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Preface

This book is a result of many years in active design work in the semiconductor industry.
I started my career as a theoretical physicist working on dense matter theory and
electromagnetic fields in an astrophysical environment. After a few years my interest
turned toward integrated circuit design, where there were also electromagnetic fields,
and I have been working in this field ever since. It is a rich environment for the study of
nature and mathematics and I am thrilled to be a part of it. As a theoretical physicist one
always tries to get a handle on experiments and observations by doing simple math-
ematical modeling, and in my stint as a postdoc in the theoretical physics group at
Caltech in the 1990s I was part of an Order of Magnitude Physics, 103c class that took
this idea to town. The students were asked to estimate things such as the amount of
rubber dumped into the air from cars on LA’s freeways and how long a grass straw
would grow in a week with a given precipitation and sunlight. The class was taught by
Professor Peter Goldreich and Professor Sterl Phinney, and it opened my eyes to the
power of estimation. In my career I have always tried to understand things by first
estimating the impact of a certain effect and then verifying it. This analysis method has
been a great help for me personally and the people I have been lucky enough to tutor.
I have also encountered many other engineers and academic professionals who are very
good at following these same principles. This book is an attempt to bring this way of
thinking about design in general and circuit design in particular to a broader audience.
I refer to the analysis method as estimation analysis, but many people use the term hand
calculations, which I find to be rather misleading. Simply put, we consider complex
problems in a way that do not require exact full solutions. The book will show that this
approach can be taken for almost any problem, be it circuit analysis, high frequency
phenomena, sampling concepts or jitter, to name a few. The scope of the book is from
simple circuit theory, familiar to most engineers, to high frequency theory with a
particular focus on integrated circuit applications, to systems such as data converters
and phase-locked loops (PLLs). The applications are intentionally fairly broad, to
illustrate the power of the techniques. What is different in this book compared with
other similar ones is a strict physical approach where all situations are modeled
carefully, often from first principles, followed by useful solutions and illustrative
relationships after some algebra. Once such a model is established one can use it as a
starting point for simulations where the simulator is used to fine-tune the design.

It is assumed that the reader is familiar with basic electromagnetism and circuit
theory. There is no need to have any previous exposure to high level systems such as
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PLLs and analog-to-digital converters (ADCs). Mathematical maturity corresponding to
one year of college-level calculus and vector analysis is also assumed.

The book will start with a short chapter outlining the basic modeling concept,
followed by two chapters describing basic circuit analysis where this modeling
approach is used. These chapters should be familiar to most readers; the intention is
to use the analysis technique in a familiar setting as an illustration. Then, in Chapters
4–6, the modeling concept is applied to high frequency situations, with a focus on
integrated circuit applications. Here, we will also take the opportunity to define the
concepts of capacitance and inductance in a way that shows their duality. Using the
modeling technique, other interesting and much less discussed aspects of high fre-
quency issues are further highlighted. The final chapter of the book describes higher
system level applications where the same principles are applied. It covers PLLs and
ADCs, their building blocks, and some of their properties. The hope is that this will help
practicing electronics engineers reduce the need for simulators, and help them focus on
the key problems faster. Each chapter also contains a set of exercises so that the reader
can get more familiar with a concept and verify that the main points have been grasped.

The chapters are more or less independent of each other and for a one-semester class
one can easily go through all the material. For students interested in electromagnetism
and applications Chapters 4–6 should prove useful. For more system-level aspects of
the estimation analysis technique Chapter 7 is a must. For a mild general introduction
Chapters 2 and 3 on circuit analysis including nonlinear effects are of help.

A project like this cannot be completed without the help of many people. The
patience and support of my family, Nancy and Nicole, have been unwavering. My
manager, Pirooz Hojabri, and the technical staff at Tektronix have also been great
champions of the project. In particular, Vincent Tso and Behdad Youssefi have read and
commented on early drafts of the manuscript and Garen Hovakimyan and Patrik
Satarzadeh have provided feedback on some of the mathematical derivations. I am very
much indebted to them for their support and help. In addition, the helpful comments
from the anonymous reviewers at Cambridge University Press helped elevate this book
from a mere theoretical exercise to something much more useful for practicing engin-
eers. Finally, I would like to thank the editorial staff at Cambridge University Press for
their encouragement and support all through this project. Their sense of style and many
helpful comments on the writing improved the book much beyond what I could have
achieved alone.
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1 General Guidelines in Estimation
Analysis in Integrated Circuits

Learning Objectives

� Definition and overview of estimation analysis flow.

1.1 Introduction

This chapter provides a summary of steps needed to make useful mathematical models
of physical systems. I refer to these steps as “estimation analysis” but in hallways of
science and engineering schools or engineering offices they are often referred to as hand
calculations or back-of-the-envelope calculations. I am not a big fan of these terms, as
they convey a sense of sloppiness, which is far from accurate. This type of analysis is
useful for building deeper understanding of integrated circuits and systems, but the
methodology is very general and can be applied to most systems governed by some kind
of mathematics. From deep space astrophysics to microscopic systems such as inte-
grated circuits you will find broad applications of this kind of thinking. With this broad
applicability it is no surprise that the principles we outline here are somewhat vague, but
we will discuss enough examples in the rest of the book to enable the reader to develop
a good sense of how to proceed in different situations. A mastery of these ideas will
only come with experience. The process can be time-consuming initially because it
involves digging into the core of the system under consideration. If the system is new to
the user, the learning process can take even longer. But oftentimes, and with practice,
the systems are similar enough to other systems the user has seen before that the process
can be quite swift. We will start by outlining the principles and then discuss each of
them in some depth. We will then refer to these steps in the following chapters, where
many examples are provided.

After a model has been developed one can use it as a starting point for fine-tuning in a
simulator or on the bench or whatever might be practical.

1.2 Principles

A beginner often tries to solve a problem with brute force, using three dimensions, full
nonlinear equations, etc. The problem will then quickly become intractable with

1
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myriads of sums and complex expressions yielding little insight. With experience one
learns that the core behavior is often much simpler to catch but it requires thinking the
problem through before full calculations start. For the novice this can often be frustrat-
ing but with practice one learns to see the value of this approach.

In a typical modeling situation there are four steps to follow:

(1) Simplify – This is often the most difficult step because it attempts to get to the
core of how the system works.

(2) Solve – If step 1 is executed properly this will be relatively easy.
(3) Verify – Here we verify the solution in step 2 is correct by for example checking

extreme cases and/or comparing to simulations and/or exact calculations.
If something is wrong, go back to step 1.

(4) Evaluate – In this section we analyze what the solution means.

We will discuss each of these in turn: see Figure 1.1 for a simple flow diagram.

Simplify

To properly simplify we need to be able to understand what we actually want to know.
Is it a length scale, gain, bandwidth, linearity, etc.? How can we simplify the system so
that this property will be highlighted? Can we make it two-dimensional, one-dimen-
sional, cylindrical symmetry, spherical symmetry, planar symmetry? Can we linearize
it? If we are interested in gain or noise, linearization is a great technique. Perhaps a
harmonic tone is causing headache and perturbation calculation is in order? If we are
looking at a clocked system, perhaps an ideal switch with infinite edge rate will suffice?

Solve

This often involves fairly simple algebra. In some cases there are some useful math-
ematical techniques available and in this book we will describe them as we move along
and for more complex techniques we will refer to the literature.

Simplify Solve Verify

OK?

Evaluate

Begin

No

Yes

Figure 1.1 Estimation analysis work flow.
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Verify

This step is often neglected in practice but it is critical. If we have missed something
essential in the model, the behavior of the model will simply be wrong and we will not
have learned what we set out to learn. Oftentimes one can find similar calculations in the
literature that can be used for verification. At other times one can simulate to confirm
that the model fully captures the desired properties. This simulation is not to be used as
a substitute for understanding, but to confirm the model assumptions and calculations
are correct. A good technique is to take various parameters and go to the extremes to
make sure the behavior is as expected. For example, if we are investigating the gain of
an amplifier with a degeneration resistor, does the model go to the correct limit when
this resistor is zero or infinite?

Evaluate

What does the solution mean? Is there something one can do with a certain variable
combination that will result in something useful, like improved jitter or reduced power?
If we need smaller inductance, will widening the metal width be efficient?

Most education comes with experience. The road is narrow and sometimes long but it
is a great journey and the joy of understanding something on a deeper level cannot be
overstated.

In this book we will illustrate estimation analysis methodology by going through
many specific examples to showcase what can be done. My hope is that the reader will
be inspired to go well beyond what is described here and invent great things. We will do
simple circuit analysis that most readers will already be familiar with and then move on
to complex examples such as the direct solution of Maxwell’s equations and system
analysis of analog-to-digital converters (ADCs) and phase-locked loops (PLLs). We
will also discuss deeper physical concepts such as the nature of jitter and its relationship
to phase noise.

1.3 Integrated Circuit Applications

Having established a simple model we can proceed to the design phase by applying the
model to a specific design problem. We derive a set of parameters such as transistor
sizes, interconnect width, etc. and use those as a starting point for the design in the
simulator. The idea is to use the simulator to fine-tune the design. We should already
know, within the accuracy of the simple model, what to expect from simulation. This
kind of approach presents a huge shortcut in the design effort.

In this book we will build various models and use them in real-world design
examples to establish a good starting point for fine-tuning in simulators.

31.3 Integrated Circuit Applications
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2 Basic Amplifier Stages

Learning Objectives

� Applying estimation analysis to basic amplifier stages
○ Linearization techniques – amplifier gain and impedance
○ Perturbation analysis – weak nonlinear effects

2.1 Introduction

In this chapter we introduce basic transistor amplifier stages and use them as a starting
point to describe the estimation analysis method. For more details on the transistors and
the models used we refer to Appendix A.

For the reader familiar with the discussion in books such as [1–5] this chapter should
not pose any difficulty.

Fundamentally, all we do in all these simplifications is to linearize the transistor or
amplifier at its bias point and draw conclusions about fundamental properties such as
gain and impedance. We ignore the body effect for clarity, by assuming that the body is
always tied to source in all transistors.

In addition, we will also venture into the world of weak nonlinear effects and show
how these gain stages can be analyzed with simple extensions to the standard lineariza-
tion techniques, all in line with the estimation analysis method.

We start the chapter with a section on single transistor gain stages and continue with a
few well-known two transistor stages. For brevity, we will focus on CMOS transistors,
but other transistor types such as bipolar can easily be analyzed in the same way. We go
through some design examples in detail in order to use the results in the later chapters.

2.2 Single Transistor Gain Stages

Single CMOS transistor gain stages are traditionally divided into three groups: common
gate (CG), common drain (CD), and common source (CS) stages. Theword common refers

4
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to the terminal that is common to both input and output signals, which can be either voltage
or current.Wewill describe them one by one in this section.We will keep the discussion at
a general level; the precise expression for the currents’ dependence on terminal voltages
does not matter. Only in the final expression, when we are after something specific, do we
use specific current voltage relationships described in Appendix A.

CG Stage

The common gate (CG) stage is an amplifier where the gate node is tied to a fixed
voltage, possibly with some impedance in series. The input signal enters through the
source terminal and exits at the drain terminal. The signal is best described as a current.

Here we will solve for gain and input impedance.

Simplify We assume the transistor is in saturation so we will ignore the drain gate
capacitance. We also assume the drain source impedance is sufficiently large so as not
to affect the gain; and finally we assume the output load to be zero ohms. The transistor
model in Figure 2.1 shows our assumptions. When comparing with the literature this
could be seen as an over-simplification, but we are only interested in the dominant
parameters that set the gain and input impedance so that the simplifications are an
adequate approximation for an estimation analysis. To calculate the gain we will in
addition linearize the transistor around its bias point.

We find for ZG ¼ 0 ! vg ¼ 0 and by applying Kirchoff’s current law (KCL) at the
output node

iout ¼ gm vg � vs
� � ¼ �gm vs:

We also know

iin ¼ �vsjωC þ iout:

Solve By solving for vS we find

iout ¼ � gm iout � iinð Þ
jωC

,

ZG ZG

gm(vg − vs)

iin iin

iout iout

C

Linearize

vs vs

vg vg

Figure 2.1 Common gate transistor stage with linearization.
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or
iout
iin

¼ gm=jωC
1þ gm=jωCð Þ ¼

gm
jωC þ gmð Þ :

We see for low frequencies that the input current goes straight through to the drain or
output, but for higher frequencies the capacitor between the gate and the source will act
as a short, effectively grounding the current and leaving nothing to the output. The
transition point where jωCj j ¼ gm is a rough estimate of the transition frequency or ft.
A more detailed model can be found in [3]. Here we get

ft ¼
gm
2πC

: (2.1)

This is an important figure of merit for high speed designs and the expression (2.1) is a
convenient rule of thumb.

What about the input impedance? We now have to rewrite iin in terms of vs:

iin ¼ �vsjωC þ iout ¼ �vsjωC � gm vs ¼ � jωC þ gmð Þ vs:
We find

Zin ¼ � vs
iin

¼ 1
jωC þ gm

:

Imagine now there is a gate impedance, ZG. We find

vg ¼ � 1=jωC
1=jωC þ ZG

vs þ vs ¼ jωC ZG

1þ jωC ZG
vs,

or

iout ¼ gm vg � vs
� � ¼ �gm

1
1þ jωC ZG

� �
vs:

To find the input impedance we need to rewrite iin in terms of vs.

iin ¼ vg � vs
� �

jωC þ iout ¼ � jωC þ gm
1þ jωC ZG

� �
vs:

We the find after a simple rearrangement

Zin ¼ � vs
iin

¼ 1þ jωC ZG

gm þ jωC

� �
:

Verify As the reader no doubt recognizes, these calculations can be found in any
standard electronics book, but here we have made some simplifications beyond that
which is normally done. This is all in line with the estimation analysis idea. We are only
seeking a model that is simple enough to capture the essence of what we want to know,
in this case gain and input impedance. The calculations in this chapter are easy to verify
in the literature. We will encounter more complex situations in Chapters 4–7.

Evaluate We have followed the estimation analysis method and we recognize the
calculations from similar examples in the standard literature. To investigate the meaning

6 Basic Amplifier Stages
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of these expressions we need to go to various limits of key parameters. This is also often
a way to sanity check the answer.

Let us look at the gain

A ¼ Iout
Iin

¼ gm
jωC þ gmð Þ :

If ω ! 0 we see the gain A ! 1. For high frequencies, ω ! ∞ we see the gain A ! 0.
Obviously, when gm ! 0 the gain A ! 0.

Similarly, for the input impedance

Zin ¼ 1þ jωC ZG

gm þ jωC

� �
:

We see an interesting relationship between the gate impedance and its reflection at the
source. When ω

2π � ft the gate impedance will be rotated by 90 degrees so a resistor in
the gate will look like an inductor at the source, a capacitor will look like a resistor, and,
most disturbingly, an inductor will look like a negative resistor, a kind of gain that can
cause instabilities. For the limit ω ! 0, the input impedance is simply 1=gm. In the
other limit, ω ! ∞ the input impedance is simply ZG, which makes sense since in this
case the gate capacitance shorts the 1=gm from the transconductor.

CD Stage

For the common drain (CD) stage the input voltage goes to the gate of the transistor and
the output is picked off of the source. It is often referred to as a source-follower circuit,
or follower for short. The basic circuit configuration can be found in Figure 2.2.

We will solve for gain and input impedance.

Simplify First we will simplify the situation in a similar fashion to the CG stage.

Solve The output of the source will look like

vout ¼ id þ vin � voutð ÞjωCð ÞZL, id ¼ gm vin � voutð Þ:

ZL ZL

gm(vin − vout)vin vin

vout
vout

C

Linearize
id

id

Figure 2.2 Common drain transistor stage with linearization.
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After a simple rewrite

vout
vin

¼ gm þ jωCð Þ ZL

1þ gm þ jωCð ÞZLð Þ : (2.2)

The input impedance is now calculated by getting the input current

iin ¼ vin � vout
1=jωC

¼ jωC vin
1

1þ gm þ jωCð ÞZLð Þ ,

and rearrange to find
Zin ¼ vin

iin
¼ 1

jωC
1þ gm þ jωCð ÞZLð Þ: (2.3)

Verify This is again a standard calculation in textbooks see for example [3].

Evaluate Let us look at the expression for gain, equation (2.2). When ω
2π � ft we see

vout ¼ gm ZL

1þ gmZLð Þ vin:

For large load impedances, gmZL � 1 vout ! vin. In the other extreme, ZL ! 0 we get
vout ! 0, the output is simply shorted to ground.

As in the common gate stage we see the input impedance sees a 90 degree rotation of
the impedance at the output, but this time it goes the other way: an inductor looks like a
resistor, a capacitor looks like a negative resistor and a resistor looks like a capacitor. In
fact for many input stages in narrow-band applications, like cellular phones, this
property is a really nice way to create a low-noise input termination with the use of
an inductor at the source of the input stage. The input stage will rotate this inductor to
look like a real impedance with little noise(!). The remaining capacitor is often
resonated out by a series inductor but that is a topic for another book.

CS Stage

The common source stage is perhaps a configuration that one often encounters early on
in one’s career. A common setup can be seen in Figure 2.3.

We will calculate gain and input impedance again.

ZL

ZL

gmvinvin vin

C

Cgd

Linearizeiout

iout

vout vout

Figure 2.3 Common source transistor stage with output load.
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Simplify The output is a voltage when loaded with an impedance and the input is a
voltage. We follow a similar linearization technique to that we had before, but this time
we will include the gate drain capacitance, Cgd. We then have to solve KCL at the drain
and source, we assume the gate driving impedance is zero.

Solve We have for the basic parameters

id ¼ gm vin � vsð Þ vs ¼ 0 is ¼ id þ jωC vin � vsð Þ,
iout ¼ id þ jωCgd vout � vinð Þ vout ¼ �ioutZL

We find

� vout
ZL

¼ gmvin þ jωCgd vout � vinð Þ ! Again ¼ vout
vin

¼ jωCgd � gm
1þ jωCgdZL

ZL:

The input impedance is

Zin ¼ vin
jωCgd vin � voutð Þ þ jωCvin

Upon substitution of vout from the expression of gain above we can rewrite

Zin ¼ 1

jωCgd 1� ZL jωCgd � gm
� �

= 1þ jωCgdZL

� �� �þ jωC

¼ 1þ jωCgdZL

� �
jωCgd 1þ gmZLð Þ þ jωC 1þ jωCgdZL

� �

Verify As before, this is a standard calculation in [2] but here we made even further
simplifications to get an estimate of the gain and impedance.

Evaluate We see for low frequencies the gain, Again ¼ �gmZL, but there is a cross-
over frequency where the gain transitions at ω ¼ gm=Cgd, in effect the major output
current is supplied by the gate drain capacitance Cgd instead of the transistor gain. In the
literature this is known as a right half plane zero. The input impedance is essentially a
two-pole system due to the two capacitors. We see for low frequencies the total
capacitance is the sum of C and Cgd 1þ gmZLð Þ, the gate drain capacitance has been
amplified a factor 1þ gmZLð Þ. This effect is known as the Miller effect, the gain across
a capacitor will amplify the capacitors value, increasing the effective load.

Nonlinear Extension

We can now employ the same technique to examine nonlinear extensions. In general
one needs to employ Volterra series for electronics systems instead of the more
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commonly known Taylor series. This is due to the fact the systems we are considering
have memory in that the output signal depends to some degree on what happened at
earlier times in perhaps other parts of the circuit. The simple stages we will look at
here have relatively high bandwidth in small geometry CMOS technologies,
ft > 100 GHz so we will assume a Taylor series expansion is appropriate. It often
turns out to be quite useful, but care must be taken and the important verification step
must be completed to make sure we do not fool ourselves and are better served with
Volterra series.

For Taylor series we can write the output as a polynomial expansion of the input:

Io ¼ I0o þ I1oVo þ I2oV
2
o þ I3oV

3
o . . .

Here

I1o ¼
dI

dV

I2o ¼
1
2
d2I

dV2

I3o ¼
1
6
d3I

dV3 :

The coefficients can be calculated in several different ways: (1) One can sweep the DC
bias point in a simulator and take the appropriate derivatives. (2) One can do a Fourier
transform of the output when the input is a single tone sinewave, the linear and higher-
order coefficients can be found from the harmonic powers. When relating the two
methods keep in mind the mixing effect of the Taylor series when using sinusoids,
V0 ¼ A sinωt:

Io ¼ I0o þ I1oVo þ I2oVo
2 ¼ I0o þ I1oA sinωt þ I2oA

2 sin 2ωt

¼ I0o þ I1oA sinωt þ I2oA
2 1þ cos 2ωt

2
¼ I0o þ I2oA

2 1
2
þ I1oA sinωt þ I2oA

2 cos 2ωt
2

:

For example, the second-order term splits into a DC component and a second harmonic
component. To find the size of the second harmonic term one needs to divide the
second-order derivative of the transfer function by a factor of four. A factor of two
comes from the Taylor expansion and another factor of two from the mixing action,
where half the amplitude goes to DC and rest into the second harmonic. This is similar
for higher orders but obviously more complex.

CD Stage
We will follow the CD stage discussion and make a first order correction to the gain
calculation.

We start with

vo ¼ gm vin � voutð ÞZL,

where we assume the frequencies of interest are far below ft, and we are using Figure 2.2
for reference. In this section we limit ourselves to gain calculations.
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Simplify We will first simplify the discussion by assuming the drain source conduct-
ance is negligible. We use the following expression for

gm ¼ gm, 0 þ g0m vin � voutð Þ:
Finally, the load ZL is for this discussion a real impedance.

Solve

vout¼ gm, 0 þ g0m vin � voutð Þ� �
vin � voutð ÞZL ¼ gm, 0 vin � voutð ÞZL þ g0m vin�voutð Þ2ZL

� �
:

We now write

vout ¼ αvin þ β v2in,

and put this into the expression

αvin þ β v2in ¼ gm, 0 vin � αvin � β v2in
� �

ZL þ g0m vin � αvin � β v2in
� �2

ZL

� �
� gm, 0 1� αð Þvin � β v2in

� �
ZL þ g0m 1� αð Þ2v2inZL

� �
:

Now we identify terms of the same order on each side of the equal sign. We find

α ¼ gm, 0ZL 1� αð Þ,
β ¼ �gm, 0ZLβ þ g0m 1� αð Þ2ZL:

We solve for

α ¼ gm, 0ZL

1þ gm, 0ZL
,

β ¼ g0mZL

1þ gm, 0ZL

� �3 :
And finally

vout ¼
gm, 0ZL

1þ gm, 0ZL
vin þ g0mZL

1þ gm, 0ZL

� �3 v2in:

Verify We verify this equation by simply simulating and varying the load, as in
Figure 2.4. The basic transistor we are using is biased according to Tables A.2 and
A.3 with a resistor at the load in addition to an ideal 1 mA bias current.

In effect the current/voltage bias of the transistor is unchanged as we vary the
resistive load with its voltage termination so as to not draw additional bias current.
We see from Figure 2.5 the agreement is reasonable for small values of the resistance ZL

but it gets increasingly worse for larger values. The reason for this is the nonlinear
impact of the output resistance, ro. In order to improve our predictive power we need to
extend the analysis to take this effect into account also as we will show shortly.
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Evaluate We see from the expression something that is somewhat intuitive. By
increasing the load impedance we can reduce the effect of the second-order term.

Nonlinear Impact of Output Conductance
The output conductance is modeled as a resistor between source and drain of a
transistor.

We will discuss how to calculate gain with this effect in mind.

SimplifyWe will extend the analysis to the case where the drain to source conductance
is no longer negligible. We have in Figure 2.6 a simplified model where the drain
voltage is an AC ground. The capacitance, C, is ignored

Solve Here we have the drain current dependent on two voltage differences,
vgs ¼ vg � vs

� �
, vds ¼ vd � vsð Þ. The Taylor expansion of the drain current needs

to take both of these voltages into account including all second-order derivatives.
We have

ZL

1mA −
+ vout

vin

vout

id

Figure 2.4 Simulation setup to verify gain versus load resistance with a fixed bias current.
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Figure 2.5 Comparison of estimation result to simulation.
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id ¼ ∂id
∂vgs

vgs þ ∂id
∂vds

vds þ 1
2
∂2id
∂v2gs

v2gs þ
1
2
∂2id
∂v2ds

v2ds þ 2
1
2

∂2id
∂vgs∂vds

vgsvds

¼ gmvgs þ govds þ
1
2
∂2id
∂v2gs

v2gs þ
1
2
∂2id
∂v2ds

v2ds þ 2
1
2

∂2id
∂vgs∂vds

vgsvds:

The derivatives need to be calculated at the bias point. We can ease the notation by
using the following shorthand:

g0m ¼ 1
2
∂2id
∂v2gs

,

g0o ¼
1
2
∂2id
∂v2ds

,

g0om ¼ 1
2

∂2id
∂vgs∂vds

:

These three quantities can be either estimated or found by sweeping the DC bias point
with a simulator. We have now

id ¼ gmvgs þ govds þ g0mv
2
gs þ g0ov

2
ds þ 2g0omvgsvds:

Using the expressions for vgs, vds defined above and id ¼ vs=Rl we find

vs
RL

¼ gm vg � vs
� �þ go vd � vsð Þ þ g0m vg � vs

� �2 þ g0o �vsð Þ2 þ 2g0om vg � vs
� � �vsð Þ:

(2.4)

We now write

vs ¼ αvg þ βv2g:

And keeping terms to second order:

αvg þ βv2g
RL

¼ gm vg � αvg � βv2g

� �
þ go �αvg � βv2g

� �
þ g0m vg � αvg

� �2
þ g0o �αvg

� �2 þ 2g0om vg � αvg � βv2g

� �
�αvg
� �

¼ gm vg � αvg � βv2g

� �
þ go �αvg � βv2g

� �
þ g0mv

2
g 1� αð Þ2 þ g0oα

2v2g � 2g0omv
2
g 1� αð Þα:

R R

gm govg vg

vs
vs

C

Linearize
id id

Figure 2.6 The output conductance model.
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We now identify the like terms

α ¼ gmRL 1� αð Þ � goRLα,
β ¼ �gmβRL � goβRL þ g0mRL 1� αð Þ2 þ g0oRLα

2 � 2g0omRL 1� αð Þα:
We find

α ¼ gmRL

1þ gmRL þ goRL
,

β ¼ g0mRL 1þ goRLð Þ2 þ g0og
2
mR

2
L � 2g0omRL 1þ goRLð ÞgmRL

1þ gmRL þ goRLð Þ3 :

Verify We simulate this situation and find the following comparison graph in
Figure 2.7.

We have a much-improved comparison and can feel confident we have the correct
model when including the nonlinearity of both the transconductance and output
conductance.

Evaluate It is fairly intuitive to realize the output resistance ro needs to be high to
minimize this effect. In a normally biased CMOS transistor gmro � 1, so the impact of
a varying output resistance is less significant.

These examples have shown a common situation: one tries to estimate an effect
which looks reasonable for certain parameter values but for others it falls short. The task
is then to extend the model to cover the greater range by finding out the missing piece.
In our case this was relatively simple but other situations can be much more complex.
However, the same idea applies: Simplify ! Solve ! Verify ! Evaluate.
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Figure 2.7 Comparison of estimation result vs simulation with the output conductance modeled.
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CS Stage
The nonlinear extension to the CS stage can be analyzed along the same lines as the
CD stage.

Simplify We make the same simplification as before with

gm ¼ gm, 0 þ g0mvin:

We also ignore all capacitors to make sure the Taylor expansion is valid.

Solve We write the drain current as

id ¼ gmvin þ g0mv
2
in:

The output voltage is

vout ¼ �idRL ¼ �gmvinRL � g0mv
2
inRL:

Thanks to this simple model we now see that we have the nonlinear expression we were
looking for.

Verify This calculation is a trivial extension of the simulation that gives us the
expansion parameters in the first place.

Evaluate A low value of g0m will result in a lower distortion. A more complex case is
given by the case where there is a source resistance and we leave that exercise to the
reader together with the output conductance variations with voltage swing.

Design Examples

We will use our knowledge of the transfer function and impedances of these amplifier
stages to build and investigate some real-world examples.

Example 2.1 Estimate input impedance of a CD stage at 25 GHz

In this example we analyze the input impedance of a CD stage with a specific bias
and a specific load. The load is another stage which looks capacitive and the
interconnect has a, comparatively high, resistance. In effect the load looks like a
resistor in series with a capacitor to ground according to Table 2.1. We will use this
circuit in Chapter 7.

Solution
We assume the impedance of the current sink bias is large compared to the load
impedance in Table 2.1 and we know from equation (2.3), assuming we are far below ft,
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Zin ¼ 1
jωC

1þ gmZLð Þ¼ 1
jωC

1þgm RL þ 1
jωCL

� �� �
¼ � 1

ω2CCL
gm� j

1
ωC

1þgmRLð Þ

¼ � 1
ωCL

ft
f
� j

1
ωC

� j
ft
f
RL:

where we have used the definition of ft.
The operating frequency is about ten times less than ft (see Appendix A), and we find

then

Zin ¼ � 1
ωCL

10� j
1
ωC

� j10RL ¼ �3180� j678,

where we have used C ¼ 2�2=3�8 fF � 11 fF, which corresponds to a negative resistor
with resistance of 3180 ohm and a capacitance of 9 fF at 25 GHz.

Example 2.2 CD stage with resistor capacitor ladder load
In this example we will calculate the transistor size needed to meet a certain output
bandwidth. We assume the CD stage gate driving impedance is 0 ohms. The load is here
a string of small resistors and at each resistor interconnect there is a capacitor to ground.
For details see Table 2.2.

Solution
The load is a series of resistors where at each node connecting the resistors there is a
capacitor to ground. The output impedance of the transistor itself is 1=gm. This impedance
will for low frequencies drive the whole capacitive load. At higher frequencies the
resistors in the series will eventually dominate the impedance and the gain response will
be flat at the transistor source node. We have

1
gm

C ¼ 1
2πf

<
1

2πf3 dB
! gm > 2πf3 dB C:

Plugging in the numbers we see

gm > 2π �64�8 �10�15 �25�109 ¼ 0:08 mho:

We choose our unit transistor, Appendix A, Table A.3, with ten instances in parallel,
this results in a current of 10 mA bias. What remains is to estimate the total impedance

Table 2.1 Specification table for CD stage

Specification Value comment

Type Thin oxide NMOS
Size (W/L/nf ) 1 μm/27 nm/10 Biased in saturation according to Table A.3
Number of instantiations 2
Load 10� j= ω 20 fFð Þ Ohm
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needed to reach the specified gain. We know the gain from equation (2.2) and with the
specification in linear units we find

gm ZL

1þ gmZLð Þ > Gainspec:

Where we have assumed ω � ωt. Plugging in the numbers we find

0:1 ZL

1þ 0:1ZLð Þ > 0:99 ! 1� 0:99ð Þ0:1 ZL > 0:99 ! ZL > 990 ohm:

We will require the sink impedance to be larger than 1000 ohms to be on the safe side.
The distortion will be small due to this large impedance of the current sink and from the
second harmonic terms calculated in the section “Nonlinear Extension: CS Stage” we
see the second harmonic term should be

H2 � g0mRL goRLð Þ2 þ g0og
2
mR

2
L � 2g

00
RLgoRLgmRL

gmRLð Þ3 V2
ine 1

gmRL
V2
in ¼ 10�3

– in other words, less than 50 dBc, which easily meets our specifications.

Summary

We have looked at the common single transistor gain stages from an estimation analysis
angle. We found by stripping away minor contributors to gain and impedance we end up
with a simple model of the performance that can be used as a starting point for simulator
fine-tuning. We also took a brief look at nonlinear extensions to the basic gain-transfer
function and we found we can model the effect within a few fractions of a dB over a
wide range of load resistance. The methodology can be summarized as one of simplify,
solve, verify, evaluate and we showed a handful of examples where this procedure was
followed. We also found a case where we needed to refine the model to capture a larger
parameter range. The purpose was to show the reader the procedure in a familiar
territory and we will venture out into less common areas in the following chapters.
The biggest difference compared to earlier introductory classes is likely the much

Table 2.2 Specification table for CD stage with ladder load

Specification Value Comment

BW 3 dB >25 GHz @ transistor source
Load impedance R/C ladder with R = 625 mohm C = 12 fF,

64 units
Gain >�0.1 dB
2nd harmonic
distortion

<�40 dBc 200 mV input
amplitude
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simpler expressions. We have simply ignored parameters that have less influence on the
properties we are studying.

2.3 Two Transistor Stages

We have looked at the classic single transistor gain stages. We will now expand to look
at two transistor configurations. We start with the often used differential pair. We then
investigate the classic current mirror and add a cascode to its output. As in the first
section we will find here that these solutions are well known and we include them in the
context of estimation analysis to increase the readers comfort level by showing how the
process works in a familiar context.

The Differential Pair

The differential pair is a true work horse in the electronics industry: see Figure 2.8.
There is hardly any integrated circuit that is manufactured that does not contain at least
one such gain stage.

Simplify We will simplify the analysis by assuming all signals are antisymmetric
around the center point. This point will become what is known as a virtual ground. Its
voltage is constant and is in the AC sense a ground: see Figure 2.9. With this
simplification we have

Solve We immediately recognize this as a CS stage we just investigated in the previous
section. The only difference is that the input voltage is half of the input voltage to the
full two transistor circuit. The output differential trans conductance is now trivially:

iout ¼ vin
2
gm � � vin

2
gm

� �
¼ vin gm:

which is again identical to our CS-stage analysis, ignoring the input capacitance and
source impedance.

I

vp vn

ipin

Figure 2.8 Differential pair without degeneration.
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Verify A classic calculation that can be found in for example [2].

Evaluate We have seen that by utilizing symmetry one can greatly simplify the circuit
analysis.

Nonlinear Extension
For a differential pair there is an interesting subtlety concerning the third harmonic.
Consider this model of a differential pair where each leg has a drain current

id ¼ gm vg � vs
� �þ g0m vg � vs

� �2
: (2.5)

If we approximate the current sink at the source node with an ideal current sink and
ignore any degeneration resistor, the sum of the signal currents in both legs needs to be
zero.

ipd þ ind ¼ gm vpg � vs
� �

þ g0m vpg � vs
� �2

þ gm vng � vs
� �

þ g0m vng � vs
� �2

¼ using vng ¼ �vpg ¼ �vg
n o

gm vg � vs
� �þ g0m vg � vs

� �2 þ gm �vg � vs
� �þ g0m �vg � vs

� �2
� �2gmvs þ 2g0mv

2
g ¼ 0:

Where we have assumed v2s � v2g. We then have

vs ¼ g0m
gm

v2g:

For vg � sinωt, we find the source voltage contains the second harmonic of the input
signal, vg: This is also easy to convince oneself of with the intuitive idea the source
voltage ‘sees’ a pull-up/down from each leg and it occurs at twice the frequency. We
have established the common source point sees a second harmonic. This is a well-
known result for differential pair operations. Let us know look specifically at the
second-order term in the expression for id equation (2.5), while assuming vg ¼ A sinωt

vin/2

Virtual ground

iout/2

Figure 2.9 Symmetrized differential pair.
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g0m vg � vs
� �2 � g0m v2g � 2vgvs

� �
¼ g0m v2g � 2

g0m
gm

v2g

� �
:

The last term contains the third harmonic! It is being mixed up by the second-order
expansion coefficient. This third harmonic can be significantly larger than the one
resulting directly from the third order expansion coefficient. It is an interesting artifact
of the differential pair operation. Be aware the inherent limitation in this analysis in that
we assume there are no circuit elements with memory, like caps and inductors present
so a Taylor expansion applies.

Current Mirror

Imagine now another extraordinarily common topology, the current mirror in
Figure 2.10.

The gain is straight forward and we leave it to the reader to analyze. We will look at
the noise transfer of this circuitry. We assume the reader is familiar with the concept of
noise and has studied various modeling methods in other courses. For details on our
noise modeling see Appendix A.

Simplify We simplify the circuitry by ignoring any capacitance and assuming there are
two noise sources from drain to source for each transistor, as in Figure 2.11.

Solve The noise transfer for transistor M1 is now simply

iin iout

Figure 2.10 Current mirror.

gmvin gmvin

vin

iin iout

Figure 2.11 Linearized current mirror.
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in,out, 1 ¼ in, 1
gm, 1

gm, 2:

From the other transistor we now find trivially

in,out, 2 ¼ in, 2:

The two noise sources are uncorrelated so their power will add. We find

i2n,out ¼ i2n,out, 1 þ i2n,out, 2:

Using the common assumption that in ¼ 4kTγgm we have

i2n,out ¼ 4kTγ gm, 1 þ gm, 2
� �

:

Later we will look at the output impedance for this configuration and how it can be
improved. We will therefore quickly realize the output impedance is

Zo ¼ ro: (2.6)

Verify This calculation can be found in [1–3].

Evaluate The key lesson here we will use in later calculations is that the noise powers
add if they are uncorrelated. Since a common assumption for transistor noise is that its
power is�gm we have the resulting noise is proportional to the sum of the transistors gm
for a simple current mirror configuration.

Simple Cascode Transistor

The output impedance we just studied is often inadequate. A common remedy is to add
another CG stage at the output of the current mirror transistor.

Let us look at Figure 2.12 and investigate the output impedance

Simplify We do the same simplifications as earlier and linearize around the bias point:
Figure 2.13.

vin

vcasc

vo, io

Figure 2.12 Simple cascode transistor stage.
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We also assume the transistors are such the output resistance ro is the same for both
transistors.

Solve We know that without the cascode transistor the output impedance is given by
(2.6) where ro is the output resistance of a single transistor. With the cascode we find by
injecting a current at the output terminal and setting up KCL

vo � vs
ro

þ gm �vsð Þ ¼ io,

vs ¼ ioro:

Combining we find

vo � ioro
ro

þ gm �ioroð Þ ¼ io,

io 2þ gmroð Þ ¼ vo
ro

Finally

Zo ¼ 2þ gmroð Þro: (2.7)

Verify This calculation can be found in for example [2].

Evaluate The output impedance has been amplified by 2þ gmroð Þ. In the next chapter
we will see another way of boosting the output impedance even further. We will see an
example later on in this chapter where the cascode is made up of a thin oxide transistor
which can be made much smaller in area than the bottom transistor for a given current,
resulting in a reduced capacitive load. This type of cascoding is a very common
arrangement to improve isolation and impedance.

gm(vcasc − vs)

gmvin

ro

rovin

vcasc

vo, io

vs

Figure 2.13 Linearized cascode transistor stage.
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CMOS Inverter

The CMOS inverter is another classic, see Figure 2.14.
This circuit is usually studied with propagation delay in mind [4, 5]. We will study its

input impedance over frequency and its gain around the trip point in this section. In the
next section we will see how a cross-coupled inverter operates around the trip point.

Simplify We simplify by looking at the gain around the trip point where the output is
equal to the input and we will use the following simplified model shown in Figure 2.15.

The bias of the transistors is such that each is in saturation and the channel charge
does not contribute to the gate-drain capacitance. However, we include such a capacitor
here since the fringing capacitance can be a significant portion of the overall capacitance
for small geometry CMOS technologies. We can now calculate gain and input
impedance:

Solve Let us first look at the DC gain, by ignoring all capacitors. We find

il ¼ �gpm � gnm
� �

vin:

And

voutvin

Figure 2.14 A CMOS inverter stage.

−gm,pvin

gm,nvin

rp
o//rn

o

vout

vin
il

Figure 2.15 A simplified CMOS inverter around the trip point.
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vout ¼ il r
p
o==r

p
o

� � ¼ �gpm � gnm
� �

vin rpo==r
p
o

� � ¼ �gmrovin: (2.8)

Where we have assumed gm is the average trans conductance of the NMOS and PMOS
transistors and ro ¼ 2 rpo==r

p
o

� �
, see [5].

The input impedance at DC is practically infinite (not counting the small leakage
current due to tunneling). For the input impedance at some higher frequency we can
ignore the shunting capacitor to ground in the first analysis and add it in later. We find
now we can use the simple model in Figure 2.16 where we use the average trans-
conductance of the two transistors to calculate the gain and impedance. The capacitance
for the inverter amplifier is a complicated structure involving even nonlinear entities.
Here we will simplify this by assuming the capacitors are constants.

For gain we have from the figure

vo ¼ �ioro, (2.9)

i1 þ io ¼ i2, (2.10)

i1 ¼ Cl
d vi � voð Þ

dt
, (2.11)

i2 ¼ vigm, (2.12)

i3 ¼ Cs
dvi
dt

: (2.13)

We here use (2.10)–(2.12) to get

i1 þ io ¼ Cl
d vi � voð Þ

dt
� vo

ro
¼ vigm,

and after rearranging:

� dvo
dt

Cl � vo
ro

¼ vigm � dvi
dt

Cl: (2.14)

ro

Cl

Cs

vo

vi gm

i2 io

i1

i3

Figure 2.16 Simple model of an inverter where the average transconductance is used.

24 Basic Amplifier Stages

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.003
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:03:19, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.003
https://www.cambridge.org/core


We have this in the time domain at this point since we will use that description later. In
frequency space we have

�jωClvo � vo
ro

¼ vigm � jωviCl,

giving

vo
vi

¼ �gm þ jωCl

jωCl þ 1=ro
: (2.15)

The input impedance can be calculated from

i1 ¼ jω 1��gm þ jωCl

jωCl þ 1=ro

� �
viCl ¼ jω

gm þ 1=ro
jωCl þ 1=ro

� �
viCl,

i3 ¼ jωCsvi

We find

vi
i1 þ i3

¼ jωClro þ 1ð Þ
jωCl gmro þ 1ð Þ þ jωCs jωClro þ 1ð Þ : (2.16)

Verify This trip point transfer function, (2.15), can be found in for example [5], the rest
of the calculations and the derivation of the differential equation can verified either with
a simulator or symbolic manipulation software. The dominant time constant is given by
ro�Cl, in line with for example [4]. We also find from (2.15) at low frequencies we
recover (2.8). For low frequencies the input impedance (2.16) goes to infinity as we
expect, for high frequencies the impedance goes to zero, the shunt capacitance Cs

simply shorts out the amplifier. All this is in line with what one should expect from
the model.

Evaluate The bandwidth of the inverter is in this approximation simply the RC time
constant of the output load resistance and the cross-capacitance in this model. The input
impedance approaches zero for high frequencies.

Cross-Coupled CMOS Inverter

We have taken a quick look at the basic CMOS inverter stage. We will now use what we
learned to study a somewhat more complicated system; the cross-coupled inverter. We
include here both the input/output shunting capacitor and the input capacitor to ground.

Simplify We have the following simple description shown in Figure 2.17:
This simplification starts to break down when the inverters become unbalanced but as

an initial study of such circuits behavior it will prove quite insightful and we will use it
in Chapter 3.
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Solve We will first setup the basic loop equations with the labels in the figure.

i1 þ i8 ¼ i6 þ i7 þ i5, (2.17)

i5 þ i2 ¼ i4 þ i3 þ i1, (2.18)

i1 ¼ d va � vbð Þ
dt

Cl ¼ �i5, (2.19)

i2 ¼ vagm, (2.20)

i8 ¼ vbgm, (2.21)

va ¼ �i7ro, (2.22)

vb ¼ �i4ro: (2.23)

i3 ¼ � dvb
dt

Cs (2.24)

i6 ¼ � dva
dt

Cs (2.25)

We have 10 unknowns and 10 equations so we should be able to make some progress
here. First we see there is an antisymmetry in the problem in that

ro Cs

Cl

roCs

Cl

vb

va

gm

gm

i4 i3i1

i2

i8

i5i7i6

a b

Figure 2.17 Cross-coupled inverter and its simplified model with an input/output shunting
capacitor and a capacitor to ground.
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va ¼ �vb, i4 ¼ �i7, i3 ¼ �i6, i2 ¼ �i8

We find now

i1 � i2 ¼ �i3 � i4 � i1, (2.26)

va ¼ i4ro, (2.27)

i1 ¼ 2
dva
dt

Cl, (2.28)

i2 ¼ vagm, (2.29)

i3 ¼ dva
dt

Cs (2.30)

we see by combining (2.26)–(2.30)

2i1 ¼ 4
dva
dt

Cl ¼ i2 � i3 � i4 ¼ vagm � dva
dt

Cs � va
ro

A simple rewrite now shows

dva
dt

4Cl þ Csð Þ ¼ va gm � 1
ro

� �
,

which has the solution

va ¼ Ket=τ , (2.31)

where

τ ¼ 4 Cl þ Cs

gm � 1=ro
: (2.32)

Notice the factor of 4. It results from the simple loop and is akin to the Miller effect. The
shunt capacitance, Cl corresponds to the gate drain capacitance, Cgd and Cs is the gate
souce capacitance Cgs. In saturation we know from elementary text books
Cgs � 2=3 Cox. If we look at the fringe gate-drain capacitance in the appendix we see
it is about 1/2 of the gate-source capacitance. The total capacitance in the numerator of
equation (2.32) is then

4 Cl þ Cs ¼ 4
1
3
Cox þ 2

3
Cox ¼ 2Cox (2.33)

Finally the timescale for our process and using the transistor in Appendix A is

τ ¼ 2Cox

gm � 1=ro
: (2.34)

Verify This can be easily verified in a simulator.
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Evaluate For small geometry CMOS the fringe capacitance gate-drain cannot be
ignored. In fact its effect is also amplified by a Miller like phenomenon in cross-
coupled pairs. Of interest here is the fact the timescale is not set by ro�C like we had
earlier, the gain of one of the stages rogm speeds up the loop and we are left with a much
shorter timescale.

Design Examples

Example 2.3 Current mirror with cascode and large output impedance

In design Example 2.2 we defined the needed output impedance of the current sink for
the follower (CD) stage we designed. Let us here design a current sink that can sink the
needed current and at the same time provide the required output impedance: for
specification see Table 2.3.

Solution
We know from this technology that a minimum size device has gmro � 10, see
Appendix A. With a simple cascode the mirror transistor can then have an output
impedance that is 10 times larger than the mirror output impedance by itself. We see
from the appendix that a thick oxide transistor with l = 200 nm might suffice: it has an
output resistance of about 2.5 kohm. It needs at least 300 mV to be in saturation, Figure
A.4. The cascode transistor is then left with 200 mV drain source voltage and from
Figure A.2 it seems this is adequate if the gate-source voltage is ~470 mV. The total
sink current is 10 mA and this means we can bias a transistor at Vg � 770 mV and
m ¼ 20 instances to get the required current draw for an output resistance of 125 ohm.
We find as a starting point the parameters in Table 2.4:
The simulator output is shown in Table 2.5. The output resistance is 1.1 kohm at

500 mV which is slightly above our specification. The cascode transistor does not have
a gmro that is quite 10, hence the difference from our estimate.

Table 2.3 Specification table for current mirror with cascode

Specification Value Comment

Voltage compliance >500 mV
Output resistance >1000 ohm
DC current 10 mA

Table 2.4 Starting point sizes for current sink

Device Size Comment

M1, thin oxide W/L = 200 μm/30 n
M2, thick oxide W/L = 200 μm/200 n
Output resistance 1.25 kohm Vout ¼ 500 mV
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With this current sink design we have together with Example 2.2, a full CD stage we
can use in Chapter 7.

2.4 Summary

We have looked at the common transistor gain stages from an estimation analysis angle.
We found by stripping away minor contributors to gain and impedance we end up with
a simple model of the performance that can be used as a starting point for simulator fine
tuning. We also took a brief look at nonlinear extensions to the basic gain-transfer
function and we found we can model the effect within a few fractions of a dB over a
wide range of load resistance for a particular configuration. The idea can be summarized
as one of simplify, solve, verify, evaluate and we showed a handful of examples where
this procedure was followed. The purpose was to show the reader the procedure in a
familiar territory and we will venture out into less common areas in the following
chapters.

2.5 Exercises

1. Investigate common mode properties, gain and output impedance, of the differen-
tial pair. Verify!

2. Calculate third-order correction to the CD stage. Verify with the following

vo ¼ �gmRl

1þ gmR
vin þ �g0mRl

1þ gmRð Þ3 v
2
in þ

2g0
2

mRlR� g
00
mRl 1þ gmRð Þ

1þ gmRð Þ5 v3in:

3. Calculate the gain and input impedance of the CS stage where the transistor has a
source degeneration impedance. Verify!

4. a. Derive the second-order correction to the CS stage with a degeneration
resistor at the source. Hint, compare with CD stage.

b. Include the nonlinearity of ro.
5. In the cross-coupled inverter model calculate the differential admittance by

injecting a current between the nodes a, b in Figure 2.17 and calculate the

Table 2.5 Final sizing table after simulation optimization

Device Size Comment

M1, thin oxide W/L = 200 μm/30 n
M2, thick oxide W/L = 200 μm/200 n
Output resistance 1.1 kohm Vout ¼ 500 mV
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resulting voltage across the pair. This expression will be useful in the later
chapters. Result i

v ¼ �gm þ 1
ro
þ jω Csh þ 4Ccrð Þ

h i
:
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3 Higher Level Amplifier Stages

Learning Objectives

� Applying estimation analysis to more complex amplifiers
○ Gain calculations – cascaded amplifier stages
○ Noise transfer
○ Circuit description in the time domain – comparator

3.1 Introduction

We will discuss somewhat more complex amplifier configurations in this chapter.
Following the treatment in Chapter 2 we will here analyze the amplifiers following
the estimation analysis method. The calculations will be very similar to the standard
literature in, for example, [1–3] and they serve more to showcase the methodology in a
familiar setting than to demonstrate any new insights.

We start with the well-known five transistor amplifier, a classic interview question, and
continue with cascode stage amplification using feedback. This is followed by a com-
parator discussion where we put the emphasis on simple timescales and noise analysis.
After that, we investigate cascaded stages and the implication in terms of gain, noise, and
linearity. Finally we show a couple of design examples that will be used in later chapters
where several full-blown design examples will be built and the building blocks we have
developed with simple models will be of help in designing the final circuits.

3.2 Five Transistor Amplifier

The classic five transistor amplifier is shown in Figure 3.1. It is used all over the circuit
world in all manners of applications. We will here focus on noise transfer but we start
with a quick description of its operation.

Simplify First we will simplify by assuming the various transistors have the same
combination of gm, ro. Then we assume the current bias tail transistor has zero output

31

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.004
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:03:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.004
https://www.cambridge.org/core


conductance. The amplifier output resistance is modelled as a resistor ro ¼ ro,p==ro,n
between the output node and supply.

Solve The basic operation of the amplifier is as follows: The transconductance gain of
the differential pair is causing a current to go into the load. The load is a simple current
mirror and the current from transistor M1 is appearing at the output out-of-phase with
the corresponding current generated by transistor M2. The output voltage swing is
finally given by the output current times the load, ro. We find using vin ¼ vp � vn

vout ¼ vin
2
gm2ro ¼ vin gm ro

and the gain
A ¼ vout

vin
¼ gm ro:

Verify This is a classic calculation that can be found in [3] for example. Let us now
look at noise transfer. This is a common interview question.

Simplify
� The noise from all the transistors is uncorrelated so the noise powers will add
� The noise voltage is small so a linearized version of the circuit suffices to capture

the noise transfer function.
� The NMOS transistors have the same transconductance, gm,n and PMOS has gm,p

SolveWe will solve this by calculating the noise transfer from each of the noise sources
and add their power at the output.

Calculating KCL at both the source and the drain shows half the noise current goes
through the opposite transistors source node into the PMOS mirror, the other half goes
through the same transistor and closes on itself, see the zoomed-in portion of Figure 3.1.
The loop formed by the noise current that goes through the opposite transistor causes

vp vn

bias

vout

M1 M2

vdd

in

i1 i2

i2

i1

Figure 3.1 Five transistor operational amplifier.
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the current to be mirrored by the PMOS load and the two half currents add up at the
output node. We find

ioutn, 1 ¼
in, 1
2

gm,p
gm,p

þ in, 1
2

¼ in, 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTγgm,n

q
,

ioutn, 2 ¼
in, 2
2

gm,p
gm,p

þ in, 2
2

¼ in, 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTγgm,n

q
¼ in, 1:

The PMOS current mirroring is much simpler, we have from the section “Current

Mirror” in Chapter 2 ioutp

� �2
¼ 2�4kTγgm,p.

Finally, the current bias transistors current splits into two where one half goes
through the PMOS mirrors the other directly to the output load resistor. Keeping track
of the sign of the current we find

ioutn,bias ¼
in,bias
2

� in,bias
2

¼ 0:

The total output noise voltage now becomes

v2n,o ¼ 2�4kTγgm,n þ 2�4kTγgm,p
� �

r2o ¼ 8kTγ gm,n þ gm,p
� �

r2o:

And input-referred,

v2n, i ¼
v2n,o

g2m,nr
2
o

¼ 8kTγ
gm,n

1þ gm,p
gm,n

� �

where we have assumed the correction factor γ, is the same for both NMOS/PMOS.

Verify See for instance [3, 4] where this problem is discussed in some detail.

Evaluate The final expression here looks deceptively simple. The key realization here
is the noise currents for the differential pair transistors actually splits evenly and gets
transferred to the output through two different paths.

3.3 Cascode Stage Amplification Using Active Feedback

In Chapter 2 we saw how a cascode transistor improved the output impedance of a
current mirror. We can go one step further and we will now show an even higher
impedance can be achieved with active feedback. Let us look at Figure 3.2. The
amplifier senses the cascode source voltage and amplifies it to drive the gate of the
cascode transistor. We will next analyze this within the estimation analysis framework
we have been using.

Simplify Let us simplify by assuming the gain has infinite bandwidth. We leave to the
reader to solve the finite bandwidth case.
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Solve Similarly to the previous example we have

vo � vs
ro

þ gm vg � vs
� � ¼ vo � vs

ro
þ gm �Avs � vsð Þ ¼ vo � vs

ro
� gmvs Aþ 1ð Þ ¼ io:

The only difference to before is the gain Aþ 1 in front of the transconductance. The
result is

Zo ¼ 2þ Aþ 1ð Þgmroð Þro:

Verify This calculation can be found in [2] for example, where the active cascode case
is investigated in detail.

Evaluate As with the previous example we see a great additional impedance boost can
be achieved with a cascode transistor, this time using an additional amplifier in a loop
configuration.

3.4 Comparator Circuit

A comparator circuit is shown in Figure 3.3. This so-called strong-arm comparator is a
work horse in modern integrated circuit data converters. It has gained this popularity
due to its low-power, a few mW is not unusual, high gain and speed. We will analyze
the circuit in a few steps where we will employ the estimation analysis to each. It is
expected that with such a popular circuit topology there is plenty of analysis in the
literature, see [5, 6], to just mention a few and we will intentionally be somewhat brief
in our discussion here.

Comparator Analysis

The analysis can be naturally simplified by dividing it into three phases the circuit goes
through as a function of time:

vin

vcasc

vout

vs

-A

Figure 3.2 Cascode stage with an amplifier in feedback.

34 Higher Level Amplifier Stages

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.004
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:03:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.004
https://www.cambridge.org/core


� Reset phase. Here transistors M7 �M10, turns on pulling the nodes, op, on, A, B
to vdd. Also the switch, M0, at the tail turns off the differential pair so the rest of
the nodes can be pulled high to vdd.

� Initialization phase. The reset voltage goes high enabling the differential pair to
be active and releasing the rest of nodes op, on, A and B. The nodes A, B start to
get pulled down by the differential pair until first the NMOS transistors, M3, M4

turns on and then the output nodes op, on, start to get pulled down until the PMOS
transistors M5, M6 gate voltage goes below its threshold. The nodes A, B con-
tinues down to ground, in effect shorting out the input pair.

� Regeneration phase. Here the input pair is disconnected from the circuit oper-
ations and the output stage cross-coupled inverters start to decide if the input is
high or low.

We will mostly ignore the reset phase here. This is more due to space limitation than to
any prejudice against it. We will discuss the last two stages briefly following the steps in
the estimation analysis.

Initialization Phase
In the initialization phase the nodes start from their reset voltages, vdd and moves
depending on the input voltages more or less quickly to the point where the top PMOS
transistors turn on. Here we will first show a possible way to simplify this stage and
capture some of its characteristics. We then solve this simplified model and compare to
simulations.

Simplify Let us simplify the operation of this stage by looking at Figure 3.4. We have
removed the tail switch and just look at one side of the circuit. We will estimate the
timescales to discharge the capacitances at A, o.

vp vn

on op

clk

clk clk

A B

M0

M1 M2

M3 M4

M5 M6M7 M8

M9 M10

clk clk

vdd vdd

vdd

Figure 3.3 Strong-arm comparator circuit.
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Solve The timescale needed to discharge a capacitance can be found from the
governing differential equation, and we will show a simple example here. From basic
text books we know that for a capacitor with capacitance C its charge

Q ¼ CU,

where U is the voltage across the capacitor. Taking the derivative with respect to time
gives

dQ

dt
¼ I tð Þ ¼ C

dU

dt
tð Þ:

where I tð Þ is the current through the capacitor. We can then estimate the timescale, τ, by
approximating dU=dt � ΔU=τ and find

τ ¼ C
ΔU
I

:

For our circuit we see that node A gets discharged due to the current going through
transistorM1. Its capacitance, CA is set by the combined junction capacitance ofM1 and
M3. When the voltage at A reaches vdd � Vt, transistor M3 turns on. We find

τi, 1 ¼ VtCA

Ib
(3.1)

where Vt is the threshold voltage of transistor M3. The current now continues to
discharge node A until it reaches ground and will also discharge the output node, O,
until node O goes down enough so that the PMOS transistor turns on. Assuming node A
is at ground this results in a timescale for the output node to be discharged of

τi, 2 ¼ VtCo

Ib
(3.2)

where we assume the threshold voltages for transistors M3 and M5 are the same. In this
chapter we will only look at various limits and we will assume the relevant timescale for
the initialization phase is either (3.1) or (3.2) depending on the situation. See
Figure 3.5a and b for a simulation of the initialization phase, where the input nodes
are at the same voltage.

vin

vdd

o

A

Figure 3.4 Initialization phase of the strong-arm comparator.
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Regeneration Phase
At this stage the transistors start to look like cross-coupled inverters and we will use the
results from the discussion in the section “Cross-Coupled CMOS Inverter” in Chapter 2.
We know from this section that the time evolution of the system varies like

vo � et=τr

where
τr ¼ Co

gm,n þ gm,p
� �

=2
: (3.3)

The operation can be easily verified as in Figure 3.5c, where the regeneration cycle can
be clearly seen.

Verify This case is studied in more detail in [5].
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Figure 3.5 Simulation of comparator decision sequence where in (a) and (b) various node voltage
are displayed. Figure (c) shows the logarithm of the output differential voltage to indicate the
regeneration time scale.
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Evaluate We see from the estimates of timescales that we need to have a large input
stage to generate sufficient current and a low capacitive load in order to reduce the time
needed to make a decision. With a capacitive load, Cload , at the output and the regener-
ation timescale τr from (3.3) shows it is directly dependent on the output capacitance.
We need to make sure we have enough transconductance, gm in the cross-coupled pair
to drive it. With this output load we get using Co ¼ Cload þ Cself , where the Cself can be
found from equation (2.33).

τr ¼ 2Co

gm,n þ gm,p
� � ¼ 2Cload þ 2Cself

gm,n þ gm,p
� � :

The self-capacitance Cself ¼ 2Cox � WL, where we have used the channel width, W ,
and length, L of the cross-coupled transistors. Cload � W �Lð Þjload is the load capacitance
scaling with its transistor size. We know from elementary textbooks on transistor
operation that gm � W=L. We then see

τr � WLð Þjload þWL

W=L
¼ L

W
WLð Þjload þ L2:

Without the output load we should use minimum length devices for optimal regener-
ation speed. To minimize the overall timescale the capacitance needs to be minimized
leading to minimum width W of the cross-coupled device. With a specific load we see
that a minimum channel length, L, is beneficial. The width W should be as large
possible to overcome the load capacitance, but will be limited by the capacitance it
offers the input stage.

Metastability
The positive feedback nature of the output results in an exponential increase in the
output voltage with time

vo ¼ vstarte
t�t0ð Þ
τr ¼ vstarte

td
τr

where we have defined the decision time td ¼ t � t0. Imagine now that vstart ¼ 0. This
would result in vo ¼ 0 indefinitely. It is called a metastable condition, we will investi-
gate the impact of this phenomenon next with estimation analysis.

Simplify We will ignore any noise, thermal or other. We will assume there is a certain
voltage vx that if the crosscoupled pair output exceeds this voltage the following
circuitry can operate properly. We will also annotate that given a certain decision time
td and regeneration time τr, the input voltage needed to reach vx in time td is vc. We have

vx ¼ vce
td
τr :

We will denote by vFS the full-scale voltage at the input (see Figure 3.6) and finally vLSB is
the least-significant-bit voltage. If the input is within the gray region the output is uncertain.

We will now solve for the bit error rate.
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Solve Imagine we adjust td or τr in such a way as to reduce vc by a factor of two. The
chance of making wrong decision is now also reduced a factor of two, in that they gray
region in Figure 3.6 is half in size. We can then motivate the following formula for the
error probability:

P Eð Þ � vc
vFS

¼ Km
vc
vFS

:

We need to define the constant Km and we observe that if vc ¼ 0:5 LSB we will make a
wrong decision half the time, or in other words an error rate of �100. The constant Km

needs to be vFS= 0:5vLSBð Þ. After some rewrite we have for

P Eð Þ ¼ vc
0:5vLSB

¼ vx
vFS=2Nþ1 e

�td
τr , (3.4)

where N is the number of bits in the system.

Verify This calculation can be found in most standard ADC texts like [8, 9].

Evaluate We can conclude the longer we allow the comparator to operate the smaller
the bit error rate will be. This is hardly surprising but the exponential nature of the
process is an important feature. The pay-off is much higher if one can adjust the
exponent than the factor in front.

Input Pair Size
The input pair should be as large as possible while meeting the maximum load
requirement at the input. At some point the input pairs own capacitance will dominate
its load and further increase in size gives no benefit.

−1 0 1 2 3 4 5 6 7 8 9 10 11 t

V

vc

vFS

Figure 3.6 Input signal with uncertain decision region indicated in gray.

393.4 Comparator Circuit

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.004
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:03:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.004
https://www.cambridge.org/core


Reset Switch Size
Finally we need to set the reset switches. Fortunately, their operation is relatively
straightforward. When the switch is ON it discharges the capacitor in question and
the timescale is simply set by the slew rate

τreset ¼ vdd

Iswitch
Cl � Lswitch vdd

Wswitch
Cl

where Cl is an appropriate load. As with the cross-coupled inverter this transistor also
needs to have as short a channel length as possible and as long width as possible. The
width will be limited by the load it represents to both the output of the decision circuit
and the input transconductor of the comparator.

No Output Load
Perhaps a more interesting discussion is the question of how fast one can make this
topology for a given technology. Let us look at the various timescales again, but this
time we assume there is no load at the output. The input stage still needs to be as large as
possible and we will assume its load is dominated by its own capacitance. We have then

τi ¼ CA
Vt

Ib

τr ¼ 2Cself

gm,n þ gm,p
� � :

For the basic transistor model and parameter relationships, please see Appendix A. We
use

Ib ¼ K
W

L
VG � Vtð Þ2

where VG,Vt are assumed given. Also

Cself ¼ 2Cox ¼ 2K1W �L,
We use for the capacitance at node A the junction capacitance at its drain

CA ¼ K2W

gm,n � gm,p ¼ 2K
W

L

vdd

2
� Vt

� �
:

The timescales can now be estimated as

τi ¼ VtK2W

K
W

L
VG � Vtð Þ2

¼ VtK2L

K VG � Vtð Þ2

τr ¼ 2K1WcL2

2KWc
vdd

2
� Vt

� � ¼ K1L2

K
vdd

2
� Vt

� � :

Plugging in the process number for this particular technology from Appendix A, we see
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K ¼ 0:7�10�4 A

V2

	 

K1 ¼ 30�10�3 F

m2

	 

K2 ¼ 2�10�10 F

m

	 

Vt ¼ 350 m V½ � VG ¼ 500 m V½ �
L ¼ 30 nm½ �:

We find
τi ¼ 1:5�104 0:4�2�10�10�3�10�8

10�2

� �
¼ 3:6 ps

τr ¼ 1:5�104 30�10�3�9�10�16

0:1

� �
¼ 4 ps:

Comparing to the simulator we are in the same ball park τi � 3 ps, and τr ¼ 3:6 ps,
which is close to our estimate.

This does not take reset time into account which is roughly

Lswitch vdd

KWswitch Vg � Vt

� �2 Cl � Lswitch vdd

KWswitch Vg � Vt

� �2 K2W ¼ 104�1:5 3�10�8

3�10�6�0:25 2�10�10�10�10�6

¼ 104�1:5�10�24�10�16�20 � 1:2 ps½ �:
To these estimates we need to add finite clock rise/fall times.

To see where we are qualitywise we can estimate the bit error rate. Let us assume that all
timescales are zero except the regeneration timescale τr. Let us also assume the sampling
rate is 25GSps or sampling period is 40 ps. Assuming further we have a 6-bit systemwith a
full scale voltage vFS ¼ 800 mV and a decision voltage vx ¼ 200 mV, we find from (3.4)

P Eð Þ ¼ 0:2
0:8=128

e�40=4 � 10�3:

In reality we need to allow some time for the rest of the steps. A typical error rate in
communcation systems might be 10�6 so we are hard pressed to achieve 25 GSps for these
transistors in this technology with a reasonable bit error rate. We can improve the situation
by allowing for longer sampling period, using a lowerVt device or some other such scheme.
For instance with a 12.5 GSps sampling frequency we find a minimum bit error rate of

P Eð Þ ¼ 0:2
0:8=128

e�80=4 � 10�7:

This looks like a better option but recall this would mean we need a duty cycle that is far
from 50 percent and the rest of the timescales need to be small.

Comparator Noise Analysis

Wewill now analyze the noise transfer of the strong-arm comparator following the steps we
just used to estimate the fundamental timescales. We will focus specifically on noise
transfer and ultimately signal to noise ratio (SNR). We will assume the input signal is
sampled already and is constant during the comparator operation.Wewill also only look for
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scaling relationships and see how transistor parameters contribute to the noise. This leads to
considerably simpler expressions compared with more detailed analysis as found in [5].

Initialization Phase
The noise signal is now assumed to be approximated by the simple noise source across
the source-drain of the input-stage transistors.

Simplify In this stage the clock switch at the bottom of the transconductor is on which
activates the input stage. We will assume here that the capacitance of A is small
compared with the full output load, CA � Co, and then the output transistor, M3 looks
like a CG stage. This is the opposite limit we looked at before when we were interested
in maximum speed possible; here we look at the situation where we have an appreciable
load at the output. For cases where the input stage is limited in size by the required
speed and one uses a typical output load this is a reasonable assumption. We will also
assume the input is itself a constant during this phase. Furthermore, we will assume the
noise average over the timescales involved is

inh i2 ¼ f BW , i 4kTgmγ

where we estimate the bandwidth, f BW , i, to scale as 1 over a relevant timescale, here

f BW , i �
1
τi
� Ib

VtCo
:

Solve We will look at this problem in the time domain. The output voltage is simply

Co
dvno tð Þ
dt

¼ �in tð Þ:

We only know time average noise power
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
i2n tð Þdt=T

q
¼ inh i. Therefore the solution to

the differential equation can be estimated to be on average

vno τið Þ� �� inh i
Co

τi

vno τið Þ� �2� inh i2
C2
o

τ2i ¼
4kTgm, 1γ

C2
o

τi:

For the signal itself we find similarly, using i tð Þ ¼ gmvin

vo τið Þ2 ¼ g2mv
2
in

C2
o

τ2i :

The second transistor does not contribute to noise in this stage with these simplifications.

Regeneration Phase
For the regeneration phase we will again look at Figure 2.17.

Simplify We now simplify by assuming the drain of the input pair has reached ground
so we simply have two cross-coupled inverters. The input transistors are thus

42 Higher Level Amplifier Stages

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.004
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:03:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.004
https://www.cambridge.org/core


disconnected from the output and do not contribute to the noise and not directly to the
output during this phase.

Solve Due to the positive feedback nature of the cross-coupled pair we find again using
simple scaling arguments that

vn,o tð Þh i2� inh i2
C2
o

τ2r exp 2
t � τi
τr

� �
¼ f BW , r

4kTγ gm,p þ gm,n
� �

C2
o

τ2r exp 2
t � τi
τr

� �

f BW , r �
1
τr

¼ gm,n þ gm,p
� �

Co
:

We get

vn,o tð Þh i2� 4kTγ gm,p þ gm,n
� �

C2
o

τr exp 2
t � τi
τr

� �
¼ 1

Co
4kTγ exp 2

t � τi
τr

� �

where we have used the timescale from equation (3.2) as the starting point for the
exponential growth. The output noise voltage is highly time dependent, and the seed
noise at the start of the regeneration phase will grow more than the noise voltage
injected at later times.

Final Result
Putting all these together we find the output noise is

vfinaln,o tð Þ� �� �2� 1
Co

4kTγ exp 2
t � τi
τr

� �
þ 4kTgm, 1γ

C2
o

τi exp 2
t � τi
τr

� �
:

The signal at the output is similarly

vfinalo 2 ¼ g2m, 1v
2
in

C2
o

τ2i exp 2
t � τi
τr

� �
,

from which we see the gain

G2 ¼ g2m, 1
C2
o

τ2i exp 2
t � τi
τr

� �
:

The input-referred noise is now

v2n, i ¼
vfinaln,o tð Þ

G

 !2

� Ib
VtCo

� �2 CO4kTγ

g2m, 1
þ Ib
VtCo

4kTγ
gm, 1

: (3.5)

Verify The calculation here is a simplified version of a much more general discussion
in, for example, [5], though we get similar information with significantly less effort.
However, the full solution in [5] is certainly also valuable.

Evaluate This means that if we can maximize gm, 1=Ib both terms will be small. Bear in
mind the initial assumption that the input transistor is limited in size due to bandwidth
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limitations, which will limit what we can do. A more detailed analysis for the general
case where the capacitance at the output of the transconductor is significant leads to
similar conclusions.

3.5 Cascaded Amplifier Stages

This section concerns cascaded amplifier stages. In almost any modern electronic
system there is more than one amplifier, and combining several together for an
aggregate gain and linearity is a key skill. Here too a simplified estimation model can
be constructed, as discussed in many books. We include such a model here more for the
sake of completeness than in the hope of adding to the reader’s knowledge.

Imagine the situation as in Figure 3.7. We have two amplifier stages where the noise
and gain and linearity for both stages are marked in the figure. We will calculate the
input-referred noise and linearity.

Simplify We simplify the picture by assuming the noise is not input-dependent and the
gain has no phase shift. All entities are in power, as V2=R.

Solve Let us first calculate the overall signal gain at the output. This is straightforward.

G ¼ G1�G2:

The noise at the output is now

nout ¼ n1Gþ n2G2:

The input-referred noise is simply this quantity divided by the gain

nin ¼ nout
G

¼ n1Gþ n2G2

G
¼ n1 þ n2

G1
:

The total input-referred noise due to n2 is reduced compared to n1 by the gain of the first
stage. Thus a high gain at the input will reduce the impact of noise at the subsequent
stages. This is a useful property.

The linearity behaved differently, as we can see from Figure 3.7. At the output

Po ¼ PinG1 þ a3P
3
in

� �
G2 þ b3 PinG1ð Þ3,

where we have only kept terms up to third order. Divide by G to get the input-referred
power finds

vin outA B

Figure 3.7 Two cascaded amplifiers.
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Po ¼ PinG1 þ a3P
3
in

� �G2

G
þ b3 PinG1ð Þ3 1

G
:

We now see the non-linearity caused by the second stage is amplified by a factor
G3

1=G ¼ G2
1=G2. In this case having a large gain upfront is detrimental to performance.

Verify These calculations and similar discussions can be found in [10], for example.

Evaluate The important thing to remember here is that for noise optimization it is conveni-
ent to have a large gain up front while for linearity optimization the gain should be small in
the first stage. This inherent juxtaposition significantly complicates receiver design.

Design Examples

Example 3.1 Comparator Design

We will here discuss a comparator design based on the specifications detailed in
Table 3.1. We will use this design in Chapter 7 when we design a full ADC.

Solution
With the timescaling rules discussed in the section “Comparator Analysis” it is fairly
straightforward to size up the circuit. With different specifications one might use a
different approach. Here we will

1. Size the input stage to be as large as maximum load specification allows. We
know from the scaling rules we need the input stage to be as large as possible.

2. Size the cross-coupled pair to be large enough to meet the regeneration timescale
specified.

3. Size the reset switches to be large enough to reset the nodes in roughly the
initialization timescale.

The input stage should be three-unit transistors from Appendix A to meet the input load
requirement. This will provide about 18 fF input capacitance, which is close to what is
needed. From this size we know the output junction capacitance is about 6 fF. The
cross-coupled pair should then be sized so that they are as large as possible without
overly loading the input pair. The initialization timescale is perhaps five to six times
shorter than the regeneration timescale, so for sizing concerns the regeneration time-
scale should be the focus. A cross-coupled transistor pair with nf ¼ 10 will provide

Table 3.1 Specification table for comparator design

Specification Value Comment

Input capacitance <25 fF
Output load 5 fF Minimum size inverters
Regeneration timescale 5 ps From system
Sampling period 50 ps From system
Clock/reset rise time 10 ps Assume as given
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around 2 ∗ 2Cox capacitance as a load or around 32 fF with the transistor in Appendix
A. We should start with this size of transistor, which will be around 5	 the output load
of the input pair (6 fF). For estimated and optimized parameters see Table 3.2.

Our initial estimate of the size is quite close to what we found with the simulator.
The reset switches are finally sized so the output nodes are reset properly in roughly the
initialization timescale. We find the final sizing in Table 3.3:

Figure 3.8 shows a simulation of the final sizing of the comparator.

Table 3.2 Estimated and simulator optimized sizes for comparator decision circuits

Device Size Comment

M1, thin oxide W/L = 30 μm/27 n
M3, thin oxide W/L = 10 μm/27 n

Simulator optimization.

Device Size Comment

M1, thin oxide W/L = 30 μm/27 n
M3, thin oxide W/L = 16 μm/27 n

Table 3.3 Final size for comparator circuit including reset switches

Device Size Comment

M1, thin oxide W/L = 30 μm/27 n
M3, thin oxide W/L = 16 μm/27 n
Mreset, thin oxide W/L = 16 μm/27 n
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Figure 3.8 A simulation of a comparator with the sizing set by Table 3.3.
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Noise Estimation
The noise can be estimated from equation (3.5)

vcompn, rmse
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ib

VtCO

4kTγ
gm, 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�10�3

0:35�25�10�15

4�1:38�10�23�300�2
0:024

s
� 0:7 mV

Example 3.2 Amplifier with follower

This section discusses a common amplifier design with a low impedance output buffer.
It will be used in Chapter 7 as part of a larger ADC design. The specifications in
Table 3.4 is a result of a system evaluation of such an ADC.

Solution
Given the low output impedance and the low input capacitance it seems best to work
with the topology shown in Figure 3.9.

The sizing is relatively straightforward. We will use the transistor size from
Appendix A, which gives m ¼ 1. The load will be set by the gain to be around 300
ohm, with a gm ¼ 8 mmho for the transconductor that will provide a gain of about 2.5.

Table 3.4 Specification table for amplifier with buffer

Specification Value Comment

Input
capacitance

<10 fF Driven by 10 ohm resistor but with 64 amplifiers in series,
providing a time constant of 10 fF ∗ 10 ∗ 640 = 6 ps

Gain >2 From system
Output load 20 fF Differential input stage
Output
impedance

�100 ohms From system

Output
common mode

650 mV From system

R R

vp vn

bias biasbias

on

op

vdd

Figure 3.9 Amplifier with output buffer.
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The bias current will be set by 2 mA from the bias of the unit transistor and the output
follower will also be a unit size transistor since that has an output impedance of about 10
ohms. In summary the parameters will be as in Table 3.5.

For this case all the relevant properties have already been characterized and one
would expect the simulation to line up closely to the estimated numbers. One thing to
note is that the load resistance is about a third of the transistor output impedance. One
cannot make it much larger and expect the corresponding benefit of gain increase.

3.6 Summary

We have looked at more complex transistor gain stages from an estimation analysis
angle. We used the time description of the circuit equations when discussing compara-
tors and we used several single pole analyses to get a handle on the timescales and noise
transfer in a strong-arm type of comparator. We found that fairly simple arguments can
be used to come close to solutions that are based on more detailed models. It is another
example of the applicability of estimation analysis where we consider the core behavior
of the system and try to capture it with simple modeling. The steps simplify, solve,
verify and evaluate were used time and time again and we used the transistor size
parameters suggested by simple modeling as a starting point for the simulator fine-
tuning. Finally we looked at cascaded amplifier stages where well-known relationships
between noise and linearity were derived following the estimation analysis steps.

3.7 Exercises

1. Redo the noise analysis for the five transistor circuit where the bias transistor is
replaced by a bias resistor. Do not rush into the calculations. Instead, simplify and
estimate.

Table 3.5 Starting point which is also final sizes for amplifier

Device/Parameter Value Comment

M1, M2, M3, M4, channel width/
length/nf

1 µm/30 nm/10

Load resistor 300 ohm
Input current 500 µA Leaves a gain of 4 for main bias
M4 channel width/length/nf 2 μm/250 n/10 Thick oxide device
M5 channel width/length/nf 2 μm/250 n/40 Thick oxide device
M6 channel width/length/nf 2 μm/250 n/20 Thick oxide device
Supply voltage 1.4 V To get the output common mode

correct
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2. Redo the comparator noise analysis where the capacitance at the drain of the
input pair cannot be neglected. Simplify, Solve, Verify, Evaluate!

3. Improve the cascaded feedback amplifier model by assuming the amplifier has a
finite bandwidth. (Treat it as a single pole at ω3 dB.)
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4 Electromagnetism: Fundamentals

Learning Objectives

� Maxwell’s equations in source form
� Using estimation analysis in connection with Maxwell’s equations
� Duality of capacitance vs inductance
� One to three-dimensional solutions to Maxwell’s equations relevant to integrated

circuit designers
� Current distributions in various situations in order to estimate inductance

4.1 Introduction

This chapter discusses the basis of electromagnetism in terms of Maxwell’s equations.
This topic that has been studied extensively and there are many great books that discuss
its various aspects: see [1–14] for a small selection. Items [2, 5] focus on microwave
aspects of the theory. Items [4, 8, 12] are standard physics graduate student texts.
A more recent treatment is, for example [13, 14], which showcases engineering aspects
of electromagnetism. We will follow the presentation in [1, 2] fairly closely. The
intention in this chapter is to be self-consistent and in that spirit we will present common
solution techniques found in the literature. The estimation techniques we discuss in this
book will be heavily applied toward the end of the chapter where the concepts of
capacitance and inductance are introduced. It is assumed that the reader has encountered
electromagnetism before in elementary classes and we will not discuss the basic
discoveries and the history that led to the remarkable formulation of the fundamental
equations by Maxwell in a series of papers around 1865. The history of this develop-
ment is a fascinating read and a great example of how science evolves [3].

We will start with a brief discussion of Maxwell’s equations and show how to
reformulate them to be suitable in various situations encountered in integrated circuit
design. Common solution techniques and handling of boundary conditions are pre-
sented next. Thereafter we will discuss the important concept of energy and power
relating to the electromagnetic fields. These concepts will naturally lead to the
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definitions of capacitance and inductance both in general and for circuit theory. We will
show that the concepts are naturally very similar, or dual, and we attempt to dispel some
of the mystery that sometimes surrounds these phenomena. The chapter wraps up with a
handful of examples where the estimation analysis technique is applied to calculate
capacitance, inductance, skin effect, and other such effects. Most of these examples will
start directly from Maxwell’s equations.

4.2 Maxwell’s Equations

This section presents Maxwell’s equations and we will follow the general outline
presented in [1, 2]. Maxwell’s work was based on a large body of empirical and
theoretical knowledge developed by Gauss, Ampere, Faraday, and others.

It is assumed that the reader has some familiarity with Maxwell’s equations and the
history leading to their discovery. Here we will simply state them and highlight some of
the historical events that surrounds them. The equations will be presented in their
differential form. We believe most readers are familiar with the MKS or SI system of
units and we will use them throughout the book.

With this we have for the equations:

r�H ¼ ∂D
∂t

þ J: (4.1)

r�D ¼ ρ: (4.2)

r� E ¼ � ∂B
∂t

: (4.3)

r�B ¼ 0: (4.4)

We have the quantities defined as:
H is the magnetic field in amperes per meters [A/m]
D is the electric flux density, in coulombs per meter squared [coul/m2]
J is the electric current density in amperes per meter squared [A/m2]
ρ is the electric charge density in coulombs per meter cubed [coul/m3]
E is the electric field in volts per meter [V/m]
B is the magnetic flux density in webers per meter squared [Wb/m2]

The fields and their corresponding fluxes are related by the constitutional equations:

D ¼ ϵE: (4.5)

B ¼ μH (4.6)

where
ϵ is the permittivity in farad per meter [F/m]
μ is the permeability in henry per meter [H/m]

The factors ϵ, μ are matrices in general and dependent on position. Throughout the book
we will assume them to be scalar functions that are occasionally dependent on position.
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Vector Potential and Elementary Gauge Theory

Having established Maxwell’s equations we can now take note of some interesting
properties. For one, there are no magnetic charges, hence r�B ¼ 0. This means that
instead of using B we can define another entity A by using the fact that for functions that
are smooth, all derivatives exists and are continuous, we have the vector identity
r� r � Að Þ ¼ 0. This has important implications. If

B ¼ r� A (4.7)

then equation (4.4) is automatically fulfilled. Substituting this into (4.3) we get

r� E ¼ � ∂B
∂t

¼ � ∂ r� Að Þ
∂t

¼ �r� ∂A
∂t

We now use the vector identity: r�rφ � 0, where φ x; tð Þ is any smooth function of
coordinates x and time t, to integrate E and we find

E ¼ �rφ� ∂A
∂t

(4.8)

The vector field A is commonly referred to as the vector potential field and scalar φ is
known as the potential field, or voltage field. Together they are called gauge potentials
in physics literature.

The equation for the E-field should be familiar to most readers with the possible
exception of the last term. Equation (4.8) is simply the normal elementary textbook
definition of the electric field as a gradient of a voltage but with an additional time-
derivative (dynamic) term. It means we can have an electric field without a voltage drop
in a dynamic situation. With the potential fields we can write Maxwell’s equations to be
a set of equations for φ and A. Let us rewrite equation (4.1):

r�H ¼ r�r� A
μ

¼ ∂D
∂t

þ J ¼ ∂
∂t
ϵ �rφ� ∂A

∂t

� �
þ J

or

r�r� A
μ

¼ ∂
∂t
ϵ �rφ� ∂A

∂t

� �
þ J (4.9)

and from equations (4.2) and (4.5) we find

r�ϵ �rφ� ∂A
∂t

� �
¼ ρ: (4.10)

We now have another version of Maxwell’s equations through equations (4.7)–(4.10).
As the reader will have noticed, the potentials, A, φ are not uniquely defined. One can,
for instance, add a term �rf where f is some function to A and the B field is not
affected r�rf � 0ð Þ. This freedom in the choice of the potentials is known as gauge
invariance. Let us look at this in some more detail (compare with [15] for a similar
argument).
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Let γ x; tð Þ be an arbitrary scalar field. Then let us change the gauge potentials
according to the following transformation

φ ! φ� ∂
∂t
γ A ! Aþrγ: (4.11)

Now

B ! r� Aþrγð Þ ¼ r � A

and

E ! �r φ� ∂
∂t
γ

� �
� ∂
∂t

Aþrγð Þ ¼ �rφ� ∂A
∂t

:

Both fields are unchanged! The transformation in equation (4.11) is known as a gauge
transformation, and since the fields are unchanged under this transformation we speak
of gauge symmetry. We see that a physical system is described by a whole family of
gauge potentials that differ by a gauge transformation. By picking a particular set of
gauge potentials we are making a gauge choice. The above might seem a trivial matter
but it has profound importance in theoretical physics. The interested reader is highly
encouraged to refer to the literature on this matter.

We will now show that we can always find a solution that satisfies

r�Aþ μϵ
∂
∂t
φ ¼ 0 (4.12)

by making an appropriate gauge choice. Assume we have a particular solution A0,φ0.
We look for a particular gauge transformation that will satisfy (4.12). We have using
(4.11)

r� A0 þ rγð Þ þ μϵ
∂
∂t

φ0 � ∂
∂t
γ

� �
¼ r�A0 þ μϵ

∂
∂t
φ0 þ Δγ� ∂2

∂t2
γ ¼ 0

or

Δγ� ∂2

∂t2
γ ¼ � r�A0 þ μϵ

∂
∂t
φ0

� �
:

The right-hand side is the known solution which acts as a source term for a wave
equation which we can solve for γ. This way we can always find gauge potentials that
satisfy (4.12). We do not have to find γ explicitly, but we can use this calculation as a
motivation to use (4.12) as an additional requirement on A, φ. Equation (4.12) is known
as the Lorenz gauge. Another typical choice is the Coulomb gauge

r�A ¼ 0: (4.13)

The Lorenz gauge is typically used for situations where the wavelength is comparable to
the physical sizes. It is standard in microwave theory and antenna theory for obvious
reasons. For integrated circuits one can often get by with the Coulomb gauge which
corresponds to the Lorenz gauge in the long-wavelength approximation.
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Maxwell’s Equations in Terms of External Sources

In electrical engineering it is natural to think of currents and charges as being impressed
on an electric system through voltage or current sources. These impressed entities will
then give rise to electromagnetic fields. We will now write Maxwell’s equation in terms
of such impressed currents and charges.

The current can be divided into two parts. A conduction component,

Jc ¼ σE ohm's lawð Þ (4.14)

and an impressed current, Ji. The charge can be divided the same way. By taking the
divergence of equation (4.1) we recover the continuity equation:

∂ρ
∂t

¼ �r�J (4.15)

which relates the charge to the current. The addition of the time derivative of the D-field
to Ampere’s law r�H ¼ Jð Þ was Maxwell’s famous generalization that created a
self-consistent description of the field equations. For the current we have

J ¼ Jc þ Ji ¼ σEþ Ji
ρ ¼ ρc þ ρi

r� σEð Þ ¼ � ∂ρc
∂t

continuity equation for the conduction componentð Þ:

Putting this together we get

r�H ¼ ∂ϵE
∂t

þ J ¼ ∂ϵE
∂t

þ Jc þ Ji ¼ ∂ϵE
∂t

þ σEþ Ji

r�H � ∂ϵE
∂t

� σE ¼ Ji

(4.16)

r� ϵEð Þ ¼ ρ ¼ ρc þ ρi
r� ϵEð Þ � ρc ¼ ρi:

(4.17)

These equations show the fields as a result of external source currents and charges.

Full-Wave Approximation – Single Frequency Tone Formulation
In this book we will generally look at these equations not as a function of time but as a
function of frequency. We get there by simply assuming the time dependence scales as
ejωt where we follow the convention in most engineering books. By doing this we get

r�H ¼ jω ϵ Eþ σEþ Ji ¼ jω ϵ 1þ σ
jωϵ

� �
Eþ Ji: (4.18)

From the continuity equation for the conduction component we get

r� σEð Þ ¼ � ∂ρc
∂t

¼ �jωρc (4.19)

This together with the charge equation (4.17) gives

54 Electromagnetism: Fundamentals

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.005
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:05:26, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.005
https://www.cambridge.org/core


r� ϵEð Þ ¼ ρ ¼ ρc þ ρi ¼
r� σEð Þ
�jω

þ ρi ! r� ϵEð Þ þ r� σEð Þ
jω

¼ ρi (4.20)

We can now define an effective permittivity

ϵ0 ¼ ϵ 1þ σ
jωϵ

� �
(4.21)

and we have

r�H ¼ jω ϵ0 Eþ Ji (4.22)

r� ϵ0Eð Þ ¼ ρi: (4.23)

Using equations (4.6)–(4.8) we get

r�B ¼ r�r � A ¼ 0
r� E ¼ r� �rφ� jωAð Þ ¼ �jωr� A ¼ �jωB

r�H ¼ r� B
μ
¼ 1

μ
r�r� A ¼ 1

μ
r r�Að Þ � r2A
� � ¼ jωϵ 0 �rφ� jωAð Þ þ Ji:

We use the Lorenz gauge which in frequency domain looks like

r�Aþ jϵ0μω φ ¼ 0 (4.24)

and get

r r�Að Þ � r2A ¼ r �jϵ0μω φð Þ � r2A ¼ jωμ ϵ0 �rφ� jωAð Þ þ μJi

After rewriting we find

r2Aþ ω2 μ ϵ0A ¼ �μJi (4.25)

We also have from equation (4.23)

r� ϵ 0Eð Þ¼ϵ0r�E¼ϵ0r� �rφ�jωAð Þ¼�ϵ0Δφþ jωϵ0 jϵ0μω φ¼�ϵ0Δφ� ω2ϵ0ϵ0μφ¼ρi

After rewriting we find

Δφþ ω2ϵ0μφ ¼ � ρi
ϵ0

(4.26)

Equations (4.25) and (4.26) are Maxwell’s equation in yet another form. Knowing A,φ
will give us B and E through equations (4.7) and (4.8). We will use these in numerous
examples in this and the following chapters.

Long Wavelength Approximation
In the long wavelength approximation, λ � l, where λ ¼ 2πc=ω is the wavelength and l
is a length scale of the model, we find the second term on the left-hand side of (4.25),
(4.26) disappears and we are left with:
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r2A ¼ �μJi: (4.27)

We can also write this directly from the fields as

r�H ¼ μJi Ampere's lawð Þ, (4.28)

where (4.27) follows if we use gauge r�A ¼ 0 and

Δφ ¼ � ρi
ϵ0
:

This follows also from r� ϵ0Eð Þ ¼ ρi if we use gauge r�A ¼ 0ð Þ
(4.29)

For integrated circuits the long wavelength approximation is often appropriate since the
dimensions are much smaller than any wavelength.

Solutions to Maxwell’s Equations

Note the equations are of the same form where the only difference is the vector form for
the vector potential and scalar from for the voltage field equation. The general solutions
are known for certain sources. Here we will almost exclusively look at cases where the
sources are Dirac delta functions of one sort or other. The specific solution will depend
on the boundary conditions and most of the time will be spent establishing those.

For completeness, in this section we will discuss a common approach to solve wave
style equations such as Maxwell’s. The first subsection covers the general solutions and
we will discuss how to handle the all-important boundary conditions in the following
subsection. We follow the presentation given in [1].

General Solution
We will start discussing the general solution of the one-dimensional case and follow with
the two- and three-dimensional versions in the following subsections. There is a rich
literature describing these methods and also a list of references at the end of the chapter.

1D – Solution
Let us consider an equation similar to (4.26) in free space

d2φ xð Þ
dx2

þ k2φ xð Þ ¼ �δ x� x0ð Þ: (4.30)

This is known as Helmholz’s equation in one-dimensional free space subject to the
boundary condition at infinity, φ 	∞ð Þ ¼ 0. The response at x is due to the delta source
at x0. Let us consider the homogeneous equation

d2φ xð Þ
dx2

þ k2φ xð Þ ¼ 0

This is the same as (4.30) when x 6¼ x0. The solution to this equation that satisfies the
boundary conditions at infinity is
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φ xð Þ ¼ Aejkx x > x0
Be�jkx x < x0:

�

The unknown constants A, B can be determined by the boundary condition at
x ¼ x0 	 Δ where Δ denotes an infinitesimally small interval. Integrating (4.30) from
x ¼ x0 � Δ to x ¼ x0 þ Δ we find

dφ
dx

� �x¼x0þΔ

x¼x0�Δ

þ
ðx¼x0þΔ

x¼x0�Δ

k2φ xð Þdx ¼ �1:

Since φ xð Þ is continuous the last term on the left-hand side disappears when Δ ! 0.
We get

dφ
dx

� �x¼x0þΔ

x¼x0�Δ
¼ �1

φ xþ Δð Þ ¼ φ x� Δð Þ

8<
:

ik Aejkx þ Be�jkx
� � ¼ �1

Aejkx ¼ Be�jkx:

(

Solving for A and B gives

φ xð Þ ¼
j

2k
ejk x�x0ð Þ x > x0

j

2k
e�jk x�x0ð Þ x < x0

8>><
>>:

¼ i

2k
ejk x�x0j j: (4.31)

Long Wavelength Approximation
When kx0 
 1 (long wavelength approximation) we find

φlw xð Þ ¼
j

2k
1þ jk x� x0ð Þð Þ x > x0

j

2k
1� jk x� x0ð Þð Þ x < x0

8>><
>>:

¼ j

2k
1þ j k x� x0ð Þj jð Þ ¼ j

2k
� x� x0j j

2
:

Since in the long wavelength approximation Helmholz equation reduces to Poisson
equation where φlw is defined with an arbitrary constant factor, we can simply relabel
the constant term for φlw and end up with

φlw xð Þ ¼ � x� x0j j
2

þ C: (4.32)

Let us verify by examining the Poisson equation
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d2φlw xð Þ
dx2

¼ �δ x� x0ð Þ:

When x 6¼ x0 we see
∂2φlw xð Þ

∂x2
� 0. Let us integrate around the singularity as we did earlier

ðx0þΔ

x0�Δ

∂2φlw xð Þ
∂x2

dx ¼ �
ðx0þΔ

x0�Δ

δ x� x0ð Þdx

dφlw xð Þ
dx

� �x0þΔ

x0�Δ

¼ � 1
2
� 1
2
¼ �1 ¼ r:h:s:

Indeed, in one dimension and the long wavelength approximation (4.32) solves the
Poisson equation.

2D – Solution
In two dimensions equation (4.30) becomes

∂2φ x; yð Þ
∂x2

þ ∂2φ x; yð Þ
∂y2

þ k2 φ x; yð Þ ¼ �δ y� y0ð Þδ x� x0ð Þ (4.33)

We can now use the Fourier transform

φ x; yð Þ ¼
ð∞
�∞

~φejβ x�x0ð Þdβ:

This gives
∂2φ β; yð Þ

∂y2
� β2~φ β; yð Þ þ k2~φ β; yð Þ ¼ �δ y� y0ð Þ

The solution to this equation is the one-dimensional free-space Green’s function

~φ β; yð Þ ¼ j

2κ
ejκ y�y0j j

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � β2

p
. We find

φ x; yð Þ ¼
ð∞
�∞

j

2κ
ejκ y�y0j jejβ x�x0ð Þdβ ¼ j

4
H 1ð Þ

0 k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q� �

where the last equality relates the Hankel function of order 0, H 1ð Þ
0 to the integral. We

see the solution is simply a composition of a continuous spectrum of plane waves.

Long Wavelength Approximation
The two-dimensional solution in the long wavelength approximation can be found
using similar techniques as in the one-dimensional case we noted earlier. Here we
will show the solution for the special case of cylindrical symmetry which we will
take advantage of later in this chapter when we discuss inductance and current elements.

Helmholz equation in cylindrical symmetry becomes, with a delta function at x ¼ 0,

58 Electromagnetism: Fundamentals

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.005
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:05:26, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.005
https://www.cambridge.org/core


r�rφ ¼ Cδ xð Þ: (4.34)

Outside of x ¼ 0 we have

r�rφ ¼ 1
r

∂
∂r

r
∂φ r; θð Þ

∂r
þ 1
r2
∂2φ r; θð Þ

∂θ2
¼ 0:

To further simplify we will assume there is no θ-dependence and we find

1
r

d

dr
r
dφ rð Þ
dr

¼ d2φ rð Þ
dr2

þ 1
r

dφ rð Þ
dr

¼ 0:

This has the general solution
φ rð Þ ¼ D ln r þ B:

To find out the constants we need to integrate (4.34) around x ¼ 0. Let us choose a
sphere centered at x ¼ 0 with radius Δ as an integration volume. We find for the left-
hand side using the divergence theorem (see Appendix B)ð

r�rφdV ¼
ð
rφ� r

r
da ¼

ð
dφ
dr

rdθ ¼ dφ
dr

r2π ¼ 2πD:

The right-hand side of (4.35) becomes, as before, C. Putting all this together we have

2πD ¼ C ! D ¼ C

2π
:

We have for the long wavelength solution to the Helmholz equation in two dimensions:

φ rð Þ ¼ C

2π
ln r þ B: (4.35)

3D – Solution
We finally present the 3D solution. We will use it in Chapter 6. Equation (4.30)
becomes with a source at r ¼ r0

∂2φ x; y; zð Þ
∂x2

þ ∂2φ x; y; zð Þ
∂y2

þ ∂2φ x; y; zð Þ
∂z2

þ k2φ x; y; zð Þ ¼ �δ r� r0ð Þ:

Let us first do a change of variables ρ ¼ r� r0. We find we have created a spherically
symmetric model. By realizingð

δ r� r0ð ÞdV ¼
ð
δ ρð Þ4πρ2dρ,

we find

δ r� r0ð Þ ¼ δ ρð Þ
4πρ2

:

By substituting

φ ρð Þ ¼ u ρð Þ
ρ

,
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we find for the Helmholz equation

r2 þ k2
� �

u ρð Þ ¼ � δ ρð Þ
4πρ

:

The solution for u ρð Þ ¼ Aejkρ and we find

φ ρð Þ ¼ Aejkρ

ρ
:

The boundary condition at ρ ¼ 0 must be used to determine A. The Helmholz equation is

r2 þ k2
� �

φ ρð Þ ¼ � δ ρð Þ
4πρ2

:

After integrating over a small volume we find, as with the one-dimensional case,

φ 0þð Þ ¼ φ 0�ð Þ,ð
r2φ ρð ÞdV ¼ �1:

After applying the divergence theorem we get

ð
r2φ ρð ÞdV ¼

þ
rφ ρð Þ�ds ¼ A

jkejkρρ� ejkρ

ρ2
4πρ2

� �
ρ!0

¼ �4πA:

So

A ¼ 1
4π

:

The general solution is

φ x; y; zð Þ ¼ 1
4π r� r0j j e

jκ� r�r0ð Þ þ 1
4π r� r0j j e

�jκ� r�r0ð Þ, κ2 ¼ κ2x þ κ2y þ κ2z ¼ ω2ϵ0μ:

Similarly, for the vector potential we get

A rð Þ ¼ μ
4π

ð
Ji r0ð Þ
r� r0j j ejκ� r�r0ð Þ þ e�jκ� r�r0ð Þ


 �
dr0:

Long Wavelength Approximation
The solution to the long wavelength equations (4.27) and (4.29) in three dimensions are
well known. We see the equations are essentially identical and the general solution that
vanishes at infinity is

A rð Þ ¼ μ

4π

ð
Ji r0ð Þ
r� r0j j dr

0: (4.36)

The solution for φ is similarly
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φ rð Þ ¼ 1
4πϵ0

ð
ρi r

0ð Þ
r� r0j j dr

0: (4.37)

For a point charge at the origin, ρi r
0ð Þ ¼ qδ r0ð Þ we find

φ rð Þ ¼ q

4πϵ0r
:

which is the familiar electrostatic potential from a point charge.

Boundary Conditions
Identifying the relevant equations and how to solve them is a helpful exercise. It is often
the easiest part of any investigation. The real problem comes when taking into account
what happens at the boundaries, either in time and/or in space. To the novice, the
opposite often appears true. To help us there are many great examples in the literature
on how to handle the boundaries, and here we will go through the basic methods and
leave it to the reader to explore more if needed.

Fundamentally, what one does is to put a “pill box” at the boundary that extends a
little into each material with a large surface area. In Figure 4.1 it extends ε=2 into each
region. The volume is thus infinitesimal, while the area is macroscopic. They key thing
to note here is that the equations are still valid in this volume and to find out what the
boundary conditions are one simply integrates the equations over the small volume. For
some entities, portions of the equation will be proportional to the volume and thus small
while other entities will be proportional to the area and thus large. We will go through
Maxwell’s equations with this method to show explicitly how the conditions work out.

Let us look at Ampere’s law (4.28)

r�H ¼ J:

At the boundary between two media we put a small pill box of height ε which is much
smaller than any other dimension in the problem. We integrate Ampere’s law over this
volume ð

r�H dV ¼
ð
J dV :

We can here use Stoke’s theorem for the left-hand side and denoting by Area ¼ Arean
where Area is the area and n is the outward normal to the area segmentð
r�H dV¼

þ
H � Area dArea¼Area Ht,þ �Ht,�ð ÞþεHn ! Area Ht,þ �Ht,�ð Þ, ε ! 0:

Volume Current
For the right-hand side without delta functions, which we call volume current, we getð

J dV � ε ! 0 when ε ! 0:

Putting it all together we get at the boundary
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ð
r�H dV ¼ Area Ht,þ � Ht,�ð Þ ¼

ð
J dV ¼ 0:

or

Ht,þ ¼ Ht,�: (4.38)

Surface Current
We also see when we have a delta function on the right-hand side, a surface current,ð

J dV ¼
ð
Jsδ yð ÞdV ¼ JsArea when ε ! 0:

Putting this together with the left-hand side we get

Area Ht,þ � Ht,�ð Þ ¼ JsArea

or

Ht,þ � Ht,�ð Þ ¼ Js (4.39)

Similarly, we can use the charge equation (4.23)

r� ϵ0Eð Þ ¼ ρi:

We integrate over volume ð
r� ϵ0Eð ÞdV ¼

ð
ρi dV

For the left-hand side we use Gauss’ lawð
r� ϵ0Eð ÞdV ¼

þ
ϵ0E�n dArea ¼ Area ϵ0þEnþ � ϵ0�En�

� �
þ ε . . . ! Area ϵ0þ Enþ � ϵ0� En�

� �
, ε ! 0

Projection

ε

Figure 4.1 Boundary conditions pill box.
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Volume Charge
For the case of volume charge, the right-hand side is now treated the same way as for
the volume current earlier so we end up with

ϵ0þ Enþ ¼ ϵ0� En� (4.40)

Finally, for the case of surface charges we have

Surface Charge

ϵ0þEnþ � ϵ0�En� ¼ ρs
Area

(4.41)

This way of treating the boundary is standard and can be found in many textbooks.

Field Energy Definitions

Let us look at the concept of energy in these fields. It is outside the scope of this book to
fully derive this here but we will make some plausible arguments as to their validity: see
[4] for details. Let us start with a static electric field where there are no currents.

Electric Field Energy
We assume for simplicity there is one conductor at a constant voltage φ. If we have an
infinitesimal charge δρ moving from infinity to the conductor we will need to apply an
energy

δW ¼ φ δρ

Physicists like to call this entity “work,” but we will stick to using a less stringent definition
of energy. We know from the boundary conditions, the charge on the conductor is

ρ ¼ �
þ
Dn dS ¼ �

þ
D�dS

Here dS is a surface element and dS is surface element in the direction normal to the
conductor surface. Since the potential is constant on the surface of the conductor we have

δW ¼ φ δρ ¼ �
ð
φ δD�dS ¼ �

ð
r� φ δDð ÞdV

where in the last step we used Gauss’ law and the integral extends over all volume.
Outside the conductor Maxwell’s equation states r�δD ¼ 0. By expanding the inte-
grand in the equation we see

r� φ δDð Þ ¼ φr� δDð Þ þ δD�rφ ¼ �δD�E
We find

δW ¼
ð
δD�E dV
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We can now substitute D ¼ ϵE and by looking at the integrand above

δD�E ¼ δϵE�E ¼ ϵ δE�E ¼ ϵ
1
2
δ E�Eð Þ ¼ ϵ

1
2
δE2

We have for the change in energy in the electric field

δW ¼ δ
ð
ϵ
1
2
E2 dV

We can so make plausible the definition of energy contained in an electric field to be

WE ¼ 1
2

ð
ϵ E�E dV

Magnetic Field Energy
For a static magnetic field the situation is analogous. Here the work, or more roughly
energy, done on currents is done by an electric field. A magnetic field by itself does no
work on charges or current since it turns out that the magnetic force acting on a charge is
perpendicular to its velocity. Instead we have to look for a situation where the magnetic
field is varying with time, a quasi-static situation, and thus giving rise to an electric field
through equation (4.3). We have in a time δt the energy spent by the external supplies

δW ¼ �δt
ð
J�E dV ¼ �δt

ð
r�H�E dV ¼ δt

ð
r� E�Hð ÞdV � δt

ð
H� r � Eð ÞdV

The first term can be transformed into a surface integral at infinity which we assume is
zero, all fields vanish there. The second term we transform

δW ¼ �δt
ð
H� r � Eð ÞdV ¼

ð
H�δB dV

As we did for the electric field, we again integrate the integrand

H�δB ¼ μ
1
2
δH2

We get

δW ¼ δ
ð
μ
1
2
H2dV

We can now analogously to the electric field energy make plausible the definition of
energy in a magnetic field

WM ¼ 1
2

ð
μ H�H dV

We now have

WE ¼ 1
2

ð
ϵ E�E dV , WM ¼ 1

2

ð
μ H�H dV : (4.42)
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The integral extends over the total volume. This is the time-dependent definition of the
energies. In microwave theory the time average definition is more useful and we can
simply get there by taking the time average assuming a sinusoidal wave. We get another
factor of ½ for a total of ¼ times the volume integrals.

Capacitance: Definition
Let us assume we have a simple configuration of two conductors with a voltage φ
between them. We now define capacitance, C, as

1
2
C φ2 ¼ WE ¼ 1

2

ð
ϵ E�E dV (4.43)

In the general case we have

1
2

X
a

X
b

Cabφ
2
ab ¼

1
2

ð
ϵ E�E dV ¼ � 1

2

ð
ϵ E�rφ dV ¼� 1

2

ð
r� ϵEφð ÞdV

þ 1
2

ð
φr� ϵEð ÞdV ¼ 1

2

ð
φρ dV ¼ 1

2

X
a

X
b

φabρa

where in the last steps we used a common vector identity trick,
r� φbð Þ ¼ b�rφþ φr�b. It has the convenient property that we only need to integrate
over materials containing charges which greatly simplifies many calculations. By
identifying terms we see capacitance is simply a linear relationship between charge
and voltage. We will study this in more detail in the next section.

Key Concept

We need to know or estimate the voltages associated with various conductors and
how the charge is distributed in order to estimate the capacitance.

Inductance: Definition
Analogously, for a simple situation with a wire carrying a current I, the inductance L
can be defined as

1
2
L J2 ¼ 1

2

ð
μ H�H dV (4.44)

For multiple currents Ja we instead have the general formula

1
2

X
a

X
b

LabJaJb ¼ 1
2

ð
μ H�H dV ¼ 1

2

ð
r� Að Þ�H dV

¼ � 1
2

ð
r� H � Að ÞdV þ 1

2

ð
A� r �Hð ÞdV ¼ 1

2

ð
A�J dV

In previous steps we used a common trick to get rid of the large volume integrations by
utilizing the vector identity: r� a� bð Þ ¼ b�r � a� a�r � b, and the divergence
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theorem coupled with the assumption the fields vanish at infinity. This shows we only
need to integrate over materials where there is a current running. As we will see, this
will greatly simplify some calculations.

If we calculate the contribution to A from each current separately we can write

A xð Þ ¼
X
a

Aa xð Þ J xð Þ ¼
X
b

Jb xð Þ

And we find

1
2

X
a

X
b

LabJaJb ¼ 1
2

X
a

X
b

ð
Aa�Jb dV (4.45)

where if a 6¼ b we calculate the mutual inductance between elements a, b and if a ¼ b
we speak of self-inductance of element a. We will use these facts later in this section.

Lself ,a JaJa ¼
ð
Aa�Ja dV Lmutual,ab JaJb ¼

ð
Aa�Jb dV (4.46)

Please note that when the vector potential from a certain conductor, say a, is perpen-
dicular to the current in another conductor b the contribution from that term in (4.45) is
zero. This is also an important simplification in many cases.ð

Aa�Jb dV � 0 when Aa⊥Jb

What the reader should take home from these calculations is the physical analogy between
capacitance and inductance. One is based on voltage and charge the other on currents and
vector potential. If you understand one of them you are likely to understand the other.

Key Concept

We know from elementary classes that currents will follow the least impedance path. In
this context this simple rule means that the current will flow in way that minimizes
inductance if there are no other effects like resistance/capacitance to consider.

We need to know or estimate how the currents are flowing in order to
estimate the inductance.

The way to estimate inductance now becomes a way to estimate how the currents
are flowing in the model. We will look at a number of situations where we will most of
the time start directly from Maxwell’s equations and from there learn how the current
distributes itself.

4.3 Capacitance

We have now finished with basic definitions of Maxwell’s equations and their solution
and defined the concepts of capacitance and inductance. In the rest of the chapter we

66 Electromagnetism: Fundamentals

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.005
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:05:26, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.005
https://www.cambridge.org/core


will apply the estimation analysis technique to explore these concepts more practically.
We will find a way to simplify a given situation and we will solve and verify the
solution. This will be followed by an evaluation phase. First we tackle something most
likely very familiar to most engineers: capacitance.

Introduction

Most working engineers have a good feel what capacitance is and we will discuss it
in ways that are very familiar with most readers and also use approaches that might
not be as familiar but will prove to be good starting points and learning experiences.
First we describe the circuit element: the capacitor. We then discuss a simple two
plate system with a voltage between them which is an expansion of the discussion
in section “Field Energy Definitions.” Thereafter we will solve the same problem
using Maxwell’s equations directly where we also use the boundary conditions
developed in section “Solutions to Maxwell’s Equations.” We will finally show
how the same approach can be used when investigating an example with two
different dielectrics.

Capacitors as a Circuit Element

So far we have discussed capacitance as it relates to physics: it is an effect that draws
charge to a conductive surface when a voltage is applied to some other conductor. But
what about capacitance as a circuit element? To investigate this we will use a simple
conservation of power (or energy) argument. Imagine we have a resistor in parallel with
a capacitor we know the power spent in the resistor is

PR ¼ φ2

R

where φ is the voltage across the resistor and capacitor. The power in the capacitor is
simply the time derivative of its energy

PC ¼ d

dt

1
2
C φ tð Þ2 ¼ Cφ

dφ
dt

The voltage source that drives this combination is having a power φ tð Þ∗I tð Þ pulled from
it at a given time. This power has to equal the power spent in the resistor and capacitor:

φ tð ÞI tð Þ ¼ φ2

R
þ Cφ

dφ
dt

or

I tð Þ ¼ φ tð Þ
R

þ C
dφ tð Þ
dt

This is the familiar circuit relationship. It becomes clearer if one assumes a time
dependence ejωt.
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I ¼ φ
R
þ jωC φ

where the impedance due to capacitance is

Zc ¼ φ
I
¼ 1

jωC

We have shown the circuit formula for using capacitors follows simply from a conser-
vation of energy argument.

Simple Two-Plate System Calculation

Let us use as a starting point equation (4.43). To get a feel for what these relationships
mean in a real situation let us consider two metal plates of area A, a distance, d, from
each other with a voltage φ between them. The electric field is E ¼ φ=d. We then have

1
2
C φ2 ¼ WE ¼ 1

2

ð
ϵ

φ
d


 �2
dV � 1

2
ϵ

φ
d


 �2
Ad ¼ 1

2
ϵ
φ2

d
A

or

C ¼ ϵ
d
A: (4.47)

This is the normal calculation of capacitance known from elementary classes.

First Principle Calculation of Capacitance of Two-Plate System
Let us know look at the same situation from first principles, in this case Maxwell’s
equations. We will follow the estimation analysis method. It will seem a little excessive
at first, in particular when comparing with the previous calculation, but we will show we
can easily extend what we learn here to other situations with little extra effort.

Simplify The first thing to do is simplification. Let us imagine the two plates are
infinitely extended in all directions in the plane. That will simplify the problem to one
dimension. Next the top plate has a voltage, V while the bottom plate is grounded.
Lastly we assume the long wavelength approximation so we need to solve equation
(4.26). We find as in Figure 4.2.

In free space assuming no x-dependency we have then

Δφ ¼ �C δ y� y0ð Þ
ϵ0

Subject to the boundary conditions

φ y0ð Þ ¼ V φ 0ð Þ ¼ 0

Solve This equation is independent of z and is a one-dimensional Helmholz equation in the
long wavelength approximation which makes it Poisson’s equation and it has solution:
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φ yð Þ ¼ �A y� y0ð Þ þ B, for y0 � y

Let us plug in the boundary conditions

B ¼ V
Ay0 þ B ¼ 0

�

A ¼ � V

y0

We get for

φ yð Þ ¼ �A y� y0ð Þ þ B

The electric field is E ¼ �rφ. At the lower perfect electrical conductor (PEC) bound-
ary the electric field will change abruptly from the gradient of the potential to zero. This
will result in surface charge and it follows from the boundary condition on εr�E ¼ ρ
which gives ϵEþ ¼ ρ. In effect what is happening is the voltage on the top is inducing a
charge in the bottom plate. At long wavelength this is simply known as a capacitor
effect. We will go through the simple derivation now.

We have

Ej j ¼ �rφj j ¼ A ¼ � V

y0
:

Since we now know the electric field we can simply plug it into the formula for
capacitance (4.43) and recover equation (4.47). Going further we can use our more
sophisticated model to recover another formula involving capacitance. Let us put a pill
box around the boundary and integrating we find:

ε
ð
r�E dV ¼ ε Ejy¼0þ � Ejy¼0�


 �
Area ¼ ε Ejy¼0þArea

¼ �ε
V

y0
Area ¼

ð
ρ dV ¼

ð
ρ0δ y ¼ 0ð ÞdV ¼ Q:

We have

Ground plane

Charge sheet ρ(y) = Cδ(y − y0) at y = y0

Medium 1 ε1

Figure 4.2 Two-dimensional projection of two plates.

694.3 Capacitance

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.005
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:05:26, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.005
https://www.cambridge.org/core


�ε
V

y0
Area ¼ Q

where Q < 0. If we identify ε
y0

Area ¼ C or capacitance we have

CV ¼ Q: (4.48)

This is another famous relationship involving capacitance and we see how straightfor-
ward it is to derive it directly from Maxwell’s equations.

Verify This is the same result we saw earlier, leading to equation (4.47), but this was a
more complicated calculation since we started from scratch. The advantage is we have
learned a way to use Maxwell’s equations directly and we are now equipped to solve
more complex problems.

Evaluate The capacitance between two metal plates scales as the overlapping area of
the plates divided by their distance.

First Principle Calculation of Capacitance with
Two Different Dielectric Media
Here we will examine how the field solutions behave when there are different
dielectric media in the problem. This situation often shows up in integrated circuits
where there are different dielectric layers and instead of implementing all of them
in a field solver it is often enough to use the equivalent permittivity. Here we
will show how to calculate the effective permittivity and we will again start from
Maxwell’s equations and end up with an expression that is quite familiar to most
readers.

Simplify We build on the previous simple model ad simply add another boundary: see
Figure 4.3. All will still be one-dimensional.

Compared with previous calculations, everything is the same – the same equations,
the same solutions – but we have an additional boundary condition at the interface
between the two dielectrics. From r�εE ¼ ρ we find

ε1E 1 ¼ ε2Ej j2
since there is no surface charge in the dielectric media.

Solve We now have two region and two solutions:

φ1 yð Þ ¼ �A1 y� y0ð Þ þ B1

φ1 yð Þ ¼ �A2yþ B2

For boundary conditions we get
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B1 ¼ V
B2 ¼ 0

ε1E 1 ¼ ε2Ej j2
φ1 y1ð Þ ¼ φ2 y1ð Þ

8>><
>>:

The third one can be expanded:

ε1E 1 ¼ �ε1rφ1 ¼ ε1A1 ¼ ε2Ej j2 ¼ ε2A2

or

A2 ¼ ε1
ε2
A1

We find from the fourth boundary condition

�A1 y1 � y0ð Þ þ V ¼ � ε1
ε2
A1y1

which gives

A1 ¼ � V

y0 � y1 þ
ε1
ε2
y1

� �

and

A2 ¼ � ε1
ε2

V

y0 � y1 þ
ε1
ε2
y1

� �

We find for the electric field at y = 0

Ground plane

Charge sheet ρ(y) = Cδ(y − y0) at y = y0

Dielectric boundary at y = y1

Medium 2 ε2

Medium 1 ε1

Figure 4.3 Two-dimensional picture of two plates with two dielectric media.
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E ¼ �rφ2 ¼ � ε1V
y1ε1 þ ε2 y0 � y1ð Þ

As before we have for the charge at the lower PEC

ε2E Area ¼ � ε1ε2
y1ε1 þ ε2 y0 � y1ð ÞVArea ¼ Q

We can rewrite this in more familiar form:

� 1
y1=Area ε2 þ y0 � y1ð Þ=Area ε1

V ¼ � 1
1=C1 þ 1=C2

V ¼ Q

This is the well-known serial formula for capacitors. We can furthermore rewrite the
equation in a form that makes use of an effective permittivity, ε0

ε0V
y0

Area ¼ ε1ε2
y1ε1 þ ε2 y0 � y1ð ÞVArea

which gives

ε0 ¼ ε1ε2
y1ε1 þ ε2 y0 � y1ð Þ y0 ¼

1
y1=ε2 þ y0 � y1ð Þ=ε1 y0:

Verify This is simply a rederivation of the well-known result of the equivalent
capacitance of two capacitors in series. It is demonstrated in most elementary textbooks
on electronics.

Evaluate When stacking dielectrics with different permittivity the effective permittiv-
ity can be calculated as the inverse of a weighted sum of inverses.

Key Concept

When stacking dielectrics with different permittivity the effective permittivity can be
calculated as the inverse of a weighted sum of inverses.

Summary
We have applied the estimation analysis to two situations where the total capacitance
was needed. We calculated it directly from Maxwell’s equations using some basic
simplifications as directed by the estimation analysis technique.

4.4 Inductance

We continue here with the concept of inductance. We have defined it in section
“Field Energy Definitions” and we will here explore the definitions further looking
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at some simple situations where our estimation analysis technique will prove
helpful.

Introduction

This section discusses the concept of inductance. As this concept may not be familiar to
most engineers we hope to demystify it here. We will follow the outline in Section 4.3
to further show the analogy between inductance and capacitance, where we first discuss
the circuit element – inductor – and then describe the simplest model followed by a
treatment starting from Maxwell’s equations directly. Equipped with this we can attack
more complicated problems. Much of the details here can be found in [4]. The
inductance effect can be very detrimental to high-speed circuit behavior and one must
understand its nature and how it can become large in order to produce successful
designs.

Inductors as Circuit Elements

So far we have discussed inductors as it relates to physics: it is an effect that is
proportional to the magnetic energy from a current distribution. It is not immediately
obvious how it is related to circuit analysis. To investigate this we will use a simple
conservation of power (or energy) argument.

Imagine we have a resistor in series with an inductor we know the power spent in the
resistor is

PR ¼ I2R

where I is the current across the resistor and capacitor. The power in the inductor is
simply the time derivative of its energy

PC ¼ d

dt

1
2
LI2 ¼ LI

dI

dt

The voltage source that drives this combination is having a power φ tð Þ∗I tð Þ pulled from
it at a given time. This power has to equal the power spent in the resistor and capacitor:

φ tð ÞI tð Þ ¼ I2Rþ LI
dI

dt

or

φ tð Þ ¼ IRþ L
dI tð Þ
dt

:

This is the familiar circuit relationship. It becomes clearer if one assume a time
dependence ejωt.

φ tð Þ ¼ IRþ jωLI

Where the impedance due to inductance is
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Zc ¼ φ
I
¼ jωL:

We have shown the circuit formula for using inductors follows simply from a conser-
vation of energy argument.

Simple Straight Wire in Free Space

We studied capacitance earlier in this chapter. Inductance is only slightly different.
Instead of an electric field and charge, inductance relates to magnetic field and current.
An electric field will look for other potentials on conductors around it to terminate, a
magnetic field terminates on itself. This self-termination, which we will explore details
below, can cause the magnetic field to become unbound. This has dramatic impact on
the generating currents and how they can be allowed to behave.

Before we get into the mathematical details let us play a thought experiment. Imagine
there is a universe with one unique feature: there is nothing in this universe but a wire,
carrying a current, I. The wire is infinite and straight. We will assume Maxwell’s
equations are valid. What is going on? Well, there is a current, so there must be a
magnetic field (one of Maxwell’s laws). The converse is also true, if there is a magnetic
field there has to be a current supporting it. The field stretches forever and ever around
this wire. The total magnetic field energy,

WM ¼ 1
2

ð
μ H�H dV ¼ H ¼ I

2πr
eθ We will derive this laterð Þ

� �

¼ 1
2

ð
μ

I

2πr

� �2

r drdθ � lnR where R is the size of the wire ! ∞ in our case:

What does this mean? If the magnetic field energy is infinite, so is the inductance. If you
attempt to drive an AC current through this wire you will see an infinite impedance. In
our simple universe, nothing can ever happen!

Admittedly this is far-fetched, but it serves to illustrate a point. In order for wires and
currents to be useful there has to be a way to limit the far-field magnetic field. The way
this is usually done is through loops either a current loop in itself or an induced return
path in some ground plane. There has to be a closed current loop for circuitry to work!
This is unlikely a surprise.

First Principle Calculation of a Simple Straight Wire

We will now dig deeper into the details of the previous section by starting from
Maxwell’s equations directly using our estimation analysis.

Simplify We have already set up a situation that is relatively simple. A straight wire in
free space with uniform current distribution. We will model it as a system with no z-
dependence, a two-dimensional system with cylindrical symmetry so all entities only
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depend on the distance, r, from the center of the wire. Seen from the side we find as in
Figure 4.4.

Let us look at this simple wire and dig into the mathematical details. We only need
Ampere’s law in the long wavelength approximation

r�H ¼ J

Solve We can integrate Ampere’s law over a cross-section containing the wire as in
Figure 4.5:

x

y

R0
r′

ϕ′

Figure 4.4 Cross-section of single wire.

x

y

R0

r′

ϕ′

Integation area

Figure 4.5 Integration boundary of single wire.
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ð
r�H�dS ¼

ð
J�dS

We can use Stoke’s theorem on the curl side:ð
r�H�dA ¼

þ
H�dr ¼

þ
Hφ rð Þ r dφ ¼ 2πrHφ rð Þ

where we have taken advantage of the cylindrical symmetry. On the right-hand side we
get from the fact the current, J, is a densityð

J�dS ¼ Jtotal

Putting the two sides together we find

Hφ rð Þ ¼ Jtotal
2π r

It is interesting to see here this result is independent of the precise radial distribution of
the current internal to the conductor. The right-hand side is only sensitive to the total
current in conductor.

Key Concept

The external magnetic field is not dependent on the radial current distribution inside
the conductor in the cylindrically symmetric case.

This in turn implies that the inductance from the total magnetic energy is.

1
2
LJ2total ¼

1
2

ð
μ H�H dV ¼ 1

2
μl

1
2π

� �2 ð Jtotal
r

� �2

r drdθ ¼ 1
2 2π

μlJ2total ln Rð Þ:

Here we have excluded the magnetic energy internal to the wire. It makes little
difference. We find

L ¼ μl
2π

ln Rð Þ

where R is the “extent” of the wire. It has to be a closed loop somehow and R is simply
the size of the loop. We see the inductance will be infinite for a single wire without a
loop as we hinted at in the previous section.

As a quick side note we can also calculate the vector potential outside the conductor
when we know the magnetic field

r� A ¼ B ¼ μH !
A ¼ A rð Þez ¼ �μ

Jtotal
2π

ln
r

R0
þ C

� �
ez:

(4.49)

Verify This is a known solution and can be found in for example [4].
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Evaluate The inductance for a wire scales as the length of the wire times the logarithm
of its size.

First Principle Calculation of Two Simple Straight Wires

Imagine now we have two wires where the current in one goes the opposite direction as
the current in the other. The idea is to reduce the magnetic field in the single wire by
creating an opposing field that is almost aligned. In effect we have a local current loop.

Simplify We use the same basic model as previously but with the addition of one wire.
The internal current distribution is assumed to be uniform: see Figure 4.6.

Solve To calculate the inductance of the system we will use equation (4.46) we derived
earlier. The equation states that knowing the vector potential and the current distribution
inside the conductors we can calculate the inductance through a simple integration over
the conductors cross-sections only. We have already assumed the current distribution is
uniform and we are left with calculating the vector potential. The vector potential
external to the wires we already know from equation (4.49). Let us also calculate A
inside a conductor. We have using the same strategy as in the previous section where we
integrated Ampere’s law and used Stoke’s theorem:

2π H rð Þr ¼
ð
J�dS ¼ Jtotal

πR2
0

ðR0

0

r22πr0dr0 ¼ Jtotal
R2
0

where we have used the current density

Jj j ¼ Jtotal
πR2

0

and r 
 R0.
We get

H rð Þ ¼ Jtotal
2πR2

0

r:

From B ¼ μH ¼ r� A we find

R0
r

d

r′ ϕ′

Figure 4.6 Cross-section of two wires in two dimensions. Figure adapted from [16].
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μ
Jtotal
2πR2

0

r ¼ � ∂A
∂r

! A ¼ C þ μ
Jtotal
2π

1
2
� μ

Jtotal
2πR2

0

r2

2

where the constant has been chosen to match the external solution (4.49) at the r ¼ R0

boundary. We can now put things together to calculate the energy by integrating the
self-inductance and the mutual inductance from (4.46). We denote the energy for the
self-inductance, Fself , and the energy for the mutual inductance calculation, Fmutual.

Fself ¼ 1
2

ðR0

0

C þ μ
Jtotal
2π

1
2
� μ

Jtotal
2πR2

0

r02

2

 !
Jtotal
πR2

0

r0dr02π Z

Fmutual ¼ � 1
2

ð2π
0

ðR0

0

� μ Jtotal
2π

ln r=R0ð Þ þ C

� �
Jtotal
πR2

0

r0dr0dφ0 Z

where Z is the unit length of the wire. The variable r is the distance between the center
of conductor 2 and r0,φ0 as indicated in the figure.

r2 ¼ d2 þ r02 � 2dr0 cos φ0

Fself ¼ 1
2
Jtotal
πR2

0

2π Z

ðR0

0

C þ μ
Jtotal
2π

1
2
� μ

Jtotal
2πR2

0

r02

2

 !
r0dr0

¼ Jtotal ZC
1
2
þ μ

J2total
2π

Z
1
8

(4.50)

Fmutual ¼ � 1
2
Jtotal
πR2

0

2π ZC
R2
0

2
þ μ

1
2

J2total
2π πR2

0

Z

ð2π
0

ðR0

0

1
2
ln

d2 þ r02 � 2dr0 cos φ0

R2
0

 !
r0dr0dφ0:

The integral in the expression for Fmutual can be calculated by identifying

I dð Þ ¼
ð2π
0

ðR0

0

1
2
ln

d2 þ r02 � 2dr0 cos φ0

R2
0

 !
r0dr0dφ0:

This is straightforward to calculate and we find

I dð Þ ¼ πR2
0 ln

d

R0
:

Now

Fmutual ¼ � 1
2
Jtotal
πR2

0

2π ZC
R2
0

2
þ μ

1
2

J2total
2π πR2

0

ZπR2
0 ln

d

R0

¼ �Jtotal ZC
1
2
þ μ

1
4π

J2totalZ ln
d

R0
:

(4.51)

The total energy is now
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F ¼ Fself þ Fmutual ¼ μ
1

2π2
J2total Z

1
4
þ ln

d

R0

� �� �
:

The other conductor combination is now easy to include because of symmetry, we just
multiply by 2. By removing J2total=2 we find the inductance is

L ¼ μ Z

π
1
4
þ ln

d

R0

� �� �
(4.52)

This is one of our fundamental results and we will use this again and again in various
contexts.

Verify This is a standard calculation in physics literature: see [4, 15], for example. For
the reader coming from a microwave background this example might seem familiar. If
so, it should, but the microwave literature often assumes the conductors to be ideal and
in that case the solution is somewhat different. We leave it as an exercise for the reader
to solve the ideal conductor case.

Evaluate For two inductors on top of each other, if the current is going the same way
in both inductors the magnetic field is doubled (with equal current) ! magnetic energy
is quadrupled ! inductance is four times larger. If currents are going the opposite way
! magnetic field is nulled ! inductance is zero.

This effect is often referred to as coupling between the wires. It comes from the high
frequency case where currents are induced in (or coupled to) the neighboring conductors.

Key Concept

For two inductors on top of each other, if the current is going the same way in both
inductors the magnetic field is doubled (with equal current) ! magnetic energy is
quadrupled! inductance is four times larger. If currents are going the opposite way
! magnetic field is nulled ! inductance is zero.

This effect is often referred to as coupling between the wires. It comes from the
high frequency case where currents are induced (or coupled to) in the neighboring
conductors.

We will study the high frequency case and induced currents later in this chapter.

First Principle Calculation of Single Wire over Ground Plane

When a wire is running over a ground plane, we have a very similar situation to the
previous discussion: see Figure 4.7.

Simplify Using the method of images we can model the situation in exactly the same
way where the distance d is simply
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d ¼ 2 b

where b as in the figure is the distance to the ground plane from the wire. The method of
images, [1], simply states the field outside a perfect ground plane can be found by
removing the ground plane and put mirror conductors with opposite charge/current
equidistant from the ground plane border.

Solve We can now use exactly the same calculations as before with one important
difference. The total field energy is now half of what we had before since no field exists
in the ground plane which takes up half the volume.

We find

Lground ¼ 1
2
μ Z

π
1
4
þ ln

d

R0

� �� �
: (4.53)

Verify This situation has been simulated as a 0.1 ! 4 mm long wire (1 µm � 1 µm
cross-section) over a ground plane in HFSS: see Figure 4.8.

The conductor was a variable height over the ground plane. The excitation is through
wave ports at the end of the structure as indicated. The inductance is calculated as

b

Ground plane

d

R0

r′

ϕ′

Figure 4.7 Method of images demonstrated with one wire over a ground plane.
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Lsim ¼ im
�2

Y 1; 2ð Þ þ Y 2; 1ð Þ
� �

1
ω

where Y refers to the Y-parameter (admittance) gain. Figure 4.9 shows the simulation
comparison to (4.53) as a function of length where the height over the ground plane is
3 µm.

A comparison of simulation vs estimation of inductance vs height over ground plane
shows in Figure 4.10.

Evaluate When adding a ground plane under a conducting wire the resulting
inductance will be reduced compared to a single wire. The inductance scales roughly

Figure 4.8 Figure of an HFSS sim setup.
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Figure 4.9 Simulated and estimated inductance of single wire over ground plane vs length.

814.4 Inductance

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.005
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:05:26, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.005
https://www.cambridge.org/core


as the logarithm of the distance to the ground plane. This is for the case of no other
conductors nearby.

Key Concept

When adding a ground plane under a conducting wire the resulting inductance will
be reduced compared to a single wire. The inductance scales roughly as the
logarithm of the distance to the ground plane.

First Principle Calculation of a Current Sheet over a Ground Plane

Let us now look at the current analogue to a charge plane over a ground plane. This is
the situation described in section “Simple Two-Plate System Calculation,” but now with
a current sheet instead of a charge sheet (Figure 4.11).
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Figure 4.10 Inductance of single wire over ground plane vs height over ground plane.

Ground plane

Current sheet i(y) = Jδ(y − y0) at y = y0

Medium 1, μ1

Figure 4.11 Cross-section of current sheet over ground plane.
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Simplify Let us know look at the basic equations in terms of the vector potential
A ¼ A yð Þez, where the source term is a current. We could utilize the same simplifica-
tions we used in the capacitance calculation but here we will go one step further and
start with the full wave equation and later go to the long wavelength limit so we can
demonstrate some new mathematical steps.

In free space assuming no x-dependency we have

ΔAþ ω2ϵ0μ A ¼ �μ Jδ y� y0ð Þ
We have

∂2

∂y2
Aþ ω2ϵ0μ A ¼ �μ Jδ y� y0ð Þ

Solve We can use

ω2ϵ0μ ¼ κ2

∂2

∂y2
Aþ κ2A ¼ �μ Jδ y� y0ð Þ

This equation has the solution from equation (4.31).

A yð Þ ¼ μ
j

2κ
ejκ y�y0j j þ Bejκy ¼ Cejκ y�y0j j þ Bejκy ¼ Cejκ y0�yð Þ þ Bejκy, for y0 � y

For the boundary conditions we have

r� B ! �Bx y¼y0 ¼ Jy¼y0=Area; Bx



 


y¼0

¼ Jy¼0=Area, Jy¼y0 ¼ �Jy¼y0 ¼ �J:

We get

Bx yð Þ ¼ ∂A yð Þ
∂y

¼ �jκCejκ y0�yð Þ þ jκBejκy:

From the boundary conditions we find:

�jκC þ jκBejκy0 ¼ J

Area

�jκCejκy0 þ jκB ¼ J

Area

8><
>:

Solving for the constant B we get:

jκBej2κy0 � jκB ¼ J

Area
ejκy0 � 1
� � ! B ¼ J

jκArea
ejκy0 � 1ð Þ
ej2κy0 � 1

and

jκC ¼ jκBejκy0 � J

Area
! C ¼ J

jκ Area

ejκy0 � 1
ej2κy0 � 1

� 1

� �
¼ J

jκ Area
ejκy0

1� ejκy0

ej2κy0 � 1

� �
:
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We have

Bx yð Þ ¼ ∂A yð Þ
∂y

¼ � J

Area
ejκy0

1� ejκy0

ej2κy0 � 1

� �
ejκ y0�yð Þ þ J

Area

ejκy0 � 1
ej2κy0 � 1

ejκy:

At the long wavelength approximation we can simplify

Bx yð Þ � � J

Area

�jκy0
j2κy0

� �
1þ jκ y0 � yð Þð Þ þ J

Area
jκy0

1þ jκyð Þ
j2κy0

¼ J

Area

2þ jκy0ð Þ
2

� J

Area
:

By integrating the magnetic energy over the region we find:

ðy0
0

B2 dV ¼ J

Area

� �2 ðy0
0

Area dy ¼ J

Area

� �2

Area y0 ¼
J2

Area
y0:

From the definition of inductance, equation (4.4) we find

L ¼ μ
1

Area
y0: (4.54)

The steps we followed here were more complicated than absolutely necessary to get to
this answer. However, we have demonstrated a full solution to this version of Max-
well’s equations, in this case Helmholz equation, and we will look more into this kind of
calculation in the rest of this chapter.

Verify We can now see an interesting relationship with the calculation of capacitance
between two plates. If we multiply equations (4.47) and (4.54):

L C ¼ μ
1

Area
y0

ϵ
y0

Area ¼ μϵ (4.55)

Evaluate This turns out to be a general relationship for two dimensions, any two
shapes have an inductance per unit length times a capacitance per unit length that
is equal to μϵ in two dimensions. The proof of this goes beyond the scope of this book
but can be found in many references. It is a very useful rule to keep in mind. In practice
it also holds up well for planar geometries in three dimensions where one has long
skinny conductors. This is an example of a situation where estimation analysis yields a
result that turns out to be quite general. If you find some simple relationship like the one
just descrbied try to see if it is more general than your simplifications imply. Perhaps
you have discovered something fundamental?

Key Concept

Any two shapes have an inductance per unit length times a capacitance per unit
length that is equal to μϵ ¼ 1

c2 for two dimensions. In three dimensions it holds well
for planar geometries with long skinny conductors.
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Summary
We have applied the estimation analysis to a few situations where the total inductance
was needed. We calculated it directly from Maxwell’s equations using some basic
simplifications as directed by the estimation analysis technique.

4.5 Various High Frequency Phenomena

Introduction

In this section we will study various high frequency phenomena that are of interest to
the integrated circuit designer using estimation analysis. We will not consider frequen-
cies so high the dielectric properties of the media changes. We will derive the skin depth
phenomena from first principles in the first section. This will be followed by a study of
induced current in a perfect ground plane, all from Maxwell’s equations or use solutions
thereof studied earlier in this chapter. We will also study the general case of full
wavelength approximation and how a resistive ground plane distributes its return
current in the following section. We will finally see how currents in a thin metal wire,
relevant to modern CMOS metal stack-ups, gets distributed.

Skin Depth

We have so far used the static approximation when studying inductance and come up
with some useful approximations and concepts that will help us get a grip on the
concept. Most of the time the wavelengths involved in IC design are large compared
with the chip dimensions. However, there is one important exception due to the finite
conductance in the routing layers giving rise to the “skin” effect. We will study this
concept from the full Maxwell equations that will lead to some perhaps surprising
results.

Simplify We assume again cylindrical symmetry and we are using a spherical con-
ductor with conductance σ which we assume is high in the sense the effective
permittivity is that of a good conductor: see Figure 4.12. Outside the conductor we
assume again the long wavelength approximation since this is more common in circuit
design. We have inside the conductor

r2Aþ ω2μϵ0A ¼ �μJi

Solve Outside the conductor we have again

r2A ¼ 0 with solution Az rð Þ ¼ C þ B ln
r

R0
:

The magnetic flux density is
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Bφ rð Þ ¼ �B

r

Inside the conductor the general solution is

A ¼ D

jκ
e�jκr þ E

jκ
ejκr

� �
ez

representing an outgoing and an incoming wave. We will assume the outgoing wave is
zero E ¼ 0ð Þ. Above

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 μ ϵ0

p
With

ϵ0 ¼ � jσ
ω

We have

ffiffiffiffiffiffi
�j

p
¼ 1� jffiffiffi

2
p

We find

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2μ ϵ0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ω2μ

jσ
ω

r
¼ ffiffiffiffiffiffiffiffiffiffi

ωσμ
p 1� j

2

We find for the solution

A ¼ D

jκ
e�jκrez ¼ D

jκ
e�j

ffiffiffiffiffiffiffiffiffi
ωσ μ

p 1�jffiffi
2

p rez ¼ D

jκ
e�j

ffiffiffiffiffiffiffi
ωσ μ
2

p
r�

ffiffiffiffiffiffiffi
ωσ μ
2

p
rez:

x

y

R0
r′

ϕ′

σ is finite

Figure 4.12 Cross-section of single wire with a finite conductance.
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We see a term in the exponent of the solution that is real and shows a decline as a
function of r with a length scale

δ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

ωσμ

s
: (4.56)

Verify This is known as the skin depth of the conductor.

Evaluate The depth to which the electromagnetic fields can penetrate a conductor, skin
depth, is dependent on frequency, conductivity and permeability according to (4.35). In
typical small geometry CMOS processes the metal layers are really thin – 90 nm is not
unusual. For a 6 GHz frequency in copper with a conductivity of 1.67 ∙ 10�8 ohmm we
find a skin depth of 800 nm, 9� the thickness of some metal layers. So, when creating
metal shields beware that there are enough metal layers stacked to make an efficient
shield given the particular skin depth. Also, the resistance of the metal layers can be
substantial – something to keep in mind for large currents.

Another interesting point here is the fact that when the skin depth is less than the
conductor size the magnetic field is excluded from part of the conductor. Outside the
conductor the field behaves independently of the current distribution inside the con-
ductor and is not affected, as we noted earlier. This exclusion of the magnetic field thus
lowers the total magnetic field over all space and the resulting inductance is reduced.
This effect can be observed in simulators and while often not very big can reduce the
inductance by a small percentage.

Key Concept

The depth to which the electromagnetic fields can penetrate a conductor, skin depth,
is dependent on frequency, conductivity and permeability according to equation
(4.56).

Currents Induced in Perfectly Conducting Ground Plane

We examined this situation previously in section “First Principle Calculation of Single
Wire over Ground Plane.” We will here examine the induced current in the ground
plane for this situation: see Figure 4.13. This calculation is important because it shows
how one can estimate the current distributions in a more realistic situation. A good
understanding of the current distribution is a key factor to understand inductance.

Simplify We examined this situation previously where we noted the resulting induct-
ance is less when the ground plane is present. Here we will use the same approximations
as before but we will look at the field solution near the ground plane. This situation is
very common in the circuit world and it is worthwhile to explore this more.
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Solve The fields above the ground plane can be described as a sum of the field
generated from the source current and a mirror field generated from a location equidis-
tant from the ground plane but on the other side of the ground plane. The ground plane
itself is removed. The phase of the mirror current is 180 degrees opposite the source
current. This is known as the method of images and we described this earlier. We have
from Figure 4.14:

Hsum r; r0ð Þ ¼ Jtotal
2πr

cos θex þ sin θey
� �� Jtotal

2πr0
cos θ0ex þ sin θ0ey
� �

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y� y0ð Þ2

q
, r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ yþ y0ð Þ2

q
:

At the ground plane we have from the boundary conditions that Hsum,x jy¼0 is equal to
the surface current in the ground plane. From symmetry we have r ¼ r0 and we find
from H above

J ¼ Jtotal

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y20

p 2 cos θez ¼ Jtotal

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y20

p 2
y0
r
ez ¼ Jtotal

x2 þ y20

2y0
2π

ez:

We see the induced ground current varies with a scale corresponding to the distance of
the current above the ground plane: see Figure 4.15. This is as expected. Note that in
this long wavelength approximation no other length scales exist with the exception of
skin depth which here is zero. We explore this further in the next section.

Ground plane

Current at (0, y0)

Figure 4.13 Current wire over infinite perfect ground plane.

Current at (0, y0)

Mirror current at (0, −y0)

H(r, θ) θ

H(r′, θ′) θ′

r

θ

r′

θ′

Figure 4.14 Coordinate system of current over ground plane.
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Let us integrate this current density in the x-direction

ð∞
�∞

J dx ¼
ð∞
�∞

Jtotal
x2 þ y20

2y0
2π

dx ¼ 2y0Jtotal

ð∞
�∞

1

x2 þ y20
dx ¼ 2y0Jtotal

2πy20

ð∞
�∞

1

x2

y20
þ 1

dx

¼ 2y0Jtotal
2πy0

ð∞
�∞

1

x2

y20
þ 1

dx

y0
¼ 2Jtotal

2π
tan�1 x

y0

� �∞
�∞

¼ 2Jtotalπ
2π

¼ Jtotal

so the total induced current is the same as the forced current. This makes sense since the
magnetic field far away will then be canceled out by the two opposing currents.

Verify This is a well-known calculation and can be found in for example [17].

Evaluate The integrated induced current density is equal to the total imprinted current
when no current loops are present. If this was not the case there would net magnetic
fields at far distances and thus infinite impedance.

Key Concept

The integrated induced current density is equal to the total imprinted current when
no other current loops are present.

Currents Induced in Resistive Ground Plane

When solving problems following the estimation analysis method it is not necessary to
get an answer valid for all situations. Often it is very instructive to look at extreme
points and from those behaviors draw conclusions about the full solution. Our next
example will illustrate this point.

We have showed various approximations and how inductance can be derived and
estimated depending on the geometry using various approximations that are helpful in

Ground plane

Current at (0, y0)

Figure 4.15 Current distribution plot.
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integrated circuit design. We owe it to the reader to also present the full solution valid
for any wavelength. This is also motivated by the rapid increase in extreme high-speed
circuit development. Our discussion is similar to [1].

Simplify Using the full Maxwell equations above we now assume with the same
geometry as in Figure 4.13 but the perfect ground plane is replaced a resistive plane:

r2Aþ ω2 μ ϵ0A ¼ �μJi

where Ji is the impressed current. With the chosen coordinate system we find

Ji ¼ J0δ xð Þδ y� y0ð Þez, A ¼ Aez:

We have

r2Aþ ω2 μ ϵ0A ¼ �μJ0 δ xð Þδ y� y0ð Þ:

Solve Since x is unbounded we can Fourier transform:

δ xð Þ ¼ 1
2π

ð
ejxβdβ A x; y; zð Þ ¼ 1

2π

ð
~Az β; y; zð Þejxβdβ:

We have ð
∂2

∂y2
~Az � β2~Az þ ω2ϵ0μ ~Az

� �
ejxβdβ ¼ �

ð
μJ0 δ y� y0ð Þejxβdβ:

We can just look at the integrand:

∂2

∂y2
~Az � β2~Az þ ω2ϵ0μ ~Az ¼ �μJ0δ y� y0ð Þ:

In general this equation cannot be solved exactly but needs a numerical solution.
For our case the solution has the general form:

~Az β; yð Þ ¼ C
j

2κ
ejκ y�y0j j þ Bejκy

With

C ¼ �μJ0

Inside the lower material the solution is:

~Az β; yð Þ ¼ Ae�jκ2y

where

�β2 þ ω2ϵ0μ
� � ¼ κ2

�β2 þ ω2ϵ02μ
� � ¼ κ2ð Þ2:
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The boundary conditions are now

Ez 1 ¼ Ezj j2
Bz 1 ¼ Bzj j2

�

Also
By 1 ¼ By



 


2

We get

Bx ¼ ∂~Az

∂y

By ¼ ∂~Az

∂x
¼ jβ~Az

Bz ¼ 0

From Ez,Bz is continuous we get

C
j

2κ
ejκ y0j j þ B ¼ A

�κC
j

2κ
ejκ y0j j þ κB ¼ �κ2A

8>><
>>:

We see continuity of By is guaranteed by the Ez ¼ Ez condition. Multiplying first by κ2
and adding.

C
i

2κ
eiκ y0j j κ2 � κð Þ þ B κ2 þ κð Þ ¼ 0

B ¼ κ � κ2
κ2 þ κ

C
j

2κ
ejκ y0j j

and

A ¼ C
j

2κ
ejκ y0j j 1þ κ � κ2

κ2 þ κ

� �
¼ C

j

2κ
ejκ y0j j 2κ

κ2 þ κ

We have

~Az β; yð Þ ¼ C
j

2κ
ejκ y�y0j j þ κ � κ2

κ2 þ κ
C

j

2κ
ejκ y0j jejκy ¼ C

j

2κ
ejκ y�y0j j þ κ � κ2

κ2 þ κ
ejκ y0j jejκy

� �

A x; yð Þ ¼ 1
2π

ð
C

j

2κ
ejκ y�y0j j þ κ � κ2

κ2 þ κ
ejκ y0j jejκy

� �
ejxβdβ:

The first term is the definition of Hankel function of degree zero:

H0 kρð Þ ¼ 1
2π

ð
j

2κ
ejκ y�y0j jejxβdβ:

Inside the lower material the solution is:

~Az β; yð Þ ¼ C
j

2κ
ejκ y0j j 2κ

κ2 þ κ
e�jκ2y

A2 x; yð Þ ¼ 1
2π

ð
C

j

2κ
ejκ y0j j 2κ

κ2 þ κ
e�jκ2yejxβdβ

(4.57)
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This is a general solution and needs to be evaluated numerically for a given configuration.

Verify However we can learn a few things by looking at extreme cases of key
parameters. Let us use conductivity as such an example. Let us assume we have
situation described in the previous section with static field and a ground plane with
high conductance. We then have

�β2 þ ω2ϵ0μ
� � � �β2 ¼ κ2

or
κ ¼ j βj j

�β2 � jωσμ
� � ¼ κ2ð Þ2:

The solution in media 2 is then

A2 x; yð Þ ¼ 1
2π

ð
C

1
2j βj j e

� βj j y0j j 2j βj j
κ2 þ j βj j e

�jκ2yejxβdβ

¼ 1
2π

ð
C e� βj j y0j j 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�β2 � jωσμ
p

þ j βj j
e�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�β2�jωσμ

p
yejxβdβ:

To get the current in the medium we need to take the curl of this twice. This corresponds
to multiplying by �κ22. In this extreme case we can limit ourselves to y = 0. So we find.

J x; y ¼ 0ð Þ ¼ 1
2π

ð
C e� βj j y0j j β2 þ jωσμ

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�β2 � jωσμ

p
þ j βj j

ejxβdβ:

For high σ we see the β2 will not dominate the sum for a long while. We can assume this
happens when the first exponent βj j y0j j is very large so as to dampen out the integrand.
We then get

J x; y ¼ 0ð Þ � 1
2π

ð
C e� βj j y0j j ffiffiffiffiffiffiffiffiffiffi

jωσμ
p

ejxβdβ

This is a well-known Fourier inverse function and we have

J x; y ¼ 0ð Þ � 2y0
x2 þ y20

:

We see we come back to our old solution, so this is encouraging. What about the other
extreme where σ is very small? We can still keep the long wavelength approximation
both in medium 1, 2 and we find:

J x; yð Þ ¼ 1
2π

ð
C e� βj j y0j j β2 þ jωσμ

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�β2 � jωσμ

p
þ j βj j

e�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�β2�jωσμ

p
yejxβdβ:

In the extreme case where σ ¼ 0 we simply recover our old static solution where J ¼ 0
outside the current carrying conductor. What if σ is simply really small so that when we
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look at the integrand that term containing σ is only relevant for small β? By analogy
with a more common physical situation where have frequency and time and not
wavelength and distance we would say only the low frequency spectrum is affected
and thus only long timescales will show any impact of σ. Similarly, we can here say
only long distances will show the impact of a situation where the conductivity is low. In
other words, for high resistance substrates the current distribution under the current
carrying conductor will be of the order 1=σωμ, which is large.

Evaluate Although we have not provided a formal proof of the following Key Concept
it is really just a reworking of Ohm’s law: More currents flow where the impedance
is small.

Key Concept

In summary, the current in the plane under the signal will follow the path of lowest
impedance. For high conductive substrates the dominant impedance is inductance
and the current will be tightly distributed directly underneath the wire. For high
resistance situations the current will spread out in the plane.

Current Distribution in Thin Conductors

Now that we have spent some time looking at various situations where inductance
matters and we have learned the guiding principle is to have the currents flow in such a
way as to lower the total magnetic energy, we will here investigate what will happen
in a thin conducting slab where the thickness is smaller than the skin depth but the
width of the wire is larger than the skin depth. Far away from the wire not much can be
done, the generated magnetic field is not sensitive to the local distribution of the
currents. But the near field is different and the currents will distribute themselves to sit
near the short ends of the wire. This way the magnetic field in the symmetry plane
through the conductor is zero and the total magnetic energy is smaller. We will
quantify this fact in this section.

We will approach this problem using conformal transformations: see [17, 18]. It is a
very powerful way to solve Laplace’s equation in two dimensions. It can be used not
just in electrostatics but in many other physical fields.

This problem has been studied before in great detail: see [16]. We will not provide the
exact solution since it is outside the scope of this book, but we will follow the estimation
analysis approach we have been discussing.

Simplify Let us consider the current distribution inside a metal slab. The general
solution for a rectangular cross-section is difficult to solve analytically and has not
been done to this author’s knowledge. However, for an ellipsoidal shape there is a
known exact solution: [16]. Here we will just outline the model and do some simple
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scaling estimations to arrive at one of the asymptotic solutions. We will use the long
wavelength approximation in two dimensions, with the current, Jz, (and vector
potential, Az) going in the z-direction, which states that externally we need to solve
Laplace’s equation:

ΔAz ¼ 0 (4.58)

Imagine the conductor has the shape as described in Figure 4.16.
As a function of coordinates x, y the shape is described by

y xð Þ ¼ 	h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=að Þ2

q
We will here go to the limit of h ! 0 and σ ! }large} such that h 
 δ 
 a and

Ez ! 0: (4.59)

For this situation we then naturally have the current in the slab is only dependent on x.

Solve We have from the definitions of the electric field in terms of the gauge potentials
(4.49) and our assumption of Ez ¼ 0

Ez ¼ � ∂φ
∂z

� jω Az ¼ 0 ! � jω Az ¼ ∂φ
∂z

:

Let us take the derivative w.r.t x of the last expression. With our approximations we
assume the only current flowing flows in the z-direction. For this to be consistent the
voltage drop along the segment in z has to be constant over the surface of the conductor
so we expect the derivative w.r.t x to be zero.

∂ �jω Azð Þ
∂x

¼ �jω
∂Az

∂x
¼ �jωBy ¼ 0 (4.60)

which becomes our boundary condition at the slab.

2a

2h

Hx(0, h)

Hx(0, −h)

Figure 4.16 Ellipsoidal coordinate system. Adapted from [17].
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The problem amounts to solving Laplace’s equation for Az with the boundary
condition (4.60) at the conductor. For large distances we must have from (4.49)

Az ¼ � lμ
2π

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
R

(4.61)

corresponding to a current filament with a large return radius R. This is our second
boundary condition.

We now introduce the conformal coordinate transformation

xþ jy ¼ a cos u� jvð Þ
yielding

x ¼ a cosh v cos u; y ¼ a sinh v sin u (4.62)

∂x
∂v

¼ a sinh v cos u ! 0, v ! 0
∂x
∂u

¼ �a cosh v sin u ! �a sin u, v ! 0

∂y
∂v

¼ a cosh v sin u ! a sin u, v ! 0
∂y
∂u

¼ a sinh v cos u ! 0, v ! 0

The transformation is one-one with the restrictions

�π 
 u 
 π; v � 0

In the (x, y)-plane the curves of constant v are homofocal ellipses; the segment
y ¼ 0, xj j 
 a is the infinitely flat ellipse v ¼ 0 and v increases outwards to infinity:
see Figure 4.17. The curves of constant u are the hyperbolae but there is a cut along the
segment v = 0, so that u is positive in the upper-half plane Re y > 0 and negative in the
lower half-plane. The semi-infinite segment y ¼ 0, x � a corresponds to u ¼ 0,
whereas the segment y ¼ 0, x 
 �a corresponds to u ¼ 	π.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

x

y

ν = 0.25 ν = 0 ν = 1

Figure 4.17 Conformal coordinate transformation.Adapted from [17].
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With these new coordinates we have for our equation to solve

ΔAz ¼ 0

With the boundary conditions

∂Az

∂x






y!0

¼ ∂Az

∂u
∂u
∂x v!0 þ ∂Az

∂v
∂v
∂x











v!0

¼ ∂Az

∂u
1

a sin u
¼ 0 ! ∂Az

∂u
¼ 0

The beauty of conformal transformations is if the solution solves Laplace’s equation in
the new coordinates it also solves it in the old coordinates: see [17, 18]. The main
advantage of this transformation is that if the new coordinates follow the basic geometry
the equations are easier to solve.

We will further limit ourselves to the situation where u 6¼ 0,∓π in other words we avoid
the endpoints of the ellipsoid.We know the behavior ofAz for large values of v andwe also
knowwhen v ! 0 Az cannot have any dependence on x (or u in our new coordinates at the
limit v ! 0). To meet Laplace’s equation we know a solution of the form

Az ¼ C þ B v (4.63)

will work. To find C, B we can attempt a look at the far distance requirement, v ! ∞,
equation (4.61) and see if we get a self-consistent solution. We have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
R

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh vð Þ2

q
R

¼ cosh v
R

� ev

R

Taking the logarithm of this we find

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
R

� v� lnR

We can now identify the constants B, C from (4.61) and (4.63) and we find

Az ¼ � lμ
2π

ln
2R
a

� v

� �
(4.64)

This equation solves Laplace’s equation and as v ! 0 it has no dependence on u which
we need for the boundary condition at the slab and has the right scaling for large v. In
other words, it solves the conditions at the boundaries and the equation inside the
domain. It is thus a solution to the problem. We will confirm this later when comparing
to a more general solution.

We are interested in calculating the current across the thin slab with this solution. It
can be calculated from the boundary condition discussed in section “Solutions to
Maxwell’s Equations: Boundary Conditions,” in particular (4.39) where we here find

Hx y¼0þ � Hx



 


y¼0� ¼ �Hx, 0 � Hx, 0 ¼ �2Hx, 0 ¼ Jz (4.65)

where Hx, 0 refers to the size of the magnetic field at y ¼ 0þ. The magnetic field is given
by (4.6) and (4.7).
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Hx y¼0þ ¼ 1
μ
∂Az

∂y











y¼0þ

¼ 1
μ
∂Az

∂y y¼0þ ¼ 1
μ

1
a sin uj j

∂Az

∂v











v¼0þ

:

We then find the current

Jz uð Þ ¼ �2
1
μ

1
a sin uj j

∂Az

∂v






v¼0þ

¼ � 1
μ

1
a sin uj j

lμ
2π

¼ � I

a sin uj j
1
2π

And in terms of x

Jz xð Þ ¼ � Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=a2

p 1
2π

, xj j < a (4.66)

Verify This problem has been solved more generally in [17]. The σ ! ∞ solution in
that paper is the same as the one derived here. In the field solver we have analyzed the
situation with various thicknesses. See Figure 4.18. As the thickness of the metal slab
increase it is getting much better at expelling the field, just as we would expect from the
simplified model. For thin wires the prediction fits reasonably well, within 10% except
close to the end points (the actual edge is excluded because of the singularity in
expression (4.66)). As the thickness increases the effect of the expulsion becomes clear
and we see the skin depth start to dominate.

Evaluate The lateral skin effect for wide conductors much thinner than the skin depth
has a current length scale variation that is dependent on width only, equation (4.66). As
the thickness increases the normal skin effect starts to manifest itself.

Key Concept

The lateral skin effect for wide conductors much thinner than the skin depth has a
current length scale variation that is dependent on width only: equation (4.66).

4.6 Summary

In this chapter we have learned

� We have defined Maxwell’s equations in a form that is useful for integrated
circuit applications.

� We have defined the physical concepts of inductance and capacitance.
� To calculate capacitance the voltages need to be known
� To calculate inductance, the currents need their direction to be known.
� We have looked at various examples where we show how a given source current

induces a current in neighboring inductors. Moreover, the current distribution
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Figure 4.18 Simulation results and comparison wtih estimation analysis. The pictures to the left
shows a cross section of the conductor with the current densities indicated in gray. The right
pictures shows the current densities through the middle of the conductor. (a, b) corresponds to a
thickness of 0.1 µm, (c, d) has a thickness of 0.5 µm, (e, f ) shows a slab with 1 µm thickness, (g, h)
has 2 µm thickness and finally (i, j) shows 5 µm thickness. The estimated curve has been
normalized such that the current density in the middle of the conductor is the same for the
simulated and estimated responses.
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within a conductor was derived for a number of examples. When neighboring
conductors have significant resistive loss we found a version of ohms law that
indicated how the current will distribute itself.

4.7 Exercises

1. Calculate the induced current in an isolated conductor from an outside current.
Assume the outside current is fixed. Hint: a current sheet with a cylindrical
isolated conductor could be a good starting point.

2. The total inductance in section “First Principle Calculation of Two Simple
Straight Wires” was calculated assuming the current is evenly distributed inside

(g) (h)

(i) (j)
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Figure 4.18 (cont.)
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the conductors. Calculate the inductance assuming the current only runs on the
surface. Hint, if one calculates the capacitance the inductance is given by
equation (4.55).
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5 Electromagnetism: Circuit
Applications

Learning Objectives

� Applying estimation analysis to a number of common high-speed situations
○ Transmission lines
○ S-parameters
○ Inductors
○ Capacitors

5.1 Introduction

This chapter discusses applications of electromagnetism mainly in the context of
integrated circuits with the help of estimation analysis. The main purpose of this
chapter, as with the other chapters, is to showcase estimation analysis. We will think
of ways to simplify a problem, verify that we capture the relevant properties, and then
evaluate the result. At the end of the chapter we will use these simplified models in
several design examples to establish a starting point for fine-tuning in simulators.

In recent decades, high frequency electromagnetic effects have become increasingly
important for on-chip circuit design with the increase in speed and required processing
power. Compared with general microwave situations, the length scales under consider-
ation are smaller than typical wavelengths and this provides some natural simplifica-
tions for the estimation analyses. Since we are also approaching speeds where the
wavelength is comparable to the circuit size scales, we will discuss short wavelength
effects in this chapter. Much of what we will be discussing has been touched upon, one
way or another, in references [1–18].

We start the chapter with a discussion of the connection between printed circuit board
designs and on-die designs. Thereafter we discuss transmission lines and distributed
effects. The concept of S-parameters can often be confusing, and we take some time to
discuss it from an estimation analysis perspective. This is followed by a section on
capacitors, and since this is generally well known, we will be somewhat brief in this
discussion. Traditionally they were designed as overlapping metal plates, but with the
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advance of small geometry CMOS this topology is no longer used much. Instead, MOM
(metal–oxide–metal) capacitors where thin, inter-digitized fingers provide the desired
capacitance are used. The advancement in lithography has made it possible in modern
CMOS technologies to produce such capacitors with much smaller process variation
than earlier varieties, and we will briefly discuss the circuit implications. Of course,
gate-over-oxide constructions are another approach, and we address this in the section
on metal plates. Thereafter we discuss on-chip inductors, where we model various
idealized situations and, by removing these idealizations, come to a realistic model of
on-chip inductors where capacitance and resistance are also major contributors.

5.2 Connection to PCB Designs

Printed circuit board (PCB) designers have encountered high speed, or distributed,
effects for many years not only through fast clock frequencies but also through fast
edge rates, and it is only recently that on-die circuit designers have been forced to take
such effects into account. On die, the convenient long wavelength approximation was
for a long time sufficient for the interconnect modeling. Normally, distributed effects
became important in the package interface. Nowadays, these effects have creeped into
the on-die interconnects due to the ever increasing need for higher and higher speeds,
and a thorough understanding of these kinds of effects has become mandatory. A good
description of the problems can be found in [7]. Here many of the electromagnetic
properties we found in Chapter 4 are discussed more fully in connection to the PCB
design. We will mention just a few of the similarities here and point to what is different,
and where different approaches may sometimes be necessary.

Interconnect Scale vs Wavelength

Distributed effects start to become prominent when the wavelength in question, λ ¼ c=f
where c is the (local) speed of light and f the signal frequency, is similar to the physical
length. The important comparison scale turns out to be even smaller than λ and we will
derive such results in this chapter. Imagine we have a 10 GHz signal traveling in a
uniform medium with a permittivity of 4, we find λ ¼ 1:5�108=1010 ¼ 1:5cm. On a
printed circuit board this is a very small distance. On die, this is fairly large. Ten GHz
used to be a respectable frequency, but now imagine a 50 GHz signal. The wave length
is 3 mm. A modern high speed integrated circuit can easily be a centimeter or two per
side, of which the analog portion is significant. It is then clear that issues such as proper
termination to avoid reflections is important.

Ground Planes

These distributed effects were understood very early on in the development of the
circuit board, and the concept of proper ground was developed. A modern circuit board
can have many tens of layers of copper, each of which is perhaps 15 µm thick, and every
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second layer is typically used either as a ground or supply plane. On die there can also
be more than ten layers, but in contrast to the circuit board system the thickness is only
significant (greater than the skin depth) for a few of the top layers. Using lower metals
for the ground/return path is woefully inadequate. Instead, co-planar wave guides or
multilayer ground planes are commonly used.

Vias

A circuit board via consists of a top/bottom pad and a thin metal cylinder. The pad looks
capacitive and the thin cylinder looks inductive, and it can also exhibit distributed
effects. An on-die via is simply a stud, often made of tungsten, and its resistance can be
significant. One needs to make sure there are plenty of vias when significant current is
in play.

Summary

As a short summary of similarities and differences between PCB work and on-chip
design, we have:

Similarities:

� Length scale vs wavelength
� Need for proper termination

Differences:

� Thickness of metal layers
� Resistance of vias

5.3 Recent Progress in the Literature on Signal Integrity On-Chip

Over the last several decades there has been a continual need for increased communi-
cation speed. Looking at the state of the art a few decades ago, it was not obvious that
on-chip inductors would ever be prominent. But the work of the design group under
Prof. Robert Meyer at University of California at Berkeley made clear that on-chip
inductors have significant advantages. With the ever smaller footprint, the size of
inductors can sometimes be prohibitive, but the increase in required speed and thus
smaller needed inductances make inductors a key component in high speed designs,
where low phase noise oscillators are obvious circuit applications. At speeds in the
100s of GHz range, the problematic passive device is no longer the inductor, which is
now very small, but rather the parasitic resistance of capacitors that causes
degradation.

This “need for speed” has generated faster and faster integrated circuits, and we are
now at the point where the circuit size is of the same order as the wavelength of the
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signal frequency we are trying to process. The interest in careful modeling of
interconnects has likewise increased and several approaches have emerged. For one,
accurate and fast simulators that can handle this size and frequency are constantly
being developed and improved. Many of the modern simulators have user-friendly
interfaces that facilitate setup and simulation. A word of warning to the user, however:
oftentimes there are assumptions more or less hidden inside these simulators that may
or may not be helpful in solving the problem one is addressing, and one would be wise
to spend a good deal of time understanding the inner workings of the tool before
embarking on large simulations. Second, the need for accurate analytical understand-
ing has increased in lockstep with simulator developments. Researchers have
developed complex models, and we will present an overview of this development in
the next section where the focus is on inductor modeling; see also [19] for a recent
overview of the field.

Inductor/Interconnect Modeling

Inductors have a high impact on high frequency performance and their modeling is
critical to the success of such circuits. One difficulty with inductor modeling is it
can take a bit of time to find the right size combination through field solver
iterations. In fact, this is one reason that a good initial size estimate, which we will
describe later in this chapter, is important. In the literature, the search for accurate
inductor modeling is proceeding along several lines of inquiry. One possibility is to
use foundry-supplied inductor libraries (see [20–22]), which tends to limit the ability
to use an optimal size, but if one finds a reasonable candidate one has access to
measured data, which is reassuring from a performance perspective. Another trend is
to create various detailed analytical models as in [23–26], π-models as in [27–30], or
2-π models as in [31] to predict inductor performance. There is also [32], where
regularization theory is applied to obtain more detailed analytical mapping func-
tions. Another direction was proposed by [33], where machine learning techniques
are used to build inductor models. The accuracy is improved by only optimizing
promising inductor candidates in EM-solvers instead of simulating each possible
inductor, as in [34]. Another approach uses a set of EM-simulated inductors as the
design space and the optimal inductor is chosen based on various constraints, as in
[35, 36]. The arrival of 3D integrated circuit topologies has generated much work
relating to through-silicon-vias (TSV), as in [37–40]. These topologies are there to
process data faster in that with the help of TSVs, more data can be transferred
vertically, which means a much shorter physical distance and less signal loss is
possible.

We have highlighted a handful of situations where several groups have attempted to
construct detailed models.

In this chapter we will apply the lessons from Chapter 4 to build useful simple models
where the physics of, say, an inductor play a central role. It turns out that having the
intuition built from such models is very useful in understanding real situations and can
generate a good initial starting point for field solvers.
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5.4 Transmission Line Theory

Basic Theory

The focus in this chapter is integrated circuit applications, and here, in general,
transmission line effects are not important due to the small length scales involved.
However, there are instances, for example inductors, where basic knowledge of trans-
mission line theory is important. We will therefore discuss the basic theory here using
estimation analysis, and we refer the reader to the many excellent discussions of the full
theory in [2, 5–7, 13].

Simplify A transmission line has essentially two components, one signal conductor
and at least one return path as in Figure 5.1.

As we discussed in Chapter 4, this type of structure carries a certain inductance and
resistance per length and a certain capacitance to ground per length. In addition, there is
a loss in the dielectric medium that we will ignore here. We will model this as a simple
RLC filter, as in Figure 5.2. We ignore any loss in the dielectric medium itself, often
modeled as a shunt resistor to ground. We are interested in estimating effects such as
gain and impedance on-chip, and for common materials inside integrated circuits this
loss is negligible.

Signal conductor

Ground plane/return path

Dielectric

Figure 5.1 Transmission line components.
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Solve We can now analyze the voltages and currents using Kirchoff’s current/voltage
laws:

V x; tð Þ � R Δx I x; tð Þ � LΔx
∂I x; tð Þ

∂t
� V xþ Δx; tð Þ ¼ 0,

I x; tð Þ � C Δx
∂V xþ Δx; tð Þ

∂t
� I xþ Δx; tð Þ ¼ 0:

By dividing by Δx and go to the limit Δx ! 0 we find

� ∂V x; tð Þ
∂x

� R I x; tð Þ � L
∂I x; tð Þ

∂t
¼ 0,

� ∂I x; tð Þ
∂x

� C
∂V x; tð Þ

∂t
¼ 0:

We now use the assumption we are in a steady-state condition where the time variation
scales as ejωt. The equations then look like

� dV xð Þ
dx

� Rþ jωLð ÞI xð Þ ¼ 0, (5.1)

� dI xð Þ
dx

� jωCV xð Þ ¼ 0, (5.2)

Now taking the derivative with respect to x and combining the two we find

d2V xð Þ
dx2

¼ ω2LC þ jωRC
� �

V xð Þ,

d2I xð Þ
dx2

¼ ω2LC þ jωRC
� �

I xð Þ:

The constant in front of the current and voltage terms is known as the propagation
constant, γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rþ jωLð ÞjωCp
. The solution is well known

V xð Þ ¼ Vþ
0 e

�γx þ V�
0 e

γx,

I xð Þ ¼ Iþ0 e
�γx þ I�0 e

γx:

L R

C

V(x + Δx), I(x + Δx)V(x), I(x)

Figure 5.2 Basic transmission line modeling.
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Where the + refers to a wave going in the positive x-direction and the – refers to a wave
going in the negative x-direction. We can use (5.1) above to write the current as

I xð Þ ¼ γ
Rþ jωL

Vþ
0 e

�γx � V�
0 e

γx
� �

:

We now see we can identify a characteristic impedance as

Z0 ¼ Rþ jωL
γ

¼ Rþ jωLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ jωLð ÞjωCp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ jωLð Þ
jωC

s
: (5.3)

We find

I xð Þ ¼ Vþ
0

Z0
e�γx � V�

0

Z0
eγx:

Let us now terminate the transmission line with a load ZL at x ¼ 0. We then can define
an impedance as a function of x as

Z �xð Þ ¼ V �xð Þ
I �xð Þ ¼ Vþ

0 e
γx þ V�

0 e
�γx

Vþ
0 =Z0eγx � V�

0 =Z0e�γx
¼ Z0

Vþ
0 e

γx þ V�
0 e

�γx

Vþ
0 e

γx � V�
0 e

�γx
:

At x ¼ 0 we get

Z 0ð Þ ¼ ZL ¼ Z0
Vþ
0 þ V�

0

Vþ
0 � V�

0

:

We now find

V�
0 ¼ Vþ

0
ZL � Z0

ZL þ Z0
¼ Vþ

0 Γ:

Γ is known as the reflection coefficient. We can now write

Z �xð Þ ¼ Z0
Vþ
0 e

γx þ V�
0 e

�γx

Vþ
0 e

γx � V�
0 e

�γx
¼ Z0

ZL þ Z0ð Þeγx þ ZL � Z0ð Þe�γx

ZL þ Z0ð Þeγx � ZL � Z0ð Þe�γx
: (5.4)

For R ¼ 0 this simplifies to

Z �xð Þ ¼ Z0
ZL cosω

ffiffiffiffiffiffi
LC

p
xþ jZ0 sinω

ffiffiffiffiffiffi
LC

p
x

Z0 cosω
ffiffiffiffiffiffi
LC

p
xþ jZL sinω

ffiffiffiffiffiffi
LC

p
x

¼ Z0
ZL þ jZ0 tanω

ffiffiffiffiffiffi
LC

p
x

Z0 þ jZL tanω
ffiffiffiffiffiffi
LC

p
x
:

(5.5)

Where we have complied with the norm in the literature and refer to x as �x. Let us now
look at the special case where ZL ¼ 0 and R ¼ 0. We have Z0 ¼

ffiffiffiffiffiffiffiffiffi
L=C

p
Z �xð Þ ¼ j

ffiffiffiffi
L

C

r
tanω

ffiffiffiffiffiffi
LC

p
x, (5.6)
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which approaches

Z �xð Þ ! j

ffiffiffiffi
L

C

r
ω
ffiffiffiffiffiffi
LC

p
x ¼ jωLx, ωx ! 0:

We see that when ZL � Z0 the transmission line looks inductive with a total inductance
Lx. We need to keep this fact in mind when we discuss inductors, because we must not
terminate an inductor at high impedance. We will come back to these equations.

Naturally, for the opposite case where ZL ¼ ∞ we find

Z �xð Þ ¼
ffiffiffiffiffiffiffiffiffi
L=C

p
j tanω

ffiffiffiffiffiffi
LC

p
x
! 1

jωCx
, ωx ! 0:

When terminated with an open the transmission line looks like a capacitor.
It is also instructive to see from (5.6) that at

ω
ffiffiffiffiffiffi
LC

p
x ¼ π

2
! x ¼ c

4f
¼ λ

4
:

The impedance goes to infinity. Above this length the impedance changes sign and
becomes capacitive in the case of an inductor. This is known as a λ=4 resonance. There
are also resonances at odd integer multiples of this length scale as is clear from (5.6).

CAUTION: One of the difficult parts of microwave engineering is the fact there can be
many solutions to Maxwell’s equations. For a given boundary there can be many possible
modes when the wavelength is similar to the size of the structure. Identifying these modes
and removing the unwanted ones is among the major tasks in microwave engineering.
For our particular case of a terminated transmission line, sometimes the symmetry or
ground plane or other neighboring conductors can cause the electrical length of a λ=4
resonance to be different from what one would expect from a simple trace length
calculation. For instance, a single loop inductor can be seen as a transmission line with
its own return path where the halfway point, the termination, is a short. The electrical
length will then be half of the physical length of the inductors coil. We will not address
the precise root cause of such situations here since it is outside the scope of the book, but
we encourage the reader to always verify the resonance location with a simulator. The
good news is when the simulator does not agree with a naïve length calculation, it will
find a length that is shorter by some integer factor. The resulting resonance frequency is
thus higher than one would expect. Here, our calculations will always use the simulated
resonance length if it is different from a simple trace calculation.

Verify This is a standard result that, if not expressly given in the many books
discussing this subject, can easily be confirmed. See for example [2, 5–7, 13].

Evaluate The impedance of a transmission line depends heavily on its characteristic
impedance as well as on how it is terminated. This is most clearly seen in the λ=4 effect,
where the load impedance is effectively inverted when looking from the source point. If
one terminates the transmission line with a short it will look inductive when the
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electrical length is short compared with wavelength, and if one terminates with an open
the transmission line will look capacitive.

Key Concept

A transmission line terminated at low impedance, say 0 ohms, looks like an inductor
when size � wavelength. A high impedance termination causes the line to look like
a capacitor when the size � wavelength.

Key Concept

A λ=4 resonance is a situation where the length of the conductor is one-quarter of the
wavelength. This will transform the impedance at the termination inversely.

Summary
We have applied the estimation analysis to the fundamental concept of a transmission
line and demonstrated that we can reach the known solutions with simple mathematical
manipulations.

5.5 S-Parameters

Scattering parameters or S-parameters are a fundamental tool in microwave engineer-
ing. For the electrical circuit engineer they can often be difficult to conceptualize, and
we will show that we can define them in circuit theory (long wavelength approximation)
where they are easier to understand. From there a short wavelength extension can be
made. We again follow the steps of estimation analysis and build a simple model we can
solve to demonstrate some fundamental properties.

We will start with the general definition and refer the interested reader to literature for
the details behind them. The discussion follows closely what is often referred to as
generalized S-parameters or power waves (see [2]), but here we make the additional
assumption that the termination resistor is the same both at the source and the sink, and
the degradation is modeled as an impedance between these points. We will then look at
a simple circuit version of these parameters and show through some examples how they
behave and are related to more familiar concepts such as bandwidth. The last section
will discuss the short wavelength generalization.

Definition

From the picture S-parameters are defined as the ratio of incoming or outgoing wave
amplitudes in different ports (Figure 5.3).
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For example, S11 is the ratio of the outgoing wave amplitude to the incoming wave
amplitude when all other ports are 50 ohm terminated. S21 is the ratio of outgoing wave
amplitude at port 2 divided by the incoming wave amplitude at port 1, all other ports being
terminated to 50 ohms. Notice the concept of outgoing and incoming waves: this is a
concept with meaning in the short wavelength approximation but it has no natural meaning
in the long wavelength limit. Let us keep this in mind in the following discussion.

Simplify We will now simplify the situation to the circuit world or long wavelength
approximation. Let us consider the following simple picture (Figure 5.4).

This is a voltage source in series with two resistors. The voltage at point “vout” is
clearly vs=2 at all times. What if we change the load resistor by adding a resistor R in
series (Figure 5.5)?

Solve Now the output voltage will be

vout ¼ Rt þ R

2Rt þ R
vs:

We can manipulate this in the following way

vout ¼ Rt þ R

2Rt þ R
vs ¼ Rt þ R=2

2Rt þ R
vs þ R=2

2Rt þ R
vs ¼ 0:5 vs þ R=2

2Rt þ R
vs ¼ Sin þ Sout,

N-port block
Si

Sj

Sk

Sl

Sm

Sn

Figure 5.3 Multi-port system showing in-/outgoing waves.

−
+ vs

Rt

Rt

vout

Figure 5.4 A simple model of an input configuration.
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where we have defined an “incoming” and “outgoing” wave. In this context S11 is simply

S11 ¼ Sout
Sin

¼ Rj j=2
Rt þ R=2

:

We see that if R is zero, S11 is zero. Let us think of a more complicated situation where
the load consists of a cap shunting a 50 ohm resistor (as in Figure 5.6):

We find

vout ¼ Rt

RtjωC þ 1ð Þ Rt þ Rt

RtjωC þ 1

� � vs ¼ 1
RtjωC þ 1ð Þ þ 1ð Þ vs

¼ 0:5vs � RtjωC=2
RtjωC þ 1ð Þ þ 1ð Þ vs:

We see here again we can define S11 and find

S11 ¼ Sout
Sin

¼ RtωC=2
RtjωC=2þ 1j j ¼

RtωC=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RtωC=2ð Þ2 þ 1

q :

For small C we see S11 is zero, for large C S11 = 1. What about S11 and bandwidth of the
load itself? At bandwidth we have by definition RtωC ¼ 1 and we see for this case

−
+ vs

Rt

R

Rt

vout

Figure 5.5 A simple model of an input configuration with an additional series resistor.

−
+ vs

Rt

Rt C

vout

Figure 5.6 A simple model of an input configuration with a shunting capacitor.
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S11BW ¼ 0:5ffiffiffiffiffiffiffiffiffi
1:25

p ¼ �7dB:

How far from the bandwidth do we need to be to get S11 = �20 dB?

RtωC=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RtωC=2ð Þ2 þ 1

q ¼ 0:1 ! RtωC
2

� �2

1� 0:01ð Þ ¼ 0:01 ! RtωC
2

� 0:1,

which is ~5 times the bandwidth of the unterminated input! The reader should by now
appreciate the difficulty in getting low return loss for a given system.

What about the other S-parameters? Let us look at S21 using the model in Figure 5.7.
Here we look at the termination as ideal Rt ohms and the driving impedance is different

compared with our earlier discussion. We have with a resistive driving impedance

vout ¼ Rt

Rþ 2Rt
vs:

The energy that goes into the output load is simply the outgoing wave.
At the input we see the driving impedance as Rt ohms with a load that looks nonideal.

With a real nonideality we see

vi ¼ Rt þ R

Rþ 2Rt
vs ¼ Rt þ R=2

Rþ 2Rt
vs þ R=2

Rþ 2Rt
vs:

We identify again the first terms as the incoming wave and the last term as the returned
amplitude.

We can now identify the various S-parameters:

S11 ¼ R

Rþ 2Rt
,

S21 ¼ Rt

Rþ 2Rt

1
1=2

¼ 2Rt

Rþ 2Rt
:

(5.7)

We see now

S211 þ S221 ¼
R2 þ R2

t

Rþ Rtð Þ2 < 1:

−
+ vs

Rt R

Rt

vout

Figure 5.7 A simple model of an input configuration with a series source resistor.
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For this sum to equal one we are missing a term

2 R Rt

Rþ Rtð Þ2 :

What happened to it? Since the square of the S-parameters has something to do with
power, let us take a step back and think about this situation in terms of power. We have
a current

i ¼ vs
2Rt þ R

:

How much power is being burnt in the various resistors?

Pload ¼ i2Rt ¼ vs
2Rt þ R

� �2

Rt Preturn ¼ vsR=2
Rþ 2Rt

� �2 1
Rt

PR ¼ vs
2Rt þ R

� �2

R:

Let us normalize this to the power burnt in the load termination resistor when R ¼ 0.

Pideal ¼ v2s
2Rtð Þ2 Rt ¼ 1

4
v2s
Rt

,

We get by normalizing the actual powers in the various resistors to this ideal power,

Pload

Pideal
¼ vs= 2Rt þ Rð Þð Þ2Rt

v2s=4Rt
¼ Rt4Rt

Rþ 2Rtð Þ2 ¼
2Rt2Rt

Rþ 2Rtð Þ2 ,

Preturn

Pideal
¼

vsR=2
Rþ2Rt

� �2 1
Rt

v2s=4Rt
¼ 4 R=2ð Þ2

Rþ 2Rtð Þ2 ¼
R�R

Rþ 2Rtð Þ2 ,

PR

Pideal
¼ vs= 2Rt þ Rð Þð Þ2R

v2s=4Rt
¼ R�2Rt

Rþ 2Rtð Þ2 ¼
2 R�2Rt

Rþ 2Rtð Þ2 :

The last equation shows the missing term from the equation above. It is simply the
power burnt in the parasitic resistor R compared with the power burnt in one termination
resistor in an ideal situation. The rest of the terms correspond to the power burnt in the
load resistor and the power burnt in the source resistor by the return wave.

Key Concept

When the interconnection is resistive it will burn power, so the sum of the square of
S11 and S21 is less than one.

What about the partly inductive interface in Figure 5.8?
Here

vout ¼ Rt

jωLþ 2Rt
vs:

This energy that goes into the output load is simply the outgoing wave.
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At the input we see the driving impedance as Rt ohms with a load that looks nonideal.
With an inductive nonideality we see

vout ¼ Rt þ jωL
jωLþ 2Rt

vs ¼ Rt þ jωL=2
jωLþ 2Rt

vs þ jωL=2
jωLþ 2Rt

vs:

We identify again the first terms as the incoming wave and the last term as the returned
amplitude.

We can now identify the various S-parameters:

S11 ¼ ωL=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωLð Þ2 þ 2Rtð Þ2

q 1
1=2

,

S21 ¼ Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωLð Þ2 þ 2Rtð Þ2

q 1
1=2

¼ 2Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωLð Þ2 þ 2Rtð Þ2

q :

We see now

S211 þ S221 ¼
ωLð Þ2 þ 2Rtð Þ2
ωLð Þ2 þ 2Rtð Þ2 ¼ 1

We can also calculate S21 for the system with a shunting capacitor. We find

S21 ¼ Sout
Sin

¼ 1= RtjωC þ 1ð Þ þ 1ð Þj j Vs

0:5 Vs
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RtωC=2ð Þ2 þ 1
q ,

S211 þ S222 ¼
RtωC=2ð Þ2

RtωC=2ð Þ2 þ 1
þ 1

RtωC=2ð Þ2 þ 1
¼ 1:

We can now infer that in a purely reactive environment, the sum of the square of the
S-parameters is 1; there is no power lost in the medium. The formal proof is beyond the
scope of this book.

−
+ vs

Rt L

Rt

vout

Figure 5.8 An inductor in series with the source impedance.
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Key Concept

If the interconnect is purely reactive, the sum of the square of S11 and S21 is equal to
one; there is no power burnt in the interconnection.

For the previous two examples it is obvious that S12 = S21 due to symmetry. But this
is in fact generally true for reciprocal systems (no active devices, ferrites, or plasmas)
(see [2]).

Finally, we wrap up this section with an example of how to estimate insertion loss
(S21) for a resistive transmission line. Imagine the following situation depicted in
Figure 5.9:

We have a transmission line characterized at high frequencies where the skin depth is
smaller than the conductor dimensions. It runs over a perfect ground plane (we will
generalize this later to a real ground plane).

Simplify We know that the current will run in the bottom of the conductor to minimize
the magnetic field, and we know the width of the wire and the skin depth. In Figure 5.10
we have, assuming the dielectric extends beyond the conductor strip,

Signal conductor

Ground plane/return path

Figure 5.10 A cross-sectional view of the single transmission line.

Signal conductor

Ground plane/return path

Figure 5.9 Geometry of a single ended transmission line.
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So

R ¼ ρ
L

sW
:

The width of the skin depth in the ground plane is

Wgnd ¼ W þ 2 h:

Where we have approximated the extension beyond the edge with a generalization of
our findings in section “Currents Induced in Perfectly Conducting Ground Plane” in
Chapter 4. At first, we will ignore the resistance of the ground plane for simplicity. It
will be simple to generalize later.

Solve We now need to calculate the line impedance with the characteristic impedance
from (5.3) and a termination impedance ZL ¼ Rt. We get from (5.4)

Z ¼ Z0
ZL þ Z0ð Þeγx þ ZL � Z0ð Þe�γx

ZL þ Z0ð Þeγx � ZL � Z0ð Þe�γx

¼ Z0
ZL eγx þ e�γxð Þ þ Z0 eγx � e�γxð Þ
ZL eγx � e�γxð Þ þ Z0 eγx þ e�γxð Þ

We will first look at this from the small electrical length perspective where γx is small.

Z ¼ Z0
Rt þ Z0γx
Rtγxþ Z0

:

We now get by using equation (5.3) for

Z0 ¼ Rþ jωL
γ

Rt þ Rþ jωLð Þx
Rtγ2xþ Rþ jωLð Þ γ ¼ Rþ jωLð Þ Rt þ Rþ jωLð Þx

Rt Rþ jωLð ÞjωCxþ Rþ jωLð Þ

¼ Rt þ Rþ jωLð Þx
RtjωCxþ 1

� Rt þ Rþ jωLð Þxð Þ �RtjωCxþ 1ð Þ

¼ Rt þ Rþ jωLð Þx� R2
t jωCx ¼ Rt þ Rþ jωLð Þx� jωL x ¼ Rt þ R x

which is a fairly intuitive result.
We see then from equation (5.7) that

S21 ¼ 1
Rx=2Rt þ 1

: (5.8)

Verify The transmission line was modeled as a fixed length� λ=4 to avoid distributed
effects in line with our previous modeling assumptions. The excitations were modeled
as wave ports. From Figure 5.11 we see field solver shows excellent agreement with our
theory up to Rx=Rt � 0:1. After this point there are higher-order effects that start to
become important, but we are still within 0.5 dB at Rx=Rt ¼ 0:5.

Evaluate The S-parameters can be understood from a simple local picture through the
use of generalized S-parameters and power (voltage) waves. Depending on the situ-
ation, a number simple scaling laws are easy to derive and confirm.
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Summary
There are a couple of convenient microwave theorems useful to keep in mind for
passive systems. If the passive system has no resistance, we must haveX

i

S2i1 ¼ 1:

In particular for a two-port system:

S211 þ S221 ¼ 1,

something we just exemplified.
Another convenient nugget is for a reciprocal system

Sij ¼ Sji

and for a two-port system

S21 ¼ S12:

S-Parameters for Long Transmission Lines

In the previous section we looked at a short transmission line where the length was
much less than a wavelength. Here we will discuss the more general case of arbitrary
length t-lines and the resulting S-parameters. This section will tie together a few of the
things we discussed earlier in the chapter.

We have the following situation depicted in Figure 5.12.

Simplify We will assume the resistance per unit length, R � ωL. We then have for

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ jωLð ÞjωC

p
� jω

ffiffiffiffiffiffi
LC

p
1þ R

j2ωL

� �
¼ jω

ffiffiffiffiffiffi
LC

p
1þ εð Þ ¼ jω

ffiffiffiffiffiffi
LC

p
þ R

2Rt
,

0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

R/Rt

S
21

[d
B

]

simulation estimate

Figure 5.11 A comparison of simulated vs estimation of the loss in a single transmission line.
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and

ZL ¼ Rt,

Z0 ¼ Rþ jωL
γ

� jωL
γ

1þ R

jωL

� �
¼ jωL

γ
1þ 2εð Þ

¼ iωL

iω
ffiffiffiffiffiffi
LC

p
1þ εð Þ 1þ 2εð Þ � Rt 1þ εð Þ,

where

ε ¼ R

j2ωL
:

Solve We know from (5.4) that the impedance looking into the transmission line from
the source port is

Z ¼ Z0
ZL þ Z0ð Þeγx þ ZL � Z0ð Þe�γx

ZL þ Z0ð Þeγx � ZL � Z0ð Þe�γx
¼ Rt 1þ εð Þ 2þ εð Þeγx � εe�γx

2þ εð Þeγx þ εe�γx

� Rt 1þ εð Þ 1þ ε 1� e�2γxð Þ=2
1þ ε 1þ e�2γxð Þ=2

� Rt 1þ ε 1� e�2γxð Þð Þ ¼ Rt 1þ ε 1� e�j2ω
ffiffiffiffiffi
LC

p
x�Rx=Rt

� �� �
¼ Rt 1þ ε 1� e�Rx=Rt cos 2ω

ffiffiffiffiffiffi
LC

p
x� j sin 2ω

ffiffiffiffiffiffi
LC

p
x

� �� �� �
:

Following the S11 discussion earlier, we have the voltage at the t-line input is

Vo ¼ Z

Rt þ Z
¼ Z=2þ Rt=2

Rt þ Z
þ Z � Rtð Þ=2

Rt þ Z
¼ Sin þ Sout:

where we have defined an “incoming” and an “outgoing” wave. We find

S11 ¼ Sout
Sin

¼ Z � Rt

Z þ Rt
:

This expression can be found in most textbooks. Plugging in the numbers we now find

S11 ¼
Rt 1þ ε 1� e�Rx=Rt cos 2ω

ffiffiffiffiffiffi
LC

p
x� j sin 2ω

ffiffiffiffiffiffi
LC

p
x

� �� �� �� Rt

Rt 2þ ε 1� e�Rx=Rt cos 2ω
ffiffiffiffiffiffi
LC

p
x� j sin 2ω

ffiffiffiffiffiffi
LC

p
x

� �� �� � :

Rt

Figure 5.12 Pic of t-line in series with termination resistor.
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Or in terms of magnitude

S11 ¼ εj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�Rx=Rt cos 2ω

ffiffiffiffiffiffi
LC

p
x

� �2 þ e�Rx=Rt sin 2ω
ffiffiffiffiffiffi
LC

p
x

� �2q
2

¼ εj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 e�Rx=Rt cos 2ω

ffiffiffiffiffiffi
LC

p
xþ e�2Rx=Rt

p
2

:

For S21 we again look at the voltage at the destination port. We have from Section 5.4

V xð Þ ¼ Vþ
0 e

�γx þ V�
0 e

γx,

where Vþ
0 denotes the outgoing wave into the port and V�

0 the reflected wave from the
port. We have

S21 ¼ Vþ
0 e

�γx

Vþ
0 e

�γ�0 ¼ e�γx ¼ e�jω
ffiffiffiffiffi
LC

p
x�Rx= 2Rtð Þ ¼ e�Rx= 2Rtð Þ cosω

ffiffiffiffiffiffi
LC

p
x� j sinω

ffiffiffiffiffiffi
LC

p
x

� �
:

In the limit of small x we get

S21 � 1� Rx

2Rt

� �
1� jω

ffiffiffiffiffiffi
LC

p
x

� �
¼ 1� Rx

2Rt

� �
1� j

ωLx
Rt

� �
� 1� j

ωLx
Rt

� �
:

We also see that if we keep x small and vary R by changing resistivity of the metal, S21
varies with R like

S21e e�Rx= 2Rtð Þ � 1� Rx

2Rt

Verify This is the same expression we found previously (5.8) in the limit Rx � Rt.

Evaluate The S-parameters for a long transmission line can be estimated by looking at
the impedance at the input of the line and from there calculating the return loss. The
through response can be estimated from the results of wave equation directly.

5.6 Capacitors in Integrated Circuits

Capacitors in integrated circuits are oftentimes well understood by engineers. Here we
will discuss them very briefly for the sake of completeness. We start with plate
capacitors, which were more commonly used in older technologies, and continue with
finger capacitors, which are used with modern CMOS processes.

Capacitors in Integrated Circuits: Plate Capacitors

The MIM cap, or metal–insulator–metal capacitor, is an older type of capacitor. It
consists of two large plates with a thin insulator between them as shown in Figure 5.13.
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In modern CMOS processes they are generally no longer available. The closest
approximation to a plate capacitor is the MOS cap, where the top plate is the transistor
gate and the bottom plate is the transistor body.

Simplify For both of these kinds of capacitors we can approximate the capacitance
with the model in Chapter 4, section “Simple Two-Plate System Calculation.”

In Figure 5.14, we also ignore the parasitic resistance Rpar.

Solve We find

Cmim ¼ Area

d
ε0ε

and

2Cpar ¼ Area

dsub
ε0ε

where d is the distance between the plates and dsub is the distance to substrate.

Verify This is a well-known approximation that can be found for example in [15, 16].

Top plate

Bottom plate

Dielectric

Figure 5.13 Basic capacitor model.

C Rpar

CparCpar

Figure 5.14 Basic circuit model of capacitor.
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Evaluate We have ignored the parasitic resistance in the model for the capacitor. In
this case a capacitor can be described as an ideal capacitor with parasitic capacitors to
ground.

Capacitors in Integrated Circuits: MOM Capacitors

Modern CMOS technologies have done away with the MIM capacitor layers and
instead rely on thin interlocked fingers as in Figure 5.15.

Simplify We can simplify the capacitance calculation by assuming that the sidewall–
sidewall capacitance dominates. The parasitic capacitance to ground is simply given by
the capacitance area. The circuit model is the same as in Figure 5.14. The parasitic
resistance is ignored here as well.

Solve We have

Cmom ¼ CcorrNfingersNlayers
lt

d
ε0ε (5.9)

and

2Cpar ¼ Area

dsub
ε0ε

where Ccorr � 2 is correction constant due to topside wall added capacitance, Area is the
total cap area, and dsub is the distance to substrate.

Verify Table 5.1 shows a comparison of estimated and simulated capacitances. The
accuracy for these models is less than what is normal for the larger plate capacitors since
other metal faces are contributing significantly to the capacitance, hence the Ccorr.

Evaluate The capacitance of a MOM cap or finger cap scales as the number of fingers
times their thickness times their length divided by the distance between the fingers
according to (5.9).

Figure 5.15 Finger capacitor (MOM) configuration, popular in small geometry CMOS. The figure
shows one metal layer; often there are several, up to 10!, stacked on top of each other.
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5.7 Inductors in Integrated Circuits

Inductors in integrated circuits have been discussed for many years by many helpful
contributors. For example, [14] is now a classic book on inductors and it is also the basis
of a very useful software tool, ASITIC, that is widely used. In addition, [15, 17] have
good discussions on various aspects of inductors.

We will exemplify the use of the method of estimation by applying it to the inductor
circuit element. The discussion starts with a simple wire stub pair, then we use what we
have learned and build a complete rectangular inductor using two such pairs. The
method of estimation is then applied to find out how one can simply model rectangular
cross-sections, which is a somewhat more complicated situation. A more complicated
two-turn inductor is encountered after this and the effect of a ground plane on the
inductance is thereafter examined. We wrap up the section on inductors by applying
estimation analysis to the idea of self-resonance and a more complete model where
parasitic resistors and capacitors are included. All these sections will produce useful
shorthand formulae that can be used in real world situations, and we show this by
applying them to a number of design examples later in the chapter.

Partial Inductance of a Wire Stub Pair

There is of course no such thing as a singlewire stub inductor; there needs to be a closed loop
somehow. We thus approximate such a loop with a similar wire stub close by, where the
current goes the other way as shown in Figure 5.16. In fact, we have already solved a very
similar problem in Chapter 4, section “First Principle Calculation of Two Simple Straight
Wires.” As the reader may recall, we assumed two infinitely long wires and calculated the
inductance per length. Here we will use that calculation with a trivial simplification.

Simplify The inductance per length for the infinitely long circular pair was

L

Z
¼ μ

π
1
4
þ ln

d

R0

� �� �

where L=Z is the inductance per length. We will simplify our problem with finite length
wires by assuming the magnetic field is independent of position along the wire and

Table 5.1 Comparison of estimated vs simulated capacitances for MOM capacitors

Cmom with t = 90 nm for various parameters
Estimated
(ε ¼ 3Þ fF

Simulated from
a realistic PDK fF

Nlayers = 3, Nfingers = 10, d = 50 nm, l = 1 μm 2.86 2.90
Nlayers = 6, Nfingers = 10, d = 50 nm, l = 1 μm 5.72 5.50
Nlayers = 3, Nfingers = 20, d = 50 nm, l = 1 μm 5.72 6.02
Nlayers = 3, Nfingers = 10, d = 100 nm, l = 1 μm 2.86 2.30
Nlayers = 3, Nfingers = 10, d = 50 nm, l = 2 μm 5.72 5.57
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abruptly ends at the end of the wire. In other words, we assume the field is given by the
approximation of Chapter 4, section “First Principle Calculation of Two Simple Straight
Wires” along the wire and zero beyond it. We also approximate the rectangular cross-
section with a circular one.

Solve The inductance of the wire is now simply

Lpair ¼ L

Z
l

Verify In practice, for this situation the field is smoothly reduced towards the end of the
wire and is somewhere around 10–15% overestimated with this model.

Evaluate This expression is telling us the inductance is proportional to the length of
the wire segment, which is an important lesson. One also sees that the inductance varies
with the logarithm of the distance between them, so when estimating inductances the
area size of the inductor will also play a role. Imagine a situation where the two
segments lie inside each other: clearly the length is there, but since they completely
overlap, cancelling each other’s current, the total inductance is zero.

One should also note that here we are strictly describing partial inductance since we
do not have a full loop. Depending on how the current actually closes in a loop, the total
inductance can be very different. We will remedy this situation in the next section.

Inductance of Two Wire Stub Pairs at a Right Angles

Having been through the previous simple example, let us now look at the situation where
we have two such pairs that are perpendicular to each other and connecting in such a way
that we have a closed rectangular inductor. In this situation, we have four wires carrying
current that contribute to the inductance. The pairs need not be equal in size.

We can compare this to a typical on-chip inductor in Figure 5.18.
It is clear from Figure 5.18 that the approximation given by Figure 5.17 is a fairly

reasonable one.

Simplify Formally, we now need to follow Chapter 4, section “Field Energy Defin-
itions” and calculate the interaction between the vector potential, Aj, from each current
segment, Jj, with all other current segments, Ji. However, it is now clear there is no

Figure 5.16 “Partial” inductor with two finite length wires.
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interaction between the fields and currents of the two separate pairs. All these integrals
are equal to zero since Aj�Ji ¼ 0 when i, j belong to different pairs. The simplification
we make here is that at the wire ends, the noninteraction between the fields of the two
wires is maintained. The total magnetic field energy is thus equal to the sum of the
energy from the two individual pairs.

Bj j2total ¼ Bj j2pair1 þ Bj j2pair2:

Finally, we simplify the inductance rectangular cross-section with a circular one. The
accuracy of this will be addressed in section “An Inductor Model with Rectangular
Cross-Section.”

Solve The total inductance is now simply the sum of the partial inductances of the two
pairs,

L ¼ μ
π
lpair1

1
4
þ ln

dpair2
R0

� �� �
þ μ
π
lpair2

1
4
þ ln

dpair1
R0

� �� �
: (5.10)

For the special case where the legs are of equal length, we find

L ¼ 2μl
π

1
4
þ ln

l

R0

� �� �
(5.11)

where we have used dpair1 ¼ dpair2 ¼ lpair1 ¼ lpair2 ¼ l since the two pairs have equal
length. The total length of the structure is 4l.

Figure 5.18 A typical on-chip inductor in 2D projection.

Figure 5.17 Two pairs connecting to each other.
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Verify In Figure 5.20 we show a field solver solution of the square inductor structure in
Figure 5.18 as a function of l with a fixed width, R0, and compare it with the
approximate solution in equation (5.11).

The field solver setup is as shown in Figure 5.19.
The inductor structure sits in an Air box with radiating boundary conditions. The size

of the Air box is about three to four times larger than the inductor itself. The size was
shown to be sufficient by making it larger and not seeing any change in the result.

The port excitations are modeled as a lumped port in one end and a short to ground in
the other. Ground is modeled as a simple perfect conductor stub closing the loop. The
inductance is then found as the imaginary part of the Z(1,1) impedance.
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Figure 5.20 On-chip inductance vs length of inductor compared with simulation.

Figure 5.19 Typical field solver setup.
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Lsim ¼ im Z 1; 1ð Þ
ω

All the inductors discussed in this chapter are modeled along the same lines. The
material surrounding the inductor is simply Air with radiating boundary conditions.

We also simulate an inductor with different aspect ratios and find the result in
Figure 5.21.

Evaluate The inductance of a single-turn inductor scales roughly linearly with the
conductor’s length. There is also a logarithmic term that depends on the inductor’s
length divided by its width. To change the inductance, it is much more important to
change its length than its width. In addition, different aspect ratios can be modeled with
up to 30% accuracy.

Key Concept

The inductance of a single-turn inductor scales roughly linearly with its length. The
width of the inductor is logarithmically dependent on its width.

An Inductor Model with Rectangular Cross-Section

To this point our formulae have approximated the square cross-sections of the conduct-
ors with a circular one. As the aspect ratio of the cross-section deviates from a square,
the approximation will increasingly deviate from expectation. In this section we will
discuss various ways to take rectangular cross-sections into account.

Two Adjacent Circular Segments
One way to extend the previous models to rectangular cross-sections is to put another
circular conductor adjacent to the ones we have. In a cross-section we find as shown in
Figure 5.22.
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Figure 5.21 On-chip inductance vs aspect ratio of inductor compared with simulation.
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Simplify The simplification here is simply using two circles as a description of a
rectangle.

Solve We can now apply equation (4.52) to this model by noting that instead of
one pair of circular conductors there are six (!) pairs, with the current in each
conductor equal to half of the total current. This last point is important. The
previous discussion assumed the total current in a leg was J. To model the
rectangular cross-section, the total current still needs to be J resulting in J=2
running in each of the conductors. In the next section we will discuss what happens
when we arrange the current such that it is equal to J in each segment. We find here
for the energy

Frect=2pair ¼ J=2ð Þ2
2

2μ
π
d

1
4
þ ln

d

H=2
þ 1
4
þ ln

d � 2b
H=2

� 2 ln
b

H=2
þ 2 ln

d � b

H=2

� �

where H is the thickness of the rectangle. By going to the limit b ¼ H � d and again
removing J2=2 we find for the inductance

Lrect=2pair ¼ 1
4
2μ
π
d

1
2
þ 4 ln

d

R0
� 2 ln 2

� �
¼ 2μ

π
d

1
8
þ ln

d

R0
� 1
2
ln 2

� �

Verify A comparison with simulation of a 200 μm-long, 1 μm-thick, 2 μm-wide
inductor shows an Lsim ¼ 134:7 pH compared with Lest ¼ 175 pH, an error of 30%.

Evaluate A simple extension to the square model by using two circular segments
touching each other such that a 2-1 ratio of conductor width vs length can be modeled
shows the same 30% accuracy we had for the square case.

Defining an Effective Radius from Area Equivalence
Another way of modeling a rectangular cross-section H �Wð Þ is to define an effective
radius. We will first use an effective radius based on equal area assumption.

d

b

x x

Figure 5.22 Cross-section of an inductor where a 2-1 rectangular cross-section is modeled by two
cylinders touching each other.
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Simplify

R0 ¼
ffiffiffiffiffiffiffiffi
HW

π

r

Solve We get from (5.10)

L ¼ 2μd
π

1
4
þ ln

dffiffiffiffiffiffiffiffiffiffiffiffiffi
HW=π

p
 ! !

(5.12)

For a 2 � 1 rectangle we find

L ¼ 2μd
π

1
4
þ ln

d

H
ffiffiffiffiffiffiffiffi
2=π

p
 ! !

¼ 2μd
π

1
4
þ ln

2d
H

� �
� 1
2
ln 2� 1

2
ln

4
π

� �� �

Verify This is very similar to the previous expression. In particular the last term is
�1=8.

Evaluate The precise model of the “radius” of the conductor matters little as long as
the size of the inductor is large compared with this radius. The logarithm is very
forgiving when its argument is large to begin with.

Defining an Effective Radius from Max Scale
There are other ways to define an effective radius, and from a practical point of view
they can work better.

Simplify Let us define an effective ratio as the max of the sides of the conductor cross-
section.

R0 ¼ MAX W ;Hð Þ=2

Solve We then have for W > H

L ¼ 2μd
π

1
4
þ ln

2d
W

� �� �
(5.13)

Verify Using this formula, we see a much improved comparison with simulation in
Figure 5.23.

Evaluate The reason is simply that two wrongs make a right. The formula significantly
overestimates the effective radius of the conductor cross-section, which produces a
smaller logarithmic term. However, the field strength is already overestimated due to the
finite size of the length of the conductor. These two errors counter each other and
produce results that are closer to the simulations. The formula will obviously work very
poorly for extreme cross-section aspect ratios, but keeping it to 1/10 or less as in
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Figure 5.23 shows we are in a comfortable region. This is also well covered by typical
integrated circuits applications.

Summary – One-Turn Inductor
In the previous four subsections we applied estimation analysis to a one-turn inductor.
We saw that by thinking through what a real inductor looks like and comparing it with
problems we already solved in Chapter 4, we could come up with a really simple model
that catches many of the aspects of the physical structure and come within 10–30%
of the actual value of inductance. This is a good example of efficient application of
estimation analysis. We will continue this method of estimation by applying it to a
two-turn inductor.

A Model of a Two-Turn Inductor

We can take this model one step further and look at a two-turn inductor as pictured in
Figure 5.24.

Simplify We simplify this by following the strategy in the previous section, but here
we will allow the second conductor to have some space between it and the outer turn:
see Figure 5.25.

We further assume the internal pair has length lint ¼ d � 2b and that the interaction
with the other conductors is limited to the same length.

Solve We can now use equations (4.52) to take all the interactions between the
conductors into account. By noting that contrary to the rectangular cross-section
discussion in section “Two Adjacent Circular Segments” the full current J now goes
through each of the legs, we simply feed the current back in a second loop. We find for
the energy
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Figure 5.23 Estimation vs simulation of inductance vs width using equation (5.13).
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F2-turn ¼ 2μJ2d
2π

� 1
4
þ1
4
d�2b

d
�2 d�2bð Þ

d
ln

b

R0
þ2 d�2bð Þ

d
ln
d�b

R0
þ d�2bð Þ

d
ln
d�2b
R0

þ ln
d

R0

� �

The corresponding inductance, after some rearrangement, is

L2-turn ¼ 2μd
π

1
4
þ ln

d

R0
þ d � 2b

d

1
4
� 2 ln

b

R0
þ 2 ln

d� b

R0
þ ln

d� 2b
R0

� �� �
(5.14)

We now see as b ! 2R0 where R0 � d

L2-turnjb¼2R0�d ¼
2 μd
π

1
2
þ 4 ln

d

R0
� 2 ln

b

R0

� �
(5.15)

We compare this to the previous calculation, equation (5.11), and see we have ~4� the
inductance when d 	 R0. In effect, looking at the inductance in terms of magnetic
energy, we find for this case that the magnetic field is doubled and the energy has
quadrupled. In a circuit context this is often discussed in terms of inductive coupling
between the coils.

Verify In Figure 5.26 a real two-turn inductor with rectangular cross-section is
modeled and compared with equation (5.14) with various combinations of b, d. The
field solver setup is similar to what was done for the single-turn inductor, where we

Figure 5.24 Picture of a two-turn inductor.

d

b

x x

Figure 5.25 Picture of a cross-section of a two-turn inductor.
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evaluate the simulated inductance in the same way. The estimations for various widths
use equation (5.13).

Evaluate We see from the result that the error is less than some 30% for the
inductance, which implies the average field amplitude is off by roughly 15%. The fact
that the wider widths match better here is more an artifact of two errors countering each
other. We overestimate the field strength but it is countered by an overestimate of the
conductor cross-section.

Key Concept

A two-turn inductor with coils of the same size with minimal spacing between them
and with a current moving in the same direction will double the magnetic field and
quadruple the energy, hence the inductance will quadruple compared with a single-
turn inductor.

An Inductor Model Including Neighboring Ground Plane

In this section we will add a ground plane underneath the inductor.

Simplify We will use the same simplifications as in the previous example for the
inductor wires. For the ground plane, let us assume it is much closer to the inductor than
the segments are spaced apart and that it is a perfect conductor, and that no magnetic
field penetrates it. From Figure 5.27, this means s � d. From the method of images we
can then see the situation mimics the previous one in that the current with the opposite
sign now runs underneath in addition to horizontally. By noting that the interaction
between the right quadruple and the left quadruple will tend to cancel each other when
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Figure 5.26 Comparison with simulation of the estimated inductance.
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they are far from each other, we can simply ignore that interaction and focus on one of
them at a time.

Solve We note that we have two quadruples, so we should calculate the magnetic energy
from both. However, the method of images only models the energy in the top half plane.
The magnetic field in the ground plane is zero. From symmetry we can thus ignore the
ground plane and one of the quadruples and calculate the total magnetic energy from one
of the quadruples only. The situation is now very similar to that in the previous section.We
can then simply use equation (5.14) to model the situation with d in the logarithmic term
replaced by 2s. In fact, we can simplify further by simply multiplying equation (5.14) by

1
ln d=2sð Þ

This will work to a high degree of accuracy for the situation where d 	 s 	 b > R0.
We find

L2-turn,gnd ¼ 1
ln d=2sð Þ

2μd
π

1
4
þ ln

d

R0
þ d � 2b

d

1
4
� 2 ln

b

R0
þ 3 ln

d

R0

� �� �
(5.16)

where we have also used the fact that both turns have the same distance to the
ground plane.

Verify In the following plot we show a field solver solution of the inductor structure in
Figure 5.28 as a function of l with several fixed spacings and compare it with the
approximate solution in equation (5.16). The simulation setup is the same as earlier, with

d

b s

x x

Ground plane

x x

Figure 5.27 Cross-section view of a two-turn inductor over a ground plane.
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the addition of a perfect ground shield underneath the inductor sitting 3 μm below the
bottom of the top conductor for all cases. The field solver top conductor height was 1 µm for
all cases.

Evaluate We see from the figure the wide conductor is the worst one compared to
earlier. This is an artifact of the modeling here, where we use a fixed 3 μm height of the
bottom of the conductor above the ground plane in the simulator. When we model this
with a 5 μm-diameter cylindrical conductor in our estimation equation (5.16), it will be
far from the simulator setup.

In both of these cases, 5.8.2, 5.8.4, there are a couple of things to remember.

1. The dominant effect in the inductor model is the linear term w.r.t size.
2. The less dominant effect is via the logarithmic term, which is quite forgiving

error-wise.

The results shown in the figure get a little better for small spacing since the neighboring
conductor is closer than the mirror image.

Overall, equation (5.16) is coarser than (5.14), and one can easily improve on it by using
similar methods to those described in section “AModel of a Two-Turn Indicator.” The fact
that the error for the 1 μm case is quite a bit smaller than before is more related to error
sources opposing each other than anything fundamentally more accurate in equation (5.16).

Key Concept

A ground plane underneath an inductor will reduce the inductance depending
logarithmically on the distance to the inductor and the thickness/conductivity of
the ground plane. The physical reason for this can be viewed as a reduction in the
total magnetic field.
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Figure 5.28 Comparison with simulation of the estimated inductance from a two-turn inductor.
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Summary – Two-Turn Inductor
In the previous two subsections we applied the estimation analysis to two-turn induct-
ors. We saw that by thinking through what such an inductor looks like and comparing it
with the one-turn inductor problem we already solved, we could come up with a really
simple model that catches many of the aspects of the physical structure and come within
10–30% of the actual value of inductance. It is yet another good example of the benefit
of estimation analysis. We will continue applying estimation analysis to the parasitic
effects of real inductors such as self-resonance (due to parasitic capacitance) and
resistive loss (due to resistance in the wires and substrate).

An Inductor Model Including Self-Resonance

We have looked at simplified models of the inductance of inductors. We have seen that
with fairly simple assumptions we can make good predictions of inductance. Another
important aspect of inductors is their self-resonance. Above this frequency it will
behave as a capacitor, so it is a good thing to be able to estimate. Let us apply the
method of simplification:

Simplify We showed previously in Section 5.4 that an on-chip inductor is really a high
impedance transmission line that is terminated at some low impedance. The easiest way
to estimate the self-resonance frequency is to calculate the λ=4 resonance as described in
Section 5.4, assuming the other end of the inductor is shorted to ground.

Solve The self-resonance is simply

f res ¼
c

λ=4
¼ c

4l
(5.17)

where l, c is the electrical length of the inductor and c is the local speed of light. The
electrical length is not always the same as the physical length since symmetries can
sometimes act to reduce this length. This in turn will increase the resonant frequency.
The electrical length should always be verified with a simulator. For integrated circuit
use one always wants to stay away from the resonant frequency of an inductor, and if
that happens to be larger due to symmetries, that is a helpful thing. The method outlined
here thus gives a conservative estimate of the resonance frequency.

Verify We see in Table 5.2 our estimate of the self-resonance compared with a field
solvers prediction, following the same simulation procedure we discussed earlier.

The simulation accuracy in these simulations is around 2%.

Evaluate The self-resonance can be modeled as a short terminated transmission line.
One word of caution: the electrical length can sometimes, due to boundary conditions or
symmetries, be different from a naïve interpretation of just the physical length. The
electrical length should always be verified with a field solver. The good news is the
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electrical length is in almost all cases shorter than or equal to the physical length, so the
actual self-resonance occurs at a higher frequency.

Key Concept

The self-resonance can be modeled as the λ=4 resonance of a short-terminated
transmission line.

A Model of Inductors Including Parasitic Capacitance and Resistance

In an integrated circuit there are other conductors nearby, and a real inductor model will
take them into account in various ways. We will here discuss a standard model of an on-
chip inductor and how various parameters can be estimated (see [41]).

Simplify A standard model that is often used is the ad hoc or phenomenological model
in Figure 5.29.

We discussed the line inductance L earlier. The capacitance can be modeled as an
ideal capacitor, Cdiel, in series with a leaky capacitor that models the silicon substrate
contribution Csub,Rsub. The series resistance Rs is simply the line resistance in the coil.

The inductor characteristics will be modeled by shorting one end to ground, so in the
following one of the capacitor stacks will be grounded. This is in line with our concept
of on-chip inductors as short terminated transmission lines.

Solve The capacitance Cdiel is typically larger than the substrate capacitance, and since
they are in series the substrate capacitance will dominate. We will ignore Cdiel here.

Table 5.2 Comparison of estimated resonance frequency vs simulated

Inductor
side [µm]

Resonance
freq [GHz]

1-turn inductor
Width 1 µm*

2-turn inductor
Width 1 µm
Spacing 2 µm

2-turn inductor
Width 1 µm
Spacing 5 µm

100 Estimated 375 95 99
Simulated 337 94 113
Error % +11 +1 �12

150 Estimated 250 63 66
Simulated 229 61 74
Error % +9 +3 �11

200 Estimated 187 47 49
Simulated 174 46 55
Error % +7 +2 �11

300 Estimated 125 31 33
Simulated 117 30 36
Error % +7 +3 �8

* The simulator finds the electrical length to be half of the physical.
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The shunting capacitance Cshunt is in parallel with the Csub capacitance. We will
merge them into

Cp ¼ Cshunt þ Csub

In this simple model we see the inductor’s resonance frequency is set by

f res ¼
1

2π
ffiffiffiffiffiffiffiffi
LCp

p ¼ c

4l
from 5:17ð Þf g !

Cp ¼ 16l2

2πð Þ2c2 L ¼ 4l2

π2c2 L
¼ 4l2L=lCt=l

π2 L
¼ 4Ct

π2
� Ct

2:5

(5.18)

where Ct is the transmission line capacitance from the 2D calculation in Chapter 4,
equation (4.55). The analysis is complicated by the fact we have two dielectric materials
with different permittivity. We will only use the permittivity of the one surrounding the
inductor. The substrate permittivity for bulk silicon is larger by a factor of ~4 so the
effective permittivity will be larger, resulting in a smaller speed of light and a lower
actual resonance frequency when compared with the estimated calculations. The fact
that the final constant in (5.18) is not 2 is due to the fact that the transmission line
capacitance is distributed, and in this model this capacitance has been approximated by
two capacitors at each end of the inductor structure. The 1=

ffiffiffiffiffiffi
LC

p
formula for the

resonance frequency is valid when the capacitor shunts the full inductor. In reality,
the distributed nature of the capacitance will reduce this effect and hence the factor is
not 2, but rather 2.5 for this model.

The substrate resistance can be estimated by noting that the loss is due to the mostly
vertical electrical field from the inductor causing currents in the substrate. If we use
Larea to denote the area of the conductor portion of the inductor and Tsub the thickness of
the substrate, we get simply

Rsub ¼ ρTsub

Larea
Larea ¼ Llength�Lwidth (5.19)

Csub

Cdiel

Rsub

Cdiel

L Rs

Cshunt

Rsub Csub

Figure 5.29 A phenomenological model of an on-chip inductor.
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where ρ is the substrate resistivity and Llength is the length of the inductor and Lwidth is its
width. Often this is used as a fitting parameter when comparing with simulations/
experiments, but here we will use (5.19). One can argue that for multi-turn inductors
the electric field in the substrate generated by the coils will overlap if the spacing
between the turns is close enough, causing an effective smaller area and higher Rsub.
Here we will use the same formula for both single- and dual-turn inductors.

Finally, the series resistance is

Rs ¼ 1
σ

Llength
LthickLwidth

α (5.20)

where α is a correction factor due to skin effect. This is often modeled as just a simple
skin depth, δ, times circumference calculation, and in practice when comparing with
simulation/measurements it is often correct within a few percent or so.

Rs � 1
σ

Llength
δ 2 Lwidth þ Lthickð Þ

Sometimes, depending on the cross-section of the inductor, the current distribution can
deviate from a simple skin depth calculation. The deviation at higher frequencies is due
to effects such as the lateral skin effect discussed in Chapter 4, section “Current
Distribution in Thin Conductors.” Let us look at a 1 � 5 µm cross-section of a
single-turn inductor made out of copper at 30 GHz, as shown in Figure 5.30.

Here the skin depth is ~0.4 µm, but since the height is only about 2 skin depths we
still see some lingering effects of the lateral skin effect.

Another similar effect can be seen in a two-turn inductor with a width of 5 µm and a
turn spacing of 1 µm displayed in Figure 5.31.

Here we also see a lateral skin effect but it is “spread out” over both conductors. This
can be understood in the same way as earlier where the currents will distribute
themselves to minimize the magnetic field or equivalently the inductance. In this way
the magnetic near-field is a “null” between the two conductors.

In short, the field penetration into conductors is not always as simple as a skin depth
calculation. Depending on conductor cross-section and frequency, the effect can be
quite different. Here, unless specifically noted, we will use a simple skin depth formula.

Figure 5.31 Lateral skin effect in an on-chip two-turn inductor.

Figure 5.30 Lateral skin effect in on-chip single-turn inductor.
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α ¼ MAX
LthickLwidth

2 Lthick þ Lwidthð Þδ ; 1
� �

(5.21)

A key figure of merit for inductors is the quality factor, or Q. For the model shown in
Figure 5.32 with one end shorted to ground we can write the impedance as

Z ¼ Rsub= jωRsubCp þ 1
� �

Rs þ jωLð Þ
Rsub= jωRsubCp þ 1

� �þ Rs þ jωL
¼ Rsub Rs þ jωLð Þ

Rsub þ jωRsubCp þ 1
� �

Rs þ jωLð Þ

¼ Rsub Rs þ jωLð Þ
Rsub þ Rs � ω2RsubCpLþ jω RsRsubCp þ L

� �
We can rewrite this as

Z ¼ Rsub Rs þ jωLð Þ
Rsub þ Rs � ω2RsubCpLþ jω RsRsubCp þ L

� �
¼ Rsub Rs þ jωLð Þ Rsub þ Rs � ω2RsubCpL� jω RsRsubCp þ L

� �� �
Rsub � ω2RsubCpL
� �2 þ ω2 RsRsubCp þ L

� �2
The denominator is now real and the numerator can be written as a complex sum aþ ib
where

a ¼ RsRsub Rsub þ Rs � ω2RsubCpL
� �þ Rsubω

2L RsRsubCp þ L
� �

b ¼ RsubωL Rsub þ Rs � ω2RsubCpL
� �� RsubRsω RsRsubCp þ L

� �
This gives a Q when defined as an imaginary impedance divided by a real
impedance

Csub

Cdiel

L Rs

Cshunt

Rsub

Zin

Figure 5.32 Calculation of Q from the phenomenological model.
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Q ¼ im Zð Þ
re Zð Þ ¼ RsubωL Rsub þ Rs � ω2RsubCpL

� �� RsubRsω RsRsubCp þ L
� �

RsRsub Rsub þ Rs � ω2RsubCpL
� �þ Rsubω2L RsRsubCp þ L

� �
¼ ω

L Rsub � ω2RsubCpL
� �� Rs RsRsubCp

� �
Rs Rsub þ Rsð Þ þ ω2L2

¼ ωL
Rs

Rsub
1� ω2CpL� R2

sCp=L

Rsub þ Rs þ ω2L2=Rs
(5.22)

For low frequencies assuming Rsub 	 Rs

Q e ωL
Rs

And for frequencies such that ω2LCp � 1 and ωL 	 Rs we find

Q e ωL
Rs

Rsub
1

ω2L2=Rs
¼ 1

ωL
Rsub

The Q quickly goes down due to substrate losses. In fact, it is the electrical field from
the inductor causing currents in the substrate that is a major contributor to the loss in this
case. The induced currents from the magnetic field are much smaller in size.

Verify The field solver setup is the same as discussed earlier but a lossy substrate
modeled with permittivity of 11.9 and a resistivity = 0.1 ohm-m, typical of lightly doped
bulk CMOS wafers, was added underneath a dielectric material with permittivity of
3 containing the inductor. The quality factor is calculated from

Qsim ¼ im Z 1; 1ð Þ
re Z 1; 1ð Þ
				

				
where Z(1,1) is the impedance matrix response. In this case we only use one port
excitation.

The top four plots in Figure 5.33 show the comparison results from a single-turn
inductor with a turn width of 1 µm. It uses equation (5.22) with Rs calculated from
equations (5.20), (5.21) and Rsub was calculated from (5.19). The bottom four plots
show the results of a two-turn inductor with a width of 1 µm and a turn spacing
of 1 µm.

Evaluate The quality factor of an inductor can be modeled as a loss of power in the
series resistance of the inductor, and for high frequencies the substrate resistive loss
needs to be included. The error in Q compared with simulations with a lumped model
varies depending on size and number of turns as well as launch geometry, but varies
typically between 0% and 30%. One can also see that the resonance frequency is within
the same error range and estimated is mostly higher than simulated. For the capacitance
evaluation in equation (5.18) the speed of light was calculated using the permittivity
of the top dielectric, only resulting in too high of a value compared with the
simulated value.
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Key Concept

The quality factor of an inductor can be modeled as a loss of power in the series
resistance of the inductor, and for high frequencies the substrate resistive loss due to
electric fields needs to be included.

5.8 Design Examples

We have investigated a number of situations and derived, using estimation analysis, a
number of convenient formulae for inductors, capacitors, and transmission lines. We
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Figure 5.33 Comparison of estimated and simulated values of the quality factor, Q. Figures (a–d) is
from a single turn inductor and (e–h) shows the result from a two-turn inductor.
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will here use this knowledge and construct realistic designs using these formulae as a
starting point.

Example 5.1 Rectangular low-Q inductor

We will first look at a fairly large inductor to get an idea on how one can proceed. The
specification in Table 5.3 is similar to what one might encounter in the “real” world.

Solution
Since 1 nH is a fairly large number, and the resulting single coil could end up being
rather large, around 1 mm in circumference, let us look for a dual-turn topology. The
resistance is irrelevant but we need to pay attention to the DC current. This will limit the
width we can use, and since the size is expected to be small, we need to choose a
minimal width that can carry the current. From Appendix A we see the maximum
current density can be found for metal 9, where the limit is 5 mA/µm. This gives us the
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width, w ¼ 1 μm, we will use an R0 ¼ 0:5μm following the discussion around equation
(5.12) concerning equivalent area sizing.

Let us know take a guess for the length of one side. A one-turn inductor would have a
size of around 200+ µm, a two-turn roughly one-quarter of this due to the coupling, which
gives around 50 µm; however, the coupling is not perfect to let us shoot for d ¼ 75μmwith
a spacing b ¼ 2μm. This gives ln d=R0 ¼ 5. With this we can use equation (5.15) to get a
good idea of a good starting point for a simulation iteration. We find

2μd
π

1
2
� 2 ln

b

R0
þ 4 ln

d

R0

� �
¼ 1:3nH

where we have anticipated 30% overestimation of the inductance we discussed earlier in
this chapter. Plugging in the numbers, we get an updated length estimate

d 8�10�7�17:5 ¼ 1:3�10�9 ! d � 92μm

We find also that for completion this inductor will have a resonance frequency of at least

f res ¼
c

4�8�lside ¼
3�108= ffiffiffi

3
p

4�8�92�10�6 ¼ 59GHz

and a series resistance of Rs ¼ ρ8lside= w�0:5 μmð Þ ¼ 25ohm, where we have used
Appendix A for some of the key parameters.

Q@10GHz � ωL
Rs

¼ 2:5

Plugging this scale into the simulator, we find after one iteration d ¼ 88μm gives
L ¼ 986 pH, f res ¼ 95GHz, Q ¼ 2:6

Example 5.2 Rectangular high-Q inductor
Let us now look at a procedure for building a high-Q inductor. We have the
specifications in Table 5.4, which, as before, can be encountered in the “real”-world.

Solution
Let us design a square inductor with a total inductance of 200 pH. We see from equation
(5.10) that the inductance is more or less proportional to the length of one side. We can

Table 5.3 Specification table for inductor design

Specification Limit Comments

Inductance 1 [nH]
Q N/A
DC current 5 [mA]
Size Small
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estimate the logarithm factor by assuming the length over width is approximately
10 giving a logarithm of 2. We then have

lside ¼ 200�10�12

μ�2
π
2:5

¼ 200�10�12

4 π�10�7�2
π
2:5

� 100μm

We will verify the logarithmic term later and perhaps make some adjustments. The self-
resonance for this structure is from equation (5.17) and we get

f res ¼
c

4�4�lside ¼
1:5�108

4�4�100�10�6 � 1011 Hz½ 


We see that at the frequency of operation we will be quite far from the self-resonance.
We can then expect the dominant source of loss to be the series resistance in the
inductor metal itself. We can now turn to the question of Q. We know most of the
currents run along the edges of the wire due to skin effect. Let us start with a higher-
level copper metal, say M9 in our process. Let us see if a 2 µm-wide wire gives us the
right resistance. At 25 GHz the series resistance needs to be less than
Rs < ωL=Q ¼ 31=20 ¼ 1:55ohm. A 400 µm-long wire of copper has a resistance
R ¼ Lρ=A ¼ 400 10�6 1:7 10�8= 10�6 10�62 0:5

� � � 7ohm, so that is too high, even
when not counting the skin effect. The skin depth for copper at 20 GHz is
δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ=ωμ
p � 0:46μm: It will increase the effective resistance by perhaps a factor

of two. If we make the conductor wider, the skin effect will limit the reduction in
resistance. It does not look like this metal layer will work. Let us try the aluminum top
layer instead. We see now, R ¼ Lρ=A ¼ 400�10�6�2:6�10�8=10�6�10�6�2�2 ¼ 2:6. This
looks like a better candidate. We can use a width of 4μm to reduce the resistance more
and have some margin. Having decided on the width, we can then finalize our length.
We find lside ¼ 80μm where we have used our knowledge that the inductance is
overestimated by some 20% with this model. Our inductor should look like an 80 μm
per side aluminum square with a width of 4μm. From the formulae we find

L ¼ 2�4�10�7 80�10�6 1
4
þ ln

80�10�6

2�10�6

� �� �
¼ 252 pH

Rs ¼ 2:6�10�8 320�10�6

0:57�10�6�2 4�10�6 þ 2�10�6
� � � 1:2

Q � 26 using L ¼ 200pHð Þ
In summary estimation calculations give us the values in Table 5.5.

Table 5.4 Specification table for 200 pH inductor design

Specification Limit Comments

Inductance 200 [pH]
Q 20 @ 25 GHz
Resonance 50 [GHz]
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We have some margin to our design goal. We now put these parameters into a field
solver and we find initially

L ¼ 205pH

R ¼ 1:5ohm

Q ¼ 21

After one simulation iteration we find the final parameters in Table 5.6.
The series resistance corresponds to a shunt resistance of Rshunt ¼ Q ωL � 660ohm.

Example 5.3 Two coupled inductors
We will here look at the coupling effect between two square inductors and from the
specifications in Table 5.7 we see we need to maximize the coupling factor.

Solution
For this example we can simply use the expression for a two-turn inductor and compare it
with a single-turn inductor. As the distance between the two turns decreases, we showed
earlier in section “AModel of a Two-Turn Inductor” the total inductance is close to 4� the
single-turn inductor. At 4� we have a coupling factor of 1. Let us calculate the coupling
factor more precisely using b ¼ 2R0. The equation for a two-turn inductor is from (5.15)

L2-turnb¼2R0�d ¼
2μd
π

1
2
þ 4 ln

d

R0
� 2 ln

b

R0

� �
:

Table 5.5 Starting point size parameters for 200 pH inductor design
from estimation analysis

Parameter Value Unit

lside 80 μm
w 4 μm
L 252 pH
R 1:2 ohm
Q 26

Table 5.6 Final size parameters after simulation optimization

Parameter Value Unit

lside 78 μm
w 4 μm
L 200 pH
R 1:5 ohm
Q 21
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The one-turn inductor is equation (5.11)

L ¼ 2μd
π

1
4
þ ln

d

R0

� �� �

The ratio is now

L2-turnb¼2R0�d

L
¼ 2Lþ 2kL

L
¼ 2þ 2k ¼

1
2
þ 4 ln 10� 2 ln 2

� �
1
4
þ ln 10

� � ¼ 3:2 ! k ¼ 0:6

We see from this result that we need to minimize the distance between the turns as much
as possible to achieve the desired coupling factor.

Example 5.4 Increase inductance by coupling
We will now use our coupling coefficient calculation in Example 5.3 to make an
inductor with much larger total inductance in the same area as a single one

Solution
We can use the convenient coupling between two inductors to achieve a max of 4� the
single wire inductance as in the previous example. Let us try by using a metal level M9,
M10 inductors on top of each other. From Appendix A the distance between the layers
is 0.5 µm. We see from Example 5.3 that with the same size inductor as in Example 5.2,
we should be able to achieve close to about 3.2 times the individual inductance using
the result from Example 5.3.

L ¼ 3:2�200pH ¼ 640pH:

However, this is only true if the currents in the overlapping segments flow in the same
direction, so great care is necessary when designing the loops. If the currents are going
in the opposite direction, the designer will be very disappointed.

Example 5.5 Design an LC tank
In the previous examples we built a few inductors. We will now take the inductor in
Example 5.2 and create an LC tank by adding a capacitor. We will need a resonance
frequency of 25 GHz and an effective parallel resistor >500 ohm. This LC tank will be
used in Chapter 7.

Table 5.7 Specification table for inductor coupling

Specification Limit Comment

Coupling factor, k >0.5 Assume h=R0 ¼ 10, b=R0 ¼ 2
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Solution
We can try to use the inductor we constructed in Example 5.2 and design a capacitor
with a capacitance equal to

C ¼ 1
Lω2

¼ 1

200�10�12 2π�25�109� �2 ¼ 0:2pF

We have now an equivalent circuit looking like Figure 7.6, with an equivalent parallel
resistor of

R � ωL Q ¼ 660ohm

Example 5.6 Estimate capacitive load of various amplifiers
Finally, we can use what we have learned about capacitance in the first part of the
chapter to estimate the parasitic capacitance of our in-design amplifiers.

Parasitic capacitance of Example 2.2
The follower amplifier designed in Example 2.2 is routed in M9 to connect to the next
stage. The routing will have matched length set by the stage furthest away. We have a
length of 50 µm of M9. It does not need to be wide, so we can keep it at 0.5 µm
minimum width. The complication comes from the power grid routed on M10 right
above M9. We find

Cpar ¼ ε
A

d
¼ 3�8:85�10�12 50�10�6�0:5�10�6

0:5�10�6 � 1:35fF:

This calculation ignores the sidewall capacitance so we are probably off a factor of two
or so. It is a about 20% of the capacitance of the next stage which is around 12fF.

Parasitic Capacitance of Example 3.1
The comparator circuit designed in Example 3.1 has an output routing that is much
smaller in length, only 5 µm, but in layer metal 2 with a width of 0.2 µm. We get

Cpar ¼ ε
A

d
¼ 3�8:85�10�12 5�10�6�0:2�10�6

3�10�7 ¼ 0:13fF:

This capacitance is very small compared with the output load of the comparator, even if
we are off by a factor of two in the estimated capacitance.

Parasitic Capacitance of Example 3.2
Finally, the amplifier in Example 3.2 has an output routing in metal 8 that is 3 µm long
with minimum width of 0.5 µm

Cpar ¼ ε
A

d
¼ 3�8:85�10�12 3�10�6�0:5�10�6

2�10�6 ¼ 0:02 fF:

The higher-level metal routing is here very helpful in reducing the parasitic capacitance.
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Example 5.7 Parasitic capacitance estimation
In this example we will estimate the parasitic capacitance of an M2 grid with length/
width/spacing = 20/0.2/0.2 μm. Occasionally grids like this one appears in the daily
work and a short-hand way of estimating the capacitance to ground can be useful.

Solution
The grid here is very tight, in fact from the fields perspective it will look like a fairly uniform
metal. We can simply estimate the capacitance to ground assuming a solid metal as

Cpar ¼ ϵ
A

d
¼ 3�8:85�10�12 20�10�6�10�10�6

3�10�7 ¼ 18fF:

5.9 Summary

In this chapter we have learned

� From a transmission lines analysis that an inductor is simply a transmission line
terminated with an impedance much smaller than the characteristic impedance of
the transmission line. Likewise, a capacitor can be seen as a transmission line that
is open compared with the characteristic impedance.

� To estimate L, Q of on-die one-turn and two-turn inductors with given process
parameters.

� General methodologies to approach any kind of inductor topologies.
� To estimate C of various on-die capacitors.
� To estimate S11, S21 in various situations.

5.10 Exercises

1. Derive the inductance expressions for a rectangular cross-section with a 3-to-1
ratio. Make appropriate approximations, such as cylindrical elements, in section
“An Inductor Model with Rectangular Cross-Section.”

2. Estimate the size of a rectangular inductor with inductance = 1 nH, with a
maximum height of 100 µm.

3. Estimate the size of an inductor with inductance = 200 pH over a ground plane
with operating frequency of 10 GHz. Assume perfect ground plane.

4. Make an inductor with inductance = 3 nH in the same area as the inductor in
exercise 2.

5. Make an LC tank with a resonant frequency of 10 GHz, with the effective parallel
resistance >1000 ohms; is it possible? Assume a perfect capacitor.

6. A square inductor has been designed at metal M10 with a side length of 100 µm.
The chip is intended to be a flip-chip and the package impact on the inductor has
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not been estimated. The package can be modeled as a perfect ground plane 100
µm above the inductor. Estimate the impact of the package plane on the
inductance.

7. Calculate S21 with a lossy transmission line and lossy ground, where both signal
conductor and ground are made of copper

8. Describe shielding effects for voltages and currents and estimate good practices.
Use the 1D model examples outlined in Chapter 4, sections “Simple Two-Plate
System Calculation” and “First Principle Calculation of a Current Sheet over a
Ground Plane” and use several thin conductor planes where the impact of the
thickness of such planes on the electromagnetic fields via the vector potential A
and voltage field φ can be estimated.
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6 Electromagnetic Field Simulators

Learning Objectives

� Basic simulator principles from application of estimation analysis flow to:
○ Long wavelength approximation
○ Full-wave approximation

6.1 Introduction

This chapter will take our experience from Chapters 4 and 5 and use some of these
results to sketch how simulators work. We will not go into great detail, as it is somewhat
outside the scope of the book, but from what we have learned so far we can draw some
interesting conclusions about what will make a good simulator and how a poor one may
be revealed. In fact, this chapter will show yet another application of estimation
analysis, although the context is quite different. We will make simplifying assumptions
and briefly discuss the solution and verify/evaluate the result. There are many details
when implementing a real-world simulator that fall outside the scope of this book, and
we provide the interested reader with avenues to explore further in the References
section below.

We start with the simple case of electrostatics where we show how charge induced
from a voltage can be solved by, in principle, quite simple methods. After that we
investigate inductance simulations by calculating fields from current distributions. We
proceed by showing some of the basic steps necessary to design a full-wave simulator,
and what an excitation port is and how it is used. Finally, a brief overview of Matrix
inversions is provided.

6.2 Basic Simulator Principles

All simulators follow the same basic principles: divide the subject matter (be it time or
space) into smaller chunks, referred to as a grid or mesh. Assume that inside each
chunk, the property of interest is not varying at all or is varying slowly, either a constant
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or some linear and perhaps some higher-order polynomial. Set up the governing
equations with these approximations in mind and solve them (nearly always by
inverting a matrix). Repeat by refining the grid until the desired accuracy has been
reached. These same principles can be found in circuit simulators, Maxwell field
solvers, system simulators, etc.

For our purpose, we would like to see how field solvers operate. We have seen in
previous chapters that the field from current segments can be solved precisely and, as
the reader has probably guessed by now, some field solvers work by dividing up the
current-carrying conductors into smaller chunks where each chunk has a constant
current. Similarly, if we want to know capacitance, we divide the surface of each
conductor into smaller pieces where we assume voltage and charge is either constant
or slowly varying in some cases.

6.3 Long Wavelength Simulators

Long wavelength simply means that the length scales of the problem are much smaller
than any field wavelength, as we saw in Chapter 4. The vector potential, A, will give rise
to magnetic fields and thus inductance, whereas φ will create electric field and capaci-
tance. We will take a look at these effects in turn.

Capacitance Simulations in Three Dimensions

We know from Chapter 4 that the long-wavelength approximation means the length
scales of the problem are much smaller than any wavelength of the fields. For the
potential field, we have from (4.29) that

Δφ xð Þ ¼ 0

outside any conductor (where the charge is zero). This is simply Laplace’s equation in
three dimensions. It may be tempting to attempt to solve this equation with a given set of
boundary conditions. It certainly looks fairly innocuous, but the main difficulty one runs
into is one of accuracy. The result of the simulation will be induced charge on the surfaces
of various conductors. To calculate the charge will involve taking the second-order
derivative of φ at the surface. We know from the equation itself this derivative is zero
outside. In order to implement something like this, the grid needs to be really fine and it
will take a long time to solve. Instead, it is more efficient to start from (4.37) to calculate
the induced charge. Here, we divide the conductors into smaller shapes where we assume
the charge is constant, and using (4.37) we then calculate the potential this charge
distribution produces at a certain point x. We then simply go through all the conductors,
calculate the voltage resulting from everything else, and end up with a matrix equation.

We will illustrate this process by making some simplifications to illustrate the main
point. It is a good example of estimation analysis but the context is a little different from
the rest of the book. The estimation analysis will here result in a set of pseudocodes that
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could be implemented. The reader must bear in mind that following these procedures
will produce codes that work in principle. Building codes that are efficient and void of
bugs is a whole different cup of tea and way outside the scope of the book.

Simplify We now make a number of simplifications:

� The conductors are perfect, so no charge will penetrate into the volume of the
conductors, i.e., they are surface charges.

� We divide each conductor surface into much smaller surface segments where the
charge is constant: see Figure 6.1.

� There is only one dielectric medium, so no dielectric boundaries need to be
considered.

� We will ignore the complication of self-interaction where a given charge impacts
the voltage on its own segment (there is a singularity). This is an important effect
and not that difficult to deal with, but for illustrative purposes we will not address
this problem here.

Solve Let us now define the problem by looking at the potential from a charge on a
surface segment j, at a point r. We have from equation (4.37)

V rð Þ ¼
ð

Surface_j

ρj r
0ð Þ

r� r0j j dr
0:

We now calculate this voltage at a point in the center, ri, of another segment i and sum
over all segments. We find

Vi rið Þ ¼
X
j

ð
Surface_j

ρj r
0ð Þ

ri � r0j j dr
0 ¼

X
j

ρj

ð
Surface_j

1
ri � r0j j dr

0:

This can be written as a matrix equation:

ri
O

Vi(ri) =
∫
r′

ρj(r′
r′

r′

r′

)√
|ri− |

d

Figure 6.1 Conductors in three dimensions where the surface is divided up into smaller areas
within which the charge is constant.
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V ¼ G�ρ (6.1)

From the boundary condition we know the value of V on all surfaces, and we can
calculate G and solve for ρ. To get to capacitance, let us be a little more careful with
notation. Let us assume we have Nseg conductor segments, each of which is subdivided
into Nsub charge segments. We have a total number, Ntot ¼ NsegNsub of charge segments.
Let us denote by ρij charge segment j on conductor segment i. In order to find the
capacitance between conductor segment i and j, we need to ground all segments except i,
which has a voltage of Vi ¼ V . We solve (6.1) and calculate the capacitance from (4.48)

Cij ¼ 1
V

XNsub

k¼1

ρjk:

With this procedure one needs to go through all conductors and set each voltage to V
one at a time, keeping all others grounded, solve the equation, and calculate the
resulting capacitance. It sounds easy enough and it sort of is, but the difficulty lies in
the details. The integrand has a divergence when i ¼ j that is fairly strong and the
accuracy required in the numerical integration can be excessive. Furthermore, the grid is
critical and in order to set it up properly one has to have a deep understanding of how
charge will distribute itself on the surfaces beforehand. However, the pseudocode is
straightforward.

Pseudocode

Subroutine build_G(Mesh)
* Loop over Mesh to build Matrix G.
For i = 0,N do

For j = 0,N do
Integrate_element(r[i],r[j])

End for
End for
End build_G

Subroutine CapacitanceSolver
Create_mesh(Mesh)
G = Build_G(Mesh)
Ginv = Invert_matrix(G)
For i = 1,N do

V = Define_voltages(Mesh)
rho = Multiply(Ginv,V)
C[i] = sum(rho) // Assuming the voltage V = 1.

End for
End CapacitanceSolver

Verify Simulators are traditionally verified by having them solve known problems and
comparing the solutions. We leave it as an exercise to the reader to implement a code
and gain experience by learning by actually doing.
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Evaluate We are not going to go to the trouble of actually building codes here, but
simply state that although this may sound really simple and in some meaning of the
word it is, the problem comes when you want accuracy. The charge tends to want to sit
at the edges of the conductors, similar to the current distributions we examined in
Chapter 5. This means that around those edges the surface elements must become really
small to resolve the charge distribution, adding up to quite a few elements for large
geometries. Some serious tricks need to be employed to get to the bottom of this and
make the problem manageable. The most successful simulators have in common that
they have found clever ways to manage the grid-generating algorithms. This has made
some inventors very wealthy indeed. The construction of the grid and the speed with
which the matric, G, is calculated are critical parts of building simulators. If this is done
poorly it will take a long time to find a solution for a given accuracy.

Inductance Simulations in Three Dimensions

Inductance simulators can be made in a similar fashion, where we divide up the
conductor into smaller current-carrying segments. The steps we need to go through
are somewhat more complicated, and we will just sketch the procedure here. Far more
details can be found in [3].

Simplify We assume we are dealing with one long wire of a certain thickness and
width that are much smaller than the conductor length. We chop the wire into small
conductor segments where we assume several things:

� The magnitude of the current in each conductor segment is the same, so there is
no capacitive or other loss.

� The current is uniform in a cross-section of the wire, in other words skin depth is
not important. Each conductor segment can then cover the full cross-section of
the wire.

� These is only one magnetic medium, so no boundaries need to be considered.
� We will ignore the complication of self-interaction where a given current segment

impacts its own magnetic field (there is a singularity). This is an important effect
and not that difficult to deal with, but for illustrative purposes we do not address
this problem here.

Solve Let us now define the problem by looking at the vector potential from a current
on a conductor segment i, at a point r. We have from (4.36)

Ai rð Þ ¼
ð

Segment_i

Ii r0ð Þ
r� r0j j dr

0

With this expression we can now calculate the partial inductance matrix, Li, j, between
segments i, j, using (4.46) and
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Ij ¼ Ij
�� ��ej ¼ Ijej:

We find

Li, j ¼ 1
IiIj

ð
Segment_j

Ij rj
� ��Ai rj

� �
drj ¼ 1

IiIj

ð
Segment_j

Ij rj
� �� ð

Segment_i

Ii rið Þ
rj � ri
�� �� dridrj

� Ij�Ii
IiIj

ð
Segment_j

ð
Segment_i

1

rj � ri
�� �� dridrj ¼ ej�ei

ð
Segment_j

ð
Segment_i

1

rj � ri
�� �� dridrj:

We refer to the case i 6¼ j as the mutual inductance and i ¼ j as the self-inductance,
similar to what we discussed earlier. Here we see explicitly the convenient fact that
when the two currents are perpendicular to each other their mutual inductance is zero. If
we decide not to divide the conductors – perhaps they are really thin, or frequency is
low – we will be done here. We merely have to sum up all the elements to get the total
inductance of the wire.

L ¼
X
i, j

Li, j

Notice the similarities in the expressions here compared with the previous section with
the capacitance solver, where we summed over all charges and divided by the voltage
difference to get the total capacitance between two conductors. There are a couple of
important differences. For example, for the inductance case, we assume just one wire
with a certain fixed current going through all segments. This greatly simplifies the
analysis and we can just calculate the coupling without having to solve a matrix
equation. The normal duality of capacitance and inductance is hidden due to these
different assumptions.

But we can take this one step further and look at the situation where skin effect is
important. We make some additional simplifications:

� The conductors are close to ideal so the current will only flow within a certain
surface depth. There is no resistive loss.

� We divide the surface of each conductor segment into much smaller surface
segments within which we assume the current is constant. For simplicity, the
number of subsegments is the same for all conductor segments.

� For a conductor segment, we assume the voltage drop across all surface segments
is constant.

By subdividing the conductor segments into smaller segments where the current inside
each is constant, we find similarly to before

Li, j ¼ ei�ej
ð

Segment_j

ð
Segment_i

1

rj � ri
�� �� dridrj:

This defines the inductance matrix between each small surface segment. This is not
quite what we want. We need the partial inductance for a particular conductor segment,
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which we can then sum up to find the total inductance of the whole structure, and we do
not know the size of the current in each surface segment a priori. In order to move along
we need to be a little more careful with the definition of the index notation. A surface
segment, i, belongs to a certain conductor k and inside this conductor segment it has a
subindex, l. We then have the total number of current segments, Ntotal is the total
number of conductor segments, Nseg, times the total number of surface-segments, Nsub.

Ntotal ¼ NsegNsub:

A particular current segment i is then referred to as kl. Likewise for the index j we refer
to a particular conductor segment m and a subsegment n (see Figure 6.2).

We now know the partial inductance for each segment, and since we also know the
total current we can calculate the voltage drop across each segment assuming a
particular frequency ω and using ohm’s law,

ΔVkl ¼ jω
XNseg

m¼1

XNsub

n¼1

ImnLkl,mn ¼
XNseg

m¼1

XNsub

n¼1

ImnZkl,mn,

with Zkl,mn denoting the impedance matrix. This is just a matrix equation, and we can
take the inverse to find the individual currents for each surface segment

Imn ¼
XNseg

k¼1

XNsub

l¼1

ΔVklYmn,kl ¼
XNseg

k¼1

ΔVk

XNsub

l¼1

Ymn,kl,

where Ymn,kl is the admittance matrix. We start to see the resemblance to the capacitance
calculation in section “Capacitance Simulations in Three Dimensions.” We can now
take advantage of one of our simplifications, that the sum of all currents within a
conductor segment is constant, conductor segment to conductor segment,

XNsub

n¼1

Imn ¼ I ¼ constant:

ri

rj

O

∫
rj

∫
ri

1√
|rj−ri|

dridrj

Figure 6.2 A cross-section of a conductor with subsegments where the mutual inductance integral
is indicated.
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We get

I ¼
XNsub

n¼1

Imn ¼
XNseg

k¼1

ΔVk

XNsub

n¼1

XNsub

l¼1

Ymn,kl ¼
XNseg

k¼1

ΔVkym,k (6.2)

The matrix ym,k is the admittance matrix between conductor segment m and k. After a
simple inversion we find finally the impedance matrix between conductor segments.

z ¼ y�1:

And we can find the total inductance by

L ¼ 1
jω

X
i, j

zij:

Pseudocode

Subroutine build_Zij(Mesh)
* Build Matrix by looping over the Mesh
For i = 0,N do

For j = 0,M do
Integrate_element(r[i],r[j])

End for
End for
End build_Aij

Subroutine InductanceSolver
Create_mesh(Mesh)
Zij = Build_Zij(Mesh)
Yij = Matrix_Inverse(Zij)
yij = Contract_subsegments(Yij)
zij = Matrix_Inverse(yij)
End InductanceSolver

Verify Reference [3] has a similar discussion but with more details.

Evaluate Compared with the capacitance calculation, this is somewhat more compli-
cated, and a few more steps need to be taken if the detailed surface current distribution
needs to be known. However, the same caveats we listed in section “Capacitance
Simulations in Three Dimensions” apply here. Building an efficient mesh, or grid, is
challenging, since the currents tend to crowd near the edges as we outlined in Chapter 5,
Figures 5.30 and 5.31. Another observation is that the duality we highlighted in
Chapter 4 between capacitance and inductance is nontrivial to take advantage of, in
that the capacitance calculation used the fact that the values of the potential, φ, are
known, and a fairly straightforward matrix equation can be set up. For the inductance
case there is no boundary condition on the corresponding vector potential, A. Instead,
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the boundary condition is set by the total current, so a few more steps need to be taken
to solve for the inductance.

6.4 Method of Moments

In the previous section we calculated the capacitance and inductance separately through
their induced charges and currents. This is a great simplification and useful in the long-
wavelength approximation where such concepts are well defined. In the short wave-
length regime, or more popularly the full-wave regime, it is no longer possible to
separate the charges and currents and we need to solve for both at once. We will briefly
describe here how this can be done with the popular method of moments.

Simplify We make the following simplifications:

� The currents are constant and in a given direction within a small segment.
� There is no local charge buildup, so that all currents going out of one segment

enter the next segment.
� We ignore again the problem of self-interaction due to space limitations.
� We only consider waves that are outgoing, ee�jkr .

We can now divide all currents into small current segments and write the current as:

J rð Þ ¼
XN
n¼1

an In rð Þ

where In has magnitude 1 and is the direction of the local segment and an are the
magnitudes.

Solve We get using this expression for the currents in the electric field equation (4.8)
where we can write φ in terms of A via (4.12)

E rð Þ¼�μjω
1
4π

ð
J r0ð Þ
r� r0j je

�jk r�r0j j dr0 þ 1
jωε

r r� 1
4π

ð
J r0ð Þ
r� r0j je

�jk r�r0j j dr0
� �

¼�μjω
1
4π

ðXN
n¼1

anIn r0ð Þ

r� r0j j e�jk r�r0j j dr0 þ 1
jωε

r r� 1
4π

ðXN
n¼1

an In r0ð Þ

r� r0j j e�jk r�r0j j dr0

0
BBBB@

1
CCCCA

¼�
XN
n¼1

μjω
1
4π

ð
an In r0ð Þ
r� r0j j e�jk r�r0j j dr0 þ

XN
n¼1

1
jωε

r r� 1
4π

ð
an In r0ð Þ
r� r0j j e�jk r�r0j j dr0

� �

where we have used the full-wave 3D solutions of A, φ to Maxwell’s equations.
The electric field is the field resulting from the currents, commonly referred to as a

scattered field, Es. If we have an incident known field, Ei, we can apply the boundary
condition that the total tangential components need to vanish on the surface of the
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conductor. For the part of the conductor where the incident field comes in, we have
n� Ei ¼ �n� Es, for the rest of the conductor the tangential portion of the field,
n� Es ¼ 0, where n is the normal unit vector from the surface. We assign

Es rð Þ ¼ E rð Þ
and find

�n� Ei rð Þ ¼ n� Es rð Þ

¼ n� �
XN
n¼1

μjω
1

4 π

ð
anIn r0ð Þ
r� r0j j e�jk r�r0j j dr0

"

þ
XN
n¼1

1
jωε

r r� 1
4 π

ð
an In r0ð Þ

r� r0j j e�jk r�r0j j dr0
� �#

:

We can consider the situation where we have an inductor, or transmission line, where
the end stub has a forced incident electric field that is parallel to the conductor surface.
In this way the incident field in the previous equation has a nonzero component. This
equation is known as the EFIE (electric field integral equation). Similarly we can derive
the MFIE (magnetic field integral equation); this equation will not contain any different
information from the EFIE, but it can sometimes be of use.

This is one equation with an, 1 � n � N unknown coefficients. To solve this we can
multiply by testing functions/integrals,

Ð
fm dr, whereby the boundary conditions can be

evaluated at certain points using delta functions as testing functions; or, by other choices
of testing functions, one can evaluate the boundary conditions over a region. One
common choice is to use same testing functions as the current elements, In rð Þ. This is
known as Galerkin’s method. In this way we integrate along the surface of the
conductor where the boundary conditions are known. If we multiply the above EFIE
equation with

Ð
Im dr we get:

ð
Im rð Þ�n� Ei rð Þ dr ¼ þ

XN
n¼1

μjω
1

4 π

ð
Im rð Þ�n�

ð
anIn r0ð Þ
r� r0j j e�jk r�r0j j dr0dr

�
XN
n¼1

1
jωε

ð
Im rð Þ�n�r r� 1

4 π

ð
anIn r0ð Þ
r� r0j j e�jk r�r0j j dr0dr

� �
:

This is now a matrix equation:

Zmn an ¼ bm (6.3)

where bm ¼ Ð
Im rð Þ�n� Ei rð Þdr integrated along the surface of the conductor, and

Zmn ¼ þ μjω
1

4 π

ð
Im rð Þ�n�

ð
In r0ð Þ
r� r0j j e

�jk r�r0j j dr0dr

� 1
jωε

ð
Im rð Þ�n�r r� 1

4 π

ð
In r0ð Þ
r� r0j j e

�jk r�r0j j dr0
� �

dr:

We simply invert this matrix equation and find the currents resulting from the external
stimulus, Ei. When the currents are known, we can use them to calculate the vector
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potential A and the potential φ. From these two we can now calculate the electromag-
netic field at any point in 3D space.

This is a short outline of how one can write Maxwell’s equations in a form that is
amenable to numerical implementation. A similar discussion can be found in [2], where
far more detail regarding the method and numerical implementation can be found. The
convenient aspect of using the method of moments is that you only need to create a
mesh where the currents could be flowing. There is no need to grid the whole three-
dimensional space. The acceleration in terms of necessary computations can be quite
extensive and it is nowadays a very popular simulation algorithm. Similarly to earlier, it
is quite straightforward to write a code that can solve this equation, but the difficulty lies
in creating efficient grids, dealing with the potential divergence in the evaluation of
integrals, and building up the matrix elements efficiently.

On the Use of Ports

Ports are used to provide input stimulus to the structure. There are several ways to do
this, including delta gap source ports and wave ports. We will describe them briefly but
not go into implementation details.

Delta Gap Source
A delta gap source is an impressed electric field between two conductors (see
Figure 6.3). This field is then used as the external field in, for example, the method of
moments. It is the simplest of the ports commonly used. For the integrated circuit
designer it is quite relevant because of the small size of the active devices that connect
to the conductors. For microwave applications it is much less common.

External E-field

Figure 6.3 A simple 2D projection of two conductors with a field impressed between them. This is
the incoming field and the way it is often pictured in the simulation setup.
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Wave Port
A wave port is often defined on the boundaries of the system under consideration.
Simply put, the fields are solved assuming two-dimensional symmetry on the boundary,
as in Chapters 4 and 5. The intention is to mimic, say, a coaxial cable where there is an
electromagnetic wave running, and it will look approximately like a field where the
electric and magnetic field vectors are perpendicular to the direction of travel, hence the
two-dimensional solution. Such a solution is then simply used as the boundary condi-
tion for the system under consideration. One can imagine modeling the input connector
to a printed circuit board or some such application where this wave port model is a
natural approximation. This type of port is very common in microwave applications.

Matrix Solvers

We have encountered matrix equations a couple of times in this chapter, and for complete-
ness we will briefly mention how one can go about solving such equations. Basically it
involves inverting the matrix and multiplying it with the right-hand side (rhs). Matrix
inversion is a very active research field, and algorithms that were popular 20 years ago have
been superseded by much more efficient methods. If one is interested in finding a modern
implementation, an internet search is recommended. Many research groups publish their
code in the public domain, so one can easily download and use it in one’s own implementa-
tion, but there can be licensing limitations for commercial use. If one is interested in writing
one’s own code, there are broadly speaking two classes of solvers: direct matrix manipula-
tions (exemplified by Gaussian elimination, LU decomposition) and iterative methods.

Gaussian Elimination
With Gaussian elimination one simply reorders the equations through various multi-
plications/divisions and row additions/subtractions to end up with a single unknown
in one of the equations, which can then be solved with simple back substitution. This
is then solved and the process repeats with the now reduced set of equations. For more
details see [2, 6]. This generally works but requires one to redo all the work for
each rhs.

LU Decomposition
Here one eliminates the problem of the rhs by writing the matrix as a product of two
other matrices, L, U such that A ¼ LU. The L matrix has the lower left triangle field
including the diagonal, and U has the upper right triangle field with zeros in the
diagonal. This way of writing the equation results in another way of doing back
substitution as earlier, but it no longer depends on the rhs, and as long as the matrix
is not changing it is often a better method. References [2, 6] have more details.

Iterative Methods
What have really impacted the speed of the matrix inversion algorithms are iterative
methods that can be very advantageous for large systems. The basic idea is to start with
a guess, x0 to the solution of Ax ¼ b. The idea is to come up with a way to minimize the
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residual y ¼ A x� x0ð Þ by somehow calculating a new solution from x1 ¼ x0 þ βz0,
where z0 is some cleverly chosen direction. This goes on until the desired accuracy (size
of yj j) has been reached. There are a number of different ways of doing this, including
conjugate gradient and biconjugate gradient methods (see [2, 6]). One class of remark-
ably easy to implement and efficient methods that work best for sparse matrices
(frequently encountered in circuit systems) are the Krylov Subspace methods. See [7]
for a good discussion on these techniques.

Verify The procedure we have sketched here is similar to what is discussed in much
more detail in [2].

Evaluate We arrived at the matrix equation through somewhat broad strokes, and
the details of implementing such expressions in a code is outside the scope of this
book. It is encouraging that the core of a simulator’s operation can be understood
from fairly simple arguments. It should be clear that given certain boundary condi-
tions in terms of electric fields, we get as a result currents at various locations. It is
then natural to think of the output of the simulator as Y-parameters that are defined
as a current resulting from a voltage stimulus. What we are interested in as a final
output is likely S-parameters, since measurement equipment is mostly set up to
produce such. In [5] there is a good description of how to generate S-parameters
given Y-parameters.

6.5 Summary

We have studied in a broad sense how electromagnetic field solvers can be imple-
mented. We first looked at capacitance and inductance solvers appropriate for low
frequencies, then outlined how a full wave simulator might be set up in terms of
equations. Throughout the chapter we adapted the estimation analysis way of thinking.
The details concerning code implementations are outside the scope of this book.

6.6 Exercises

1. Build a code that can solve for capacitances in either two or three dimensions. In
particular, pay attention to the self-interacting terms. How would you avoid the
potential singularity issue? For support codes such as integration algorithms and
matrix solvers, there are plenty of online resources.
a. How should the mesh (grid) be set up? Where is the charge accumulating?

2. Do likewise for inductance.
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7 System Aspects

Learning Objectives

� In this chapter we will demonstrate how to apply estimation analysis to higher-
level systems such as
○ Feedback systems – PLLs
○ Fourier transforms and how to efficiently use them when doing estimation

analysis – sampling theory
○ Defining differential equations – circuit analysis
○ Laplace transforms – loops, both systems and circuits
○ Simple estimates using nonlinear perturbations – VCO amplitude
○ Sinusoidal perturbations of large signals – jitter–phase noise relationship

We assume the reader has encountered the basic mathematical theory covering the
definitions of these concepts before in elementary classes. The reader does not need a
background in the high-level systems themselves, as the discussion will be held at an
introductory level.

7.1 Introduction

In the previous chapters we have seen a few different examples of the kind of estimation
techniques that are helpful in building understanding of physical systems. In particular,
the RF sections showed that a two-dimensional approximation, sometimes with add-
itional symmetries, is of great help. There we also dug fairly deeply into certain aspects
in order to more easily estimate effects such as inductance and capacitance. The
character of this chapter is different. Here we will look into several physical systems
where the basic approximations will be different from each other, and we will not dig
into issues as deeply as we did earlier. We will paint the picture in broad strokes, with
the occasional detailed analysis of systems that sometimes cause confusion to the early
career engineer. Common to all analysis is a firm adherence to the belief that detailed
mathematical analysis is a key to understanding systems behavior. We also show that
analysis does not need to be overbearing and overly tedious. Instead, keeping the
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models as simple as possible without oversimplifying is the key to success. The
overarching theme of the chapter is timing jitter – how it is generated, how it degrades
performance, and how it can be countered.

Throughout the chapter we emphasize how to build simple yet relevant models and
illustrate several different mathematical techniques. Sometimes the approximations are
more or less obvious or familiar, at other times less so. We also include some well-
known examples of this type of modeling from the literature to further strengthen our
argument that it is both a useful and universal technique to gain understanding.

The chapter discusses phase-locked loops (PLLs) and analog-to-digital converters
(ADCs). If one understands these two concepts, in effect loops and time sampling
techniques, one can cover a lot of ground in the engineering space. The reader is not
assumed to have any prior knowledge of either of these systems and the discussion will
be kept at an introductory level for the most part. At the end of the two sections we will
discuss specific design examples of certain components of the systems. We start with a
discussion of clock generation in the form of PLLs and highlight the jitter aspects.
Specifically we will dig into voltage-controlled oscillators (VCOs) in some detail. This
is followed by a discussion of ADCs, where we design a flash-type ADC, and in
particular sampling theory, where the impact of jitter and other degradations of the
signal-to-noise ratio (SNR) are presented in both voltage sampling and charge sampling
contexts.

7.2 Jitter and Phase Noise

Jitter

Since we will encounter the concept of jitter quite a few times in this chapter, let us first
define it. Jitter is simply the deviation in time of a clock or data edge from its ideal
position. In the literature one finds there are several different types of jitter discussed
[1]. It is commonly divided into random jitter (RJ) and deterministic jitter (DJ). Random
jitter is Gaussian in nature, with unbounded amplitude, while deterministic jitter is
bounded in amplitude. The major jitter components can be further subdivided.

Deterministic Jitter

Data-dependent jitter – this is further composed of duty cycle distortion and inter
symbol interference (ISI).

Periodic jitter – a repeating signal at a certain period or frequency.
Bounded uncorrelated jitter – cross talk is the dominant component.

Random Jitter

Gaussian jitter, sometimes called rms – the edge spread around the ideal arrival time
is Gaussian in nature.

Multiple Gaussian jitter – the same as above but with multiple modality.

In this chapter our focus will be on Gaussian jitter.
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Phase Noise vs Jitter

This section will explore the relationship between phase noise and jitter in two
different ways. In the first section we will use a simple model to get a feel for the
behavior, and then we will use a more general model in the second section. In both
sections we will make two simplifying assumptions, which are not strictly speaking
necessary for the argument to hold but for most cases of interest they are relevant. We
will assume:

1. The amplitude of the phase change is small compared with a full rotation.
2. The rate of change of the phase is small compared with the main tone.

We will quantify these assumptions in the discussion.

Simple Model
Imagine an ideal oscillator oscillating at angular frequency, ωs. We can describe this
mathematically as

Vs, ideal ¼ A sinωst:

In order to investigate the phase noise of such a system, let us start with the simple case
of a single tone phase oscillation with an amplitude Am, and frequency ωm. We get

Vs ¼ A sin ωst þ Am sin ωmtð Þð Þ
Simplify The simplifying assumptions above mean here

1. Am � 1
2. ωm � ωs

Solve This expression can then be expanded using simple trigonometry:

Vs ¼ A sin ωstð Þ cos Am sin ωmtð Þð Þ þ cos ωstð Þ sin Am sin ωmtð Þð Þð
� A sin ωstð Þ þ cos ωtð Þ Am sin ωmtð Þ½ �

Assumption 1 is a reasonable approximation since the final timing jitter is often small
compared with a signals period. We can see by looking at the last term that this phase
noise tone actually creates two side bands around the main tone:

A cos ωstð Þ Am sin ωmtð Þ ¼ 1
2
A Am cos ωs þ ωmð Þtð Þ þ cos ωs � ωmð Þtð Þð Þ:

In terms of frequency spectrum we have for positive frequencies

Vs ωð Þ e A δ ω� ωsð Þ þ 1
2
A Am δ ω� ωs þ ωmð Þ þ δ ω� ωs � ωmð Þð Þ:

Phase noise is defined as the power in a single sideband divided by the power of the
main tone. We find here
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Pm ¼ 1=2ð ÞA Am

A

� �2

¼ 1
2
Am

� �2

: (7.1)

(Note the units are often quoted as dBc=Hz since we are comparing two powers, but one
can argue the units really should be radians2=Hz.)

We will return to this observation in a little bit. For this discussion we will assume the
phase jitter matters at the zero-crossing point of Vs where the slope is positive, which
will happen approximately at the points in time where sin ωstð Þ ¼ 0 , and
d sin ωstð Þ=dt > 0, using the assumption Am is small (this won’t work for large phase
noise). Let us annotate this ideal crossing time as t ¼ tn where n is the zero-crossing
number. At this point in time cos ωtð Þ ¼ 1 to first order in ω t � tnð Þ and
sin ωstð Þ ¼ ωs t � tnð Þ and we can simplify the expression for Vs to be

Vs ¼ A ω t � tnð Þ þ A Am sin ωm tð Þ þ O ω t � tnð Þð Þ2:

The actual zero crossing will happen at:

Vs ¼ A ω t � tnð Þ þ A Am sin ωm tð Þ ¼ 0

or

A ω t � tnð Þ ¼ �A Am sin ωm tð Þ

t � tnð Þ ¼ �Am

ω
sin ωmtð Þ � �Am

ω
sin ωm tnð Þ:

where the last step assumes the modulation frequency ωm � ω, assumption 2 above.
This is a reasonable assumption since most of the time the majority of the noise
comes from close to the main tone. The zero crossing is adjusted with a sinusoidal
term that differs with crossing number, n. If we keep statistics of all these zero
crossings we clearly see that this adjustment, or jitter, is just a sinusoid with an rms
value of

jt ¼ �Am

ω
sin ωm tnð Þ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

ðT
0

Am

ω
sin ωm tnð Þ

� �2

dt

vuuut ¼ Amffiffiffi
2

p
ω
:

If we look at this in terms of the phase noise definition in equation (7.1), we see we can
also define

jt ¼
1
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
Pm

q
¼ Two sidebands with power

1
2
Am

� �2
( )

¼ 1
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1
2
Am

� �2
s

¼ Amffiffiffi
2

p
ω
:

This is simply a consequence of Parseval’s theorem for this simple model, and we will
look at the more general case in the next section. Here we can infer:
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jt ¼
1
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∞
�∞

Pm df

vuuut ¼ 1
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ð∞
0

Pm df

vuuut :

where the last step assumes the phase noise is symmetric around the tone.

Verify This last expression is the often quoted phase noise–jitter relationship (see [1, 13]).

A More General Model
We can look at this in a more general way also. Instead of having an explicit tone in the
sidebands, we can have a more general time dependency.

Vs ¼ Aþ a tð Þð Þ sin ωst þ α tð Þð Þ:
We will ignore a tð Þ since for oscillators the term is dampened out due to nonlinear,
limiting effects. In a linear system a tð Þ will not affect the zero crossings if it is <A. For
nonlinear systems where Vs also includes higher-order terms, these higher-order terms
will cause Aþ a tð Þð Þ to induce phase noise that is dominated by A, called AM–PM
noise. We will not consider these systems here. The general assumptions from the
introduction lead to the following simplifications:

Simplify
1. α tð Þ � 1, 8t
2.

dα tð Þ
dt

� ωs, 8t

Solve We have then

Vs ¼ A sin ωst þ α tð Þð Þ � A sin ωstð Þ þ Aα tð Þ cos ωstð Þ:
Close to zero crossings, which we define similarly to the previous section where
sin ωstð Þ � ωs t � tnð Þ and cos ωstð Þ � 1, we get

Vs � A ωs t � tnð Þ þ A α tð Þ (7.2)

α tð Þ ¼ α tnð Þ þ dα tnð Þ
dt

t � tnð Þ þ O t � tnð Þ2
� �

:

For Vs to be at a zero crossing we find

Aωs t� tnð Þ þA α tð Þ ¼ 0! t� tnð Þ ¼ �α tð Þ
ωs

¼�α tnð Þ
ωs

� 1
ωs

dα tnð Þ
dt

t� tnð Þ � �α tnð Þ
ωs

where the last step is just assumption 2 above. We can look at the time average (denoted
by �h i) of the square of this expression

j2rms ¼ t � tnð Þ2
D E

¼
α tnð Þ2
D E

ω2
s

:
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We have

α tnð Þ2
D E

¼ 1
2N

XN
n¼�N

α tnð Þ2 � 1
2N2π=ωs

ðN2πωs

�N2π
ωs

α tð Þ2 dt !
ð∞
�∞

α0 tð Þ2 dt, N ! ∞

where we define α0 tð Þ as α tnð Þ in units of phase=
ffiffiffiffiffiffiffiffiffi
time

p	 

. We can finally use Parseval’s

theorem and get

α tnð Þ2
D E

¼
ð∞
�∞

α0 tð Þ2 dt ¼
ð∞
�∞

α̂ fð Þj j2 df ¼ P fð Þ ¼ α̂ fð Þj j2
n o

¼
ð∞
�∞

P fð Þ df

where α̂ fð Þ has units radians=
ffiffiffiffiffiffi
Hz

p	 

and the single sideband noise (SSB) power, P fð Þ,

has units [radians2/Hz]. We then get

jrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � tnð Þ2

D Er
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ∞
�∞ P fð Þ df

ω2
s

s
¼ 1

ωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∞
�∞

P fð Þ df

vuuut ¼ 1
ωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ð∞
0

P fð Þ df

vuuut :

Verify This is the often quoted expression for jitter in terms of SSB phase noise power
[1, 13].

Evaluate There is one particularly interesting thing to note about the derivation. The
last term in (7.2) has units of voltage. Let us replace this with a voltage noise term vn tð Þ
instead, so we find

Vs � A ωs t � tnð Þ þ vn tð Þ:
As before, for this to be at a zero crossing we find

A ωs t � tnð Þ þ vn tð Þ ¼ 0 ! t � tnð Þ ¼ � vn tnð Þ
A ωs

where we have assumed the terms vn vary slowly compared with the main tone. We get

j2rms ¼ t � tnð Þ2
D E

¼
vn tnð Þ2
D E
A ωsð Þ2 :

With this we see there is no way to distinguish the added voltage noise from the phase
noise. We can look at the jitter phenomenon either as a phase noise or as an added
voltage noise source. This is the root cause of the somewhat confusing units, as
described earlier; we can view this spectrum as either a phase or a voltage for small
phase deviations. Likewise, in modern simulators we can choose to calculate jitter from
a phase noise integration or by looking at the voltage noise at the zero crossings. The
two approaches should obviously agree. Note that this is, strictly speaking, only true
when assumption 2 is valid. For large phase deviations we do not have correspondingly
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large voltage noise. Instead, the voltage noise has a natural limitation referred to as
linewidth.

Finally, we note that when using the voltage noise domain approach, the voltage
noise source transfers to jitter as

jrms ¼ σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn tð Þ2
D Er
Aωs

:

The denominator Aωs ¼ dVs=dt. We find

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn tð Þ2
D Er
dVs=dt

: (7.3)

This is the well-known “ohm’s” law of jitter [1, 13].

Summary
The jitter–phase noise relationship is a simple calculation of the phase noise power in a
sideband divided by the fundamental tone cycle frequency. A simple sinusoidal noise
source is helpful when explaining the jitter–phase noise relationship.

7.3 Phase-Locked Loops

Phase-locked loops (PLLs) and various varieties of them are in common use in the
semiconductor industry. These systems are discussed in many books, including [2–5].
See, in particular, [4] for an interesting nonlinear analysis. They are the key element
when it comes to clock and timing generation, and many topologies are used to meet the
varying key specifications that are needed. How to simplify these systems to study them
analytically is generally known, and we will just present the basic theory here. The first
sections describes architectures, performance criteria and common PLL sub-blocks. We
then describe the general transfer function for a second-order, type 2 PLL, while the
following sections describe detailed calculations of stability and noise transfer for a PLL
loop. Finally, a design example is provided.

Architectures

Traditionally phase-locked loops have been divided into integer-N and fractional-N
PLLs. The integer-N PLL features a simple integer divider, while the fractional-N PLL
has some kind of averaging technique implemented in the divider that makes it possible
for the loop to lock to a continuous range of frequencies.

Exciting PLLs have been invented recently, such as subsampling PLLs that circum-
vent some of the shortcomings of the established topologies.
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Performance Criteria

DC Specifications
Power consumption: A key DC specification is the power consumption. In modern life,
battery powered devices are very popular and keeping the power consumption low for
all the circuit components is critical for market success.

AC Specifications
We describe briefly the most common AC specifications for PLLs here.

Loop bandwidth: the closed loop bandwidth is a key to stability considerations. If it
is too wide, the phase detector discrete sampling operation will cause problems.
Depending on the cleanness of the on-chip VCO vs the reference oscillator, one
might choose wide vs narrow bandwidths.

Phase margin: key to loop filter design and stability.
Lock time: the time it takes for a PLL to lock.
Jitter: the accuracy of the resulting clock is important for ADC applications, as will

be discussed later in the chapter.
Spur level: spurs from the reference clock can show up in unexpected places.

PLL Sub-Blocks

A traditional PLL consists of four basic blocks: a phase detector, a VCO, a frequency
divider, and a filter: see Figure 7.1. In this subsection we briefly describe them and
derive some simple scaling rules.

Phase Detector
The role of the phase detector is to amplify the phase difference between two input
square waves, referred to as the reference clock and the, possibly divided down,
oscillator clock. It can be implemented in many different ways, and we will not go into
all the possibilities here. Instead, we will take a brief look at a phase frequency detector
followed by a charge pump implementation, depicted in Figure 7.2. It is a very common
workhorse in the industry.

The flip-flops are usually up or down edge sensitive. Depending on which edge
comes first, the upper or lower current source is turned towards the output where it
sources or sinks charge from the next block, which is the filter block consisting of a

Phase detector Filter VCO

Divider

Fin

vcoin

vcoout

Figure 7.1 Traditional phase-locked loop topology.
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capacitor to ground, for simplicity. When the edge from the opposite source comes into
the phase detector, the currents are turned off from the output. In this way the difference
in phase between the reference and the divided down clock is translated into a current
pulse. We can define the gain of this block as

KPD ¼ Iþ � I�

2π � �2πð Þ ¼
2Ic
4 π

¼ Ic
2π

:

The phase difference can go from þ2π to �2π.
The time it will take to bring the PLL all the way from its start-up condition to phase

lock is known as the pull-in time. Let us do an order of magnitude estimate of this time
using estimation analysis.

Simplify First we assume the output of the phase detector sits at ground and the VCO
is tuned such that the correct output frequency occurs when the control voltage at the
input, which is the same as the phase detector output, is at power supply VDD, typically
7–900 mV in small geometry CMOS. The charge pump needs to bring up the output
node all the way from ground to VDD. We know from our earlier discussion, on
comparator analysis in Chapter 3, that this scales like

Tpull-in ¼ Δt ¼ C ΔU
I

The analysis is somewhat complicated by the fact the charge pump is only on for a
limited time and it is possible the edge order will switch during the pull-in stage,
depending on the overall dynamics. We will ignore such complications here.

Solve This is now simply a matter of plugging in the numbers, and we find

Tpull-in ¼ C�VDD
Ic

¼ C�ΔωVCO

KPD 2π KVCO

D Q

Q̄R

D Q

Q̄R

refin

clkin

I

I

outVb

Figure 7.2 A functional view of a phase detector implemented as a phase frequency detector with a
charge pump.
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In the last step we use the initial offset in frequency instead of voltage as a measure of
how far one needs to go.

Verify This is similar to other discussions, so here we have allowed ourselves a few
shortcuts to arrive at a number very similar to what others have derived (see [2]).

Evaluate It is clear that a small capacitance and a large current are helpful if a fast pull-
in time is needed.

Voltage-Controlled Oscillator
The voltage-controlled oscillator will be discussed in much more detail in Section 7.4.
Here we will just define the basic characteristics. The easiest way to change an
oscillator’s frequency is to change the effective tank load; in almost all cases this means
changing a capacitance, and in most modern CMOS technologies this is natural to
transistors. There are often specially constructed varactor devices with this particular
property such that their capacitance is changing with its bias voltage. We can now
define the gain of a voltage-controlled oscillator as KVCO and we find we have an output
frequency

ωout ¼ KVCOVin

with a given input voltage Vin; note the unit of KVCO is in angular frequency 2πf [MHz/V].
The KVCO is assumed to be constant for estimation calculations, but in a real circuitry it
will vary with voltage.

For PLL analysis we are interested in phase and not in frequency, which can often be
a confusing difference. Let us think of a sine wave

V ¼ sinωt

The argument to the sinus function is a phase, but there is a frequency variable in the
expression. Phase is defined as the integral of frequency. In our case in our sine wave
we have a phase

θ ¼ 2π
ðt
0

f t0ð Þdt0 ¼
ðt
0

ω t0ð Þdt0 ¼ ωt:

In particular, for a time varying frequency this formula can be really helpful. We can
now simply relate the input voltage to the oscillator to the output phase as

θout tð Þ ¼
ð
ωout dt ¼

ð
KVCOVin dt

which in Laplace domain corresponds to a division by s,

θout sð Þ ¼ KVCO

s
Vin sð Þ:
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Frequency Divider
The frequency divider simply takes an input frequency and divides it by the desired
factor N. The corresponding change in phase is simply a division by N. The gain is now

KDIV ¼ 1
N
:

PLL Filter
We will discuss this block further in section “Fundamental Stability Discussion.” For
now, we will simply describe it as a two-port system with transfer function F sð Þ.

Basic PLL Equations

We can now pull all these block definitions together and derive the basic PLL equations.
We will use the linearized transfer functions we derived in the previous section.

Simplify We will consider a phase-locked loop as in Figure 7.3. It consists of an input
reference signal, a phase detector (PD), a filter, a VCO and a divider circuit. The way to
simplify such a system is to linearize all the blocks and assign a gain, or transfer
function, to each one. These transfer functions for the various components are illustrated
in the figure. Usually, the blocks are described in terms of Laplace transformations. In a
typical application one is interested in the phase transfer in the loop, and all entities here
refer to phase. The variable s represents the modulation frequency around the nominal
frequency. The linearization technique we describe here is known as the continuous
time approximation where we ignore the fact that the phase detector–charge pump
combination is actually a discrete time block. For this approximation to be valid, the
loop filter bandwidth needs to be about 10� lower than the reference frequency.

Solve We start by looking at the error signal,

e sð Þ ¼ Fin � e sð ÞF sð ÞKVCO=s

N

� �
KPD

Phase detector

KPD

Filter

F (s)

VCO

KV CO

Divider

1/N

Fin
e(s)

vcoin

Figure 7.3 Basic PLL topology with block gains.
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We find explicitly,

e sð Þ ¼ FinKPD

1þ F sð ÞKVCOKPD=s Nð Þ

We now find the transfer function T sð Þ ¼ vo sð Þ=Fin from input to the VCO output

T sð Þ ¼ e sð ÞF sð ÞKVCO

sFin

KPDF sð ÞKVCO=s

1þ F sð ÞKVCOKPD=s Nð Þ ¼
KPDF sð ÞKVCO

sþ F sð Þ KVCOKPD=Nð Þ (7.4)

Verify This is a well-known calculation and can be found in most textbooks
on PLLs.

Evaluate Depending on the filter, we see we have at least a first-order characteristic
equation in the denominator of equation (7.4).

Fundamental Stability Discussion

Stability of feedback systems is a well-studied subject, for example in [6, 7]. It comes
up in many discussions, and a good understanding is very helpful in day-to-day
engineering work. Here we will discuss it in the special context of PLL and second-
order transfer functions. We will make some simplifying assumptions that are common
in the subject and we hope the reader will be inspired to do explorations on his/her own.
In the literature stability is usually discussed in terms phase margin and gain margin
using Bode plots and open loop responses. This presentation uses the closed loop
response to study stability. It is hoped that it will provide new insight and some
variation to the more common open loop analysis. We leave it as an exercise for the
reader to examine stability using open loop response.

We will use the transfer function we derived earlier and look at a couple of specific
examples of the filter function, F sð Þ, and see what it implies about the system’s stability.

We have for the closed loop gain

T sð Þ ¼ KPDF sð ÞKVCO

sþ F sð ÞKVCOKPD=Nð Þ

Simplify For the filter function we will need a low-pass filter, and since the output of
the charge pump is a current, the simplest low-pass filter is simply

F sð Þ ¼ 1
sC

We find then

T sð Þ ¼ vo sð Þ
Fin

¼ KPDKVCO=C

s2 þ KVCOKPD= C Nð Þð Þ :
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Solve This is a two-pole system and we can find the poles with a bit of rewrite:

KPDKVCO=C

s2 þ KVCOKPD= C Nð Þð Þ ¼
1
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KVCOKPDN=C

p
s� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KVCOKPD= C Nð Þp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KVCOKPDN=C

p
sþ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KVCOKPD= C Nð Þp

 !
:

From Appendix B we see this has the time solutionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KVCOKPDN

C

r
ej
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KVCOKPD= C Nð Þ

p
t � e�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KVCOKPD= C Nð Þ

p
t

� �
:

Clearly, while it does not have any increasing amplitude with time, the loop will
oscillate. In most definitions of stability this situation is referred to as marginally stable,
although in practice it is not acceptable. The oscillation frequency is called the natural
frequency

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KVCOKPD

C Nð Þ

s
:

With this definition we find for

T sð Þ ¼ ω2
nN

s2 þ ω2
n

� � :
The stability situation is not so good and we need to do something about that, but first
let us look at the bandwidth. By replacing s ! jω and looking at the magnitude of
T jωð Þ, we have

T jωð Þj j ¼ ω2
nN

�ω2 þ ω2
n

� �












:
We see there is a singularity at the natural frequency. Let us look beyond that (denomin-
ator changes sign) and find the 3 dB bandwidth.

ω2
nN

ω2
3 dB � ω2

n

� � ¼ Nffiffiffi
2

p

ω3 dB ¼ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
2

p� �r
:

In this case, the bandwidth is a tad higher than the natural frequency. As a side note, it is
interesting that among the real PLLs one can buy in the market, there is often quite a bit
of peaking around the natural frequency. We will see shortly that this kind of response is
fairly straightforward to correct.

Verify These are all standard calculations that can be found, for example, in [2, 3].

Evaluate The expression for the bandwidth is dependent on the filter coefficients.
From a stability viewpoint, the simplification we did here in which we had a simple

capacitor as integrator is simply not acceptable. In order to improve the situation we
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need to add a real part in the left-hand plane to the poles. We will investigate this in the
next section.

Improved Stability
The suspicion is now that our loop filter is too trivial. We just have a simple integrator, a
capacitor. Let us attempt a more complicated one.

Simplify

F sð Þ ¼ 1þ as

sC

where a > 0. For low frequencies we retain our integrator action, but for high frequen-
cies we have added a zero resulting in a constant output.

Solve Putting this into our original transfer function, we find

T sð Þ ¼ KPDF sð ÞKVCO

sþ F sð ÞKVCOKPD=Nð Þ ¼
ω2
n 1þ asð ÞN

s2 þ 1þ asð Þω2
n

� � :
Let us solve for the roots

s2 þ 1þ asð Þω2
n ¼ 0

sþ a
ω2
n

2

� �2

� a
ω2
n

2

� �2

þ ω2
n ¼ 0

s ¼ �a
ω2
n

2
	 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n � a

ω2
n

2

� �2
s

Since a > 0 we see we have been successful in our quest of creating a pole in the left-
hand plane. Furthermore, we see we can get rid of any oscillation by choosing

2
1
ωn

¼ a:

This particular choice is referred to as a critically damped system. Let us put this choice
into the transfer function and solve for the time behavior

T sð Þ ¼ ω2
nN 1þ asð Þ
sþ aω2

n=2
� �2 ¼ 2ωnN ωn=2þ sð Þ

sþ ωnð Þ2 :

We find from an inverse Laplace transform the impulse response is

T tð Þ ¼ A te�ωnt þ Be�ωnt:

There is a little bit of peaking and then the exponential roll-off.
This filter is simply a resistor in series with the capacitor. The input is a current and

the output a voltage. We get

178 System Aspects

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.008
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:06:40, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.008
https://www.cambridge.org/core


1
sC

þ R ¼ 1
sC

1þ sRCð Þ

and

RC ¼ a ¼ 2
1
ωn

or

R ¼ 1
C

2
ωn

: (7.5)

Finally, the bandwidth of the loop can now be estimated as

T jωð Þj j ¼ 2ωnN ωn=2þ jωð Þ
jωþ ωnð Þ2












 ¼ T 0ð Þj jffiffiffi

2
p ¼ N

T jωð Þj j2
N2 ¼ 4ω2

n

ω2
n=4þ ω2

� �
ω2
n � ω2

� �2 þ 4ω2ω2
n

¼ ω4
n þ 4ω2

nω
2

� �
ω2
n þ ω2

� �2 ¼ ω4
n þ 4ω2

nω
2

ω4
n þ 2ω2

nω
2 þ ω4

¼ 1
2

ω4
n þ 6ω2

nω
2 � ω4 ¼ 0

ω2 ¼ 3ω2
n þ

ffiffiffiffiffiffiffiffiffiffiffi
10ω4

n

q
¼ ω2

n 3þ
ffiffiffiffiffi
10

p� �

ω ¼ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffiffiffi
10

p� �r
:

Verify This is also a classic, for example, in [2–5].

Evaluate We have found a critically damped simple solution to our PLL model by
making some simple assumptions and making them more complicated, to finally end up
with a simple solution.

Summary
We have used estimation analysis to the full in this example and shown that we can
derive some admittedly well-known results following the methodology.

Key Concept

A PLL’s stability can be improved by inserting a zero in the filter transfer function.

PLL Noise Transfer Analysis

Having derived the basic PLL parameters, we can now investigate noise transfer. The
phase noise is particularly important when calculating jitter as we discussed in section
“Phase Noise vs Jitter.” In this section we will discuss one noise calculation in detail
and leave the rest as an exercise to the reader.
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Noise Injected after the Filter
Noise injected after the loop filter can be estimated by simply adding in a noise signal as
shown in Figure 7.4.

Simplify We simplify the situation by considering the various blocks around their
normal bias point, so we can follow the situation described earlier.

Solve Any noise injected after the filter will transfer as such:

e sð ÞF sð Þ þ n sð Þð ÞKVCO

sN
KPD ¼ �e sð Þ

Or,

e sð Þ ¼ �n sð ÞKVCOKPD=s N

1þ F sð ÞKVCOKPD=s N

We get at the VCO output

noF sð Þ ¼ e sð ÞF sð Þ þ n sð Þð ÞKVCO

s

¼
�n sð ÞKVCOKPD=s N

1þ F sð ÞKVCOKPD=s N
F sð Þ þ n sð Þ

� �
KVCO

s

¼ n sð ÞKVCO

s
� KVCOKPD

s N þ F sð ÞKVCOKPD
F sð Þ þ 1

� �

¼ n sð ÞKVCO

s
� KVCOKPD

s N þ F sð ÞKVCOKPD
F sð Þ þ s N þ F sð ÞKVCOKPD

s N þ F sð ÞKVCOKPD

� �

¼ n sð ÞKVCO

s

s N

s N þ F sð ÞKVCOKPD
¼ n sð ÞKVCO

N

s N þ F sð ÞKVCOKPD
:

Verify This is a standard calculation in textbooks such as [3].

Phase detector

KPD

Filter

F (s)
n(s)

VCO

KV CO

Divider

1/N

e(s)
vcoin

Fin

Figure 7.4 Basic PLL topology with noise injected after the filter.
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Evaluate What does this mean? Let us go to various limits and observe the results,
assuming F sð Þ ¼ 1þ asð Þ= Csð Þ. For high frequencies (large s) the second term in the
denominator approaches a constant. This means the loop response to the high-frequency
noise is simply a low-pass filter. For low frequencies, the second term in the denomin-
ator will dominate and the noise source n sð Þ will again be suppressed. In short, the loop
acts as a band pass filter to the noise source.

Noise at the VCO Output Due to All Sources
Putting it all together, using the results from Exercise 7.1, we find at the VCO input the
noise due to all noise sources in this simple model:

nVCO,output sð Þ ¼ KVCO

s

n sð Þ
1þ F sð ÞKVCOKPD

s N

� �þ KVCO

s

nPD sð ÞF sð Þ
1þ F sð ÞKVCOKPD

s N

� �

þ nVCO sð Þ
1þ F sð ÞKVCOKPD

s N

� �þ
nref sð Þ � ndiv sð Þ� �KVCO

s
KPDF sð Þ

1þ F sð ÞKVCOKPD

s N

� � :

We can express these noise sources in terms of the PLL loop transfer function from
equation (7.4).

nVCO,output sð Þ ¼ T sð Þ
KPDF sð Þ n sð Þ þ T sð Þ

Kd
nPD sð Þ þ nVCO sð Þ

N
N � T sð Þð Þ

þ nref sð Þ � ndiv sð Þ� �
NT sð Þ:

These noise sources are uncorrelated and the resulting noise power can be written as

nVCO,output sð Þ

 

2 ¼ 1

K2
PD

T sð Þj j2
F sð Þj j2 n sð Þj j2þ 1

Kd
2 T sð Þj j2 nPD sð Þj j2þ nVCO sð Þj j2 1�T sð Þ

N

� �








2

þ T sð Þj j2 nref sð Þ

 

2N2þ T sð Þj j2 ndiv sð Þj j2N2:

We see clearly the high pass function of the VCO transfer where most of the remaining
blocks are low pass in nature.

Key Concept

A PLL transfer such as the VCO noise is high pass in nature, whereas the divider
reference and phase detector are low pass in nature. Depending on the filter imple-
mentation, the filter noise response is often bandpass.

Example 7.1 Block design

Previously we discussed the basic equations determining the behavior of a PLL. We will
here use them to define block specs for the individual blocks in the loop. This is an
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example of system design using the result of estimation analysis as a starting point. The
fundamental parameters we derive can be put into a system simulator as a starting point
for more detailed block-level specifications. Here, we will for brevity simply stop
at the parameters provided by our simple model discussed in section “Basic PLL
Equations.”

PLL Specifications

PLL Block Definitions
From the specifications in Table 7.1 it is clear we need a divide ratio of 10. Let us look
at the transfer function

vo sð Þ
Fin

¼ e sð ÞF sð ÞKVCO

sFin
¼ KPDF sð ÞKVCO=s

1þ F sð ÞKVCOKPD= s Nð Þð Þ

We know N ¼ 10. It remains to define KVCO,C, and KPD. For the charge pump we will
choose a current of I ¼ 1mA and a filter capacitance of C ¼ 1pF. In a small geometry
CMOS process we should have no difficulty with a 1 mA output current at 2.5 GHz. It is
often better to use a higher charge pump gain than a high VCO gain due to the VCO
sensitivity to the noise of the varactor. We can now look at the natural frequency and
define the VCO gain.

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KVCOKPD

CN

r

 180 MHz

Plugging in the numbers we find

KVCO 
 3�1016�10
10�3 2π�10�12 ¼ 2π�3�108 Hz=V

This is a fairly reasonable number. We cover about 2.5% of the oscillator fre-
quency and can make some adjustments for various center frequency shifts. We
will use the KVCO we derived here as a key specification for a VCO design later in
this chapter. With a series resistor in the loop filter, it now remains to find this
resistance, which we do by choosing a critically damped system. We have from
equation (7.5)

Table 7.1 Specification table for PLL

Specification Value Comment

Output frequency 25 GHz
Input frequency 2.5 GHz
Output phase noise �130 dBc/Hz @ 1 MHz offset from tone
Bandwidth 30 MHz
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R ¼ 2
Cωn

¼ 10kohm

With these parameters we find the key parameters illustrated in Table 7.2.
A close-in phase noise response to the noise sources listed in Table 7.2 is shown in

Figure 7.5.

7.4 Voltage Controlled Oscillators

This section describes VCOs, and following the previous discussion of PLLs, we see
that voltage noise at the input will translate to phase noise at the output. At the core of
almost all high-performance integrated high speed oscillators is an LC resonator that
determines the frequency of oscillation and often forms part of the feedback mechanism

Table 7.2 Parameters for PLL and noise spectrum

Parameter Value Units

N 10
KPD 1=2π mA/rad
KVCO 600 MHz/V
nref 0 V
n sð Þ 0 V
nPD 1:2�10�12 A=

ffiffiffiffiffiffi
Hz

p
nVCO sð Þ 1=f V=

ffiffiffiffiffiffi
Hz

p
ndiv 9�10�10 V=

ffiffiffiffiffiffi
Hz

p
C 1 pF
R 10 kohm

5 6 7 8

−180

−170

−160

−150

−140

log(Frequency [Hz])

P
ha

se
no

is
e

dB
c/

H
z

Total PD

VCO Divider

Figure 7.5 Noise sources as a function of frequency offset in PLL. Note, no 1/f noise sources are
included.
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used to obtain sustained oscillations. In this section we describe how to solve for steady-
state frequency, amplitude, phase noise, and finally a design example using estimation
analysis. We base our discussion on references [6, 8–12].

Steady-State Frequency of Oscillation

The frequency of oscillation is naturally an important entity to understand when it
comes to oscillators. We will calculate it with the help of estimation analysis.

Simplify The analysis of a high-performance oscillator begins with an analysis of a
damped LC resonator, such as the parallel resonator shown in Figure 7.6.

Since there are two reactive components, this is a second-order system, which can
exhibit oscillatory behavior if the losses are low or if positive feedback is added. The
values are fixed only at a given frequency. All the parameters vary with frequency,
where the effective parallel resistance varies the most.

Solve It is useful to find the system’s response to an external stimulus. We will solve
this in two ways and show they are equivalent. First we will discuss a time domain
solution, which we will use later. Then we will solve the same problem in the Laplace
domain. First, let us look at the circuit in Figure 7.6 and analyze it using KCL:

iC þ iR þ iL ¼ 0

diR
dt

R C þ iR þ iL ¼ 0: (7.6)

We also know the inductor’s response to a change in current

L
diL
dt

¼ u tð Þ ¼ iR R:

We can this use in (7.6)

du

dt
C þ u tð Þ

R
þ
ðt
0

u t0ð Þ
L

dt0 ¼ 0:

We now define

~u tð Þ ¼
ðt
0

u t0ð Þ dt0

C R L

Figure 7.6 Simple model of VCO tank.

184 System Aspects

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.008
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:06:40, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.008
https://www.cambridge.org/core


and we can rewrite

d2~u tð Þ
dt2

C þ d~u tð Þ
dt

1
R
þ ~u tð Þ

L
¼ 0: (7.7)

To solve these types of equation one can of course look up the solution in standard
literature, but it is easier to work in the Laplace domain, which we will show shortly.

The general solution to this equation is

u tð Þ ¼ A e�
t

2RCe
þj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC� 1

4R2C2

p
t þ B e�

t
2RCe

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC� 1

4R2C2

p
t

where A,B are integration constants and can be determined from the initial conditions.
The Laplace domain version of equation (7.7) becomes, by substituting d=dt ! s

s2u C þ s
1
R
uþ u

L
¼ 0

s2 C þ s
1
R
þ 1
L
¼ 0

sþ 1
2CR

� �2

¼ 1

4 C2R2 �
1
CL

s ¼ � 1
2RC

	 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

4C2R2 þ
1
CL

r
:

From the solutions we see the system’s response is a sinusoid with exponential decay as
we found earlier. In order to maintain oscillation we need to periodically dump energy
into this (tank) circuit. This is normally done by some kind of active amplifier, which is
often modeled as a negative resistor in parallel with the tank.

Verify This calculation is commonplace and can be found, for example, in [8].

Steady-State Amplitude Analysis

The amplitude of oscillation is set by the point where the energy lost during one cycle is
equal to the energy supplied by the active circuit. The energy lost is due to the finite
quality factor of the tank circuit. It has an equivalent shunt resistor in parallel, as
discussed in the previous section. The energy supplied is determined by the average
of the cross-coupled negative resistor from the active circuit. Here we will discuss how
to estimate the amplitude using estimation analysis.

Simplify We use as a simplification Figure 7.7. The problem can now be solved per
harmonic, and here we will limit ourselves to the first harmonic only. In order to have a
finite amplitude, the active circuit needs to be nonlinear to reduce the transconductance
for high swing. If it does not, the amount of energy dumped into the tank will keep
increasing. We will assume the active circuit current varies as such:
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i vð Þ ¼ �gmvþ g00mv
3 (7.8)

where both gm, g
00
m > 0. The negative first-order term is necessary to overcome the loss

due to the real impedance in the tank, while the positive third-order term is necessary to
limit the oscillation. The energy argument above means we need to find the amplitude
where the absolute value of the time average admittance of the active circuit equals the
time average admittance of the tank circuitry. The equation to solve is

hYactiveij j ¼ hY tan ki
where hi denotes time average over one period.

Solve First we need to find the time average of the active admittance

y ¼ yjv¼0 þ
dy

dv






v¼0

vþ 1
2
d2y

dv2
v2 ¼ di

dv






v¼0

vþ d2i

dv2






v¼0

vþ 1
2
d3i

dv3






v¼0

v2

¼ �gm þ 3
2
g00mv

2

where we used i vð Þ from (7.8). Expressing

v tð Þ ¼ A cos ωtð Þ
we have the time averaged admittance

Yactiveh i ¼ 1
T

ðT
0

y tð Þdt ¼ 1
T

ðT
0

�gm þ 3
2
g00mv

2

� �
dt

¼ 1
T

ðT
0

�gm þ 3
2
g00mA

2 cos 2 ωtð Þ
� �

dt

We now use

cos 2 ωtð Þ ¼ 1þ cos 2ωtð Þ
2

L L

C

Figure 7.7 Simplified model of oscillator with tank and active (nonlinear) circuit.
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to write

Yactiveh i ¼ �gm þ 3
4
A2g00m

since
Ð T
0 cos 2ωt dt ¼ 0.

Solving for the real total admittance of the oscillator now gives us

�gm þ g00mA
2 3
4
þ 1
R
¼ 0

or

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gm � 1

R

� �
4

g00m3

s
: (7.9)

Verify This calculation and similar discussions can be found in [8, 13].

Evaluate We see from equation (7.9) that the transconductance in the tank needs to be
larger than 1=R of the tank, otherwise no oscillation is possible. In addition, the third-
order term, g00m > 0, needs to be small for the amplitude, A, to be large, which is
precisely what one might expect.

Phase Noise in Oscillators

Phase noise in oscillators has been studied in a number of papers over the years.
Leeson’s model has historically been very popular. It is generally considered correct,
but it involves certain fitting parameters, and roughly 20 years ago [12] provided an
example of a physically based model employing estimation analysis similar to what we
are discussing here. The theory is linear time variant (LTV). It is time variant because
the effect of phase noise depends on when during the oscillation period the noise is
injected (see Figure 7.8).

The authors define what they call an impulse sensitivity function, Г xð Þ, 0 
 x 
 2π,
where x is varying over the oscillation period. It simply relates the phase response to a
current impulse disturbance. It will be zero at the peak of the wave form and maximum
at the zero crossing. In our simple VCO model we can calculate it fairly easily, and we
can then use it to find the phase noise as a function of offset frequency. For the single
sideband noise, they found

Psb ¼ i2nГ
2
rms

q2max 2ωð Þ2
 !

(7.10)

where Г rms is the rms-value of the impulse sensitivity function, in is the current noise
being injected into the tank in units A2=Hz, and ω is the angular offset frequency. We
see that if the current noise is white, the frequency offset will vary such as 1=ω2; if
instead it varies as 1=f , the phase noise will exhibit the well-known 1=f 3 slope. All
these parameters are fairly easily understood with the possible exception of the impulse
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sensitivity function. To illustrate we will calculate it here in our simplified model of the
tank. We start with the basic differential equation (7.7)

d2~u tð Þ
dt2

C þ d~u tð Þ
dt

1
R
þ ~u tð Þ

L
¼ qnδ t � τð Þ

The delta function to the right is now due to an impulse current injected at time t ¼ τ.

Simplify We can now use the fact that the effective resistance is infinite due to the
cross-coupled transconductor providing an opposite resistance that cancels the loss.
We have

d2~u tð Þ
dt2

C þ ~u tð Þ
L

¼ inδ t � τð Þ

Note, dimensionally qn½ � ¼ A s or ampere-second to work out properly. In other words,
it is a charge.

t

V

t

V

Figure 7.8 Noise injection for different phases. © [1998] Cambridge University Press.
Reprinted, with permission, from Cambridge University Press.
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Solve The easiest way to solve these kinds of equations is to go to the Laplace domain
and solve it there. We find

s2 ~U sð Þ þ
~U sð Þ
LC

¼ qn
C
e�sτ

This is easily solved

~U sð Þ ¼ qne
�sτ=C

s2 þ 1=LC
¼ � qn

C

ffiffiffiffiffiffi
LC

p

2j
e�sτ

sþ j=
ffiffiffiffiffiffi
LC

p � e�sτ

s� j=
ffiffiffiffiffiffi
LC

p
� �

This can be converted back to time domain and we find

~u tð Þ ¼ j
qn
2

ffiffiffiffi
L

C

r
e�jω t�τð Þ � ejω t�τð Þ
� �

, t > τ

For the voltage we now find

u tð Þ ¼ j
qn
2

ffiffiffiffi
L

C

r
�jωe�jω t�τð Þ � jωejω t�τð Þ
�

¼ qn
2
1
C

e�jω t�τð Þ þ ejω t�τð Þ
� �

¼ qn
C

cos ω t � τð Þð Þ, t > τ

This is now a small disturbance added to the tank at t > τ. Assume now the main
oscillation is

vosc ¼ A sin ωtð Þ

If we now add the disturbance due to the injected current at time t ¼ τ we find

vosc ¼ A sin ωtð Þ þ qn
AC

cos ω t � τð Þð Þ
� �

The perturbation term can now be identified with the impulse sensitivity function we
were looking for, which can be illustrated with a couple of cases.

Verify Let us look at specific values of τ. If τ ¼ 0 we have a simple sine wave with a
zero crossing at t ¼ 0

vosc ¼ A sin ωtð Þ þ qn
AC

cos ωtð Þ
� �

� A sin ωt þ qn
CA

� �
which follows from a trivial trigonometric expansion. All the injected power goes into
phase noise. If instead τ ¼ π= 2ωð Þ, we find

vosc ¼ A sin ωtð Þ þ qn
AC

cos ωt � π
2

� �� �
¼ A sin ωtð Þ 1þ qn

AC

� �
:

The injected noise is pure amplitude noise. This is all we can expect intuitively.
Remember the forced units on qn [A s].
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We see the perturbation term is very close to equation (7.10) and we identify

Γ xð Þ ¼ cos xð Þ
where 0 
 x 
 2π.

Evaluate In summary, we find for the perturbation and its impact on phase noise with a
charge impulse qn as a function of phase

vperturb xð Þ ¼ qn
AC

Γ xð Þ ¼ qn
qmax

Γ xð Þ

where

Г xð Þ ¼ cos xð Þ
where qmax is a normalization constant discussed in [12].

And for the rms value,

Г rms ¼ 1ffiffiffi
2

p (7.11)

For LC oscillators this expression will give us a good estimate of the magnitude of
the noise.

Key Concept

A VCO’s jitter transfer is linear and time variant, LTV, in nature. In other words, the
effect of noise on jitter depends on when the noise is injected.

Example 7.2 VCO design

We are now at a stage where a discussion of a VCO design is in order. We will build a
VCO with bits and pieces we have designed in the previous chapters.

VCO Specifications
Table 7.3 shows the specifications for the VCO.

Table 7.3 Specification table for VCO

Specification Value Comment

Output frequency 25 GHz
Gain 300 MHz/V = 1800 MHz/V in angular frequency.
Output phase noise �140 dBc/Hz @ 30 MHz offset from tone
Supply voltage 0.9 V

190 System Aspects

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.008
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:06:40, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.008
https://www.cambridge.org/core


VCO Design
As we have discussed previously, a VCO consists mainly of some kind of resonant
element, some kind of loop or a tuned resonant circuit, and an active element that
replenishes the loss in this loop or resonant element. We will here use our results from
the estimation analysis to:

� Get a starting point of the design work from the estimation analysis;
� Use this starting point in the simulator where we optimize the parameters.

This is a circuit example of how to use estimation analysis to speed up the design work.
A good understanding of the basic behavior is essential to a good-quality end product.
The simulator should not give us any surprises; it should just be used to fine-tune the
performance, as we will discuss here.

We will focus on an LC VCO.We have two major design tasks. First we need to design
the LC tank. We will draw from Chapter 5 to find an inductor with a specific Q. We will
then shunt this with a capacitor from the same chapter to define the overall Q of this
resonator at 25 GHz, which is the oscillation frequency. When we know the effective
shunt loss resistor, we will be prepared to design the cross-coupled pair with a specific gm
to overcome the loss. Generally, if we are using a fast enough process, the major
headaches will involve the passive tank circuitry. We also need to isolate the output of
the VCO from the load of the circuitry that follows. We will therefore use the CD stage we
defined in Chapter 2 at the output. The topology we now have is illustrated in Figure 7.9.

Tank Design
To resonate, we need an inductor shunted by a capacitance. We learned in Chapters 4
and 5 that the inductance is set by the current pattern as it flows in a loop. It is therefore
most important to include the full current loop, including the flow through the active
circuitry, as shown in Figure 7.10.

L L

Cvar

C C

Example 2.1

bias bias

outp

outn

Figure 7.9 Basic VCO topology.
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Do not just include the coil itself. We have also learned that the resonance frequency
is set to be the length of the inductor element, so we will attempt the design by having a
single-ended inductor of

L ¼ 100 pH:

This gives a single-ended capacitance of

C ¼ 1
Lω2

¼ 1

100�10�12 2π�25�109� �2 ¼ 0:4�10�12 F

A rather large required capacitance is helpful in that the load on the tank can be included
as part of the resonance. What will such an inductor look like? We created such a tank in
Example 5.5, but the inductor in the tank was just the coil itself; now we need to include
the connections from it to the active circuitry to get the inductance right. We will use a
length of Lint ¼ 40 μm, where the distance between these legs is d ¼ 10 μm. From
equation (4.52) we find the added differential inductance due to the legs is

Ladd ¼ 4�10�7�40�10�6 1
4
þ ln

10
2

� �
� 29 pH

which is overestimated by about 30%, so we are off with the inductance by about 10%.
The required capacitance is then 10% lower, or C ¼ 0:36 pF.

In order to adjust the frequency, a varactor needs to be included in the tank design.
This device will change the capacitance and so the resonance frequency as a function of
its bias voltage. From the specifications we see we need a gain of 300 MHz/V leading to
a shift in frequency of 300 M=25G ¼ 1:2% variation, leading to a change in capaci-
tance of 2.4%. The capacitance needs to change by 8.5 fF with one volt change. From
the technology we find the varactor needs to have a size of roughly m ¼ 2.

Figure 7.10 VCO inductor including active circuitry showing AC current path loop.
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Active Design
We now know the tank specs and can proceed with the active design. As a rule of
thumb, the worst case is 1=gm < R=2. This is to ensure we have enough margin to start
the oscillations and to get a reasonable yield. We know the differential tank resistance
Rdiff from Example 5.5, from which we get the single-ended resistance R and can thus
calculate the transconductance needed

gm > 2
1
R
� 6mmho

With this oscillator design we cannot use the thin-ox transistors due to over voltage
stress. We instead use a 1.5 V unit transistor from our fictitious technology. From our
tabulated transistor we then get a size of 10 fingers device from Appendix A. This
transistor has a transconductance gm � 6mmho and should be enough to get the
oscillation going.

Frequency: With these parameters we see that the capacitance of the active stage can
be estimated using the calculation in Exercise 2.5. We find Cload,act ¼ Cg þ 4 Cd ¼ 21 fF.
The tank capacitance should then be reduced to Ctank ¼ 339 fF. With the addition of the
varactor, which has a nominal capacitance of 10 fF per unit, we need two plus the load CD
stage, which has an input capacitance of 9 fF according to Example 2.1, so the final tank
capacitor needed has an estimated size of Ctank ¼ 310 fF.

Amplitude: We have from equation (7.9) that the amplitude will be close to

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gm � 1

R

� �
4

g00m�3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:8�10�3 � 1

330

� �
4

5�10�3�3

s
¼ 0:86 V

Notice that the negative resistance due to the “rotated” capacitor at the output of the
follower, see Example 2.1, is negligible compared with the negative resistor provided
by the cross-coupled pair.

Phase noise: The expressions (7.10) and (7.11) show the phase noise to be
expected is

L Δωð Þ ¼ 10 log
Г2
rms

q2max

� i2n=Δf

4 Δωð Þ2
 !

where

Г rms ¼ 1ffiffiffi
2

p

qmax ¼ CtankA

i2n
Δf

¼ 4kTgmγ:
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We assume here, and it is easy to verify, that the noise from the load resistor itself is
small compared with the transistor noise. This is a single-ended expression. The
differential impact on phase noise is 3 dB lower.

Finally, we have the estimated parameters/sizes for the components of the VCO in
Table 7.4.

Simulation
After implementing these sizes in the simulator, we find that the capacitance needed is
underestimated, and a slightly updated table is shown in Table 7.5.

The main error in the capacitance is that we have assumed a full Cload,act at all times.
In reality the load capacitance will vary over the cycle for all transistors.

After this has been sized, we confirm the operation with a simple simulation in
Figures 7.11 and 7.12.

From the figures it is clear our correlation is very good for higher offset frequencies.
For lower frequencies the 1=f noise of the transistors starts to come into play. Upon
closer examination there are a couple of competing effects that cancel each other out.
The transistor noise is overestimated, but it is compensated by the fact we do not include
the other noise sources in the system, from the varactor and the tank resistance for
example. The single-ended amplitude is ~710 mV as compared with our estimate of
860 mV, so we are around 2 dB off there.

Next Steps: The next steps in the development would be to run through all process,
voltage, and temperature corners to make sure we meet the specifications everywhere.
After that, a full layout including parasitic elements should be done. The size of the
capacitor is likely to need some adjustment after the physical design is completed.

Summary: The main take-home point from this design example is to do one’s
homework before simulating. A proper estimation analysis gives a great starting point
for the simulation phase where, most of the time, we just need to fine-tune the sizing.

Table 7.4 Starting point parameters for VCO

Device Parameter Value

Inductor Inductance 110 pH
Capacitor Capacitance 310 fF
Varactor Multiplicity 2
M1, M2, medium thickness W/L/NF 1 μm/100 nm/10

Table 7.5 Final sizes for VCO after simulation optimization

Device Parameter Value

Inductor Inductance 110 pH
Capacitor Capacitance 315.6 fF
Varactor Multiplicity 2
M1, M2, medium thickness W/L/NF 1 μm/100 nm/10
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However, be aware that VCO design is a rich subject with lots of available topologies
and the performance criteria we have focused on here are just the very basics. For a
thorough analysis of oscillator design, please see [14]. Having cautioned the reader
properly on the limits of the analysis, we have demonstrated here that the path to deeper
understanding lies along the route we have just taken.

7.5 Analog-to-Digital Converters

Introduction

Analog-to-digital converters (ADCs) are one of the key building blocks in today’s
circuitry (see [15–19]). They are part of almost every large integrated circuit in one form

0 0.5 1 1.5

24.8

25

25.2

V tune [V ]

Fr
eq

ue
nc

y 
[G

H
z]

Figure 7.11 Oscillation frequency vs control voltage.
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Figure 7.12 Phase noise of oscillator nodes.
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or another. The reason is obvious: we live in an analog world, but our circuitry is mostly
good at handling digital information, so one needs an interface between them. Over
the years many different kinds of architectures have been invented, and we will just
briefly mention them here. One common theme in all these systems is sampling, where a
signal is looked at briefly and then converted into a digital word and then the process
repeats.

This section will first discuss simple models of ADCs as a whole. We start with the
most basic of models where there is no explicit sampler. We then continue with a simple
model of a sampled ADC followed by a discussion of architectures, performance
criteria and a design example.

The general discussion of ADCs is followed by a section on sampling. The effect of
sampling can cause unexpected results to the uninitiated, and we will discuss how to
simplify the analysis of the sampling process so that a clearer picture will emerge. We
will start with voltage sampling, which is perhaps the most common, and continue with
charge sampling, a somewhat less used technique. Incidentally, sampling can be viewed
as an up–down converter and we will take a quick peek at this effect also in the
exercises.

Basic ADC Model

Let us consider a simple model of an ADC and approach it with the estimation analysis
we are discussing in this book. We will first make a simple model and see what we can
learn from it regarding an ADC’s performance. In particular we will calculate quantiza-
tion noise using this simple model.

Simplify To avoid unnecessary details, let us assume we have a data converter that
outputs signed integers in the range �2N�1 þ 1 ! 2N�1. This will result in 2N output
levels. We further assume

1. The input to this ADC is a sine wave

f in ¼ A sinωt,

where

A ¼ 2N�1

2. N � 1 so that the input signal can be approximated with a straight line in
between transitions.

The output of this simple model is now simply

f out ¼ int f in þ 0:5ð Þ
The 0.5 comes from the assumption that the output is the closest integer level to the
input signal. We will now see a step function response at the output as in Figure 7.13.
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Clearly the original tone is in there, but there are also other signals present. Let usfind those

f noise ¼ f out � f in ¼ int f in þ 0:5ð Þ � f in

Figure 7.14 shows this graphically.
The noise is simply a sawtooth function over the transition time that starts at 0, goes

to �0.5 at the midpoint, t ¼ tnþ1=2, where the transition occurs, which adds a 1 to the
noise which is then reduced back to 0 at t ¼ tnþ1. Mathematically we have

f noise �
X
n

� t � tnð Þ
tnþ1 � tnð Þ þ 1�θ t � tnþ1=2

� �� �

where we have used the Heaviside function θ.

int(vin + 0.5)

Figure 7.13 Basic ADC functionality.

t

V

n

n + 1

tn tn+1/2 tn+1

Figure 7.14 Close-up of ADC model output vs input at a transition point. The black curve is the
input signal and the gray curve is the output signal.
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Solve Let us calculate the power in one of these windows

Pnoise,n ¼
ðtnþ1

tn

f noise
2dt ¼ 2

ðtnþ1=2

tn

t � tnð Þ
tnþ1 � tnð Þ

� �2

dt ¼ t0 ¼ t � tnf g

¼ 2
ðΔtn=2
0

t0

Δtn

� �2

dt0 ¼ 2
t03

3 Δtnð Þ2
" #Δtn=2

0

¼ 1
12

Δtn:

Over a period, Δt ¼ T , we get a total noise

Pnoise ¼ 1
12

T :

The power of the sine wave over the same period is simply

Psignal ¼ A2

2
T :

We have then a signal-to-noise ratio of

SNR ¼ TA2=2
T=12

¼ 6A2 ¼ 6 22N�2:

A more familiar form of this is the dB version

SNRdB ¼ 10 log 6 22N�2
� � ¼ 10 log 6þ 10 log 22N�2

� �
¼ 10 log 6þ 10 2N � 2ð Þ log 2ð Þ � 7:781þ 3:01 2N � 2ð Þ ¼ 6:02N þ 1:76:

Verify With N bits the quantization noise from an ADC is such that the SNR becomes

SNRdB ¼ 6:02N þ 1:76:

This is a well-known formula and can be found in pretty much all textbooks on ADCs.
We see again that by making a really simple model of an ADC we can learn something
fundamental about their properties.

Evaluate When we discuss noise of an ADC, it is often dominated by the quantization
noise. There is little point in making an ADC completely dominated by thermal noise
since we can get similar performance simply by decreasing the resolution, which can
lead to a significant reduction in design time (and power!).

Key Concept

The quantization noise of an ADC results in a signal-to-noise ratio of

SNRdB ¼ 6:02N þ 1:76
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ADC Model with Sampling

The basic model just presented has some obvious limitations, the most severe of which
is that the sampling rate is dependent on the signal itself. This means it will be very
difficult to find out its frequency content a priori, and the downstream processing will
need to resample the output or some such scheme. It is also clear from the very
simplified model just presented that in a real world ADC there is a finite time needed
for the circuitry to convert the signal to a digital word. If this finite time is an
appreciable portion of the signal period, the circuitry can quickly get confused and
signal loss/distortion effects and other degradations can occur. The classic remedy for
both of these problems is a uniform sampler in time, where the input signal is held for a
certain amount of time, giving the circuitry a chance to convert the signal undisturbed.
Sampling is almost always done at a fixed frequency and there are a number of ways to
accomplish this with circuitry. We will study two such common methods in this chapter
from a systems perspective: voltage sampling and charge sampling. The effect of
sampling on a signal is of course well studied, but here we will include detailed
calculations that describe the effect explicitly.

Nyquist Criterion
One effect that should be mentioned here is the Nyquist criterion, which states that with
a given sampling frequency, f s, the signal needs to be within a bandwidth of f s=2.
Curiously, this frequency band could be anywhere in the spectrum in principle. If it is
within f s=2, it is referred to as the first Nyquist band. If it is between f s=2 and f s, it
is within the second Nyquist band, and so on. We will derive a precise expression for
this effect and its cause in section “Voltage Sampling Theory.”

Key Concept

Due to folding effects, an ADC needs to have its input signal band limited to within a
bandwidth of f s=2 where f s is the sampling frequency.

In the rest of the chapter we will assume the signal is sampled with a certain constant
sampling period, Ts.

To model a uniform sampling window, one traditionally makes an additional assump-
tion to the first two in section “Basic ADC Model.”

3. This signal is “active,” meaning two consecutive samples have different
output words.

This assumption is needed to decouple the concept of noise power from the signal itself.
Imagine a DC signal sitting right at the average trigger point. The output would then
have no noise. If it sits right at the boundary, it will have maximum noise, 0.5 lest-
significant-bit (LSB). The noise is then clearly signal-dependent. In a real system this is
unrealistic since real world signals one encounters in practice are quite active. These
three criteria are referred to as Bennet’s criteria (see [15]).
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At each sampling point we now make the simplifying assumption that the quantiza-
tion error is uniformly distributed over the range + 0.5 LSB shown in Figure 7.15
(see [15]).

We find for the noise power:

Pnoise¼
ð1=2

�1=2

P Eð ÞE2dE¼ P Eð Þ¼ 1
1=2� �1=2ð Þ¼1

� �
¼
ð1=2

�1=2

E2dE¼ E3

3

� �1=2
�1=2

¼ 1
12

LSB½ �:

This is in effect the same calculation we did before, but framed a little differently.

SNR Improvement from Averaging with the Simple Model
Imagine we take the original system and sample it twice as fast, after which we average
two consecutive outputs. The overall sampling rate has not changed but something
interesting has happened. Let us investigate with a simple model.

Simplify We will look at two consecutive samples, Si, Siþ1=2. Each of these can be
modeled as

Si ¼ Vi þ ni

where Vi is the sampled signal and ni is the sampled noise. We will simplify by
assuming the noise terms are uncorrelated in consecutive samples so their noise power
will add up, and furthermore that on average the noise power is the same for all
samples.

Solve We find now after adding the two samples

Si, tot ¼ Si þ Siþ1=2 ¼ Vi þ ni þ Viþ1=2 þ niþ1=2 ¼ Vi þ Viþ1=2 þ
ffiffiffi
2

p
ni

After averaging we find the signal is

Vih i ¼ 1
2

Vi þ Viþ1=2

� �

Err LSB

ρ(Err)

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 7.15 Uniform transition probability.
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and the noise

nih i ¼ 1
2

ffiffiffi
2

p
ni ¼ 1ffiffiffi

2
p ni

The noise power is half of the original, or 3 dB in logarithmic terms, while the signal has
the same power. The SNR has improved by 3 dB!

Verify This result can be found in many ADC textbooks [15–19].

Evaluate In general this is a very powerful method to improve SNR if you can handle
the speed; each doubling of the sampling rate followed by averaging improves the SNR
by half a bit.

SNRK ¼ SNR1 K

or in dB

SNRdB,K ¼ SNRdB,1 þ 3 K � 1ð Þ
where K is the oversampling factor.

Key Concept

The SNR of an ADC can be improved by oversampling followed by averaging.

Architectures

There are many ways to build ADCs. The modern literature contains a plethora of
varieties and we cannot do them all justice here [15–19]. We will just mention some
common ones and in the next few sections look at one or two in some detail.

Flash converter: This is simply an input stage driving 2N � 1 comparators in
parallel. It is the fastest architecture but it has serious size limitations, with every
bit increase causing a doubling in size! It is unusual to find implementation higher
than six bits and the power consumption it requires can be substantial.

Pipeline converter: The pipeline converter does the conversion in two steps, where
each step has fewer bits and thus the combined resolution is higher.

Sigma–delta converter: This is a very powerful way to improve noise performance
by up-converting it out of the signal frequency band. Upon low-pass filtering
the resulting noise improvement can be dramatic. Its weakness is that it
requires oversampling and can thus not be used in really high-frequency
applications.

Time-digital converter: This novel idea uses counting of pulse widths to convert
analog data to the digital domain. It employs such fancy circuit techniques as
time-amplifiers [16].
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Successive approximation register (SAR): This implementation does one-bit com-
parison per sampling clock. It is not a very fast architecture but is extraordinary
low power since it is almost exclusively digital in nature.

Time-interleaved converters: This architecture is a combination of sampling +
multiplexer + slower ADCs in the back. For modern high-speed data converters
it is the most common architecture employed. The slow backend ADC is usually
a SAR.

In this chapter we will study an implementation of a flash ADC and look in more detail
at the peculiarities of a time-interleaved system.

Performance Criteria

There are many ways to characterize a data converter (see, for example, [15–19]). The
application determines which ones should be used. Here we will mention just a few
common ones, and for the rest of the chapter we will use the signal-to-noise ratio as the
performance criterion.

DC Specification
Resolution: This is the number of output bit lanes for ADCs. It does not necessarily

relate to the accuracy of the converter.
Integral nonlinearity (INL): This is the deviation of the output code from a straight

line drawn through zero and full scale when the input is a straight DC ramp.
Differential nonlinearity (DNL): This describes the difference between two adjacent

code outputs compared with an LSB step size.
Offset: Matching of components is far from ideal in modern integrated circuits.

Mismatch effects will cause offset as referred to the input signal. A zero at the
input will result in a nonzero equivalent at the output.

Power: The power consumption is often a very critical specification when circuitry is
used in battery powered devices.

AC Specifications
The AC or dynamic specifications are often the most highlighted ones, given their
reputation as being the hardest to meet. This is often the case, but the same weaknesses
can usually be found in the DC specifications.

Signal-to-noise ratio (SNR): This is simply the ratio of the signal power to the power
of everything else, excluding harmonic distortion.

Total harmonic distortion (THD): This is the sum of all harmonic powers divided by
the power in the main tone, expressed most commonly as a percentage (%). We
will use THD in dB.

Signal-to-noise and distortion ratio (SNDR): This is simply the ratio of the signal
power to the power of everything else, including harmonic distortion.
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Effective number of bits (ENOB): The definition of ENOB is somewhat confusing.
There is a formal IEEE definition, but most current literature uses a simpler one
defined as

ENOB ¼ 20 log SNDR� 1:76
6:02

Spurious-free dynamic range: This is the difference in dB between the main tone and
the highest spur in the spectrum.

Bit error rate (BER): This the ratio of conversion errors over the number of
conversions done: see Chapter 3.

In most modern papers describing ADC performance the discrete Fourier transform of
the output signal is used:

h kð Þ ¼
XN�1

n¼0

H tnð Þe�j2π k
Ttn , tn ¼ n

N
T , k 2 �N

2
;
N

2
� 1

� �
,Neven

One can use this formula to investigate issues such as SNR, SNDR, THD, and other
such issues that occur with reasonable frequency. Things such as 1/f noise, and glitches
including missing codes, either require excessive sampling times or need to be investi-
gated with other means. Using these kinds of transforms can be very revealing of the
system’s performance. Be on the lookout for odd noise floor behavior, and unusual
output signal power. These can be indicative of unhealthy circuit behavior. If the
capture time is not long enough, the detrimental effects of jitter can be hidden in the
main tone. Apart from some of the rare defects mentioned previously, the Fourier
transform of the signal is very revealing of the full circuit behavior.

For our purposes we will use SNR, SNDR, and THD as key specifications to
illustrate the use of estimation analysis in the design of data converters.

Interleaving ADC

Many modern high-speed ADCs use time-interleaving topologies to achieve high
sample rates. An example is shown in Figure 7.16.

The idea is to mux the input sampled data to several slower-speed ADCs that output
their data in a synchronous manner. This output is aligned timing-wise to achieve the
designed sample rate. Various imperfections in the slower-speed ADCs will affect the
output result in predictable way, and we will study a simplified version of such an ADC
in this section.

Simplify We make the simplification that there are only two time-interleaved data
paths. We will first look at the effect of offset differences between the two digitizers
followed by a discussion of gain mismatch. We will also assume there is no thermal
noise to worry about.

2037.5 Analog-to-Digital Converters

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.008
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:06:40, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.008
https://www.cambridge.org/core


Vo ¼ A sinωnT , 2nT 
 t 
 2nþ 1ð ÞT
C þ A sinωnT , 2nþ 1ð ÞT 
 t < 2 nþ 1ð ÞT

�
:

If we plot this, we find as illustrated in Figure 7.17.

Solve We can now Fourier transform this effect:

Vo fð Þ ¼
ð∞
�∞

Vo tð Þe�jωtdt ¼
X
n, odd

ð∞
�∞

C þ A sinωnTð Þe�jωtdt þ
X
n, even

ð∞
�∞

A sinωnTe�jωtdt

¼
X
n

ð∞
�∞

A sinωnTe�jωtdt þ
X
n, odd

ð∞
�∞

Ce�jωtdt:

Sampler

clk

Demux

clk

ADC1 data1

ADCN dataN

Align
datain

Figure 7.16 Time-interleave topology.

t

V

Figure 7.17 Figure showing offset effect. The two dashed curves indicate the offset of the two
ADC slices.
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In addition to a sinusoid sampled with a period T , there is a DC tone sampled with a 2�T
period that will appear at frequencies, m=2T , half the sampling frequency. This is
simply the up-converted version of the offset in one channel.

The effect of gain mismatch can be analyzed similarly: see Figure 7.18.
We now have

Vo fð Þ ¼
ð∞
�∞

Vo tð Þe�jωtdt ¼
X
n, odd

ð∞
�∞

A0 sinωsnTe
�jωtdt þ

X
n, even

ð∞
�∞

A sinωsnTe
�jωtdt

þ
X
n

ð∞
�∞

A sinωsnTe
�jωtdt þ

X
n, odd

ð∞
�∞

A0 � Að Þ sinωsnTe
�jωtdt:

We have a sinusoid sampled with a period T and a sinusoid, with amplitude given by
the gain mismatch, sampled at half the sampling frequency. This second term will give
rise to tones at m=2T 	 f s.

Verify These are standard results that can be found, for example, in [19].

Evaluate In general for an n-interleaved system, any offset will show up as spurs
around Fs=n, and any gain mismatch will show up at Fs=n	 f .

t

V

Figure 7.18 Figure showing gain mismatch effect. The two dashed curves indicate the gain of each
ADC slice.
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Summary
We have studied simple ADC models and realized some relevant properties by using
estimation analysis. Although most of these results are well known, it is hoped that the
reader will be encouraged by the methodology used and will be inspired to explore
ADCs and their properties on his/her own. By simply pondering the systems under
consideration and trying to capture their essence through simple models, much can be
learned on one’s own.

Example 7.3 Flash ADC design

Since we have discussed a few basic examples of key ADC components, let us put
together a flash ADC. This is arguably the simplest and, as such, the fastest of the
traditional topologies and will serve as a good example of how to use the estimation
analysis to design circuits. It is not necessarily the most power conservative topology,
and for such applications where power is paramount the ADC literature has plenty of
examples of efficient architectures. Due to space limitations we will only consider a few
of the normal specifications here. A full ADC design requires specifications on effects
such as offset and power consumption and others that we will leave to the side here. One
can, however, easily incorporate these other effects using estimation analysis
techniques.

ADC Specifications
Table 7.6 shows the specifications for the ADC.

ADC Design
We will use here the results from the estimation analysis we have done with several
circuits along the way in this book, in particular from Chapters 2 and 3, to:

� Get a starting point of the design work from the estimation analysis
� Use this starting point in the simulator where we optimize the parameters

This is another circuit example of how to use estimation analysis to speed up the design
work. A good understanding of the basic behavior is essential to a good-quality end

Table 7.6 Specification table for ADC

Specification Value Comment

Sampling frequency 12.5 GHz
SNR 37 dB
SNDR 35 dB 1 dB off full scale at input
Resolution 6 bits
Sampler switch ON resistance 10 ohm When used
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product. The simulator should not give us any surprises; it should just be used to fine-
tune the performance, as we will discuss here.

The topology we will use is shown in Figure 7.19. The first block is an anti-aliasing
filter that simply ensures the signal coming through to the ADC has the signal limited to
the appropriate Nyquist band. This block will not be discussed here at all; instead, we
assume the input signal is properly band limited.

We will take the input stage, the follower, from Chapter 2, the buffer and comparator
from Chapter 3, and for the sampling switch we will first not use any and then compare
the bandwidth to the case where we use an ideal one with a series resistance.

One important issue we have not touched upon when designing the comparator is the
kickback phenomenon. The tail reset switch in Figure 3.3 will cause the source voltage
of the differential pair to move to ground node vss rapidly. This rapid change in voltage
will induce a current through the gate source capacitance of the input transistor and into
the driving impedance of the input source.

Ikick ¼ C
dV

dt
! ΔVin ¼ Ikick Zin

This will induce a voltage that will interfere with the precious input signal and can cause
significant problems. A simple scaling argument shows

ΔVin � 10�10�15 0:4

10�10�12 100 � 0:4�10�1 V½ �:

One is helped to some degree by the differential operation of the circuitry, but if one
needs high precision, it may very well be insufficient.

A preferred way to deal with this is to use a preamplifier to isolate the comparator
kickback from the input signal. It will also help with offset, but it will cause additional
delays and at times it may be unacceptable. One can also use different, higher power,
comparators where the circuit is biased the whole time. Here we will use a preamplifier
from Example 3.2. We have the topology as outlined in Figure 7.20.

The circuit blocks have already been designed with this system specification in mind,
and upon putting everything together and simulating we find the following set of results
for different frequencies. Note, for these simulations nothing was changed compared
with the earlier circuitry. Everything was designed/estimated with proper driving
source/load impedance and so no adjustments were made! The resulting spectrums
for two separate input tones are shown in Figure 7.21. The final results are shown in
Table 7.7.

AA-Filter Sampler? Follower

Example 2.2+2.3

PreAmp

Example 3.2

Comparator

Example 3.1

input Decoder

Figure 7.19 Basic ADC topology.
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R

R

vp < 0 >

vp < 1 >

vp < 63 >

vinp

bias1

bias2

R

R

vn < 0 >

vn < 1 >

vn < 63 >

vinn

Example 2.2+2.3

Example 3.2 Example 3.1

bias1

bias2

vp < 1 : 63 >

vn < 63 : 1 >

cp < 63 : 1 >

cn < 63 : 1 >

63 copies

T < 63 : 1 >

63 copies

Figure 7.20 Straight flash ADC topology.
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Figure 7.21 Output spectrum of flash ADC at 100 MHz and 6 GHz.

Table 7.7 Final simulation results for flash ADC

Parameter Simulation Estimation Difference

SNR 37.4 dB 37.9 dB (Quantization noise) 0.5 dB
SNDR 36.8 dB 37.9 dB 1.1 dB @ 6 GHz
BW 7.1 GHz 4 GHz (Known underestimate) 3 GHz
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Bandwidth Estimation
We define the bandwidth as the response at the output of the bottom resistor in the
string. The bandwidth is set by two properties of the system, first the CD stage output
driver and then the fact that we do not use a sampling switch here. These two facts will
limit our bandwidth. The aperture window for the comparator is really short, a few ps
from our discussion in Chapter 3, section “Comparator Analysis,” so it will not impact
the bandwidth. The CD stage consists of a string of low-ohmic resistors driving the
capacitive input stage of the preamp. There are 63 such RC time constants and the
accumulated effect is more significant than just 63�RC, since the filters are loading each
other. Instead, we can employ estimation analysis to get an idea of the bandwidth.

Simplify Let us approximate the system with a one-pole system, with a resistor equal
to the sum of all resistors and a capacitance equal to the sum of all capacitances, where
we use a fixed C ¼ 12 fF from Example 2.2. The resistor is given by design Example
2.2 plus the follower output resistance 1=gm ¼ 12 ohm. This will give us a lower bound
on the bandwidth.

Solve The estimated bandwidth is simply

f BW , lower ¼
1

2πRC
¼ 1

2 π 64�0:625þ 12ð Þ 64�12�10�15 ¼ 4:0 GHz:

Verify The simulated answer for the RC network itself is

f BW , sim ¼ 7:9 GHz

In the full simulation with active circuitry we find the bandwidth slightly lower due to
higher effective capacitance, and we end up with

f BW-full, sim ¼ 7:1 GHz:

Figure 7.22 shows something interesting. First, Figure 7.22a shows the gain response as
we have described it here with a 3 dB point at about 7 GHz. Figure 7.22b shows the
same simulation with an ideal sampling switch (10 ohm series resistance) at the gate of
the input stage transistor. Here the bandwidth has improved dramatically! The reason is
that the resistive ladder now has time to settle since the input is being held for roughly
half the sampling period. We will not go into the details of real sampling switch
implementations here but hope the reader will be inspired to explore on her/his own.

Distortion Estimation
The distortion will be dominated by the input CD stage. We have seen in Chapter 2 that
with a sufficient load, the distortion of a CD stage will be small. In our case we have a
large impedance due to the current sink, about 1 kohm, and from the second and third
harmonic terms calculated in Chapter 2, Section 2.2 and Example 2.2 we see that the
third harmonic term should be
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H3 �
�2 g0m
� �2 þ g00mgm, 0
gm, 0
� �5

ZLð Þ3
V3
in � 10�5

In other words, it is completely negligible. This was also confirmed by simulating low
frequencies <100 MHz. For higher frequencies we see from the plots there are some
distortion terms showing up, but they are small and will not degrade SNDR by much in
this case.

Noise Estimation
The noise is best estimated at the input to the preamplifier. We know from Example 3.1
that the input noise to the comparator is

vcompn, rms �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ib

VtCO

4kTγ
gm, 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�10�3

0:35�25�10�15

4�1:38�10�23�300�2
0:024

s
� 0:7 mV

The preamplifier’s output noise is roughly

vpren, rms �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTgm,pγR

2 þ 4kTR
� � 1

2πRCcomp, in

s
� 0:9 mV:

These two noise sources are uncorrelated, and knowing that the preamplifier gain is
around 2, we find the total noise at the preamplifier input to be

vn, rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vpren, rmsð Þ2 þ vcompn, rmsð Þ2

q
2

¼ 0:6 mV:
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Figure 7.22 Gain transfer function vs input frequency; the frequencies above Nyquist have been
measured as the folded down frequencies. The input signal is 1 dB backed off full scale. (a) The
gain without an input sampling switch, and (b) the gain response with an ideal input sampling
switch in series with a 10 ohm resistor.
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We need to compare this voltage to full scale ADC input, which is 800 mVppd or

vs, rms ¼ 0:8

2
ffiffiffi
2

p ¼ 0:28 V

Finally, the signal-to-thermal-noise ratio is then expected to be

SNR ¼ 0:28

0:6�10�3 � 53 dB

Thermal noise should not be a limiting factor for the performance. We see also from the
simulation results that the nonquantization noise is contributing roughly 0.5 dB.

Jitter Impact
We can consider the jitter from the PLL system we designed in Section 7.3. From
Figure 7.5 we can estimate a jitter of around 10 fs, but that does not include 1/f
contribution at low-frequency offset. Including these sources, the best jitter performance
reported in the literature is around 50 fs. Let us assume we can match this number and
see what the jitter impact would be on our ADC. At the first Nyquist boundary, we find

SNRjitter ¼ 1
σω

¼ 1

5�10�14�36�109 ¼ 0:5�103 ! SNRdB ¼ 54 dB

which is much smaller than the quantization noise. However, at the third and fourth
Nyquist bands we may get into trouble if the signal loss is otherwise contained.

Conclusion
We have taken a brief look at the design of a flash ADC. The reader should be aware
that a complete ADC design involves far more details. Criteria such as power, offset
correction, layout parasitics, error detection, and many others must also be considered.
Still, the exercise serves as an example of what one can do with simple estimation
analysis. Other important issues can be addressed in the same way. Of particular interest
is that the sizing of the various blocks was not changed in simulation; everything had
been set up with the correct load and source impedance, and the sizing we had estimated
and sometimes verified earlier was correct. So the circuitry worked! This was, of course,
a simple example, but imagine the benefits on a larger scale.

Voltage Sampling Theory

Sampling a signal for later digitization is one of the most common operations in any
modern IC. How sampling works with up-conversion folding and so on can often be
challenging for engineers new to the field. We will use our modeling strategy to shed
some light on this phenomenon.

To sample a signal, a precise clock source is used. The quality of the clock source is
often described in terms of its jitter, and we will begin this section with a brief
discussion of how jitter degrades the signal-to-noise ratio for voltage sampling. We
follow this with a discussion of voltage sampling using an ideal switch, where concepts
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such as impulse sampling, track and hold, and so on are defined. This will help us work
out some basic mathematical tools we can use for the noisy sampling study in the
second section. The simplifications we will use will be stated in the beginning of each
subsection and applied to several different subsequent situations. The purpose here is to
illustrate how to create simple yet relevant models with some common examples, and in
so doing we will present mathematical techniques in some detail.

Jitter
The degradation of signal-to-noise ratio due to jitter in the voltage mode was discussed in
section “Phase Noise vs Jitter,” where we showed that the equivalent voltage noise
follows the well-known jitter “ohms” law (7.3), illustrated in Figure 7.23. We find after
some trivial rearrangement that the signal-to-noise ratio of jitter due to voltage sampling is

SNR ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn tð Þ2
D Er ¼ A

vn, rms
¼ 1

σω
(7.12)

Fourier Transforms
In sampling theory we will work with Fourier transforms, and there are a few things
worth mentioning before we start. First, we will look at a sampling situation with a fixed
sampling period, T . This means we should define the Fourier transform as

H fð Þ ¼ 1
T

ð∞
�∞

h tð Þ e�jωtdt (7.13)

where ω ¼ 2πf .

t

V

σ

ΔV

Figure 7.23 Jitter impact on voltage sampling.
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Second, we will work with both positive and negative frequencies. For real-valued
functions h tð Þ the following property is easy to prove:

H fð Þ ¼ H∗ �fð Þ (7.14)

where * denotes the complex conjugate. For practical calculation we will usually study
the positive frequencies and simply keep in mind that the negative ones are the complex
conjugate of the positive. It is much easier to work with calculations this way.

Third, instead of using functions such as sinωt one should use Euler’s formula for
sinusoidal functions:

ejωt ¼ cosωt þ j sinωt

From this we see

sinωt ¼ ejωt � e�jωt

2j
, cosωt ¼ ejωt þ e�jωt

2
(7.15)

Working with ejωt functions is much easier when calculating Fourier transforms, as
should be clear from the definition (7.13).

Working with “negative” frequencies can be a little confusing at first, so let us
illustrate how it works with a simple example. Assume we have a function

f tð Þ ¼ A sinωst ¼ A sin
2π
Ts

t

where we need to calculate its power. From the basic definition we find the average
power is

P ¼ 1
Ts

ðTs

0

f 2 tð Þdt ¼ A2

Ts

ðTs

0

sin 2 ωstð Þdt ¼ A2

Ts

t

2
� sin 2ωst

4ωs

� �Ts

0

¼ A2

Ts

Ts

2
¼ A2

2

This is all well known. Now let us take the Fourier transform and look at the spectrum

F fð Þ ¼
ð∞
�∞

f tð Þe�jωtdt ¼
ð∞
�∞

A sin ωstð Þe�jωtdt ¼ A

ð∞
�∞

ejωst � e�jωst

2j

� �
e�jωtdt

¼ A

2j

ð∞
�∞

ej ωs�ωð Þt � e�j ωsþωð Þt
� �

dt ¼ A

2j
δ ωs � ωð Þ � δ ωs þ ωð Þð Þ

(7.16)

where we have used the continuous time definition of the Dirac delta function:

δ ωð Þ ¼
ð∞
�∞

e�jωtdt

We see here we have two frequency tones at ω ¼ 	ωs. Adding their powers, we should
end up with the same expression P above:
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Pspectrum ¼ A2

4
þ A2

4
¼ A2

2
¼ P

To summarize:

1. When working with negative frequencies, the tones on the negative frequency
side are the complex conjugate of their positive frequency counterparts. We can
simply stick to integrating the positive frequency power and multiply the result
by two.

2. Alternatively, if we know the power density for positive frequencies, such as
resistor noise, we can extend to negative frequencies by simply dividing the
power density by 2 and mirror it along the ω ¼ 0 axis.

Armed with these ground rules we can start.

Ideal Sampling Switch
For this section we need to know a couple of Fourier transforms that are helpful, as well
as a couple of theorems. We start with something with which most readers will be
familiar, impulse sampling, and we continue with track and hold and sample and hold
sampling.

Simplify The simple picture we will use throughout the section is pictured in
Figure 7.24.

1. We model a sampling switch as an ideal switch in series with a resistor with zero
ohm, Rs ¼ 0. The loop is completed by a (sampling) capacitor and a driving
voltage source.

2. We will also assume for simplicity throughout this section that the on-time is half
of the switch period.

Solve With these simplifications we will calculate the Fourier transform for two
different situations: impulse sampling and track and hold sampling.

−
+ vs

Rs

C

vout

Figure 7.24 Showing ideal sampling switch.
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Impulse Sampling
Imagine we sample an input sine wave at certain equally spaced points in time only: see
Figure 7.25.

Mathematically, this can be expressed as multiplying the input with a series of delta
functions:

f impulse tð Þ ¼ A sinωst
X
k

δ t � kTð Þ ¼
X
k

A sinωstδ t � kTð Þ

where T is the sampling period. As it stands, it is not very informative. We need to take
the Fourier transform to learn more, and in order to do this we first need to take the
Fourier transform of the sum of delta function so we can use the convolution theorem
(see Appendix B). We have

Fδ fð Þ ¼
ð∞
�∞

X
k

δ t � kTð Þe�jωtdt ¼
X
k

e�jωkT :

The key observation here is that these terms will be zero unless:

ωkT ¼ n2π 8k:

The effect of this is a replacement of the sums

X∞
k¼�∞

e�jωkT !
X∞
n¼�∞

δ ω� n2π
T

� �
:

We then find

Fδ fð Þ ¼
X∞
n¼�∞

δ ω� n2π
T

� �
:
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Figure 7.25 Impulse sampling.
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Now we are ready to use the convolution theorem, and we have for

F f impulse tð Þ� � ¼ F A sinωst
X
k

δ t � kTð Þ
 !

¼
ð∞
�∞

F f � f 0ð ÞFδ f 0ð Þdf 0

ð∞
�∞

A

2i
δ ωs � ωþ ω0ð Þ � δ ωs þ ω� ω0ð Þð Þ

X∞
n¼�∞

δ ω0 � n2π
T

� �
df 0

¼
X∞
n¼�∞

A

2i
δ ω� n2π

T
þ ωs

� �� �
� δ ω� n2π

T
� ωs

� �� �� �
:

These delta functions will appear over and over again, so to minimize the clutter we will
use the following short forms:

δ�ωs
ω,n ¼ δ ω� 2π n

T
� ωs

� �� �

δωs
ω,n ¼ δ ω� 2π n

T
þ ωs

� �� �

We then have

Fimpulse ωð Þ ¼ A

i2

X∞
n¼�∞

δωs
ω,n � δ�ωs

ω,n :

We have an impulse train with tones of size A=2 around all harmonics of the sampling
frequency, as in Figure 7.26. We will see the same kind of calculation again and again
all through this section; see [15] for similar discussions.

Track and Hold Sampling
Track and hold is a sampling technique where the input signal is visible at the output
with some periodicity. The rest of the time the signal is held at a sampled value:
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Single Freqency tone around Sampling harmonics

Figure 7.26 Spectrum of impulse sampling.
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Figure 7.27 shows an example. We will first discuss the Fourier transform of the track
phase. The hold phase is simpler technically and we leave it as an exercise to the reader.
The sum of the track and hold phases gives finally the track and hold result. As a bonus
we will also present the sample and hold result.

Fourier Transform of the Track Phase
The track phase can be viewed mathematically as a multiplication of signal by a square
wave with amplitude V ¼ 1. Such a square wave has the Fourier transform:

Fsquare ωð Þ ¼
X∞
k¼�∞

Fkδ ω� 2πk
T

� �
, Fk ¼ e�jπk=2 1

2
sin πk=2
πk=2

The Fourier transform of the track phase

f track tð Þ ¼ f sig tð Þ f square tð Þ
is now:

Ftrack ωð Þ ¼
ð∞
�∞

F f � f 0ð ÞFsquare f 0ð Þdf 0

¼
ð∞
�∞

A

2j
δ ωs � ωþ ω0ð Þ � δ ωs þ ω� ω0ð Þð Þ

X∞
n¼�∞

Fnδ ω0 � n2π
T

� �
df 0

¼
X∞
n¼�∞

e�jπn=2 1
2

sin πn=2
πn=2

A

2j
δþωs
ω,n � δ�ωs

ω,n

� �
:

We see here that even integers cancel out (except n ¼ 0). We end up with

Ftrack ωð Þ ¼ j
A

4
δ ωs � ωð Þ � j

A

4
δ ωs þ ωð Þ þ A

2

X∞
n¼odd

1
πn

δþωs
ω,n � δ�ωs

ω,n

� �
:
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Figure 7.27 A track and hold picture.
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Fourier Transform of a Track and Hold Signal
We leave the hold phase to the reader as an exercise, and when putting all this together
in one formula we get

FT=H ωð Þ ¼ Ftrack ωð Þ þ Fhold ωð Þ ¼ A

2
je�jωT=4 sin Tω=4

Tω=4

X∞
m¼�∞

δωs
ω,m � δ�ωs

ω,m

� �
þ j

A

4
δ ωs � ωð Þ � j

A

4
δ ωs þ ωð Þ þ A

2

X∞
n¼odd

1
πn

δþωs
ω,n �þδþωs

ω,m

� �
,

and the result can be seen in Figure 7.28.

Sample and Hold Sampling
Sample and hold sampling is similar to track and hold sampling, but the signal is not
visible at the output directly; instead, it is held constant after sampling, and depending
on the situation it returns to zero after some time or it is held all the way up to the next
sample. In this section we calculate the case where the signal is held until the next
sample. We leave the more general case to the reader as an exercise.

Fourier Transform of a Sample and Hold Signal
A sample and hold signal where the signal is held constant until the next sample is
simply Fhold ωð Þ with the hold period equal to the sampling period. We can simply do
the substitution T ! 2T for Fhold ωð Þ in exercise 5 and we end up with

FS=H ωð Þ ¼ A

2
je�jωT=2 sinωT=2

ωT=2

X∞
m¼�∞

δþωs
ω,m � δ�ωs

ω,m

� �
:

A picture of the spectrum in shown in Figure 7.29.
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Figure 7.28 Frequency domain representation of track and hold signal. The track phase is indicated
in thick black and the hold phase is given by the dashed line. The track and hold responses are
offset slightly from each other to show the response more clearly. The overall sinc function is
drawn in thin black.
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Verify We have studied here some of the basics of sampling and sampled signals. We
have seen how, with some basic Fourier series analysis, we can demonstrate a wide
range of phenomena. The results presented can be found, for example, in [15].

Evaluate The sampling effect can be simply estimated via Fourier series.

Noise Sampling
We have been looking at the basic sampling effects from a simple perspective, that of a
single tone being subject to ideal sampling. What happens if you sample a circuit with
noise? We will consider a refined sampling model where there is a noisy resistor in
parallel with a capacitor as in Figure 7.24 with the switch permanently closed.

Lossy Resistor in Parallel with a Capacitor
Let us consider the following situation: a resistor in parallel with a capacitor to ground.
The voltage source in Figure 7.24 is vs ¼ 0, so the end of the resistor goes to ground and
we will study the noise transfer, due to the lossy resistor, of this system to the capacitor
when we sample the output node. It is perhaps as simple as one can make it. First, let us
study this system without sampling. We can consider a noise voltage sitting in series
with the resistor. We find at the capacitor

i tð Þ ¼ vn tð Þ � v tð Þ
R

¼ C
dv

dt
:

.Since the noise is better known as a spectrum, we will look at the above in frequency
space.

~vn � ~v

R
¼ Cjω ~v ! ~v ¼ ~vn

jRCω
1

1þ 1
jRCω

� � ¼ ~vn
jRCωþ 1ð Þ :
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Figure 7.29 Frequency domain representation of sample and hold signal. The overall sinc function
is drawn in thin black.
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The resistor noise is white, and we can now integrate the noise power over frequency
to find

ð∞
�∞

~vn
jRCωþ 1ð Þ










2df ¼ ~vnj j2
ð∞
�∞

1

RCωð Þ2 þ 1
� � df ¼ ~vnj j2

2πRC

ð∞
�∞

1
x2 þ 1ð Þ dx

¼ ~vnj j2
2πRC

tan �1x
	 
∞

�∞ ¼ ~vnj j2
2RC

¼ 2kTR
2RC

¼ kT

C

where we have used

~vnj j2 ¼ 2kTR

~vnj j2 is defined over negative frequencies, so the power is half the normal textbook
version. This is all well. What happens if we sample this system?

Let us assume at time t the capacitor has a voltage v tð Þ, the input is

vin tð Þ ¼ As

2j
ejωst � e�jωst
� �

,

and the voltage on the capacitor is governed by a differential equation derived from

Q ¼ C U ! dQ

dt
¼ I ¼ C

dU

dt
:

We find

I tð Þ ¼ vin tð Þ � v tð Þ
R

¼ C
dv tð Þ
dt

A simple rewrite shows

dv tð Þ
dt

¼ vin tð Þ � v tð Þ
RC

¼ As=2j ejωst � e�jωstð Þ � v tð Þ
RC

: (7.17)

This is a first-order differential equation that has the solution

v tð Þ ¼ B e�
t

RC � As=2e�jωst

RCωs þ j
þ As=2ejωst

�RCωs þ j
¼ B e�

t
RC þ D� e�jωst þ Dþ ejωst (7.18)

D� ¼ � As=2
RCωs þ j

Dþ ¼ As=2
�RCωs þ j

:

We take the Fourier of v tð Þ and find, with B ¼ 0 (we assume the initial transient is
negligible),

Fv fð Þ ¼
ð∞
�∞

v tð Þe�jωtdt ¼
ð∞
�∞

D�e�jωst þ Dþejωst
� �

e�jωtdt

¼
ð∞
�∞

D�e�j ωsþωð Þt þ Dþej ωs�ωð Þt
� �

dt ¼ D�δ ωs þ ωð Þ þ Dþδ ωs � ωð Þ:
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Ideal Impulse Sampling
Let us sample this with an ideal impulse sampler, where we again use the convolution
theorem.

F v tð Þvs tð Þð Þ ¼ F fð Þ ¼ Fv fð Þ∗Fδ fð Þ ¼
ð
Fv f � f 0ð ÞFδ f 0ð Þdf 0

ð
A

2
� δ ω� ω0 � ωsð Þ
RC ω� ω0ð Þ � j

� δ ω� ω0 þ ωsð Þ
RC ω� ω0ð Þ þ j

� �X
δ ω0 � k

2 π
Ts

� �
df 0

¼
X∞
k¼�∞

A

2

δþωs
ω,k

RC ω� k2π=Tsð Þ � j
� δ�ωs

ω,k

RC ω� k2π=Tsð Þ þ j

 !
:

This simply means the spectrum with a specific sine wave source is shifted around each
sampling frequency harmonic. Imagine now that we integrate ωs over all spectrum, in
other words we have a white noise source with noise density A ¼ 2kTR. We find

V ωð Þ ¼ kTR
X∞
k¼�∞

1
ωþ k2 π=Tsð ÞRC � jÞ �

1
ωþ k2 π=Tsð ÞRC þ jÞ

V ωð Þ ¼ kTR
X∞
k¼�∞

2j

ωþ k2 π=Tsð Þ2R2C2 þ 1Þ :

Figure 7.30 shows that by looking at ω < π=T , the first Nyquist zone, we see that
noise contributions from higher harmonics of the sampling clock extend into the first
Nyquist zone. We see that even though we restrict ω to be within the first Nyquist
zone, contributions from all harmonics extend into the first Nyquist zone, leaving the
total integrated power in the first Nyquist zone equal to the total noise integrated over
all frequencies without sampling. In fact, the same can be said about any Nyquist

Frequency

V
ol

ta
ge

2
Ts

0 1
Ts

Figure 7.30 First three terms of V ωð Þj j . Within the first Nyquist zone the noise from the m = +1,2
terms are added to the noise, resulting in an increase in the total noise. The dashed lines indicate
harmonics of the sampling frequency and the dash-dotted line the first Nyquist zone.
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zone. All Nyquist zones contain all noise power in the ideal impulse sampling case.
For a sample and hold situation, it is a little bit different, something we will
explore next.

Finite Pulse Width Sampling
Let us sample this with a square wave where the switch is on for a time Ts=2 and the rest
of the time the output is zero.

F v tð Þvs tð Þð Þ ¼ F fð Þ ¼ v fð Þ∗Fsquare fð Þ ¼
ð
v f � f 0ð ÞFsquare f 0ð Þdf 0

ð
A

2
� δ ω� ω0 � ωsð Þ
RC ω� ω0ð Þ � j

� δ ω� ω0 þ ωsð Þ
RC ω� ω0ð Þ þ j

� �X∞
k¼�∞

Fkδ ω0 � 2πk
T

� �
df 0

¼
X∞
k¼�∞

A

2
e�iπk=2 1

2
sin πk=2
πk=2

δþωs
ω,k

RC ω� k2π=Tsð Þ � j
� δ�ωs

ω,k

RC ω� k2π=Tsð Þ þ j

 !

After integrating the noise source again, we find the following spectrum

V ωð Þ ¼ kTR
X∞
k¼�∞

e�iπk=2 1
2

sin πk=2
πk=2

2j

ωþ k2 π=Tsð Þ2R2C2 þ 1Þ
This expression is very similar to what we had before, with the exception of the absence
of every even sampling harmonic, except DC.

Verify This is a much-discussed effect, see for example [20].

Evaluate With ideal impulse sampling, all Nyquist zones contain all noise power in
the unsampled system. Finite sampling width results in a notch filter effect excluding
some noise around some harmonics of the sampling frequency.

Key Concept

With ideal impulse sampling, all Nyquist zones contain all noise power in the
unsampled system. Finite sampling width results in a notch filter effect excluding
some noise around some harmonics of the sampling frequency.

Charge Sampling Theory

Charge sampling is a less frequently used technique to sample a signal. It was first
proposed a few decades ago and although the utilization of this technique is not that
extensive, it has some advantages that are worth discussing. We will follow [21] in the
beginning and extend that discussion to more general situations. Since this technique is
used less often, we will spend quite a bit more time on the mathematical derivations. We
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will use estimation analysis and start with some simplifications, followed by the now
familiar Solve, Verify, and Evaluate discussions.

Simplify Let us consider an ideal charge sampling model starting with the discussion
in [21] and Figure 7.31.

We will further simplify the discussion by assuming S1 is always on and S2 is an
ideal switch that clears the capacitance in no time, with a period Ts. When looking at a
sine wave, we then have current integration from a time, tn to a time tnþ1 ¼ tn þ Ts: see
Figure 7.32.

Solve Using

iin tð Þ ¼ I0 sinωt (7.19)

we find the sampled charge

Cn ¼ A

Ts

ðtnþ1

tn

sinωt dt ¼ �A

Tsω
cosωt½ �tnþ1

tn
¼ A

Tsω
cosωtn � cosωtnþ1ð Þ

iin C

1
vout

S

2S

Figure 7.31 Ideal current switch. © [2005] IEEE. Adapted, with permission, from IEEE Trans Circ.
Systems.
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Figure 7.32 Ideal charge sampling in time domain.
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where we have defined, A ¼ I0�Ts, as the charge amplitude. Using

tn ¼ n Ts

we get:

Cn ¼ A

Tsω
cosωnTs � cosω nþ 1ð ÞTsð Þ

¼ A

Tsω
�2� sin 1

2
ωnTs þ ω nþ 1ð ÞTsð Þ

� �
sin

1
2

ωnTs � ω nþ 1ð ÞTsð Þ
� �� �

¼ A

Tsω
2� sin ωnTs þ 1

2
ωTs

� �
sin

1
2

ωTsð Þ
� �� �

� A sinωnTs, ωTs � 1:

(7.20)

We see here that for low frequencies we recover the sampled signal. For higher
frequencies there is a roll-off determined by the last sine factor. At Nyquist, ωTs ¼ π
this roll-off has an amplitude of A�2=ωTs ¼ A 2=π or �3.9 dB loss compared with DC.

When jitter is added into the picture we get:

tn ¼ n Ts þ σn

where

σn ¼
X

am sin ωmt þ θmð Þ
we get:

Cn ¼ A

Tsω
cosω nTs þ σnð Þ � cosω nþ 1ð ÞTs þ σnþ1ð Þð Þ

¼ A

Tsω
cos ωnTsð Þ cos ω σnð Þ � sin ωnTsð Þ sin ω σnð Þ½

� cos ω nþ 1ð ÞTsð Þ cos ω σnþ1ð Þ � sin ω nþ 1ð ÞTsð Þ sin ω σnþ1ð Þð Þ�:

Assuming, ωσn � 1, we arrive at

Cn � A

Tsω
cos ωnTsð Þ�ωσn sin ωnTsð Þ� cos ω nþ1ð ÞTsð Þ�ωσnþ1 sin ω nþ1ð ÞTsð Þð Þ½ �

¼ A

Tsω
cos ωnTsð Þ� cos ω nþ1ð ÞTsð Þ�ωσn sin ωnTsð Þþωσnþ1 sin ω nþ1ð ÞTsð Þ½ �

For low frequencies ωTs � 1 we can now make an interesting observation,

Cn�AsinωnTsþAsin ωnTsþωTs

2

� �
σnþ1�σnð Þ

Ts
þAωcos ωnTsþωTs

2

� �
σnþ1þσnð Þ

2

Cn�AsinωnTsþAsin ωnTsþωTs

2

� �
σnþ1�σnð Þ

Ts
þAωcos ωnTsþωTs

2

� �
σnþ1þσnð Þ

2

(7.21)
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The first term is the original signal, while the last two show jitter contributions. Note
that if the jitter components are correlated, σnþ1 ¼ σn the second term disappears and
we have the usual jitter relationship from voltage sampling where the aperture jitter
component is proportional to frequency (or the derivative of the signal). One can think
of correlated jitter as a low-frequency drift of the sampling point: see Figure 7.33. For
anti-correlated jitter σnþ1 ¼ �σn, the third term disappears and we are left with jitter
terms that can be called amplitude jitter in that they peak when signal amplitude peaks,
shown in Figure 7.34. For uncorrelated jitter, both the second and third terms will
contribute, and for small frequencies the second term is the dominant one. We have
jitter effects even at DC.

Another way to think of this is in terms of differential signals. Any charge sampling
event can be characterized by either the start or end time of the sampling interval or the
common mode time (average) and the differential time. In other words, we can describe
the sampling as a correlated signal plus an anti-correlated signal. These two signals can
obviously vary with the sampling time.
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Figure 7.33 Low-frequency drift of charge sampling points. Correlated sampling points. The
distance between the sampling points is correct but the average charge sampling time is off by
sigma. This situation typically occurs in low-frequency drifts.
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For general frequencies we can also calculate the response

Cn ¼ A

Tsω
cos ωnTsð Þ� cos ω nþ1ð ÞTsð Þ�ωσn sin ωnTsð Þþωσnþ1 sin ω nþ1ð ÞTsð Þ½ �

¼ A

Tsω
2∗sin ωnTsþ1

2
ωTs

� �
sin

1
2
ωTsð Þ

� �� �
þ Jn (7.22)

where

Jn ¼ A

Ts
�σn sin ωnTsð Þ þ σnþ1 sin ω nþ 1ð ÞTsð Þ½ �: (7.23)

Verify These calculations are similar to [21].

Evaluate We have identified a couple of different modes of operations, and we will
discuss them each in turn. We start with the correlated jitter and follow this by the anti-
correlated jitter discussion.
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Figure 7.34 Anti-correlated sampling points. The average charge sampling time is correct but the
distance between the sampling points is off, causing the slice gain to be off. The odd and even
sampling pulse edges move opposite each other.
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Correlated jitter
When the jitter is correlated we get:

Jn,corr ¼ A

Ts
σn � sin ωnTsð Þ þ sin ω nþ 1ð ÞTsð Þð

¼ A

Ts
σn 2 sin

1
2
ωTs

� �
cos ωnTs þ 1

2
ωTs

� �
:

which is very similar to the main tone except the phase is off by 90 degrees. In other
words, it looks like phase jitter. To get the signal-to-noise ratio we need to convert to
power and average signal and power over time, T :

Ncorr ¼ J2n,corr
� � ¼ 1

N

XN
n¼1

A

Ts
σn 2 sin

1
2
ωTs

� �
cos ωnTs þ 1

2
ωTs

� �� �2

If we now define an effective jitter function

σ2 ¼ 1
N

X
n

σ2n cos
2 ωnTs þ 1

2
ωTs

� �
, N ! ∞ (7.25)

¼ A

Ts
σ 2 sin

1
2
ωTs

� �� �2

: (7.26)

we see the same roll-off vs frequency as the signal.
For the signal we will also define it similarly

S ¼ C2
n

� � ¼ 1
N

XN
n¼1

A

Tsω
2 sin ωnTs þ 1

2
ωTs

� �
sin

1
2

ωTsð Þ
� �� �� �2

¼ A
Tsω

2 sin 1
2ωTs

� �� �2
:

(7.27)

We get for

S

Ncorr
¼

A
Tsω

2 sin 1
2ωTs

� �� �2
A
Ts
σ 2 sin 1

2ωTs

� �� �2 ¼ 1
σω

� �2

: (7.28)

This is same expression one would get for pure voltage sampling; see earlier discussion,
equation (7.12). Another way to look at this situation is to see that the sampling instance is
off by σn and if the jitter is slowly changing, the next samplewill be off by a similar amount.

Key Concept

Correlated charge sampling jitter degrades SNR the same as voltage sampling.

Anti-correlated jitter
Let us look at the opposite situation where jitter is anti-correlated, σn � �σnþ1, and the
odd and even sample pulses are moving opposite each other.

2277.5 Analog-to-Digital Converters

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108682336.008
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 09 Aug 2019 at 12:06:40, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108682336.008
https://www.cambridge.org/core


Jn,anti-corr ¼ � A

Ts
σn sin ωnTsð Þ þ sin ω nþ 1ð ÞTsð Þð

Jnþ1,anti-corr ¼ � A

Ts
σnþ1 sin ω nþ 1ð ÞTsð Þ þ sin ω nþ 2ð ÞTsð Þð

¼ A

Ts
σn sin ω nþ 1ð ÞTsð Þ þ sin ω nþ 2ð ÞTsð Þ:ð

We see in general that we get a sequence of samples with alternating sign

Jn,anti-corr ¼ � A

Ts
σn sin ωnTsð Þ þ sin ω nþ 1ð ÞTsð Þð

¼ � A

Ts
σn 2 �1ð Þn cos 1

2
ωTs

� �
sin ωnTs þ 1

2
ωTs

� �
: (7.29)

For simplicity, let us assume σn ¼ �σnþ1 ¼ σ. We see then that this sequence is generated
by multiplying the tone by a square wave with period 2Ts. The result is a tone at
1= 2∗Tsð Þ � ω= 2πð Þ. In other words, the main tone gets no broadening of its profile. This
situation is simply one of timing mismatch between odd/even samples, which will create a
tone that looks like an interleave gain error aroundwhich the jitter noise moved. The cosine
term in the previous expression shows that, close to Nyquist, this term is suppressed.

We can now go through the same calculation that led us to the correlated noise
power, Ncorr. We find

Nanti-corr ¼ A

Ts
σ 2 cos

1
2
ωTs

� �� �2

: (7.30)

And

S

Nanti-corr
¼

A
Tsω

2 sin 1
2ωTs

� �� �2
A
Ts
σ 2 cos 1

2ωTs

� �� �2 ¼ 1
σω

sin 1
2ωTs

� �
cos 1

2ωTs

� �
 !2

: (7.31)

For low frequencies we see the expected dc value, Ts=2σð Þ2, while for high frequencies
we get e1= ω� ωsð Þ2, which is a remarkable improvement! The improvement in noise is

Nanti-corr
Ncorr

¼
A
Ts
σ 2 cos 1

2ωTs

� �� �2
A
Ts
σ 2 sin 1

2ωTs

� �� �2 ¼
cos 2

1
2
ωTs

� �

sin 2
1
2
ωTs

� � ¼ cot 2
1
2
ωTs

� �
: (7.32)

We see this ratio is less than 1 above Nyquist/2.

Key Concept

Anti-correlated jitter could provide significant improvement to SNR at frequencies
above Nyquist/2.
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Uncorrelated jitter
For correlated noise, we get no benefit compared with voltage sampling! For anti-
correlated, we get infinite benefit for the tone proper, although the total noise power
only rolls down when the main tone is close to Nyquist – still a remarkable improve-
ment in SNR. For uncorrelated jitter, half the jitter will be in the correlated and half will
be anti-correlated. We find the total jitter power

Nanti-corr þ Ncorr ¼ A
Ts

σffiffi
2

p 2 cos 1
2ωTs

� �� �2
þ A

Ts

σffiffi
2

p 2 sin 1
2ωTs

� �� �2
¼ A

Ts

σffiffi
2

p 2 cos 1
2ωTs

� �� �2
þ A

Ts

σffiffi
2

p 2 sin 1
2ωTs

� �� �2� �

¼ A
Ts

σffiffi
2

p 2
� �2

¼ 2 A
Ts
σ

� �2
:

(7.33)

As the tone frequency changes, the sum of the contributions from the correlated and
anti-correlated portions is the same but their relative power changes. For low frequency
the anti-correlated jitter is dominant, while for high frequencies the correlated jitter
dominates. This noise power can also be found directly from the expression for Jn . We
find, noting that both edges contribute equally to noise power,

Nuncorr ¼ J2n,uncorr
� � ¼ 2� 1

N

XN
n¼1

A

Ts
σn sin ωnTsð Þ

� �2

¼ 2� A

Ts
σ

� �2

(7.34)

where we have, similarly to (7.25), defined an effective σ. And we find

S

Nuncorr
¼

A
Tsω

2 sin 1
2ωTs

� �� �2
A
Ts
σ
ffiffiffi
2

p� �2 ¼ 1
2

2
σω

� �2

sin 2 1
2
ωTs

� �

¼ 1
2

2Ts

σTsω

� �2

sin 2 1
2
ωTs

� �
¼ 1

2
Ts

σ

� �2 sin 2 xð Þ
x2

, x ¼ 1
2
ωTs 0 
 x 
 π

2
:

(7.35)

The improvement for uncorrelated edge noise compared with correlated noise is:

Nuncorr

Ncorr
¼

A
Ts
σ
ffiffiffi
2

p� �2
A
Ts
σ 2 sin 1

2ωTs

� �� �2 ¼ 1

2 sin 2
1
2
ωTs

� � (7.36)

which shows that when 1=2ð ÞωTs > π=4 ! f > 1=4Ts we have an improvement of up
to 3 dB at Nyquist. Since we still have jitter at DC, there is a penalty for low frequencies
compared with correlated noise.

Key Concept

Uncorrelated jitter can provide up to 3 dB improvement of SNR compared to
correlated jitter at Nyquist. However, at DC we will still see an effect of jitter. This
is in contrast to voltage sampling.
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Verify These two correlation models were simulated with the aid of a Matlab script,
and the comparison is shown in Figures 7.35–7.37. We use a simple sinusoidal jitter
tone that moves the integration edge up and down in time, similar to the model in
section “Phase Noise vs Jitter.”

Evaluate The interesting thing to note here is that the anti-correlated signal-to-noise
ratio can be significantly higher with the anti-correlated noise at high frequencies. For low
frequencies, due to the roll-off of the noise power, it is still better than the correlated noise
jitter. This promise caused some excitement early on when it was proposed. However,
there is an assumption being made. If we look again at the phase noise response of a
typical PLL, in Section 7.1 we found most phase noise was concentrated around the
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Figure 7.35 Matlab simulation of correlated charge sampling jitter and comparison with the
estimated model.
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Figure 7.36 Matlab simulation of anti-correlated sampling jitter and comparison with the
estimated model.
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carrier. This causes slow movement of the carrier phase as a function of time. In the
context of charge sampling, this means that almost all the jitter is correlated and the SNR
degradation due to jitter is more or less identical with voltage sampling. Any portion of
the jitter that is uncorrelated will give rise to jitter degradation even for a DC signal. If we
can accept the DC degradation, we still need a PLL structure that can spread the noise out
so it becomes white or uncorrelated, or we can create a topology that implements an anti-
correlated jitter transfer – none of which is obvious, but it is worth some thought.

7.6 Summary

This chapter has explored clock generation in terms of PLLs and its implication in
terms of sampling and analog-to-digital converters. We have studied this in the case of
jitter in terms of both voltage sampling and charge sampling and have found some
interesting relationships, all using simple modeling and estimates followed by verifi-
cation in terms of literature or simulations. In addition, a few design examples were
discussed where the estimation analysis was prominent, and we highlighted how such
groundwork can lead to much better understanding of the system and therefore much
faster design time.

7.7 Exercises

1. Derive the noise transfer from the VCO, divider, input reference signal, and phase
detector block.

2. The open loop response, O sð Þ, for the PLL system in Section 7.3 is defined as

O sð Þ ¼ F sð ÞKVCOKPD

sN
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Figure 7.37 Matlab simulation of uncorrelated charge sampling jitter and comparison with the
estimated model.
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Use this expression to estimate phase margin, defined as the phase of
O jωð Þ þ 180 at the point ω where O jωð Þj j ¼ 1, for the case where

a. F sð Þ ¼ 1
sC

b. F sð Þ ¼ 1þas
sC

3. You are given a clock reference that has an extraordinary amount of phase noise
spread out over the frequency close to the tone. How would you design a PLL
that can clean up this noise?

4. You are given a VCO that has very poor phase noise performance. How would
you specify the reference clock noise and the PLL bandwidth to fix this?

5. You are given an n bit flash ADC. You are asked to use its components to build
an n + 1 bit flash ADC. How much would you expect the power consumption to
increase? What about area?

6. Calculate the Fourier transform of the hold phase. Verify

Fhold ωð Þ ¼ A

2
je�jωT=4 sinTω=4

Tω=4

X∞
m¼�∞

δωs
ω,m � δ�ωs

ω,m

� �
:

7. How does sampling conversion depend on duty cycle of the sampling clock? We
have calculated the case where the hold width is the same as the sampling period
in section “Voltage Sampling Theory.” Derive the more general case where the
signal is held for some portion of the sampling period. The rest of the time output
of the switch is zero.

8. Modern simulators have the ability to model nonlinear phenomena where a small
signal gets up- or down-converted due to some nonlinear effect. This is often
referred to as periodic ac simulation. We can use the model we have built in the
voltage sampling section (“Voltage Sampling Theory”) to explore this effect
analytically, by using the nonideal switch but replacing the noisy resistor with
a signal source with a single frequency ωs and using the track and hold model.
First, simplify by only looking at the first harmonic of the sample frequency and
investigate how the signal source tone gets up-converted around this harmonic.
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Appendix A Basic Transistor and
Technology Model

This appendix discusses the basic technology parameters we are using in the design
examples. It is in itself not an existing technology since that would require various
copyright permissions that are not trivial to obtain. Instead the parameters are similar to
competitive small geometry bulk CMOS technologies. First we will describe the various
dielectric layers in the silicon and then we will through tables and figures list the active
device parameters of interest to us here. When the reader applies these techniques to a
real process he/she simply needs to fill out the tables and regenerate the transistor
functions, perhaps in greater detail than we have space to do here.

A.1 Dielectric Parameters

Table A.1 Dielectric parameters

Parameter Value Unit

Silicon substrate thickness 200 μm
Silicon substrate relative permittivity 11.9
Silicon substrate resistivity 0.1 Ohm m
Epitaxial layer thickness 10 μm
Epitaxial layer relative permittivity 3
Epitaxial layer resistivity 0 Ohm m
Top-level metal M10 material Aluminum
M10 minimum width 1 μm
M10 thickness 2 μm
M10 height over substrate 4 μm
M10 max current 3 mA/μm
M9 material Copper
M9 minimum width 0.5 μm
M9 thickness 0.5 μm
M9 height over substrate 3 μm
M9 max current 5 mA/μm
M8 material Copper
M8 minimum width 0.5 μm
M8 thickness 0.5 μm
M8 height over substrate 2 μm
M8 max current 5 mA/μm
M2 material Copper
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A.2 Transistor Parameters

The actual simulation uses a full BSIM4 model and the parameters described are
derived from such simulations. All transistors in this book have an implicit body to
source short that removes the dependence on the back-gate bias on the response also
known as the body effect. In practice this means the transistors are laid out in their own
well, a so called deep-nwell. This is done for clarity, the body effect can easily be
studied with estimation analysis if needed. The basic transistor model we will be using
in the hand calculated examples has a drain current that scales like

Id ¼ K
W

L
VG � Vtð Þ2 (A.1)

where K,Vt are assumed given. The source terminal is here assumed to be at ground.
Also, the gate capacitance

Cox ¼ K1WL (A.2)

The junction capacitance is assumed to scale with the channel width like

CA ¼ K2W (A.3)

where we ignore its bias dependence.
From the information in the table we find gmro � 10 which is fairly typical for this

process family.
Figures A.1–A.4 show simple drain current vs voltage simulations of the thin and

thick oxide transistors. For small geometry CMOS the PMOS and NMOS response is
similar and we assume they are identical for simplicity.

A.3 Noise

Electronic noise shows up in many different forms and can have many different
physical origins. For illustrative purposes we only use thermal noise throughout the
book. At times other noise sources, and perhaps most significantly, 1/f noise needs to be
included to have a thorough understanding of a certain situation. We point out to the
reader when such noise sources should be considered. For transistors we model noise as
an ideal current source across drain and source terminals with a noise density equal to

Table A.1 (cont.)

Parameter Value Unit

M2 minimum width 50 nm
M2 thickness 100 nm
M2 height over substrate 300 nm
M2 max current 1 mA/μm
M1, M3–M7 ignored N/A
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Table A.2 General thin-oxide transistor parameters

Parameter Value Unit

K 0:7�10�4 A
V2

K1 30�10�3 F
m2

K2 2�10�10 F
m

Vt 350 mV

Table A.3 Specific thin-oxide transistor parameters for what is often referred to as a unit transistor in the
main text

Parameter, nf = 10, l = 27 nm, wf = 1 μm Value Unit

Id 1 mA
Vg 700 mV
Vs 233 mV
Vd >250 mV
ro 1200 ohm
gm 8 mmho
g0m 21 mmho=V
g

00
m �14 mmho=V2

g0o �0.025 mmho=V
g0om 2 mmho=V
Cox 8 fF
CA 2 fF
Cgd (fringe) 3 fF
ft (in saturation C � 2

3Cox) 220 GHz

Table A.4 Specific transistor parameters for 1.5 V device

Parameter, nf = 10, l = 100 nm, wf = 1 μm 1.5 V device

Id 1.6 mA
Vg 900 mV
Vs 0 mV
Vd 900 mV
ro 2k ohm
gm 5.8 mmho
g0m 2.35 mmho=V
g
00
m �5 mmho=V2

Cox 11.6 fF
CA 2 fF
Cgd (fringe) fF
f t (in saturation C � 2

3Cox) 120 GHz
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i2n ¼ 4kTγgm A2=Hz
� �

where k is Avogadros constant, T is temperature in units of Kelvin, [K], γ is a correction
factor we assume equal to 2 throughout the book and gm is the transistors trans-
conductance.
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4
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Vgs [V]

I d
[A

]

Vds = 500mV

Figure A.1 Drain current vs Vgs for transistor with l = 27 nm, w = 1 μm, nf = 10.

0 0.2 0.4 0.6 0.8

0

0.5

1

·10−3

I d
[A

]

Vgs

Vds [V]

= 470mV

Figure A.2 Drain current vs Vds for same transistor as Figure A.1.

Table A.5 Varactor parameters

Parameter unit device 2 V varactor

Nominal capacitance 10 f F @V ¼ 0
dC/dV 5 f F=V
R series 12 ohm
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Figure A.3 Drain current vs Vgs for thick oxide transistor with l = 180 nm, w = 1 μm, nf = 10.
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Figure A.4 Drain current vs Vds for same thick oxide transistor.
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Appendix B Useful Mathematical Relationships

The formulae in this appendix can be found in many references and online. Here we
have used [1, 2] specifically.

B.1 Various Integral Theorems

We assume h, φ, A are smooth scalar or vector functions, V is a three-dimensional
volume, S is a closed surface bounding V , with unit outward normal n. F hð Þ denotes
Fourier transform of h.

Parseval’s theorem

ð∞

�∞

h tð Þj j2dt ¼
ð∞

�∞

h fð Þj j2df

where h fð Þ is the Fourier transform of h tð Þ.
Convolution theorem

F h tð Þ�g tð Þð Þ ¼ F hð Þ∗F gð Þ ¼
ð∞

�∞

h f � f 0ð Þg f 0ð Þdf 0

Gauss’ law
ð

V

r�A dV ¼
ð

S

A�n da

ð

V

rφ dV ¼
ð

S

φ n da

ð

V

r� A dV ¼
ð

S

n� A da:

Below S is an open surface and C the contour bounding it. The normal n to S is defined
by the right hand side rule in relation to the sense of the line integral around C.
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Stoke’s theorem
ð

S

r� Að Þ�n da ¼
þ

C

A�dl

ð

S

n�rφ da ¼
þ

C

φ dl

B.2 Various Formulas

a � b� cð Þ ¼ b � c� að Þ ¼ c � a� bð Þ
a� b� c ¼ a �cð Þb� a �bð Þc

a� bð Þ � c� dð Þ ¼ a �cð Þ b �dð Þ � a �dð Þ b �cð Þ
r �rφ ¼ 0

r� r � að Þ ¼ 0

r�r� a ¼ r r�að Þ � r2a

r� φað Þ ¼ a �rφþ φr�a
r� φað Þ ¼ rφ� aþ φr� a

r a �bð Þ ¼ a �rð Þbþ b �rð Þaþ a� r� bð Þ þ b� r� að Þ
r� a� bð Þ ¼ b � r � að Þ � a � r � bð Þ

r � a� bð Þ ¼ a r�að Þ � b r�að Þ þ b �rð Þa� a �rð Þb

B.3 Laplace Transforms

First let us list the basic relationships and properties of the Laplace transform L:

f sð Þ ¼ L F tð Þð Þ ¼
ð∞

�∞

F tð Þ e�stdt

sf sð Þ ¼ F0 tð Þ

1
s
f sð Þ ¼ L

ðt

0

F xð Þdx
0

@

1

A

f s� að Þ ¼ L eatF xð Þð Þ
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e�bsf sð Þ ¼ L F t � bð Þð Þ

f 1 sð Þf 2 sð Þ ¼ L
ðt

0

F1 t � zð ÞF2 zð Þdz
0

@

1

A

B.4 References

[1] J. D. Jackson, Classical Electrodynamics, New York: Wiley and Sons, 1984.
[2] G. Arfken, Mathematical Methods for Physicists, New York: Academic Press, 1985.

Table B.1 Common Laplace transforms

f sð Þ F tð Þ Limitations

1 δ tð Þ Singularity at +0

1
s

1 s > 0

n!

snþ1
tn s > 0, n > �1

1
s� k

ekt s > k

1

s� kð Þ2 tekt s > k

s

s2 � k2
cosh kt s > k

k

s2 � k2
sinh kt s > k

s

s2 � k2
cos kt s > 0

k

s2 � k2
sin kt s > 0

S� a

S� að Þ2 þ k2
eat cos kt s > a

k

S� að Þ2 þ k2
eat sin kt s > a

S2 � k2

S2 � k2
� �2 t cos kt s > 0

2ks

S2 � k2
� �2 t sin kt s > 0
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Index

2-pi-models, 104

active cascode, 34
ADC see analog digital converters
ADC model

basic, 196
sampling, 199

Ampere’s law, 54, 61, 75, 77
amplifier stages

basic level, 4
cascaded, 44
higher level, 31

analog digital converters, x, 195
architectures

ADC, 201
PLL, 171

back of the envelope calculations see estimation
analysis

bandwidth
estimate, 42

basic PLL equations, 175
basis functions, 162
bipolar, 4
bit error rate, 39, 41

calculation, 38
definition, 203

body effect, 4, 235
boundary conditions

derivation of, 61

capacitance
calculating, 66
definition of, 65
fringe, 28
one dielectric media, first principle calculation, 68
simple calculation, 68
two dielectric media, first principle calculation, 70

capacitor
circuit element, 67
serial formula, 72

cascode, 21–22, 28, 31, 33
active feedback, 33

CD stage, 7, 10
with resistor capacitor ladder load, 16

CG stage, 5
characteristic impedance, 107–108, 116
charge sampling

theory, 222
circuit analysis see circuit theory
circuit design, 30, 49–50, 85, 90, 101
circuit theory, ix, 51, 109
CMOS inverter

cross-coupled, 25
single, 23

CMOS transistor
inherent gain, 14
small geometry bandwidth, 10
small geometry current, 182

common drain see CD stage
common gate see CG stage
common source see CS stage
comparator, 34, 41

no output load, 40
comparator design, 45
conduction current, 54
conformal coordinate transformation, 95
conformal transformations, 93, 96
continuity equation, 54
convolution theorem, 216, 221
co-planar wave guides, 103
Coulomb gauge, 53
CS stage, 8, 15
current distribution

perfectly conducting ground plane, 87
related to inductance, 66
resistive ground plane, 89
thin conductors, 93

current mirror, 20
current sheet over ground plane

first principle calculation, 82
cylindrical symmetry, 2, 58, 74, 76, 85

Delta gap source, 161
design examples, 4, 31, 122, 166, 234
design phase, 3
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differential nonlinearity (DNL), 202
differential pair, 18
Dirac delta function

definition of, 213
distortion, 15, 17, 199, 202, 209
distributed effects, 102

effective number of bits (ENOB), 203
effective radius

using adjacent circular segments, 126
using area equivalence, 127
using maximum length scale, 128

EFIE, 160
electric field integral equation see EFIE
electrical length, 108–109, 116, 134
electromagnetism, ix, 50, 101
estimation analysis, 1
estimation calculations, ix
evaluation, 3

field energy, 63
electrical, 63
magnetic, 64

fine tune, ix, 3, 191, 194, 207
first principles, ix, 68, 85
five transistor amplifier, 31
Flash ADC, 201, 206
foundry supplied inductor libraries, 104
Fourier transform

sample and hold signal, 218
track and hold signal, 218
track phase, 217

Fourier transform, 212
full scale voltage, 38, 41
full wave approximation

single frequency, 54

Galerkin’s method, 160
gate impedance, 6–7
gauge choice, 53
gauge invariance, 52
gauge potentials, 52–53, 94
gauge symmetry, 53
Gauge theory, 52
gauge transformation, 53
Gauss’ law, 62–63

definition of, 239
Green’s function

1D, 58
ground planes, 102

hand calculation see estimation analysis
Helmholz equation, 56–60, 84
high frequency phenomena, 85
high speed integrated circuit

size of modern, 102
homogeneous equation, 56

ideal impulse sampling, 221
ideal sampling switch, 214
impressed current, 54
impulse sampling, 215
impulse sensitivity function, 187, 189
inductance

calculating, 73
definition of, 65
single straight wire, 74
single wire over ground plane, first principle
calculation, 79

two straight wires, first principle calculation,
74

inductors as circuit elements, 73
initialization phase

comparator, 35, 42
input impedance, 5–9, 23–25
input pair, 35, 39, 42, 45, 49
input stage

comparator, 8, 38, 40, 42, 45, 201
Flash ADC, 207, 209

input transistors see input pair
integral nonlinearity (INL), 202
integrated circuits, 4, 53, 56, 70, 101, 119, 122
inter symbol interference (ISI) see Jitter:inter symbol

interference
interleaving adc, 203
inudctor model including

parasitic capacitand and resistance, 135

jitter, ix, 3, 165–168, 170, 184, 203, 211, 224,
226–231

jitter, 166, 230
anti-correlated, 227
correlated, 227
data-dependent, 166
deterministic jitter, 166
duty cycle distortion, 166
Gaussian, rms, 166
inter symbol interference, 166
periodic, 166
random, 166
uncorrelated, 229
uncorrelated bounded, 166
vs phasenoise, 167

KCL see Kirchoff’s current law
Kirchoff’s current law, 5

Laplace equation, 93
lateral skin effect, 97, 100, 137, 148
LC-VCO, 149, 191
linearization techniques, 4
linearize, 2, 4–5, 21, 175
linewidth, 171
lithography, 102
load resistance, 25, 48
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long wavelength
approximation, 55
simulators, 152

loop equations, 26
Lorenz gauge, 53

machine learning, 104
magnetic charges, 52
magnetic field integral equation see MFIE
Matrix equation, 160
Maxwell’s equations, 51, 66–68, 70, 73–74, 85

1D – solution, 56
2D – solution, 58
3D – solution, 59
external sources, 54
solutions, 56

metal-insulator-metal capacitor see mim capacitor
metastability, 38
method of images, 80
method of moments, 159
MFIE, 160
Miller effect, 9, 27–28
MIM capacitor, 119
MOM capacitor, 121
multi-layer ground planes, 103

narrow-band applications, 8
negative resistor, 7–8, 16, 185
noise analysis, 31, 48
noise optimization, 45
noise transfer, 20, 31–32, 41, 171, 219
nonlinear effects, 4
nonlinear extension, 9, 29

CD stage, 10
CS stage, 15

nonideal sampling switch, 219
Nyquist criterion, 199

offset, 202
Ohm’s law, 93
one turn inductor, 129
output conductance, 12, 14, 31

Parseval’s theorem, 168, 170
definition of, 239

partial inductance, 122–123
partial inductance of a wire stub pair, 122
PCB

connection to IC, 102
performance criteria

adc, 202
PLL, 172

permeability, 51
permittivity, 51, 55, 70, 72, 85, 102, 136, 139, 234
perturbation analysis, 4
phase locked loop (PLL), ix, 171
phase noise, 187
phenomenological model, 135, 138

pill box, 61
pi-models, 104
pipeline converter, 201
PLL see phase locked loop
Poisson equation, 57, 58
positive feedback, 38, 43, 184
potential field, 52, 152
power, 202
printed circuit board (PCB), 102
propagation constant, 106
propagation delay, 23

Q - quality factor
definition of, 138

rectangular cross section, 126
regeneration phase

comparator, 37, 42
regularization theory, 104
reset, 35, 40–41, 45, 207
reset phase

comparator, 35
reset switch, 207
reset switches, 40, 45
RF performance, 104

sampling
finite pulse width, 222

sampling rate, 41, 199–201
saturation, 5, 16, 23, 27–28, 236
scaling relationships, 42
self-resonance, 134
shielding techniques, 1, 101
sigma-delta converter, 201
signal integrity, 103
signal-to-noise and distortion ratio (SNDR), 202
signal-to-noise ratio

definition, 202
simple straight wire in free space, 74
simplification, 2
simulation, 12, 15, 46, 81, 125, 131–132, 134, 137,

151–152, 161
simulators, 87, 151

principles, 151
single transistor gain stages, 4
skin depth, 85
small geometry CMOS, 23, 28, 87, 102, 121
SNR, 41, 166, 198, 200–203, 206, 208, 227–229,

231
improvement using averaging, 200

S-parameters, 101, 109, 112–114, 116–117
definition of, 109

spurious-free dynamic range, 203
stability, 176

feedback systems, 176
Stoke’s theorem, 61, 76–77

definition of, 240
strong-arm comparator see comparator
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substrate resistance, 136
substrate resistivity, 137, 234
Successive Approximation Register (SAR), 202
surface charge, 63
surface current, 62

Taylor expansions see Taylor Series
Taylor series, 10
third harmonic

differential pair, 19
through-silicon-vias (TSV), 104
time domain, 25, 31, 42, 184, 189, 223
time evolution, 37
time-digital converter, 201
time-interleaved converters, 202
timescale/s, 27, 31, 35–36, 38, 40–43, 45, 48, 234
total harmonic distortion (THD), 202
track and hold, 216, 218
transconductance, 32
transfer function, 10, 15, 17, 25, 29, 171, 175–176,

178, 181–182
transition frequency, 6
transmission lines, 101

basic theory, 105

two transistor stages, 18
two-turn inductor, 129, 134, 137, 144
two-dimensional solution, 58
two-pole system, 9, 177

VCO
active design, 193
frequency of oscillation, 184
performance criteria, 183
steady state amplitude, 185
tank design, 191

vector potential, 52, 56, 60, 66, 76–77, 83, 94, 123,
155, 161

verification, 3
vias, 103
voltage controlled oscillator see VCO
voltage field see potential field
voltage sampling theory, 211
Volterra series, 9
volume charge, 63
volume current, 61

wavelength, 53, 55, 57, 60, 68–69, 84–85, 88,
93–94, 101–102, 108–110, 117, 151–152, 159
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