Search (GDS), to support the logic changes required by error correction.
The abstraction-refinement scheme in CoRé is conceptually different from
those in existing solutions because CoRé’s abstraction is based on signa-
tures, which can be easily used by various resynthesis tools and extended
to support different error-repair requirements. As articulated in Chapters
9 and 11, CoRé can be extended to repair RTL and post-silicon functional
errors, but existing solutions do not have this flexibility. For example, it is
difficult to utilize the abstraction proposed in [8] for automatic error cor-
rection.

We designed a comprehensive and powerful functional symmetry detection
algorithm for digital logic based on reduction to the graph-automorphism
problem and available solvers. Given a multi-output logic function, this al-
gorithm detects all symmetries of all known types, including permutations
and phase-shifts on inputs and outputs, as well as the so-called higher-order
symmetries. In addition, we devised a rewiring technique that uses the de-
tected symmetries to optimize circuit wirelength or repair electrical errors
discovered post-silicon.

We introduced an innovative RTL error model that facilitates efficient and
effective RTL error diagnosis. In addition, we proposed two diagnosis al-
gorithms based on synthesis and symbolic simulation. Both techniques can
scale much farther than existing gate-level diagnosis techniques, making
our approach applicable to much larger designs. Our results also show that
many more functional errors can be diagnosed compared with traditional
gate-level diagnosis techniques.

We outlined an incremental verification system, InVerS, that uses similarity
factor to quickly estimate the functional correctness of physical synthesis
optimizations. When errors are flagged, traditional verification techniques
will be used. This system helps localize and identify bugs introduced by
physical synthesis optimizations, and therefore decreases the risk from in-
troducing new aggressive optimizations.

We defined the concept of physical safeness and devised several physically
safe techniques for post-silicon debugging. In order to repair functional
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errors, we proposed the PAFER framework and the PARSyn resynthesis
algorithms. In addition, we illustrated two techniques, SafeResynth and
SymWire, that can repair electrical errors on the layout. Since these tech-
niques do not affect gate placements, they also allow metal fix. We also
observed that spare-cell insertion plays an important role to the success of
post-silicon metal fix. Therefore, we evaluated several spare-cell insertion
methods and proposed new techniques to improve metal-fix quality.

To facilitate comprehensive error repair at multiple stages of circuit design
flow, we integrated several software components into a unified framework,
called FogClear. This framework couples verification with debugging and
can greatly reduce the debugging effort.

Empirical validation shows that all components of the FogClear framework
are effective in performing their functions, and the integrated framework for
post-silicon debugging is equally promising. With the help of FogClear, engi-
neers will be able to diagnose and fix design errors more efficiently, which, we
hope, will improve design quality and reduce cost.
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